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Abstract

The subject of the thesis is to design new hardware ver-
ification techniques optimized for a process of HW/SW co-
design in which hardware and software are developed in par-
allel to speed up the development of new embedded systems.
Currently, microprocessor co-design tools typically allow to
verify designs by simulation and/or functional verification.
However, even extensive functional verification can miss some
non-trivial bugs. Therefore, formal verification has become
more and more desirable in recent years. As opposed to test-
ing and bug-hunting techniques that only aim at detecting
flaws, the goal of formal verification is to rigorously prove that
the system is indeed correct. Formal verification is, however,
a very demanding task, and even though a lot of progress
has been achieved in this area, formal verification is far from
being able to fully automatically check all relevant properties
of complex designs without a significant and costly human
involvement in the verification process.

The thesis deals with these challenges by focusing on ver-
ification techniques based on formal approaches, but possibly
relaxing or limiting their precision and generality to achieve
full automation. Further, the thesis also focuses on the effi-
ciency of the proposed techniques and their ability to deliver
continuous feedback about the verification process. Special
attention is devoted to the development of formal methods for
checking the equivalence of microprocessor designs on various
levels of abstraction. Although these designs cannot be be-
haviorally equivalent, they are required to give mutually cor-
responding results when executing the same input program,
which is a property difficult to achieve. As another consid-
ered topic, the thesis proposes methods for checking correct-
ness of mechanisms preventing data and control hazards in
single-pipelined implementations of microprocessors. The ap-
proaches described in this thesis has been implemented in the
form of several tools which, after examining designs of multi-
ple pipelined microprocessors, were able to deliver promising
experimental results.
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1 Introduction

Embedded systems are massively deployed in almost every elec-
tronic device that we now use in our everyday life. For embedded
systems, customized application-specific instruction-set processors
(ASIPs) are often designed. These processors have specific func-
tions of hardware available through special instructions in order to
achieve required performance criteria and low power consumption.
A significant part of embedded system costs includes prices that
are required for (i) design of hardware architecture, (ii) its physical
realization, and (iii) design of software.

If we consider costs of the physical realization as fixed, the only
way for further lowering of the price of an embedded system is to re-
duce the time that is needed for the design of hardware and software.
In order to achieve that, the trend is to develop both hardware and
software in parallel in a process of the so-called hardware/software
co-design. The automation of common tasks that are a part of the
co-design process is another crucial factor for successful and fast
development. To facilitate automation, specialized architecture de-
scription languages (ADLs) are frequently utilized during the micro-
processor design process. Specifically, in the case of microprocessor
design, various integrated frameworks [34, 4, 1] take advantage of
the availability of the high- and low-level ADL descriptions and pro-
vide automatic generation of hardware description language (HDL)
designs and tool-chains including, e.g., simulators, assemblers, dis-
assemblers, and compilers.

In the current microprocessor design frameworks, an initial un-
derstanding about the design (e.g., to see whether an instruction set
contains enough instructions, to check the performance of the design)
is done by simulation. After this step, verification of the designs is
typically performed. Currently, simulation-based approaches such
as testing and functional verification are very popular. Testing is
based on the observation of the behavior of the verified system in
a limited number of situations (e.g., for cases considered as crucial
by the designer) and, therefore, it provides only a partial guarantee
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of the system’s correctness. Functional verification automates the
testing process by generating a set of constrained/random test vec-
tors and by comparing the behavior of the system for these vectors
with the behavior specified by a reference model, the so-called golden
specification, which must be provided manually by the developers.
However, even extensive functional verification, like any other bug-
hunting technique, can still miss non-trivial bugs. Therefore, the use
of formal verification is very desirable. Its goal is to rigorously prove
that the system is indeed correct. That is, if no issue is found by
a formal method, the system is guaranteed to conform to the given
specification. Unfortunately, formal verification is not a common
part of the current microprocessor design frameworks.

Formal methods can be categorized into three basic categories
(with not completely sharp boundaries): theorem proving, static
analysis, and model checking. Theorem proving, also called deduc-
tive verification, is based on deducing properties of a verified system
from various logical axioms and assumptions about the system. The
process often requires a significant manual intervention. Static anal-
ysis attempts to avoid execution of the system being examined, and
instead analyses and gathers approximate (and often conservative)
information about the system from the source code, and thus it may
produce many false alarms. Model checking systematically explores
the state space of the examined system. Unlike in static analysis,
if some abstraction is used, it typically comes with an automated
refinement technique that allows the approach to automatically ex-
clude spurious counterexamples to the verified properties.

An ideal formal approach should be sound and complete, so an
error is reported if and only if there is a real error in a system, other-
wise the system is said to be correct. Moreover, the approach should
be fully automated and terminating. Satisfying these ideal proper-
ties is, however, very costly (or impossible if a source of unboundness
such as parametrization is involved) due to the state explosion prob-
lem that is usually hit (or due to the implied undecidability for the
case of unbounded state spaces). To provide efficiency and high
automation, completeness or even soundness are sometimes sacri-

3



ficed leading to error detection methods built on formal roots. Such
a method may be still quite useful as it can discover flaws that would
stay hidden otherwise, which is most often caused due to a different
way of state space traversal.

Aim of The Thesis. In accordance with the above, the thesis
aims at developing new verification techniques with formal roots
with an emphasis on full automation (without a need to manu-
ally create models of the environment of the verified system), ef-
ficiency, and ability to deliver continuous feedback, e.g., actual cov-
erage about the verification process. Within the thesis, special atten-
tion is devoted to the development of formal methods that check the
equivalence of designs on various levels of abstraction. These designs
cannot be behaviorally equivalent (due to their different abstraction
level), but they are required to give mutually corresponding results
when executing the same input program, which is a property diffi-
cult to achieve. Another considered topic is development of methods
for checking correctness of mechanisms preventing data and con-
trol hazards in pipelined implementations of microprocessors. The
above-described techniques should, in particular, be optimized for
the class of ASIPs broadly used in light-weight embedded devices.

As the first step towards the aim, we focused on automatic
checking of correspondence of instruction-set-architecture (ISA) and
register-transfer-level (RTL) descriptions of a microprocessor. The
correspondence means that after starting in the same initial states
of resources (such as registers, memories, and devices connected to
the microprocessor) and executing the same program, both models
will always end up in states in which the resources have equiva-
lent contents. The ISA (instruction-accurate, high-level) descrip-
tion captures the behavior of an instruction without consideration
of complex parts (such as pipelines, buses, etc.) that are part of the
RTL (cycle-accurate, low-level) specification. The existence of ISA
description in early phases of processor development is critical be-
cause it allows one to generate the previously mentioned tool-chains
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that are necessary to create software when its RTL description is
still being designed. Because the software is created over a model
that is different from the one delivered with the final product, confor-
mance of these two models must be guaranteed. The correspondence
checking can be also useful if the RTL specification is automatically
generated from the ISA description to verify the correctness of such
a generator.

Regarding the correspondence checking topic, in [5, 6], we pro-
posed a novel technique that copes with this problem, although not
taking the influence of complex parts of the processor (pipelines,
buses, etc.) into account. Even with this simplification, one has to
deal with the large bit-width of registers and size of memories and
register files. The proposed approach deals with this problem by
using abstraction and reduction techniques that are described later
in this thesis. The approach has been experimentally implemented
within Codasip IDE [1] and successfully tested in several case stud-
ies. The experiments include a non-trivial single-pipelined proces-
sor in which the approach revealed three previously unknown bugs.
The experiments also show that instructions of single-pipelined pro-
cessors can be verified within seconds.

Further, we have extended the above-proposed correspondence
checking by another verification phase devoted to the verification of
the so-called pipeline hazards. Hazards in the instruction pipeline
are problems caused by inadequate synchronisation of earlier and
later instructions running concurrently through the pipeline that
may cause potential corruption of the data used by the instructions.
Three common types of pipeline hazards are data, control, and struc-
tural hazards. In the thesis, we focus on the first two of them. An
example of such a hazard is the so-called read-after-write (RAW)
data hazard. Here, a later-started instruction uses data supposed
to be produced by an earlier-started instruction, but the earlier in-
struction has not yet managed to proceed far enough in the pipeline
to write the data into the storage used by the later instruction. The
later instruction then stores a potentially wrong result of its execu-
tion, obtained by dealing with the obsolete data.
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To address these issues, in [7, 8, 9, 10], we propose a novel, highly-
automated approach for discovering the above-listed kinds of haz-
ards within in-order pipelined instruction execution. The approach
combines (i) static analysis of data paths to detect anomalies and
possible hazards, followed by (ii) a transformation of detected prob-
lematic paths to a parametric system, and (iii) a subsequent formal
verification using techniques for formal verification of the paramet-
ric systems. The approach has been implemented in a tool called
Hades [10] and, in this thesis, we present promising experimental
results applying the tool to multiple pipelined microprocessors.

Outline. The rest of this thesis summary is organized as follows.
Section 2 gives an overview of microprocessor architectures together
with an introduction to the former and contemporary techniques
used during the design of embedded systems. Section 3 presents
the main goals of the thesis. Section 4 describes a newly proposed
technique for automatic generation of abstract models of memories
that can be used for efficient formal verification of hardware designs.
Next, Section 5 introduces our new automated approach built on
a formal basis that we use for checking the correspondence between
an RTL implementation of a microprocessor and its ISA description.
Further, Section 6 describes our novel technique utilizing static anal-
ysis of data paths and formal verification of parameterized systems
in order to discover flaws caused by improperly handled pipeline
hazards. Finally, Section 7 concludes the thesis summary.

2 Embedded System Design

Since the last decades of the 20th century, one can observe the ever-
increasing popularity of built-in systems such as (smart) TVs, cell
phones, entertainment systems, or network-connected devices. This
caused a significant increase in demand for embedded systems. By
the embedded system, we typically mean a combination of hardware
and software together with other mechanical components intended
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to perform a dedicated function (often) in real-time computing con-
straints. Embedded systems often reside in machines that are ex-
pected to run continuously for years without errors and (in certain
cases) recover autonomously if an error occurs. Today, it is very
common that a final product consists of several co-operating but
individually designed embedded systems [28, 26].

As the capabilities of the embedded systems are still growing,
they are now widely deployed across multiple fields. For instance,
the use of embedded systems in the automotive industry allowed the
implementation of complex algorithms (e.g., in fuel injection) which
resulted in lower emissions and higher fuel efficiency. The higher
computing power of embedded devices also helps in airplane track-
ing and navigation systems which now allow for safe landing even in
adverse weather conditions. Another example comes from the auto-
mated household control industry. Here, the recent development of
the so-called Internet of Things (IoT) enabled smart control of home
temperature control systems via connected thermostats. Besides the
fact that such a thermostat can be controlled remotely via a mobile
application, it can also learn the owner’s typical day-to-day behavior
(e.g., working hours, weekend routines) and perform heating/cooling
optimization in order to lower household running costs.

The above-mentioned rapid evolution of the embedded systems
has been largely sustained by research and innovation in the field of
system design methodologies. The co-operated design of both hard-
ware and software, the so-called hardware/software co-design, is one
of them. Even though it is not a new discipline (as since the era of
the first computers, designers have always considered mutual depen-
dence between hardware and software), the growing complexity of
the embedded systems, increasing time-to-market pressure, and sys-
tem costs bring new challenges for the co-design methodology [26].
A significant part of these challenges can be overcome by design au-
tomation. This translates to an increased demand for development
of new co-design tools that would speed up the implementation and
verification tasks.

To provide necessary background, the following subsections de-
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scribe some of microprocessor and hardware architectures that are
typically used in the embedded devices. The last subsection then
discusses how the HW/SW co-design methodology can help to find
the most suitable microprocessor for the given task within a short
time and at a low cost.

2.1 General-Purpose Microprocessors

The first embedded systems based on microprocessors started to ap-
pear in the 1960s. A well-known example of such a system is Apollo
Guidance Computer [14]. In early stages, the embedded systems
were produced in series counting only limited number of units. An
early example of a mass-produced system is the D-17 guidance com-
puter used for navigation of Minuteman I intercontinental ballistic
missiles [25]. Due to the mass production, the price of microproces-
sors had fallen which led to their spread across a wide spectrum of
industry sectors. Now, microprocessors can be found in almost any
electronic device.

From the component point of view, a very basic microprocessor
consists of the following main parts: (i) internal memory (register
files, cell memory), (ii) an arithmetic logical unit (ALU), and (iii)
the control unit [29]. The microprocessor registers can be typically
split into one of the following categories: general-purpose registers
(GPRs), index registers (IRs), and the program counter (PC). The
GPRs are used to store temporary data within the microprocessor.
The IRs modify operand addresses during the run of a program,
typically for doing vector and/or array operations. In the case of the
Von Neumann memory organization, program and computational
data are commonly stored in a single memory whereas, in the case of
the Harvard architecture, the program code is kept separate from the
program data. The PC is an index register that contains the address
(location) of the instruction being executed at the current time.
The purpose of the ALU is then to perform arithmetic and logical
operations on source data. The data sourcing and their transfer to
the ALU inputs are performed by the control unit which controls
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flow inside the processor. Besides the data flow, the control unit
also contains components built around the PC register which are
responsible for loading (i.e., fetch logic) and decoding instructions
(i.e., instruction decoder).

Each microprocessor can execute a set of instructions. The in-
struction set typically reflects the structural, functional, and oper-
ative principles of the processor. The most influential factors that
have an impact on the microprocessor instruction set are the follow-
ing: (i) processor registers, (ii) size of memory units (data types),
(iii) addressing modes, (iv) memory architecture (e.g., Von Neumann
vs Harvard), (v) interruption and exception handling [28, 26].

In the pioneer era of microprocessor development, almost every
processor has its own instruction set. Therefore, programs writ-
ten for a particular microprocessor were only hardly portable to
another processor. Over the last decades several standardized in-
struction sets emerged, for instance, i386, amd64, armv7, or riscv.
The contemporary general-purpose microprocessors use the same set
of instructions, even if their inner design is often entirely different.
While still maintaining the same instruction set, modern micropro-
cessors build on additional concepts, such as instruction pipelines,
branch prediction, and/or microinstruction architecture to better
fulfill performance expectations.

The processor pipelining means splitting the overall execution
of the instruction into smaller parts named execution stages. This
is particularly useful, for example, in a situation when one clock
pulse latches a value into a register or begins a calculation and it
takes too much time for the value to be stable at the outputs of
the register or for the calculation to complete. As the number of
pipeline stages grows, a given stage can be implemented with simpler
circuitry, which may let the processor clock run faster [33].

Taken all together, the typical organization of a simple micro-
processor with a single pipeline is shown in Fig. 1. In such a mi-
croprocessor, instructions are processed in the next described steps.
First, the instruction is loaded from the program memory. Then it is
decoded to an operation code (opcode) and an address section. The
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Figure 1: A typical organization of a simple microprocessor with
a single pipeline.

opcode identifies the operation to be performed (e.g., addition, mul-
tiplication) while the address part contains the operand specification
or immediate value. These operands can be registers, memory ad-
dresses, input ports, etc. In the third stage, which is often called the
execution stage, result values and memory access addresses are cal-
culated according to the opcode. Next, in the memory access stage,
the data memory is read and/or written. Finally, in the write-back
stage, the registers are written.

From the point of view of embedded systems, the use of general-
purpose microprocessors is advantageous for several reasons. Most
of the benefits come from the fact that the microprocessor itself
represents a universal calculation unit. This allows the same mi-
croprocessor to be used for various computation required in differ-
ent embedded systems. Moreover, extending design with additional
connections to other parts of the system can be quickly made using
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existing solutions which greatly reduces the time required for system
design. Finally, one of the biggest benefits is a variety of available
well-documented and tested software tools that support program de-
velopment (such as compilers and debuggers) [26]. Thus, especially
in the case of lower production volumes, the use of a general-purpose
microprocessor is typically less costly than designing an application-
specific integrated circuit or an application-specific instruction-set
processor (that are described more in the next subsections).

The universal nature of the general-purpose microprocessors could
be, however, also their main disadvantage. In specialized applica-
tions (e.g., video filtering), the general-purpose microprocessors typ-
ically have lower performance and higher energy consumption when
compared to specifically crafted circuits or processors.

2.2 Application-Specific Integrated Circuits

The so-called application-specific integrated circuits (ASICs) are the
opposite of the universal architectures. They are made for a par-
ticular purpose to meet the challenging design constraints typically
given in terms of performance, energy consumption, and chip size.
The downside is the high cost and time consumption required for
their design. Thus, the use of ASIC is especially viable for mass
production where development costs are distributed among a large
number of manufactured units [26].

In the 1980s, much effort was invested to find a technology which
would be easy and reliable enough to be practically used in application-
specific systems. One of the first technologies of this type was Un-
committed Logic Array (ULA) [30] which is a chip consisting of ba-
sic building blocks (i.e., standard logic cells or gateways) that can
perform basic calculations. Customization of the chip is done by
modification of a metal mask which connects the individual parts
that can be achieved, for instance, by breaking certain connections.
As the technology evolved, the number of gates on the chip rapidly
rose to allow the development of very complex circuits on a single
chip.
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The ASIC design process is rather complex. It can be roughly
divided into the following steps. The first step consists of a speci-
fication of the system requirements. Then, a model of the system
is created. It is usually described by the language appropriate for
system design, the so-called hardware description language (HDL)
such as VHDL [20] or Verilog [19]. The model is verified whether
it meets the original requirements (typically using simulation). If
the verification is successful, one can process with a synthesis of
the ASIC logic. The design is converted into a set of basic building
blocks (standard cells or gateways) of the logic array. These building
blocks are then mapped on the logic array. After that, interconnec-
tions are created to form the final design. Next, the ASIC is analyzed
whether the final system works like expected (i.e., whether the spec-
ification criteria are still met). Finally, masks are fabricated and the
manufacturing of the circuit can begin [26].

Although ASICs typically dominate in the terms of speed and
power efficiency, their building costs are becoming more and more
prohibitive mostly because the design cost and longer time-to-market
period cannot be amortized over multiple applications.

2.3 Application-Specific Instruction-Set Proces-
sors

The instruction set of an application-specific instruction-set proces-
sor (ASIP) is built in a way so it benefits a specific application by
the ability to perform specific operations through special instruc-
tions. In general, components of an ASIP can be divided into two
parts: (i) logic which is able to execute some well-known instruction
set and (ii) specific logic, which can be configurable per applica-
tion, that is accessed via newly introduced instructions [13]. The
specific logic can be then placed in a dedicated component (e.g.,
ASIC) or in the programmable field (such as FPGA). As can be
seen in Fig. 2, the splitting of the microprocessor components into
these two parts provides a good trade-off between the flexibility of
a general-purpose microprocessor and the ASIC’s performance and
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Figure 2: Trade-off between flexibility and performance among var-
ious components used in embedded systems. Source: [31].

low power consumption.
Because of the above-mentioned properties, ASIPs provide an

attractive approach in a growing number areas of embedded systems,
for example, as an alternative to hardware accelerators for video
coding [16] or signal processing [32].

2.4 Modern Hardware/Software Co-Design

As was discussed in the previous subsections, the current micropro-
cessor design cycle strives to find the most suitable microprocessor
(often in the form of an ASIP) for the target application within
a short time and at a low cost. Due to this time-to-market pressure
and short product life-cycle, a rapid exploration and evaluation of
candidate architectures is an essential need. Hardware description
languages (HDLs), such as VHDL or Verilog, are commonly used
for hardware design, modeling, and simulation. However, a micro-
processor specified only in HDL does not include all necessary in-
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formation about assembler syntax, binary encoding of instructions,
etc. This is the reason why specially crafted architecture description
languages ADLs were introduced [27].

An ADL together with a microprocessor integrated development
environment (IDE) and an appropriate tool-set helps the designer
to quickly find a microprocessor that optimally splits computation
tasks between hardware and software. ADLs are used to specify
processor and memory architectures and to automatically generate
a software toolkit including compiler, simulator, assembler, profiler,
and debugger. Moreover, there are ADLs that can describe micro-
processors on several levels of abstraction. With such an ADL, it
is then possible to start writing the target (application) programs
even before the low-level (RTL) description of the processor exists,
because much simpler high-level (ISA) description often suffices to
generate compilers, debuggers and simulators.

A common exploration co-design flow consists of the following
steps [37]. Tasks computed by the system are partitioned between
hardware and software. The application programs are compiled and
simulated, and the feedback is used to modify the ADL specification
with the goal of finding the best possible architecture for the given
set of application programs under various design constraints such
as area, power, and performance. Because of the short time that is
typically allowed for design and implementation, bugs can be intro-
duced in the microprocessor, and thus the candidate designs have to
be verified whether they still comply with the original specification.
The required time savings are then accomplished by automation of
these tasks that would otherwise have to be done manually (such as
the tool-chain and/or the HDL representation generation).

ADLs play key role in the modern hardware/software co-design.
Therefore, Chapter 3 of the thesis describes and classifies them in
a more detail together with their accompanying tools. An example
of a microprocessor component description using the ADL can be
seen in Section 5.1 of this summary.
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3 Goals of the Thesis

The general idea of the thesis is to design new hardware verification
techniques optimized for use in the process of hardware/software
co-design. The key idea is to improve and/or develop verification
techniques with an emphasis on (i) maximal amount of automation,
(ii) efficiency, and (iii) ability to deliver continuous feedback about
the verification process. The proposed techniques should be in par-
ticular applicable to the class of ASIPs that are broadly used in
light-weight embedded devices with the following properties:

• 32bit architecture,

• in-order execution of instructions,

• memories with multiple read/write ports,

• I/O communication through buses, and

• ability to handle interrupts.

The first goal of the thesis is to develop formal methods for checking
correspondence of designs on various levels of abstraction. This goal
can be narrowed down as follows:

• The proposed formal technique should be able to verify corre-
spondence between RTL and ISA specifications of a processor.

• The technique should be scalable for use in parallel processing.

• The method should deliver (at least partial) results in the order
of minutes.

• The approach should be able to cope with the complex issues
brought by the presence of large memories in designs.

The above-specified first goal is addressed in Section 5 which in-
troduces a new algorithm for verifying correspondence between the
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RTL and ISA microprocessor specifications with a high degree of au-
tomation together with a new method for modeling large memories
and register files described in Section 4.

The second goal of the thesis is to develop new methods for
checking correctness of various functional parts of a microprocessor,
especially those associated with the pipeline control. This goal can
be more expanded as follows:

• The proposed formal technique should be able to work on
a low-level RTL specification of microprocessors with a single
pipeline.

• The technique should be able to benefit from parallel process-
ing.

• The method should be able to split the verification task into
smaller parts that can be processed separately and thus deliver
results in a reasonable time (in the order of minutes).

• The efficiency of the proposed method should not downgrade
significantly for microprocessors with wide data-paths.

Concerning this topic, in Section 6, we propose an approach for de-
tection of problems caused by data and control hazards in pipelined
microprocessor designs.

4 Large Memory Abstraction

This section introduces a novel technique for automatic generation
of abstract models of memories that can be used for efficient formal
verification of hardware designs. The approach can handle address-
ing of different sizes of data, such as quad words, double words,
words, or bytes, at the same time. The technique is also applicable
for memories with multiple read and write ports, memories with read
and write operations with zero- or single-clock delay, and it allows
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the memory to start with a random initial state allowing one to for-
mally verify the given design for all initial contents of the memory.
Finally, the abstraction allows large register-files and memories to be
represented in a way that dramatically reduces the state space to be
explored during formal verification of microprocessor designs as we
witnessed in experiments with the approach described in Chapter 8
of the thesis.

4.1 Related Work

Numerous works have focused on memory abstraction, notably within
the area of formal verification. Some of the proposed abstractions are
tightly coupled with the verification procedure used: for instance,
many of them rely on that SAT-based bounded model checking is
used [24, 11]. An approach not tailored for a specific verification
approach has been presented in [12] which introduces a theory for
reasoning about safety properties of systems with arrays. In the
work, an automatic algorithm for constructing abstractions of mem-
ories is presented. The algorithm computes the smallest sound and
complete abstraction of the given memory. This approach does, how-
ever, not support addressing of different sizes of data. A recently
published work [17] formally specifies and verifies a model of a large
memory that supports efficient simulation. The model is tailored
for amd64 implementations only in order to offer a good trade-off
between the speed of simulation and the needed computational re-
sources. The approach assumes starting from the nullified state of
the memory, not from a random state.

Unlike the above approaches, an algorithm proposed in the the-
sis can generate abstractions of memories that support addressing of
arbitrary addressable units with multiple read and write ports, and
it allows the memory to start from a random initial state. More-
over, the algorithm is not bound to any specific verification tech-
nique. The generated abstraction can be described in any language
for which the user can provide templates specifying (i) how to ex-
press declarations of state and signal variables, (ii) how to encode
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propositional logic expressions over state and signal variables, (iii)
and how to define initial and next states of state variables.

4.2 Summary of the Approach

When formally verifying a system which uses memories, a need to
deal with large capacity memories causes a state explosion. The
technique of memory abstraction proposed in the paper builds on the
fact that formal verification often suffices with exploring a limited
number of accesses to the available memory, and it is thus possible
to reduce the number of values that are to be recorded as actually
stored in the memory (abstracting away the random contents stored
at unused memory locations). Our abstraction preserves the inter-
face of the abstracted memory, but the abstract memory effectively
remembers only the memory cells which have been accessed. In-
ternally, the memory is implemented as a table consisting of some
number of couples of variables storing corresponding pairs of ad-
dresses and values. When using bounded model checking (BMC) as
the verification technique, the needed number of address-value pairs
can be easily determined from the depth of BMC. For unbounded
verification, this number can be iteratively incremented until it is
sufficient. The incrementation is finite since the number of mem-
ory cells is finite. The memory also remembers which of the pairs
are in use. If the memory is accessed for reading, the address-value
pairs that are in use are searched. If a location is read that has
already been accessed in the past, then the value associated with
the appropriate address is simply returned. If a location that has
never been accessed is read, a corresponding pair is not found in
the table, and a new couple is allocated. Its address part will store
the particular address that is accessed while the value stays uncon-
strained. However, the variable representing the value associated
with the accessed location stays constant in the future (unless there
occurs a write operation to the concerned address). This ensures
that subsequent reads from the location return the same value. In
the case of writing, the address and value are both known. In the
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case of writing to a location that has not been accessed yet, a new
address-value pair is allocated to store the given address-value pair.
Otherwise, a value associated with the given address is updated.

In order to support dealing with different sizes of addressable
data (including reading/writing data smaller than the contents of
a single memory cell of the modeled memory), we split our abstract
memory into a low-level memory and a set of functions mapping
accesses to ports of the modeled memory to ports of the low-level
memory. The low-level memory consists of cells whose size equals
the size of the least addressable unit of the modeled memory. In
order to allow for reading/writing the allowed sizes of data in one
step, the number of read and write ports of the low-level memory is
appropriately increased.

In order to prove the usefulness of the proposed model, we used it
in a manual, but strictly algorithmic way to derive memory models
for the approach of checking correspondence between the ISA and
RTL level descriptions of microprocessors described in Chapter 8 of
the thesis. Our experiments (discussed in Chapter 7 of the thesis)
showed significant improvements in the verification time.

5 RTL-ISA Correspondence Checking

In Chapter 8 of the thesis, we propose an automated approach built
on a formal basis and intended to be used within an automated mi-
croprocessor design framework for checking correspondence between
an RTL implementation of a microprocessor and a description of its
instruction set architecture (ISA). The approach is original in its
very high level of automation: the only user inputs are an RTL im-
plementation, an ISA description (possibly complemented by a spec-
ification of assumed restrictions on the possible values of instruction
operands), and a time limit for the verification.

The main idea behind our approach is to use bounded model
checking (BMC) to compare the outputs produced by automatically
derived RTL and ISA models of a given processor for all possible
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instructions and their inputs. In order to guarantee that some useful
result is obtained in a given time limit, each instruction is checked
in parallel for several bit-widths of its input, and the maximum bit-
width for which a result is obtained in the given time limit is used.

Compared to the techniques proposed, e.g., in [3, 21], the ap-
proach presented in this section does not provide full formal verifi-
cation since (i) it uses BMC, (ii) it does not consider any mutual
influence among the instructions, and (iii) it may limit the bit-width
of input data in some cases. Hence, it may under-approximate the
behavior of the verified designs. However, our experience shows that
the approach is complementary to testing, and due to a different way
of exploring the state space of the verified design, it can find bugs
not found by, for instance, functional verification.

An experimental version of the approach has been implemented
within the Codasip IDE [1] and successfully tested in several case
studies. The experiments included a non-trivial single-pipelined pro-
cessor in which, during its development, our approach revealed three
previously unknown bugs confirmed by the developers. The exper-
iments have also shown that almost every instruction of a simple
pipeline processor (of a form commonly used in light-weight embed-
ded devices) is verified within seconds. Shortened input data were
used only in a few cases, typically for instructions such as multipli-
cation (and even in such cases, one can argue that most typical bugs
would anyway manifest even for shortened input).

5.1 Background: Design and Verification Flow

Our work was originally motivated by a request to provide some
support for verification on a formal basis for the Codasip IDE [1]
(described in Chapter 3 of the thesis), but the proposed method can
be used within other microprocessor development toolchains too if
they are able to provide all needed information about the processor
(as discussed below).

Our method uses both the ISA and RTL models given in Co-
dAL ADL to automatically perform conformance checking between
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them. From the instruction-accurate model, we use: (i) the set of all
instructions, (ii) the binary representation of each instruction and
its format (i.e., information about which bits represent the opera-
tor, operands, and immediate data), and (iii) the semantics of the
instructions. The above can be obtained by automatically generated
extractor of instruction semantics for the target compiler [18, 35].
From the RTL-level, cycle-accurate model, we use: (iv) the types
of memories and register files together with the number of read and
write ports and (v) the identification of the write-back pipeline stage.
Furthermore, in the case of processors with multicycle instructions,
we need to know the maximum number of cycles each instruction
needs to complete its execution.

For our approach, as stated above, it is crucial to know the set
of instructions to be checked as well as their semantics. However,
there is no notion of instructions in the CodAL language as can be
seen in Fig. 3. Nevertheless, the assembly syntax description can be
used instead. This syntax is based on a context-free grammar gen-
erating a finite language (ensured by the CodAL compiler). Hence,
if all words of the language are systematically generated, a list of
instructions is obtained. This extraction is supported by Codasip as
a part of its automatic generator of a C compiler, which needs to
know every instruction included in the instruction set of the mod-
eled processor. Codasip also extracts a C-language description of
the behavior of each instruction and converts it to a static single-
assignment format with a few simple optimizations.

5.2 Summary of the Approach

We concentrate on checking the correspondence between the behav-
ior of an RTL design of a microprocessor and its ISA description
on the level of an independent execution of each instruction. By
the independent execution, we mean the execution of an instruction
surrounded by no-operation instructions (NOP). Hence, our approach
does not aim at finding errors related to the use of pipelines, branch
prediction, caches, etc. We, however, believe that such an approach
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1 element reg represents regs {
2 use imm4 as num;
3 assembler { "r" ˜ num };
4 binary { num };
5 return { num; };
6 }
7 element add {
8 assembler { "ADD" };
9 binary { OP_ADD:4 };

10 return { OP_ADD; };
11 }
12 set opc = add, /* ... */;
13 element instr_alu {
14 use reg as { dst, sA, sB };
15 use opc;
16 assembler { opc dst "," sA "," sB };
17 binary { opc dst sA sB };
18 semantics {
19 switch (opc) {
20 case OP_ADD:
21 regs[dst] = regs[sA] + regs[sB];
22 cf = add_carry(regs[sA], regs[sB]);
23 break;
24 /* ... */
25 }
26 };
27 }

Figure 3: A description of the add instruction in CodAL.

is still useful, especially when combined with other techniques (such
as the one discussed in Section 6).

The proposed method uses the bounded model checking as an au-
tomated reasoning engine. A typical approach to use the (bounded)
model checking is to encode the specification (ISA in our case)
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as a temporal formula using the specification language of the cho-
sen model checker. Unfortunately, for complex instructions, this is
a rather complicated task. Therefore, we use a more straightforward
translation of the ISA specification into a behavioral model described
in the modeling (not specification) language of the model checker.
We thus generate two behavioral models: namely, an RTL and ISA
model of the given processor. These models are then equipped with
an environment model, including architectural registers, memories,
the program counter, and I/O ports. All these models are composed
together, and BMC is used to check whether both of the processor
models start with the same state of their environment (including
the same instruction to be executed), their environments equal after
the execution too. For this purpose, we have implemented an au-
tomated generator of models from ISA descriptions and translator
of VHDL to RTL models, created abstract models of memories and
register files, and a top-level model controlling the ISA, RTL, and
environment models as well as comparing their execution.

Our approach uses similar principles as [3], but since we are inter-
ested in verification of a single instruction only, we can consider the
reset state of the RTL model as a starting point. This also eliminates
the need to make the symbolic execution reach in a potentially costly
way the corresponding starting ISA state. The top-level control of
verifying a single instruction can be summarized as follows:

1. Initialize the environment of the given RTL and ISA model.

2. Symbolically execute one cycle of the ISA model (covering all
possible cases that may arise).

3. Stall the ISA model and reset the RTL model to ensure that
it is in a stable state.

4. Symbolically execute the RTL model for the needed number
of cycles (depending on the write-back pipeline stage or on the
number of cycles of a multicycle instruction).
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5. Stall the RTL model to ensure that no more changes in archi-
tectural resources are made.

6. Finally, check whether the environments of the RTL and ISA
model are equal.

In the first step of the initialization of the environment, the program
memory is filled with an instruction to be verified, other architec-
tural resources are left random to simulate all possible inputs for
the instruction. If the environments of the RTL and ISA models
are found different in Step 6, an error in the implementation of the
instruction initially set in the program memory was found.

A more detailed description, as well as experimental evaluation
of the above-sketched approach, is given in Chapter 8 of the thesis.

6 Analysis of Pipeline Hazards

Implementation of pipeline-based execution of instructions in ASIPs
is an error-prone task, which implies a need for proper verification of
the resulting designs. Various techniques were proposed for this pur-
pose, but they usually require a significant manual intervention of
the developers. Thus, in Chapter 9 of the thesis, we propose a novel,
highly automated approach for discovering read-after-write (RAW),
write-after-write (WAW), write-after-read (WAR), and control haz-
ards.

6.1 Summary of the Approach

We expect the verified processor to be expressed by a so-called pro-
cessor structure graph (PSG) that describes interconnections be-
tween storages (i.e., registers and memories) and combination logic
of the design.1 The graph can be easily obtained from a description
of the processor on the register transfer level (RTL) written either in

1A rigorous description of the PSG is given in Chapter 9 of the thesis.
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some ADL (such as CodAL) or in a hardware description language
such as VHDL or Verilog.

The first step of our approach is a simple data flow analysis
performed upon the PSG in order to get, for each vertex v of the
PSG representing a storage or combination logic, (i) its pipeline
stage ϕ(v) ∈ S where S is the set of all pipeline stages, (ii) a set
of writing stages ϕwr(v) ⊆ S that directly influence the value of v,
and (iii) a set of reading stages ϕrd(v) ⊆ S that are influenced by
v. Next, we examine the PSG, and using results of the previous
step, we identify a finite set of so-called hazard cases, each of them
describing one possible source of a RAW, WAW, WAR, or control
hazard. For instance, in the case of a WAR hazard which arises
when an instruction writes to a storage that some earlier instruction
reads while there is a possibility for the earlier instruction to read
a new value already written by the later instruction, the hazard
case is given by a 7-tuple (vw, sw, vr, sr, vt, st, π). The components
of the hazard case represent (i) a storage vw, (ii) its write stage
sw ∈ ϕwr(vw), (iii) a reading storage vr such that vr = vw if vr is
a register or such that vr and vw are ports of the same memory,
(iv) the read stage sr ∈ ϕrd(vr) such that sw < sr in order that
the storage is written before it is read to evoke a WAR hazard,
(v) a target storage vt where the potentially incorrect value read
from vr is stored, (vi) a stage st ∈ ϕwr(vt), sr ≤ st, in which the
incorrect value is stored, and (vii) a data path π describing how data
are propagated from vr to vt between the stages sr and st.

As it is shown in Chapter 9 of the thesis, the behavior of the in-
structions given by constraints of a hazard case can be modelled us-
ing a parameterized system which maps n instructions in the pipeline
to n processes in a linear array. The system is then checked whether
there exists some sequence of instructions that could generate haz-
ard conditions. If there is no such case, hazards are handled properly
by the processor. To show the usefulness of the proposed approach,
we performed a series of experiments (also discussed in Chapter 9 of
thesis) on non-trivial microprocessors where the approach was able
to correctly locate errors caused by incorrectly handled hazards.
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6.2 Related Work

Proving the absence of pipeline hazards is a native part of checking
equivalence between an RTL design and its ISA description. One of
the most cited approaches to such checking is the so-called flushing
technique [3], which has been extended, e.g., in [21, 22, 36, 15], to
handle rather complicated designs including multi-cycle execution
units, exceptions, and branch prediction. The main challenge of
these works is to overcome the semantic gap between the different
levels of a processor description which often requires a significant
user intervention in the means of, e.g., providing various additional
assertions. Approaches described in [2, 23] introduce an abstract for-
mal model whose components are to be linked by the user with the
concrete cycle-accurate implementation through a number of map-
pings. Afterward, the model is checked whether it satisfies several
properties together implying correctness of the pipeline behavior.

Compared with the above approaches, we do not aim at full con-
formance checking between RTL and ISA implementations. Instead,
we address several specific properties, in particular, the absence of
problems caused by data and control hazards. On the other hand,
our approach is almost fully automated—the only step required from
the user is to identify programmer visible registers and memories of
the verified design.

7 Conclusion

The subject of the thesis was to design new verification techniques
based on formal approaches that are optimized for use in the process
of concurrent development of hardware and software, the so-called
HW/SW co-design.

In accordance with the set-up goals, the thesis firstly presented
a novel technique for dealing with memory modeling that can be
used for efficient formal verification of hardware designs. The ap-
proach can accommodate different data sizes such as quad words,
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double words, words, or bytes. At the same time, it is also applica-
ble to memories with multiple read and write ports and memories
with read and write operations with zero- or single-clock delay. The
memory is allowed to start with a random initial state permitting
one to formally verify the given design for all initial contents of
the memory. An abstraction used in the approach represents large
register-files and memories in a way that dramatically reduces the
state space explored during formal verification of microprocessors as
can be witnessed by our experiments presented in Chapter 7 of the
thesis.

Further, in Chapter 8, the thesis presents the correspondence
checking approach based on the idea of utilizing bounded model
checking to compare the outputs produced by automatically derived
RTL and ISA models of a given processor for all possible instruc-
tions and their inputs. To guarantee that results are obtained in
a given time limit, each instruction is checked in parallel for several
bit-widths of its input. The approach then returns only the result of
the verification task with maximal bit-width that finished within the
time limit. Our experiments included a non-trivial single-pipelined
processor in which, during its development, the approach revealed
three previously unknown bugs confirmed by the developers. The
experiments have also shown that vast majority of instructions of
single-pipelined microprocessors, typically used within embedded de-
vices, can be verified within seconds.

Finally, in Chapter 9, the thesis presents an approach that har-
nesses methods for formal verification of parametric systems in or-
der to discover incorrectly handled data and control pipeline hazards
in the RTL implementations of pipeline-based executions. The ap-
proach was developed with the aim to be highly automated, requir-
ing no external information about the design (apart from specifying
the architectural registers). The experimental implementation of the
approach was successfully tested on several non-trivial microproces-
sors where the approach was able to discover a previously unknown
flaw caused by an unhandled hazard.

The design of all the above-presented approaches was motivated

27



by the general idea of splitting processor verification into several
simpler, more specialized tasks. Moreover, each approach was de-
signed to be highly automated, requiring minimal additional effort
from developers.

Bibliography

[1] Codasip studio for rapid processor development.
www.codasip.com, 2019.

[2] M. D. Aagaard. A hazards-based correctness statement for
pipelined circuits. In Proc. of Correct Hardware Design and
Verification Methods (CHARME), volume 2860 of LNCS, pages
66–80. Springer, 2003.

[3] J. R. Burch and D. L. Dill. Automatic verification of pipelined
microprocessor control. In Proc. of Computer Aided Verification
(CAV), volume 818 of LNCS, pages 68–80. Springer, 1994.

[4] Cadence. Tensilica Software Development Toolkit (SDK), 2014.
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[10] L. Charvát, A. Smrčka, and T. Vojnar. Hades: Micropro-
cessor hazard analysis via formal verification of parameterized
systems. In Proc. of 11th Doctoral Workshop on Mathematical
and Engineering Methods in Computer Science (MEMICS’16),
233, pages 87–93. EPTCS, 2016.

[11] M. K. Ganai, A. Gupta, and P. Ashar. Verification of embedded
memory systems using efficient memory modeling. In Proc. of
Design, Automation and Test in Europe (DATE), volume 2,
pages 1096–1101. IEEE, 2005.

[12] Steven M. German. A theory of abstraction for arrays. In
Proc. of the International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pages 176–185. FMCAD,
2011.

[13] Matthias Gries and Kurt Keutzer. Building ASIPs: The Mescal
Methodology. Springer US, 2005.

[14] Eldon C. Hall. Journey to the Moon: The History of the Apollo
Guidance Computer. American Institute of Aeronautics, 1996.

[15] K. Hao, S. Ray, and F. Xie. Equivalence checking for function
pipelining in behavioral synthesis. In Proc. of Design, Automa-
tion and Test in Europe (DATE), pages 1–6. IEEE, 2014.

[16] I. Hautala, J. Boutellier, J. Hannuksela, and O. Silvén. Pro-
grammable low-power multicore coprocessor architecture for

29



hevc/h.265 in-loop filtering. IEEE Transactions on Circuits
and Systems for Video Technology, 25(7):1217–1230, July 2015.

[17] W. A. Hunt and M. Kaufmann. A formal model of a large
memory that supports efficient execution. In Proc. of Formal
Methods in Computer-Aided Design (FMCAD), pages 60–67.
IEEE, 2012.

[18] Adam Husár, Miloslav Trmač, Jan Hranáč, Tomáš Hruška,
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