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GENERIC REVERSE COMPILATION TO RECOGNIZE SPECIFIC BEHAVIOR
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Abstract
Thesis is aimed on recognition of specific behavior by generic reverse compila-
tion. The generic reverse compilation is a process that transforms executables
from different architectures and object file formats to same high level language.
This process is covered by a tool Lissom Decompiler. For purpose of behav-
ior recognition the thesis introduces Language for Decompilation – LfD. LfD
represents a simple imperative language, which is suitable for a comparison.
The specific behavior is given by the known executable (e.g. malware) and the
recognition is performed as finding the ratio of similarity with other unknown
executable. This ratio of similarity is calculated by a tool LfDComparator, which
processes two sources in LfD to decide their similarity.
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Chapter 1

Introduction

Reverse compilation is a process which has been researched for many years.
Due to new architectures and new compilers for these architectures it is very
evolving and difficult process. A wide-known name for reverse compilation is
also decompilation. The main aim of decompilation is a gain of high level source
code, which was used to create an executable. So it is a reverse process to the
compilation.

The motivation for getting original source code from executable can be various:
debugging, steal of intellectual property, or analysis of its behavior. This thesis is
aimed on the last point and its goal is to recognize specific behavior of different
executables, mainly malware. Thesis summarizes the various types of obfusca-
tions, which are used to protect malware against detection by antivirus system.
Obfuscations change the binary code, but the behavior remains the same.

Generic decompiler has to be able to process executables of different object file
formats from different architectures. We created the decompiler that successfully
completes this task. Other task of decompiler is suppressing of differences
caused by various obfuscations. The ability to produce the source code without
damages by obfuscations is important for finding the similarities between source
codes obtained by decompilation from related executables. Therefore, the design
of decompiler is adapted to more complicated conditions, which are given by
malware environment.
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The decompiler transforms executable to high level language (C, Python’, or
LfD). LfD is a simple imperative language, which is designed for the purpose
of this thesis. By getting the output in this language, we are able to compare
behavior of executables, which are originally from different architectures and file
formats or obfuscated. This part is completed by the tool LfDComparator. One
of possible usage is detection of malware for the architecture as ARM, MIPS, or
PowerPC, if we have recognized its binary for x86.

The organization of this extended abstract is following: The short review of
well known decompilers is summarized in Chapter 2. The generic decompiler is
described in Chapter 3. It covers the overall design, and the closer description
of front-end. The experience with malware analysis on the output source code
from the decompiler is presented in the Chapter 4. The next Chapter 5 studies
the opportunities for the comparing of the output source codes and recognizing
the specific behavior. Experimental results are shown in Chapter 6. There are
the examples of C output from decompiler and the results of specific behavior
recognition. The last Chapter 7 concludes the abstract. We assume that the reader
is familiar with the basics of formal language theory and the theory of compiler
design (see [1]).
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Chapter 2

Decompilers

In this chapter, we introduce the nowadays most popular machine-code decompil-
ers and other projects related to decompilation. Description given in this section
is mostly based on the official information presented by the authors of these tools.
We will focus on supported target architectures, object file formats (OFFs), and
other features.

2.1 The dcc Decompiler

The dcc decompiler was developed by Cristina Cifuentes while she was a PhD
student at the Queensland University of Technology. It was introduced in her
dissertation thesis [3]. The dcc decompiler is distributed under the GPL license.

The structure of the decompiler resembles that of a compiler: a front-end, middle-
end, and back-end which perform separate tasks. The front-end is a machine-
language dependent module that reads in machine code for a particular machine
and transforms it into an intermediate, machine-independent representation of
the program. The middle-end (as known as the Universal Decompiling Machine
or UDM) is a machine and language-independent module that performs the core
of the decompiling analysis: data-flow and control-flow analysis. Finally, the
back-end generates the C language code for the input program.
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2.2 Boomerang

Boomerang1 is an open source project. It was strongly inspired by UQBT—
A Resourceable and Retargetable Binary Translator in 1996 [14], and it was
established in 2002. The original author is Mike Van Emmerik. Boomerang
was originally released under a BSD-like license, however, it tends to be more
GPL-oriented in its latest release (2006).

It works to ease the pain of reverse engineering by searching for patterns in
machine code and replacing them with equivalent C constructs. It uses a series
of algorithms that convert machine code to C code and then it makes automatic
substitutions throughout. Ideally, all that is left for the reverse engineer is to
rename the variable and function identifiers. Boomerang also accepts a set of
hints that specify the names of known data structures so that the program can
automatically replace those names.

The Boomerang decompiler is probably the first attempt to create a retargetable
decompiler by using domain-specific language for description of the target archi-
tecture. The SLED language, developed within the New Jersey Machine-Code
Toolkit [12] project, was used for this purpose. This project exploits the SLED
language [11] for compact description of instruction syntax and coding. However,
this language does not support description of instruction semantics. Therefore,
this language itself cannot be used for generation of tools like compilers or de-
compilers. Therefore, the authors of the Boomerang decompiler have to use it
together with the RTL-based semantics description language SSL [4]. Accord-
ing to the Boomerang’s source code and author’s notes, the usage of SLED/SLL
was slow and error-prone for more complex processor architectures, such as
Intel x86. Moreover, the final solution is not truly retargetable because several
target-platform related parts are hand-coded.

2.3 REC Studio

REC Studio—Reverse Engineering Compiler [13] is a freeware, but not open-
source, interactive decompiler, which is still under development. It reads a
Windows, Linux, Mac OS X or raw executables (e.g., firmware), and attempts to

1http://boomerang.sourceforge.net/
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produce a C-like representation of the code and data used to build the executable.
It uses more powerful analysis techniques such as partial SSA and supports 32-
bit and 64-bit executables. The software is available for mainly used platforms:
Windows, Linux (Ubuntu), and Mac OS. However, this software is unstable on
several architectures (e.g., Windows), and it often crashes during decompilation.

The author wrote on his web page [13] that the disassemblers used in REC
were taken from various sources. Due to this fact, we estimate that it is very
complicated to add support for a new architecture. Also, it is a considerable
amount of code from different origins, what makes it hard to maintain. REC
has loaders for more OFFs: PE, ELF, COFF, and Mach-O. We can estimate
that there is unique code for each loader. Its author also claims that debugging
information is also supported and the decompiler can process the DWARF format
and, partially, the PDB format.

2.4 Hex-Rays Decompiler

The Hex-Rays Decompiler2 is the nowadays decompilation “standard”. It is
implemented as a plugin to the IDA disassembler3. The Hex-Rays Decompiler
supports the x86 (i.e., not x86 64) and ARM target architectures. It also supports
both major OFFs—ELF and PE. The output is generated as a highly readable C
code; however, the output is not designed for re-compilation, only for more rapid
comprehension of what the program is doing.

This software is commercial and distributed without sources. The first version
of the x86 decompiler was released in 2007, and support of ARM decompilation
has been added in 2010. The current version is 1.7, and there is no plan for
additional supported target platforms. Its author, Ilfak Guilfanov, claims that
this is the first decompiler able to process real-world executables. The plugin
enhances the existing disassembler with another view over the input executable
and adds several new features. The decompilation itself is very fast and oriented
on function detection and recovery.

2www.hex-rays.com/products/decompiler/
3www.hex-rays.com/products/ida/
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Chapter 3

Lissom Decompiler

Decompiler is developed within the team, where the author of thesis is one of
the team members. Author is mainly involved in the reasearch and development
of front-end. Therefore this part is described with more details. However,
other parts are also described for providing the overall view on the decompiler
framework. This chapter is based on articles [8, 15–20].

We present an overview of a retargetable decompiler. Our approach is not tied
to any particular target platform. The primarily utilization of this tool is a static
platform-independent malware analysis. With its help, it is possible to inspect
malware code on a much more abstract and unified form of representation, while
preserving the functional equivalence of the code. Therefore, malware analysts
do not need to have a deep knowledge of the target platform (i.e. instruction set
and processor architecture) and they can fully focus on the malware analysis.

The retargetable decompiler is based on exploitation of the ADL ISAC [10],
which is intended to be used for designing new application-specific instruction
set processors (ASIPs). However, we use this formalism for the description of
existing platforms. The front-end of the decompiler uses generated instructions
semantics from this description. The decompiler core is based on the LLVM
Compiler System1, which we use for a translation from LLVM IR code into
HLL.

1http://llvm.org/
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3.1 ISAC Language

The ISAC language was developed within the Lissom project at Brno University
of Technology [9]. The project has two basic scopes. The first scope is a de-
velopment of an ADL for the description of Multiprocessor Systems-on-Chip
(MPSoC). The second scope is a transformation of MPSoC description into ad-
vanced software tools (e.g. a C compiler, a simulator, etc.) or into a hardware
realization of each processor. The ISAC language belongs into a so-called mixed
ADL. It means that a processor model consists of several parts. In the resource
part, processor resources, such as registers or memory hierarchy, are declared.
In the operation part, processor instruction set with behavior of instructions and
processor micro-architecture is described. Processor model can be written in
two levels of accuracy—instruction-accurate or cycle-accurate. The retargetable
decompiler currently uses the first one.

3.2 LLVM Compiler System

The LLVM Compiler System was originally designed as a compiler framework
to support transparent, lifelong program analysis and transformation for arbitrary
programs, by providing high-level information to compiler transformations at
compile-time, link-time, run-time and in idle-time between runs. Nowadays, the
use of LLVM spans over many different areas, including compilation (Clang,
LLVM D Compiler, Trident Compier), video decoding (Jade), signal processing
(Faust), static checking (Calysto), and implementation of various programming
languages (Unladen Swallow, Rubinius, Pure). The key features of LLVM in-
clude a universal, language-independent instruction set, type system, intermediate
representation (LLVM IR), many built-in sophisticated optimization algorithms
and passes, link-time optimizations, just-in-time (JIT) code generation, and ap-
plication programming interface for several programming languages.

3.3 Design of a Retargetable Decompiler

The objective of the decompiler is a static analysis of a binary code and its
transformation into a HLL. It is important to preserve the functional equivalence
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of the transformed program; otherwise, further code analyses will be inaccurate.
This is a very difficult task because we have to deal with missing information
in the input code (e.g. because of compiler optimizations, malware obfuscation,
etc.). The usage of the retargetable decompiler requires from user to describe the
target architecture in the ISAC ADL. Then, the front-end of the decompiler can be
automatically generated by a tool-chain generator based on this description. After
that, it is possible to reversely translate binary executables for this architecture.

The toolkit consists of two main parts—the preprocessing part and the decompiler
core, see Figure 3.1. The structure of the decompiler core is similar to a classical
compiler. It consists of a front-end, a middle-end, and a back-end. The only
platform-specific part is the front-end. For this purpose, the binary coding
and semantics of each processor instruction is extracted from the architecture
model in ISAC. This is a major difference against other retargetable decompilers,
because it is not necessary to manually reconfigure the decompiler for a new
architecture. It should be noted that in present, there is no other competitive
method of automatically-generated retargetable decompilation.
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Figure 3.1: The concept of the retargetable decompiler.

The preprocessing part analyses the input application to detect the used file format,
compiler, and, if the file was packed, the used packer. After that, it unpacks and
converts the examined platform-dependent application into an internal object file
format CCOFF (Codasip Common Object File Format). The conversion is done
via our plugin-based converter [8]. We support conversions from Windows PE,
UNIX ELF, Apple Mach-O, and other formats. Non-standard file formats can
be supported via a direct implementation of the appropriate plugin, or via an
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automatic plugin generation based on the format description in our object-file-
format description language [7]. Afterwards, such CCOFF files are processed by
the decompiler core.

The decompiler core is built on top of the LLVM Compiler System. The LLVM
assembly language, LLVM IR, is used as an internal code representation of the
decompiled applications throughout the decompilation process. The core of
our decompiler consists of three basic parts—a front-end, a middle-end, and a
back-end, described next.

The unified CCOFF files are firstly processed by the front-end, which is the
only platform-specific part of the decompiler because its instruction decoder is
automatically generated based on the target architecture model in the architecture
description language (ADL). The ISAC model is transformed by a semantics
extractor [5], which transforms the semantic description (i.e. snippets of C code)
of each instruction into a sequence of LLVM IR instructions, which properly
describe its behavior. The extracted semantics and binary encoding of each
instruction is used for an automatic generation of an instruction decoder. The
decoder translates the application’s machine code into sequences of LLVM IR
instructions, which characterizes its behavior in a platform-independent way.
This intermediate program representation is further analysed and transformed in
the static-analysis phase of the front-end. This part is responsible for eliminating
statically linked code, detecting the used ABI, recovering of functions, arguments,
etc. [18]. When debugging information or symbols are present in the input
application, we may utilize them to get a more accurate result. Although this
may be useful during source recovery or code migration, this type of information
is almost never present in case of malware, so we do not rely on it.

Afterwards, the LLVM IR program representation is optimized in the middle-end
by using many built-in optimizations available in LLVM and our own passes (e.g.,
optimizations of loops, constant propagation, control-flow graph simplifications).

Finally, the back-end part converts the optimized intermediate representation into
the target high-level language (HLL). Currently, we support three target HLLs:
C, Python-like language, and LfD (specific language described in 5.2). The
second one is very similar to Python, except a few differences—whenever there
is no support in Python for a specific construction, we use C-like constructs.
The conversion itself is done in a several-step way. First, the input LLVM IR
is converted into another intermediate representation: back-end intermediate
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representation (BIR). During this conversion, high-level control-flow constructs,
such as loops and conditional statements, are identified and reconstructed. After
that, the obtained BIR is optimized, and finally, it is emitted in the form of the
target HLL.

Apart from the target HLL, we are able to produce the call graph of the decompiled
application, control-flow graphs for all functions, and an assembly representation
of the application.

3.4 Front-end

The objective of the front-end is a translation from the CCOFF file into a sequence
of low-level LLVM IR instructions. We use a name decfront for the front-end. As
it was said before, it is a single part of decompiler, which is platform-independent
and therefore it is generated according to architecture description. To be precise,
an instruction decoder is generated, and the others analysis are generic. So, they
are same for all architectures.

The large part of decfront is detection of statically linked code. This feature
helps to decrease time of decompilation and also to improve the result. It is
described closely in the thesis. The main part of the front-end is a static analysis
of the decoded code before generation of final LLVM IR code. This part includes
several specific analysis, some of them are architecture-specific. The cooperation
and work flow of decfront is shown in Figure 3.2. This figure presents complete
image of decfront architecture design.

The cursory descriptions of selected decfront analysis follow. It is important to
note that all these analysis are static.

Overview of Selected Front-end Analysis

The front-end part is basically responsible for translation of input platform-
dependent machine-instructions into an independent code representation in the
LLVM IR notation. However, it is necessary to apply several methods of static
analysis, such as detection and recovery of functions and loops, data-flow and
control-flow analysis. Selected methods are described in the following text.
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Figure 3.2: The architecture of decfront.

Data Sections Analysis

Data section analysis manages data objects. It reads and stores the whole de-
compiled file, because we need access to both code and data sections. This
analysis is used by other parts of decompiler. Usually, in the case when there is
a read of memory on some address. Motivation is to find out the value on that
address. This analysis tries to investigate the bytes and determine the type of this
part of memory and its value. This investigation can be supported by additional
information provided by caller.
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Instruction Decoding

The necessary part of the translation process is instruction decoding. This part
was implemented in a cooperation with Jakub Křoustek. It converts machine-
instructions into a proper LLVM IR form. The instruction decoder for the
particular architecture is automatically generated based on the extracted seman-
tics and binary coding. The instruction decoder is responsible for translating
architecture-specific binary machine code into an internal code representation as
a sequence of low-level LLVM IR instructions (i.e., a block with several LLVM
IR instructions for each input machine instruction). As we can see, its functional-
ity is similar to a disassembler, except that its output is not an assembly language,
but rather the semantics description of each instruction. This part has to deal
with platform-specific features. For example, it has to support architectures with
different endianness.

Jump Table Analysis

Jump table analysis depends directly on import table. Usually, compilers do not
call linked functions by direct jump on the address of import. They create a
part of code with a lot of jumps on the imports. So, the user code jumps on the
addresses of this jump table. Our motivation is to have direct calls of linked
functions. This point requires to connect addresses of jump table with imports.

For ELF format, the jump table is represented by PLT table in .plt section.
Unfortunately, this may not be true for malware or non-standard binaries. Also,
it is solved differently for other file formats. We manage to implement generic
analysis. It goes through the code and it finds jumps to addresses from import
table.

Control-Flow Analysis

Control-flow analysis (CFA) is the most important analysis of the whole decom-
piler and many other analysis depend on its results. It means that wrong output of
this analysis will have bad impact on the output of other analysis and, therefore,
on the whole result of decompilation. The aim of CFA is to divide the code
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into basic blocks, which are later used for, e.g., function detection or reaching
definitions analysis.

Control flow is affected by branch instructions. Firstly, we need to recognize
branch instructions and then mark them according to their purpose. The tricky
part is that the purpose of a branch can be changed whenever we get more
knowledge, i.e., branch on some address can become a tail call when we find out
that this address is an address of a function.

Function Detection

There are two main methods of function detection. Both methods were imple-
mented in a cooperation with Břetislav Kábele. The first one uses a top-down
approach and the second one uses a bottom-up approach. By using the top-down
approach, it is possible to recognize function headers, and by using the bottom-up
analysis, we can detect their bodies. These two methods are interconnected and
they form an iterative, bidirectional function search algorithm. There is an addi-
tional method, which uses debugging information, but it is very simple method.
It just creates the functions on the addresses that are gained from debugging
information without any additional validation.

Data-Flow Analysis

Data-flow analysis (DFA) is based on the memory places. If we have a set
of registers and flag registers, R, and the set of all places for storing values
in memory and stack, M , then the memory place l ∈ R ∪ M can contain a
value of a variable. Every function uses memory places for input and output
arguments. The DFA computes these arguments from instructions that access
the stack or registers. Input arguments are stored in the analyzed function and
output arguments are passed to the called function in a point of a call so not all
of them are considered. After the computation, real arguments are recognized as
the intersection of the input and received (output from parent) arguments. The
return address is a memory place containing a return value, i.e., the value of the
program counter (PC). The analysis is looking for storing the PC to a memory
place and transmits this place to a proper function. The last step is a recognition
of return values. We use the same principle as for function arguments.
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Stack

The storage of local variables is ensured by the stack. The stack analysis aims
on the accesses to memory, which belongs to stack accesses and they describe
the usage of local variables. We create a local variable for each accessed offset.
But, to get the offset we need to identify the load or store to memory, which is
based on the value of stack pointer and value added to this one.

This analysis is run separately on each function, because local variables have
validity inside of the function body. At the start, we need to know which register
represents the stack pointer. This knowledge is earned from the ABI description
(section stack). Subsequently, we seek for the loads and stores to memory,
where the address depends on the value in such a register. By the current value
of stack pointer and the value added to it, we resolve the offset of the local
variable. Except these operations, we monitor the operations with stack pointer
register. There are possible situations, when the value from the original stack
pointer register is copied to another register, and in this moment, there are two
valid stack pointer registers.

Local Variables Detection

One type of local variables is created by the stack analysis. But, the local variables
may be represented also by the registers. Mainly, if there are used optimizations
in the compilation process. In our representation, the registers have a status
like a global variable. Of course, it is valid to generate LLVM IR code with
usage of registers as global variables. Unfortunately, it decreases the strength of
optimizations in middle-end and back-end and also, it raises the running time of
these optimizations. Therefore, we have a motivation to replace usage of register
with a usage of locally declared variable. The replace operation is based on the
definition-use and use-definition chains.

LLVM IR Generator

LLVM IR generator is the last part of the front-end. The task of this part is to
generate LLVM IR into a text representation. It has to generate the declarations
of all linked functions, global variables and constants. The next step is producing
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the IR code for the decompiled executable. This code is divided into functions,
which are recognized by the function detection. The generator uses a basic
indentation of code for better orientation, which is very needed for debugging
during the development. Example of generated LLVM IR code for a single
instruction:

;804857a 1110101100010011 eb 13
;JMP {19}

decode__instr_grpxx_op1_eip32_rel8__instr_jmp_rel8__op1
%u0_804857a = add i8 19, 0 ; used signed value. Unsigned value:

19
%u1_804857a = sext i8 %u0_804857a to i32
%u2_804857a = add i32 134514042, 0 ; Assign current PC
%_e_804857a = add i32 2, 0
%u3_804857a = add i32 %u2_804857a, %_e_804857a
%u4_804857a = add i32 %u3_804857a, %u1_804857a
br label %pc_804858f ;4 * %u4_804857a

After this generation, there is only the release of allocated resources and the
front-end exits to allow continue of middle-end.

Middle-end and Back-end

Middle-end and back-end is developed by Petr Zemek, therefore they are not
described in this abstract. It is possible to read more details about them in the
thesis.
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Chapter 4

Malware Decompilation
Experience

Decompiler is currently available as an online service and it is free to use at
http://decompiler.fit.vutbr.cz/. We get a lot of feedback from
whole world. Users decompiled a large number of various binaries from standard
executables for Windows to specialities as firmware for MIPS routers. The result
was a plenty of suggestions to improve, but fortunately, also compliments for our
tool.

Online service has some limitations as maximal running time of decompilation.
The fully functional tool is used in company AVG Technologies. It helps to better
uncover the behavior of malware. This section introduces analysis of malware
program, which is also published in [17].

4.1 Psyb0t – MIPS Malware

We present a step-by-step case study of malware decompilation by using the
previously described retargetable decompiler. The target of our examination is a
computer worm called psyb0t [2], which attacks network infrastructure devices
(e.g. modems and routers) running MIPS processors with Linux-based operating
systems. We figured out that the UPX packer for the MIPS architecture was used
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for application packing. The used version of UPX was 3.03 and this was the up-
to-date version when the malware started spreading. In normal circumstances,
we are able to unpack such a file by using our internal plugin-based unpacker,
see [7] for details. The UPX unpacking plugin is trivial—it simply invokes
the UPX packer with argument -d. This argument switches UPX’s behavior to
unpacking mode. The last part of the preprocessing phase is a conversion of the
unpacked ELF file into an internal CCOFF format.

Front-End Phase

Next, the unpacked psyb0t application in the CCOFF format is processed in the
front-end phase. At first the instruction decoder has to be automatically gener-
ated based on the MIPS architecture model in the ISAC language. The model
is relatively simple—about 4000 lines in this ADL. After that, the instruction
decoder translates the MIPS machine-code instructions stored in CCOFF into
LLVM IR platform-independent representation that is further processed by the
following analyses.

In the front-end phase, various analyses are applied, but in what follows, we focus
only on those related to our subject. This means that we exclude, for example,
a description of analysis that reads DWARF debugging information from the
executable because psyb0t does not contain any DWARF data.

The executable contains also symbols for functions. As we will see later, it does
not have the symbols for all functions, but we can use the available symbols to
improve the decompilation results. This analysis is simple and just stores the
pairs with the address and name of each symbol. Since there is a symbol for
the main function, we can skip the entry point analysis. If the executable was
without that symbol (i.e. stripped), this analysis would try to find the address
of main by using its internal compiler-specific database or by using a heuristic
detection.

The next analysis is aimed on creating a control-flow graph (CFG). It examines
all branch instructions, tries to get the target addresses and resolve the type
of branches. The goal is to recognize conditional and unconditional branches,
function calls, and returns from a function. A challenge hidden in this executable
file is the usage of position independent code (PIC). This means that functions
are called by indirect branches.
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On the MIPS platform, the indirect branch is of the form jalr t9. Therefore,
if we want to know the called function, we have to track the value that is stored
in register t9. This is ensured by our internal static-code interpreter, which uses
a partially created CFG. It goes backwards in the CFG and searches for a store
of a value in the tracked register, see [18] for details.

Psyb0t often uses the snprintf function, which is used to build commands
for an IRC server. This function has a variable number of arguments and it
would be very eligible for us to know the accurate number of arguments and their
types. This is solved by a variadic-function analysis. It takes a look on a call of
such a function, and if we can get the formatting string, which is the only fixed
argument, we can continue. The following arguments depend on that string and
by processing the string, we find out the missing arguments. For example, given
string

’’
%s %s :%s‘‘, we know that there are three more char* arguments.

Analysis of the Obtained Results

Psyb0t is an IRC bot, which reads the topic of the IRC channel after connecting
to the server and gets commands from this topic. It scans devices in the network
and tries to log in by default usernames and passwords or uses an exploit when the
login fails. Once a shell of the vulnerable device is acquired, psyb0t downloads
itself from a remote server by using the wget application into the victim’s
location /var/tmp/udhcpc.env. This new instance of psyb0t is executed
afterwards. It supports classical malware actions like DDoS attacks, brute-
force attacks on router passwords, download of files, visitation of web pages, or
executing shell commands [6].

We have presented the decompilation process in a step-by-step way. Now, we
can analyse the obtained HLL source code. We describe the behavior of psyb0t
immediately after its execution, i.e. the code starting at the entry-point—themain
function. The most important parts of the main function are listed in Figure 4.1.
The comments were added manually. Selected parts are listed separately with
describing notes.

The first operation in main is opening of a file named udhcpd.mtx in a
temporary folder. It is opened in the writing mode. The author of psyb0t
followed good practice and checked the result of the operation.
uint32_t *file = fopen(”/var/tmp/udhcpd.mtx”, ”w”);
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int main(int argc, char **argv) {
//...
uint32_t *file = fopen(”/var/tmp/udhcpd.mtx”,”w”);
//...
uint32_t fd = fileno((uint32_t *)file);
//...
uint32_t err_code = flock(fd, LOCK_EX | LOCK_NB);
//...
RSeed();
//...
Daemonize();
//...
system(”/etc/firewall_start”);
system(”iptables -A INPUT -p tcp --dport 23 -j DROP”);
system(”rm -f /var/tmp/udhcpc.env”);
//...
backup(); // Backup file /var/tmp/hosts
//...
function_404b1c(); // Prepare IRC nickname
//...
function_4056cc(); // Await for commands
//...
fclose(fd); // Remove mutex file and quit
//...

}

Figure 4.1: Simplified code of the main function by using the Lissom project
retargetable decompiler.

var3 = (uint32_t)file;
if (file == NULL) {

return 1;
}

Subsequently, there is the obtained file descriptor, which is checked for validity.
If it is valid, the application tries to lock the file. After this operation, we can
better understand the suffix .mtx in the name of the file, because it serves as
a mutex. The lock is exclusive and it is does not block when the locking is
done. The mutex is acquired only if there is no other running instance of psyb0t.
Otherwise, the application is terminated.

uint32_t fd = fileno(file);
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if (fd == -1) {
var3 = 1;
return 1;

}
var9 = 6;
uint32_t err_code = flock(fd, LOCK_EX | LOCK_NB);

In all the three previous calls of linked functions, the back-end applies renaming
of variables storing the returned values. For fopen, it uses the common name
file. For fileno, it uses fd as a file descriptor, and finally, for flock, it uses
err code. We can take a closer look on the call of flock. The original second
argument is 6, but the back-end is able to find out the names of the symbolic
constants that form this value.

If the lock is acquired, the application calls internal function RSeed, which
initializes the pseudo-random generator of numbers by calling srand. An
important call is that of function Daemonize, where the application is forked
and the parent process is terminated. The child process continues in its execution
on background with starting and setting a firewall, and removing itself from the
file system. The second call of system updates firewall rules to drop all the
packets on tcp port 23 (i.e. disable inbound telnet communication). The third
command removes the file that psyb0t uses for spreading, probably to cover its
tracks. After removal, psyb0t is located only in memory and a reset of the infected
device will disinfect it. The executed shell commands are of the following form:

/etc/firewall_start
iptables -A INPUT -p tcp --dport 23 -j DROP
rm -f /var/tmp/udhcpc.env

We have given a step-by-step case study of decompiling the psyb0t worm, tar-
geting modems and routers with MIPS processors, by using the Lissom project’s
retargetable decompiler. We can conclude that by using our decompiler, we are
able to speedup the analysis of malware.
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Chapter 5

Detection of Specific Behavior

Our retargetable decompiler creates a platform that processes the various types
of binaries into unified representation—C language or Python’. Due to this
platform, we are able to compare binaries from different architectures on the
higher level. This topic is also very extensive as the reverse engineering. Since,
the development of decompiler was very demanding, this topic is not researched
in such a depth.

We design a schema to find the similarity between two arbitrary binaries that can
be processed by the decompiler. The idea is that we have a (malware) binary
that is well-know for us and we compare it with unknown binaries to find similar
(malware) binary. Following the problematic situation in area of internet of
things, we could have malware for x86. This is analysed and described by the
analysts, because they know this architecture quite well. And, there is a bunch
of binaries for ARM, MIPS, or PowerPC that can be analysed and classified
automatically as the same or very similar malware.

There is a possibility to use output to C and current tools for finding similarities
for C language. We introduce 2 tools that are aimed for revealing the plagiarism,
but they are not so successful for this more specific goal. We have proposed a
simplified language LfD, which is easier to analyse, therefore the similarity is
found with higher precision. For this language, we have a tool LfDComparator,
that is able to handle two input files in LfD language and decide the ratio of
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their similarity. The language LfD and tool LfDComparator are created and
implemnted by the author of this thesis.

5.1 C Source Analyzers

For our comparison, we use two robust tools JPlag developed on Karlsruhe
Institute of Technology1 and Moss developed on Stanford University2. The
comparison on the source code for the malware is not a standard way, because
naturally, the source code for it is not available. On the other hand, these tools
solve a quite common issue if they detect similarities in source code to unveil the
plagiarism.

5.2 Language LfD

LfD is abbreviation of Language for Decompilation. It is designed to be really
simple. It persists only the most important information, which are call graphs,
constants and a part of control flow – loops. It is easy to extend, so it is widely
open for the future research. For processing the files in LfD, the ANTLR3

framework is used. The language is described by a context free grammar, which
is expressed using Extended Backus-Naur Form4, see Appendix A in the thesis
for the complete listing. This form is required by ANTLR framework.

The output code is quite austere, but the objection is aiming for the better simi-
larity detection. There are three main parts:

• functions – the code is inside their bodies. The arguments are not defined,
because they are used only if they are constant.

• loops – are represented by the keyword LOOP.

• constants – can be strings, integers, or floating point numbers.
1http://jplag.ipd.kit.edu/
2http://theory.stanford.edu/˜aiken/moss/
3http://www.antlr.org/
4http://www.cs.cmu.edu/˜pattis/misc/ebnf.pdf
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An example of output is shown in Figure 5.1. There are visible string constants
and also, the control flow and call graphs with functions and loops is well
understandable. This is a base for the following comparison of such a programs.

factorize() {
printf(”Prime factors of %d: ”);
LOOP {

printf(”%d x ”);
}
printf(”%d\n”,);

}

main() {
scanf(”%d”);
factorize();
LOOP {

scanf(”%d”);
factorize();

}
}

Figure 5.1: An example with the program in LfD.

5.3 Tool LfDComparator

This tool compares 2 inputs in LfD language and decides their similarity. The
output is given by the number between 0 and 100 – it means a percentage of the
inputs similarity. LfDComparator is developed in Java and it uses the ANTLR
framework. LfD is described by ANTLR grammar, so we are able to use ANTLR
framework to generate lexer and parser for this language. LfdComparator uses
these generated parts and it is built over them. For deciding the similarity, the
LfDComparator compares 2 areas: control flow graph and constants.
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Chapter 6

Results

In this chapter, we present two kinds of result. The first result consists of standard
C output from decompiler, where output C sources are compared to original input
sources. The second result shows how individual tools are effectual in detection
of similarity.

6.1 C Outputs

The example shows the fibonacci function in Figure 6.1. This case is for x86
and PE file format. There is used compilation with strip, so all symbols
are removed from the binary. Therefore, the function function 401560 is
recovered by the function detection. Hint for that is the name of function, which
is now not preserved from the original source code, but it is generated according
to address, where the function is recovered. The usage of advanced optimizations
-O2 results in usage of while loop in the decompiled source code, and also
instead of two recursive calls, there is only the single one.

There is a difference in main function, where the loop while is used instead
of original for loop. This is not a mistake, but it is caused by the fact that for
loop is harder to reconstruct.
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6.2 Detection of Similarity

In this part, we compare the results of JPlag, Moss, and LfDComparator in the
detection of similarity. Firstly, we test the detection on the binaries from the
different compilers. We have 10 testing C files. We produce 30 different binaries
for each file, they are the combination of these options:

• architecture – MIPS, ARM, x86

• file format – ELF, PE (PE is not generated in combination with MIPS)

• optimization – O0, O2

• additional information – DWARF, symbols, stripped

Then, the decompiler is used to decompile all these binary files into C files. We
have C files that are tested for similarity by JPlag and Moss. By this test, we
simulate the generic detection on binaries from different architectures and file
formats.

The results of Moss are presented in Figure 6.2. Moss provides the results as the
2 numbers for each compared pair, when at least some small similarity is found.
These 2 numbers mean the ratio of similar part. The numbers can be lightly
different according to the size of result, so we take average as the single result
for the pair. We sort given results in the 10 groups. All unlisted pairs are put in
the group 0-10%. Overall results are really bad. This tool would not be usable
for similarity detection.

Figure 6.3 presents the results of JPlag. We see that the majority of results is
below 30%, what is not very good result, but it is better than Moss. There is a
little bit more detections over 70%. Such a number can be considered as very
good and it is a sign that the compared files have quite similar behavior. These
detections of larger similarity are reached if debugging information is present.
Unfortunately, this is not usual for real world binaries or malware. Overall, JPlag
is also inappropriate tool for deciding the similarity of decompiled results.

LfDComparator achieves better results as the previous tools, see Figure 6.4. The
reason is usage of specialized language LfD 5.2 and also the more specific aim
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of this tool. We still have some cases, where the results are bellow 40%. These
cases could be improved by enhancements of decompiler and LfDComparator.

For these kind of testing, it is important to not create false positives. LfdCom-
parator has good result also for this. We take one file in LfD for each tested file,
so we have 10 different files to test. Except one comparison, where the result is
24%, all other comparisons are bellow 10%.

Finally, we test the LfdComparator with real malware. There is used malware
Aidra and Darlloz, because they target more architectures. So we examine
real cases with malware from different architectures, what is a suitable test for
verifying of generic comparison. The table with results is available in the thesis.
The table with results is available in the thesis.

The disadvantage is a need of comparison between two inputs. This requirement
causes the high number of comparisons, which can take a quite long time for
bigger binaries. The solution could be extracting some preciously selected parts,
storing them in database and make search by database engine. This next step is
not covered by this thesis, but it is going to be researched and developed in the
continuing master thesis.
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unsigned fib(int x)
{
if (x > 2)
{

return fib(x - 1) + fib(x
- 2);

}
else
{

return 1;
}

}

int main(int argc, char *argv
[])

{
int i, numtimes = 0,

number = 0;
unsigned value;

printf(”Input number of
iterations: ”);

scanf (”%d”, &numtimes);
for (i = 1; i <= numtimes

; i++)
{

printf (”Input number
: ”);

scanf (”%d”, &number)
;

value = fib(number);
printf(”fibonacci(%d)

= %u\n”, number,
value);

}
return 0;

}

(a) Original source code.

int32_t func_401560(int32_t
a1) {
if (a1 < 3) {

return 1;
}
int32_t v1 = func_401560(

a1 - 1);
while (a1 > 4) {

a1 -= 2;
v1 += func_401560(a1

- 1);
}
return v1 + 1;

}

int main(int a1, char **a2) {
int32_t v1 = 0; // bp-24
int32_t v2 = 0; // bp-20
printf(”Input number of

iterations: ”);
scanf(”%d”, &v1);
if (v1 < 1) {

return 0;
}
int32_t v3 = 1;
printf(”Input number: ”);
scanf(”%d”, &v2);
printf(”fibonacci(%d) = %

u\n”, v2, func_401560
(v2));

while (v1 >= v3 + 1) {
v3++;
printf(”Input number:

”);
scanf(”%d”, &v2);
printf(”fibonacci(%d)

= %u\n”, v2,
func_401560(v2));

}
return 0;

}

(b) Output from decompiler.

Figure 6.1: Comparison for x86 - PE with strip and optimization -O2.
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Figure 6.2: Results of comparison from Moss.
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Figure 6.3: Results of comparison from JPlag.
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Figure 6.4: Results of comparison from LfDComparator.
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Chapter 7

Conclusion

This extended abstract describes how to recognize specific behavior by the generic
reverse compilation. This issue is divided in two separated tasks – generic reverse
compilation (decompilation) and recognition of specific behavior (on the outputs
from decompilation). According to presented results, we can consider both tasks
as successfully solved. Of course, there is a great area for future research and a
lot of enhancements, but the important part is a verification that this idea is valid
and it can be used for e.g. malware detection.

The generic reverse decompilation is process performed by Lissom Decompiler.
Author of this thesis is one of its developers and he is responsible for the front-
end part. Nowadays, this tool is available as the online service on the http:
//decompiler.fit.vutbr.cz/. Moreover, it is used for the malware
analysis in the company AVG Technologies. The development of this tool was
really time demanding. On the other hand, the quality of its output is very
important for the following analysis for recognition of specific behavior. Also, it
is a part that ensures the generic approach. The generic approach of decompilation
is a requirement, which is not easy to provide.

Lissom Decompiler is able to process binaries from MIPS, ARM, PowerPC,
and x86 architectures in the most used object file formats – PE, ELF, COFF,
and Mach-O. We can label it as generic and retargetable, because its all parts
are unified and the support of a new architecture is provided by supplying the
semantics, which describes the architecture. As a part of the decompiler, a toolkit
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for a recognition and annotation of the statically linked code was created. The
decompiler generates the output in three languages: C, Python’, and LfD.

The extended abstract introduces new simple language LfD (Language for De-
compilation). It is simple language for an analysis, which recognizes specific
behavior. The specific behavior is recognized as the percentage of behavior
similarity between two files, where the one of them is known and the second
one is unknown. Model case is known malware for one architecture and the
detection of this malware between unknown binaries for the other architectures.
The similarity between each pair is calculated by the tool LfDComparator.

In the results, we firstly presented the output of the decompiler in C language.
Then, we showed that the finding of similarity on the C outputs is problematic
also by very complex tools. The last part of results consists of the recognition
of specific behavior on the files in LfD language by the LfDComparator. The
detection is shown on selected testing files and also on the real malware binaries.

The extended abstract presented an innovative approach for the analysis of exe-
cutable’s behavior, which is capable to be applied in the generic way. The future
research will be aimed for improving the decompiler to be more complex and
robust tool, and finding the possibilities how to extract key parts of LfD sources
to stored them in database and usage of database engine for recognition of the
similar parts.
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