
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

TESTING OF GENERATED C COMPILERS FOR
PROCESSORS IN EMBEDDED SYSTEMS

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR PRÁCE Ing. LUDĚK DOLÍHAL
AUTHOR

BRNO 2016

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

TESTOVÁNÍ GENEROVANÝCH PŘEKLADAČŮ
JAZYKA C PRO PROCESORY VE VESTAVĚNÝCH
SYSTÉMECH

TESTING OF GENERATED C COMPILERS FOR PROCESSORS IN EMBEDDED SYSTEMS

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR PRÁCE Ing. LUDĚK DOLÍHAL
AUTHOR

VEDOUCÍ PRÁCE prof. Ing. TOMÁŠ HRUŠKA, CSc.
SUPERVISOR

BRNO 2016

Abstrakt
Vestav¥né systémy se staly nepostradatelnými pro ná² kaºdodenní ºivot. Jsou to obvykle
úzce zam¥°ená, vysoce optimalizovaná, jednoú£elová za°ízení. Jádro vestav¥ných za°ízení
obvykle tvo°í jeden nebo více aplika£n¥ speci�ckých instruk£ních procesor·. Tato diser-
ta£ní práce se zam¥°uje na problematiku testování nástrojú pro návrh aplika£n¥ speci�ckých
procesor· a následn¥ i samotných aplika£ne speci�ckých procesor·. Snahou bylo vytvo°it
systém, ve kterém bude moºné otestovat jednotlivé nástroje, jako nap°íklad p°eklada£, as-
sembler, disassembler, debugger. Nicmén¥ vyvstává také pot°eba provád¥t sloºit¥j²í testy,
nap°íklad integra£ní, které zaru£í, ºe mezi jednotlivými nástroji nevzniká nekompatibilita.
Autor vytvo°il s podporou p°·b¥ºn¥ integra£ního serveru prost°edí, které napomáhá odhalování
a odstra¬ování chyb p°i návrhu aplika£n¥ speci�ckých procesor· a které je navíc do zna£né
míry automatizované.

Abstract
Embedded systems have become essential for our everyday lives. They are usually highly
specialized and optimized single purpose devices. The cores of these devices are usually
composed of one or more application speci�c instruction-set processors. This dissertation
thesis focuses on testing of tools for design of application speci�c instruction set processors
(ASIP) and ASIPs themselves. The aim is to create a system which allows testing of tools,
such as a compiler, an assembler, a disassembler or a debugger. Nevertheless, there is
also need for more complex tests, for example, integration tests which ensure there is no
incompatibility between the tools. The author created, with the support of a continuous
integration server, an environment that helps to reveal and �x errors during the design
of application speci�c processors and, moreover, this environment is automatized up to a
certain point.

Klí£ová slova
Testování, p°eklada£e, pr·b¥ºná integrace, hardware software codesign, procesory s ap-
lika£n¥ speci�ckou instruk£ní sadou, jazyky pro popis architektury, vestav¥né systémy.

Keywords
Testing, compilers, continuous integration, hardware software codesign, application speci�c
instruction set processors, architecture description languages, embedded systems.

Citace
Lud¥k Dolíhal: Testing of generated C compilers for processors in embedded systems, dis-
erta£ní práce, Brno, FIT VUT v Brn¥, 2016

Testing of generated C compilers for processors in

embedded systems

Prohlá²ení
Prohla²uji, ºe jsem tuto diserta£ní práci vypracoval samostatn¥ pod vedením prof. Ing.
Tomá²e Hru²ky, CSc.

. .
Lud¥k Dolíhal

November 19, 2016

Pod¥kování
Na tomto míst¥ bych rád pod¥koval svému ²koliteli profesoru Tomá²i Hru²kovi za jeho ve-
dení, £as, rady a velkou podporu, kterou mi poskytoval b¥hem mého studia. Dále bych
rád pod¥koval koleg·m, p°edev²ím Karlu Masa°íkovi, Zde¬ku P°ikrylovi, Adamu Husárovi,
Ond°eji Il£íkovi, Liboru Va²í£kovi, Róbertu Baru£ákovi, Filipovi Matiovskému, Milanu
Skálovi a dal²ím £len·m Codasip týmu za jejich skv¥lou spolupráci a nápady.
V neposlední °ad¥ také velmi d¥kuji svým rodi£·m Franti²kovi a Jan¥ Dolíhalovým a své
p°ítelkyni Julián¥ Krej£ové bez nichº by tato práce nikdy nemohla vzniknout.

c© Lud¥k Dolíhal, 2016.
Tato práce vznikla jako ²kolní dílo na Vysokém u£ení technickém v Brn¥, Fakult¥ infor-
ma£ních technologií. Práce je chrán¥na autorským zákonem a její uºití bez ud¥lení oprávn¥ní
autorem je nezákonné, s výjimkou zákonem de�novaných p°ípad·.

Contents

1 Introduction 3

2 State of art 5

2.1 Standard library . 5
2.2 Test-suites for the C compiler . 6

2.2.1 GCC test-suite . 7
2.2.2 LLVM test-suite . 7
2.2.3 Test selection mechanism . 8

2.3 Continuous integration . 8
2.3.1 Jenkins as a build environment . 9
2.3.2 Current possibilities of the job generation 10

3 Lissom project 11

3.1 CodAL Language . 11
3.2 Toolchain . 12

4 Porting of the C library 13

4.1 Theory of Porting . 13
4.1.1 Special instruction principle . 15
4.1.2 Simulators . 15

4.2 Automation of the porting process . 16
4.3 Experimental results and contribution . 17

5 Tests selection 19

5.1 Test selection scheme . 19
5.1.1 Test selection phase . 19
5.1.2 Test compilation and execution . 20
5.1.3 Logging information and test evaluation 21

5.2 Generator of the test selection �les . 21
5.2.1 Design of the generator of test selection �les 21

5.3 Experimental results and contribution . 23

6 Acceleration of testing 25

6.1 Testing attitudes . 25
6.1.1 Testing oriented on tools . 25
6.1.2 Testing oriented on models . 26

6.2 Case study and experimental results . 27
6.3 Main contribution . 28

1

7 Continuous integration job generator 29

7.1 Job generation . 29
7.1.1 Sni�er . 29
7.1.2 Templates . 30
7.1.3 Job generator . 30

7.2 Experimental results and contribution . 32

8 Conclusion 33

8.1 Future work . 34

2

Chapter 1

Introduction

This thesis is going to deal with the area of hardware software codesign and will mainly
focus on testing and stability of such tools. Every piece of software contains errors and tools
for hardware software codesign are not an exception. It is a well-known fact that the later
the error is discovered in the software, the more expensive the process of �xing it is.

In order to uncover bugs in the early stages of development, tools have to be tested.
Usually the better the coverage of the environment, the more bugs are triggered and can be
�xed. To uncover the bugs, quality assurance teams and teams that focus on development
of internal tools put a lot of e�ort into the design of new testing approaches. Nowadays, the
majority of testing is performed automatically by advanced continuous integration systems
(CI systems). However, there are still testing scenarios that cannot be automatically tested.
The human element cannot be omitted in the process of testing.

A testing system, especially one for a complicated integrated development environment,
such as a tool for hardware software codesign [10], must be capable of testing the separated
parts, but also must be able to perform integration tests. In the last few years, an enormous
amount of e�ort was invested into the testing environments. All the main development
languages have advanced testing frameworks. To mention some of the biggest ones, I should
name Selenium [38], Arquilian[5], Cucumber[9] and Autotest[6].

The current extremely competitive market of electronics of all kinds is very sensitive
to the time it takes to introduce new products. Errors in design and implementation of a
product, not only increase the cost of the �nal solution, but also cause delays that, in the
end, mean a �nancial loss.

This drives the demand for fast and e�cient testing systems. These testing systems
must tackle several challenges:

• to provide a high level of automation of the testing procedure,

• to restrict the time needed to discover an error, this includes a fast rebuild of all tools
that are needed for testing,

• to clearly identify an error and provide adequate information about the error,

• to de�ne clear metrics to measure the progress of the testing process.

This thesis is going to discuss the area of testing hardware software codesign [11]. The
hardware software codesign deals with the design of new embedded systems. Such a kind
of systems can be found in a wide variety of devices, such as network routers or printers.

3

Embedded systems consist of one or more application speci�c processors (ASIPs). Each
processor usually takes care of a single speci�c task and is, therefore, highly optimized for
this task. The optimization is also the main di�erence from general purpose processors,
such as the x86 family, which have to take care of various tasks.

The production of ASIPs in 2015 formed over 98% of the overall processor production.
Therefore, this area is extremely important. Technology used for the creation of any ASIP
is called System on the Chip (SoC) [37]. Such a technology allows integration of several
ASIPs on one chip together with peripherals, such as memories, busses and others.

The development of current ASIPs must be done in a very short period of time [41]. In
order to do so, it is common to use tools for the hardware software codesign. A hardware
description language (HDL) is allways in the core of such tools. The development is done in
a modern integrated development environment (IDE) that allows the designer to generate all
the necessary tools, such as a compiler, an assembler or a simulator [35]. Then it is common
that the application can be compiled in the same environment and simulated. These tools
enable the Electronic Design Automation (EDA) and sometimes are also called the EDA
tools [42]. Into the category of EDA tools falls, for example, the Processor Designer [40].

In the case of such a complex tool as the hardware software codesing environment, the
testing techniques should be very advanced and ensure thorough tests of separate compo-
nents as well as integration tests. In this thesis I will focus mainly on testing of the toolchain
and particularly on tests of the compiler, as the compiler plays a key role in programming
of an ASIP.

The thesis is divided into eight chapters. The chapters are organized in the following
way.

The second chapter is called State of art. It describes the standard C language library,
together with the testsuites that are used for compiler testing and the continuous integration
systems.

The third chapter describes the Lissom project. It is targeted at the description of the
toolchain, the software development kit (SDK), the way it is generated from the description
in the ADL.

The fourth chapter is devoted to the porting of the library. It describes the role of the
library in the toolchain, the process of porting and also automation of the porting process.

The �fth chapter discusses the problems connected to the scheme of test selection. As
I use tests from a large number of sources, I need to deploy an e�cient test selection
mechanism. In the chapter I describe such a method and also the way how to automatically
generate �les that take care of test selection.

Chapter six focuses on the area of testing via a continuous integration server and also
acceleration of such testing. This chapter introduces an improvement in the �ow of testing
jobs that brings signi�cant time and space savings.

Chapter number seven is the last of the sections that are focused on the solution of testing
problems. It deals with problems connected to the generation of testing jobs, describes the
design and implementation of the generator of the jobs.

Chapter eight concludes the thesis. It gives the summary of the results, describes the
utilization in the industry, the advantages and disadvantages of the chosen solution. At the
very end of the thesis, the future work is also discussed.

4

Chapter 2

State of art

In this chapter I will discuss several areas that are connected with the standard library,
testing of the compilers and the infrastructure that is needed for testing of the tools for
hardware software codesign.

2.1 Standard library

The language, whose compiler is generated, is based on the grammar that de�nes the syntax
of the language. But the compiler itself is di�cult to use. What makes the compiler really
useful is the standard library of the language, whose compiler is generated.

That is true for majority of programming languages. Because I am interested in the
C programming language, I will have a look at the library of the C. The library for the C
language is speci�ed in the standard [3]. It is the subset of the C library POSIX speci�cation.
It is also called ISO C library.

In comparison to standard libraries of other languages, such as Python, the standard
library of C is small. It provides only the basic sets of mathematical functions, functions
for the conversion of types, basic manipulation for strings and �le and console-based I/O.

When I compare the library with other language libraries, such as C++, Java or even
Python, I �nd that it really holds just the minimum of functionality. Other language
libraries provide, for example, containers, GUI tool kits or networking tools. The exact
opposite of the C standard library is the Python standard library. The Python standard
library provides, for example, clients and even servers for the common network services or
multimedia services.

However, there is one big advantage of the small standard C library. It is the fact that
in order to provide a working version of the library for a new platform, the amount of e�ort
I need to expend is relatively small.

The main parts of the standard C library are the following:

• Data types - The data types provide the declaration of how the data are stored and
what operations are permitted over the data.

• Character classi�cation - In this section there are declared functions that are used for
the test of the character membership, for example isdigit().

• Strings - A set of functions that implements operations over the character or byte
strings, such as a concatenation or a copy.

5

• Mathematics - An implementation of the basic mathematical functions for integer,
�oat and other data types.

• File input/output - An implementation of many functions for the standard input and
output. The function forms the main part of the stdio.h.

• Date/time - Functions that provide conversions between the date and time formats, a
time acquisition.

• Localization - An implementation of the basic localization routines.

• Memory allocation - Dynamic memory allocation, the heart of the library, functions
like malloc, realloc.

• Process control - A very important part of the library, basic functions for starting and
termination of the process.

• Signals - Closely related to the process control, de�nition of the program behaviour
when it receives the signal.

Some parts of the library are more error prone than others. There are certain parts
of the library that are well known for over�ows, such as gets(), and some of them are
deprecated. Other functions are considered thread unsafe. None of these are crucial for the
developers as there are always ways how to overcome such problems.

Even though there are several di�erent standard C library implementations, the above
mentioned parts are common for all of them. I will now have a closer look at the Newlib
library as it plays an important role in the thesis.

Newlib Library

The Newlib library [33] is a collection of several parts that are all distributed under free
licenses. It is the C standard library implementation that is intended for use in embedded
systems.

The library is currently maintained by the Red Hat corporation [22]. The Newlib project
is currently used in the majority of commercial and also non commercial embedded systems.
It is particularly popular for the ones without an operating system.

The library has a strong support for porting (an addition to the new platform) and
because of its popularity, there is a lot of documentation about the porting, for example
[19], [7].

It is very well prepared for the addition of a new platform. It is divided into two parts.
The �rst one is the newlib directory. It contains the majority of the code for the two
main libraries libc (the core of C library) and libm (the mathematical library). Some
architecture speci�c code might be found here.

The other part is the libgloss directory, called also Board Support Package (bsp),
contains the platform dependent code. Therefore, during the porting mainly, the libgloss
directory has to be targeted.

2.2 Test-suites for the C compiler

As my work deals mainly with the C compiler, I will focus on the sets of tests that are
designed for the C/C++ compiler. The majority of the big compiler projects, such as GCC

6

and LLVM, are distributed together with compiler test-suites. But there are commercial
test-suites, such as the ACE test-suite or the Perennial test-suite. Companies developing
such testing sets are very well aware of the fact that compiler testing is a growing area. The
standard techniques are not able to cover the needs of the modern compiler development.

The test-suites are mainly used for regression testing. The aim of regression testing is to
ensure that the software does not contain bugs, which we have uncovered during the process
of development. The GCC test-suite and also the LLVM regression tests are sets of tests
written by the developers of the compilers. The bugs were either found by the authors or
were reported by the users. By execution of this test set I ensure, that the already known
errors do not reappear. But by this approach I am not able to discover new errors. Very
seldom do the already written tests trigger a new unknown sequence that results in an error.

2.2.1 GCC test-suite

The GCC test-suite [20] is a part of the compiler from the early stages of the development.
It is distributed under the same licence as the compiler and contains a vast number of tests,
which is true for all the other test-suites as well. The GCC test-suite does not come with
the infrastructure and has clear reports, once the testing is �nished.

The test-suite contains various types of tests. There are tests for C as well as for C++.
As we do not support the full C++ in our project, I use mainly the C tests for the testing.
There are very simple programs, as well as larger programs, such as SHA or Dhrystone
algorithm. The tests are very well sorted into directories. One of the greatest disadvantages
of the GCC test-suite is the fact that the tests are not sorted. There is a certain directory
structure, but it is very vague. For example, if a user wants to �lter the �oat tests or tests
that use only integers, they must do it by themselves.

The test-suite contains the torture part. These tests are meant to be compiled several
times with di�erent options. The torture test-suite is divided into several directories. Some
tests are designed to be executed after the compilation but there are also tests that are
designed only for compilation and should not be executed.

The disadvantages of this test-suite are very similar to the disadvantages of the compiler.
The project of the GCC compiler is quite old and so is the test-suite. Moreover, the tests
are usually only added to the test-suite. There are test cases that once triggered an error
in the original code, but the code is no longer part of the compiler. Another problem is the
fact that tests are not properly sorted and the test-suite does not contain an infrastructure.
Although this can be viewed as an advantage, as I do not have to modify the existing code.

2.2.2 LLVM test-suite

From the LLVM project [29] there also comes a test-suite. This test-suite has two major
parts. There is a regression test-suite and the benchmarks.

The regression test-suite is similar to the GCC one, which was described above. This
part contains the test cases gathered during the development phases. The test cases are
usually small pieces of code, which test a speci�c feature of the LLVM or trigger a speci�c
bug. The language they are written in depends on what part of the LLVM is tested. The
test-suite possesses a special driver for such tests, it is called lit. The directory, which
contains the regression tests, is further broken into subdirectories that are named after the
parts of the LLVM compiler that are tested by the cases contained in the given directory.

The other part of the LLVM test-suite, which in this case means benchmarks, is very
di�erent from the GCC test-suite. The LLVM test-suite is in fact composed of various

7

benchmarks. The smaller programs meant for regression are kept separated. The rest of
the test-suite, the benchmarks, are sorted into directories and thanks to the well designed
make�le system the user can easily enable and disable the directories.

The system for the benchmark compilation is hierarchical. There is a system of make�les
which control the compilation as well as the execution of the benchmarks. Each benchmark
can, therefore, be compiled and executed separately.

The system enables a parallel compilation and execution of the benchmarks, which keeps
the speed of the testing at a very good level. The system is able to detect the number of
cores and run the compilation and execution on several cores. However, due to the number
and complexity of the test and also the fact that the tests run on a simulator, the testing is
slower then I would expect.

When I look at the mechanism for the test selection, it gives the user a possibility to
modify the compilation and execution of the benchmarks at will. But what is missing is the
possibility to choose the benchmarks according to some prede�ned features.

2.2.3 Test selection mechanism

One of the most important criteria for use of the test-suite is the way of test case selection.
Both of the test-suites that were mentioned had serious drawbacks as far as the test selection
is concerned. There are certain test-suites that do not possess any testing infrastructure
and test selection mechanism at all. The rest of the test-suites gives just very basic options
of the test selection.

The test selection is usually based on a simple list of �les. In certain cases, the list of
�les contains only the test name, but in other cases, it contains the whole path to the test
from the given directory, which is typically the root directory of the test-suite.

I need to focus on speci�c aspects of the test selection mechanism. An important role
here is played by the information about the instruction set that the compiler possesses. Very
often the model from which the compiler is generated can dispose of a speci�c bit width.
For example, I can create a compiler for the 16-bit model or for the 32-bit model. This
characteristic in�uences the set of tests that can be compiled and executed. There are also
other factors, such as the presence of the C compiler library and the presence of compiler-rt
library and so on. All of these factors must be taken into account.

My test selection mechanism must be able to address such di�erences. I need to easily
choose the test for each platform according to the bit width and the presence of certain
libraries. And, in certain cases, also to specify directly that certain tests should not be
executed on the given architecture.

2.3 Continuous integration

The continuous integration servers are nowadays used for deployment and testing of new
packages and releases. Before the continuous integration method was deployed, the develop-
ment of software had had to deal with several serious disadvantages. The teams of developers
merged the code together via non systematic methods and they were very often forced to
rewrite certain parts of the code. A process like this very often took weeks and sometimes
even months. This very often led to inevitable delays in the process of development [30].

Nowadays, we use modern tools for the process of software development, these make
the whole process faster and easier. Because today the software development is not only
the coding but also continuous testing, version control of the code, quality assurance and

8

observation of metrics. Continuous integration tools make this process faster, less error
prone and they also help with automation of certain parts. It gives the programmer a
powerful tool for error detection and also reporting of errors, and it also helps with the
release management.

The most widely used continuous integration and continuous deployment server is called
Jenkins [25].

The Jenkins is an open source continuous integration server. It is implemented in the
Java language. It has a very simple interface, which can be easily customised by a large
number of plugins. The plugins can be divided into several categories:

• Version control system plugins - plugins that provide interface to the most common
Version Control Systems (VCS),

• Executor plugins - plugins that allow execution of certain scripts, such as Python,

• Metrics and visualisation plugins - this group of plugins allows a visualisation and
provides support for various kinds of results.

One of the biggest advantages of the Jenkins project is the speed of development. There
are updates and bug �xes available every week. There is also a more stable version that
is released three times a year. This version contains only packages and bug �xes that are
considered stable.

2.3.1 Jenkins as a build environment

The Jenkins is nowadays widely used as a tool which performs nightly builds and tests.
Let me introduce the most important steps of the build. The build is a job in the Jenk-
ins that is con�gured in an appropriate way. I use two kinds of job for the build, the
multi-configuration job and the maven job. The jobs di�er just in the execution step,
otherwise they are very similar.

The �rst important feature that can be con�gured is the job security. The job can be
con�gured in a way that other users can just watch it or control it, etc. There are several
plugins that modify the basic functionality of the Jenkins in this area.

A user can also set the names of the jobs that will be able to copy the artefacts in the
con�guration if the job stores any. Moreover, the job parameters can also be con�gured.
In the Jenkins, there are basic kinds of parameters, such as boolean, string, text and new
kinds are added by the various plugins.

Another extremely important part in the job con�guration is the Source Code Manage-
ment. All version control systems can be added into the Jenkins environment via plugins.
Because we use the git version cotrol system I am most interested in the git possibilities
in Jenkins. There are plugins for integration with git [21], such as Gitlab, Github and also
GitBucket.

Then there are the sections Build Triggers and Build Environment. In these sections,
the user can con�gure a periodical build. This is useful especially for nightly builds and
tests. Also the polling can be con�gured there as well as other actions, such as execution.
What is extremely useful is the build abortion. There are several possibilities, such as the
absolute timeout or the conditional timeout. Also the environment variables can be set for
injection into the job.

A very important part in the multi-con�guration project is the Con�guration Matrix.
The most frequently used axis is the one containing nodes. The user can de�ne what slaves

9

will the build be performed on. It is possible to choose Labels or Individual nodes. Also
another axis can be added, such as an axis based on a version of the Java language.

All the above mentioned sections can be considered a con�guration. After these steps
comes the build. The build is divided into the Build and the Post-build actions.

In the Build section, the user can con�gure an execution or a conditional step. From my
experience, it is better to con�gure the execution and do the conditional steps inside the
scripts. There is also a possibility of executing other projects before the execution starts.
The kind of the o�ered executors is a�ected by the installed plugins.

The last part is called the Post-build actions. The possibilities o�ered here are wider
than the ones in the Buid Step. It is possible to execute some clean up procedures and
also wait for other projects until they �nish the build. Very often, the job archives some
artefacts and they can also be con�gured in this step, as well as the trigger of other jobs.

The job is stored in the xml format in the Jenkins. The extensions just bring the new
marks into the existing jobs.

2.3.2 Current possibilities of the job generation

Let us have a look at the current development in the �eld of job generation. I can distinguish
between two types of solutions. There are tools in the Jenkins that were designed for this
purpose and then there are several works that try to deal with the problem of job generation
outside of the Jenkins environment.

Another possibility provided by the Jenkins server itself is the Job generator plugin [2].
This plugin is based on the template, which is the job itself and the parameters, which can
be global or local. This plugin is very powerful in combination with other plugins, such
as plugin for the conditional resolution. However, it shows limitations in the form of what
types of jobs can be generated and it cannot use time triggers. Moreover, it is very di�cult
to generate more complex jobs. The hierarchy and conditions can become very complex
and the whole process is quite error prone. I also did not �nd a way how to set the desired
nodes in the multi-con�guration project.

The most powerful solution from the Jenkins itself is the DSL plugin [1]. The dsl
plugin o�ers the possibility of de�nition of the job, which will serve as a template. From
this template the Jenkins is able to generate other jobs. This is done via a special build
step called Process Job DSLs. The build step executes the script in the Groovy language.
This solution allows the user to perform basically any customization over the template. The
Groovy language is very powerful. On the other hand, this solution is still within the Jenkins
environment and can be a�ected by other plugins, which can cause problems. Moreover,
the Groovy language is not very common and may require complicated settings.

I will introduce one approach that try to deal with job generation outside the Jenkins
environment. Interesting ideas were proposed in the article at the Jenkins User Conference
[27]. The article deals with the automation of testing in the area of robotics. The author uses
combination of various Jenkins plugins for packaging and a static analysis. Nevertheless, the
process of the building and testing is very complicated and hardly maintainable. The author
of the article proposes the use of the Domain Speci�c Language (DSL) for the speci�cation
of information and then generation of the Jenkins jobs. It seems that the author just uses
the Jenkins for the building. However, the system seems to be slow and problematic as far
as the synchronisation of the jobs is concerned. Also there are problems with the graphical
side of the solution.

10

Chapter 3

Lissom project

In this section, I will describe the Lissom research project [28], which creates the background
for the testing methods that are described in this thesis.

The Lissom project has two main areas of interest. The �rst one is the ADL called
CodAL, for the ASIP description. The description of the language can be found in detail
here [31].

The second scope of the project is the generation of the full toolchain from the description
in the ADL CodAL language.

3.1 CodAL Language

The CodAL language falls into the category of mixed ADLs. This means that the language
is able to describe the architectural information needed for the generation of the C compiler
and, at the same time, to provide information about micro-architecture, which is needed for
the generation of the hardware.

The CodAL language is special for the fact that the description of the core is created in
two levels of abstraction.

• instruction accurate,

• cycle accurate.

The �rst one, the instruction accurate, is on a higher level of abstraction. This descrip-
tion is very simple and it is written in a C-like code. It describes the instructions. The
addition of the instructions is very straightforward and for an experienced user, it takes
only several minutes to create the �rst version of the core with few instructions for which
the basic tools, such as an assembler and simulator, can be created. The designer can fully
focus on the instruction set without considering the complicated micro-architecture. From
this level of description, the user is also able to generate the C compiler and the pro�ler.

The cycle accurate model is more complicated. On this level, the micro-architecture
is described. Things, such as pipeline, hazards, etc. must be taken into account. This
description is taken as a base for the synthesis. This level of abstraction gives the user a
possibility to generate the description in the hardware description language, the functional
veri�cation environment, the simulator, the assembler and the pro�ler.

There is a large number of �les that are common for both descriptions and these �les
are shared between the descriptions. There might be several equivalent descriptions on the
cycle accurate level that correspond with one instruction accurate model. This is logical, as

11

the instruction set must be the same, but there might be several hardware variants that are
optimized for the speed or power consumption.

3.2 Toolchain

As I have mentioned before, the automatic generation of the full toolchain is one of the two
main tasks of the Lissom project. The generated toolchain contains all tools known from
other toolchains but it also contains speci�c tools.

The toolchain that is described below creates an entry point into the testing of the
compiler. The generation itself is very often also a part of the testing. Moreover, the
toolchain stands as a prerequisite for the tests of the compiler.

All the tools are generated from the description in the CodAL language. At the be-
ginning, the model in the CodAL language is validated and compiled. The result of the
compilation is the XML representation of the model.

Once the XML is created, there are two tools working over it. These tools are the
toolchain generator, called also toolsgen, and the semantics extractor or semextr.

The toolchain generator produces tools, such as the simulator, the assembler, the de-
bugger, pro�ler and so on. The tools that are generated by the toolchain generator consist
of two types of �les. Both types of �les are compiled and linked together.

1. The �les that are platform independent are the same for all architectures. Into this
category fall user interfaces with parsers of the command line arguments, or in the
case of apro�ler, the generation of the graphical output.

2. The �les that are automatically generated, such �les contain platform dependent infor-
mation. Into this category fall the instruction decoders in the simulators or assembler
printer in the C compiler.

The second tool is the semantics extractor. This tool was thoroughly described in the
dissertation thesis [24]. The semantics extractor is the prerequisite for the compiler gener-
ation and also decompiler that is described in the thesis [26].

The extraction of the semantics is possible only from the instruction accurate model.
The extraction from the cycle accurate model is not supported. The information for the
semantics extractor is contained in the suitable form only in the instruction accurate model.
Therefore, if the user wants to get the toolchain together with the hardware it is necessary
to create instruction accurate as well as the cycle accurate model.

Once the �le with the extracted semantics is created, it is used by a tool called back-
end generator. This tool creates the only platform dependent part of the C-compiler, the
backend. The rest of the compiler, the frontend in this case the Clang and middleend, the
optimizer are platform independent. The backend part of the compiler uses the information
from the semantics extraction for pattern based matching for the most suitable instruction.

The complete toolchain can be generated from the description in the CodAL language.
The exported toolchain can be stored in a speci�c directory structure that contains the tools
together with the libraries that are needed for the execution.

12

Chapter 4

Porting of the C library

The �rst part, which is needed for automatic compiler testing of processors for embedded
systems, is the support of the Newlib library [12], [18],[16]. The variety of programs that
can be created without the support of the standard C library is very limited. Therefore,
the availability of the library is crucial and its position in the process of testing is unsub-
stitutable. I have worked on the �rst version of the Newlib port that will be described
here.

4.1 Theory of Porting

The main reason for porting the library on the new platform is the fact that I need to add
support for the call of the C functions. To be precise, I want to use the libc functions, such
as printf, malloc, free, etc. in programs that will be used for testing of the compiler.
And because I do not possess the development kits for all the platforms, I use simulators
instead. Therefore, I must add the new platform into the Newlib library and our simulators
must know how to deal with the Newlib library calls. If one does not grant libc library
support in the simulated environment, the number of constructions which can be used and
tested is very limited. Consider the following simple example written in C:

int main(int argc , char **argv)

{

if(strcmp (" alpha","beta")==0)

{ return 1;}

else

{ return 0;}

}

Even this simple program can hardly be executed because it uses the function strcmp

that is part of the standard C language library. This program cannot be compiled, unless
the �le of string.h is included and a possibly some other header �les are included also.

On the contrary, the main aim of the testing process is to cover as wide area as possible
and also to try as many di�erent combinations of the function calls as we can. However, this
goes against the idea of embedded solutions, which are usually specialised in just one single
area. Furthermore, because I focus especially on the embedded systems, I do not even try
to cover all the functions provided by the standard C language library, which is in my case
the Newlib. In fact I will use and therefore test only those functions that can run under the
simulated environment and are useful for the programs that will be executed on the given
platform. Moreover, the embedded systems are not designed for the use of the vast number

13

of constructions that the programming languages o�er these days. Typically there is just
one task, usually quite a complicated task, which is launched repeatedly. However, during
the design of the chip it is often unclear what part of the library will be needed, so I will
have to port the whole library and reduce the size later if it is necessary. There are certain
areas that are more likely to be removed from the library than others, for example:

• threads - I assume that in simple programs for embedded systems one will not use
threads.

• locales - All the locales were removed from the library.

• inet module - Even though networking plays an important part in modern embedded
systems, in some cases the module can be disabled.

• �les and operations with �les - Certain simple application do not need interface for
working with �les.

Now I will introduce important parts of the library. Simply said, all that really has to
remain from the library are the sysdeps. The sysdeps are the core of the whole system
(how to allocate more memory, etc.), then important modules, such as stdio, which takes
care of the outputs and inputs, and other modules I wish to preserve. In this case, I wished
to preserve the following parts of the Newlib library:

• stdio - This is one of the main reasons for porting the library, which is to get in human
readable form output from the simulator.

• module for strings and memory - In many applications I would like to use functions,
such as memcpy, strcpy, strcat, etc.

• memory functions - For example malloc, free, realloc,

• abort and exit.

• wchar support - But without the support of di�erent encodings.

Let us have a look at the functions that remain in the library. The functions can be
divided into two groups. The �rst group consists of functions that are completely serviced
within the simulated environment. For example, the function strcmp falls into this category.
This function and its declaration remain unchanged within the simulator if they are written
in the C language that does not require any changes. These functions are not tied to a
kernel header �les, so there is no need to change them.

The second group of functions consists of functions that are translated to the call of
system function. The function printf can be used as an example of this group of functions.
The call of printf function can be divided into three phases that are illustrated in the
following picture 4.1.

At the beginning, the call of the printf function is translated to the call of a system
function, with the highest probability it is going to be the call of the function write. Write is
the function call, that is serviced by the operation system, and hence is system dependent.
But as I want to use the simulator on the UNIX platform, as well as on the Windows
systems, I have to get rid of these dependencies. To do so, I will use the special instruction
principle.

14

Figure 4.1: Scheme of the printf function call

4.1.1 Special instruction principle

The special instruction principle means that I will use an instruction with the OPeration
CODE, opcode that is not used within the instruction set for a special purpose. So far all
architectures that were modelled within our research project had several free opcodes. It is
typical that the instruction sets do not use all operation codes which are provided. But in
the case of no free opcode, this method cannot be used. The special instruction principle
will be used for ousting the dependencies on the kernel header �les.

Functions provided by the operation system are triggered by the syscall mechanism.
The system calls can be quite easily detected. Each library should have de�ned the syscall
mechanism in a special source �le. This syscall mechanism di�ers, as they usually are
platform dependent. So i386 architecture will have a di�erent syscall mechanism from the
ARM [4].

The syscall mechanism is in fact a wrapper. The call will be passed to the simulator
that will do the call and return the result.

4.1.2 Simulators

As was described above, all simulators are generated automatically. At the beginning, the
source �les are generated by specialized tools. When the generation phase is �nished, the
simulator is build by the Makefile from the automatically generated �les and also from the
static �les. It will be necessary to add the following information into this process:

• Information about which instruction calls the system function.

• The simulator will have to know the convention for storing parameters.

• The simulator will have to recognize which system function is going to be called.

• The simulator will have to perform the call of the correct system function.

The �rst three points will be solved within the model of an instruction set. The in-
struction with the opcode that is not used will be declared. The instruction behaviour will
be de�ned in the following way: according to the parameters it will call the given system
function. The simulator will have to recognize the system it runs under, and call the cor-
rect function. For example, on the UNIX system it will be the function write and in the
Windows the WriteFile. This problem should be solved by the libc library of the given
platform.

15

The parameters that were placed at the given position at the simulated memory can
remain unchanged. They will be later passed to the speci�c system call.

4.2 Automation of the porting process

By default, the Newlib uses the system of make. I have put quite a lot of e�ort into the
automation of the whole process [13]. The modi�cations were made to the Newlib library,
so it now uses the CMake system. It was divided into two parts that are placed in separate
directories. One part is common for all platforms. This part is placed in the directory called
the newlib. The directories that contain platform dependent �les are stored in the directory
with the model. This is done in order to have all the platform dependent �les in one place
in the strictly given directory structure.

Let us have a look at the platform dependent �les. Strictly spoken, the directories
do not contain only platform dependent �les. There are also �les that are the same for
all the platforms but the division is done on the level of directories and not on the level
of the �les themselves. The directories that are kept together with the model are the
directories libgloss and the directory newlib, this is the subdirectory of the directory
newlib mentioned the paragraph above.

While the directory newlib contains mainly header �les with various settings and def-
inition of the setjmp.S, the directory libgloss takes care of the syscalls handling. The
syscalls are very important for our project because this mechanism allows us to get the
information in and out of the simulator. I will focus on the way how to automatize the
process of syscalls creation.

There are several ways how to cope with the syscalls porting. After I gathered all the
necessary information about what syscalls are necessary for the simulation and tried several
ways of implementation, I found out that only a very small part of the syscalls must be
written in the assembly language. The rest can be written in the C language and that
makes the code platform independent. The Newlib de�nes 20 syscalls but I need just 6 of
them.

Nevertheless, the rest of the syscalls could be implemented in the same way as the six
supported ones. The syscalls are de�ned in the header �le and have numbers from 1 to
20. The �rst six are the supported ones and the rest of the numbers is assigned to the
unsupported ones.

For the syscalls themselves, I have de�ned the structure called params. This structure
contains the parameters that are needed for each syscall. This structure slightly varies
depending on the actual syscall. But it is written in the C, which makes it also platform
independent. What is only written in the assembly language and is, therefore, platform
dependent is the PERFORM_SYSCALL function. In fact it is not a function but a multiple line
macro de�ned in the inline assembler. Let us assume that a multiple line macro can have
the following form:

define PERFORM_SYSCALL(ADDR) \

__asm__("REGr1=add REG0 ,%0" : :"r"(ADDR)); \

__asm__("syscall ");

This macro is not taken from any existing processor. I have de�ned it just for the
model purpose. Now let us have a closer look at the macro itself. This macro takes only one
parameter. The ADDR parameter is the address of the structure that contains the parameters
of the syscall as mentioned above. This address is assigned to the register that is used for

16

passing of the parameters. This register can be specially marked as it is often used for passing
of parameters. Then there is the special syscall instruction, in this case it has the name
syscall. These two lines can be determined from the description of the core performed
in the CodAL language. I will propose a way how to create the macro semi-automatically.
Consider that the PERFORM_SYSCALL macro itself is a template. The necessary information
can be �lled into this generic template before the compilation time of the library. First let
us have a look at the syscall instruction. I simply scan the model for the instruction that
bears this name. If the instruction is not found, I search the model for the construction in
the following form: When this construction is found, I use this instruction in the second
line of the multiple line macro. Please note that in this case, the instruction does not take
any parameters. If this instruction was parameterized, I would determine the parameters
from the syntax. Nevertheless, this instruction does not have to be found. In such a case,
the template would be incomplete and an error should be reported. The process is shown
in Fig. 4.2.

Figure 4.2: Scheme of Newlib �le generation

As far as the �rst line of the macro is concerned, I need to assure that in the register,
which is used for passing the parameters, I assign the address of the structure with the
parameters. So I search the model for the instruction add or instruction with similar func-
tionality. In the syntax section of the instruction, I �nd the actual form. Then I �nd the
register for passing parameters in the model that also bears special description. From these
parts of the information, I should be able to put together the �rst line of the macro. This
approach works for standard architectures. But there may occur architectures for which
there might arise di�culties. The Newlib library, in the current version, supports only
32-bit architectures.

4.3 Experimental results and contribution

For having a comparison with commercial compilers, I tested the automatically generated
compiler with the commercial Perennial test-suite. The results described here were gained
from the generated MIPS and Codasip uRISC compiler. The testing was performed on
a complete toolchain. The tests were compiled by the generated compiler and afterwards
executed the tests on the simulator which was also automatically generated by the tools
from our project. I have only a part of the Perennial test-suite. I used only tests that
examine the core of the compiler. I excluded some of the tests that cannot be compiled
due to the header �les dependencies, which I do not support. The tests in the test-suite
are divided into groups according to the chapter of the standard that is tested. I use tests

17

for the clauses 5 and 6. I have mainly tests for the standard C90 and several tests for C99
standard. The results are summed up in Table 4.1.

Core Tests without C library Tests with C library

MIPS 797 1680
Codasip uRISC 804 1688

Table 4.1. Comparison of number of tests.

In Table 4.2, I present the testing results with and without the presence of the C
library. It is apparent that not only the number of tests is lower without the library but
also the number of failing tests is very small. The presence of the library provides a better
opportunity for debugging of the code and triggers more errors.

Core Failing Tests without C library Failing Tests with C library

MIPS 2 19
Codasip uRISC 0 8

Table 4.2. Comparison of failing tests.

The solution also brings a higher level of automation into the testing of the automatically
generated compiler. I have introduced methods that simplify the porting of the library to
the newly developed cores.

Amongst the biggest contribution I can place the following things:

• enlargement of the number of tests - Without the support of the C library, it is possible
to test only a very limited set of tests, in my case the number of tests was increased
three times.

• speed-up of porting - The library was rewritten in a way that it enables far faster
porting for new cores, the number of codes which have to be written by hand has been
signi�cantly reduced.

• higher level of automation - The code that is common for the majority of the cores
was introduced, as well as additional scripts for build automation and creation of the
library, providing a higher level of automation than before.

• larger number of failing tests - It is often very di�cult to trigger bugs without the
support of the library, so it enables better test coverage and triggers a larger amount
of errors that help to keep the compiler in a good shape.

The porting of the Newlib library and topics connected to the porting were published in
the articles [12], [18],[16]. The articles describe the process of porting and its automation
together with the results.

18

Chapter 5

Tests selection

As was mentioned in the section which discussed the test-suites, one of the weakest points,
which does not suit my needs, is the test selection mechanism. I have decided to create a
test selection mechanism that suits the needs of the testing system for the hardware software
codesign [16]. It will form the content of the following chapter.

5.1 Test selection scheme

The test selection scheme that would be suitable for use in our project must ful�l several
criteria. First of all, it must be independent of the source of the test, so it will be applicable
for as large a number of tests as possible. It also must be robust enough and lightweight at
the same time, so it should be simple to modify the tests I already have and addition of new
tests must not be di�cult. It should not only work for tests from the regression test-suites,
but should also be applicable to tests from random generators.

5.1.1 Test selection phase

As I have a large amount of tests from di�erent sources, I need a universal approach that
will de�ne which tests are suitable for compilation and execution on the given platform.

I have created a system of �les, which restricts the number of tests that can be compiled
on the given platform, based on the libraries that are available. The libraries are just one
of the test selection criteria. Other characteristics are also taken into account, for example,
the size of the registers or the size of the stack.

Currently supported features which can be used for the test or directory selection are:

• architecture - Certain tests or directories can be disabled for the given architecture.

• libraries - Tests can be disabled if a certain library is not present.

• bit width - Test selection according to the bit width.

• level of description - Often some tests, containing system calls, cannot be used for a
cycle accurate model.

• purpose of compilation - Some directories are disabled, for example, for functional
veri�cation.

19

The naming convention for the �les, which are used for the test selection, is very simple.
The �le bears the same name as the test does but it has the su�x .x, instead of .c or
any other. The system is a hierarchical one. It is possible to have a hierarchy because I
support nesting of the directories and I keep the .x �les not just for the tests, but also for
the directories. In the case of directory, the selection �le has the same name as the directory
with the .x su�x.

These �les possess as minimal functionality as possible. I try to keep their size minimal.
The typical functionality of the �le is that, based on the value of the �ags, the test is
excluded from testing. I should say that implicitly all the directories and all the tests are
selected for testing. So, if I want to exclude the tests, or whole directories from testing, I
have to indicate this.

As the size of the �les is kept minimal, the functionality and �ag settings must be done
in another place. This functionality is kept in the main testing module. The functions that
check the current state of the �ags and control what libraries are accessible for the linking
to the given platform are declared here. The centralization has a purely practical base in
this case. The typical usage of the .x �les is that I disable testing of the whole directories
according to the libraries that are accessible. The .x �les can also bear other functionality.
It is possible, for example, to set di�erent variables. I can specify �ags that should be added
to the compilation or add some �les to the linker as in the following example.

if ["$C_LIB" == "0"]; then

FILE_DEPS +=crt0.o

fi

On the level of �les, I most often use the .x �les for �ltering the tests that depend
on compiler-rt library for the given platform. The compiler-rt library provides software
implementation of the �oat and double operations. Usually only a few tests in the given
directory depend on compiler-rt and the dependence does not have to be the same for all
platforms, the best solution is to condition the test execution by the platform and compiler-
rt presence. This is demonstrated in the following example.

is_arch "mips_basic" $1

if ["$?" == "0"]; then

if ["$RUNTIME_LIB" == "0"]; then

RUN_TEST =0

fi

fi

The biggest advantage of this approach, and also the main reason for introduction of this
system, is its universality. I deploy the tests from the llvm test-suite [29], gcc test-suite[20],
Mibench [32] set of tests and I also have tests that were created within our project, and
I have also generated tests. The system of the .x �les can be used for all these sources,
as long as I use just the tests without the testing infrastructure that is provided in several
cases. The only set of tests, which I tried to use together with the infrastructure that is
provided together with the tests, is the Perennial test-suite [34]. After several iterations, I
have also started to use the Perrenial tests with my infrastructure for the tests execution.

5.1.2 Test compilation and execution

The compilation of tests is performed in the central module. As I have the system of the .x
�les, I enter only those directories that I know are suitable for testing on the given platform.

20

So, before I enter a directory with tests, I check the .x �le for the given source and consult
the restrictions that are de�ned by the .x �le and set all the variables denoted by the �le.

If the directory is feasible for testing, I cycle through the tests in the order denoted
by the test list. The .x �le is always checked �rst, and if nothing blocks the procedure of
testing, the test is compiled. The presence of the .x �les is not compulsory. As mentioned
above, the default setting is to cycle through all the directories and execute all the tests.
However, if the �le is present, it will be checked. When the restrictions are not met, the �le
is skipped.

Should there be any problems during the test compilation, they are logged. I log the
standard output as well as the error output. I keep a list of tests that were not compiled
successfully together with the output of the compiler. The logs are kept for every platform
that is tested to avoid overwriting. It is also possible to create a unique log not just for each
platform but for every run of the testing system. These logs could be, in the future, stored
in the database to keep precise testing history.

5.1.3 Logging information and test evaluation

The test evaluation is kept decentralized. Because I deploy tests from di�erent sources, I
need to keep the scripts that provide the test evaluation together with the tests. Some tests
are evaluated on the basis of the exit code, but there are tests that produce, for example,
the text output and I have to compare the output with referential values. In these cases,
the Newlib library is used.

As in the case of test compilation, I keep detailed logging information. I keep the output
of the simulator and after the test evaluation I put it into the list of passed tests or failed
tests according to the result of the evaluation. The logs are created for every tested platform
and can bear the time reference.

The results are kept in two di�erent �les. I log the successful and unsuccessful tests in
two independent �les. The �les are created for every directory that is tested. Each �le with
the results has a special header, which stores data necessary for the test archiving.

5.2 Generator of the test selection �les

The mechanism that is explained above has met the needs of our research project. However,
as in our project we very often add new models and branches that need to be tested, we
also need a way how to easily create a new �le, that modi�es the test usage, or to modify
the �les that already exist.

The best way for doing so, is to create a generator of such �les. The generator would
need the information about the tested platform as well as about the tests themselves. It
would also very nicely �t into my plans about the high level of automation of the testing
process. In the following subsection I will introduce such a generator.

5.2.1 Design of the generator of test selection �les

The main task of the generator will be the creation of new .x �les and also update of the
existing ones. The generator will need the information about the platform that includes
mainly:

• bit width - Is the platform 16/32-bit or does it have a di�erent size?

21

• availability of the libraries - Do we have a compiler-rt library or any other library for
the given model?

• availability of instruction and cycle accurate description - What level of description
do I possess?

This is the main piece of information which I need to get about the platform. The
majority of such information can be easily gathered. I will have a look at various possibilities
in the implementation part of the generator.

The knowledge that I need to have from the side of the tests is a little bit less complicated.
I just need to know what header �les the test includes. I can say that if the test includes
any header �le, such as the test below, I need to generate a corresponding �le. The test
below will require the presence of the Newlib, as well as the presence of the compiler-rt.

#include <stdio.h>

#include <math.h>

#include <float.h>

#include <double.h>

double res(float i, double j){

double res;

res = M_PI*i*i*j;

return res;

}

int main(){

float i = 3.14159;

double j = 4.9685;

double res = mul(i,j);

printf ("%d", res);

exit (0);

}

But the situation is not that straightforward. Certain tests might rely on availability of
the library and not include any header �les. Moreover, modern compilers in such situations
do not exit with the error code, but just emit a warning and compile the test if the header
�le is available.

It seems that the only proper way how to �nd out if the test needs the support of any
library for the given architecture is to compile the �le and to �nd the necessary information
from the temporary �les.

The information I need can be obtained from several sources. The best one is to get the
desired information from the object �le.

The most desired information is if there are unde�ned symbols in the currently compiled
module. This information can be obtained via tools, such as objdump. Below there is an
example of the object dump output with given parameters.

addvdi3_test.o: file format elf64 -mips_basic

SYMBOL TABLE:

g_str 000000000000 info_string10_addvdi3_test.s

...

22

00000000000000 d0 l .text 000000000000 tmp15_addvdi3_test.s

00000000000001 ac l .text 000000000000 tmp27_addvdi3_test.s

0000000000000208 l .text 000000000000 tmp33_addvdi3_test.s

000000000000031c l .text 000000000000 tmp53_addvdi3_test.s

000000000000037c l .text 000000000000 tmp60_addvdi3_test.s

0000000000000000 *UND* 000000000000 __addvdi3

00000000000000 c8 g F .text 000000000338 main

0000000000000000 *UND* 000000000000 printf

0000000000000000 g F .text 0000000000 c8 test__addvdi3

From the description I can easily identify the unde�ned symbols, which in this case
are __addvdi3 and printf. This indicates that I will have to link the compiler-rt library
together with the standard C language library.

I have shortened the example as it was quite long and it would not �t the page. Some
irrelevant symbols and information has been left out.

Once I have the needed information about symbols and what libraries should be linked,
I need to generate a new �le or update the existing one. This should not be a di�cult task.
For the implementation I have chosen the Python language.

I have called the tool for the generation of the .x �le the Constraintgen. The imple-
mentation of the tool was performed in the Python language and the framework pytest
[23].

One of the main advantages of the pytest is that it collects all the �les with the pre�x
or su�x test and executes them. It also uses the system of �xtures [36], which is a system
of dependencies. These dependencies create a hierarchy that is resolved by the pytest
framework.

For the implementation, I had to create a set of �xtures. The �xtures are responsible
for the generation of the �le, creation of the toolchain that is able to compile the source �le
and the compilation of the source �le to the object format.

Once a single test �le is compiled, the object format generator �xture parses the object
�le and resolves dependencies. After the resolution is �nished, the resulted constraint �le
is generated. There are also other �xtures, such as the reporter or the model, but these
�xtures play a subsequent role.

The inputs of the system are the directory with the model in the ADL language CodAL
and the directory which contains the test, for which the .x �les should be generated. This
o�ers a possibility to create yet another layer above the Constraintgen that would o�er an
even higher level of automation.

5.3 Experimental results and contribution

With the implementation of the test selection generator Constraintgen, I have performed
several tests. In Table 5.1, I have summarised a number of generated �les for the MIPS
and the Codasip uRISC core.

Core Number of generated �les Number of folders with tests Time of generation

MIPS 392 9 84.11s
Codasip uRISC 364 9 77.64s

Table 5.1. Speed of the generation

23

From the table, it is apparent that the number of tests is equal for both cores and the
number of generated .x �les is also comparable. The di�erence in the number of generated
�les is given by the fact that, in some cases, the compiler generates the call of the compiler-rt
function while for the other core the call in not necessary. In both cases the majority of
the �les was generated because of the compiler-rt. The number of tests that required the
Newlib library was lower.

The Table 5.1 also shows the speed of the generation. We can see that the speed of
the generation is very good. The speed of the generator is approximately 5 .x �les per
second, which I consider very good. Should the .x �le be created by hand, it would take
approximately 10 seconds for the creation of a single �le.

The major contributions of the selected solution are as follows:

• �exibility - The tests from various test-suites are supported, there is no dependency on
the test source, so this system can be used for simple tests as well as for benchmarks.

• higher level of automation - The �les that are used during the test selection are gen-
erated fully automatically without a user interference.

• scalability - The system can be used for any new core, the generator is able to gather
all the necessary information from the compiler automatically.

• acceleration of the testing - The tool is able to generate the �les fast.

The system of the .x �les, which can be used for the test selection was published in the
journal article [16]. The article sketches the scheme of the �les.

24

Chapter 6

Acceleration of testing

In this chapter, I will discuss the speed of the testing. As was mentioned at the beginning
of the thesis, there is a big pressure for deployment of new builds more than once a day. I
will focus mainly on the acceleration of the testing [14], [17] as the build acceleration was
the focus of the thesis by Lukasova [30] that I supervised.

6.1 Testing attitudes

The testing of various parts of the project is very time consuming. I perform various types
of tests that have di�erent time demands. I have spent some time by reorganization of the
tests and investigating whether I can utilize the results between the various tests.

6.1.1 Testing oriented on tools

In the tools oriented testing, we need to ensure that the generated tools as well as the
generators themselves work properly. So both these parts need to be tested thoroughly.
There are also interesting interconnections between the generators and the generated tools
that can save a lot of computer time.

Let us have a look at the generators �rst. The generators are in our case triggered via a
command line interface. I have created a set of classes that enable us to perform full tests
of the command line functionality in the Python language. This test-suite, in combination
with various models, gives us a very strong tool for ensuring that our generators are stable.
The test-suite is highly modi�able. I can also very easily enhance this test-suite with
performance tests and stress tests. The test-suite can be executed in a mode which tests all
combinations of the parameters that are legal. However, this is very time consuming and I
often test only certain combinations of parameters. The results of the generators testing is
one of the inputs into the testing of the generated tools.

When I get to testing of the speci�c generated tool, I �rst have a look at the tests of
the generators. If I �nd out any problems during the generation, I either skip the tests as
a whole or I need to pay more attention to the results of the testing.

If there have been issues with generation on all platforms, I skip the whole process of
testing. If the tool has been generated correctly, I put the generated binary under tests.

Let's have a look at testing of the compiler backend. The input of the backend are
the �les that are in a certain kind of internal representation of the compiler driver and the
output is the assembly code. Here it is possible to see the very close interconnection with the
assembler, which is responsible for transformation of the assembly language to the object

25

�les. I have several ways of testing the compiler backend. The �rst line consists of simple
tests taken from various test-suites, such as the GCC torture test-suite. These simple tests
are meant for fast debugging of the backend.

There I can also utilize the results of the generators testing. Not only that I have to
check that the backend together with the compiler driver were generated, but I can also
check if the necessary libraries, which are needed by the compiler, are available. If not,
I can choose only the subset of tests and shorten the testing time. If I do not have the
Newlib library compiled, I can save up to several hours of testing. The time savings are also
achieved thanks to the test selection mechanism, which allows automatic detection of the
libraries.

The second line consists of benchmarks. The purpose of these tests is to tune the
performance of the compiler. They can also be used for the debugging, but it is not as
comfortable as in the case of the simple programs mentioned above. What is important in
this case is the fact that I very closely observe the number of cycles that are needed for each
benchmark. If I have a rapid growth in the number of cycles, it indicates severe issues in
the compiler and can lead to increased power consumption, which is unwanted in the cores
for embedded systems.

The last set of compiler tests are really complex tests, such as the Linux core. This
category serves as the ultimate test that the compiler, as well as the model, contains the
minimum of errors. The results of the generators testing comes to use in this case as well.
In addition to all the tools that are required for the tests of simple programs, I also require
the presence of the Newlib library. For execution of all three categories of the programs a
simulator is used.

I have introduced a scheme of the utilization of the tools generator results on the com-
piler. Nevertheless, I think that it will give us the biggest time savings in the case of
veri�cations. The reason for this is the fact that there is a large number of veri�cation tests
and they are time consuming.

6.1.2 Testing oriented on models

Another point of view of the testing system is from the angle of the models. The model
developer expects that the tools work without problems. They are interested in their pro-
cessor design and need to get the results of testing all in one place. Therefore, their use case
is completely di�erent.

The most model oriented tests, which I currently deploy, cover the area of functional
veri�cation. The role of functional veri�cation is to verify the equivalence of the instruction
accurate (IA) and cycle accurate (CA) model, which were described above. There are also
formal methods [8], but they are not currently used in our project. The IA model describes
the controller on the level of instructions, while the CA model is more precise. It describes
a set of operations that represents the separate actions between the clock cycles. From each
description a tool is generated. In the case of IA, I generate the simulator, and in the case
of CA, I use the generated veri�cation environment. I execute the same program on both
and then I compare the results. Such tests are performed when both model descriptions
are stable as it uses tools from the IA and CA description. These tests help us to discover
di�erences in model descriptions.

One of the drawbacks of this attitude is the time demand. The test environment, which
is generated from the CA description, is very slow and the number of tests is vast. It is not
uncommon for these tests to take more than 24 hours.

26

Nevertheless, here I can also utilize the knowledge I have from the testing fo generators.
Moreover, I need the results from the compiler testing as I use the compiled binaries for
execution.

6.2 Case study and experimental results

I will demonstrate the whole process on the tools generator and tests of generated tools
for one of the cores. The whole process is triggered by the nightly build. The job that
is responsible for the nightly build is called simply Build-Framework. This job, once it is
�nished, triggers the job which is called Toolchain-generator-codasip_urisc. This job
is responsible for performing tests of the generators. It performs all the necessary tests and
produces a �le with results in the form - test name: result. Should I have a set of tests
with the names fu-systemc, fu-verilog, fve-vhdl, fve-systemverilog, the �le with
the results would have the following content:

fu-systemc:pass

fu-verilog:fail

fve -vhdl:pass

fve -systemverilog:pass

Once this job is �nished, it triggers a build of other jobs based on the result �le of the
Toolchain-generator-codasip_urisc. The job, which is responsible for that, is called
Sorter. The role of this job is to process the result �le from the generator job and trigger
the corresponding downstream jobs. This is pictured in Fig. 6.1.

The trigger of the job is connected to the checkout of repositories and the download
of the saved artifacts from the previous jobs. The checkout and download of the artifacts
can mean hundreds of megabytes. The jobs that are triggered as downstream jobs perform
the functional veri�cation. I trigger three jobs that perform the veri�cation for the Verilog,
VHDL and the SystemC language.

Figure 6.1. Build pipeline with tools generator

27

I will present the results of the testing which was performed within the Jenkins environ-
ment. The results were gained from the Jenkins server in version 1.652.

I have made several experiments with the utilization of the tool generator results and
without it. I have also tried various combinations of the successful and unsuccessful jobs. I
will present them in several tables and graphs below.

The results in the following Table 6.1 compare the time that was needed for tests of the
functional veri�cation with and without the use of the tools generation results.

Use toolsgen results Number of fails Time

YES 0 159m
NO 0 165m
YES 1 106m
NO 1 113m
YES 2 53m
NO 2 62m
YES 3 3m
NO 3 12m

Table 6.1. Comparison of the testing times.

The times in Table 6.1 do not include the time needed for the Build-Framework job.
It is just the time needed for the testing. From the times we can see that the acceleration
is apparent in all cases. The speed-up is gained by the fact that in the case of unsuccessful
generation of the environment, I do not have to download �les from the git repository and
also I do not have to copy large artefacts. The times, when the results of the generator tests
were used, do include the time needed for performing the generator tests.

In the case of success, I also signi�cantly reduce the size of the artefacts I have to copy,
because I use pre-generated artefacts from the tests of generators. If I do not deploy the
tools generator before the main tests, I have to generate a veri�cation environment every
time.

6.3 Main contribution

The main contributions of the chosen approach are the following:

• speed up of testing - In the case of multiple failed jobs, the chosen approach can save
a signi�cant amount of time by not triggering the jobs that would fail, but even when
the tests do not fail, the acceleration of tests is apparent.

• tra�c savings - In the case of a failed job, the approach saves tra�c as it prevents the
checkout of repositories and the download of artefacts.

• faster deployment - In case I use the build automation described by [30], I will be able
to deploy and test the new build more often than once a day.

The issues connected to the testing process were described in the article [17]. The use
of the results of the generators tests was introduced in the article [14].

28

Chapter 7

Continuous integration job generator

In this chapter, I will address one of the greatest weaknesses of our project. I very often
need to create a new set of tests for a new branch of a certain micro controller or create tests
for a completely new core. In such situations, the user can create a whole new set of jobs
by hand or �nd a way how to automatise such a task [15]. I have sketched the possibilities,
which are provided by the plugins in the CI server Jenkins and also other solutions in the
section State of art.

To create a generator of Jenkins jobs, I need to have good knowledge of the Jenkins job
format. The format of the job is in detail described in the full thesis.

7.1 Job generation

The main task that I need to deal with is the generation of the various jobs, which will ensure
complex testing of the core. Mainly, I will generate the jobs which test the automatically
generated tools. As I plan to control the whole system also from the command line, I wanted
to avoid the graphical interface, at least in the �rst version of the project. I may add the
graphical interface in the later versions, but I de�nitely need to keep the command line
interface for the solution to be fully scriptable. This is also one of the reasons, why I cannot
use the plugins provided by Jenkins. They have very poor documentation and are primary
focused on usage via the web interface.

The whole system consists of three main parts. The �rst part of the system is the
sni�er. In my case it works over the git repository. Once the generation is triggered, the job
generator uses templates to generate corresponding jobs. I will now give a more detailed
description of the aforementioned parts.

7.1.1 Sni�er

I have decided to call this part of the generation process the Sni�er as it sni�s in the git
repository for new branches. The main role of the Sni�er is to detect the creation of a new
branch in the given git repository and trigger the generation.

Although currently the role of the Sni�er is to notify that a new branch has been created
and deliver this information to the job generator. The Sni�er has no further intelligence
and the whole system is designed in such a way that all decisions should be made in the
generator itself. In the latest version, the Sni�er has a shape of the Unix script, which is
executed repeatedly by the operation system.

29

7.1.2 Templates

The second input into the job generator are the templates. I have various kinds of templates
as I need to test various parts of the newly developed core. The main areas which have to
be covered by test job generation are:

• compiler testing,

• functional veri�cation,

• assembler testing,

• tools generation.

Please note that these are just the areas that need to be covered, not the jobs. Under
each domain there is a variety of jobs which are generated and later on executed. There
is usually just one template per domain, just in the case of functional veri�cation I need
to have several templates, as this area is very vast and I was not able to stick to just one
template.

As far as the templates themselves are concerned, they are very simple. The templates
are in the XML format, as are the jobs in the Jenkins, and the generated parts are in the
form:

<string >@NODE_NAME@ </string >

7.1.3 Job generator

Now when I have described the inputs of the generator, I will move to the generator itself.
The job generator consists of several parts that are pictured in Fig. 7.1.

Figure 7.1. Scheme of the generator

One of the �rst steps is the template selection. This part of the generator works over
the con�guration �le that is present at the speci�c directory in the model branch which
should be tested. I have proposed a simple format of the con�guration �le that speci�es the
tested features. The other possibility I have is to automatically detect what features should
be tested, but I have chosen the con�guration �le because some of the features cannot be
automatically detected. From the speci�cation �le I am able to determine what templates
should be used. The speci�cation �le has two major tasks:

30

• to de�ne features that should be tested,

• to specify parameters for the generators.

Once the phase of the templates selection is �nished, I need to generate the CMake �les
that will �ll the desired information into the templates. CMake is a family of tools. These
tools are designed for the build, testing and packaging of software. The generated CMake
�les are template speci�c as each template has di�erent �elds. Currently I generate one
CMake �le per template and I perform the generation in the separate directories.

From the two above mentioned inputs I can generate the job. The job generation is in
fact just insertion of data into templates. I have decided to do this via the CMake, because
it is one of the cleanest ways for doing so. The most frequent facts that are generated are
the following:

• the branch used for testing,

• the node where the job is executed,

• the bash script and the parameters,

• the job name and the view where the job is placed.

The above mentioned information can be determined in the subsequently described way.
The branch is one of the input parameters. It is delivered by the Sni�er, but it can also be
delivered in a di�erent way, it can be, for example, speci�ed by the user.

The script, which is executed, could be a part of the template, however, this would
increase the number of templates signi�cantly. Therefore, I try to determine the name of
the script. The name of the script can be determined from the information, which is given
in the con�guration �le.

The job name and view where the job should be placed are also determined from the
con�guration �le and repository name.

The most complicated task is the selection of the correct node where the job should be
executed. The management of the nodes is quite a complicated task and is described, for
example, here [39].

I have special groups of nodes, for example, for the execution of the veri�cation jobs. The
veri�cation jobs require a precon�gured environment, which is present only on certain nodes.
For such jobs, I have special templates with the prede�ned sets of nodes. Nevertheless, for
the majority of jobs I do not have to solve such issues. I keep a simple table of nodes which
is divided into sections which de�ne what nodes are used for the speci�c jobs. I choose
the jobs with the smallest number of assigned jobs and optionally I modify the assignment
manually.

Very often I generate the parameters of the given job into the templates. They are stored
in the parameters section and later these parameters are used in the builders section. How-
ever, there are also parameters that are node dependent. The node dependent parameters
are de�ned in the Jenkins environment.

Frequently the generated job needs to use the artefacts from the other jobs. Nevertheless,
I try to keep the generator as lightweight as possible and do not want to modify other jobs.
The compatibility in this case is assured by the wild cards, and the name of the new job
must �t into the wild card.

Once I have generated the jobs, which are needed for the testing of the newly developed
branch, I have to upload these jobs to the CI server. For this purpose I use the Jenkins
command line interface that performs the job upload and also registers the job.

31

7.2 Experimental results and contribution

With the current implementation of the simple job generator I have performed a number
of tests. I have chosen two typical scenarios. The �rst case is the generation of a new
testing set for the instruction accurate description of a new core. With the IA description
corresponds the basic set consisting of tests which test the compiler and the assembler. When
the complete description of the new core (instruction accurate, as well as cycle accurate)
is created, the full set of tests is generated. The full set adds also tests for functional
veri�cation.

The templates, which are needed for the generation of such tests, were added into the
template pool. The basic set consists of 3 jobs and the full set consists of 12 jobs.

Method Basic set Full set

Lissom Generator 0,99s 4,2s
Jenkins job generator plugin 2,1s 8,5s
Jenkins DSL plugin 1,3s 5,2s
Manual creation 354s 1417s

Table 7.1. Comparison of creation times.

The Table 7.1 summarizes the comparison of my generator with the common Jenkins
generators. I have also added the times needed for the manual creation.

The comparison with the most widely used generators provided by the Jenkins server
was made at the following con�guration. I used the Jenkins server in version 1.656. The
Jenkins server was running on a server with 4 cores Intel i5 and has 8 GB of memory.

It is clear that the Lissom generator is faster than the job generator plugin and the DSL
plugin in both tested cases. However, in the case of generation of just three jobs, the times
are comparable.

In the case of generation of the big set, the Lissom generator has a clear advantage. It
is 1s faster in comparison to the DSL plugin and 4.3 seconds faster in comparison to the job
generator plugin. The manual creation of the jobs was slowest in both cases.

Among the main contribution there can be placed:

• signi�cant speed up of the job generation - As is clear from the results, the generation
of the jobs is faster in comparison to any other generator.

• higher level of automation - With the correct con�guration the job generation can be
provided completely without user interference.

• wide range of use - The job generator is dependent only on the xml format of the job,
it can virtually generate any type of testing job.

• no dependency on scripting language - There is no need to deploy any scripting lan-
guage, such as Groovy, the jobs are generated from the con�guration �le.

The topic of the continuous integration environment and the automatic generation of
the jobs for such environment was described in the article [15].

32

Chapter 8

Conclusion

In this thesis, I have addressed the testing of an automatically generated compiler. I have
focused on four areas and introduced solutions that help to optimize and automatize the
process of testing.

The �rst area is support of the standard C language library and the process of porting.
Due to a good choice of the library, I was able to signi�cantly increase the number of
tests that can be used for porting. The raised number of tests gives the developer of the
micro controller better possibilities for tuning the compiler and the whole system. I have
introduced the universal mechanism that can be used for porting to any platform if the
platform is suitable for the C library.

I have also worked on the process of porting with the aim to make it more automatic. I
have introduced several ways that make the process of porting more automatic. The number
of �les that have to be manually changed has been signi�cantly decreased and the whole
process of porting is now faster and requires less knowledge.

The second area I have investigated is focused on the test selection mechanism. As was
demonstrated, there is currently no mechanism that would suit my needs for the e�cient
selection of the test cases. I have designed a system of special �les that are used for the
selection of tests. The scheme is lightweight and robust at the same time. It can be used
for any kind of tests and is not platform dependent, so it can be used for any core.

Moreover, I have created a generator of test selection �les, which can be used for the
generation of new �les. The generator can be used once a new core, or just a new version
of the existing core, is under development. The generator uses as an input the information
contained in the model and the tests themselves that are compiled to the object form. The
generation is fast and the accuracy of the results is good.

The area number three is connected with the acceleration of tests which are executed
by the continuous integration server Jenkins. I have looked for a way how to decrease the
time and space requirements of the functional veri�cation testing and other tests. I have
utilised the new kind of tests in our project, the tests of generators. The generator tests
are executed as �rst, and all other tests use the results of the generator tests and, therefore,
save time via the pre-generation of the binaries if the tests are successful. If the generator
tests fail, the downstream jobs performing the veri�cation tests are not triggered at all and
hence save time and space that would otherwise be spent on the checkout of �les.

Last but not least, I have sketched a simple generator of the Jenkins jobs that would
suite our needs in the Lissom project. I need a generator that can be started by various
ways, which is lightweight and can generate all kinds of jobs. This was one of the basic
requirements, which was not met by any plugin that is currently available for the Jenkins.

33

I also wanted the tool to be at least partly independent of the Jenkins as it is not rare that
the plugins do not cooperate well.

The current implementation of the generator is dependent just on the internal repre-
sentation of the job. This is not a problem, as it is very simple to deploy new templates.
At the same time, the internal job representation is not likely to change as it would imply
changes in all plugins currently used by the Jenkins.

I put the generator under tests and the gathered results are very positive. As far as
the speed of the generator is concerned, it cannot be matched by any tool that is currently
available.

The implementation of the generators and other tools was performed in the Python
language, so the solutions are easily extensible.

8.1 Future work

In the future, I would like to apply the use of the tool generator results also on other kinds
of testing, such as the compiler or the assembler. I believe that I could gain some time
savings in the case of application. Via this approach it should be possible to achieve speed
for every group of tests that is more complex.

The implementation of generator of the testing jobs could also be extended. I could
add support for the copy artefacts section and also support for the folders plugin that we
currently use in our project. I would also like to �nd ways how to improve the speed of the
generation.

It would also make sense to introduce a code generator into the testing process. It could
uncover interesting new bugs in the automatically generated compiler.

34

Bibliography

[1] Job DSL Plugin.
<https://wiki.jenkins-ci.org/display/JENKINS/Job+DSL+Plugin> (July 2016),
2016.

[2] Job Generator Plugin.
<https://wiki.jenkins-ci.org/display/JENKINS/Job+Generator+Plugin> (July
2016), 2016.

[3] ANSI: INCITS/ISO/IEC 9899-1999 (R2005). <http://webstore.ansi.org/

RecordDetail.aspx?sku=INCITS/ISO/IEC%209899-1999%20%28R2005%29/> (April
2016), 2016.

[4] ARM: ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition, Issue
C. 2014.

[5] Arquilian: Arquilian. <http://arquillian.org/> (March 2016), 2016.

[6] Autotest: Autotest. <http://autotest.github.io/> (March 2016), 2016.

[7] Bennett, J.: Howto: Porting newlib, A Simple Guide. 2010.

[8] Charvat, L.; Smrcka, A.; Vojnar, T.: Automatic Formal Correspondence Checking of
ISA and RTL Microprocessor Description. In Proceedings of the 13th International
Workshop on Microprocessor Test and Veri�cation (MTV 2012), Institute of
Electrical and Electronics Engineers, 2012, ISBN 978-1-4673-4441-8, pp. 6�12.
URL <http://www.fit.vutbr.cz/research/view_pub.php?id=10135>

[9] Cucumber: Cucumber. <https://cucumber.io//> (March 2016), 2016.

[10] De Micheli, G.; Rolf, W., E.and Wolf: Readings in Hardware/Software Co-design.
Morgan Kaufmann, 2001, ISBN: 9781558607026.

[11] Dolihal, L.; et al.: Use of Architecture Description Language ISAC fo ASIP Design. In
In Proceedings of Eighth International Summer School on Advanced Computer
Architecture and Compilation for High-Performance and Embedded Systems,
European Network on High Performance and Embedded Architecture and
Compilation, 2012, ISBN 978-90-382-1987-5.

[12] Dolihal, L.; Hruska, T.: Porting of C library, Testing of generated compiler. In In
Proceedings of The Sixth International Multi-Conference on Computing in the Global
Information Technology, International Academy, Research, and Industry Association,
2011, ISBN 978-1-61208-008-6, pp. 125�130.

35

[13] Dolihal, L.; Hruska, T.: Semiautomatic Porting of the C Library. In In Proceedings of
International Conference on Computer Science, Computer Engineering, and
Education Technologies, International Academy, Research, and Industry Association,
2014, ISBN 978-1-941968-02-4, pp. 86�89.

[14] Dolihal, L.; Hruska, T.: Overview of the testing environment for the embedded
systems. In In Proceedings of The third International Conference on Green
Computing, Technology and Innovation, International Academy, Research, and
Industry Association, 2015, ISBN 978-1-941968-15-4, pp. 86�89.

[15] Dolihal, L.; Hruska, T.: Automatic Job Generation for Compiler Testing, Testing of
Generated Compiler. In In Proceedings of The Eighth International Conference on
Advances in System Testing and Validation Lifecycle, International Academy,
Research, and Industry Association, 2016, ISBN 978-1-61208-500-5, pp. 1�6.

[16] Dolihal, L.; Hruska, T.; Masarik, K.: Testing of an automatically generated compiler,
Review of retargetable testing system. In International Journal on Advances in
Software, 2012, year 2012, International Academy, Research, and Industry
Association, 2012, ISSN 1942-2628, pp. 15�26.

[17] Dolihal, L.; Hruska, T.; Masarik, K.: Testing System for the HW/SW Codesign
Toolchain. In In Proceedings of Eighth Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science, NOVPRESS, 2012, ISBN
978-80-87342-15-2.

[18] Dolihal, L.; Hruska, T.; Masarik, K.: Usage of simulators in testing system. In In
Proceedings of Industrial Simulation Conference 2012, EUROSIS, 2012, ISBN
978-90-77381-71-7.

[19] Gatli�, B.: Porting and Using Newlib in Embedded Systems.
<http://neptune.billgatliff.com/newlib.html> (March 2016), 2016.

[20] GCC: GCC Compiler website. <https://gcc.gnu.org/> (Fedruary 2016), 2016.

[21] Git: git. <https://git-scm.com/> (February 2016), 2016.

[22] Hat, R.: Red Hat. <https://www.redhat.com/> (August 2016), 2016.

[23] Hubertz, J.: Softwaretests mit Python. Springer, 2016, ISBN 978-3662486023.

[24] Husar, A.: Programming of recon�gurable systems using a higher programming
language. Master's Thesis, Faculty of Information Technology, Brno university of
Technology, 2014.

[25] Jenkins: Jenkins. <https://wiki.jenkins-ci.org/display/JENKINS/Home>

(March 2016), 2016.

[26] Kroustek, J.: Retargetable analysis of machine code. Master's Thesis, Faculty of
Information Technology, Brno university of Technology, 2014.

[27] Lier, F.; Wienke, J.; Wrede, S.: Jenkins for FloBI�A Use Case: Jenkins & Robotics.
In Jenkins User Conference, 2013.

36

[28] Lissom: Project Lissom Webpages.
<http://www.fit.vutbr.cz/research/groups/lissom/> (August 2014), 2014.

[29] LLVM: LLVM Compiler website. <http://llvm.org/> (Fedruary 2016), 2016.

[30] Lukasova, M.: Build Paralelization in Jenkins Environment. Master's Thesis, Faculty
of Information Technology, Brno university of Technology, 201.

[31] Masarik, K.: System for hardware-software codesign. Master's Thesis, Faculty of
Information Technology, Brno university of Technology, 2008.

[32] MiBench: MiBench. <https://github.com/embecosm/mibench> (June 2016), 2016.

[33] Newlib: Newlib. <https://sourceware.org/newlib/> (March 2016), 2016.

[34] Perennial: Perennial C Compiler Valication Suite.
<http://www.peren.com/pages/products_set.htm> (August 2014), 2015.

[35] Prikryl, Z.; Kroustek, J.; Hruska, T.; aj.: Fast Just-In-Time Translated Simulation for
ASIP Design. In 14th IEEE International Symposium on Design and Diagnostics of
Electronic Circuits and Systems, IEEE Computer Society, 2011, ISBN
978-1-4244-9753-9, pp. 279�282.
URL <http://www.fit.vutbr.cz/research/view_pub.php?id=9567>

[36] pytest: pytest �xtures: explicit, modular, scalable.
<http://pytest.org/latest/fixture.html> (July 2016), 2016.

[37] Rowen, Chris and Hennessy, John , and Christensen, Clayton M. and Leibson, Steve:
Engineering the complex SOC : fast, �exible design with con�gurable processors.
Prentice Hall Modern Semiconductor Design Series, Upper Saddle River: Prentice
Hall, 2004, ISBN 0-13-145537-0.
URL <http://opac.inria.fr/record=b1108184>

[38] Selenium: Selenium. <http://www.seleniumhq.org/> (March 2016), 2016.

[39] Skala, M.: Virtual Machine Management System. Master's Thesis, Faculty of
Information Technology, Brno university of Technology, 201.

[40] Synopsys: Processor Designer. <http:

//www.synopsys.com/systems/blockdesign/processordev/pages/default.aspx>

(August 2014), 2014.

[41] Teich, J.: Hardware/software codesign: The past, the present, and predicting the
future. Proceedings of the IEEE, 2012.

[42] Wang, L.-T.; Chang, Y.-W.; Cheng, K.-T. T.: Electronic design automation:
synthesis, veri�cation, and test. Morgan Kaufmann, 2009.

37

