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Abstract
Although the Internet has changed significantly since the beginning of the 21st century,

packet classification is still one of the most common operations implemented in networking
devices. Nevertheless, the requirements on its performance are continuously increasing,
especially in core networks. Currently, packet classification algorithms have to support
100 Gbps throughput. In addition, classification rule sets are becoming larger and the
number of bits involved in the classification decision is growing due to 128-bit IPv6 ad-
dresses and classification according to more than 5 header fields in the OpenFlow protocol.
Therefore, the majority of contemporary research on packet classification in core networks
address the performace of packet classification algorithms, which has to keep pace with con-
tinuously increasing requirements. However, the researchers also focus on benchmarking
newly developed algorithms because they have to be benchmarked using real rule sets, but
such data are not available for most of the packet classification use cases. This thesis deals
with both of these issues because it is important not only to design packet classification
algorithms having high performance but also to assess their parameters by benchmarking
based on proper data sets.

Regarding the performace of packet classification algorithms, this thesis focuses on
improving prefix matching, which is used in the majority of 1-dimensional and also multi-
dimensional algorithms. Since a software implementation of prefix matching cannot fulfill
the requirements imposed on packet classification in core networks, the thesis proposes
a novel pipelined prefix matching architecture that targets Xilinx FPGA chips and uti-
lizes their distributed on-chip memory. To fit the whole prefix matching data structure
into FPGA’s on-chip memory, this thesis also proposes a memory-efficient trie-based rep-
resentation of a prefix set. The proposed representation is more memory efficient than
well-known multibit tries Tree Bitmap and Shape Shifting Trie and for IPv4 prefix sets
it also significantly overcomes the Prefix Partitioning lookup algorithm. The architecture
then comprises two independent processing pipelines (to utilize both ports of on-chip mem-
ory blocks) that are together able to perform almost 255 million lookups per second, which
translates into throughput of 170 Gbps for the shortest Ethernet frames.

To allow realistic packet classification algorithms benchmarking, the thesis introduces
a new open source synthetic rule set generator called ClassBench-ng, which integrates the
generation of IPv4, IPv6, and OpenFlow 1.0.0 classification rule sets following the statistical
properties specified in an input seed. Apart from the rule set generation, ClassBench-ng also
supports an analysis of a real rule set in the ovs-ofctl format producing a corresponding
seed that may be used for the generation of a similar synthetic rule set later on. Therefore,
researchers having access to real classification rule sets can share their benchmarking data
with other members of the community via statistical-based (thus anonymous) seeds pro-
duced by ClassBench-ng. With respect to the precision of the rule set generation process,
ClassBench-ng is better than original ClassBench and FRuG in case of IPv4 prefixes and
than Non-random Generator in case of IPv6 prefixes, when considering an average score
for all IP prefix-related parameters. Moreover, it also clearly outperforms FRuG in the
precision of OpenFlow rule sets generation.



Abstrakt
Ačkoliv se Internet od počátku 21. století znatelně proměnil, klasifikace paketů je stále

jednou z nejběžnějších operací implementovaných v síťových zařízeních. Požadavky na její
výkonnost však neustále narůstají, zvláště pak v oblasti páteřních sítí, kde musejí současné
klasifikační algoritmy podporovat propustnost 100 Gb/s. Navíc dochází i k nárůstu počtu
používaných klasifikačních pravidel a v souvislosti se zavedením 128bitových adres v pro-
tokolu IPv6 a klasifikace paketů založené na více než 5 položkách v protokolu OpenFlow se
také zvyšuje počet bitů majících vliv na výsledek procesu klasifikace. Většina současného
výzkumu v oblasti klasifikace paketů v páteřních sítích se proto zaměřuje na zvyšování
výkonnosti klasifikačních algoritmů, které musejí držet krok s neustále narůstajícími poža-
davky. Výzkumníci se však také věnují měření výkonnostních parametrů nově vyvinutých
klasifikačních algoritmů, respektive generování vhodných syntetických sad klasifikačních
pravidel pro tato měření, protože reálné sady pravidel nejsou pro většinu oblastí, v nichž
se klasifikace paketů používá, dostupné. Tato práce se zaměřuje na obě uvedené oblasti,
protože je nutné nejen vyvíjet klasifikační algoritmy s vysokou výkonností, ale také ověřovat
jejich výkonnostní parametry s využitím vhodných datových sad.

V oblasti výkonnosti klasifikačních algoritmů se tato práce věnuje především úloze vyh-
ledávání shodných prefixů, která je součástí většiny jednodimenzionálních i vícedimenzionál-
ních klasifikačních algoritmů. Jelikož softwarová implementace vyhledávání shodných pre-
fixů nemůže dostát požadavkům na klasifikaci paketů v páteřních sítích, tato práce navrhuje
implementaci dané úlohy pomocí zřetězené architektury určené pro FPGA čipy firmy Xilinx
a využívající distribuovaných paměťových bloků dostupných na těchto čipech. Kromě toho
je v této práci navržena i paměťově efektivní reprezentace sady prefixů založená na binárním
prefixovém stromu (tzv. trie), která umožňuje uložit celou datovou strukturu potřebnou pro
vyhledávání shodných prefixů do paměti na FPGA čipu. Navržená reprezentace prefixové
sady je s ohledem na paměťové nároky efektivnější než reprezentace používané ve známých
vícebitových trie Tree Bitmap a Shape Shifting Trie a v případě IPv4 prefixů také výrazně
překonává reprezentaci používanou algoritmem Prefix Partitioning. Samotná architektura
pro vyhledávání shodných prefixů pak sestává ze dvou zřetězených linek využívajících oba
dva porty paměťových bloků dostupných na FPGA čipu, které jsou dohromady schopné
provést téměř 255 milionů vyhledání za sekundu, což pro nejkratší rámce protokolu Ether-
net znamená propustnost 170 Gb/s.

Pro podporu realistického měření výkonnostních parametrů klasifikačních algoritmů
představuje tato práce nový volně dostupný generátor syntetických sad klasifikačních pra-
videl nazývaný ClassBench-ng, který umožňuje generování IPv4, IPv6 a OpenFlow 1.0.0
pravidel, jejichž statistické vlastnosti odpovídají rozložením popsaným ve vstupním souboru
parametrů. Kromě generování syntetických klasifikačních pravidel podporuje tento nástroj
také analýzu reálných pravidlových sad ve formátu ovs-ofctl, jejímž výstupem je odpoví-
dající soubor parametrů, který může být později použit pro generování podobné syntetické
sady pravidel. Výzkumníci mající přístup k reálným sadám klasifikačních pravidel tudíž
mohou sdílet svá testovací data s ostatními členy výzkumné komunity prostřednictvím
souborů parametrů vytvořených nástrojem ClassBench-ng, které popisují pouze statistické
vlastnosti původních pravidlových sad, a tudíž zachovávají jejich anonymitu. S ohledem na
přesnost generování syntetických sad klasifikačních pravidel dosahuje nástroj ClassBench-
ng lepších průměrných výsledků než nástroje ClassBench a FRuG v případě IPv4 prefixů
a než nástroj Non-random Generator v případě IPv6 prefixů. Generování syntetických sad
OpenFlow pravidel je pak v tomto nástroji přesnější než v nástroji FRuG.
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Chapter 1

Introduction

Computer networks are an indispensable part of our everyday life. We use them as a source
of information and a means for communication at work as well as in our free time. The most
prominent computer network today is a global network called the Internet. It evolved from
research networks during 1970s and 1980s and established as a publicly available global
network in 1990s. However, since the beginning of 21st century we have experienced rapid
technology development that has significantly changed the Internet. The current Internet
is no more the one we knew at the beginning of this century.

There are two main technological drivers of Internet changes: (1) growing transfer
rates and (2) increasing number of mobile subscriptions. Significant growth of transfer
rates can be illustrated on Ethernet, which is the most utilized LAN (Local Area Network)
technology for fixed subscriptions. While the highest standardized transfer rate for Ethernet
was 1 Gbps in 2000 [6], the current operational maximum is 100 Gbps [9]. In addition,
since the standard for 400 Gbps Ethernet [13] has been approved in December 2017, the
upgrade of the maximum transfer rate in core networks can be expected in the near future.
On the other hand, accessing the Internet from mobile devices has been enabled mainly
by the 802.11 family of standards [12] and the IMT-2000 standard [34], which together
started the advent of mobile-broadband subscriptions. According to ITU (International
Telecommunication Union) data [33], in 2016 there were 52.2 active mobile-broadband
subscriptions per 100 inhabitants worldwide.

Technology development made access to the Internet more affordable, even in developing
countries. The number of individuals using the Internet grew from 495 million in 2001 to
3385 million in 2016 [33]. Moreover, users often own several devices that are able to access
the Internet (e.g., personal computer, tablet, smartphone, smart TV, or intelligent sensor).
This resulted in 17.1 billion of connected devices (i.e., 2.3 devices per capita) in 2016
and forecasted growth to 27.1 billion (3.5 per capita) in 2021, as reported by Cisco [14].
Because the maximum number of distinct IPv4 (Internet Protocol version 4 ) addresses is
less than 4.3 billion, all RIRs (Regional Internet Registries) except AFRINIC (AFRIcan
Network Information Center) exhausted their IPv4 allotments between 2011 and 2015 [14].
Therefore, since 2011 we have experienced accelerated adoption of IPv6 [30], the successor
of IPv4. However, not only the principal protocol of the Internet is changing. Architecture
of computer networks is being redefined as well, especially due to the concept of network
virtualization. Although there are numerous, often competing, technologies enabling this
concept at various levels of network architecture [35], one of the most promising approaches
is SDN (Software-Defined Networking), which regained interest after the introduction of
OpenFlow [44], currently the most common protocol for communication between control
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and data planes of a switch. Since that time, OpenFlow-based SDN has proven to be
a viable approach through a number of successful deployments in networks ranging from
LANs to WANs (Wide Area Networks) [37].

Despite all the changes of the Internet were brought to life by upgrading its infrastruc-
ture, packet classification at physical link speed is still one of the most common operations
implemented in networking devices. Upon arrival, a networking device classifies every
packet according to one or more of its header fields and uses the result of classification
for further processing of the packet. Depending on the function of a device, the result
of classification may be used for basic forwarding operation, to apply security policies,
application-specific processing, or QoS (Quality of Service) guarantees.

Even though packet classification has not been replaced by another functionality, re-
quirements on its performance are continuously increased. For instance, because of growth
of transfer rates to 100 Gbps and extremely high utilization of the IPv4 address space, a
core router has to be able to make a forwarding decision according to a forwarding table
containing more than 680 thousand IPv4 prefixes [3] every 6.72 ns. With respect to the
IPv6 protocol, due to 4-times longer IP address involved in the forwarding process, the
situation is even worse. Currently, the number of IPv6 prefixes in a forwarding table of
core routers is almost 43 thousand [3]; however, this number is expected to grow together
with IPv6 penetration. Another example of growing demands on packet classification is ex-
tending the set of packet header fields involved in the classification process. While the most
common set of header fields involved in packet classification consists of 5 header fields, the
OpenFlow protocol initially extended this set to 12 fields [7] and the latest version of the
OpenFlow protocol defines packet classification based on 45 fields [10]. Both these examples
demonstrate that packet classification requires continuous attention of researchers.

From a high level perspective, there can be identified two issues that are addressed in
the research on packet classification in core networks.

The first issue is related to the performance of packet classification algorithms, which
has to keep pace with growing transfer rates. Parameters that have the greatest influence
on the performance are the number of bits involved in packet classification (i.e., the number
of utilized header fields and their length) together with the number of utilized classifica-
tion rules. Therefore, new algorithms have to deal with growing popularity of SDN-based
network virtualization utilizing the OpenFlow protocol (more fields) [35] and/or increasing
IPv6 penetration (longer fields) [30]. Moreover, since current CPUs (Central Processing
Units) do not provide enough performance for even 1-dimensional packet classification ac-
cording to destination IP address (i.e., IP lookup) on a 100 Gbps link, packet classification
algorithms targeting core networks have to be accelerated in hardware.

The second issue is related to benchmarking packet classification algorithms, which are
continuously improved to meet ever-increasing requirements on their performance. Because
real classification rule sets are not usually available for benchmarking, researchers designed
and implemented several tools capable of generating synthetic rule sets [66, 67, 63, 59, 29].
Nevertheless, even together these tools are not able to generate all data sets necessary for
benchmarking current packet classification algorithms. In addition, it can be shown that
the process of rule set generation in the currently available tools is not always accurate.

1.1 Thesis Goals
This thesis aims to address identified issues in the research on packet classification in core
networks via achieving the following two goals.
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The first goal is to address the issue related to the performance of packet classification
algorithms by designing a hardware-accelerated prefix matching algorithm that will be able
to achieve 100 Gbps throughput for both IPv4 and IPv6 protocols.

The second goal is to address the issue related to benchmarking new packet classifica-
tion algorithms using a tool capable of generating synthetic IPv4, IPv6, and OpenFlow 1.0.0
rule sets with parameters similar to real rule sets.

1.2 Thesis Organization
A brief introduction of the research area and the goals of the thesis in Chapter 1 is followed
by their detailed description in Chapter 2. Firstly, this description focuses on the definition
of packet classification and its typical use cases. It also presents various 1-dimensional
and multi-dimensional approaches to packet classification, which form the basis of current
packet classification algorithms. The last section of Chapter 2 then contains a detailed
discussion of two main issues in the research on packet classification that are addressed by
the goals of this thesis.

Before addressing the performance of packet classification algorithms (the first issue)
and their benchmarking (the second issue), the thesis summarizes previous work related to
these issues in Chapter 3. With respect to the first issue, related work is represented by
selected packet classification algorithms. On the other hand, the second part of this chapter
presents several generators, which are able to produce synthetic classification rule sets that
are utilized when addressing the second issue. In the whole chapter, 1-dimensional and
multi-dimensional approaches are described separately.

The first issue in research on packet classification is addressed in Chapter 4. The core
of this chapter describes a memory-efficient IP prefix set representation and a hardware
architecture implementing IP lookup using this representation. The chapter also contains
an analysis of properties of real IP prefix sets and an experimental evaluation of both the
IP prefix set representation and the hardware architecture, including their comparison to
related work.

Chapter 5 addresses the second issue in packet classification research. The first part
of the chapter is devoted to a detailed analysis of real classification rule sets. After that,
ClassBench-ng, a new tool capable of generating synthetic rule sets, is introduced and its
properties are compared with other similar tools.

The thesis is concluded with Chapter 6 that evaluates the proposed goals, summarizes
contributions of the thesis and outlines possible future work in the given research area.
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Chapter 2

Packet Classification in Core
Networks

The main aim of this chapter is to introduce the area of packet classification and discuss
in details related research issues. First of all, Section 2.1 defines the term packet classifi-
cation and introduces various ways of specifying conditions that form a classification rule.
To support the claim that packet classification is utilized in virtually every networking de-
vice, Section 2.2 describes typical use cases of this operation along with the most common
formats of classification rules. Next, Section 2.3 is devoted to 1-dimensional as well as
multi-dimensional approaches to packet classification, which represent the key ideas behind
current packet classification algorithms. The chapter is concluded in Section 2.4 containing
the discussion of issues addressed in the current research on packet classification, especially
in core networks. Because of continuously increasing requirements on the performance of
packet classification algorithms, research in this area is still ongoing and it is centered
around the performance of packet classification algorithms and their benchmarking.

2.1 Definition
Packet classification is a process determining a class (often referred to as a network flow)
that a packet belongs to. The input of packet classification consists of selected header fields
extracted from the packet and a set of classification rules with defined priorities, in which
each rule represents one class. A classification rule defines a condition for every header field
extracted from input packets. The condition is usually specified in one of the following four
ways.

∙ Value — exactly one allowed value (typical for transport layer protocol).

∙ Prefix — a range of allowed values having a common binary prefix (typical for source
and destination IP addresses).

∙ Range — an arbitrary range of allowed values (typical for source and destination
transport layer ports).

∙ Wildcard — any value is allowed (typical for header fields not important for the
corresponding class).

The most general of the presented specifications is the range because every other spec-
ification can be represented as a single range. However, a condition using the range speci-
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fication is the most difficult to verify. Therefore, the prefix specification is often used as a
uniform way of specifying a condition. An exact value and a wildcard can be replaced by a
single prefix of maximum and zero length, respectively, but the number of prefixes required
for replacing a range is 2𝑙 − 2 [46], 𝑙 being the length of the corresponding header field, in
the worst case. Such a scenario is shown in Figure 2.1.

Figure 2.1: Example of replacing the range 1:14 (red interval) on a 4-bit header field by a
set of 2 · 4− 2 = 6 prefixes (blue intervals).

For the sake of completeness, it should be noted that any of the specifications can also
be replaced by a set of exact values containing one item for each value from the specified
range. On the other hand, the wildcard specification can only replace special cases of a
range (full range) and a prefix (empty prefix).

Regardless the utilized specification, a condition is satisfied when the corresponding
header field of a packet contains one of the allowed values. If all conditions of a classification
rule are satisfied, then the packet belongs to the corresponding class. Note that classes may
overlap, thus multiple classification rules can match the packet. In such a case the matching
rule with the highest priority is selected as the output of packet classification. Since packet
classes usually define specific processing for their packets, the output of packet classification
can also be an action that is going to be applied on the classified packet.

2.2 Use Cases
Packet classification is implemented in a vast majority of networking devices deployed
in operating environments ranging from small edge networks to core networks forming
the backbone of the Internet. Although each implementation complies with the definition
presented in the previous section, its details may vary according to a specific scenario it is
used in. The most common use cases of packet classification are briefly introduced in the
following list. For the sake of clarity, the list does not present each use case individually,
but it focuses on five categories that group similar use cases together.

Routing. In these use cases, the result of packet classification determines a route to a
packet’s destination. The simplest form of routing—IP routing—is based on matching
a destination IP address only. However, routing may also be based on more sophis-
ticated policies employing packet classification according to multiple header fields
(e.g., routing packets with the same destination IP address but different transport
layer protocol via different links).
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Packet filtering. This group of packet classification use cases belongs to the area of net-
work security. Each classification rule defines a specific action (e.g., accept, drop,
reject, intercept) applied to a corresponding network flow (i.e., to all packets that are
matched by the rule). The most common example of packet filtering is a firewall,
which is able to filter network traffic flowing through a given point of a network. For
instance, a firewall deployed at the border of a network may filter malicious traffic
destined for the network. Another use case of packet filtering is represented by law-
ful interception systems implementing the interception of communication specified by
law enforcement agency in the course of a criminal investigation.

Application-specific processing. Similarly to packet filtering, packet classification al-
lows to process the traffic of a specific application—as long as it can be characterized
by header fields utilized in a classification rule—differently from other traffic. Never-
theless, a set of actions that can be used for processing the traffic is richer than in the
packet filtering case. Even though it is not the only example of application-specific
processing, a typical use case in this group is the application of QoS guarantees via
traffic shaping (i.e., delaying packets of some or all network flows in order to achieve
a desired traffic profile).

Traffic management. Packet classification may also be used for intelligent traffic man-
agement that allows to treat network flows differently from each other rather than in
the same way. For instance, load balancing and rate limiting enriched by the notion
of network flows can perform fine-grained management decisions that do not affect
flows carrying sensitive network traffic. Using packet classification, service providers
can also do traffic accounting and billing on a per-user basis, even when all users
access the service via a shared link.

SDN. Although this group does not really introduce any new use cases, it highlights the
utilization of packet classification in a data plane of SDN-enabled devices. With the
help of a programmable control plane an SDN architecture can therefore implement
any of the already introduced uses cases. Clearly, an SDN Controller can either install
necessary rules into flow tables of an SDN Datapath (e.g., for IP routing, policy-based
routing, and firewall) or instruct the SDN Datapath to send packets not matching
any rule to the SDN Controller for further processing (e.g., for lawful interception,
accounting, and billing).

In different use cases, the number of header fields involved in the packet classification
process ranges from a single field (destination IPv4/IPv6 address in case of IP routing) up
to 45 fields (classification based on OpenFlow 1.5.1 [10]). Table 2.1 specifies the structure
of the most often utilized types of packet classification rules that are also considered further
in the thesis. Mapping of labels used in the table to particular header fields is as follows.

∙ in_port — input port number

∙ mac_src — source MAC address

∙ mac_dst — destination MAC address

∙ eth_type — EtherType

∙ vlan_id — VLAN ID
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∙ vlan_prio — VLAN priority

∙ ip_tos — DSCP (originally ToS)

∙ ip_proto — IP protocol

∙ ip_src — source IP address (IPv4 or IPv6)

∙ ip_dst — destination IP address (IPv4 or IPv6)

∙ l4_src — source TCP/UDP port

∙ l4_dst — destination TCP/UDP port
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Data Width [b] 𝑥 48 48 16 12 3 6 8 32 128 32 128 16 16
IPv4 prefix 3

IPv6 prefix 3

IPv4 5-tuple 3 3 3 3 3

IPv6 5-tuple 3 3 3 3 3

OpenFlow 1.0.0 3 3 3 3 3 3 3 3 3 3 3 3

Table 2.1: Packet header fields utilized in various types of classification rules considered in
this thesis. The table also shows standard data width of each field (data width of in_port
depends on a specific implementation).

While some types of classification rules specified in Table 2.1 differ from each other by
the version of IP protocol only (i.e., IPv4 vs. IPv6), others utilize a different number of
header fields and are used in different use cases. A typical use case of a single destination
IPv4/IPv6 prefix is IP routing. Next, 5 header fields of an IPv4/IPv6 5-tuple are used in
many use cases, for instance in a firewall to name just one of them. Last but not least,
OpenFlow 1.0.0 rules allowing specification of a condition for up to 12 header fields are
used for various purposes in SDN-enabled networks, for example in datacenters.

2.3 Approaches to Packet Classification
The problem of packet classification has been approached in many different ways that are
described in this section. To facilitate an understanding of these approaches, they are
illustrated on classification of the packet P with 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 110 and 𝑝𝑜𝑟𝑡 = 110 using a rule
set from Table 2.2, which is used as a running example throughout this section. The rule
set utilized in the running example consists of rules specifying an address prefix and a port
range, both on corresponding 3-bit header fields. The priority of the rules is descending
with their position in the rule set (i.e., the first rule has the highest priority).

Apart from publications cited in particular subsections, the whole section is based on
information gathered from [46, 60, 8].
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Rule Address Port
R1 0* 5:7
R2 * 6:6
R3 010 0:7
R4 11* 5:7
R5 11* 1:4

Table 2.2: An example rule set for 2-dimensional packet classification according to 3-bit
header fields address and port. The rules are sorted from the highest to the lowest priority.

2.3.1 Naive Approaches

The simplest approach to packet classification is a linear search of a rule set with rules
sorted from the highest to the lowest priority. An input packet is sequentially matched
against classification rules and the first matching rule is selected as the output of packet
classification. Such an early termination is correct because if there are other matching
rules, they will have lower priority. In the running example introduced at the beginning
of Section 2.3, the linear search stops after matching the packet P against the rule R2,
although the rule R4 also matches the packet.

Both search time and memory requirements of this approach are linear with respect to
the number of rules. While linear search time represents the worst performance among the
presented approaches, linear memory requirements are close to the optimal solution (note
that different rules may redundantly use the same condition for a particular header field).
Because of its search performance, this approach is feasible only for small rule sets, for
example the one from Table 2.2, in which a search takes 5 steps in the worst case.

An orthogonal approach trades-off memory requirements for better search time by pre-
computing the best matching rule for every possible packet and storing this information
into a table. Classification of an incoming packet then consists of addressing the table by
concatenated header field values and reading the best matching rule information. This is
illustrated using Table 2.3, which shows an excerpt of a precomputed best-matching-rule
table for the running example. The excerpt is centered around the entry indicating that
the rule R2 is the best matching rule for the packet P with 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 110 and 𝑝𝑜𝑟𝑡 = 110.

Address Port Rule
...

...
...

110 100 R5
110 101 R4
110 110 R2
110 111 R4
111 000 N/A
...

...
...

Table 2.3: An excerpt of a precomputed best-matching-rule table for the example rule set
(Table 2.2). The best matching rule for the last entry is not available (N/A) because no
rule matches the corresponding packet.
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Search time of this second naive approach is constant (classification is done in a single
step) but its memory requirements are exponentially dependent on the number of bits
involved in the classification process. The example rule set from Table 2.2 classifies packets
according to two 3-bit header fields, thus the corresponding table of best matching rules
consists of 23+3 = 64 items. However, in a real-world example of packet classification
according to the IPv4 5-tuple, the required table size is 232+32+8+16+16 = 2104 items, even
for a rule set containing only a few rules. Therefore, despite its excellent search time, this
approach to packet classification is important mainly from a theoretical point of view.

2.3.2 TCAM

Another straightforward approach to packet classification is to use TCAM (Ternary Content-
Addressable Memory). This special kind of memory is based on CAM (Content-Addressable
Memory), which consists of rows addressed by their content. The output of CAM is the
address of a row, whose content matches the input value. While CAM supports only exact
matching of the input value, TCAM extends matching functionality to so-called ternary
matching. Apart from the bit values 0 and 1, a row can also contain the bit value X (don’t
care), which allows the input to contain an arbitrary value at the corresponding position.

Since TCAM supports addressing by content and ternary matching, it can be viewed
as the second naive approach with the ability to use the prefix specification. Indeed, each
TCAM record (i.e., a rule after the conversion of all conditions to prefixes augmented by
the X value for each unspecified bit) represents all entries of the second naive approach’s
table that correspond to the packets matching the record. The number of TCAM records
is thus usually significantly smaller than the number of entries in the best-matching-rule
table of the second naive approach. Nevertheless, the use of the prefix specification causes
that more than one record may match a given packet. Therefore, packet classification based
on TCAM has to consist of ternary matching an input packet in TCAM and the following
selection of the highest priority rule among those associated with the matching TCAM
records. Table 2.4 shows TCAM records representing the running example’s rule set (see
Table 2.2). The example packet P is matched by records 3 and 6, which have associated
rules R2 and R4, respectively. Because of its higher priority, the rule R2 is selected as the
best matching one.

# Address Port Rule
1 0XX 101 R1
2 0XX 11X R1
3 XXX 110 R2
4 010 XXX R3
5 11X 101 R4
6 11X 11X R4
7 11X 001 R5
8 11X 01X R5
9 11X 100 R5

Table 2.4: TCAM records created by the range-to-prefix conversion of rules from the rule
set in Table 2.2. The table also shows an original rule associated to each TCAM record.
Note that records with the same associated rule do not overlap (i.e., they cannot match the
same packet).
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Parallel matching of the input against all rows allows constant search time of TCAM,
but only at a price of increased utilization of hardware resources. Unlike the second naive
approach, TCAM has to explicitly store each rule using the number of bits equal to the
width of concatenated header fields. On the other hand, requirements on TCAM’s capacity
are linear with respect to the size of a represented rule set. However, it is important to
note that because of the range-to-prefix conversion, the number or utilized records may be
higher than the number of represented rules. For instance, 5 rules of the example rule set
utilize 9 TCAM records, as shown in Table 2.4.

Constant search time and reasonable memory requirements are arguments behind the
extensive use of TCAM in commercial devices. Nevertheless, this approach suffers from
several non-negligible issues. Parallel matching, which allows constant search time, leads to
high power consumption of this kind of memory. Because of supporting ternary matching,
its cost per bit is also higher than of other memories. Moreover, if TCAM is used for
packet classification, its capacity is not utilized efficiently due to rules replication during the
range-to-prefix conversion. Last but not least, the need for storing records of width equal
to the number of bits involved in packet classification limits scalability of this approach
to classification according to more and/or longer header fields. All these disadvantages
motivate research in algorithmic solutions to packet classification.

2.3.3 Representation Using Tuples

The representation of the packet classification problem using tuples has been introduced
by Srinivasan, Suri, and Varghese in [56]. It is the first out of three seminal approaches
to multi-dimensional packet classification described in the thesis. In this approach, each
classification rule is represented by a tuple, whose elements define the number of bits used
for specification of the corresponding rule’s conditions. Such a representation is motivated
by the observation that real rule sets contain only a few combinations of specification
lengths. Therefore, the number of distinct tuples representing a rule set is expected to be
much lower than the actual number of rules.

While the number of bits used in the value, wildcard, and prefix specifications is clear,
the value of tuple elements corresponding to the range specification is not so straightfor-
ward to obtain. To overcome limitations of the range-to-prefix conversion, the authors of
the approach proposed an alternative representation of utilized ranges that is based on a
hierarchy of non-overlapping ranges. In the hierarchy, ranges are organized into several
levels with the highest level containing the most general (i.e., the longest) ranges and each
successive layer containing more specific (i.e., shorter) ranges than the previous level. Each
range is then represented by a pair (nesting level, range ID), which characterizes its position
within the hierarchy. The hierarchy of ranges used in the example rule set (Table 2.2) as
well as nesting level and range ID of the ranges are shown in Figure 2.2.

Even though nesting level does not precisely characterize the number of bits used in the
range specification, its meaning is similar. Clearly, nesting level of the full range (equal to
the wildcard specification) will always be 0, while its value for the shortest ranges (equal
to the value specification) will always be maximal. Therefore, the authors of [56] proposed
to represent a range in a tuple by its nesting level and to replace the range itself by its
range ID. Following this encoding scheme, Table 2.5 shows the example rule set (Table 2.2)
together with tuples representing its rules. Note that rules R4 and R5 are represented by
the same tuple, although they specify different ranges.
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Figure 2.2: The hierarchy of port ranges from the example rule set (Table 2.2). The figure
also shows nesting level and range ID values assigned to individual ranges.

Rule Address Port Tuple
R1 0* 1 [1, 1]
R2 * 0 [0, 2]
R3 010 0 [3, 0]
R4 11* 1 [2, 1]
R5 11* 0 [2, 1]

Table 2.5: The example rule set (Table 2.2) and tuples representing its rules. Port ranges
are replaced by their range ID.

Classification of an incoming packet using a rule set represented by tuples is done by a
(possibly parallel) linear search of a tuple set. Each tuple represents a subset of the original
rules that is searched for a matching rule using only a limited amount of information from
packet’s header fields. In case of conditions specified by a value, a wildcard, or a prefix,
the number of utilized bits is directly given in the tuple. However, in case of the range
specification, the search utilizes range ID of a range that matches the corresponding header
field and appears in a hierarchy of ranges at nesting level specified in the tuple. The search
for a matching rule within the tuple is thus the exact matching problem, which can be
for example solved using a hashing table. Unfortunately, the representation of a rule set
using tuples does not respect rules’ priorities, thus the linear search cannot be terminated
prematurely (like in the first naive approach described in Section 2.3.1) and all tuples have
to be searched. If the searches of multiple tuples return a matching rule, the highest priority
rule is selected as the best matching one.

Classification of the packet P from the running example, introduced at the beginning
of Section 2.3, using the example rule set represented by tuples is illustrated in Table 2.6.
The table shows the information from packet’s header fields that is utilized when particular
ranges are searched for a matching rule. The utilized information match rule’s conditions
in case of rules R2 and R4 (c.f. Table 2.5), which belong to tuples [0, 2] and [2, 1]. Since
the rule R2 has higher priority than the rule R4, it is selected as the output of packet
classification.
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Tuple Address Bits Range ID Rule
[1, 1] 1 1 N/A
[0, 2] - 0 R2
[3, 0] 110 0 N/A
[2, 1] 11 1 R4

Table 2.6: Address bits and range ID used while searching particular tuples from Table 2.5
for rules matching the running example’s packet P. The table also shows found matching
rules (or N/A if a tuple does not contain a matching rule).

2.3.4 Geometric Representation

Another representation of the general packet classification problem is based on multi-
dimensional space where each dimension corresponds to one header field utilized in packet
classification. In this space, each condition of a classification rule can be represented as
an interval in the corresponding dimension, thus the rule is equal to a multi-dimensional
rectangle defined by intervals corresponding to its conditions. Since a packet contains exact
values in its header fields, it is represented as a point in the multi-dimensional space. The
geometric representation of the running example introduced at the beginning of Section 2.3
is shown in Figure 2.3. The figure shows 2-dmensional rectangles representing the example
rule set (Table 2.2) as well as a point representing the example packet P.

In case of a geometrically represented rule set, a rule matching an input packet is repre-
sented by a rectangle that contains a point of the multi-dimensional space that corresponds
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Figure 2.3: The geometric representation of the example rule set from Table 2.2 and the
example packet P.
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to the packet. As can be seen in Figure 2.3, rectangles representing rules can overlap, which
illustrates a situation when more than one rule match an input packet. For instance, in
Figure 2.3, both rules R2 and R4 match the packet P. Therefore, because of its higher
priority, rule R2 is selected as the output of packet classification.

2.3.5 Combinatorial Representation

The last seminal approach to multi-dimensional packet classification described in this thesis
is based on viewing a classification rule as a combination of the given number of conditions.
In order to speed up a classification process, this approach builds a Cartesian product of
sets of conditions utilized in particular dimensions. The entries of the Cartesian product
correspond to all possible combinations of matching results for individual dimensions and
each entry has the best matching rule associated to it. This is similar to the second naive
approach to packet classification. However, the condition sets of particular dimensions of a
real rule set are usually significantly smaller than the number of rules in the rule set [31].
Therefore, the number of Cartesian product entries is much smaller than the number of all
possible packets.

Table 2.7 shows the Cartesian product entries along with assigned best matching rules
that together represent the example rule set from Table 2.2. Five out of the sixteen entries
(1, 6, 11, 13, and 16) directly correspond to the original rules. Another five entries (2,
9, 10, 12, and 14) have associated the best matching rule, i.e., the highest priority rule
that matches all input packets, which are matched by the conditions specified for particular
dimensions in the entry. However, because the example rule set does not contain a default
rule (i.e., a rule with the wildcard specification in all dimensions, which matches every
packet), six entries of the Cartesian product (3, 4, 5, 7, 8, and 15) have no associated best
matching rule.

# Address Port Rule # Address Port Rule
1 0* 5:7 R1 9 010 5:7 R1
2 0* 6:6 R1 10 010 6:6 R1
3 0* 0:7 N/A 11 010 0:7 R3
4 0* 1:4 N/A 12 010 1:4 R3
5 * 5:7 N/A 13 11* 5:7 R4
6 * 6:6 R2 14 11* 6:6 R2
7 * 0:7 N/A 15 11* 0:7 N/A
8 * 1:4 N/A 16 11* 1:4 R5

Table 2.7: The entries of a Cartesian product created from the sets of unique conditions
utilized in address and port dimensions of the example rule set (Table 2.2). If it exists,
the best matching rule from the example rule set is associated with a Cartesian product’s
entry. Otherwise, the best matching rule is set to N/A.

Packet classification based on combinatorial representation of the rule set fully uti-
lizes properties of the constructed Cartesian product. First of all, matching conditions for
individual dimensions are determined, possibly using different 1-dimensional packet classi-
fication approaches in each dimension. As mentioned in Section 2.3.6, some approaches to
1-dimensional packet classification may return more than one matching result. Therefore,
combining the matching results from individual dimensions together may lead to multi-
ple corresponding Cartesian product’s entries, each of which may have associated the best
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matching rule. The packet classification process is finalized by selecting the highest priority
rule among these rules.

Considering the running example’s packet P, prefix matching on the address field will
return a single matching prefix 11* while range matching on the port field will return a
set of matching ranges ([5:7], [6:6], and [0:7]). Combinations of these matching results are
represented by entries 13, 14, and 15 of the Cartesian product, the first two of which has
associated the best matching rules R4 and R2, respectively (see Table 2.7). Since rule R2
has higher priority, it is the output of classification of the packet P.

2.3.6 Range Matching

Apart from approaches to multi-dimensional packet classification, there are also specific
approaches to 1-dimensional packet classification. They reflect different condition specifi-
cations utilized in classification rules. Since matching the value specification (exactly one
value matches) and the wildcard specification (every value matches) is trivial, the next two
sections will focus on matching range and prefix specifications, both of which define a set
of matching values.

As already mentioned, the range specification is the most general among all the spec-
ifications, but also the most difficult for matching. Some approaches try to avoid range
matching using the range-to-prefix conversion. However, the worst-case number of prefixes
required for replacing a single range is 2𝑙−2 [46], where 𝑙 is the length of the corresponding
header field. Therefore, it is beneficial to have the option of direct range matching when
classification rules contain the range specification.

The seminal range matching approach to 1-dimensional packet classification has been
introduced by Lakshman and Stiliadis in [38]. It is based on non-overlapping intervals
(often referred to as elementary intervals), which are created by dividing the full range by
start and end points of each range utilized in a rule set. For example, Figure 2.4 shows
elementary intervals created by port ranges utilized in the example rule set (Table 2.2). In
this example, rules R1 and R4 utilize the same range and several start/end points have the
same value, thus the full range is divided to only 5 elementary intervals. Nevertheless, each
of 𝑁 classification rules may utilize a unique range and a start point as well as an end point
of each range (including the full range) may be a unique value. If this worst case happens,
the number of elementary intervals is 2𝑁 + 1.

Figure 2.4: Elementary intervals (blue) created by port ranges (red) utilized in the example
rule set (Table 2.2). The figure also shows rules that use particular ranges.
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In order to allow packet classification, each elementary interval has to store a list of clas-
sification rules, whose range overlaps with the interval. In Figure 2.4, the list is illustrated
by the name of rules utilizing port ranges that are above the elementary interval. Packet
classification then consists of the search for an elementary interval covering the header field
value extracted from a packet, followed by returning the list of overlapping (i.e., matching)
rules. For example, the packet P from the running example introduced at the beginning of
Section 2.3 has the port field set to 110. Because this value is covered by interval I3, the
packet’s port value is matched by rules R1, R2, R3, and R4 (see Figure 2.4). The covering
elementary interval can be find by an arbitrary range location algorithm, for instance binary
search.

2.3.7 Prefix Matching

Similarly to range matching, prefix matching is beneficial especially when classification
rules contain the prefix specification. However, the prefix specification is also often used
as a uniform way of specifying a condition in a classification rule. Even though the range
specification is more general and more than one prefix may be necessary for replacing a
single range, prefix matching is easier to implement.

The most utilized prefix matching approach to 1-dimensional packet classification is
called LPM (Longest Prefix Matching). This approach looks for all prefixes matching the
input value and returns the longest one (i.e., the most specific one) as the best matching
prefix. For example, consider the running example’s packet P with 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 110, which
was introduced at the beginning of Section 2.3. Its address is matched by address prefixes
utilized in rules R2 and R4/R5 (note that rules R4 and R5 use the same prefix) of the
example rule set (Table 2.2). However, since the address prefix of rules R4/R5 is the
longest one among them, it is the only result of LPM.

Some packet classification algorithms based on combinatorial representation might re-
quire prefix matching that returns all matching prefixes instead of just the longest one. In
such a case, LPM can be easily modified to satisfy this requirement by omitting its last
step.

2.4 Research Issues
Current research on packet classification techniques for core networks faces two issues. The
first one can be characterized as performance of packet classification algorithms. Clearly,
the performance of classification algorithms has to be increased to meet ever-increasing
requirements on packet classification in core networks. The second issue rises from the
first one and it revolves around packet classification algorithms benchmarking. As new
classification algorithms are designed, it is necessary to benchmark their performance and
compare their properties to each other.

While addressing performance of packet classification algorithms and their benchmark-
ing represent the core of this thesis (see Chapters 4 and 5, respectively), the following
sections introduce the addressed issues.

2.4.1 Performance of Algorithms

Even though the Internet is still growing and accelerating, packet classification stays one of
the most common operations implemented in networking devices. Nevertheless, the changes
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of the Internet increase requirements on the performance of packet classification algorithms,
which has to keep pace with growing transfer rates. The standard for 400 Gigabit Ether-
net [13] has been approved in December 2017, but current core networks widely support
100 Gigabit Ethernet defined in [9]. Therefore, packet classification algorithms targeted at
core networks are required to support throughput of 100 Gbps.

Considering a 64-byte Ethernet frame (i.e., the shortest frame) together with 7-byte
Preamble, 1-byte SFD (Start Frame Delimiter), and 12-byte interpacket gap (i.e., the short-
est gap), the maximum packet rate of 100 Gigabit Ethernet is approximately 148.81 MPPS
(Million Packets Per Second). Thus, packet classification algorithms have to be able to
provide a classification result every 6.72 ns. To achieve such matching performance, their
designers have to deal with growing requirements on selected parameters, which include the
number of bits involved in packet classification (i.e., the number of utilized header fields
and their length) and the number of specified classification rules.

The number of bits involved in packet classification depends on a specific use case.
However, in general it is increasing because nowadays more as well as longer header fields
are being utilized in packet classification. Extensions of the set of utilized header fields are
closely related to growing interest towards network virtualization, which may be realized,
for instance, by OpenFlow-based SDN [35]. Each version of the OpenFlow protocol incre-
mentally extended the set and its latest version has defined packet classification according
to 45 header fields [10]. On the other hand, longer header fields are mainly due to increas-
ing IPv6 penetration [30]. Compared to IPv4, the length of both source and destination
addresses has been quadrupled in IPv6.

While the exact number of utilized header fields may vary according to the used version
of the OpenFlow protocol (e.g., OpenFlow 1.0.0 utilizes “only” 12 header fields), IPv6 al-
ways requires supporting 128-bit address prefixes. Therefore, with respect to the number of
bits involved in packet classification, supporting IPv6 may be more expensive than support-
ing additional header fields. This can be illustrated using types of classification rules from
Table 2.1. Comparing packet classification based on an IPv6 prefix and an IPv4 5-tuple,
the former involves 128 bits while the latter involves 104 bits. Moreover, the situation is
the same when comparing an IPv6 5-tuple and OpenFlow 1.0.0 (296 bits vs. 𝑥+ 237 bits).

The number of specified classification rules varies even for different instances of the
same use case. In case of IP routing, forwarding tables of core routers currently contain
680 thousand IPv4 and 43 thousand IPv6 prefixes [3] but these numbers continuously
grow as the allocation of prefixes from IPv4 and IPv6 address spaces progresses. The
situation is different with firewalls, in which the actual number of installed classification
rules depends on security policies of a particular network. Since firewall rule sets are not
usually publicly available (because of security reasons), the researchers evaluating 5-tuple-
based classification algorithms often use synthetic data sets consisting of thousands or tens
of thousands of classification rules [64, 55, 40]. Focusing on SDN-enabled switches in a
datacenter, each OpenFlow rule may correspond to an active virtual machine, thus their
number may be in the order of tens of thousands [41].

In summary, packet classification algorithms targeting core networks have to be able
to classify an incoming packet according to tens or hundreds of bits into tens or hun-
dreds of thousands of classes and provide a new classification result every 6.72 ns. Such
requirements on performance prohibit software implementation of packet classification al-
gorithms [19]. Although hardware implementation can be realized using both an ASIC
(Application-Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array),
because of its availability, flexibility, and configurability, FPGA-based implementation will
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be considered further in this thesis. The viability of this approach in an often changing net-
working environment has also been proved by successful FPGA-based networking platforms:
NetCOPE [28] and NetFPGA [68].

2.4.2 Algorithms Benchmarking

The requirements on the performance of packet classification algorithms are continuously
increasing, as demonstrated in the previous section. Therefore, the development of clas-
sification algorithms that meet these requirements is a never-ending story. To benchmark
a new classification algorithm, benchmarking tools (e.g., Netbench [48]) usually assess the
following parameters of the algorithm:

∙ classification speed defined as the number of memory accesses required for classi-
fication of a single packet;

∙ memory requirements of a data structure representing a set of classification rules.

In addition, the speed of updates of a classification rule set representation might also
be assessed in the course of algorithm’s benchmarking.

The practical implementation of a packet classification algorithm has to consider the
worst case performance of the algorithm in terms of the above mentioned parameters,
but the worst case performance solely depends on a utilized classification rule set. This
means that in the ideal case a real rule set is utilized while benchmarking the classification
algorithm. Nevertheless, real rule sets are not publicly available for the majority of packet
classification use cases (often because of security reasons). One of the few exceptions to
this are IPv4/IPv6 prefix sets from forwarding tables of core routers [18, 50], which can be
used for benchmarking IP lookup (i.e., the key part of IP routing). However, since IPv6
penetration is expected to grow exponentially in the future and the size of IPv6 forwarding
tables depends on the number of allocated IPv6 prefixes, current IPv6 prefix sets cannot
be directly used for benchmarking IP lookup algorithms in the future environment.

The researchers addressed the issue of missing real benchmarking data in various ways.
While a limited number of research groups obtained access to real rule sets via NDAs (Non-
Disclosure Agreements), others developed several tools capable of generating synthetic data
sets for common packet classification use cases. Because the size of IPv4 forwarding tables
is not expected to grow significantly in the future, the tools for generating IP prefix sets
focus on IPv6 prefix sets only. To get this kind of benchmarking data, it is possible to use
for instance Non-random Generator [66] or V6Gene [67]. On the other hand, in the area
of 5-tuple rules it makes sense to generate both IPv4 and IPv6 5-tuples. The former is
almost exclusively generated using ClassBench [63], while the latter can be generated using
ClassBenchv6 [59]. The most problematic is the situation with OpenFlow rules generators.
Although FRuG (Flexible Rule Generator) [29] is able to generate a set of rules that specify
a condition for an arbitrary number of header fields, it does not explicitly consider any
specifics of OpenFlow rule sets.

Even though the existing generators are capable of producing IPv4/IPv6 prefixes and
5-tuples as well as rules specifying a condition for more than 5 header fields, none of them
explicitly provides support for OpenFlow rules generation. In addition, none of the tools
is able to generate all types of benchmarking data, which complicates the situation in case
of benchmarking packet classification algorithms targeted at various use cases. Moreover,
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it can be shown that the process of rule set generation in available generators is not al-
ways accurate. These issues show that packet classification benchmarking is still an open
problem.
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Chapter 3

Related Work

While the previous chapter introduced the packet classification operation along with various
approaches to its implementation, this chapter contains the selection of already implemented
packet classification algorithms and synthetic rule set generators. These algorithms and
generators represent current solutions to the performance of packet classification algorithms
issue and the packet classification algorithms benchmarking issue, respectively, which were
also discussed in the previous chapter. Since the goal of the thesis is to address these issues
as well, the algorithms and generators presented in this chapter serve as a starting point
for work described in this thesis and they will be used as a baseline for the evaluation
of proposed solutions to the identified issues in research on packet classification in core
networks.

The first part of this chapter focuses on existing packet classification algorithms, sepa-
rately for the 1-dimensional and multi-dimensional case. Section 3.1 describes 1-dimensional
algorithms, all of which implements the prefix matching approach to packet classification.
The reasons for including prefix matching algorithms only are that the prefix specification
is utilized in IP lookup (i.e., probably the most common type of packet classification in core
networks) and it is also commonly used as a uniform way of specifying all conditions of a
classification rule. On the other hand, multi-dimensional algorithms presented in Section 3.2
implement various approaches to packet classification. Actually, a single multi-dimensional
algorithm often combines multiple approaches together.

Similarly to packet classification algorithms, synthetic rule set generators, which were al-
ready briefly introduced in Section 2.4.2, are also described separately for the 1-dimensional
and multi-dimensional case. All 1-dimensional generators presented in Section 3.3 imple-
ment the generation of IP prefixes (i.e., classification rules for benchmarking IP lookup).
More precisely, they are specialized on generating IPv6 prefixes because currently available
real IPv6 prefix sets are not suitable for benchmarking as they are expected to significantly
grow in size in the future. The situation is different in case of multi-dimensional generators,
which are described in Section 3.4. They primarily support the generation of IPv4 5-tuples,
but some of them also allow to generate IPv6 5-tuples or classification rules specifying a
condition for more than 5 header fields.

3.1 1-Dimensional Packet Classification Algorithms
Probably the most common type of 1-dimensional packet classification in core networks is
prefix matching on destination IP address, which is known as IP lookup. Because of its
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constant matching performance and a direct support of the prefix specification, many com-
mercial devices implement IP lookup using TCAM. However, such implementation suffers
from high power consumption, high cost per bit, storage inefficiency, and limited scalability,
which makes also algorithmic solutions to prefix matching a viable option for IP lookup
implementation [51]. Although prefix matching algorithms employ various approaches (e.g.,
hashing), the majority of them encode a prefix set using a binary prefix tree that is usually
called trie. Therefore, this section presents selected trie-based prefix matching algorithms.

Individual prefix matching algorithms are illustrated on the set of address prefixes from
the example rule set introduced in Table 2.2. Table 3.1 shows this prefix set sorted from
the shortest to the longest prefix.

Prefix Value
P1 *
P2 0*
P3 11*
P4 010

Table 3.1: The set of address prefixes from the example rule set (Table 2.2) sorted from the
shortest to the longest prefix.

3.1.1 Trie

The trie data structure, which has been proposed by Fredkin [27], represents the basis of
prefix set encoding in the majority of prefix matching algorithms. It is a binary prefix tree
in which each node represents a prefix. The root node represents the empty prefix and
left and right child nodes of any trie node represent prefixes created from their parent’s
prefix by appending 0 and 1, respectively. Trie nodes representing prefixes from a prefix set
are called prefix nodes, while other trie nodes are referred to as place holder nodes. The
representation of the prefix set from Table 3.1 using a trie is shown in Figure 3.1.

Figure 3.1: The representation of the prefix set from Table 3.1 using a trie.

Matching prefixes of a prefix set represented by a trie is done by traversing the trie from
the root to the leaves according to the bits of an input value (e.g., a destination address
in case of IP lookup) taken from the MSB (Most Significant Bit) to LSB (Least Significant
Bit). All prefix nodes visited during such a traversal represent prefixes matching the input
value and the last visited prefix node represents the longest matching prefix, which is the
output of the LPM operation.

Since a trie is a binary prefix tree, the implementation of prefix matching based on a
trie is straightforward because operations on a trie (adding, removing, or matching prefixes)
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can be realized using standard operations on a binary tree. However, a trie allows to match
only one bit of the input value in each step, which means linear time complexity with
respect to the bit width of an input value. Therefore, in the worst case it is necessary to
perform 32 and 128 steps for matching a full IPv4 and IPv6 prefix, respectively. Due to
the high number of pointers in a trie, this data structure also suffers from high memory
requirements.

In order to diminish the main disadvantage of a trie (i.e., matching only one input
bit in each step), modern trie-based prefix matching algorithms employ the concept of so
called multibit trie. These algorithms propose new types of node that represent subtrees
of a trie and allow to match multiple bits per step. Thus, although a trie is not directly
applicable for high-performance prefix matching, it is a seminal data structure for modern
prefix matching algorithms.

3.1.2 Tree Bitmap

Tree Bitmap (TBM), which has been developed by Eatherton, Varghese, and Dittia [26],
is one of the best known multibit trie algorithms. It represents a set of prefixes using a
2𝑆𝐿-tree, where parameter 𝑆𝐿 (stride length) determines the number of input bits matched
in each step. This tree is built on the top of a trie by mapping TBM nodes, each of which
corresponds to trie’s subtree of the maximum depth equal to 𝑆𝐿, onto the trie in a non-
overlapping fashion such that each trie node is covered by a TBM node. An example of the
mapping of TBM nodes with 𝑆𝐿 = 3 onto the trie from Figure 3.1 is shown in Figure 3.2.

Figure 3.2: The mapping of TBM nodes with 𝑆𝐿 = 3 onto the trie representing the prefix
set from Table 3.1.

The details of TBM node’s encoding are illustrated in Figure 3.3 that shows the root
TBM node from Figure 3.2 and its encoding using two bitmaps and two pointers. The
external bitmap contains 2𝑆𝐿 bits determining whether a corresponding child node is present
(value 1) or missing (value 0). Note that MSB of the external bitmap corresponds to the
leftmost child, while its LSB corresponds to the rightmost child. On the other hand, 2𝑆𝐿−1
bits of the internal bitmap correspond to the nodes of the underlying trie in breadth-first
order and each bit encodes information whether a corresponding internal node is a prefix
node (value 1) or non-prefix node (value 0).

The child and prefix pointers refer to information about child nodes and prefix-related
data, respectively. In order to minimize the size of the TBM node’s data structure and
speed up its retrieving from a memory, these information are stored outside the node itself.
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Figure 3.3: The encoding of the root TBM node from Figure 3.2.

Nevertheless, both types of externally stored information are in a continuous block of the
memory and they are stored in the same order in which they appear in the corresponding
bitmaps. Such organization allows to use pointer arithmetic to directly retrieve information
about any child node or prefix-related data using just the corresponding pointer and bitmap
(the child pointer and external bitmap in case of information about child nodes, the prefix
pointer and internal bitmap in case of prefix-related data).

The compact representation of a TBM node makes possible to retrieve it from a memory
in just one clock cycle. Additionally, due to the use of bitmaps for node’s encoding, this
prefix matching algorithm is easily implementable in hardware. The TBM algorithm is
thus able to achieve high matching performance. In addition, the fixed structure of a node
allows easy updates of the represented prefix set. However, it may also cause high memory
overhead when the underlying trie is sparse. Trade-off between matching performance
and memory requirements of the TBM algorithm for a given prefix set can be tuned via
parameter 𝑆𝐿. Clearly, a higher value of parameter 𝑆𝐿 results in a lower number of
matching steps but higher memory overhead and vice versa.

3.1.3 Shape Shifting Trie

Another important multibit trie algorithm called Shape Shifting Trie (SST) has been intro-
duced by Song, Turner, and Lockwood [54]. This algorithm is based on TBM, but it tries
to overcome its main drawback by introducing an adaptive shape of a node, which reduces
memory overhead when the underlying trie is sparse. Instead of parameter 𝑆𝐿, the shape
of SST nodes is influenced by parameter 𝐾, which determines the maximum number of
underlying trie nodes that can be represented by an SST node. Therefore, this parameter
no longer determines the number of input bits matched in each step of the SST algorithm.
Although the number of matched bits can theoretically be equal to 𝐾 (when an SST node
corresponds to a non-branching subtree of a trie consisting of 𝐾 nodes), it is typically lower
and varying throughout an SST tree in practice.

The encoding of SST nodes, the example of which is shown in Figure 3.4, is based
on TBM node’s encoding. The function of 𝐾 + 1 bits of the external bitmap, 𝐾 bits of
the internal bitmap, and both the child and prefix pointers is exactly the same as of the
corresponding elements in the TBM node’s data structure. Apart from these bitmaps and
pointers, the data structure of an SST node also contains the shape bitmap consisting of
2𝐾 bits, which encodes the shape of the node. Similarly to the internal bitmap, pairs of
shape bitmap’s bits correspond to the nodes of the underlying trie in breadth-first order.
The first bit of each pair determines whether the SST node contains the left child of the
corresponding node (value 1) or its left child is missing (value 0), while the second bit
encodes the same information for the right child of the corresponding node.
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Figure 3.4: The encoding of an example SST node for 𝐾 = 4.

The adaptive shape of SST nodes allows to represent a prefix set using a very small
amount of memory. However, the variability of nodes makes the construction of the prefix
set representation a computationally complex task and it also significantly limits the pos-
sibility of prefix set updates. Moreover, the need to decode the shape of a node from its
shape bitmap negatively influences matching performance. Because of all these limitations,
SST is not a viable option for prefix matching in core networks, which is also illustrated by
the fact that there is no hardware architecture implementing this algorithm. Nevertheless,
it may be useful as a reference algorithm for an assessment of memory requirements.

3.1.4 Multiple SRAM-based Lookup Algorithm

The first of two current prefix matching algorithms described in this thesis is Multiple
SRAM-based Lookup Algorithm (MSLA) proposed by Jiang and Prasanna [36]. This algo-
rithm primarily aims to achieve high matching performance. To this end, a hardware archi-
tecture implementing the algorithm employs several parallel processing pipelines that uti-
lize independent SRAM (Static Random Access Memory) blocks connected to their stages.
Apart from focusing on matching performance, the MSLA algorithm also tries to keep the
size of the utilized SRAM blocks reasonable. Therefore, it represents a prefix set using a
leaf-pushed trie introduced in [57], in which all prefixes are stored in the leaf nodes only.
This means that for each input the leaf-pushed trie contains only one (i.e., the longest)
matching prefix.

As shown in Figure 3.5, the architecture implementing MSLA employs 𝑃 processing
pipelines, each of which is responsible for prefix matching in a subset of at most 2𝐼 sub-
tries starting at level 𝐼. To guarantee that these subtries contain all prefix nodes of the
original leaf-pushed trie (i.e., that the length of each prefix is at least 𝐼), controlled prefix
expansion—another prefix set transformation from [57]—is applied on the trie before its
mapping onto pipelines. This transformation makes possible to directly access the root
node of each subtrie using the first 𝐼 bits of an input value without skipping over any prefix
node.

Because in general the number of processing pipelines 𝑃 may be lower than the number
of subtries starting at level 𝐼 and these subtries may contain various number of nodes, the
mapping of the subtries onto the pipelines is determined using a polynomial-time approx-
imation algorithm, which tries to balance memory requirements over different pipelines.
Similarly, the nodes of all subtries mapped to a particular pipeline are equally distributed
among the stages of the pipeline. Apart from this two-stage memory balancing, MSLA also
implements techniques called flow pre-caching and payload exchange that address traffic
balancing and intra-flow packet reordering issues, respectively.

The proposed hardware architecture with 8 parallel pipelines consisting of 25 stages can
perform over 10 GLPS, which translates into throughput of 3.2 Tbps for 40-bytes packets.
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Figure 3.5: An example mapping of the subtries starting at level 𝐼 = 2 of the leaf-pushed
trie from Figure 3.1 onto 𝑃 = 3 processing pipelines.

Such matching performance should be sufficient also in the near future. At the same time,
memory requirements of the architecture are reasonable. For storing the representation
of a prefix set comprising 248 856 unique prefixes, the architecture requires slightly over
28 Mb of memory organized in 8 · 25 = 200 independent SRAM blocks with a capacity
of 144 kb. However, both matching performance and memory requirements depend on a
time-consuming mapping of the prefix set representation onto available memory resources
in a memory-balanced fashion. Thus, it can be expected that these parameters will degrade
in an environment with frequent incremental updates of the prefix set.

3.1.5 Prefix Partitioning Lookup Algorithm

Prefix Partitioning Lookup Algorithm (PPLA) developed by Le and Prasanna [39] is the
second current prefix matching algorithm described in this thesis. Differently from MSLA,
this algorithm focuses on minimizing the memory footprint of a prefix set representation,
while keeping sufficient throughput for 100 Gbps networks. As all other prefix matching
algorithms described so far in this section, PPLA represents a prefix set by a trie. However,
it utilizes the trie representation just for partitioning the set of prefixes into 𝑘 disjoint
subsets that are used for prefix matching in 𝑘 separate processing pipelines.

Each of 𝑘 prefix subsets consists of prefixes expanded using controlled prefix expan-
sion [57] to the closest one of 𝑘 trie levels. In order to achieve balanced distribution of
prefixes among processing pipelines, the PPLA algorithm determines these levels using
dynamic programming. Once the prefix set is partitioned, each subset is represented by a
separate binary search tree (for minimum memory requirements) or 2-3 tree (for easy prefix
set updates) and mapped onto stages of a corresponding pipeline. An illustration of parti-
tioning the example prefix set from Table 3.1 to two subsets, each of which is represented
by a binary search tree mapped to a separate processing pipeline, is shown in Figure 3.6.

PPLA searches for prefixes matching a given input value in all pipelines in parallel.
Since a prefix subset in each pipeline consists of prefixes expanded to the same level of the
original trie, at most one of the prefixes can match an arbitrary input value. Nevertheless,
multiple (possibly all) pipelines can return a valid matching prefix for the given input. In
such a case, the prefix returned by the pipeline with the highest corresponding level is
selected as the longest matching prefix.
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Figure 3.6: The partitioning of the trie from Figure 3.1 to 𝑘 = 2 levels and the representation
of prefixes expanded to these levels using binary search trees, each of which is mapped to
a separate processing pipeline.

Although an FPGA implementation of PPLA is able to perform 410/390 MLPS (Million
Lookups Per Second) for an IPv4/IPv6 prefix set consisting of over 330 000 unique prefixes,
the main advantage of the PPLA algorithm is its high memory efficiency. When prefix
subsets are represented by a binary search tree, an average memory efficiency ratio (i.e.,
the number of bytes of memory needed for storing one byte of a prefix) achieved by the
algorithm is 1.00 for IPv4 prefix sets and 0.91 for IPv6 prefix sets. The main drawback of
this algorithm is connected with the initial partitioning of a prefix set, which introduces
very high preprocessing overhead. Therefore, similarly to the MSLA algorithm, PPLA may
experience the degradation of matching performance and memory efficiency when the prefix
set is frequently updated.

3.2 Multi-Dimensional Packet Classification Algorithms
Approaches to packet classification, which were described in Section 2.3, represent the main
ideas utilized in multi-dimensional packet classification algorithms. However, the majority
of these ideas are not implemented in their pure form. They are rather implemented in
various ways, which may result into different time and space complexity of packet classifi-
cation algorithms, even when the algorithms utilize the same approach. It is also common
that a single algorithm utilizes more than one approach to packet classification. Therefore,
this section describes seminal multi-dimensional packet classification algorithms.

Inspired by a survey conducted by Taylor [60], the description is divided into four
subsections, each of which includes algorithms based on the same high-level concept. In
addition, the representation of a rule set in the packet classification algorithms described
in this section is illustrated on the example rule set from Table 2.2.

3.2.1 Exhaustive Search

The first and simplest high-level concept is exhaustive search through all classification rules.
Its serial implementation is very efficient with respect to utilized computational resources
but its low performance is prohibitive. Although the performance can be improved by
parallel implementation, the amount of required computational resources grows linearly
with the degree of parallelism, which is unfavorable.

Contrary to almost all other algorithms described in further sections, both represen-
tatives of the exhaustive search group directly implement selected approaches from Sec-
tion 2.3. A serial version of exhaustive search—linear search—corresponds to the first
naive approach to packet classification. Linear search time of this approach limits usability
of the linear search algorithm to the final step of some advanced packet classification al-
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gorithms only. On the other hand, massively parallel implementation of exhaustive search
in TCAM results in constant search time that makes this solution extensively utilized in
commercial devices. However, because of its non-negligible limitations (high power con-
sumption, high cost per bit, storage inefficiency, and limited scalability), TCAM is not the
ultimate solution to packet classification.

3.2.2 Decision Tree

A common feature of algorithms described in this section is that they represent the packet
classification problem using a decision tree, whose leafs contain either a single classification
rule or a small rule set. Classifying a packet is then realized by traversing the tree from the
root to the leaves according to bits read from packet’s header fields. After reaching a leaf
node, a matching rule is either directly read from the leaf (when the leaf contains a single
rule only) or it is found using linear search (when the leaf contains a set of rules).

Packet classification algorithms utilizing a decision tree can be divided into two branches.
Algorithms from the first branch construct a decision tree according to cuts of multi-
dimensional space that geometrically represents a rule set. Therefore, these algorithms
are often referred to as cutting algorithms. On the other hand, algorithms from the second
branch utilize a binary decision tree encoding a prefix set, which is a basic data structure
for prefix matching. Because this data structure is often called trie, algorithms from this
branch will be further referred to as trie-based algorithms.

Cutting Algorithms

The seminal cutting algorithm called HiCuts (Hierarchical intelligent Cuttings) has been
introduced by Gupta and McKeown [32]. This algorithm recursively cuts the multi-dimen-
sional space until the number of rules in each sub-space decreases below a given threshold
(referred to as 𝑏𝑖𝑛𝑡ℎ). Each cutting step can be done along an arbitrary dimension and it
divides the partitioned (sub-)space into equal-sized intervals. In [32], the authors also pro-
pose heuristics exploiting the inherent structure of the rule set that guide the construction
of the decision tree (i.e., which dimension to select, how many cuts to do, etc.).

To illustrate basic principles of the HiCuts algorithm, Figure 3.7 shows cuts made by
the algorithm in geometric representation of the example rule set (Table 2.2) and a decision
tree constructed according to these cuts when the threshold for the number of rules per
sub-space (𝑏𝑖𝑛𝑡ℎ) is set to 2. However, this example also reveals three limitations of the
HiCuts algorithm. The first one is ability to make a cut along a single dimension only,
which is illustrated by separately made cuts 1 and 2 in Figure 3.7. If these cuts were
made in a single step, the decision tree would be one level lower. The next limitation
is successive cutting the same dimension because of the requirement for equal-sized cuts.
After relaxing this requirement, it would be possible to omit cut 2 together with the whole
corresponding level of the decision tree. The last limitation is caused by the value of 𝑏𝑖𝑛𝑡ℎ,
which is lower than the maximum number of overlapping rules. While 𝑏𝑖𝑛𝑡ℎ = 2, the rule
set contains three rules (R1, R2, and R3) that overlap at point defined by 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 010
and 𝑝𝑜𝑟𝑡 = 6. This results in the decision tree of maximum depth and violation of 𝑏𝑖𝑛𝑡ℎ in
its node representing the previously mentioned point.

Further cutting algorithms often address the presented limitations of the HiCuts algo-
rithm. Singh et al. have introduced the HyperCuts algorithm [52], which allows cutting rule
(sub-)space along multiple dimensions at the same time, while Vamanan, Voskuilen, and
Vijaykumar have allowed cuts of non-equal size in their EffiCuts algorithm [64]. However,
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Figure 3.7: Cuts of 2-dimensional space that geometrically represents the example rule set
from Table 2.2 (left) and a decision tree constructed according to these cuts (right). Nodes
of the tree contain an address prefix and port range of the represented (sub-)space and
either the number of a cut defining its children (white internal nodes) or the represented
subset of the example rule set (gray leaf nodes). The threshold for the number of rules per
sub-space (𝑏𝑖𝑛𝑡ℎ) is set to 2.

there are also cutting algorithms that improve upon HiCuts in a different way. For instance,
the HyperSplit algorithm [49] introduced by Qi et al. makes no more than one cut in a
single cutting step but it allows cutting the (sub-)space into non-equal-sized parts. Because
of these constraints, HyperSplit represents a rule set by a binary decision tree employing
range matching.

Search time of the cutting algorithms depend on the depth of the decision tree and
the number of rules represented by a leaf node, which is bounded by parameter 𝑏𝑖𝑛𝑡ℎ.
The simplest way of lowering the tree’s depth is increasing the number of children a node
can have. This also leads to decreasing the number of nodes in the tree, but the more
children a node can have, the more data for a decision making process it has to store.
Therefore, lowering the tree’s depth may or may not have a positive impact also on memory
requirements of the cutting algorithms. Moreover, the actual structure of the decision tree is
heavily dependent on the represented rule set, especially on rules’ overlapping, as illustrated
in Figure 3.7.

To get the worst-case bounds on search time and memory requirements, it is possible
to reduce the packet classification problem in the cutting algorithms to the point location
problem in computational geometry. Then, considering the case of 𝑛 non-overlapping 𝑑-
dimensional classification rules, it can be shown that the packet classification problem may
require 𝑂(log 𝑛) time and 𝑂(𝑛𝑑) memory (when optimized for time) or 𝑂(log𝑑−1 𝑛) time
and 𝑂(𝑛) memory (when optimized for memory) [45]. Note that an arbitrary rule set can
be converted to a rule set with non-overlapping rules by representing each condition as a
range and constructing the elementary intervals in each dimension.
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Trie-Based Algorithms

Packet classification algorithms from this branch combine two separate tries (i.e., binary
decision trees encoding prefix sets, each of which can be used for 1-dimensional prefix
matching) into a single data structure called grid-of-tries [58]. This approach was proposed
by Srinivasan et al., who designed grid-of-tries for handling 2-dimensional rule sets that
use the prefix specification in both dimensions (e.g., destination and source IP addresses).
Similarly to set-pruning tries [24] introduced by Decasper et al., grid-of-tries encodes the
full prefix set of the first dimension using a single trie in which each node representing a
prefix has associated another trie that encodes a pruned prefix set of the second dimen-
sion. However, differently from set-pruning tries, pruned tries used in grid-of-tries encode
only second-dimension prefixes that appear in rules specifying the prefix the pruned trie
is associated to in the first dimension. Thus, grid-of-tries does not replicate rules and it
requires only 𝑂(𝑛𝑤) memory, where 𝑛 is the number of classification rules and 𝑤 is the
maximum prefix length allowed in the first or second dimension. To keep also search time
reasonable (𝑂(𝑤)), grid-of-tries uses switch pointers between pruned tries and performs
precomputation of the highest priority matching rule for each prefix node of pruned tries.
Switch pointers and precomputation together guarantee that the rule matching process
always progresses forward and it never has to apply backtracking.

Since grid-of-tries allows prefix matching only, in order to show the representation of
the example rule set (Table 2.2) using this data structure, it is necessary to perform the
range-to-prefix conversion first. Table 3.2 shows the example rule set after the range-to-
prefix conversion that increased the number of rules from 5 to 9. The representation of
this converted rule set using grid-of-tries is shown in Figure 3.8. Grid-of-tries in the figure
comprises a single address trie and multiple pruned port tries, each of which is associated
to an address prefix node via a dotted arrow. Each port trie represents classification rules
that has a common address prefix only. Therefore, to ensure that all possible rules can be
matched, grid-of-tries also contains switch pointers (dashed arrows between nodes of the
port tries), which allow to continue with matching longer port prefixes in a trie associated
to a shorter address prefix. However, switch pointers are allowed only if following them
may lead to a higher priority rule. Because of this constraint, grid-of-tries in Figure 3.8
does not contain a switch pointer between nodes representing rules R1b and R2.

Although the authors of the grid-of-tries algorithm propose an extension that supports
standard 5-tuple rules (by constructing a separate grid-of-tries for each tuple defined by

Rule Address Port
R1a 0* 101
R1b 0* 11*
R2 * 110
R3 010 *
R4a 11* 101
R4b 11* 11*
R5a 11* 001
R5b 11* 01*
R5c 11* 100

Table 3.2: The example rule set (Table 2.2) after the range-to-prefix conversion.
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Figure 3.8: Grid-of-tries representing the example rule set after range-to-prefix conversion
(see Table 3.2).

source port, destination port, and protocol), more memory efficient extension called EGT
(Extended Grid-of-Tries) has been proposed by Baboescu, Singh, and Varghese [20]. EGT
is based on original grid-of-tries but it implements two extensions. First, instead of directly
representing a classification rule, prefix nodes of the second-dimension tries store a pointer
to a list of rules sharing the already matched prefixes. To select the best matching rule from
such a list, EGT employs linear search. The second extension replaces switch pointers by
jump pointers that direct the search process to all possible matching filters, thus ensuring
correctness of the classification result.

3.2.3 Decomposition

Packet classification algorithms utilizing the principle of decomposition first perform indi-
vidual classification in each dimension and subsequently combine the results from particular
dimensions together. This allows the algorithms to employ various 1-dimensional classifi-
cation approaches (e.g., range matching and prefix matching) and perform classification
in particular dimensions in parallel. However, combining the results of these independent
classification steps is not usually straightforward. The best matching rule does not always
consist of the individual best matches, thus the employed 1-dimensional classification ap-
proaches are often required to return all entries matching a given packet. A high number
of intermediate results increases the number of their possible combinations, which makes
determining the final best matching filter the major challenge that has to be addressed in
the decomposition-based packet classification algorithms.

There can be identified three branches of packet classification algorithms based on de-
composition. Algorithms in the first branch, which will be further referred to as combi-
natorial algorithms, represent variations on the combinatorial representation approach to
packet classification. The second branch includes the RFC (Recursive Flow Classification)
algorithm only, which can be characterized as a recursive implementation of the second
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naive approach leveraging the properties of real classification rule sets. A common feature
of algorithms from the third branch is the representation of range matching results in in-
dividual dimensions using a bit-vector. Therefore, these algorithms will be further referred
to as bit-vector-based algorithms.

Combinatorial Algorithms

This branch of decomposition-based classification algorithms has been initiated by the cross-
producting algorithm introduced by Srinivasan et al. [58], which was designed as a multi-
dimensional alternative to the grid-of-tries technique introduced in the same article. The
cross-producting algorithm employs the combinatorial representation of packet classifica-
tion. However, differently from the pure combinatorial representation approach, it only
employs prefix matching for packet classification in individual dimensions. Therefore, be-
fore constructing the table of Cartesian product entries, all classification rules’ conditions
specified by a range has to be converted to the prefix specification using the range-to-prefix
conversion (note that an exact value and the wildcard are the special cases of a prefix).
Although this conversion may lead to increasing the number of unique conditions, it also
simplifies the final steps of the algorithm. Since prefix matching usually returns only the
longest matching prefix, combining the classification results from individual dimensions
can be simply realized by their concatenation. Moreover, concatenation produces only one
result, which can be directly used for retrieving the best matching rule from the table of
Cartesian product entries.

Table 3.3 shows the Cartesian product entries along with assigned best matching rules
that together represent the example rule set after the range-to-prefix conversion (see Ta-
ble 3.2). Even though the range-to-prefix conversion increased the number of classification
rules from 5 to 9 (cf. Tables 2.2 and 3.2), the number of unique port conditions increased
from 4 to 7 only due to the conversion. Thus, every 4 entries sharing the same address
prefix in Table 2.7 correspond to 7 entries sharing that prefix in Table 3.3. In total, due to
the range-to-prefix conversion, the number of Cartesian product entries created from the
sets of unique conditions utilized in address and port dimensions of the example rule set
increased from 16 to 28.

The cross-producting algorithm is excellent with respect to search time. Because packet
classification in individual dimensions can be performed in parallel and the final steps of
the algorithm (i.e., the concatenation of prefix matching results and the retrieval of the best
matching rule) have constant time complexity, the search time of the algorithm depends on
the search time of employed prefix matching technique(s) only. However, memory require-
ments of this algorithm are prohibitive. The number of Cartesian product entries depends
on the number of unique conditions in particular dimensions. This number is usually lower
than the number of rules in a rule set but such redundancy cannot be guaranteed. Therefore,
the space complexity of the cross-producting algorithm is 𝑂(𝑛𝑑) where 𝑛 is the number of
rules in the rule set and 𝑑 is the number of dimensions of the packet classification problem.
The authors of the cross-producting algorithm addressed the memory explosion problem of
this algorithm by a caching-like technique called on-demand cross-producting [58]. Despite
this way they were able to significantly reduce both average memory requirements and time
needed for the construction of the table of Cartesian product entries, the worst case space
complexity of on-demand cross-producting is the same as of the original cross-producting
algorithm.
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# Address Port Rule # Address Port Rule
1 0* 101 R1a 15 010 101 R1a
2 0* 11* R1b 16 010 11* R1b
3 0* 110 R1b 17 010 110 R1b
4 0* * N/A 18 010 * R3
5 0* 001 N/A 19 010 001 R3
6 0* 01* N/A 20 010 01* R3
7 0* 100 N/A 21 010 100 R3
8 * 101 N/A 22 11* 101 R4a
9 * 11* N/A 23 11* 11* R4b
10 * 110 R2 24 11* 110 R2
11 * * N/A 25 11* * N/A
12 * 001 N/A 26 11* 001 R5a
13 * 01* N/A 27 11* 01* R5b
14 * 100 N/A 28 11* 100 R5c

Table 3.3: The entries of a Cartesian product created from the sets of unique prefixes
utilized in address and port dimensions of the example rule set after the range-to-prefix
conversion (Table 3.2). If it exists, the best matching rule from the example rule set after
the range-to-prefix conversion is associated with a Cartesian product’s entry. Otherwise,
the best matching rule is set to N/A.

Since the introduction of the cross-producting algorithm, numerous algorithms employ-
ing the combinatorial representation approach and addressing the memory explosion prob-
lem have been proposed.

Taylor and Turner have developed the DCFL (Distributed Crossproducting of Field La-
bels) algorithm [62], which performs the aggregation of classification results from individual
dimensions in a distributed fasion rather than in a single step using the full table of Cartesian
product entries. Distributed aggregation is implemented using pairwise cross-producting
followed by a set membership query based on Bloom filters [22] (after each aggregation
step) and the highest priority rule selection (after the last aggregation step only). It is also
important to note that because the aggregation is performed in a distributed fashion, pre-
fix matching technique(s) employed in DCFL are required to return all matching prefixes
instead of just the longest one.

Another algorithm called MSCA (Multi-Subset Crossproduct Algorithm) has been pro-
posed by Dharmapurikar et al. [25]. This algorithm uses the cross-producting algorithm
as a starting point; however, the Cartesian product entries that have associated the best
matching rule but do not directly correspond to the original rules (i.e., entries 3, 15, 16, 17,
19, 20, 21, and 24 in Table 3.3) are replaced by so called pseudo-rules. To reduce the space
complexity of MSCA, the authors propose to split the original rule set into multiple sub-
sets, which together contain a significantly smaller number of pseudo-rules. Nevertheless,
introducing multiple rule subsets increases the number of memory accesses that have to be
performed when retrieving the best matching rule. MSCA addresses this issue by employing
Bloom filters, which eliminate the majority of combinations of the best matching prefixes
from individual dimensions that do not correspond to a rule or pseudo-rule. Because the
set of prefix conditions utilized in particular dimensions may differ among the subsets,
it is also necessary to slightly modify employed prefix matching techniques to return the
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longest matching prefix for each of the subsets. Further reduction of the number of pseudo-
rules can be achieved by removing spoilers (i.e., rules that cause the excessive amount of
pseudo-rules) from the rule subsets and treating them separately in a small TCAM.

The concept of pseudo-rules has also been used by Puš and Kořenek in their PHCA
(Perfect Hashing Crossproduct Algorithm) [47]. However, this algorithm does not try to
reduce the number of pseudo-rules. Instead, it constructs a perfect hash function that in-
tentionally maps all pseudo-rules to the same position in a hash table as their corresponding
original rule, which allows not to store the pseudo-rules explicitly. Since the perfect hash
function employed in PHCA maps every combination of the best matching prefixes from
individual dimensions to some rule, regardless it represents a (pseudo-)rule or not, the last
step of the algorithm has to check whether the selected rule really matches the input packet.

Recursive Flow Classification

The RFC algorithm by Gupta and McKeown [31] builds on a unique view of the packet
classification problem as the reduction of an input bit vector comprising the concatenated
header fields to significantly shorter bit vector representing the set of rules matching the
packet. Despite its similarities with the cross-producting algorithm, this algorithm repre-
sents a separate branch of decomposition-based packet classification methods. Differently
from cross-producting, which combines the results of classification in individual dimensions
in a single step, RFC performs reduction in several phases, each of which is based on pre-
computed aggregation tables that map an input index to eqID (equivalence class identifier)
representing a set of potentially matching rules. Such eqIDs are often significantly shorter
than input indexes to an aggregation table because real classification rule sets commonly
utilize only a limited number of unique conditions in particular dimensions [31]).

In the first phase of reduction, the input bit vector is decomposed into several chunks
(which may or may not correspond to header fields), utilized for indexing the first-phase
aggregation tables. Further reduction phases index their tables by two or more eqIDs from
the previous stage(s) that are combined together (e.g., using concatenation). This way the
number of eqIDs passed to the next stage is successively reduced until the indexing of the
last aggregation table returns only one eqID, which represents the set of rules matching the
input packet. To obtain the best matching rule, the last eqID has to be decoded and the
highest priority rule has to be selected.

Figure 3.9 shows the structure of 2-phase RFC and the content of its precomputed
aggregation tables that allow to reduce a 6-bit input comprising the address and port
header fields to 4-bit eqID using the example rule set introduced in Table 2.2. In the
first phase, the input is divided into two 3-bit chunks corresponding to header fields. Both
chunks are reduced in their respective first-phase aggregation tables to 2-bit eqIDs, each of
which represent four different sets of potentially matching rules. Indexing the second-phase
aggregation table using concatenated eqIDs obtained in the previous phase results into 4-bit
eqID encoding 10 distinct rule sets, including an empty set, that can match an input packet
(rule sets represented by particular eqIDs are shown in light grey in Figure 3.9). Note that
the second-phase aggregation table performs reduction even though its input as well as
output are 4-bit values—16 input combinations are reduced to 10 output values. For the
sake of completeness it should also be noted that 2-phase version of the RFC algorithm
(e.g., the one in Figure 3.9) is equivalent to the the cross-producting algorithm.

The RFC algorithm is similar to the cross-producting technique also in its search time
and memory requirements. The implementation of reduction using aggregation tables in-
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Figure 3.9: The structure of 2-phase RFC and the content of its precomputed aggregation
tables for the example rule set (Table 2.2). Tables in the first phase are indexed by 3-bit
chunks corresponding to the address and port header fields, respectively, while the second-
phase table is indexed by 4-bit concatenation of eqIDs retrieved from the first-phase tables.
The sets of (potentially) matching rules represented by particular eqIDs are shown in light
gray. Note that 𝑒𝑞𝐼𝐷 = 0000 in the second-phase table represents the situation when a
rule matching the input packet is not available (N/A).

dexed by the chunks of input data or combined results from the previous phases allows the
RFC to find the set of matching rules very fast. Moreover, the performance of the algo-
rithm can be tuned via the number of reduction phases and the structure of a reduction
tree. However, excellent performance is achieved at the cost of excessively high memory
requirements and long preprocessing time, which is necessary for the construction of ag-
gregation tables. Both these drawbacks get worse with the growing size of a classification
rule set. The authors of RFC addressed this issue by merging similar rules together into so
called adjacency groups. Nevertheless, such improvement of the RFC algorithm allows to
just double the size of supported rule sets.

Bit-Vector-Based Algorithms

The seminal bit-vector-based packet classification algorithm, which is commonly referred to
as parallel bit-vectors, has been published by Lakshman and Stiliadis [38]. To decompose a
multi-dimensional packet classification problem into multiple 1-dimensional instances, this
algorithm employs the geometric representation of packet classification. The edges of 𝑛
rectangles, which represent 𝑛 classification rules, are projected to the axes of the multi-
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dimensional space, forming a set of at most 2𝑛 + 1 elementary intervals in each dimension.
The elementary intervals are then utilized in range matching, which is employed as 1-
dimensional packet classification technique in this algorithm.

The authors of the parallel bit-vectors algorithm propose to represent the set of rules
overlapping an elementary interval using an 𝑛-bit bit-vector, in which each bit corresponds
to one of 𝑛 classification rules sorted by their priority. The bits of the bit-vector correspond-
ing to rules that overlap the elementary interval are set to 1, while the other bits are set
to 0. Since such bit-vectors are also the result of range matching in individual dimensions,
the aggregation step of the algorithm simply combines them together via the bitwise AND
operation. The bits set to 1 in the resulting bit-vector correspond to the rules matching an
input packet in all dimensions and the first such bit represents the highest priority matching
rule.

Using the geometric representation of the example rule set (Table 2.2), Figure 3.10
illustrates the decomposition of packet classification, which is used in the parallel bit-
vectors algorithm. Although 5 rules of the example rule set could project into 2 · 5 + 1 = 11
elementary intervals in address and port dimensions, there are only 5 elementary intervals
in both cases. The reasons for this situation in the port dimension, which are also relevant
for the address dimension, are explained in Section 2.3.6. Each elementary interval has
assigned a 5-bit bit-vector, the bits of which correspond to rules R1, R2, R3, R4, R5,
respectively. Thus, for instance, the address bit-vector assigned to the elementary interval
corresponding to prefix 11* is 01011 because this interval is overlapped by rules R2, R4,
and R5.

Storing an 𝑛-bit bit-vector for each elementary interval in a single dimension may require
𝑛 · (2𝑛+ 1) bits in the worst case. Therefore, the space complexity of the algorithm in case
of 𝑑-dimensional packet classification is 𝑂(𝑑 · 𝑛2). On the other hand, its time complexity
𝑂(𝑑 ·𝑛) is determined by the time necessary for bitwise AND operation over 𝑑 bit-vectors of
𝑛 bits (note that the matching elementary intervals in individual dimensions can be found
in parallel using binary search with logarithmic time complexity). Because the parame-
ter 𝑑 is usually a small constant, the parallel-bit vectors algorithm can be considered to
have quadratic memory requirements and linear search time. Both these characteristics are
mainly affected by the linear dependence of bit-vector length on the number of classification
rules, which can be considered as the main drawback of this algorithm. Even though its
hardware implementation, which the authors targeted on, can take advantage of bit-level
parallelism (i.e., processing multiple bits of a bit-vector in parallel), its memory require-
ments as well as search time make it impractical for packet classification using a large rule
set.

In [38], Lakshman and Stiliadis have also proposed an improved version of the parallel
bit-vectors algorithm that is based on incremental reads. Replacing all but one bit-vectors
in each dimension by pointers to bits that flip between elementary intervals decreases the
memory requirements of the algorithm to 𝑂(𝑛·log 𝑛) and allows to reconstruct any bit-vector
at the price of 𝑂(𝑛 · log 𝑛) increase of search time. On the other hand, the Aggregated Bit
Vector algorithm introduced by Baboescu and Varghese [21] addresses poor performance
of the parallel bit-vectors algorithm, especially when a large set of classification rules is
used. In order to reduce the number of memory accesses, it arranges the bits of bit-
vectors regardless the priority of their corresponding rules and aggregates chunks of a
rearranged bit-vector into a so called aggregate bit-vector, which is used in the course
of packet classification. The bit-vector-based algorithms have also been used in the BV-
TCAM architecture by Song and Lockwood [53], which combines the aggregated bit vector

36



11
1

11
0

1
0

1

1
0

0

0
11

0
1

0

0
0

1

0
0

0

0

1

2

3

4

5

6

7

Address

P
o

rt

R5

R4R1

R3

                 R2

11
0

0
0

11
1

0
0

11
0

0
0

0
1

0
0

0

0
1

0
11

10110

11110

10110

00101

00100

Address Bit-Vectors

P
o

rt
 B

it-
V

e
ct

o
rs

Figure 3.10: The geometric representation of the example rule set from Table 2.2 together
with address and port bit-vectors representing the set of rules overlapping elementary in-
tervals in these dimensions. The bits of the bit-vectors correspond to rules R1, R2, R3, R4,
R5, respectively.

algorithm (for source and destination ports) and TCAM (for other header fields) to further
reduce both memory requirements and search time.

3.2.4 Tuple Space

This section is devoted to the description of packet classification algorithms that are pri-
marily based on the representation of a classification rule set using tuples. The majority of
these algorithms have been introduced by Srinivasan, Suri, and Varghese in their seminal
paper on tuple space search [56]. A simple linear search of tuple space, which was already
described in Section 2.3.3, represents the basis of all tuple space search algorithms. It ben-
efits from the observation that the number of tuples representing a rule set is usually lower
than the number of rules in that set, thus it is usually faster than the linear search of the
original rule set. However, memory requirements of both approaches are linear with respect
to the number of classification rules.

To further improve the search time of tuple space search, the tuple pruning algorithm
leverages another property common in real classification rule sets: the number of prefixes
matching a given IP address is inherently limited. For instance, in [56] the authors report
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no more than six simultaneously matching prefixes for a prefix set taken from a core router.
Therefore, the space of tuples that have to be searched can be significantly limited by
performing prefix matching for source and destination IP addresses and pruning out the
tuples not compatible with the matching prefixes. In general, tuple space can be pruned
according to matches in any subset of dimensions. Nevertheless, the authors of the algorithm
suggest pruning according to source and destination address prefixes as a good choice, at
least for IPv4 5-tuples.

The implementation of the tuple pruning algorithm utilizes a tuple list (or bitmap) that
is assigned to each source and destination address prefix and comprises tuples containing
at least one rule with that prefix. Figure 3.11 shows tuple lists assigned to address and port
prefixes of the example rule set after the range-to-prefix conversion (see Table 3.4), which
are encoded in address and port tries. The tuple pruning algorithm first performs prefix
matching in each dimension individually and applies the union operation on tuple lists
assigned to all matching prefixes. Next, the algorithm determines the intersection of the
resulting tuple lists from particular dimensions and linearly searches the pruned tuple space
represented by this intersection. Considering a packet with 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 110 and 𝑝𝑜𝑟𝑡 = 110,
prefix matching results in tuple list [0,3], [2,3], [2,2] in the address dimension and [3,0], [1,2],
[2,2], [0,3] in the port dimension. Their intersection [0,3], [2,2] then defines pruned tuple
space.

Rule Address Port Tuple
R1a 0* 101 [1,3]
R1b 0* 11* [1,2]
R2 * 110 [0,3]
R3 010 * [3,0]
R4a 11* 101 [2,3]
R4b 11* 11* [2,2]
R5a 11* 001 [2,3]
R5b 11* 01* [2,2]
R5c 11* 100 [2,3]

Table 3.4: The example rule set (Table 2.2) after the range-to-prefix conversion. For each
rule the table also shows a tuple the rule belongs to.

Figure 3.11: Address and port tries encoding the prefixes of the address and port dimensions
of the example rule set after the range-to-prefix conversion (Table 3.4). Each address and
port prefix has associated the list of tuples containing rules with that prefix.
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As long as the assumption about the limited number of prefixes matching an IP address
holds, tuple pruning outperforms linear tuple space search with respect to search time. This
technique can also perform fast updates of the rule set if the implementation of tuple lists
is augmented with the reference count of distinct filters using the corresponding prefix in
each listed tuple.

In their seminal paper [56], Srinivasan, Suri, and Varghese have also explored several
approaches to improving the search time of linear tuple space search via precomputation
and markers introduced by Waldvogel et al. in [65]. Among other algorithms, their effort
resulted in a general 2-dimensional tuple space search algorithm called rectangle search,
whose name refers to the representation of 2-dimensional tuple space by a rectangular grid
of tuples. Since the most common type of 2-dimensional packet classification performs prefix
matching according to source and destination IP addresses, the rectangle search algorithm
primarily targets a square grid of 𝑤 × 𝑤 tuples, where 𝑤 is the maximum length of an
IP address prefix. In such grid, the utilization of precomputation and markers allows the
algorithm to probe only tuples on a staircase-like path leading from the bottom left corner
of the grid (tuple [𝑤,1]) to its upper right corner (tuple [1,𝑤]). Therefore, rectangle search
requires only 2𝑤 − 1 steps for fully searching the space of 𝑤 × 𝑤 tuples, which has been
proved to be optimal search performance for 2-dimensional tuple space search [56].

3.3 1-Dimensional Rule Set Generators
Benchmarking IP lookup algorithms, which implement the most common type of 1-dimen-
sional packet classification in core networks, requires a set of classification rules where each
rule consists of a destination IP address prefix. Real IP prefix sets can be obtained from
forwarding tables of core routers for both IPv4 and IPv6 case [18, 50]. Nevertheless, dif-
ferently from sets of IPv4 prefixes, current IPv6 prefix sets cannot be directly used for
benchmarking future IP lookup algorithms because their size is expected to grow signif-
icantly with progress in the adoption of the IPv6 protocol. Thus, all rule set generators
presented in this section implement the generation of synthetic IPv6 prefix sets.

3.3.1 Non-random Generator

Non-random Generator, which has been developed by Wang et al. [66], is the first of two
IPv6 prefix set generators described in this thesis. Its authors expected that many of the
features observed in IPv4 prefix sets will also emerge in IPv6 prefix sets because of similar
allocation policies, retained network topology, and continuing evolution of the Internet.
Therefore, they designed the generator such that it converts an input IPv4 prefix set to an
output IPv6 prefix set in a way that preserves selected features of the input and generates
the output with respect to IPv6 allocation policies. During the generation of the output
prefix set, Non-random Generator focuses on three main properties: (1) prefix set size,
(2) prefix length distribution, and (3) prefix value distribution.

As each input IPv4 prefix is converted to a single output IPv6 prefix, the size of the
output prefix set is directly inherited from the input set. The length of generated prefixes is
limited to the maximum of 64 bits, which reflects the internal structure of the global unicast
IPv6 address, where upper 64 bits represent a network address (i.e., the information relevant
in IPv6 lookup algorithms). To determine the exact length of an output IPv6 prefix, Non-
random Generator doubles the length of an input IPv4 prefix. However, the length of every
fourth IPv6 prefix is converted to an odd number by either adding or subtracting 1 (to
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comply with the distribution of odd to even prefix lengths in real IPv4 prefix sets) and the
length of an output prefix is directly set to 23 in case of an 8-bit input prefix (to account
for IPv6 allocation policies).

Once the length of the output IPv6 prefix is determined, its value is composed according
to Figure 3.12. The first three bits are always set to 001 because Non-random Generator
supports prefixes of global unicast IPv6 addresses only. Next 16 bits are filled with the
number of AS (Autonomous System) corresponding to the input IPv4 prefix, which is
expected to be a suitable top-level network address representation. The rest of the output
prefix then consists of the input prefix with randomized first three bits (to remove an artifact
in prefix value distribution of real IPv4 prefix sets). In case the IPv6 prefix should consist
of more bits than specified by the previous three steps, the remaining bits are generated
randomly.

Figure 3.12: The composition of IPv6 prefixes generated by Non-random Generator.

Since Non-random Generator was the first generator of synthetic IPv6 prefix sets, it
was extremely useful at the time of its origin. Nevertheless, prefix sets generated by this
tool do not correspond to current real IPv6 prefix sets because their generation is based on
sets of IPv4 prefixes. This fact limits their usability for the benchmarking of IPv6 lookup
algorithms, which has to be done using synthetic prefix sets that are as similar as possible
to real prefix sets. Therefore, newer generators are based on currently available real sets
of IPv6 prefixes. Such approach is valid because the adoption of the IPv6 protocol is no
longer in its initial phase.

3.3.2 V6Gene

A well-known example of a generator based on real sets of IPv6 prefixes is called V6Gene [67].
This tool has been designed by Zheng and Liu, who aimed to overcome the reasons that
prevent real IPv6 prefix sets from being used for benchmarking IPv6 lookup algorithms.
V6Gene thus starts from a real prefix set of a small size and systematically enlarges this
set by new prefixes generated in a way that simulates the allocation of address prefixes in
the real IPv6 world. The generation of an output prefix set is performed in three phases
(Figure 3.13), the first two of which are briefly described in the following paragraphs.

During the initiation phase, V6Gene reads the input IPv6 prefix set along with several
parameters that either define target properties of the output prefix set (e.g., the number of
prefixes and distribution of their lengths) or constrain the process of its generation (e.g.,
required accuracy). It also examines the input prefix set in order to identify and remove
invalid or redundant prefixes. The finial step of this phase then comprises the construction
of a trie representing the pruned input prefix set in all subsequent phases of the V6Gene’s
run.

The generation phase is divided into two parallel branches, which implement different
algorithms introducing new IPv6 prefixes into the input prefix set. While the first branch
simulates the allocation of IPv6 prefixes from LIR (Local Internet Registry) prefixes that
already exist in the prefix set to their subscribers, the second branch allocates IPv6 prefixes
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Figure 3.13: Three phases of IPv6 prefix set generation in V6Gene.

from a limited number of newly introduced LIR prefixes. After combining the outputs of
both branches together, V6Gene removes redundant prefixes and verifies the properties of
the resulting prefix set. If the prefix set does not contain the specified number of IPv6
prefixes or its properties are not close enough to the given target properties, the second
branch is repeatedly run again until the output prefix set successfully pass the verification
step.

As the generation process is based on real IPv6 prefix sets in V6Gene, this tool can
generate synthetic prefix sets that are closer to real IPv6 prefix sets than the output of
Non-random Generator. However, the generator does not explicitly account for prefix
aggregations and splits known from real prefix sets. It delegates the responsibility for their
generation to the user, who can control their presence in the output prefix set by tuning the
prefix length distribution only. Moreover, although the authors highlighted the availability
of their tool, currently there is no publicly available V6Gene’s implementation.

3.4 Multi-Dimensional Rule Set Generators
Since multi-dimensional rules are utilized in more than just one packet classification use case
and real rule sets for these use cases are not publicly available, multi-dimensional packet
classification algorithms have to be benchmarked using various types of synthetic rule sets.
All synthetic rule set generators that are described in this section support the generation
of IPv4 5-tuples, which still represent the basic type of a multi-dimensional classification
rule. However, with an increasing IPv6 penetration the number of algorithms that perform
packet classification according to IPv6 5-tuples is rising. Even more is growing the number
of OpenFlow deployments, which translates into rapidly increasing utilization of algorithms
that implement packet classification based on more than 5 header fields. Therefore, some
of the presented multi-dimensional synthetic rule set generators also allow to generate sets
of IPv6 5-tuples or classification rules based on more than 5 header fields.
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3.4.1 ClassBench

ClassBench [63], which has been introduced by Taylor and Turner, is probably the most
often used multi-dimensional synthetic rule set generator. It is actually a toolset consisting
of three independent tools that together allow to produce realistic data sets for benchmark-
ing packet classification algorithms. The most important component of the toolset is the
Filter Set Generator that implements the generation of synthetic IPv4 5-tuples according
to an input seed (referred to as a parameter file in [63]) and a small set of high-level pa-
rameters. The remaining tools then implement the construction of the seed from a real rule
set (the Filter Set Analyzer) and the generation of a synthetic header trace, which is able
to comprehensively exercise a packet classification algorithm utilizing a given rule set (the
Trace Generator).

The Filter Set Generator’s input seed contains several statistical distributions that
jointly make possible to generate a condition for each header field belonging to an IPv4
5-tuple. The first group of these distributions is related to the transport layer protocol and
source/destination port fields (i.e., the specification of communicating applications). While
the protocol field is directly represented by the distribution of rules over unique protocol
values, representation is not so straightforward in case of source/destination port fields
because ClassBench encodes their value using the following five classes.

∙ WC — wildcard

∙ HI — user port range [1024 : 65535],

∙ LO — well-known system port range [0 : 1023]

∙ AR — arbitrary range

∙ EM — exact match

Therefore, the seed contains the distribution of rules over 25 source-destination PPCs (Port
Pair Classes), separately for each protocol value. In addition, for both source and destina-
tion ports the seed also contains distributions of rules specifying AR and EM over unique
arbitrary ranges and exact port values, respectively.

The second group of statistical distributions stored in the seed characterizes source/des-
tination address prefixes (i.e., the specification of communicating subnets). The majority of
these distributions relates to the properties of a trie representing either source or destina-
tion address prefix set. Probably the simplest one of them is the prefix length distribution,
which is defined for source prefixes and whole prefix pairs in the seed (note that the desti-
nation prefix length is equal to the difference of the prefix pair length and the source prefix
length). Another trie-based distribution included in the seed—the branching probability
distribution—is defined for non-leaf nodes and it expresses the probability that a node at
a given trie level has either one child or two children. Last but not least, the seed contains
the average skew distribution at individual trie levels. Skew of a two-children node is com-
puted using Equation 3.1, where the 𝑤𝑒𝑖𝑔ℎ𝑡() function returns the number of prefixes in a
specified subtree and 𝑙𝑖𝑔ℎ𝑡𝑒𝑟/ℎ𝑒𝑎𝑣𝑖𝑒𝑟 represent subtrees of the node with a lower/higher
number of prefixes, respectively.

𝑠𝑘𝑒𝑤 = 1− 𝑤𝑒𝑖𝑔ℎ𝑡(𝑙𝑖𝑔ℎ𝑡𝑒𝑟)

𝑤𝑒𝑖𝑔ℎ𝑡(ℎ𝑒𝑎𝑣𝑖𝑒𝑟)
(3.1)
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Separately for the source and destination trie, the seed also defines the prefix nesting
threshold, which specifies the maximum number of prefix nodes that may appear on an
arbitrary path from the root node to the leaves. The only distribution common for both
source and destination address prefixes describes their correlation in the prefix pair, or more
precisely probability that they continue to be the same for a given prefix length.

Figure 3.14 illustrates the presented trie-based distributions on a trie that encodes a set
of ten prefixes having length between 1 and 5 bits. To ease an understanding of the example,
leaf nodes are shown in black, while one-child and two-children nodes are highlighted by
red and green, respectively. In addition, next to two-children nodes there is also the value
of their skew shown in blue. Apart from the prefix nesting threshold, which is 2 in this
example, all the distributions are defined over individual trie levels. For instance, the last
level encodes 2/10 of all prefixes and 3/4 of non-leaf nodes at the third level have only one
child whereas 1/4 of them has two children (note that the sum of branching probability
distributions for one-child and two-children nodes is always 1, if they are defined). In a
similar manner, the average skew at the second level is (1/2 + 0 + 1/2)/3 = 1/3.

Figure 3.14: An example prefix set encoded using a trie along with the value of the prefix
nesting threshold and the values of trie-based distributions for individual levels.

In general, the Filter Set Generator implements the generation of individual classifi-
cation rule’s conditions as sampling corresponding distributions stored in the input seed.
However, because of interdependence of some distributions (e.g., the PPC distribution de-
pends on the protocol value and the prefix pair length distribution depends on the selected
PPC), sampling has to be done in a specific order. Moreover, generating some conditions
of a classification rule is not as straightforward as sampling a distribution, which is true
especially for source/destination address prefixes. Their length has to be determined from
a combination of the prefix pair length and source prefix length distributions and also to
obtain their value it is necessary to first construct tries complying with the prefix nesting
threshold and all trie-based distributions. With respect to rule set generation it is also
important to note that for the sake of simplicity the Filter Set Generator does not remove
redundant rules on the fly, but postpones their removing to the final step of the generation
process. Therefore, the output rule set might contain less than the specified number of
classification rules.

A great popularity of ClassBench has been caused not only by the Filter Set Generator’s
ability to produce realistic IPv4 5-tuples for benchmarking packet classification algorithms,
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but also by providing a set of twelve input seeds extracted from real classification rule
sets of various origin (access control lists, firewalls, IP chains). Although these seeds were
extracted from rule sets that are not publicly available, they can be freely distributed with
no concerns about security and confidentiality because their representation of an original
rule set is based on statistical distributions, thus they are anonymous. Therefore, since the
time of ClassBench’s publication, the seeds provided with it have become de facto standard
inputs for the generation of synthetic data for benchmarking various packet classification
algorithms. However, ClassBench is no longer sufficient for current needs of the research
community as it focuses on IPv4 5-tuples only and does not support the generation of
IPv6 5-tuples or classification rules comprising a condition for more than 5 header fields.
These drawbacks have been addressed by more recent multi-dimensional synthetic rule set
generators ClassBenchv6 and FRuG, which are introduced in the following sections.

3.4.2 ClassBenchv6

In order to allow the generation of synthetic classification rules with IPv6 address prefixes,
Sun et al. have proposed ClassBenchv6 [59], a reshaped version of ClassBench for the
IPv6 world. Similarly to original ClassBench, this tool generates IPv6 5-tuples according
to statistical distributions stored in an input seed. However, at the time of designing
ClassBenchv6, the authors of this tool did not consider IPv6 deployment to had already
passed its initiation phase and they expected that IPv6 prefix set-related distributions will
undergo non-negligible changes in the future. Therefore, rather than using a seed extracted
from a real set of IPv6 5-tuples, ClassBenchv6 builds on similarities between IPv4 and IPv6
environments (similar allocation policies, retained Internet topology and classification use
cases, continuing evolution of the Internet) and predicts an IPv6 seed from an IPv4 seed
corresponding to a real rule set.

To predict the trie-based distributions characterizing an IPv6 prefix set, ClassBenchv6
utilizes two piecewise functions: (1) 𝑀𝑙 for the prefix length distribution and (2) 𝑀𝑏𝑠 for
distributions related to a prefix value (the branching probability and average skew distri-
butions). Both these functions have been designed according to correspondence between
IPv4 and IPv6 address allocation policies and they essentially define the transformation of
an IPv4 trie level to an equivalent IPv6 trie level. This means that level 𝑖 of the IPv4 pre-
fix length distribution is transformed to level 𝑀𝑙(𝑖) of the IPv6 prefix length distribution
and the same transformation, but using the 𝑀𝑏𝑠 function, applies also to the branching
probability and average skew distributions.

Since ClassBenchv6 generates IPv6 5-tuples in a similar way as the Non-random Gen-
erator produces IPv6 prefixes, it also has similar benefits and drawbacks. The prediction of
IPv6 trie-based distributions based on corresponding IPv4 distributions was useful during
the initiation phase of IPv6 deployment. Nevertheless, it is no longer valid. As shown by
Czyz et al. [23], the IPv6 protocol has already shifted into production mode, thus it is
desirable to extract IPv6 seeds from real rule sets.

3.4.3 FRuG

Even though both ClassBench and ClassBenchv6 theoretically allow to generate conditions
for selected header fields beyond IPv4/IPv6 5-tuple (e.g., IPv4 flags in ClassBench and IPv6
flow label in ClassBenchv6), the full support of rules with a condition for more than 5 header
fields was not available until Ganegedara, Jiang, and Prasanna had introduced FRuG [29].
This synthetic rule set generator allows the user to fully control the size and structure of
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generated rule sets and also to define specific distribution for each included header field.
As shown in Figure 3.15, it consists of three generation engines (IPv4 prefix generator,
MAC address generator, and FRuG engine), which are augmented by three analysis/parser
modules (IPv4 prefix analyzer, MAC address analyzer, and configuration file parser) that
analyze corresponding distributions in given input sets of IPv4 prefixes and MAC addresses
or parse user-defined instructions specified in parameter files. Such a modular structure
allows FRuG to not only generate rule sets with flexible structure, but also to separately
generate IPv4 prefix sets.

Figure 3.15: The high-level architecture of FRuG.

The user can control the rule set generation process of FRuG via parameter files of
three types. The highest level parameters are specified in a configuration file that defines
the structure of each generated class of rules (including the type of specification for all
supported header fields), its percentage of the whole rule set, and a corresponding class file.
Particular class files then specify distributions for header fields present in rules of this class.
The only exception is represented by IPv4 prefixes, which are defined in a separate IPv4
descriptor file using the prefix length percentage and the branching probability distribution
(i.e., a relative number of prefixes with a given bit set to 1) for each prefix length. Apart
from these parameter files, FRuG can also optionally utilize input sets of IPv4 prefixes
and/or MAC addresses and extract the distributions for corresponding header fields from
them.

Each of the FRuG’s generation engines is responsible for the generation of conditions
for a subset of supported header fields. IPv4 prefixes are generated in the IPv4 prefix
generator, which straightforwardly follows the prefix length percentage and the branching
probability distribution obtained either directly from the IPv4 descriptor file or indirectly
from the input IPv4 prefix set using the IPv4 prefix analyzer. It also allows to bias the
generated IPv4 prefixes by specifying their common prefix. In the course of generating
MAC addresses, the MAC address generator also utilizes distribution that is either defined
by the user in the class file or extracted from the input MAC address set by the MAC
address analyzer. However, this distribution refers to the vendor part of a MAC address
only, thus the device part is generated randomly. Conditions for the remaining header fields
are generated in the FRuG engine, which incrementally produces rules of particular classes
defined in the configuration file until the final rule set contains the specified number of
rules for each of the classes. During this step, the FRuG engine generates a condition for
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individual header fields sequentially in the order of their appearance in the configuration
file and with respect to their descriptors (wildcard, exact value, range, and not-for-print).
For the sake of completeness it is worth to note that all the generation engines remove
redundant conditions and rules on the fly.

FRuG gives the user a complete control over the size and structure of the generated rule
set, which makes it a powerful benchmark to assess various packet classification algorithms.
However, only MAC address and IP address fields can be set to follow corresponding dis-
tributions from an input set. Distributions for other header fields have to be manually
configured by the user, making this generator less attractive if a realistic set of synthetic
rules needs to be generated. Moreover, even though FRuG currently supports the gen-
eration of condition for 12 header fields utilized in OpenFlow 1.0.0, it neither explicitly
considers specifics of OpenFlow rule sets nor allows to easily specify correlation among
header fields of generated rules.
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Chapter 4

Addressing Performance of
Algorithms

As described in details in Section 2.4.1, packet classification algorithms targeting core net-
works are required to support growing transfer rates and an increasing number of rules as
well as bits involved in packet classification. Current classification algorithms have to be
able to classify an incoming packet according to tens or hundreds of bits into tens or hun-
dreds of thousands of classes and provide a new classification result every 6.72 ns. Therefore,
this chapter deals with improving the performance of classification algorithms in order to
meet the above mentioned requirements.

Since matching a condition specified as an exact value or wildcard is trivial, the greatest
improvement of classification algorithms’ performance can be achieved by optimizing either
prefix matching or range matching. Because prefix matching is utilized in IP lookup (i.e.,
probably the most common type of packet classification in core networks) and also in the
majority of multi-dimensional packet classification algorithms (e.g., trie-based algorithms,
combinatorial algorithms, or the tuple pruning algorithm), this thesis addresses the perfor-
mance of packet classification algorithms via improvements of prefix matching. Focus on
matching prefixes is also beneficial because a prefix is a typical representation for conditions
on IP addresses, which are the widest dimension in current classification rules. Moreover, as
noted in Section 2.4.1, supporting IPv6 may be more expensive than supporting additional
header fields with respect to the number of bits involved in packet classification.

The performance of current CPUs prohibits software implementation of packet classi-
fication algorithms. Even for relatively simple IP lookup, software implementation is not
able to achieve 148.81 MLPS, which is the minimum required performance in 100 Gbps net-
works. Thus, packet classification algorithms have to be implemented in hardware. Because
of availability, flexibility, and configurability, this thesis targets implementation in FPGAs.
The inherent parallelism of this technology also seamlessly supports pipelined processing,
which is a necessity for a high-performance implementation of classification algorithms.

The bottleneck of pipelined implementation lies in accessing a memory that stores a data
structure encoding a set of classification rules. Since each of 𝑛 pipeline stages may access
the memory in any clock cycle, the whole pipeline may generate 𝑛 parallel memory accesses
per clock cycle in the worst case. The requirement on supporting multiple parallel memory
accesses makes the use of an external memory, which could provide high capacity, practically
impossible. However, this requirement can be easily fulfilled by using a distributed on-
chip memory that is available on FPGA chips. Each pipeline stage may have allocated
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one or more on-chip memory blocks, which can be accessed by that pipeline stage only.
Nevertheless, because of a limited number of on-chip memory blocks, the rule set has to be
represented using a memory-efficient data structure.

In the previous paragraphs it has been argued that the performance of packet clas-
sification algorithms may be addressed via pipelined implementation of prefix matching
that targets an FPGA and utilizes its distributed on-chip memory. Although the Trie [27],
TBM [26], and MSLA [36] prefix matching algorithms can be implemented in an FPGA,
their prefix set representations do not fit into a memory available on FPGA chips. On the
other hand, the SST [54] algorithm represents a prefix set in a compact way that is suit-
able for an on-chip memory with a limited capacity, but there is no hardware architecture
implementing this algorithm. To meet both requirements at the same time, it is possible to
implement prefix matching using the PPLA [39] algorithm. Nevertheless, its initial prefix
set partitioning introduces very high preprocessing overhead.

To overcome the drawbacks of existing prefix matching algorithms, this chapter presents
a memory-efficient trie-based representation of a prefix set together with a pipelined hard-
ware architecture for prefix matching based on this represenation in an FPGA. The prefix
set representation was designed according to the results of the analysis of available prefix
sets (real IPv4 and IPv6, generated IPv6) and it allows to store the whole data structure
representing a prefix set into memory blocks available on current FPGAs. Subsets of these
memory blocks are allocated to particular pipeline stages of the architecture, which allows
the pipeline stages to access their memory blocks independently of each other. Thus, the
architecture achieves matching performance required in 100 Gbps networks.

Both the representation and architecture were published in [43, 42] and the rest of this
chapter, which is organized as follows, is based on these papers. Section 4.1 describes the
performed analysis of real prefix sets, the results of which were used when designing the
proposed prefix set representation introduced in Section 4.2. Next, the hardware architec-
ture for prefix matching based on the proposed representation is described in Section 4.3.
Section 4.4 presents the results of experimental evaluation of the proposed representation
as well as the hardware architecture. The chapter is summarized in Section 4.5.

4.1 Analysis of Real Prefix Sets
The goal of this chapter is to develop a prefix matching algorithm based on a trie, i.e.,
the most common prefix set representation in algorithmic approaches to prefix matching,
which is also suitable for pipelined processing. Specifically, the algorithm should utilize
a multibit trie with memory-efficient encoding of its nodes that would allow to store a
prefix set representation in on-chip memory blocks of FPGA chips. Since the algorithm is
expected to be used in packet classification techniques targeting core networks, its prefix
set representation can leverage inherent properties of prefix sets from this environment.
Therefore, this section uses prefix sets extracted from forwarding tables of core routers and
analyzes their representation by a trie as well as by multibit tries utilized in TBM and SST
algorithms.

Basic information about prefix sets used in the course of the analysis are summarized
in Table 4.1. In order to obtain results relevant for many different situations, real sets of
IPv4 and IPv6 prefixes originate from various sources and they were acquired on different
days. Moreover, to model the situation in future core networks, IPv6 prefix sets generated
by [66] are also included. The analysis of prefix set representation is performed using the
Netbench tool [48].
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Prefix Set Prefixes Source Date
IPv4

rrc00 332 118 http://data.ris.ripe.net/ 2010-06-03
IPv4-space 220 779 http://bgp.potaroo.net/ 2011-12-21
route-views 442 748 http://archive.routeviews.org/ 2012-09-20

IPv6
AS1221 10 518 http://bgp.potaroo.net/ 2012-09-21
AS6447 10 814 http://bgp.potaroo.net/ 2012-09-21

Generated IPv6
rrc00_ipv6 319 998 generated using [66] from rrc00
IPv4-space_ipv6 150 157 generated using [66] from IPv4-space
route-views_ipv6 439 880 generated using [66] from route-views

Table 4.1: Basic characteristics of used prefix sets.

The first part of the analysis was focused on memory requirements of a trie and multibit
tries utilized in TBM and SST algorithms when representing used prefix sets. Its results
are shown in Table 4.2. In this part of the analysis, the value of parameters 𝑆𝐿 and 𝐾 was
chosen with respect to the minimum memory requirements. The changing value of TBM’s
parameter 𝑆𝐿 reflects varying density of the underlying trie. Indeed, denser tries (IPv4
prefix sets) are more effectively represented by greater TBM nodes, while for sparser tries
(IPv6 prefix sets), smaller TBM nodes introduce lower memory overhead. On the other
hand, SST’s parameter 𝐾 was set to the same value for all prefix sets, which corresponds
with the adaptivity of SST nodes. The chosen value of this parameter (𝐾 = 32) allows
the SST nodes to represent approximately the same number of underlying trie nodes as
TBM nodes for parameter 𝑆𝐿 = 5. The missing results of SST’s memory requirements
for generated IPv6 prefix sets could not be provided because of very high computational
complexity of the SST algorithm.

The results of the performed analysis confirm expected properties of the examined prefix
set representations. As Table 4.2 shows, a multibit trie of the SST algorithm has the lowest

Prefix Set Prefixes Memory Requirements [kb]
IPv4 Trie TBM (𝑆𝐿 = 5) SST (𝐾 = 32)

rrc00 332 118 47 639.7 9 689.4 6 930.4
IPv4-space 220 779 24 252.4 5 702.1 4 081.0
route-views 442 748 62 650.5 11 942.1 8 775.0

IPv6 Trie TBM (𝑆𝐿 = 3) SST (𝐾 = 32)
AS1221 10 518 3 518.3 1 076.9 588.5
AS6447 10 814 3 673.8 1 125.1 617.1

Generated IPv6 Trie TBM (𝑆𝐿 = 4) SST
rrc00_ipv6 319 998 307 641.5 87 257.1 N/A
IPv4-space_ipv6 150 157 153 877.3 43 958.7 N/A
route-views_ipv6 439 880 418 663.7 118 889.4 N/A

Table 4.2: Memory requirements of a trie and multibit tries utilized in TBM and SST
algorithms when representing prefix sets from Table 4.1.
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memory requirements, while a simple trie is the least effective representation. Such results
would propose the SST algorithm to be a candidate for further optimizations. However,
SST suffers from high computational complexity and there is no hardware architecture
implementing this algorithm. Another candidate for further optimizations would be the
TBM algorithm, which can be easily implemented in hardware. Nevertheless, its memory
requirements are higher than those of SST. Thus, in order to develop a prefix matching
algorithm with a memory-efficient representation of a prefix set that would be amenable
for processing in hardware, it will be necessary to combine positive aspects of both TBM
and SST. To support this, the further analysis focuses on the structural characteristics of
a multibit trie utilized in TBM in order to identify possibilities for its optimizations with
respect to required memory.

The analysis of TBM’s prefix set representation was performed by classifying TBM nodes
according to the number of child nodes and the number of prefixes represented by a node.
The results of such classification for selected IPv4, IPv6 and generated IPv6 prefix sets are
shown in Tables 4.3, 4.4, and 4.5, respectively. Despite all tables show the classification of
TBM nodes with 𝑆𝐿 = 3, similar results were achieved also for other settings of parameter
𝑆𝐿.

The results of TBM nodes’ classification for all selected prefix sets show two interesting
groups of nodes that introduce high memory overhead when encoded in the standard TBM
format. The first group comprises leaf nodes (i.e., the leftmost column in Tables 4.3, 4.4, and
4.5), which do not utilize child-related information (the external bitmap and child pointer)

Child Nodes
Prefixes 0 1 2 3 4 5 6 7 8

0 0 26 829 11 859 6 876 5 422 3 679 3 547 4 297 14 138
1 278 804 6 220 4 244 2 840 4 463 1 683 2 416 876 2 051
2 21 005 3 270 4 198 1 599 2 688 724 792 393 842
3 5 716 1 093 2 000 596 806 293 286 160 306
4 3 786 447 543 220 322 106 129 102 267
5 679 63 55 22 48 20 25 25 78
6 298 30 22 9 23 3 9 6 64
7 70 6 3 3 8 4 3 7 46

Table 4.3: Classification of nodes comprising the TBM’s representation of the route-views
prefix set (434 552 Nodes, 𝑆𝐿 = 3).

Child Nodes
Prefixes 0 1 2 3 4 5 6 7 8

0 0 11 303 1 666 812 538 184 145 131 249
1 8 965 547 142 19 17 3 2 1 1
2 193 21 14 4 3 0 1 0 0
3 50 3 3 3 1 0 1 0 0
4 29 3 1 1 3 1 1 0 0
5 0 1 0 1 0 0 0 0 0

Table 4.4: Classification of nodes comprising the TBM’s representation of the AS1221 prefix
set (25 063 Nodes, 𝑆𝐿 = 3).
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Child Nodes
Prefixes 0 1 2 3 4 5 6 7 8

0 0 1 597 683 143 258 39 958 21 056 9 332 5 637 3 958 4 462
1 406 100 3 503 746 263 108 45 15 10 6
2 2 623 171 118 40 39 21 8 6 1
3 475 37 24 5 7 3 1 3 1
4 155 11 7 3 1 1 0 0 0
5 44 1 4 3 2 1 0 0 0
6 12 0 1 0 0 0 0 0 0
7 2 0 0 0 0 0 0 0 0

Table 4.5: Classification of nodes comprising the TBM’s representation of the
route-views_ipv6 prefix set (2 239 971 Nodes, 𝑆𝐿 = 3).

available in the data structure encoding a TBM node. On the other hand, the second group
comprises internal nodes without prefixes (i.e., the uppermost row in Tables 4.3, 4.4, and
4.5), which do not utilize prefix-related information (the internal bitmap and prefix pointer)
available in the data structure encoding a TBM node. Because these groups contain the
majority of TBM nodes encoding a given prefix set, even small optimization of these nodes’
encoding may significantly reduce overall memory requirements of the TBM algorithm.

4.2 Proposed Prefix Set Representation
The analysis performed in the previous section has shown that the multibit trie represen-
tation of a prefix set in the TBM algorithm comprises, among other things, two groups of
nodes, which do not fully utilize the TBM node’s data structure. Since the representation
of a prefix set in TBM consists mainly of nodes belonging to either of these groups, memory
requirements of this algorithm may be substantially reduced by even a bit more efficient en-
coding of these nodes. To this end, this section proposes a new multibit trie representation
of a prefix set that utilizes thirteen different types of node.

The nodes of the proposed prefix set representation can be divided into two groups:
(1) nine newly proposed nodes and (2) four variants of a standard TBM node. The newly
proposed nodes are illustrated in Figure 4.1, which is organized as a grid of three columns
and three rows. The nodes of each column and row share the same property, which is also
reflected in their name. Left, middle, and right columns contain nodes that can encode a
subtree of an underlying trie consisting of one branch (1B), two branches (2B), and three
branches (3B), respectively. In addition, each row contains nodes designed for encoding a
specific situation with respect to prefix and leaf nodes of the underlying trie. The nodes
in the top row can only encode internal nodes without prefixes. In the middle row, there
are nodes that can also encode internal prefix nodes (P), but such prefix nodes are only
allowed at the lowest level of the underlying subtree and they may not occur in all branches.
Finally, the bottom row contains nodes that can only encode subtrees in which each branch
is terminated by a leaf node (-L). Utilized variants of a TBM node ensure completeness and
efficiency of the representation in less common situations. They include a standard node
for 𝑆𝐿 = 3 (TBM3) and a set of leaf nodes for 𝑆𝐿 = 3, 4, 5 (TBM3-L, TBM4-L, TBM5-L),
which do not contain the external bitmap and child pointer.

51



Figure 4.1: Newly proposed nodes.

In order to make a hardware implementation of prefix matching based on the proposed
prefix set representation feasible, it is necessary to align the size of each node’s represen-
tation to some boundary. A smaller boundary implies smaller memory overhead but also
a higher number of different node sizes, hence higher utilization of resources required for
processing such data structures. Therefore, alignment on both 8-bit and 16-bit boundary
is considered further in this chapter. These two options should allow to find a reasonable
compromise between memory overhead and resource utilization of the proposed prefix set
representation. The properties of both options are evaluated in Section 4.4.

The size of each newly proposed node mainly depends on its maximum allowed branch
length, which is the same for all branches of a node. However, as shown in Table 4.6, the
value of this parameter differs among nodes as well as between 8-bit and 16-bit alignment
of the same node. Apart from the branch length, the size of newly proposed nodes is also
influenced by the presence of child and prefix pointers, which is already encoded in the
node’s name. The child pointer is utilized in every node without the -L suffix in its name
and the prefix pointer is present in every node, whose name contains P. When present, the
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child pointer is encoded on 23 and 22 bits in case of 8-bit and 16-bit alignment, respectively.
In contrast to that, the prefix pointer always uses 19 bits. Such values allow to address all
child nodes and prefixes when representing any prefix set from Table 4.1. The size of TBM
node’s variants is determined by the number of bits in the external and internal bitmaps as
well as by the presence of the child pointer, which is utilized in TBM3 only (note that all
TBM-based nodes contain the prefix pointer). Both child and prefix pointers used in the
variants of a TBM node are of the same size as in newly proposed nodes.

Size Aligned to 8 bits Size Aligned to 16 bits
Branch Unaligned Aligned Branch Unaligned Aligned

Node Type Length Size Size Length Size Size
[bits] [bits] [bits] [bits]

1B 24 56 56 17 48 48
1BP 19 72 72 13 64 64
1BP-L 20 48 48 20 48 48
2B 16 72 72 14 64 64
2BP 10 80 80 11 80 80
2BP-L 12 55 56 15 61 64
3B 11 78 80 12 78 80
3BP 5 80 80 6 80 80
3BP-L 7 53 56 9 62 64
TBM3 3 75 80 3 67 80
TBM3-L 3 30 32 3 30 48
TBM4-L 4 38 40 4 38 48
TBM5-L 5 54 56 5 54 64

Table 4.6: Key characteristics of nodes from the proposed prefix set representation when
aligned on the 8-bit and 16-bit boundary.

Along with the maximum allowed branch length for each of thirteen nodes comprising
the proposed prefix set representation, Table 4.6 also contains unaligned as well as aligned
size of each node for both 8-bit and 16-bit alignment. The difference of these two values
represents memory overhead introduced by the alignment. The greatest overhead can be
observed for TBM-based nodes, especially when aligned on the 16-bit boundary. On the
other hand, newly proposed nodes introduce memory overhead only rarely regardless their
alignment. This complies with what was expected because the maximum allowed branch
length of newly proposed nodes was selected with respect to minimum memory overhead,
while the size of TBM nodes can be tuned by the value of parameter 𝑆𝐿 only.

The mapping of proposed nodes onto a trie is done according to the algorithm in Fig-
ure 4.2, which starts from the root node and continues in breadth-first order towards the
leaves of the trie. At each position, the algorithm performs a trial mapping of all proposed
types of node and determines the best type for the current position using Equation 4.1,
where 𝑝 is the number of covered prefix nodes, 𝑛 is the number of all covered trie nodes, and
𝑠𝑖𝑧𝑒 is the size of a selected node type. Except for standard queue operations Enqueue
and Dequeue, the algorithm also uses the following auxiliary functions.

∙ Map_cost — returns the cost of mapping a given type of node at the specified
position in the trie according to Equation 4.1.
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∙ Map — actually performs the mapping of the selected type of node at the specified
position in the trie (i.e., it removes a subtree of the trie and replaces it with the
selected node).

∙ Children — returns a list of child nodes of the specified node.

Input: pointer 𝑟𝑜𝑜𝑡 to the root node of the trie
Output: pointer 𝑟𝑜𝑜𝑡 to the root node of the tree mapped onto the trie

1: 𝑄← ∅
2: if 𝑟𝑜𝑜𝑡 ̸= 𝑁𝑈𝐿𝐿 then
3: Enqueue(𝑄, 𝑟𝑜𝑜𝑡)
4: end if
5: while 𝑄 ̸= ∅ do
6: 𝑠𝑢𝑏𝑡𝑟𝑖𝑒← Dequeue(𝑄)
7: 𝑚𝑎𝑥_𝑐𝑜𝑠𝑡← 0
8: 𝑏𝑒𝑠𝑡_𝑡𝑦𝑝𝑒← 𝑁𝑈𝐿𝐿
9: for each 𝑡𝑦𝑝𝑒 ∈ 𝑛𝑜𝑑𝑒_𝑡𝑦𝑝𝑒𝑠 do

10: 𝑐𝑜𝑠𝑡← Map_cost(𝑠𝑢𝑏𝑡𝑟𝑖𝑒, 𝑡𝑦𝑝𝑒)
11: if 𝑐𝑜𝑠𝑡 > 𝑚𝑎𝑥_𝑐𝑜𝑠𝑡 then
12: 𝑚𝑎𝑥_𝑐𝑜𝑠𝑡← 𝑐𝑜𝑠𝑡
13: 𝑏𝑒𝑠𝑡_𝑡𝑦𝑝𝑒← 𝑡𝑦𝑝𝑒
14: end if
15: end for
16: Map(𝑠𝑢𝑏𝑡𝑟𝑖𝑒, 𝑏𝑒𝑠𝑡_𝑡𝑦𝑝𝑒)
17: for each 𝑐ℎ𝑖𝑙𝑑 ∈ Children(𝑠𝑢𝑏𝑡𝑟𝑖𝑒) do
18: Enqueue(𝑄, 𝑐ℎ𝑖𝑙𝑑)
19: end for
20: end while

Figure 4.2: Pseudocode of an algorithm that maps proposed nodes onto a trie.

𝑐𝑜𝑠𝑡 =

⎧⎨⎩
𝑝

𝑠𝑖𝑧𝑒 if 𝑝 > 0

𝑛
𝑠𝑖𝑧𝑒 otherwise

(4.1)

Although the algorithm from Figure 4.2 does not guarantee a globally optimal mapping
of proposed nodes onto the trie, it represents a working solution that is locally optimal and
has acceptable time complexity.

4.3 Proposed Hardware Architecture
In order to achieve performance required in 100 Gbps networks, prefix matching based on
the proposed representation has to be implemented in hardware using a processing pipeline,
in which each processing element (PE) performs one step of the matching algorithm. Since
the prefix set representation proposed in the previous section can be classified as a multibit
trie, the result of prefix matching is available after processing at most 𝑛 nodes, where 𝑛
is the height of a tree representing the prefix set; therefore, the pipeline has to consist of
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𝑛 PEs. Because each of these PEs accesses a memory storing a prefix set representation
independently, the memory has to be able to support 𝑛 parallel memory accesses per clock
cycle. To satisfy this requirement, it is convenient to implement the processing pipeline in
an FPGA chip, which allows to allocate one or more independent on-chip memory blocks
to each PE.

A proposed hardware architecture for prefix matching based on the prefix set represen-
tation introduced in the previous section is shown in Figure 4.3. This architecture consists
of two processing pipelines with uniform PEs and dual-port memories shared between PEs
from corresponding stages. By utilizing the dual-port nature of memory blocks available
in an FPGA, the architecture can achieve double the performance of a single-pipeline ar-
chitecture without the need to compromise on memory accesses. A memory allocated to
each pipeline stage comprises two parallel parts, each of which has data width of 80 bits
(i.e., the maximum aligned size of a node, as shown in Table 4.6). While the first part of

Figure 4.3: The pipelined hardware architecture that implements prefix matching based on
the prefix set representation from Section 4.2. The figure also shows a high-level architecture
of a PE utilized in employed processing pipelines.
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the memory stores data words with an even address, the second part is used for storing
data words with an odd address. Such internal organization of the memory makes possible
to read the whole node in one clock cycle even if its representation is not aligned on the
beginning of a data word, which may cause storing the node in two consecutive data words.

Figure 4.3 also shows a high-level architecture of a PE that implements one step of the
prefix matching algorithm. The processing of a prefix set representation’s node in the PE
follows the fetch-decode-execute paradigm, which is known from processing instructions in a
CPU. First of all, the PE fetches from the memory the representation of the node, which is
subsequently decoded and the obtained values are sent in parallel to the execute submodule.
This submodule actually executes one step of prefix matching (i.e., it searches for matching
prefixes and determines the address of the next node) and sets the PE’s outputs accordingly.

Because the execute submodule is the most complex part of the PE, Figure 4.4 illustrates
its internal structure. The majority of processing within this submodule is performed in
branch A proc, branch B proc, branch C proc, and TBM node proc blocks. The first three
of them are designed for the processing of corresponding branches in newly proposed types
of node (recall that branches are marked by letters A, B, and C in Figure 4.1), while the
last one is utilized when one of the variants of a standard TBM node is processed. Since
the processing of different branches and node types is done in parallel, the select branch
and select result blocks are used to choose correct values for the PE outputs.

Figure 4.4: An internal structure of the PE’s execute submodule.

Combinatorial logic of the fetch and execute submodules of the PE is relatively complex,
which limits the maximum frequency they can safely operate on. Therefore, in order to
achieve desired matching performance, each of them contains two sets of intra-stage reg-
isters. In total, each PE contains four sets of intra-stage registers, which means that the
latency of processing a node within the PE is five clock cycles.

In Section 4.2, there are described two variants of node alignment in a memory—on
the 8-bit or 16-bit boundary. Both of these variants can be processed using a PE having
conceptually the same architecture with only some minor changes in the fetch, decode, and
execute submodules. Different node alignment has the greatest influence on data reorder
logic in the fetch submodule. It also has to be reflected in the decode submodule by
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different interconnection of decoding logic. Relatively the smallest changes have to be done
in the execute submodule, where it is sufficient to change data width of some internal
interconnections.

4.4 Experimental Evaluation
This section evaluates the prefix set representation proposed in Section 4.2 and the pipelined
hardware architecture implementing prefix matching based on the representation, which was
designed in Section 4.3. The mapping of the proposed representation’s nodes on a trie has
been implemented—according to the pseudocode available in Figure 4.2—in the Netbench
tool [48]. Thus, it is possible to conduct similar experiments as those performed during
the analysis of the prefix set representations utilized in TBM and SST algorithms. On the
other hand, the evaluation of the designed architecture is allowed by its implementation
on a Xilinx Virtex-6 XC6VSX475T FPGA [11], which has been done using Xilinx ISE
14.3. (Since newer FPGA chip series from Xilinx—such as 7 Series [15], UltraScale, and
UltraScale+ [17]—use basically the same set of primitives, but manufactured under more
advanced process, the evaluation of the architecture on a newer FPGA chip would probably
yield the same results with respect to the number of utilized resources and better results with
respect to the maximum frequency.) The prefix set representation as well as the hardware
architecture are evaluated for both 8-bit and 16-bit alignment of prefix set representation’s
nodes.

First of all, memory requirements of the proposed prefix set representation were assessed
on IPv4 and IPv6 prefix sets from Table 4.1. The results of the assessment for both
variants of nodes’ alignment in memory are presented in Table 4.7. As expected, memory
requirements are always lower for 8-bit alignment, but a significant difference between 8-bit
and 16-bit alignment can be observed only in case of IPv4 prefix sets. This can be explained
by a different density of tries representing prefix sets, which is higher for IPv4 than for IPv6
prefix sets. Therefore, IPv4 tries are mainly covered by variants of a TBM node (which
introduce the highest memory overhead when aligned on the 16-bit boundary), while tries
representing IPv6 prefix sets are mainly covered by newly proposed nodes (which introduce
almost the same memory overhead for both 8-bit and 16-bit alignment). Table 4.7 also shows
the height of a tree that encodes particular prefix sets using the proposed representation.

The utilization of FPGA resources (both absolute and percentage) and the maximum
operating frequency after place & route of the proposed architecture on the target FPGA
chip are shown in Table 4.8. As can be seen, the main difference between the architectures
supporting 8-bit and 16-bit alignment of nodes lies in the number of utilized LUTs, where
lower numbers in case of the 16-bit architecture are mainly due to simpler reorder logic
in the fetch submodule of the PE. With respect to the number of utilized registers, both
variants of the architecture are practically the same. However, the 8-bit architecture slightly
overcomes the other variant in the maximum supported operating frequency.

Apart from resource utilization and the maximum operating frequency of a single PE,
Table 4.8 also shows these values for a complete processing pipeline and the whole proposed
architecture comprising two pipelines. Even though the length of each processing pipeline
(23 PEs) makes possible to perform prefix matching using the prefix set represented by the
highest tree (real IPv6 set AS6447, see Table 4.7), the whole architecture fits into the target
FPGA, regardless the alignment of prefix set representation’s nodes in memory. Moreover,
the resources utilized by both variants of the architecture are significantly lower than the
resources available in the target FPGA, which allows to govern the selection of preferred
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Memory [kb]
8-bit 16-bit Tree

Prefix Set Prefixes Alignment Alignment Height
IPv4

rrc00 332 118 6 330.8 7 287.6 12
IPv4-space 220 779 3 571.4 4 297.4 12
route-views 442 748 7 779.8 9 039.6 12

IPv6
AS1221 10 518 475.8 489.0 18
AS6447 10 814 493.8 506.6 23

Generated IPv6
rrc00_ipv6 319 998 21 264.3 21 373.2 21
IPv4-space_ipv6 150 157 10 412.2 10 421.4 18
route-views_ipv6 439 880 29 039.5 29 207.4 20

Table 4.7: Memory requirements and tree height of the proposed representation for prefix
sets from Table 4.1.

nodes’ alignment mainly by their memory requirements, whose optimization is the main
objective in this chapter. Therefore, the representation of a prefix set utilizing nodes aligned
on the 8-bit boundary is preferred in further evaluations.

The selected alignment of nodes in memory does not only lead to lower memory require-
ments, but it can also be processed by a hardware architecture that operates on a little
higher frequency, which implies higher matching performance. Each processing pipeline is
able to provide one matching result per clock cycle, thus the total matching performance of
the whole architecture is almost 255 MLPS, translating into throughput of 170 Gbps for the
shortest Ethernet frames. Operating frequency and the number of pipeline stages also to-
gether determine the overall latency of the proposed architecture. Because each PE consists
of five pipeline stages, the whole pipeline contains 5 · 23 = 115 stages. Since processing in
one stage takes approximately 7.86 ns, the overall latency of processing in the full pipeline
is 903.90 ns. Overall latency also dictates the size of a buffer for packets that wait for the
result of prefix matching in the proposed architecture. To support throughput of 170 Gbps,
the capacity of the packet buffer has to be at least 18.75 kB. Nevertheless, this buffer can be
implemented in an external memory in order to save precious memory resources available
on an FPGA chip.

The comparison of the proposed prefix set representation with the TBM and SST al-
gorithms in terms of memory requirements is provided in Table 4.9 that shows memory
required for the proposed representation and the percentage of memory it saves when com-
pared to TBM and SST. The proposed representation overcomes both TBM and SST, but
the amount of saved memory is higher for TBM (between 34.67 % and 76.31 %) than for
SST (between 8.65 % and 19.98 %), which was designed with the aim of minimizing memory
requirements. Moreover, it is shown that sparse prefix trees of IPv6 prefix sets allow to
save more memory because they are well suited for the utilization of memory-efficient newly
proposed nodes introduced in Figure 4.1. It is also clear that all prefix sets from Table 4.1
can be stored in an on-chip memory available on the target FPGA, when encoded using
the proposed representation.
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8-bit Alignment LUTs Registers Frequency
(% of All) (% of All) [MHz]

1 PE 3 647 1 825 127.162
(1.23 %) (0.31 %)

1 pipeline (23 PEs) 83 881 41 957 127.162
(28.19 %) (7.05 %)

2 pipelines (46 PEs) 167 762 83 950 127.162
(56.37 %) (14.11 %)

16-bit Alignment LUTs Registers Frequency
(% of All) (% of All) [MHz]

1 PE 3 194 1 817 123.183
(1.07 %) (0.31 %)

1 pipeline (23 PEs) 73 462 41 791 123.183
(24.69 %) (7.02 %)

2 pipelines (46 PEs) 146 924 83 582 123.183
(49.37 %) (14.04 %)

Table 4.8: Resource utilization and the maximum frequency of the proposed pipelined
hardware architecture after place & route on Xilinx Virtex-6 XC6VSX475T using Xilinx
ISE 14.3.

In order to compare the memory efficiency of the proposed prefix set representation
also with the PPLA algorithm, Table 4.10 provides a memory efficiency ratio (i.e., the
number of bytes required for storing one byte of a prefix) of the proposed representation
when encoding prefix sets from Table 4.1. In addition, the table also shows the value of
this parameter for TBM and SST in configurations that require the minimum memory for
representing particular prefix sets. According to [39], the average memory efficiency ratio
of PPLA on generated IPv6 prefix sets is 0.90 when prefixes are encoded using a set of
binary search trees. Therefore, the proposed representation is slightly worse than PPLA
on generated IPv6 prefix sets. However, it is significantly better on IPv4 prefix sets, for
which [39] reports the average memory efficiency ratio of 1.00. Additionally, both TBM and
SST, which were not taken into account in [39], achieve a better memory efficiency ratio
than PPLA on IPv4 prefix sets. The memory efficiency of the proposed representation on
real IPv6 prefix sets cannot be compared with PPLA, because PPLA was not evaluated on
this type of data.

Since both the proposed prefix set representation and TBM are based on a trie, in
which multiple prefixes share the same path through a prefix tree up to some level, they
should exhibit a better memory efficiency ratio on large prefix sets (e.g., generated IPv6)
then on small prefix sets (e.g., real IPv6). Nevertheless, according to Table 4.10, this is
not the case on real and generated IPv6 prefix sets used in the performed evaluation. The
most probable explanation of this unexpected situation is that the utilized Non-random
Generator [66] does not model the process of IPv6 address allocation correctly, as discussed
in Section 3.3.1. Although there are other IPv6 prefix set generators (e.g., V6Gene [67]),
the Non-random Generator was used in order to fairly compare the results of the performed
evaluation with results presented in [39].
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Prefix Set Prefixes Memory [kb] Saved Memory
IPv4 Proposed TBM (SL=5) SST (K=32)

rrc00 332 118 6 330.8 34.67 % 8.65 %
IPv4-space 220 779 3 571.4 37.37 % 12.49 %
route-views 442 748 7 779.8 34.85 % 11.34 %

IPv6 Proposed TBM (SL=3) SST (K=32)
AS1221 10 518 475.8 55.82 % 19.16 %
AS6447 10 814 493.8 56.11 % 19.98 %

Generated IPv6 Proposed TBM (SL=4) SST
rrc00_ipv6 319 998 21 264.3 75.63 % N/A
IPv4-space_ipv6 150 157 10 412.2 76.31 % N/A
route-views_ipv6 439 880 29 039.5 75.57 % N/A

Table 4.9: Memory requirements of the proposed prefix set representation and the percent-
age of memory it saves when compared to the TBM and SST algorithms on prefix sets from
Table 4.1.

Prefix Set Prefixes Memory Efficiency Ratio
IPv4 Proposed TBM (SL=5) SST (K=32)

rrc00 332 118 0.610 0.934 0.668
IPv4-space 220 779 0.518 0.826 0.592
route-views 442 748 0.562 0.863 0.634

IPv6 Proposed TBM (SL=3) SST (K=32)
AS1221 10 518 0.724 1.638 0.895
AS6447 10 814 0.731 1.665 0.913

Generated IPv6 Proposed TBM (SL=4) SST (K=32)
rrc00_ipv6 319 998 1.063 4.363 N/A
IPv4-space_ipv6 150 157 1.109 4.684 N/A
route-views_ipv6 439 880 1.056 4.324 N/A

Table 4.10: A memory efficiency ratio (bytes of memory/bytes of prefix) of the proposed
prefix set representation, TBM, and SST for prefix sets from Table 4.1.

4.5 Summary
This chapter addresses the performance of packet classification algorithms via improvements
of the prefix matching operation, which is utilized in the majority of packet classification
algorithms. To this end, it introduces a novel representation of a prefix set along with a
pipelined hardware architecture implementing prefix matching based on this representation
in an FPGA chip. In order to fit into a limited amount of on-chip memory blocks available
on an FPGA, the prefix set representation was designed with the primary aim to minimize
its memory requirements.

The introduced multibit trie representation of a prefix set was designed in accordance
with the results of analysis focused on the representation of various prefix sets using existing
multibit trie approaches. The analysis based on real IPv4/IPv6 prefix sets from forward-
ing tables of core routers and artificial IPv6 prefix sets generated using the Non-random
Generator [66] revealed that regardless the type of a prefix set, the majority of multibit
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trie nodes can be classified as either leaf nodes or internal non-prefix nodes. Therefore, the
proposed representation comprises thirteen different types of node—nine newly proposed
nodes illustrated in Figure 4.1 and four variants of a standard TBM node. While the newly
proposed nodes provide means for a highly memory-efficient representation of the most
common trie’s subtrees, the variants of a TBM node ensure the completeness and memory
efficiency of the representation also in less common situations.

According to the performed evaluation of memory efficiency, the proposed prefix set
representation is much more efficient than TBM and it also overcomes the SST algorithm.
Moreover, when compared with PPLA, the representation achieves significantly better mem-
ory efficiency on IPv4 prefix sets and only slightly worse results on generated IPv6 prefix
sets. However, most importantly, because of its memory efficiency the proposed represen-
tation allows to store all evaluated prefix sets in an on-chip memory available on the target
FPGA chip (Xilinx Virtex-6 XC6VSX475T).

The proposed representation of a prefix set is suitable for processing in hardware, which
is demonstrated by the pipelined hardware architecture introduced in Figure 4.3 that imple-
ments prefix matching based on this representation in the target FPGA. The architecture
consists of two processing pipelines, whose corresponding stages share a common mem-
ory comprising several dual-port on-chip memory blocks. The processing element of each
stage is able to process any of the thirteen proposed types of node, thus it can perform
a single step of prefix matching regardless the bit-length of an input value. As shown in
the performed evaluation, the whole architecture, which is able to perform prefix matching
using any of the considered prefix sets, easily fits into the target FPGA and its matching
performance is almost 255 MLPS, translating into throughput of 170 Gbps for the shortest
Ethernet frames.
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Chapter 5

Addressing Algorithms
Benchmarking

Because the requirements on the performance of packet classification algorithms are contin-
uously increasing, the development of classification algorithms that meet these requirements
is still an active process. To verify that newly developed algorithms fulfill given require-
ments, they have to be benchmarked using a set of classification rules. However, since many
packet classification algorithms leverage inherent properties of real classification rule sets to
improve their performance [60], benchmarking using an arbitrary set of classification rules
would not provide valid results. Therefore, to correctly benchmark a packet classification
algorithm, a real rule set has to be used. The problem of this requirement is that real rule
sets are not publicly available for the majority of packet classification use cases, mostly
because of security reasons.

The lack of publicly available rule sets for benchmarking has been mitigated by a number
of synthetic rule set generators [66, 67, 63, 59, 29] developed by the researchers. These tools
can generate artificial rule sets that have similar inherent properties as real sets and comprise
almost all types of classification rules considered in this thesis (see Table 2.1). Nevertheless,
FRuG [29]—the only tool that allows to generate rules specifying a condition for more than
five header fields—does not explicitly provide support for OpenFlow rules generation. In
addition, none of the tools provides the flexibility to generate all types of classification rules
on its own and even the generation of a single rule type is not always accurate. These issues
show that packet classification benchmarking is still an open problem and there is space for
improvements of synthetic rule set generators.

This chapter addresses the issues of packet classification benchmarking by introducing
ClassBench-ng, a new open source tool for the generation of synthetic IPv4, IPv6, and
OpenFlow 1.0.0 rule sets (i.e., all types of rules described in Table 2.1). Its generation
process is based on an input seed that specify statistical properties of all header fields, for
which the matching conditions are to be generated. Therefore, to make the ClassBench-ng
output rule set as close as possible to a real classification rule sets, it is important to ensure
that such a seed contains properties that precisely reflect the current trends. The chapter
thus presents also the analysis of real IPv4 and IPv6 prefix sets as well as OpenFlow 1.0.0
flow tables taken from an operational environment. Finally, to make the proposed tool
attractive in the long term and for a wide number of different use cases, ClassBench-ng
offers a mechanic to create input seeds from real rule sets. To further increase a potential
impact of this tool on the research community, its repository is aimed to be used as a place
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where researchers and operators can continuously upload new seeds that match a number of
different environments or use cases (e.g., datacenter, Internet Service Provider, and Internet
eXchange Point).

ClassBench-ng was published in [41], which represents a basis for the rest of this chapter
that is organized as follows. First of all, Section 5.1 introduces challenges that are con-
nected with synthetic rule set generation and discusses how they are addressed in existing
generators as well as in ClassBench-ng. Then, in order to understand statistical properties
of current classification rule sets, Section 5.2 provides an analysis of real IPv4, IPv6, and
OpenFlow data sets. Next, Section 5.3 describes ClassBench-ng, which was designed with
the results of the performed analysis in mind, while Section 5.4 is devoted to its experimen-
tal evaluation on IPv4/IPv6 prefixes and OpenFlow rules generation. Finally, the summary
of this chapter is provided in Section 5.5.

5.1 Challenges in Rule Set Generation
Since packet classification algorithms cannot be benchmarked using arbitrarily generated
classification rule sets, synthetic rule set generators have to utilize an input that controls
the process of output rule set’s generation. For instance in 1-dimensional generators, the
generation of an IPv6 prefix set is based on real sets of IPv4 or IPv6 prefixes, which
are available and can be easily transformed or extended to the output prefix set. On
the other hand, multi-dimensional generators utilize input seeds and parameter files that
specify statistical properties the output rule set should meet. While existing 1-dimensional
generators are sufficient for benchmarking prefix matching algorithms, multi-dimensional
generators suffer from several issues (e.g., none of them explicitly supports OpenFlow rules
nor allows to generate all types of classification rules) that limit their usability. Therefore,
this chapter addresses the issues of multi-dimensional generators.

The content of seeds utilized in existing multi-dimensional classification rule set gener-
ators is of various origin. In case of ClassBench [63] and ClassBenchv6 [59], a seed contains
statistical distributions extracted from a real rule set. In contrast to this, rule set gen-
eration in FRuG [29] is based on a parameter file with user-defined characteristics of a
target rule set. While the former solution results to be more accurate when an output as
close as possible to a real rule set is required, the latter is (potentially) more flexible in the
long term. Indeed, continuous innovation, a desirable property of the Internet, may change
the statistical properties of classification rule sets and make a tool obsolete, if the input
seeds are not updated accordingly. Because both accuracy and flexibility are important
properties of rule set generators, combining a generator that relies on statistical properties
specified in a seed together with an analyzer able to extract such properties from a real rule
set is the most sensible way to ensure the longevity of the toolkit.

To be usable in a rule set generator, a seed has to meet the following properties.

∙ Anonymity — retain all important characteristics of a real set without revealing
any confidential information.

∙ Completeness — be sufficient for the generation of a new synthetic set.

∙ Scalability — allow the generation of synthetic sets of various sizes.

The first property makes the redistribution of seeds that match a number of different
environments or use cases easier, while keeping the output rule set as close as possible to a
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real one. The remaining two properties ensure that the process of rule set generation may
end successfully, if sufficient time and memory are provided.

ClassBench is the only publicly available multi-dimensional rule set generator that uti-
lizes seeds extracted from real rule sets. In addition, these seeds meet all three above
mentioned properties, allowing for the generation of a given number of output rules that
match input distributions. The definition of output rule set’s properties using statistical
distributions enables the first property: the anonymity is guaranteed as no real classification
rules are stored in a seed, thus avoiding the use of sensitive information. The completeness
of the seed is proven by ClassBench itself, which has been actively used by the researchers
for over a decade. Finally, similarly to the first property, the scalability is enabled by the
definition of desired output rule set’s properties using statistical distributions. Clearly,
the more entries need to be generated, the easier they will meet the specified statistical
properties.

As ClassBench seeds meet all three required properties and their content is extracted
from real rule sets, they have the potential to be used also in ClassBench-ng, which pro-
poses a tight integration of rule set generation and analysis. However, the structure of
ClassBench seeds was designed ten years ago and it does not provide a space for defin-
ing statistical distributions that would cover the specific properties of IPv6 5-tuples and
OpenFlow rules. Therefore, in order to allow addressing these issues, the following sec-
tion presents an analysis of current real classification rule sets. Given Taylor and Turner
have shown a complete analysis of real IPv4-based classification rules in [63], the following
section provides a comparison of the same type of classification rules after ten years of
Internet’s evolution. Moreover, it also investigates changes in IPv6-based rule sets during
the last decade and the current properties of OpenFlow 1.0.0 flow tables taken from an
operational environment. The insights from this analysis will be used for designing the
structure of seeds utilized in ClassBench-ng and they will also help to properly design a
rule set analyzer able to extract statistical properties from real rule sets.

5.2 Analysis of Real Rule Sets
The analysis of IPv4, IPv6, and OpenFlow 1.0.0 rule sets taken from operational environ-
ments, which is presented in this section, represents the first step towards an accurate and
flexible toolkit that allows to extract statistical properties from real rule sets into a seed
and utilize this seed for the generation of synthetic rule sets. Data sets used in the anal-
ysis along with their main properties are summarized in Table 5.1. Both IPv4 and IPv6
prefix sets have been taken from core routers, while the used sets of 5-tuples originate from
ACLs (Access Control Lists) applied at a university network’s perimeter. The analysis of
OpenFlow rules is based on data sets from Open vSwitches [4] running in a datacenter
environment.

5.2.1 IP Prefixes

The most common data structure for the representation of an IP prefix set is a trie, i.e., a
binary prefix tree. As shown in Section 3.4.1, a trie is characterized by the following four
parameters in ClassBench seeds:

∙ prefix length distribution,

∙ branching probability distribution,
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Prefixes
Name or Rules Source Date

IPv4 Prefix Sets
eqix_2015 550 511 Route Views 2015-07-02
eqix_2005 164 455 2005-07-02
rrc00_2015 571 351 RIPE RIS 2015-07-02
rrc00_2005 168 525 2005-07-02

IPv6 Prefix Sets
eqix_2015 23 866

Route Views
2015-07-02

eqix_2013 13 444 2013-07-02
eqix_2005 658 2005-07-02
rrc00_2015 24 162

RIPE RIS
2015-07-02

rrc00_2013 14 374 2013-07-02
rrc00_2005 499 2005-07-02

ACL Rule Sets
uni_2010 96 ACLs from a university network 2010-08-30
uni_2015 122 2015-01-14

OpenFlow Rule Sets
of1 16 889

Open vSwitches in a datacenter

2015-05-29
of2 20 250 2015-05-29

of3
1 757 2015-06-18

to to
7 456 2015-07-14

Table 5.1: Real rule sets used in the analysis. OpenFlow set of3 exists in several instances,
one for each day in the given interval.

∙ average skew distribution, and

∙ prefix nesting threshold.

Since ClassBench seeds can potentially form a basis of seeds utilized in ClassBench-ng, the
same set of trie-related parameters was used also in the analysis of available IPv4 and IPv6
prefixes, the results of which are presented in this section.

IPv4

Figures 5.1 compare the same IPv4 prefix set (eqix) in ten years time. While the prefix
length distribution was almost the same between years 2005 and 2015 (Figure 5.1a), the
number of two-children nodes in the trie was increasing (Figure 5.1b) and the average skew
was decreasing (Figure 5.1c). The prefix nesting threshold, which is not shown in the
figures, remained unchanged between 2005 and 2015. The same results were also confirmed
in prefix set rrc00.

A growing number of two-children nodes and their smaller skew correlates with more
than 3-times higher number of prefixes after ten years, as shown in Table 5.1. Nevertheless,
the branching probability and average skew distributions of the prefix set from year 2015
follow similar trends as in 2005 and although the prefix set grew in size, the prefix length
distribution is the same. These results are aligned with the path towards the saturation of
the IPv4 address space [14].
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(a) Prefix length distribution.
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(b) Branching probability distribution (two-children nodes).
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(c) Average skew distribution.

Figure 5.1: A comparison of eqix IPv4 prefix sets from years 2005 and 2015.

IPv6

Figures 5.2 compare the selected parameters on the eqix IPv6 prefix sets from years 2005
and 2015. These figures display only the first 64 trie levels because there were no IPv6
prefixes longer than 48 bits in 2005. Figure 5.2a shows that the prefix length distribution
changed significantly during the monitored interval. While prefix length 32 dominated the
distribution in 2005, ten years later the most common prefix length was 48. This affected
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(b) Branching probability distribution (two-children nodes).
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(c) Average skew distribution.

Figure 5.2: A comparison of eqix IPv6 prefix sets from years 2005 and 2015.

both the branching probability distribution (Figure 5.2b) and the average skew distribution
(Figure 5.2c).

Even though the prefix set contained 36-times more prefixes after ten years of evolution
(see Table 5.1), the most probable reason for such a great difference in the prefix length dis-
tribution is a steady growth of IPv6 deployments over the monitored decade. In 2005, most
of the allocated prefixes belonged to ISPs/RIRs, while after ten years prefixes belonging to
end users (organizations) became dominant [2]. In addition, the changes of the branching
probability and average skew distributions between 2005 and 2015 were also caused by the
emergence of prefixes longer than 64 bits. Prefix set rrc00 shows similar behavior, except
for the prefix nesting threshold, which remained unchanged.

In 2005, both the eqix and rrc00 prefix sets contained only a few hundreds of IPv6
prefixes, while in 2015 there were more than 23 thousands of prefixes in both sets (see
Table 5.1). This is a clear demonstration of the steady growth of IPv6 deployments around
the world. In this context, great changes of the parameter distributions (i.e., branching
probability and average skew) are not surprising. However, when compared over a shorter
span (e.g., between 2013 and 2015, where the prefix length distribution is almost stable), the
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0 %

20 %

40 %

60 %

80 %

100 %

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32  34  36  38  40  42  44  46  48  50  52  54  56  58  60  62  64

D
is

tr
ib

u
ti

o
n

Trie Depth

eqix_2015 eqix_2013

(b) Branching probability distribution (two-children nodes).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32  34  36  38  40  42  44  46  48  50  52  54  56  58  60  62  64

A
v
e
ra

g
e
 S

ke
w

Trie Depth

eqix_2015 eqix_2013

(c) Average skew distribution.

Figure 5.3: A comparison of eqix IPv6 prefix sets from years 2013 and 2015.

values of the branching probability and average skew distributions follow similar trends, as
shown in Figures 5.3. Note that the number of IPv6 prefixes in the eqix set almost doubled
between 2013 and 2015.

5.2.2 Ports and Protocol

The following analysis was performed using rule sets taken from ACLs in a university
network presented in Table 5.1. The data span over a period of five years to enable a
comparative analysis over the time.

The first part of the analysis focused on the distribution of rules over protocol values
and its results are summarized in Table 5.2. The results show an increasing number of rules
specifying a wildcard or UDP, while the number of rules specifying TCP is decreasing. The
ICMP protocol was not specified at all in the available rule sets.

Next, Table 5.3 presents the distribution of rules over port classes proposed in Class-
Bench, separately for source and destination port fields. The source port field of all rules
contained only the wildcard specification in 2010 as well as in 2015, which is aligned with
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Data Set Protocol Values
wildcard TCP UDP

uni_2010 26.0 % 71.9 % 2.1 %
uni_2015 38.5 % 54.9 % 6.6 %

Table 5.2: The distribution of rules over protocol values.

observations regarding ACL rule sets made by Taylor and Turner [61]. In contrast, the
distribution of rules over destination port classes was different between these years. Espe-
cially the number of arbitrary range and wildcard entries increased at the expenses of exact
match ones.

Data Set Port Classes
WC HI LO AR EM

Source Port
uni_2010 100.0 % 0.0 % 0.0 % 0.0 % 0.0 %
uni_2015 100.0 % 0.0 % 0.0 % 0.0 % 0.0 %

Destination Port
uni_2010 26.0 % 0.0 % 0.0 % 5.2 % 68.8 %
uni_2015 38.5 % 0.0 % 0.0 % 8.2 % 53.3 %

Table 5.3: The distribution of rules over port classes.

Finally, the distribution of rules over combined source-destination PPCs was analyzed.
Figures 5.4 are based on the uni_2015 data set and they show PPC matrices for subsets of
rules that specify the TCP and UDP protocols. The most common class pair being adopted
in the TCP case (Figure 5.4a) is WC-EM, which represents rules specifying a wildcard for
the source port and an exact value for the destination port. On the other hand, the UDP
case (Figure 5.4b) shows a great utilization of the WC-AR class pair.

(a) The TCP protocol. (b) The UDP protocol.

Figure 5.4: PPC matrices for various transport layer protocols (rule set uni_2015).
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The analysis reported in this section shows that a condition for the protocol header field
is commonly defined using the wildcard specification or an exact value corresponding to the
TCP protocol. There is indeed still more interest towards connection-oriented applications,
but the utilization of connectionless applications is rising, at least according to a growing
number of classification rules matching the UDP protocol. The rising of new applications
and a massive usage of the RTP protocol-based solutions, both of which utilize UDP as
a transport layer protocol, have led to specifically designed classification rules. While
rules specifying TCP define almost exclusively an exact value for the destination port (in
uni_2015 this value refers mostly to the SMTP protocol), in case of UDP the majority of
rules specify a condition for the destination port using an arbitrary range, which allows to
keep the size of a rule set reasonable even when the number of applications is growing.

5.2.3 OpenFlow

Despite the OpenFlow protocol is getting more and more interest in production networks
and the number of deployments around the world is rising, it is difficult to find publicly
available real rule sets. This section provides an analysis of real OpenFlow rule sets taken
from a datacenter in operation. The analysis focuses on understanding the statistical prop-
erties of OpenFlow-based rule sets as well as their temporal behavior. While the statistical
properties are studied on header fields distribution and their composition into various rule
types, with respect to temporal behavior this section analyzes rule set dynamics.

Header Fields

OpenFlow 1.0.0 extends the standard 5-tuple, i.e., ip_src, ip_dst, l4_src, l4_dst, and
ip_proto, with seven more header fields [7]. For each of twelve OpenFlow header fields,
Figure 5.5 shows its distribution over the specified and wildcarded classes in rules from sets
of1 and of2, which were introduced in Table 5.1. The fields of the standard 5-tuple present
a non-wildcard value in at least 20 % of rules, while other fields (except for mac_dst and
eth_type) show a great predominance of wildcard entries. Moreover, header fields vlan_id,
vlan_prio, and ip_tos are never specified, although it is clear that in this case a network
configuration plays a key role (i.e., virtual LANs are not enabled).

Tables 5.4 contain a per-field count of unique values being used in rule sets of1 and
of2 (e.g., eth_type presents just the value 0x0800, which refers to the IPv4 protocol). For
each header field and rule set, the tables also show the uniqueness factor, which estimates
per-field variance among the rules of that set. For instance, a value close to zero suggests
little variance (i.e., rules specifying that field tend to use the same value every time), while
a value close to one suggests the exact opposite. The uniqueness factor shows an interesting
property of the of1 rule set. Although the mac_dst field has the highest number of unique
values, the highest uniqueness factor can be observed for the in_port field. Therefore, the
rules of this set that specify a value for in_port can be called physical-port-oriented because
the value of in_port represents the most important part of these rules. Similarly, the rules
of the of2 rule set that specify a value for the l4_dst field can be called application-oriented.

Figure 5.6 shows the prefix length distribution for the ip_src field in rule set of1. The
most common prefix lengths are 0 (a wildcard), 10, and 32 (an exact value). Similar trends
can also be observed for the ip_dst field of the of1 rule set and both IP address fields of rules
belonging to the of2 set. Even though there are great differences between the presented
prefix length distribution and the one from Figure 5.1a, they can be justified considering
the nature of OpenFlow rules, which are not dictated by any routing protocol, unless a
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Figure 5.5: A per-field distribution of rules from the combined of1+of2 rule set over the
specified and wildcarded classes.

Rule Set ip_proto ip_src ip_dst l4_src l4_dst
of1 3 ( 0.3 %) 478 ( 4.6 %) 109 (0.9 %) 4 ( 2.9 %) 48 ( 2.2 %)
of2 3 ( 0.1 %) 390 ( 2.8 %) 97 (0.7 %) 4 (<0.1 %) 8227 (92.7 %)
of1+of2 3 (<0.1 %) 498 ( 2.0 %) 119 (0.4 %) 6 ( 0.1 %) 8237 (74.2 %)

(a) 5-tuple header fields.

Rule Set in_port mac_src mac_dst eth_type
of1 123 (86.6 %) 27 ( 3.2 %) 593 ( 4.7 %) 1 (<0.1 %)
of2 140 (86.4 %) 19 ( 8.1 %) 791 ( 5.0 %) 1 (<0.1 %)
of1+of2 182 (59.9 %) 45 ( 4.2 %) 1176 ( 4.1 %) 1 (<0.1 %)

(b) OpenFlow-specific header fields (only the specified ones).

Table 5.4: A per-field count of unique values and associated uniqueness factor (in paren-
thesis).

given daemon is running on the top of the controller. In addition, a different environment
(a core router for the previous study and a datacenter for this one) also plays an important
role.

A further analysis of rule sets of1 and of2 revealed that the TCP protocol is specified
only in 14.03 % of rules, while 10.59 % of rules specify the ICMP protocol. However, the
analysis also showed that the distribution of source and destination port values over five
port classes as well as the distribution of source-destination port pair values over twenty-five
PPCs are similar to what was shown in case of ACL rule sets from a university network.

Rule Types

Apart from studying individual header fields distribution, the analysis of real OpenFlow
rules also focuses on fields dependency. The relationship among header fields was studied
using a rule type that represents a template indicating which header fields are specified and
which are wildcarded. To simplify its representation, each rule type has been associated
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Figure 5.6: The prefix length distribution of source prefixes from the of1 rule set.

to a 12-bit rule type number, in which each bit corresponds to a given header field. A bit
set to 1 stands for a specified field and 0 stands for a wildcard. While it is clear that the
rule type number 0 refers to the combination of all header fields with a wildcard and 4 095
refers to a fully specified rule, it is important to define the bit-field correlation to correctly
decode a given rule type number. The correlation of header fields to individual bits of the
rule type number is presented in Table 5.5. This table also displays a binary encoding of
rule type 796, which clearly shows that rules of this type specify a non-wildcard condition
for mac_dst, eth_type, ip_proto, ip_src, and ip_dst header fields and a wildcard for the
remaining fields.

Header Field

in
_

po
rt

m
ac

_
sr

c

m
ac

_
ds

t

et
h_

ty
pe

vl
an

_
id

vl
an

_
pr

io

ip
_

to
s

ip
_

pr
ot

o

ip
_

sr
c

ip
_

ds
t

l4
_

sr
c

l4
_

ds
t

Rule Type 796 0 0 1 1 0 0 0 1 1 1 0 0

MSB LSB

Table 5.5: The correlation of header fields to the bits of a rule type number illustrated on
the rule type 796.

Despite there are 4 096 possible rule types, the number of rule types being used is much
lower. In practice, Figure 5.7 shows that the of1 and of2 sets contain rules of 18 types
only. Moreover, just 6 rule types are used by more than 5 % of all rules, while another
12 rule types are used by only a few rules.

Using the results of the rule types analysis, it can be shown that header field eth_type is
redundant in the of1 and of2 rule sets. Clearly, it is defined only in the rules of types 788,
789, 796, 1304, and 1305 (see Figure 5.7), which also define the ip_proto field. Because
this header field can only appear in IPv4 packets, matching on the eth_type value 0x0800
is redundant (note that according to Table 5.4b, only one unique value is specified for
eth_type in the combined of1+of2 rule set). Therefore, mac_dst is the only non-redundant
OpenFlow-specific header field that is specified in all the most common rule types.
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Figure 5.7: The distribution of rules from the combined of1+of2 rule set over rule types.

Dynamics

OpenFlow rule set dynamics was studied on the of3 set, which originates from a datacenter
with 220 physical hypervisors. Each instance of the of3 rule set represents a flow table
snapshot taken from the same hypervisor every day at the same time. In the performed
analysis, the dynamics of a rule set was represented by the rate of changes 𝑅 of rule set 𝑆
between the previous day 𝑑− 1 and current day 𝑑, which is defined in Equation 5.1, where
△ denotes symmetric difference.

𝑅 =
|𝑆𝑑−1 △ 𝑆𝑑|
|𝑆𝑑−1 ∪ 𝑆𝑑|

(5.1)

Figure 5.8 shows the dynamics of rule set of3 over a two-week period. While the rate
of changes was stable in June (not shown) and for the first week of July, it presented a
spike on 7th July 2015. Such behavior can be justified using Figure 5.9, which displays
the size of the of3 set during the monitored interval (plus one day before it because of
the rate of changes definition). From this figure it is clear that on 7th July the number of
rules decreased drastically, which caused the spike. Since flow changes in the of3 set may
be caused by users creating/deleting VMs (Virtual Machines) or updating their security
profiles, the observed spike can be attributed to the specific environment the of3 rule set
originates from rather than the OpenFlow protocol itself.

5.3 ClassBench-ng: Next Generation ClassBench
The ClassBench-ng toolkit tightly integrates rule set generation and analysis in order to
allow accurate as well as flexible generation of IPv4, IPv6, and OpenFlow rule sets. It also
defines the structure of a seed, which stores the results of rule set analysis and serves as
an input to the rule set generation process. To meet the required properties specified in
Section 5.1 (i.e., anonymity, completeness, and scalability), the ClassBench-ng seed contains
several statistical distributions that allow to completely characterize all considered types of
generated rule sets in an anonymous and scalable way.

Since original ClassBench already defines seed’s structure for the IPv4 case and provides
a rule set generator that accepts such seeds, ClassBench-ng utilizes these components and
supplements them with a rule set analyzer, which is not publicly available, although it has
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Figure 5.8: The rate of changes of rule set of3 between 1st and 14th July 2015.
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Figure 5.9: The size of rule set of3 between 30th June and 14th July 2015.

been presented in [63]. As shown in Section 5.2, using parts of ClassBench is valid even
though they were designed more than 10 years ago and the Internet has changed significantly
since that time. Indeed, the results of the performed analysis demonstrate that the value of
IPv4 prefix set parameters has not almost changed and the expected changes were correctly
reflected. This is also the case for parameters related to protocol and ports. Moreover, it
has been shown in Section 5.1 that seeds of original ClassBench meet all three required
properties.

To support the analysis and generation of IPv6 and OpenFlow rules, ClassBench-ng
extends seed’s structure and also both IPv4 rule set analyzer and generator. Fortunately,
as shown in the analysis, the IPv4 prefix set parameters defined in original ClassBench are
also able to catch the dynamics of the current IPv6 ecosystem, thus the support of IPv6
can be added by just extending their distributions (129 instead of 33 levels of a trie). On
the other hand, OpenFlow support has to be added from scratch using the distribution
for OpenFlow rule types and separate statistical distributions for OpenFlow-specific header
fields, both of which represent important characteristics of OpenFlow rule sets. The analysis
and generation tools have to be extended such that they are able to produce and consume,
respectively, such a modified seed.
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Figure 5.10 shows a high-level architecture of ClassBench-ng comprising four main build-
ing blocks, which are presented in details in the following subsections.

Figure 5.10: The high-level architecture of ClassBench-ng.

5.3.1 Improved ClassBench

For over a decade, researchers have used original ClassBench in order to generate synthetic
classification rule sets for the benchmarking of packet classification algorithms. However, a
test campaign evaluating the fidelity of ClassBench, which was performed in the course of
this thesis’ preparations, revealed that the rule set generation process of ClassBench is not
always accurate. While the layer four ports and protocol of generated rules accurately follow
the input seed, the IPv4 prefixes show lower accuracy. This is illustrated in Figures 5.11
that compare prefix set parameters extracted from the input IPv4 seed and from rules
generated by original ClassBench.

Since the generation process proved to be accurate with respect to the prefix nesting
threshold, Figures 5.11 focus on the branching probability and skew, which do not follow
the required distributions precisely. Indeed, the generated branching probability meets the
requirements only for 13 trie levels, while the average skew only for 5 levels. The most
probable explanation of such errors is based on parameters interdependence. To prevent
a complex resolving of dependencies among the prefix set parameters, ClassBench assigns
each parameter a priority and tries to meet the required distributions in an order given by
the priority of corresponding parameters. This hypothesis corresponds with the accuracy
of the prefix nesting threshold, which is the highest-priority prefix set parameter in original
ClassBench. Note that a comparison of input and generated prefix length distribution could
not be shown because this parameter is not directly available in a seed.

ClassBench-ng improves the generation process of ClassBench by iteratively building an
output rule set with source and destination prefix set characteristics as close as possible to
the distributions from the input seed. The pseudocode in Figure 5.12 shows the process of
rule set construction in the Improved ClassBench block. First of all, the tool uses original
ClassBench and generates a 100-times larger initial rule set 𝑟𝑢𝑙𝑒𝑠 (line 3). Then it prunes
the tries representing source and destination IP prefixes of this rule set to converge on a
solution which is accurate and contain the target number of IP prefixes (lines 4 and 5).
The details of a utilized trie pruning algorithm are described later in this section.
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Figure 5.11: Comparison of destination prefix set parameters from acl4 seed and rule sets
generated from this seed using original ClassBench (target size was set according to the
seed). The parameters of the generated sets are represented by average, minimum, and
maximum values of 10 sets.

Once the pruned source trie (𝑠𝑟𝑐_𝑡𝑟𝑖𝑒) and destination trie (𝑑𝑠𝑡_𝑡𝑟𝑖𝑒) are available,
Improved ClassBench selects from 𝑟𝑢𝑙𝑒𝑠 those rules that contain source and destination IP
prefixes available in the pruned tries. To find these rules, the tool constructs a bipartite
graph in which each node represents a prefix from either 𝑠𝑟𝑐_𝑡𝑟𝑖𝑒 or 𝑑𝑠𝑡_𝑡𝑟𝑖𝑒 and each
edge connecting two nodes represents a rule from 𝑟𝑢𝑙𝑒𝑠 that contains corresponding source
and destination IP prefixes. The rules that ClassBench-ng is looking for are represented
by maximum matching in the constructed bipartite graph (line 6). Each selected rule is
added to final rule set 𝑜𝑢𝑡𝑝𝑢𝑡_𝑟𝑢𝑙𝑒𝑠 and the rule together with its source and destination
IP prefixes are removed from 𝑟𝑢𝑙𝑒𝑠, 𝑠𝑟𝑐_𝑡𝑟𝑖𝑒, and 𝑑𝑠𝑡_𝑡𝑟𝑖𝑒, respectively (lines 7 to 11). In
case the maximum matching does not represent the target number of rules, the remaining
rules are selected from 𝑟𝑢𝑙𝑒𝑠 according to prefixes available in 𝑑𝑠𝑡_𝑡𝑟𝑖𝑒 only and source IP
prefixes of these rules are replaced with arbitrarily selected prefixes from 𝑠𝑟𝑐_𝑡𝑟𝑖𝑒 (lines 12
to 19).
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1: function ImprovedClassBench(𝑠𝑒𝑒𝑑, 𝑠𝑖𝑧𝑒)
2: 𝑜𝑢𝑡𝑝𝑢𝑡_𝑟𝑢𝑙𝑒𝑠← ∅
3: 𝑟𝑢𝑙𝑒𝑠← ClassBench(𝑠𝑒𝑒𝑑, 𝑠𝑖𝑧𝑒 · 100)
4: 𝑠𝑟𝑐_𝑡𝑟𝑖𝑒← TriePruning(𝑟𝑢𝑙𝑒𝑠.𝑠𝑟𝑐_𝑡𝑟𝑖𝑒, 𝑠𝑒𝑒𝑑, 𝑠𝑖𝑧𝑒, 4)
5: 𝑑𝑠𝑡_𝑡𝑟𝑖𝑒← TriePruning(𝑟𝑢𝑙𝑒𝑠.𝑑𝑠𝑡_𝑡𝑟𝑖𝑒, 𝑠𝑒𝑒𝑑, 𝑠𝑖𝑧𝑒, 4)
6: 𝑚𝑎𝑥_𝑚𝑎𝑡𝑐ℎ← MaxBiMatch(𝑠𝑟𝑐_𝑡𝑟𝑖𝑒, 𝑑𝑠𝑡_𝑡𝑟𝑖𝑒, 𝑟𝑢𝑙𝑒𝑠)
7: for each 𝑟𝑢𝑙𝑒 ∈ 𝑚𝑎𝑥_𝑚𝑎𝑡𝑐ℎ do
8: 𝑜𝑢𝑡𝑝𝑢𝑡_𝑟𝑢𝑙𝑒𝑠← 𝑜𝑢𝑡𝑝𝑢𝑡_𝑟𝑢𝑙𝑒𝑠 ∪ {𝑟𝑢𝑙𝑒}
9: 𝑟𝑢𝑙𝑒𝑠← 𝑟𝑢𝑙𝑒𝑠 ∖ {𝑟𝑢𝑙𝑒}

10: RemovePrefix(𝑠𝑟𝑐_𝑡𝑟𝑖𝑒, 𝑟𝑢𝑙𝑒.𝑠𝑟𝑐_𝑝𝑟𝑒𝑓𝑖𝑥)
11: RemovePrefix(𝑑𝑠𝑡_𝑡𝑟𝑖𝑒, 𝑟𝑢𝑙𝑒.𝑑𝑠𝑡_𝑝𝑟𝑒𝑓𝑖𝑥)
12: for each 𝑑𝑠𝑡_𝑝𝑟𝑒𝑓𝑖𝑥 ∈ 𝑑𝑠𝑡_𝑡𝑟𝑖𝑒 do
13: if not TrieIsEmpty(𝑠𝑟𝑐_𝑡𝑟𝑖𝑒) then
14: 𝑟𝑢𝑙𝑒← SelectRule(𝑟𝑢𝑙𝑒𝑠, 𝑑𝑠𝑡_𝑝𝑟𝑒𝑓𝑖𝑥)
15: 𝑟𝑢𝑙𝑒𝑠← 𝑟𝑢𝑙𝑒𝑠 ∖ {𝑟𝑢𝑙𝑒}
16: 𝑠𝑟𝑐_𝑝𝑟𝑒𝑓𝑖𝑥← GetAnyPrefix(𝑠𝑟𝑐_𝑡𝑟𝑖𝑒)
17: RemovePrefix(𝑠𝑟𝑐_𝑡𝑟𝑖𝑒, 𝑠𝑟𝑐_𝑝𝑟𝑒𝑓𝑖𝑥)
18: ReplaceSrcPrefix(𝑟𝑢𝑙𝑒, 𝑠𝑟𝑐_𝑝𝑟𝑒𝑓𝑖𝑥)
19: 𝑜𝑢𝑡𝑝𝑢𝑡_𝑟𝑢𝑙𝑒𝑠← 𝑜𝑢𝑡𝑝𝑢𝑡_𝑟𝑢𝑙𝑒𝑠 ∪ {𝑟𝑢𝑙𝑒}
20: return 𝑜𝑢𝑡𝑝𝑢𝑡_𝑟𝑢𝑙𝑒𝑠
21: end function

Figure 5.12: The pseudocode of rule set construction in Improved ClassBench.

Trie Pruning

Figure 5.13 shows a pseudocode of the utilized trie pruning algorithm. In addition to its
parameters 𝑡𝑟𝑖𝑒, 𝑠𝑒𝑒𝑑 (target values of trie parameters are extracted from line 3 to 6), and
𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑖𝑧𝑒, parameter 𝑛 is used to fix the number of iterations over the last two pruning
steps. These iterations minimize a negative effect of the convergence over the target number
of prefixes on average skew. While each iteration decreases the number of prefixes in the
trie by 1

𝑛 ·𝑜𝑟𝑖𝑔_𝑠𝑖𝑧𝑒 (line 13), the last iteration adjusts the number of prefixes to the target
value (𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑖𝑧𝑒 parameter), as shown in line 11. However, the key steps of the trie
pruning algorithm are represented by the functions AdjustBranching, AdjustSkew,
and AdjustPrefixes, which are described in the following paragraphs.

Branching Probability Adjustment Starting from the root node of the trie, this step
(line 7) adjusts branching probability at each trie level by removing a subtree of two-
children nodes and then a subtree of one-child nodes. Subtrees to be removed are selected
increasingly according to the number of prefixes they carry, which keeps as much space
as possible for adjustments performed in further pruning steps. Moreover, this step never
removes the last branch with the maximum prefix nesting to not alter the prefix nesting
threshold (already met by original ClassBench).

Average Skew Distribution Adjustment This step (line 9) starts from the leaves of
the trie and it increases or decreases average skew at each trie level. In particular, it removes
prefixes from the lighter or heavier subtree of two-children nodes. However, this step never
removes the last prefix from the leaf nodes and it tries to not alter average skew when
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1: function TriePruning(𝑡𝑟𝑖𝑒, 𝑠𝑒𝑒𝑑, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑖𝑧𝑒, 𝑛)
2: 𝑜𝑟𝑖𝑔_𝑠𝑖𝑧𝑒← GetSize(𝑡𝑟𝑖𝑒)
3: 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠← GetParam(𝑠𝑒𝑒𝑑, “prefix_length_distr”)
4: 𝑜𝑛𝑒_𝑐ℎ𝑖𝑙𝑑← GetParam(𝑠𝑒𝑒𝑑, “one_child_prob”)
5: 𝑡𝑤𝑜_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛← GetParam(𝑠𝑒𝑒𝑑, “two_children_prob”)
6: 𝑠𝑘𝑒𝑤 ← GetParam(𝑠𝑒𝑒𝑑, “skew_distr”)
7: AdjustBranching(𝑡𝑟𝑖𝑒, 𝑜𝑛𝑒_𝑐ℎ𝑖𝑙𝑑, 𝑡𝑤𝑜_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)
8: for each 𝑖 ∈ [1, 𝑛] do
9: AdjustSkew(𝑡𝑟𝑖𝑒, 𝑠𝑘𝑒𝑤)

10: if 𝑖 = 𝑛 then
11: AdjustPrefixes(𝑡𝑟𝑖𝑒, 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑖𝑧𝑒)
12: else
13: AdjustPrefixes(𝑡𝑟𝑖𝑒, 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠, 𝑛−𝑖

𝑛 · 𝑜𝑟𝑖𝑔_𝑠𝑖𝑧𝑒)
14: return 𝑡𝑟𝑖𝑒
15: end function

Figure 5.13: The pseudocode of the trie pruning algorithm.

removing prefixes at already adjusted levels (i.e., levels below the current level). Because
of the same reason as in the previous pruning step, the nodes of each level are selected
increasingly according to the total number of prefixes in their subtrees.

Prefix Length Distribution and the Total Number of Prefixes Adjustment The
last trie pruning step (lines 11 and 13) removes prefixes at each trie level (starting from
the root node of the trie) to make their total number matching the target value. When
removing the prefixes, this step tries to not alter the skew of two-children nodes, which
is realized by tracking the number of prefixes that should be removed from each subtree.
Similarly to the average skew distribution adjustment, this step also never removes the last
prefix from the leaf nodes. Doing so would imply the deletion of a whole branch, thus
altering the branching probability.

5.3.2 IPv6 Generation

The IPv6 Generation block extends the improved version of the original ClassBench’s rule
set generator with support for the generation of IPv6 rules. Since both IPv4 and IPv6
prefix sets can be represented using a trie and the trie-related parameters utilized in original
ClassBench are able to catch current IPv6 dynamics, an IPv6 seed straightforwardly extends
the trie-related parameters to allow the specification of corresponding distributions for up
to 129 trie levels. In the same way ClassBench-ng also extends the improved process of
IPv4 rule sets generation, i.e., it adds support for the generation of IP prefixes according
to trie-related distributions specified in the IPv6 seed.

5.3.3 OpenFlow Analysis

The OpenFlow Analysis block takes as an input OpenFlow rules and generates the corre-
sponding OpenFlow seed. Although ClassBench-ng already provides a couple of seeds for
OpenFlow rules generation, a rule set analyzer ensures the flexibility of the toolkit. For in-
stance, ClassBench-ng can be easily adapted to the generation of various OpenFlow rule sets
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corresponding to different use cases that can appear in programmable OpenFlow-enabled
networks.

Currently, ClassBench-ng is able to correctly parse rule sets represented in the for-
mat utilized by the ovs-ofctl command line tool [5] and generate the appropriate Open-
Flow 1.0.0 seed. This format is primarily aimed at representing flow table entries of Open-
Flow switches (note that each flow table entry corresponds to an OpenFlow rule). However,
since the IPv4 prefix and IPv4 5-tuple are also valid OpenFlow rules, the OpenFlow Analy-
sis block is able to parse these types of classification rules as well. Although the ovs-ofctl
tool supports both IPv4 and IPv6 prefixes, ClassBench-ng currently supports parsing of
IPv4 prefixes only.

The analysis described in Section 5.2.3 revealed that apart from distributions related
to 5-tuple fields, the most important characteristics of an OpenFlow rule set are the distri-
bution of rules over rule types and separate statistical distributions for OpenFlow-specific
header fields. Therefore, an OpenFlow seed is a backward-compatible extension of a 5-tuple
seed (i.e., the seed utilized in original ClassBench) consisting of three main sections: (1) a
rule type distribution, (2) a 5-tuple seed, and (3) an OpenFlow-specific fields seed. The
first section represents header fields dependency observed in the analyzed rule set. The
structure of the second section is exactly the same as of a standalone 5-tuple seed, thus
it is possible to use an OpenFlow seed for the generation of 5-tuple rules using original
ClassBench (or its improved version that is employed in ClassBench-ng). Finally, the last
section contains separate statistical distributions for OpenFlow-specific header fields. Each
of these distributions utilizes one of the following representations:

∙ values — a distribution over a set of original values;

∙ parts — a distribution over a set of the selected part of original values;

∙ size — a total number of unique original values;

∙ null — no representation.

The pairing between representation and a particular header field reflects various re-
quirements. For example, the values representation contains specific information from the
original rule set. Therefore, it is appropriate only for fields that do not carry confidential
data, i.e., in_port and eth_type. On the other hand, null and size representations do not
use any values from the original rule set, thus they are suitable for header fields carrying
confidential content. The former (null) is used for fields with a relatively small number of
possible values, i.e., vlan_prio and ip_tos, while the latter (size) is used for fields with a
potentially large set of unique values, i.e., vlan_id. Last but not least, parts represents a
trade-off between values and null. ClassBench-ng uses this representation for the mac_src
and mac_dst header fields, as it stores their vendor part in a seed.

The proposed OpenFlow seed meets the required properties defined in Section 5.1 even
after supplementing a 5-tuple seed with a rule type distribution and seed for OpenFlow-
specific header fields. Including these sections into an OpenFlow seed directly ensures
the completeness of a rule set’s representation. As described in the previous paragraph,
the requirement of anonymity is reflected in the already introduced pairing between the
four representations of statistical distributions and individual header fields. The use of
statistical distributions also makes sure that an OpenFlow seed allows a scalable generation
of synthetic rule sets.
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5.3.4 OpenFlow Generation

The OpenFlow Generation block generates a set of OpenFlow rules from an input OpenFlow
seed. Figure 5.14 shows the pseudocode of the generation process. At line 3 it starts with
the generation of a set of IPv4 5-tuples, which follow the parameters specified in the seed,
using the Improved ClassBench block of ClassBench-ng. Each generated 5-tuple is then
transformed to an OpenFlow rule that complies with a 𝑟𝑢𝑙𝑒_𝑡𝑦𝑝𝑒 generated according to
the rule type distributions stored in the seed (line 5). In particular, some of the 5-tuple
fields might be removed (lines 6 to 8) and other OpenFlow-specific fields might be added
(lines 9 to 12).

1: function OpenFlowGeneration(𝑠𝑒𝑒𝑑, 𝑠𝑖𝑧𝑒)
2: 𝑜𝑓_𝑟𝑢𝑙𝑒𝑠← ∅
3: 𝑖𝑝𝑣4_5𝑡𝑢𝑝𝑙𝑒𝑠← Improved_ClassBench(𝑠𝑒𝑒𝑑, 𝑠𝑖𝑧𝑒)
4: for each 𝑟𝑢𝑙𝑒 ∈ 𝑖𝑝𝑣4_5𝑡𝑢𝑝𝑙𝑒𝑠 do
5: 𝑟𝑢𝑙𝑒_𝑡𝑦𝑝𝑒← Generate(𝑠𝑒𝑒𝑑, “rule_type”)
6: for each 𝑓𝑖𝑒𝑙𝑑 ∈ IPv4 5-tuple fields do
7: if 𝑓𝑖𝑒𝑙𝑑 /∈ 𝑟𝑢𝑙𝑒_𝑡𝑦𝑝𝑒 then
8: Remove(𝑟𝑢𝑙𝑒, 𝑓𝑖𝑒𝑙𝑑)
9: for each 𝑓𝑖𝑒𝑙𝑑 ∈ OpenFlow-specific fields do

10: if 𝑓𝑖𝑒𝑙𝑑 ∈ 𝑟𝑢𝑙𝑒_𝑡𝑦𝑝𝑒 then
11: 𝑓𝑖𝑒𝑙𝑑_𝑣𝑎𝑙𝑢𝑒← Generate(𝑠𝑒𝑒𝑑, 𝑓𝑖𝑒𝑙𝑑)
12: Add(𝑟𝑢𝑙𝑒, 𝑓𝑖𝑒𝑙𝑑, 𝑓𝑖𝑒𝑙𝑑_𝑣𝑎𝑙𝑢𝑒)
13: 𝑜𝑓_𝑟𝑢𝑙𝑒𝑠← 𝑜𝑓_𝑟𝑢𝑙𝑒𝑠 ∪ {𝑟𝑢𝑙𝑒}
14: return 𝑜𝑓_𝑟𝑢𝑙𝑒𝑠
15: end function

Figure 5.14: Pseudocode of OpenFlow rules generator.

The generation of values for OpenFlow-specific header fields in line 11 is driven by rep-
resentation utilized for particular header fields. However, in order to generate consistent
OpenFlow rules, further constraints on the generated values have to be sometimes applied.
For instance, values for in_port and eth_type fields are selected from corresponding distri-
butions recorded in a seed, but the value of eth_type must be set to:

∙ 0x8100 when vlan_id or vlan_prio is going to be specified,

∙ 0x0800 or 0x0806 when ip_src, ip_dst, or ip_proto is going to be specified, and

∙ 0x0800 when ip_tos, l4_src, or l4_dst is going to be specified.

The selection of values from distributions is used also for mac_src and mac_dst header
fields, which utilize the parts representation. Their vendor part is generated according to
the distribution from the seed, but the device part is generated randomly. The random
generation of header field values is mainly used for fields utilizing size and null representa-
tions. Nevertheless, only the value of the vlan_prio field is generated completely randomly
without any further constraints. The value of ip_tos field is randomly selected from a pool
of values defined by IANA [1], while the value of vlan_id must not be neither 0x000 nor
0xFFF (the VLAN standard [16] reserves these values for a special purpose) and a total
number of unique vlan_id values must not exceed the corresponding parameter recorded in
the seed.
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5.4 Experimental Evaluation
This section evaluates the fidelity of ClassBench-ng’s rule set generation for IPv4 prefixes,
IPv6 prefixes, and OpenFlow rules. In case of IPv4 prefixes generation, ClassBench-ng is
compared against original ClassBench [63] and FRuG [29], while the evaluation of IPv6
prefixes generation is done against Non-random Generator [66]. Finally, the fidelity of
OpenFlow rules generation in ClassBench-ng is compared against FRuG [29]. The evalu-
ation does not focus on layer four ports and protocol because ClassBench-ng directly uses
the values of these header fields generated by original ClassBench, which provides accurate
results in this case.

In order to fairly compare ClassBench-ng with other synthetic rule set generators, the
evaluation presented in this section is based on the value of root-mean-square error (RMSE)
that is computed using Equation 5.2. In this equation, 𝑛 represents the number of generated
rule sets, 𝑦 is the target value of an evaluated parameter, and 𝑦𝑖 stands for the parameter’s
value extracted from the generated sets. The performed experiments were carried on by
generating 𝑛 = 10 rule sets using tool-specific seeds extracted from an original rule set.
The characteristics of the original rule set thus represent the target values (i.e., 𝑦) against
which were compared the same characteristics of the generated sets (i.e., 𝑦𝑖) obtained from
various rule set generators.

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑦 − 𝑦𝑖)2 (5.2)

5.4.1 IPv4 Prefixes Generation

The comparison of ClassBench-ng, ClassBench, and FRuG on the generation of IPv4 pre-
fixes utilized an original rule set that had been generated by ClassBench using the acl4
seed provided with this tool. Because both ClassBench-ng and FRuG support the transfor-
mation of an input rule set into the corresponding seed, they were used to generate input
seeds for the compared rule set generators from the original rule set (note that a seed for
ClassBench-ng can also be used in original ClassBench). Finally, these seeds were utilized
in the compared tools to generate rule sets, whose trie-related characteristics were assessed
using RMSE.

Figures 5.15 show the comparison of RMSE obtained for ClassBench-ng, ClassBench,
and FRuG on each trie level. According to these results, ClassBench-ng fully outperforms
original ClassBench and except for only one trie level also FRuG in terms of the branching
probability distribution (Figure 5.15b). The situation is more balanced with respect to the
average skew distribution (Figure 5.15c). In this case, ClassBench-ng is more precise on
approximately 50 % of trie levels when compared against ClassBench and on more than
80 % of levels when compared against FRuG. However, Figure 5.15a shows a poor fidelity
of ClassBench-ng with respect to the prefix length distribution.

It is not possible to improve ClassBench-ng’s generation fidelity for the prefix length
distribution without impacting negatively on the other parameters. Nevertheless, in case
of the prefix length distribution RMSE is 10-times lower compared to other trie-related
parameters. Therefore, ClassBench-ng is the most accurate rule set generator among the
compared tools on average. This is confirmed in Figure 5.16, which shows the average
RMSE per trie level that is computed from RMSE of all trie-related parameters defined for
each level of a trie. Considering such a metric, ClassBench-ng outperforms both ClassBench
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(a) Prefix length distribution.
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(b) Branching probability distribution (two-children nodes).
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(c) Average skew distribution.

Figure 5.15: The comparison of trie-related parameters’ root-mean-square error on each
trie level when generating IPv4 prefix sets using ClassBench-ng, ClassBench, and FRuG.
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Figure 5.16: An average root-mean-square error of ClassBench-ng, ClassBench, and FRuG
for each trie level. The average was computed from RMSE of trie-related parameters
displayed in Figures 5.15.

and FRuG on the majority of trie levels, including level 24, which stores the greatest portion
of prefixes in the analyzed IPv4 prefix sets.

Last but not least, the RMSE value for the prefix nesting threshold is 0.63, 0.00, and 0.89
in case of ClassBench-ng, ClassBench, and FRuG, respectively. Even though ClassBench
is flawless in achieving the target value of this parameter, since its value can only be an
integer, none of the compared generators show a great error.

5.4.2 IPv6 Prefixes Generation

When comparing the quality of ClassBench-ng’s IPv6 prefix set generation against Non-
random Generator, two original rule sets were used. An input seed for ClassBench-ng was
extracted from IPv6 prefix set rrc00_2015, while Non-random Generator’s input consisted
directly of IPv4 prefix set rrc00_2015. Although such a setup does not lead to an entirely
fair comparison of the tools, it is enforced by their different requirements on input data.
ClassBench-ng requires a seed extracted from a rule set of a target type (an IPv6 prefix
set in this case) and Non-random Generator expects an IPv4 prefix set on its input. Thus,
using IPv4 and IPv6 prefix sets originating from the same core router leads to the fairest
comparison of the tools.

The results of the comparison are shown in Figures 5.17. Both ClassBench-ng and
Non-random Generator achieve a comparable quality of IPv6 prefixes generation in terms
of the prefix length distribution (Figure 5.17a). However, ClassBench-ng is more precise
with respect to the branching probability distribution (Figure 5.17b), while Non-random
Generator wins the comparison on the average skew distribution (Figure 5.17c).

5.4.3 OpenFlow Rules Generation

The fidelity of ClassBench-ng’s OpenFlow rules generation was compared against FRuG on
two important characteristics of an OpenFlow rule set: (1) header fields dependency repre-
sented by the rule type parameter and (2) separate statistical distributions for OpenFlow-
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(a) Prefix length distribution.
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(b) Branching probability distribution (two-children nodes).
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(c) Average skew distribution.

Figure 5.17: The comparison of trie-related parameters’ root-mean-square error on each trie
level when generating IPv6 prefix sets using ClassBench-ng and Non-random Generator.

specific header fields. To fairly compare ClassBench-ng with FRuG, input seeds for both
generators were extracted from rule set of1, which was chosen as an original rule set.

Figure 5.18 compares ClassBench-ng’s RMSE on particular rule types utilized in the
original rule set against RMSE obtained on these rule types with FRuG. In this experiment
ClassBench-ng clearly outperforms FRuG as it achieves higher RMSE for rule types 1304
and 2048 only. Therefore, ClassBench-ng is more accurate in characterizing the relationship
between header fields, i.e., which fields are more likely to be specified together in a rule.

ClassBench-ng is also more accurate than FRuG with respect to the generation of
OpenFlow-specific header fields, as shown in Figure 5.19. Since header fields vlan_id,
vlan_prio, and ip_tos are always wildcarded in the original rule set, the figure compares
average RMSE of the generators on the in_port, mac_src, mac_dst, and eth_type header
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Figure 5.18: The comparison of root-mean-square error for rule types utilized in OpenFlow
rule sets generated by ClassBench-ng and FRuG.

fields only. While the average RMSE of both generators is almost the same (and very
low) for in_port, ClassBench-ng is clearly more accurate than FRuG for all other fields.
Moreover, Figure 5.20 proves that at least in case of the mac_dst field (more precisely
its vendor part) ClassBench-ng outperforms FRuG not only on average but also on all
generated values.
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Figure 5.19: An average root-mean-square error of ClassBench-ng and FRuG for all evalu-
ated OpenFlow-specific header fields. The average for each header field was computed from
all RMSE values of that particular field.

The whole comparison of ClassBench-ng and FRuG is in favor of the sooner. Addition-
ally, while seeds utilized by ClassBench-ng comprise statistical distributions extracted from
real rule sets, FRuG requires manually configured distributions for all header fields but IP
and MAC addresses. Thus, a low value of RMSE does not have to mean that OpenFlow
rules generated by FRuG accurately represent a real rule set because the input distribu-
tions could be set incorrectly. It is also important to note that ClassBench-ng produces
consistent OpenFlow rules, which satisfy all constraints introduced in Section 5.3.4.
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Figure 5.20: The comparison of root-mean-square error of ClassBench-ng and FRuG on
mac_dst field’s vendor part.

5.5 Summary
To address the lack of real classification rule sets for benchmarking newly developed packet
classification algorithms, this chapter introduces ClassBench-ng, a new open source tool
for the generation of synthetic IPv4, IPv6, and OpenFlow 1.0.0 rules. Differently from
other similar tools, ClassBench-ng comprises not only a rule set generator but also a rule
set analyzer able to extract key characteristics of a real rule set into a seed, which com-
pletely characterize the analyzed set in an anonymous and scalable way. Providing the
rule set analyzer together with the rule set generator that utilizes analyzer’s output makes
ClassBench-ng an accurate (with respect to real classification rule sets) as well as flexible
tool, because its generation process follows the characteristics of real rule set stored in the
seed, which can be regenerated on demand using the rule set analysis feature.

The architecture of ClassBench-ng and the structure of the seed were designed after
a thorough analysis of various types of real classification rule sets: IPv4/IPv6 prefix sets
from core routers, IPv4 5-tuples from ACLs deployed in a university network, and OpenFlow
1.0.0 flow tables from Open vSwitches running in a datacenter. A comparative analysis of
IPv4 prefix sets and 5-tuples after 10 years of Internet’s evolution, which focused on the
rule set parameters proposed in original ClassBench, demonstrated that these parameters
are valid even after more than a decade from their first use. Moreover, as was shown by
the analysis of IPv6 prefix sets, conceptually the same set of trie-related parameters is
also able to reflect dynamic behavior connected with an accelerating adoption of the IPv6
protocol. On the other hand, the analysis of OpenFlow rules taken from a real deployment
in a datacenter is among the very first studies of its kind. Its results mainly suggest to
characterize OpenFlow rule sets not only by separate distributions for the OpenFlow-specific
header fields (in addition to the parameters capturing the key characteristics of the 5-tuple
fields) but also using the distribution of rules over a set of utilized rule types.

Although the results of the performed analysis suggest the parameters utilized in original
ClassBench as suitable even after more than a decade, a further campaign evaluating the
fidelity of the ClassBench’s rule set generation process revealed its non-negligible limitations
with respect to the generation of IPv4 prefixes. Therefore, ClassBench-ng generates IPv4
5-tuples using an improved version of original ClassBench that employs an iterative trie
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pruning algorithm to generate IP prefixes which follow trie-related distributions from the
input seed more precisely. In addition, ClassBench-ng extends the structure of the seed as
well as the rule set generator of original ClassBench in order to allow the representation
and generation of IPv6 prefix sets (i.e., tries of up to 129 levels). Apart from improvements
and extensions of original ClassBench related to IPv4 and IPv6 rules, ClassBench-ng also
introduces a complete toolchain for OpenFlow rule sets. An OpenFlow rule set analyzer
is currently able to correctly parse rule sets in the ovs-ofctl format and to store their
characteristics into OpenFlow seeds, each of which contains the rule type distribution and
separate distributions for the OpenFlow-specific header fields, along with the parameters
characterizing the 5-tuple fields. Such seed is then used as an input to an OpenFlow rule
set generator that produces a set of consistent OpenFlow rules following the distributions
specified in the input seed. Finally, it is worth mentioning that the OpenFlow analyzer is
also able to analyze IPv4 rule sets, if they are represented in the ovs-ofctl format.

The proposed ClassBench-ng was experimentally evaluated on the generation of classi-
fication rules for various use cases and its RMSE was compared against RMSE of existing
rule set generators relevant for particular use cases. With respect to the generation of IPv4
prefixes, ClassBench-ng proved to be better than both original ClassBench and FRuG on
average, but it did not outperform the other tools on all trie-related parameters. Similar
results were obtained from the evaluation of IPv6 prefix sets generation in ClassBench-ng
and its comparison against the fidelity of IPv6 prefixes generation in Non-random Gener-
ator. ClassBench-ng achieved the best results in case of OpenFlow rules generation. For
this use case, it clearly outperformed FRuG with respect to the rule type distribution and
it also generated the value of the individual OpenFlow-specific header fields more precisely
than FRuG.
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Chapter 6

Conclusions

This thesis deals with packet classification that is one of the most common operations im-
plemented in networking devices. Although the basic principle of packet classification has
always been the same, a rapid development of the Internet, which we have been experiencing
since the beginning of this century, has significantly increased the requirements that have
to be met by current packet classification algorithms deployed in core networks. Namely,
growing transfer rate has led to a shorter time available for the classification of a single
packet, while the number of bits involved in the classification decision has increased due
to accelerated adoption of the IPv6 and OpenFlow protocols. Moreover, the complexity
of packet classification has also been increased by a growing number of classification rules.
Therefore, the majority of current packet classification research address the performance of
packet classification algorithms. However, as the requirements on the algorithms are con-
tinuously increasing, improving their performance is still an active process producing novel
classification algorithms that have to be benchmarked, ideally using real sets of classifica-
tion rules. Unfortunately, such rule sets are not publicly available for most of the packet
classification use cases. Current research thus further focuses on the generation of synthetic
rule sets applicable to benchmarking packet classification algorithms. These two issues in
current research on packet classification are also addressed in this thesis, which has been
directed by the goals set in Section 1.1.

The performance of packet classification algorithms is addressed by an FPGA-based im-
plementation of prefix matching that is able to perform almost 255 MLPS for both IPv4 and
IPv6 prefixes, which translates into throughput of 170 Gbps when considering the short-
est Ethernet frames. Such lookup performance is enabled by a newly proposed pipelined
hardware architecture utilizing on-chip memory blocks available in current FPGA chips.
Although the whole architecture consists of two processing pipelines (to use both ports of
on-chip memory blocks), each of which comprises 23 stages (to support matching IPv6 pre-
fixes), it easily fits into the target FPGA chip (Xilinx Virtex-6 XC6VSX475T). In addition,
because the amount of the on-chip memory is limited, prefix sets are encoded using a novel
memory-efficient representation that allows to completely store any of the available prefix
sets in the on-chip memory of the target FPGA. The proposed prefix set representation is
more memory efficient than representations utilized in both TBM and SST algorithms, es-
pecially for IPv6 prefix sets corresponding to sparse prefix trees. Furthermore, even though
the proposed representation is slightly worse than the representation utilized in the PPLA
algorithm in case of generated IPv6 prefix sets, it is significantly better on real IPv4 pre-
fix sets. Since the proposed prefix set representation and pipelined hardware architecture
together allow to perform prefix matching with throughput required in 100 Gbps networks
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(regardless the version of the IP protocol), it can be concluded that the first goal of this
thesis has been successfully achieved.

To enable a realistic assessment of classification algorithms’ performance parameters,
this thesis introduces a synthetic rule set generator called ClassBench-ng, which combines
features of existing 1-dimensional and multi-dimensional generators in a single tool and
explicitly supports also the generation of OpenFlow 1.0.0. rule sets. Though original
ClassBench provides all necessary features for the generation of IPv4 5-tuples, generated
IPv4 prefix sets do not precisely follow corresponding distributions specified in an input
seed. ClassBench-ng thus builds on the original ClassBench tool, but it improves the
ClassBench’s process of IPv4 prefixes generation and extends this process with the support
for the generation of IPv6 prefixes. Nevertheless, the main contribution of ClassBench-ng
is a newly added OpenFlow toolchain comprising not only a rule set generator but also a
rule set analyzer that is capable of analyzing IPv4 and OpenFlow rule sets specified in the
ovs-ofctl format. Since ClassBench-ng contains the rule set analyzer producing a seed
together with the rule set generator utilizing such seed on its input, it is able to generate
synthetic rule sets with properties similar to the analyzed real rule set and also to adjust
the seed when the properties of the real set changes. Although the generation of IPv4
prefixes in ClassBench-ng is not more accurate than in original ClassBench or FRuG with
respect to all trie-related parameters, on average ClassBench-ng outperforms both of these
tools. The situation is similar for IPv6 prefixes generation, in which case the precision of
ClassBench-ng is comparable with Non-random Generator, i.e., a specialized 1-dimensional
generator of IPv6 prefixes. ClassBench-ng achieves the best results in case of OpenFlow
rules generation, where it is clearly more accurate than FRuG with respect to both rule type
and individual OpenFlow-specific header fields. In summary, the proposed ClassBench-ng
toolchain is capable of generating synthetic IPv4, IPv6, and OpenFlow 1.0.0 rule sets, which
follow statistical distributions extracted from real rule sets, and the precision of its rule set
generation process is comparable or better than the precision of similar rule set generators.
Therefore, the second goal of this thesis has also been achieved.

Despite the goals set for this thesis have been successfully achieved, there are numerous
options for future work in the addressed areas. Currently, there is an ongoing effort at the
development of a trace generator for ClassBench-ng that will allow to generate a packet
header trace for a given rule set. Using such trace it will be possible to comprehensively
assess not only the expected worst case performance of a packet classification algorithm
utilizing the given rule set, but also its actual average performance under a traffic load.
Once the trace generator will be finished, the next steps may focus on further extensions
of the presented solutions. It would be interesting either to allow incremental updates
of a prefix set while keeping a high memory efficiency of its representation or to make
the ClassBench-ng’s rule set analyzer able to extract a seed from different types of real
rule sets specified in various formats. Nevertheless, even more appealing would be to
address challenges brought by a continuous and accelerating evolution of the Internet. This
category currently includes improving the performance of the prefix matching architecture
to support 400 Gbps Ethernet and extending ClassBench-ng to support further versions of
the OpenFlow standard.
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6.1 Summary of Contributions
The following list provides a quick overview of main contributions of this thesis to research
in the area of packet classification, which were made in the course of achieving the goals
set in Section 1.1.

∙ The analysis of various types of classification rules:

– real IPv4 and IPv6 prefix sets from forwarding tables of core routers;
– synthetic IPv6 prefix sets generated using Non-random Generator;
– real IPv4 5-tuple sets from ACLs applied in a university network;
– real OpenFlow 1.0.0 rule sets from Open vSwitches deployed in a datacenter.

∙ The novel memory-efficient representation of prefix sets, whose memory efficiency
ratio is comparable with the PPLA algorithm on generated IPv6 prefix sets and
better than the TBM, SST, and PPLA algorithms on real IPv4 prefix sets.

∙ The pipelined hardware architecture implementing prefix matching based on the pro-
posed prefix set representation that is able to perform almost 255 MLPS, which trans-
lates into throughput of 170 Gbps for the shortest Ethernet frames.

∙ The open source tool ClassBench-ng, which is publicly available at
https://github.com/classbench-ng/classbench-ng and consists of:

– the rule set analyzer able to produce seeds corresponding to real IPv4 and Open-
Flow 1.0.0 rule sets in the ovs-ofctl format;

– the rule set generator capable of generating synthetic IPv4, IPv6, and OpenFlow
1.0.0 rule sets that follow properties specified in a seed.
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