
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS

ÚSTAV INFORMAČNÍCH SYSTÉMŮ

ON PARALLEL PROCESSING IN FORMAL MODELS:

JUMPING AUTOMATA AND NORMAL FORMS
O PARALELNÍM ZPRACOVÁNÍ VE FORMÁLNÍCH MODELECH

EXTENDED ABSTRACT OF A PHD THESIS

ROZŠÍŘENÝ ABSTRAKT DISERTAČNÍ PRÁCE

AUTHOR Ing. RADIM KOCMAN

AUTOR PRÁCE

SUPERVISOR prof. RNDr. ALEXANDER MEDUNA, CSc.

ŠKOLITEL

BRNO 2020



Abstract
The present thesis introduces and studies new possibilities of parallel processing in formal
models. More specifically, it focuses its attention on parallel versions of jumping finite
automata and on normal forms of grammars with interesting parallel properties.

In the first part of this thesis, we give an initial motivation for studying parallel process-
ing in formal models. We briefly introduce jumping models and normal forms of grammars
and grammar systems. Finally, we state the precise focus and goals of our research.

The second part of this thesis is focused on new results on jumping finite automata.
First, we introduce 𝑛-parallel jumping finite automata that enhance the original jumping
finite automaton model with multiple reading heads. The rest of the chapter then studies
the accepting power of the model under two different jumping modes. Second, we introduce
double-jumping finite automata and explore advanced jumping modes utilizing two heads.
We study the accepting power of the models and also the closure properties of the related
language families. Lastly, we introduce jumping 5′ → 3′ Watson-Crick finite automata that
combine the jumping behavior with the biology-inspired Watson-Crick finite automata that
process double-stranded DNA sequences. The rest of this chapter then studies the accepting
power of the model under unrestricted and various restricted conditions.

The third part of this thesis is focused on new results on CD grammar systems. We
introduce two types of transformations that turn arbitrary general grammars into equivalent
two-component general CD grammar systems of very reduced and simplified forms. Apart
from the reduction and simplification, we describe several other useful properties concerning
these systems and the way they work.

In the last part, we mention possible application perspectives for the introduced models
and normal forms, and we conclude the thesis with the final summary and the description
of theoretical perspectives for the achieved results.
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Chapter 1

Introduction

In this chapter, we give an initial motivation for studying parallel processing in formal
models. We briefly introduce jumping models—quite a new group of formal models focused
on discontinuous information processing, which were not yet studied together with parallel
mechanisms—and normal forms of grammars and grammar systems—the common unifying
forms of definitions of formal models, which are usually not concerned with parallelism.
Afterwards, we state our focus and goals for studying parallelism together with jumping
automata and normal forms. This thesis assumes that the reader is firmly familiar with the
basic notions from the theory of automata and formal languages, and thus we use them here
extensively without further explanation. The more advanced terminology is introduced in
greater detail in the full thesis.

1.1 Parallelism
When we talk about parallelism in modern computer science, we almost automatically
mean some form of parallel processing or parallel computing. By these terms we refer to
situations where we want to split some large task into smaller chunks of work in such a way
that the chunks can be executed in parallel on separate processing units, and the whole
task can thus be computed faster than if it was executed completely sequentially on a single
processing unit.

Nonetheless, this perception of the notion of parallelism can change quite rapidly when
we wander into more theoretical branches of computer science; especially if we consider the
basic research in the theory of formal languages. There are many formal models in this
area that incorporate some form of parallelism, but they utilize very diverse mechanics in
the background to achieve their goal. If we take a broader look at these formal models and
the basic research in general, we can roughly divide parallelism in formal language theory
into the following three categories:

(P.1) parallelism that increases the expressive power of the model,

(P.2) parallelism that is a fundamental part of the behavior of the model,

(P.3) parallelism that splits the work of the task.
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Parallelism That Increases the Expressive Power of the Model

The most commonly studied category in the basic research is probably category (P.1). This
is especially noticeable in formal grammars. Consider classical formal grammars in general,
there is a big difference if a model can use only context-free rules or also non-context-free
rules. It is much harder to deal with the non-context-free rules from both the theoretical
and practical point of view. Therefore, there is a large incentive to study models that can
use only the context-free (or even more restricted) rules but that also incorporate some
additional mechanisms which further increase their generative power.

In formal grammars, the models can incorporate parallelism in such a way that, in each
step of the rewriting process, the grammar rewrites several symbols in the sentential form
at once in parallel. Let us mention some well-known models that match this description:

∙ scattered context grammars (see [21, 58, 54]),

∙ simple matrix grammars (see [25, 74, 89, 90]),

∙ equal matrix grammars (see [80]),

∙ 𝑛-parallel (right-)linear grammars (see [75, 89, 90, 88, 73, 74]).

In the case of finite automata, we can imagine the parallelism of category (P.1) as
a parallel cooperation of multiple heads. There are several well-known models of finite
automata that utilize more than one head, nonetheless, their behavior do not fall precisely
into one specific category of parallelism; so we will leave their description for later.

A very common property of models from this category is that we can freely select their
degree of parallelism. More specifically, we can choose 𝑛 which represents the number
of symbols or heads that are considered together in a single step of the model. Then, if
𝑛 = 1, we get the power of a classical non-augmented model (e.g., the power of context-free
grammars); and, for 𝑛 > 1, we either get an infinite hierarchy of more powerful models or
the power of the model increases at first but then stabilizes. Due to this common property,
we can also include parallel communicating (PC) grammar systems (see [8, 78]) into this
category since they behave very similarly in this regard.

Parallelism That Is a Fundamental Part of the Behavior of the Model

Considering category (P.2), we are looking at the models that have parallelism rooted
inseparably into their core structure. From our exploration of this topic, it seems that the
models which fall into this category are usually related to biology.

On the one hand, there are massively parallel models such as Lindenmayer systems (see
[77, 58, 54]) that are based on the evolution process. In these models, all eligible symbols
in the sentential form are always rewritten together at once in parallel. Consequently, it is
not possible to select a constant degree of parallelism for these models since the conditions
continuously change depending on the current task.

On the other hand, there are also models with a fixed degree of parallelism such as
Watson-Crick finite automata (see [72]). These automaton models use two heads in parallel
in such a way that each head processes one strand of a double-stranded DNA input sequence.
Consequently, the degree of parallelism of Watson-Crick finite automata is always two.
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Parallelism That Splits the Work of the Task

Lastly, if we consider category (P.3) in the basic research, it seems that there is not much
interest to study possibilities how to split the work for the given tasks. This may not be that
surprising because in the basic research we usually study characteristics like the expressive
power, closure properties, and the decidability and complexity of various operations; and, of
course, these results are not affected by parallelism. We often even prefer approaches that
are completely sequential because it makes the subsequent proof techniques much easier in
many cases. When we do consider parallelism that splits the work of the tasks (see [77, 78]),
we usually just simply conclude that if the model behaves nondeterministically, then we
can explore different cases in parallel, and if the model uses only context-free rules, then
we can trivially split the generation process into multiple independent parts.

It is possible to find some theoretical papers that explore this role of parallelism further
in certain areas, e.g., in biomolecular computing (see [43]); but a thorough study is usually
left for practical applications such as parsing (see [22]), formal verification, and others.

Parallelism and Finite Automata

The situation around the types of parallelism gets more complex if we look at finite au-
tomata. Thus, we introduce some additional categorization.

There are some finite automaton models that have the same expressive power as gram-
mars from category (P.1). For example, self-regulating finite automata (see [52]), pure
multi-pushdown automata that perform complete pushdown pops (see [48]), and finite-turn
checking automata (see [81]), which are connected to the various versions of simple matrix,
equal matrix, and 𝑛-parallel right-linear grammars. However, we do not consider these
models to be parallel. This is due to the fact that, up until quite recently, automaton mod-
els always read the input tape almost exclusively in the strictly continuous (left-to-right)
symbol-by-symbol way. The mentioned models are no exceptions, and thus they use various
kinds of stacks to match the expressive power of the parallel grammars but otherwise work
strictly continuously on the input tape in a completely non-parallel way.

As we have already pointed out, we can imagine parallelism in finite automata as a
parallel cooperation of multiple heads. There is indeed the well-known concept of Turing
machines with multiple tapes and multiple heads; which was also adapted and studied in
terms of finite automaton models. Nonetheless, not all such models necessarily work in a
parallel way. Considering multi-head finite automata that actually do work in a parallel
way, we can find two distinct categories of their behavior:

(PA.1) multi-head automata where each head works on an independent copy of the input,

(PA.2) multi-head automata where heads cooperate to process the single input.

The first category seems to be the most studied one so far. Let us mention some
prominent models that fit into this description: classical Watson-Crick finite automata (see
[72]), multi-head finite automata (see [76, 28, 83, 24]), and parallel communicating finite
automaton systems (see [24]). In these models, the heads can work in parallel, however,
their behavior can be hardly seen as parallel processing since it does not speed up the task
in any way. In most cases, there is a single read-only input tape that must be completely
traversed with all heads until the conclusion about the acceptance of the input is reached.

We only know about a few models that fall into the second category. These are finite
automaton models introduced by Nagy that utilize two heads with the following behavior.
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The first head reads the input from left to right, the second head reads the input from right
to left, and the processing of the input ends when the heads meet each other on the tape.
This concept was explored several times in various models: 2-head finite automata (see [64]),
5′ → 3′ Watson-Crick finite automata (see [60, 61, 62, 63, 65, 70, 71, 69]), multicounter
5′ → 3′ Watson-Crick finite automata (see [11, 59, 23]), and two-head finite-state acceptors
with translucent letters (see [67, 68]). In these models, the heads truly cooperate in parallel
on a single tape; thus, this behavior can be seen as parallel processing. Naturally, their
degree of parallelism is always two.

1.2 Jumping Models
The idea of a jumping mechanism that is integrated deeply into the core behavior of formal
models is quite a new concept that was first proposed in 2012 by Meduna and Zemek in
[57]. The main motivation behind this concept is the fact that in the previous century most
classical computer science methods were developed for continuous information processing,
but in modern computation methods we often process information in a discontinuous way.
The continuous processing approach is deeply rooted in classical formal models such as finite
automata which traditionally process the input information in a strictly continuous left-
to-right symbol-by-symbol way. Therefore, it makes sense to introduce and study jumping
mechanisms that can more appropriately represent the behavior of modern computation
methods that often have to jump over large portions of the input information between
individual steps of the process.

In the following years, this idea got a lot of traction among other researchers in the field
of formal language theory. At the time of writing, there are around 30 papers that study
jumping models in various ways, and this number is still increasing. From the theoretical
point of view, these models have an interesting characteristic that, on the one hand, they
often define language families that are outside the usual Chomsky hierarchy, but, on the
other hand, they are still related to some other well-known mathematical models. With this
characteristic, it is possible to combine results from different fields that previously looked
unrelated. It is out of the scope of this thesis to cover all studied models, but we at least
give a brief overview of the most influential ones.

Jumping Finite Automata

The definition of a jumping finite automaton was first introduced by Meduna and Zemek
in [57], and it can be also found in the follow-up books [58, 54].

Let us first recall the notion of a classical finite automaton, 𝑀 , which consists of an
input tape, a reading head, and a finite state control. The input tape is divided into squares.
Each square contains one symbol of an input string. The symbol under the reading head,
𝑎, is the current input symbol. The finite control is represented by a finite set of states
together with a control relation, which is usually specified as a set of computational rules.
The automaton 𝑀 computes by making a sequence of moves. Each move is made according
to a computational rule that describes how the current state is changed and whether the
current input symbol is read. If the symbol is read, the reading head is shifted precisely one
square to the right. 𝑀 has one state defined as the start state and some states designated
as final states. If 𝑀 can read 𝑤 by making a sequence of moves from the start state to a
final state, 𝑀 accepts 𝑤; otherwise, 𝑀 rejects 𝑤.
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In essence, a jumping finite automaton works just like a classical finite automaton
except it does not read the input tape in a symbol-by-symbol left-to-right way. After the
automaton reads a symbol, the head can jump over (skip) a portion of the tape in either
direction. Once an occurrence of a symbol is read on the tape, it cannot be re-read again
later. Otherwise, it coincides with the standard notion of a finite automaton.

Apart from the definition, the paper [57] studies the accepting power, decidability prop-
erties, and closure properties of the model under various restrictions. Surprisingly, com-
pared to classical finite automata, there is a significant difference if the model is a general
jumping finite automaton (GJFA), which can read multiple symbols in a step, or a non-
general jumping finite automaton (JFA), which can read only a single symbol in a step.

Concerning GJFAs, there are papers written by Vorel (see [84, 85, 86]) that continue the
investigation of decidability and closure properties. Moreover, they connect GJFAs with
graph-controlled insertion systems and Galiukschov semicontextual grammars.

Concerning both GJFAs and JFAs, there are papers written by Fernau, Paramasivan,
Schmid, and Vorel (see [14, 15]) that present a large number of various new results and also
connect JFAs with shuffle languages, commutative context-free grammars, letter bounded
languages, and regular expressions over comutative monoids.

Lastly, concerning JFAs, there are papers written by Beier, Holzer, and Kutrib (see
[4, 5]) that study their operational state complexity and decidability and also connect JFAs
with semilinear sets and Parikh images of regular sets.

Other Jumping Models

The other two influential models are covered in detail in the full thesis:
∙ jumping grammars (see [31, 54, 44, 45]),

∙ one-way jumping finite automata (see [6, 7, 13, 2, 1, 3, 12]).
Besides the most influential models mentioned previously, there are also other papers

that study the jumping mechanism further in more advanced formal models:
∙ two-dimensional jumping finite automata (see [26, 46, 27]),

∙ jumping scattered context grammars (see [53, 54]),

∙ jumping pure grammars (see [29]),

∙ jumping restarting automata (see [87]),

∙ jumping multi-head automata (see [41]),

∙ Watson-Crick jumping finite automata (see [47]).
Note that it may seem, from the names of jumping multi-head automata and Watson-

Crick jumping finite automata, that these models are similar to the models studied later
in this thesis. However, both of the mentioned models fall into the category (PA.1) of
parallelism in finite automata. On the other hand, all finite automata studied in this thesis
fall into the category (PA.2) which is a fundamentally different behavior.

1.3 Normal Forms and Grammar Systems
Moving away from the idea of the jumping mechanism, we need to introduce the remaining
two concepts that are also studied together with parallelism in this thesis.

6



Normal Forms

A classical (general) grammar 𝐺 contains production rules of the form 𝑥 → 𝑦, where 𝑥
and 𝑦 are strings over the alphabet of 𝐺. If we want to change the generative power of
the grammar, we can put restrictions on the form of the rules. Classically, we consider
some types of monotonous, context-sensitive, context-free, 𝜀-free, linear, right-linear, and
regular restrictions (see, e.g., [77, 31]). Nonetheless, even in these cases, the forms of rules
are often still rather loose. This can be an unwanted property from both the theoretical
and practical point of view because the follow-up proofs and algorithms have to take into
account all possible forms of the definition of the grammar. Therefore, there is an incentive
in formal language theory to study normal forms of grammars and grammar systems that
severely restrict the possible forms of the definition of the model but, in the same time,
keep the generative power intact.

We skip the description of basic normal forms that handle only grammars with context-
free rules since, in these cases, it is rather easy to work with them in a parallel way. However,
let us consider some well-known normal forms for general grammars: Kuroda normal form,
Penttonen normal form, and Geffert normal forms (see, e.g., [58]). These normal forms
are all frequently used in formal language theory. However, we argue that none of them
has particularly fitting parallel properties. When we want to construct a parallel rewriting
process for general grammars, the non-context-free rules really complicate the task since
there is no simple way how to split the generation of a sentence into multiple independent
parts, and the classical normal forms do not help with this matter.

First, consider an unrestricted general grammar. There can be a large number of non-
context-free rules. These rules can work with very large contexts since there is no bound
on the length of 𝑥 in 𝑥 → 𝑦. Furthermore, the non-context-free rules can be also used
anywhere in the generation process.

Second, consider Kuroda and Penttonen normal forms. Indeed, the required context of
the non-context-free rules is now minimal. However, there can still be a large number of
these rules, and they can still be used anywhere in the generation process.

Lastly, consider Geffert normal forms. There is a limited number of non-context-free
rules, and they work with small contexts. Nonetheless, all Geffert normal forms share the
same deeply-rooted property that, in any generated string, there is always at most one
position that can be rewritten with the rules of the grammar. In some situations, this
property can be highly valuable from both the theoretical and practical point of view;
however, this complicates the construction of a parallel rewriting process even further.

Besides the classical normal forms, we can find many other normal forms for various
formal models (see, e.g., [58, 54, 51]). However, it seems that in almost all cases the
definitions are primarily focused only on the very restricted forms of rules, minimum number
of non-context-free rules, and minimum number of nonterminals. Consequently, they do
not care about their resulting parallel properties.

CD Grammar Systems

In essence, a cooperating distributed (CD) grammar system (see [8]) can be seen as an
extension of a classical grammar. It has not one but multiple finite sets of production
rules (components), and the rewriting process can operate in various complex modes that
control which sets of production rules can be currently used. From another perspective, a
CD grammar system can be seen as a group of grammars that distribute their work and
cooperate on a single string to produce the final sentence.
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Considering the core behavior of CD grammar systems, their extension over general
grammars is not parallel in nature because the modes switch between components in a
strictly sequential way. However, we find this model useful for the study of parallel proper-
ties of normal forms. To give a brief insight, with CD grammar systems, we can strictly split
the context-free and non-context-free rules into different components, and we can clearly
divide the rewriting process into several phases that use different types of rules. This can
help us to pinpoint opportunities for a viable parallel rewriting process.

1.4 Specification of Goals
The principal focus of this thesis is the theoretical study of parallelism in the areas of formal
language theory where this approach was not yet thoroughly considered. First, we explore
parallel processing with jumping finite automata. Second, we introduce new normal forms
designed for parallel rewriting.

New Results on Jumping Automata

The first unexplored area can be easily seen if we take a closer look at the previous descrip-
tion of parallelism in classical finite automata and the new jumping mechanism introduced
in jumping finite automata. Once we shift our attention to discontinuous information
processing, and we are no longer restricted with the classical reading in a continuous left-
to-right symbol-by-symbol way, there are a lot of new opportunities how to design the
behavior of multi-head finite automaton models. From the point of view of parallelism in
finite automata, we want to focus on category (PA.2) where the heads work in parallel to
process the single input. From the point of view of general parallelism, we want to design
models that fit into category (P.3) but also share some similarities with categories (P.1) and
(P.2). To be more precise, we will introduce and study new parallel versions of jumping
finite automata. Since these mechanisms were not yet studied together, this research should
lead to some novel results that are usually not observed in classical models. Moreover, we
should be able to find some new close connections with different formal models.

New Results on CD Grammar Systems

The second unexplored area was already foreshadowed in the description of normal forms of
grammars and grammar systems. We want to introduce new normal forms that are focused
not just on the usual restrictive properties but also on the resulting parallel properties.
More precisely, we will use an extended version of CD grammar systems that can accept
recursively-enumerable languages, and we will introduce new normal forms for these gram-
mar systems that will have a very limited number of non-context-free rules and that will be
suitable for a parallel rewriting process. Such normal forms can be interesting from both the
theoretical and practical point of view. This thesis is focused primarily on the theoretical
aspects of the topic, but we will also mention some further ideas in the conclusion.
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Chapter 2

𝑛-Parallel Jumping Finite
Automata

This chapter covers our first steps to explore the possibilities of parallel jumping finite
automata. The content of this chapter is composed of results that were presented at the
conferences Excel@FIT 2015 (see [32]) and SDOT 2015 (see [37]) and also a few additional
unpublished results. We define a modification of jumping finite automata which read input
words discontinuously with multiple synchronized heads. Moreover, we also define a more
restricted mode for these automata which uses only the right jumps.

Definition. For 𝑛 ≥ 1, an 𝑛-parallel general jumping finite automaton, an 𝑛-PGJFA for
short, is a quintuple

𝑀 = (𝑄,Σ, 𝑅, 𝑆, 𝐹 ),

where 𝑄 is a finite set of states, Σ is an input alphabet, 𝑄 ∩ Σ = ∅, 𝑅 ⊆ 𝑄 × Σ* × 𝑄 is
finite, 𝑆 ⊆ 𝑄𝑛 is a set of start state strings, and 𝐹 ⊆ 𝑄 is a set of final states. Members of
𝑅 are referred to as rules of 𝑀 and instead of (𝑝, 𝑦, 𝑞) ∈ 𝑅, we write 𝑝𝑦 → 𝑞 ∈ 𝑅.

A configuration of 𝑀 is any string in Σ*𝑄Σ*. Let 𝑋 denote the set of all configurations
over 𝑀 . The binary jumping relation, symbolically denoted by y, over 𝑋, is defined as
follows. Let 𝑥, 𝑧, 𝑥′, 𝑧′ ∈ Σ* such that 𝑥𝑧 = 𝑥′𝑧′ and 𝑝𝑦 → 𝑞 ∈ 𝑅; then, 𝑀 makes a jump
from 𝑥𝑝𝑦𝑧 to 𝑥′𝑞𝑧′, symbolically written as

𝑥𝑝𝑦𝑧 y 𝑥′𝑞𝑧′.

Let $ be a special symbol, $ ̸∈ (𝑄∪Σ). An 𝑛-configuration of 𝑀 is any string in (𝑋{$})𝑛.
Let 𝑛𝑋 denote the set of all 𝑛-configurations over 𝑀 . The binary 𝑛-jumping relation,
symbolically denoted by 𝑛 y, over 𝑛𝑋, is defined as follows. Let 𝜁1$ · · · 𝜁𝑛$, 𝜗1$ · · ·𝜗𝑛$ ∈
𝑛𝑋, so 𝜁𝑖, 𝜗𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑛; then, 𝑀 makes an 𝑛-jump from 𝜁1$ · · · 𝜁𝑛$ to 𝜗1$ · · ·𝜗𝑛$,
symbolically written as

𝜁1$ · · · 𝜁𝑛$ 𝑛y 𝜗1$ · · ·𝜗𝑛$

if and only if 𝜁𝑖 y 𝜗𝑖 for all 1 ≤ 𝑖 ≤ 𝑛. In the standard manner, we extend 𝑛y to 𝑛y𝑚,
where 𝑚 ≥ 0. Let 𝑛y+ and 𝑛y* denote the transitive closure of 𝑛y and transitive-
reflexive closure of 𝑛y, respectively.

The language accepted by 𝑀 , denoted by 𝐿(𝑀,𝑛), is defined as

𝐿(𝑀,𝑛) = {𝑢1𝑣1 · · ·𝑢𝑛𝑣𝑛 : 𝑢1𝑠1𝑣1$ · · ·𝑢𝑛𝑠𝑛𝑣𝑛$ 𝑛y* 𝑓1$ · · · 𝑓𝑛$,

𝑢𝑖, 𝑣𝑖 ∈ Σ*, 𝑠1 · · · 𝑠𝑛 ∈ 𝑆, 𝑓𝑖 ∈ 𝐹, 1 ≤ 𝑖 ≤ 𝑛}.
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Let 𝑤 ∈ Σ*. We say that 𝑀 accepts 𝑤 if and only if 𝑤 ∈ 𝐿(𝑀,𝑛). 𝑀 rejects 𝑤 if and only
if 𝑤 ∈ Σ* − 𝐿(𝑀,𝑛).

Definition. For 𝑛 ≥ 1, let 𝑀 = (𝑄,Σ, 𝑅, 𝑆, 𝐹 ) be an 𝑛-PGJFA, and let 𝑋 denote the set
of all configurations over 𝑀 . The binary right jumping relation, symbolically denoted by
𝑟 y, over 𝑋, is defined as follows. Let 𝑤, 𝑥, 𝑦, 𝑧 ∈ Σ*, and 𝑝𝑦 → 𝑞 ∈ 𝑅; then, 𝑀 makes a
right jump from 𝑤𝑝𝑦𝑥𝑧 to 𝑤𝑥𝑞𝑧, symbolically written as

𝑤𝑝𝑦𝑥𝑧 𝑟y 𝑤𝑥𝑞𝑧.

Let 𝑛𝑋 denote the set of all 𝑛-configurations over 𝑀 . The binary right 𝑛-jumping rela-
tion, symbolically denoted by 𝑛−𝑟y, over 𝑛𝑋, is defined as follows. Let 𝜁1$ · · · 𝜁𝑛$, 𝜗1$ · · ·
𝜗𝑛$ ∈ 𝑛𝑋, so 𝜁𝑖, 𝜗𝑖 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑛; then, 𝑀 makes a right n-jump from 𝜁1$ · · · 𝜁𝑛$ to
𝜗1$ · · ·𝜗𝑛$, symbolically written as

𝜁1$ · · · 𝜁𝑛$ 𝑛−𝑟y 𝜗1$ · · ·𝜗𝑛$

if and only if 𝜁𝑖 𝑟y 𝜗𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.
We extend 𝑛−𝑟y to 𝑛−𝑟y𝑚, 𝑛−𝑟y+, and 𝑛−𝑟y*, where 𝑚 ≥ 0, by analogy with ex-

tending the corresponding notations for 𝑛y. Let 𝐿(𝑀,𝑛−𝑟) denote the language accepted
by 𝑀 using only right 𝑛-jumps.

Let GJFA, 𝑟GJFA, 𝑛-PGJFA, 𝑟𝑛-PGJFA, and 𝑛-PRLG denote the language fam-
ilies accepted by general jumping finite automata, general jumping finite automata using
only right jumps, 𝑛-PGJFAs, 𝑛-PGJFAs using only right 𝑛-jumps, and 𝑛-parallel right
linear grammars, respectively.

Most notably, this chapter shows that both modifications extend their original models
and that they define infinite hierarchies of language families based on the number of reading
heads. In other words, every additional head always increases the power of the model.

Theorem. 1-PGJFA = GJFA.

Theorem. For all 𝑛 ≥ 1, 𝑛-PGJFA ⊂ (𝑛+1)-PGJFA.

Theorem. For all 𝑛 ≥ 1, 𝑛-PGJFA ⊂ CS.

Theorem. 𝑟1-PGJFA = 𝑟GJFA = REG.

Theorem. For all 𝑛 ≥ 1, 𝑟𝑛-PGJFA ⊂ 𝑟(𝑛+1)-PGJFA.

Theorem. For all 𝑛 ≥ 1, 𝑟𝑛-PGJFA ⊂ CS.

Moreover, we show that the restricted mode creates a direct counterpart to 𝑛-parallel
right linear grammars.

Lemma. For every 𝑛-PRLG 𝐺 = (𝑁1, . . . , 𝑁𝑛, 𝑇, 𝑆1, 𝑃 ), there is an 𝑛-PGJFA 𝑀 =
(𝑄,Σ, 𝑅, 𝑆2, 𝐹 ) using only right 𝑛-jumps such that 𝐿(𝑀,𝑛−𝑟) = 𝐿(𝐺).

Lemma. For every 𝑛-PGJFA 𝑀 = (𝑄,Σ, 𝑅, 𝑆2, 𝐹 ) using only right 𝑛-jumps, there is an
𝑛-PRLG 𝐺 = (𝑁1, . . . , 𝑁𝑛, 𝑇, 𝑆1, 𝑃 ) such that 𝐿(𝐺) = 𝐿(𝑀,𝑛−𝑟).

Theorem. 𝑟𝑛-PGJFA = 𝑛-PRLG.
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Chapter 3

Double-Jumping Finite Automata

This chapter studies the advanced possibilities of the two-head jumping finite automaton
model under various reading modes. The content of this chapter is composed of results
that were published at the conference NCMA 2016 (see [33]) and in the journal RAIRO
(see [34]). Consider the notion of a jumping finite automaton 𝑀 . We modify the way 𝑀
works so it simultaneously performs two jumps according to the same rule. For either of
the two jumps, it always considers three natural directions—(1) to the left, (2) to the right,
and (3) in either direction.

Definition. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be a GJFA. Let 𝑤, 𝑥, 𝑦, 𝑧 ∈ Σ* and ℎ : (𝑝, 𝑦, 𝑞) ∈ 𝑅;
then, 𝑤𝑝𝑦𝑥𝑧 Iy 𝑤𝑥𝑞𝑧 [ℎ] and 𝑤𝑥𝑦𝑝𝑧 Jy 𝑤𝑞𝑥𝑧 [ℎ] in 𝑀 .

Let 𝑋 denote the set of all configurations of 𝑀 . A 2-configuration of 𝑀 is any string in
𝑋𝑋. Let 𝑋2 denote the set of all 2-configurations of 𝑀 . For brevity, let 𝑡1𝑡2 ∈ {��,II,
IJ,JI,JJ} such that 𝑡1, 𝑡2 ∈ {�,I,J}. The binary 𝑡1𝑡2 2-jumping relation, symbolically
denoted by 𝑡1𝑡2 y, over 𝑋2, is defined as follows. Let 𝜁1𝜁2, 𝜗1𝜗2 ∈ 𝑋2, where 𝜁1, 𝜁2, 𝜗1, 𝜗2 ∈
𝑋, and ℎ ∈ 𝑅; then, 𝑀 makes a 𝑡1𝑡2 2-jump from 𝜁1𝜁2 to 𝜗1𝜗2 according to ℎ, symbolically
written as

𝜁1𝜁2 𝑡1𝑡2 y 𝜗1𝜗2 [ℎ]

if and only if 𝜁1 𝑡1 y 𝜗1 [ℎ] and 𝜁2 𝑡2 y 𝜗2 [ℎ]. Depending on the specific type of jumps
��, II, IJ, JI, JJ, we use the following naming: unrestricted, right-right, right-left,
left-right, left-left 2-jumping relation (or 2-jump), respectively.

Let 𝑜 be any of the jumping direct relations introduced above. In the standard way, we
extend 𝑜 to 𝑜𝑚, 𝑚 ≥ 0; 𝑜+; and 𝑜*. To express that 𝑀 only performs jumps according to
𝑜, write 𝑀𝑜. If 𝑜 is one of the relations �y, Iy, Jy, set

𝐿(𝑀𝑜) = {𝑢𝑣 : 𝑢, 𝑣 ∈ Σ*, 𝑢𝑠𝑣 𝑜* 𝑓, 𝑓 ∈ 𝐹}.

If 𝑜 is one of the relations ��y, IIy, IJy, JIy, JJy, set

𝐿(𝑀𝑜) = {𝑢𝑣𝑤 : 𝑢, 𝑣, 𝑤 ∈ Σ*, 𝑢𝑠𝑣𝑠𝑤 𝑜* 𝑓𝑓, 𝑓 ∈ 𝐹}.

𝐿(𝑀𝑜) is referred to as the language of 𝑀𝑜. Set L𝑜 = {𝐿(𝑀𝑜) : 𝑀 is a GJFA}; L𝑜 is
referred to as the language family accepted by GJFAs according to 𝑜.

To illustrate this terminology, take 𝑜 = ��y. Consider 𝑀��y. Notice that

𝐿(𝑀��y) = {𝑢𝑣𝑤 : 𝑢, 𝑣, 𝑤 ∈ Σ*, 𝑢𝑠𝑣𝑠𝑤 ��y* 𝑓𝑓, 𝑓 ∈ 𝐹}.

𝐿(𝑀��y) is referred to as the language of 𝑀��y. Set L��y = {𝐿(𝑀��y) : 𝑀 is a GJFA};
L��y is referred to as the language family accepted by GJFAs according to ��y.
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Lastly, we define an auxiliary subfamily of the family of regular languages that is useful
to the study of the accepting power of GJFAs that perform right-left and left-right 2-jumps.

Definition. Let 𝐿𝑚,𝑛 be a simply-expandable language (SEL) over an alphabet Σ if it can
be written as follows. Let 𝑚 and 𝑛 be positive integers; then,

𝐿𝑚,𝑛 =
𝑚⋃︁

ℎ=1

{︀
𝑢ℎ,1𝑢ℎ,2 · · ·𝑢ℎ,𝑛𝑣𝑖ℎ𝑣𝑖ℎ𝑢ℎ,𝑛 · · ·𝑢ℎ,2𝑢ℎ,1 : 𝑖 ≥ 0, 𝑢ℎ,𝑘, 𝑣ℎ ∈ Σ*, 1 ≤ 𝑘 ≤ 𝑛

}︀
.

Let SEL denote the family of SELs. The most notable results of this chapter are
summarized in Figures 3.1 and 3.2.

LINeven

REGeven LIJy LJIy

FINeven SEL

CSeven

CF

LJJy

REG

FIN

LIIy

Figure 3.1: The hierarchies of closely related language families are shown. If there is a line
or an arrow from family 𝑋 to family 𝑌 in the figure, then 𝑋 = 𝑌 or 𝑋 ⊂ 𝑌 , respectively.
A crossed line represents the incomparability between connected families.

LIJy, LJIy LIIy LJJy
endmarking (both sides) − (+) − (−) − (−)
concatenation − − −
square (𝐿2) − − −
shuffle − − −
union + + +

complement − − −
intersection + − −
int. with regular languages + − −
mirror image + − −
finite substitution − − −
homomorphism + − −
𝜀-free homomorphism + − −
inverse homomorphism − − −

Figure 3.2: Summary of closure properties.
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Chapter 4

Jumping 5′ → 3′ Watson-Crick
Finite Automata

This chapter studies a combined model of two-head jumping finite automata and sensing
5′ → 3′ Watson-Crick finite automata. The content of this chapter is composed of re-
sults that were published at the conference NCMA 2018 (see [38]) and that are currently
submitted to the journal Acta Informatica (see [36]).

Definition. A jumping 5′ → 3′ WK automaton is a quintuple 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿), where
𝑉 , 𝑄, 𝑞0, and 𝐹 are the same as in WK automata, 𝑉 ∩{#} = ∅, 𝛿 : (𝑄×𝑉 *×𝑉 *×𝐷) → 2𝑄,
where 𝐷 = {⊕,⊖} indicates the mutual position of heads, and 𝛿(𝑞, 𝑤1, 𝑤2, 𝑠) ̸= ∅ only for
finitely many quadruples (𝑞, 𝑤1, 𝑤2, 𝑠) ∈ 𝑄×𝑉 *×𝑉 *×𝐷. We denote the head as I-head or
J-head if it reads from left to right or from right to left, respectively. We use the symbol ⊕ if
the I-head is on the input tape positioned before the J-head; otherwise, we use the symbol
⊖. A configuration (𝑞, 𝑠, 𝑤1, 𝑤2, 𝑤3) consists of the state 𝑞 ∈ 𝑄, the mutual position of heads
𝑠 ∈ 𝐷, and the three unprocessed portions of the input tape: (a) before the first head (𝑤1),
(b) between the heads (𝑤2), and (c) after the second head (𝑤3). A step of the automaton
can be of the following four types: Let 𝑥, 𝑦, 𝑢, 𝑣, 𝑤2 ∈ 𝑉 * and 𝑤1, 𝑤3 ∈ (𝑉 ∪ {#})*.
(1) ⊕-reading: (𝑞,⊕, 𝑤1, 𝑥𝑤2𝑦, 𝑤3) y (𝑞′, 𝑠, 𝑤1{#}|𝑥|, 𝑤2, {#}|𝑦|𝑤3), where 𝑞′ ∈ 𝛿(𝑞, 𝑥, 𝑦,

⊕), and 𝑠 is either ⊕ if |𝑤2| > 0 or ⊖ in other cases.
(2) ⊖-reading: (𝑞,⊖, 𝑤1𝑦, 𝜀, 𝑥𝑤3) y (𝑞′,⊖, 𝑤1, 𝜀, 𝑤3), where 𝑞′ ∈ 𝛿(𝑞, 𝑥, 𝑦,⊖).
(3) ⊕-jumping: (𝑞,⊕, 𝑤1, 𝑢𝑤2𝑣, 𝑤3) y (𝑞, 𝑠, 𝑤1𝑢,𝑤2, 𝑣𝑤3), where 𝑠 is either ⊕ if |𝑤2| > 0

or ⊖ in other cases.
(4) ⊖-jumping: (𝑞,⊖, 𝑤1{#}*, 𝜀, {#}*𝑤3) y (𝑞,⊖, 𝑤1, 𝜀, 𝑤3).
In the standard manner, let us extend y to y𝑛, where 𝑛 ≥ 0; then, based on y𝑛, let us
define y+ and y*. The accepted language, denoted by 𝐿(𝑀), can be defined by the final
accepting configurations that can be reached from the initial one: A string 𝑤 is accepted
by a jumping 5′ → 3′ WK automaton 𝑀 if and only if (𝑞0,⊕, 𝜀, 𝑤, 𝜀) y* (𝑞𝑓 ,⊖, 𝜀, 𝜀, 𝜀), for
𝑞𝑓 ∈ 𝐹 .

Let SWK and JWK denote the language families accepted by sensing 5′ → 3′ WK
automata and jumping 5′ → 3′ WK automata, respectively. Moreover, we are using prefixes
N, F, S, 1, NS, FS, N1, and F1 to specify the restricted variants of jumping 5′ → 3′ WK
automata and appropriate language families. Finally, let FIN𝜀-inc denote the family of
finite languages that always contain the empty string.
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This chapter shows that the new model is more powerful than sensing 5′ → 3′ WK
automata and some double-jumping reading modes. However, the resulting language family
is incomparable with the language families accepted by (general) jumping finite automata.

Theorem. LIN = SWK ⊂ JWK.

Proposition. The language family accepted by double-jumping finite automata that perform
right-left and left-right jumps is strictly included in JWK.

Proposition. JWK is incomparable with GJFA and JFA.

To formally prove our results, we also introduce a new proof technique that utilizes the
concept of the debt of a configuration in jumping 5′ → 3′ WK automata.

Definition. Let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a jumping 5′ → 3′ WK automaton, where 𝑉 =
{𝑎1, . . . , 𝑎𝑛}, and let 𝑤 ∈ 𝑉 *. We define the Parikh vector 𝑜 = (𝑜1, . . . , 𝑜𝑛) of processed
(read) symbols from 𝑤 in a configuration 𝛾 = (𝑞, 𝑠, 𝑤1, 𝑤2, 𝑤3) of 𝑀 reached from an
initial configuration (𝑞0,⊕, 𝜀, 𝑤, 𝜀) of 𝑀 as 𝑜 = Ψ𝑉 (𝑤) − Ψ𝑉 (𝑤1𝑤2𝑤3), 𝑞 ∈ 𝑄, 𝑠 ∈ {⊕,⊖},
𝑤1, 𝑤2, 𝑤3 ∈ (𝑉 ∪{#})*. Using the Parikh mapping of 𝐿(𝑀), we define ∆(𝑜) = {

∑︀𝑛
𝑖=1(𝑚𝑖−

𝑜𝑖) : (𝑚1, . . . ,𝑚𝑛) ∈ Ψ𝑉 (𝐿(𝑀)), 𝑚𝑖 ≥ 𝑜𝑖, 1 ≤ 𝑖 ≤ 𝑛} ∪ {∞}. Finally, we define the debt of
the configuration 𝛾 of 𝑀 as min ∆(𝑜).

Lemma. Let 𝐿 be a language, and let 𝑀 = (𝑉,𝑄, 𝑞0, 𝐹, 𝛿) be a jumping 5′ → 3′ WK
automaton. If 𝐿(𝑀) = 𝐿, there exists a constant 𝑘 for 𝑀 such that 𝑀 accepts all 𝑤 ∈ 𝐿
using only configurations that have their debt bounded by 𝑘.

Other most notable results of this chapter are summarized in Figure 4.1.

JWK

S JWK

1 JWKLIN

REG

FIN

FINε-inc

F JWK

FS JWK N JWK

F1 JWK NS JWK

N1 JWK

Figure 4.1: A hierarchy of language families closely related to the unrestricted and restricted
variants of jumping 5′ → 3′ WK automata is shown. If there is a double line between families
𝑋 and 𝑌 , then 𝑋 = 𝑌 . If there is an arrow from family 𝑋 to family 𝑌 , then 𝑋 ⊂ 𝑌 .
Furthermore, if there is no path (following the arrows and double lines) between families
𝑋 and 𝑌 , then 𝑋 and 𝑌 are incomparable.
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Chapter 5

General CD Grammar Systems:
Normal Forms

This chapter introduces new normal forms of general CD grammar systems fitting for a
parallel rewriting process. The content of this chapter is composed of results that were first
introduced in a short abstract at the conference AFL 2017 and later published in Journal of
Automata, Languages and Combinatorics (see [35]). We concentrate our attention on two-
component CD grammar systems working under the * and 𝑡 modes. Recall that under the
former mode the context-free versions of these systems obviously generate only the family
of context-free languages. More surprisingly, under the latter mode they are no more pow-
erful than ordinary context-free grammars either. To increase their power, we use general
CD grammar systems, whose components are general grammars, that are computationally
complete—that is, they characterize the family of recursively enumerable languages. Most
importantly, however, we explain how to turn arbitrary general grammars into equivalent
two-component general CD grammar systems of very reduced and simplified forms.

To give an insight into this study in a greater detail, take any general grammar 𝐺.
This chapter demonstrates two types of transformations that turn 𝐺 into a two-component
general CD grammar system with one context-free component and one non-context-free
component. For brevity, in this introductory section, Γ1 and Γ2 denote the systems resulting
from the first type of transformations and the second type of transformations, respectively.
Γ1 has its non-context-free component containing the rules 11 → 00 and 0000 → 𝜀, while
Γ2 has its non-context-free component containing the rules 11 → 00 and 0000 → 2222,
where 0, 1, and 2 are new nonterminals. The chapter proves that working under the * and 𝑡
modes, Γ1 and Γ2 are equivalent to 𝐺. Thus, more generally speaking, general CD grammar
systems of these two forms are computationally complete—that is, they characterize the
family of recursively enumerable languages. Apart from the computational completeness,
we also explore other useful properties (compactness, single switching of components, close
simulation, multi-derivations, and homogeneous rules) which make Γ1 and Γ2 simple and
easy to apply in theory as well as in practice.

In order to simplify the reasoning for underlying proofs, our first results assume that all
input grammars satisfy Kuroda normal form. We start with a two-component general CD
grammar system that works in the * mode and has the second component homogeneous.
Theorem. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a grammar in Kuroda normal form. Then, there exists a
two-component general CD grammar system Γ = (𝑁 ′, 𝑇,𝐻, 𝐼, 𝑆) such that 𝐻 is context-free,
𝐼 = {11 → 00, 0000 → 𝜀}, and 𝐿*(Γ) = 𝐿(𝐺).
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Corollary. The resulting two-component general CD grammar system Γ closely simulates
the original grammar 𝐺.

Next, we consider a two-component general CD grammar system with the same structure
but working in the 𝑡 mode.

Theorem. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a grammar in Kuroda normal form. Then, there exists a
two-component general CD grammar system Γ = (𝑁 ′, 𝑇,𝐻, 𝐼, 𝑆) such that 𝐻 is context-free,
𝐼 = {11 → 00, 0000 → 𝜀}, and 𝐿𝑡(Γ) = 𝐿(𝐺).

Corollary. The resulting two-component general CD grammar system Γ changes its com-
ponents, during every generation of a sentence, no more than once.

Finally, we change the second component of the two-component general CD grammar
system so it is evenly homogeneous. We show that such a system also works correctly in
both the * mode and the 𝑡 mode.

Theorem. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a grammar in Kuroda normal form. Then, there exists a
two-component general CD grammar system Γ = (𝑁 ′, 𝑇,𝐻, 𝐼, 𝑆) such that 𝐻 is context-free,
𝐼 = {11 → 00, 0000 → 2222}, and 𝐿*(Γ) = 𝐿𝑡(Γ) = 𝐿(𝐺).

Corollary. If the two-component general CD grammar system Γ works in the * mode, it
can closely simulate the original grammar 𝐺.

The second part of this chapter considers transformations that turn arbitrary general
grammars into equivalent two-component general CD grammar systems. We say that a
transformation from general grammars into two-component general CD grammar systems
is direct if it keeps the original context-free rules intact and splits the non-context-free rules
proportionally to the number of symbols on their left-hand sides.

Theorem. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a general grammar such that alph(lhs(𝑝)) ∩ 𝑇 = ∅ for
all 𝑝 ∈ 𝑃 . Then, there exists its direct transformation into a two-component general CD
grammar system Γ = (𝑁 ′, 𝑇,𝐻, 𝐼, 𝑆) such that 𝐻 is context-free, 𝐼 = {11 → 00, 0000 → 𝜀},
and 𝐿*(Γ) = 𝐿𝑡(Γ) = 𝐿(𝐺).

The similar result can be easily achieved for the two-component general CD grammar
system where 𝐼 = {11 → 00, 0000 → 2222}. Furthermore, the other properties from
the previous section (close simulation and switching of components) still hold in this more
general transformation.

Lastly, we introduce a modification of the above transformation that works with all
general grammars. However, it is not possible to directly use our previous approach for
grammars that have rules with terminals on their left-hand sides. Consequently, the result-
ing system may not be able to closely simulate the original general grammar. We say that
a transformation is semi-direct if it separates terminals from the left-hand side of the rules
but otherwise behaves as a direct transformation.

Theorem. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a general grammar. Then, there exists its semi-direct
transformation into a two-component general CD grammar system Γ = (𝑁 ′, 𝑇,𝐻, 𝐼, 𝑆) such
that 𝐻 is context-free, 𝐼 = {11 → 00, 0000 → 𝜀}, and 𝐿*(Γ) = 𝐿𝑡(Γ) = 𝐿(𝐺).

The same holds for the system with the evenly homogeneous component.
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Chapter 6

Conclusion

In this chapter, we give a short summary and an overview of application and theoretical
perspectives that are discussed in the full thesis.

6.1 Application Perspectives
In the core chapters of this thesis, the content is mainly presented in a strictly rigorous way
as it appeared in the published papers. In each chapter in the full thesis, we have already
mentioned some suggestions for further investigation that are directly linked to the topics in
question. Here, we pinpoint some broader application perspectives for the obtained results
that are also further described in the full thesis.

First, we discuss the idea of controlled discontinuous reading. We see that, on the one
hand, the classical finite automata process the input in a strictly continuous way, and, on the
other hand, the original jumping finite automata process the input in a purely discontinous
way. We argue that neither of these behaviors alone may be desired for modern computation
methods that want to process information discontinously but in a controlled way. If we take
a look at the automata introduced in this thesis, we can say that these parallel versions of
jumping finite automata explore controlled discontinuous reading behaviors that combine
both approaches together.

Second, we explore how to use the presented new proof technique of the debt lemma in
a broader context. To demonstrate this in detail we show how to adapt the debt lemma for
classical finite automata.

Lastly, we hint how the new special forms of general CD grammar systems can be
utilized in practice in a general parallel rewriting process.

6.2 Summary and Theoretical Perspectives
In this last section, we briefly evaluate achieved results and give our final thoughts on the
topic. We will not discuss all individual results in detail since each main chapter already
has its own concluding remarks in the full thesis, but we will look at the results from a
more general perspective.

New Results on Jumping Automata

Considering parallel jumping finite automata, we can see that the newly introduced models
match with our goals presented in Chapter 1. All the models fall into the category (PA.2)

17



of parallelism in multi-head finite automata where the heads cooperate to process the single
input. In terms of the general categories for parallelism, these models sort of fall into all
of them: In category (P.1), parallelism increases the expressive power of the model. We
can see that in Chapter 2 the models clearly extend the original jumping finite automaton
and have greater expressive powers. In category (P.2), parallelism is a fundamental part of
the behavior of the model. In Chapter 4, we work with Watson-Crick models that fall into
(P.2) by definition. Lastly, in category (P.3), parallelism splits the work of the task. Since
all the models fall into (PA.2), they also naturally fall into (P.3).

With our work, we have pioneered the study of automaton models that combine the
parallel and jumping mechanisms. We believe that this area of research nicely supplements
the ongoing thorough investigation of the jumping mechanism. Moreover, our results have
already inspired some other new models (see [27]). With our results, we have shown that
every additional head increases the power of the model and that these automata can be
natural counterparts to various kinds of parallel grammars. In our study of 2-jumps, we
have shown that, even if we precisely replicate the behavior of right jumps in left jumps, the
right-right and left-left 2-jumps define incomparable language families. We have also studied
the possibilities of the combined model of jumping and Watson-Crick finite automata, and
our results have introduced some new proof techniques like the debt lemma that can be
used even outside the scope of jumping finite automata.

In our research, we have always followed the path that looked the most promising to
yield new interesting general results. Nonetheless, there are many possibilities how to
combine the parallel and jumping mechanism, and thus also many unexplored areas that
we were not able to cover. In the previous chapters of the full thesis, we have already hinted
some of the areas with potential for future research. For now, jumping finite automata are
still primarily interesting from the theoretical point of view. Indeed, they nicely connect
different research areas. But their behavior can be quite wild in more complex cases, their
power highly depends on the details of the jumping mechanism, and there are still questions
about the complexity of operations with these models. Nonetheless, with enough theoretical
knowledge, it can be possible in the future to design and fine tune jumping models so that
they properly capture some specific practical problems.

New Results on CD Grammar Systems

Considering the normal forms of grammars and grammar systems, we have introduced sev-
eral special forms for general CD grammar systems that have interesting parallel properties.
The theoretical aspects of these forms are thoroughly described in the full thesis, and we
have also hinted some ideas for practical use in the application perspectives. Note that
we are not making the generation process of recursively enumerable languages any simpler,
we are just rearranging its parts so that it can be run in a parallel way. Therefore, this
approach may not be that interesting for the general case, but it can be useful for more
specific cases where we can somehow control and guide the generation process.

Compared to jumping models, this area of research is rather isolated and self-contained.
We are not aware of other studies of this type in the basic research in the theory of formal
languages. Indeed, classical normal forms are primarily focused only on the very restricted
forms of rules, minimum number of non-context-free rules, and minimum number of non-
terminals. Therefore, we hope that our effort can spark some interest for this largely
unexplored research area.
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