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Abstract
This thesis deals with dynamic reconfigurability of distributed control systems. Due to the
characteristics of these systems, the Petri nets formalism is used to define their functionality.
These are transformed into a interpretable form and then executed by specialized software
installed on each system node. Thanks to the properties of used formalism, it is possible
to replace the individual parts of the system with new variants. Similarly, it is possible to
generate formal specifications for the system’s parts from more abstract workflow models
and descriptions in the form of domain specific languages.

Abstrakt
Tato práce se zabývá dynamickou rekonfigurovatelností distribuovaných řídících systémů.
Vzhledem k charakteristice těchto systémů je pro definici jejich běhu použit formalismus
Petriho sítí. Tyto jsou transformovány do proveditelné podoby a následně pak interpre-
továny specializovaným software nainstalovaným na jednotlivých uzlech systému. Díky
vlastnostem použitého formalismu je možné jednotlivé části systému nahrazovat novými
variantami. Stejně tak je možné generovat formální specifikace dílčích částí systému z
abstraktnějších workflow modelů a popisů ve formě doménově specifických jazyků.
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Chapter 1

Introduction

With increasing number of interconnected embedded devices, sometimes called the Internet
of Things (IoT) or according to a higher level of granularity Distributed Embedded Control
Systems (DECS), a demand for software architectures reflecting a heterogeneous charac-
teristics of used devices and environments that dynamically changes according to user’s
requirements, become more and more important research priority in recent years. This
work is going to summarize the approaches to solve the problem of software development,
deployment and updating in such a heterogeneous environment, as well as to bring the
original solution to this area.

Embedded control systems are important border technology between the physical and
information world. The control process itself is described as a control loop that consists
of reading data from sensors, updating the decision function, and triggering a number
of actuators installed within the physical environment controlled by the system. Most
of the control systems are constructed using a set of programmable logic controllers with
appropriate software installation. The main purpose of this work is to describe the software
part of this construction process with the focus on dynamic reconfigurability of the resulting
system using executable models and model continuity approach introducing the formal
aspects of software construction into the embedded devices area.

Basic principles of system reconfigurability in this work were adopted form the Refer-
ence Petri Nets (RPN) formalism and framework called Renew, where parts of the system
specification migrate in the form of tokens. RPNs is a specific type of Coloured Petri Nets
(CPN) based on nets-within-nets formalism, where tokens realizing a marking within one
network represent other RPN network with arbitrarily deep nesting of nets [39] [41].

This idea makes it possible to construct a system specification from smaller pieces of
computation, similarly as it is possible within Hierarchical Petri Nets (HPN) but with
dynamic way of nesting and migrating of nets within each other [36]. This is sometimes
called code migration and it is used in this work for the distribution of pieces of computation
within the system [26], [52], [7]. The problem of code migration would be discussed more
in Related Work section.

To be able to change the target system dynamically, according to all changes within
its formal specification, the specification itself is not used here for code generation and
its further compilation, but rather for its interpretation by the specific target platform
forming the heart of the idea prototype implementation. While we deal with embedded
devices i.e. with devices with limited resources, the implementation is based on minimalistic
interpretable form of the description representing migrating parts of original formal system
specification.
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As there are plenty of reasons to make it possible to reduce the complexity of the
definition of any system, we decided to leverage Workflow system specification approaches
to make it possible to define the system in more abstract way. Workflow specifications are
then translated into the target system interpretable specifications.

To enable users of the system with the possibility to define its structure and functionality,
as well as its changes, we also developed a Domain Specific Language (DSL) that is used
as another abstract view of the system specification [72], [20], [85].

The specification defined by the DSL is also translated into the set of RPNs which are
first of all used for the system simulation in the Renew simulator workbench, after that it
is intended to be used for the translation into the interpretable form, which we call Petri
Nets Byte-code (PNBC). PNBC is then distributed among target system nodes according
to the system infrastructure specification that is also available in the form of RPNs model.

The PNBC is directly interpreted by a specific virtual machine called Petri Nets Virtual
Machine (PNVM) that is responsible for maintaining and running all the pieces of com-
putation deployed within each node. PNBC and PNVM together with the I/O interfaces
of the node form so called Petri Nets Operating System (PNOS). All the communication
among PNOS nodes is performed by sending simple textual messages via serial lines, or
Message Queuing (MQ) tooled distribution bus.

In next section the state of the art of development software for IoT and DECS will be
discussed.

1.1 State of the Art

A control system implementation could be divided into the hardware and software part.
The hardware part starts with selection of the proper set of modules and its installation
within the physical environment, including the sensors and actuators attachment. When
there are multiple controllers, the hardware part must also take into account the commu-
nication problem. The software part follows with the programming, compilation, linking
and installation of each control unit with appropriate part of application or software that
controls the hardware.

The system reconfigurability in general is necessary for the ability of the system to
adapt itself to changes in environment and also to enable the system maintainer with the
possibility to change the system behavior without the necessity of its complete destruction
and reconstruction. The main goal of this thesis is to describe the software part of the
process, that respects the focus on formal specifications and dynamic reconfigurability.

Because of the strong demand on proper coverage of the system complexity at the begin-
ning of the construction process, there is a need for suitable description tools that preserve
the user requirements semantics. During the system lifetime there is also strong demand on
its dynamic reconfiguration according to any new requirements and also according to the
changes within the physical environment. The dynamic system specification change and
following reconfiguration requirements are not easy to satisfy.

1.2 Thesis Motivation

According to described situation, the main motivation of the thesis had arisen to be a
well defined way of distributed control system specification and implementation, using
formal methods, model continuity, as well as executable models paradigms. The formal
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specification of the system gives the model a possibility of formal analysis and thus reduce
the errors at the earliest phase of the system construction possible. One of the main goals
targeted by the thesis is also to allow the system reconfiguration within its run-time. The
solution should also make it possible to the end-user to change the system without deep
familiarity with sophisticated information technologies using some intuitive modeling tools.
The solution should be also robust enough and easily scalable to more application scenarios
within different levels of granularity of constructed systems.

1.3 Thesis Goals
The main goals of this thesis were defined as follows.

• Develop formally defined executable model for running the system specification -
reflecting the distributed, concurrent and synchronized features of the system, and be
able to run on devices with very limited resources.

• Use component-based architecture and enable for the execution of each system com-
ponent independently as well as for the possibility of modifying components within
the system run-time.

• Define the system construction process taking into account the possibility to involve
domain experts to understand its specification and therefore directly participate on
the construction process.

• Construct the system using actor properties of every part of the system functionality
and with the possibility of its migration across the running model.

This thesis emerged generally as an report from ongoing research and experiments within
the area of dynamically reconfigurable distributed control systems of the author. All the
described approaches and methods had undergo a certain level of improvements and changes
during the thesis collection lifetime. As the evolution itself plays the role in forming the
thesis ideas, these changes and improvements are commented and described within the text.

1.4 Used Methods
This work was based on the following procedure.

1. Analysis of recent and historical approaches to dynamic software modification,

2. narrowing the research focus towards distributed embedded control systems and de-
vices with limited resources,

3. a survey on formalization of the dynamic software updating and compilation of well-
structured summary of used methods,

4. designing and implementation of author’s prototypical and unique solution of defined
problem,

5. identification and definition of different application areas and simulating these ac-
cording to discussions with experts from selected areas,
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6. constructing the experimental installation and preparing several running examples,

7. discuss the solution usage consequences and positive side-effects of defined solution
and identification of other possible usages and applications as well as extensions.

1.5 Thesis Structure
The chapter Related Work describes the relevant work of other authors within the fields
of dynamic reconfigurability of embedded software as well as the other related areas. The
chapter Theoretical Foundations covers the formal apparatus used within the work. The
chapter Design Of The Solution describes the characteristics of proposed solution and the
details of its construction. The chapter Implementation Details adds some more information
about the experimental implementation of the solution. The chapter Applications and
Scenarios defines some scenarios of the real-world problems that were experimentally solved
using proposed solution. The chapter Experiments and Results shows achieved results from
running the experimental system implementations. Finally the chapter Conclusion and
Future Work summarizes achieved results and proposes possible future steps within defined
research.
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Chapter 2

Related Work

The development and deployment of safe and reliable software for embedded control sys-
tems remains the actual challenge to the computer scientists. The most important part
of the system development process is testing and verification of the system before its final
deployment. Also very important remains the possibility of the system to flexible reflect the
changes in requirements after the software deployment. For that it is necessary to enable
incremental changes to the running system and thus modify its behavior. At the same time
we need to maintain the model of the system throughout the whole system development
process, to keep the testing and verification possible.

Related work focused on similar problems as this theses could be divided into follow-
ing areas - embedded and operating systems, software engineering methods applied to the
area of embedded systems, Model-Driven Software Engineering (MDSE) methods applied
to the area of embedded systems, the usage of higher-level or visual languages for embedded
systems specification and implementation, the dynamic reconfigurability within embedded
systems, multi-agent approach to the reconfigurable embedded systems development, sys-
tem partitioning, code generation, and also the reconfigurable hardware.

2.1 Distributed Embedded Control Systems

Distributed embedded control systems (DECSs) consist of a set of nodes that either provide
for some functionality to the system or ensures the control over some particular device
to which they are connected. The functionality-providing node could for example offer
the storage service for the devices without persistent memory, or some more complicated
computations (like encrypting/decryption) for the nodes with low computational power.
Some of the nodes nodes are attached to the I/O of the device, like sensor, motor, pump,
valve, boiler, or switch, providing the signals for the device controlling or reading the data
from sensors.

Therefore the overall business logic of the system is spread among the nodes and manifest
itself within the controlled environment by achieving the goals of the system, like living
comfort for the house inhabitants, energy consumption optimization, or power plant energy
production. The functionality itself is defined as a functionality of every node of the system
together with the communication among nodes.

There are several communication buses’ standards within e.g. home automation in-
dustry for the inter-devices communication, e.g. KNX, OPC, BACNet, etc. [31]. These
communication buses are suitable to satisfy the reliability and security of the communica-
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tion between the nodes themselves. But there is a huge gap regarding any standards for
used nodes and control units software equipment. Simple nodes are only reflecting some
basic commands received via buses, but there is a lack of computational facilities within
most of them. The control unit then remains the only responsible entity within the system.

The complexity of embedded systems has increased in a way, that this area obviously
has to undergo similar transformation process as classical software systems passed after
the software crisis [16], that lead to an emergence of software engineering disciplines and
object-oriented programming languages. Some literature even mentions the complexity
as an essential characteristics of modern computing platforms for embedded systems. It
is assumed that this complexity being underestimated could lead to the fact that these
systems will increasingly become unreliable - with increasing complexity, system reliability
and safety becomes a major problem.

The complexity of embedded systems also lead to the component-based system con-
struction, which needs the techniques to integrate components while preserving essential
properties of system behaviour [11]. The introduction of appropriate levels of abstraction
in modeling and the associated concept formation helped to reduce the emerging complex-
ity by focusing on the relevant properties and omitting irrelevant detail, thus leading to a
simpler representation of the evolving artefacts [48].

While earlier embedded systems were usually isolated pieces of software, typical today’s
embedded system software takes about gigabytes of binary code operating over dozens of
devices and these numbers will probably even arise. This type of systems could be found
in houses, cars, ships, plants, and many other complex devices. The aim of reducing the
complexity of distributed embedded system construction, as well as the necessity to satisfy
the predictability, correctness and reliability of such a system caused the focus of the model-
driven software construction research towards the embedded systems [91].

2.2 System Dynamic Reconfigurability
Dynamic reconfigurability is necessary for the system ability to adapt itself to changes
in environment and also to provide the user with the possibility of changing the system
behavior while it is in run time, without the necessity of complete destruction and further
reconstruction or even its restart. One of the focuses of this thesis is to describe the
software part of construction process and the system maintenance features, that respect a
focus on formal specification and dynamic reconfigurability. The main operation principle
of resulting system could be described on tasks of system construction - installation, and its
reconfiguration. The installation of the system starts with placing proper nodes to the target
environment. The physical communication between nodes using different wired or wireless
communication technologies should be established. Each node should be installed with
proper software, enabling the installation and reconfiguration of the system. The system
reconfiguration should be performed on each defined level of the system architecture. All
the parts of the system could be changed and then passed to the particular system node to
change the behavior of the system.

The usage of formal modeling within the control systems development as well as the
dynamic reconfigurability features of such a software is not a new idea. Research activities
in this topic are primarily focused on two possible ways - the direct or indirect approach.
The direct approach offers specific functions or rules, allowing to modify system structure,
whereas the indirect approach introduces mechanisms allowing to describe system reconfig-
uration. The main difference consists usually on the level of reconfigurability implemented.
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Direct methods use formalisms containing intrinsic features allowing to reconfigure the
system. Indirect methods use specific kind of frameworks or architectures, that make it
possible to change the system structure.

In our field of research the first group consist of formalisms based usually on some kind
of Petri Nets. Reconfigurable Petri Nets [33], presented by Guan and Lim, introduced a
special place describing the reconfiguration behavior. Net Rewriting System [59] extends
the basic model of Petri Nets and offers a mechanism of dynamic changes description.
This work has been improved [57] by the possibility to implement net blocks according
to their interfaces. Intelligent Token Petri Nets [93] introduces tokens representing jobs.
Each job reflects knowledge about the system states and changes, so that the dynamic
change could be easily modeled. All the presented formalisms is able to describe the system
reconfiguration behavior, nevertheless only some of them define the modularity. Moreover,
the study [5] shows, that the level of reconfigurability is dependent on the level of modularity
and also that there are modular structures that are not reconfigurable. Another approach
introduced by Kahloul et. al. uses classical P/T Nets and specific production rules and
graph transformation techniques to modify manufacturing process defined using Petri Nets,
i.e. to modify the manufacturing system that controls it [56].

The second group handles reconfiguration using extra mechanisms. Model-based control
design method, presented by Ohashi and Shin [68], uses state transition diagrams and
general graph representations. Discrete-event controller based on finite automata has been
presented by Liu and Darabi [58]. For reconfiguration, this method uses mega-controller, a
mechanism, which responses to external events. Real-time reconfigurable supervised control
architecture has been presented by Dumitrache [17], allowing to evaluate and improve
the control architecture. All the presented methods are based on an external mechanism
allowing system reconfiguration. Nevertheless, most of them do not deal with validity and
do not present a compact method.

So far, we have investigated formalisms and approaches to the control system develop-
ment. They have one common property, they are missing complex design and development
methods analogous to software engineering concepts. Of course, the methods and tools that
are applied in ordinary software systems are not as simply applicable to embedded systems.
Nevertheless, we can be inspired with software engineering approaches and adopt them to
the embedded control systems [69]. To develop embedded control system, the developer
has to consider several areas. We can distinguish five areas [69] as follows—Hardware, Pro-
cesses (development processes and techniques), Platform (drivers, hardware abstraction,
operating systems), Middleware (application frameworks, protocols, message passing), and
Application (user interface, architecture, design patterns, reusing).

Former MDSE approach of embedded systems construction was typically based on meta-
modeling and model transformations using code generators [91]. These approaches enable
the reconfigurability during compile time. But there are also approaches that use higher-
level interpreted languages, like SensorScheme. The interpreted characteristics of higher-
level languages enables not only for higher abstraction of concepts, but also for platform
independence and dynamic features of languages, like dynamic loading and execution of
code while the system is in run time. Similar approach we use in this work.

The dynamic reconfigurability of the system could be also provided by the agent and
multiagent architecture as a basic system construction framework. But this way the system
functionality changes according to the agents characteristics and therefore partially unpre-
dictable. Therefore we focused more on the dynamic change of the system by its user and
according to his or her requirements.
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The dynamic reconfigurability of system could be also achieved by the proper usage
of constants and data persistence means, like sharing the state of the application within
the database. Today’s software tools already offer Database Management Systems (DBMS)
suitable for embedded systems, but dynamically reconfiguring the node behavior would also
must take into account storing some form of code within the database to be interpreted
later by some virtual machine, which is very similar to our concept. Changing only some
coefficients used within the computations is not considered as an dynamic change of the
node functionality in our approach.

2.3 Systems Modeling

Systems modeling is a discipline covering all the necessary knowledge and practices for
creating artificial conceptual models of real-world systems. Typical approach is to divide
between modeling the structure of the system and its dynamic behavior. Both together the
structure and its dynamic should represent the definition of system functionality. There
are usually some modeling means to decompose the functionality as well to partition the
system structure into easily manipulable pieces. All the functionality blocks forming some
abstract concept are usually mapped to some functional requirement defined by the future
user of the system, or customer.

There are plenty of notations, and formalisms for systems modeling, but they differ in
the level of exactness and therefore some sort of straightforwardness of inducing the final
implementation from the model itself. Among mainly used notations in the industry there is
a Unified Modeling Language (UML) and Business Process Model and Notation (BPMN)
notations worth of mentioning. UML aims to be strong enough to model the structure
of the system, as well as its behavior. The BPMN is more focused on the business level
behavior of the system. Both define enough tools for system description making it possible
for systems analysts and designers to define and discuss the implementation with computer
programmers. On the other hand, such a non-formal notations will always leave some space
for uncertainty of the final solution functionality accurateness. Compared to that there are
some formal approaches that enable for well-defined system implementation results. Among
these, there are e.g. agent based modeling, data modeling and mathematical modeling.

The IEEE recommendation defines the system as its aspects and the environment [32].
It mainly focuses on the common way to talk about system structure and behavior. The
most important concept in system modeling is abstraction that enables for the simplification
of complicated problems as well for wrapping some unnecessary details into more abstract
concepts. Not even the structure of the system has its own hierarchy of abstractions. As
well the behavioral complexity of the system with e.g. non-deterministic behavior, and
other difficult-to-characterize properties are necessary to cover.

Two key concepts play a role when modeling different levels of abstraction, those are:
view and viewpoint and black-box and white-box modeling, which will be described below
[1]. Next chapter will briefly describe the component-based software engineering that brings
important key concepts into the system decomposition problematic.
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2.4 Model-based Systems Engineering and Formal Specifica-
tions

Within the Model-Based Engineering (MBE), or Model-Driven Engineering (MDE) and
Model-Driven Development (MDD) domains, the emphasis lays in using the visual modeling
tools to leverage the benefits of common and easily understood concepts in the same way as
in system description during the System Development Life Cycle (SDLC). The important
part of the definition of MBE is that The Model-Based Engineering paradigm is model-
based to the extent that the visual modeling artifacts that it generates are sufficiently
precise and complete that they can serve as a software or systems blueprint for improving
SDLC efficiency and productivity. The paradigm is considered to be model-driven to the
extent that it at least partially automates (i.e., ”drives“) the SDLC via requirements that
are precisely and completely specified as part of the system model, and which can be fully
traced across the SDLC [62].

2.5 Domain Specific Modeling
When dealing with implementation of complex systems covering some specific area of hu-
man activity, it usually come down to the problem domain that is not understandable to
everybody, but domain specialists educated and experienced in certain problematic. The
system specification could then boil down or just be partially solved by so called Domain-
specific modeling (DSM), i.e. programming using Domain-specific languages (DSL), which
is a computer language specialized to a particular application domain, in contrast to any
general-purpose language (GPL), that could be used for any problem. The important thing
here is to divide the problem solution between the software tool that is able to somehow
interpret or consume the DSL and behave according to what is defined in its statements, or
whatever structures they use. The typical approach is to support higher-level abstractions
than typical general modelling languages tobe able to specific the problem domain in terms
and costructs it contains [43].

Typically within the domain specific modeling there is a code generation inherently
included. It is because the Domain-specific languages (DSLs) are typically not executable
nor interpretable itself. While it is quite challenge to interpret the DLS directly, it is much
more simple to translate it to some classical language that is compilable or interpretable
rather straightforwardly. The main benefit of this approach is the possibility to involve the
domain expert into the development process as well as the reducing of possible problems
and bugs created by programmer when implementing the specified system description, thus
directly improving the quality of the software and code.
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Chapter 3

Theoretical Foundations

This chapter collects all the necessary theoretical background for the reader to be able to un-
derstand later parts of the thesis. It mainly focuses on Petri Nets as a modeling formalism.
Several types of Petri Nets and their features are discussed. First of all the classical basic
Petri Nets and their features, together with the high-level Petri Nets specification making
it possible to add types to tokens and places. Then a specific type of High-Level Petri Nets
called Reference Nets, or Elementary Object System is defined. And also an other type of
Petri Nets definition, based on the aggregation of particular places and transitions patterns
into a new nets components. These components form e.g. logical operations used within
workflow modeling. Therefore are these called Workflow Nets.

3.1 Petri Nets

Petri Nets, called by Carl Adam Petri is specific mathematics language for modeling
discrete-event systems, particularly suitable for describing distributed parallel systems. A
Petri net could be displayed as directed bipartite graph of two types of nodes - places and
transitions. Places are typically displayed as circles and transitions as bars. Places repre-
sent distributed state of the model and could carry so called tokens. Transitions represent
events within the system and could be invoked arbitrarily when all the preconditions of
the transition are satisfied. Preconditions are defined by places connected to the transi-
tion by oriented arcs. The precondition is satisfied when there is so called token within
the place. The transition invocation produces tokens on all the post-conditions places,
connected with the transition by oriented arcs. Every result of the transition invocation
forming the distributed state represented by tokens placed on places is called marking. Us-
ing the combination of places and transitions it is possible to describe the execution flow
of system components or parts. Compared to the other graphical tools for describing the
the execution flow like e.g. UML, BPMN, etc., Petri Nets have an exact meaning and
mathematically defined execution semantics, also with matured mathematical theory for
the execution flow analysis. One of the many specifics of Petri Nets is the inherent non-
deterministic transitions execution policy. Any executable transition could be fired on each
step.
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3.2 Reference Nets
A specific type of High-level Petri Nets are called Reference Nets. In this thesis this type of
HLPN is used as a basic formalism for system model specification. Reference Nets allow to
construct a system hierarchically, in several levels. Nets can migrate among places in other
nets and thus it is possible to dynamically modify functionality of system components,
specified by this kind of nets [12]. The formalism is based on nets-within-nets concept
introduced by Valk [88]. This concept enable Petri Nets to be nested in other Petri Nets in
the form of tokens.

3.3 Workflow Nets
Workflow modeling is very popular for its aim to precisely define the functionality re-
quirements using intuitive and human-readable form, while offering enough precision to be
interpretable by machines. For its formal characteristics and large research background we
adopted for the purposes of our research Wil van der Aalst’s specification for system work-
flow modelling, so called Extended Workflow Petri Nets [2]. Aalst’s work is well-defined and
resulting workflow models could be used for the system processes verification and validation
purposes [4]. The main advantage of using Workflow Petri Nets is the possibility of system
specification and its adaptation by the non-technically educated domain specialists. This
approach is very similar to the BPMN workflow models, so it might be easily adopted by
business process modeling domain experts. For that reason we decided to use the Aalst’s
YAWL notation [3] and Workflow Petri Nets formalism [2] in the early beginning of the sys-
tem construction process. There are two main concepts from this theory that we use at the
moment - two basic transition categories - split and join behavior (AND-split, AND-join,
OR-split and OR-join), and the concept of workflow subprocess (sub-task).
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Chapter 4

Design of the Solution

This chapter describes the design of the dynamically reconfigurable embedded system con-
struction process. It covers the decomposition of the problem into specific parts and their
further transformations and interactions.

4.1 The Development Process

The development process is described in Figure 4.1. It starts with the system specification
using Reference Nets framework Renew [51] which is then followed by the transformation
of the models into the interpretable form. It is also possible to generate native code, and
deploy it directly to the chip, but this approach dramatically reduces the level of recon-
figurability. Statistics gathered from simulation experiments can be used for verification
purposes and also can support decisions about type of hardware for target system imple-
mentation. The hardware components for the target implementation are installed with the
specific interpreter implemented to be able to run translated nets. Finally the whole system
is installed according to its model by sending appropriate nets definitions and instructions
to all subsystems. All the parts of the system could by reinstalled later within the system
run time. This is how the deployment and maintenance of the system is achieved.

The multi-layered nature of the system and responsibilities of particular levels are de-
scribed in Figure 4.3.

4.1.1 Communication Model

The communication within described model is intended to be based on textual messages
constructed according to the defined rules and the structure of the system. We call this
language protocol and it consists of commands and addresses, according to the structure
and capabilities of each of involved nodes. Regardless on the way the code is generated all
the abstraction levels communicate with each other using described uplinks and downlinks.
The communication principles are described in Figure 4.3.

The communication is basically initiated by sub-processes installed within processes.
According to the instructions within the protocol, processes send messages to other pro-
cesses. Processes could also communicate with platform in which they are installed to
install other processes, or receive and send data. They could also communicate with PNOS
on which the platform is installed to install other platform. The communication between
nodes is accomplished by packets that are in upper layers interpreted as mentioned textual
messages.
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Figure 4.1: System development process

4.2 System Model Definitions

In this section all the necessary extensions to previously defined theoretical foundations are
defined. We have here extended communicating workflow net, to be able to communicate
among nets. Then there is workflow specification definition added which enables for nest-
ing workflow nets together. And finally there is workflow system specification that makes
it possible to combine multiple workflow specifications. Besides the model interpretation
problem there is a model construction part, which heavily relies on abstract model trans-
formations. In this work, there are two translation phases. The translation of the Workflow
Petri Nets model into the Reference Petri Nets model and translation of the Reference Petri
Nets model into its interpretable form. The first transformation phase takes into account
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Figure 4.3: Communication schema

the set of workflow specifications described within the workflow model of the system and
produces target node representations. Such a representation should contain the basic PNOS
I/O functionality, and the platform functionality, which means the ability of receiving nets
specifications, nets instantiation, removing nets instances, removing nets specifications, etc.

Using this functionality the node main processes should be installed. It usually con-
sists of the description of sub-processes interactions and ordering. Then the main processes
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of each node are installed with translated sub-processes. The communication between re-
sources is represented by transitions, which are not part of any other role and serve as a
data transport part of the system. Particular data types should be described in the terms
dictionary, that holds all the necessary information needed for nets translation, that is not
included within the diagram. Regarding the workflow model, also other specific rules for
the communication protocol could be derived. Let us introduce some basic definitions of
formalisms used during the system development. Our approach follows the previous defini-
tions and adds some more rules to enable the extended workflow models with communication
features to satisfy the developer ability to combine multiple workflow specifications.

4.3 Domain Specific Languages
The increasing complexity of software systems requires emerging methodologies and tech-
niques for software engineering. In previous section the workflow modeling and formally
defined approach to the interpretable system description has been shown. This section intro-
duces more practically oriented view of the problem, forming part of this thesis introducing
another method of the system specification. This method is also based on model-driven
software engineering (MDSE), which tackles software complexity by employing models as
first-class entities in all development phases. By raising the abstraction level, many de-
tails of the implementation itself could be hidden, which has also the benefit of improving
the communication between technical staff and the domain experts. Among advantages of
MDSE, there are also improved productivity, re-usability and code quality, separation of
concerns as well as easier to react on changes [91].

Obviously, it is hardly possible to expect software engineers to become experts in the
domains which they write software for. The same is true for domain experts: they most
probably will not understand program code, logic, software modeling or object-orientation.
Software projects which do not succeed in involving the domain experts in the production
line has a higher probability of failure. One of the methods promoted by MDSE to solve
this problem is an introduction of domain specific modeling languages (DSMLs).

Basically, DSMLs are modelling languages which define the structure, semantics and
constraints of models related to a particular application domain [25]. DSMLs facilitate
domain experts with means to model their own systems by offering capacity for high-level
abstraction, user friendliness and tailoring to the problem space. Hence as opposed to
general purpose modeling languages, in DSMLs the concepts and language constructs come
from the particular domain to which the system is dedicated. An important factor for the
success of DSMLs is the existence of good language workbenches such as MetaEdit [43],
MultEcore [60], DPF Workbench [54], USE [30], etc.

A natural application of MDSE and DSML is the specification of home automation
configurations since these systems usually consist of various embedded devices with different
manufacturer models, which makes their communication, configuration, reconfiguration,
etc., a challenging task. Moreover, in most cases the domain experts in home automation
are home owners from whom we should not be expecting technical expertise. A flexible yet
extensible and user-friendly DSML in this regard would be huge gain for both installation
engineers and home owners. One of our contributions in this paper is such a DSML which,
through abstraction, will enable users to configure their broad range of devices without
being bothered with the technicality [79].
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Chapter 5

Implementation Details

This chapter describes implementation details of presented design of the solution. At first
it introduces all the hardware constraints that have been defined within thesis goals in more
detail. Then it goes more deeply into the code generation and interpretation of generated
target system implementation.

5.1 Hardware Infrastructure

In this section we are going to briefly describe the hardware constraints defined as main
focus considerations for the thesis itself. From the point of view of distributed embedded
control systems, there are plenty of aspects that should be taken into account. First of all
of those is the latency, i.e. the time it takes to the system reaction to some impulse. Second
one is the rate of data processing, e.g. whether it is necessary to process some data each
hour or there is a demand to do that at 4000 Hz frequency.

Particularly when dealing with home automation problems, it is worth of spending some
more time while having more flexibility regarding the dynamic reconfigurability compared
to more rigid, but fully reliable systems as car or boat driving software. For example for
gathering the high-frequency data the typical HW equipment on an Anchor Handling Tug
Supply vessel (AHTS) with Dynamic Positioning (DP) features is an industrial PC with
Intel Atom N270 fanless configurable controller with 2 PCI slots and 2GB memory from
ADLINK Technology.

On the other hand, for the humidity, temperature, gases and other environmental vari-
ables on very low frequency measurement, let’s say 10 Hz the ATMega chip typically in-
stalled on Arduino or Libelium devices will sufficiently do. The difference here is quite
huge and it is quite easy to imagine any device half way through this spectrum. In our
work, we would like to cover all those device with the same approach. To be able do this
we needed to cover the most weak devices at the beginning. Next section will describe
particular examples of devices in more detail.

5.2 Petri Nets Operating System (PNOS)

During the development of the solution the concept of Operation System-Like environment
for the Reference Petri Nets interpretation and manipulation emerged. The basic principle
was coined as a Petri Nets Operating System (PNOS) which means, that this part of the
system should represent the basic embedded operating system principles - provide means for
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input and output of I/O data, communication tools, multiprocessing support and memory
management. In following sections this concept will be described in more detail. The
aspects of the PNOS functionality, including PNVM and PNBC, will be demonstrated by
example.

5.3 Petri Nets Byte Code (PNBC)
Part of the system specification is described as PNBC (Petri Nets Byte Code). PNBC was
developed to solve the key problem of the thesis, which is interpretation of the RPN models
within devices with limited resources.

The language itself uses a set of special characters to express the beginning and end of
some structure. Following text will explain the language elements as well as its grammar.
The interpretation details follows.

5.4 Petri Nets Virtual Machine (PNVM)
This part of the work describes the BNBC interpreter called PNVM that is part of the
PNOS and is responsible for running the RPN nets on each node of the system. Because
the memory management is critical when writing the software for embedded systems, while
interpreting the PNBC on devices with very limited resources, it was necessary to keep
the memory management under control to the maximum level possible. Therefore the
dynamic memory allocation must have been avoided and specific memory management
targeted directly to the Petri Nets management was developed. This part of the work
is partially based based on work of one of our students, who translated original PNVM
previously implemented in Smalltalk into the C code [64]. The translation was performed
using generated Smalltalk Slang sources, that are equivalent to the C language semantics, so
they could be easily transferred into C program. On the other hand, this way of constructing
the virtual machine was abandoned, because the post-processing of generated code appeared
as non-trivial. Also the memory management on devices with limited resources is much
different from the Smalltalk approach. So only the initial implementation of the PNVM
was held using this transformation, but further development is conducted now directly in
C language. Following section describes the virtual machine functionality in more detail.
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Chapter 6

Application Scenarios

In this chapter we are going to describe all the discovered and tested application scenarios
that form the example domains of projects possibly implemented based on this thesis results.
At first there is a main motivational home automation scenario which solves the problem
of changing weather as well as user’s demands by introducing easily manageable solution.
Second part describes the scenario, where there was an idea to broaden the scope of the
proposed system construction mechanism, using to bigger scenarios and different application
areas - particularly the maritime logistics in Norway.

6.1 Control Systems for Home Automation

In the area of home automation, there are two main approaches in the house control mech-
anism construction - centralized and decentralized one. Centralized approach is based on
one central control unit, that is connected with all the devices and sensors in the house.
Such a control unit gathers all the data from sensors and process it according to some
predefined set of rules. Based on the results, the control unit produces commands for
target action devices. Decentralized approach is based on some sort of bus that connects
many devices behaving independently according to the data and commands sent over the
bus. Both approaches employ microcontrollers as a means of computation units to control
devices. These microcontrollers are usually programmed using languages as Assembly lan-
guage or C. Sometimes there exists a visual tool for controller programming, that produces
the compiled binary to be uploaded to the chip.

This approach causes the typical maintenance roundtrip to be divided into the planning
and programming phase, and then to the installation and run time phase. If there are
some bugs encountered within run time, it is necessary to change the program, recompile
binaries and install it to the devices. That forms two main disadvantages in usage of such a
control system: lack of autonomous and dynamical reconfigurability in changed conditions,
and lack of means for system formal and simulation based validation and verification before
it is finally deployed. This leads to the considerable extent of discomfort for the owner
and maintainer of the control system. Our work aims to overcome these disadvantages
by introducing the control system, that regardless whether centralized or decentralized
is constructed based on the formally specified and verified design and is able to adapt
itself to changing conditions without the necessity of maintainer direct intervention. The
maintainers role is to correct the system remotely e. g. from his place of work.
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As already been discussed, the idea behind our solution is to construct model of de-
scribed control system as a well defined and sound formal specification and then run this
model with high degree of flexibility in reconfiguring it in run time. In our approach the
target system is divided into the set of specific abstraction levels and each abstraction level
is then mapped to the target platform. The transformation is then defined, which can
be used for code generation from particular abstraction level network. Enabling changes
within the model during the system run time is achieved by the concept of a multi-level
abstraction, where the functionality of the system is determined by currently present agents
and protocols, that they interpret. Each modification to the system is performed in follow-
ing steps: 1) modeling or remodeling of the particular artifact (net), 2) code generation,
and 3) forwarding the net to the system.

6.2 Data-Driven Maritime Processes Management
In this part of the work a decision support system for maritime traffic and operations,
based on formal models and driven by data from the environment will be briefly described
and used as an example. To handle the complexity of such a system description, we work
with a decomposition of the system to set of abstraction levels. At each level, there are
specific tools for system functionality specification, respecting particular domain point of
view. From the business level point of view, the system consists of processes and vehicles
and facilities over those the processes are performed. From the engineering point of view,
each process consists of a set of devices, that should be controlled and maintained.

Software engineering point of view operates on reading and converting bytes of data,
storing them into variables, arrays, collections, databases, etc. For complex trading pro-
cesses management purposes we need to cover all levels of abstraction by specific description,
suitable to model and automate the operations on each particular level. As a case study
we use salmon farming in Norway. The system implementation is based on Reference Petri
Nets and interpreted by the Petri Nets Operating System (PNOS) engine. This approach
brings formal foundations to the system definition as well as dynamic reconfigurability to
its run time and operation. This example emerged as a result of authors internship on
NTNU: Norwegian University of Science and Technology.
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Chapter 7

Conclusion and Future Work

This work aimed to and introduced the basics of the methodology for automated conver-
sion of formal system specifications to the executable implementation that preserves the
dynamic reconfigurability of the original model, i.e. changes within its run time. Present
implementation uses the Raspberry Pi and Arduino platforms as hardware platforms for
target system deployment. The architecture enables to run and simulate the control system
specification as a model. The same model in the form of running implementation works on
top of the network of Arduino and Raspberry Pi boards. All the changes to the running
system are preformed by the model modification. The modification could be done directly,
or mediated by introduced higher-level abstractions - Workflow Nets, or DSMLs. In this
section the main achieved results are concluded.

Within this work an analysis of recent and historical approaches to dynamic software
modification, mainly focused on distributed embedded control systems and devices with
limited resources, has been contributed. According to the goals of the thesis a great focus
was targeted to the formalization of system specification as well as the dynamic software
updating. The thesis introduced original solution to the problem of running specifications
on low-level hardware, as well as to the problem of involving domain experts into the
development process. The work introduces the Reference Petri Nets based approach, that
enables model preservation during the whole system development life-cycle. The solution
is based on so called Petri Nets Operating System (PNOS) that consists of basic I/O
and communication means and also of the so called Petri Nets Virtual Machine (PNVM),
that is able to interpret the original Petri Nets Byte Code (PNBC). PNBC serves as an
intermediate language, that could be produced from many sources, as well as interpreted
by many interprets. A prototypical solution has been also prepared. Both main targets
were also experimentally applied to two domain areas - Home Automation and Maritime
Logistics. Domain experts in both areas were directly interviewed and their knowledge
was used to test achieved results, during the methodology development. The running
example of Home Automation problem was implemented using defined methodology and
experimentally runs within the Real World installation. Also some practical results were
collected and presented.

Among the main methods the work uses models transformations and target system
prototype code generation, model execution, and model continuity. Development process
starts with the Workflow Model or Domain Specific Model of the system specification.
Workflow model of the system describes the functionality from user’s or domain specialist’s
point of view. Using defined methods, the Workflow Model or Domain Specific Model are
further transformed to the multi-layered architecture based set of Reference Petri Nets.
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The system is constructed in several layers. Each layer of the system is translated to
the specific target representation called PNBC, which is interpreted by the PNVM, that
is a part of the PNOS, that is installed on all nodes of the system. Targeted dynamical
system reconfigurability is achieved by the possibility of PNBC net templates and instances
replacement with their new versions. After the replacement, PNVM interpretation engine
starts to perform a new version of partial functionality of the system. That makes the
dynamic reconfigurability possible.

The work also describes the process of construction of basic elements of Domain Specific
Language (DSL) for domotic systems configuration and reconfiguration called DexML. The
idea here was to impart some formally well defined concepts to the informal DSL definition
by its translation to formally well established form. This additional goal was achieved
only partially, because the transformation is still defined in non-formal way, therefore it
is not possible to ensure that the resulting system reflects the source DSL model. On the
other hand, our up to date architecture and a set of tools enable the end users of simple IoT
systems to define their structure and behavior using readable DSL and then transform it into
the runnable target system implementation, leveraging the PNOS architecture defined by
our research previously. Because of the possibility to simulate the generated model, or goal
is at least partially fulfilled. The other advantage is leveraging the dynamic reconfigurability
features of the PNOS, enabling the user with the possibility to change the DSL model and
then generate modified set of Petri Nets that could be sent to the target system changing
its behavior while it is in run time.

This work defines the basic principles of dynamically reconfigurable distributed embed-
ded control system construction process and mechanisms. Planned future work could be
divided into following areas: implementing more PNVM versions using different languages
and different platforms, finishing the DSL formalization process and generalize core DSL
parts to be applicable to different scenarios, introduce run time verification features to the
running specifications leveraging its formal properties, and finally use the formal properties
of the system for proving its trustability.
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