
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS

ÚSTAV INFORMAČNÍCH SYSTÉMŮ

ON PARALLEL PROCESSING IN FORMAL MODELS:

JUMPING AUTOMATA AND NORMAL FORMS
O PARALELNÍM ZPRACOVÁNÍ VE FORMÁLNÍCH MODELECH

PHD THESIS

DISERTAČNÍ PRÁCE

AUTHOR Ing. RADIM KOCMAN

AUTOR PRÁCE

SUPERVISOR prof. RNDr. ALEXANDER MEDUNA, CSc.

ŠKOLITEL

BRNO 2020

Abstract
The present thesis introduces and studies new possibilities of parallel processing in formal
models. More specifically, it focuses its attention on parallel versions of jumping finite
automata and on normal forms of grammars with interesting parallel properties.

In the first part of this thesis, we give an initial motivation for studying parallel process-
ing in formal models. We briefly introduce jumping models and normal forms of grammars
and grammar systems. Finally, we state the precise focus and goals of our research.

The second part of this thesis is focused on new results on jumping finite automata.
First, we introduce 𝑛-parallel jumping finite automata that enhance the original jumping
finite automaton model with multiple reading heads. The rest of the chapter then studies
the accepting power of the model under two different jumping modes. Second, we introduce
double-jumping finite automata and explore advanced jumping modes utilizing two heads.
We study the accepting power of the models and also the closure properties of the related
language families. Lastly, we introduce jumping 5′ → 3′ Watson-Crick finite automata that
combine the jumping behavior with the biology-inspired Watson-Crick finite automata that
process double-stranded DNA sequences. The rest of this chapter then studies the accepting
power of the model under unrestricted and various restricted conditions.

The third part of this thesis is focused on new results on CD grammar systems. We
introduce two types of transformations that turn arbitrary general grammars into equivalent
two-component general CD grammar systems of very reduced and simplified forms. Apart
from the reduction and simplification, we describe several other useful properties concerning
these systems and the way they work.

In the last part, we mention possible application perspectives for the introduced models
and normal forms, and we conclude the thesis with the final summary and the description
of theoretical perspectives for the achieved results.

Keywords
parallel processing, discontinuous tape reading, parallel tape reading, normal forms, simu-
lated non-context-free rules, homogeneous rules, evenly homogeneous rules, general gram-
mars, jumping finite automata, left and right jumps, n-parallel right linear grammars,
even-length languages, Watson-Crick finite automata, CD grammar systems

Reference
KOCMAN, Radim. On Parallel Processing in Formal Models: Jumping Automata and Nor-
mal Forms. Brno, 2020. PhD thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor prof. RNDr. Alexander Meduna, CSc.

Abstrakt
Tato disertační práce představuje a zkoumá nové možnosti paralelního zpracování ve for-
málních modelech. Zaměřuje se přitom především na paralelní verze skákajících konečných
automatů a na normální formy gramatik se zajímavými paralelními vlastnostmi.

První část práce popisuje motivaci pro studium paralelního zpracování ve formálních
modelech a stručně představuje skákající modely a normální formy gramatik a gramatických
systémů. Jsou zde také upřesněny cíle prezentovaného výzkumu.

Druhá část práce je zaměřena na prezentaci nových výsledků v oblasti skákajících
konečných automatů. Jako první je zde přestaven 𝑛-paralelní skákající konečný automat,
který rozšiřuje původní model skákajícího konečného automatu a podporu většího množství
čtecích hlav. Práce následně studuje sílu tohoto modelu ve dvou rozdílných skákajících
módech. Následuje představení dvojitě skákajících konečných automatů, u kterých jsou
zkoumány pokročilé skákající módy využívající dvě čtecí hlavy. Kromě síly těchto modelů
jsou zde zkoumány i uzávěrové vlastnosti příslušných tříd jazyků. Jako poslední jsou v
této části představeny skákající 5′ → 3′ Watson-Crick konečné automaty, které kombinují
skákající chování s biologií inspirovanými Watson-Crick konečnými automaty. Opět je zde
zkoumána síla tohoto modelu a to i s uvážením rozličných omezujících podmínek.

Třetí část práce je zaměřena na prezentaci nových výsledků v oblasti CD gramatických
systémů. Jsou zde prezentovaný dva typy transformací, které dokáží převést libovolnou
obecnou gramatiku na dvoukomponentový obecný CD gramatický systém velmi redukované
a zjednodušené formy. Kromě této významné redukce a zjednodušení prezentuje práce i
několik dalších užitečných vlastností souvisejících s těmito systémy.

V poslední části textu jsou pak nastíněny možné oblasti využití představených mod-
elů a normálních forem. Práce je následně uzavřena souhrnem dosažených výsledků a
závěrečnými poznámkami k dalšímu směřování výzkumu.

Klíčová slova
paralelní zpracování, nespojité čtení pásky, paralelní čtení pásky, normální formy, simulace
kontextových pravidel, homogenní pravidla, souměrná homogenní pravidla, obecné gra-
matiky, skákající konečné automaty, levé a pravé skoky, n-paralelní pravě lineární gramatiky,
jazyky s řetězci sudé délky, Watson-Crick konečné automaty, CD gramatické systémy

Citace
KOCMAN, Radim. On Parallel Processing in Formal Models: Jumping Automata and
Normal Forms. Brno, 2020. Disertační práce. Vysoké učení technické v Brně, Fakulta
informačních technologií. Školitel prof. RNDr. Alexander Meduna, CSc.

On Parallel Processing in Formal Models:
Jumping Automata and Normal Forms

Declaration
I hereby declare that this thesis is my own work that has been created under the supervision
of Alexander Meduna. It is largely based on the following seven publications where I am
the main contributor, which I wrote jointly with Zbyněk Křivka, Alexander Meduna, and
Benedek Nagy:

(1) Kocman, R. 𝑛-Parallel Jumping Finite Automata. In: Excel@FIT 2015. 2015. ([32]),

(2) Kocman, R. and Meduna, A. On Parallel Versions of Jumping Finite Automata.
In: Proceedings of the 2015 Federated Conference on Software Development and Ob-
ject Technologies, SDOT 2015. Springer International Publishing, 2016, p. 142–149.
Advances in Intelligent Systems and Computing, vol. 511. ([37]),

(3) Kocman, R., Křivka, Z. and Meduna, A. On Double-Jumping Finite Automata.
In: Eighth Workshop on Non-Classical Models of Automata and Applications, NCMA
2016. Osterreichische Computer Gesellschaft, 2016, p. 195–210. books@ocg.at, vol. 321.
([33]),

(4) Kocman, R., Nagy, B., Křivka, Z. and Meduna, A. A Jumping 5′ → 3′ Watson-
Crick Finite Automata Model. In: Tenth Workshop on Non-Classical Models of Au-
tomata and Applications, NCMA 2018. Osterreichische Computer Gesellschaft, 2018,
p. 117–132. books@ocg.at, vol. 332. ([38]),

(5) Kocman, R., Křivka, Z. and Meduna, A. On Double-Jumping Finite Automata and
Their Closure Properties. RAIRO-Theor. Inf. Appl. 2018, vol. 52, 2-3-4, p. 185–199.
([34]),

(6) Kocman, R., Křivka, Z. and Meduna, A. General CD Grammar Systems and Their
Simplification. Journal of Automata, Languages and Combinatorics. 2020, vol. 25,
no. 1, p. 37–54. ([35]),

(7) Kocman, R., Křivka, Z., Meduna, A. and Nagy, B. A Jumping 5′ → 3′ Watson-
Crick Finite Automata Model. Acta Informatica. (in review). ([36]).

I have listed all the literary sources, publications, and other sources which were used during
the preparation of this thesis.

. .
Radim Kocman

September 2, 2020

Acknowledgements
I would especially like to thank my coauthors Zbyněk Křivka, Alexander Meduna, and
Benedek Nagy for their invaluable help during the whole research. I would also like to
thank all anonymous referees for their constructive suggestions and comments that helped
improve the content of our papers. And last but not least, I am grateful to my family for
the long years of support and care.

This work was supported by the European Regional Development Fund in the IT4Inno-
vations Centre of Excellence project (CZ.1.05/1.1.00/02.0070); The Ministry of Education,
Youth and Sports of the Czech Republic from the National Programme of Sustainabil-
ity (NPU II); project IT4Innovations excellence in science – LQ1602; the TAČR grant
TE01020415; the BUT grant FIT-S-14-2299; and the BUT grant FIT-S-17-3964.

From a more general perspective, I would like to acknowledge the work of Brady Haran
(www.bradyharan.com); especially his enthusiasm to popularize even the theoretical branches
of mathematics and computer science. His videos and podcasts with famous scientist are a
great source of motivation for further research in these theoretical fields.

Finally, to lighten up the heavy mathematical content of this thesis, I would like to
mention the work of the surreal comedy group Monty Python. Even though the Pythons
were not scientists themselves, they pushed the boundaries of what is possible in television
comedy. Even today, their work still represents the pinnacle of comedy that many people
try to reach. To acknowledge the recent 50 years of Monty Python, let us celebrate with
some famous quotes that are mildly relevant to the content of the following chapters.

www.bradyharan.com

Contents

I Introduction and Terminology 3

1 Introduction 4
1.1 Parallelism . 4
1.2 Jumping Models . 7
1.3 Normal Forms and Grammar Systems . 10
1.4 Specification of Goals . 11
1.5 Organization . 12

2 Terminology 13
2.1 General Notions and Operations . 13

2.1.1 Sets and Strings . 13
2.1.2 Mirror Image . 13
2.1.3 Parikh Vector . 13
2.1.4 Shuffle . 14

2.2 Grammars and Languages . 14
2.2.1 Basic Definitions . 14
2.2.2 Derived Language Families . 14
2.2.3 Endmarking Closure . 15
2.2.4 Kuroda Normal Form . 15
2.2.5 Homogeneous Restrictions . 15

2.3 𝑛-Parallel Right-Linear Grammars . 15
2.4 CD Grammar Systems . 16
2.5 Finite Automata . 16

2.5.1 Finite Automaton . 16
2.5.2 Lazy Finite Automaton . 16

2.6 Jumping Finite Automata . 17
2.7 5′ → 3′ Watson-Crick Finite Automata . 17

II New Results on Jumping Automata 20

3 𝑛-Parallel Jumping Finite Automata 21
3.1 Introduction . 21
3.2 Definitions . 22
3.3 Examples . 23
3.4 Unrestricted 𝑛-Jumping Relation . 24
3.5 Right 𝑛-Jumping Relation . 25
3.6 Concluding Remarks . 27

1

4 Double-Jumping Finite Automata 29
4.1 Introduction . 29
4.2 Definitions . 29
4.3 General Results . 31

4.3.1 Unrestricted 2-Jumping Relation . 31
4.3.2 Right-Left 2-Jumping Relation . 32
4.3.3 Left-Right 2-Jumping Relation . 34
4.3.4 Right-Right 2-Jumping Relation . 35
4.3.5 Left-Left 2-Jumping Relation . 37

4.4 Closure Properties . 40
4.5 Concluding Remarks . 44

5 Jumping 5′ → 3′ Watson-Crick Finite Automata 46
5.1 Introduction . 46
5.2 Definitions . 47
5.3 Examples . 51
5.4 General Results . 52
5.5 Results on Restricted Variants . 58

5.5.1 Simple Restriction . 59
5.5.2 1-limited Restriction . 60
5.5.3 All-final Restriction . 62
5.5.4 Stateless Restriction . 63
5.5.5 Combined Restrictions . 64

5.6 Concluding Remarks . 66

III New Results on CD Grammar Systems 68

6 General CD Grammar Systems: Normal Forms 69
6.1 Introduction . 69
6.2 On General CD Grammar Systems . 71
6.3 Transformations from Kuroda Normal Form 71
6.4 Transformations from General Grammars 79
6.5 Concluding Remarks . 81

IV Conclusion 82

7 Application Perspectives 83
7.1 Controlled Discontinuous Reading . 83
7.2 Debt Lemmas . 86
7.3 General Parallel Processing . 88

8 Summary and Theoretical Perspectives 92

Bibliography 94

2

Part I

Introduction and Terminology

3

It’s. . .
—Monty Python’s Flying Circus

Chapter 1

Introduction

In this chapter, we give an initial motivation for studying parallel processing in formal
models. We briefly introduce jumping models—quite a new group of formal models focused
on discontinuous information processing, which were not yet studied together with parallel
mechanisms—and normal forms of grammars and grammar systems—the common unifying
forms of definitions of formal models, which are usually not concerned with parallelism.
Afterwards, we state our focus and goals for studying parallelism together with jumping
automata and normal forms. Finally, we outline the organization of the rest of this work.
This thesis assumes that the reader is firmly familiar with the basic notions from the theory
of automata and formal languages, and thus we use them here extensively without further
explanation. The more advanced terminology that will be used later in the results of this
work is introduced in greater detail in Chapter 2.

1.1 Parallelism
When we talk about parallelism in modern computer science, we almost automatically
mean some form of parallel processing or parallel computing. By these terms we refer to
situations where we want to split some large task into smaller chunks of work in such a way
that the chunks can be executed in parallel on separate processing units, and the whole
task can thus be computed faster than if it was executed completely sequentially on a single
processing unit.

Nonetheless, this perception of the notion of parallelism can change quite rapidly when
we wander into more theoretical branches of computer science; especially if we consider the
basic research in the theory of formal languages. There are many formal models in this
area that incorporate some form of parallelism, but they utilize very diverse mechanics in
the background to achieve their goal. If we take a broader look at these formal models and
the basic research in general, we can roughly divide parallelism in formal language theory
into the following three categories:

(P.1) parallelism that increases the expressive power of the model,

(P.2) parallelism that is a fundamental part of the behavior of the model,

(P.3) parallelism that splits the work of the task.

4

Parallelism That Increases the Expressive Power of the Model

The most commonly studied category in the basic research is probably category (P.1). This
is especially noticeable in formal grammars. Consider classical formal grammars in general,
there is a big difference if a model can use only context-free rules or also non-context-free
rules. It is much harder to deal with the non-context-free rules from both the theoretical
and practical point of view. Therefore, there is a large incentive to study models that can
use only the context-free (or even more restricted) rules but that also incorporate some
additional mechanisms which further increase their generative power.

In formal grammars, the models can incorporate parallelism in such a way that, in each
step of the rewriting process, the grammar rewrites several symbols in the sentential form
at once in parallel. Let us mention some well-known models that match this description:

∙ scattered context grammars (see [21, 58, 54]),

∙ simple matrix grammars (see [25, 74, 89, 90]),

∙ equal matrix grammars (see [80]),

∙ 𝑛-parallel (right-)linear grammars (see [75, 89, 90, 88, 73, 74]).

In the case of finite automata, we can imagine the parallelism of category (P.1) as
a parallel cooperation of multiple heads. There are several well-known models of finite
automata that utilize more than one head, nonetheless, their behavior do not fall precisely
into one specific category of parallelism; so we will leave their description for later.

A very common property of models from this category is that we can freely select their
degree of parallelism. More specifically, we can choose 𝑛 which represents the number
of symbols or heads that are considered together in a single step of the model. Then, if
𝑛 = 1, we get the power of a classical non-augmented model (e.g., the power of context-free
grammars); and, for 𝑛 > 1, we either get an infinite hierarchy of more powerful models or
the power of the model increases at first but then stabilizes. Due to this common property,
we can also include parallel communicating (PC) grammar systems (see [8, 78]) into this
category since they behave very similarly in this regard.

Parallelism That Is a Fundamental Part of the Behavior of the Model

Considering category (P.2), we are looking at the models that have parallelism rooted
inseparably into their core structure. From our exploration of this topic, it seems that the
models which fall into this category are usually related to biology.

On the one hand, there are massively parallel models such as Lindenmayer systems (see
[77, 58, 54]) that are based on the evolution process. In these models, all eligible symbols
in the sentential form are always rewritten together at once in parallel. Consequently, it is
not possible to select a constant degree of parallelism for these models since the conditions
continuously change depending on the current task.

On the other hand, there are also models with a fixed degree of parallelism such as
Watson-Crick finite automata (see [72]). These automaton models use two heads in parallel
in such a way that each head processes one strand of a double-stranded DNA input sequence.
Consequently, the degree of parallelism of Watson-Crick finite automata is always two.

5

Parallelism That Splits the Work of the Task

Lastly, if we consider category (P.3) in the basic research, it seems that there is not much
interest to study possibilities how to split the work for the given tasks. This may not be that
surprising because in the basic research we usually study characteristics like the expressive
power, closure properties, and the decidability and complexity of various operations; and, of
course, these results are not affected by parallelism. We often even prefer approaches that
are completely sequential because it makes the subsequent proof techniques much easier in
many cases. When we do consider parallelism that splits the work of the tasks (see [77, 78]),
we usually just simply conclude that if the model behaves nondeterministically, then we
can explore different cases in parallel, and if the model uses only context-free rules, then
we can trivially split the generation process into multiple independent parts.

It is possible to find some theoretical papers that explore this role of parallelism further
in certain areas, e.g., in biomolecular computing (see [43]); but a thorough study is usually
left for practical applications such as parsing (see [22]), formal verification, and others.

Parallelism and Finite Automata

The situation around the types of parallelism gets more complex if we look at finite au-
tomata. Thus, we introduce some additional categorization.

There are some finite automaton models that have the same expressive power as gram-
mars from category (P.1). For example, self-regulating finite automata (see [52]), pure
multi-pushdown automata that perform complete pushdown pops (see [48]), and finite-turn
checking automata (see [81]), which are connected to the various versions of simple matrix,
equal matrix, and 𝑛-parallel right-linear grammars. However, we do not consider these
models to be parallel. This is due to the fact that, up until quite recently, automaton mod-
els always read the input tape almost exclusively in the strictly continuous (left-to-right)
symbol-by-symbol way. The mentioned models are no exceptions, and thus they use various
kinds of stacks to match the expressive power of the parallel grammars but otherwise work
strictly continuously on the input tape in a completely non-parallel way.

As we have already pointed out, we can imagine parallelism in finite automata as a
parallel cooperation of multiple heads. There is indeed the well-known concept of Turing
machines with multiple tapes and multiple heads; which was also adapted and studied in
terms of finite automaton models. Nonetheless, not all such models necessarily work in a
parallel way. Considering multi-head finite automata that actually do work in a parallel
way, we can find two distinct categories of their behavior:

(PA.1) multi-head automata where each head works on an independent copy of the input,

(PA.2) multi-head automata where heads cooperate to process the single input.

The first category seems to be the most studied one so far. Let us mention some
prominent models that fit into this description: classical Watson-Crick finite automata (see
[72]), multi-head finite automata (see [76, 28, 83, 24]), and parallel communicating finite
automaton systems (see [24]). In these models, the heads can work in parallel, however,
their behavior can be hardly seen as parallel processing since it does not speed up the task
in any way. In most cases, there is a single read-only input tape that must be completely
traversed with all heads until the conclusion about the acceptance of the input is reached.

We only know about a few models that fall into the second category. These are finite
automaton models introduced by Nagy that utilize two heads with the following behavior.

6

The first head reads the input from left to right, the second head reads the input from right
to left, and the processing of the input ends when the heads meet each other on the tape.
This concept was explored several times in various models:

∙ 2-head finite automata (see [64]),

∙ 5′ → 3′ Watson-Crick finite automata (see [60, 61, 62, 63, 65, 70, 71, 69]),

∙ multicounter 5′ → 3′ Watson-Crick finite automata (see [11, 59, 23]),

∙ two-head finite-state acceptors with translucent letters (see [67, 68]).

In these models, the heads truly cooperate in parallel on a single tape; thus, this behavior
can be seen as parallel processing. Naturally, their degree of parallelism is always two.

1.2 Jumping Models
The idea of a jumping mechanism that is integrated deeply into the core behavior of formal
models is quite a new concept that was first proposed in 2012 by Meduna and Zemek in
[57]. The main motivation behind this concept is the fact that in the previous century most
classical computer science methods were developed for continuous information processing,
but in modern computation methods we often process information in a discontinuous way.
The continuous processing approach is deeply rooted in classical formal models such as finite
automata which traditionally process the input information in a strictly continuous left-
to-right symbol-by-symbol way. Therefore, it makes sense to introduce and study jumping
mechanisms that can more appropriately represent the behavior of modern computation
methods that often have to jump over large portions of the input information between
individual steps of the process.

In the following years, this idea got a lot of traction among other researchers in the field
of formal language theory. At the time of writing, there are around 30 papers that study
jumping models in various ways, and this number is still increasing. From the theoretical
point of view, these models have an interesting characteristic that, on the one hand, they
often define language families that are outside the usual Chomsky hierarchy, but, on the
other hand, they are still related to some other well-known mathematical models. With this
characteristic, it is possible to combine results from different fields that previously looked
unrelated. It is out of the scope of this thesis to cover all studied models, but we at least
give a brief overview of the most influential ones.

Jumping Finite Automata

The definition of a jumping finite automaton was first introduced by Meduna and Zemek
in [57], and it can be also found in the follow-up books [58, 54].

Let us first recall the notion of a classical finite automaton, 𝑀 , which consists of an
input tape, a reading head, and a finite state control. The input tape is divided into squares.
Each square contains one symbol of an input string. The symbol under the reading head,
𝑎, is the current input symbol. The finite control is represented by a finite set of states
together with a control relation, which is usually specified as a set of computational rules.
The automaton 𝑀 computes by making a sequence of moves. Each move is made according
to a computational rule that describes how the current state is changed and whether the
current input symbol is read. If the symbol is read, the reading head is shifted precisely one

7

square to the right. 𝑀 has one state defined as the start state and some states designated
as final states. If 𝑀 can read 𝑤 by making a sequence of moves from the start state to a
final state, 𝑀 accepts 𝑤; otherwise, 𝑀 rejects 𝑤.

In essence, a jumping finite automaton works just like a classical finite automaton
except it does not read the input tape in a symbol-by-symbol left-to-right way. After the
automaton reads a symbol, the head can jump over (skip) a portion of the tape in either
direction. Once an occurrence of a symbol is read on the tape, it cannot be re-read again
later. Otherwise, it coincides with the standard notion of a finite automaton.

Apart from the definition, the paper [57] studies the accepting power, decidability prop-
erties, and closure properties of the model under various restrictions. Surprisingly, com-
pared to classical finite automata, there is a significant difference if the model is a general
jumping finite automaton (GJFA), which can read multiple symbols in a step, or a non-
general jumping finite automaton (JFA), which can read only a single symbol in a step.

Concerning GJFAs, there are papers written by Vorel (see [84, 85, 86]) that continue the
investigation of decidability and closure properties. Moreover, they connect GJFAs with
graph-controlled insertion systems and Galiukschov semicontextual grammars.

Concerning both GJFAs and JFAs, there are papers written by Fernau, Paramasivan,
Schmid, and Vorel (see [14, 15]) that present a large number of various new results and also
connect JFAs with shuffle languages, commutative context-free grammars, letter bounded
languages, and regular expressions over comutative monoids.

Lastly, concerning JFAs, there are papers written by Beier, Holzer, and Kutrib (see
[4, 5]) that study their operational state complexity and decidability and also connect JFAs
with semilinear sets and Parikh images of regular sets.

Jumping Grammars

Jumping grammars can be seen as a transformation of jumping finite automata into the
form of formal grammars. Their definition was first introduced in 2015 by Křivka and
Meduna in [31], and it can be also found in the follow-up book [54].

Let us first recall the notion of a classical grammar, 𝐺, which represents a language-
generating rewriting system based upon an alphabet of symbols and a finite set of produc-
tions. The alphabet of symbols is divided into two disjoint sub-alphabets of terminal and
nonterminal symbols. Each production rule represents a pair of the form (𝑥, 𝑦), where 𝑥
and 𝑦 are strings over the alphabet of 𝐺; we can write (𝑥, 𝑦) as 𝑥 → 𝑦. Starting from a
special start nonterminal symbol, 𝐺 repeatedly rewrites strings according to its production
rules until it obtains a sentence—that is, a string that solely consists of terminal symbols.
The set of all sentences represents the language generated by the grammar. In greater
detail, 𝐺 rewrites a string 𝑧 according to 𝑥 → 𝑦 so it (1) selects an occurrence of 𝑥 in 𝑧,
(2) erases it, and (3) inserts 𝑦 precisely at the position of this erasure. More formally, let
𝑧 = 𝑢𝑥𝑣, where 𝑢 and 𝑣 are strings. By using 𝑥 → 𝑦, 𝐺 rewrites 𝑢𝑥𝑣 to 𝑢𝑦𝑣.

The notion of a jumping grammar is conceptualized just like that of a classical grammar;
however, it rewrites strings in a slightly different way. Consider 𝐺, described above, as a
jumping grammar. Let 𝑧 and 𝑥 → 𝑦 have the same meaning as above. The jumping
grammar 𝐺 rewrites a string 𝑧 according to 𝑥 → 𝑦 so it performs (1) and (2) as described
above, but, during (3), 𝐺 can jump over a portion of the rewritten string in either direction
and insert 𝑦 there. More formally, by using 𝑥 → 𝑦, 𝐺 rewrites 𝑢𝑐𝑣 as 𝑢𝑑𝑣, where 𝑢, 𝑣, 𝑤, 𝑐, 𝑑
are strings such that either (i) 𝑐 = 𝑥𝑤 and 𝑑 = 𝑤𝑦 or (2) 𝑐 = 𝑤𝑥 and 𝑑 = 𝑦𝑤. Otherwise,
it coincides with the standard notion of a grammar.

8

Apart from the definition, paper [31] mainly studies the generative power of a large
number of various types of jumping grammars. Moreover, the paper shows that jumping
finite automata and jumping grammars have connection to multisets (see [82, 39, 40, 10]).
Additionally, there are two papers written by Madejski (see [44, 45]) that introduce jumping
and pumping lemmas and connect jumping grammars with permutation grammars.

One-way Jumping Finite Automata

From the definitions of the previous two models, it may seem that jumping models have
to be inherently nondeterministic. However, this is not the case as it is shown by one-way
jumping finite automata introduced in 2015 by Chigahara, Fazekas, and Yamamura in [6, 7].

One-way jumping finite automata make moves similar to jumping finite automata but
with some changes leading to a deterministic behavior. The reading head moves only in
one direction and starts at the beginning of the input tape. It moves from left to right (and
possibly jumps over parts of the input), and, upon reaching the end of the input tape, it
is returned to the beginning of the input; continuing the computation until all the symbols
are read or the automaton gets stuck in a state in which it cannot read any symbol of the
remaining input. If a transition is defined for the current state and the next symbol to be
read, then the automaton reads the symbol. If not, but in the remaining input there are
symbols for which a transition is defined from the current state, the reading head jumps to
the nearest such a symbol to the right.

Apart from the definition, paper [7] studies the accepting power and closure properties,
and it also defines pumping lemmas for the resulting language families. In [13], Fazekas and
Yamamura study sufficient conditions for the resulting language to be regular. There are
also papers written by Beier and Holzer (see [2, 1, 3]) that study inclusion relations, closure
properties, and decidability properties. Lastly, paper [12] written by Fazekas, Hoshi, and
Yamamura compares the deterministic and nondeterministic finite automata and pushdown
automata when they use standard, jumping, and one-way jumping steps.

Other Jumping Models

Besides the most influential models mentioned previously, there are also other papers that
study the jumping mechanism further in more advanced formal models:

∙ two-dimensional jumping finite automata (see [26, 46, 27]),

∙ jumping scattered context grammars (see [53, 54]),

∙ jumping pure grammars (see [29]),

∙ jumping restarting automata (see [87]),

∙ jumping multi-head automata (see [41]),

∙ Watson-Crick jumping finite automata (see [47]).

Note that it may seem, from the names of jumping multi-head automata and Watson-
Crick jumping finite automata, that these models are similar to the models studied later
in this thesis. However, both of the mentioned models fall into the category (PA.1) of
parallelism in finite automata. On the other hand, all finite automata studied in this thesis
fall into the category (PA.2) which is a fundamentally different behavior.

9

1.3 Normal Forms and Grammar Systems
Moving away from the idea of the jumping mechanism, we need to introduce the remaining
two concepts that are also studied together with parallelism in this thesis.

Normal Forms

As we have shown previously, a classical (general) grammar 𝐺 contains production rules of
the form 𝑥 → 𝑦, where 𝑥 and 𝑦 are strings over the alphabet of 𝐺. If we want to change
the generative power of the grammar, we can put restrictions on the form of the rules.
Classically, we consider some types of monotonous, context-sensitive, context-free, 𝜀-free,
linear, right-linear, and regular restrictions (see, e.g., [77, 31]). Nonetheless, even in these
cases, the forms of rules are often still rather loose. This can be an unwanted property from
both the theoretical and practical point of view because the follow-up proofs and algorithms
have to take into account all possible forms of the definition of the grammar. Therefore,
there is an incentive in formal language theory to study normal forms of grammars and
grammar systems that severely restrict the possible forms of the definition of the model
but, in the same time, keep the generative power intact.

We skip the description of basic normal forms that handle only grammars with context-
free rules since, in these cases, it is rather easy to work with them in a parallel way. However,
let us take a look at some well-known normal forms for general grammars (see, e.g., [58]). In
all presented normal forms, 𝐺 is a grammar, 𝑆,𝐴,𝐵,𝐶,𝐷 denote nonterminals, 𝑎 denotes
a terminal, and 𝜀 denotes an empty string.

∙ Kuroda normal form—𝐺 is in Kuroda normal form if every rule has one of the forms:
(1) 𝐴𝐵 → 𝐶𝐷, (2) 𝐴 → 𝐵𝐶, (3) 𝐴 → 𝑎, or (4) 𝐴 → 𝜀.

∙ Penttonen normal form—𝐺 is in Penttonen normal form if every rule has one of the
forms: (1) 𝐴𝐵 → 𝐴𝐶, (2) 𝐴 → 𝐵𝐶, (3) 𝐴 → 𝑎, or (4) 𝐴 → 𝜀.

∙ Geffert normal forms—𝐺 is in one of Geffert normal forms if 𝑆 is the start nonterminal
symbol, the context-free rules are of the form (1) 𝑆 → 𝑢𝑆𝑎, (2) 𝑆 → 𝑢𝑆𝑣, (3) 𝑆 → 𝑢𝑣,
and one of the following holds:

(G.1) 𝐺 contains the nonterminals 𝑆, 𝐴, 𝐵, 𝐶,
𝐺 contains the non-context-free rule 𝐴𝐵𝐶 → 𝜀,
𝑢 ∈ {𝐴,𝐴𝐵}* and 𝑣 ∈ {𝐵𝐶,𝐶}*,

(G.2) 𝐺 contains the nonterminals 𝑆, 𝐴, 𝐵, 𝐶, 𝐷,
𝐺 contains the non-context-free rules 𝐴𝐵 → 𝜀 and 𝐶𝐷 → 𝜀,
𝑢 ∈ {𝐴,𝐶}* and 𝑣 ∈ {𝐵,𝐷}*,

(G.3) 𝐺 contains the nonterminals 𝑆, 𝐴, 𝐵,
𝐺 contains the non-context-free rule 𝐴𝐵𝐵𝐵𝐴 → 𝜀,
𝑢 ∈ {𝐴𝐵,𝐴𝐵𝐵}* and 𝑣 ∈ {𝐵𝐵𝐴,𝐵𝐴}*.

These normal forms are all frequently used in formal language theory. However, we argue
that none of them has particularly fitting parallel properties. When we want to construct a
parallel rewriting process for general grammars, the non-context-free rules really complicate
the task since there is no simple way how to split the generation of a sentence into multiple
independent parts, and the classical normal forms do not help with this matter.

10

First, consider an unrestricted general grammar. There can be a large number of non-
context-free rules. These rules can work with very large contexts since there is no bound
on the length of 𝑥 in 𝑥 → 𝑦. Furthermore, the non-context-free rules can be also used
anywhere in the generation process.

Second, consider Kuroda and Penttonen normal forms. Indeed, the required context of
the non-context-free rules is now minimal. However, there can still be a large number of
these rules, and they can still be used anywhere in the generation process.

Lastly, consider Geffert normal forms. There is a limited number of non-context-free
rules, and they work with small contexts. Nonetheless, all Geffert normal forms share the
same deeply-rooted property that, in any generated string, there is always at most one
position that can be rewritten with the rules of the grammar. In some situations, this
property can be highly valuable from both the theoretical and practical point of view;
however, this complicates the construction of a parallel rewriting process even further.

Besides the classical normal forms, we can find many other normal forms for various
formal models (see, e.g., [58, 54, 51]). However, it seems that in almost all cases the
definitions are primarily focused only on the very restricted forms of rules, minimum number
of non-context-free rules, and minimum number of nonterminals. Consequently, they do
not care about the resulting parallel properties.

CD Grammar Systems

In essence, a cooperating distributed (CD) grammar system (see [8]) can be seen as an
extension of a classical grammar. It has not one but multiple finite sets of production
rules (components), and the rewriting process can operate in various complex modes that
control which sets of production rules can be currently used. From another perspective, a
CD grammar system can be seen as a group of grammars that distribute their work and
cooperate on a single string to produce the final sentence.

Considering the core behavior of CD grammar systems, their extension over general
grammars is not parallel in nature because the modes switch between components in a
strictly sequential way. However, we find this model useful for the study of parallel proper-
ties of normal forms. To give a brief insight, with CD grammar systems, we can strictly split
the context-free and non-context-free rules into different components, and we can clearly
divide the rewriting process into several phases that use different types of rules. This can
help us to pinpoint opportunities for a viable parallel rewriting process.

1.4 Specification of Goals
The principal focus of this thesis is the theoretical study of parallelism in the areas of formal
language theory where this approach was not yet thoroughly considered. First, we explore
parallel processing with jumping finite automata. Second, we introduce new normal forms
designed for parallel rewriting.

New Results on Jumping Automata

The first unexplored area can be easily seen if we take a closer look at the previous descrip-
tion of parallelism in classical finite automata and the new jumping mechanism introduced
in jumping finite automata. Once we shift our attention to discontinuous information
processing, and we are no longer restricted with the classical reading in a continuous left-

11

to-right symbol-by-symbol way, there are a lot of new opportunities how to design the
behavior of multi-head finite automaton models. From the point of view of parallelism in
finite automata, we want to focus on category (PA.2) where the heads work in parallel to
process the single input. From the point of view of general parallelism, we want to design
models that fit into category (P.3) but also share some similarities with categories (P.1) and
(P.2). To be more precise, we will introduce and study new parallel versions of jumping
finite automata. Since these mechanisms were not yet studied together, this research should
lead to some novel results that are usually not observed in classical models. Moreover, we
should be able to find some new close connections with different formal models.

New Results on CD Grammar Systems

The second unexplored area was already foreshadowed in the description of normal forms of
grammars and grammar systems. We want to introduce new normal forms that are focused
not just on the usual restrictive properties but also on the resulting parallel properties.
More precisely, we will use an extended version of CD grammar systems that can accept
recursively-enumerable languages, and we will introduce new normal forms for these gram-
mar systems that will have a very limited number of non-context-free rules and that will be
suitable for a parallel rewriting process. Such normal forms can be interesting from both the
theoretical and practical point of view. This thesis is focused primarily on the theoretical
aspects of the topic, but we will also mention some further ideas in the conclusion.

1.5 Organization
The content of this thesis is divided into four parts and eight chapters. Part I serves mainly
as an introduction to the topic. After the current Chapter 1, Chapter 2 presents all the
terminology used in the following results.

Part II covers all results regarding jumping finite automata. Chapter 3 studies the
initial general version of parallel jumping finite automata—𝑛-parallel jumping finite au-
tomata. Chapter 4 continues the study with the follow-up version of parallel jumping finite
automata that is focused on advanced reading modes with two heads—double-jumping
finite automata. Chapter 5 explores a combined model of jumping finite automata and
Watson-Crick finite automata—jumping 5′ → 3′ Watson-Crick finite automata.

Part III covers results regarding CD grammar systems. Chapter 6 explores normal
forms of general CD grammar systems with useful parallel properties.

Part IV closes the thesis. Chapter 7 explores the application perspectives of the intro-
duced models and normal forms. Chapter 8 presents the final summary and theoretical
perspectives of the achieved results.

12

We use only the finest baby frogs. . .
—Monty Python’s Flying Circus

Chapter 2

Terminology

This thesis assumes that the reader is familiar with the theory of automata and formal
languages (see [49, 91]). This chapter recalls only the crucial notions used in the presented
results. Nonetheless, the content of this thesis covers a large number of different models with
various backgrounds. Therefore, even if we recall only the crucial notions, the preliminaries
are rather lengthy. The reader is advised to first take only a quick look at the overall
terminology and then return for more details later when the models are actually used. At
the beginnings of the following chapters we always reference the necessary terminology.

2.1 General Notions and Operations
This section describes the general terminology around sets, strings, and their basic opera-
tions, which is used in all results throughout the thesis.

2.1.1 Sets and Strings

For a set 𝑄, card(𝑄) denotes the cardinality of 𝑄, and 2𝑄 denotes the power set of 𝑄.
For an alphabet (finite nonempty set) 𝑉 , 𝑉 * represents the free monoid generated by 𝑉
under the operation of concatenation. The unit of 𝑉 * is denoted by 𝜀. Members of 𝑉 * are
called strings. Set 𝑉 + = 𝑉 * − {𝜀}; algebraically, 𝑉 + is thus the free semigroup generated
by 𝑉 under the operation of concatenation. For 𝑥 ∈ 𝑉 *, |𝑥| denotes the length of 𝑥,
rev(𝑥) denotes the reversal of 𝑥, and alph(𝑥) denotes the set of all symbols occurring in
𝑥; for instance, alph(0010) = {0, 1}. For 𝑥 ∈ 𝑉 * and 𝑎 ∈ 𝑉 , |𝑥|𝑎 denotes the number of
occurrences of 𝑎 in 𝑥. Let 𝑋 and 𝑌 be sets; we call 𝑋 and 𝑌 to be incomparable if 𝑋 ̸⊆ 𝑌 ,
𝑌 ̸⊆ 𝑋, and 𝑋 ∩ 𝑌 ̸= ∅.

2.1.2 Mirror Image

Let 𝑥 = 𝑎1𝑎2 · · · 𝑎𝑛, where 𝑎𝑖 ∈ 𝑉 , 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 0 (𝑥 = 𝜀 if and only if 𝑛 = 0). The
mirror image of 𝑥, denoted by mi(𝑥), is defined as mi(𝑥) = 𝑎𝑛𝑎𝑛−1 · · · 𝑎1 (mi(𝑥) = rev(𝑥)).
For 𝐿 ⊆ 𝑉 *, we define mi(𝐿) = {mi(𝑥) : 𝑥 ∈ 𝐿}.

2.1.3 Parikh Vector

The Parikh vector associated to a string 𝑥 ∈ 𝑉 * with respect to the alphabet 𝑉 =
{𝑎1, 𝑎2, . . . , 𝑎𝑛} is Ψ𝑉 (𝑥) = (|𝑥|𝑎1 , |𝑥|𝑎2 , . . . , |𝑥|𝑎𝑛). For 𝐿 ⊆ 𝑉 * we define Ψ𝑉 (𝐿) = {Ψ𝑉 (𝑥) :
𝑥 ∈ 𝐿}.

13

2.1.4 Shuffle

For 𝑥, 𝑦 ∈ 𝑉 *, the shuffle of 𝑥 and 𝑦, denoted by shuffle(𝑥, 𝑦), is defined as shuffle(𝑥, 𝑦) =
{𝑥1𝑦1𝑥2𝑦2 · · ·𝑥𝑛𝑦𝑛 : 𝑥 = 𝑥1𝑥2 · · ·𝑥𝑛, 𝑦 = 𝑦1𝑦2 · · · 𝑦𝑛, 𝑥𝑖, 𝑦𝑖 ∈ 𝑉 *, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1}. For
𝐿1, 𝐿2 ⊆ 𝑉 *, shuffle(𝐿1, 𝐿2) = {𝑧 : 𝑧 ∈ shuffle(𝑥, 𝑦), 𝑥 ∈ 𝐿1, 𝑦 ∈ 𝐿2}.

2.2 Grammars and Languages
This section describes the basic terminology around grammars and languages. Furthermore,
it establishes notation for various language families from Chomsky hierarchy and their
derived subfamilies which are heavily referenced in the whole thesis. Lastly, we present
precise formal definitions for several normal forms and restrictions of grammars that are
vital for the presented results.

2.2.1 Basic Definitions

A general grammar or, more simply, a grammar is quadruple 𝐺 = (𝑁,𝑇, 𝑃, 𝑆), whose
components are defined as follows. 𝑁 and 𝑇 are alphabets such that 𝑁 ∩ 𝑇 = ∅. Symbols
in 𝑁 are referred to as nonterminals, while symbols in 𝑇 are referred to as terminals.
𝑆 ∈ 𝑁 is the start symbol of 𝐺. 𝑃 is a finite set of (general) rules of the form 𝑥 → 𝑦,
where 𝑥, 𝑦 ∈ (𝑁 ∪ 𝑇)* and alph(𝑥) ∩ 𝑁 ̸= ∅. For brevity, we sometimes denote a rule
𝑥 → 𝑦 with a unique label 𝑝 as 𝑝 : 𝑥 → 𝑦, and, instead of 𝑝 : 𝑥 → 𝑦 ∈ 𝑃 , we simply
write 𝑝 ∈ 𝑃 . The left-hand side 𝑥 and the right-hand side 𝑦 of 𝑝 are denoted by lhs(𝑝)
and rhs(𝑝), respectively. If 𝑝 ∈ 𝑃 and | rhs(𝑝)| = 0, it is an 𝜀-rule. The rule 𝑝 ∈ 𝑃
is considered context-free if | lhs(𝑝)| = 1; otherwise, it is a non-context-free rule. Set
ContextFree(𝑃) = {𝑝 ∈ 𝑃 : | lhs(𝑝)| = 1} and NonContextFree(𝑃) = {𝑝 ∈ 𝑃 : | lhs(𝑝)| ≥ 2}.
If 𝑥 → 𝑦 ∈ 𝑃 and 𝑢, 𝑣 ∈ (𝑁 ∪ 𝑇)*, then 𝑢𝑥𝑣 ⇒ 𝑢𝑦𝑣 [𝑥 → 𝑦], or simply 𝑢𝑥𝑣 ⇒ 𝑢𝑦𝑣. In the
standard manner, let us extend ⇒ to ⇒𝑛, where 𝑛 ≥ 0; then, based on ⇒𝑛, let us define ⇒+

and ⇒*. The language generated by 𝐺, 𝐿(𝐺), is defined as 𝐿(𝐺) = {𝑤 ∈ 𝑇 * : 𝑆 ⇒* 𝑤}.
We recognize several special cases of grammars:

∙ 𝐺 is a context-sensitive grammar if every 𝑥 → 𝑦 ∈ 𝑃 satisfies either 𝑥 = 𝛼𝐴𝛽 and
𝑦 = 𝛼𝑣𝛽 such that 𝐴 ∈ 𝑁 , 𝛼, 𝛽, 𝑣 ∈ ((𝑁 − {𝑆}) ∪ 𝑇)*, 𝑣 ̸= 𝜀; or 𝑥 = 𝑆 and 𝑦 = 𝜀.

∙ 𝐺 is a context-free grammar if every 𝑥 → 𝑦 ∈ 𝑃 satisfies 𝑥 ∈ 𝑁 .

∙ 𝐺 is a linear grammar if every 𝑥 → 𝑦 ∈ 𝑃 satisfies 𝑥 ∈ 𝑁 and 𝑦 ∈ 𝑇 *𝑁𝑇 * ∪ 𝑇 *.

∙ 𝐺 is a right-linear grammar if every 𝑥 → 𝑦 ∈ 𝑃 satisfies 𝑥 ∈ 𝑁 and 𝑦 ∈ 𝑇 *𝑁 ∪ 𝑇 *.

∙ 𝐺 is a regular grammar if every 𝑥 → 𝑦 ∈ 𝑃 satisfies 𝑥 ∈ 𝑁 and 𝑦 ∈ 𝑇𝑁 ∪ 𝑇 ∪ {𝜀}.

A language 𝐿 is recursively enumerable, context-sensitive, context-free, linear, or regular
(right-linear) if and only if 𝐿 = 𝐿(𝐺), where 𝐺 is a general, context-sensitive, context-free,
linear, or regular (right-linear) grammar, respectively.

Let RE, CS, CF, LIN, REG, and FIN denote the families of recursively enumerable,
context-sensitive, context-free, linear, regular, and finite languages, respectively.

2.2.2 Derived Language Families

Sometimes it is useful for our results to consider additional derived language families that
do not precisely match the Chomsky hierarchy. Let CSeven, CFeven, LINeven, REGeven,

14

and FINeven denote the appropriate subfamilies of the traditional language families that
contain only languages with even-length strings. Let FIN𝜀-inc denote the family of finite
languages that always contain the empty string.

2.2.3 Endmarking Closure

Let L be a language family. We say that L is closed under endmarking if and only if for
every 𝐿 ∈ L , where 𝐿 ⊆ 𝑉 *, for some alphabet 𝑉 , # ̸∈ 𝑉 implies that 𝐿{#} ∈ L . We
also say that L is closed under endmarking on both sides if and only if the previous implies
that {#}𝐿{#} ∈ L .

2.2.4 Kuroda Normal Form

Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a grammar. 𝐺 is in Kuroda normal form (see Section 8.3.3. in
[49]) if every rule 𝑝 ∈ 𝑃 has one of these three forms: (1) 𝐴𝐵 → 𝐶𝐷, (2) 𝐴 → 𝐵𝐶, or (3)
𝐴 → 𝑎, where 𝐴,𝐵,𝐶,𝐷 ∈ 𝑁 and 𝑎 ∈ (𝑇 ∪ {𝜀}).

2.2.5 Homogeneous Restrictions

Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a grammar. If 𝑥 → 𝑦 ∈ 𝑃 and 𝑥 ∈ {𝐴}+ for some 𝐴 ∈ 𝑁 , then
𝑥 → 𝑦 is a homogeneous rule (see [51]). Furthermore, if also 𝑦 ∈ {𝐵}+ for some 𝐵 ∈ (𝑁∪𝑇)
and |𝑥| = |𝑦|, then 𝑥 → 𝑦 is an evenly homogeneous rule. 𝐺 is a homogeneous grammar if
every 𝑝 ∈ 𝑃 is homogeneous.

2.3 𝑛-Parallel Right-Linear Grammars
For 𝑛 ≥ 1, an 𝑛-parallel right-linear grammar (see [75, 90, 88, 73, 74]), an 𝑛-PRLG for
short, is an (𝑛 + 3)-tuple 𝐺 = (𝑁1, . . . , 𝑁𝑛, 𝑇, 𝑆, 𝑃), where 𝑁𝑖, 1 ≤ 𝑖 ≤ 𝑛, are mutually
disjoint nonterminal alphabets (and we denote

⋃︀𝑛
𝑖=1𝑁𝑖 by 𝑁), 𝑇 is a terminal alphabet,

𝑇 ∩𝑁 = ∅, 𝑆 ̸∈ (𝑇 ∪𝑁) is the sentence symbol, and 𝑃 is a finite set of pairs. Members of
𝑃 are referred to as rules of 𝐺, and, instead of (𝑋,𝑥) ∈ 𝑃 , we write 𝑋 → 𝑥 ∈ 𝑃 . Each rule
in 𝑃 has one of the following forms:

(1) 𝑆 → 𝑋1 · · ·𝑋𝑛, 𝑋𝑖 ∈ 𝑁𝑖, 1 ≤ 𝑖 ≤ 𝑛,

(2) 𝑋 → 𝑎𝑌, 𝑋, 𝑌 ∈ 𝑁𝑖, for some 𝑖, 1 ≤ 𝑖 ≤ 𝑛, 𝑎 ∈ 𝑇 *,

(3) 𝑋 → 𝑎, 𝑋 ∈ 𝑁, 𝑎 ∈ 𝑇 *.

The binary yield relation, symbolically denoted by ⇒, is defined as follows. Let 𝑥, 𝑦 ∈
(𝑁 ∪ {𝑆} ∪ 𝑇)* then 𝑥 ⇒ 𝑦 if and only if

either 𝑥 = 𝑆 and 𝑆 → 𝑦 ∈ 𝑃

or 𝑥 = 𝑎1𝑋1 · · · 𝑎𝑛𝑋𝑛, 𝑦 = 𝑎1𝑥1 · · · 𝑎𝑛𝑥𝑛,
where 𝑎𝑖 ∈ 𝑇 *, 𝑋𝑖 ∈ 𝑁𝑖, and 𝑋𝑖 → 𝑥𝑖 ∈ 𝑃, 1 ≤ 𝑖 ≤ 𝑛.

In the standard manner, let us extend ⇒ to ⇒𝑚, where 𝑚 ≥ 0; then, based on ⇒𝑚, let
us define ⇒+ and ⇒*. The language generated by 𝐺, denoted by 𝐿(𝐺), is defined as
𝐿(𝐺) = {𝑥 : 𝑆 ⇒* 𝑥, 𝑥 ∈ 𝑇 *}. Let 𝑛-PRLG denote the language families of 𝑛-PRLGs.

15

2.4 CD Grammar Systems
A general cooperating distributed grammar system (a general CD grammar system for short)
is a construct Γ = (𝑁,𝑇, 𝑃1, 𝑃2, . . . , 𝑃𝑛, 𝑆), 𝑛 ≥ 1, where 𝑁 is the alphabet of nonterminals,
𝑇 is the alphabet of terminals, 𝑁 ∩ 𝑇 = ∅, 𝑆 ∈ 𝑁 is the start symbol, and, for 1 ≤ 𝑖 ≤ 𝑛,
each component 𝑃𝑖 is a finite set of general rules. (For the original context-free definition
see [8].) For 𝑢, 𝑣 ∈ 𝑉 *, 𝑉 = 𝑁 ∪ 𝑇 , and 1 ≤ 𝑘 ≤ 𝑛, let 𝑢 ⇒𝑃𝑘

𝑣 denote a derivation
step performed by the application of a rule from 𝑃𝑘. As usual, let us extend the relation
⇒𝑃𝑘

to ⇒𝑚
𝑃𝑘

(the 𝑚-step derivation), 𝑚 ≥ 0, ⇒+
𝑃𝑘

, and ⇒*
𝑃𝑘

. In addition, we define the
relation 𝑢 ⇒𝑡

𝑃𝑘
𝑣 so that 𝑢 ⇒*

𝑃𝑘
𝑣 and there is no 𝑤 ∈ 𝑉 * such that 𝑣 ⇒𝑃𝑘

𝑤. The
language generated by Γ working in the 𝑓 mode, 𝑓 ∈ {*, 𝑡}, denoted by 𝐿𝑓 (Γ), is defined
as 𝐿𝑓 (Γ) = {𝑤 ∈ 𝑇 * : 𝑆 ⇒𝑓

𝑃𝑘1
𝑤1 ⇒𝑓

𝑃𝑘2
· · · ⇒𝑓

𝑃𝑘𝑙
𝑤𝑙 = 𝑤, 𝑙 ≥ 1, 1 ≤ 𝑘𝑖 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑙}.

Γ is referred to as rule-homogeneous, evenly rule-homogeneous, or context-free (instead of
general) if all its rules are homogeneous, evenly homogeneous, or context-free, respectively.

Language families generated by context-free CD grammar systems with 𝑛 components
working in the 𝑓 mode and allowing 𝜀-rules are denoted by 𝐶𝐷𝜀

𝑛(𝑓). When the number
of components is not limited, we replace 𝑛 by ∞. The following results are well-known:
(i) 𝐶𝐷𝜀

∞(*) = CF, (ii) CF = 𝐶𝐷𝜀
1(𝑡) = 𝐶𝐷𝜀

2(𝑡) ⊂ 𝐶𝐷𝜀
3(𝑡) = 𝐶𝐷𝜀

∞(𝑡) = ET0L (see
Theorem 3.1 in [78]), where ET0L denotes the family of languages generated by extended
tabled interactionless Lindenmayer systems (see [77]).

2.5 Finite Automata
There exist several different definitions of finite automata that are all widely used in formal
language theory; but, they all have the same resulting accepting power. Notation-wise, one
of the key differences between them is whether the definition uses a transition function or
a set of transition rules. We present both of these notations since we work with jumping
finite automata (see Section 2.6), which are based on lazy finite automata that use the set
of transition rules, and we also work with Watson-Crick finite automata (see Section 2.7),
which are based on finite automata that use the transition function.

2.5.1 Finite Automaton

A finite automaton is a quintuple 𝐴 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿), where 𝑉 is an input alphabet, 𝑄 is a
finite set of states, 𝑉 ∩𝑄 = ∅, 𝑞0 ∈ 𝑄 is the initial (or start) state, and 𝐹 ⊆ 𝑄 is a set of final
(or accepting) states. The mapping 𝛿 is a transition function. If 𝛿 : 𝑄×(𝑉 ∪{𝜀}) → 2𝑄, then
the automaton is nondeterministic; if 𝛿 : 𝑄× 𝑉 → 𝑄, then the automaton is deterministic.
A string 𝑤 is accepted by a finite automaton if there is a sequence of transitions starting
from 𝑞0, ending in a state in 𝐹 , and the symbols of the sequence yield 𝑤. A language is
regular if and only if it can be recognized by a finite automaton.

2.5.2 Lazy Finite Automaton

A lazy finite automaton (see Section 2.6.2 in [91]), an LFA for short, is a quintuple 𝑀 =
(𝑄,Σ, 𝑅, 𝑠, 𝐹), where 𝑄 is a finite set of states, Σ is an input alphabet, 𝑄 ∩ Σ = ∅, 𝑅 ⊆
𝑄× Σ* ×𝑄 is finite, 𝑠 ∈ 𝑄 is the start state, and 𝐹 ⊆ 𝑄 is a set of final states. Members
of 𝑅 are referred to as rules of 𝑀 . If (𝑝, 𝑦, 𝑞) ∈ 𝑅 implies that |𝑦| ≤ 1, then 𝑀 is a finite
automaton, an FA for short. A configuration of 𝑀 is any string in 𝑄Σ*. If (𝑝, 𝑦, 𝑞) ∈ 𝑅 and

16

𝑥, 𝑦 ∈ Σ*, then 𝑝𝑦𝑥 ⇒ 𝑞𝑥. In the standard manner, let us extend ⇒ to ⇒𝑛, where 𝑛 ≥ 0;
then, based on ⇒𝑛, let us define ⇒+ and ⇒*. The language accepted by 𝑀 , denoted by
𝐿(𝑀), is defined as 𝐿(𝑀) = {𝑤 ∈ Σ* : 𝑠𝑤 ⇒* 𝑓, 𝑓 ∈ 𝐹}. We say that 𝑀 accepts 𝑤 if and
only if 𝑤 ∈ 𝐿(𝑀). 𝑀 rejects 𝑤 if and only if 𝑤 ∈ Σ* − 𝐿(𝑀). Two LFAs 𝑀 and 𝑀 ′ are
said to be equivalent if and only if 𝐿(𝑀) = 𝐿(𝑀 ′).

2.6 Jumping Finite Automata
A general jumping finite automaton (see [57, 58, 54]), a GJFA for short, is a quintuple
𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹), where 𝑄 is a finite set of states, Σ is an input alphabet, 𝑄 ∩ Σ = ∅,
𝑅 ⊆ 𝑄×Σ*×𝑄 is finite, 𝑠 ∈ 𝑄 is the start state, and 𝐹 ⊆ 𝑄 is a set of final states. Members
of 𝑅 are referred to as rules of 𝑀 . For brevity, we sometimes denote a rule (𝑝, 𝑦, 𝑞) with
a unique label ℎ as ℎ : (𝑝, 𝑦, 𝑞), and, instead of ℎ : (𝑝, 𝑦, 𝑞) ∈ 𝑅, we simply write ℎ ∈ 𝑅. If
(𝑝, 𝑦, 𝑞) ∈ 𝑅 implies that |𝑦| ≤ 1, then 𝑀 is a jumping finite automaton, a JFA for short.
A configuration of 𝑀 is any string in Σ*𝑄Σ*. The binary jumping relation, symbolically
denoted by y (or �y), over Σ*𝑄Σ*, is defined as follows. Let 𝑥, 𝑧, 𝑥′, 𝑧′ ∈ Σ* such that
𝑥𝑧 = 𝑥′𝑧′ and ℎ : (𝑝, 𝑦, 𝑞) ∈ 𝑅; then, 𝑀 makes a jump from 𝑥𝑝𝑦𝑧 to 𝑥′𝑞𝑧′, symbolically
written as 𝑥𝑝𝑦𝑧 y 𝑥′𝑞𝑧′ [ℎ], or simply 𝑥𝑝𝑦𝑧 y 𝑥′𝑞𝑧′. In the standard manner, let us
extend y to y𝑛, where 𝑛 ≥ 0; then, based on y𝑛, let us define y+ and y*. The language
accepted by 𝑀 , denoted by 𝐿(𝑀), is defined as 𝐿(𝑀) = {𝑢𝑣 : 𝑢, 𝑣 ∈ Σ*, 𝑢𝑠𝑣 y* 𝑓, 𝑓 ∈ 𝐹}.

We also recognize two special cases of the jumping relation as they are defined in [57, 58].
Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹) be a GJFA. Let 𝑤, 𝑥, 𝑦, 𝑧 ∈ Σ* and (𝑝, 𝑦, 𝑞) ∈ 𝑅; then, (1) 𝑀
makes a left jump from 𝑤𝑥𝑝𝑦𝑧 to 𝑤𝑞𝑥𝑧, symbolically written as 𝑤𝑥𝑝𝑦𝑧 𝑙y 𝑤𝑞𝑥𝑧, and (2)
𝑀 makes a right jump from 𝑤𝑝𝑦𝑥𝑧 to 𝑤𝑥𝑞𝑧, symbolically written as 𝑤𝑝𝑦𝑥𝑧 𝑟y 𝑤𝑥𝑞𝑧. Let
𝑢, 𝑣 ∈ Σ*𝑄Σ*; then, 𝑢 y 𝑣 if and only if 𝑢 𝑙y 𝑣 or 𝑢 𝑟y 𝑣. Let us extend 𝑙y and 𝑟y
to 𝑙y𝑛, 𝑙y*, 𝑙y+, 𝑟y𝑛, 𝑟y* and 𝑟y+, where 𝑛 ≥ 0, by analogy with extending the
corresponding notations for y. Set 𝑙𝐿(𝑀) = {𝑢𝑣 : 𝑢, 𝑣 ∈ Σ*, 𝑢𝑠𝑣 𝑙y* 𝑓, 𝑓 ∈ 𝐹} and
𝑟𝐿(𝑀) = {𝑢𝑣 : 𝑢, 𝑣 ∈ Σ*, 𝑢𝑠𝑣 𝑟y* 𝑓, 𝑓 ∈ 𝐹}.

Let GJFA, JFA, 𝑙GJFA, and 𝑟GJFA denote the language families accepted by GJFAs,
JFAs, GJFAs using only left jumps, and GJFAs using only right jumps, respectively.

2.7 5′ → 3′ Watson-Crick Finite Automata
In this part we recall some well-known concepts of DNA computing and related formal
language theory. Readers who are not familiar with these topics can read [72].

Let 𝑉 be an alphabet and 𝜌 ⊆ 𝑉 × 𝑉 be a binary symmetric relation called comple-
mentarity. As the most prominent example, 𝑉 = {𝐴,𝐶,𝐺, 𝑇} is used in DNA computing
together with the Watson-Crick complementarity relation {(𝑇,𝐴), (𝐴, 𝑇), (𝐶,𝐺), (𝐺,𝐶)}.
The sequences built up by complementary pairs of letters are called double strands (of
DNA).

A Watson-Crick finite automaton (or shortly, a WK automaton) is a finite automaton
working on a Watson-Crick tape, that is, a double-stranded string (or molecule) in which
the lengths of the strands are equal and the elements of the strands are pairwise comple-
mentary: [

𝑎1
𝑏1][

𝑎2
𝑏2] · · · [𝑎𝑛𝑏𝑛] = [

𝑎1𝑎2···𝑎𝑛
𝑏1𝑏2···𝑏𝑛] where 𝑎𝑖, 𝑏𝑖 ∈ 𝑉 and (𝑎𝑖, 𝑏𝑖) ∈ 𝜌 for all 𝑖 = 1, . . . , 𝑛.

The notation [𝑤1
𝑤2] is used only for strings 𝑤1, 𝑤2 ∈ 𝑉 * with equal length and satisfying

the complementarity relation 𝜌. The set of all double-stranded strings with this property
is denoted by WK𝜌(𝑉). For double-stranded strings for which these conditions are not

17

necessarily satisfied, the notation (𝑤1
𝑤2) is used throughout the thesis. Formally, a WK

automaton is 𝑀 = (𝑉, 𝜌,𝑄, 𝑞0, 𝐹, 𝛿), where 𝑉 , 𝑄, 𝑞0, and 𝐹 are the same as in finite
automata, 𝜌 ⊆ 𝑉 × 𝑉 is a symmetric relation (of complementarity), and the mapping
𝛿 : (𝑄× (𝑉 *

𝑉 *)) → 2𝑄 is a transition function such that 𝛿(𝑞, (𝑤1
𝑤2)) ̸= ∅ only for finitely many

triples (𝑞, 𝑤1, 𝑤2) ∈ 𝑄× 𝑉 * × 𝑉 *.
The elementary difference between finite automata and WK automata, besides the

doubled tape, is the number of heads. WK automata scan each of the two strands of the
tape separately with a unique head. In classical WK automata, the heads scan both strands
from left to right, and the processing of the input sequence ends when all complementary
pairs of the sequence are read with both heads. Let 𝐿𝑀(𝑀) denote the set of all double-
stranded strings from WK𝜌(𝑉) accepted by 𝑀 . Let ↑𝑉 (𝐿𝑀(𝑀)) = {𝑤1 ∈ 𝑉 * : [𝑤1

𝑤2] ∈
𝐿𝑀(𝑀), 𝑤2 ∈ 𝑉 *}. Then, the language accepted by 𝑀 , denoted 𝐿(𝑀), is defined as
𝐿(𝑀) = ↑𝑉 (𝐿𝑀(𝑀)).

There are also some restricted variants of WK automata which are widely used in the
literature (see, e.g., [72]):

∙ N : stateless, i.e., with only one state: if 𝑄 = 𝐹 = {𝑞0};

∙ F : all-final, i.e., with only final states: if 𝑄 = 𝐹 ;

∙ S : simple (at most one head moves in a step)
𝛿 : (𝑄× ((𝑉 *

{𝜀}) ∪ ({𝜀}
𝑉 *))) → 2𝑄;

∙ 1 : 1-limited (exactly one letter is being read in a step)
𝛿 : (𝑄× ((𝑉

{𝜀}) ∪ ({𝜀}
𝑉

))) → 2𝑄.

Further variants such as NS, FS, N1, and F1 WK automata can be identified in a straight-
forward way by combining multiple constraints.

In 5′ → 3′ WK automata (see [60, 61, 63, 65, 70]), both heads start from the biochemical
5′ end of the appropriate strand. Physically/mathematically and from a computing point
of view they read the double-stranded sequence in opposite directions, while biochemically
they go in the same direction. A 5′ → 3′ WK automaton is sensing if the heads sense
that they are meeting (i.e., they are close enough to meet in the next step or there is a
possibility to read strings at overlapping positions). In sensing 5′ → 3′ WK automata, the
processing of the input sequence ends when for each pair of the sequence precisely one of
the letters is read. Since the original Watson-Crick complementarity (in biology) is not
only symmetric but also a one-to-one relation, we consider the input sequence to be fully
processed, and thus the automaton makes a decision on the acceptance. Actually, it is a
very natural assumption/restriction for most of the 5′ → 3′ WK automata models that 𝜌
defines a bijection on 𝑉 .

In WK automata, the state transition 𝛿 is usually a mapping of the form (𝑄× (𝑉 *
𝑉 *)) →

2𝑄. To help define an extended state transition 𝛿′ for sensing 5′ → 3′ WK automata, in
the transition 𝑞′ ∈ 𝛿(𝑞, (𝑤1

𝑤2)), we call 𝑟𝑙 = |𝑤1| and 𝑟𝑟 = |𝑤2| the left and right radius
of the transition (they are the lengths of the strings that the heads will read from left to
right and from right to left in this step, respectively). The value 𝑟 = 𝑟𝑙 + 𝑟𝑟 is the radius
of the transition. Since 𝛿(𝑞, (𝑤1

𝑤2)) is nonempty only for finitely many triples (𝑞, 𝑤1, 𝑤2),
there is a transition (maybe more) with the maximal radius for a given automaton. We
extend 𝛿 to 𝛿′ with a sensing condition in the following way: Let 𝑟max be the maximal
radius among all rules. Then, let 𝛿′ : (𝑄× (𝑉 *

𝑉 *)×𝐷) → 2𝑄, where 𝐷 is the sensing distance

18

set {−∞, 0, 1, . . . , 𝑟max,+∞}. This set gives the distance of the two heads between 0 and
𝑟max, +∞ when the heads are further than 𝑟max, or −∞ when the heads are after their
meeting point. Trivially, this automaton is finite, and 𝐷 can be used only to control the
sensing (i.e., the appropriate meeting of the heads). To describe the work of the automata,
we use the concept of configuration. A configuration (𝑤1

𝑤2)(𝑞, 𝑠)(
𝑤′

1

𝑤′
2
) consists of the state 𝑞,

the current sensing distance 𝑠, and the input [
𝑤1𝑤′

1

𝑤2𝑤′
2
] ∈ WK𝜌(𝑉) in such a way that the first

head (on the upper strand) has already processed the part 𝑤1, while the second head (on
the lower strand) has already processed 𝑤′

2. A step of the sensing 5′ → 3′ WK automaton,
according to the state transition function 𝛿′, can be of the following two types:

(1) Normal steps : (𝑤1
𝑤2𝑦)(𝑞,+∞)(

𝑥𝑤′
1

𝑤′
2

) ⇒ (𝑤1𝑥
𝑤2)(𝑞′, 𝑠)(

𝑤′
1

𝑦𝑤′
2
),

for 𝑤1, 𝑤2, 𝑤
′
1, 𝑤

′
2, 𝑥, 𝑦 ∈ 𝑉 * with |𝑤2𝑦| − |𝑤1| > 𝑟max, 𝑞, 𝑞′ ∈ 𝑄,

if [
𝑤1𝑥𝑤′

1

𝑤2𝑦𝑤′
2

] ∈ WK𝜌(𝑉) and 𝑞′ ∈ 𝛿′(𝑞, (𝑥
𝑦),+∞),

and 𝑠 =

{︃
|𝑤2| − |𝑤1𝑥| if |𝑤2| − |𝑤1𝑥| ≤ 𝑟max;

+∞ in other cases.

(2) Sensing steps : (𝑤1
𝑤2𝑦)(𝑞, 𝑠)(

𝑥𝑤′
1

𝑤′
2

) ⇒ (𝑤1𝑥
𝑤2)(𝑞′, 𝑠′)(

𝑤′
1

𝑦𝑤′
2
),

for 𝑤1, 𝑤2, 𝑤
′
1, 𝑤

′
2, 𝑥, 𝑦 ∈ 𝑉 * and 𝑠 ∈ {0, 1, . . . , 𝑟max} with 𝑠 = |𝑤2𝑦| − |𝑤1|,

if [
𝑤1𝑥𝑤′

1

𝑤2𝑦𝑤′
2

] ∈ WK𝜌(𝑉) and 𝑞′ ∈ 𝛿′(𝑞, (𝑥
𝑦), 𝑠),

and 𝑠′ =

{︃
𝑠− |𝑥| − |𝑦| if 𝑠− |𝑥| − |𝑦| ≥ 0;

−∞ in other cases.

Note that there are no possible steps for the sensing distance −∞. In the standard manner,
let us extend ⇒ to ⇒𝑛, where 𝑛 ≥ 0; then, based on ⇒𝑛, let us define ⇒+ and ⇒*.
The set of all accepted double-stranded strings from WK𝜌(𝑉), denoted by 𝐿𝑀(𝑀), can be
defined by the final accepting configurations that can be reached from the initial one: A
double-stranded string [𝑤1

𝑤2] ∈ WK𝜌(𝑉) is accepted by a sensing 5′ → 3′ WK automaton 𝑀

if and only if (𝜀
𝑤2)(𝑞0, 𝑠0)(

𝑤1
𝜀) ⇒* [

𝑤′
1

𝑤′
2
](𝑞𝑓 , 0)[

𝑤′′
1

𝑤′′
2

], for 𝑞𝑓 ∈ 𝐹 , where [
𝑤′

1

𝑤′
2
][
𝑤′′

1

𝑤′′
2

] = [𝑤1
𝑤2] with

the proper value of 𝑠0 (it is +∞ if |𝑤1| > 𝑟max, elsewhere it is |𝑤1|). Then, the language
accepted by 𝑀 , denoted 𝐿(𝑀), is defined as 𝐿(𝑀) = ↑𝑉 (𝐿𝑀(𝑀)).

Besides the sensing version, papers [60, 61, 63, 65] also define the full-reading sensing
version. The formal definition remains almost identical, however, the automaton continues
with the reading after the heads met, and both heads have to read their strand completely
from the 5′ end to the 3′ end. Therefore, this model actually defines the remaining steps
for the sensing distance −∞. The resulting behavior then combines some properties of
classical WK automata and sensing 5′ → 3′ WK automata. It can be easily seen that
the full-reading sensing version is generally stronger than the sensing version. And finally,
paper [70] introduces a new version of sensing 5′ → 3′ WK automata without the sensing
distance. It shows that it is not strictly necessary to know the precise sensing distance and
that we can obtain the same power even if we are able to recognize only the actual meeting
event of heads. Nonetheless, this result does not hold in general if we consider restricted
variants of these models.

19

Part II

New Results on Jumping
Automata

20

I’d like to have an argument, please.
—Monty Python’s Flying Circus

Chapter 3

𝑛-Parallel Jumping Finite
Automata

This chapter covers our first steps to explore the possibilities of parallel jumping finite
automata. The content of this chapter is composed of results that were presented at the
conferences Excel@FIT 2015 (see [32]) and SDOT 2015 (see [37]) and also a few additional
unpublished results; all written jointly with Alexander Meduna.

In terms of preliminaries, the reader should be familiar with the definitions of general
notions (see Section 2.1), 𝑛-parallel right-linear grammars (see Section, 2.3), and jumping
finite automata (see Section 2.6).

3.1 Introduction
In the previous century, most formal models were designed for continuous information
processing. This, however, does not often reflects the requirements of modern information
methods. Therefore, there is currently an active research around formal models that process
information in a discontinuous way. Most notably, there are newly invented jumping finite
automata (see [57, 58, 54]) that are completely focused on discontinuous reading. These
automata go so far that they cannot even define some quite simple languages (e.g., 𝑎*𝑏*)
because they cannot guarantee any specific reading order between their jumps.

This chapter proposes a modification of these automata—𝑛-parallel jumping finite au-
tomata. This modification presents a concept where the input is divided into several arbi-
trary parts and these parts are then separately processed with distinct synchronized heads.
A quite similar concept was thoroughly studied in terms of formal grammars, where sev-
eral nonterminals are being synchronously rewritten at once; for example, simple matrix
grammars (see [25]) and 𝑛-parallel grammars (see [75, 90, 88, 73, 74]). However, to the
best of our knowledge, no such research was done in terms of automata, where 𝑛 heads
synchronously read from distinct parts on the single tape. When this concept is combined
with the mechanics of jumping finite automata, each part can be read discontinuously, but
the overall order between parts is preserved; such an automaton then can handle addi-
tional languages (e.g., 𝑎*𝑏*). Therefore, this modification represents the combined model
of discontinuous and continuous reading.

The unrestricted version of jumping finite automata accepts a quite unique language
family which initially had no known counterparts in grammars until jumping grammars
were introduced (see [31]). Therefore, we have decided to base our initial research mainly

21

on the restricted version of these automata which use only right jumps. Note that restricted
jumping finite automata define the same language family as classical finite automata. How-
ever, when such a restriction is combined with the previously described concept, we get a
model which is very similar to 𝑛-parallel grammars. These automata utilize the jumping
only during the initialization, when the heads jump to their start positions. After that,
all heads read their parts of the input continuously in a left-to-right way. We compare
these automata with 𝑛-parallel right-linear grammars and show that these models actually
represent the same language families.

3.2 Definitions
In this section, we define a modification of jumping finite automata—𝑛-parallel jumping
finite automata—which read input words discontinuously with multiple synchronized heads.
Moreover, we also define a more restricted mode for these automata which uses only the
right jumps.

Definition 3.2.1. For 𝑛 ≥ 1, an 𝑛-parallel general jumping finite automaton, an 𝑛-PGJFA
for short, is a quintuple

𝑀 = (𝑄,Σ, 𝑅, 𝑆, 𝐹),

where 𝑄 is a finite set of states, Σ is an input alphabet, 𝑄 ∩ Σ = ∅, 𝑅 ⊆ 𝑄 × Σ* × 𝑄 is
finite, 𝑆 ⊆ 𝑄𝑛 is a set of start state strings, and 𝐹 ⊆ 𝑄 is a set of final states. Members of
𝑅 are referred to as rules of 𝑀 and instead of (𝑝, 𝑦, 𝑞) ∈ 𝑅, we write 𝑝𝑦 → 𝑞 ∈ 𝑅.

A configuration of 𝑀 is any string in Σ*𝑄Σ*. Let 𝑋 denote the set of all configurations
over 𝑀 . The binary jumping relation, symbolically denoted by y, over 𝑋, is defined as
follows. Let 𝑥, 𝑧, 𝑥′, 𝑧′ ∈ Σ* such that 𝑥𝑧 = 𝑥′𝑧′ and 𝑝𝑦 → 𝑞 ∈ 𝑅; then, 𝑀 makes a jump
from 𝑥𝑝𝑦𝑧 to 𝑥′𝑞𝑧′, symbolically written as

𝑥𝑝𝑦𝑧 y 𝑥′𝑞𝑧′.

Let $ be a special symbol, $ ̸∈ (𝑄∪Σ). An 𝑛-configuration of 𝑀 is any string in (𝑋{$})𝑛.
Let 𝑛𝑋 denote the set of all 𝑛-configurations over 𝑀 . The binary 𝑛-jumping relation,
symbolically denoted by 𝑛 y, over 𝑛𝑋, is defined as follows. Let 𝜁1$ · · · 𝜁𝑛$, 𝜗1$ · · ·𝜗𝑛$ ∈
𝑛𝑋, so 𝜁𝑖, 𝜗𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑛; then, 𝑀 makes an 𝑛-jump from 𝜁1$ · · · 𝜁𝑛$ to 𝜗1$ · · ·𝜗𝑛$,
symbolically written as

𝜁1$ · · · 𝜁𝑛$ 𝑛y 𝜗1$ · · ·𝜗𝑛$

if and only if 𝜁𝑖 y 𝜗𝑖 for all 1 ≤ 𝑖 ≤ 𝑛. In the standard manner, we extend 𝑛y to 𝑛y𝑚,
where 𝑚 ≥ 0. Let 𝑛y+ and 𝑛y* denote the transitive closure of 𝑛y and transitive-
reflexive closure of 𝑛y, respectively.

The language accepted by 𝑀 , denoted by 𝐿(𝑀,𝑛), is defined as

𝐿(𝑀,𝑛) = {𝑢1𝑣1 · · ·𝑢𝑛𝑣𝑛 : 𝑢1𝑠1𝑣1$ · · ·𝑢𝑛𝑠𝑛𝑣𝑛$ 𝑛y* 𝑓1$ · · · 𝑓𝑛$,

𝑢𝑖, 𝑣𝑖 ∈ Σ*, 𝑠1 · · · 𝑠𝑛 ∈ 𝑆, 𝑓𝑖 ∈ 𝐹, 1 ≤ 𝑖 ≤ 𝑛}.

Let 𝑤 ∈ Σ*. We say that 𝑀 accepts 𝑤 if and only if 𝑤 ∈ 𝐿(𝑀,𝑛). 𝑀 rejects 𝑤 if and only
if 𝑤 ∈ Σ* − 𝐿(𝑀,𝑛).

22

Definition 3.2.2. For 𝑛 ≥ 1, let 𝑀 = (𝑄,Σ, 𝑅, 𝑆, 𝐹) be an 𝑛-PGJFA, and let 𝑋 denote the
set of all configurations over 𝑀 . The binary right jumping relation, symbolically denoted
by 𝑟 y, over 𝑋, is defined as follows. Let 𝑤, 𝑥, 𝑦, 𝑧 ∈ Σ*, and 𝑝𝑦 → 𝑞 ∈ 𝑅; then, 𝑀 makes
a right jump from 𝑤𝑝𝑦𝑥𝑧 to 𝑤𝑥𝑞𝑧, symbolically written as

𝑤𝑝𝑦𝑥𝑧 𝑟y 𝑤𝑥𝑞𝑧.

Let 𝑛𝑋 denote the set of all 𝑛-configurations over 𝑀 . The binary right 𝑛-jumping rela-
tion, symbolically denoted by 𝑛−𝑟y, over 𝑛𝑋, is defined as follows. Let 𝜁1$ · · · 𝜁𝑛$, 𝜗1$ · · ·
𝜗𝑛$ ∈ 𝑛𝑋, so 𝜁𝑖, 𝜗𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑛; then, 𝑀 makes a right n-jump from 𝜁1$ · · · 𝜁𝑛$ to
𝜗1$ · · ·𝜗𝑛$, symbolically written as

𝜁1$ · · · 𝜁𝑛$ 𝑛−𝑟y 𝜗1$ · · ·𝜗𝑛$

if and only if 𝜁𝑖 𝑟y 𝜗𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.
We extend 𝑛−𝑟y to 𝑛−𝑟y𝑚, 𝑛−𝑟y+, and 𝑛−𝑟y*, where 𝑚 ≥ 0, by analogy with ex-

tending the corresponding notations for 𝑛y. Let 𝐿(𝑀,𝑛−𝑟) denote the language accepted
by 𝑀 using only right 𝑛-jumps.

Let 𝑛-PGJFA and 𝑟𝑛-PGJFA denote the language families accepted by 𝑛-PGJFAs
and 𝑛-PGJFAs using only right 𝑛-jumps, respectively.

3.3 Examples
To demonstrate the behavior of these automata, we present two simple examples.

Example 3.3.1. Consider the 2-PGJFA

𝑀 = ({𝑠, 𝑟, 𝑝, 𝑞},Σ, 𝑅, {𝑠𝑟}, {𝑠, 𝑟}),

where Σ = {𝑎, 𝑏, 𝑐, 𝑑} and 𝑅 consists of the rules

𝑠𝑎 → 𝑝, 𝑝𝑏 → 𝑠, 𝑟𝑐 → 𝑞, 𝑞𝑑 → 𝑟.

Starting from 𝑠𝑟, 𝑀 has to read some 𝑎 and 𝑏 with the first head and some 𝑐 and 𝑑 with
the second head, entering again the start (and also the final) states 𝑠𝑟. If we work with
the unrestricted jumps, both heads can read the symbols in an arbitrary order. However,
if we work with the right jumps, both heads must read all symbols in their original order;
otherwise, the automaton will eventually get stuck. Therefore, the accepted languages are

𝐿(𝑀, 2) = {𝑢𝑣 : 𝑢 ∈ {𝑎, 𝑏}*, 𝑣 ∈ {𝑐, 𝑑}*, |𝑢|𝑎 = |𝑢|𝑏 = |𝑣|𝑐 = |𝑣|𝑑}.

𝐿(𝑀, 2−𝑟) = {(𝑎𝑏)𝑛(𝑐𝑑)𝑛 : 𝑛 ≥ 0}

Example 3.3.2. Consider the 2-PGJFA

𝑀 = ({𝑠, 𝑟, 𝑡},Σ, 𝑅, {𝑠𝑠}, {𝑠}),

where Σ = {𝑎, 𝑏, 𝑐} and 𝑅 consists of the rules

𝑠𝑎 → 𝑟, 𝑟𝑏 → 𝑡, 𝑡𝑐 → 𝑠.

Starting from 𝑠𝑠, 𝑀 has to read some 𝑎, 𝑏, and 𝑐 with both heads, entering again the start
(and also the final) states 𝑠𝑠. Therefore, the accepted languages are

𝐿(𝑀, 2) = {𝑢𝑣 : 𝑢, 𝑣 ∈ {𝑎, 𝑏, 𝑐}*, |𝑢|𝑎 = |𝑢|𝑏 = |𝑢|𝑐 = |𝑣|𝑎 = |𝑣|𝑏 = |𝑣|𝑐},

𝐿(𝑀, 2−𝑟) = {𝑢𝑢 : 𝑢 ∈ {𝑎𝑏𝑐}*}.

23

It can be easily shown that the languages accepted with unrestricted 𝑛-jumps in Ex-
amples 3.3.1 and 3.3.2 cannot be defined by any original jumping finite automata. In the
case of languages accepted with right 𝑛-jumps, Example 3.3.1 defines a linear language, but
Example 3.3.2 defines only a regular language.

3.4 Unrestricted 𝑛-Jumping Relation
This section gives a basic characterization of the language families accepted by 𝑛-PGJFAs
with unrestricted 𝑛-jumps. Most notably, we show that 𝑛-PGJFAs with unrestricted 𝑛-
jumps define an infinite hierarchy of language families.

Theorem 3.4.1. 1-PGJFA = GJFA.

Proof. The definition of the binary jumping relation is identical between GJFAs (see Sec-
tion 2.6) and 𝑛-PGJFAs (see Definition 3.2.1). Consequently, if 𝑛 = 1, both models transit
between configurations in the same way, and they also require the same conditions for
accepting configurations. Therefore, the only difference is in their initial configurations
since GJFAs have a single start state but 1-PGJFAs have a set of start states. Nonethe-
less, we can convert any 1-PGJFA 𝑀 = (𝑄,Σ, 𝑅, 𝑆, 𝐹) into the equivalent 1-PGJFA
𝑁 = (𝑄′,Σ, 𝑅′, {𝑠}, 𝐹) such that 𝑠 ̸∈ (𝑄∪Σ), 𝑄′ = 𝑄∪{𝑠}, and 𝑅′ = 𝑅∪{𝑠 → 𝑠′ : 𝑠′ ∈ 𝑆}.
Then, the conversions between GJFAs and 1-PGJFAs are trivial.

Lemma 3.4.2. For all 𝑛 ≥ 1, there is an 𝑛-PGJFA 𝑀 = (𝑄,Σ, 𝑅, 𝑆, 𝐹) such that Σ =
{𝑎1, . . . , 𝑎𝑛} and 𝐿(𝑀,𝑛) = {𝑎1}* · · · {𝑎𝑛}*.

Proof. By construction. For any 𝑛 ≥ 1, define the 𝑛-PGJFA 𝑀 = (𝑄,Σ, 𝑅, 𝑆, 𝐹), where
𝑄 = {𝑠1, . . . , 𝑠𝑛}, Σ = {𝑎1, . . . , 𝑎𝑛}, 𝑅 = {𝑠𝑖𝑎𝑖 → 𝑠𝑖, 𝑠𝑖 → 𝑠𝑖 : 1 ≥ 𝑖 ≥ 𝑛}, 𝑆 = {𝑠1 · · · 𝑠𝑛},
and 𝐹 = 𝑄. Observe that each head handles a different symbol and that it can read zero
or one occurrence of this symbol in each step. Therefore, the accepted language is clearly
𝐿(𝑀,𝑛) = {𝑎1}* · · · {𝑎𝑛}*.

Lemma 3.4.3. For all 𝑛 ≥ 1 and 𝑚 > 𝑛, there is no 𝑛-PGJFA 𝑀 = (𝑄,Σ, 𝑅, 𝑆, 𝐹) such
that Σ = {𝑎1, . . . , 𝑎𝑚} and 𝐿(𝑀,𝑛) = {𝑎1}* · · · {𝑎𝑚}*.

Proof. We extend the reasoning from Lemma 19 in [57] that shows that there is no GJFA
that accepts {𝑎}*{𝑏}*. By contradiction. Assume that, for some 𝑛 ≥ 1 and 𝑚 > 𝑛, there is a
𝑛-PGJFA 𝑀 = (𝑄,Σ, 𝑅, 𝑆, 𝐹) such that Σ = {𝑎1, . . . , 𝑎𝑚} and 𝐿(𝑀,𝑛) = {𝑎1}* · · · {𝑎𝑚}*.
Then, some of the heads of 𝑀 must handle at least two types of symbols. Assume any
𝑤1𝑢𝑣𝑤2 ∈ 𝐿(𝑀,𝑛) such that 𝑢𝑣 is a whole part read with one head, 𝑢𝑣 contains at least two
types of symbols, 𝑣 is read in a single step, |𝑢| ≥ 1, and |𝑣| ≥ 1. Clearly, for any 𝑛 ≥ 1 and
𝑚 > 𝑛, there has to exist some 𝑤1𝑢𝑣𝑤2 ∈ 𝐿(𝑀,𝑛) that satisfies these conditions. Due to
the behavior of the unrestricted 𝑛-jumps, it must then also hold that 𝑤1𝑣𝑢𝑤2 ∈ 𝐿(𝑀,𝑛);
however, 𝑤1𝑣𝑢𝑤2 ̸∈ {𝑎1}* · · · {𝑎𝑚}*. That is a contradiction with the assumption that
𝐿(𝑀,𝑛) = {𝑎1}* · · · {𝑎𝑚}*. Therefore, there is no 𝑛-PGJFA 𝑀 = (𝑄,Σ, 𝑅, 𝑆, 𝐹) such that
𝑛 ≥ 1, 𝑚 > 𝑛, Σ = {𝑎1, . . . , 𝑎𝑚}, and 𝐿(𝑀,𝑛) = {𝑎1}* · · · {𝑎𝑚}*.

Theorem 3.4.4. For all 𝑛 ≥ 1, 𝑛-PGJFA ⊂ (𝑛+1)-PGJFA.

Proof. First, we show that, for all 𝑛 ≥ 1, 𝑛-PGJFA ⊆ (𝑛+1)-PGJFA. For any 𝑛-PGJFA
𝑀 = (𝑄,Σ, 𝑅, 𝑆, 𝐹) we can construct the (𝑛+1)-PGJFA 𝑁 = (𝑄′,Σ, 𝑅′, 𝑆′, 𝐹 ′) such that
𝑓 ̸∈ (𝑄 ∪ Σ), 𝑄′ = 𝑄 ∪ {𝑓}, 𝑅′ = 𝑅 ∪ {𝑓 → 𝑓}, 𝑆′ = {𝑤𝑓 : 𝑤 ∈ 𝑆}, 𝐹 ′ = 𝐹 ∪ {𝑓}. It

24

is not hard to see that 𝐿(𝑀,𝑛) = 𝐿(𝑁,𝑛 + 1). Second, for all 𝑛 ≥ 1, (𝑛+1)-PGJFA ̸⊆
𝑛-PGJFA follows directly from Lemmas 3.4.2 and 3.4.3.

With Theorems 3.4.1 and 3.4.4 we can easily derive the following additional character-
ization of the language families accepted by 𝑛-PGJFAs with unrestricted 𝑛-jumps.

Theorem 3.4.5. For all 𝑛 ≥ 1, FIN ⊂ 𝑛-PGJFA.

Proof. This theorem directly follows from FIN ⊂ GJFA (see [57]).

Theorem 3.4.6. For all 𝑛 ≥ 1, 𝑛-PGJFA ̸⊆ REG and 𝑛-PGJFA ̸⊆ CF.

Proof. This theorem directly follows from the fact that there is a GJFA 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹)
such that Σ = {𝑎, 𝑏, 𝑐} and 𝐿(𝑀) = {𝑤 ∈ Σ* : |𝑤|𝑎 = |𝑤|𝑏 = |𝑤|𝑐} which is a well-known
non-context-free language (see [57]).

Theorem 3.4.7. For all 𝑛 ≥ 1, 𝑛-PGJFA ⊂ CS.

Proof. The jumps of GJFAs can be simulated by linear bounded automata (see [57]), and
the same also holds for the 𝑛-jumps of 𝑛-PGJFAs. Thus, for all 𝑛 ≥ 1, 𝑛-PGJFA ⊆ CS.
From Lemma 3.4.3, for all 𝑛 ≥ 1, CS − 𝑛-PGJFA ̸= ∅.

3.5 Right 𝑛-Jumping Relation
This section gives a detailed characterization of the language families accepted by 𝑛-PGJFAs
with right 𝑛-jumps. First, we prove that 𝑛-PGJFAs with right 𝑛-jumps and 𝑛-PRLGs define
the same language families.

Lemma 3.5.1. For every 𝑛-PRLG 𝐺 = (𝑁1, . . . , 𝑁𝑛, 𝑇, 𝑆1, 𝑃), there is an 𝑛-PGJFA 𝑀 =
(𝑄,Σ, 𝑅, 𝑆2, 𝐹) using only right 𝑛-jumps such that 𝐿(𝑀,𝑛−𝑟) = 𝐿(𝐺).

Proof. Let 𝐺 = (𝑁1, . . . , 𝑁𝑛, 𝑇, 𝑆1, 𝑃) be an 𝑛-PRLG. Without loss of generality, assume
that 𝑓 ̸∈ (𝑁1 ∪ · · · ∪𝑁𝑛 ∪ 𝑇). Keep the same 𝑛 and define the 𝑛-PGJFA

𝑀 = ({𝑓} ∪𝑁1 ∪ · · · ∪𝑁𝑛, 𝑇,𝑅, 𝑆2, {𝑓}),

where 𝑅 and 𝑆2 are constructed in the following way:
(1) For each rule of the form 𝑆1 → 𝑋1 · · ·𝑋𝑛, 𝑋𝑖 ∈ 𝑁𝑖, 1 ≤ 𝑖 ≤ 𝑛, in 𝑃 ,

add the start state string 𝑋1 · · ·𝑋𝑛 to 𝑆2.
(2) For each rule of the form 𝑋 → 𝑎𝑌 , 𝑋,𝑌 ∈ 𝑁𝑖, for some 𝑖, 1 ≤ 𝑖 ≤ 𝑛, 𝑎 ∈ 𝑇 *, in 𝑃 ,

add the rule 𝑋𝑎 → 𝑌 to 𝑅.
(3) For each rule of the form 𝑋 → 𝑎, 𝑋 ∈ 𝑁𝑖, for some 𝑖, 1 ≤ 𝑖 ≤ 𝑛, 𝑎 ∈ 𝑇 *, in 𝑃 ,

add the rule 𝑋𝑎 → 𝑓 to 𝑅.
Observe that the constructed 𝑛-PGJFA 𝑀 with right 𝑛-jumps simulates the 𝑛-PRLG

𝐺 in such a way that its heads read symbols in the same fashion as the nonterminals of 𝐺
generate them.

Any sentence 𝑤 ∈ 𝐿(𝐺) can be divided into 𝑤 = 𝑢1 · · ·𝑢𝑛, where 𝑢𝑖 represents the part
of the sentence which can be generated from the nonterminal 𝑋𝑖 of a rule 𝑆1 → 𝑋1 · · ·𝑋𝑛,
𝑋𝑖 ∈ 𝑁𝑖, 1 ≤ 𝑖 ≤ 𝑛. In the same way, 𝑀 can start from an 𝑛-configuration 𝑋1𝑢1$ · · ·𝑋𝑛𝑢𝑛$,
where the heads with the states 𝑋𝑖 have to read 𝑢𝑖. Therefore the part (1), where we convert
the rules 𝑆1 → 𝑋1 · · ·𝑋𝑛 into the start state strings, and the selection of a start state string
thus covers the first derivation step of the grammar.

25

Any consecutive non-final derivation step of the grammar then rewrites all 𝑛 nonter-
minals in the sentential form with the rules of the form 𝑋 → 𝑎𝑌 , 𝑋,𝑌 ∈ 𝑁𝑖, for some 𝑖,
1 ≤ 𝑖 ≤ 𝑛, 𝑎 ∈ 𝑇 *. Therefore the part (2), where we convert the grammar rules 𝑋 → 𝑎𝑌
into the automaton rules 𝑋𝑎 → 𝑌 . The automaton 𝑀 always works with all its heads
simultaneously, and thus the equivalent effect of these steps should be obvious.

In the last derivation step of the grammar, every nonterminal is rewritten with a rule
of the form 𝑋 → 𝑎, 𝑋 ∈ 𝑁𝑖, for some 𝑖, 1 ≤ 𝑖 ≤ 𝑛, 𝑎 ∈ 𝑇 *. We can simulate the
same behavior in the automaton if we end up in a final state from which there are no
ongoing rules. Therefore the part (3), where we convert the grammar rules 𝑋 → 𝑎 into the
automaton rules 𝑋𝑎 → 𝑓 , where 𝑓 is the sole final state. All heads of the automaton must
also end up in this final state simultaneously, or the automaton will get stuck; there are no
ongoing rules from 𝑓 , and all heads must make a move during every step.

The automaton 𝑀 can also start from an 𝑛-configuration where the input is divided
into such parts that they cannot be generated from the nonterminals 𝑋𝑖 of the rules 𝑆1 →
𝑋1 · · ·𝑋𝑛, 𝑋𝑖 ∈ 𝑁𝑖, 1 ≤ 𝑖 ≤ 𝑛. However, such an attempt will eventually get the automaton
stuck because 𝑀 simulates only the derivation steps of the grammar.

Lemma 3.5.2. For every 𝑛-PGJFA 𝑀 = (𝑄,Σ, 𝑅, 𝑆2, 𝐹) using only right 𝑛-jumps, there
is an 𝑛-PRLG 𝐺 = (𝑁1, . . . , 𝑁𝑛, 𝑇, 𝑆1, 𝑃) such that 𝐿(𝐺) = 𝐿(𝑀,𝑛−𝑟).

Proof. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑆2, 𝐹) be an 𝑛-PGJFA with right 𝑛-jumps. Keep the same 𝑛 and
define the 𝑛-PRLG

𝐺 = (𝑁1, . . . , 𝑁𝑛,Σ, 𝑆1, 𝑃),

where 𝑁1, . . . , 𝑁𝑛, and 𝑃 are constructed in the following way:
(1) For each state 𝑝 ∈ 𝑄,

add the nonterminal 𝑝𝑖 to 𝑁𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.
(2) For each start state string 𝑝1 · · · 𝑝𝑛 ∈ 𝑆2, 𝑝𝑖 ∈ 𝑄, 1 ≤ 𝑖 ≤ 𝑛,

add the start rule 𝑆1 → 𝑝11 · · · 𝑝𝑛𝑛 to 𝑃 .
(3) For each rule 𝑝𝑦 → 𝑞 ∈ 𝑅, 𝑝, 𝑞 ∈ 𝑄, 𝑦 ∈ Σ*,

add the rule 𝑝𝑖 → 𝑦𝑞𝑖 to 𝑃 for all 1 ≤ 𝑖 ≤ 𝑛.
(4) For each state 𝑝 ∈ 𝐹 ,

add the rule 𝑝𝑖 → 𝜀 to 𝑃 for all 1 ≤ 𝑖 ≤ 𝑛.
Observe that the constructed 𝑛-PRLG 𝐺 simulates the 𝑛-PGJFA 𝑀 with right 𝑛-jumps

in such a way that its nonterminals generate terminals in the same fashion as the heads of
𝑀 read them.

The definition of 𝑛-PRLGs requires that 𝑁1, . . . , 𝑁𝑛 are mutually disjoint nonterminal
alphabets. However, the states of 𝑛-PGJFAs do not have such a restriction. Therefore, we
use a new index in all converted occurrences of states, this creates a separate item for each
nonterminal position. The index is represented by 𝑖 and is used in all conversion steps.

Any sentence 𝑤 ∈ 𝐿(𝑀,𝑛−𝑟) can be divided into 𝑤 = 𝑢1 · · ·𝑢𝑛, where 𝑢𝑖 represents
the part of the sentence which can be accepted by the head of 𝑀 with a start state 𝑝𝑖
from a start 𝑛-configuration 𝑝1𝑢1$ · · · 𝑝𝑛𝑢𝑛$, where 𝑝1 · · · 𝑝𝑛 ∈ 𝑆2, 1 ≤ 𝑖 ≤ 𝑛. In the
grammar, we can simulate the start 𝑛-configurations with the rules 𝑆1 → 𝑝11 · · · 𝑝𝑛𝑛 , where
the nonterminals 𝑝𝑖𝑖 must be able to generate 𝑢𝑖. Therefore the part (2), where we convert
the start state strings into the rules.

During every step of the automaton all heads simultaneously make a move. Likewise,
during every non-initial step of the grammar all non-terminals are simultaneously rewritten.
Therefore the part (3), where we convert the automaton rules 𝑝𝑦 → 𝑞 into the grammar
rules 𝑝𝑖 → 𝑦𝑞𝑖. The equivalent effect of these steps should be obvious.

26

The automaton can successfully end if all its heads are in the final states. We can
simulate this situation in the grammar if we rewrite every nonterminal to 𝜀. Therefore the
part (4), where we create new erasing rules for all final states. These rules can be used only
once during the last derivation step of the grammar; otherwise, the generation process of
the grammar will get stuck.

Theorem 3.5.3. 𝑟𝑛-PGJFA = 𝑛-PRLG.

Proof. 𝑛-PRLG ⊆ 𝑟𝑛-PGJFA follows from Lemma 3.5.1. 𝑟𝑛-PGJFA ⊆ 𝑛-PRLG follows
from Lemma 3.5.2.

With Theorem 3.5.3 we can easily derive the following additional characterization of
the language families accepted by 𝑛-PGJFAs using only right 𝑛-jumps.

Theorem 3.5.4. For all 𝑛 ≥ 1, 𝑟𝑛-PGJFA ⊂ 𝑟(𝑛+1)-PGJFA.

Proof. This theorem directly follows from 𝑛-PRLG ⊂ (𝑛+1)-PRLG (see [75]).

Theorem 3.5.5. For all 𝑛 ≥ 1, 𝑟𝑛-PGJFA is closed under union, finite substitution,
homomorphism, reflection, and intersection with a regular set.

Proof. This theorem directly follows from the same results for 𝑛-PRLG (see [75]).

Theorem 3.5.6. For all 𝑛 ≥ 2, 𝑟𝑛-PGJFA is not closed under intersection or comple-
ment.

Proof. This theorem directly follows from the same results for 𝑛-PRLG (see [75]).

Theorem 3.5.7. 𝑟1-PGJFA = 𝑟GJFA = REG.

Proof. This theorem directly follows from 1-PRLG = REG (see [75]) and from 𝑟GJFA
= REG (see [57]).

Theorem 3.5.8. 𝑟2-PGJFA ⊂ CF.

Proof. This theorem directly follows from 2-PRLG ⊂ CF (see [75]).

Theorem 3.5.9. 𝑟𝑛-PGJFA ⊂ CS and there exist non-context-free languages in 𝑟𝑛-
PGJFA for all 𝑛 ≥ 3.

Proof. This theorem directly follows from the same results for 𝑛-PRLG (see [75]).

3.6 Concluding Remarks
The presented results show that the concept of the parallel jumping has a positive effect
on the model of jumping finite automata. The most significant part of these results is
the fact that every additional head always increases the power of these automata, and
this is true for both the unrestricted and right 𝑛-jumping relation. Therefore, this creates
two infinite hierarchies of language families. Next, due to the very simple conversions and
similar concepts, we can see 𝑛-parallel general jumping finite automata using only right 𝑛-
jumps as a direct counterpart to 𝑛-parallel right-linear grammars. There are already other
automata with the same power as 𝑛-parallel right-linear grammars (e.g., self-regulating
finite automata, see [52]), however, they use considerably different mechanisms and the

27

conversions between models are not straightforward; therefore, they would hardly qualify
as a direct counterpart. Furthermore, with a little bit of tweaking, we could easily adjust
our model so that it coincides with other well-known grammars that synchronously rewrite
several nonterminals at once, e.g., right-linear simple matrix grammars (see [25]). On the
other hand, considering 𝑛-parallel general jumping finite automata with unrestricted 𝑛-
jumps, due to their unconventional behavior we were not able to find a fitting counterpart
for them in grammars. It is possible that no such a counterpart exists and it would need
to be introduced; as it was with general jumping finite automata and their counterpart in
the form of jumping grammars (see [31]).

Finally, we propose some suggestions for further investigation.

(I) In this chapter, we have considered only the situation where all heads keep their own
state and always work synchronously together. Investigate other options, where, e.g.,
all heads follow a single state, not all heads have to make a move during the 𝑛-jump,
or only one head can make a move during the 𝑛-jump.

(II) Consider other grammars that rewrite several nonterminals at once for which there
is no direct counterpart in the form of an automaton model. Can we use the concept
of the parallel jumping to introduce such a model?

(III) Study closure and decidability properties for 𝑛-parallel general jumping finite au-
tomata with unrestricted 𝑛-jumps.

28

May I see your silly walk?
—Monty Python’s Flying Circus

Chapter 4

Double-Jumping Finite Automata

This chapter studies the advanced possibilities of the two-head jumping finite automaton
model under various reading modes. The content of this chapter is composed of results
that were published at the conference NCMA 2016 (see [33]) and in the journal RAIRO
(see [34]); all written jointly with Zbyněk Křivka and Alexander Meduna.

In terms of preliminaries, the reader should be familiar with the definitions of general
notions (see Section 2.1), grammars and endmarking (see Sections 2.2.1, 2.2.2, 2.2.3), lazy
finite automata (see Section 2.5.2), and jumping finite automata (see Section 2.6).

4.1 Introduction
At present, jumping versions of formal models, such as grammars and automata, represent
a vivid investigation area in formal language theory. The current chapter continues with
this investigation in terms of jumping finite automata.

Consider the notion of a jumping finite automaton 𝑀 as sketched in Section 1.2. This
chapter modifies the way 𝑀 works so it simultaneously performs two jumps according to the
same rule. For either of the two jumps, it always considers three natural directions—(1) to
the left, (2) to the right, and (3) in either direction.

In correspondence to this jumping-direction three-part classification, this chapter in-
vestigates the mutual relation between the language families resulting from jumping finite
automata working in these ways and the families of regular, linear, context-free, and context-
sensitive languages. In essence, it demonstrates that most of these language families are
pairwise incomparable—that is, they are not subfamilies of each other and, simultaneously,
they are not disjoint either.

In addition, this chapter also establishes several closure and non-closure properties con-
cerning the language families defined by these jumping finite automata.

4.2 Definitions
Considering the definition of jumping finite automata from Section 2.6, we define a new
mode for general jumping finite automata that performs two single jumps simultaneously.
In this mode, both single jumps follow the same rule, however, they are performed on two
different positions on the tape and thus handle different parts of the input string. Moreover,
these two jumps cannot ever cross each other—their initial mutual order is preserved during
the whole process. As a result, when needed, we can specifically denote them as the first

29

jump and the second jump. Furthermore, this chapter considers three possible types of
single jumps that can be used in this new double-jumping mode. Besides the unrestricted
single jump �y from the original definition, we also define and use two restricted single
jumps with limited movement. The definition of the restricted single jumps is modified
from the original definition in order to get a more consistent behavior. The restricted single
jumps now read strings from the configuration of an automaton on the specific side of their
state depending on the actual direction of their jumping. (For example, if an automaton
jumps to the left, it reads a string on the left of the current state.)

Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹) be a GJFA. Let 𝑤, 𝑥, 𝑦, 𝑧 ∈ Σ* and ℎ : (𝑝, 𝑦, 𝑞) ∈ 𝑅; then,
𝑤𝑝𝑦𝑥𝑧 Iy 𝑤𝑥𝑞𝑧 [ℎ] and 𝑤𝑥𝑦𝑝𝑧 Jy 𝑤𝑞𝑥𝑧 [ℎ] in 𝑀 .

We combine two single jumps into the unrestricted and four types of restricted 2-jumping
relations. The restricted relations are the main subject of this chapter, and we show in
the next sections that these restrictions severely and uniquely impact the behavior of the
automaton and thus also the families of accepted languages and their closure properties.

Let 𝑋 denote the set of all configurations of 𝑀 . A 2-configuration of 𝑀 is any string in
𝑋𝑋. Let 𝑋2 denote the set of all 2-configurations of 𝑀 . For brevity, let 𝑡1𝑡2 ∈ {��,II,
IJ,JI,JJ} such that 𝑡1, 𝑡2 ∈ {�,I,J}. The binary 𝑡1𝑡2 2-jumping relation, symbolically
denoted by 𝑡1𝑡2 y, over 𝑋2, is defined as follows. Let 𝜁1𝜁2, 𝜗1𝜗2 ∈ 𝑋2, where 𝜁1, 𝜁2, 𝜗1, 𝜗2 ∈
𝑋, and ℎ ∈ 𝑅; then, 𝑀 makes a 𝑡1𝑡2 2-jump from 𝜁1𝜁2 to 𝜗1𝜗2 according to ℎ, symbolically
written as

𝜁1𝜁2 𝑡1𝑡2 y 𝜗1𝜗2 [ℎ]

if and only if 𝜁1 𝑡1 y 𝜗1 [ℎ] and 𝜁2 𝑡2 y 𝜗2 [ℎ]. Depending on the specific type of jumps
��, II, IJ, JI, JJ, we use the following naming: unrestricted, right-right, right-left,
left-right, left-left 2-jumping relation (or 2-jump), respectively.

Let 𝑜 be any of the jumping direct relations introduced above. In the standard way, we
extend 𝑜 to 𝑜𝑚, 𝑚 ≥ 0; 𝑜+; and 𝑜*. To express that 𝑀 only performs jumps according to
𝑜, write 𝑀𝑜. If 𝑜 is one of the relations �y, Iy, Jy, set

𝐿(𝑀𝑜) = {𝑢𝑣 : 𝑢, 𝑣 ∈ Σ*, 𝑢𝑠𝑣 𝑜* 𝑓, 𝑓 ∈ 𝐹}.

If 𝑜 is one of the relations ��y, IIy, IJy, JIy, JJy, set

𝐿(𝑀𝑜) = {𝑢𝑣𝑤 : 𝑢, 𝑣, 𝑤 ∈ Σ*, 𝑢𝑠𝑣𝑠𝑤 𝑜* 𝑓𝑓, 𝑓 ∈ 𝐹}.

𝐿(𝑀𝑜) is referred to as the language of 𝑀𝑜. Set L𝑜 = {𝐿(𝑀𝑜) : 𝑀 is a GJFA}; L𝑜 is
referred to as the language family accepted by GJFAs according to 𝑜.

To illustrate this terminology, take 𝑜 = ��y. Consider 𝑀��y. Notice that

𝐿(𝑀��y) = {𝑢𝑣𝑤 : 𝑢, 𝑣, 𝑤 ∈ Σ*, 𝑢𝑠𝑣𝑠𝑤 ��y* 𝑓𝑓, 𝑓 ∈ 𝐹}.

𝐿(𝑀��y) is referred to as the language of 𝑀��y. Set L��y = {𝐿(𝑀��y) : 𝑀 is a GJFA};
L��y is referred to as the language family accepted by GJFAs according to ��y.

Furthermore, set L2 = L��y ∪ LIIy ∪ LIJy ∪ LJIy ∪ LJJy.

Lastly, we define an auxiliary subfamily of the family of regular languages that will be
useful to the study of the accepting power of GJFAs that perform right-left and left-right
2-jumps. In Section 4.3.2, it helps us to describe the regular portions of the appropriate
language families.

30

Definition 4.2.1. Let 𝐿𝑚,𝑛 be a simply-expandable language (SEL) over an alphabet Σ if
it can be written as follows. Let 𝑚 and 𝑛 be positive integers; then,

𝐿𝑚,𝑛 =
𝑚⋃︁

ℎ=1

{︀
𝑢ℎ,1𝑢ℎ,2 · · ·𝑢ℎ,𝑛𝑣𝑖ℎ𝑣𝑖ℎ𝑢ℎ,𝑛 · · ·𝑢ℎ,2𝑢ℎ,1 : 𝑖 ≥ 0, 𝑢ℎ,𝑘, 𝑣ℎ ∈ Σ*, 1 ≤ 𝑘 ≤ 𝑛

}︀
.

Let SEL denote the family of SELs. For the sake of clarity, let us note that, in the
previous definition, 𝑣ℎ and all 𝑢ℎ,𝑘 are fixed strings that only vary for different values of ℎ.

4.3 General Results
This section studies the accepting power of GJFAs making their computational steps by
unrestricted, right-left, left-right, right-right, and left-left 2-jumps.

4.3.1 Unrestricted 2-Jumping Relation

Example 4.3.1. Consider the GJFA

𝑀��y = ({𝑠, 𝑓},Σ, 𝑅, 𝑠, {𝑓}),

where Σ = {𝑎, 𝑏, 𝑐} and 𝑅 consists of the rules (𝑠, 𝑎𝑏, 𝑓) and (𝑓, 𝑐, 𝑓). Starting from 𝑠, 𝑀
has to read two times some 𝑎𝑏, entering the final state 𝑓 ; then, 𝑀 can arbitrarily many
times read two times some 𝑐. Consequently, if we work with the unrestricted 2-jumps, the
input must always contain two separate strings 𝑎𝑏, and the symbols 𝑐 can be anywhere
around these two strings. Therefore, the accepted language is

𝐿(𝑀��y) = {𝑐𝑘𝑎𝑏𝑐𝑚𝑎𝑏𝑐𝑛 : 𝑘 + 𝑚 + 𝑛 is an even integer, 𝑘,𝑚, 𝑛 ≥ 0}.

Lemma 4.3.2. For every language 𝐿 ∈ L2, there is no 𝑥 ∈ 𝐿 such that |𝑥| is an odd
number; furthermore, there is no symbol 𝑎 for which |𝑥|𝑎 is an odd number.

Proof. By the definition of 2-jumps, any GJFA that uses 2-jumps always performs two
single jumps simultaneously, and they both follow the same rule, therefore, there is no way
how to read an odd number of symbols from the input string.

Lemma 4.3.3. There is no GJFA 𝑀�y that accepts {𝑐𝑘𝑎𝑏𝑐𝑚𝑎𝑏𝑐𝑛 : 𝑘 + 𝑚 + 𝑛 is an even
integer, 𝑘,𝑚, 𝑛 ≥ 0}.

Proof. We follow Lemma 19 from [57] which effectively shows that a GJFA 𝑀�y can main-
tain a specific order of symbols only in the sole context of a rule. By contradiction. Let
𝐾 = {𝑐𝑘𝑎𝑏𝑐𝑚𝑎𝑏𝑐𝑛 : 𝑘 + 𝑚 + 𝑛 is an even integer, 𝑘,𝑚, 𝑛 ≥ 0}. Assume that there is a
GJFA 𝑀�y such that 𝐿(𝑀�y) = 𝐾. If 𝑀 uses two times a rule reading 𝑎𝑏, then it can
also accept input 𝑎𝑎𝑏𝑏; and clearly 𝑎𝑎𝑏𝑏 ̸∈ 𝐾. Consequently, 𝑀 has to always read the
whole sequence 𝑎𝑏𝑐𝑚𝑎𝑏 with a single rule; however, the number 𝑚 is unbounded, and thus
there cannot be finitely many rules that cover all possibilities—a contradiction with the
assumption that 𝐿(𝑀�y) = 𝐾 exists. Therefore, there is no GJFA 𝑀�y that accepts
{𝑐𝑘𝑎𝑏𝑐𝑚𝑎𝑏𝑐𝑛 : 𝑘 + 𝑚 + 𝑛 is an even integer, 𝑘,𝑚, 𝑛 ≥ 0}.

Theorem 4.3.4. L�y and L��y are incomparable.

Proof. L�y ̸⊆ L��y follows from FIN ⊂ L�y (see Theorem 18 in [57]) and Lemma 4.3.2.
L��y ̸⊆ L�y follows from Example 4.3.1 and Lemma 4.3.3. Moreover, both L�y and
L��y clearly contain the simple finite language {𝑎𝑎}.

31

4.3.2 Right-Left 2-Jumping Relation

Claim 4.3.5. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹) be a GJFA; then, every 𝑥 ∈ 𝐿(𝑀IJy) can be written
as 𝑥 = 𝑢1𝑢2 · · ·𝑢𝑛𝑢𝑛 · · ·𝑢2𝑢1, where 𝑛 ≥ 1, and 𝑢𝑖 ∈ Σ*, 1 ≤ 𝑖 ≤ 𝑛.

Proof. Consider any GJFA 𝑀IJy = (𝑄,Σ, 𝑅, 𝑠, 𝐹). Since we work with the right-left 2-
jumps, the first jump can move only to the right, the second jump can move only to the
left, and both jumps cannot cross each other. Observe that if the configuration of 𝑀 is of
the form 𝑢𝑝𝑣𝑝𝑤, where 𝑢, 𝑣, 𝑤 ∈ Σ*, and 𝑝 ∈ 𝑄, then 𝑀 cannot read the symbols in 𝑢 and
𝑤 anymore. Also, observe that this covers the situation when 𝑀 starts to accept 𝑥 ∈ Σ*

from any other configuration than 𝑠𝑥𝑠. Therefore, to read the whole input string, 𝑀 has
to start in the configuration 𝑠𝑥𝑠, and it cannot jump over any symbols during the whole
process. Consequently, since both jumps always follow the same rule, they have to read the
same corresponding strings and, at the end of the process, meet in the middle of the input
string. Therefore, every 𝑥 ∈ 𝐿(𝑀IJy) can be surely written as 𝑥 = 𝑢1𝑢2 · · ·𝑢𝑛𝑢𝑛 · · ·𝑢2𝑢1,
where 𝑛 ≥ 1, and 𝑢𝑖 ∈ Σ*, 1 ≤ 𝑖 ≤ 𝑛.

Lemma 4.3.6. For every GJFA 𝑀 , there is a linear grammar 𝐺 such that 𝐿(𝑀IJy) =
𝐿(𝐺).

Proof. Consider any GJFA 𝑀IJy = (𝑄,Σ, 𝑅, 𝑠, 𝐹). Define the linear grammar 𝐺 =
(𝑄,Σ, 𝑃, 𝑠), where 𝑃 is constructed in the following way:
(1) For each (𝑝, 𝑦, 𝑞) ∈ 𝑅, add 𝑝 → 𝑦𝑞𝑦 to 𝑃 .
(2) For each 𝑝 ∈ 𝐹 , add 𝑝 → 𝜀 to 𝑃 .

We follow Claim 4.3.5 and its proof. Let 𝑝, 𝑞 ∈ 𝑄, 𝑓 ∈ 𝐹 , and 𝑦, 𝑢, 𝑣, 𝑤 ∈ Σ*. Observe
that every time 𝑀 can make a 2-jump 𝑝𝑦𝑤𝑦𝑝 IJy 𝑞𝑤𝑞 according to (𝑝, 𝑦, 𝑞) ∈ 𝑃 , 𝐺 can
also make the derivation step 𝑢𝑝𝑣 ⇒ 𝑢𝑦𝑞𝑦𝑣 according to 𝑝 → 𝑦𝑞𝑦 ∈ 𝑃 . Moreover, every
time 𝑀 is in a final state 𝑓 , 𝐺 can finish the string with 𝑓 → 𝜀 ∈ 𝑃 . Finally, observe that
𝐺 cannot do any other action, therefore, 𝐿(𝑀IJy) = 𝐿(𝐺).

Theorem 4.3.7. LIJy ⊂ LINeven.

Proof. LIJy ⊆ LINeven follows from Lemma 4.3.6 and the structure of its proof. LINeven
̸⊆ LIJy follows from Lemma 4.3.2.

Claim 4.3.8. There is a GJFA 𝑀 such that 𝐿(𝑀IJy) = {𝑤 ∈ Σ* : 𝑤 is an even palin-
drome}.

Proof. Consider an arbitrary alphabet Σ. Define the GJFA 𝑀IJy = ({𝑓},Σ, 𝑅, 𝑓, {𝑓})
where 𝑅 = {(𝑓, 𝑎, 𝑓) : 𝑎 ∈ Σ}. We follow Claim 4.3.5 and its proof, which shows that every
𝑥 ∈ 𝐿(𝑀IJy) can be written as 𝑥 = 𝑢1𝑢2 · · ·𝑢𝑛𝑢𝑛 · · ·𝑢2𝑢1, where 𝑛 ≥ 1, and 𝑢𝑖 ∈ Σ*,
1 ≤ 𝑖 ≤ 𝑛. Observe that we use only rules reading single symbols; thus we can even
say that 𝑢𝑖 ∈ (Σ ∪ {𝜀}), 1 ≤ 𝑖 ≤ 𝑛, which, in fact, models the string pattern of even
palindromes. Moreover, we use only one sole state that can accept all symbols from Σ,
therefore, 𝐿(𝑀IJy) = {𝑤 ∈ Σ* : 𝑤 is an even palindrome}.

Lemma 4.3.9. For every SEL 𝐾𝑚,𝑛, there is a GJFA 𝑀 such that 𝐾𝑚,𝑛 = 𝐿(𝑀IJy).

Proof. Let 𝑚 and 𝑛 be positive integers. Consider any SEL over an alphabet Σ,

𝐾𝑚,𝑛 =
𝑚⋃︁

ℎ=1

{︀
𝑢ℎ,1𝑢ℎ,2 · · ·𝑢ℎ,𝑛𝑣𝑖ℎ𝑣𝑖ℎ𝑢ℎ,𝑛 · · ·𝑢ℎ,2𝑢ℎ,1 : 𝑖 ≥ 0, 𝑢ℎ,𝑘, 𝑣ℎ ∈ Σ*, 1 ≤ 𝑘 ≤ 𝑛

}︀
.

32

Define the GJFA 𝑀IJy = (𝑄,Σ, 𝑅, ⟨𝑠⟩, 𝐹), where 𝑄, 𝑅, and 𝐹 are constructed in the
following way:
(1) Add ⟨𝑠⟩ to 𝑄.
(2) Add ⟨ℎ, 𝑘⟩ to 𝑄, for all 1 ≤ ℎ ≤ 𝑚, 1 ≤ 𝑘 ≤ 𝑛 + 1.
(3) Add ⟨ℎ, 𝑛 + 1⟩ to 𝐹 , for all 1 ≤ ℎ ≤ 𝑚.
(4) Add (⟨𝑠⟩, 𝜀, ⟨ℎ, 1⟩) to 𝑅, for all 1 ≤ ℎ ≤ 𝑚.
(5) Add (⟨ℎ, 𝑘⟩, 𝑢ℎ,𝑘, ⟨ℎ, 𝑘 + 1⟩) to 𝑅, for all 1 ≤ ℎ ≤ 𝑚, 1 ≤ 𝑘 ≤ 𝑛.
(6) Add (⟨ℎ, 𝑛 + 1⟩, 𝑣ℎ, ⟨ℎ, 𝑛 + 1⟩) to 𝑅, for all 1 ≤ ℎ ≤ 𝑚.

We follow Claim 4.3.5 and its proof. Observe that 𝑀 starts from ⟨𝑠⟩ by jumping to
an arbitrary state ⟨ℎ, 1⟩, where 1 ≤ ℎ ≤ 𝑚. Then, the first jump consecutively reads
𝑢ℎ,1𝑢ℎ,2 · · ·𝑢ℎ,𝑛, and the second jump consecutively reads 𝑢ℎ,𝑛 · · ·𝑢ℎ,2𝑢ℎ,1, until 𝑀 ends up
in the final state ⟨ℎ, 𝑛 + 1⟩. Here, both jumps can arbitrarily many times read 𝑣ℎ. As
a result, 𝑀 accepts 𝑢ℎ,1𝑢ℎ,2 · · ·𝑢ℎ,𝑛𝑣𝑖ℎ𝑣𝑖ℎ𝑢ℎ,𝑛 · · ·𝑢ℎ,2𝑢ℎ,1, for all 1 ≤ ℎ ≤ 𝑚, where 𝑖 ≥ 0,
𝑢ℎ,𝑘, 𝑣ℎ ∈ Σ*, 1 ≤ 𝑘 ≤ 𝑛; therefore, 𝐾𝑚,𝑛 = 𝐿(𝑀IJy).

Lemma 4.3.10. For every SEL 𝐾𝑚,𝑛, there is a right-linear grammar 𝐺 such that 𝐾𝑚,𝑛 =
𝐿(𝐺).

Proof. Let 𝑚 and 𝑛 be positive integers. Consider any SEL over an alphabet Σ,

𝐾𝑚,𝑛 =
𝑚⋃︁

ℎ=1

{︀
𝑢ℎ,1𝑢ℎ,2 · · ·𝑢ℎ,𝑛𝑣𝑖ℎ𝑣𝑖ℎ𝑢ℎ,𝑛 · · ·𝑢ℎ,2𝑢ℎ,1 : 𝑖 ≥ 0, 𝑢ℎ,𝑘, 𝑣ℎ ∈ Σ*, 1 ≤ 𝑘 ≤ 𝑛

}︀
.

Define the right-linear grammar 𝐺 = (𝑁,Σ, 𝑃, ⟨𝑠⟩), where 𝑁 and 𝑃 are constructed in the
following way:
(1) Add ⟨𝑠⟩ to 𝑁 .
(2) Add ⟨ℎ, 1⟩ and ⟨ℎ, 2⟩ to 𝑁 , for all 1 ≤ ℎ ≤ 𝑚.
(3) Add ⟨𝑠⟩ → ⟨ℎ, 1⟩ to 𝑃 , for all 1 ≤ ℎ ≤ 𝑚.
(4) Add ⟨ℎ, 1⟩ → 𝑢ℎ,1𝑢ℎ,2 · · ·𝑢ℎ,𝑛⟨ℎ, 2⟩ to 𝑃 , for all 1 ≤ ℎ ≤ 𝑚.
(5) Add ⟨ℎ, 2⟩ → 𝑣𝑛𝑣𝑛⟨ℎ, 2⟩ to 𝑃 , for all 1 ≤ ℎ ≤ 𝑚.
(6) Add ⟨ℎ, 2⟩ → 𝑢ℎ,𝑛 · · ·𝑢ℎ,2𝑢ℎ,1 to 𝑃 , for all 1 ≤ ℎ ≤ 𝑚.

Observe that, at the beginning, 𝐺 has to change the nonterminal ⟨𝑠⟩ to an arbitrary non-
terminal ⟨ℎ, 1⟩, where 1 ≤ ℎ ≤ 𝑚. Then, it generates 𝑢ℎ,1𝑢ℎ,2 · · ·𝑢ℎ,𝑛 and the nonterminal
⟨ℎ, 2⟩. Here, it can arbitrarily many times generate 𝑣𝑛𝑣𝑛 and ultimately finish the genera-
tion with 𝑢ℎ,𝑛 · · ·𝑢ℎ,2𝑢ℎ,1. As a result, 𝐺 generates 𝑢ℎ,1𝑢ℎ,2 · · ·𝑢ℎ,𝑛(𝑣ℎ𝑣ℎ)𝑖𝑢ℎ,𝑛 · · ·𝑢ℎ,2𝑢ℎ,1,
for all 1 ≤ ℎ ≤ 𝑚, where 𝑖 ≥ 0, 𝑢ℎ,𝑘, 𝑣ℎ ∈ Σ*, 1 ≤ 𝑘 ≤ 𝑛, which is indistinguishable from
𝑢ℎ,1𝑢ℎ,2 · · ·𝑢ℎ,𝑛𝑣𝑖ℎ𝑣𝑖ℎ𝑢ℎ,𝑛 · · ·𝑢ℎ,2𝑢ℎ,1; therefore, 𝐾𝑚,𝑛 = 𝐿(𝐺).

Theorem 4.3.11. SEL ⊂ REGeven.

Proof. SEL ⊆ REGeven follows from Lemma 4.3.10 and the structure of its proof. REGeven
̸⊆ SEL follows from Lemma 4.3.9 and Lemma 4.3.2.

Theorem 4.3.12. SEL ⊂ LIJy.

Proof. SEL ⊆ LIJy follows from Lemma 4.3.9. LIJy ̸⊆ SEL follows from Theorem 4.3.11
and Claim 4.3.8 because a subfamily of the family of regular languages surely cannot contain
a non-trivial language of all even palindromes.

33

Theorem 4.3.13. The following pairs of language families are incomparable:
(i) LIJy and REG (REGeven);

(ii) LIJy and FIN (FINeven).

Proof. LIJy ̸⊆ REG (REGeven) and LIJy ̸⊆ FIN (FINeven) follow from Claim 4.3.8,
Theorem 4.3.11, and Theorem 4.3.12 (and Lemma 4.3.2). REG (REGeven) ̸⊆ LIJy and
FIN (FINeven) ̸⊆ LIJy follow from Lemma 4.3.2. Moreover, LIJy clearly contains the
regular language {𝑎2𝑛 : 𝑛 ≥ 0} and finite language {𝑎𝑎}.

Open Problem 4.3.14. (LIJy − SEL) ∩ REG = ∅?

4.3.3 Left-Right 2-Jumping Relation

Claim 4.3.15. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹) be a GJFA; then, every 𝑥 ∈ 𝐿(𝑀JIy) can be
written as 𝑥 = 𝑢𝑛 · · ·𝑢2𝑢1𝑢1𝑢2 · · ·𝑢𝑛, where 𝑛 ≥ 1, and 𝑢𝑖 ∈ Σ*, 1 ≤ 𝑖 ≤ 𝑛.

Proof. Consider any GJFA 𝑀JIy = (𝑄,Σ, 𝑅, 𝑠, 𝐹). Since we work with the left-right 2-
jumps, the first jump can move only to the left, and the second jump can move only to
the right. Observe that if the configuration of 𝑀 is of the form 𝑢𝑝𝑣𝑝𝑤, where 𝑢, 𝑣, 𝑤 ∈ Σ*,
and 𝑝 ∈ 𝑄, then 𝑀 cannot read the symbols in 𝑣 anymore. Also, observe that this covers
the situation when 𝑀 starts to accept 𝑥 ∈ Σ* from any other configuration than 𝑦𝑠𝑠𝑧,
where 𝑦, 𝑧 ∈ Σ* such that 𝑥 = 𝑦𝑧. Therefore, to read the whole input string, 𝑀 has to
start in the configuration 𝑦𝑠𝑠𝑧, and it cannot jump over any symbols during the whole
process. Consequently, since both jumps follow the same rule, they have to read the same
corresponding strings and ultimately finish at the ends of the input string. Therefore, every
𝑥 ∈ 𝐿(𝑀JIy) can be written as 𝑥 = 𝑢𝑛 · · ·𝑢2𝑢1𝑢1𝑢2 · · ·𝑢𝑛, where 𝑛 ≥ 1, and 𝑢𝑖 ∈ Σ*,
1 ≤ 𝑖 ≤ 𝑛.

Lemma 4.3.16. For every GJFA 𝑀 , there is a GJFA 𝑁 such that 𝐿(𝑀JIy) = 𝐿(𝑁IJy).

Proof. Consider any 𝐺𝐽𝐹𝐴 𝑀JIy = (𝑄,Σ, 𝑅1, 𝑠1, 𝐹). Without loss of generality, assume
that 𝑠2 ̸∈ 𝑄. Define the GJFA 𝑁IJy = (𝑄∪ {𝑠2},Σ, 𝑅2, 𝑠2, {𝑠1}), where 𝑅2 is constructed
in the following way:
(1) For each (𝑝, 𝑦, 𝑞) ∈ 𝑅1, add (𝑞, 𝑦, 𝑝) to 𝑅2.
(2) For each 𝑓 ∈ 𝐹 , add (𝑠2, 𝜀, 𝑓) to 𝑅2.

Note that this construction resembles the well-known conversion technique for finite
automata which creates a finite automaton that accepts the reversal of the original language.
However, in this case, the effect is quite different. We follow Claims 4.3.5 and 4.3.15.
Consider any 𝑥 ∈ 𝐿(𝑀JIy). We can surely find 𝑥 = 𝑢𝑛 · · ·𝑢2𝑢1𝑢1𝑢2 · · ·𝑢𝑛, where 𝑛 ≥ 1,
and 𝑢𝑖 ∈ Σ*, 1 ≤ 𝑖 ≤ 𝑛, such that 𝑁 reads 𝑢𝑛 · · ·𝑢2𝑢1 and 𝑢1𝑢2 · · ·𝑢𝑛 in the reverse order.
Moreover, in 𝑁 , both jumps have their direction reversed, compared to jumps in 𝑀 , and
thus they start on the opposite ends of their parts, which is demonstrated in the mentioned
claims. Consequently, if each jump in 𝑁 reads its part reversely and from the opposite
end, then 𝑁 reads the same 𝑢𝑛 · · ·𝑢2𝑢1𝑢1𝑢2 · · ·𝑢𝑛 as 𝑀 . Finally, 𝑁 surely cannot accept
anything new that is not accepted by 𝑀 . Thus, 𝐿(𝑀JIy) = 𝐿(𝑁IJy).

Lemma 4.3.17. For every GJFA 𝑀 , there is a GJFA 𝑁 such that 𝐿(𝑀IJy) = 𝐿(𝑁JIy).

Proof. The construction and reasoning is exactly the same as in Lemma 4.3.16.

34

Theorem 4.3.18. LJIy = LIJy.

Proof. LJIy ⊆ LIJy follows from Lemma 4.3.16. LIJy ⊆ LJIy follows from Lemma
4.3.17.

Other properties of this language family thus coincide with Section 4.3.2.
The results concerning the accepting power of GJFAs that perform right-left and left-

right 2-jumps are summarized in Figure 4.1.

LINeven

REGeven LIJy LJIy

FINeven SEL

Figure 4.1: A hierarchy of language families closely related to the right-left and left-right
2-jumps is shown. If there is a line or an arrow from family 𝑋 to family 𝑌 in the figure,
then 𝑋 = 𝑌 or 𝑋 ⊂ 𝑌 , respectively. A crossed line represents the incomparability between
connected families.

4.3.4 Right-Right 2-Jumping Relation

Example 4.3.19. Consider the GJFA

𝑀IIy = ({𝑠, 𝑝, 𝑓},Σ, 𝑅, 𝑠, {𝑓}),

where Σ = {𝑎, 𝑏, 𝑐} and 𝑅 consists of the rules (𝑠, 𝑎𝑏, 𝑝) and (𝑝, 𝑐, 𝑓). Starting from 𝑠, 𝑀
has to read two times 𝑎𝑏 and two times 𝑐. Observe that if the first jump skips (jumps over)
some symbols, then they cannot be ever read afterwards. However, the second jump is not
so harshly restricted and can potentially skip some symbols which will be read later by the
first jump. Therefore, the accepted language is

𝐿(𝑀IIy) = {𝑎𝑏𝑎𝑏𝑐𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐}.

Example 4.3.20. Consider the GJFA

𝑀IIy = ({𝑠, 𝑓},Σ, 𝑅, 𝑠, {𝑓}),

where Σ = {𝑎, 𝑏} and 𝑅 consists of the rules (𝑠, 𝑏, 𝑓) and (𝑓, 𝑎, 𝑓). Starting from 𝑠, 𝑀 has
to read two times 𝑏, and then it can arbitrarily many times read two times 𝑎. Both jumps
behave the same way as in Example 4.3.19. Observe that when we consider no skipping of
symbols, then 𝑀 reads 𝑏𝑎𝑛𝑏𝑎𝑛, 𝑛 ≥ 0. Nevertheless, when we consider the skipping with

35

the second jump, then the second 𝑏 can also occur arbitrarily closer to the first 𝑏; until they
are neighbors, and 𝑀 reads 𝑏𝑏𝑎2𝑛, 𝑛 ≥ 0. When combined together, the result is

𝐿(𝑀IIy) = {𝑏𝑎𝑛𝑏𝑎𝑛𝑎2𝑚 : 𝑛,𝑚 ≥ 0}.

Observe that this is clearly a non-regular context-free language.

Example 4.3.21. Consider the GJFA

𝑀IIy = ({𝑠, 𝑓},Σ, 𝑅, 𝑠, {𝑓}),

where Σ = {𝑎, 𝑏, 𝑐, 𝑑} and 𝑅 = {(𝑠, 𝑦, 𝑓) : 𝑦 ∈ Σ} ∪ {(𝑓, 𝑦, 𝑓) : 𝑦 ∈ Σ}. Starting from 𝑠, 𝑀
has to read two times some symbol from Σ, and then it can arbitrarily many times read two
times any symbols from Σ. Again, both jumps behave the same way as in Example 4.3.19.
Consider the special case when the second jump consistently jumps over one symbol each
time (except the last step) during the whole process. In such a case, the accepted strings
can be written as 𝑢1𝑢

′
1𝑢2𝑢

′
2 · · ·𝑢𝑛𝑢′𝑛, where 𝑛 ≥ 1, 𝑢𝑖, 𝑢′𝑖 ∈ Σ, 𝑢𝑖 = 𝑢′𝑖, 1 ≤ 𝑖 ≤ 𝑛. Observe

that the symbols without primes are read by the first jump, and the symbols with primes
are read by the second jump. Moreover, such strings can be surely generated by a right-
linear grammar. Nevertheless, now consider no special case. Observe that, in the accepted
strings, the symbols with primes can be arbitrarily shifted to the right over symbols without
primes. This creates a more complex structure, due to 𝑢𝑖 = 𝑢′𝑖, with multiple crossed
agreements. Lastly, consider the other border case with no skipping of any symbols at all.
Then, the accepted strings can be written as 𝑤𝑤, where 𝑤 ∈ Σ+. Such strings represent
the reduplication phenomenon—the well-known example of non-context-free languages (see
Chapter 3.1 in [78]). As a result, due to the unbound number of crossed agreements, we
can safely state that 𝐿(𝑀IIy) is a non-context-free language.

This statement can be formally proven by contradiction. Assume that 𝐿(𝑀IIy) is a
context-free language. The family of context-free languages is closed under intersection
with regular sets. Let 𝐾 = 𝐿(𝑀IIy) ∩ 𝑎𝑏+𝑐+𝑑𝑎𝑏+𝑐+𝑑. Consider the previous description.
Observe that this selects strings where 𝑢1 = 𝑎 and 𝑢′𝑛 = 𝑑. Since there are only exactly
two symbols 𝑎 and two symbols 𝑑 in each selected string, we know where precisely both
jumps start and end. And since the second jump starts after the position where the first
jump ends, we also know that this, in fact, follows the special border case of behavior
with no skipping of any symbols at all. Consequently, 𝐾 = {𝑎𝑏𝑛𝑐𝑚𝑑𝑎𝑏𝑛𝑐𝑚𝑑 : 𝑛,𝑚 ≥ 1}.
However, 𝐾 is clearly a non-context-free language (see Chapter 3.1 in [78])—a contradiction
with the assumption that 𝐿(𝑀IIy) is a context-free language. Therefore, 𝐿(𝑀IIy) is a
non-context-free language.

Theorem 4.3.22. LIIy ⊂ CSeven.

Proof. Clearly, any GJFA 𝑀IIy can be simulated by linear bounded automata; thus LIIy
⊆ CS. Due to Lemma 4.3.2, we can safely exclude all languages containing odd-length
strings. CSeven ̸⊆ LJJy also follows from Lemma 4.3.2.

Lemma 4.3.23. Let 𝑛 ≥ 0, and let 𝑀 be any GJFA. Furthermore, let every 𝑥 ∈ 𝐿(𝑀IIy)
satisfy either |𝑥| ≤ 𝑛 or alph(𝑥) = 1. Then, there exists a right-linear grammar 𝐺 such
that 𝐿(𝑀IIy) = 𝐿(𝐺).

Proof. Let 𝑛 ≥ 0. Consider any GJFA 𝑀IIy where every 𝑥 ∈ 𝐿(𝑀IIy) satisfies either
|𝑥| ≤ 𝑛 or alph(𝑥) = 1. Define the right-linear grammar 𝐺 in the following way: Observe

36

that the number of 𝑥 for which holds |𝑥| ≤ 𝑛 must be finite, therefore, for each such 𝑥, we
can create a separate rule that generates 𝑥 in 𝐺. On the other hand, the number of 𝑥 for
which holds alph(𝑥) = 1 can be infinite, however, every such 𝑥 is defined by a finite number
of rules in 𝑀 . And we can surely convert these rules (𝑝, 𝑦, 𝑞) from 𝑀 into rules in 𝐺 in
such a way that they generate 𝑦2 and simulate the state transitions of 𝑀 . Consequently,
since here the positions of symbols are ultimately irrelevant, these rules properly simulate
the results of 2-jumps in 𝑀 . Therefore, 𝐿(𝑀IIy) = 𝐿(𝐺).

Theorem 4.3.24. The following pairs of language families are incomparable:
(i) LIIy and CF (CFeven);

(ii) LIIy and REG (REGeven);
(iii) LIIy and FIN (FINeven).

Proof. LIIy ̸⊆ CF (CFeven), LIIy ̸⊆ REG (REGeven), and LIIy ̸⊆ FIN (FINeven)
follow from Example 4.3.21. CF (CFeven) ̸⊆ LIIy, REG (REGeven) ̸⊆ LIIy, and FIN
(FINeven) ̸⊆ LIIy follow from Lemma 4.3.2. Moreover, observe that LIIy clearly contains
the context-free language from Example 4.3.20, regular language {𝑎2𝑛 : 𝑛 ≥ 0}, and finite
language from Example 4.3.19.

4.3.5 Left-Left 2-Jumping Relation

Example 4.3.25. Consider the GJFA

𝑀JJy = ({𝑠, 𝑝, 𝑓},Σ, 𝑅, 𝑠, {𝑓}),

where Σ = {𝑎, 𝑏, 𝑐} and 𝑅 consists of the rules (𝑠, 𝑐, 𝑝) and (𝑝, 𝑎𝑏, 𝑓). Starting from 𝑠, 𝑀
has to read two times 𝑐 and two times 𝑎𝑏. Observe that if the second jump skips some
symbols, then they cannot be ever read afterwards. However, the first jump is not so
harshly restricted and can potentially skip some symbols which will be read later by the
second jump. Note that this precisely resembles the inverted behavior of the right-right
2-jumping relation. As a result, the language is

𝐿(𝑀JJy) = {𝑎𝑏𝑎𝑏𝑐𝑐, 𝑎𝑏𝑎𝑐𝑏𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐}.

Example 4.3.26. Consider the GJFA

𝑀JJy = ({𝑠, 𝑓},Σ, 𝑅, 𝑠, {𝑓}),

where Σ = {𝑎, 𝑏} and 𝑅 consists of the rules (𝑠, 𝑎, 𝑠) and (𝑠, 𝑏, 𝑓). Starting from 𝑠, 𝑀 can
arbitrarily many times read two times 𝑎, and, as the last step, it has to read two times 𝑏.
Both jumps behave the same way as in Example 4.3.25. Observe that when we consider
no skipping of symbols, then 𝑀 reads 𝑏𝑎𝑛𝑏𝑎𝑛, 𝑛 ≥ 0. Nevertheless, when we consider the
skipping with the first jump, then the second 𝑏 can also occur arbitrarily closer to the first
𝑏, since the first jump can now read symbols 𝑎 also behind this second 𝑏. Consequently, the
accepted language is

𝐿(𝑀JJy) = {𝑏𝑎𝑛𝑏𝑎𝑛𝑎2𝑚 : 𝑛,𝑚 ≥ 0}.

Note that this is the same language as in Example 4.3.20.

37

Example 4.3.27. Consider the GJFA

𝑀JJy = ({𝑠, 𝑓},Σ, 𝑅, 𝑠, {𝑓}),

where Σ = {𝑎, 𝑏, 𝑐, 𝑑} and 𝑅 = {(𝑠, 𝑦, 𝑓) : 𝑦 ∈ Σ} ∪ {(𝑓, 𝑦, 𝑓) : 𝑦 ∈ Σ}. Starting from
𝑠, 𝑀 has to read two times some symbol from Σ, and then it can arbitrarily many times
read two times any symbols from Σ. Both jumps behave the same way as in Example
4.3.25, and the overall behavior tightly follows Example 4.3.21. In the special case where
the first jump consistently jumps over one symbol each time (except the last step) during
the whole process, the accepted strings can be written as 𝑢′𝑛𝑢𝑛 · · ·𝑢′2𝑢2𝑢′1𝑢1, where 𝑛 ≥ 1,
𝑢′𝑖, 𝑢𝑖 ∈ Σ, 𝑢′𝑖 = 𝑢𝑖, 1 ≤ 𝑖 ≤ 𝑛. The symbols with primes are read by the first jump, and the
symbols without primes are read by the second jump. With no special case, the symbols
with primes can be arbitrarily shifted to the left over the symbols without primes, which
creates a more complex structure with multiple crossed agreements and ultimately also the
structure of the reduplication phenomenon. As a result, we can safely state that 𝐿(𝑀JJy)
is a non-context-free language, and this statement can be formally proven in the same way
as in Example 4.3.21.

Theorem 4.3.28. LJJy ⊂ CSeven.

Proof. The reasoning is identical to Theorem 4.3.22.

Lemma 4.3.29. Let 𝑛 ≥ 0, and let 𝑀 be any GJFA. Furthermore, let every 𝑥 ∈ 𝐿(𝑀JJy)
satisfy either |𝑥| ≤ 𝑛 or alph(𝑥) = 1. Then, there exists a right-linear grammar 𝐺 such
that 𝐿(𝑀JJy) = 𝐿(𝐺).

Proof. The reasoning is exactly the same as in Lemma 4.3.23.

Theorem 4.3.30. The following pairs of language families are incomparable:
(i) LJJy and CF (CFeven);

(ii) LJJy and REG (REGeven);
(iii) LJJy and FIN (FINeven).

Proof. LJJy ̸⊆ CF (CFeven), LJJy ̸⊆ REG (REGeven), and LJJy ̸⊆ FIN (FINeven)
follow from Example 4.3.27. CF (CFeven) ̸⊆ LJJy, REG (REGeven) ̸⊆ LJJy, and FIN
(FINeven) ̸⊆ LJJy follow from Lemma 4.3.2. Moreover, LJJy contains the context-free
language from Example 4.3.26, regular language {𝑎2𝑛 : 𝑛 ≥ 0}, and finite language from
Example 4.3.25.

Claim 4.3.31. There is no GJFA 𝑀IIy that accepts {𝑎𝑏𝑎𝑏𝑐𝑐, 𝑎𝑏𝑎𝑐𝑏𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐}.

Proof. By contradiction. Let 𝐾 = {𝑎𝑏𝑎𝑏𝑐𝑐, 𝑎𝑏𝑎𝑐𝑏𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐}. Assume that there is a GJFA
𝑀 such that 𝐿(𝑀IIy) = 𝐾. Observe that each string in 𝐾 contains three pairs of symbols,
therefore, to effectively read such a string, we need a maximum of three chained rules in 𝑀
or less. (Note that additional rules reading 𝜀 do not affect results.) Moreover, due to the
nature of strings in 𝐾, we need to consider only such chains of rules where, in the result,
𝑎 precedes 𝑏, and 𝑏 precedes 𝑐. Therefore, we can easily try all possibilities and calculate
their resulting sets. Surely, 𝐿(𝑀IIy) must be a union of some of these sets:

(i) if 𝑀 reads 𝑎𝑏𝑐, the set is {𝑎𝑏𝑐𝑎𝑏𝑐};
(ii) if 𝑀 reads 𝑎𝑏, and 𝑐, the set is {𝑎𝑏𝑎𝑏𝑐𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐};
(iii) if 𝑀 reads 𝑎, and 𝑏𝑐, the set is {𝑎𝑎𝑏𝑐𝑏𝑐, 𝑎𝑏𝑎𝑐𝑏𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐};

38

(iv) if 𝑀 reads 𝑎, 𝑏, and 𝑐, the set is {𝑎𝑎𝑏𝑏𝑐𝑐, 𝑎𝑏𝑎𝑏𝑐𝑐, 𝑎𝑎𝑏𝑐𝑏𝑐, 𝑎𝑏𝑎𝑐𝑏𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐}.
Clearly, no union of these sets can result in 𝐾—a contradiction with the assumption that
𝐿(𝑀IIy) = 𝐾 exists. Thus, there is no GJFA 𝑀IIy that accepts {𝑎𝑏𝑎𝑏𝑐𝑐, 𝑎𝑏𝑎𝑐𝑏𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐}.

Claim 4.3.32. There is no GJFA 𝑀JJy that accepts {𝑎𝑏𝑎𝑏𝑐𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐}.

Proof. By contradiction. Let 𝐾 = {𝑎𝑏𝑎𝑏𝑐𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐}. Assume that there is a GJFA 𝑀 such
that 𝐿(𝑀JJy) = 𝐾. By the same reasoning as in the proof of Claim 4.3.31, 𝐿(𝑀JJy)
must be a union of some of these sets:

(i) if 𝑀 reads 𝑎𝑏𝑐, the set is {𝑎𝑏𝑐𝑎𝑏𝑐};
(ii) if 𝑀 reads 𝑐, and 𝑎𝑏, the set is {𝑎𝑏𝑎𝑏𝑐𝑐, 𝑎𝑏𝑎𝑐𝑏𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐};
(iii) if 𝑀 reads 𝑏𝑐, and 𝑎, the set is {𝑎𝑎𝑏𝑐𝑏𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐};
(iv) if 𝑀 reads 𝑐, 𝑏, and 𝑎, the set is {𝑎𝑎𝑏𝑏𝑐𝑐, 𝑎𝑎𝑏𝑐𝑏𝑐, 𝑎𝑏𝑎𝑏𝑐𝑐, 𝑎𝑏𝑎𝑐𝑏𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐}.

Clearly, no union of these sets can result in 𝐾. Thus, there is no GJFA 𝑀JJy that accepts
{𝑎𝑏𝑎𝑏𝑐𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐}.

Theorem 4.3.33. LIIy and LJJy are incomparable.

Proof. LIIy ̸⊆ LJJy follows from Example 4.3.19 and Claim 4.3.32. LJJy ̸⊆ LIIy
follows from Example 4.3.25 and Claim 4.3.31. Moreover, both LIIy and LJJy clearly
contain the same language from Examples 4.3.20 and 4.3.26.

The results concerning the accepting power of GJFAs that perform right-right and left-
left 2-jumps are summarized in Figure 4.2.

CSeven

CF

LJJy

REG

FIN

LIIy

Figure 4.2: A hierarchy of language families closely related to the right-right and left-left
2-jumps is shown. If there is a line or an arrow from family 𝑋 to family 𝑌 in the figure,
then 𝑋 = 𝑌 or 𝑋 ⊂ 𝑌 , respectively. A crossed line represents the incomparability between
connected families.

39

4.4 Closure Properties
In this section, we show the closure properties of LIJy, LJIy, LIIy, and LJJy under
various operations. Recall that, by Theorem 4.3.18, LIJy and LJIy are equivalent, and
so their closure properties coincide.

Theorem 4.4.1. All LIJy (LJIy), LIIy, and LJJy are not closed under endmarking.

Proof. This result directly follows from Lemma 4.3.2—the inability to read an odd number
of symbols from the input string.

Theorem 4.4.2. LIJy (LJIy) is closed under endmarking on both sides.

Proof. Consider any GJFA 𝑀IJy = (𝑄,Σ, 𝑅, 𝑠, 𝐹). Without loss of generality, assume
that 𝑠′ ̸∈ 𝑄 and # ̸∈ Σ. Define GJFA 𝑁IJy = (𝑄 ∪ {𝑠′},Σ ∪ {#}, 𝑅 ∪ {(𝑠′,#, 𝑠)}, 𝑠′, 𝐹).
Then, by Claim 4.3.5, every 𝑥 ∈ 𝐿(𝑁IJy) can be surely written as 𝑥 = #𝑢2𝑢3 · · ·𝑢𝑛𝑢𝑛 · · ·
𝑢3𝑢2#, where 𝑛 ≥ 2, and 𝑢𝑖 ∈ Σ*, 2 ≤ 𝑖 ≤ 𝑛.

Theorem 4.4.3. Both LIIy and LJJy are not closed under endmarking on both sides.

Proof. Since both jumps always read the same strings in the same direction, they clearly
cannot reliably define the endmarking on the opposite sides of the input string in the general
case.

Theorem 4.4.4. All LIJy (LJIy), LIIy, and LJJy are not closed under concatenation.

Proof. This can be easily proven by contradiction. Consider two simple languages {𝑎𝑎} and
{𝑏𝑏}, which clearly belong into LIJy, LIIy, and LJJy. Assume that LIJy, LIIy, and
LJJy are closed under concatenation. Therefore, the resulting language {𝑎𝑎𝑏𝑏} also have
to belong into LIJy, LIIy, and LJJy. However, such a language does not satisfy the
string form for LIJy from Claim 4.3.5, and there is no GJFA 𝑀IIy or GJFA 𝑁JJy that
can define such a language. Observe that 𝑀 and 𝑁 cannot accept 𝑎𝑎𝑏𝑏 with a single 2-jump,
and that the rules for multiple 2-jumps define broader languages, e.g. {𝑎𝑏𝑎𝑏, 𝑎𝑎𝑏𝑏}.

Theorem 4.4.5. All LIJy (LJIy), LIIy, and LJJy are not closed under square.

Proof. Consider the language 𝐿 = {𝑎𝑎, 𝑏𝑏}, which clearly belongs into LIJy, LIIy, and
LJJy. Therefore, 𝐿2 = {𝑎𝑎𝑎𝑎, 𝑎𝑎𝑏𝑏, 𝑏𝑏𝑎𝑎, 𝑏𝑏𝑏𝑏} should also belong into these language
families. However, observe the string 𝑎𝑎𝑏𝑏, it causes the same problems as in the proof of
Theorem 4.4.4. This string does not satisfy the string form for LIJy from Claim 4.3.5.
Moreover, there is no GJFA 𝑀IIy or GJFA 𝑁JJy that can simultaneously accept the
required string 𝑎𝑎𝑏𝑏 and reject the unwanted string 𝑎𝑏𝑎𝑏.

Theorem 4.4.6. All LIJy (LJIy), LIIy, and LJJy are not closed under shuffle.

Proof. Consider two simple languages {𝑎𝑎} and {𝑏𝑏}, which clearly belong into LIJy,
LIIy, and LJJy. Therefore, the resulting language of their shuffle {𝑎𝑎𝑏𝑏, 𝑎𝑏𝑎𝑏, 𝑏𝑎𝑎𝑏, 𝑎𝑏𝑏𝑎,
𝑏𝑎𝑏𝑎, 𝑏𝑏𝑎𝑎} should also belong into these language families. However, several strings from
this language do not satisfy the string form for LIJy from Claim 4.3.5. Moreover, there
is surely no GJFA 𝑀IIy or GJFA 𝑁JJy that can accept the string 𝑏𝑎𝑎𝑏 or 𝑎𝑏𝑏𝑎, since
these strings do not contain two identical sequences of symbols that could be properly
synchronously read.

40

Theorem 4.4.7. All LIJy (LJIy), LIIy, and LJJy are closed under union.

Proof. Let 𝑜 be one of the relations IJy, IIy, and JJy; and 𝑀𝑜 = (𝑄1,Σ1, 𝑅1, 𝑠1, 𝐹1),
and 𝑁𝑜 = (𝑄2,Σ2, 𝑅2, 𝑠2, 𝐹2) be two GJFAs. Without loss of generality, assume that
𝑄1 ∩𝑄2 = ∅ and 𝑠 ̸∈ (𝑄1 ∪𝑄2). Define the GJFA

𝐻𝑜 = (𝑄1 ∪𝑄2 ∪ {𝑠},Σ1 ∪ Σ2, 𝑅1 ∪𝑅2 ∪ {(𝑠, 𝜀, 𝑠1), (𝑠, 𝜀, 𝑠2)}, 𝑠, 𝐹1 ∪ 𝐹2).

Observe that 𝐿(𝐻𝑜) = 𝐿(𝑀𝑜) ∪ 𝐿(𝑁𝑜) holds in all modes. Indeed, the leading 2-jump
only selects whether 𝐻𝑜 enters 𝑀𝑜 or 𝑁𝑜, and this leading 2-jump introduces no other new
configuration to the configurations of 𝑀𝑜 and 𝑁𝑜.

Theorem 4.4.8. All LIJy (LJIy), LIIy, and LJJy are not closed under complement.

Proof. Consider Lemma 4.3.2—that all 2-jumping modes can only accept even-length input
strings. As a result, every complement has to contain at least all odd-length strings, and
thus it cannot be defined by any 2-jumping mode.

Theorem 4.4.9. LIJy (LJIy) is closed under intersection with regular languages.

Proof. Consider any GJFA 𝑀IJy = (𝑄1,Σ, 𝑅1, 𝑠1, 𝐹1) and FA 𝑁 = (𝑄2,Σ, 𝑅2, 𝑠2, 𝐹2).
We can define a new GJFA 𝐻IJy = (𝑄3,Σ, 𝑅3, 𝑠3, 𝐹3) that simulates both 𝑀 and 𝑁 in
the same time and that accepts the input string 𝑥 if and only if both 𝑀 and 𝑁 also accept
𝑥. Note that the requirement of identical Σ does not affect the generality of the result.
We are going to use two auxiliary functions that will help us with the construction of 𝐻.
First, Fw(𝑁, 𝑝, 𝑠𝑡𝑟) that accepts three parameters: 𝑁 which is some FA, 𝑝 which is some
state of 𝑁 , and 𝑠𝑡𝑟 which is some string. This function returns the set of states in which
𝑁 can end up if 𝑁 is in the state 𝑝 and reads 𝑠𝑡𝑟. Second, Bw(𝑁, 𝑝, 𝑠𝑡𝑟) that also accepts
the same parameters: 𝑁 which is some FA, 𝑝 which is some state of 𝑁 , and 𝑠𝑡𝑟 which is
some string. This function returns the set of states from which 𝑁 reads 𝑠𝑡𝑟 and ends in the
state 𝑝. We are not giving full details of these functions here since they only incorporate
the well-known standard techniques for finite automata. With this, we construct 𝑄3, 𝑅3,
and 𝐹3 in the following way:
(1) Add 𝑠3 to 𝑄3.
(2) Add ⟨𝑝, 𝑞, 𝑟⟩ to 𝑄3, for all (𝑝, 𝑞, 𝑟) ∈ 𝑄1 ×𝑄2 ×𝑄2.
(3) Add ⟨𝑝, 𝑞, 𝑞⟩ to 𝐹3, for all (𝑝, 𝑞) ∈ 𝐹1 ×𝑄2.
(4) Add (𝑠3, 𝜀, ⟨𝑠1, 𝑠2, 𝑓⟩) to 𝑅3, for all 𝑓 ∈ 𝐹2.
(5) For each (𝑝, 𝑎, 𝑞) ∈ 𝑅1 and 𝑟1, 𝑡1 ∈ 𝑄2, add (⟨𝑝, 𝑟1, 𝑡1⟩, 𝑎, ⟨𝑞, 𝑟2, 𝑡2⟩) to 𝑅3, for all

(𝑟2, 𝑡2) ∈ Fw(𝑁, 𝑟1, 𝑎) × Bw(𝑁, 𝑡1, 𝑎).
Observe that 𝐻 handles three distinct things in its states ⟨𝑝, 𝑞, 𝑟⟩: 𝑝 represents the original
state of 𝑀 , 𝑞 simulates the first part of 𝑁 in the classical forward way, and 𝑟 simulates
the second part of 𝑁 in the backward way. At the beginning, 𝐻 makes a 2-jump from the
initial state 𝑠3 into one of the states ⟨𝑠1, 𝑠2, 𝑓⟩, where 𝑓 ∈ 𝐹2, and the main part of the
simulation starts. In each following step, 𝐻 can only make a 2-jump if the similar 2-jump
is also in 𝑀 and if 𝑁 can read the same string as 𝑀 from both opposite sides with the
current states. This part ends when there are no valid 2-jumps or when 𝐻 reads the whole
input string. If 𝐻 processes the whole input string, we can recognize the valid final state
⟨𝑝, 𝑞, 𝑟⟩ in the following way: 𝑝 has to be the original final state of 𝑀 , and 𝑞 must be the
same as 𝑟 so that the simulation of 𝑁 from two opposite sides can be connected in the
middle. As a result, 𝐿(𝐻IJy) = 𝐿(𝑀IJy) ∩ 𝐿(𝑁).

41

Theorem 4.4.10. LIJy (LJIy) is closed under intersection.

Proof. Consider any GJFA 𝑀IJy = (𝑄1,Σ, 𝑅1, 𝑠1, 𝐹1) and GJFA 𝑁IJy = (𝑄2,Σ, 𝑅2, 𝑠2,
𝐹2). We can define a new GJFA 𝐻IJy = (𝑄,Σ, 𝑅, 𝑠, 𝐹) that simulates both 𝑀 and 𝑁 in
the same time such that 𝐿(𝐻IJy) = 𝐿(𝑀IJy)∩𝐿(𝑁IJy). To support the construction of
𝑄 and 𝑅, define Σ≤ℎ =

⋃︀ℎ
𝑖=0 Σ𝑖, and let 𝑘 be the maximum length of the right-hand sides of

the rules from 𝑅1 ∪𝑅2. First, set 𝑄 to {⟨𝑞1, 𝑥, 𝑥′, 𝑞2, 𝑦, 𝑦′⟩ : 𝑞1 ∈ 𝑄1, 𝑞2 ∈ 𝑄2, 𝑥, 𝑥′, 𝑦, 𝑦′ ∈
Σ≤2𝑘−1}, 𝐹 to {⟨𝑓1, 𝜀, 𝜀, 𝑓2, 𝜀, 𝜀⟩ : 𝑓1 ∈ 𝐹1, 𝑓2 ∈ 𝐹2}, and 𝑠 = ⟨𝑠1, 𝜀, 𝜀, 𝑠2, 𝜀, 𝜀⟩. Then, we
construct 𝑅 in the following way:

(I) Add (⟨𝑝, 𝑥, 𝑥′, 𝑞, 𝑦, 𝑦′⟩, 𝑎, ⟨𝑝, 𝑥𝑎, 𝑎𝑥′, 𝑞, 𝑦𝑎, 𝑎𝑦′⟩) to 𝑅, for all 𝑎 ∈ Σ≤𝑘, 𝑝 ∈ 𝑄1, 𝑞 ∈ 𝑄2,
and 𝑥, 𝑥′, 𝑦, 𝑦′ ∈ Σ≤2𝑘−1−|𝑎|.

(II) For each (𝑝, 𝑎, 𝑝′) ∈ 𝑅1, add (⟨𝑝, 𝑎𝑥, 𝑥′𝑎, 𝑞, 𝑦, 𝑦′⟩, 𝜀, ⟨𝑝′, 𝑥, 𝑥′, 𝑞, 𝑦, 𝑦′⟩) to 𝑅, for all
𝑥, 𝑥′ ∈ Σ≤2𝑘−1−|𝑎|, 𝑞 ∈ 𝑄2, and 𝑦, 𝑦′ ∈ Σ≤2𝑘−1.

(III) For each (𝑞, 𝑏, 𝑞′) ∈ 𝑅2, add (⟨𝑝, 𝑥, 𝑥′, 𝑞, 𝑏𝑦, 𝑦′𝑏⟩, 𝜀, ⟨𝑝, 𝑥, 𝑥′, 𝑞′, 𝑦, 𝑦′⟩) to 𝑅, for all
𝑝 ∈ 𝑄1, 𝑥, 𝑥′ ∈ Σ≤2𝑘−1, and 𝑦, 𝑦′ ∈ Σ≤2𝑘−1−|𝑏|.

Observe that 𝐻 stores six pieces of information in its compound states: (1) the state
of 𝑀 , (2) the buffered string (so called buffer) with up to 2𝑘 − 1 symbols read from the
beginning of the input string to simulate the work of 𝑀 on it, (3) the buffered string with
up to 2𝑘−1 symbols read from the end of the input string to simulate the work of 𝑀 on it,
and the pieces (4), (5), and (6) are analogous to (1), (2), and (3) but for 𝑁 , respectively.

Next, by the same reasoning as in the proof of Claim 4.3.5, we can assume that 𝑀 and
𝑁 start from the configurations 𝑠1𝑤𝑠1 and 𝑠2𝑤𝑠2, respectively, and neither of them can
jump over any symbols during the reading. Using these assumptions, 𝐻 simulates the work
of 𝑀 and 𝑁 as follows. First, it reads by the rules from (I) a part of the input string and
stores it in the buffers. Then, by the rules from (II) and (III), 𝐻 processes the symbols
from the buffers by the simulation of the rules from 𝑀 and 𝑁 . Whenever needed, 𝐻 reads
from the input string some additional symbols using the rules from (I). The input string is
accepted by 𝐻 if and only if the whole input string is read, all buffers are processed and
emptied, and both (1) and (4) are the final states of 𝑀 and 𝑁 , respectively.

To justify the maximum size of the buffers in (2), (3), (5), and (6), consider the situation
when the simulation of 𝑀 needs to read the input string by the words of length 𝑘, but the
right-hand sides of the simulated rules of 𝑁 alternate between 1 and 𝑘 symbols. Then,
we can observe a situation when a buffer contains 𝑘 − 1 symbols and we have to read 𝑘
additional symbols from the input string before we can process the first (or the last) 𝑘
symbols of the buffer. The question remains, however, whether we can reliably exclude
some of these situations and further decrease the size of the buffers in the states of 𝐻.

The rigorous proof of 𝐿(𝐻IJy) = 𝐿(𝑀IJy) ∩ 𝐿(𝑁IJy) is left to the reader.

Theorem 4.4.11. Both LIIy and LJJy are not closed under intersection and intersection
with regular languages.

Proof. Consider two GJFAs:
𝑀IIy = ({𝑠, 𝑟, 𝑝, 𝑓}, {𝑎, 𝑏}, {(𝑠, 𝑎, 𝑟), (𝑟, 𝑏𝑏, 𝑝), (𝑝, 𝑎, 𝑓)}, 𝑠, {𝑓});

𝐿(𝑀IIy) = {𝑎𝑏𝑏𝑎𝑎𝑏𝑏𝑎, 𝑎𝑏𝑏𝑎𝑏𝑏𝑎𝑎, 𝑎𝑏𝑎𝑏𝑎𝑏𝑏𝑎, 𝑎𝑏𝑎𝑏𝑏𝑏𝑎𝑎, 𝑎𝑎𝑏𝑏𝑎𝑏𝑏𝑎, 𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎},
and 𝑁IIy = ({𝑠, 𝑟, 𝑝, 𝑓}, {𝑎, 𝑏}, {(𝑠, 𝑎, 𝑟), (𝑟, 𝑏, 𝑝), (𝑝, 𝑏𝑎, 𝑓)}, 𝑠, {𝑓});

𝐿(𝑁IIy) = {𝑎𝑏𝑏𝑎𝑎𝑏𝑏𝑎, 𝑎𝑏𝑏𝑎𝑏𝑎𝑏𝑎, 𝑎𝑏𝑎𝑏𝑎𝑏𝑏𝑎, 𝑎𝑏𝑎𝑏𝑏𝑎𝑏𝑎, 𝑎𝑎𝑏𝑏𝑎𝑏𝑏𝑎, 𝑎𝑎𝑏𝑏𝑏𝑎𝑏𝑎}.

The intersection 𝐿∩ = 𝐿(𝑀IIy) ∩ 𝐿(𝑁IIy) = {𝑎𝑏𝑏𝑎𝑎𝑏𝑏𝑎, 𝑎𝑏𝑎𝑏𝑎𝑏𝑏𝑎, 𝑎𝑎𝑏𝑏𝑎𝑏𝑏𝑎} should also
belong into LIIy. However, consider the simplest GJFA 𝑃IIy that can accept the string

42

𝑎𝑎𝑏𝑏𝑎𝑏𝑏𝑎; it surely has to start with reading two times only one symbol 𝑎, then it can read
two times 𝑏𝑏 together, and then it finishes by reading two times the symbol 𝑎. However,
this is exactly the behavior of 𝑀IIy, and we see that 𝐿(𝑀IIy) is a proper superset of 𝐿∩.
Therefore, there cannot be any GJFA 𝐻IIy that defines 𝐿∩. Trivially, both 𝐿(𝑀IIy) and
𝐿(𝑁IIy) are also regular languages. The similar proof for LJJy is left to the reader.

Theorem 4.4.12. LIJy (LJIy) is closed under mirror image.

Proof. Consider any GJFA 𝑀IJy = (𝑄,Σ, 𝑅1, 𝑠, 𝐹). Define the GJFA 𝑁IJy = (𝑄,Σ, 𝑅2,
𝑠, 𝐹), where 𝑅2 is constructed in the following way. For each (𝑝, 𝑎, 𝑞) ∈ 𝑅1, add (𝑝,mi(𝑎), 𝑞)
to 𝑅2. Note that, by Claim 4.3.5 and its proof, every 𝑥 ∈ 𝐿(𝑀IJy) can be written as
𝑥 = 𝑢1𝑢2 · · ·𝑢𝑛𝑢𝑛 · · ·𝑢2𝑢1, where 𝑛 ≥ 1, and 𝑢𝑖 ∈ Σ*, 1 ≤ 𝑖 ≤ 𝑛; and where each 𝑢𝑖
represents the string 𝑎 from a certain rule. Observe that each 𝑥 almost resembles an even
palindrome. We just need to resolve the individual parts |𝑢𝑖| > 1 for which the palindrome
statement does not hold. Nevertheless, observe that if we simply mirror each 𝑢𝑖 individually,
it will create the mirror image of the whole 𝑥. As a result, 𝐿(𝑁IJy) is a mirror image of
𝐿(𝑀IJy).

Theorem 4.4.13. Both LIIy and LJJy are not closed under mirror image.

Proof. Consider the language 𝐾 = {𝑎𝑏𝑎𝑏𝑐𝑐, 𝑎𝑏𝑐𝑎𝑏𝑐}, which is accepted by the GJFA

𝑀IIy = ({𝑠, 𝑟, 𝑓}, {𝑎, 𝑏, 𝑐}, {(𝑠, 𝑎𝑏, 𝑟), (𝑟, 𝑐, 𝑓)}, 𝑠, {𝑓}).

Therefore, the mirror language 𝐾𝑚𝑖 = {𝑐𝑐𝑏𝑎𝑏𝑎, 𝑐𝑏𝑎𝑐𝑏𝑎} should also belong into LIIy.
However, consider the simplest GJFA 𝑁IIy that can accept the string 𝑐𝑐𝑏𝑎𝑏𝑎; it surely
has to start with reading two times only symbol 𝑐, then it can read two times 𝑏𝑎 together.
Even in such a case 𝐿(𝑁IIy) = {𝑐𝑐𝑏𝑎𝑏𝑎, 𝑐𝑏𝑐𝑎𝑏𝑎, 𝑐𝑏𝑎𝑐𝑏𝑎}; which is a proper superset of 𝐾𝑚𝑖.
Therefore, there cannot be any GJFA 𝐻IIy that defines 𝐾𝑚𝑖. The similar proof for LJJy
is left to the reader.

Theorem 4.4.14. All LIJy (LJIy), LIIy, and LJJy are not closed under finite sub-
stitution.

Proof. Consider the language 𝐿 = {𝑎2𝑛 : 𝑛 ≥ 0}, which clearly belongs into LIJy, LIIy,
and LJJy. Define the finite substitution 𝜙 : {𝑎}* → 2{𝑎}

* as 𝜙(𝑎) = {𝜀, 𝑎}. Observe that
𝜙(𝐿) contains odd-length strings. However, in consequence of Lemma 4.3.2, we know that
no 2-jumping mode can accept such strings.

Theorem 4.4.15. LIJy (LJIy) is closed under homomorphism and 𝜀-free homomor-
phism.

Proof. Consider any GJFA 𝑀IJy = (𝑄,Σ, 𝑅1, 𝑠, 𝐹) and an arbitrary homomorphism 𝜙 :
Σ* → ∆*. Define the GJFA 𝑁IJy = (𝑄,∆, 𝑅2, 𝑠, 𝐹), where 𝑅2 is constructed in the
following way. For each (𝑝, 𝑎, 𝑞) ∈ 𝑅1, add (𝑝, 𝜙(𝑎), 𝑞) to 𝑅2. Observe that by Claim 4.3.5
and its proof, every 𝑥 ∈ 𝐿(𝑀IJy) can be written as 𝑥 = 𝑢1𝑢2 · · ·𝑢𝑛𝑢𝑛 · · ·𝑢2𝑢1, where 𝑛 ≥ 1,
and 𝑢𝑖 ∈ Σ*, 1 ≤ 𝑖 ≤ 𝑛; and where each 𝑢𝑖 represents the string 𝑎 from a certain rule. Then,
every 𝑦 ∈ 𝐿(𝑁IJy) can be surely written as 𝑦 = 𝜙(𝑢1)𝜙(𝑢2) · · ·𝜙(𝑢𝑛)𝜙(𝑢𝑛) · · ·𝜙(𝑢2)𝜙(𝑢1),
and clearly 𝜙(𝐿(𝑀IJy)) = 𝐿(𝑁IJy).

43

Theorem 4.4.16. Both LIIy and LJJy are not closed under homomorphism and 𝜀-free
homomorphism.

Proof. Consider the language 𝐾 = {𝑎𝑏𝑎𝑏, 𝑎𝑎𝑏𝑏}, which is accepted by the GJFA

𝑀IIy = ({𝑠, 𝑟, 𝑓}, {𝑎, 𝑏}, {(𝑠, 𝑎, 𝑟), (𝑟, 𝑏, 𝑓)}, 𝑠, {𝑓}).

Define the 𝜀-free homomorphism 𝜙 : {𝑎, 𝑏}+ → {𝑎, 𝑏, 𝑐}+ as 𝜙(𝑎) = 𝑎 and 𝜙(𝑏) = 𝑏𝑐. By
applying 𝜙 to 𝐾, we get 𝜙(𝐾) = {𝑎𝑏𝑐𝑎𝑏𝑐, 𝑎𝑎𝑏𝑐𝑏𝑐}. Consider the simplest GJFA 𝑁IIy
that can accept the string 𝑎𝑎𝑏𝑐𝑏𝑐; it surely has to start with reading two times only the
symbol 𝑎, then it can read two times 𝑏𝑐 together. However, even in such a case 𝐿(𝑁IIy) =
{𝑎𝑏𝑐𝑎𝑏𝑐, 𝑎𝑏𝑎𝑐𝑏𝑐, 𝑎𝑎𝑏𝑐𝑏𝑐}; which is a proper superset of 𝜙(𝐾). Therefore, there cannot be
any GJFA 𝐻IIy that defines 𝜙(𝐾). Trivially, 𝜙 is also a general homomorphism. The
similar proof for LJJy is left to the reader.

Theorem 4.4.17. All LIJy (LJIy), LIIy, and LJJy are not closed under inverse
homomorphism.

Proof. Consider the language 𝐿 = {𝑎𝑎}, which clearly belongs into LIJy, LIIy, and
LJJy. Define the homomorphism 𝜙 : {𝑎}* → {𝑎}* as 𝜙(𝑎) = 𝑎𝑎. By applying 𝜙−1 to 𝐿,
we get 𝜙−1(𝐿) = {𝑎}. However, in consequence of Lemma 4.3.2, we know that no 2-jumping
mode can define such a language.

The summary of closure properties of LIJy, LJIy, LIIy, and LJJy is given in
Figure 4.3, where + marks closure, and − marks non-closure.

LIJy, LJIy LIIy LJJy
endmarking (both sides) − (+) − (−) − (−)
concatenation − − −
square (𝐿2) − − −
shuffle − − −
union + + +

complement − − −
intersection + − −
int. with regular languages + − −
mirror image + − −
finite substitution − − −
homomorphism + − −
𝜀-free homomorphism + − −
inverse homomorphism − − −

Figure 4.3: Summary of closure properties.

4.5 Concluding Remarks
The resulting behavior of right-left 2-jumps has proven to be very similar to the behaviors
of 2-head finite automata accepting linear languages (see [64]) and 5′ → 3′ sensing Watson-
Crick finite automata (see [61, 63, 65]). Although these models differ in details, the general

44

concept of their reading remains the same—all three mentioned models read simultaneously
from two different positions on the opposite sides of the input string. The main difference
comes in the form of their rules. The other two models use more complex rules that allow
them to read two different strings on their reading positions. Consequently, the resulting
language families of these models differ from the language family defined by right-left 2-
jumps. Nonetheless, the connection to Watson-Crick models shows that the concept of
synchronized jumping could potentially find its use in the fields that study the correlations
of several patterns such as biology or computer graphics.

Finally, we propose some future investigation areas concerning jumping finite automata
that link several jumps together. Within the previous sections of this chapter, we have
already pointed out one open problem concerning right-left (and left-right) 2-jumps (Open
Problem 4.3.14). This section continues with other more general suggestions.

(I) Study decidability properties of the newly defined jumping modes.

(II) Investigate remaining possible variants of 2-jumps where the unrestricted single jumps
and the restricted single jumps are combined together.

(III) Extend the definition of 2-jumps to the general definition of 𝑛-jumps, where 𝑛 ≥ 1.
Can we find some interesting general results about these multi-jumps?

(IV) Study relaxed versions of 2-jumps where the single jumps do not have to follow the
same rule and where each single jump have its own state.

(V) Use the newly defined jumping modes in jumping finite automata in which rules read
single symbols rather than whole strings (JFAs—see Section 2.6).

(VI) In the same fashion as in finite automata, consider deterministic versions of GJFAs
with the newly defined jumping modes.

45

Can we have your liver, then?
—Monty Python’s The Meaning of Life

Chapter 5

Jumping 5′ → 3′ Watson-Crick
Finite Automata

This chapter studies a combined model of two-head jumping finite automata and sensing
5′ → 3′ Watson-Crick finite automata. The content of this chapter is composed of results
that were published at the conference NCMA 2018 (see [38]) and that are currently sub-
mitted to the journal Acta Informatica (see [36]); all written jointly with Zbyněk Křivka,
Alexander Meduna, and Benedek Nagy.

In terms of preliminaries, the reader should be familiar with the definitions of general
notions (see Section 2.1), grammars (see Sections 2.2.1 and 2.2.2), finite automata (see
Section 2.5.1), jumping finite automata (see Section 2.6), and 5′ → 3′ Watson-Crick finite
automata (see Section 2.7).

5.1 Introduction
In recent years, research in formal language theory takes interest in models that process
inputs or generate outputs in non-conventional ways compared to classical models of au-
tomata and grammars. Due to the direction of the ongoing development in computer
science, the main focus is often on models that process information discontinuously and
work in a parallel way. In this chapter, we focus our attention on two groups of such mod-
els: jumping finite automata and Watson-Crick finite automata. To be more precise, our
main focus is on their specific variants which have multiple heads working in parallel that
non-conventionally process the input sequence/string. The studied multi-head variants of
finite automaton models utilize two heads that cooperate on a single tape to process the
single input string. Therefore, every symbol in the input is read only once, and the heads
do not work in the traditional symbol-by-symbol left-to-right way.

To give a better insight into this study, let us briefly introduce both groups of mentioned
models. Jumping finite automata were already thoroughly covered in Section 1.2; thus, we
only mention a few notes. The jumping concept is in its core focused on discontinuous
information processing. Generally, these models can very easily define even some non-
context-free languages if the order of symbols can be arbitrary. On the other hand, the
resulting language families of these models are usually incomparable with the classical
families of regular, linear, and context-free languages. If the jumping concept utilizes
multiple heads, the heads can naturally jump on specific positions in the tape, and thus
they can easily work on different places at once in parallel.

46

In DNA computing (see, e.g., [72]), DNA strands can be seen as sequences of nucleotides
(there are 4 different nucleotides in the nature, namely Adenine (A), Cytosine (C), Guanine
(G), and Thymine (T)). The DNA strands are oriented and they have a 5′ end and a 3′

end. Whenever a two-stranded DNA is considered, the two strands are oriented in the
opposite way, and the nucleotides at the same position of the two strands must be in
Watson-Crick complementarity relation, that is, Adenine appears with Thymine on the
other strand and Cytosine appears with Guanine on the other strand. Watson-Crick (WK)
finite automata represent a quite settled and already thoroughly studied group of biology-
inspired models that can be used to formally process/analyze DNA strands. In essence,
a WK automaton works just like a classical finite automaton except it uses a WK tape
(i.e., double-stranded tape), and it has a separate head for each of the two strands in
the tape. This is therefore a group of models that always naturally use two heads. The
classical version of a WK automaton processes the input tape quite conventionally: each
head works separately on its own strand of the tape, and both heads read the input in
the traditional symbol-by-symbol left-to-right way. However, more recently, new variants
of this model were introduced that process the input in a non-conventional way. In a
5′ → 3′ WK automaton (see [60, 61, 63, 65]), both heads read their specific strand in the
biochemical 5′ to 3′ direction. In a computing point of view, this means that they read the
double-stranded sequence in opposite directions. Furthermore, a 5′ → 3′ WK automaton
is sensing if the heads sense that they are meeting each other, and the processing of the
input ends if for each pair of the sequence one of the letters is read. The sensing 5′ → 3′

WK automata generally accept the family of linear languages. This concept is also studied
further in several follow-up papers that explore alternative definitions and combinations
with different mechanics (see [66, 67, 68, 69, 70, 71]).

Even though these two groups significantly differ in their original definitions, their newer
models sometimes work in a very similar way. Both concepts are also not mutually exclusive
in a single formal model. This chapter defines jumping 5′ → 3′ WK automata—a combined
model of jumping finite automata and sensing 5′ → 3′ WK automata—and studies their
characteristics. We primarily investigate the accepting power of the model and also the
effects of common restrictions on the model.

5.2 Definitions
Considering the sensing 5′ → 3′ WK automata and full-reading sensing 5′ → 3′ WK au-
tomata described in Section 2.7, there is quite a large gap between their behaviors. On
the one hand, sensing 5′ → 3′ WK automata deliberately read only one of the letters from
each complementary pair of the input sequence. However, this also limits the movement of
their heads because they can read their strands only until they meet. On the other hand,
the definition of full-reading sensing 5′ → 3′ WK automata allows both heads to traverse
their strands completely. Nonetheless, this also means that all complementary pairs of the
input sequence are again read twice (as in classical WK automata). If we consider other
formal models, we can see that jumping finite automata utilize a mechanism that allows
heads to skip (jump over) symbols. Furthermore, some of the introduced double-jumping
modes already behave very similar to 5′ → 3′ WK automata. Due to this natural fit, it
is our intention to fill and explore this gap by introducing the jumping mechanism into
sensing 5′ → 3′ WK automata. We want both heads to be able to traverse their strands
completely, but we also want to read only one of the letters from each complementary pair
of the input sequence.

47

From a theoretical perspective, the study of such a model is also beneficial for the
further understanding of the jumping mechanism. In [57] it was clearly established that
the general behavior of jumping finite automaton models is highly nondeterministic. This
can be problematic when we try to create viable parsing algorithms based on these models
(see [15]). Therefore, there is an interest to study variants of jumping finite automata with
more streamlined behavior. Indeed, there are already one-way jumping finite automata
with fully deterministic behavior introduced in [7]. Nonetheless, another option is to only
limit the amount of possibilities how the heads of the automaton can jump.

With a simple direct approach, it is possible to fit the jumping mechanism straightfor-
wardly into the original definition of sensing 5′ → 3′ WK automata. (Note that we are
now tracking only the meeting event of the heads as it was introduced in [70] and not the
original precise sensing distance from [60, 61, 63, 65].)

Definition 5.2.1. A sensing 5′ → 3′ WK automaton with jumping feature is a 6-tuple 𝑀 =
(𝑉, 𝜌,𝑄, 𝑞0, 𝐹, 𝛿), where 𝑉 , 𝜌, 𝑄, 𝑞0, and 𝐹 are the same as in WK automata, 𝑉 ∩{#} = ∅,
𝛿 : (𝑄 × (𝑉 *

𝑉 *) ×𝐷) → 2𝑄, where 𝐷 = {⊕,⊖} indicates the mutual position of heads, and
𝛿(𝑞, (𝑤1

𝑤2), 𝑠) ̸= ∅ only for finitely many quadruples (𝑞, 𝑤1, 𝑤2, 𝑠) ∈ 𝑄 × 𝑉 * × 𝑉 * × 𝐷. We
denote the head as I-head or J-head if it reads from left to right or from right to left,
respectively. We use the symbol ⊕ if the I-head is on the input tape positioned before
the J-head; otherwise, we use the symbol ⊖. A configuration (𝑤1

𝑤2)(𝑞, 𝑠)(
𝑤′

1

𝑤′
2
) has the same

structure as in sensing 5′ → 3′ WK automata; however, 𝑠 indicates only the mutual position
of heads, and a partially processed input (

𝑤1𝑤′
1

𝑤2𝑤′
2
) may not satisfy the complementarity 𝜌.

A step of the automaton can be of the following two types: Let 𝑤′
1, 𝑤2, 𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝑉 * and

𝑤1, 𝑤
′
2 ∈ (𝑉 ∪ {#})*.

(1) Reading steps: (𝑤1
𝑤2𝑦)(𝑞, 𝑠)(

𝑥𝑤′
1

𝑤′
2

) y (𝑤1{#}|𝑥|
𝑤2

)(𝑞′, 𝑠′)(
𝑤′

1

{#}|𝑦|𝑤′
2
), where 𝑞′ ∈ 𝛿(𝑞, (𝑥

𝑦), 𝑠),
and 𝑠′ is either ⊕ if |𝑤2| > |𝑤1𝑥| or ⊖ in other cases.

(2) Jumping steps: (𝑤1
𝑤2𝑣)(𝑞, 𝑠)(

𝑢𝑤′
1

𝑤′
2

) y (𝑤1𝑢
𝑤2)(𝑞, 𝑠′)(

𝑤′
1

𝑣𝑤′
2
), where 𝑠′ is either ⊕ if |𝑤2| >

|𝑤1𝑢| or ⊖ in other cases.
Note that the jumping steps are an integral and inseparable part of the behavior of the
automaton, and thus they are not affected by the state transition function. In the standard
manner, let us extend y to y𝑛, where 𝑛 ≥ 0; then, based on y𝑛, let us define y+ and y*.
The set of all accepted double-stranded strings from WK𝜌(𝑉), denoted by 𝐿𝑀(𝑀), can be
defined by the final accepting configurations that can be reached from the initial one: A
double-stranded string [𝑤1

𝑤2] ∈ WK𝜌(𝑉) is accepted by a sensing 5′ → 3′ WK automaton
with jumping feature 𝑀 if and only if (𝜀

𝑤2)(𝑞0,⊕)(𝑤1
𝜀) y* (𝑤′

1
𝜀

)(𝑞𝑓 ,⊖)(
𝜀
𝑤′

2
), for 𝑞𝑓 ∈ 𝐹 ,

where 𝑤′
1 = 𝑎1𝑎2 · · · 𝑎𝑚, 𝑤′

2 = 𝑏1𝑏2 · · · 𝑏𝑚, 𝑎𝑖, 𝑏𝑖 ∈ (𝑉 ∪ {#}), and either 𝑎𝑖 = # and 𝑏𝑖 ∈ 𝑉 ,
or 𝑎𝑖 ∈ 𝑉 and 𝑏𝑖 = #, for all 𝑖 = 1, . . . ,𝑚, 𝑚 = |𝑤1|. The language accepted by 𝑀 , denoted
𝐿(𝑀), is defined as 𝐿(𝑀) = ↑𝑉 (𝐿𝑀(𝑀)).

From a practical point of view, however, this definition is not ideal. The automaton can
easily end up in a configuration that cannot yield accepting results, and the correct positions
of auxiliary symbols # need to be checked separately at the end of the process. Therefore,
we present a modified definition that has the jumping mechanism more integrated into its
structure. We are also using a simplification for complementary pairs and treat them as
single letters; such a change has no effect on the accepting power, and this form of input is
more natural for formal language theory.

48

Definition 5.2.2. A jumping 5′ → 3′ WK automaton is a quintuple 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿),
where 𝑉 , 𝑄, 𝑞0, and 𝐹 are the same as in WK automata, 𝑉 ∩{#} = ∅, 𝛿 : (𝑄×𝑉 *×𝑉 *×𝐷) →
2𝑄, where 𝐷 = {⊕,⊖} indicates the mutual position of heads, and 𝛿(𝑞, 𝑤1, 𝑤2, 𝑠) ̸= ∅
only for finitely many quadruples (𝑞, 𝑤1, 𝑤2, 𝑠) ∈ 𝑄 × 𝑉 * × 𝑉 * × 𝐷. A configuration
(𝑞, 𝑠, 𝑤1, 𝑤2, 𝑤3) consists of the state 𝑞 ∈ 𝑄, the mutual position of heads 𝑠 ∈ 𝐷, and the
three unprocessed portions of the input tape: (a) before the first head (𝑤1), (b) between
the heads (𝑤2), and (c) after the second head (𝑤3). A step of the automaton can be of the
following four types: Let 𝑥, 𝑦, 𝑢, 𝑣, 𝑤2 ∈ 𝑉 * and 𝑤1, 𝑤3 ∈ (𝑉 ∪ {#})*.
(1) ⊕-reading: (𝑞,⊕, 𝑤1, 𝑥𝑤2𝑦, 𝑤3) y (𝑞′, 𝑠, 𝑤1{#}|𝑥|, 𝑤2, {#}|𝑦|𝑤3), where 𝑞′ ∈ 𝛿(𝑞, 𝑥, 𝑦,

⊕), and 𝑠 is either ⊕ if |𝑤2| > 0 or ⊖ in other cases.
(2) ⊖-reading: (𝑞,⊖, 𝑤1𝑦, 𝜀, 𝑥𝑤3) y (𝑞′,⊖, 𝑤1, 𝜀, 𝑤3), where 𝑞′ ∈ 𝛿(𝑞, 𝑥, 𝑦,⊖).
(3) ⊕-jumping: (𝑞,⊕, 𝑤1, 𝑢𝑤2𝑣, 𝑤3) y (𝑞, 𝑠, 𝑤1𝑢,𝑤2, 𝑣𝑤3), where 𝑠 is either ⊕ if |𝑤2| > 0

or ⊖ in other cases.
(4) ⊖-jumping: (𝑞,⊖, 𝑤1{#}*, 𝜀, {#}*𝑤3) y (𝑞,⊖, 𝑤1, 𝜀, 𝑤3).
In the standard manner, let us extend y to y𝑛, where 𝑛 ≥ 0; then, based on y𝑛, let us
define y+ and y*. The accepted language, denoted by 𝐿(𝑀), can be defined by the final
accepting configurations that can be reached from the initial one: A string 𝑤 is accepted
by a jumping 5′ → 3′ WK automaton 𝑀 if and only if (𝑞0,⊕, 𝜀, 𝑤, 𝜀) y* (𝑞𝑓 ,⊖, 𝜀, 𝜀, 𝜀), for
𝑞𝑓 ∈ 𝐹 .

Even though the structure of this modified definition is considerably different from
Definition 5.2.1, it is not very difficult to show that both models indeed accept the same
family of languages.

Lemma 5.2.3. For every sensing 5′ → 3′ WK automaton with jumping feature 𝑀 , there
is a jumping 5′ → 3′ WK automaton 𝑁 such that 𝐿(𝑀) = 𝐿(𝑁).

Proof. By construction. Consider any sensing 5′ → 3′ WK automaton with jumping fea-
ture 𝑀 = (𝑉, 𝜌,𝑄, 𝑞0, 𝐹, 𝛿). In Theorem 4 in [42], it was shown that any classical WK
automaton 𝑀 ′ = (𝑉 ′, 𝜌′, 𝑄′, 𝑞′0, 𝐹

′, 𝛿′) can be converted into the classical WK automaton
𝑀 ′′ = (𝑉 ′, 𝜌′′, 𝑄′, 𝑞′0, 𝐹

′, 𝛿′′) such that 𝜌′′ = {(𝑎, 𝑎) : 𝑎 ∈ 𝑉 ′} and 𝐿(𝑀 ′) = 𝐿(𝑀 ′′). The
new transition function 𝛿′′ is constructed in the following way: For each 𝑞′ ∈ 𝛿′(𝑞, (𝑢

𝑣)) and
[𝑤𝑣] ∈ WK𝜌′(𝑉

′), where 𝑞, 𝑞′ ∈ 𝑄′ and 𝑢, 𝑣, 𝑤 ∈ 𝑉 ′*, let 𝑞′ ∈ 𝛿′′(𝑞, (𝑢
𝑤)). A similar approach

also works for sensing 5′ → 3′ WK automata. Thus, without loss of generality, assume
that 𝛿 in 𝑀 is an identity relation. Let us define the jumping 5′ → 3′ WK automaton
𝑁 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿

′), where 𝛿′(𝑞, 𝑤1, 𝑤2, 𝑠) = 𝛿(𝑞, (𝑤1
𝑤2), 𝑠) for all 𝑞 ∈ 𝑄, 𝑤1, 𝑤2 ∈ 𝑉 *, and

𝑠 ∈ {⊕,⊖}.
Now, we show that 𝑀 and 𝑁 accept the same language. We say that a current configu-

ration of 𝑀 is potentially valid if 𝑀 can still potentially reach some accepting configuration
(𝑤′

1
𝜀

)(𝑞𝑓 ,⊖)(
𝜀
𝑤′

2
), 𝑞𝑓 ∈ 𝐹 , where 𝑤′

1 = 𝑎1𝑎2 · · · 𝑎𝑛, 𝑤′
2 = 𝑏1𝑏2 · · · 𝑏𝑛, 𝑎𝑖, 𝑏𝑖 ∈ (𝑉 ∪ {#}), and

either 𝑎𝑖 = # and 𝑏𝑖 ∈ 𝑉 , or 𝑎𝑖 ∈ 𝑉 and 𝑏𝑖 = #, for all 𝑖 = 1, . . . , 𝑛, 𝑛 = |𝑤′
1|. Observe that

the condition regarding #’s can be checked continuously and individually for each pair (
𝑎𝑖
𝑏𝑖)

that was already passed by both heads. The following description thus considers only the
configurations of 𝑀 that are still potentially valid.

Let us explore how 𝑀 can be simulated with 𝑁 . The accepting process of 𝑀 can be
divided into three distinct stages:
(1) Before the heads meet (the mutual position of heads remains ⊕): The reading steps

of 𝑀 clearly correspond with the ⊕-reading steps of 𝑁—the processed positions are
marked with # in both models. Likewise, the jumping steps of 𝑀 clearly correspond

49

with the ⊕-jumping steps of 𝑁—the passed positions are left unchanged for the other
head in both models.

(2) The meeting point of heads (when the mutual position changes from ⊕ to ⊖): The
same steps as in (1) are still applicable. The difference is that in 𝑀 the heads can
cross each other, but in 𝑁 the heads must meet each other precisely. However, the
crossing situations in 𝑀 that lead to potentially valid configurations are quite limited.
Assume that the heads of 𝑀 cross each other, the I-head reads/skips 𝑢 and the J-head
reads/skips 𝑣, then:
(a) If |𝑢| > 1 and |𝑣| > 1, the resulting configuration cannot be potentially valid since

some pair (
𝑎𝑖
𝑏𝑖) was either read or skipped by both heads.

(b) If |𝑢| > 1 and |𝑣| = 0: Considering a reading step, all symbols from 𝑢 that are
read after the meeting point must be skipped by the J-head. However, since
jumping steps can occur arbitrarily, there is also an alternative sequence of steps
in 𝑀 where the heads precisely meet, the J-head jumps afterwards, and the same
configuration is reached. Moreover, any jumping step can be replaced with several
shorter jumping steps.

(c) If |𝑢| = 0 and |𝑣| > 1, the situation is analogous to (b).
Thus, 𝑁 does not need to cover these crossing situations.

(3) After the heads met (the mutual position of heads is ⊖): To keep the current config-
uration potentially valid, 𝑀 can use reading steps only on positions that were not yet
read. Correspondingly, 𝑁 can use ⊖-reading steps on positions that do not contain #.
Also, 𝑀 can effectively use jumping steps only on positions that were already read.
Correspondingly, 𝑁 can use ⊖-jumping steps on positions that contain #.

From the previous description it is also clear that 𝑁 cannot accept additional inputs that
are not accepted by 𝑀 since it follows identical state transitions and the steps behave
correspondingly between models. Thus, 𝐿(𝑁) = 𝐿(𝑀). A rigorous version of this proof is
rather lengthy but straightforward, so we left it to the reader.

Lemma 5.2.4. For every jumping 5′ → 3′ WK automaton 𝑀 , there is a sensing 5′ → 3′

WK automaton with jumping feature 𝑁 such that 𝐿(𝑀) = 𝐿(𝑁).

Proof. By construction. Consider any jumping 5′ → 3′ WK automaton 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿).
Let us define the sensing 5′ → 3′ WK automaton with jumping feature 𝑁 = (𝑉, 𝜌,𝑄, 𝑞0, 𝐹,
𝛿′), where 𝜌 = {(𝑎, 𝑎) : 𝑎 ∈ 𝑉 } and 𝛿′(𝑞, (𝑤1

𝑤2), 𝑠) = 𝛿(𝑞, 𝑤1, 𝑤2, 𝑠) for all 𝑞 ∈ 𝑄, 𝑤1, 𝑤2 ∈ 𝑉 *,
and 𝑠 ∈ {⊕,⊖}.

To show that 𝑀 and 𝑁 accept the same language, we can follow the reasoning described
in the proof of Lemma 5.2.3. The simulation of 𝑀 with 𝑁 is trivial since any ⊕/⊖-
reading/jumping step of 𝑀 can be easily simulated with a reading/jumping step of 𝑁 .
Moreover, for the simulated steps, it is guaranteed that the condition regarding #’s holds.
Finally, 𝑁 is clearly not able to accept additional inputs that are not accepted by 𝑀 . Thus,
𝐿(𝑁) = 𝐿(𝑀).

Proposition 5.2.5. The models of Definitions 5.2.1 and 5.2.2 accept the same family of
languages.

Proof. This proposition follows directly from Lemmas 5.2.3 and 5.2.4.

Hereafter, we primarily use Definition 5.2.2.

50

5.3 Examples
To demonstrate the behavior of the automata, we present a few simple examples.

Example 5.3.1. Let us recall that 𝐿 = {𝑤 ∈ {𝑎, 𝑏}* : |𝑤|𝑎 = |𝑤|𝑏} is a well-known
nonlinear context-free language. We show that, even though the jumping directions in the
model are quite restricted, we are able to accept such a language. Consider the following
jumping 5′ → 3′ WK automaton

𝑀 = ({𝑎, 𝑏}, {𝑠}, 𝑠, {𝑠}, 𝛿)

with the state transition function 𝛿: 𝛿(𝑠, 𝑎, 𝑏,⊕) = {𝑠} and 𝛿(𝑠, 𝑎, 𝑏,⊖) = {𝑠}. Starting from
𝑠, 𝑀 can either utilize the jumping or read simultaneously with both heads (the I-head
reads 𝑎 and the J-head reads 𝑏), and it always stays in the sole state 𝑠. Now, consider the
inputs 𝑎𝑎𝑎𝑏𝑏𝑏 and 𝑏𝑎𝑎𝑏𝑏𝑎. The former can be accepted by using three ⊕-readings and one
⊖-jumping:

(𝑠,⊕, 𝜀, 𝑎𝑎𝑎𝑏𝑏𝑏, 𝜀) y (𝑠,⊕,#, 𝑎𝑎𝑏𝑏,#) y (𝑠,⊕,##, 𝑎𝑏,##) y
(𝑠,⊖,###, 𝜀,###) y (𝑠,⊖, 𝜀, 𝜀, 𝜀).

The latter input is more complex and can be accepted by using one ⊕-jumping, two ⊕-
readings, one ⊖-jumping, and one ⊖-reading:

(𝑠,⊕, 𝜀, 𝑏𝑎𝑎𝑏𝑏𝑎, 𝜀) y (𝑠,⊕, 𝑏, 𝑎𝑎𝑏𝑏, 𝑎) y (𝑠,⊕, 𝑏#, 𝑎𝑏,#𝑎) y
(𝑠,⊖, 𝑏##, 𝜀,##𝑎) y (𝑠,⊖, 𝑏, 𝜀, 𝑎) y (𝑠,⊖, 𝜀, 𝜀, 𝜀).

It is not hard to see that, by combining different types of steps, we can accept any input
containing the same number of 𝑎’s and 𝑏’s, and thus 𝐿(𝑀) = 𝐿.

Example 5.3.2. Consider the following jumping 5′ → 3′ WK automaton

𝑀 = ({𝑎, 𝑏}, {𝑠}, 𝑠, {𝑠}, 𝛿)

with the state transition function 𝛿: 𝛿(𝑠, 𝑎, 𝑏,⊕) = {𝑠}. Observe that this is almost identical
to Example 5.3.1, however, we cannot use the ⊖-reading anymore. Consequently, we also
cannot effectively use the ⊕-jumping because there is no way how to process remaining
symbols afterwards. As a result, the accepted language changes to 𝐿(𝑀) = {𝑎𝑛𝑏𝑛 : 𝑛 ≥ 0}.

Lastly, we give a more complex example that uses all parts of the model.

Example 5.3.3. Consider the following jumping 5′ → 3′ WK automaton

𝑀 = ({𝑎, 𝑏, 𝑐}, {𝑠0, 𝑠1, 𝑠2}, 𝑠0, {𝑠0}, 𝛿)

with 𝛿: 𝛿(𝑠0, 𝑎, 𝑏,⊕) = {𝑠1}, 𝛿(𝑠1, 𝜀, 𝑏,⊕) = {𝑠0}, 𝛿(𝑠0, 𝑐, 𝑐,⊖) = {𝑠2}, and 𝛿(𝑠2, 𝜀, 𝑐,⊖) =
{𝑠0}. We can divide the accepting process of 𝑀 into two stages. First, before the heads
meet, the automaton ensures that for every 𝑎 on the left-hand side there are two 𝑏’s on
the right-hand side; other symbols are skipped with the jumps. Second, after the heads
met, the automaton checks if the part before the meeting point has double the number
of 𝑐’s as the part after the meeting point. Thus, 𝐿(𝑀) = {𝑤1𝑤2 : 𝑤1 ∈ {𝑎, 𝑐}*, 𝑤2 ∈
{𝑏, 𝑐}*, 2 · |𝑤1|𝑎 = |𝑤2|𝑏, |𝑤1|𝑐 = 2 · |𝑤2|𝑐}.

51

5.4 General Results
These results cover the general behavior of jumping 5′ → 3′ WK automata without any
additional restrictions on the model. Let SWK and JWK denote the language families
accepted by sensing 5′ → 3′ WK automata and jumping 5′ → 3′ WK automata, respectively.

Considering previous results on other models that use the jumping mechanism (see
[57, 58, 31] and Chapters 3 and 4), it is a common characteristic that they define language
families that are incomparable with the classical families of regular, linear, and context-free
languages. On the other hand, sensing 5′ → 3′ WK automata (see [60, 61, 63, 65, 70]) are
closely related to the family of linear languages. First, we show that the new model is able
to accept all linear languages and that its accepting power goes even beyond the family of
linear languages.

Lemma 5.4.1. For every sensing 5′ → 3′ WK automaton 𝑀1, there is a jumping 5′ → 3′

WK automaton 𝑀2 such that 𝐿(𝑀1) = 𝐿(𝑀2).

Proof. This can be proven by construction. Consider any sensing 5′ → 3′ WK automaton
𝑀1. A direct conversion would be complicated, however, let us recall that LIN = SWK (see
Theorem 2 in [65]). Consider a linear grammar 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) such that 𝐿(𝐺) = 𝐿(𝑀1).
We can construct the jumping 5′ → 3′ WK automaton 𝑀2 such that 𝐿(𝑀2) = 𝐿(𝐺).
Assume that 𝑞𝑓 ̸∈ (𝑁 ∪ 𝑇). Define 𝑀2 = (𝑇,𝑁 ∪ {𝑞𝑓}, 𝑆, {𝑞𝑓}, 𝛿), where 𝐵 ∈ 𝛿(𝐴, 𝑢, 𝑣,⊕)
if 𝐴 → 𝑢𝐵𝑣 ∈ 𝑃 and 𝑞𝑓 ∈ 𝛿(𝐴, 𝑢, 𝜀,⊕) if 𝐴 → 𝑢 ∈ 𝑃 (𝐴,𝐵 ∈ 𝑁 , 𝑢, 𝑣 ∈ 𝑇 *).

From the definition of jumping 5′ → 3′ WK automaton, the ⊕-reading steps will always
look like this: (𝑞,⊕, 𝑤1, 𝑢𝑤2𝑣, 𝑤3) y (𝑞′, 𝑠, 𝑤1{#}|𝑢|, 𝑤2, {#}|𝑣|𝑤3), where 𝑞′ ∈ 𝛿(𝑞, 𝑢, 𝑣,⊕),
𝑤2 ∈ 𝑇 *, 𝑤1, 𝑤3 ∈ (𝑇 ∪ {#})*, and 𝑠 is either ⊕ if |𝑤2| > 0 or ⊖ in other cases. In 𝑀2,
there are no possible ⊖-reading steps. The ⊕-jumping can be potentially used to skip some
symbols before the heads meet; nonetheless, this leads to the configuration (𝑞, 𝑠, 𝑤1, 𝑤2, 𝑤3)
where alph(𝑤1𝑤3) ∩ 𝑇 ̸= ∅. Since without ⊖-reading steps there is no way how to read
symbols of 𝑇 in 𝑤1 and 𝑤3, such a configuration cannot yield an accepting result. Conse-
quently, starting from (𝑆,⊕, 𝜀, 𝑤, 𝜀) where 𝑤 ∈ 𝑇 *, it can be easily seen that if 𝑀2 accepts
𝑤, it reads all symbols of 𝑤 in the same fashion as 𝐺 generates them; the remaining #’s
can be erased with the ⊖-jumping afterwards. Moreover, the heads of 𝑀2 can meet each
other with the accepting state 𝑞𝑓 if and only if 𝐺 can finish the generation process with a
rule 𝐴 → 𝑢. Thus, 𝐿(𝑀2) = 𝐿(𝐺) = 𝐿(𝑀1).

Theorem 5.4.2. LIN = SWK ⊂ JWK.

Proof. SWK ⊆ JWK follows from Lemma 5.4.1. LIN = SWK was proven in [65]. JWK
̸⊆ LIN follows from Example 5.3.1.

The next two characteristics follow from the previous results.

Theorem 5.4.3. Jumping 5′ → 3′ WK automata that do not use ⊖-reading steps accept
linear languages.

Proof. Consider any jumping 5′ → 3′ WK automaton 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) that has no
possible ⊖-reading steps. Following the reasoning from the proof of Lemma 5.4.1, if there
are no possible ⊖-reading steps, the ⊕-jumping cannot be effectively used, and we can
construct a linear grammar that generates strings in the same fashion as 𝑀 reads them.
Define the linear grammar 𝐺 = (𝑄,𝑉,𝑅, 𝑞0), where 𝑅 is constructed in the following way:
(1) For each 𝑝 ∈ 𝛿(𝑞, 𝑢, 𝑣,⊕), add 𝑞 → 𝑢𝑝𝑣 to 𝑅. (2) For each 𝑓 ∈ 𝐹 , add 𝑓 → 𝜀 to 𝑅.
Clearly, 𝐿(𝐺) = 𝐿(𝑀).

52

Proposition 5.4.4. The language family accepted by double-jumping finite automata that
perform right-left and left-right jumps (see Chapter 4) is strictly included in JWK.

Proof. First, Theorem 4.3.18 shows that jumping finite automata that perform right-left
and left-right jumps accept the same family of languages. Second, Theorem 4.3.7 shows
that this family is strictly included in LIN. Finally, Theorem 5.4.2 shows that LIN is
strictly included in JWK.

Even though jumping 5′ → 3′ WK automata are able to accept some nonlinear lan-
guages, the jumping directions of their heads are quite restricted compared to general
jumping finite automata. Consequently, there are some languages accepted by jumping
5′ → 3′ WK automata and general jumping finite automata that cannot be accepted with
the other model. To formally prove these results, we need to introduce the concept of the
debt of a configuration in jumping 5′ → 3′ WK automata. First, we start with the formal
definition of a reachable state.

Definition 5.4.5. Let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a jumping 5′ → 3′ WK automaton. Assuming
some states 𝑞, 𝑞′ ∈ 𝑄 and a mutual position of heads 𝑠 ∈ {⊕,⊖}, we say that 𝑞′ is reachable
from 𝑞 and 𝑠 if there exists a configuration (𝑞, 𝑠, 𝑤1, 𝑤2, 𝑤3) such that (𝑞, 𝑠, 𝑤1, 𝑤2, 𝑤3) y*

(𝑞′, 𝑠′, 𝑤′
1, 𝑤

′
2, 𝑤

′
3) in 𝑀 , 𝑠′ ∈ {⊕,⊖}, 𝑤1, 𝑤2, 𝑤3, 𝑤

′
1, 𝑤

′
2, 𝑤

′
3 ∈ (𝑉 ∪ {#})*.

Next, we show that for any computation 𝒞 that takes a jumping 5′ → 3′ WK automaton
𝑀 from a starting configuration to a configuration from which a final state is reachable,
there exists 𝑤′ ∈ 𝐿(𝑀) such that 𝑤′ can be fully processed with the same sequence of
reading steps as in 𝒞 and a limited number of additional steps. Note that jumping steps in
𝒞 are unimportant for the result since jumping steps can occur arbitrarily and they do not
process any symbols of the input.

Lemma 5.4.6. For each jumping 5′ → 3′ WK automaton 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) there exists
a constant 𝑘 such that the following holds. Let 𝑞 ∈ 𝑄 and 𝑠 ∈ {⊕,⊖} such that 𝑓 ∈ 𝐹
is reachable from 𝑞 and 𝑠. For every computation 𝒞 that takes 𝑀 from (𝑞0,⊕, 𝜀, 𝑤, 𝜀) to
(𝑞, 𝑠, 𝑤1, 𝑤2, 𝑤3), 𝑤 ∈ 𝑉 *, 𝑤1, 𝑤2, 𝑤3 ∈ (𝑉 ∪ {#})*, there exists 𝑤′ ∈ 𝐿(𝑀) such that 𝑀
starting with 𝑤′ can reach 𝑞 and 𝑠′ ∈ {⊕,⊖} by using the same sequence of ⊕/⊖-reading
steps as in 𝒞 and the rest of 𝑤′ can be processed with a limited number of additional steps
bounded by 𝑘.

Proof. First, if 𝑓 is reachable from 𝑞 and 𝑠, then there exists a sequence of pairs 𝒫 =
(𝑝0, 𝑠0) · · · (𝑝𝑛, 𝑠𝑛), for some 𝑛 ≥ 0, where

∙ 𝑝𝑖 ∈ 𝑄, 𝑠𝑖 ∈ {⊕,⊖}, for all 𝑖 = 0, . . . , 𝑛,
∙ 𝑝0 = 𝑞, 𝑠0 = 𝑠 or 𝑠0 = ⊖, 𝑝𝑛 = 𝑓 , 𝑠𝑛 = ⊖,
∙ for all 𝑖 = 0, . . . , 𝑛− 1 it holds: 𝑝𝑖+1 ∈ 𝛿(𝑝𝑖, 𝑥𝑖, 𝑦𝑖, 𝑠𝑖), 𝑥𝑖, 𝑦𝑖 ∈ 𝑉 *,
∙ for all 𝑖 = 0, . . . , 𝑛− 1 it holds: 𝑠𝑖+1 = 𝑠𝑖 or 𝑠𝑖+1 = ⊖, and
∙ (𝑝𝑖, 𝑠𝑖) = (𝑝𝑗 , 𝑠𝑗) implies 𝑖 = 𝑗, 𝑖, 𝑗 = 0, . . . , 𝑛 (all pairs are unique).

This sequence is finite, and its maximum length is bounded by 𝑘′ = 2 · |𝑄|.
Second, let us represent a ⊕/⊖-reading step as a quintuple (𝑞′, 𝑥, 𝑦, 𝑠′′, 𝑞′′) according to

𝑞′′ ∈ 𝛿(𝑞′, 𝑥, 𝑦, 𝑠′′), 𝑞′, 𝑞′′ ∈ 𝑄, 𝑥, 𝑦 ∈ 𝑉 *, 𝑠′′ ∈ {⊕,⊖}. From the computation 𝒞 we extract
a sequence of ⊕/⊖-reading steps 𝒮. From the sequence of pairs 𝒫 we can easily derive a
sequence of ⊕/⊖-reading steps 𝒮 ′ that follows the state transitions of 𝒫. Let 𝒮 ′′ = 𝒮𝒮 ′. We
split 𝒮 ′′ into two parts 𝒮 ′′ = 𝒮 ′′

⊕𝒮 ′′
⊖ such that 𝒮 ′′

⊕ = (𝑝′0, 𝑎0, 𝑏0,⊕, 𝑞′0) · · · (𝑝′𝑛, 𝑎𝑛, 𝑏𝑛,⊕, 𝑞′𝑛) and
𝒮 ′′
⊖ = (𝑝′′0, 𝑐0, 𝑑0,⊖, 𝑞′′0) · · · (𝑝′′𝑚, 𝑐𝑚, 𝑑𝑚,⊖, 𝑞′′𝑚), where 𝑛,𝑚 ≥ 0, 𝑖 = 0, . . . , 𝑛, 𝑗 = 0, . . . ,𝑚,

𝑝′𝑖, 𝑞
′
𝑖, 𝑝

′′
𝑗 , 𝑞

′′
𝑗 ∈ 𝑄, 𝑎𝑖, 𝑏𝑖, 𝑐𝑗 , 𝑑𝑗 ∈ 𝑉 *.

53

Third, we consider input 𝑤′ = 𝑎0 · · · 𝑎𝑛𝑑𝑚 · · · 𝑑0𝑐0 · · · 𝑐𝑚𝑏𝑛 · · · 𝑏0. It is not hard to con-
struct a computation 𝒞′ of 𝑀 from 𝒮 ′′

⊕, one ⊕-jumping step, 𝒮 ′′
⊖, and one ⊖-jumping step

such that

(𝑞0,⊕, 𝜀, 𝑎0 · · · 𝑎𝑛𝑑𝑚 · · · 𝑑0𝑐0 · · · 𝑐𝑚𝑏𝑛 · · · 𝑏0, 𝜀) y*

(𝑞′, 𝑠′′′, {#}|𝑎0···𝑎𝑛|, 𝑑𝑚 · · · 𝑑0𝑐0 · · · 𝑐𝑚, {#}|𝑏𝑛···𝑏0|) y
(𝑞′,⊖, {#}|𝑎0···𝑎𝑛|𝑑𝑚 · · · 𝑑0, 𝜀, 𝑐0 · · · 𝑐𝑚{#}|𝑏𝑛···𝑏0|) y*

(𝑓,⊖, {#}|𝑎0···𝑎𝑛|, 𝜀, {#}|𝑏𝑛···𝑏0|) y
(𝑓,⊖, 𝜀, 𝜀, 𝜀),

𝑞′ ∈ 𝑄, 𝑠′′′ ∈ {⊕,⊖}. Thus, 𝑤′ ∈ 𝐿(𝑀) and there exists 𝑘 ≤ 𝑘′ for 𝑀 that bounds the
number of additional steps.

Next, based on known 𝑀 and 𝐿(𝑀), we can define the debt of a configuration of 𝑀 .
If we follow a computation of 𝑀 on an input 𝑤, we can easily determine the Parikh vector
𝑜 of symbols already processed from 𝑤 in a current configuration 𝛾. Additionally, with
the known 𝐿(𝑀), we can determine Parikh vectors for all 𝑤′ ∈ 𝐿(𝑀). The debt of the
configuration 𝛾 represents the minimum number of symbols that have to be added to 𝑜
so that 𝑜 matches the Parikh vector of some 𝑤′ ∈ 𝐿(𝑀). Note that we use ∞ to cover
situations when no match is possible.

Definition 5.4.7. Let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a jumping 5′ → 3′ WK automaton, where
𝑉 = {𝑎1, . . . , 𝑎𝑛}, and let 𝑤 ∈ 𝑉 *. We define the Parikh vector 𝑜 = (𝑜1, . . . , 𝑜𝑛) of processed
(read) symbols from 𝑤 in a configuration 𝛾 = (𝑞, 𝑠, 𝑤1, 𝑤2, 𝑤3) of 𝑀 reached from an
initial configuration (𝑞0,⊕, 𝜀, 𝑤, 𝜀) of 𝑀 as 𝑜 = Ψ𝑉 (𝑤) − Ψ𝑉 (𝑤1𝑤2𝑤3), 𝑞 ∈ 𝑄, 𝑠 ∈ {⊕,⊖},
𝑤1, 𝑤2, 𝑤3 ∈ (𝑉 ∪{#})*. Using the Parikh mapping of 𝐿(𝑀), we define ∆(𝑜) = {

∑︀𝑛
𝑖=1(𝑚𝑖−

𝑜𝑖) : (𝑚1, . . . ,𝑚𝑛) ∈ Ψ𝑉 (𝐿(𝑀)), 𝑚𝑖 ≥ 𝑜𝑖, 1 ≤ 𝑖 ≤ 𝑛} ∪ {∞}. Finally, we define the debt of
the configuration 𝛾 of 𝑀 as min ∆(𝑜).

And finally, we can combine Lemma 5.4.6 and Definition 5.4.7 to show that each jumping
5′ → 3′ WK automaton 𝑀 has to accept all 𝑤 ∈ 𝐿(𝑀) over configurations with some
bounded debt.

Lemma 5.4.8. Let 𝐿 be a language, and let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a jumping 5′ → 3′ WK
automaton. If 𝐿(𝑀) = 𝐿, there exists a constant 𝑘 for 𝑀 such that 𝑀 accepts all 𝑤 ∈ 𝐿
using only configurations that have their debt bounded by 𝑘.

Proof. By contradiction. Assume that there is no constant 𝑘 for 𝑀 such that 𝑀 accepts all
𝑤 ∈ 𝐿 using only configurations that have their debt bounded by 𝑘. Then, 𝑀 can accept
some 𝑤 ∈ 𝐿 over a configuration for which the debt cannot be bounded by any 𝑘. Let
𝑉 = {𝑎1, . . . , 𝑎𝑛}. Consider any configuration 𝛾 of 𝑀 reached from an initial configuration
(𝑞0,⊕, 𝜀, 𝑤, 𝜀) of 𝑀 . Let 𝑜 = (𝑜1, . . . , 𝑜𝑛) be the Parikh vector of processed symbols from 𝑤
in 𝛾. First, assume that 𝛾 contains a state 𝑞 ∈ 𝑄 with a mutual position of heads 𝑠 ∈ {⊕,⊖}
from which a final state 𝑓 ∈ 𝐹 is reachable. Then, due to Lemma 5.4.6, there is 𝑤′ ∈ 𝐿(𝑀)
such that Ψ(𝑤′) = (𝑚1, . . . ,𝑚𝑛), 𝑚𝑖 ≥ 𝑜𝑖, 1 ≤ 𝑖 ≤ 𝑛, and |𝑤′| ≤

∑︀𝑛
𝑖=1(𝑜𝑖) + 𝑘′, where 𝑘′

is some constant for 𝑀 . According to Definition 5.4.7, 𝑤′ ∈ 𝐿(𝑀) implies min ∆(𝑜) ≤ 𝑘′.
Second, assume that 𝛾 contains a state 𝑞 with a mutual position of heads 𝑠 from which no
final state 𝑓 is reachable. Then, by Definitions 5.2.2 and 5.4.5, there is no computation
that takes 𝑀 from 𝛾 to a final accepting configuration. Thus, when 𝑀 accepts 𝑤, it must

54

be done over configurations with the debt ≤ 𝑘′. However, that is a contradiction with the
assumption that 𝑀 can accept some 𝑤 ∈ 𝐿 over a configuration for which the debt cannot
be bounded by any 𝑘.

Observe that the debt alone does not depend on the order of symbols in the words of
𝐿(𝑀), e.g., Ψ𝑉 ({(𝑎𝑏𝑐)𝑛 : 𝑛 ≥ 0}) = Ψ𝑉 ({𝑎𝑛𝑏𝑛𝑐𝑛 : 𝑛 ≥ 0}), for 𝑉 = {𝑎, 𝑏, 𝑐}. However,
when the debt is combined with the computational possibilities of 𝑀 on an input 𝑤, we
can show that a language 𝐿 cannot be accepted by 𝑀 if there is no 𝑘 for 𝑀 such that all
𝑤 ∈ 𝐿 can be fully processed over configurations of 𝑀 with the debt bounded by 𝑘.

Lemma 5.4.9. There is no jumping 5′ → 3′ WK automaton 𝑀 such that 𝐿(𝑀) = {𝑎𝑛𝑏𝑛𝑐𝑛 :
𝑛 ≥ 0}.

Proof. Basic idea. Considering any sufficiently large constant 𝑘, we show that 𝑀 cannot
process all symbols of 𝑎10𝑘𝑏10𝑘𝑐10𝑘 using only configurations that have their debt bounded
by 𝑘.
Formal proof. By contradiction. Let 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛 : 𝑛 ≥ 0}, and let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a
jumping 5′ → 3′ WK automaton such that 𝐿(𝑀) = 𝐿. Due to Lemma 5.4.8, there must exist
a constant 𝑘 for 𝑀 such that 𝑀 accepts all 𝑤 ∈ 𝐿 using only configurations that have their
debt bounded by 𝑘. (Observe that if Lemma 5.4.8 holds for some constant 𝑘′, it also holds
for all 𝑘′′ > 𝑘′.) Let 𝑘min = max{|𝑢𝑣| : 𝛿(𝑞, 𝑢, 𝑣, 𝑠) ̸= ∅, 𝑞 ∈ 𝑄, 𝑢, 𝑣 ∈ 𝑉 *, 𝑠 ∈ {⊕,⊖}}.
Consider any 𝑘 for 𝑀 such that 𝑘 > 𝑘min. Due to the structure of 𝐿, we can represent
the debt of the configuration of 𝑀 as ⟨𝑑𝑎, 𝑑𝑏, 𝑑𝑐⟩, where 𝑑𝑎, 𝑑𝑏, 𝑑𝑐 is the minimum number
of symbols 𝑎, 𝑏, 𝑐 that 𝑀 must yet to read to get the balanced number of processed
symbols. (For illustration, an initial configuration of 𝑀 has the debt ⟨0, 0, 0⟩. When
𝑀 reads 𝑎, the following configuration has the debt ⟨0, 1, 1⟩ because at least one 𝑏 and
one 𝑐 have yet to be read to keep the number of processed symbols balanced.) When
(𝑞0,⊕, 𝜀, 𝑤, 𝜀) y* (𝑞𝑓 ,⊖, 𝜀, 𝜀, 𝜀) in 𝑀 , 𝑞𝑓 ∈ 𝐹 , for all traversed configurations must hold
𝑑𝑎 + 𝑑𝑏 + 𝑑𝑐 ≤ 𝑘. Let 𝑤 = 𝑎10𝑘𝑏10𝑘𝑐10𝑘.

First, we explore the maximum number of symbols that 𝑀 can read from 𝑤 before the
heads meet. Starting from the initial configuration (𝑞0,⊕, 𝜀, 𝑤, 𝜀) with the debt ⟨0, 0, 0⟩ and
until the mutual position ⊖ is reached, 𝑀 can use ⊕-reading steps to process symbols and
⊕-jumping steps to skip symbols. Consider different reading strategies that try to process
the maximum number of symbols from 𝑎10𝑘𝑏10𝑘𝑐10𝑘 before the heads meet. There are three
distinct places where the heads of 𝑀 can meet:
(A) Assume that the heads meet inside the segment of 𝑎’s:

(1) 𝑀 can process (with multiple steps) 𝑎𝑘 and 𝑐𝑘 until it reaches the debt ⟨0, 𝑘, 0⟩.
Then, 𝑀 has to start read 𝑏’s.

(2) 𝑀 can read 𝑙 symbols together in one step (balanced number of 𝑎’s, 𝑏’s, and 𝑐’s)
while keeping the debt ⟨0, 𝑘, 0⟩, 𝑙 < 𝑘. Nonetheless, the J-head ends up in the
segment of 𝑏’s.

(3) 𝑀 can process 𝑎𝑘 and 𝑏2𝑘 until it reaches the debt ⟨0, 0, 𝑘⟩. Clearly, there is no
way how to read additional 𝑐’s.

No further reading is possible, and this strategy can process 5𝑘 + 𝑙 symbols.
(B) Assume that the heads meet inside the segment of 𝑐’s. Then, this is just a mirror case

of (A), and this strategy can process 5𝑘 + 𝑙 symbols.
(C) Assume that the heads meet inside the segment of 𝑏’s. Observe that in (A) and (B)

the heads can meet on the border of 𝑎’s and 𝑏’s or 𝑏’s and 𝑐’s. There are no additional
possibilities when both heads read 𝑏’s since the debt is limited by the letters that were

55

already skipped by one of the heads. Thus, this strategy can process 5𝑘 + 𝑙 symbols
as well.

Consequently, before the heads meet, 𝑀 can process no more than 5𝑘 + 𝑙 symbols.
Second, when the heads meet, 𝑎>4𝑘𝑏>4𝑘𝑐>4𝑘 has yet to be processed. The heads are

next to each other, and 𝑀 can use ⊖-reading steps to process symbols and ⊖-jumping steps
to remove the auxiliary #’s. Consider different reading strategies that try to process the
maximum number of symbols after the heads met. There are several distinct places where
the heads of 𝑀 can be positioned:
(A) Assume that the heads are between 𝑎’s and 𝑏’s. It is possible to start with a debt up

to 𝑘. Consider the debt ⟨0, 𝑘, 0⟩. 𝑀 can process 𝑎𝑘 and 𝑏2𝑘 until it reaches the debt
⟨0, 0, 𝑘⟩. Since there is 𝑏>4𝑘, it is not possible to reach 𝑐’s. Clearly, it is not possible to
select a different debt that would yield a better result. Thus, this strategy can process
3𝑘 symbols.

(B) Assume that the heads are between 𝑏’s and 𝑐’s. Then, this is just a mirror case of (A),
and this strategy can process 3𝑘 symbols.

(C) Assume that the heads are in the middle of 𝑏’s with the debt ⟨0, 𝑘, 0⟩. 𝑀 can process
𝑏
3
2
𝑘 until it reaches ⟨12𝑘, 0,

1
2𝑘⟩. It is not possible to reach neither 𝑎’s or 𝑐’s. Thus, this

strategy can process 3
2𝑘 symbols.

(D) Any other position of the heads can be seen as a slightly modified case of (A), (B), or
(C). Since neither of these cases is able to reach all three types of symbols, they can
process only up to 3𝑘 symbols.

Consequently, after the heads met, 𝑀 can process no more than 3𝑘 symbols.
Finally, we can see that 𝑀 is not able to process more than 8𝑘 + 𝑙 symbols from

𝑤 = 𝑎10𝑘𝑏10𝑘𝑐10𝑘 when the debt of configurations of 𝑀 is bounded by 𝑘. Since, for any
𝑘, 𝑤 ∈ 𝐿 and 𝑤 contains 30𝑘 symbols, there is no constant 𝑘 for 𝑀 such that 𝑀 accepts
all 𝑤 ∈ 𝐿 using only configurations that have their debt bounded by 𝑘. But that is a
contradiction with the assumption that there is a jumping 5′ → 3′ WK automaton 𝑀 such
that 𝐿(𝑀) = {𝑎𝑛𝑏𝑛𝑐𝑛 : 𝑛 ≥ 0}.

Lemma 5.4.10. There is no jumping 5′ → 3′ WK automaton 𝑀 such that 𝐿(𝑀) = {𝑤 ∈
{𝑎, 𝑏, 𝑐}* : |𝑤|𝑎 = |𝑤|𝑏 = |𝑤|𝑐}.

Proof. Let 𝑁 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a jumping 5′ → 3′ WK automaton, 𝐿 = {𝑤 ∈ {𝑎, 𝑏, 𝑐}* :
|𝑤|𝑎 = |𝑤|𝑏 = |𝑤|𝑐}, and 𝐾 = {𝑎𝑛𝑏𝑛𝑐𝑛 : 𝑛 ≥ 0}. Let 𝑤 be an input of the form 𝑎*𝑏*𝑐*. Let
𝛾 be a configuration of 𝑁 reached from an initial configuration (𝑞0,⊕, 𝜀, 𝑤, 𝜀) of 𝑁 . Let 𝑜
be the Parikh vector of processed symbols from 𝑤 in 𝛾. Observe that, for any 𝛾, the debt
of the configuration min ∆(𝑜) is similar for 𝐿(𝑁) = 𝐿 and 𝐿(𝑁) = 𝐾 since it only depends
on 𝑜 and the quantities of symbols in the words of the language 𝐿(𝑁). Consequently, the
proof that there is no such 𝑀 is analogous to the proof of Lemma 5.4.9.

Proposition 5.4.11. JWK is incomparable with GJFA and JFA.

Proof. The language {𝑤 ∈ {𝑎, 𝑏}* : |𝑤|𝑎 = |𝑤|𝑏} from Example 5.3.1 and the language
{𝑤 ∈ {𝑎, 𝑏, 𝑐}* : |𝑤|𝑎 = |𝑤|𝑏 = |𝑤|𝑐} from Lemma 5.4.10 are accepted with (general)
jumping finite automata (see Example 5 in [57]). The language {𝑎𝑛𝑏𝑛 : 𝑛 ≥ 0} from
Example 5.3.2 is not accepted with (general) jumping finite automata (see Lemma 19 in
[57]).

The last group of results compares the accepting power of jumping 5′ → 3′ WK automata
with the families of context-sensitive and context-free languages.

56

Theorem 5.4.12. JWK ⊂ CS.

Proof. Clearly, the use of two heads and the jumping behavior can be simulated by linear
bounded automata, so JWK ⊆ CS. From Lemma 5.4.9, CS − JWK ̸= ∅.

Lemma 5.4.13. There are some non-context-free languages accepted by jumping 5′ → 3′

WK automata.

Proof. Consider the following jumping 5′ → 3′ WK automaton

𝑀 = ({𝑎, 𝑏, 𝑐, 𝑑}, {𝑠}, 𝑠, {𝑠}, 𝛿)

with the state transition function 𝛿: 𝛿(𝑠, 𝑎, 𝑐,⊕) = {𝑠} and 𝛿(𝑠, 𝑑, 𝑏,⊖) = {𝑠}. The accept-
ing process has two stages. First, before the heads meet, the automaton reads the same num-
ber of 𝑎’s and 𝑐’s. Second, after the heads met, the automaton reads the same number of 𝑑’s
and 𝑏’s. Thus, 𝐿(𝑀) = {𝑤1𝑤2 : 𝑤1 ∈ {𝑎, 𝑏}*, 𝑤2 ∈ {𝑐, 𝑑}*, |𝑤1|𝑎 = |𝑤2|𝑐, |𝑤1|𝑏 = |𝑤2|𝑑}.
By contradiction. Assume that 𝐿(𝑀) is a context-free language. The family of context-free
languages is closed under intersection with regular sets. Let 𝐾 = 𝐿(𝑀)∩{𝑎}*{𝑏}*{𝑐}*{𝑑}*.
Clearly, there are some strings in 𝐿(𝑀) that satisfy this forced order of symbols. Fur-
thermore, they all have the proper correlated numbers of these symbols. Consequently,
𝐾 = {𝑎𝑛𝑏𝑚𝑐𝑛𝑑𝑚 : 𝑛,𝑚 ≥ 0}. However, 𝐾 is a well-known non-context-free language
(see Chapter 3.1 in [78]). That is a contradiction with the assumption that 𝐿(𝑀) is a
context-free language. Therefore, 𝐿(𝑀) is a non-context-free language.

Lemma 5.4.14. There is no jumping 5′ → 3′ WK automaton 𝑀 such that 𝐿(𝑀) =
{𝑎𝑛𝑏𝑛𝑐𝑚𝑑𝑚 : 𝑛,𝑚 ≥ 0}.

Proof. Basic idea. We follow the proof structure of Lemma 5.4.9. Considering any suffi-
ciently large constant 𝑘, we show that 𝑀 cannot process all symbols of 𝑎10𝑘𝑏10𝑘 𝑐10𝑘𝑑10𝑘

using only configurations that have their debt bounded by 𝑘.
Formal proof. By contradiction. Let 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑚𝑑𝑚 : 𝑛,𝑚 ≥ 0}, and let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹,
𝛿) be a jumping 5′ → 3′ WK automaton such that 𝐿(𝑀) = 𝐿. Due to Lemma 5.4.8, there
must exist a constant 𝑘 for 𝑀 such that 𝑀 accepts all 𝑤 ∈ 𝐿 using only configurations
that have their debt bounded by 𝑘. Let 𝑘min = max{|𝑢𝑣| : 𝛿(𝑞, 𝑢, 𝑣, 𝑠) ̸= ∅, 𝑞 ∈ 𝑄, 𝑢, 𝑣 ∈
𝑉 *, 𝑠 ∈ {⊕,⊖}}. Consider any 𝑘 for 𝑀 such that 𝑘 > 𝑘min. Let 𝑤 = 𝑎10𝑘𝑏10𝑘𝑐10𝑘𝑑10𝑘.

We follow a computation of 𝑀 from an initial configuration 𝜎 = (𝑞0,⊕, 𝜀, 𝑤, 𝜀). First,
we explore the limits of how many symbols 𝑀 can read with ⊖-reading steps. Let 𝛾 be the
first configuration of the computation of 𝑀 with the mutual position of heads ⊖ reached
from 𝜎. Consider the maximum number of 𝑏’s that the J-head can read with ⊖-reading
steps starting from 𝛾. Since 𝑎’s are in front of 𝑏’s and since 𝑎’s are linked with 𝑏’s, this
number must be limited. The configuration 𝛾 can have the debt of at most 𝑘 𝑏’s, the debt
can reach at most 𝑘 𝑎’s, and only one step can read both types of symbols together. Thus,
the maximum number of 𝑏’s that the J-head can read with ⊖-reading steps starting from
𝛾 is less than 3𝑘. In the same manner, the maximum number of 𝑐’s that the I-head can
read with ⊖-reading steps starting from 𝛾 is less than 3𝑘.

Second, we explore the limits of how many symbols 𝑀 can read with ⊕-reading steps.
Consider the maximum number of 𝑎’s and 𝑏’s that the I-head can read on its own with
⊕-reading steps starting from 𝛾. The configuration 𝜎 has no debt, the debt can reach at
most 𝑘 𝑏’s, only one step can read both types of symbols together, and then the debt can
reach at most 𝑘 𝑎’s. Thus, the maximum number of 𝑎’s and 𝑏’s that the J-head can read

57

on its own with ⊕-reading steps starting from 𝛾 is less than 4𝑘. In the same manner,
the maximum number of 𝑐’s and 𝑑’s that the J-head can read on its own with ⊕-reading
steps starting from 𝛾 is less than 4𝑘. Due to the previous limits with ⊖-reading steps, in
a successful computation, the I-head cannot jump over all remaining 𝑏’s and the J-head
cannot jump over all remaining 𝑐’s. Thus, the heads cannot meet in a configuration that
can yield a successful computation.

Finally, we can see that 𝑀 is not able to accept 𝑤 = 𝑎10𝑘𝑏10𝑘𝑐10𝑘𝑑10𝑘 when the debt of
configurations of 𝑀 is bounded by 𝑘. Since, for any 𝑘, 𝑤 ∈ 𝐿, there is no constant 𝑘 for
𝑀 such that 𝑀 accepts all 𝑤 ∈ 𝐿 using only configurations that have their debt bounded
by 𝑘. But that is a contradiction with the assumption that there is a jumping 5′ → 3′ WK
automaton 𝑀 such that 𝐿(𝑀) = {𝑎𝑛𝑏𝑛𝑐𝑚𝑑𝑚 : 𝑛,𝑚 ≥ 0}.

Theorem 5.4.15. JWK and CF are incomparable.

Proof. JWK ̸⊆ CF follows from Lemma 5.4.13. CF ̸⊆ JWK follows from Lemma 5.4.14.
Lastly, LIN ⊂ JWK and LIN ⊂ CF.

5.5 Results on Restricted Variants
In this section, we compare the accepting power of unrestricted and restricted variants of
jumping 5′ → 3′ WK automata. This paper considers the same standard restrictions as
they are defined for Watson-Crick finite automata. Since these restrictions regulate only
the state control and reading steps of the automaton, the jumping is not affected in any
way. Let JWK denote the language family accepted by jumping 5′ → 3′ WK automata.
We are using prefixes N, F, S, 1, NS, FS, N1, and F1 to specify the restricted variants
of jumping 5′ → 3′ WK automata and appropriate language families.

In [57] it was shown that the use of the jumping mechanism can have an unusual impact
on the expressive power of the automaton model when we restrict the state transition
function of the model. In the case of classical finite automata, it makes no difference if
the steps of the automaton read single symbols or longer strings. Nonetheless, in the case
of jumping finite automata, this change has a large impact on the expressive power of the
model. Moreover, most of the standard restrictions studied in Watson-Crick finite automata
were not yet considered together with the jumping mechanism. Therefore, it is our intention
to thoroughly explore the impact of these restrictions on the accepting power of jumping
5′ → 3′ WK automata and compare it with the similar results obtained for sensing 5′ → 3′

WK automata.
In the field of DNA computing, the empty string/sequence usually does not belong to

any language because it does not refer to a molecule. This paper is not so strict and thus
considers the empty string as a possible valid input. Nonetheless, the following proofs are
deliberately based on more complex inputs to mitigate the impact of the empty string on
the results. Moreover, we distinguish between FIN and FIN𝜀-inc, when the difference is
unavoidable.

Note that there are some inherent inclusions between language families based on the
application of restrictions on the model. Additionally, several other basic relations can be
established directly from the definitions of the restrictions:

Lemma 5.5.1. The following relations hold: (i) N JWK ⊆ F JWK; (ii) 1 JWK ⊆
S JWK; (iii) F1 JWK ⊆ FS JWK; (iv) N1 JWK ⊆ NS JWK; (v) NS JWK ⊆
FS JWK; (vi) N1 JWK ⊆ F1 JWK.

58

Proof. These results follow directly from the definitions since the stateless restriction (N)
is a special case of the all-final restriction (F) and the 1-limited restriction (1) is a special
case of the simple restriction (S).

5.5.1 Simple Restriction

Theorem 5.5.2. S JWK = JWK.

Proof. Basic idea. Any general reading step can be replaced with at most two simple
reading steps and a new auxiliary state that together accomplish the same action.
Formal proof. By construction. Consider any jumping 5′ → 3′ WK automaton 𝑀 =
(𝑉,𝑄1, 𝑞0, 𝐹, 𝛿1). We can construct the S jumping 5′ → 3′ WK automaton 𝑁 such that
𝐿(𝑁) = 𝐿(𝑀). Define 𝑁 = (𝑉,𝑄2, 𝑞0, 𝐹, 𝛿2), where 𝑄2 and 𝛿2 are created in the following
way: Let 𝑞 ∈ 𝑄1, 𝑥, 𝑦 ∈ 𝑉 *, and 𝑠 ∈ {⊕,⊖}.
(1) Set 𝑄2 = 𝑄1.
(2) For each 𝛿1(𝑞, 𝑥, 𝑦, 𝑠) ̸= ∅ where |𝑥| = 0 or |𝑦| = 0,

let 𝛿2(𝑞, 𝑥, 𝑦, 𝑠) = 𝛿1(𝑞, 𝑥, 𝑦, 𝑠).
(3) For each 𝛿1(𝑞, 𝑥, 𝑦, 𝑠) ̸= ∅ where |𝑥| > 0 and |𝑦| > 0, add a new unique state 𝑝 to 𝑄2

and let 𝑝 ∈ 𝛿2(𝑞, 𝑥, 𝜀, 𝑠) and 𝛿2(𝑝, 𝜀, 𝑦, 𝑠) = 𝛿1(𝑞, 𝑥, 𝑦, 𝑠).
It is clear that all original transitions that did not satisfy the simple restriction were trans-
formed into the new suitable transitions.

Now we show that this change has no effect on the accepted language. Let 𝑤 ∈ 𝐿(𝑀)
be accepted by an accepting computation 𝛾 of 𝑀 . There is a computation 𝛾′ of 𝑁 corre-
sponding to 𝛾 of 𝑀 . We can construct 𝛾′ from 𝛾 in the following way:
(A) If there is (𝑞,⊕, 𝑤1, 𝑥𝑤2𝑦, 𝑤3) y (𝑞′, 𝑠, 𝑤1{#}|𝑥|, 𝑤2, {#}|𝑦|, 𝑤3) in 𝛾, where 𝑥, 𝑦 ∈

𝑉 +, 𝑤1, 𝑤2, 𝑤3 ∈ (𝑉 ∪ {#})*, 𝑞, 𝑞′ ∈ 𝑄1, 𝑠 ∈ {⊕,⊖}, we replace it in 𝛾′ with
(𝑞,⊕, 𝑤1, 𝑥𝑤2𝑦, 𝑤3) y (𝑝,⊕, 𝑤1{#}|𝑥|, 𝑤2𝑦, 𝑤3) y (𝑞′, 𝑠, 𝑤1{#}|𝑥|, 𝑤2, {#}|𝑦|𝑤3),
where 𝑝 is the new state introduced for 𝛿1(𝑞, 𝑥, 𝑦,⊕) in step (3).

(B) If there is (𝑞,⊖, 𝑤1𝑦, 𝜀, 𝑥𝑤3) y (𝑞′,⊖, 𝑤1, 𝜀, 𝑤3) in 𝛾, where 𝑥, 𝑦 ∈ 𝑉 +, 𝑤1, 𝑤3 ∈
(𝑉 ∪{#})*, 𝑞, 𝑞′ ∈ 𝑄1, we replace it in 𝛾′ with (𝑞,⊖, 𝑤1𝑦, 𝜀, 𝑥𝑤3) y (𝑝,⊖, 𝑤1𝑦, 𝜀, 𝑤3) y
(𝑞′,⊖, 𝑤1, 𝜀, 𝑤3), where 𝑝 is the new state introduced for 𝛿1(𝑞, 𝑥, 𝑦,⊖) in step (3).

(C) We keep other steps of the computation without changes.
Clearly, 𝛾′ is an accepting computation of 𝑁 and 𝑤 ∈ 𝐿(𝑁). Thus, 𝐿(𝑀) ⊆ 𝐿(𝑁).

Let 𝑤 ∈ 𝐿(𝑁) be accepted by an accepting computation 𝛾 of 𝑁 . Clearly, any sequence
of consecutive ⊕/⊖-jumping steps can be replaced with a single ⊕/⊖-jumping step, and it
is also possible to utilize empty jumping steps that do not move the heads. Thus, without
loss of generality, assume that 𝛾 does not contain sequences of consecutive ⊕/⊖-jumping
steps and that every reading step in 𝛾 is followed by a jumping step. There is a computation
𝛾′ of 𝑀 corresponding to 𝛾 of 𝑁 . We can construct 𝛾′ from 𝛾 in the following way:
(A) If there is (𝑞,⊕, 𝑤1, 𝑥𝑢𝑤2𝑦𝑣, 𝑤3) y (𝑝,⊕, 𝑤1{#}|𝑥|, 𝑢𝑤2𝑦𝑣, 𝑤3) y (𝑝,⊕, 𝑤1{#}|𝑥|𝑢,

𝑤2𝑦, 𝑣𝑤3) y (𝑞′, 𝑠, 𝑤1{#}|𝑥|𝑢,𝑤2, {#}|𝑦|𝑣𝑤3) in 𝛾, where 𝑥, 𝑦 ∈ 𝑉 +, 𝑢, 𝑣 ∈ 𝑉 *,
𝑤1, 𝑤2, 𝑤3 ∈ (𝑉 ∪ {#})*, 𝑞, 𝑞′ ∈ 𝑄1, 𝑠 ∈ {⊕,⊖}, and 𝑝 is the new state introduced
for 𝛿1(𝑞, 𝑥, 𝑦,⊕) in step (3), we replace these steps in 𝛾′ with (𝑞,⊕, 𝑤1, 𝑥𝑢𝑤2𝑦𝑣, 𝑤3) y
(𝑞,⊕, 𝑤1, 𝑥𝑢𝑤2𝑦, 𝑣𝑤3) y (𝑞′, 𝑠′, 𝑤1{#}|𝑥|, 𝑢𝑤2, {#}|𝑦|𝑣𝑤3) y (𝑞′, 𝑠, 𝑤1{#}|𝑥|𝑢,𝑤2,
{#}|𝑦|𝑣𝑤3), where 𝑠′ ∈ {⊕,⊖} according to the definition of ⊕-reading steps. Observe
that, due to the unique 𝑝, it is clear that 𝑞′ ∈ 𝛿1(𝑞, 𝑥, 𝑦,⊕) in 𝑀 .

(B) If there is (𝑞,⊖, 𝑤1𝑦{#}𝑣, 𝜀, 𝑥{#}𝑢𝑤3) y (𝑝,⊖, 𝑤1𝑦{#}𝑣, 𝜀, {#}𝑢𝑤3) y (𝑝,⊖, 𝑤1𝑦, 𝜀,
𝑤3) y (𝑞′,⊖, 𝑤1, 𝜀, 𝑤3) in 𝛾, where 𝑥, 𝑦 ∈ 𝑉 +, 𝑢, 𝑣 ≥ 0, 𝑤1, 𝑤3 ∈ (𝑉 ∪ {#})*,
𝑞, 𝑞′ ∈ 𝑄1, and 𝑝 is the new state introduced for 𝛿1(𝑞, 𝑥, 𝑦,⊖) in step (3), we re-

59

place these steps in 𝛾′ with (𝑞,⊖, 𝑤1𝑦{#}𝑣, 𝜀, 𝑥{#}𝑢𝑤3) y (𝑞,⊖, 𝑤1𝑦, 𝜀, 𝑥{#}𝑢𝑤3) y
(𝑞′,⊖, 𝑤1, 𝜀, {#}𝑢𝑤3) y (𝑞′,⊖, 𝑤1, 𝜀, 𝑤3).

(C) We keep other steps of the computation without changes.
Clearly, 𝛾′ is an accepting computation of 𝑀 and 𝑤 ∈ 𝐿(𝑀). Thus, 𝐿(𝑁) ⊆ 𝐿(𝑀).
Consequently, 𝐿(𝑁) = 𝐿(𝑀).

5.5.2 1-limited Restriction

Example 5.5.3. Consider the following jumping 5′ → 3′ WK automaton 𝑀 = ({𝑎, 𝑏, 𝑐},
{𝑠, 𝑓}, 𝑠, {𝑓}, 𝛿) with the state transition function 𝛿:

𝛿(𝑠, 𝑎, 𝑏,⊕) = {𝑠}, 𝛿(𝑓, 𝑎, 𝑏,⊕) = {𝑓}, 𝛿(𝑓, 𝑎, 𝑏,⊖) = {𝑓},
𝛿(𝑠, 𝑐𝑐, 𝜀,⊕) = {𝑓}, 𝛿(𝑠, 𝜀, 𝑐𝑐,⊕) = {𝑓}.

The first three transitions mimic the behavior of Example 5.3.1. The other two transi-
tions ensure that the input is accepted only if it also contains precisely one substring 𝑐𝑐.
Therefore, 𝐿(𝑀) = {𝑤1𝑐𝑐𝑤2 : 𝑤1, 𝑤2 ∈ {𝑎, 𝑏}*, |𝑤1𝑤2|𝑎 = |𝑤1𝑤2|𝑏}.

Lemma 5.5.4. Let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a 1 jumping 5′ → 3′ WK automaton 𝑀 , and
let 𝑤 ∈ 𝐿(𝑀) be accepted by an accepting computation 𝛾 of 𝑀 . Let us represent the
⊕-reading step of 𝑀 that follows 𝛿(𝑞, 𝑢, 𝑣,⊕), 𝑞 ∈ 𝑄, 𝑢, 𝑣 ∈ (𝑉 ∪ {𝜀}), as a quadruple
(𝑢, 𝑣, 𝜀, 𝜀) and the ⊖-reading step of 𝑀 that follows 𝛿(𝑞, 𝑢′, 𝑣′,⊖), 𝑞 ∈ 𝑄, 𝑢′, 𝑣′ ∈ (𝑉 ∪{𝜀}),
as a quadruple (𝜀, 𝜀, 𝑢′, 𝑣′). Then, we can represent the reading steps of 𝛾 as a sequence
(𝑢1, 𝑣1, 𝑢

′
1, 𝑣

′
1) · · · (𝑢𝑛, 𝑣𝑛, 𝑢′𝑛, 𝑣′𝑛), 𝑖 = 1, . . . , 𝑛, 𝑛 ≥ 1. Let 𝑤I⊕ = 𝑢1 · · ·𝑢𝑛, 𝑤I⊖ = 𝑢′1 · · ·𝑢′𝑛,

𝑤J⊕ = 𝑣𝑛 · · · 𝑣1, 𝑤J⊖ = 𝑣′𝑛 · · · 𝑣′1. It holds that 𝑥𝑦 ∈ 𝐿(𝑀) for all 𝑥 ∈ shuffle(𝑤I⊕, 𝑤J⊖)
and 𝑦 ∈ shuffle(𝑤J⊕, 𝑤I⊖).

Proof. Since 𝑀 satisfies the 1-limited restriction, exactly one symbol is always being read
with a reading step. Therefore, for all 𝑖, only one of 𝑢𝑖, 𝑣𝑖, 𝑢′𝑖, 𝑣′𝑖 is nonempty, and it contains
one symbol. When 𝑀 follows an accepting computation and a head of 𝑀 jumps over a
symbol with a ⊕-jumping step, such a symbol is read later with the other head of 𝑀 with a
⊖-reading step. Since jumping steps can occur arbitrarily between reading steps and since
they do not depend on the current state of 𝑀 , it follows that every 𝑥𝑦, where 𝑥 is a shuffle
of 𝑤I⊕ and 𝑤J⊖ and 𝑦 is a shuffle of 𝑤J⊕ and 𝑤I⊖, has to belong to 𝐿(𝑀).

Lemma 5.5.5. There is no 1 jumping 5′ → 3′ WK automaton 𝑀 such that 𝐿(𝑀) =
{𝑤1𝑐𝑐𝑤2 : 𝑤1, 𝑤2 ∈ {𝑎, 𝑏}*, |𝑤1𝑤2|𝑎 = |𝑤1𝑤2|𝑏}.

Proof. Basic idea. We follow the proof structure of Lemma 5.4.9. Considering any suffi-
ciently large constant 𝑘, we show that 𝑀 cannot process all symbols of 𝑎3𝑘𝑏3𝑘𝑐𝑐𝑏3𝑘𝑎3𝑘 using
only configurations that have their debt bounded by 𝑘.
Formal proof. By contradiction. Let 𝐿 = {𝑤1𝑐𝑐𝑤2 : 𝑤1, 𝑤2 ∈ {𝑎, 𝑏}*, |𝑤1𝑤2|𝑎 = |𝑤1𝑤2|𝑏},
and let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a 1 jumping 5′ → 3′ WK automaton such that 𝐿(𝑀) = 𝐿.
Due to Lemma 5.4.8, there must exist a constant 𝑘 for 𝑀 such that 𝑀 accepts all 𝑤 ∈ 𝐿
using only configurations that have their debt bounded by 𝑘. Consider any 𝑘 for 𝑀 such
that 𝑘 ≥ 2. Let 𝑤 = 𝑎3𝑘𝑏3𝑘𝑐𝑐𝑏3𝑘𝑎3𝑘.

Consider restrictions on how 𝑀 can accept 𝑤 so that it does not also accept any 𝑤′ ̸∈ 𝐿.
Due to Lemma 5.5.4, to ensure that both 𝑐’s are always next to each other, some parts of
𝑤I⊕, 𝑤I⊖, 𝑤J⊕, 𝑤J⊖ must remain empty.

Consider cases where two or three parts remain empty. To ensure the proper position
of 𝑐’s, only one head can read or only ⊕-reading or only ⊖-reading steps can be used. Note

60

that the debt of an initial configuration of 𝑀 is always 2 since at least 𝑐𝑐 has to be processed
before an input can be successfully accepted. First, 𝑀 cannot accept 𝑤 with only one head
because in this case jumping steps cannot be effectively used, the debt of the configuration
of 𝑀 reaches 𝑘 after 𝑘 − 2 reading steps, and no further reading is possible. Second, the
situation is similar for 𝑀 using only ⊕-reading steps. Third, for 𝑀 using only ⊖-reading
steps, the heads can meet between 𝑎’s and 𝑏’s and process up to 7𝑘 + 2 symbols from 𝑤,
but 𝑀 is clearly still not able to process the whole 𝑤.

If only one part remains empty, the appropriate opposite part for the shuffle must
contain both 𝑐’s. Let us assume that 𝑤J⊖ remains empty. Consequently, 𝑤I⊕ must contain
at least 𝑎3𝑘𝑏3𝑘𝑐𝑐. Consider possibilities how the I-head can process 𝑎3𝑘𝑏3𝑘𝑐𝑐 from 𝑤 with
⊕-reading-steps. To process more than 𝑘 − 2 symbols 𝑎 with the I-head, both heads has
to cooperate. Let us assume that 𝑀 first reads 𝑘 − 2 times 𝑎 with the J-head. Then,
the J-head jumps to 𝑏’s on the right-hand side of 𝑤, and the heads can start cooperate.
The J-head reads 𝑏, the I-head reads 𝑎, and this can be repeated 3𝑘 times. Now, the
I-head still has to process 𝑏3𝑘𝑐𝑐. Since there is the debt of 𝑘−2 symbols 𝑏 created with the
initial readings of the J-head, the I-head can read 2𝑘 − 4 times 𝑏 before the debt of the
configuration of 𝑀 reaches 𝑘. The I-head still has to process 𝑏𝑘+4𝑐𝑐, but the debt cannot
be compensated with the J-head any further. Consequently, the I-head cannot process
𝑎3𝑘𝑏3𝑘𝑐𝑐 from 𝑤 with ⊕-reading-steps. The proof strategy and results are analogous for the
other cases where 𝑤I⊖, 𝑤J⊕, or 𝑤J⊖ remains empty.

Finally, we can see that 𝑀 is not able to accept 𝑤 = 𝑎3𝑘𝑏3𝑘𝑐𝑐𝑏3𝑘𝑎3𝑘 when the debt of
configurations of 𝑀 is bounded by 𝑘. Since, for any 𝑘, 𝑤 ∈ 𝐿, there is no constant 𝑘 for 𝑀
such that 𝑀 accepts all 𝑤 ∈ 𝐿 using only configurations that have their debt bounded by
𝑘. But that is a contradiction with the assumption that there is a 1 jumping 5′ → 3′ WK
automaton 𝑀 such that 𝐿(𝑀) = {𝑤1𝑐𝑐𝑤2 : 𝑤1, 𝑤2 ∈ {𝑎, 𝑏}*, |𝑤1𝑤2|𝑎 = |𝑤1𝑤2|𝑏}.

Theorem 5.5.6. 1 JWK ⊂ JWK.

Proof. This theorem follows directly from Example 5.5.3 and Lemma 5.5.5.

Example 5.5.7. Consider the following 1 jumping 5′ → 3′ WK automaton 𝑀 = ({𝑎, 𝑏},
{𝑠, 𝑝}, 𝑠, {𝑠}, 𝛿) with the state transition function 𝛿:

𝛿(𝑠, 𝑎, 𝜀,⊕) = {𝑝}, 𝛿(𝑝, 𝜀, 𝑏,⊕) = {𝑠},
𝛿(𝑠, 𝑎, 𝜀,⊖) = {𝑝}, 𝛿(𝑝, 𝜀, 𝑏,⊖) = {𝑠}.

It is not hard to see that the resulting behavior is similar to Example 5.3.1. The automaton
now reads 𝑎’s and 𝑏’s with separate steps and uses one auxiliary state that is not final.
Consequently, 𝐿(𝑀) = {𝑤 ∈ {𝑎, 𝑏}* : |𝑤|𝑎 = |𝑤|𝑏}.

Lemma 5.5.8. For every linear grammar 𝐺, there is a 1 jumping 5′ → 3′ WK automaton
𝑀 such that 𝐿(𝐺) = 𝐿(𝑀).

Proof. By construction. Consider any linear grammar 𝐺 = (𝑁,𝑇, 𝑃, 𝑆). Every linear
grammar has an equivalent grammar with rules in the form: (1) 𝑆 → 𝜀, (2) 𝐴 → 𝑎𝐵,
(3) 𝐴 → 𝐵𝑎, (4) 𝐴 → 𝑎, where 𝐴 ∈ 𝑁 , 𝐵 ∈ (𝑁 − {𝑆}), and 𝑎 ∈ 𝑇 . Without loss of
generality, assume that 𝐺 satisfies this special form of rules and 𝑞𝑓 ̸∈ (𝑁 ∪ 𝑇). Define
the 1 jumping 5′ → 3′ WK automaton 𝑀 = (𝑇,𝑁 ∪ {𝑞𝑓}, 𝑆, 𝐹, 𝛿), where 𝐹 and 𝛿 are
constructed in the following way:
(1) Set 𝐹 = {𝑞𝑓}. If 𝑆 → 𝜀 ∈ 𝑃 , add 𝑆 to 𝐹 .

61

(2) For each 𝐴 → 𝑎𝐵 ∈ 𝑃 , add 𝐵 to 𝛿(𝐴, 𝑎, 𝜀,⊕).
(3) For each 𝐴 → 𝐵𝑎 ∈ 𝑃 , add 𝐵 to 𝛿(𝐴, 𝜀, 𝑎,⊕).
(4) For each 𝐴 → 𝑎 ∈ 𝑃 , add 𝑞𝑓 to 𝛿(𝐴, 𝑎, 𝜀,⊕).
Following the same reasoning as in Lemma 5.4.1, 𝐿(𝑀) = 𝐿(𝐺).

Theorem 5.5.9. LIN ⊂ 1 JWK.

Proof. This theorem follows directly from Example 5.5.7 and Lemma 5.5.8.

5.5.3 All-final Restriction

Lemma 5.5.10. There is no F jumping 5′ → 3′ WK automaton 𝑀 such that 𝐿(𝑀) =
{𝑐𝑎𝑛𝑐𝑏𝑛𝑐 : 𝑛 ≥ 0} ∪ {𝜀}.

Proof. By contradiction. Assume that there is an F jumping 5′ → 3′ WK automaton
𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) such that 𝐿(𝑀) = {𝑐𝑎𝑛𝑐𝑏𝑛𝑐 : 𝑛 ≥ 0} ∪ {𝜀}. Since 𝑀 satisfies the
all-final restriction, all states are final. Therefore, if in the first nonempty reading step
the I-head reads 𝑢 and the J-head reads 𝑣, then 𝑢𝑣 or 𝑣𝑢 belongs to 𝐿(𝑀). Let 𝑘min =
max{|𝑢𝑣| : 𝛿(𝑞, 𝑢, 𝑣, 𝑠) ̸= ∅, 𝑞 ∈ 𝑄, 𝑢, 𝑣 ∈ 𝑉 *, 𝑠 ∈ {⊕,⊖}}. Consider any 𝑘 such that
𝑘 > 𝑘min. Let 𝑤 = 𝑐𝑎𝑘𝑐𝑏𝑘𝑐. It is not hard to see that for any first nonempty reading step
on 𝑤 (which reads 𝑢 and 𝑣) it must hold that |𝑢𝑣|𝑐 ≤ 2. However, for all 𝑤′ ∈ (𝐿(𝑀)−{𝜀})
it holds that |𝑤′|𝑐 = 3. Therefore, if 𝑀 accepts 𝑤, it also accepts 𝑢𝑣 ̸∈ 𝐿(𝑀) or 𝑣𝑢 ̸∈ 𝐿(𝑀).
But that is a contradiction with the assumption that 𝑀 exists.

Theorem 5.5.11. F JWK ⊂ JWK.

Proof. This theorem follows directly from Theorem 5.4.2 and Lemma 5.5.10.

Proposition 5.5.12. F JWK and LIN are incomparable.

Proof. LIN ̸⊆ F JWK follows from Lemma 5.5.10. F JWK ̸⊆ LIN follows from Exam-
ple 5.3.1. Lastly, F JWK and LIN contain the language {𝑎}*.

Lemma 5.5.13. For every 𝐿 ∈ F JWK it holds that 𝜀 ∈ 𝐿.

Proof. Consider any F jumping 5′ → 3′ WK automaton 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿). Since 𝑄 = 𝐹 ,
𝑞0 is a final state and (𝑞0,⊕, 𝜀, 𝜀, 𝜀) y (𝑞0,⊖, 𝜀, 𝜀, 𝜀) can be done with a ⊕-jumping step;
thus, 𝜀 ∈ 𝐿(𝑀).

Proposition 5.5.14. F JWK and FIN are incomparable.

Proof. FIN ̸⊆ F JWK follows from Lemma 5.5.13. F JWK ̸⊆ FIN follows from Exam-
ple 5.3.1. Lastly, it is trivial to construct an F jumping 5′ → 3′ WK automaton with two
states that accepts the finite language {𝜀, 𝑎}.

Theorem 5.5.15. FIN𝜀-inc ⊂ F JWK.

Proof. By construction. Consider any alphabet 𝑉 and 𝐿 = {𝑥1, . . . , 𝑥𝑛} ∈ FIN𝜀-inc such
that 𝑥𝑖 ∈ 𝑉 *, 𝑖 = 1, . . . , 𝑛, 𝑛 ≥ 1. Define the F jumping 5′ → 3′ WK automaton 𝑀 =
(𝑉, {𝑞0, 𝑞𝑓}, 𝑞0, {𝑞0, 𝑞𝑓}, 𝛿), where 𝛿 is constructed in the following way: For each 𝑥 ∈ 𝐿, set
𝛿(𝑞0, 𝑥, 𝜀,⊕) = {𝑞𝑓}. It is clear that 𝐿(𝑀) = 𝐿. Thus, FIN𝜀-inc ⊆ F JWK. F JWK ̸⊆
FIN𝜀-inc follows from Example 5.3.1.

62

Example 5.5.16. Consider the following F (in fact, even N) jumping 5′ → 3′ WK au-
tomaton 𝑀 = ({𝑎, 𝑏, 𝑐}, {𝑠}, 𝑠, {𝑠}, 𝛿) with the state transition function 𝛿:

𝛿(𝑠, 𝑎, 𝑏,⊕) = {𝑠}, 𝛿(𝑠, 𝑎, 𝑏,⊖) = {𝑠},
𝛿(𝑠, 𝑐𝑐, 𝜀,⊕) = {𝑠}, 𝛿(𝑠, 𝜀, 𝑐𝑐,⊕) = {𝑠}.

This is a modification of Examples 5.3.1 and 5.5.3. The first two transitions ensure that 𝑀
can accept any input containing the same number of 𝑎’s and 𝑏’s. The other two transitions
ensure that the accepted inputs can also contain an arbitrary number of substrings 𝑐𝑐.
Therefore, 𝐿(𝑀) = {𝑤 ∈ {𝑎, 𝑏, 𝑐𝑐}* : |𝑤|𝑎 = |𝑤|𝑏}.

Proposition 5.5.17. F JWK and 1 JWK are incomparable.

Proof. First, 1 JWK ̸⊆ F JWK follows from Theorem 5.5.9 and Lemma 5.5.10. Sec-
ond, let 𝐿 be the language 𝐿(𝑀) from Example 5.5.16. The proof by contradiction from
Lemma 5.5.5 can be modified in a straightforward way so that it shows that there is no
1 jumping 5′ → 3′ WK automaton 𝑀 such that 𝐿(𝑀) = 𝐿. Therefore, F JWK ̸⊆ 1 JWK.
Lastly, both families contain {𝑎}*.

5.5.4 Stateless Restriction

Lemma 5.5.18. There is no N jumping 5′ → 3′ WK automaton 𝑀 = (𝑉, {𝑞0}, 𝑞0, {𝑞0}, 𝛿)
such that 𝐿(𝑀) ∈ FIN and 𝐿(𝑀) ̸= {𝜀}.

Proof. First, due to Lemma 5.5.13, 𝐿(𝑀) must always contain 𝜀. Second, by contradiction,
assume that there is a N jumping 5′ → 3′ WK automaton 𝑀2 such that 𝐿(𝑀2) ∈ FIN
and 𝐿(𝑀2) contains a nonempty string. Since there is only one state, any ⊕/⊖-reading
step can be repeated arbitrarily many times. Therefore, if in the first nonempty reading
step the I-head reads 𝑢 and the J-head reads 𝑣, then 𝑢𝑖𝑣𝑖 or 𝑣𝑖𝑢𝑖 belongs to 𝐿(𝑀2) for all
𝑖 ≥ 1. Thus, if 𝑀2 accepts a nonempty string, 𝐿(𝑀2) /∈ FIN. But that is a contradiction
with the assumption that 𝑀2 exists. Consequently, if 𝐿(𝑀) ∈ FIN, 𝐿(𝑀) = {𝜀}.

Theorem 5.5.19. N JWK ⊂ F JWK.

Proof. From Lemma 5.5.1, N JWK ⊆ F JWK. F JWK ̸⊆ N JWK follows from Theo-
rem 5.5.15 and Lemma 5.5.18.

Proposition 5.5.20. N JWK is incomparable with LIN, FIN, and FIN𝜀-inc.

Proof. LIN, FIN, FIN𝜀-inc ̸⊆ N JWK follows from Lemma 5.5.18. N JWK ̸⊆ LIN, FIN,
FIN𝜀-inc follows from Example 5.3.1. Next, N JWK and LIN contain the language {𝑎}*.
Finally, there is the sole language {𝜀} that N JWK shares with FIN and FIN𝜀-inc.

Proposition 5.5.21. N JWK and 1 JWK are incomparable.

Proof. First, 1 JWK ̸⊆ N JWK follows from Theorem 5.5.9 and Lemma 5.5.18. Second,
N JWK ̸⊆ 1 JWK follows from Example 5.5.16 and the proof of Proposition 5.5.17.
Lastly, both families contain the language {𝑎}*.

63

5.5.5 Combined Restrictions

Proposition 5.5.22. FS JWK ⊂ F JWK.

Proof. Let 𝐿 = {𝑐𝑐𝑎𝑛𝑐𝑐 : 𝑛 ≥ 0} ∪ {𝜀}. It is trivial to construct an F jumping 5′ → 3′ WK
automaton that accepts 𝐿. However, there is no FS jumping 5′ → 3′ WK automaton that
accepts 𝐿. By contradiction. Assume that there is an FS jumping 5′ → 3′ WK automaton
𝑀 such that 𝐿(𝑀) = 𝐿. Using the basic premise of Lemma 5.5.10, all 𝑐’s has to be read
with the first nonempty reading step. Nonetheless, a single head cannot read all 𝑐’s in one
step if they are arbitrarily far away from each other—a contradiction with the assumption
that 𝑀 exists.

Theorem 5.5.23. FIN𝜀-inc ⊂ FS JWK.

Proof. FS JWK ̸⊆ FIN𝜀-inc follows from {𝑎}* ∈ FS JWK. The rest of the proof is
analogous to Theorem 5.5.15.

Example 5.5.24. Consider the following FS jumping 5′ → 3′ WK automaton 𝑀 =
({𝑎, 𝑏, 𝑐}, {𝑠, 𝑝}, 𝑠, {𝑠, 𝑝}, 𝛿) with the state transition function 𝛿:

𝛿(𝑠, 𝑎, 𝜀,⊕) = {𝑝}, 𝛿(𝑝, 𝜀, 𝑏,⊕) = {𝑠},
𝛿(𝑠, 𝑎, 𝜀,⊖) = {𝑝}, 𝛿(𝑝, 𝜀, 𝑏,⊖) = {𝑠},
𝛿(𝑠, 𝑐𝑐, 𝜀,⊕) = {𝑠}, 𝛿(𝑠, 𝜀, 𝑐𝑐,⊕) = {𝑠},
𝛿(𝑝, 𝑐𝑐, 𝜀,⊕) = {𝑝}, 𝛿(𝑝, 𝜀, 𝑐𝑐,⊕) = {𝑝}.

As a result, 𝐿(𝑀) = {𝑤 ∈ {𝑎, 𝑏, 𝑐𝑐}* : |𝑤|𝑎 = |𝑤|𝑏 or |𝑤|𝑎 = |𝑤|𝑏 + 1}.
This automaton is just a combination of previous approaches from Examples 5.5.7 and
5.5.16. Note that 𝐿(𝑀) resembles the resulting language of Example 5.5.16.

Proposition 5.5.25. FS JWK and 1 JWK are incomparable.

Proof. First, 1 JWK ̸⊆ FS JWK follows from the language in the proof of Proposi-
tion 5.5.22. Second, let 𝐿 be the language 𝐿(𝑀) from Example 5.5.24. The proof by
contradiction from Lemma 5.5.5 can be modified in a straightforward way so that it shows
that there is no 1 jumping 5′ → 3′ WK automaton 𝑀 such that 𝐿(𝑀) = 𝐿. Therefore,
FS JWK ̸⊆ 1 JWK. Lastly, FS JWK and 1 JWK contain the language {𝑎}*.

Proposition 5.5.26. F1 JWK ⊂ FS JWK.

Proof. From Lemma 5.5.1, F1 JWK ⊆ FS JWK. It is trivial to construct an FS jumping
5′ → 3′ WK automaton that accepts {𝑎𝑎}*. However, there cannot be an F1 jumping
5′ → 3′ WK automaton that accepts only even-length inputs.

Proposition 5.5.27. F1 JWK and LIN are incomparable.

Proof. LIN ̸⊆ F1 JWK follows from {𝑎𝑎}* ∈ LIN. Considering Example 5.5.24, there
is an F1 jumping 5′ → 3′ WK automaton 𝑀 such that 𝐿(𝑀) = {𝑤 ∈ {𝑎, 𝑏}* : |𝑤|𝑎 =
|𝑤|𝑏 or |𝑤|𝑎 = |𝑤|𝑏 + 1}. Clearly, 𝐿(𝑀) is not a linear language. Lastly, F1 JWK and
LIN contain the language {𝑎}*.

Corollary 5.5.28. F1 JWK ⊂ 1 JWK.

64

Theorem 5.5.29. NS JWK ⊂ REG.

Proof. NS JWK ⊆ REG can be proven by construction. We show that for any NS
jumping 5′ → 3′ WK automaton we can construct a finite automaton that accepts the same
language. Consider any NS jumping 5′ → 3′ WK automaton 𝑀 = (𝑉, {𝑞0}, 𝑞0, {𝑞0}, 𝛿). The
following claims hold:

Claim 5.5.29.1. Any 𝑤 ∈ 𝐿(𝑀) can be expressed in the following special form 𝑤 = 𝑥1𝑦
′
1 · · ·

𝑥𝑛𝑦
′
𝑛𝑥

′
1𝑦1 · · ·𝑥′𝑚𝑦𝑚, where 𝑥𝑖, 𝑦

′
𝑖, 𝑥

′
𝑗 , 𝑦𝑗 ∈ 𝑉 *, for all 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . ,𝑚, for some

𝑛,𝑚 ≥ 1, and for all 𝑥𝑖, 𝑦′𝑖, 𝑥′𝑗 , 𝑦𝑗 hold:
(i) either 𝑥𝑖 = 𝜀 or 𝛿(𝑞0, 𝑥𝑖, 𝜀,⊕) = {𝑞0},

(ii) either 𝑦𝑗 = 𝜀 or 𝛿(𝑞0, 𝜀, 𝑦𝑗 ,⊕) = {𝑞0},
(iii) either 𝑥′𝑗 = 𝜀 or 𝛿(𝑞0, 𝑥

′
𝑗 , 𝜀,⊖) = {𝑞0},

(iv) either 𝑦′𝑖 = 𝜀 or 𝛿(𝑞0, 𝜀, 𝑦
′
𝑖,⊖) = {𝑞0}.

Proof. Due to the restrictions, parts (i), (ii), (iii), and (iv) cover all possible types of state
transitions. The accepted input can be always divided into two parts, depending on the
position where the heads of 𝑀 meet each other during the processing of this input. The first
part 𝑥1𝑦′1 · · ·𝑥𝑛𝑦′𝑛 is a combination of ⊕-readings with the I-head and ⊖-readings with the
J-head. Likewise, the second part 𝑥′1𝑦1 · · ·𝑥′𝑚𝑦𝑚 is a combination of ⊖-readings with the
I-head and ⊕-readings with the J-head. To get the uncertain reading order forced by the
jumping steps, we also allow each part 𝑥𝑖, 𝑦

′
𝑖, 𝑥

′
𝑗 , 𝑦𝑗 to be empty. Therefore, all 𝑤 ∈ 𝐿(𝑀)

have to be able to satisfy this special form. �

Claim 5.5.29.2. Any 𝑤 ∈ 𝑉 * that can be expressed in the previous special form belongs to
𝐿(𝑀).

Proof. Considering the restrictions, 𝑀 has only one state, and only one head can read in a
step. Therefore, if there is a possible reading step, it can be used arbitrarily many times.
Furthermore, the possible reading steps can change only when the heads meet each other.
Also, since each head reads separately, there cannot be any dependence between the first
and second part of the input in the special form. Consequently, any 𝑤 ∈ 𝑉 * that can be
expressed in the form from Claim 1 has to belong to 𝐿(𝑀). �

Considering both claims, it is easy to construct a finite automaton that accepts all
inputs of this special form. REG ̸⊆ NS JWK follows from Lemma 5.5.18.

Proposition 5.5.30. N1 JWK ⊂ NS JWK.

Proof. This proof is analogous to that of Proposition 5.5.26.

Proposition 5.5.31. The following relations hold:
(i) NS JWK ⊂ N JWK;

(ii) NS JWK ⊂ FS JWK;
(iii) N1 JWK ⊂ F1 JWK.

Proof. Examples 5.3.1 and 5.5.24 and Proposition 5.5.27 show that N JWK, FS JWK,
and F1 JWK contain some non-regular languages. Considering Lemma 5.5.1 and Theo-
rem 5.5.29, all three proposed relations directly follow.

Proposition 5.5.32. FS JWK and N JWK are incomparable.

65

Proof. First, FS JWK ̸⊆ N JWK follows from Lemma 5.5.18 and Theorem 5.5.23. Second,
let 𝐿 = {𝑎𝑛𝑏𝑛 : 𝑛 ≥ 0}. It is trivial to construct an N jumping 5′ → 3′ WK automaton
that accepts 𝐿. However, there is no FS jumping 5′ → 3′ WK automaton that accepts
𝐿. By contradiction. Assume that there is an FS jumping 5′ → 3′ WK automaton 𝑀 =
(𝑉,𝑄, 𝑞0, 𝐹, 𝛿) such that 𝐿(𝑀) = 𝐿. Due to the restrictions, if a head of 𝑀 reads 𝑢 in
a step, it must hold that |𝑢|𝑎 = |𝑢|𝑏. Otherwise, there would be 𝑤′ ∈ 𝐿(𝑀) such that
|𝑤′|𝑎 ̸= |𝑤′|𝑏. Let 𝑘min = max{|𝑣1𝑣2| : 𝛿(𝑞, 𝑣1, 𝑣2, 𝑠) ̸= ∅, 𝑞 ∈ 𝑄, 𝑣1, 𝑣2 ∈ 𝑉 *, 𝑠 ∈ {⊕,⊖}}.
Consider any 𝑘 such that 𝑘 > 𝑘min. Let 𝑤 = 𝑎2𝑘𝑏2𝑘. Clearly, when 𝑀 processes 𝑤, each
head can read 𝑢 such that |𝑢|𝑎 = |𝑢|𝑏 no more than once. However, these balanced steps can
therefore process only less than 2𝑘 symbols. Consequently, if 𝑀 accepts 𝑤, it also accepts
some 𝑤′ ̸∈ 𝐿—a contradiction with the assumption that 𝑀 exists. Therefore, N JWK ̸⊆
FS JWK. Lastly, FS JWK and N JWK contain the language {𝑎}*.

Proposition 5.5.33. F1 JWK and NS JWK are incomparable.

Proof. First, F1 JWK ̸⊆ NS JWK follows from Lemma 5.5.18 and {𝜀, 𝑎} ∈ F1 JWK.
Second, NS JWK ̸⊆ F1 JWK follows from {𝑎𝑎}* ∈ NS JWK. Lastly, both families
contain the language {𝑎}*.

Proposition 5.5.34. REG is incomparable with F JWK, N JWK, FS JWK, and
F1 JWK.

Proof. First, Examples 5.3.1 and 5.5.24 and Proposition 5.5.27 show that F JWK, N
JWK, FS JWK, and F1 JWK contain some non-regular languages. Second, let 𝐿 =
{𝑐𝑎𝑛𝑐𝑏𝑚𝑐 : 𝑛,𝑚 ≥ 0} ∪ {𝜀}. 𝐿 is clearly a regular language. Considering the proof of
Lemma 5.5.10 and the previous results, we can easily see that F JWK, N JWK, FS JWK,
and F1 JWK cannot contain 𝐿. Lastly, all families contain the language {𝑎}*.

Proposition 5.5.35. FIN is incomparable with FS JWK, F1 JWK, NS JWK, and
N1 JWK.

Proof. Considering previous results. First, FS JWK, F1 JWK, NS JWK, and N1 JWK
cannot contain ∅. Second, FS JWK, F1 JWK, NS JWK, and N1 JWK contain {𝑎}*.
Lastly, all families contain {𝜀}.

Proposition 5.5.36. FIN𝜀-inc is incomparable with F1 JWK, NS JWK, and N1 JWK.

Proof. Considering previous results. First, F1 JWK, NS JWK, and N1 JWK cannot
contain {𝜀, 𝑎𝑎}. Second, F1 JWK, NS JWK, and N1 JWK contain {𝑎}*. Lastly, all
families contain {𝜀}.

All the obtained results comparing the accepting power of different variants of jumping
5′ → 3′ WK automata are summarized in Figure 5.1.

5.6 Concluding Remarks
The results clearly show that, with the addition of the jumping mechanism into the model,
the accepting power has been increased above sensing 5′ → 3′ WK automata. The model
is now able to accept some nonlinear and even some non-context-free languages. On the
other hand, the jumping movement of the heads is restricted compared to jumping finite

66

JWK

S JWK

1 JWKLIN

REG

FIN

FINε-inc

F JWK

FS JWK N JWK

F1 JWK NS JWK

N1 JWK

Figure 5.1: A hierarchy of language families closely related to the unrestricted and restricted
variants of jumping 5′ → 3′ WK automata is shown. If there is a double line between families
𝑋 and 𝑌 , then 𝑋 = 𝑌 . If there is an arrow from family 𝑋 to family 𝑌 , then 𝑋 ⊂ 𝑌 .
Furthermore, if there is no path (following the arrows and double lines) between families
𝑋 and 𝑌 , then 𝑋 and 𝑌 are incomparable.

automata, and this limits its capabilities to accept languages that require a more sophisti-
cated discontinuous information processing. Considering the comparison with full-reading
sensing 5′ → 3′ WK automata, the results are not yet clear and further research is required.
However, we know that there are some languages, like {𝑎𝑛𝑏𝑛𝑐𝑛 : 𝑛 ≥ 0}, that cannot be
accepted by jumping 5′ → 3′ WK automata and that are accepted by full-reading sensing
5′ → 3′ WK automata (see [60, 61, 63, 65]).

If we compare the hierarchies of language families related to the restricted variants
of jumping 5′ → 3′ WK automata and sensing 5′ → 3′ WK automata (see [63, 65, 70]),
there are several noticeable remarks. Most importantly, the 1-limited restriction (1) has a
negative impact on the accepting power, which is usually not the case in sensing 5′ → 3′

WK automata. Secondly, when several restrictions are combined together, the hierarchy
structure resembles the alternative structure of sensing 5′ → 3′ WK automata without the
sensing distance from [70]. Lastly, almost all restricted variants, with the exception of NS
and N1, are still able to accept some nonlinear languages, which cannot be accepted by
any variants of sensing 5′ → 3′ WK automata.

The reader may notice that the ⊖-jumping can be used only in situations where it is
forced by the current configuration. Jumping finite automata usually immediately erase
symbols from the configuration and do not use the auxiliary symbol #. It is therefore a
question for future research whether we can safely remove this part from the model and
keep the accepting power intact.

67

Part III

New Results on CD Grammar
Systems

68

And now for something completely different.
—Monty Python’s Flying Circus

Chapter 6

General CD Grammar Systems:
Normal Forms

This chapter introduces new normal forms of general CD grammar systems fitting for a
parallel rewriting process. The content of this chapter is composed of results that were first
introduced in a short abstract at the conference AFL 2017 and later published in Journal of
Automata, Languages and Combinatorics (see [35]); all written jointly with Zbyněk Křivka
and Alexander Meduna.

In terms of preliminaries, the reader should be familiar with the definitions of general
notions (see Section 2.1), grammars (see Section 2.2.1), Kuroda normal form (see Section
2.2.4), homogeneous restrictions (see Section 2.2.5), and general CD grammar systems (see
Section 2.4).

6.1 Introduction
The present chapter, which assumes a familiarity with formal language theory (see [49, 91]),
concerns grammar systems (see [8]). It concentrates its attention on two-component CD
grammar systems working under the * and 𝑡 modes. Recall that under the former mode
the context-free versions of these systems obviously generate only the family of context-free
languages. More surprisingly, under the latter mode they are no more powerful than ordi-
nary context-free grammars either. To increase their power, the present work uses general
CD grammar systems, whose components are general grammars, that are computationally
complete—that is, they characterize the family of recursively enumerable languages. Most
importantly, however, we explain how to turn arbitrary general grammars into equivalent
two-component general CD grammar systems of very reduced and simplified forms.

To give an insight into this study in a greater detail, take any general grammar 𝐺.
This chapter demonstrates two types of transformations that turn 𝐺 into a two-component
general CD grammar system with one context-free component and one non-context-free
component. For brevity, in this introductory section, Γ1 and Γ2 denote the systems resulting
from the first type of transformations and the second type of transformations, respectively.
Γ1 has its non-context-free component containing the rules 11 → 00 and 0000 → 𝜀, while
Γ2 has its non-context-free component containing the rules 11 → 00 and 0000 → 2222,
where 0, 1, and 2 are new nonterminals. The chapter proves that working under the * and 𝑡
modes, Γ1 and Γ2 are equivalent to 𝐺. Thus, more generally speaking, general CD grammar
systems of these two forms are computationally complete—that is, they characterize the

69

family of recursively enumerable languages. Apart from the computational completeness,
it is worth mentioning the following other useful properties, (i) through (v), which make
Γ1 and Γ2 simple and easy to apply in theory as well as in practice.

(i) Most importantly, observe that Γ1 and Γ2 utilize a very reduced number of non-
context-free rules. One of their components is always purely context-free, and the
other has only two non-context-free rules. Of course, computational completeness
resulting from such strongly reduced versions of general CD grammar systems is more
than highly appreciated from both a theoretical and practical standpoint.

(ii) Consider Γ1. The paper demonstrates that working under the 𝑡 mode, during every
generation of a sentence, Γ1 changes its components no more than once. Furthermore,
if the system simulates the use of at least one non-context-free rule from the original
grammar, it changes its components precisely once.

(iii) From a general viewpoint, taking a closer look at language-generating rewriting sys-
tems, we intuitively see that some of them generate sentences of the same language
in a more similar way than others. Formal language theory has formalized this gen-
erative phenomenon in terms of close derivation simulations (see Chapter 6 in [55]
and [56]). To give an insight into this formalization, consider grammatical models 𝑋
and 𝑌 . Let ⇒ denote a derivation step, and let ⇒𝑚 denote 𝑚 consecutive derivation
steps. If there is a constant 𝑘 such that for every derivation of the form

𝑥0 ⇒ 𝑥1 ⇒ · · · ⇒ 𝑥𝑛

in 𝑋, where 𝑥0 is its start symbol, there is a derivation of the form

𝑥0 ⇒𝑘1 𝑥1 ⇒𝑘2 · · · ⇒𝑘𝑛 𝑥𝑛

in 𝑌 , where 𝑘𝑖 ≤ 𝑘 for each 1 ≤ 𝑖 ≤ 𝑛, we say that 𝑌 closely simulates 𝑋. In
this sense, the chapter demonstrates that under the * mode Γ1 and Γ2 in many cases
closely simulate 𝐺. This property also makes these transformations distinct from some
well-known transformations generating grammatical models with a reduced number of
non-context-free rules (e.g., Geffert normal forms [17, 19]), since they usually require
a very strict derivation flow for the resulting model.

(iv) The specific form of the rules in Γ1 and Γ2 makes it possible to utilize paralleliza-
tion through the whole sentence generation process. In essence, it is possible to use
multi-derivations that, during a derivation step, rewrite the sentential form at several
positions at once, not just at a single position. This property also holds for uniform
derivations that always rewrite at all possible positions at once.

(v) Before sketching the final property, we recall that a grammatical rule of the form
𝑥 → 𝑦, where 𝑥 and 𝑦 are strings, is homogeneous if 𝑥 is formed by a string of identical
symbols (see Section 2.2.5 or [51]). A homogeneous rule 𝑥 → 𝑦 is evenly homogeneous
if 𝑦 is also formed by a string of identical symbols and |𝑥| = |𝑦|. In a CD grammar
system, a component is homogeneous if all its rules are homogeneous, and it is evenly
homogeneous if all its rules are evenly homogeneous. A CD grammar system is rule-
homogeneous if all its components are homogeneous. As obvious, any CD grammar
system with context-free components is rule-homogeneous. Observe that Γ1 and Γ2

are both rule-homogeneous CD grammar systems with one context-free component

70

and one homogeneous component. In fact, in Γ2, the second component is evenly
homogeneous.

The rest of this chapter is organized as follows. Section 6.2 explores properties of
general CD grammar systems. Section 6.3 introduces all fundamental techniques of the
transformations on input grammars that satisfy Kuroda normal form. Sections 6.4 gener-
alizes the previous techniques for arbitrary general grammars and presents the remaining
results. Section 6.5 closes the study by pointing out some remarks and suggestions for
further investigation.

6.2 On General CD Grammar Systems
The definition of general CD grammar systems (see Section 2.4) can be easily modified so
that the components are sets of rules of any type. Recall that, for CD grammar systems
having regular, linear, context-sensitive, or general components, their generative power
often does not change with the number of components (see [8, 78]), i.e., they still gener-
ate the families of regular, linear, context-sensitive, or recursively enumerable languages,
respectively. Nonetheless, different results have been obtained by studying some other non-
classical components—e.g., permitting, left-forbidding, and random context components
(see [9, 20, 30])—where the number of components affects the resulting generative power.

It is clear that if we require computational completeness, we need components that use
stronger mechanisms than basic context-free rules. In general, components with homoge-
neous rules have a similar effect as general components—a single homogeneous component
can define RE by itself (see [51]). The same, however, does not hold for components with
evenly homogeneous rules, which can define only sets of single symbols on their own. There-
fore, one may wonder, what properties we can get if we combine together several relatively
simple components of different types.

The rest of this chapter studies two-component general CD grammar systems where
the first component is always purely context-free and the second component contains either
homogeneous or evenly homogeneous rules. Furthermore, we limit the non-context-free
component so it contains only two rules.

6.3 Transformations from Kuroda Normal Form
In order to simplify the reasoning for underlying proofs, this section assumes that all input
grammars satisfy Kuroda normal form (see Section 2.2.4). Nonetheless, in the following
section, we show that Kuroda normal form is not necessary and that we can use similar
techniques to convert any general grammar into a two-component general CD grammar
system that also satisfies similar properties.

First, let us start with the most straightforward variant of a two-component general CD
grammar system that works in the * mode and has the second component homogeneous.
The following proof will also serve as a framework for later proofs since the majority of the
reasoning can be shared throughout the variants.

Theorem 6.3.1. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a grammar in Kuroda normal form. Then, there
exists a two-component general CD grammar system Γ = (𝑁 ′, 𝑇,𝐻, 𝐼, 𝑆) such that 𝐻 is
context-free, 𝐼 = {11 → 00, 0000 → 𝜀}, and 𝐿*(Γ) = 𝐿(𝐺).

71

Proof.
Construction.
Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆). Without any loss of generality, assume that (𝑁 ∪ 𝑇) ∩ {0, 1} = ∅.
For 𝑚 = 2 + card(NonContextFree(𝑃)), define an injection 𝑔 from NonContextFree(𝑃)
to ({01}+{00}{01}+ ∩ {01, 00}𝑚). From 𝐺, we construct the two-component general CD
grammar system Γ = (𝑁 ′, 𝑇,𝐻, 𝐼, 𝑆), where 𝑁 ′ = 𝑁 ∪ {0, 1}, 𝐼 = {11 → 00, 0000 → 𝜀},
and 𝐻 is defined as follows:

(I) For every 𝐴𝐵 → 𝐶𝐷 ∈ 𝑃 where 𝐴,𝐵,𝐶,𝐷 ∈ 𝑁 ,
add 𝐴 → 𝐶𝐷𝑔(𝐴𝐵 → 𝐶𝐷) and 𝐵 → rev(𝑔(𝐴𝐵 → 𝐶𝐷)) to 𝐻.

(II) For every 𝐴 → 𝑥 ∈ 𝑃 where 𝐴 ∈ 𝑁 and 𝑥 ∈ ({𝜀} ∪ 𝑇 ∪𝑁2), add 𝐴 → 𝑥 to 𝐻.
The construction of Γ is completed.

Basic idea.
(a) The rules (I) and the second component 𝐼 simulate the derivation steps made by

NonContextFree(𝑃) in 𝐺. That is, 𝑥𝐴𝐵𝑦 ⇒ 𝑥𝐶𝐷𝑦 according to 𝐴𝐵 → 𝐶𝐷 ∈ 𝑃 in
𝐺, where 𝑥, 𝑦 ∈ (𝑁 ∪ 𝑇)*, is simulated in Γ as

𝑥𝐴𝐵𝑦 ⇒𝐻 𝑥𝐶𝐷𝑔(𝐴𝐵 → 𝐶𝐷)𝐵𝑦

⇒𝐻 𝑥𝐶𝐷𝑔(𝐴𝐵 → 𝐶𝐷) rev(𝑔(𝐴𝐵 → 𝐶𝐷))𝑦

⇒2𝑚−1
𝐼 𝑥𝐶𝐷𝑦.

Γ makes the (2𝑚−1)-step derivation 𝑥𝐶𝐷𝑔(𝐴𝐵 → 𝐶𝐷) rev(𝑔(𝐴𝐵 → 𝐶𝐷))𝑦 ⇒2𝑚−1
𝐼

𝑥𝐶𝐷𝑦 by using only the rules 11 → 00 and 0000 → 𝜀. During this derivation, the
string between 𝐷 and 𝑦 always contains exactly one occurrence of consecutive identical
symbols that can be rewritten, so this derivation actually verifies that the simulation
of 𝑥𝐴𝐵𝑦 ⇒ 𝑥𝐶𝐷𝑦 is made properly.

(b) The rules (II) simulate the use of ContextFree(𝑃) in 𝐺.

The reader may notice that the simulation of non-context-free rules resembles similar
techniques used in general grammars (see [79, 16, 17, 18, 19, 51]). However, this is tra-
ditionally done either by using several types of matching parentheses (see [79, 16]), which
is not a suitable form for homogeneous rules, or it requires a significant non-local change
in the generation flow of the original grammar (see [17, 19, 51]), which denies the close
derivation simulations.

Formal proof.
We prove 𝐿*(Γ) = 𝐿(𝐺). It was already proven in part B of the proof of Theorem 1 in [16]
and in the proof of Theorem 1 in [79] that the rules of the form 𝑋𝑌 → 𝑤, where 𝑋,𝑌 ∈ 𝑁 ,
𝑤 ∈ (𝑁 ∪ 𝑇)*, can be replaced with 𝑋 → 𝑤𝐿𝑖, 𝑌 → 𝑅𝑖, 𝐿𝑖𝑅𝑖 → 𝜀, where 𝐿𝑖, 𝑅𝑖 are new
unique nonterminals for each rule. Thus, we only need to prove that our encoding with
injection 𝑔 simulates the same behavior and that it works in two-component general CD
grammar systems.

First, we establish the terminology that we will use throughout this proof: Any consec-
utive sequence of nonterminals 0 and 1 is referred to as verification code. We say that a
sequence is rewritable if there is a rule in Γ that can be used on the sequence. We recognize
three distinct types of verification codes in the sentential form:

∙ unconnected verification code – This is the initial sequence from the rules (I). Con-
sidering some rule 𝐴𝐵 → 𝐶𝐷 ∈ 𝑃 , it is either 𝑔(𝐴𝐵 → 𝐶𝐷) or rev(𝑔(𝐴𝐵 → 𝐶𝐷)).
In more detail, we identify 𝑔(𝐴𝐵 → 𝐶𝐷) as a left unconnected verification code (the

72

code of the form {01}+{00}{01}+) and rev(𝑔(𝐴𝐵 → 𝐶𝐷)) as a right unconnected
verification code (the code of the form {10}+{00}{10}+).

∙ connected verification code – This sequence is established when some left and right
unconnected verification codes merge together in the sentential form, and we identify
it as connected until it has the form {01}{0, 1}*{10}.

∙ leftover – The remaining sequence {0000}.

Now, we show that our encoding properly simulates 𝐿𝑖𝑅𝑖 → 𝜀. First, we establish a
claim on how a connected verification code can be rewritten.

Claim 6.3.1.1. Let 𝐴𝐵 → 𝐶𝐷 ∈ 𝑃 , where 𝐴,𝐵,𝐶,𝐷 ∈ 𝑁 . A (standalone) connected
verification code can be reduced to a leftover if and only if it was initially established as
𝑔(𝐴𝐵 → 𝐶𝐷) rev(𝑔(𝐴𝐵 → 𝐶𝐷)).

Proof. Let 𝐴𝐵 → 𝐶𝐷,𝐸𝐹 → 𝑈𝑉 ∈ 𝑃 , where 𝐴,𝐵,𝐶,𝐷,𝐸, 𝐹, 𝑈, 𝑉 ∈ 𝑁 , such that
𝑔(𝐴𝐵 → 𝐶𝐷) = (01)𝑘00(01)𝑙 and 𝑔(𝐸𝐹 → 𝑈𝑉) = (01)𝑝00(01)𝑞, where 𝑘, 𝑙, 𝑝, 𝑞 ≥ 1,
𝑘 + 𝑙 + 1 = 𝑚, 𝑝 + 𝑞 + 1 = 𝑚, 𝑘 ̸= 𝑝. There are two distinct cases how a connected
verification code can be initially established: either 𝑔(𝐴𝐵 → 𝐶𝐷)𝑟𝑒𝑣(𝑔(𝐴𝐵 → 𝐶𝐷)) or
𝑔(𝐴𝐵 → 𝐶𝐷)𝑟𝑒𝑣(𝑔(𝐸𝐹 → 𝑈𝑉)). (There are four ways how to pair the unconnected
verification codes but only two distinct cases since the rules can be swapped.)

The first case creates the sequence (01)𝑘00(01)𝑙(10)𝑙00(10)𝑘. Initially, the rules 11 → 00
and 0000 → 𝜀 are used 𝑙 times to erase (01)𝑙(10)𝑙. Then, the rule 0000 → 𝜀 has to be used.
Next, both rules are used 𝑘 − 1 times again until only the sequence 0110 remains. And
finally, the rule 11 → 00 creates the leftover.

In the second case, the sequence is (01)𝑘00(01)𝑙(10)𝑞00(10)𝑝. Assume that 𝑙 > 𝑞; the
result is analogous for the opposite situation. The rules 11 → 00 and 0000 → 𝜀 can be used
𝑞 times, and it leads to the sequence (01)𝑘00(01)𝑙−𝑞00(10)𝑝. Nonetheless, this sequence
cannot be rewritten any further.

In both cases, the derivation steps cannot be done in any other way. Thus, it is clear
that a connected verification code can be reduced to a leftover if and only if it is established
as 𝑔(𝐴𝐵 → 𝐶𝐷) rev(𝑔(𝐴𝐵 → 𝐶𝐷)) for some 𝐴𝐵 → 𝐶𝐷 ∈ 𝑃 . �

Next, we demonstrate that there is no sentential form in which a verification code could
be rewritten in some unintended way.

Claim 6.3.1.2. In any reachable sentential form, a verification code can be rewritten only
if it can be identified as either a connected verification code or a sequence of 0’s containing
a leftover as its substring.

Proof. Verification codes can be rewritten only with the rules 11 → 00 and 0000 → 𝜀. Any
verification code generated into the sentential form is initially in the form {01}+{00}{01}+
or {10}+{00}{10}+. Clearly, no rule can rewrite this code as long as it remains alone. When
the left and right unconnected verification codes are joined together, a connected verification
code is established where the rewriting can occur. In contrast, observe that unconnected
verification codes joined in different ways do not establish any rewritable sequence.

Considering the proof of Claim 6.3.1.1, a connected verification code is always in the
form {01}{0, 1}*{10} until it is reduced to a leftover. Observe that if this form is joined
together with other connected or unconnected verification codes, it does not establish any
new rewritable sequence.

73

Lastly, the leftover 0000 is clearly rewritable on its own, but it can be also merged
with other verification codes and that can create an even longer rewritable sequence of 0’s.
Nonetheless, observe that only the rule 0000 → 𝜀 can be applied on this sequence, which
erases precisely the leftover. Thus, this cannot affect the form of the other verification
codes.

The above description covers all obtainable forms of verification codes, and only the
connected verification code and the sequence of 0’s containing a leftover as its substring
can be rewritten. Thus, Claim 6.3.1.2 holds. �

From Claims 6.3.1.1 and 6.3.1.2, it is obvious that the encoding successfully simulates
the unique nonterminals 𝐿𝑖, 𝑅𝑖 and the erasing rules 𝐿𝑖𝑅𝑖 → 𝜀.

Next, we prove 𝐿(𝐺) ⊆ 𝐿*(Γ); more precisely, by induction on the number of derivation
steps, we demonstrate Claim 6.3.1.3.

Claim 6.3.1.3. For every 𝑤 ∈ (𝑁 ∪ 𝑇)* and 𝑖 ≥ 0, 𝑆 ⇒𝑖 𝑤 in 𝐺 implies 𝑆 ⇒*
𝑘1

𝑤1 ⇒*
𝑘2

· · · ⇒*
𝑘𝑙
𝑤𝑙 = 𝑤, 𝑙 ≥ 1, 𝑘𝑗 ∈ {𝐻, 𝐼}, 1 ≤ 𝑗 ≤ 𝑙, in Γ.

Proof. Basis: Let 𝑖 = 0. Then, 𝑤 = 𝑆. Clearly, 𝑆 ⇒*
𝐻 𝑆.

Induction hypothesis: Assume that the implication of Claim 6.3.1.3 holds for every 𝑖 ≤ 𝑜,
where 𝑜 is a non-negative integer.
Induction step: Consider any derivation of the form 𝑆 ⇒𝑜+1 𝛽 in 𝐺, where 𝛽 ∈ (𝑁 ∪ 𝑇)*.
Express 𝑆 ⇒𝑜+1 𝛽 as 𝑆 ⇒𝑜 𝛼 ⇒ 𝛽, where 𝛼 ∈ (𝑁 ∪ 𝑇)*. By the induction hypothesis,
𝑆 ⇒*

𝑘1
𝑤1 ⇒*

𝑘2
· · · ⇒*

𝑘𝑙
𝑤𝑙 = 𝛼, 𝑙 ≥ 1, 𝑘𝑗 ∈ {𝐻, 𝐼}, 1 ≤ 𝑗 ≤ 𝑙, in Γ. There are the following

two possibilities how 𝐺 can make 𝛼 ⇒ 𝛽:
(1) Let 𝐴𝐵 → 𝐶𝐷 ∈ 𝑃 , 𝛼 = 𝑥𝐴𝐵𝑦, 𝛽 = 𝑥𝐶𝐷𝑦, 𝑥, 𝑦 ∈ (𝑁 ∪ 𝑇)*, 𝐴,𝐵,𝐶,𝐷 ∈ 𝑁 .

According to (a) in the basic idea and from Claims 6.3.1.1 and 6.3.1.2,
𝑥𝐴𝐵𝑦 ⇒𝐻 𝑥𝐶𝐷𝑔(𝐴𝐵 → 𝐶𝐷)𝐵𝑦

⇒𝐻 𝑥𝐶𝐷𝑔(𝐴𝐵 → 𝐶𝐷) rev(𝑔(𝐴𝐵 → 𝐶𝐷))𝑦

⇒2𝑚−1
𝐼 𝑥𝐶𝐷𝑦

in Γ. Consequently, 𝑆 ⇒*
𝑘1

𝑤1 ⇒*
𝑘2

· · · ⇒*
𝑘𝑙′

𝑤𝑙′ = 𝑥𝐶𝐷𝑦 = 𝛽, 𝑙′ ≥ 1, 𝑘𝑗 ∈ {𝐻, 𝐼},
1 ≤ 𝑗 ≤ 𝑙′, in Γ.

(2) Let 𝐴 → 𝑧 ∈ 𝑃 , 𝛼 = 𝑥𝐴𝑦, 𝛽 = 𝑥𝑧𝑦, 𝑥, 𝑦 ∈ (𝑁 ∪ 𝑇)*, 𝐴 ∈ 𝑁 , 𝑧 ∈ ({𝜀} ∪ 𝑇 ∪ 𝑁2).
From (b) in the basic idea, 𝑥𝐴𝑦 ⇒𝐻 𝑥𝑧𝑦 in Γ. Consequently, 𝑆 ⇒*

𝑘1
𝑤1 ⇒*

𝑘2
· · · ⇒*

𝑘𝑙′

𝑤𝑙′ = 𝑥𝑧𝑦 = 𝛽, 𝑙′ ≥ 1, 𝑘𝑗 ∈ {𝐻, 𝐼}, 1 ≤ 𝑗 ≤ 𝑙′, in Γ.
The induction step is completed, so Claim 6.3.1.3 holds. �

Lastly, we prove 𝐿*(Γ) ⊆ 𝐿(𝐺). We show that, for any 𝑦 ∈ 𝐿*(Γ), there is a sequence
of derivation steps in Γ that precisely follows the intended order from the basic idea, so
𝑦 ∈ 𝐿(𝐺).

Claim 6.3.1.4. Any successful derivation sequence generating 𝑦 ∈ 𝐿*(Γ) in Γ can be re-
ordered so it satisfies the form

𝑆 = 𝑣03 ⇒*
𝐻 𝑣10 ⇒𝐻 𝑣11 ⇒𝐻 𝑣12 ⇒2𝑚−1

𝐼 𝑣13

⇒*
𝐻 𝑣20 ⇒𝐻 𝑣21 ⇒𝐻 𝑣22 ⇒2𝑚−1

𝐼 𝑣23
...
⇒*

𝐻 𝑣𝑘0 ⇒𝐻 𝑣𝑘1 ⇒𝐻 𝑣𝑘2 ⇒2𝑚−1
𝐼 𝑣𝑘3 ⇒*

𝐻 𝑣(𝑘+1)0 = 𝑦,

74

where for 𝑖 = 0, 1, . . . , 𝑘 in 𝑣𝑖3 ⇒*
𝐻 𝑣(𝑖+1)0 every sentential form is over (𝑁 ∪ 𝑇)*; and for

𝑗 = 1, . . . , 𝑘 the sentential forms in the derivation 𝑣𝑗0 ⇒𝐻 𝑣𝑗1 ⇒𝐻 𝑣𝑗2 ⇒2𝑚−1
𝐼 𝑣𝑗3 have the

structure:

𝑣𝑗0 = 𝑢𝑗𝐴𝑗𝐵𝑗𝑤𝑗,
𝑣𝑗1 = 𝑢𝑗𝐶𝑗𝐷𝑗𝑔(𝐴𝑗𝐵𝑗 → 𝐶𝑗𝐷𝑗)𝐵𝑗𝑤𝑗,
𝑣𝑗2 = 𝑢𝑗𝐶𝑗𝐷𝑗𝑔(𝐴𝑗𝐵𝑗 → 𝐶𝑗𝐷𝑗) rev(𝑔(𝐴𝑗𝐵𝑗 → 𝐶𝑗𝐷𝑗))𝑤𝑗,
𝑣𝑗3 = 𝑢𝑗𝐶𝑗𝐷𝑗𝑤𝑗 ,

for some 𝐴𝑗𝐵𝑗 → 𝐶𝑗𝐷𝑗 ∈ 𝑃 , 𝑢𝑗 , 𝑤𝑗 ∈ (𝑁 ∪ 𝑇)*, 𝐴𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝐷𝑗 ∈ 𝑁 .

Proof. First, all nonterminals in 𝑁 can be rewritten only with the context-free rules of
the component 𝐻. This implies that it does not matter in which order we rewrite them
in the sentential form. Second, consider rules 𝐴 → 𝐶𝐷𝑔(𝐴𝐵 → 𝐶𝐷), 𝐵 → rev(𝑔(𝐴𝐵 →
𝐶𝐷)) ∈ 𝐻, where 𝐴,𝐵,𝐶,𝐷 ∈ 𝑁 , 𝐴𝐵 → 𝐶𝐷 ∈ 𝑃 . Claims 6.3.1.1 and 6.3.1.2 show that
only the verification code 𝑔(𝐴𝐵 → 𝐶𝐷) rev(𝑔(𝐴𝐵 → 𝐶𝐷)) can be successfully erased.
It follows that we can always establish some order of derivations in which the sequence
𝑣𝑗0 ⇒𝐻 𝑣𝑗1 ⇒𝐻 𝑣𝑗2 ⇒2𝑚−1

𝐼 𝑣𝑗3 holds for each simulated non-context-free rule. �

From the reordered derivations of Claim 6.3.1.4 in Γ and from (I) and (II), we see that
𝑣03 ⇒* 𝑣(𝑘+1)0 in 𝐺. Therefore, 𝑦 ∈ 𝐿*(Γ) implies 𝑦 ∈ 𝐿(𝐺). Thus, 𝐿*(Γ) ⊆ 𝐿(𝐺).

As 𝐿(𝐺) ⊆ 𝐿*(Γ) and 𝐿*(Γ) ⊆ 𝐿(𝐺), 𝐿*(Γ) = 𝐿(𝐺). Thus, Theorem 6.3.1 holds.

Corollary 6.3.2. The resulting two-component general CD grammar system Γ from the
proof of Theorem 6.3.1 closely simulates the original grammar 𝐺.

Proof. For any resulting Γ, we can find a bounded constant 𝑘 such that for every possible
derivation 𝑢 ⇒ 𝑣 in 𝐺 there is a 𝑘′-step derivation in Γ that gives the same result and
𝑘′ ≤ 𝑘. Furthermore, for a given Γ, we can easily determine the minimal possible 𝑘.

Consider the proof of Claim 6.3.1.3 and the mentioned possibilities how 𝐺 can make
𝛼 ⇒ 𝛽. Any context-free rule is simulated in one derivation step. The non-context-free
rules require two initial derivation steps and the rewriting of the verification code. The
length of the rewriting depends on the size of 𝑚, and it takes 2𝑚 − 1 steps to complete.
The minimal possible 𝑘 for a given Γ is therefore 2𝑚 + 1.

Next, we consider a two-component general CD grammar system with the same structure
but working in the 𝑡 mode.

Theorem 6.3.3. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a grammar in Kuroda normal form. Then, there
exists a two-component general CD grammar system Γ = (𝑁 ′, 𝑇,𝐻, 𝐼, 𝑆) such that 𝐻 is
context-free, 𝐼 = {11 → 00, 0000 → 𝜀}, and 𝐿𝑡(Γ) = 𝐿(𝐺).

Proof.
Construction. The process of construction remains identical to Theorem 6.3.1. For a
grammar 𝐺 = (𝑁,𝑇, 𝑃, 𝑆), 𝑚 = 2+card(NonContextFree(𝑃)), and injection 𝑔, we construct
the two-component general CD grammar system Γ = (𝑁 ′, 𝑇,𝐻, 𝐼, 𝑆), where 𝑁 ′ = 𝑁∪{0, 1},
and 𝐻 and 𝐼 contain the rules as described in Theorem 6.3.1.

Basic idea.
Recall that, during the generation of a sentence, a CD grammar system working in the 𝑡
mode switches its components only if the process is not finished and there are no possible

75

derivations with the previous component. Consider the general behavior of Γ. It starts the
generation with 𝑆. For the first derivation, applicable rules can be found only in 𝐻, so this
component has to be used. However, 𝐻 also contains all rules simulating the original rules
of 𝐺. Consequently, the first derivation in the 𝑡 mode has to simulate all rules in 𝐺 and
cannot rewrite any generated verification codes. Nonetheless, we prove that the verification
codes can be successfully erased afterwards for all simulated non-context-free rules at once.

Formal proof.
We prove 𝐿𝑡(Γ) = 𝐿(𝐺). First, let us prove the statement introduced above. For conve-
nience, consider the homomorphism 𝜙 : (𝑁 ′∪𝑇)* → (𝑁 ∪𝑇)* where 𝜙(𝑎) = 𝑎 and 𝜙(𝑏) = 𝜀,
for all 𝑎 ∈ (𝑁 ∪ 𝑇) and 𝑏 ∈ {0, 1}.

Claim 6.3.3.1. For every 𝑢 ∈ (𝑁 ∪ 𝑇)* and 𝑖 ≥ 0, 𝑆 ⇒𝑖 𝑢 in 𝐺 implies 𝑆 ⇒*
𝐻 𝑤 ⇒𝑡

𝐼 𝑢 in
Γ, where 𝑤 ∈ (𝑁 ′∪𝑇)* and 𝜙(𝑤) = 𝑢. Furthermore, 𝑤 satisfies the form 𝑤 = 𝑝1𝑞1 · · · 𝑝𝑛𝑞𝑛,
where 𝑛 ≥ 1, 𝑝𝑗 ∈ (𝑁 ∪ 𝑇)*, 𝑞𝑗 ∈ {0, 1}*, 1 ≤ 𝑗 ≤ 𝑛, and every 𝑞𝑗 represents a verification
code that can be successfully erased on its own.

Proof. Basis: Let 𝑖 = 0. Then, 𝑢 = 𝑆. Clearly, 𝑆 ⇒0
𝐻 𝑆 ⇒𝑡

𝐼 𝑆, and the required form also
holds.
Induction hypothesis: Assume that Claim 6.3.3.1 holds for every 𝑖 ≤ 𝑜, where 𝑜 is a non-
negative integer.
Induction step: Consider any derivation of the form 𝑆 ⇒𝑜+1 𝛽 in 𝐺, where 𝛽 ∈ (𝑁 ∪ 𝑇)*.
Express 𝑆 ⇒𝑜+1 𝛽 as 𝑆 ⇒𝑜 𝛼 ⇒ 𝛽, where 𝛼 ∈ (𝑁 ∪ 𝑇)*. By the induction hypothesis,
𝑆 ⇒*

𝐻 𝑤 ⇒𝑡
𝐼 𝛼, where 𝜙(𝑤) = 𝛼, in Γ. There are the following two possibilities how 𝐺 can

make 𝛼 ⇒ 𝛽:

(1) Let 𝐴𝐵 → 𝐶𝐷 ∈ 𝑃 , 𝛼 = 𝑥𝐴𝐵𝑦, 𝛽 = 𝑥𝐶𝐷𝑦, 𝑥, 𝑦 ∈ (𝑁 ∪ 𝑇)*, 𝐴,𝐵,𝐶,𝐷 ∈ 𝑁 .
Consider 𝑤 in the required form. Let 𝑤 = 𝑝1𝑞1 · · · 𝑝𝑘𝐴𝑞𝑘𝐵𝑝𝑘+1𝑞𝑘+1 · · · 𝑝𝑛𝑞𝑛, where
𝑛 ≥ 1, 1 ≤ 𝑘 ≤ 𝑛, 𝑝𝑗 ∈ (𝑁 ∪ 𝑇)*, 𝑞𝑗 ∈ {0, 1}*, 1 ≤ 𝑗 ≤ 𝑛, and also 𝑝1 · · · 𝑝𝑘 = 𝑥 and
𝑝𝑘+1 · · · 𝑝𝑛 = 𝑦. Then,

𝑤 = 𝑝1𝑞1 · · · 𝑝𝑘𝐴𝑞𝑘𝐵𝑝𝑘+1𝑞𝑘+1 · · · 𝑝𝑛𝑞𝑛
⇒𝐻 𝑝1𝑞1 · · · 𝑝𝑘𝐶𝐷𝑔(𝐴𝐵 → 𝐶𝐷)𝑞𝑘𝐵𝑝𝑘+1𝑞𝑘+1 · · · 𝑝𝑛𝑞𝑛
⇒𝐻 𝑝1𝑞1 · · · 𝑝𝑘𝐶𝐷𝑔(𝐴𝐵 → 𝐶𝐷)𝑞𝑘 rev(𝑔(𝐴𝐵 → 𝐶𝐷))𝑝𝑘+1𝑞𝑘+1 · · · 𝑝𝑛𝑞𝑛
= 𝑤′

in Γ, and there are two possible situations regarding these steps:

(a) If 𝑞𝑘 = 𝜀, the steps add a new connected verification code. By Claims 6.3.1.1
and 6.3.1.2, such a code can be successfully erased on its own, so the required
form holds. Consequently, 𝑆 ⇒*

𝐻 𝑤′ ⇒𝑡
𝐼 𝛽 in Γ.

(b) If 𝑞𝑘 ̸= 𝜀, the steps prolong some existing verification code. However, since 𝑞𝑘 has
to be erasable on its own, observe that this creates a properly nested structure
that is also erasable on its own, so the required form holds. Consequently,
𝑆 ⇒*

𝐻 𝑤′ ⇒𝑡
𝐼 𝛽 in Γ.

(2) Let 𝐴 → 𝑧 ∈ 𝑃 , 𝛼 = 𝑥𝐴𝑦, 𝛽 = 𝑥𝑧𝑦, 𝑥, 𝑦 ∈ (𝑁 ∪ 𝑇)*, 𝐴 ∈ 𝑁 , 𝑧 ∈ ({𝜀} ∪ 𝑇 ∪ 𝑁2).
Consider 𝑤 in the required form. Let 𝑤 = 𝑝1𝑞1 · · · 𝑝𝑘𝐴𝑞𝑘𝑝𝑘+1𝑞𝑘+1 · · · 𝑝𝑛𝑞𝑛, where
𝑛 ≥ 1, 1 ≤ 𝑘 ≤ 𝑛, 𝑝𝑗 ∈ (𝑁 ∪ 𝑇)*, 𝑞𝑗 ∈ {0, 1}*, 1 ≤ 𝑗 ≤ 𝑛, and also 𝑝1 · · · 𝑝𝑘 = 𝑥 and

76

𝑝𝑘+1 · · · 𝑝𝑛 = 𝑦. Then,

𝑤 = 𝑝1𝑞1 · · · 𝑝𝑘𝐴𝑞𝑘𝑝𝑘+1𝑞𝑘+1 · · · 𝑝𝑛𝑞𝑛
⇒𝐻 𝑝1𝑞1 · · · 𝑝𝑘𝑧𝑞𝑘𝑝𝑘+1𝑞𝑘+1 · · · 𝑝𝑛𝑞𝑛 = 𝑤′

in Γ. The required form clearly holds, and thus 𝑆 ⇒*
𝐻 𝑤′ ⇒𝑡

𝐼 𝛽 in Γ.

The induction step is completed, so Claim 6.3.3.1 holds. �

Consider 𝑆 ⇒* 𝑦, where 𝑦 ∈ 𝑇 *, in 𝐺. By Claim 6.3.3.1, this implies 𝑆 ⇒*
𝐻 𝑤 ⇒𝑡

𝐼 𝑦,
where 𝑤 ∈ (𝑇 ∪ {0, 1})*, in Γ. It is obvious that, in such a case, ⇒*

𝐻 behaves exactly the
same as ⇒𝑡

𝐻 . Thus, 𝐿(𝐺) ⊆ 𝐿𝑡(Γ). Nonetheless, it is clear that Γ working in the 𝑡 mode
can no longer closely simulate 𝐺.

Since the 𝑡 mode is a restricted case of the * mode, it must hold that 𝐿𝑡(Γ) ⊆ 𝐿*(Γ).
From the proof of Theorem 6.3.1, 𝐿*(Γ) = 𝐿(𝐺). Therefore, 𝐿𝑡(Γ) ⊆ 𝐿(𝐺).

As 𝐿(𝐺) ⊆ 𝐿𝑡(Γ) and 𝐿𝑡(Γ) ⊆ 𝐿(𝐺), 𝐿𝑡(Γ) = 𝐿(𝐺). Thus, Theorem 6.3.3 holds.

Corollary 6.3.4. The resulting two-component general CD grammar system Γ from the
proof of Theorem 6.3.3 changes its components, during every generation of a sentence, no
more than once.

Proof. This proof directly follows the basic idea of Theorem 6.3.3 and Claim 6.3.3.1. Γ
always starts the process with the symbol 𝑆 and the component 𝐻, since 𝐻 is the only
component that can generate something from 𝑆. If the first derivation does not use any
simulated non-context-free rules, then Γ never switches components because the result of
such a derivation is already a final sentence. If the result contains verification codes, then
Γ switches to the component 𝐼 that finishes the generation. Since 𝐼 cannot introduce any
new nonterminals of the original grammar, Γ is not able to switch again.

For the remaining results, we change the second component of the two-component gen-
eral CD grammar system so it is evenly homogeneous. We show that such a system also
works correctly in both the * mode and the 𝑡 mode.

Theorem 6.3.5. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a grammar in Kuroda normal form. Then, there
exists a two-component general CD grammar system Γ = (𝑁 ′, 𝑇,𝐻, 𝐼, 𝑆) such that 𝐻 is
context-free, 𝐼 = {11 → 00, 0000 → 2222}, and 𝐿*(Γ) = 𝐿𝑡(Γ) = 𝐿(𝐺).

Proof.
Construction.
Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆). Without any loss of generality, assume that (𝑁 ∪ 𝑇) ∩ {0, 1, 2} = ∅.
For 𝑚 = 2 + card(NonContextFree(𝑃)), define an injection 𝑔 from NonContextFree(𝑃)
to ({01}+{00}{01}+ ∩ {01, 00}𝑚). From 𝐺, we construct the two-component general CD
grammar system Γ = (𝑁 ′, 𝑇,𝐻, 𝐼, 𝑆), where 𝑁 ′ = 𝑁 ∪ {0, 1, 2}, 𝐼 = {11 → 00, 0000 →
2222}, and 𝐻 is defined as follows:

(I) For every 𝐴𝐵 → 𝐶𝐷 ∈ 𝑃 where 𝐴,𝐵,𝐶,𝐷 ∈ 𝑁 ,
add 𝐴 → 𝐶𝐷𝑔(𝐴𝐵 → 𝐶𝐷) and 𝐵 → rev(𝑔(𝐴𝐵 → 𝐶𝐷)) to 𝐻.

(II) For every 𝐴 → 𝑥 ∈ 𝑃 where 𝐴 ∈ 𝑁 and 𝑥 ∈ ({𝜀} ∪ 𝑇 ∪𝑁2), add 𝐴 → 𝑥 to 𝐻.
(III) Add 2 → 𝜀 to 𝐻.
The construction of Γ is completed.

Note that this resembles the construction from Theorem 6.3.1. We only added one new
nonterminal and a rule that can erase it. Also the basic idea for the simulation process
remains almost the same.

77

Formal proof (sketch).
First, consider the verification codes. We adjust our terminology and say that the veri-
fication code can also contain occurrences of nonterminal 2. Furthermore, the connected
verification code now always holds the form {01}{0, 1, 2}*{10}. Note that only the rule
0000 → 2222 can generate 2’s and that only the rule 2 → 𝜀 can rewrite these nonterminals
further. It follows that the proof of Claim 6.3.1.1 can be trivially adapted for the modified
structure, and thus Claim 6.3.1.1 also holds in this system. The following claim introduces
a slightly modified version of Claim 6.3.1.2.

Claim 6.3.5.1. In any reachable sentential form, a verification code can be rewritten only
if it can be identified as a connected verification code, sequence of 0’s containing a leftover
as its substring, or nonterminal 2.

Proof. The proof is analogous to Claim 6.3.1.2. �

From Claims 6.3.1.1 and 6.3.5.1, it is clear that the purpose of verification codes holds.
Next, consider the * mode. It is obvious that Γ has to switch its components several

times if some connected verification code needs to be erased, since the rules of 𝐼 rewrite
only 0’s and 1’s and the rule from 𝐻 rewrites 2’s. For brevity, let 𝑢 =⇒𝑙 𝑣 denote the
sequence 𝑢 ⇒𝑘1

𝑣1 ⇒𝑘2
· · · ⇒𝑘𝑙

𝑣𝑙 = 𝑣, 𝑘𝑗 ∈ {𝐻, 𝐼}, 1 ≤ 𝑗 ≤ 𝑙. Considering the basic
idea in Theorem 6.3.1, we can clearly replace the original derivation sequence ⇒2𝑚−1

𝐼 with
a new derivation sequence =⇒6𝑚−1. This change can be also straightforwardly applied on
Claims 6.3.1.3 and 6.3.1.4 and their proofs. Consequently, 𝐿*(Γ) = 𝐿(𝐺).

Lastly, consider the 𝑡 mode. We introduce a modified version of Claim 6.3.3.1. For
convenience and brevity, consider the homomorphism 𝜙 : (𝑁 ′ ∪ 𝑇)* → (𝑁 ∪ 𝑇)* where
𝜙(𝑎) = 𝑎 and 𝜙(𝑏) = 𝜀, for all 𝑎 ∈ (𝑁 ∪ 𝑇) and 𝑏 ∈ {0, 1, 2}; and let 𝑢 =⇒𝑡 𝑣 denote the
sequence 𝑢 ⇒𝑡

𝑘1
𝑣1 ⇒𝑡

𝑘2
· · · ⇒𝑡

𝑘𝑙
𝑣𝑙 = 𝑣, 𝑙 ≥ 1, 𝑘𝑗 ∈ {𝐻, 𝐼}, 1 ≤ 𝑗 ≤ 𝑙.

Claim 6.3.5.2. For every 𝑢 ∈ (𝑁 ∪ 𝑇)* and 𝑖 ≥ 0, 𝑆 ⇒𝑖 𝑢 in 𝐺 implies 𝑆 ⇒*
𝐻 𝑤 =⇒𝑡 𝑢

in Γ, where 𝑤 ∈ (𝑁 ′ ∪ 𝑇)* and 𝜙(𝑤) = 𝑢. Furthermore, we consider 𝑤 to be generally in
the form 𝑤 = 𝑝1𝑞1 · · · 𝑝𝑛𝑞𝑛, where 𝑛 ≥ 1, 𝑝𝑗 ∈ (𝑁 ∪ 𝑇)*, 𝑞𝑗 ∈ {0, 1}*, 1 ≤ 𝑗 ≤ 𝑛, and every
𝑞𝑗 represents a verification code that can be successfully erased on its own.

Proof. The proof by induction is analogous to Claim 6.3.3.1. �

Consider 𝑆 ⇒* 𝑦, where 𝑦 ∈ 𝑇 *, in 𝐺. By Claim 6.3.5.2, this implies 𝑆 ⇒*
𝐻 𝑤 =⇒𝑡 𝑦,

where 𝑤 ∈ (𝑇 ∪ {0, 1})*, in Γ. It is again obvious that, in such a case, ⇒*
𝐻 behaves exactly

the same as ⇒𝑡
𝐻 . Thus, 𝐿(𝐺) ⊆ 𝐿𝑡(Γ). It is clear that Γ working in the 𝑡 mode cannot

closely simulate 𝐺. Furthermore, it is not even possible to bound the number how many
times Γ changes its components during the generation of a sentence, since verification codes
can be arbitrarily nested and the erasing process needs to constantly switch the components.

As 𝐿*(Γ) = 𝐿(𝐺), 𝐿(𝐺) ⊆ 𝐿𝑡(Γ), and 𝐿𝑡(Γ) ⊆ 𝐿*(Γ), 𝐿*(Γ) = 𝐿𝑡(Γ) = 𝐿(𝐺). Thus,
Theorem 6.3.5 holds.

Corollary 6.3.6. If the two-component general CD grammar system Γ from the proof of
Theorem 6.3.5 works in the * mode, it can closely simulate the original grammar 𝐺.

Proof. The reasoning is the same as for Corollary 6.3.2. For any resulting Γ, we can find
a bounded constant 𝑘 such that for every possible derivation 𝑢 ⇒ 𝑣 in 𝐺 there is a 𝑘′-step
derivation in Γ that gives the same result and 𝑘′ ≤ 𝑘. Furthermore, for a given Γ, we can
easily determine the minimal possible 𝑘.

78

Again, any context-free rule is simulated in one derivation step. The non-context-free
rules require two initial derivation steps and the rewriting of the verification code. The
length of the rewriting depends on the size of 𝑚, and in this case it takes 6𝑚− 1 steps to
complete. The minimal possible 𝑘 for a given Γ is therefore 6𝑚 + 1.

6.4 Transformations from General Grammars
This section considers transformations that turn arbitrary general grammars into equiv-
alent two-component general CD grammar systems. Since the previous section already
established several transformations from Kuroda normal form, the most straightforward
approach would be to convert any general grammar into Kuroda normal form and then use
the previous transformations; however, considering the resulting properties of the system,
this approach may be undesirable. First, if we want to keep the system close to the original
grammar, the transformation into Kuroda normal form already considerably impacts the
grammar. Second, the system may generate unnecessarily nested verification codes that can
be inconvenient for parallelization. Therefore, we introduce transformations that directly
work with general grammars. We say that a transformation from general grammars into
two-component general CD grammar systems is direct if it keeps the original context-free
rules intact and splits the non-context-free rules proportionally to the number of symbols
on their left-hand sides.

Theorem 6.4.1. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a general grammar such that alph(lhs(𝑝))∩𝑇 = ∅
for all 𝑝 ∈ 𝑃 . Then, there exists its direct transformation into a two-component general CD
grammar system Γ = (𝑁 ′, 𝑇,𝐻, 𝐼, 𝑆) such that 𝐻 is context-free, 𝐼 = {11 → 00, 0000 → 𝜀},
and 𝐿*(Γ) = 𝐿𝑡(Γ) = 𝐿(𝐺).

Proof.
Construction.
Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆). Without any loss of generality, assume that (𝑁 ∪ 𝑇) ∩ {0, 1} = ∅.
For 𝑛 = max{| lhs(𝑝)| : 𝑝 ∈ NonContextFree(𝑃)} and some 𝑚 ≥ 3, define an injection
𝑔 from NonContextFree(𝑃) × {1, . . . , 𝑛−1} to ({01}+{00}{01}+ ∩ {01, 00}𝑚). From 𝐺,
we construct the two-component general CD grammar system Γ = (𝑁 ′, 𝑇,𝐻, 𝐼, 𝑆), where
𝑁 ′ = 𝑁 ∪ {0, 1}, 𝐼 = {11 → 00, 0000 → 𝜀}, and 𝐻 is defined as follows:

(I) For every 𝑟 : 𝑋1 · · ·𝑋𝑚 → 𝑥 ∈ 𝑃 where 𝑚 ≥ 2, 𝑋1, . . . , 𝑋𝑚 ∈ 𝑁 , and 𝑥 ∈ (𝑁 ∪ 𝑇)*,
add the following rules to 𝐻:
𝑋1 → 𝑥𝑔(𝑟, 1),
𝑋2 → rev(𝑔(𝑟, 1))𝑔(𝑟, 2),
...
𝑋𝑚−1 → rev(𝑔(𝑟,𝑚−2))𝑔(𝑟,𝑚−1),
𝑋𝑚 → rev(𝑔(𝑟,𝑚−1)).

(II) For every 𝑋 → 𝑥 ∈ 𝑃 where 𝑋 ∈ 𝑁 and 𝑥 ∈ (𝑁 ∪ 𝑇)*, add 𝑋 → 𝑥 to 𝐻.
The construction of Γ is completed.

Formal proof (sketch).
To prove the correctness of the above construction, we utilize the previous construction
from Theorem 6.3.1, and we go backwards through the transformation of general grammars
into Kuroda normal form.

From Theorem 8.3.3.1 in [49], we use the following transformation of a general grammar,
𝐺 = (𝑁,𝑇, 𝑃, 𝑆), into an equivalent Kuroda normal form grammar, 𝐺KNF = (𝑁KNF, 𝑇,

79

𝑃KNF, 𝑆), which has five distinct steps that modify original rules and add new auxiliary
nonterminals. We outline only the necessary basics since details are rather lengthy. All
capital letters in the description represent some nonterminals from 𝑁KNF. At start, 𝑁KNF =
𝑁 . The five steps follow:

(1) Each occurrence of a terminal, 𝑎 ∈ 𝑇 , is replaced with a new nonterminal 𝑎′, and we
add a new rule 𝑎′ → 𝑎.

(2) Every 𝐴1 · · ·𝐴𝑚 → 𝐵1 · · ·𝐵𝑛, where 𝑛 and 𝑚 satisfy 0 ≤ 𝑛 < 𝑚, is replaced with
𝐴1 · · ·𝐴𝑚 → 𝐵1 · · ·𝐵𝑛𝐶𝑛+1 · · ·𝐶𝑚, where 𝐶𝑛+1 through 𝐶𝑚 denote occurrences of a
new nonterminal 𝐶. We also add a new rule 𝐶 → 𝜀.

(3) Every 𝐴 → 𝐵 is replaced with 𝐴 → 𝐵𝐶 and 𝐶 → 𝜀. 𝐶 is a new nonterminal.

(4) Every 𝐴1 · · ·𝐴𝑚 → 𝐵1 · · ·𝐵𝑛, where 2 ≤ 𝑚 and 3 ≤ 𝑛, is repeatedly replaced with
𝐴1𝐴2 → 𝐵1𝐶 and 𝐶𝐴3 · · ·𝐴𝑚 → 𝐵2 · · ·𝐵𝑛. 𝐶 is a new nonterminal.

(5) Every 𝐴 → 𝐵1 · · ·𝐵𝑛, where 3 ≤ 𝑛, is replaced with the standard chain of rules:
𝐴 → 𝐵1⟨𝐵2 · · ·𝐵𝑛⟩, ⟨𝐵2 · · ·𝐵𝑛⟩ → 𝐵2⟨𝐵3 · · ·𝐵𝑛⟩, . . . ,
⟨𝐵𝑛−2 · · ·𝐵𝑛⟩ → 𝐵𝑛−2⟨𝐵𝑛−1𝐵𝑛⟩, ⟨𝐵𝑛−1𝐵𝑛⟩ → 𝐵𝑛−1𝐵𝑛.
⟨𝐵2 · · ·𝐵𝑛⟩, . . . , ⟨𝐵𝑛−1𝐵𝑛⟩ are new nonterminals.

Let 𝐺 be a general grammar such that alph(lhs(𝑝)) ∩ 𝑇 = ∅ for all 𝑝 ∈ 𝑃 . Let 𝐺KNF
be a grammar in Kuroda normal form that was created from 𝐺 according to the above
algorithm. And lastly, let ΓKNF be a two-component general CD grammar system that
was created from 𝐺KNF according to the construction from Theorem 6.3.1. The proofs of
Theorems 6.3.1 and 6.3.3 have already shown that we can rewrite nonterminals of 𝐺KNF
in the sentential form of ΓKNF in any order and that the 𝑡 mode expands all nonterminals
of the original input grammar in one derivation. Therefore, we can, in a backward way,
recreate the desired form of rules in Γ from the rules of ΓKNF.

First, consider the original context-free rules of 𝐺. They are affected only by the trans-
formation into Kuroda normal form in steps (1), (3), and (5). Therefore, we can easily
recreate their original form so that it corresponds with (II). This is possible because each
time the transformation into Kuroda normal form splits a rule, it defines some new nonter-
minal for which only one rule is applicable. Therefore, this rule has to be also eventually
applied in ΓKNF, and it causes no issue if both rules are applied together as one in Γ.

Second, consider the context-sensitive rules 𝐴1 · · ·𝐴𝑚 → 𝐵1 · · ·𝐵𝑛 of 𝐺, where 𝐴1, . . . ,
𝐴𝑚 ∈ 𝑁 and 𝐵1, . . . , 𝐵𝑛 ∈ (𝑁 ∪ 𝑇)*. First, their right-hand side is affected by (1).
Next, they are rewritten with steps (2) and (4) so they have the form: 𝑟1 : 𝐴1𝐴2 → 𝐵1𝐶1,
𝑟2 : 𝐶1𝐴3 → 𝐵2𝐶2, and so on. These remaining context-sensitive rules are then transformed
into ΓKNF as: 𝐴1 → 𝐵1𝐶1𝑔(𝑟1), 𝐴2 → rev(𝑔(𝑟1)), 𝐶1 → 𝐵2𝐶2𝑔(𝑟2), 𝐴3 → rev(𝑔(𝑟2)),
etc. Working backwards, we get the rules of the form: 𝐴1 → 𝐵1 · · ·𝐵𝑛𝑔(𝑟𝑚−1) · · · 𝑔(𝑟1),
𝐴2 → rev(𝑔(𝑟1)), 𝐴3 → rev(𝑔(𝑟2)), etc. Observe that this creates a nested structure
of verification codes. (The same situation inevitably happens in the 𝑡 mode of ΓKNF.)
However, since these are the only rules with the verification codes 𝑔(𝑟1), . . . , 𝑔(𝑟𝑚−1), we can
safely rearrange the codes in the rules as: 𝐴1 → 𝐵1 · · ·𝐵𝑛𝑔(𝑟1), 𝐴2 → rev(𝑔(𝑟1))𝑔(𝑟2), . . . ,
𝐴𝑚−1 → rev(𝑔(𝑟𝑚−2))𝑔(𝑟𝑚−1), 𝐴𝑚 → rev(𝑔(𝑟𝑚−1)). This form then directly corresponds
with (I).

Since 𝐿*(ΓKNF) = 𝐿𝑡(ΓKNF) = 𝐿(𝐺), it must hold that 𝐿*(Γ) = 𝐿𝑡(Γ) = 𝐿(𝐺).

80

The similar result can be easily achieved for the two-component general CD grammar
system where 𝐼 = {11 → 00, 0000 → 2222}. Furthermore, it should be also obvious that the
other properties from the previous section (close simulation and switching of components)
still hold in this more general transformation.

Lastly, we introduce a modification of the above transformation that works with all
general grammars. However, it is not possible to directly use our previous approach for
grammars that have rules with terminals on their left-hand sides. Consequently, the result-
ing system may not be able to closely simulate the original general grammar. We say that
a transformation is semi-direct if it separates terminals from the left-hand side of the rules
but otherwise behaves as a direct transformation.

Theorem 6.4.2. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a general grammar. Then, there exists its semi-
direct transformation into a two-component general CD grammar system Γ = (𝑁 ′, 𝑇,𝐻, 𝐼,
𝑆) such that 𝐻 is context-free, 𝐼 = {11 → 00, 0000 → 𝜀}, and 𝐿*(Γ) = 𝐿𝑡(Γ) = 𝐿(𝐺).

Proof. The proof by construction is simple. We use the core idea of step (1) from the
transformation of general grammars into Kuroda normal form. First, let 𝑇rep = {𝑎 : 𝑎 ∈
𝑇, 𝑎 ∈ alph(lhs(𝑟)), 𝑟 ∈ 𝑃}. We replace each occurrence of 𝑎 ∈ 𝑇rep in the rules with a new
nonterminal 𝑎′, and we add 𝑎′ → 𝑎 to 𝑃 . Now, the grammar satisfies the condition for the
construction from Theorem 6.4.1. Thus, the construction of Γ is completed.

Again, the same holds for the system with the evenly homogeneous component.

6.5 Concluding Remarks
We close this chapter by formulating some remarks and open problems. First, take a closer
look at the properties of all presented transformations. As already stated in Section 6.1,
multi-derivations are performed so that, during a derivation step, the current sentential form
may be simultaneously rewritten at several positions, not just at a single position. More
formally, let Γ = (𝑁,𝑇, 𝑃1, 𝑃2, . . . , 𝑃𝑛, 𝑆) be a general CD grammar system, 𝑛 be a positive
integer, and 𝑢𝑖 ⇒𝑃𝑘

𝑣𝑖, 𝑢𝑖, 𝑣𝑖 ∈ (𝑁∪𝑇)*, 1 ≤ 𝑖 ≤ 𝑛. Then, Γ makes a direct multi-derivation
step from 𝑢1𝑢2 · · ·𝑢𝑛 to 𝑣1𝑣2 · · · 𝑣𝑛, symbolically written as 𝑢1𝑢2 · · ·𝑢𝑛 𝑚𝑢𝑙𝑡𝑖⇒𝑃𝑘

𝑣1𝑣2 · · · 𝑣𝑛.
Based on 𝑚𝑢𝑙𝑡𝑖⇒𝑃𝑘

, define 𝐿𝑓 (Γ) by analogy with the definition of 𝐿𝑓 (Γ) in Section 2.4.
Consider the systems constructed in the proofs of Theorems 6.3.1, 6.3.3, 6.3.5, 6.4.1, and
6.4.2. Observe that both of their components 𝐻 and 𝐼 always allow the free use of multi-
derivations since this cannot disturb the generation process in any way.

Finally, we propose two challenging problems.

(I) Consider the computationally-complete general CD grammar systems presented in
this chapter. Can we find a different combination of even more restricted components
so that the resulting systems are still computationally complete?

(II) Introduce new restricted transformations of general CD grammar systems so that they
characterize some other well-known language families, such as the families of matrix
and context-sensitive languages.

81

Part IV

Conclusion

82

But apart from the sanitation, the medicine, education, wine,
public order, irrigation, roads, the fresh water system, and
public health . . . what have the Romans ever done for us?

—Monty Python’s Life of Brian

Chapter 7

Application Perspectives

In the previous two parts of this thesis, the content was mainly presented in a strictly
rigorous way as it appeared in the published papers. In each chapter, we have already
mentioned some suggestions for further investigation that are directly linked to the topics
in question. Now, we would like to also highlight some broader application perspectives for
the obtained results that did not precisely fit into the previous chapters.

7.1 Controlled Discontinuous Reading
First, let us start with the discussion on the reading behavior of jumping finite automata
and the types of languages that these models accept. As we have stated in the introduc-
tion of this thesis, the main initial motivation behind the jumping concept was the fact
that in modern computation methods we often process information in a discontinuous way
but classical formal models usually work in a strictly continuous way. Consequently, the
description of modern computation methods with classical formal models can be in many
cases inadequately complicated. Nonetheless, this does not mean that the proposed jump-
ing finite automata can or should properly cover all needs of discontinuous information
processing. Indeed, there are many formal models that try to adequately capture different
parts of this phenomenon (see, e.g., the introduction of [57]). This diversity stems from the
fact that, with these new models, we are trying to move some complex parts of the behavior
of the computation methods into the core structure of the models. As a result, these new
models are then more suited for specific tasks rather than for general purpose computing.

Let us take a closer look at the original jumping finite automata (see [57]). Generally,
these models can very easily compare quantities of input symbols. Observe the increasing
complexity of crossed agreements on the number of symbols in the languages like:

∙ {𝑤 ∈ {𝑎, 𝑏}* : |𝑤|𝑎 = |𝑤|𝑏},

∙ {𝑤 ∈ {𝑎, 𝑏, 𝑐}* : |𝑤|𝑎 = |𝑤|𝑏 = |𝑤|𝑐}, and

∙ {𝑤 ∈ {𝑎, 𝑏, 𝑐, 𝑑}* : |𝑤|𝑎 = |𝑤|𝑏 = |𝑤|𝑐 = |𝑤|𝑑}.

Since classical formal models need to handle all symbols in the precise order, we quickly get
out of the capabilities of even pushdown automata. On the other hand, there is almost no
increase in the complexity of the model when we accept these languages with jumping finite
automata. Nonetheless, the discontinuous nature of jumping finite automata has its severe
drawbacks when we try to accept languages that actually do require some precise reading

83

order. We can see that JFAs cannot accept even the trivial language {𝑎𝑏}. This can be
partially overcome with GJFAs for finite strings. However, there is no GJFA that could
accept the simple regular language {𝑎}*{𝑏}*. Moreover, we pay a significant price for this
partial reading order with the increased expected parsing complexity. According to [14, 15]
and using the standard complexity classes from computational complexity theory, we know
that the parsing of JFAs falls into NL, whereas the parsing of GJFAs falls into NP and
there exists a GJFA for which the parsing is NP-complete. In this regard, we can see the
behavior of original jumping finite automata mainly as a purely discontinuous reading.

If we take a look at the automata introduced in this thesis, we can say that these parallel
versions of jumping finite automata explore controlled discontinuous reading behaviors.

𝑛-Parallel Jumping Finite Automata

Considering models from Chapter 3, we can see that they precisely fit the description of
parallelism (P.1) that increases the power of the model. Moreover, the parallel mechanism
integrated into the jumping finite automaton model can also partially control the reading
order of the input sting. Indeed, we can use the initial splitting of the input string to
establish some required fixed order between the separated parts.

Due to Theorems 3.4.1 and 3.4.4, we know that, with any number of reading heads, we
can accept all languages accepted by the original jumping finite automata. Now, consider
the following languages that cannot be accepted with the original jumping finite automata:

(1) {𝑎}*{𝑏}*, {𝑎}*{𝑏}*{𝑐}*, {𝑎}*{𝑏}*{𝑐}*{𝑑}*,

(2) {𝑎𝑛𝑏𝑛 : 𝑛 ≥ 0}, {𝑎𝑛𝑏𝑛𝑐𝑛 : 𝑛 ≥ 0}, and {𝑎𝑛𝑏𝑛𝑐𝑛𝑑𝑛 : 𝑛 ≥ 0}.

In group (1), the languages are clearly all regular. By contrast, in group (2), the languages
get again quickly out of the capabilities of even push automata. It is possible to easily
accept all these languages with 𝑛-PGJFAs; even if we restrict these automata so that the
rules can contain only single symbols. Nonetheless, each distinct section in the input string
that occupies a specific position between other sections of the input string requires an
additional reading head (see Lemma 3.4.3). Therefore, we can see that this technique of
controlling the order of symbols has its limitations. For example, with a finite number of
reading heads, we are not able to cover all regular languages.

As we have shown, there is a possibility to use the right 𝑛-jumping relation and thus
extend the basic behavior of classical finite automata rather than jumping finite automata.
In this case, we decrease the capabilities of the discontinuous reading but increase the
capabilities of the continuous reading. In this mode, 𝑛-PGJFAs are still able to accept all
languages introduced in the previous paragraph and also all regular languages, but they are
no longer able to accept the previous languages like {𝑤 ∈ {𝑎, 𝑏, 𝑐}* : |𝑤|𝑎 = |𝑤|𝑏 = |𝑤|𝑐}.

It should be a relatively simple task to simulate the parallel behavior of these automata.
The model conveniently splits the input into several almost independent parts at the start,
and then we need to synchronize only the number of performed steps by the reading heads.
The synchronization behavior in this model is also easily reconfigurable, and thus it can
be further fine-tuned for the specific needs of the given task. After such a reconfiguration,
the changes in the power of the model should be also relatively easy to predict because
many different versions of these types of synchronizations were already thoroughly studied
in formal grammars.

84

Double-Jumping Finite Automata

Even though the previous 𝑛-PGJFAs are already able to partially control the discontinuous
reading, we can see that they can ensure only a relatively simple reading order and that
it can potentially require many additional reading heads. Therefore, let us take a look at
the advanced reading modes with two reading heads from Chapter 4. We can see that the
behavior of the jumping finite automaton model in these modes differs from 𝑛-PGJFAs:
(1) the input string is not split into separate parts at the start, however, the heads cannot
cross each other; (2) each head has its own reading direction; and (3) both heads always
follow the same rule in a single step. These changes have a large impact on the jumping
behavior and the families of accepted languages, but they help us to better control the
discontinuous reading and combine it with the continuous reading. Indeed, we could make
these modes more general if we removed (3), but the main focus of our research was to
study the core behavior of these modes.

From our initial study, the unrestricted 2-jumping relation does not seem to be particu-
larly interesting for further research. It offers a somewhat similar effect as 𝑛-PGJFAs, but
the impact of rules on the accepted language is less well-defined because there is no clear
point on the input tape which the heads cannot cross. Consequently, we were not able to
link this mode to some specific behavior used in modern computation methods.

Considering the right-left and left-right 2-jumping relations, we see that the model loses
almost all its jumping capabilities. Indeed, the reading heads can reposition themselves
only during the initialization phase. However, this gives us a great control over the reading
behavior since the model can still read from two distinct places at once and the position
of the heads is always well predictable. Of course, the reduction of jumping capabilities
has its drawbacks, and the model can now accept only a subfamily of linear languages.
Nonetheless, these 2-jumping relations draw a nice connection to 5′ → 3′ Watson-Crick
finite automata, where this concept can be expanded and studied further.

Lastly, let us take a look at the right-right and left-left 2-jumping relations. On the first
glance, their behavior may seem hard to grasp, but under a closer inspection we see here
some similarities with methods that ensure data consistency or with other similar types
of tasks. In computer science, there are many tasks where several processes may need to
work with the same resources together in parallel and where we need to guarantee data
consistency. To demonstrate our idea, let us consider database transactions. Typically, in
a transaction, we load data from a database, we modify some values, and we save the data
back to the database. These three operations together are not atomic, and the database
may need to handle other requests in the same time. Thus, when we consider a stream
of operations performed by the database, the load and store operations may not follow
precisely after each other, but there cannot be a different operation between them that
modifies the same data. If we consider the right-right 2-jumping relation, we see that it can
accept input strings where the data (symbols) are not in some precise order but where two
sequences read by the heads are interlined according to the rule that the first head cannot
ever cross the second head. Of course, the model would need to be further appropriately
tweaked to precisely match the needs of a real-world task.

Jumping 5′ → 3′ Watson-Crick Finite Automata

Compared to the previous models, jumping 5′ → 3′ Watson-Crick finite automata are
already constructed with more specific types of tasks in mind. Furthermore, they offer

85

a significant control of their reading behavior that can be adjusted with the rules in the
model. We can explore languages accepted by these automata from two points of view.

First, from a purely theoretical point of view, we can observe how the rules of the
model affects the reading behavior. Considering Lemma 5.4.1 and Theorem 5.4.3, we can
see that if we use only certain types of rules, we can almost completely disable the jumping
behavior of the model. Observe that the meeting point of the heads splits the input string
into two parts in which different rules are used. The heads are able to jump in the given
part only in cases in which both heads can read some symbols in this part according to
the rules of the model. Thus, we can force the heads to read some parts of the input
completely continuously. This allows us to accept all regular and even all linear languages.
Furthermore, the model is also able to accept some of the more complicated languages with
balanced quantities of symbols. Nonetheless, the model is not able to work in a completely
discontinuous way, and thus there are more severe restrictions on the form of these languages
compare to the original jumping finite automata.

Second, from a more practical point of view, let us consider the biology inspired nature
of this model. As we have mentioned in Chapter 2.7, Watson-Crick finite automata work
with double-stranded strings, each strand of the string has 5′ end and 3′ end, and the strands
are combined together from opposite directions. Therefore, if we want both heads to read
each strand from 5′ end to 3′ end, one head must read from left to right, and the other
head must read from right to left. Since this is not a typical behavior of finite automata,
it is useful to have special models for these tasks. There are already (full-reading) sensing
5′ → 3′ Watson-Crick finite automata that work in this way, but their heads can read
the input only in a continuous way. Our jumping version of 5′ → 3′ Watson-Crick finite
automata can cover situations where we want to search for sequences in DNA that are not
necessarily continuous but rather interlined together from both directions. Of course, one
of the imminent follow-up questions is the complexity of a parsing algorithm that would
be based on this model. We do not have an answer yet, but we hope that the controlled
nature of this discontinuous reading will help us find shortcuts for the parsing process.

7.2 Debt Lemmas
Next, we explore how to use one of the presented proof techniques in a broader context.
From the content of Chapters 3, 4, and 5, it is clear that the parallel jumping finite au-
tomaton models require different approaches in proofs than classical finite automata that
process the input in a continuous way. In Chapters 3 and 4, it was still possible to cleverly
adapt the more or less classical proof techniques for the new conditions. However, we can
see that the proofs in Chapter 5 sometimes require a significantly different approach. More
specifically, let us recall one of the crucial lemmas:

Lemma 5.4.8. Let 𝐿 be a language, and let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a jumping 5′ → 3′ WK
automaton. If 𝐿(𝑀) = 𝐿, there exists a constant 𝑘 for 𝑀 such that 𝑀 accepts all 𝑤 ∈ 𝐿
using only configurations that have their debt bounded by 𝑘.

For convenience, we name it the debt lemma. Traditionally, when we want to show
that a language is not accepted by the model in question, we use some form of a pumping
lemma (see [77]). Nonetheless, pumping lemmas usually reason about the resulting language
families and not about the actual models. This can become limiting in situations where we
do not know how the resulting language family precisely looks like, but where we otherwise
know a lot about the model that defines it. This situation seems to be quite common for

86

jumping models because the details of the jumping behavior have a large impact on the
resulting language family. If we look at other approaches, it is common in finite automata
to say that the model has a finite state control and thus it cannot remember an infinite
amount of information. This is, however, only an informal reasoning that is not used in
formal proofs. We are not aware of any proof technique that would try to capture such an
approach in a formal way. Therefore, we have developed the debt lemma that allows us to
take into consideration both the language and also the model.

Even though the debt lemma was designed for the parallel jumping finite automaton
model, it is not limited only for these types of models. We believe that it can be easily
adapted for any finite automaton model that does not use an infinite storage and that reads
the input at least semi-continuously. To demonstrate this in detail we show how to adapt
the debt lemma for classical finite automata.

First, we adapt the supporting definitions and lemmas for the new model:

Definition 5.4.5. Let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a jumping 5′ → 3′ WK automaton. Assuming
some states 𝑞, 𝑞′ ∈ 𝑄 and a mutual position of heads 𝑠 ∈ {⊕,⊖}, we say that 𝑞′ is reachable
from 𝑞 and 𝑠 if there exists a configuration (𝑞, 𝑠, 𝑤1, 𝑤2, 𝑤3) such that (𝑞, 𝑠, 𝑤1, 𝑤2, 𝑤3) y*

(𝑞′, 𝑠′, 𝑤′
1, 𝑤

′
2, 𝑤

′
3) in 𝑀 , 𝑠′ ∈ {⊕,⊖}, 𝑤1, 𝑤2, 𝑤3, 𝑤

′
1, 𝑤

′
2, 𝑤

′
3 ∈ (𝑉 ∪ {#})*.

Definition 7.2.1. Let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a finite automaton. Assuming some states
𝑞, 𝑞′ ∈ 𝑄, we say that 𝑞′ is reachable from 𝑞 if there exists a configuration 𝑞𝑤 such that
𝑞𝑤 ⇒* 𝑞′ in 𝑀 , 𝑤 ∈ 𝑉 *.

Lemma 5.4.6. For each jumping 5′ → 3′ WK automaton 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) there exists
a constant 𝑘 such that the following holds. Let 𝑞 ∈ 𝑄 and 𝑠 ∈ {⊕,⊖} such that 𝑓 ∈ 𝐹
is reachable from 𝑞 and 𝑠. For every computation 𝒞 that takes 𝑀 from (𝑞0,⊕, 𝜀, 𝑤, 𝜀) to
(𝑞, 𝑠, 𝑤1, 𝑤2, 𝑤3), 𝑤 ∈ 𝑉 *, 𝑤1, 𝑤2, 𝑤3 ∈ (𝑉 ∪ {#})*, there exists 𝑤′ ∈ 𝐿(𝑀) such that 𝑀
starting with 𝑤′ can reach 𝑞 and 𝑠′ ∈ {⊕,⊖} by using the same sequence of ⊕/⊖-reading
steps as in 𝒞 and the rest of 𝑤′ can be processed with a limited number of additional steps
bounded by 𝑘.

Lemma 7.2.2. For each finite automaton 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) there exists a constant 𝑘
such that the following holds. Let 𝑞 ∈ 𝑄 such that 𝑓 ∈ 𝐹 is reachable from 𝑞. For every
computation 𝒞 that takes 𝑀 from 𝑞0𝑤1𝑤2 to 𝑞𝑤2, 𝑤1, 𝑤2 ∈ 𝑉 *, there exists 𝑤′ ∈ 𝐿(𝑀)
such that 𝑀 starting with 𝑤′ can reach 𝑞 by using the same sequence of steps as in 𝒞 and
the rest of 𝑤′ can be processed with a limited number of additional steps bounded by 𝑘.

Proof. The proof is trivial. If 𝑓 is reachable from 𝑞, there has to exist some sequence of
state transitions from 𝑞 to 𝑓 that does not repeat states; this sequence is finite, and its
maximum length is bounded by 𝑘′ = |𝑄|. Assume that the sequence reads 𝑤3 ∈ 𝑉 *. Set
𝑤′ = 𝑤1𝑤3. Clearly, 𝑞0𝑤1𝑤3 ⇒* 𝑞𝑤3 ⇒* 𝑓 in 𝑀 . Thus, 𝑤′ ∈ 𝐿(𝑀) and there exists 𝑘 ≤ 𝑘′

for 𝑀 that bounds the number of additional steps.

Definition 5.4.7. Let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a jumping 5′ → 3′ WK automaton, where
𝑉 = {𝑎1, . . . , 𝑎𝑛}, and let 𝑤 ∈ 𝑉 *. We define the Parikh vector 𝑜 = (𝑜1, . . . , 𝑜𝑛) of processed
(read) symbols from 𝑤 in a configuration 𝛾 = (𝑞, 𝑠, 𝑤1, 𝑤2, 𝑤3) of 𝑀 reached from an
initial configuration (𝑞0,⊕, 𝜀, 𝑤, 𝜀) of 𝑀 as 𝑜 = Ψ𝑉 (𝑤) − Ψ𝑉 (𝑤1𝑤2𝑤3), 𝑞 ∈ 𝑄, 𝑠 ∈ {⊕,⊖},
𝑤1, 𝑤2, 𝑤3 ∈ (𝑉 ∪{#})*. Using the Parikh mapping of 𝐿(𝑀), we define ∆(𝑜) = {

∑︀𝑛
𝑖=1(𝑚𝑖−

𝑜𝑖) : (𝑚1, . . . ,𝑚𝑛) ∈ Ψ𝑉 (𝐿(𝑀)), 𝑚𝑖 ≥ 𝑜𝑖, 1 ≤ 𝑖 ≤ 𝑛} ∪ {∞}. Finally, we define the debt of
the configuration 𝛾 of 𝑀 as min ∆(𝑜).

87

Definition 7.2.3. Let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a finite automaton, where 𝑉 = {𝑎1, . . . , 𝑎𝑛},
and let 𝑤 ∈ 𝑉 *. We define the Parikh vector 𝑜 = (𝑜1, . . . , 𝑜𝑛) of processed (read) symbols
from 𝑤 in a configuration 𝛾 = 𝑞𝑤′ of 𝑀 reached from an initial configuration 𝑞0𝑤 of 𝑀
as 𝑜 = Ψ𝑉 (𝑤) − Ψ𝑉 (𝑤′), 𝑞 ∈ 𝑄, 𝑤′ ∈ 𝑉 *. Using the Parikh mapping of 𝐿(𝑀), we define
∆(𝑜) = {

∑︀𝑛
𝑖=1(𝑚𝑖 − 𝑜𝑖) : (𝑚1, . . . ,𝑚𝑛) ∈ Ψ𝑉 (𝐿(𝑀)), 𝑚𝑖 ≥ 𝑜𝑖, 1 ≤ 𝑖 ≤ 𝑛} ∪ {∞}. Finally,

we define the debt of the configuration 𝛾 of 𝑀 as min ∆(𝑜).
Now, we can adapt the main debt lemma:

Lemma 7.2.4. Let 𝐿 be a language, and let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a finite automaton.
If 𝐿(𝑀) = 𝐿, there exists a constant 𝑘 for 𝑀 such that 𝑀 accepts all 𝑤 ∈ 𝐿 using only
configurations that have their debt bounded by 𝑘.
Proof. By contradiction. Assume that there is no constant 𝑘 for 𝑀 such that 𝑀 accepts all
𝑤 ∈ 𝐿 using only configurations that have their debt bounded by 𝑘. Then, 𝑀 can accept
some 𝑤 ∈ 𝐿 over a configuration for which the debt cannot be bounded by any 𝑘. Let
𝑉 = {𝑎1, . . . , 𝑎𝑛}. Consider any configuration 𝛾 of 𝑀 reached from an initial configuration
𝑞0𝑤 of 𝑀 . Let 𝑜 = (𝑜1, . . . , 𝑜𝑛) be the Parikh vector of processed symbols from 𝑤 in 𝛾. First,
assume that 𝛾 contains a state 𝑞 ∈ 𝑄 from which a final state 𝑓 ∈ 𝐹 is reachable. Then, due
to Lemma 7.2.2, there is 𝑤′ ∈ 𝐿(𝑀) such that Ψ(𝑤′) = (𝑚1, . . . ,𝑚𝑛), 𝑚𝑖 ≥ 𝑜𝑖, 1 ≤ 𝑖 ≤ 𝑛,
and |𝑤′| ≤

∑︀𝑛
𝑖=1(𝑜𝑖) + 𝑘′, where 𝑘′ is some constant for 𝑀 . According to Definition 7.2.3,

𝑤′ ∈ 𝐿(𝑀) implies min ∆(𝑜) ≤ 𝑘′. Second, assume that 𝛾 contains a state 𝑞 from which no
final state 𝑓 is reachable. Then, by Definition 7.2.1, there is no computation that takes 𝑀
from 𝛾 to a final accepting configuration. Thus, when 𝑀 accepts 𝑤, it must be done over
configurations with the debt ≤ 𝑘′. However, that is a contradiction with the assumption
that 𝑀 can accept some 𝑤 ∈ 𝐿 over a configuration for which the debt cannot be bounded
by any 𝑘.

Finally, we show how the adapted debt lemma can be used in the proof that finite
automata cannot define the iconic language 𝐿 = {𝑎𝑛𝑏𝑛 : 𝑛 ≥ 0}.
Theorem 7.2.5. There is no finite automaton 𝑀 such that 𝐿(𝑀) = {𝑎𝑛𝑏𝑛 : 𝑛 ≥ 0}.
Proof. By contradiction. Let 𝐿 = {𝑎𝑛𝑏𝑛 : 𝑛 ≥ 0}, and let 𝑀 be a finite automaton such
that 𝐿(𝑀) = 𝐿. Due to Lemma 7.2.4, there must exist a constant 𝑘 for 𝑀 such that 𝑀
accepts all 𝑤 ∈ 𝐿 using only configurations that have their debt bounded by 𝑘. Consider
any 𝑘 ≥ 0. Let 𝑤 = 𝑎𝑘+1𝑏𝑘+1. Clearly, after reading 𝑎𝑘, the debt of the configuration
is 𝑘, and no further reading is possible. Thus, we can see that 𝑀 is not able to accept
𝑤 = 𝑎𝑘+1𝑏𝑘+1 when the debt of configurations of 𝑀 is bounded by 𝑘. Since, for any 𝑘,
𝑤 ∈ 𝐿, there is no constant 𝑘 for 𝑀 such that 𝑀 accepts all 𝑤 ∈ 𝐿 using only configurations
that have their debt bounded by 𝑘. But that is a contradiction with the assumption that
there is a finite automaton 𝑀 such that 𝐿(𝑀) = {𝑎𝑛𝑏𝑛 : 𝑛 ≥ 0}.

Of course, since pumping lemmas for regular languages are well known, it is not neces-
sary to adapt the debt lemma for classical finite automata. However, we can see that the
adaptation process is straightforward, and the resulting proof technique is simple to use.

7.3 General Parallel Processing
In Chapter 6, we have introduced several special forms of general CD grammar systems and
described their properties which are suitable for parallel rewriting. Nonetheless, we have
not yet hinted how the parallel rewriting process could actually look like.

88

Before we dig deeper, let us take a closer look at parallelism from the hardware per-
spective. As we have mentioned in the introduction, we want to split some large task into
smaller chunks of work in such a way that the chunks can be executed in parallel on separate
processing units, and the whole task can thus be computed faster than if it was executed
sequentially on a single processing unit. We can also add several details:

∙ It should be possible to use a variable number of processing units. Indeed, it is
common to test the task with a few local processing units and then delegate the real
task on a supercomputer.

∙ It should be possible to split the work equally; otherwise, we are wasting the potential
of the used processing units. Consequently, it is desirable for processing units to
perform relatively simple instructions.

∙ The communication between processing units should be kept on minimum; otherwise,
a large amount of processing time could be dedicated to the synchronization of data
and not to the actual work.

It is easy to construct such a parallel rewriting process for context-free grammars. We
can simply wait until there are several nonterminals in the sentential form, then we split
the string into several parts so that each part contains at least one nonterminal. Now, all
the parts can be safely rewritten in parallel, and the final sentence is just a concatenation
of the partial results. It is easy to rewrite nonterminals with context-free rules, there is no
need for communication, and the sentential form can be always arbitrarily divided further.
Of course, there can be some problematic spots if the grammar generates only a limited
number of nonterminals in the sentential form.

The situation gets much more complicated for grammars that use non-context-free rules.
First, we cannot safely split the sentential form into several independent parts. Second, we
need to search for a whole rewritable sequence and not just for a single nonterminal. Third,
even if there are several spots in the sentential form that can be rewritten, it is not clear if
we can rewrite several of them in the same time.

Now, consider the new special forms from Chapter 6. We can see several improvements
just from the description of their properties. First, these forms have only two non-context-
free rules. Moreover, the left-hand sides of rules are short and homogeneous; thus, we only
need to look for the sequences of up to four similar symbols. Furthermore, the rewriting of
nonterminals 0 and 1 is specifically reserved only for the non-context-free rules, and other
nonterminals can be rewritten only with context-free rules. Lastly, any rewritable spot in
the sentential form can be rewritten at any time. It remains to be seen if we can meaningfully
split the rewriting process in a flexible way and avoid exhaustive communication problems.

Before we describe the remaining properties, let us convert one of the well-known general
grammars into the general CD grammar system of the special form.

Consider the following general grammar from [50, Example 11.1]:

𝐺 = ({𝑆,𝐴,𝐵,𝐶,𝐷}, {𝑎}, 𝑃, 𝑆),

where 𝑃 consists of the rules:

1: 𝑆 → 𝐶𝐴𝑎𝐷, 2: 𝐴𝑎 → 𝑎𝑎𝐴, 3: 𝐴𝐷 → 𝐵𝐷, 4: 𝑎𝐵 → 𝐵𝑎,

5: 𝐶𝐵 → 𝐶𝐴, 6: 𝐶𝐴 → 𝐴, 7: 𝐴𝐷 → 𝜀.

89

After the initial phase 𝑆 ⇒ 𝐶𝐴𝑎𝐷, the grammar 𝐺 performs sweeps with rules 2, 3, 4, and
5 that always double the number of 𝑎’s in the sentential form:

𝐶𝐴𝑎𝐷 ⇒ 𝐶𝑎𝑎𝐴𝐷

⇒ 𝐶𝑎𝑎𝐵𝐷

⇒ 𝐶𝑎𝐵𝑎𝐷

⇒ 𝐶𝐵𝑎𝑎𝐷

⇒ 𝐶𝐴𝑎𝑎𝐷.

The final sweep to the right uses rules 6, 2, and 7 which remove all remaining nonterminals.
It is not hard to conclude that 𝐿(𝐺) = {𝑎2𝑖 : 𝑖 ≥ 1}.

We can see that it is impossible to rewrite the sentential form of 𝐺 in a parallel way
since the sweeps require and guarantee that only one specific position is always rewritten;
otherwise, the process gets stuck.

Now, according to Theorem 6.4.2, we can construct the two-component general CD
grammar system Γ = (𝑁,𝑇,𝐻, 𝐼, 𝑆) from 𝐺 such that 𝐻 is context-free, 𝐼 = {11 →
00, 0000 → 𝜀}, and 𝐿*(Γ) = 𝐿𝑡(Γ) = 𝐿(𝐺). Set 𝑁 = {𝑆,𝐴,𝐵,𝐶,𝐷, 𝑎′, 0, 1} and 𝑇 = {𝑎},
𝑔 is an injection from NonContextFree(𝑃) × {1} to ({01}+{00}{01}+ ∩ {01, 00}𝑚), and 𝐻
consists of the rules:

𝑆 → 𝐶𝐴𝑎′𝐷, 𝑎′ → 𝑎,

𝐴 → 𝑎′𝑎′𝐴𝑔(2, 1), 𝑎′ → rev(𝑔(2, 1)),

𝐴 → 𝐵𝐷𝑔(3, 1), 𝐷 → rev(𝑔(3, 1)),

𝑎′ → 𝐵𝑎′𝑔(4, 1), 𝐵 → rev(𝑔(4, 1)),

𝐶 → 𝐶𝐴𝑔(5, 1), 𝐵 → rev(𝑔(5, 1)),

𝐶 → 𝐴𝑔(6, 1), 𝐴 → rev(𝑔(6, 1)),

𝐴 → 𝑔(7, 1), 𝐷 → rev(𝑔(7, 1)).

Since Γ follows the constructions from the proofs of Theorems 6.4.1 and 6.4.2, it is clear
that 𝐿*(Γ) = 𝐿𝑡(Γ) = 𝐿(𝐺).

Finally, we consider the 𝑡 mode together with the uniform derivations and demonstrate
how Γ generates 𝑎𝑎. Note that we are also showing the internal direct steps of the 𝑡 mode.

𝑆 𝑚𝑢𝑙𝑡𝑖⇒𝐻 𝐶𝐴𝑎′𝐷

𝑚𝑢𝑙𝑡𝑖⇒𝐻 𝐴𝑔(6, 1) rev(𝑔(6, 1)) rev(𝑔(2, 1)) rev(𝑔(7, 1))

𝑚𝑢𝑙𝑡𝑖⇒𝐻 𝑎′𝑎′𝐴𝑔(2, 1)𝑔(6, 1) rev(𝑔(6, 1)) rev(𝑔(2, 1)) rev(𝑔(7, 1))

𝑚𝑢𝑙𝑡𝑖⇒𝐻 𝑎𝑎𝑔(7, 1)𝑔(2, 1)𝑔(6, 1) rev(𝑔(6, 1)) rev(𝑔(2, 1)) rev(𝑔(7, 1))

𝑚𝑢𝑙𝑡𝑖⇒+
𝐼 𝑎𝑎𝑔(7, 1)𝑔(2, 1) rev(𝑔(2, 1)) rev(𝑔(7, 1))

𝑚𝑢𝑙𝑡𝑖⇒+
𝐼 𝑎𝑎𝑔(7, 1) rev(𝑔(7, 1))

𝑚𝑢𝑙𝑡𝑖⇒+
𝐼 𝑎𝑎

In the 𝑡 mode, the rewriting process is clearly divided into two phases.
The first phase works only with component 𝐻, and it is essentially classical context-free

grammar; thus, it is easy to generate the result in a parallel way. However, we can run into

90

the same problems as in context-free grammars if the grammar generates only a limited
number of nonterminals in the sentential form.

The second phase works only with component 𝐼 and thus with non-context-free rules.
Nonetheless, the nonterminals in the sentential form are quite restricted, and this allows
us to optimize the process. As we have mentioned previously, any rewritable spot in the
sentential form can be rewritten at any time. Therefore, we can split the sentential form,
rewrite everything what is possible, connect the results, and rewrite the remaining spots.
Clear indicators for the split can be terminals since they cannot be affected in this stage.
However, we can run into problems if all the verification codes are completely nested; that
is the situation in our example.

We can also consider the * mode, where the two phases can be mixed. Here we can
take advantage of the property that 𝐻 and 𝐼 do not rewrite the same nonterminals. The
rewriting process can work in a context-free way, and when we see the sequence 11 or 0000
we can simultaneously start the partial processing of the second phase. This approach could
actually speed up our previous example.

In conclusion, we can see that these special forms have indeed nice parallel properties.
But the usefulness of these properties also depends on the underlying grammar since our
special forms closely simulate the original rules. Furthermore, Γ introduces more rules
and places where the process can get stuck; therefore, it depends on the fine-tuning of the
specific cases whether parallelism can actually speed up the required task.

We can also see here some similarities and potential for novel approaches connected
with techniques used in biocomputing that select candidate sequences, connect them, and
test them together. In the same fashion, we can split the sentential form in the first phase
into several parts, generate final strings with remaining nonterminals 0 and 1, locally test
if in these parts the verification codes do not get stuck, grade the parts depending on their
required connections to the left and to the right, and then reconnect the fitting results.
However, we leave this here only as an interesting side note because a deeper study of this
topic is out of the scope of this thesis.

91

There’s no more work. We’re destitute. I’m afraid I have no
choice but to sell you all for scientific experiments.

—Monty Python’s The Meaning of Life

Chapter 8

Summary and Theoretical
Perspectives

In this last chapter, we briefly evaluate achieved results and give our final thoughts on the
topic. We will not discuss all individual results in detail since each main chapter already has
its own concluding remarks, but we will look at the results from a more general perspective.

New Results on Jumping Automata

Considering parallel jumping finite automata, we can see that the newly introduced models
match with our goals presented in Chapter 1. All the models fall into the category (PA.2)
of parallelism in multi-head finite automata where the heads cooperate to process the single
input. In terms of the general categories for parallelism, these models sort of fall into all
of them: In category (P.1), parallelism increases the expressive power of the model. We
can see that in Chapter 3 the models clearly extend the original jumping finite automaton
and have greater expressive powers. In category (P.2), parallelism is a fundamental part of
the behavior of the model. In Chapter 5, we work with Watson-Crick models that fall into
(P.2) by definition. Lastly, in category (P.3), parallelism splits the work of the task. Since
all the models fall into (PA.2), they also naturally fall into (P.3).

With our work, we have pioneered the study of automaton models that combine the
parallel and jumping mechanisms. We believe that this area of research nicely supplements
the ongoing thorough investigation of the jumping mechanism. Moreover, our results have
already inspired some other new models (see [27]). With our results, we have shown that
every additional head increases the power of the model and that these automata can be
natural counterparts to various kinds of parallel grammars. In our study of 2-jumps, we
have shown that, even if we precisely replicate the behavior of right jumps in left jumps, the
right-right and left-left 2-jumps define incomparable language families. We have also studied
the possibilities of the combined model of jumping and Watson-Crick finite automata, and
our results have introduced some new proof techniques like the debt lemma that can be
used even outside the scope of jumping finite automata.

In our research, we have always followed the path that looked the most promising to yield
new interesting general results. Nonetheless, there are many possibilities how to combine
the parallel and jumping mechanism, and thus also many unexplored areas that we were
not able to cover. In the previous chapter, we have already hinted some of the areas with
potential for future research. For now, jumping finite automata are still primarily interesting
from the theoretical point of view. Indeed, they nicely connect different research areas. But

92

their behavior can be quite wild in more complex cases, their power highly depends on the
details of the jumping mechanism, and there are still questions about the complexity of
operations with these models. Nonetheless, with enough theoretical knowledge, it can be
possible in the future to design and fine tune jumping models so that they properly capture
some specific practical problems.

New Results on CD Grammar Systems

Considering the normal forms of grammars and grammar systems, we have introduced sev-
eral special forms for general CD grammar systems that have interesting parallel properties.
The theoretical aspects of these forms are thoroughly described in Chapter 6, and we have
also hinted some ideas for practical use in Chapter 7. Note that we are not making the
generation process of recursively enumerable languages any simpler, we are just rearranging
its parts so that it can be run in a parallel way. Therefore, this approach may not be that
interesting for the general case, but it can be useful for more specific cases where we can
somehow control and guide the generation process.

Compared to jumping models, this area of research is rather isolated and self-contained.
We are not aware of other studies of this type in the basic research in the theory of formal
languages. Indeed, classical normal forms are primarily focused only on the very restricted
forms of rules, minimum number of non-context-free rules, and minimum number of non-
terminals. Therefore, we hope that our effort can spark some interest for this largely
unexplored research area.

93

Bibliography

[1] Beier, S. and Holzer, M. Decidability of Right One-Way Jumping Finite
Automata. In: Developments in Language Theory, DLT 2018. Springer International
Publishing, 2018, p. 109–120. LNCS, vol. 11088.

[2] Beier, S. and Holzer, M. Properties of Right One-Way Jumping Finite Automata.
In: Descriptional Complexity of Formal Systems, DCFS 2018. Springer International
Publishing, 2018, p. 11–23. LNCS, vol. 10952.

[3] Beier, S. and Holzer, M. Properties of Right One-Way Jumping Finite Automata.
Theoretical Computer Science. 2019, vol. 798, p. 78–94.

[4] Beier, S., Holzer, M. and Kutrib, M. Operational State Complexity and
Decidability of Jumping Finite Automata. In: Developments in Language Theory,
DLT 2017. 2017, p. 96–108. LNCS, vol. 10396.

[5] Beier, S., Holzer, M. and Kutrib, M. Operational State Complexity and
Decidability of Jumping Finite Automata. International Journal of Foundations of
Computer Science. 2019, vol. 30, no. 1, p. 5–27.

[6] Chigahara, H., Fazekas, S. Z. and Yamamura, A. One-way Jumping Finite
Automata. In: The 77th National Convention of IPSJ. 2015.

[7] Chigahara, H., Fazekas, S. Z. and Yamamura, A. One-way Jumping Finite
Automata. International Journal of Foundations of Computer Science. 2016, vol. 27,
no. 03, p. 391–405.

[8] Csuhaj Varjú, E., Dassow, J., Kelemen, J. and Paun, G. Grammar Systems: A
Grammatical Approach to Distribution and Cooperation. Gordon and Breach Science
Publishers, Inc., 1994.

[9] Csuhaj Varjú, E., Masopust, T. and Vaszil, G. Cooperating Distributed
Grammar Systems with Permitting Grammars as Components. Romanian Journal of
Information Science and Technology. 2009, vol. 12, no. 2, p. 175–189.

[10] Csuhaj Varjú, E., Martín Vide, C. and Mitrana, V. Multiset Automata.
In: Multiset Processing. Springer Berlin Heidelberg, 2001, p. 69–83. LNCS, vol. 2235.

[11] Eğecioğlu, O., Hegedüs, L. and Nagy, B. Stateless Multicounter 5′ → 3′

Watson-Crick Automata. In: Fifth IEEE International Conference on Bio-Inspired
Computing: Theories and Applications, BIC-TA 2010. 2010, p. 1599–1606.

94

[12] Fazekas, S. Z., Hoshi, K. and Yamamura, A. Enhancement of Automata with
Jumping Modes. In: AUTOMATA 2019: Cellular Automata and Discrete Complex
Systems. 2019, p. 62–76. LNCS, vol. 11525.

[13] Fazekas, S. Z. and Yamamura, A. On Regular Languages Accepted by One-Way
Jumping Finite Automata. In: Eighth Workshop on Non-Classical Models of
Automata and Applications, NCMA 2016 (Short Papers). 2016, p. 7–14.

[14] Fernau, H., Paramasivan, M. and Schmid, M. L. Jumping Finite Automata:
Characterizations and Complexity. In: Implementation and Application of Automata
- 20th International Conference, CIAA 2015. Springer, 2015, p. 89–101. LNCS, vol.
9223.

[15] Fernau, H., Paramasivan, M., Schmid, M. L. and Vorel, V. Characterization
and Complexity Results on Jumping Finite Automata. Theoretical Computer
Science. 2017, vol. 679, p. 31–52.

[16] Geffert, V. Grammars with Context Dependency Restricted to Synchronization.
In: Mathematical Foundations of Computer Science 1986, MFCS 1986. 1986,
p. 370–378. LNCS, vol. 233.

[17] Geffert, V. Context-Free-Like Forms for the Phrase-Structure Grammars.
In: Mathematical Foundations of Computer Science 1988, MFCS 1988. 1988,
p. 309–317. LNCS, vol. 324.

[18] Geffert, V. A Representation of Recursively Enumerable Languages by Two
Homomorphisms and a Quotient. Theoretical Computer Science. 1988, vol. 62, no. 3,
p. 235–249.

[19] Geffert, V. Normal Forms for Phrase-Structure Grammars. RAIRO-Theor. Inf.
Appl. 1991, vol. 25, no. 5, p. 473–496.

[20] Goldefus, F., Masopust, T. and Meduna, A. Left-Forbidding Cooperating
Distributed Grammar Systems. Theoretical Computer Science. 2010, vol. 411, 40–42,
p. 3661–3667.

[21] Greibach, S. and Hopcroft, J. Scattered Context Grammars. Journal of
Computer and System Sciences. 1969, vol. 3, no. 3, p. 233–247.

[22] Grune, D. and Jacobs, C. J. Parsing Techniques: A Practical Guide. Secondth ed.
Springer, 2008.

[23] Hegedüs, L., Nagy, B. and Eğecioğlu, O. Stateless Multicounter 5′ → 3′

Watson-Crick Automata: The Deterministic Case. Natural Computing. 2012, vol. 11,
no. 3, p. 361–368.

[24] Holzer, M., Kutrib, M. and Malcher, A. Multi-Head Finite Automata:
Characterizations, Concepts and Open Problems. In: The Complexity of Simple
Programs 2008. 2009, p. 93–107. EPTCS.

[25] Ibarra, O. H. Simple Matrix Languages. Information and Control. 1970, vol. 17,
p. 359–394.

95

[26] Immanuel, S. J. and Thomas, D. G. Two-Dimensional Jumping Finite Automata.
Mathematics for Applications. 2016, vol. 5, no. 2, p. 105–122.

[27] Immanuel, S. J. and Thomas, D. G. Two-Dimensional Double Jumping Finite
Automata. International Journal of Artificial Intelligence and Soft Computing. 2017,
vol. 6, no. 3, p. 250–264.

[28] Inoue, K., Takanami, I., Nakamura, A. and Ae, T. One-Way Simple Multihead
Finite Automata. Theoretical Computer Science. 1979, vol. 9, no. 3, p. 311–328.

[29] Křivka, Z., Kučera, J. and Meduna, A. Jumping Pure Grammars. The Computer
Journal. 2018, vol. 62, no. 1, p. 30–41.

[30] Křivka, Z. and Masopust, T. Cooperating Distributed Grammar Systems with
Random Context Grammars as Components. Acta Cybernetica. 2011, vol. 20,
p. 269–283.

[31] Křivka, Z. and Meduna, A. Jumping Grammars. International Journal of
Foundations of Computer Science. 2015, vol. 26, no. 6, p. 709–731.

[32] Kocman, R. 𝑛-Parallel Jumping Finite Automata. In: Excel@FIT 2015. 2015.

[33] Kocman, R., Křivka, Z. and Meduna, A. On Double-Jumping Finite Automata.
In: Eighth Workshop on Non-Classical Models of Automata and Applications, NCMA
2016. Osterreichische Computer Gesellschaft, 2016, p. 195–210. books@ocg.at, vol.
321.

[34] Kocman, R., Křivka, Z. and Meduna, A. On Double-Jumping Finite Automata
and Their Closure Properties. RAIRO-Theor. Inf. Appl. 2018, vol. 52, 2-3-4,
p. 185–199.

[35] Kocman, R., Křivka, Z. and Meduna, A. General CD Grammar Systems and
Their Simplification. Journal of Automata, Languages and Combinatorics. 2020,
vol. 25, no. 1, p. 37–54.

[36] Kocman, R., Křivka, Z., Meduna, A. and Nagy, B. A Jumping 5′ → 3′

Watson-Crick Finite Automata Model. Acta Informatica. (in review).

[37] Kocman, R. and Meduna, A. On Parallel Versions of Jumping Finite Automata.
In: Proceedings of the 2015 Federated Conference on Software Development and
Object Technologies, SDOT 2015. Springer International Publishing, 2016,
p. 142–149. Advances in Intelligent Systems and Computing, vol. 511.

[38] Kocman, R., Nagy, B., Křivka, Z. and Meduna, A. A Jumping 5′ → 3′

Watson-Crick Finite Automata Model. In: Tenth Workshop on Non-Classical Models
of Automata and Applications, NCMA 2018. Osterreichische Computer Gesellschaft,
2018, p. 117–132. books@ocg.at, vol. 332.

[39] Kudlek, M., Martín-Vide, C. and PĂun, G. Toward a Formal Macroset Theory.
In: Multiset Processing. Springer Berlin Heidelberg, 2001, p. 123–133. LNCS, vol.
2235.

96

[40] Kudlek, M. and Mitrana, V. Normal Forms of Grammars, Finite Automata,
Abstract Families, and Closure Properties of Multiset Languages. In: Multiset
Processing. Springer Berlin Heidelberg, 2001, p. 135–146. LNCS, vol. 2235.

[41] Kuperberg, D., Pinault, L. and Pous, D. Cyclic Proofs and Jumping Automata.
In: Foundations of Software Technology and Theoretical Computer Science 2019.
2019.

[42] Kuske, D. and Weigel, P. The Role of the Complementarity Relation in
Watson-Crick Automata and Sticker Systems. In: Developments in Language Theory,
DLT 2004. 2005, p. 272–283. LNCS, vol. 3340.

[43] Loos, R. and Nagy, B. On the Concepts of Parallelism in Biomolecular Computing.
Triangle 6 (Languages: Bioinspired Approaches). 2011, p. 109–118.

[44] Madejski, G. Jumping and Pumping Lemmas and Their Applications. In: Eighth
Workshop on Non-Classical Models of Automata and Applications, NCMA 2016
(Short Papers). 2016, p. 25–33.

[45] Madejski, G. Regular and Linear Permutation Languages. RAIRO-Theor. Inf.
Appl. 2018, vol. 52, 2-3-4, p. 219–234.

[46] Madejski, G. and Szepietowski, A. Membership Problem for Two-Dimensional
Jumping Finite Automata. In: Ninth Workshop on Non-Classical Models of
Automata and Applications, NCMA 2017 (Short Papers). 2017, p. 33–40.

[47] Mahalingam, K., Raghavan, R. and Mishra, U. K. Watson-Crick Jumping Finite
Automata. In: Theory and Applications of Models of Computation, TAMC 2019.
Springer International Publishing, 2019, p. 467–480. LNCS, vol. 11436.

[48] Masopust, T. and Meduna, A. On Pure Multi-Pushdown Automata that Perform
Complete Pushdown Pops. Acta Cybernetica. 2009, vol. 19, no. 2, p. 537–552.

[49] Meduna, A. Automata and Languages: Theory and Applications. London: Springer,
2000.

[50] Meduna, A. Formal Languages and Computation: Models and Their Applications.
Auerbach Publications, 2014.

[51] Meduna, A. and Kolář, D. Homogenous Grammars with a Reduced Number of
Non-Context-Free Productions. Information Processing Letters. 2002, vol. 81, no. 5,
p. 253–257.

[52] Meduna, A. and Masopust, T. Self-Regulating Finite Automata. Acta
Cybernetica. 2007, vol. 18, no. 1, p. 135–153.

[53] Meduna, A. and Soukup, O. Jumping Scattered Context Grammars. Fundamenta
Informaticae. 2017, vol. 152, no. 1, p. 51–86.

[54] Meduna, A. and Soukup, O. Modern Language Models and Computation: Theory
with Applications. Springer, 2017.

[55] Meduna, A. and Švec, M. Grammars with Context Conditions and Their
Applications. Wiley, 2005.

97

[56] Meduna, A., Švec, M. and Kopeček, T. Equivalent Language Models that Closely
Simulate One Another and Their Illustration in Terms of L Systems. International
Journal of Computer Mathematics. 2007, vol. 84, no. 11, p. 1555–1566.

[57] Meduna, A. and Zemek, P. Jumping Finite Automata. International Journal of
Foundations of Computer Science. 2012, vol. 23, no. 7, p. 1555–1578.

[58] Meduna, A. and Zemek, P. Regulated Grammars and Automata. Springer, 2014.

[59] Nagy, B., Hegedüs, L. and Eğecioğlu, O. Hierarchy Results on Stateless
Multicounter 5′ → 3′ Watson-Crick Automata. In: Advances in Computational
Intelligence: 11th International Work-Conference on Artificial Neural Networks,
IWANN 2011. Springer, 2011, p. 465–472. LNCS, vol. 6691.

[60] Nagy, B. On 5′ → 3′ Sensing Watson-Crick Finite Automata. In: The 13th
International Meeting on DNA Computing (DNA13). 2007, p. 327–336.

[61] Nagy, B. On 5′ → 3′ Sensing Watson-Crick Finite Automata. In: DNA Computing:
13th International Meeting on DNA Computing, DNA13. Springer, 2008, p. 256–262.
LNCS, vol. 4848.

[62] Nagy, B. On a Hierarchy of 5′ → 3′ Sensing WK Finite Automata Languages.
In: Computability in Europe 2009: Mathematical Theory and Computational Practice,
CiE 2009. 2009, p. 266–275.

[63] Nagy, B. 5′ → 3′ Sensing Watson-Crick Finite Automata. In: Fung, G.,
ed. Sequence and Genome Analysis II – Methods and Applications. IConcept Press,
2010, p. 39–56.

[64] Nagy, B. A Class of 2-Head Finite Automata for Linear Languages. Triangle. 2012,
8 (Languages: Mathematical Approaches), p. 89–99.

[65] Nagy, B. On a Hierarchy of 5′ → 3′ Sensing Watson-Crick Finite Automata
Languages. Journal of Logic and Computation. 2013, vol. 23, no. 4, p. 855–872.

[66] Nagy, B. and Kovács, Z. On Simple 5′ → 3′ Sensing Watson-Crick Finite-State
Transducers. In: Eleventh Workshop on Non-Classical Models of Automata and
Applications, NCMA 2019. 2019, p. 155–170.

[67] Nagy, B. and Otto, F. Two-Head Finite-State Acceptors with Translucent Letters.
In: SOFSEM 2019: Theory and Practice of Computer Science. Springer International
Publishing, 2019, p. 406–418. LNCS, vol. 11376.

[68] Nagy, B. and Otto, F. Linear Automata with Translucent Letters and Linear
Context-Free Trace Languages. RAIRO-Theor. Inf. Appl. 2020, vol. 54.

[69] Nagy, B. and Parchami, S. On Deterministic Sensing 5′ → 3′ Watson-Crick Finite
Automata: A Full Hierarchy in 2detLIN. Acta Informatica. 2020.

[70] Nagy, B., Parchami, S. and Mir-Mohammad-Sadeghi, H. A New Sensing 5′ → 3′

Watson-Crick Automata Concept. In: Proceedings 15th International Conference on
Automata and Formal Languages, AFL 2017. Open Publishing Association, 2017,
p. 195–204. EPTCS, vol. 252.

98

[71] Parchami, S. and Nagy, B. Deterministic Sensing 5′ → 3′ Watson-Crick Automata
Without Sensing Parameter. In: Unconventional Computation and Natural
Computation, UCNC 2018. 2018, p. 173–187. LNCS, vol. 10876.

[72] Păun, G., Rozenberg, G. and Salomaa, A. DNA Computing: New Computing
Paradigms. Springer-Verlag Berlin Heidelberg, 1998.

[73] Rosebrugh, R. D. and Wood, D. A Characterization Theorem for 𝑛-Parallel Right
Linear Languages. Journal of Computer and System Sciences. 1973, vol. 7,
p. 579–582.

[74] Rosebrugh, R. D. and Wood, D. Image Theorems for Simple Matrix Languages
and 𝑛-Parallel Languages. Mathematical Systems Theory. 1974, vol. 8, no. 2.

[75] Rosebrugh, R. D. and Wood, D. Restricted Parallelism and Right Linear
Grammars. Utilitas Mathematica. 1975, vol. 7, p. 151–186.

[76] Rosenberg, A. L. On Multi-Head Finite Automata. In: 6th Annual Symposium on
Switching Circuit Theory and Logical Design, SWCT 1965. 1965, p. 221–228.

[77] Rozenberg, G. and Salomaa, A. Handbook of Formal Languages, Vol. 1: Word,
Language, Grammar. Springer-Verlag, 1997.

[78] Rozenberg, G. and Salomaa, A. Handbook of Formal Languages, Vol. 2: Linear
Modeling: Background and Application. Springer-Verlag, 1997.

[79] Savitch, W. J. How to Make Arbitrary Grammars Look Like Context-Free
Grammars. SIAM Journal on Computing. 1973, vol. 2, no. 3, p. 174–182.

[80] Siromoney, R. On Equal Matrix Languages. Information and Control. 1969,
vol. 14, no. 2, p. 135–151.

[81] Siromoney, R. Finite-Turn Checking Automata. Journal of Computer and System
Sciences. 1971, vol. 5, no. 6, p. 549–559.

[82] Syropoulos, A. Mathematics of Multisets. In: Multiset Processing. Springer Berlin
Heidelberg, 2001, p. 347–358. LNCS, vol. 2235.

[83] Ďuriš, P. and Hromkovič, J. One-Way Simple Multihead Finite Automata are not
Closed Under Concatenation. Theoretical Computer Science. 1983, vol. 27, no. 1,
p. 121–125.

[84] Vorel, V. Two Results on Discontinuous Input Processing. In: Descriptional
Complexity of Formal Systems: 18th IFIP WG 1.2 International Conference, DCFS
2016. Springer International Publishing, 2016, p. 205–216. LNCS, vol. 9777.

[85] Vorel, V. Two Results on Discontinuous Input Processing. Journal of Automata,
Languages and Combinatorics. 2017, vol. 22, 1–3, p. 189–203.

[86] Vorel, V. On Basic Properties of Jumping Finite Automata. International Journal
of Foundations of Computer Science. 2018, vol. 29, no. 1, p. 1–15.

[87] Wang, Q. and Li, Y. Jumping Restarting Automata. In: Tenth Workshop on
Non-Classical Models of Automata and Applications, NCMA 2018. Osterreichische
Computer Gesellschaft, 2018, p. 181–196. books@ocg.at, vol. 332.

99

[88] Wood, D. Properties of 𝑛-Parallel Finite State Languages. Utilitas Mathematica.
1973, vol. 4, p. 103–113.

[89] Wood, D. 𝑚-Parallel 𝑛-Right Linear Simple Matrix Languages. Utilitas
Mathematica. 1975, vol. 8, p. 3–28.

[90] Wood, D. 𝑛-Linear Simple Matrix Languages and 𝑛-Parallel Linear Languages. Rev.
Roum. de Math. Pures et Appl. 1977, p. 408–412.

[91] Wood, D. Theory of Computation: A Primer. Boston: Addison-Wesley, 1987.

100

	I Introduction and Terminology
	Introduction
	Parallelism
	Jumping Models
	Normal Forms and Grammar Systems
	Specification of Goals
	Organization

	Terminology
	General Notions and Operations
	Sets and Strings
	Mirror Image
	Parikh Vector
	Shuffle

	Grammars and Languages
	Basic Definitions
	Derived Language Families
	Endmarking Closure
	Kuroda Normal Form
	Homogeneous Restrictions

	n-Parallel Right-Linear Grammars
	CD Grammar Systems
	Finite Automata
	Finite Automaton
	Lazy Finite Automaton

	Jumping Finite Automata
	5'→3' Watson-Crick Finite Automata

	II New Results on Jumping Automata
	n-Parallel Jumping Finite Automata
	Introduction
	Definitions
	Examples
	Unrestricted n-Jumping Relation
	Right n-Jumping Relation
	Concluding Remarks

	Double-Jumping Finite Automata
	Introduction
	Definitions
	General Results
	Unrestricted 2-Jumping Relation
	Right-Left 2-Jumping Relation
	Left-Right 2-Jumping Relation
	Right-Right 2-Jumping Relation
	Left-Left 2-Jumping Relation

	Closure Properties
	Concluding Remarks

	Jumping 5'→3' Watson-Crick Finite Automata
	Introduction
	Definitions
	Examples
	General Results
	Results on Restricted Variants
	Simple Restriction
	1-limited Restriction
	All-final Restriction
	Stateless Restriction
	Combined Restrictions

	Concluding Remarks

	III New Results on CD Grammar Systems
	General CD Grammar Systems: Normal Forms
	Introduction
	On General CD Grammar Systems
	Transformations from Kuroda Normal Form
	Transformations from General Grammars
	Concluding Remarks

	IV Conclusion
	Application Perspectives
	Controlled Discontinuous Reading
	Debt Lemmas
	General Parallel Processing

	Summary and Theoretical Perspectives
	Bibliography

