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Abstract
This thesis deals with dynamic reconfigurability of distributed control systems. Due to the
characteristics of these systems, the Petri nets formalism is used to define their functionality.
These are transformed into a interpretable form and then executed by specialized software
installed on each system node. Thanks to the properties of used formalism, it is possible
to replace the individual parts of the system with new variants. Similarly, it is possible to
generate formal specifications for the system’s parts from more abstract workflow models
and descriptions in the form of domain specific languages.

Abstrakt
Tato práce se zabývá dynamickou rekonfigurovatelností distribuovaných řídících systémů.
Vzhledem k charakteristice těchto systémů je pro definici jejich běhu použit formalismus
Petriho sítí. Tyto jsou transformovány do proveditelné podoby a následně pak interpre-
továny specializovaným software nainstalovaným na jednotlivých uzlech systému. Díky
vlastnostem použitého formalismu je možné jednotlivé části systému nahrazovat novými
variantami. Stejně tak je možné generovat formální specifikace dílčích částí systému z
abstraktnějších workflow modelů a popisů ve formě doménově specifických jazyků.
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Chapter 1

Introduction

With increasing number of interconnected embedded devices, sometimes called the Internet
of Things (IoT) or according to a higher level of granularity Distributed Embedded Control
Systems (DECS), a demand for software architectures reflecting a heterogeneous charac-
teristics of used devices and environments that dynamically changes according to user’s
requirements, become more and more important research priority in recent years. This
work is going to summarize the approaches to solve the problem of software development,
deployment and updating in such a heterogeneous environment, as well as to bring the
original solution to this area.

Embedded control systems are important border technology between the physical and
information world. The control process itself is described as a control loop that consists
of reading data from sensors, updating the decision function, and triggering a number
of actuators installed within the physical environment controlled by the system. Most
of the control systems are constructed using a set of programmable logic controllers with
appropriate software installation. The main purpose of this work is to describe the software
part of this construction process with the focus on dynamic reconfigurability of the resulting
system using executable models and model continuity approach introducing the formal
aspects of software construction into the embedded devices area.

Basic principles of system reconfigurability in this work were adopted form the Refer-
ence Petri Nets (RPN) formalism and framework called Renew, where parts of the system
specification migrate in the form of tokens. RPNs is a specific type of Coloured Petri Nets
(CPN) based on nets-within-nets formalism, where tokens realizing a marking within one
network represent other RPN network with arbitrarily deep nesting of nets [39] [41].

This idea makes it possible to construct a system specification from smaller pieces of
computation, similarly as it is possible within Hierarchical Petri Nets (HPN) but with
dynamic way of nesting and migrating of nets within each other [36]. This is sometimes
called code migration and it is used in this work for the distribution of pieces of computation
within the system [26], [52], [7]. The problem of code migration would be discussed more
in Related Work section.

To be able to change the target system dynamically, according to all changes within
its formal specification, the specification itself is not used here for code generation and
its further compilation, but rather for its interpretation by the specific target platform
forming the heart of the idea prototype implementation. While we deal with embedded
devices i.e. with devices with limited resources, the implementation is based on minimalistic
interpretable form of the description representing migrating parts of original formal system
specification.
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As there are plenty of reasons to make it possible to reduce the complexity of the
definition of any system, we decided to leverage Workflow system specification approaches
to make it possible to define the system in more abstract way. Workflow specifications are
then translated into the target system interpretable specifications.

To enable users of the system with the possibility to define its structure and functionality,
as well as its changes, we also developed a Domain Specific Language (DSL) that is used
as another abstract view of the system specification [72], [20], [85].

The specification defined by the DSL is also translated into the set of RPNs which are
first of all used for the system simulation in the Renew simulator workbench, after that it
is intended to be used for the translation into the interpretable form, which we call Petri
Nets Byte-code (PNBC). PNBC is then distributed among target system nodes according
to the system infrastructure specification that is also available in the form of RPNs model.

The PNBC is directly interpreted by a specific virtual machine called Petri Nets Virtual
Machine (PNVM) that is responsible for maintaining and running all the pieces of com-
putation deployed within each node. PNBC and PNVM together with the I/O interfaces
of the node form so called Petri Nets Operating System (PNOS). All the communication
among PNOS nodes is performed by sending simple textual messages via serial lines, or
Message Queuing (MQ) tooled distribution bus.

In next section the state of the art of development software for IoT and DECS will be
discussed.

1.1 State of the Art

A control system implementation could be divided into the hardware and software part.
The hardware part starts with selection of the proper set of modules and its installation
within the physical environment, including the sensors and actuators attachment. When
there are multiple controllers, the hardware part must also take into account the commu-
nication problem. The software part follows with the programming, compilation, linking
and installation of each control unit with appropriate part of application or software that
controls the hardware.

The system reconfigurability in general is necessary for the ability of the system to
adapt itself to changes in environment and also to enable the system maintainer with the
possibility to change the system behavior without the necessity of its complete destruction
and reconstruction. The main goal of this thesis is to describe the software part of the
process, that respects the focus on formal specifications and dynamic reconfigurability.

Because of the strong demand on proper coverage of the system complexity at the begin-
ning of the construction process, there is a need for suitable description tools that preserve
the user requirements semantics. During the system lifetime there is also strong demand on
its dynamic reconfiguration according to any new requirements and also according to the
changes within the physical environment. The dynamic system specification change and
following reconfiguration requirements are not easy to satisfy.

Next sections will describe the detailed situation within related areas of research.

1.1.1 Model Driven Architecture

Many system development methodologies use some kind of model for system specification,
i.e. for defining the structure and behavior of the developed structure [81], [15]. There
are different kinds of models, from models of low-level formal basis to pure formal models.
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Each type of the model has its advantages and disadvantages. Less formal models (e.g.,
UML) allow to quickly describe basic system concepts. On the other hand, they do not
allow to check the system correctness or validity by means of testing or formal methods,
therefore the system has to be implemented before its testing. The more advanced ap-
proaches (e.g., Executable UML and Model Driven Architecture [73]) allow to simulate
models, i.e. to provide simulation testing. Models are sometimes categorized by the level of
abstraction regarding their correspondence to the computer implementation and computer
devices - CIM (Computationally Independent Model), PIM (Platform Independent Model),
and finally PSM (Platform Specific Model) [81].

On the other hand the pure formal models (e.g., Petri Nets, calculi, etc.) allows to
use formal or simulation approaches to complete the testing, verification, and analysis
activities. Simulation is a technique of the system analysis based on experiments with
simulation model of the system. It implies that the model should be executable, i.e. it can
serve as a simulation model and at the same time as a system specification.

One way to meet the goal of better efficiency and reliability of the development pro-
cesses is to work with models during all development phases including deployment and
maintenance (model continuity) [22], [18], [19]. In the classic system development, models
are usually created in the phases of analysis and design and form the input in the phase
of implementation. All the system implementation is provided either by hand with reflect-
ing created models, or by model transformations. Typical problem is an impossibility of
fully automated process and consequently, the inconsistency between model and its im-
plementation. Transformed code is usually modified manually and these changes are not
automatically reflected back to the model. Vice versa, if the essential changes will be per-
formed on the model level, then it is necessary to execute all the target code modifications
repeatedly. If all further work is performed only on transformed code, the models become
disused and therefore useless.

Nevertheless, there are ways how to explicitly deal with and maintain only the model
instead of the generated code. For instance, we can mention Executable UML as Model
Driven Architecture [73]. This approach aims at the simulator (e.g., the xUML virtual
machine) and the code generator. The simulator should help with analysis and testing and
the generator should generate effective code. Generated code goes through usual way, i.e.,
testing of correctness, code complexity, etc. Designer should modify only models that are re-
generated to the source code. Unfortunately, it is usually very difficult to fix code mistakes
in models and to change models if the code changes too, for instance, if the application
needs dynamic reconfiguration.

1.1.2 Internet of Things

The emergence of Internet of Things (IoT) phenomena has already taken its place many
years ago. First IP-enabled toaster that could be turned on and off over the Internet was
featured at an Internet conference in 1990. Plenty of other IP-enabled ”things“ emerged
next several years, e.g. a soda machine at Carnegie Mellon University in the US as well as a
coffee pot in the Trojan Room at the University of Cambridge in the UK. Another example
of even older systems for remotely monitoring electrical grid meters using telephone lines
were already in commercial use in 1970s. Also Internet Engineering Task Force (IETF), uses
the term ”smart object networking“ for adressing the Internet of Things phenomena [82].
Since then the IoT evolved into sort of fashion trend everyone is talking about, but the
software engineering methods for its construction and end-user customisation are still in
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development phase [20]. The main idea behind the IoT is based on increasing wireless
connectivity of many types of devices, that almost became a standard for any electronics-
equipped product, as well as on the increasing computing power of microprocessors installed
within these devices. So called ”smart objects“ are defined as devices that typically have
limeted resources, such as power, processing resources, bandwidth, or memory [82].

The idea of IoT takes into account plenty of types of heterogeneous nodes, talking to
each other, outwardly exhibiting the required services to its users. This could be seen as a
sort of distributed Artificial Intelligence without central control mechanisms. Each of the
users of IoT typically shares only part of it, depending on what devices he or she maintains.
Regardless the number of devices a user possesses, it is highly desirable for him or her to
be able to control its behavior. This is typically achieved by some configuration tools, but
with increasing computing power and complexity of the whole installation, it becomes more
and more challenging problem to offer the user with proper means for controlling his or her
set of devices. In this area plenty of efforts to enable the end user with the possibility to
reconfigure the behavior of devices has already taken its place. On the other hand the main
result of the popularity of IoT in its beginnings started because of main advances within
the field of Computer Science, such as: Ubiquitous Connectivity, Widespread Adoption of
IP-based Networking, Computing Economics, Miniaturization, Advances in Data Analytics,
and the Rise of Cloud Computing [82].

The IoT as a specific embedded system also brings the necessity for the dynamic system
reconfigurability performed by the user in the meaning of changing the functionality, while
the software is in run-time, i.e. it is used constantly. Similar features are required also within
the distributed embedded control systems (DECSs). Particularly, in home automation
solutions dealing with house energy consumption optimization, the season change or some
specific weather conditions bring the need to adapt the system according to the situation;
all this in addition to incorporating new hardware devices within the house installation.
Regarding a specific definition, there is plenty of IoT definitions and we are not going to
compare these here. We just need to define the problem as a set of networked devices
(objects) that are not primarily considered to be full-featured computers, but capable of
data interchange with other objects and are installed with well-defined and programmable
inner and outer behavior.

Besides the heterogeneity of the environment and all the dynamic changes within the
IoT system, formal specifications as a means of defining system functionality may play
important role while enabling either for formal analysis of IoT system definition, as well
as its simulation before the deployment takes the place. This work aims to define a way
through the IoT systems specification by dealing with dynamically reconfigurable software
architectures for embedded devices based on formal specifications.

Recently, there is some progress within control units programming and also the dynamic
reconfigurability of their functionality and the operations they serve within the system.
Among others the OSGi platform specification has taken significant place within the IoT
nodes’ software specification [14]. OSGi enable the nodes with the possibility to dynamically
load new functionality via so called bundles. Bundles contain services, that could be used
via OSGi run-time bus by the other bundles. The bundles could be dynamically loaded
and unloaded, while the node is in run-time. There are also Java and C/C++ already
matured implementations of OSGi-compliant platforms. On the other hand, OSGi lacks
any formalization efforts, so it could serve just as an inspiration.
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1.1.3 Hierarchical Distributed Embedded Control Systems

The difference between the centralized control systems and distributed ones is quite straight-
forward and thus will be discussed only briefly - instead of brittle and limited capacity
monolithic solution we have a system that parts behave independently, just communicat-
ing the results. Upgrading the monolithic solution means to stop everything, deploy new
version of the software and hope that the resulting installation will work. Of course there
are solutions that make such a type of software more reliable, but it will always remain an
historical approach compared to the distributed software where changing one part means
nothing for the others. The distributed characteristics brings some more complexity, but
treated well it solves plenty of problems of the monolithic solution [6].

Specific point of view is necessary for the hierarchically constructed distributed control
systems - they could be constructed as decomposed processes that are all strictly connected
regarding their inputs and outputs, where each level represents the decomposition of the
level above, or they could be constructed in the so called actor or agent oriented way, where
the components of the system behave as independent units, forming the functionality of
the system together. On the other hand this work is focused on the second version of
hierarchical distributed embedded control systems, because they bring more flexibility to
the system construction and manipulation process.

1.1.4 SCADA Systems

Besides the controlling part itself, there is a strong demand on the reliability of each control
system. According to that, the dynamic reconfigurability itself could bring some uncertainty
to the system reliability as well. Because of that we are going to leverage the SCADA
systems concept to add some run-time monitoring to described system, to keep its reliability
at the certain level.

The SCADA systems work on a well-defined set of monitoring levels:

• Level 0 - consists of filed level devices, e.g. temperature sensors, flow sensors, con-
trolling the valves, etc.,

• Level 1 - consists of industrial I/O components as well as of the electronics device
maintaining those (PLCs, RTUs, ...),

• Level 2 - level of supervisory components as computers, that are able to collect the
data form I/O components and provide the operators with present situation,

• Level 3 - the production control level, that monitors the production at the low-level,
i.e. without any global picture of the production process

• Level 4 - this is the level of production scheduling

From the point of view of this thesis the SCADA decomposition to a number of moni-
toring levels is a sort of inspiration and will be discussed later in more detail. On the other
hand, the hierarchical decomposition itself as well as the idea to monitor the system on each
level of its decomposition were adopted by this thesis. As an advantage we are going to
show the possibility of logs analysis, as well as the run-time system verification possibilities
later.
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1.2 Thesis Motivation
According to described situation, the main motivation of the thesis had arisen to be a
well defined way of distributed control system specification and implementation, using
formal methods, model continuity, as well as executable models paradigms. The formal
specification of the system gives the model a possibility of formal analysis and thus reduce
the errors at the earliest phase of the system construction possible. One of the main goals
targeted by the thesis is also to allow the system reconfiguration within its run-time. The
solution should also make it possible to the end-user to change the system without deep
familiarity with sophisticated information technologies using some intuitive modeling tools.
The solution should be also robust enough and easily scalable to more application scenarios
within different levels of granularity of constructed systems.

1.2.1 Dynamic Reconfiguration

Dynamic reconfiguration within this thesis means the ability of the software maintainer to
change its functionality the dynamic way - that means without the necessity to stop the
system, install a new version of the software, and then run the system again. The key
concept here is the possibility to change the system behavior within its run time.

Regarding that the component-based system design as well as the model-driven devel-
opment and model execution and interpretation disciplines will be discussed. It is necessary
to divide the system into some well defined and transparently communicating parts, that’s
inner functionality is defined in some formal way that is executed or even interpreted 1:1
to the definition.

Because the main goal of the presented architecture is to enable changes within the
system specification during its run-time, we finally focused more on the flexibility of the
system. In order to allow the reconfigurability, there is a necessity to decompose the
application to some parts, that together represent the whole system functionality. This is
achieved by using the agent-like abstraction approach, that specify the functionality of the
system by defining its parts living within the whole ecosystem of the installation.

1.2.2 Executable Models and Model Continuity

The typical problem of constructing any system from its specification is that the specifi-
cation is usually not directly transformable to the target system implementation and vice
versa. Therefore an area of executable models (or executable specifications) had taken its
place. As well as within the modeling world the industry standard for system structural and
behavioral specification became an UML, the industrial idea of executable models could be
described by the Business Process Model and Notation (BPMN) and Business Process exe-
cutable Language (BPEL). Unfortunately, the same as the UML lacks the formal definition,
the BPMN and BPEL also do not have exact semantics explanation.

Some of the work within this area has already been done, especially within the filed
of agent specification languages [63], [90]. But these approaches are mainly focused on
an agent oriented way of system construction, they are not suitable for control systems
because of their behavior uncertainty. The other works are then based on some semi-formal
approaches [22].

Therefore because there is not many already matured solutions to the executable spec-
ifications problematic, especially within the field of distributed embedded control systems,
one of the main motivations become to bring a new approach here.
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1.3 Thesis Goals

The main goals of this thesis were defined as follows.

• Develop formally defined executable model for running the system specification -
reflecting the distributed, concurrent and synchronized features of the system, and be
able to run on devices with very limited resources.

• Use component-based architecture and enable for the execution of each system com-
ponent independently as well as for the possibility of modifying components within
the system run-time.

• Define the system construction process taking into account the possibility to involve
domain experts to understand its specification and therefore directly participate on
the construction process.

• Construct the system using actor properties of every part of the system functionality
and with the possibility of its migration across the running model.

This thesis emerged generally as an report from ongoing research and experiments within
the area of dynamically reconfigurable distributed control systems of the author. All the
described approaches and methods had undergo a certain level of improvements and changes
during the thesis collection lifetime. As the evolution itself plays the role in forming the
thesis ideas, these changes and improvements are commented and described within the text.

1.4 Used Methods

This work was based on the following procedure.

1. Analysis of recent and historical approaches to dynamic software modification,

2. narrowing the research focus towards distributed embedded control systems and de-
vices with limited resources,

3. a survey on formalization of the dynamic software updating and compilation of well-
structured summary of used methods,

4. designing and implementation of author’s prototypical and unique solution of defined
problem,

5. identification and definition of different application areas and simulating these ac-
cording to discussions with experts from selected areas,

6. constructing the experimental installation and preparing several running examples,

7. discuss the solution usage consequences and positive side-effects of defined solution
and identification of other possible usages and applications as well as extensions.
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1.5 Thesis Structure
The chapter Related Work describes the relevant work of other authors within the fields
of dynamic reconfigurability of embedded software as well as the other related areas. The
chapter Theoretical Foundations covers the formal apparatus used within the work. The
chapter Design Of The Solution describes the characteristics of proposed solution and the
details of its construction. The chapter Implementation Details adds some more information
about the experimental implementation of the solution. The chapter Applications and
Scenarios defines some scenarios of the real-world problems that were experimentally solved
using proposed solution. The chapter Experiments and Results shows achieved results from
running the experimental system implementations. Finally the chapter Conclusion and
Future Work summarizes achieved results and proposes possible future steps within defined
research.
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Chapter 2

Related Work

The development and deployment of safe and reliable software for embedded control sys-
tems remains the actual challenge to the computer scientists. The most important part
of the system development process is testing and verification of the system before its final
deployment. Also very important remains the possibility of the system to flexible reflect the
changes in requirements after the software deployment. For that it is necessary to enable
incremental changes to the running system and thus modify its behavior. At the same time
we need to maintain the model of the system throughout the whole system development
process, to keep the testing and verification possible.

Related work focused on similar problems as this theses could be divided into follow-
ing areas - embedded and operating systems, software engineering methods applied to the
area of embedded systems, Model-Driven Software Engineering (MDSE) methods applied
to the area of embedded systems, the usage of higher-level or visual languages for embedded
systems specification and implementation, the dynamic reconfigurability within embedded
systems, multi-agent approach to the reconfigurable embedded systems development, sys-
tem partitioning, code generation, and also the reconfigurable hardware.

2.1 Distributed Embedded Control Systems

Distributed embedded control systems (DECSs) consist of a set of nodes that either provide
for some functionality to the system or ensures the control over some particular device
to which they are connected. The functionality-providing node could for example offer
the storage service for the devices without persistent memory, or some more complicated
computations (like encrypting/decryption) for the nodes with low computational power.
Some of the nodes nodes are attached to the I/O of the device, like sensor, motor, pump,
valve, boiler, or switch, providing the signals for the device controlling or reading the data
from sensors.

Therefore the overall business logic of the system is spread among the nodes and manifest
itself within the controlled environment by achieving the goals of the system, like living
comfort for the house inhabitants, energy consumption optimization, or power plant energy
production. The functionality itself is defined as a functionality of every node of the system
together with the communication among nodes.

There are several communication buses’ standards within e.g. home automation in-
dustry for the inter-devices communication, e.g. KNX, OPC, BACNet, etc. [31]. These
communication buses are suitable to satisfy the reliability and security of the communica-
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tion between the nodes themselves. But there is a huge gap regarding any standards for
used nodes and control units software equipment. Simple nodes are only reflecting some
basic commands received via buses, but there is a lack of computational facilities within
most of them. The control unit then remains the only responsible entity within the system.

The complexity of embedded systems has increased in a way, that this area obviously
has to undergo similar transformation process as classical software systems passed after
the software crisis [16], that lead to an emergence of software engineering disciplines and
object-oriented programming languages. Some literature even mentions the complexity
as an essential characteristics of modern computing platforms for embedded systems. It
is assumed that this complexity being underestimated could lead to the fact that these
systems will increasingly become unreliable - with increasing complexity, system reliability
and safety becomes a major problem.

The complexity of embedded systems also lead to the component-based system con-
struction, which needs the techniques to integrate components while preserving essential
properties of system behaviour [11]. The introduction of appropriate levels of abstraction
in modeling and the associated concept formation helped to reduce the emerging complex-
ity by focusing on the relevant properties and omitting irrelevant detail, thus leading to a
simpler representation of the evolving artefacts [48].

While earlier embedded systems were usually isolated pieces of software, typical today’s
embedded system software takes about gigabytes of binary code operating over dozens of
devices and these numbers will probably even arise. This type of systems could be found
in houses, cars, ships, plants, and many other complex devices. The aim of reducing the
complexity of distributed embedded system construction, as well as the necessity to satisfy
the predictability, correctness and reliability of such a system caused the focus of the model-
driven software construction research towards the embedded systems [91].

2.2 System Dynamic Reconfigurability
Dynamic reconfigurability is necessary for the system ability to adapt itself to changes
in environment and also to provide the user with the possibility of changing the system
behavior while it is in run time, without the necessity of complete destruction and further
reconstruction or even its restart. One of the focuses of this thesis is to describe the
software part of construction process and the system maintenance features, that respect a
focus on formal specification and dynamic reconfigurability. The main operation principle
of resulting system could be described on tasks of system construction - installation, and its
reconfiguration. The installation of the system starts with placing proper nodes to the target
environment. The physical communication between nodes using different wired or wireless
communication technologies should be established. Each node should be installed with
proper software, enabling the installation and reconfiguration of the system. The system
reconfiguration should be performed on each defined level of the system architecture. All
the parts of the system could be changed and then passed to the particular system node to
change the behavior of the system.

The usage of formal modeling within the control systems development as well as the
dynamic reconfigurability features of such a software is not a new idea. Research activities
in this topic are primarily focused on two possible ways - the direct or indirect approach.
The direct approach offers specific functions or rules, allowing to modify system structure,
whereas the indirect approach introduces mechanisms allowing to describe system reconfig-
uration. The main difference consists usually on the level of reconfigurability implemented.
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Direct methods use formalisms containing intrinsic features allowing to reconfigure the
system. Indirect methods use specific kind of frameworks or architectures, that make it
possible to change the system structure.

In our field of research the first group consist of formalisms based usually on some kind
of Petri Nets. Reconfigurable Petri Nets [33], presented by Guan and Lim, introduced a
special place describing the reconfiguration behavior. Net Rewriting System [59] extends
the basic model of Petri Nets and offers a mechanism of dynamic changes description.
This work has been improved [57] by the possibility to implement net blocks according
to their interfaces. Intelligent Token Petri Nets [93] introduces tokens representing jobs.
Each job reflects knowledge about the system states and changes, so that the dynamic
change could be easily modeled. All the presented formalisms is able to describe the system
reconfiguration behavior, nevertheless only some of them define the modularity. Moreover,
the study [5] shows, that the level of reconfigurability is dependent on the level of modularity
and also that there are modular structures that are not reconfigurable. Another approach
introduced by Kahloul et. al. uses classical P/T Nets and specific production rules and
graph transformation techniques to modify manufacturing process defined using Petri Nets,
i.e. to modify the manufacturing system that controls it [56].

The second group handles reconfiguration using extra mechanisms. Model-based control
design method, presented by Ohashi and Shin [68], uses state transition diagrams and
general graph representations. Discrete-event controller based on finite automata has been
presented by Liu and Darabi [58]. For reconfiguration, this method uses mega-controller, a
mechanism, which responses to external events. Real-time reconfigurable supervised control
architecture has been presented by Dumitrache [17], allowing to evaluate and improve
the control architecture. All the presented methods are based on an external mechanism
allowing system reconfiguration. Nevertheless, most of them do not deal with validity and
do not present a compact method.

So far, we have investigated formalisms and approaches to the control system develop-
ment. They have one common property, they are missing complex design and development
methods analogous to software engineering concepts. Of course, the methods and tools that
are applied in ordinary software systems are not as simply applicable to embedded systems.
Nevertheless, we can be inspired with software engineering approaches and adopt them to
the embedded control systems [69]. To develop embedded control system, the developer
has to consider several areas. We can distinguish five areas [69] as follows—Hardware, Pro-
cesses (development processes and techniques), Platform (drivers, hardware abstraction,
operating systems), Middleware (application frameworks, protocols, message passing), and
Application (user interface, architecture, design patterns, reusing).

Former MDSE approach of embedded systems construction was typically based on meta-
modeling and model transformations using code generators [91]. These approaches enable
the reconfigurability during compile time. But there are also approaches that use higher-
level interpreted languages, like SensorScheme. The interpreted characteristics of higher-
level languages enables not only for higher abstraction of concepts, but also for platform
independence and dynamic features of languages, like dynamic loading and execution of
code while the system is in run time. Similar approach we use in this work.

The dynamic reconfigurability of the system could be also provided by the agent and
multiagent architecture as a basic system construction framework. But this way the system
functionality changes according to the agents characteristics and therefore partially unpre-
dictable. Therefore we focused more on the dynamic change of the system by its user and
according to his or her requirements.
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The dynamic reconfigurability of system could be also achieved by the proper usage
of constants and data persistence means, like sharing the state of the application within
the database. Today’s software tools already offer Database Management Systems (DBMS)
suitable for embedded systems, but dynamically reconfiguring the node behavior would also
must take into account storing some form of code within the database to be interpreted
later by some virtual machine, which is very similar to our concept. Changing only some
coefficients used within the computations is not considered as an dynamic change of the
node functionality in our approach.

2.2.1 Dynamic Software Updating

First notions on dynamic software updating could be found in Fabry’s paper from 1976 -
How to design a system in which modules can be changed on the fly [21]. The paper also
aims to find a way, how to modify the functionality of the system without the necessity to
stopping it. The main idea is to decompose the system to modules in the meaning of the
set of programs which implements all of the operations on a particular abstract data type,
particularly defined in Simula language. The modification is done by modifying the indirect
word used by capability addressing, then using revocable capability and substituting the
capability to another indirect word, and finally by using a specific locking mechanism for
indirect segments. These approaches to the solution of a dynamic reconfigurability problem
could be considered as quite old-fashioned, but defines the basic approach or way of thinking
within this field that were more or less followed by many others.

2.2.2 Immediate Updates

When dealing with the dynamic software update problem, Makris in his thesis argues for
the need of so called immediate updates [61]. The argumentation is based on the urge to
guarantee that the dynamic update of multithreaded application will be logically consis-
tent and could be achieved without unbounded service interruption. This work considers
stack frames of all threads as updateable program state as well as the Program Counter
of all threads as updateable program state. Makris then defines five update mechanisms:
whole-program update, interrupt-update-restart, binary instrumentation, function-pointer
indirection, logical-stage extraction, and data-access indirection and their restrictions. His
conclusion tells that the whole-program update is the best solution to the problem.

Immediate updates are also discussed by Hayden et. al. in their study of dynamic
software updating. They showed within the paper that plenty of multithreaded programs
could be updated with with minimal delay using only a small number of manually annotated
update points [34].

2.2.3 Update Points

Because the dynamic update itself is very difficult and potentially dangerous activity, there
are approaches to do the dynamic update safe way. One of these approaches introduces so
called dynamic update points, which exactly means the call to the run time update function.
These update points are considered to be inserted at particular places by the programmer
or compiler, i.e. automatically [86].
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2.3 Systems Modeling
Systems modeling is a discipline covering all the necessary knowledge and practices for
creating artificial conceptual models of real-world systems. Typical approach is to divide
between modeling the structure of the system and its dynamic behavior. Both together the
structure and its dynamic should represent the definition of system functionality. There
are usually some modeling means to decompose the functionality as well to partition the
system structure into easily manipulable pieces. All the functionality blocks forming some
abstract concept are usually mapped to some functional requirement defined by the future
user of the system, or customer.

There are plenty of notations, and formalisms for systems modeling, but they differ in
the level of exactness and therefore some sort of straightforwardness of inducing the final
implementation from the model itself. Among mainly used notations in the industry there is
a Unified Modeling Language (UML) and Business Process Model and Notation (BPMN)
notations worth of mentioning. UML aims to be strong enough to model the structure
of the system, as well as its behavior. The BPMN is more focused on the business level
behavior of the system. Both define enough tools for system description making it possible
for systems analysts and designers to define and discuss the implementation with computer
programmers. On the other hand, such a non-formal notations will always leave some space
for uncertainty of the final solution functionality accurateness. Compared to that there are
some formal approaches that enable for well-defined system implementation results. Among
these, there are e.g. agent based modeling, data modeling and mathematical modeling.

The IEEE recommendation defines the system as its aspects and the environment [32].
It mainly focuses on the common way to talk about system structure and behavior. The
most important concept in system modeling is abstraction that enables for the simplification
of complicated problems as well for wrapping some unnecessary details into more abstract
concepts. Not even the structure of the system has its own hierarchy of abstractions. As
well the behavioral complexity of the system with e.g. non-deterministic behavior, and
other difficult-to-characterize properties are necessary to cover.

Two key concepts play a role when modeling different levels of abstraction, those are:
view and viewpoint and black-box and white-box modeling, which will be described below
[1]. Next chapter will briefly describe the component-based software engineering that brings
important key concepts into the system decomposition problematic.

2.3.1 Component-based Software Engineering

There is a very important approach to the software development based on maximum reuse of
already implemented functionality called component-based software engineering (CBSE), or
sometimes called called as component-based development (CBD). Among the main concepts
of CBSE/CBD there are:

• the separation of concerns, as well as

• defining, implementing and composing loosely coupled independent components.

When dealing with components as producers and consumers of events, it is possible to
think about components in a way of event-driven architectures (EDA). It is important that
each component should encapsulate some set of related functions (or data). The other im-
portant characteristics of components is that the data and functions inside each component
are semantically related, which means that components are modular and cohesive.
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All the components communicate with each other through interfaces, also called signa-
tures. Each component by exposing its interface offers services to the rest of the system.
As the component itself is considered to be a black-box expressed only by its interface, it
is easily substitutable i.e. replaced by another component with different implementation
or updated version with same interface. The important part here is the consequence, that
replacement of the component should not modify or disable the system functionality. Com-
ponent could also exist autonomously from other components in a computer. Components
could be also delivered to intended destinations as serialized data and start working in
different places after the deserialization.

To keep the reusability in mind makes programmer think differently within the com-
ponent design phase, because it should be intended to be used by different programs and
in different scenarios. There are some key components properties that make it effectively
reusable, that means it should be [24]:

• fully documented,

• thoroughly tested,

• robust - with comprehensive input-validity checking,

• able to pass back appropriate error messages or return codes,

• designed with an awareness that it will be put to unforeseen uses.

Modern programming languages and technologies enable to encapsulate both data and
the algorithms that are applied to the data structures.

Next chapter is going to introduce the reader into the modeling and simulation world,
which plays the important role when dynamic changes within the system should appear to
discover their consequences.

2.3.2 Modeling and Simulation (M&S)

Modeling and simulation (M&S) from the point of view of the software engineering is a way
how to avoid future expenses when deploying a new software and leaving the testing to the
end user or other real-world situations that may prove that the software is not yet ready
for the production. Every simulation is based on the proper model of reality as well as the
software that should be developed to provide some functionality within the real world. To
be able to simulate the functionality of the software within the environment, we need to use
some modeling tool that provides for modeling both together. The simulation engine then
produces a set of data based on the behavior of the software within the model. The software
the could be modified or adapted even before its launching to avoid further expenses and
problems.

The other advantage of the simulation is that it usually could be performed faster than
in the real time. That also could bring a huge cost and time savings to simulate the behavior
of the system is some future combination cases. As the simulation could be initialized from
real-world data, it could start in the present state and simulate some set of potential future
developments. Next chapter starts with the definition of the software development process
itself. We are going to deal with the model-based software engineering as well as with
formal specifications.

Specific approach to the system semi-formal specification and its execution as well as the
system simulation was also researched on our university. A specific implementation of DEVS
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(Discrete-Event Systems Specification) using the Object Oriented Petri Nets (OOPNs) that
also uses the model continuity approach was developed [45]. This work worked as a good
inspiration, but lacked the general usability at different levels of the control mechanisms.
On the other hand it opened plenty of problems like: Simulation Based Design, Simulation
Based Testing, Model Continuity, etc.

2.4 Model-based Systems Engineering and Formal Specifica-
tions

Within the Model-Based Engineering (MBE), or Model-Driven Engineering (MDE) and
Model-Driven Development (MDD) domains, the emphasis lays in using the visual modeling
tools to leverage the benefits of common and easily understood concepts in the same way as
in system description during the System Development Life Cycle (SDLC). The important
part of the definition of MBE is that The Model-Based Engineering paradigm is model-
based to the extent that the visual modeling artifacts that it generates are sufficiently
precise and complete that they can serve as a software or systems blueprint for improving
SDLC efficiency and productivity. The paradigm is considered to be model-driven to the
extent that it at least partially automates (i.e., ”drives“) the SDLC via requirements that
are precisely and completely specified as part of the system model, and which can be fully
traced across the SDLC [62].

2.4.1 Formal Model Properties

On the other hand formal specifications are very similar regarding the purpose of model-
based software design, but mathematically based they offer much stronger means for aiding
the development process. Formal specifications are used to analyze the system behavior as
well as verifying its key specifics. Among the main important features of formal specifi-
cations belong the syntax, semantics of some defined domain, as well as the possibility of
inferring the other information from known facts.

Because of the huge development in the field of Computer Science, computers are be-
coming more and more important to the society impacting more and more fields of our
lives. Therefore it is necessary to continuously improve the means for systems specification
as well as the reliability and trustfulness of the software. Already matured engineering
professions use mathematical analysis within the design and creation phases of products.
Formal specifications are the way to achieve similar results regarding the reliability within
the software engineering field.

Formally defined software specifications also enable to use formal verification techniques
to prove the future predictable functionality as well as the correctness of the design. This
makes it possible to find out potential problems as early as possible to avoid future un-
necessary cost of correcting the the problem during the implementation phase. The other
possibility is to follow such a specification rules to be able to define transformations from the
specification into the design, that could be even transformed into the implementation. This
way could reduce the amount and cost of errors introduced by target system programmers.
Particularly this approach is the main goal of this thesis.

A good formal specification should satisfy following set of characteristics [55]:

• adequateness - the specification should adequately describe the problem,
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• internal consistency - the specification should maintain its inner semantics that cover
all the specified properties together,

• unambiguity - there must not be any multiple interpretations of any part of the
specification,

• completeness - with the respect to higher-level specifications,

• satisfaction - by lower-level specifications,

• minimality - which is that it does not state any properties irrelevant to the problem.

As well as following [55]:

• Constructibility, manageability and evolvability. Complex specifications should be
constructed piece by piece incrementally, with local changes in specifications applied
locally as well as with proper means for the specification further evolution.

• Usability. The specification language itself should be based on simple and well-
understood mathematical concepts, like sets, relations, and functions.

• Communicability. The specification should be easily readable for a broad range of its
maintainers.

• Powerful and efficient analysis. Which depends on the degree of satisfying the process
was deployed and not a single error was found.

2.4.2 Formalizing Model Reconfigurability

One of the most important features of formal specifications is enabling the possibility to
perform proofs on system specifications. Proofs could serve for many purposes as for vali-
dating the specification, verifying the correctness of the design, or proving whether the the
program is in conformance with the specification [27].

There are two significant works regarding the dynamic characteristics of software and
formal specifications. Stoyle’s theory of dynamic software updates [86] and Hick’s extensions
[35], [10] to the Typed Assembly language (TAL) by Greg Morrisett and his team [65].

While Stoyle’s theory of dynamic rebinding is based on reduction semantics of the call-
by-value (CBV) 𝜆-calculus and introduces Proteus, a core calculus for dynamic software
updating in C-like languages [86], Hick’s approach is based on dynamic patches consisting
of verifiable native code (VNC) introduced by Necula [66] and Morrisett [65]. Both works
are important in the area of dynamic software reconfigurability formalization, but base on
C language dynamic updating, which is different scope than focused in this thesis. More
theoretical work about formalizing the dynamic software reconfigurability will be discussed
in next chapter.

Another approach was held by Capra and Cazzola, who developed so called evolutionary
approach to the system based on Petri Nets concurrent-rewriting on the base-level i.e. the
level with some particularily defined restrictions, while the other nets considerd to be at
the meta-level, or meta-levels operate over those at the base-level [13]. Similar approach to
the presented within this work was also adopted by Kheldoun et al., but also based on the
agent-oriented approach [44].
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2.4.3 Model Checking

Model checking or property checking is an approach to check the compliance of the model
of the system to its target representation while it is running. Model checking is going to
find the absence of deadlocks and critical states that can cause the crash of the system. The
goal of model checking is to automatically verify the correctness of properties of finite-state
systems [8].

When needed to solve the problem of model checking programmatically, it is necessary
to have both model of the system as well as its specification in some well/defined math-
ematical language. When not necessary to prove that two descriptions are functionally
equivalent or not, property checking could be used for the model verification. During the
verification process it is necessary to define whether it is necessary to check the equivalence
bidirectionally or just one-way property checking serves enough [53].

Model checking is typically used within the hardware design verification. Because the
software system models are typically undecidable, the approach is difficult to computerize
the problem solution.

Because model checking typically faces the problem of combinatorial spate-space explo-
sion, there are several techniques that aim to avoid traversing all the reachable states and
reduce the state-space by some heuristics or other approaches, e.g. binary decision diagrams
(BDD). Other methods use quantified propositional logic to represent the graphs for finite
state machines. Other approach is to bound the unrollment of the state graph explosion to
some certain level. Partial order reduction based on reducing independent interleavings of
concurrent processes taken into account.

2.4.4 Runtime Verification

When it is necessary to extract some particular information from a running system to
detect as well as react to some specific observed behavior satisfying or violating some spec-
ified properties, the runtime verification get its place. In contrary to some characteristic
properties such as datatrace and deadlock freedom that should be typically solved algorith-
mically, plenty of properies covered e.g. by formal specifications could be verified during
the runtime. There is plenty of ways how to specify the runtime verifications, such as
predicate formalisms, finite state machines, regular expressions, context-free patterns, lin-
ear temporal logics, etc. This makes the difference to classical testing. The advantage of
formally specified systems is the possibility to synthesize the runtime monitor from that
specification [9], [79].

While the runtime verification could be used for many purposes such as behavior modi-
fication, fault protection, profiling, validation, verification, testing, debugging, monitoring,
etc. its main advantage is the reducing of the complexity of traditional formal verification
techniques, like model checking or theorem proving. From our point of view, combined
with system simulation it brings on cheap enough reliability features to the target system
implementation. On the other hand, runtime verification could be also integral part of the
system implementation to increase the system runtime reliability [71], [79].

2.5 Domain Specific Modeling

When dealing with implementation of complex systems covering some specific area of hu-
man activity, it usually come down to the problem domain that is not understandable to
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everybody, but domain specialists educated and experienced in certain problematic. The
system specification could then boil down or just be partially solved by so called Domain-
specific modeling (DSM), i.e. programming using Domain-specific languages (DSL), which
is a computer language specialized to a particular application domain, in contrast to any
general-purpose language (GPL), that could be used for any problem. The important thing
here is to divide the problem solution between the software tool that is able to somehow
interpret or consume the DSL and behave according to what is defined in its statements, or
whatever structures they use. The typical approach is to support higher-level abstractions
than typical general modelling languages tobe able to specific the problem domain in terms
and costructs it contains [43].

Typically within the domain specific modeling there is a code generation inherently
included. It is because the Domain-specific languages (DSLs) are typically not executable
nor interpretable itself. While it is quite challenge to interpret the DLS directly, it is much
more simple to translate it to some classical language that is compilable or interpretable
rather straightforwardly. The main benefit of this approach is the possibility to involve the
domain expert into the development process as well as the reducing of possible problems
and bugs created by programmer when implementing the specified system description, thus
directly improving the quality of the software and code.

2.5.1 Domain Specific Languages

Construction process of Distributed Embedded Control Systems (DECS) is typically based
on direct programming in low-level languages and compilation of binary executable intended
to run on target platforms or operating systems. That makes the construction process very
rigid and expensive. In addition to that, today’s DECSs consist of tens or hundreds of
interrelated nodes and thus represent a very complex environment for system programmers
to maintain. Model-Driven Software Engineering (MDSE) for Embedded Systems solve the
problem of complexity by a higher level of abstraction and formal definitions approach.
As a part of this thesis we describe a methodology that bases on the usage of Domain
Specific Modeling Languages (DSMLs) and formal methods for DECSs specification and
their further transformation into the Reference Petri Nets (RPN) model directly runnable
as a system simulation. The RPN implementation is translated into the interpretable form
of the model and deployed on physical nodes of the system and run by a specialized virtual
machine called Petri Nets Virtual Machine (PNVM).
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Chapter 3

Theoretical Foundations

This chapter collects all the necessary theoretical background for the reader to be able to un-
derstand later parts of the thesis. It mainly focuses on Petri Nets as a modeling formalism.
Several types of Petri Nets and their features are discussed. First of all the classical basic
Petri Nets and their features, together with the high-level Petri Nets specification making
it possible to add types to tokens and places. Then a specific type of High-Level Petri Nets
called Reference Nets, or Elementary Object System is defined. And also an other type of
Petri Nets definition, based on the aggregation of particular places and transitions patterns
into a new nets components. These components form e.g. logical operations used within
workflow modeling. Therefore are these called Workflow Nets.

3.1 Petri Nets
Petri Nets, called by Carl Adam Petri is specific mathematics language for modeling
discrete-event systems, particularly suitable for describing distributed parallel systems. A
Petri net could be displayed as directed bipartite graph of two types of nodes - places and
transitions. Places are typically displayed as circles and transitions as bars. Places repre-
sent distributed state of the model and could carry so called tokens. Transitions represent
events within the system and could be invoked arbitrarily when all the preconditions of
the transition are satisfied. Preconditions are defined by places connected to the transi-
tion by oriented arcs. The precondition is satisfied when there is so called token within
the place. The transition invocation produces tokens on all the post-conditions places,
connected with the transition by oriented arcs. Every result of the transition invocation
forming the distributed state represented by tokens placed on places is called marking. Us-
ing the combination of places and transitions it is possible to describe the execution flow
of system components or parts. Compared to the other graphical tools for describing the
the execution flow like e.g. UML, BPMN, etc., Petri Nets have an exact meaning and
mathematically defined execution semantics, also with matured mathematical theory for
the execution flow analysis. One of the many specifics of Petri Nets is the inherent non-
deterministic transitions execution policy. Any executable transition could be fired on each
step.

3.1.1 Petri Nets Specification

Definition 3.1 (Petri Net). A Petri net is a triple 𝑃𝑁 = (𝑃, 𝑇, 𝐹 ) where:
• 𝑃 and 𝑇 are disjoint finite sets of places and transitions, respectively and
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• 𝐹 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ) is a binary relation called the flow relation representing arcs
of the net.

• ∙𝑥 = {𝑦|𝑦𝐹𝑥} is called input set (preset) of the element 𝑥 and

• 𝑥∙ = {𝑦|𝑥𝐹𝑦} is called output set (postset) of the element 𝑥, where 𝑥 ∈ 𝑃 ∪ 𝑇 .

There are several types of Petri Nets. The main approach to dividing Petri Nets into
categories is the value type of tokens stored at nets places. Basic type of Petri Nets are
so called Black & White Petri Nets, or sometimes C/E Nets (Condition/Event Nets). In
this type of Petri Nets just a boolean value of tokens at each place is allowed. It means
that the place is either marked or non-marked, it has token or not. Second level of the
net marking types are natural numbers. It means that each place could carry a number
of tokens. According to tranistions execution the number of tokens changes. Next level
is called Colored Petri Nets. At that level tokens could be of arbitrarily any, but well-
defined, number of attributes, called colors. Coloring of Petri Nets enables for more complex
computations during the transitions execution. For example, it is possible to compare the
value of the color or any other data carried by the token to some conditions. Of course
this makes Colored Petri Nets much more powerful compared to previously defined ones.
Coloured Petri Nets are a specific type of so called High-Level Petri Nets. High-Level Petri
Nets are considered to be any type of Petri Nets that goes beyond ordinary ones. One
of the specific type of Colored Petri Nets are so called Reference Petri Nets, where the
color of each token is defined as another Petri Net. This way Petri Nets could be nested in
arbitrarily any depth into each other. In this work, the Reference Petri Nets play a major
role as a basic mean of any computation description. Basic definitions of used Petri Nets
types will be discussed in more detail within the next section.

3.1.2 High-Level Petri Nets

Main part of the solution architecture is based on the Reference Petri Nets language (RPNs).
These nets are specific version of High-Level Petri Nets.

High-Level Petri Nets (HLPN) are defined as a structure

Definition 3.2. 𝐻𝐿𝑃𝑁 = (𝑃, 𝑇,𝐷;𝑇𝑦𝑝𝑒, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡,𝑀0), where [37], [38]:

• 𝑃 is a finite set of elements called places,

• 𝑇 is a finite set of elements called transitions, disjoint from 𝑃 (𝑃 ∩ 𝑇 = ∅),

• 𝐷 is a non-empty finite set of non-empty domains where each element of 𝐷 is called
a type,

• 𝑇𝑦𝑝𝑒 : 𝑃 ∪ 𝑇 −→ 𝐷 is a function used to assign types to places and to determine
transition modes,

• 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡 : 𝑇𝑅𝐴𝑁𝑆 −→ 𝜇𝑃𝐿𝐴𝐶𝐸 are the pre and post mappings with

– 𝑇𝑅𝐴𝑁𝑆 = {(𝑡,𝑚)|𝑡 ∈ 𝑇,𝑚 ∈ 𝑇𝑦𝑝𝑒(𝑡)}
– 𝑃𝐿𝐴𝐶𝐸 = {(𝑝, 𝑔)|𝑝 ∈ 𝑃, 𝑔 ∈ 𝑇𝑦𝑝𝑒(𝑝)}

• 𝑀0 ∈ 𝜇𝑃𝐿𝐴𝐶𝐸 is a multiset called the initial marking of the net,

• and 𝜇𝑃𝐿𝐴𝐶𝐸 is the set of multisets over the set PLACE.
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The main difference regarding high-level Petri Nets is that they add a concept of Type of
tokens and places. In contrary to classical Petri Nets, that use boolean and integer values.

Marking and Enabling of Transition Modes

A multiset 𝑀 ∈ 𝜇𝑃𝐿𝐴𝐶𝐸 is called a Marking of a HLPN. Besides that, a finite multiset
of transition modes, 𝑇𝜇 ∈ 𝜇𝑇𝑅𝐴𝑁𝑆, is defined as enabled at a marking 𝑀 𝑖𝑓𝑓

𝑃𝑟𝑒(𝑇𝜇) ≤𝑀

where the linear extension of 𝑃𝑟𝑒 is given by

𝑃𝑟𝑒(𝑇𝜇) =
∑︁

𝑡𝑟∈𝑇𝑅𝐴𝑁𝑆

𝑇𝜇(𝑡𝑟)𝑃𝑟𝑒(𝑡𝑟).

All transition modes in 𝑇𝜇 are defined as concurrently enabled if 𝑇𝜇 is enabled, i.e. there
are enough tokens on the input places to satisfy the linear combination of all the 𝑃𝑟𝑒 maps
for each transition mode in 𝑇𝜇 [37].

Transition Rule (Step)

Given that a multiset of transition modes, 𝑇𝜇, is enabled at a marking 𝑀 , then a step may
occur resulting in a new marking 𝑀

′ given by

𝑀
′
= 𝑀 − 𝑃𝑟𝑒(𝑇𝜇) + 𝑃𝑜𝑠𝑡(𝑇𝜇)

Where the linear extension of Post is used. A step is denoted by 𝑀 [𝑇𝜇⟩𝑀
′ or 𝑀 𝑇𝜇−→𝑀

′ [37].

Graph Components

According to the ISO/IEC Standards, a HLPN graph comprises of following components
[37]:

• A Net Graph, consisting of sets of nodes of two different kinds, known as places and
transitions, and arcs connecting places to transitions, and transitions to places.

• Place Types. Non-empty sets. One type is associated with each place.

• Place Marking, a collection of elements (data items) chosen from the place’s type and
associated with the place. Repetition of items is possible. The items associated with
places are called tokens.

• Arc Annotations. Arcs are inscribed with expressions which may comprise constants,
variables, and function images (e.g. 𝑓(𝑥)). The expressions are evaluated by substi-
tuting values for the variables. When an arc’s expression is evaluated, it must result
in a collection of items taken from the arc’s place’s type. The collection may have
repetitions.

• Transition Condition, a boolean expression (e.g. 𝑥 < 𝑦) inscribing a transition.

• Declarations, comprising definitions of Place Types, typing of variables, and function
definitions.
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Net Execution

HLPN-graphs are executable, allowing a flow of tokens around the net to be visualised. This
can illustrate the flow of control and flow of data within the same model. Key concepts
governing this execution are enabling of transitions and the occurrence of transitions defined
by the Transition Rule [37].

3.2 Reference Nets
A specific type of High-level Petri Nets are called Reference Nets. In this thesis this type of
HLPN is used as a basic formalism for system model specification. Reference Nets allow to
construct a system hierarchically, in several levels. Nets can migrate among places in other
nets and thus it is possible to dynamically modify functionality of system components,
specified by this kind of nets [12]. The formalism is based on nets-within-nets concept
introduced by Valk [88]. This concept enable Petri Nets to be nested in other Petri Nets in
the form of tokens.

As in other HLPNs, e.g. Coloured Petri Nets introduced by Jensen [40], there are
places and transitions interconnected by arcs. There are quite simple rules for transition
execution in basic HLPNs: if its input places contain tokens specified on its input arcs, it
can be executed (fired). Execution of a transition is an event, atomically changing state of
the system: tokens specified on transition input arcs are removed from the corresponding
places and tokens specified on its output arcs are put to the corresponding places. A
transition could also have a guard restricting its fireability and an action allowing to do
arbitrary computations as part of transition execution. Reference Nets allow to instantiate
net templates and to use the net instances as tokens. More precisely, references to nets are
used as tokens. Thus, a token can be either simple object such as a number or a character,
as well as a reference to some other net instance. Nets are able to communicate with each
other using so called synchronous channels, named downlinks and uplinks respectively:

• Downlinks are used in nesting nets for calling nested nets.

• Uplinks are used in nested nets, to be called by nesting net.

Synchronous channels make possible to synchronize transitions execution between nest-
ing and nested net. The transition execution in Reference Nets is then more complicated,
because nested nets must be synchronized when there are synchronous channels present.
Next section depicts synchronous channels in more detail by few examples. Later the formal
definition of channels will be described as well.

3.2.1 Synchronous Channels

In this section, we are going to explain synchronous channels using two examples. In
Figure 3.1 the concept of uplink and downlink synchronization within the same net is shown.
The inscription this:foo() of the left transition represents downlink, as well as the two
downlinks this:bar(). Uplinks are represented by the :foo() and :bar() inscription and
are activated by downlinks. The uplink :foo() can be called by downlink net:foo() which
can be specified as part of an action in another transition. In this example, they are defined
within the same net. Data can be exchanged in both directions during the call.

In Figure 3.2, there is a net that introduces two different downlinks b:deposit(arg),
and b:take(arg), that are served by uplinks in another net described in Figure 3.3. Both
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Figure 3.1: Example of uplink/downlink self-calling [50]

communications uses arguments, that are sent over communication. First time it is String
sent from first net to the second one by the downlink communication b:deposit(arg) to
the :deposit(arg) uplink, and second time it is a String argument sent by the :take(arg)
uplink to the b:take(arg) downlink. Here the synchronization mechanism is used between
two different nets. One net is the nesting, and the second one the nested net.

Figure 3.2: Example of the calling net [50]

Figure 3.3: Example of the called net [50]

In next section we are going to introduce formal definition of Reference Nets as well as
synchronous channels. More detailed explanation of Reference Nets synchronous channels
could be found in [49], [47].

3.2.2 Reference Nets Specification

Reference Petri Nets are High-level Petri Nets that could be formalized as so called Ele-
mentary Object Systems. The concept of Petri Nets as tokens was first introduced by Valk
as so called nets-within-nets paradigm [88], then extended by Kummer [49], and later also
generalised by Köhler and Rölke [46]. The basic principle is that object nets are considered
to be a Petri Nets that have Petri Nets as tokens. In contrary to classical hierarchical Petri
Nets, the static transition logic of the net is not refined, but instead of that a system state
dynamics [47]. In this section the Elementary Object Systems are formally defined. First
of all the Elementary Net System (EN System) should be defined as a base concept used
in other definitions.
Definition 3.3 (Elementary Net System). An elementary net system (EN system) is de-
fined as a n-tuple 𝐸𝑁 = (𝐵,𝐸, 𝐹,𝐶) where [87], [83], [89]:
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• 𝐵 is a finite set of places,

• 𝐸 is a finite set of transitions (or events), disjoint from 𝐵,

• 𝐹 ⊆ (𝐵 × 𝐸) ∪ (𝐸 ×𝐵) is a flow relation, and finally

• 𝐶 ⊆ 𝐵 is an initial marking (or initial case) of EN system.
An elementary object system could then be defined as a system where different object

nets move through a system and interact with each other.
Definition 3.4 (Elementary Object System). An elementary object system is a n-tuple
𝐸𝑂𝑆 = (𝑆𝑁, ̂︂𝑂𝑁,𝑅ℎ𝑜, 𝑡𝑦𝑝𝑒, ̂︁𝑀) where [88]:

• 𝑆𝑁 = (𝑃, 𝑇,𝑊 ) is a net ( i.e. an EN system without initial marking), called system
net of 𝐸𝑂𝑆,

• ̂︂𝑂𝑁 = {𝑂𝑁1, . . . , 𝑂𝑁𝑛}(𝑛 ≥ 1) is a finite set of EN systems, called object systems of
𝐸𝑂𝑆, denoted by 𝑂𝑁𝑖 = (𝐵𝑖, 𝐸𝑖, 𝐹𝑖,𝑚0𝑖), which is either elementary net system or a
system net of embedded 𝐸𝑂𝑆,

• 𝑅ℎ𝑜 = (𝜌, 𝜎) is the interaction relation, consisting of a system/object interaction
relation 𝜌 ⊆ 𝑇 × 𝐸 where 𝐸 :=

⋃︀
{𝐸𝑖|1 ≤ 𝑖 ≤ 𝑛} and a symmetric object/object

interaction relation 𝜎 ⊆ (𝐸 × 𝐸) ∖ 𝑖𝑑𝐸,

• 𝑡𝑦𝑝𝑒 : 𝑊 → 2{1,...,𝑛} ∪ N is the arc type function, and

• ̂︁𝑀 is a marking defined in following definition.
The system marking is then defined as an assignment of a subset of the object nets

together with a current marking to the places. A marking of an EOS is then a generalization
of a bi-marking defined in [88] for to more than a single object net.
Definition 3.5 (System Marking). The set 𝑂𝑏𝑗 := {(𝑂𝑁𝑖,𝑚𝑖)|1 ≤ 𝑖 ≤ 𝑛,𝑚𝑖 ∈ 𝑅(𝑂𝑁𝑖)}
is the set of objects of the elementary object system. An object-marking (𝑂-marking) is a
mapping ̂︁𝑀 : 𝑃 → 2𝑂𝑏𝑗 ∪ N such that ̂︁𝑀(𝑝) ∩𝑂𝑏𝑗 ̸= ∅ ⇒ ̂︁𝑀(𝑝) ∩ N = ∅ for all 𝑝 ∈ 𝑃 .

As the transitions of EOS could be labeled with mentioned synchronous channels used
for nets synchronization, there is a labeling function defined as ̂︀𝑙 : ̂︀𝑇 → (𝑁 → 𝐶), where
the 𝐶 is a fixed set of channels, and 𝑁 ∈ 𝑂𝑁 is an elementary net of EOS. In graphical
representation the synchronization labels are defined as transition inscriptions in the form of
⟨: 𝑙𝑁 (𝑡)⟩. A system event is then generated by transitions with matching labels. According
to the labeling there are three cases of events [47]:

1. System-autonomous firing, means the transition ̂︀𝑡 of the system net fires autonomously
whenever ̂︀𝑙(̂︀𝑡)(𝑁) = 𝜖, where 𝜖 is an empty channel, describing the absence of syn-
chronization labeling.

2. Synchronized firing, when at least one object net that has to be synchronized is
present, i.e. ∃𝑁 : ̂︀𝑙(̂︀𝑡)(𝑁) ̸= 𝜖.

3. Object-autonomous firing, an object net transition 𝑡 fires autonomously whenever
𝑙(𝑡) = 𝜖.

These thee types of events could be reduced to the problem of synchronization. More
details about the operational semantics of EOS and channels synchronization could be
found in [88], [47].
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3.3 Workflow Nets
Workflow modeling is very popular for its aim to precisely define the functionality re-
quirements using intuitive and human-readable form, while offering enough precision to be
interpretable by machines. For its formal characteristics and large research background we
adopted for the purposes of our research Wil van der Aalst’s specification for system work-
flow modelling, so called Extended Workflow Petri Nets [2]. Aalst’s work is well-defined and
resulting workflow models could be used for the system processes verification and validation
purposes [4]. The main advantage of using Workflow Petri Nets is the possibility of system
specification and its adaptation by the non-technically educated domain specialists. This
approach is very similar to the BPMN workflow models, so it might be easily adopted by
business process modeling domain experts. For that reason we decided to use the Aalst’s
YAWL notation [3] and Workflow Petri Nets formalism [2] in the early beginning of the sys-
tem construction process. There are two main concepts from this theory that we use at the
moment - two basic transition categories - split and join behavior (AND-split, AND-join,
OR-split and OR-join), and the concept of workflow subprocess (sub-task).

Next section introduces van der Aalst’s Workflow Nets specification.

3.3.1 Workflow Nets Specification

Will van der Aalst defined the way to construct workflow models using Petri Nets [2]. His
work is also well formally defined and so the workflow models could be used for the processes
verification and validation purposes. The way of modeling the system in this way is also
similar to the BPMN workflow models, so it could be easily used by the business process
modeling experts. For that reason we decided to use the YAWL notation [3] and Workflow
Nets formalism [2] in the beginning of the embedded control system construction process.

This section is going to introduce basic concepts of Workflow Petri Nets formalism
specifications. Workflow Petri Nets represents formally well-defined approach to system
workflow definition. The basic difference of Workflow Nets compared to classical Petri Nets
is the existence of source and sink places. The other difference is the adoption of basic logic
control operators defined as AND,XOR,OR-join or split constructs. Following definitions
cover both concepts.

Definition 3.6 (Workflow Net). A Petri net 𝑃𝑁 = (𝑃, 𝑇, 𝐹 ) is a WF-net (WorkFlow Net)
if and only if [2]:

• 𝑃𝑁 has two special places: 𝑖 ∈ 𝑃 and 𝑜 ∈ 𝑃 . Place 𝑖 is a source place: ∙𝑖 = ∅. Place
𝑜 is a sink place: 𝑜∙ = ∅.

• If we add a transition 𝑡* to PN which connects place 𝑜 with 𝑖 (i.e. ∙𝑡* = {𝑜} and
𝑡*∙ = {𝑖}), then the resulting Petri net is strongly connected.

Following simplification rules that were added by Aalst and Hofstede extended work-
flow models provide for better human-readability of WF-nets. First of all special types of
transitions representing logical operators and also special operations for manipulation with
tokens were added. Transitions and places are considered to be tasks resp. conditions.

Definition 3.7 (Extended Workflow Net). An extended workflow net (EWF-net) is a tuple
𝐸𝑊𝐹 = (𝐶, 𝑖, 𝑜, 𝑇 , 𝐹 , 𝑆, 𝑛𝑎𝑚𝑒, 𝑠𝑝𝑙𝑖𝑡, 𝑗𝑜𝑖𝑛, 𝑟𝑒𝑚, 𝑛𝑜𝑓𝑖) such that [3]:

• 𝐶 is a set of conditions,
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• 𝑖 ∈ 𝐶 is the initial condition,

• 𝑜 ∈ 𝐶 is the final condition,

• 𝑇 is set of tasks, such that 𝐶 ∩ 𝑇 = ∅,

• 𝐹 ⊆ (𝐶 ∖ {𝑜} × 𝑇 ) ∪ (𝑇 × 𝐶 ∖ {𝑖}) ∪ (𝑇 × 𝑇 ) is the flow relation such that

• every node in net graph (𝐶 ∪ 𝑇, 𝐹 ) is on a directed path from 𝑖 to 𝑜,

• 𝑠𝑝𝑙𝑖𝑡 : 𝑇 ̸→ {𝐴𝑁𝐷,𝑋𝑂𝑅,𝑂𝑅} is a partial mapping that assigns the split behavior of
a task,

• 𝑗𝑜𝑖𝑛 : 𝑇 ̸→ {𝐴𝑁𝐷,𝑋𝑂𝑅,𝑂𝑅} is a partial mapping that specifies the join behavior of
a task,

• 𝑟𝑒𝑚 : 𝑇 ̸→ P(𝑇 ∪𝐶 ∖ {𝑖, 𝑜}) specifies the additional tokens to be removed by emptying
a part of the workflow, and

• 𝑛𝑜𝑓𝑖 : 𝑇 ̸→ N × N𝑖𝑛𝑓 × N𝑖𝑛𝑓 × {𝑑𝑦𝑛𝑎𝑚𝑖𝑐, 𝑠𝑡𝑎𝑡𝑖𝑐} is a partial function that specifies
the multiplicity of each task (minimum, maximum, threshold for continuation, and
dynamic/static creation of instances).

Split and join behavior represent flow control constructs, or components used for decision
split and results completion purposes within workflow. EWF-nets use specific symbols that
hide the real PN behavior inside. THese make EWF-nets more readable. The split and
join behavior of task is defined and translated as in the Figure 3.4.

More detailed meaning of each split and join component type could be found in [2].
To specify complete workflow model a definition of Workflow Specification was intro-

duced by Aalst and Hofstede, defining special types of tasks representing composite and
multi-instance task. The original version is introduced here, and later a slightly modified
version used for the purposes of this work will be described.

Workflow Specification

Definition 3.8 (Workflow Specification). A Workflow Specification 𝑆 is a n-tuple (𝑄, 𝑡𝑜𝑝,
𝑇 ◇,𝑚𝑎𝑝) such that [3]:

• 𝑄 is a set of EWF-nets,

• 𝑡𝑜𝑝 ∈ 𝑄 is the top level workflow net,

• 𝑇 ◇ = ∪𝑁∈𝑄𝑇𝑁 is the set of all tasks,

• ∀𝑁1,𝑁2∈𝑄𝑁1 ̸= 𝑁2 ⇒ (𝐶𝑁1 ∪ 𝑇𝑁1) ∩ (𝐶𝑁2 ∪ 𝑇𝑁2) = ∅, conditions and tasks of all
EWF-nets are disjoint,

• 𝑚𝑎𝑝 : 𝑇 ◇ ̸→ 𝑄 ∖ {𝑡𝑜𝑝} is a function that maps each composite task onto a EWF-net,
and

• the relation {(𝑁1, 𝑁2) ∈ 𝑄×𝑄 | ∃𝑡∈𝑑𝑜𝑚(𝑚𝑎𝑝𝑁1
)𝑚𝑎𝑝𝑁1(𝑡) = 𝑁2} is a tree-like structure

of composite and atomic tasks [3].
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Figure 3.4: Notation method for common behavior constructions [2]

Each EWF-net consists of transition tasks and conditions represented as places. Tasks
could be composite or atomic, representing hierarchical structure of the net. Atomic tasks
may represent units of work, and in compound ones encapsulate more complex behavior to
be hidden in more abstract layers of system definition. A special type of hiddedn or implicit
condition is represented by connecting tasks together, without explicit place definition. The
condition place is added virtually. This makes the net even more simple and readable [3].

As mentioned, also a special types of tasks representing composite and multi-instance
tasks were added by Aalst and Hofstede. These are described in following definition.

Definition 3.9. Whenever we introduce a workflow specification 𝑆 = (𝑄, 𝑡𝑜𝑝, 𝑇 ◇, 𝑚𝑎𝑝),
we assume 𝑇𝐴, 𝑇𝐶 , 𝑇𝑆𝐼 , 𝑇𝑀𝐼 , 𝐶◇ to be defined as follows [3]:

• 𝑇𝐴 = {𝑡 ∈ 𝑇 ◇|𝑡 ̸∈ 𝑑𝑜𝑚(𝑚𝑎𝑝)} is the set of atomic tasks,
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• 𝑇𝐶 = {𝑡 ∈ 𝑇 ◇|𝑡 ∈ 𝑑𝑜𝑚(𝑚𝑎𝑝)} is the set of composite tasks,

• 𝑇𝑆𝐼 = {𝑡 ∈ 𝑇 ◇|∀𝑁∈𝑄𝑡 ∈ 𝑑𝑜𝑚(𝑛𝑜𝑓𝑖𝑁 )} is the set of single instance tasks,

• 𝑇𝑀𝐼 = {𝑡 ∈ 𝑇 ◇|∃𝑁∈𝑄 𝑡 ∈ 𝑑𝑜𝑚(𝑛𝑜𝑓𝑖𝑁 )} is the set of (potentially) multiple instance
tasks, and

• 𝐶◇ = ∪𝑁∈𝑄𝐶
𝑒𝑥𝑡
𝑁 is the extended set of all conditions.

This section introduced main theoretical definitions on which this theses is based. Next
section is going to leverage these for the particular design solution introduction.
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Chapter 4

Design of the Solution

This chapter describes the design of the dynamically reconfigurable embedded system con-
struction process. It covers the decomposition of the problem into specific parts and their
further transformations and interactions.

4.1 The Development Process

The development process is described in Figure 4.1. It starts with the system specification
using Reference Nets framework Renew [51] which is then followed by the transformation
of the models into the interpretable form. It is also possible to generate native code, and
deploy it directly to the chip, but this approach dramatically reduces the level of recon-
figurability. Statistics gathered from simulation experiments can be used for verification
purposes and also can support decisions about type of hardware for target system imple-
mentation. The hardware components for the target implementation are installed with the
specific interpreter implemented to be able to run translated nets. Finally the whole system
is installed according to its model by sending appropriate nets definitions and instructions
to all subsystems. All the parts of the system could by reinstalled later within the system
run time. This is how the deployment and maintenance of the system is achieved.

4.1.1 Multilayered System

The main concept of this thesis is based on the Reference Petri Nets (RPNs) usage, which
represents the main theoretical structure together with full-featured operational semantics
for Turing-complete system definition. The whole system is constructed as a layered mech-
anism enabling for arbitrarily nested nodes of the system, each with its own functionality
part. Each layer of the system can be installed, activated, inspected, deactivated, and
uninstalled itself. Next, we can add a level-specific functionality, i.e. the specific nets that
represent the functionality of the system at each level. This way, we can build an archi-
tecture similar to described in [12], where a platform hosts agents and each agents hosts
protocols which control the agent’s behavior. Within the presented framework, it is possi-
ble to define a lot of layered architectures, together with corresponding methodologies for
application development. Apart from a particular layered architecture, reconfigurability is
allowed on any layer using the pattern demonstrated by the Platform net.
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Figure 4.1: System development process

4.1.2 Reconfigurable Architecture

Reference Nets allows to construct the system hierarchically, in several layers of abstraction.
Each element of layer at any level of abstraction could be changed by change in nets marking.
Nets representing system functionality are migrating over nets of other layers changing the
system functionality. We use application-specific main processes and subprocesses, which
are hosted on platform that is considered to be a part of the operating system of the node,
PNOS (Petri Nets Operating System).

The multi-layered nature of the system and responsibilities of particular levels are de-
scribed in Figure 4.4.

The main part of the the system is installed over the hardware as a sort of kernel, we call
PNOS (Petri Nets Operating System). This kernel contains virtual machine, called PNVM
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Figure 4.2: System layers and their responsibility

(Petri Net Virtual Machine) that interprets Petri Nets installed within the system in the
form of a bytecode, called Petri Nets ByteCode (PNBC). Byte-code is generated from the
Reference Nets sources generated by other tools from the higher level abstractions. Model
transformations are described in following sections.

Besides that PNOS also provides the installed processes with the access to input and
output of the underlying hardware that is connected to sensors and actuators, and also with
the serial communication port that is connected to the wired or wireless communication
module (e.g. ZigBee) [77], or Ethernet interface. More details about the PNOS and PNVM,
as well as PNBC will be described in the chapter Implementation details.

Each PNOS node is installed with the Platform net which is able to host other nets.
Platform net is responsible for interpretation of commands which are read from buffered
serial line. These commands allow to install, instantiate, and uninstall other Petri Nets.
Each platform then hosts some number of main processes nets that hosts sub-processes. The
whole communication is performed by sending messages using serial link. The Platform also
allows to pass messages to the other layers, which are responsible for application-specific
functionality. Since we need reconfigurability in all levels, the installation and uninstallation
functionality is implemented in each level.

The core characteristics of resulting system, its dynamic reconfigurability, is based on
the ability of Reference Petri Nets interpretable representations to migrate among places
of the system as tokens, similarly as in reference Nets. The new or modified Petri Net,
which represents the system partial behavior change could be sent over other Petri Nets to
its destination place to change the whole system functionality.

Platform

The root net (first process) interpreted in PNOS is the Platform Net (see Figure 4.3).
Platform Net is responsible for interpretation of commands which are read from buffered
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Figure 4.3: Platform net

serial line. Using primitive operations of PNVM 1 it preforms the commands for installation,
instantiation, and uninstallation of delivered Reference Nets. The Platform net also allows
to pass messages to the other layers of the system which are responsible for application-
specific functionality. Since we need reconfigurability in all levels, the installation and
uninstallation functionality has to be implemented in each level which is responsible for it.

Thanks to the Platform functionality, a node can understand to and perform commands
specified by messages which can be sent to the node via serial line (obviously connected to
radio). General form of a message is:

< 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 > < 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 > < 𝑑𝑎𝑡𝑎 >

Address is the name of the node (and platform). Command and data can be any of the
following ones:

• load 𝑛𝑒𝑡_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑏𝑦𝑡𝑒𝑐𝑜𝑑𝑒,

• create 𝑛𝑒𝑡_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑛𝑎𝑚𝑒 𝑛𝑒𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_𝑛𝑎𝑚𝑒,

• pass 𝑚𝑒𝑠𝑠𝑎𝑔𝑒_𝑓𝑜𝑟_𝑎𝑛_𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛,

• destroy 𝑛𝑒𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_𝑛𝑎𝑚𝑒,

• unload 𝑛𝑒𝑡_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑛𝑎𝑚𝑒,

• dump.

A nested message addressed to an application can potentially have the same structure as
a message for a node, i.e. it can consist of an address of an application, and a command and
data for the application. As the platform is defined the same way as the other nets within
the system, each platform example used within the thesis could differ slightly regarding the
set of operations supported.

1Primitive operations of PNVM are in the Reference Nets inscription language available as
PNOS.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, e.g., PNOS.o(13,1) sets i/o pin 13 to value 1, PNOS.h(m) gets first space-separated substring
from string 𝑚, and PNOS.t(m) returns the rest of the string 𝑚 without the first substring.
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� �
1 house1 pass garage pass powerTrader powerValue 4.783148778065738E-167
 	

Listing 4.1: Simple net in PNBC

4.1.3 Communication Model

The communication within described model is intended to be based on textual messages
constructed according to the defined rules and the structure of the system. We call this
language protocol and it consists of commands and addresses, according to the structure
and capabilities of each of involved nodes. Regardless on the way the code is generated all
the abstraction levels communicate with each other using described uplinks and downlinks.
The communication principles are described in Figure 4.4.

Figure 4.4: Communication schema

The communication is basically initiated by sub-processes installed within processes.
According to the instructions within the protocol, processes send messages to other pro-
cesses. Processes could also communicate with platform in which they are installed to
install other processes, or receive and send data. They could also communicate with PNOS
on which the platform is installed to install other platform. The communication between
nodes is accomplished by packets that are in upper layers interpreted as mentioned textual
messages. Samples of protocol messages are shown within all examples, e.g. see B.6. This
sub-process generates message shown in listing 4.1 to address the powerTrader sub-process
within house1, particularily the garage process.
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4.2 System Model Definitions
In this section all the necessary extensions to previously defined theoretical foundations are
defined. We have here extended communicating workflow net, to be able to communicate
among nets. Then there is workflow specification definition added which enables for nest-
ing workflow nets together. And finally there is workflow system specification that makes
it possible to combine multiple workflow specifications. Besides the model interpretation
problem there is a model construction part, which heavily relies on abstract model trans-
formations. In this work, there are two translation phases. The translation of the Workflow
Petri Nets model into the Reference Petri Nets model and translation of the Reference Petri
Nets model into its interpretable form. The first transformation phase takes into account
the set of workflow specifications described within the workflow model of the system and
produces target node representations. Such a representation should contain the basic PNOS
I/O functionality, and the platform functionality, which means the ability of receiving nets
specifications, nets instantiation, removing nets instances, removing nets specifications, etc.

Using this functionality the node main processes should be installed. It usually con-
sists of the description of sub-processes interactions and ordering. Then the main processes
of each node are installed with translated sub-processes. The communication between re-
sources is represented by transitions, which are not part of any other role and serve as a
data transport part of the system. Particular data types should be described in the terms
dictionary, that holds all the necessary information needed for nets translation, that is not
included within the diagram. Regarding the workflow model, also other specific rules for
the communication protocol could be derived. Let us introduce some basic definitions of
formalisms used during the system development. Our approach follows the previous defini-
tions and adds some more rules to enable the extended workflow models with communication
features to satisfy the developer ability to combine multiple workflow specifications.

Extended Communicating Workflow Net

Definition 4.1 (Extended Communicating Workflow Net). We call Extended Communi-
cating Workflow net 𝐸𝐶𝑊𝐹 = (𝐸𝑊𝐹 ,𝐼,𝑂,𝐹𝐶) a EWF net that has following properties:

• 𝐸𝑊𝐹 is an extended workflow net,

• 𝐼 is a set of 𝐸𝐶𝑊𝐹 input places, where ∀𝑝𝐼 ∈ 𝐼 : ∙𝑝𝐼 = ∅ ∧ 𝑝𝐼 ̸= 𝑖,

• 𝑂 is a set of 𝐸𝐶𝑊𝐹 output places, where ∀𝑝𝑂 ∈ 𝑂 : 𝑝∙𝑂 = ∅ ∧ 𝑝𝑂 ̸= 𝑜,

• 𝐹𝐶 is a communication flow 𝐹𝐶 ⊆ (𝐼 × 𝑇 ) ∪ (𝑇 ×𝑂),

• 𝐼 ∪ 𝑃𝐸𝑊𝐹 = ∅ ∧𝑂 ∪ 𝑃𝐸𝑊𝐹 = ∅.

As mentioned previously, to specify complete workflow model a definition of Workflow
Specification was introduced by Aalst and Hofstede [3]. We adopted this definition and
added some slight changes to one of the rules.

Workflow Specification

Definition 4.2 (Workflow Specification). A Workflow Specification 𝑆 is a n-tuple (𝑄, 𝑡𝑜𝑝,
𝑇 ◇,𝑚𝑎𝑝) such that:

• 𝑄 is a set of ECWF-nets,
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• 𝑡𝑜𝑝 ∈ 𝑄 is the top level workflow [3],

• 𝑇 ◇ = ∪𝑁∈𝑄𝑇𝑁 is the set of all tasks [3],

• ∀𝑁1,𝑁2∈𝑄𝑁1 ̸= 𝑁2 ⇒ (𝐶𝑁1 ∪ 𝑇𝑁1) ∩ (𝐶𝑁2 ∪ 𝑇𝑁2) = ∅, i.e., no name clashes [3],

• 𝑚𝑎𝑝 : 𝑇 ◇ ̸→ 𝑄 ∖ {𝑡𝑜𝑝} is a surjective injective (bijective) function which maps each
composite task onto a EWF net [3], and

• the relation {(𝑁1, 𝑁2) ∈ 𝑄×𝑄 | ∃𝑡∈𝑑𝑜𝑚(𝑚𝑎𝑝𝑁1
)𝑚𝑎𝑝𝑁1(𝑡) = 𝑁2} is a tree [3].

Final definition describes the Workflow System consisting of set of Extended Commu-
nicating Workflow Specifications and communication transitions.

Workflow System

Definition 4.3 (Workflow System). Let us call Workflow System the triple 𝑊𝑆 = (̂︀𝑆,
𝑇𝑊𝑆, 𝐹𝑊𝑆), where:

• ̂︀𝑆 is non-empty finite set of workflow specifications,

• 𝑇𝑊𝑆 is a finite set of communication transitions, defined as 𝑇𝑊𝑆 = {𝑡𝑊𝑆
𝑖 |𝑝 ̂︀𝑆𝑙

𝑗 ∈

𝐶𝑙, 𝑝
̂︁𝑆𝑚
𝑘 ∈ 𝐶𝑚 ∧ 𝑝

̂︀𝑆𝑙
𝑗 ∈ ∙𝑡𝑊𝑆

𝑖 ∧ 𝑝
̂︁𝑆𝑚
𝑘 ∈ 𝑡𝑊𝑆

𝑖
∙},

• 𝐹𝑊𝑆 ⊆ (𝑂𝑊𝑆×𝑇𝑊𝑆)×(𝑇𝑊𝑆×𝐼𝑊𝑆) is a system communication flow relation, where
𝑂𝑊𝑆 =

⋃︀
𝑂𝑆𝑖𝑖∈<1,...,𝑛> is a set of all extended communicating workflow specifications

output places and, 𝐼𝑊𝑆 =
⋃︀

𝐼𝑆𝑖𝑖∈<1,...,𝑛> is a set of all extended communicating work-
flow specifications input places.

Target system representation for the first phase of system model transformation is con-
structed as a set of Reference Nets based on Valk’s nets-within-nets paradigm that is for-
malized as an Elementary Object System which consists of elementary net systems (EN
System) 𝐸𝑁 = (𝐵,𝐸,𝐹 ,𝐶), which is defined as finite set of places 𝐵, finite set of transi-
tions 𝐸, disjoint from 𝐵, a flow relation 𝐹 ⊆ (𝐵 × 𝐸) ∪ (𝐸 × 𝐵) and an initial marking
𝐶 ⊆ 𝐵 [88].

Next paragraphs are going to describe both transformation process phases. The first one
is the transformation of the workflow model into the operational nets-within-nets model,
second one the transformation of the nets-within-nets model into its interpretable form,
reflecting the target PNOS platform.

4.2.1 From Workflow Nets to Reference Nets

We decided to describe our methods on the sample home automation example. The whole
system functionality is described in the form of workflow model in our approach represented
by the Workflow System depicted in Figure 4.5. There are following elements within the
workflow models - places, transitions, and logical transitions [2], sub-process transitions [2],
connecting arcs, and system nodes borders. Places could be named, when there is a name
on the place it is further considered as an variable name. Transitions could be also named.
The named transition represents calling some particular atomic function of the underlying
PNOS. Logical transitions are: AND-split, AND-join, OR-split, OR-join, and AND/OR-
split, they simplify the model to be easily readable for the non-technically educated domain
experts. Sub-process transitions represent condensed parts of the system, that are described
in another diagram, e.g. in Figure 4.6.
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Figure 4.5: Workflow System net

Figure 4.6: Measure subprocess
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Generating the Infrastructure layer

Workflow model of the intended system is translated into multi-layered Reference Nets
model. Each layer of the Reference Nets model is generated separately using different
production rules. First part of the system, that should be generated from the original
model is the top level Infrastructure layer net, that describes the communication among all
nodes of the system and could be used as a sort of deployment diagram. Infrastructure layer
is a basic layer of the Reference Nets model and serves for the validation purposes and also
as a description of the distribution of target system structure. Basically the main purpose
of Infrastructure layer lies in description of the system nodes and their communication.

Within the Infrastructure layer, each node is represented as a place in which the par-
ticular Platform layer net is located. If there is any communication between nodes, this
communication is represented as a transition between corresponding nodes. For example
model described in Figure 4.5 should be translated into the Infrastructure net described in
Figure 4.7. This layer is produced by the following set of rules.

Let 𝑊𝑆 = (̂︀𝑆, 𝑇𝑊𝑆 , 𝐹𝑊𝑆) be a Workflow System which has to be transformed, and
𝑆𝑁 = (𝑃 𝐼 , 𝑇 𝐼 ,𝑊 𝐼) a System net of EOS representing the Infrastructure layer of the target
elementary object system. This layer should be generated using Algorithm 1.

Algorithm 1
(* construction of the infrastructure net *)
Input: Workflow System, 𝑊𝑆 = (̂︀𝑆, 𝑇𝑊𝑆 , 𝐹𝑊𝑆)
Output: System Net of constructed EOS, 𝑆𝑁 = (𝑃 𝐼 , 𝑇 𝐼 ,𝑊 𝐼)

1. set 𝑃 𝐼 = 𝑇 𝐼 = 𝑊 𝐼 ← ∅
2. for each workflow specification 𝑠 ∈ ̂︀𝑆 insert a place to the system net, 𝑃 𝐼 = {𝑝𝑛𝑎𝑚𝑒(𝑠) | ∀𝑠 ∈̂︀𝑆}, where 𝑛𝑎𝑚𝑒(𝑠) is a naming function copying the name of 𝑠, where names are con-

sidered to be unique, i.e. 𝑛𝑎𝑚𝑒(𝑠𝑖) ̸= 𝑛𝑎𝑚𝑒(𝑠𝑗) ∧ (𝑖 ̸= 𝑗)
3. for each 𝑊𝑆 communication transition unique name, place transition to the resulting

system net, 𝑇 𝐼 = {𝑡𝑛𝑎𝑚𝑒(𝜉(𝑡)) | ∀𝜉(𝑡) ∈ 𝜒(𝑇𝑊𝑆)}, where 𝜒(𝑇𝑊𝑆) ∈ [𝜒(𝑇𝑊𝑆
𝑖 )]𝑖∈<1,...,𝑛>,

and 𝑛𝑎𝑚𝑒(𝜉(𝑡𝑖)) = 𝑛𝑎𝑚𝑒(𝜉(𝑡𝑗)) ∧ (𝑖 ̸= 𝑗)
4. for each workflow specification connect all transitions with corresponding system net

places using double-sided arcs, let 𝑊 𝐼 = {(𝑤𝐼(𝑝𝐼𝑖 , 𝑡
𝐼
𝑖 ), 𝑤

𝐼(𝑡𝐼𝑖 , 𝑝
𝐼
𝑖 )) | ∀𝑝𝐼𝑖 ∈ 𝑃 𝐼 , ∀𝑡𝐼𝑖 ∈

𝑇 𝐼 , ∀𝑝̂︀𝑆
𝑖 ∈ 𝐶

̂︀𝑆 ,∀𝑡𝑊𝑆
𝑖 ∈ 𝑇𝑊𝑆 : 𝑝

̂︀𝑆
𝑖 ∈ ∙𝑡𝑊𝑆

𝑖 ∨ 𝑝
̂︀𝑆
𝑖 ∈ 𝑡𝑊𝑆

𝑖
∙}

5. annotate all arcs with arbitrary names, ∀𝑤𝐼 ∈𝑊 𝐼 : 𝑛𝑛𝑎𝑚𝑒(𝑤𝐼), such that 𝑛𝑛𝑎𝑚𝑒(𝑤𝐼
𝑖 ) ̸=

𝑛𝑛𝑎𝑚𝑒(𝑤𝐼
𝑗 )∧(𝑖 ̸= 𝑗), where 𝑛𝑛𝑎𝑚𝑒(𝑠) is another naming function creating new unique

names
6. place inscriptions to all transitions that invoke the :𝑜𝑢𝑡𝑝𝑢𝑡 up-link in the source node

of the communication and places the result to the :𝑖𝑛𝑝𝑢𝑡 up-link of all the target nodes
of the communication

Each node of the system, placed logically within the Infrastructure net place is con-
sidered to run on some piece of hardware installed with the PNOS. Because PNOS also
consists of the PNVM it is able to interpret Reference Nets translated into the PNBC
pseudo-code. Basic layer of the system, that must be installed on all nodes of the system
is Platform layer, that brings a set of basic meta-operations that enables the node with
other Reference Nets manipulation means - like loading, unloading nets, passing values,
etc. This layer is described in Figure 4.3. After the Platform layer was installed on the
basic PNOS and become interpreted by the PNVM kernel, it is possible to send to it some
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Figure 4.7: System Infrastructure net

other nets to define or modify the node behavior. Basic types of such nets are Processes
and Sub-processes of the target system.

Generating the Process layer

The translation of Processes layer also has its own set of production rules. When trans-
lating the workflow model, there is at least one process net generated for each Workflow
Specification within the the system model. Main process net consists of the set of meta-
operations, that enable the main process to receive and run new nets definitions, and to
pass the received values to running subnets. Input place is used for receiving the data by
: 𝑖𝑛𝑝𝑢𝑡 up-link. Output place serves as an buffer for the : 𝑜𝑢𝑡𝑝𝑢𝑡 up-link. Nets place then
stores all sub-process nets. During the main process life-cycle, each sub-process net is taken
from the nets place, it is started, or served with parameters and started. Started net is
then put back to nets place, where it resides, until the result is produced. When the result
is ready, the net is taken from the temporary place again, the output result is taken, and
the net is then stored again back to the nets place, or it could be stopped. The result of
the net is then propagated according to the logic specified in the main process net. The
example of translating the 𝑔𝑎𝑟𝑑𝑒𝑛 node main process net is shown in Figure 4.8.

All the process nets should be produced according to the following rules. Let 𝑆𝑖 = (𝑄,
𝑡𝑜𝑝, 𝑇 ◇, 𝑚𝑎𝑝) be a Workflow Specification to be transformed and 𝑂𝑁𝑖 = (𝑃𝑃

𝑖 , 𝑇𝑃
𝑖 ,𝑊𝑃

𝑖 ) a
net of the Processes layer of the target system. Following Algorithm 2 should be used for
the translation.

Algorithm 2
(* construction of process net *)
Input: Workflow Specification, 𝑆𝑖 = (𝑄, 𝑡𝑜𝑝, 𝑇 ◇, 𝑚𝑎𝑝)
Output: elementary net of EOS, 𝑂𝑁𝑖 = (𝑃𝑃

𝑖 , 𝑇𝑃
𝑖 ,𝑊𝑃

𝑖 )

1. set 𝑃𝑃
𝑖 = 𝑇𝑃

𝑖 = 𝑊𝑃
𝑖 ← ∅

2. add 𝑛𝑎𝑚𝑒, 𝑛𝑒𝑡𝑠, 𝑖𝑛𝑝𝑢𝑡 and 𝑜𝑢𝑡𝑝𝑢𝑡 places to 𝑃𝑖, 𝑃𝑃
𝑖 = 𝑃𝑖∪{𝑝𝑛𝑎𝑚𝑒, 𝑝𝑛𝑒𝑡𝑠, 𝑝𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑢𝑡𝑝𝑢𝑡}

3. add platform meta-operations to 𝑇𝑖, 𝑇𝑃
𝑖 = 𝑇𝑃

𝑖 ∪{𝑡𝑛𝑎𝑚𝑒, 𝑡𝑖𝑛𝑝𝑢𝑡, 𝑡𝑝𝑎𝑠𝑠, 𝑡𝑐𝑟𝑒𝑎𝑡𝑒, 𝑡𝑟𝑒𝑚𝑜𝑣𝑒, 𝑡𝑜𝑢𝑡𝑝𝑢𝑡}
together with connections to respective places, ∙{𝑡𝑝𝑎𝑠𝑠, 𝑡𝑐𝑟𝑒𝑎𝑡𝑒, 𝑡𝑟𝑒𝑚𝑜𝑣𝑒} = 𝑝𝑖𝑛𝑝𝑢𝑡, {𝑡𝑝𝑎𝑠𝑠, 𝑡𝑐𝑟𝑒𝑎𝑡𝑒}∙ =
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Figure 4.8: Garden Main Process net

𝑝𝑛𝑒𝑡𝑠, ∙𝑡𝑟𝑒𝑚𝑜𝑣𝑒 = 𝑝𝑛𝑒𝑡𝑠,∙𝑡𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑝𝑜𝑢𝑡𝑝𝑢𝑡, ∙{𝑡𝑖𝑛𝑝𝑢𝑡, 𝑡𝑛𝑎𝑚𝑒} = {𝑡𝑖𝑛𝑝𝑢𝑡, 𝑡𝑛𝑎𝑚𝑒}∙ = 𝑝𝑛𝑎𝑚𝑒,
𝑡∙𝑖𝑛𝑝𝑢𝑡 = 𝑝𝑖𝑛𝑝𝑢𝑡

4. for each sub-process of 𝑆𝑖 construct the transition that takes the sub-net token from
the 𝑃𝑛𝑒𝑡𝑠 place and invokes the :𝑠𝑡𝑎𝑟𝑡 up-link, and also a transition that triggers the
:𝑜𝑢𝑡𝑝𝑢𝑡 up-link, ∀𝑡𝑆𝑖 ∈ 𝑇 𝑡𝑜𝑝 : 𝑇𝑃

𝑖 = 𝑇𝑃
𝑖 ∪ {𝑡𝑃𝑖(𝑠𝑡𝑎𝑟𝑡), 𝑡

𝑃
𝑖(𝑜𝑢𝑡𝑝𝑢𝑡)}, where ∙𝑡𝑃𝑖(𝑠𝑡𝑎𝑟𝑡) = 𝑝𝑛𝑒𝑡𝑠 =

𝑡𝑃∙
𝑖(𝑠𝑡𝑎𝑟𝑡) ∧

∙𝑡𝑃𝑖(𝑜𝑢𝑡𝑝𝑢𝑡) = 𝑝𝑛𝑒𝑡𝑠 = 𝑡𝑃∙
𝑖(𝑜𝑢𝑡𝑝𝑢𝑡)

5. connect transitions 𝑡𝑖(𝑠𝑡𝑎𝑟𝑡) and 𝑡𝑖(𝑜𝑢𝑡𝑝𝑢𝑡) with synchronization place by arcs that goes
from 𝑡𝑖(𝑠𝑡𝑎𝑟𝑡) to 𝑡𝑖(𝑜𝑢𝑡𝑝𝑢𝑡), 𝑃𝑃

𝑖 = 𝑃𝑖 ∪ {∀𝑡𝑃𝑖(𝑠𝑡𝑎𝑟𝑡,𝑜𝑢𝑡𝑝𝑢𝑡) ∈ 𝑇𝑃
𝑖 : 𝑝𝑃𝑖 ∈ 𝑃𝑃

𝑖 | 𝑡𝑃∙
𝑖(𝑠𝑡𝑎𝑟𝑡) = 𝑝𝑃𝑖 =

∙𝑡𝑃𝑖(𝑜𝑢𝑡𝑝𝑢𝑡)}
6. add place for each output communication to store the results of the sub-process, 𝑃𝑃

𝑖 =
𝑃𝑃
𝑖 ∪ {𝑝𝑃𝑖(𝑑𝑎𝑡𝑎) | 𝑡

𝑃∙
𝑖(𝑜𝑢𝑡𝑝𝑢𝑡) = 𝑝𝑃𝑖(𝑑𝑎𝑡𝑎)}

7. add the transition that constructs the outgoing message and puts the result into the
output sink, 𝑇𝑃

𝑖 = 𝑇𝑃
𝑖 ∪ {𝑡𝑃𝑖(𝑑𝑎𝑡𝑎) |

∙𝑡𝑃𝑖(𝑑𝑎𝑡𝑎) = 𝑝𝑃𝑖(𝑑𝑎𝑡𝑎) ∧ 𝑡𝑃∙
𝑖 = 𝑝𝑜𝑢𝑡𝑝𝑢𝑡}

8. translate 𝑠𝑝𝑙𝑖𝑡 and 𝑗𝑜𝑖𝑛 transitions according to the rules defined by Aalst [2]
9. omit input places
10. copy remaining places of 𝑡𝑜𝑝 WF net to resulting net, ∀𝑐𝐶 ∈ 𝐶𝑡𝑜𝑝, 𝑐𝐶 ̸∈ 𝑃𝑃

𝑖 : 𝑃𝑃
𝑖 =

𝑃𝑃
𝑖 ∪ 𝑐𝐶

11. copy remaining transitions of 𝑡𝑜𝑝 WF net to resulting net, ∀𝑡𝑇 ∈ 𝑇 𝑡𝑜𝑝, 𝑡𝑇 ̸∈ 𝑇𝑃
𝑖 : 𝑇𝑃

𝑖 =
𝑇𝑃
𝑖 ∪ 𝑡𝑇 , also with corresponding arcs included

12. translate the 𝑠𝑝𝑙𝑖𝑡 and 𝑗𝑜𝑖𝑛 transitions according to rules defined by van der Aalst [2],
see the Figure 3.4

Generating the Sub-process layer

Within the house workflow model, there is a measure sub-process used in 𝑚𝑒𝑡𝑒𝑜 and ℎ𝑜𝑢𝑠𝑒
modules. This sub-process should be translated to the Sub-process layer using Algorithm 3.

Algorithm 3
(* construction of sub-process net *)
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Figure 4.9: Measure Sub-process net

Input: composite tasks of Workflow Specification, 𝑇 ◇𝐶 = {𝑡 ∈ 𝑇 ◇|𝑡 ∈ 𝑚𝑎𝑝}
Output: elementary net of EOS, 𝑂𝑁𝑖 = (𝑃𝑃

𝑖 , 𝑇𝑃
𝑖 ,𝑊𝑃

𝑖 )

1. for all places produce corresponding place within new net,∀𝑐 ∈ 𝐶 : 𝑃𝑃
𝑖 = 𝑃𝑃

𝑖 ∪ 𝑐𝑃𝑐
2. for all transitions produce corresponding transitions, ∀𝑡 ∈ 𝑇 : 𝑇𝑃

𝑖 = 𝑇𝑃
𝑖 ∪ 𝑡𝑃𝑡

3. translate the 𝑠𝑝𝑙𝑖𝑡 and 𝑗𝑜𝑖𝑛 transitions according to rules defined by van der Aalst [2],
see the Figure 3.4

4. add the :𝑠𝑡𝑎𝑟𝑡(), :𝑠𝑡𝑜𝑝(), :𝑜𝑢𝑡𝑝𝑢𝑡(𝑣𝑎𝑙), and :𝑛𝑎𝑚𝑒(𝑛𝑎𝑚𝑒) transitions
5. connect communication places of the sub-task definition to the :𝑜𝑢𝑡𝑝𝑢𝑡 place
6. connect :𝑠𝑡𝑎𝑟𝑡() transition with the 𝑠𝑜𝑢𝑟𝑐𝑒 place of the 𝑇 ◇𝐶 copied to the 𝑂𝑁𝑖

7. connect :𝑜𝑢𝑡𝑝𝑢𝑡(𝑣𝑎𝑙) transition with the 𝑠𝑖𝑛𝑘 place of the 𝑇 ◇𝐶 copied to the 𝑂𝑁𝑖

8. connect 𝑠𝑜𝑢𝑟𝑐𝑒 place with the :𝑠𝑡𝑜𝑝() transition replace the arc between the 𝑠𝑜𝑢𝑟𝑐𝑒
place and first transition with timed double-sided arc (delay value is not included
within the algorithm)

The resulting sub-process net for the measure sub-process is shown on the Figure 4.9.
This net is compliant with previously generated process nets, and could migrate over the
target system, and be instantiated and run according to protocol instructions.

This section described a detailed method for converting the Workflow System to the Ref-
erence Petri Nets system. Next section is going to leverage our experience with mentioned
approach to usage of Domain Specific Language (DSL) instead of formal definitions.

4.3 Domain Specific Languages

The increasing complexity of software systems requires emerging methodologies and tech-
niques for software engineering. In previous section the workflow modeling and formally
defined approach to the interpretable system description has been shown. This section intro-
duces more practically oriented view of the problem, forming part of this thesis introducing
another method of the system specification. This method is also based on model-driven
software engineering (MDSE), which tackles software complexity by employing models as
first-class entities in all development phases. By raising the abstraction level, many de-
tails of the implementation itself could be hidden, which has also the benefit of improving
the communication between technical staff and the domain experts. Among advantages of
MDSE, there are also improved productivity, re-usability and code quality, separation of
concerns as well as easier to react on changes [91].

Obviously, it is hardly possible to expect software engineers to become experts in the
domains which they write software for. The same is true for domain experts: they most
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probably will not understand program code, logic, software modeling or object-orientation.
Software projects which do not succeed in involving the domain experts in the production
line has a higher probability of failure. One of the methods promoted by MDSE to solve
this problem is an introduction of domain specific modeling languages (DSMLs).

Basically, DSMLs are modelling languages which define the structure, semantics and
constraints of models related to a particular application domain [25]. DSMLs facilitate
domain experts with means to model their own systems by offering capacity for high-level
abstraction, user friendliness and tailoring to the problem space. Hence as opposed to
general purpose modeling languages, in DSMLs the concepts and language constructs come
from the particular domain to which the system is dedicated. An important factor for the
success of DSMLs is the existence of good language workbenches such as MetaEdit [43],
MultEcore [60], DPF Workbench [54], USE [30], etc.

A natural application of MDSE and DSML is the specification of home automation
configurations since these systems usually consist of various embedded devices with different
manufacturer models, which makes their communication, configuration, reconfiguration,
etc., a challenging task. Moreover, in most cases the domain experts in home automation
are home owners from whom we should not be expecting technical expertise. A flexible yet
extensible and user-friendly DSML in this regard would be huge gain for both installation
engineers and home owners. One of our contributions in this paper is such a DSML which,
through abstraction, will enable users to configure their broad range of devices without
being bothered with the technicality [79].

4.3.1 DSML Construction

In this section, we will explain details of the DSML which was developed for configuration
of home automation devices. We call it DexML and the example diagram of a house
heating system could be seen in Figure 4.10 [79]. Development of DSMLs is usually an
incremental activity which takes time until it gets mature enough for usage. We followed
several iterations of this procedure:

• We started by iterating the main terms and concepts which are normally used in the
domain of home automation.

• Then we started to specify the relations between these concepts, and assigned some
simple yet intuitive visualization to them.

• We identified the different kinds of relations, e.g. hierarchical containment, reference,
usage, communication, flow of data, etc.

These activities/steps belong to an often debated concept in MDSE, called ”metamod-
elling”. The outcome, which is a meta-model, represents the abstract syntax of the DSML.
A list of the main elements that we have identified in the DSML so far are summarized
below. Note that all the elements are named, i.e. they have an attribute called name,
however, additional attributes may be added later on.

Functional Unit

This element represents the atomic blocks of the DSML. These have to be already predefined
by the manufacturer, engineer, or similar. The user is not allowed to look inside them. Its
inner structure could be represented by any implementation, without affecting the language
itself.
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Figure 4.10: Sample Heating System in DexML

This concept is abstract, and has currently four main subclasses, that later can be
further subclassed, regarding the particular domain of usage:

• Sensor. It represents a device that creates data constantly. These data can be fed
into the system. Hence, a sensor can only have outputs, but no inputs. The sensor
represents unsupervised data source of the system. It means that it reads data directly
from the environment and sends it to the system components and units, without user’s
involvement in that. Examples are temperature sensor, light sensor, motion sensor,
etc. Sample net representing the sensor is shown in Figure 4.13.

• Actuator. It represents a device that perform an action in the external world (not
modeled). It only consumes data, so it can only have inputs. The actuator represents
unsupervised output of the system. It means that it consumes data from the system
and affects the environment directly, according to the information it obtained from
the system. Examples are water pump, light bulb, servos and motors, etc.

• User Input. It represents a device that reads user actions and send them into the
system. Due to this, this kind of device only has outputs into the system. The user
input represents supervised data source of the system. It means it is manipulated
directly by the user and provides the data to the system, according to user’s actions.
Examples are switch, dial knob, slidebars, etc.

• User Output. User output represents supervised data output of the system. It
means it consumes the data from the system itself and serves it directly to the user
providing it with the results of inner system computations.

According to the house heating system example, there are two more specific classes of
units:

• Boiler. Represents specific type of actuator used for heating.

• Valve. Represents specific actuator used for maintaining the amount of liquid media
coming to each room.
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Computational Unit

Computational unit serves for expressing some further arithmetical and/or logical actions
performed over the data. It is a black box that contains textual, imperative C-like expres-
sions that relate the input variables (e.g. a and b) with the output variables (e.g. x). So
far, it is assumed that, for the sake of simplicity, every variable outside the unit is a String.
When they get in, they may be parsed to transform them into Int, Double or Boolean. The
expressions are executed (e.g. 𝑥 = 𝑎+ 𝑏) and the result is then parsed back into a String.
So far, the language for the internal expressions requires:

The assignment operator: =
Arithmetical operators: +, -, *, /, %
Literal values: "a", 8, true
Comparison operators: <, >, <=, >=, ==, !=
Boolean operators: &, |, !
[Maybe] String operators
[Maybe] Variable declarations

Examples of the usage are clearly straightforward - the unit is used whenever we need
to merge or compare some values (e.g. calculating the average, etc.).

Rule Engine

For the house heating system example, there is a necessity to have proper engine for main-
taining the rules the heating should work on. This is type of unit has its own class called
Rule Engine. Rule Engine represents the system unit responsible for maintaining the rules
given by the user and inferring the conclusions based on incoming facts from the system.
It is specific type of the Computational Unit, but with different way of performing the
computations.

The inner functionality of the rule engine module is not defined formally, but it is
considered to be any implementation of rule engine according to the Given-When-Then
representation of rules used in behavioral driven development. Later in the application and
scenarios section, there is a specific example of this component implemented using DRools
library.

Component

Component composes any number of functional units, computational units, and compo-
nents, that together form a functional or logical unit. They follow a composite pattern,
and can have an arbitrary number of inputs and outputs. By consensus, their input and
outputs have to be mapped (i.e. connected in the model) with the corresponding internal
component input or output. Component is represented by the unit node with platform
logic installed on it. The particular net representing component is depicted in Figure 4.11.

Data Flow

Data flows are used for transferring the data from source units and components to target
units and components. Data flow starts from the source unit or component output port
and goes into the input port of the target unit or component. Data flow may be also
annotated with the data transportation means description, like the protocol used for the
data transferring. It is important to notice that a data flow can be disconnected in one
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of the ends (ports, see below), but not in both. Also, two data flows can NOT share a
common end (port).

The meaning of a data flow without an input end is that the information is coming from
the outer world (i.e. a web service). In a similar fashion, a loose output end means that
the information is leaving the system and not relevant for this model anymore.

Input Port

Input port represents the entry point of the component or unit and needs to be annotated
with input variable name. The number of input ports available vary for every particular
type and subtype.

Output Port

Output port represents the coming-out point of the component or unit and needs to be
annotated with output variable name. The number of output ports available vary for every
particular type and subtype.

4.3.2 Transformation to RPNs

The main step of the target system construction is the transformation of DexML DSL model
into a set of RPN nets, the same way as it is done with Workflow nets. The transformation is
preformed at the level of source XML documents via XSLT. The example of transformation
rule is shown in listed template.

First step of the transformation is constructing the Infrastructure layer serving for the
purposes of decomposing the system to the set of interacting nodes. For each node, there is
a place within the Infrastructure layer. Communication transitions are generated according
to the paths within the DSL model. The example of the infrastructure net could be found
in Figure 4.7.

Second part of the resulting set of nets is partially generic and covers a set of stan-
dard operations covered by each node of the system. Among these operations, the most
important is the possibility to install other nets within the node. More details about this
layer functionality could be found in our previous work, e.g. [75]. In this example this layer
is not generated, but we are using the same one for each node, changing just the specific
functionality parts and node nets installation. The example of the system node net could
be found in Figure 4.11. The node logic is separated into separate net, see Appendix B.2.
This layer corresponds to the process layer defined in [77], [79].

Next part of the system configuration is the set of communication wrapper nets used
for routing data and commands through the target system. Each wrapper net represents
the unit within the node and wraps the functionality underneath. The functionality of
the unit itself could be represented as another net, or be directly called within the PNOS
(underlying operating system). The example of the communication wrapper net could be
found in Figure 4.12. It reflects the thermostat1 unit within the Hall and stairway node
in House 1 in our running example. This layer corresponds to the subprocess layer defined
in [77].

The unit functionality itself, represented as a Petri net, could be found in Figure 4.13.
It depicts the temperature sensor net installed with proper wrapper (Figure 4.12) in Hall
and stairway node.
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Figure 4.11: System node

Figure 4.12: Example of simple communication wrapper net

Figure 4.13: Temperature Sensor net
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� �
1 (Nmeasure

(measure/wind)
3 (cond/wind/cst/value/name)

(Ustart()()(P1(B1)(V1)))
5 (Ustop()()(O1(B1)(V1)))

(Uoutput(val)()(P4(B1)(V1)))
7 (Uname(name)()(P5(B1)(V1)))

(I(O5(B1)(S1)))
9 (Tread(cond/raw)

(P1(B1)(V1))
11 (A(:(V2)(r(S2))))

(O2(B1)(V2)))
13 (Tconst(cst)

(A(:(V1)(r(S2))))
15 (O2(B1)(V1)))

(Tmultiply(raw/cst/val)
17 (P2(B1)(V1))

(P3(B1)(V2))
19 (A(:(V2)(/(*(V1)(V2))(I10000))))

(O4(B1)(V2))))
 	
Listing 4.2: Simple net in PNBC

Following part of the development process comprises of target system code generation.
In our approach, each layer of the system should be compiled to target code independently.
All generated levels communicate with each other using up-links and down-links.

4.3.3 Byte Code Generation

The only part of the system, which is implemented natively, is the PNOS kernel, including
PNVM [75]. The example of bytecode is shown in listing 4.2. It represents the measure net
(depicted in Figure 4.9). In fact, it is a human-readable version of the bytecode. In this
representation, numbers are represented as text and also some spaces and line breaks are
added. This means that the contents of the code memory is a bit more condensed. Each
byte of the code is either an instruction for PNVM, or data.

It is a text representation of the bytecode. In this representation, numbers are repre-
sented as a text and also some spaces and line breaks are added. This means that the actual
contents of the code memory is a bit more condensed. Each byte of the code is either an
instruction for PNVM, or a data.

The bytecode contains symbols (strings) definition and places declaration, followed by
a code for each uplink (U), initialization (I), and each transition (T). Each transition or
uplink description consists of preconditions (P), guard (G), action (A) postconditions (O),
and delayed postconditions (Y) in a form of instructions for the PNVM. Transition pre-
and post-conditions are specified as tuples containing a data and a place index. Action
or guard is specified as a primitive operation call in a LISP-like notation, i.e. arguments
can be also function calls. Each data element is a tuple consisting of a type (B - byte, I -
integer, S - symbol/string index, V - variable index) and a value. Variables are declared as
part of each transition code. Uplinks have parameters declaration. Initialization contains
only postconditions.

Names of transitions, places and variables in the bytecode are not necessary for code
execution. The are used for logging and debugging purposes only. Primitive operations in
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the example are identified as !, |,=, :, 𝑜. In general, they implement arithmetic, logic, string,
and simple input/output operations.

The important feature of the system is its reconfigurability. It is based on operations
of the operating system that are designated for manipulations with nets (in the form of
PNBC) and their instances. Nets could be sent to a node as a part of the command for
its installation. The command is executed by Platform net. Using other commands, the
platform can instantiate a net, pass a command to it, destroy a net instance and unload a
net template - see Figure 4.3. The PNOS Platform functionality is described in more detail
in [76], [75], [77]. The textual version of the DSML together with generated Reference Nets
could be seen in B.
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Chapter 5

Implementation Details

This chapter describes implementation details of presented design of the solution. At first
it introduces all the hardware constraints that have been defined within thesis goals in more
detail. Then it goes more deeply into the code generation and interpretation of generated
target system implementation.

5.1 Hardware Infrastructure

In this section we are going to briefly describe the hardware constraints defined as main
focus considerations for the thesis itself. From the point of view of distributed embedded
control systems, there are plenty of aspects that should be taken into account. First of all
of those is the latency, i.e. the time it takes to the system reaction to some impulse. Second
one is the rate of data processing, e.g. whether it is necessary to process some data each
hour or there is a demand to do that at 4000 Hz frequency.

Particularly when dealing with home automation problems, it is worth of spending some
more time while having more flexibility regarding the dynamic reconfigurability compared
to more rigid, but fully reliable systems as car or boat driving software. For example for
gathering the high-frequency data the typical HW equipment on an Anchor Handling Tug
Supply vessel (AHTS) with Dynamic Positioning (DP) features is an industrial PC with
Intel Atom N270 fanless configurable controller with 2 PCI slots and 2GB memory from
ADLINK Technology.

On the other hand, for the humidity, temperature, gases and other environmental vari-
ables on very low frequency measurement, let’s say 10 Hz the ATMega chip typically in-
stalled on Arduino or Libelium devices will sufficiently do. The difference here is quite
huge and it is quite easy to imagine any device half way through this spectrum. In our
work, we would like to cover all those device with the same approach. To be able do this
we needed to cover the most weak devices at the beginning. Next section will describe
particular examples of devices in more detail.

5.1.1 Devices With Limited Resources

For the testing purposes we used the Arduino hardware platform. Particularly the Arduino
Fio enabled with the XBee ZigBee implementation for the data gathering. More powerful
module intended for the simplest computation on the level of basic arithmetic and logic
operations is represented by the Arduino MEGA ADK board. The data gathering unit,
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serving as the IoT agent part of planned architecture is the Raspberry Pi device and finally
the External module is represented by cloud application.

The Arduino Fio is enabled with the ATmega328P chip that introduces some impor-
tant restrictions to the implementation. The main restriction is the 2kB SRAM memory
that makes extensive use of direct Petri Nets interpretation very difficult. Because of these
limitations, as well as because of a recursive characteristics of the Reference Nets interpre-
tation algorithm, this part of the hardware infrastructure is intended just for the one-level
Reference Nets algorithms.

Because the Arduino MEGA ADK is equipped with more SRAM, 8kB respective, and
because it could be compared with previously mentioned Libelium motes, we decided to
implement the interpretation algorithm called Petri Nets Virtual Machine (PNVM) for this
platform as well. Here it is possible to interpret multi-level Petri Nets algorithms, but only
to the certain level of nesting. This means two levels here.

The Raspberry Pi platform with 500 MB of RAM is then already suitable to run arbi-
trarily nested Reference Petri Nets and serve therefore for more complex computations. The
architecture itself takes also into account the idea, that some more complex computations
could be performed within cloud environment, where there are regarding the computational
power and memory consumption almost unlimited resources. Whether necessary, here the
most computationally intensive parts of the distributed algorithm should then take the
place.

As all the platforms differ regarding microprocessor instruction sets and because of the
original idea of dynamic reconfigurability the decision to use the interpreted language and
relevant virtual machine intended to interpret the language was made.

Next section slightly opens one of the most important results achieved during this thesis
research, because it takes into account the industry recent achievements and important
point of view.

5.1.2 Code generation

The main goal of generating the system implementation from its formal specification is to
reduce or avoid usual errors produced by programmers. Automatically produced code also
aims to run independently to the platform that produced it, which means that the net is
not running within the environment that produced it (e.g. simulator). That’s in opposite
to the classical Petri Nets interpretation, which reduces the usage of Petri net specification
only to the simulation environment. Resulting generated and compiled code is used as a
prototype, and is intended e.g. for evaluation of final system, or the evaluation of different
implementation strategies. Usually there is a need for fast, automatic, and low-cost code
generation, because many different scenarios should be tested [29].

Considering the distributed system as a target platform, the decentralized approach
of code generation takes place here. Because of the overhead introduced by the conflict
management, nets must be structured properly into the subnets. So far our approach
within the segmentation deals with five abstraction layers. Regarding the code generation,
each layer is compiled to target code independently. There are generally two possibilities:

• target code is a native code of controller processor,

• target code is a bytecode which is to be interpreted by virtual machine.

The only difference is that levels realized by interpreted bytecode are more flexible
and dynamically changeable than the compiled ones. Each modification of the compiled
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level needs a heavy compiler and (possibly) over-the-air reprogramming of the unit, which
consumes lots of energy. On the other hand, the bytecode makes it possible to be sent to
the system as data. It thus allows for very high level of dynamic reconfigurability in the
system run time. E.g. when a new version of the measure subprocess is produced, then
the corresponding Reference Net is derived and proper bytecode is generated. Then the
new version of the measure net bytecode is sent to the relevant node, and installed by its
platform net.

Translation of Petri Nets to the target platform code assumes a set of simplifications
within the Petri Nets formalism semantics that were necessary for the compliance with
suggested target platform. Among them is the statically defined set of types, that could be
used as markings, place capacity fixed to one, primitive sequential selection of transitions
firing. Reducing those limitations will be the main concern of our future research.

Code generation example could be demonstrated on a simple sub-process net serving
as controller translating the temperature to the gas level, guarded by the simple rule for
minimum temperature validation, shown in Figure 5.1.

Figure 5.1: Example of source sub-process net

The compiled version of the generated code for this sub-process is listed in listing 5.1. It
reflects the typical structure of the Arduino code, so there are two main methods setup()
and loop(). The first one’s purpose is to initialize variables and hardware and the second
one’s to perform the infinite loop of compiled instructions.

The model is actually translated into the C code from PNML representation of Reference
Nets model generated by Renew simulator [51]. It is subsequently compiled and deployed
on the Arduino platform. The deployment is done Over The Air (OTA) by sending the
compiled hex file to the Node, which installs the platform. Processes are also compiled and
deployed as a part of the Platform. This code could be also generated as the interpretable
version, but on the grounds of very primitive and low-performance HW we decided to use
the compilation variant, because it reduces the CPU usage and memory footprint.

The interpretable code generation makes it possible to send the code over the model to
its destination, as well as to change it on the fly, or run it on different types of devices. The
example of bytecode presented in a human readable form based on the Lisp syntax used in
our first solution follows in the listing 5.2. It represents simple sub-process net that reads
data from sensor and produces relevant command for the underlying platform. This is the
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� �
#include <WString.h>

2 #include "types.h"
#include "PNOS.h"

4

Place place2;
6 Place place21;

Place place27;
8

String cmd = "";
10 int par = 0;

String key = "";
12 int val = 0;

14 void setup() {};

16 void receive(String &key, int &val) {
store(place2, new Token(key,val));

18 };

20 void trans5() {
if(marked(place2)) {

22 Token *t1 = load(place2);
if(guardEquals(t1->getKey(),"tIn")) {

24 store(place21, new Token(t1->getVal()));};};
};

26

void trans24() {
28 if(marked(place21)) {

Token *t1 = load(place21);
30 if(guardLessThan(t1->getVal(),21)) {

store(place27, new Token("gas",50));};};
32 };

34 void send(String &cmd, int &par) {
if(marked(place27)) {

36 Token *t1 = load(place27);
cmd=t1->getKey();

38 par=t1->getVal();};
};

40

void loop() {
42 trans5();

trans24();
44 performInputAndOutput();

};
 	
Listing 5.1: Generated code example
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� �
1 ("tIn" "gas")(p1 p2 p3)(

(u :receive (key val)()()()()((1 (1 2))))
3 (t t1 (key val)((1 (1 2)))(=vs 1 1)()((2 2)))

(t t2 (val cmd par)((2 1))(<=vc 1 21)
5 ((:=s 2 2)(:=c 3 50))((2 (2 3))))

(u :send (cmd par) ()((3 (1 2)))()()()))
 	
Listing 5.2: Simple Protocol net example

first version of the bytecode we developed. In next sections we are going to present the
most recent version of the bytecode and its syntax and semantics.

Not all parts of the system are at this moment generated to the code or bytecode.
Infrastructure layer is actually translated into the installation sequence for the system
administrator who is able to install the hardware modules on specific places within the
house and provide it with equipment needed for establishing the communication paths.
That means to install the Node layer of the system. Because all the data travels to the
nodes via the ZigBee mesh, the node net has to decide, whether the data represent some
net (agent, protocol) to be processed, or it is a compiled binary code to be installed to the
target platform. All the remaining components necessary for the system bootstrap, such
as Platform, Agent and Protocol are then sent over the network by the External Module.

5.2 Petri Nets Operating System (PNOS)
During the development of the solution the concept of Operation System-Like environment
for the Reference Petri Nets interpretation and manipulation emerged. The basic principle
was coined as a Petri Nets Operating System (PNOS) which means, that this part of the
system should represent the basic embedded operating system principles - provide means for
input and output of I/O data, communication tools, multiprocessing support and memory
management. In following sections this concept will be described in more detail. The
aspects of the PNOS functionality, including PNVM and PNBC, will be demonstrated by
example.

5.2.1 Application example

A simple example of an application is depicted in Figure 5.2. It represents a blinking LED
controller. The application is responsible for controlling the status of the LED (on/of-
f/blinking). Relevant bytecode is shown in listing 5.3.� �

(NledControl
2 ("on","ok","off","blink","setpin")

(idle,command,done,state,blinker,pin,addr)
4 (Uinput(x)(a,c)

(P0,1,I1)
6 (P6,1,V1)

(G(=(h(V0))(V1)))
8 (A(:(V2)(t(V0))))

(O6,1,V1)
10 (O1,1,V2))

(Uoutput(y)()
12 (P2,1,V0)

(O0,1,I1))
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Figure 5.2: Application net

14 (I(O0,1,I1)
(O3,1,I0)

16 (O5,1,I3)
(O6,1,I0))

18 (Ton(c,p,x)
(P1,1,V0)

20 (P3,1,V2)
(P5,1,V1)

22 (G(=(h(V0))(S0)))
(A(o(V1)(I1)))

24 (O2,1,S1)
(O3,1,I1)

26 (O5,1,V1))
(Toff(c,p,x)

28 (P1,1,V0)
(P3,1,V2)

30 (P5,1,V1)
(G(=(h(V0))(S2)))

32 (A(o(V1)(I0)))
(O3,1,I0)

34 (O5,1,V1)
(O2,1,S1))

36 (Tblink(c,x,n)
(P1,1,V0)

38 (P3,1,V1)
(G(=(h(V0))(S3)))

40 (G(<(V1)(I2)))
(A(:(V2)(+(I2)(%(V1)(I2)))))

42 (O2,1,S1)
(Y4,1,I1,500)

44 (O3,1,V2))
(Tstopbl(s,n,b)

46 (P3,1,V0)
(P4,1,V2)
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48 (G(<(V0)(I2)))
(A(:(V1)(%(V0)(I2))))

50 (O3,1,V1))
(Tblinker(c,r,m,n,v,p)

52 (P4,1,I1)
(P3,1,V0)

54 (P5,1,V5)
(G(>(V0)(I1)))

56 (A(:(V1)(+(V0)(I1))))
(A(:(V2)(%(V1)(I2))))

58 (A(:(V3)(+(I2)(V2))))
(A(:(V4)(%(V3)(I2))))

60 (A(o(V5)(V4)))
(O5,1,V5)

62 (O3,1,V3)
(Y4,1,I1,500))

64 (Tsetpin(c,n,p)
(P1,1,V0)

66 (P5,1,V2)
(G(=(h(V0))(S4)))

68 (G(ii(:(V1)(#(V0)(I1)))))
(O5,1,V1)

70 (O2,1,S1))
)
 	

Listing 5.3: Translated simple application net example

5.2.2 Primitive Operations

In guards and actions of transitions it is possible to call primitive operations of the un-
derlying PNOS. The example of using primitive operations could be seen in Figure 4.9.
These operations are available in the Reference Nets inscription language in the form of
PNOS.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 inscription, e.g. the PNOS.readPort(”solar1“) reads data from virtual
port named solar1, then PNOS.writePort(”pump1“,100) writes the value to the virtual
port named pump1, and PNOS.h(m) gets first space-separated substring from string 𝑚, as
well as PNOS.t(m) returns the rest of the string 𝑚 without the first substring.

Those primitive operations are directly mapped to the corresponding bytecode. We
use a subset of the Reference Nets inscription language here. It works only on integers
and strings as values with corresponding set of basic operations. Primitive operations are
translated into native calls of predefined set of operations by the bytecode interpreter. It is
considered for the future extensions of the virtual machine to use the OSGi implementation
to enable the interpreter with the possibility to dynamically extend its operations set.

5.2.3 Application installation, execution, and uninstallation

Application code could be installed to a system node using the protocol message structured
as defined in listing 5.4.� �

1 <node address> load <application bytecode> blink-app
 	
Listing 5.4: Load example

This message loads the application bytecode (shown in previous subsection) to the node
identified by name <node address> and puts it into the template set as blink-app. Once
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the code of the net template is loaded to the code memory of the PNVM, it is indexed in
order to allow PNVM to quickly access particular parts of the bytecode, especially places
declaration, the uplinks, and the transitions code. The application can be activated using
the message in listing 5.5.� �

1 <node address> create blink-app blinker1
 	
Listing 5.5: Create example

It instantiates the net template blink-app and gives the instance name blinker1.
Once the blink-app is instantiated, a specific part of PNVM runtime memory is allocated
according to the number of places of the net. At the same time, the net transitions are
scheduled for execution. Execution of a transition consists of reading its bytecode and
attempting to satisfy all preconditions, downlinks and guards using a recursive backtracking
algorithm conform with the Reference Nets semantics. Places may contain all data types
which can be specified in bytecode, plus a reference to a net instance. PNVM also maintains
a calendar for delayed postconditions. Main execution loop of the PNVM consists of testing
and execution of all transitions in all net instances, performing buffered serial input/output
(data are exchanged by calling the platform’s :input and :output uplinks), and execution of
previously scheduled delayed postconditions. In the case of no change in the object memory
during last iteration of the main loop, PNVM goes into the sleep state. It is woken up when
hardware input occurs, or at the time of the next scheduled event in the calendar.

The complete status of the execution of the application instance together with the
status of the OS including input/output buffers can be dumped using dump message: <node
address> dump.

As a response, the OS of the node sends the complete dump of the code memory, runtime
object memory, input/output serial line buffers and input/output ports. It is possible to
communicate with the running application using a message <node address> pass, followed
by a command intended to be processed within the particular application, i.e. on, off, or
blink. In this simple example, we omitted name of application (it does not check it), but
in more complex situations, it would be necessary to use names, of course. The running
application can be stopped and its template can be uninstalled using messages in listing
5.6.� �

1 <node address> destroy blinker1
<node address> unload blink-app
 	

Listing 5.6: Simple commands for the net unloading

The main operating principle of resulting system could be described on the tasks of
system construction - installation, and its reconfiguration. The installation of the system
starts with placing proper nodes to the target environment. Each node should be installed
with the PNOS, PNVM and basic platform layer. The physical communication between
nodes using different wired or wireless communication technologies should be established.
In our running example the scenario should start with installing the processes for each
Workflow Specification and then sending particular sub-processes nets to relevant nodes.� �

meteo load measure2 measure-wind
2 meteo create mw1 measure-wind

meteo load measure-anemo
4 meteo create ma1 measure-anemo

...
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6 meteo start
meteo pass mw1 start

8 meteo pass ma1 start
...
 	

Listing 5.7: Communication protocol example

The other important part of system functionality is its reconfiguration. It should be
performed on each defined level of the system architecture. Basically, the node firmware
including the PNOS and PNVM could be reprogrammed and rebuilt and then sent over
the air to the particular node. The Platform net could be modified and also sent to the
particular node, but usually we do not expect this layer to be modified often. The next level
of reconfiguration is the processes layer. All processes of the node could be changed and
then passed to its platform to change the behavior of the node. Finally all the sub-processes
nets could be modified and sent to particular nodes processes that reinstall them within
the nets place. The example of the reconfiguration process follows.� �

1 meteo pass mw1 stop
meteo destroy mw1

3 meteo unload measure-wind
meteo load measure-wind

5 meteo create mw1 measure-wind
meteo pass mw1 start

7 ...
 	
Listing 5.8: Example of reconfiguration commands

There is a plan in future to add the pause and resume operations to the platform, to be
able to pause any particular net instance, change its template and resume then. For that it
is necessary to invent, how to represent the pausing and resuming conditions in Petri Nets,
that is not part of this material.

5.3 Petri Nets Byte Code (PNBC)
Part of the system specification is described as PNBC (Petri Nets Byte Code). PNBC was
developed to solve the key problem of the thesis, which is interpretation of the RPN models
within devices with limited resources.

The language itself uses a set of special characters to express the beginning and end of
some structure. Following text will explain the language elements as well as its grammar.
The interpretation details follows.

5.3.1 Language Basics Specification

This section defines the basic language specifications, that are defined as follows:

• simple parenthesis ’(’ a ’)’ characters - works as an separation characters for
specifying some particular element, the parenthesis is directly followed by the char-
acter defining the type of the element

• comma character ’,’ - serves as a name, symbols, and parameters separator.

• double quote character ’”’ - serves for defining the beginning and end of a string
constant. It could be escaped by double backslash ’∖∖’.
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From the lexical point of view, there is also important fact, that white spaces are
completely ignored and serve just for the description maintainer to enable for better read-
ability. Also no escape characters are allowed. The description of the net is also strictly
case-sensitive.

All the names used within the net description are case-sensitive and must comply with
following regular expression:� �

1 [a-zA-Z][a-zA-Z0-9]*
 	
Listing 5.9: Regular expression for naming restrictions

5.3.2 PNBC Part Types

Following network parts were defined together with specific symbols that defines the type
of each part. Characters directly follow the opening bracket. Specific symbols were defined
as follows:

N element describing the net template, it is the root element of the description,

T transition of the net, together with its complete definition,

U so called uplink - it is the variant of the transition that leverages the same RPNs feature;
it is also considered, that there is maximum one uplink within one transition, therefore
the uplink is considered to be a specific type of transition

I is the initialization transition that should not contain any conditional expressions,

P taking the tokens from a place — works also as a condition of the transition execution,

G guard function — contains an expression that should be evaluated as true or false and
thus enables or disables for the transition execution,

A specific action performed within the transition execution; it is defined as an expression,

D so called downlink of the transmission channel - initializes the synchronous communica-
tion with uplink of another net,

O placing the tokens to some specific place,

Y placing tokens with a specific delay,

I integer — element containing number value in decimal numeral system within interval
−215 ≤ 𝑖 ≤ 215,

S symbol identifier — symbol is indexed by number value in decimal system within the
interval 0 ≤ 𝑖 ≤ 216,

V variable identifier — it has same restrictions as S.

5.3.3 PNBC Grammar

The PNBC grammar rules follow. Non-terminal symbols are included in sharp brackets <>.
The symbol ’:’ means the translation of non/terminal symbol to some of the terminal or
non-terminal symbols separated by the ’|’ symbol, and finished with ’;’ symbol. Symbol
𝜖 defines the empty string. Initial non/terminal symbol of the grammar will be <net>.
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� �
1 <net>

: (N <name> (<symbols>) (<names>) <uplinks> <init> <transitions>)
3 ;
 	

Listing 5.10: Names

� �
1 <names>

: <_names> | 𝜖
3 ;

<_names>
5 : <name>, <_names> | <name>

;
 	
Listing 5.11: Names

Root Element The basic structure of the root element is defined in the listing 5.10.
After the symbol N, expressing the beginning of the net description, follows the name

of the net and after that the list of symbols and the list of names. Uplink channels are
described in next part of the expression. The only initialization transition follows, and then
a list of all the other transitions.

Names and Symbols Names definitions are described in the listing 5.11.
The string <name> is the name of selected element, complying with following regular

expression 5.9. Elements of the list of names are separated with selected symbol ’,’.
Symbols definitions are described in the listing 5.12.

<string> is a literal array delimited by double quotes. It should contain just printable
characters. <integer> is a decimal number following the regular expression defined as 5.13.
<tuple> is meant as 𝑛-tuple containing 𝑛 different symbols. The same is with an <array>
element.

There could be defined from 0 to 𝑛 of uplink transitions. Each of those contains the
name, list of arguments names, and the list of names of local variables, followed by the
definition of transition represented with the symbol <code>.

Transitions Details of the transition elements could be found in the listing 5.14.
Uplinks are described within the listing 5.15.
There could be any number of <uplinks>. The <init> transition has no name, because

it is the only one within net. It also does not have any arguments or local variables. It

� �
<symbols> : <items> ;

2 <symbol>
: <string> | <number> | <tuple> | <array>

4 ;
<tuple> : [ <items> ] ;

6 <array> : { <items> } ;
<items> : <_items> | 𝜖 ;

8 <_items> : <symbol>, <_items> | <symbol> ;
 	
Listing 5.12: Symbols

62



� �
[-+](0|[1-9][0-9]*)
 	

Listing 5.13: Regular expression for writing numbers

� �
1 <init>

: (I (<nofailcode>))
3 ;

<transitions>
5 : <transition> <transitions>

| 𝜖
7 ;

<transition>
9 : (T <name> (<names>) <code>)

;
 	
Listing 5.14: Transitions elements

contains a code that must not fail — it has no conditions. On the other hand, the same as
with uplinks, there could be any number of common transitions.

Transitions Code Blocks Transition code blocks are defined in 5.16. The order of blocks
affects the the performance of transitions execution. It should be taken into account when
defining the transition code. The differentiation of <conditionals> and <nofailcode> is
important, because the initialization part should not contain any conditionals.

Expression ordering is important, because they are executed according to that. Inputs
and outputs of the transition then should not be defined before the conditions check.

Code P removes from the place <placeid> <amount> of value <value>.
Code C creates a new instance of the net, which name is defined by the <expression>and

places it to the particular place <placeid>.
Code D calls the particular uplink of another net with <name>.
Code O places <amount> of tokens with value <value> to the particular place <placeid>.
Code Y is similar to the previous one, with the difference that the last <amount> defines

the time interval of the placing delay.

Variables and symbol values Rules for variables and symbols values are defined in
Listing 5.17. <posinteger> is non-terminal token representing a number within interval
< 0, 216 − 1 >. Non-terminals ending with id represents the index in particular array of
names. In first case (see 5.17) it is an index into the array of places names, in the second
into the array of symbols, and in the third into the array of names of local variables.

� �
<uplinks>

2 : <uplink> <uplinks> | <uplinks>
;

4 <uplink>
: (U <name> (<names>) (<names>) <code>)

6 ;
 	
Listing 5.15: Uplinks
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� �
<code>

2 : <conditionals> <nofailcode> ;
<conditionals>

4 : (P <placeid>, <amount>, <value>) <conditionals>
| (G <expression>) <conditionals>

6 | (D <name>, <variableid>, <values>) <conditionals>
| 𝜖

8 ;
<nofailcode>

10 : (A <expression>) <nofailcode>
| (O <placeid>, <amount>, <value>) <nofailcode>

12 | (Y <placeid>, <amount>, <value>, <time>) <nofailcode>
| 𝜖

14 ;
 	
Listing 5.16: Rules for the transitions code blocks

� �
<amount> : <posinteger> ;

2 <variable> : V <variableid> ;

4 <value>
: I <integer>

6 | <variable>
| S <symbolid>

8 ;

10 <values> : <_values> | 𝜖 ;
<_values>

12 : <value>, <_values>
| <value>

14 ;

16 <placeid> : <posinteger> ;
<symbolid> : <posinteger> ;

18 <variableid> : <posinteger> ;

20 <variables> : <_variables> | 𝜖 ;
<_variables>

22 : <variableid>, <_variables>
| <variableid>

24 ;
 	
Listing 5.17: Rules for variable and symbol values
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� �
<expression>

2 : (<binaryop> <expression> <expression>)
| (<unaryop> <expression>)

4 | (<nularyop>)
| (<value>)

6 ;

8 <nularyop>
: ns | na | nt | d ;

10

<unaryop>
12 : ! | i | h | t | l | c ;


 	
Listing 5.18: Expressions rules

Expressions Basic expressions are defined within the listing 5.18.

Operators The meaning of all operators is defined in the table 5.1.

5.4 Petri Nets Virtual Machine (PNVM)

This part of the work describes the BNBC interpreter called PNVM that is part of the
PNOS and is responsible for running the RPN nets on each node of the system. Because
the memory management is critical when writing the software for embedded systems, while
interpreting the PNBC on devices with very limited resources, it was necessary to keep
the memory management under control to the maximum level possible. Therefore the
dynamic memory allocation must have been avoided and specific memory management
targeted directly to the Petri Nets management was developed. This part of the work
is partially based based on work of one of our students, who translated original PNVM
previously implemented in Smalltalk into the C code [64]. The translation was performed
using generated Smalltalk Slang sources, that are equivalent to the C language semantics, so
they could be easily transferred into C program. On the other hand, this way of constructing
the virtual machine was abandoned, because the post-processing of generated code appeared
as non-trivial. Also the memory management on devices with limited resources is much
different from the Smalltalk approach. So only the initial implementation of the PNVM
was held using this transformation, but further development is conducted now directly in
C language. Following section describes the virtual machine functionality in more detail.

5.4.1 PNVM Parts

The part of the PNOS that is responsible of PNBC interpretation was defined as Petri
Nets Virtual Machine (PNVM). The PNVM is a C implementation of the RPNs interpret
developed previously in Smalltalk. Among the main differences belongs the memory man-
agement, that will be discussed in more detail in next parts of the thesis. First of all we
need to stat that the PNVM needs to maintain a certain set of types of data objects [64]:

• Nets templates. Consists of names of places, transitions, variables, and transitions
expressions,
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Operator Arity Semantics
ns 0 create empty string
na 0 create empty array
nt 0 create empty n-tuple
d 0 memory dump (for debugging purposes)
! 1 logic negation

iv 1 test for valid value parameter
ii 1 test for integer parameter
is 1 test for string parameter
it 1 test fir n-tuple parameter
ia 1 test for array parameter
in 1 test for net instance parameter
h 1 head — first item in n-tuple
t 1 tail — the rest of the n-tuple
p 1 input from the pin
s 1 send value
l 1 load a net template
i 1 load an instance of net
c 1 create an instance of net
u 1 unload the template
+ 2 addition of two numbers
- 2 subtraction of two numbers
* 2 multiplication of two numbers

2 division of two numbers
% 2 the rest after the division
& 2 logical AND
| 2 logical OR
^ 2 exclusive disjunction (XOR)
= 2 equality test
< 2 less than test
> 2 greater than test
# 2 picking an item with defined index from an array
a 2 adding an item at the end of an array
, 2 strings concatenation
o 2 writing the value to the output
: 2 value assignment

Table 5.1: Expressions Operators Semantics

• Net instances. Represented as sequences of places instances.

• Instances places. Pairs of token values, or references, together with number of these
present in place.

• Strings. Keeping all the string objects in Lightweight Pattern-like style.

• 𝑛-tuples. Keeping tuple objects.

• Arrays. Containing used array objects.
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• Events. Representing delayed placing of tokens to places. They are stored within a
Calendar.

When dealing with memory allocation, there is a strong demand on keeping all the
values in block of the same size. Because not all the defined elements could be stored in
blocks of the same size, they will be spread across the memory pointing from block to block
in each of its parts.

Header and Tail of the Block

For that purpose the concept of header and tail of the block were added. The header consist
of following parts [64]:

• signature defines the value type. It is a constant of enumeration type.

• reference counter maintains the number of references to this object.

• number of items defines a number of stored or referenced items, therefore the travers-
ing is not necessary to find the element length.

The tail structure for all blocks is the same. It contains only values of items and reference
to another block. New blocks of the memory are allocated at the moment of allocation of
the last part of the previous block. When releasing the items, the maximum number of
blocks necessary is checked. If there are spare blocks, they are removed.

5.4.2 The Interpret

The first version of interpret was generated from Smalltalk sources. Later the interpret
construction had undergo some more improvements that were not propagated into the
original implementation yet. This is because of the level of complexity and amount of work
this would take. The interpret operates on object memory interfaces defined previously. It
communicates with its neighborhood by consuming and sending messages using input and
output communication buffers. The interpretation algorithm is divided into so called steps.
Each step is a finite set of elementary operations performed within the simulation. The
state of the interpret is defined by a sets of:

• stored nets templates

• present calendar events

• input buffer state

• output buffer state

The state of the net instance is defined as a state of all its places as well as states of
all referenced objects. Whenever there is a change within the interpret state, the variable
nothingChanged is changed.

67



Elementary Operations

The sequence of elementary operations within each step is defined as follows:

1. releasing any change from previous step — nothingChanged := true.

2. input and output processing

3. time update

4. processing of events defined within the calendar

5. evaluation of fireability of all the transitions in all nets instances

6. garbage collection

Input and Output Processing This part of the interpret state processing is preformed
as calling the downlink platform:input(x) for each of received messages stored in input
buffer. The same way the platform:output(x) is called once, so the value of any outgoing
value of the platform is bounded to the 𝑥 variable and stored into the output buffer.

Time Update The simulation time is stored within the variable currentTime and it is
updated only once during the simulation step, particularly right before the execution of
planned events.

Events Execution All the event that execution time is older than currentTime are
extracted from the calendar and their token values are put into relevant places. All events
are processed in descending order according to the priority, while on the other hand the
particular time of placing the values into places does not affect the whole computation at
all.

Garbage Collection During the transitions execution there could be an operation unload
called. If that happen, it is necessary to clean the memory and all the blocks following the
removed template is moved according to the template size. At the same moment, the table
of templates is also shifted the same way.

Transitions Execution

Transition statements are executed by recursive nesting of function calls until any failure
appears, or the transition is fully executed. The search for unification during the execution
is simmilar to Prolog [23]. All the types of operations modify the state of the engine. When
a operations is successfully executed, the state of the engine is modified and the modification
then influences all the other operations. In case of successful execution of whole transition,
all the changes become persistent for the next iterations.

Whenever the engine executes the operation, the firs possible choice of variables unifi-
cation is used, applied to the present state of the engine, and the execution of next element
follows. When the next element fails, the engine is going to roll back to the previous opera-
tion and tries to unify the operation variable again. When it is possible, the engine modifies
its state and continues with the execution of following operations.
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The whole node installation execution is performed as a iteration across all the instances
of net templates stored within the engine. Whenever the transition of any net instance is ex-
ecuted, the state changes and the flag indicating change is set nothingChanged := false.
Therefore it could be clearly seen that the whole functionality of the node is stored within its
nets templates and executed by nets instantiation. More details about the implementation
could be found in [64].
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Chapter 6

Application Scenarios

In this chapter we are going to describe all the discovered and tested application scenarios
that form the example domains of projects possibly implemented based on this thesis results.
At first there is a main motivational home automation scenario which solves the problem
of changing weather as well as user’s demands by introducing easily manageable solution.
Second part describes the scenario, where there was an idea to broaden the scope of the
proposed system construction mechanism, using to bigger scenarios and different application
areas - particularly the maritime logistics in Norway.

6.1 Control Systems for Home Automation

In the area of home automation, there are two main approaches in the house control mech-
anism construction - centralized and decentralized one. Centralized approach is based on
one central control unit, that is connected with all the devices and sensors in the house.
Such a control unit gathers all the data from sensors and process it according to some
predefined set of rules. Based on the results, the control unit produces commands for
target action devices. Decentralized approach is based on some sort of bus that connects
many devices behaving independently according to the data and commands sent over the
bus. Both approaches employ microcontrollers as a means of computation units to control
devices. These microcontrollers are usually programmed using languages as Assembly lan-
guage or C. Sometimes there exists a visual tool for controller programming, that produces
the compiled binary to be uploaded to the chip.

This approach causes the typical maintenance roundtrip to be divided into the planning
and programming phase, and then to the installation and run time phase. If there are
some bugs encountered within run time, it is necessary to change the program, recompile
binaries and install it to the devices. That forms two main disadvantages in usage of such a
control system: lack of autonomous and dynamical reconfigurability in changed conditions,
and lack of means for system formal and simulation based validation and verification before
it is finally deployed. This leads to the considerable extent of discomfort for the owner
and maintainer of the control system. Our work aims to overcome these disadvantages
by introducing the control system, that regardless whether centralized or decentralized
is constructed based on the formally specified and verified design and is able to adapt
itself to changing conditions without the necessity of maintainer direct intervention. The
maintainers role is to correct the system remotely e. g. from his place of work.

70



Table 6.1: Sources of the energy
Source type Type of charge Producible and salable

solar energy for free no
wind energy for free no
air/land temperature for free no
natural gas charged by cubic meter no
coal charged by ton no
fossil fuels charged by liter no
natural uranium not sold directly no
geothermal temperature for free yes
biomass sources charged by cubic meter yes
electric energy charged by kilowatt-hour yes

As already been discussed, the idea behind our solution is to construct model of de-
scribed control system as a well defined and sound formal specification and then run this
model with high degree of flexibility in reconfiguring it in run time. In our approach the
target system is divided into the set of specific abstraction levels and each abstraction level
is then mapped to the target platform. The transformation is then defined, which can
be used for code generation from particular abstraction level network. Enabling changes
within the model during the system run time is achieved by the concept of a multi-level
abstraction, where the functionality of the system is determined by currently present agents
and protocols, that they interpret. Each modification to the system is performed in follow-
ing steps: 1) modeling or remodeling of the particular artifact (net), 2) code generation,
and 3) forwarding the net to the system.

6.1.1 Domotic Example

As a running example, we use a home automation system. The home automation is partly
based on the optimization of the energy consumption from multiple sources. There are
diverse primary sources of energy, some of them are supplied by companies, that require
charges for consumed amount of energy, some of them are available for free and could be
taken directly from the nature. There are also ways to produce primary energy within the
house, that could be then sold to the energy suppliers, or other companies. Sources taken
into account are given within the Table 6.1.

There exists a set of devices, that could be used for the transformation of the energy
from primary sources to the transferable form. A transferable form means the form in
which the energy is transported within the house to its final purpose destination by some
medium. Devices used for such a transformation are listed in the Table 6.2. The target
media of those devices are electricity and hot water. Electricity could be used for the house
consumption, or sold out to the electric power transmission network. Hot water could be
piped through the house to supply the house heating, hot water heating, or pool heating.
Final consumers of the energy are devices used for the common function of the house. Those
devices are installed and supplied with this energy to assure the living comfort of house
residents.

The energy exchange system works on the basis of evaluation of values on sensors
installed in specific parts of the house, which means e.g. within energy transformation
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Table 6.2: Energy transformation devices
Device Source energy Produced energy

photo-voltaic solar panel solar energy electricity
wind turbines wind energy electricity
phototermic solar panel solar energy hot water
heat pump air/land temperature hot water
gas boiler natural gas hot water
electric boiler electricity hot water
biomass boiler biomass sources hot water

and consumption devices and connection pipes. Those sensors measure temperature it the
house rooms, outside temperature, temperature of the transferring medium, the outer solar
energy intensity, and some other inputs.

A-09 A-10

A-03

A-11

A-09

A-12

A-13

A-08

A-06

A-02

A-05

A-12

A-13

Figure 6.1: Sample configuration of the house

The case study is based on real configuration of the house. This configuration could
be seen in Figure 6.1. The configuration shows following energy transformation devices:
A12 and A13 represent two heat pumps, A9, A10, and A11 represent circulation pumps
connected to the three arrays of phototermic solar panels, and finally A5 represents gas
boiler used for heating in winter. The house is equipped with sensors on each top of the
solar panel array (S-09, S-10, S-11, S-04), within water containers (S-12, S-16, S-01), and
also in both floors of the house (S-03, S-05). There is also outer temperature sensor (S-
14), solar intensity sensor (S-02), flow sensor (S-15), hot water sensor (S-13), boiler sensor
(S-08), and heating transfer pipe sensor (S-07). All these sensors represents inputs of the
target system, and the devices represent output of the system.

The main purpose of the control system is to enable or disable each of the devices
according to the actual values on sensors, and current prices of energies. This goal could
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Table 6.3: House energy management rules examples
Condition Rule

solar panel warmer than accumulation run circulation pump
outer temperature >= −5∘C run two heat pumps
outer temperature >= 10∘C run only one heat pump
outer temperature <= −5∘C don’t run heat pumps
outer temperature <= −5∘C run gas boiler, or electric boiler
solar intensity >= 500W run two heat pumps
solar intensity >= 300W run one heat pump

be achieved by optimization of energy producing and consumption based on some expert
system suggestions. Typical rules are listed in Table 6.3.

6.1.2 House Workflow Model

Within this section, the workflow model of the part of house automation system - the
photothermic solar panel and hot water storage tank - is described, using the Workflow Petri
Nets defined by Van der Aalst [2]. The Figure 6.2 describes two swimlines that represent
two modules - solar panel and water tank. Each swimline consists of the main process of
the module, that is constructed using a set of subprocesses. Within the solar panel module,
there is a task of sending data and measure temperature subprocess. In the water tank
module, there is a task of receiving the data and two subprocesses - measure temperature
and adapt settings. Measure data subprocess and the receive task are connected with the
adapt setting subprocess using the OR transition. Particular subprocesses descriptions are
shown in next figures.

Water Tank Module

Solar Panel Module

measure send

receive

measure

adapt

data

Figure 6.2: House workflow example

In Figure 6.3 the measure subprocess was modeled also using the Workflow Petri Nets.
It consists of two tasks - reading the data and converting it to the temperature value.
Reading the data means getting the voltage from the input and the conversion means the
necessary calculations to produce the human readable results.

73



read convert

Measure Subprocess

delay

Figure 6.3: Measure subprocess net

The other subprocess shown on Figure 6.4 consists of the task of temperatures reading
and comparing them to use the result for the adequate reaction of the automation system.
If there is higher temperature on the solar panel than within the water tank, corresponding
circular pump is started to move the hot water form panel to the tank.

adapt

solar temperature

tank temperature

Adapt Subprocess

Figure 6.4: Adapt subprocess net

In this way the system specification is basically defined. But there are some other
prerequisites, e.g. we need to know about the technical aspects of reading and writing
the input/output data. This information should be obtained from the customer and must
be included as a part of the PNOS system. At this moment, these rules are stored in a
proprietary format alongside the nets specifications, but in future we plan to add them as
a next layer of the system called drivers. The following section describes the derived four
level reference nets architecture, which is produced from described workflow model. The
process of conversion of workflow model into the multilayered Reference Nets system is done
using previously defined translation algorithms (1,2, 3) . More complex but similar scenario
could be described by the workflow system schema defined in Appendix C - Figure C.1.

6.1.3 Home Automation System Construction

The multilayered system architecture described in previous chapters derivation starts here
with the subprocess nets. In Figure 6.5 there is the measure subprocess reference net derived
from the measure subprocess. This net is constructed adding the initial and final uplinks
and places. These uplinks serve as a starting and finishing transitions called from the main
process of the module. There are also primitive system functions calls, that operate directly
with the underlying operating system. Resulting value token is prepared and sent using
uplink : 𝑜𝑢𝑡𝑝𝑢𝑡(). All the subprocess protocol nets are named using the name place and
corresponding uplink.

The solar panel main process described in Figure 6.6 is derived from the solar panel
swimline in the workflow model shown in Figure 6.2. It consists of the place, where all
the subprocess nets are stored and according to their names are called in particular order.
Synchronization place is added between the subprocess protocol nets calls matching the
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Figure 6.5: Measure subprocess net

solar panel main process swimline place. The name of the protocol net is derived from the
name of the workflow subprocess, and it is not necessary to be human readable.

Figure 6.6: Solar panel main process

The measurement subprocess protocol net has already been described, so the last net
that remains is the settings adaptation subprocess protocol net. It is described in Figure 6.7
and communicates with the operating system calling the proper signals according to the
decisions made in transitions.

Figure 6.7: Adapt subprocess net

The water tank main process reflects the main process in the workflow model. It calls all
the subnets and performs the synchronization of subprocesses using two temperature places,
that are then synchronized within the adapt subprocess. It is described in Figure 6.8.
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Figure 6.8: Water tank main process

Above the last net, called infrastructure, there is a part of the underlying operating
system called the platform net that describes the main required functions of the operating
system needed by the application processes installed on it. The platform net is shown in
Figure 6.9.

Figure 6.9: Platform net

Finally the infrastructure layer, that is derived from the main workflow process descrip-
tion, is shown in Figure 6.10. I n our example, it is very simple. Each swimline represents
one place, where the module for hosting the platform, main process and protocols will be
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placed. The communication between the two subprocesses seated in different swimlines is
represented here as an communication transition, that should internally call the final tran-
sition of the send task, that means the : 𝑜𝑢𝑡𝑝𝑢𝑡() downlink and the initial transition of the
receive task, that means the : 𝑖𝑛𝑝𝑢𝑡() downlink. Those transitions are part of the platform
layer and are propagated to the subprocesses nets.

Figure 6.10: Infrastructure net

More complex home automation example already implemented and running in real-
world scenario is described in Appendix A.

6.2 Data-Driven Maritime Processes Management
In this part of the work a decision support system for maritime traffic and operations,
based on formal models and driven by data from the environment will be briefly described
and used as an example. To handle the complexity of such a system description, we work
with a decomposition of the system to set of abstraction levels. At each level, there are
specific tools for system functionality specification, respecting particular domain point of
view. From the business level point of view, the system consists of processes and vehicles
and facilities over those the processes are performed. From the engineering point of view,
each process consists of a set of devices, that should be controlled and maintained.

Software engineering point of view operates on reading and converting bytes of data,
storing them into variables, arrays, collections, databases, etc. For complex trading pro-
cesses management purposes we need to cover all levels of abstraction by specific description,
suitable to model and automate the operations on each particular level. As a case study
we use salmon farming in Norway. The system implementation is based on Reference Petri
Nets and interpreted by the Petri Nets Operating System (PNOS) engine. This approach
brings formal foundations to the system definition as well as dynamic reconfigurability to its
run time and operation. This example emerged as a result of authors internship on NTNU:
Norwegian University of Science and Technology. More complex maritime processes studied
in Norway are described in Appendix C - Figures C.2 and C.3.

6.2.1 Decision Support Systems

In this section we focus on describing the system for maritime traffic and operations support,
based on previously defined formal methods and driven by the data from environment. The
way the problem is described here, such a system could be seen as a Decision Support
System (DSS). Some of the work has already been done in this area. For example Ray et
al. base their DSS on the idea that it needs to include mechanisms from which operators
can define some contextual situations he wants to be detected as suspicious, dangerous
or abnormal. They build this mechanism on a rule-based engine approach allowing to
formalize rules ensuring the link between the conceptual specification of a situation and its
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implementation. The main aim of their DSS is a design, where the business logic might be
re-configured by a surveillance operator [74].

Production rules are defined as fragments of knowledge, that can be expressed in the
format: “GIVEN the circumstances, WHEN conditions are verified THEN perform some
actions”, where the GIVEN part defines the context of the rule, WHEN part is referred to
as the “left-hand side”, and the THEN part as the “right-hand side”. This format allows
experts to express their knowledge in a straightforward way, without using any specific
programming language and therefore removing the need for a computer programmer to
assist the expert in encoding his knowledge [74]. Some of these ideas were already addressed
e.g. by Ludwig Ostermayer and his colleagues [70].

6.2.2 Rule-based Modeling

Each action in the system produces some data that are sent to the particular rule engine
that decides, what action should be taken. Rules apply to much more higher number
of situations, and they also must be applied first, before the action caused by the task
occurrence within the process could take the place. Rules within the system trigger the
task fulfillment, and therefore a start of following task.

The important problem is the language used for the rules definition. The main rule
clause structure is when-eval-then. But the definition of all these three parts is not con-
strained at all, or the constraints depend on the environment used for rules execution, like
DRL in Drools. Following listings describe the example of rules defined for monitoring
vessels through the data obtained from AIS Marine Traffic system that monitors vessels
positions and provides an API for data about their positions gathering. While the List-
ing 6.1 shows the categorization of vessels, the Listing 6.2 describe the rules implementing
selected spatio-temporal predicates.� �

1 rule "Is Cargo Ship"
when

3 position : Position( shipType == 60 )
and not

5 ship : CargoShip ( mmsi_number == position.mmsi_number )
then

7 insert ( new CargoShip (position.getMmsi_number() ) );
end

9

rule "Is Pilot Vessel"
11 when

position : Position( shipType == 30 )
13 and not

ship : PilotVessel ( mmsi_number == position.mmsi_number )
15 then

insert ( new PilotVessel (position.getMmsi_number() ) );
17 end
 	

Listing 6.1: Example of rule engine rules� �
1 rule "Start Moving"

when
3 position : Position ( speed > 0.0f )

and
5 vessel : Vessel ( mmsi_number == position.mmsi_number, moving ==

false )
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and not
7 trajectory : Trajectory ( mmsi_number == position.mmsi_number )

then
9 modify( vessel ) { setMoving ( true ) }

insert ( new Trajectory (
11 position.mmsi_number,

position.longitude,
13 position.latitude,

position.heading,
15 position.speed ) );

retract( position );
17 end

19 rule "Moving"
when

21 position : Position ( speed > 0.0f )
and

23 vessel : Vessel ( mmsi_number == position.mmsi_number)
and

25 trajectory : Trajectory ( mmsi_number == position.mmsi_number )
then

27 TPoint point = new TPoint (
position.getLongitude(),

29 position.getLatitude(),
position.getHeading(),

31 position.getSpeed() );
if(!point.equals(trajectory.getLast())) {

33 modify ( trajectory ) {
addPoint ( point )

35 };
modify ( vessel ) {

37 setMoving ( true )
};

39 }
retract( position );

41 end

43 rule "Stopped"
when

45 position : Position ()
and

47 vessel : Vessel ( mmsi_number == position.mmsi_number, moving ==
true )

and
49 trajectory : Trajectory ( mmsi_number == position.mmsi_number )

then
51 TPoint point = new TPoint(

position.getLongitude(),
53 position.getLatitude(),

position.getHeading(), position.getSpeed());
55 if(point.equals(trajectory.getLast())) {

modify( vessel ) {
57 setMoving ( false )

};
59 }

retract( position );
61 end
 	

Listing 6.2: Example of rule engine rules
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6.2.3 Data-Driven Systems

Technologies are being adopted for acquiring monitoring data about how the vehicle and
different components are behaving. Recently, with the intention of remote ship monitor-
ing for better services for shipping customers, vessel builders started to adopt new sensor
technology by installing different sensors for different components on board a vehicle and
transmit data using satellite communications to land-based service centers, e.g., HEalth
MOnitoring System (HEMOS) by Rolls-Royce Marine AS [80].

These systems provide more accurate and timely operational data, but they also intro-
duce new danger to the operations: information overload problem (IOP) [42], [92] – the
crew members receive a large volume of monitoring information and alert messages that
s/he can easily overlook important/vital ones. Therefore, it is urgently needed to develop
and implement a new framework to integrate and visualize the monitoring data in an infor-
mative way. In this way, the crew members can examine the massive, multi-dimensional,
multi-source, time-varying information streams to make effective decisions in time-critical
situations.

Our system bases on data flows and their processing according to predefined rules sim-
ilarly as Ray et al. defined in their system [74], where the AIS (Automatic Identification
System) data are processed by the rules engine producing the specific information and
warnings about vessels movement and behavior.

We suggest a decomposition of the problem to a set of abstraction levels to reduce
the complexity of a whole problem definition. This approach also allows for separating
the concerns of different domains specialists as well as languages and tools they use for
particular level specification [80]. Simmilar ideas could be also found in some literature
about expert systems like e.g. [67].

6.2.4 Maritime Logistics and Operations

We use salmon farming in Norway as a case study. Salmon production starts with hatching
of eggs in freshwater tanks on land. After 1 - 1.5 years the juvenile salmon goes through a
physical transformation process that is called smoltification that prepares the fish for life in
seawater. The salmon is now called smolt and is ready to be transferred to the sea cages.

In the sea the salmon is fed pelleted feed for 1 to 2 years. Due to the high concentration
of salmon it is common to add oxygen to the water and to remove 𝐶𝑂2. The salmon is
harvested when it has reached optimum size. This is usually done by pumping the salmon
into a well-boat and shipping the live salmon to the salmon processing plant.

Aquaculture is a profitable business dominated by big companies. In order to maximize
the profit there are continuous efforts put on optimizing the process. Optimization of: time
at sea (fast growth), fodder, produced biomass vs fodder volume, harvesting time, medicine,
𝑂2 usage and fish quality. In later years sea-lice has been a problem for aquaculture
companies, in addition to other pathogens such as toxic algae. In order to succeed a close
control of biomass production at every step in the process is vital.

6.2.5 Levels of Abstraction

To be able to define the whole system functionality while reducing the complexity of the
problem, it is better to separate it by a set of levels of abstraction [67], [80]. Each level
could be seen as a sole system, consisting of nodes, communication means and dependencies
checking. Each system operates on nodes specified in more detail within the level below it.
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From the level 3 to 5 the nodes of the system could be taken as actors (ref. Actor model),
in levels below, they behave less independently.

Level 5 - Aquaculture Facilitation

This level represents a set of processes forming the maritime trade. When performing each
task, the facilitation system uses services from Level 4. This level of abstraction is intended
to be used by the maritime trading management people. The most appropriate way of
modeling processes at this level seems to be the sequence of tasks with dependencies among
them as well as participant involved. For example using BPMN notation. At this level,
basic processes of the system are defined.

Level 4 - Vessels Chartering, Berthing Process, etc.

This level defines a set of nodes and communication means involved within trading processes
that takes the place by serving as a platform for the Level 5 processes organization. I.e.
this level is an decomposition of participants from the level above. This level is intended for
modeling vessels, ports, etc. relationships together with relevant communication channels.

Level 3 - Vessels, Ports, etc.

This level describes the functional nodes with independent behavior that use services of
modules from the Level 2 and serve as services for the level 4. This level is defined as
Workflow System Specification and could be directly transformed to the interpretable Ref-
erence Nets structure for further process management purposes [78]. Typical example of
system parts at this level of abstraction are independent units usable for the Level 4 pur-
poses, like vessels, fish farms, or fish factories.

Level 2 - Modules

This level describes assembled components providing specific set of services within Level 3
models. Modules consist (physically or logically) of components from the Level 1 and are
usually controlled by staff, or also using any kind of programming interface, or both. Com-
ponents communicate among others using defined protocol. Modules could be represented
by e.g. navigation module, dynamic positioning module, wellboat pumping and cleaning
module.

Level 1 - Components

This level covers mountable devices with well-defined and encapsulated behavior defined
as a set of primitive operations defining the protocol of the component. The example of a
device at this level is pumping component operating over one pipe within pumping facili-
ties. Components operate on parts from the Level 0 and are accessible via programmable
interface or some specific of bus. Here the appropriate examples of components belong to
thrusters, engines, pumps, etc.

Level 0 - Sensors and Actuators

At this level, simple parts mounted within the environment take place. Sensors are able
to read data from the environment and serve it as raw values, or digitized and calibrated.
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Figure 6.11: Wellboat Process Description (Level 4)

Actuators have direct effect on the environment, it means these are e.g. multiple types of
switches, servos, motors, etc. In PNOS, sensors and actuators are triggered by invoking
primitive operations bounded with Reference Petri Nets transitions. These operations pro-
duce or consume values in specific strings-based format, which are propagated through the
system to particular node they are dedicated. The important part of each node is its ability
to store rules for data filtering, before they are directly sent to upper levels of the system.
Data could be also modified or combined by these rules.

6.2.6 Maritime Example

System construction process will be described on real-life scenario of wellboat operations
and technology. Wellboats carry fish from fish farms to fish factories. Fish are pumped
from the farm into the boat and then transported to the factory, where they are pumped
back again. The water with fish is treated following some predefined rules to keep the
fish in good conditions. While pumping the fish out of the boat, it is possible to separate
them according to their size. An example of described process definition could be found in
Fig. 6.11.

82



Figure 6.12: Maritime System Example (Level 3)

From the point of view of control system structure, there are three control sub-systems
of fish farm, the wellboat itself, and the fish factory.

System Construction Process

Management of distributed trading processes must take into account many involved nodes
and regarding the maritime processes, there is also necessary to take into account the
conditions coming from the fact, that processes are undertaken on the sea. One of the main
influencing condition is that ships and their crew could in some situations remain without
the connection with the land. Therefore it is necessary to count on with adequate control
system installation and communication ways.

Particularly it means that the system must be distributed and all the nodes must be
able to behave independently on the connection to other nodes, as well as some particular
sets of nodes that operate together should be able to act independently on the rest of the
system. This leads to the isolation of particular sub-ecosystems, like the vessel control
system, port control system, etc. that together form the process management platform.
These ecosystems are defined at each level of abstraction and represented as a subset of
PNOS installations.
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Data Propagation and Analysis

There are two ways of data propagation - A) from the top to the bottom and B) from the
bottom to the top. At each layer of the system decomposition there are PNOS nodes that
allow to retrieve commands and Petri Nets specifications from the above layers as well as
the data produced by layers below. Each PNOS node hosts a set of Petri Nets that perform
commands. Other Petri Nets are responsible for filtering data coming from lower layers.

Model-Driven Engineering moves the software engineering paradigm to the level, where
the code itself does not play the central role of the application design and implementation,
but more abstract model of the application logic takes the place as a first-class artifact
within the development process [84]. This approach makes it possible to distinguish between
modeling the application logic by the domain expert or specialist and the interpretation or
transformation of the model into its executable form.

There are many papers describing model transformation into executable code, but all
of these approaches lack the dynamic reconfigurability features as well as preserving the
model during the runtime, therefore the model execution got more attention among re-
searchers now [28]. Basic model transformations and target system construction process
is documented in our previous papers [78]. More details of described application scenario
could be found in [80].
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Chapter 7

Experiments and Results

In this chapter the results of existing experiments and running scenarios is described. First
of all the focus of running examples is narrowed, then some results that have been achieved
are described.

7.1 Evaluation
For the testing purposes we use the Arduino and Raspberry Pi hardware platforms with
XBee modules for wireless communication. The Arduino is enabled with the ATmega328P
chip that introduces some important restrictions to the implementation. The main one is
the 2kB SRAM memory that makes extensive use of direct Petri Nets interpretation very
difficult. There is a strong limitation for the number of nets and also for the complexity of
problems solved. For that purposes we consider now for further testing of the system to use
the Raspberry Pi platform, that offer much more memory for the interpretation purposes.
The energy consumption of the ARM could be reduced by underclocking, that is part of
our future work plans.

 0

 500

 1000

 1500

 2000

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

M
e
m

o
ry

 s
iz

e
 [
B

]

Step Number

Code Memory
Object Memory

Figure 7.1: Memory usage

With the hardware limitations in mind, we have tested the PNVM/PNOS prototype
with a model containing the platform net and other three simple nets (9 transitions in all
nets), that are loaded and instantiated successively. The code of nets occupies 718 B, 679 B,
147 B, and 115 B, what is 1659 B of total used memory for code. The simulation generates
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Figure 7.2: Time overhead of simulation steps

4 net instances, containing 14 places. The number of tokens is up to 31, and needs 1547 B
of object memory. The history of memory occupation is shown in Figure 7.1. Peaks in the
graph corresponds to receiving a net via serial line and its loading to code memory.

To investigate the time consumption of the simulation, we measured the time needed
for each step execution. It comprises evaluation of all transitions in all ten instances. The
simulation was executed for 50 times to get average step duration.

The history of simulation steps duration is shown in Figure 7.2. We can see, that the
duration increases depending on number of instances because the number of transitions is
increasing. Peeks in the graph correspond with net loading, net instantiation, and uplink
execution. These experiments has been done on contemporary desktop computer. On
Raspberry Pi the step duration is about 100 times higher, because of slower CPU and
slower access to the memory.

7.2 Real World Examples
More complex solution of the Real World running example could be seen in Appendix A. It
uses the same mechanisms as described above, but the Platform differs in the way the nodes
address each other and also in that the communication is held using MQTT protocol and
broker. The different addressing principle makes the system even more flexible, because
there are nodes addressed in an abstract way.
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Chapter 8

Conclusion and Future Work

This work aimed to and introduced the basics of the methodology for automated conver-
sion of formal system specifications to the executable implementation that preserves the
dynamic reconfigurability of the original model, i.e. changes within its run time. Present
implementation uses the Raspberry Pi and Arduino platforms as hardware platforms for
target system deployment. The architecture enables to run and simulate the control system
specification as a model. The same model in the form of running implementation works on
top of the network of Arduino and Raspberry Pi boards. All the changes to the running
system are preformed by the model modification. The modification could be done directly,
or mediated by introduced higher-level abstractions - Workflow Nets, or DSMLs. In this
section the main achieved results are concluded.

Within this work an analysis of recent and historical approaches to dynamic software
modification, mainly focused on distributed embedded control systems and devices with
limited resources, has been contributed. According to the goals of the thesis a great focus
was targeted to the formalization of system specification as well as the dynamic software
updating. The thesis introduced original solution to the problem of running specifications
on low-level hardware, as well as to the problem of involving domain experts into the
development process. The work introduces the Reference Petri Nets based approach, that
enables model preservation during the whole system development life-cycle. The solution
is based on so called Petri Nets Operating System (PNOS) that consists of basic I/O
and communication means and also of the so called Petri Nets Virtual Machine (PNVM),
that is able to interpret the original Petri Nets Byte Code (PNBC). PNBC serves as an
intermediate language, that could be produced from many sources, as well as interpreted
by many interprets. A prototypical solution has been also prepared. Both main targets
were also experimentally applied to two domain areas - Home Automation and Maritime
Logistics. Domain experts in both areas were directly interviewed and their knowledge
was used to test achieved results, during the methodology development. The running
example of Home Automation problem was implemented using defined methodology and
experimentally runs within the Real World installation. Also some practical results were
collected and presented.

Among the main methods the work uses models transformations and target system
prototype code generation, model execution, and model continuity. Development process
starts with the Workflow Model or Domain Specific Model of the system specification.
Workflow model of the system describes the functionality from user’s or domain specialist’s
point of view. Using defined methods, the Workflow Model or Domain Specific Model are
further transformed to the multi-layered architecture based set of Reference Petri Nets.
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The system is constructed in several layers. Each layer of the system is translated to
the specific target representation called PNBC, which is interpreted by the PNVM, that
is a part of the PNOS, that is installed on all nodes of the system. Targeted dynamical
system reconfigurability is achieved by the possibility of PNBC net templates and instances
replacement with their new versions. After the replacement, PNVM interpretation engine
starts to perform a new version of partial functionality of the system. That makes the
dynamic reconfigurability possible.

The work also describes the process of construction of basic elements of Domain Specific
Language (DSL) for domotic systems configuration and reconfiguration called DexML. The
idea here was to impart some formally well defined concepts to the informal DSL definition
by its translation to formally well established form. This additional goal was achieved
only partially, because the transformation is still defined in non-formal way, therefore it
is not possible to ensure that the resulting system reflects the source DSL model. On the
other hand, our up to date architecture and a set of tools enable the end users of simple IoT
systems to define their structure and behavior using readable DSL and then transform it into
the runnable target system implementation, leveraging the PNOS architecture defined by
our research previously. Because of the possibility to simulate the generated model, or goal
is at least partially fulfilled. The other advantage is leveraging the dynamic reconfigurability
features of the PNOS, enabling the user with the possibility to change the DSL model and
then generate modified set of Petri Nets that could be sent to the target system changing
its behavior while it is in run time.

8.1 Future Work

To keep this work consistent and unbiased, we decided to move some parts to future work,
even though they have already been explored and experimented with. Planned future work
could be divided into following areas: implementing more PNVM versions using different
languages and different platforms, finishing the DSL formalization process and general-
ize core DSL parts to be applicable to different scenarios, introduce run time verification
features to the running specifications leveraging its formal properties, and finally use the
formal properties of the system for proving its trustability. This will be discussed in more
detail in next subsections.

8.1.1 More Hardware and Platforms

One of the most important future steps will be the aim to spread the implementation across
more types of devices. At this moment the virtual machine (PNVM), together with the
PNOS functionality runs on Raspberry Pi and Arduino nodes. But there is a plenty of other
devices, that could be used as well as plenty of combinations regarding the memory available,
or programming languages available. So even when the implementation is performed using
the C language right now, there are possibly no limitations regarding the platform used for
the implementation. And although we started the implementation on devices with limited
resources, it is not a problem to extend the implementation even on much stronger devices,
like supercomputers, or clouds. The common intermediate language makes it all possible.
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8.1.2 Runtime Verification

The formal properties of the target system specification, as well as the usage of model
continuity approach, makes it possible to propagate some run time verification rules directly
into the model. For example there could be a specific type of transitions introduced, usually
called facts, that should never happen. The virtual machine could produce an adequate
response, whenever such a transition is executed. Because this approach implies a great
deal of different approach within the application modeling methodology, we finally decided
to postpone this problem to the future work, to not influence this work being scattered or
biased with different concerns.

8.1.3 Domain Specific Languages

One of the next steps of our research should be generalizing the DSL metamodel as the
DexML Core to the level it could be easily inherited by other domain-specific configurations
as well as easily extended with any number or type of the unit. The other step should be
the formalization of the transformation providing the source model with a higher level of
formal features. Also the set of our tools should be extended to provide users with easily
achievable cloud-based set of services for model transformations and system configuration.

8.1.4 Industrial Software Certification

Typical example of problem connected with the development of software for controlling
sophisticated moving devices as Anchor Handling Tug Supply vessels (AHTS) with Dynamic
Positioning (DP) functionality is the obligation to certify software that runs within its
control mechanisms.

This problem is very similar to the embedded control systems developed by car manu-
factures, but this is typically performed by internal development places of the manufacturer.
Regarding the AHTS, there are software developing companies that develop control soft-
ware for vessels and according to the e.g. Norwegian law they are obliged to certificate
their software first, before it could be installed on different devices.

The increasing complexity of the software results in a very lengthy certification process.
E.g. the Software Certification Consortium at McMaster University needs one to two ears
to certificate any change within the control software of AHTS. Therefore any change here
is very expensive.

These facts already resulted to the the idea of decomposing an embedded software to
the main module and plugins operating within that module. If there was a well-defined
way of certifying the main module as well as plugins, the certification process could be
shortened and made less expensive.
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Appendix A

Real World Running Example

A.1 Heating Control Problem

This section describes the real-world running example of the heating control system imple-
mentation developed and maintained using described methods. At the moment of writing
this thesis it is the only experimental installation of PNOS nodes home automation system.
This particular solution has added some more implementation details as different version of
used Platform net - it leverages heavily the usage of lists within messages to be easily trans-
ferable using the MQTT protocol, that is sort of standard in the field of home automation
communication. For this purpose it was necessary to modify the Platform net, to be able
to work with MQTT messages structure. Also the message routing has been changed using
routing tables to achieve more flexibility of MQTT messages routing within the system.

The Figure A.1 shows used heating system application components. These components
are developed and deployed as PNBC nets templates, instantiated for specific purposes of
controlling the heating within one room of the house for the simplification. The room has
its own temperature sensor (Temp1 ), required temperature knob (SetPoint1 ), Thermostat
controller and relevantR1 actor. The house HeatingControl unit is receiving the data from
each room sent by similar components. It then decides how to control the Boiler component
accordingly. Each net template is shown within particular listing.

In Figure A.2 there is a deployment diagram showing the way the particular system
components are deployed on particular nodes within environment. The same colors as used
in Figure A.1 are used here. This way the application components are distributed within
the environment. Similar scenario has already been described in Figure 4.10

A.2 MQTT Platform

Specific version of the Platform component has been developed for this scenario. This
Platform net could be found in Figure A.3. Relevant PNBC code is in listing A.1. It uses
lists for messages construction, as well as routing tables for directing messages to specific
components of the system.� �

1 (Nplatform
("XXXXXXXX",".","dump",{"*"},"load",{"failed"},{"ok"},"activate","delete","

unload","failed","ok","setaddr","addroute","*","&")
3 (address,nets,output1,output2,routerInput,routingTable,output3,message,

net,routerBuffer,id,mutex)
5 (Uinput(msg)(addr,command)
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Figure A.1: Heating System Distributed Application

Figure A.2: Heating System Deployment Diagram

(P0,1,V1)
7 (G(=(h(V0))(S1)))

(G(=(h(h(t(V0))))(V1)))
9 (A(:(V2)(a(a(a(na)(h(V0)))(t(h(t(V0)))))(h(t(t(V0)))))))

(O7,1,V2)
11 (O0,1,V1))

(Uoutput(x)()
13 (P6,1,V0))

(I(O0,1,S0)
15 (O11,1,I1))

(Tdump(cmd,out,out2)
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Figure A.3: MQTT-compatible version of the Platform net

17 (P7,1,V0)
(G(=(t(h(t(V0))))(na)))

19 (G(=(h(h(t(V0))))(S2)))
(A(:(V1)(d)))

21 (A(:(V2)(,(,(S3)(a(na)(a(na)(S2))))(a(na)(a(na)(V1))))))
(O3,1,V2))

23 (Tload(cmd,res,out,out2)
(P7,1,V0)
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25 (G(=(t(h(t(V0))))(na)))
(G(=(h(h(t(V0))))(S4)))

27 (A(:(V1)(l(h(h(t(t(V0))))))))
(A(:(V2)(#(a(a(na)(S5))(S6))(V1))))

29 (A(:(V3)(,(,(S3)(a(na)(a(na)(S4))))(a(na)(a(na)(V2))))))
(O3,1,V3))

31 (Tactivate(cmd,net,id)
(P7,1,V0)

33 (P11,1,I1)
(G(=(t(h(t(V0))))(na)))

35 (G(=(h(h(t(V0))))(S7)))
(A(:(V1)(c(h(h(t(t(V0))))))))

37 (A(:(V2)(t(h(t(t(V0)))))))
(O8,1,V1)

39 (O10,1,V2))
(Tpass(msg,net)

41 (P7,1,V0)
(P1,1,V1)

43 (Did,V1,(h(h(t(V0)))))
(Dinput,V1,(a(a(a(na)(h(V0)))(t(h(t(V0)))))(h(t(t(V0))))))

45 (O1,1,V1))
(Tdelete(cmd,id,net)

47 (P7,1,V0)
(P1,1,V2)

49 (G(=(t(h(t(V0))))(na)))
(G(=(h(h(t(V0))))(S8)))

51 (G(:(V1)(h(h(t(t(V0)))))))
(Did,V2,V1))

53 (Tunload(cmd,res,answer)
(P7,1,V0)

55 (G(=(t(h(t(V0))))(na)))
(G(=(h(h(t(V0))))(S9)))

57 (A(:(V1)(u(h(h(t(t(V0))))))))
(A(:(V2)(#(a(a(na)(S10))(S11))(V1))))

59 (O3,1,V2))
(Tsetaddr(cmd,addr,cur)

61 (P0,1,V2)
(P7,1,V0)

63 (G(=(t(h(t(V0))))(na)))
(G(=(h(h(t(V0))))(S12)))

65 (A(:(V1)(h(h(t(t(V0)))))))
(O0,1,V1))

67 (Taddroute(cmd,r)
(P7,1,V0)

69 (G(=(t(h(t(V0))))(na)))
(G(=(h(h(t(V0))))(S13)))

71 (A(:(V1)(h(h(t(t(V0)))))))
(O5,1,V1))

73 (Tout(msg,id,t,net)
(P1,1,V3)

75 (Doutput,V3,V0)
(DgetId,V3,V1)

77 (G(:(V2)(,(a(na)(V0))(a(na)(V1)))))
(O1,1,V3)

79 (O2,1,V2))
(Tpostproc11(x,y)

81 (P2,1,V0)
(G(!(|(=(h(h(V0)))(S14))(=(h(h(V0)))(S15)))))

83 (A(:(V1)(h(V0))))

102



(O3,1,V1))
85 (Tpostproc12(x,msg,name,path,data,path2,y)

(P2,1,V0)
87 (G(|(=(h(h(V0)))(S14))(=(h(h(V0)))(S15))))

(A(:(V1)(h(V0))))
89 (A(:(V2)(t(V0))))

(A(:(V3)(h(t(V1)))))
91 (A(:(V4)(h(t(t(V1))))))

(A(:(V5)(,(V2)(V3))))
93 (A(:(V6)(a(a(a(na)(h(V1)))(V5))(V4))))

(O3,1,V6))
95 (Tpostproc21(x)

(P3,1,V0)
97 (G(!(|(=(h(V0))(S14))(=(h(V0))(S15)))))

(O6,1,V0))
99 (Tpostproc22(x,a,ipaddr,b,c,y)

(P3,1,V0)
101 (P0,1,V2)

(G(=(h(V0))(S15)))
103 (A(:(V1)(h(V0))))

(A(:(V3)(a(na)(V2))))
105 (A(:(V4)(h(t(V0)))))

(A(:(V5)(a(a(a(na)(V1))(,(V3)(V4)))(h(t(t(V0)))))))
107 (O6,1,V5)

(O0,1,V2))
109 (Tpostproc23(x,ipaddr,y)

(P3,1,V0)
111 (P0,1,V1)

(G(=(h(V0))(S14)))
113 (A(:(V2)(a(a(a(na)(h(V0)))(,(a(na)(V1))(h(t(V0)))))(h(t(t(V0)))))))

(O4,1,V2)
115 (O6,1,V2)

(O0,1,V1))
117 (Trouter11(x,y,rt)

(P4,1,V0)
119 (P5,1,V3)

(G(=(h(t(V0)))(h(V1))))
121 (G(:(V2)(a(a(na)(V0))(h(t(V1))))))

(O9,1,V2)
123 (O5,1,V3))

(Trouter21(x,y,x2)
125 (P9,1,V0)

(G(!(=(h(t(V0)))(na))))
127 (A(:(V1)(,(a(a(na)(S1))(h(h(t(V0)))))(t(t(h(V0)))))))

(A(:(V2)(a(a(na)(h(V0)))(t(h(t(V0)))))))
129 (O9,1,V2)

(O6,1,V1))
131 (Trouter22(x)

(P9,1,V0)
133 (G(=(h(t(V0)))(na))))

(TsetId(net,id)
135 (P8,1,V0)

(P10,1,V1)
137 (DsetId,V0,V1)

(O1,1,V0)
139 (O11,1,I1))

)
 	
Listing A.1: MQTT Compatible Platform Net
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A.3 MQTT Sensor Net
Defined components residing within the specific version of Platform net are described by
their RPNs and bytecode representations. First of all there are a sensors polling networks
getting the present status of given sensors, sending particular messages to relevant actuators.
Sensor polling network is shown within the Figure A.4. Equivalent PNBC coode is in listing
A.2. In or scenario it is used twice - for measuring the temperature in the room as well as
for getting the input from the user about required temperature.

Figure A.4: MQTT-compatible sensor polling net� �
(Nsensor-poll

2 ({"_"},{"*",{"STATUS"}},{"&"},{"osprocereply"})
(id,ready,out)

4 (UsetId(id)(x)
(P0,1,V1)

6 (O0,1,V0))
(Uid(id)(tmp)

8 (P0,1,V1)
(G(=(V0)(h(V1))))

10 (O0,1,V1))
(UgetId(id)(tmp)

12 (P0,1,V1)
(A(:(V0)(h(V1))))

14 (O0,1,V1))
(Uinput(x)(y)

16 (A(:(V1)(,(S1)(t(t(V0))))))
(O2,1,V1)

18 (Y1,1,I1,1500))
(Uoutput(y)()

20 (P2,1,V0))
(I(O0,1,S0)

22 (O1,1,I1))
(Tread(id,tmp1)

24 (P0,1,V0)
(P1,1,I1)

26 (A(:(V1)(a(,(S2)(a(na)(S3)))(t(V0)))))
(O0,1,V0)

28 (O2,1,V1))
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)
30 
 	

Listing A.2: Sensor poll PNBC

A.4 MQTT Actuator Net
Next network is the actuator polling net, that serves for the actuator status collection. It is
depicted within the Figure A.5. In our scenario it is used for actuating the communication
of Kitchen component with HeatingSystem component as well as for controlling the Boiler
component. Relevant PNBC equivalent is shown in listing A.3.

Figure A.5: MQTT-compatible actuator polling net� �
1 (Nact-poll

("_",{"_"},{"&"},{"osprocreply"},{"*",{"STATUS"}},"SET",{"*",{"SET"}})
3 (ready,val,out,msg,id)

(Uinput(x)()
5 (O3,1,V0))

(Uoutput(y)()
7 (P2,1,V0))

(UsetId(id)(x)
9 (P4,1,V1)

(O4,1,V0))
11 (Uid(id)(tmp)

(P4,1,V1)
13 (G(=(V0)(h(V1))))

(O4,1,V1))
15 (UgetId(id)(tmp)

(P4,1,V1)
17 (A(:(V0)(h(V1))))

(O4,1,V1))
19 (I(O0,1,I1)

(O1,1,S0)
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21 (O4,1,S1))
(Tosprocrequest(val,id,tmp1)

23 (P4,1,V1)
(P0,1,I1)

25 (P1,1,V0)
(A(:(V2)(a(,(S2)(a(na)(S3)))(a(t(V1))(V0)))))

27 (O4,1,V1)
(O1,1,V0)

29 (O2,1,V2))
(Tosprocreply(x,y)

31 (P3,1,V0)
(G(=(h(h(t(V0))))(h((S3)))))

33 (A(:(V1)(,(S4)(t(t(V0))))))
(O2,1,V1)

35 (Y0,1,I1,20))
(Tset(msg,outmsg,oldset)

37 (P3,1,V0)
(P1,1,V3)

39 (G(=(h(h(t(V0))))(S5)))
(A(:(V1)(h(h(t(t(V0)))))))

41 (A(:(V2)(,(S6)(a(na)(a(na)(V1))))))
(O1,1,V1)

43 (O2,1,V2))
)
 	

Listing A.3: Actor polling PNBC

A.5 MQTT Controller Net
The controller itself is then described in the Figure A.6. This net describes the part that is
responsible for the room control process itself. It receives the data and produces decisions
sent further to other parts of the system. Relevant PNBC equivalent is shown in listing
A.4.� �

(Ncontroller
2 ({"_"},"T",{"0"},{"1"},{"*",{"STATUS"}},{"*",{"ACTION"}},"SET",{"*",{"

SETPOINT"}})
(id,in,out)

4 (UsetId(id)(x)
(P0,1,V1)

6 (O0,1,V0))
(Uid(id)(tmp)

8 (P0,1,V1)
(G(=(h(V1))(V0)))

10 (O0,1,V1))
(UgetId(id)(tmp)

12 (P0,1,V1)
(A(:(V0)(h(V1))))

14 (O0,1,V1))
(Uinput(x)()

16 (O1,1,V0))
(Uoutput(y)()

18 (P2,1,V0))
(I(O0,1,S0))

20 (Tt(x,tRes,id,setpoint,decision,act,app,con2,res,y2)
(P1,1,V0)

22 (P0,1,V2)

106



Figure A.6: MQTT-compatible controller net

(G(=(h(h(t(V0))))(S1)))
24 (A(:(V1)(h(h(t(t(V0)))))))

(A(:(V3)(h(t(V2)))))
26 (A(:(V4)(<(V1)(V3))))

(A(:(V5)(#(a(a(na)(S2))(S3))(V4))))
28 (A(:(V6)(a(na)(V3))))

(A(:(V7)(,(a(na)(S1))(V6))))
30 (A(:(V8)(,(S4)(a(na)(,(V7)(V5))))))

(A(:(V9)(,(S5)(a(na)(V5)))))
32 (O0,1,V2)

(O2,1,V8)
34 (O2,1,V9))

(Tset(x,setpoint,id,id2,y2)
36 (P1,1,V0)

(P0,1,V2)
38 (G(=(h(h(t(V0))))(S6)))

(A(:(V1)(h(h(t(t(V0)))))))
40 (A(:(V3)(,(a(na)(h(V2)))(a(na)(V1)))))

(A(:(V4)(,(S7)(a(na)(a(na)(V1))))))
42 (O2,1,V4)

(O0,1,V3))
44 )


 	
Listing A.4: Controller PNBC

A.6 System Installation and Maintenance
Bootstrap of the system is done using the bash script listed in A.7. It shows templates
loading, nets instantiation, as well as the routing table construction. The system is changed
and updated by sending particular messages to system nodes as already been described in
previous chapters. The only difference here is the way of messages construction using lists.
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This approach made it more easier to make the system work with public implementations
of MQTT brokers.

Sample record of the traffic on the MQTT bus could be seen in listing A.8. It shows the
messages sent between nodes using the MQTT protocol. The message of type(* represents
component output. On the other hand (. is the input of component. For displaying the
data the open-source component DomotiCZ has been used. As it is not intended to make
the description even more complex, this part of the system is not described in more detail.
In described examples all the components are deployed on the same node.
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#!/bin/sh

./pn_load_template $SELF SensorPoll_20s

./pn_load_template $SELF ActPoll_20s

./pn_load_template $SELF Controller

./pn_load_template $SELF HeatingControl

./pn_bus_sender <<END
{".", {"$SELF", "activate"}, {"SensorPoll_20s", "Temp1", "DomoticzRead", "Temp1"} }
{".", {"$SELF", "activate"}, {"SensorPoll_20s", "Temp2", "DomoticzRead", "Temp2"} }
{".", {"$SELF", "activate"}, {"SensorPoll_20s", "Temp3", "DomoticzRead", "Temp3"} }
{".", {"$SELF", "activate"}, {"SensorPoll_20s", "Temp4", "DomoticzRead", "Temp4"} }
{".", {"$SELF", "activate"}, {"SensorPoll_20s", "Temp5", "DomoticzRead", "Temp5"} }

{".", {"$SELF", "activate"}, {"SensorPoll_20s", "SetPoint1", "DomoticzRead", "SetPoint1"} }
{".", {"$SELF", "activate"}, {"SensorPoll_20s", "SetPoint2", "DomoticzRead", "SetPoint2"} }
{".", {"$SELF", "activate"}, {"SensorPoll_20s", "SetPoint3", "DomoticzRead", "SetPoint3"} }
{".", {"$SELF", "activate"}, {"SensorPoll_20s", "SetPoint4", "DomoticzRead", "SetPoint4"} }
{".", {"$SELF", "activate"}, {"SensorPoll_20s", "SetPoint5", "DomoticzRead", "SetPoint5"} }

{".", {"$SELF", "activate"}, {"Controller", "Thermostat1", 220} }
{".", {"$SELF", "activate"}, {"Controller", "Thermostat2", 220} }
{".", {"$SELF", "activate"}, {"Controller", "Thermostat3", 220} }
{".", {"$SELF", "activate"}, {"Controller", "Thermostat4", 220} }
{".", {"$SELF", "activate"}, {"Controller", "Thermostat5", 220} }

{".", {"$SELF", "addroute"},{{{"$SELF","SetPoint1","STATUS"},{{"$SELF","Thermostat1","SET"}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","SetPoint2","STATUS"},{{"$SELF","Thermostat2","SET"}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","SetPoint3","STATUS"},{{"$SELF","Thermostat3","SET"}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","SetPoint4","STATUS"},{{"$SELF","Thermostat4","SET"}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","SetPoint5","STATUS"},{{"$SELF","Thermostat5","SET"}}}}}

{".", {"$SELF", "addroute"},{{{"$SELF","Temp1","STATUS"},{{"$SELF","Thermostat1","T"}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","Temp2","STATUS"},{{"$SELF","Thermostat2","T"}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","Temp3","STATUS"},{{"$SELF","Thermostat3","T"}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","Temp4","STATUS"},{{"$SELF","Thermostat4","T"}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","Temp5","STATUS"},{{"$SELF","Thermostat5","T"}}}}}

{".", {"$SELF", "activate"}, {"ActPoll_20s", "R1", "DomoticzWrite", "R1"} }
{".", {"$SELF", "activate"}, {"ActPoll_20s", "R2", "DomoticzWrite", "R2"} }
{".", {"$SELF", "activate"}, {"ActPoll_20s", "R3", "DomoticzWrite", "R3"} }
{".", {"$SELF", "activate"}, {"ActPoll_20s", "R4", "DomoticzWrite", "R4"} }
{".", {"$SELF", "activate"}, {"ActPoll_20s", "R5", "DomoticzWrite", "R5"} }

{".", {"$SELF", "addroute"},{{{"$SELF","Thermostat1","ACTION"},{{"$SELF","R1","SET"}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","Thermostat2","ACTION"},{{"$SELF","R2","SET"}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","Thermostat3","ACTION"},{{"$SELF","R3","SET"}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","Thermostat4","ACTION"},{{"$SELF","R4","SET"}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","Thermostat5","ACTION"},{{"$SELF","R5","SET"}}}}}

{".", {"$SELF", "addroute"},{{{"$SELF","R1","STATUS"},{{"$SELF","Heating",1}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","R2","STATUS"},{{"$SELF","Heating",2}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","R3","STATUS"},{{"$SELF","Heating",3}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","R4","STATUS"},{{"$SELF","Heating",4}}}}}
{".", {"$SELF", "addroute"},{{{"$SELF","R5","STATUS"},{{"$SELF","Heating",5}}}}}

{".", {"$SELF", "activate"}, {"HeatingControl", "Heating", 5} }
{".", {"$SELF", "activate"}, {"ActPoll_20s", "Boiler", "DomoticzWrite", "Boiler"} }
{".", {"$SELF", "addroute"},{{{"$SELF","Heating","OUTPUT"},{{"$SELF","Boiler","SET"}}}}}

{".", {"$SELF", "dump"}, {} }
END

Figure A.7: Heating system bootstrap script
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pnos/osexec/10.0.0.62 [’scripts/DomoticzWrite’, ’R2’, ’0’]
pnos/osexec/10.0.0.62 [’scripts/DomoticzRead’, ’Temp3’]
pnos/osexecreply/10.0.0.62 [’.’, [’10.0.0.62’, ’Temp3’, ’osprocreply’], [233]]
pnos/osexecreply/10.0.0.62 [’.’, [’10.0.0.62’, ’R1’, ’osprocreply’], [’1’]]
pnos/osexecreply/10.0.0.62 [’.’, [’10.0.0.62’, ’R2’, ’osprocreply’], [’0’]]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Temp3","STATUS"},{233}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","Thermostat3","T"},{233}}
pnos/osexec/10.0.0.62 [’scripts/DomoticzWrite’, ’Boiler’, ’1’]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","R1","STATUS"},{"1"}}
pnos/osexecreply/10.0.0.62 [’.’, [’10.0.0.62’, ’Boiler’, ’osprocreply’], [’On’]]
pnos/in/10.0.0.62 {".",{"10.0.0.62","Heating",1},{"1"}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","R2","STATUS"},{"0"}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","Heating",2},{"0"}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Thermostat3","STATUS"},{233,215,"0"}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Thermostat3","ACTION"},{"0"}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","R3","SET"},{"0"}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Boiler","STATUS"},{"On"}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Heating","UPD"},{{1,"1"}}}
pnos/osexec/10.0.0.62 [’scripts/DomoticzRead’, ’Temp5’]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Heating","UPD"},{{2,"0"}}}
pnos/osexecreply/10.0.0.62 [’.’, [’10.0.0.62’, ’Temp5’, ’osprocreply’], [187]]
pnos/osexec/10.0.0.62 [’scripts/DomoticzWrite’, ’R5’, ’0’]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","R3","SET"},{"0"}}
pnos/osexecreply/10.0.0.62 [’.’, [’10.0.0.62’, ’R5’, ’osprocreply’], [’0’]]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Temp5","STATUS"},{187}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","Thermostat5","T"},{187}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","R5","STATUS"},{"0"}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","Heating",5},{"0"}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Thermostat5","STATUS"},{187,185,"0"}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Thermostat5","ACTION"},{"0"}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","R5","SET"},{"0"}}
pnos/osexec/10.0.0.62 [’scripts/DomoticzRead’, ’Temp4’]
pnos/osexecreply/10.0.0.62 [’.’, [’10.0.0.62’, ’Temp4’, ’osprocreply’], [192]]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Heating","UPD"},{{5,"0"}}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","R5","SET"},{"0"}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Temp4","STATUS"},{192}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","Thermostat4","T"},{192}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Thermostat4","STATUS"},{192,180,"0"}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Thermostat4","ACTION"},{"0"}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","R4","SET"},{"0"}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","R4","SET"},{"0"}}
pnos/osexec/10.0.0.62 [’scripts/DomoticzWrite’, ’R4’, ’0’]
pnos/osexec/10.0.0.62 [’scripts/DomoticzRead’, ’SetPoint3’]
pnos/osexecreply/10.0.0.62 [’.’, [’10.0.0.62’, ’R4’, ’osprocreply’], [’0’]]
pnos/osexecreply/10.0.0.62 [’.’, [’10.0.0.62’, ’SetPoint3’, ’osprocreply’], [215]]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","R4","STATUS"},{"0"}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","Heating",4},{"0"}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","SetPoint3","STATUS"},{215}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","Thermostat3","SET"},{215}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Heating","UPD"},{{4,"0"}}}
pnos/osexec/10.0.0.62 [’scripts/DomoticzRead’, ’SetPoint1’]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Thermostat3","SETPOINT"},{215}}
pnos/osexecreply/10.0.0.62 [’.’, [’10.0.0.62’, ’SetPoint1’, ’osprocreply’], [225]]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","SetPoint1","STATUS"},{225}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","Thermostat1","SET"},{225}}
pnos/osexec/10.0.0.62 [’scripts/DomoticzRead’, ’SetPoint4’]
pnos/osexecreply/10.0.0.62 [’.’, [’10.0.0.62’, ’SetPoint4’, ’osprocreply’], [180]]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Thermostat1","SETPOINT"},{225}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","SetPoint4","STATUS"},{180}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","Thermostat4","SET"},{180}}
pnos/osexec/10.0.0.62 [’scripts/DomoticzRead’, ’SetPoint2’]
pnos/osexecreply/10.0.0.62 [’.’, [’10.0.0.62’, ’SetPoint2’, ’osprocreply’], [200]]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Heating","processing"},{{3,"0","0"}}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Heating","processing"},{{1,"1","1"}}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Heating","processing"},{{2,"0","0"}}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Thermostat4","SETPOINT"},{180}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Heating","processing"},{{5,"0","0"}}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","SetPoint2","STATUS"},{200}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","Thermostat2","SET"},{200}}
pnos/osexec/10.0.0.62 [’scripts/DomoticzRead’, ’Temp2’]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Heating","processing"},{{4,"0","0"}}}
pnos/osexecreply/10.0.0.62 [’.’, [’10.0.0.62’, ’Temp2’, ’osprocreply’], [222]]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Heating","OUTPUT"},{"1"}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","Boiler","SET"},{"1"}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Thermostat2","SETPOINT"},{200}}
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Temp2","STATUS"},{222}}
pnos/in/10.0.0.62 {".",{"10.0.0.62","Thermostat2","T"},{222}}
pnos/osexec/10.0.0.62 [’scripts/DomoticzWrite’, ’R3’, ’0’]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Boiler","SET"},{"1"}}
pnos/osexec/10.0.0.62 [’scripts/DomoticzRead’, ’Temp1’]
pnos/out/10.0.0.62 {"*",{"10.0.0.62","Thermostat2","STATUS"},{222,200,"0"}}

Figure A.8: MQTT traffic example
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Appendix B

Experimental Work

B.1 Textual Version of the DSML

Example of textual version of DexML follows. It describes simple example of local energy
trading scenario as well as the dynamic reconfiguration of used home equipment component.� �

Scene OurNeighborhood
2

component house1 {
4 subcomponent hall {

actuator mainLight {
6 in turnOn {

binds turnTheLightOn
8 }

in turnOff {
10 binds turnTheLightOff

}
12 expression turnTheLightOn {

var pin = 9
14 var val = 1

eval writePin pin val
16 }

expression turnTheLightOff {
18 var pin = 9

var val = 0
20 eval writePin pin val

}
22 }

actuator mainLight2 {
24 in dimValue {

binds dimLight
26 }

expression dimLight {
28 in dimValue

eval dim dimVal
30 }

}
32 }

subcomponent garage {
34 actuator powerTrader {

in powerValue {
36 binds processPowerValue

}
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38 expression processPowervalue {
in powerValue

40 eval display powerValue
}

42 }
}

44 in house1in {
source out house2outPort

46 }
out house1out {

48 target in house2in
}

50 }

52 component house2 {
in house21in {

54 source out house1out
}

56 in house23in {
source out house3out

58 }
out house21out {

60 target in house1in
}

62 out house23out {
target in house3in

64 }
}

66

component house3 {
68 subcomponent garage {

sensor powerWall {
70 expression powerValue {

var pin = 8
72 var val = eval readPin pin

var res = eval convertToWh val
74 var msg = "house1 pass garage pass powerTrader powerValue " + res +

" at " + name;
out powerValue {

76 binds msg
target in powerValue

78 }
}

80 }
}

82 in house3in {
source out house23out

84 }
out house3out {

86 target in house23in
}

88 }
 	
Listing B.1: DexML DSL language with textual form example
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Figure B.1: PNOS DexML Node

B.2 DSML Code Generation
Generated nets are depicted in following figures. They are directly inferred from the DSL
description. The only parts, that are used as standard templates are PNOS Node (Fig-
ure B.1) and PNOS Node Platform Logic (Figure B.2), that should both serve as generic
nesting mechanism of arbitrarily deep hierarchies of functionality trees.

Figure B.3 shows the generated infrastructure together with some sample data added to
simulate the scenario. The infrastructure itself is used only for simulation purposes. When
installing the system within target, it could be used for installation scripts generation. The
example of installation script could be found in listing A.7. It was constructed manually, the
installation script generation is not covered by this work. The infrastructure net, together
with the bootstrap sequence could befound in Figure B.8.

B.3 Components Installation and Reinstallation
Figure B.4 represents first version of home automation component controller logic for true/-
false lighting. It is installed first within the node house1 using the protocol message shown
in listing B.2.� �

house1 pass hall install mainLight
 	
Listing B.2: Simple net in PNBC

Figure B.4 represents second version of home automation component controller logic
for dimmed lighting. It is reinstalled within the node house1 using the protocol messages
shown in listing B.3.� �

1 house1 pass hall remove mainLight
house1 pass hall install mainLight2
 	

Listing B.3: Simple net in PNBC
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Figure B.2: PNOS DexML Platform Logic

Figure B.3: PNOS DexML Infrastructure

Figure B.4: PNOS DexML Main Light - version 1
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Figure B.5: PNOS DexML Main Light - version 2

Figure B.6: PNOS DexML Power Wall

Figure B.6 represents power source and consumer installed within a house, i.e. some
sort of house equipment battery.

Figure B.7 represents an simple input for power trading mechanisms described within
the PNOS. It could be seen that quite large parts of the computation are hidden within
the usage PNOS primitive operations. The level of granularity of particular operations
and their scripting using RPNs networks depends on the developer decision. Particular
set of PNOS operations must available within used PNVM implementation. The problem
decomposition relevant to all the decisions according to the granularity are considered to
be a part of further research and methodology development.

Figure B.7: PNOS DexML Power Trader
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Figure B.8: PNOS DexML Infrastructure bootstrap
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Appendix C

Application Scenarios Survey

C.1 Village Workflow System Specification
In the Figure C.1 the simple village workflow specification is defined. It contains several
village installations together with their connections that enable e.g. for energy trading
within the village.

C.2 Berthing Processes at the Panamanian Container Ter-
minal Specification

The Figure C.2 defines the berthing process at the Panamanian Container Terminal BPMN
specification.

C.3 Berthing Process Port Checklist Specification
The Figure C.3 defines the typical berthing checklist BPMN specification.
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Figure C.1: Village Workflow System Specification
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