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Abstract
Although the Internet has changed significantly since the beginning of the 21st century,

packet classification is still one of the most common operations implemented in networking
devices. Nevertheless, the requirements on its performance are continuously increasing,
especially in core networks. Currently, packet classification algorithms have to support
100 Gbps throughput. In addition, classification rule sets are becoming larger and the
number of bits involved in the classification decision is growing due to 128-bit IPv6 ad-
dresses and classification according to more than 5 header fields in the OpenFlow protocol.
Therefore, the majority of contemporary research on packet classification in core networks
address the performace of packet classification algorithms, which has to keep pace with con-
tinuously increasing requirements. However, the researchers also focus on benchmarking
newly developed algorithms because they have to be benchmarked using real rule sets, but
such data are not available for most of the packet classification use cases. This thesis deals
with both of these issues because it is important not only to design packet classification
algorithms having high performance but also to assess their parameters by benchmarking
based on proper data sets.

Regarding the performace of packet classification algorithms, this thesis focuses on
improving prefix matching, which is used in the majority of 1-dimensional and also multi-
dimensional algorithms. Since a software implementation of prefix matching cannot fulfill
the requirements imposed on packet classification in core networks, the thesis proposes
a novel pipelined prefix matching architecture that targets Xilinx FPGA chips and uti-
lizes their distributed on-chip memory. To fit the whole prefix matching data structure
into FPGA’s on-chip memory, this thesis also proposes a memory-efficient trie-based rep-
resentation of a prefix set. The proposed representation is more memory efficient than
well-known multibit tries Tree Bitmap and Shape Shifting Trie and for IPv4 prefix sets
it also significantly overcomes the Prefix Partitioning lookup algorithm. The architecture
then comprises two independent processing pipelines (to utilize both ports of on-chip mem-
ory blocks) that are together able to perform almost 255 million lookups per second, which
translates into throughput of 170 Gbps for the shortest Ethernet frames.

To allow realistic packet classification algorithms benchmarking, the thesis introduces
a new open source synthetic rule set generator called ClassBench-ng, which integrates the
generation of IPv4, IPv6, and OpenFlow 1.0.0 classification rule sets following the statistical
properties specified in an input seed. Apart from the rule set generation, ClassBench-ng also
supports an analysis of a real rule set in the ovs-ofctl format producing a corresponding
seed that may be used for the generation of a similar synthetic rule set later on. Therefore,
researchers having access to real classification rule sets can share their benchmarking data
with other members of the community via statistical-based (thus anonymous) seeds pro-
duced by ClassBench-ng. With respect to the precision of the rule set generation process,
ClassBench-ng is better than original ClassBench and FRuG in case of IPv4 prefixes and
than Non-random Generator in case of IPv6 prefixes, when considering an average score
for all IP prefix-related parameters. Moreover, it also clearly outperforms FRuG in the
precision of OpenFlow rule sets generation.
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Chapter 1

Introduction

Computer networks are an indispensable part of our everyday life. We use them as a source
of information and a means for communication at work as well as in our free time. The most
prominent computer network today is a global network called the Internet. It evolved from
research networks during 1970s and 1980s and established as a publicly available global
network in 1990s. However, since the beginning of 21st century we have experienced rapid
technology development that has significantly changed the Internet. The current Internet
is no more the one we knew at the beginning of this century.

While the highest standardized transfer rate for Ethernet was 1 Gbps in 2000 [3], the
current operational maximum is 100 Gbps [6]. In addition, since the standard for 400 Gbps
Ethernet [9] has been approved in December 2017, the upgrade of the maximum trans-
fer rate in core networks can be expected in the near future. On the other hand, the
802.11 family of standards [8] and the IMT-2000 standard [18] together started the ad-
vent of mobile-broadband subscriptions. According to ITU (International Telecommunica-
tion Union) data [17], in 2016 there were 52.2 active mobile-broadband subscriptions per
100 inhabitants worldwide.

Technology development made access to the Internet more affordable, even in developing
countries. The number of individuals using the Internet grew from 495 million in 2001 to
3385 million in 2016 [17]. Moreover, users often own several devices that are able to access
the Internet (e.g., personal computer, tablet, smartphone, smart TV, or intelligent sensor).
This resulted in 17.1 billion of connected devices (i.e., 2.3 devices per capita) in 2016
and forecasted growth to 27.1 billion (3.5 per capita) in 2021, as reported by Cisco [10].
Because the maximum number of distinct IPv4 (Internet Protocol version 4 ) addresses is
less than 4.3 billion, all RIRs (Regional Internet Registries) except AFRINIC (AFRIcan
Network Information Center) exhausted their IPv4 allotments between 2011 and 2015 [10].
Therefore, since 2011 we have experienced accelerated adoption of IPv6 [15], the successor
of IPv4. However, not only the principal protocol of the Internet is changing. Architecture
of computer networks is being redefined as well, especially due to the concept of network
virtualization. Although there are numerous, often competing, technologies enabling this
concept at various levels of network architecture [19], one of the most promising approaches
is SDN (Software-Defined Networking), which regained interest after the introduction of
OpenFlow [25], currently the most common protocol for communication between control
and data planes of a switch.

Despite all the changes of the Internet were brought to life by upgrading its infrastruc-
ture, packet classification at physical link speed is still one of the most common operations
implemented in networking devices. Upon arrival, a networking device classifies every
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packet according to one or more of its header fields and uses the result of classification
for further processing of the packet. Depending on the function of a device, the result
of classification may be used for basic forwarding operation, to apply security policies,
application-specific processing, or QoS (Quality of Service) guarantees.

Even though packet classification has not been replaced by another functionality, re-
quirements on its performance are continuously increased. For instance, because of growth
of transfer rates to 100 Gbps and extremely high utilization of the IPv4 address space, a
core router has to be able to make a forwarding decision according to a forwarding table
containing more than 680 thousand IPv4 prefixes [1] every 6.72 ns. With respect to the
IPv6 protocol, due to 4-times longer IP address involved in the forwarding process, the
situation is even worse. Currently, the number of IPv6 prefixes in a forwarding table of
core routers is almost 43 thousand [1]; however, this number is expected to grow together
with IPv6 penetration. Another example of growing demands on packet classification is ex-
tending the set of packet header fields involved in the classification process. While the most
common set of header fields involved in packet classification consists of 5 header fields, the
OpenFlow protocol initially extended this set to 12 fields [4] and the latest version of the
OpenFlow protocol defines packet classification based on 45 fields [7]. Both these examples
demonstrate that packet classification requires continuous attention of researchers.

From a high level perspective, there can be identified two issues that are addressed in
the research on packet classification in core networks.

The first issue is related to the performance of packet classification algorithms, which
has to keep pace with growing transfer rates. Parameters that have the greatest influence
on the performance are the number of bits involved in packet classification (i.e., the number
of utilized header fields and their length) together with the number of utilized classifica-
tion rules. Therefore, new algorithms have to deal with growing popularity of SDN-based
network virtualization utilizing the OpenFlow protocol (more fields) [19] and/or increasing
IPv6 penetration (longer fields) [15]. Moreover, since current CPUs (Central Processing
Units) do not provide enough performance for even 1-dimensional packet classification ac-
cording to destination IP address (i.e., IP lookup) on a 100 Gbps link, packet classification
algorithms targeting core networks have to be accelerated in hardware.

The second issue is related to benchmarking packet classification algorithms, which are
continuously improved to meet ever-increasing requirements on their performance. Because
real classification rule sets are not usually available for benchmarking, researchers designed
and implemented several tools capable of generating synthetic rule sets [36, 37, 34, 32, 14].
Nevertheless, even together these tools are not able to generate all data sets necessary for
benchmarking current packet classification algorithms. In addition, it can be shown that
the process of rule set generation in the currently available tools is not always accurate.

1.1 Thesis Goals
This thesis aims to address identified issues in the research on packet classification in core
networks via achieving the following two goals.

The first goal is to address the issue related to the performance of packet classification
algorithms by designing a hardware-accelerated prefix matching algorithm that will be able
to achieve 100 Gbps throughput for both IPv4 and IPv6 protocols.

The second goal is to address the issue related to benchmarking new packet classifica-
tion algorithms using a tool capable of generating synthetic IPv4, IPv6, and OpenFlow 1.0.0
rule sets with parameters similar to real rule sets.
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Chapter 2

Packet Classification in Core
Networks

Packet classification is a process determining a class (often referred to as a network flow)
that a packet belongs to. The input of packet classification consists of selected header
fields extracted from the packet and a set of classification rules with defined priorities, in
which each rule represents one class. A classification rule defines a condition for every
header field extracted from input packets. The condition is usually specified in one of the
following four ways: (1) value—exactly one allowed value, (2) prefix—a range of allowed
values having a common binary prefix, (3) range—an arbitrary range of allowed values, and
(4) wildcard—any value is allowed.

Regardless the utilized specification, a condition is satisfied when the corresponding
header field of a packet contains one of the allowed values. If all conditions of a classification
rule are satisfied, then the packet belongs to the corresponding class. Note that classes may
overlap, thus multiple classification rules can match the packet. In such a case the matching
rule with the highest priority is selected as the output of packet classification. Since packet
classes usually define specific processing for their packets, the output of packet classification
can also be an action that is going to be applied on the classified packet.

2.1 Approaches to Packet Classification
The problem of packet classification has been approached in many different ways that are
described in this section. Apart from publications cited in particular subsections, this
description is based on information gathered from [26, 33, 5].

Naive Approaches

The simplest approach to packet classification is a linear search of a rule set with rules
sorted from the highest to the lowest priority. An input packet is sequentially matched
against classification rules and the first matching rule is selected as the output of packet
classification. Both search time and memory requirements of this approach are linear with
respect to the number of rules. Because of its search performance, this approach is feasible
only for small rule sets.

An orthogonal approach trades-off memory requirements for better search time by pre-
computing the best matching rule for every possible packet and storing this information
into a table. Classification of an incoming packet then consists of addressing the table by
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concatenated header field values and reading the best matching rule information. Search
time of this second naive approach is constant (classification is done in a single step) but
its memory requirements are exponentially dependent on the number of bits involved in the
classification process. Therefore, despite its excellent search time, this approach to packet
classification is important mainly from a theoretical point of view.

TCAM

Another straightforward approach to packet classification is to use TCAM (Ternary Content-
Addressable Memory). Since TCAM supports addressing by content and ternary matching,
it can be viewed as the second naive approach with the ability to use the prefix specifi-
cation. Indeed, each TCAM record (i.e., a rule after the conversion of all conditions to
prefixes augmented by the X value for each unspecified bit) represents all entries of the
second naive approach’s table that correspond to the packets matching the record.

Constant search time and reasonable memory requirements are arguments behind the
extensive use of TCAM in commercial devices. Nevertheless, this approach suffers from
several non-negligible issues. Parallel matching, which allows constant search time, leads to
high power consumption of this kind of memory. Because of supporting ternary matching,
its cost per bit is also higher than of other memories. Moreover, if TCAM is used for
packet classification, its capacity is not utilized efficiently due to rules replication during the
range-to-prefix conversion. Last but not least, the need for storing records of width equal
to the number of bits involved in packet classification limits scalability of this approach
to classification according to more and/or longer header fields. All these disadvantages
motivate research in algorithmic solutions to packet classification.

Representation Using Tuples

The representation of the packet classification problem using tuples has been introduced
by Srinivasan, Suri, and Varghese in [31]. It is the first out of three seminal approaches
to multi-dimensional packet classification described in the thesis. In this approach, each
classification rule is represented by a tuple, whose elements define the number of bits used
for specification of the corresponding rule’s conditions. Such a representation is motivated
by the observation that real rule sets contain only a few combinations of specification
lengths. Therefore, the number of distinct tuples representing a rule set is expected to be
much lower than the actual number of rules.

Classification of an incoming packet using a rule set represented by tuples is done by a
(possibly parallel) linear search of a tuple set. Each tuple represents a subset of the original
rules that is searched for a matching rule using only a limited amount of information from
packet’s header fields. The search for a matching rule within the tuple is thus the exact
matching problem, which can be for example solved using a hashing table.

Geometric Representation

Another representation of the general packet classification problem is based on multi-
dimensional space where each dimension corresponds to one header field utilized in packet
classification. In this space, each condition of a classification rule can be represented as
an interval in the corresponding dimension, thus the rule is equal to a multi-dimensional
rectangle defined by intervals corresponding to its conditions.

5



Since a packet contains exact values in its header fields, it is represented as a point
in the multi-dimensional space. A rule matching an input packet is then represented by
a rectangle that contains a point of the multi-dimensional space that corresponds to the
packet.

Combinatorial Representation

The last seminal approach to multi-dimensional packet classification described in this thesis
is based on viewing a classification rule as a combination of the given number of conditions.
In order to speed up a classification process, this approach builds a Cartesian product of
sets of conditions utilized in particular dimensions. The entries of the Cartesian product
correspond to all possible combinations of matching results for individual dimensions and
each entry has the best matching rule associated to it. This is similar to the second naive
approach to packet classification. However, the condition sets of particular dimensions of a
real rule set are usually significantly smaller than the number of rules in the rule set [16].
Therefore, the number of Cartesian product entries is much smaller than the number of all
possible packets.

Packet classification based on combinatorial representation of the rule set fully uti-
lizes properties of the constructed Cartesian product. First of all, matching conditions for
individual dimensions are determined, possibly using different 1-dimensional packet classifi-
cation approaches in each dimension. The matching results from individual dimensions are
then combined together and the best matching rule associated to a corresponding Cartesian
product’s entry is selected as the result of the classification process.

Range Matching

Apart from approaches to multi-dimensional packet classification, there are also specific
approaches to 1-dimensional packet classification, which reflect different condition specifica-
tions utilized in classification rules. The seminal range matching approach to 1-dimensional
packet classification has been introduced by Lakshman and Stiliadis in [20]. It is based on
non-overlapping intervals (often referred to as elementary intervals), which are created by
dividing the full range by start and end points of each range utilized in a rule set.

In order to allow packet classification, each elementary interval has to store a list of
classification rules, whose range overlaps with the interval. Packet classification then con-
sists of the search for an elementary interval covering the header field value extracted from
a packet, followed by returning the list of overlapping (i.e., matching) rules.

Prefix Matching

Similarly to range matching, prefix matching is beneficial especially when classification rules
contain the prefix specification. However, the prefix specification is also often used as a
uniform way of specifying a condition in a classification rule.

The most utilized prefix matching approach to 1-dimensional packet classification is
called LPM (Longest Prefix Matching). This approach looks for all prefixes matching the
input value and returns the longest one (i.e., the most specific one) as the best matching
prefix. Some packet classification algorithms based on combinatorial representation might
require prefix matching that returns all matching prefixes instead of just the longest one.
In such a case, LPM can be easily modified to satisfy this requirement by omitting its last
step.
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2.2 Research Issues

Current research on packet classification techniques for core networks faces two issues. The
first one can be characterized as performance of packet classification algorithms. Clearly,
the performance of classification algorithms has to be increased to meet ever-increasing
requirements on packet classification in core networks. The second issue rises from the
first one and it revolves around packet classification algorithms benchmarking. As new
classification algorithms are designed, it is necessary to benchmark their performance and
compare their properties to each other.

2.2.1 Performance of Algorithms

Even though the Internet is still growing and accelerating, packet classification stays one of
the most common operations implemented in networking devices. Nevertheless, the changes
of the Internet increase requirements on the performance of packet classification algorithms,
which has to keep pace with growing transfer rates. The standard for 400 Gigabit Eth-
ernet [9] has been approved in December 2017, but current core networks widely support
100 Gigabit Ethernet defined in [6]. Therefore, packet classification algorithms targeted at
core networks are required to support throughput of 100 Gbps.

Considering the shortest Ethernet frame, the maximum packet rate of 100 Gigabit
Ethernet is approximately 148.81 MPPS (Million Packets Per Second). Thus, packet clas-
sification algorithms have to be able to provide a classification result every 6.72 ns. To
achieve such matching performance, their designers have to deal with growing requirements
on selected parameters, which include the number of bits involved in packet classification
(i.e., the number of utilized header fields and their length) and the number of specified
classification rules.

The number of bits involved in packet classification depends on a specific use case.
However, in general it is increasing because nowadays more as well as longer header fields
are being utilized in packet classification. Extensions of the set of utilized header fields are
closely related to growing interest towards network virtualization, which may be realized,
for instance, by OpenFlow-based SDN [19]. Each version of the OpenFlow protocol incre-
mentally extended the set and its latest version has defined packet classification according
to 45 header fields [7]. On the other hand, longer header fields are mainly due to increasing
IPv6 penetration [15].

The number of specified classification rules varies even for different instances of the
same use case. In case of IP routing, forwarding tables of core routers currently contain
680 thousand IPv4 and 43 thousand IPv6 prefixes [1] but these numbers continuously
grow as the allocation of prefixes from IPv4 and IPv6 address spaces progresses. The
situation is different with firewalls, in which the actual number of installed classification
rules depends on security policies of a particular network. Since firewall rule sets are not
usually publicly available (because of security reasons), the researchers evaluating 5-tuple-
based classification algorithms often use synthetic data sets consisting of thousands or
tens of thousands of classification rules [35, 30]. Focusing on SDN-enabled switches in a
datacenter, each OpenFlow rule may correspond to an active virtual machine, thus their
number may be in the order of tens of thousands [22].

In summary, packet classification algorithms targeting core networks have to be able
to classify an incoming packet according to tens or hundreds of bits into tens or hun-
dreds of thousands of classes and provide a new classification result every 6.72 ns. Such
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requirements on performance prohibit software implementation of packet classification al-
gorithms [11]. Although hardware implementation can be realized using both an ASIC
(Application-Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array),
because of its availability, flexibility, and configurability, FPGA-based implementation will
be considered further in this thesis.

2.2.2 Algorithms Benchmarking

The requirements on the performance of packet classification algorithms are continuously
increasing, as demonstrated in the previous section. Therefore, the development of clas-
sification algorithms that meet these requirements is a never-ending story. To benchmark
a new classification algorithm, benchmarking tools (e.g., Netbench [27]) usually assess the
following parameters of the algorithm: (1) classification speed defined as the number of
memory accesses required for the classification of a single packet and (2) the memory re-
quirements of a data structure representing a set of classification rules. In addition, the
speed of updates of a classification rule set representation might also be assessed in the
course of algorithm’s benchmarking.

The practical implementation of a packet classification algorithm has to consider the
worst case performance of the algorithm in terms of the above mentioned parameters,
but the worst case performance solely depends on a utilized classification rule set. This
means that in the ideal case a real rule set is utilized while benchmarking the classification
algorithm. Nevertheless, real rule sets are not publicly available for the majority of packet
classification use cases (often because of security reasons). One of the few exceptions to this
are IPv4/IPv6 prefix sets from forwarding tables of core routers [28], which can be used for
benchmarking IP lookup (i.e., the key part of IP routing). However, since IPv6 penetration
is expected to grow exponentially in the future, current IPv6 prefix sets cannot be directly
used for benchmarking IP lookup algorithms in the future environment.

The researchers addressed the issue of missing real benchmarking data in various ways.
While a limited number of research groups obtained access to real rule sets via NDAs (Non-
Disclosure Agreements), others developed several tools capable of generating synthetic data
sets for common packet classification use cases. Because the size of IPv4 forwarding tables
is not expected to grow significantly in the future, the tools for generating IP prefix sets
focus on IPv6 prefix sets only. To get this kind of benchmarking data, it is possible to use
for instance Non-random Generator [36] or V6Gene [37]. On the other hand, in the area
of 5-tuple rules it makes sense to generate both IPv4 and IPv6 5-tuples. The former is
almost exclusively generated using ClassBench [34], while the latter can be generated using
ClassBenchv6 [32]. The most problematic is the situation with OpenFlow rules generators.
Although FRuG (Flexible Rule Generator) [14] is able to generate a set of rules that specify
a condition for an arbitrary number of header fields, it does not explicitly consider any
specifics of OpenFlow rule sets.

Even though the existing generators are capable of producing IPv4/IPv6 prefixes and
5-tuples as well as rules specifying a condition for more than 5 header fields, none of them
explicitly provides support for OpenFlow rules generation. In addition, none of the tools
is able to generate all types of benchmarking data, which complicates the situation in case
of benchmarking packet classification algorithms targeted at various use cases. Moreover,
it can be shown that the process of rule set generation in available generators is not al-
ways accurate. These issues show that packet classification benchmarking is still an open
problem.
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Chapter 3

Related Work

While the previous chapter introduced the packet classification operation along with various
approaches to its implementation, this chapter contains the selection of already implemented
packet classification algorithms and synthetic rule set generators. These algorithms and
generators represent current solutions to the performance of packet classification algorithms
issue and the packet classification algorithms benchmarking issue, respectively, which were
also discussed in the previous chapter. Since the goal of the thesis is to address these issues
as well, the algorithms and generators presented in this chapter serve as a starting point
for work described in this thesis and they will be used as a baseline for the evaluation
of proposed solutions to the identified issues in research on packet classification in core
networks.

3.1 Packet Classification Algorithms

This section describes existing packet classification algorithms that implement the prefix
matching approach to packet classification. The reasons for including prefix matching
algorithms only are that the prefix specification is utilized in IP lookup (i.e., probably the
most common type of packet classification in core networks) and it is also commonly used as
a uniform way of specifying all conditions of a classification rule. Therefore, prefix matching
is utilized not only in 1-dimensional packet classification, but also in the majority of multi-
dimensional classification algorithms. As prefix matching algorithms usually encode a prefix
set using a binary prefix tree called trie, this section presents selected trie-based prefix
matching algorithms.

Trie

The trie data structure, which has been proposed by Fredkin [13], represents the basis of
prefix set encoding in the majority of prefix matching algorithms. It is a binary prefix tree
in which each node represents a prefix. The root node represents the empty prefix and left
and right child nodes of any trie node represent prefixes created from their parent’s prefix
by appending 0 and 1, respectively. Trie nodes representing prefixes from a prefix set are
called prefix nodes, while other trie nodes are referred to as place holder nodes.

Matching prefixes of a prefix set represented by a trie is done by traversing the trie from
the root to the leaves according to the bits of an input value (e.g., a destination address
in case of IP lookup) taken from the MSB (Most Significant Bit) to LSB (Least Significant
Bit). All prefix nodes visited during such a traversal represent prefixes matching the input
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value and the last visited prefix node represents the longest matching prefix, which is the
output of the LPM operation.

In order to diminish the main disadvantage of a trie (i.e., matching only one input
bit in each step), modern trie-based prefix matching algorithms employ the concept of so
called multibit trie. These algorithms propose new types of node that represent subtrees
of a trie and allow to match multiple bits per step. Thus, although a trie is not directly
applicable for high-performance prefix matching, it is a seminal data structure for modern
prefix matching algorithms.

Tree Bitmap

Tree Bitmap (TBM), which has been developed by Eatherton, Varghese, and Dittia [12],
is one of the best known multibit trie algorithms. It represents a set of prefixes using a
2𝑆𝐿-tree, where parameter 𝑆𝐿 (stride length) determines the number of input bits matched
in each step. This tree is built on the top of a trie by mapping TBM nodes, each of
which corresponds to trie’s subtree of the maximum depth equal to 𝑆𝐿, onto the trie in a
non-overlapping fashion such that each trie node is covered by a TBM node.

Each TBM node is encoded using two bitmaps and two pointers. The external bitmap
contains 2𝑆𝐿 bits determining whether a corresponding child node is present (value 1) or
missing (value 0). Note that MSB of the external bitmap corresponds to the leftmost child,
while its LSB corresponds to the rightmost child. On the other hand, 2𝑆𝐿 − 1 bits of the
internal bitmap correspond to the nodes of the underlying trie in breadth-first order and
each bit encodes information whether a corresponding internal node is a prefix node (value
1) or non-prefix node (value 0). The child and prefix pointers refer to information about
child nodes and prefix-related data, respectively.

The compact representation of a TBM node makes possible to retrieve it from a memory
in just one clock cycle. Additionally, due to the use of bitmaps for node’s encoding, this
prefix matching algorithm is easily implementable in hardware. The TBM algorithm is
thus able to achieve high matching performance. In addition, the fixed structure of a node
allows easy updates of the represented prefix set. However, it may also cause high memory
overhead when the underlying trie is sparse. Trade-off between matching performance
and memory requirements of the TBM algorithm for a given prefix set can be tuned via
parameter 𝑆𝐿. Clearly, a higher value of parameter 𝑆𝐿 results in a lower number of
matching steps but higher memory overhead and vice versa.

Shape Shifting Trie

Another important multibit trie algorithm called Shape Shifting Trie (SST) has been intro-
duced by Song, Turner, and Lockwood [29]. This algorithm is based on TBM, but it tries
to overcome its main drawback by introducing an adaptive shape of a node, which reduces
memory overhead when the underlying trie is sparse. Instead of parameter 𝑆𝐿, the shape
of SST nodes is influenced by parameter 𝐾, which determines the maximum number of
underlying trie nodes that can be represented by an SST node.

The encoding of SST nodes utilizes external an internal bitmaps as well as child and
prefix pointers that have the same function as in TBM nodes. Apart from these bitmaps
and pointers, the data structure of an SST node also contains the shape bitmap consisting
of 2𝐾 bits, which encodes the shape of the node. Similarly to the internal bitmap, pairs of
shape bitmap’s bits correspond to the nodes of the underlying trie in breadth-first order.
The first bit of each pair determines whether the SST node contains the left child of the
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corresponding node (value 1) or its left child is missing (value 0), while the second bit
encodes the same information for the right child of the corresponding node.

The adaptive shape of SST nodes allows to represent a prefix set using a very small
amount of memory. However, the variability of nodes makes the construction of the prefix
set representation a computationally complex task and it also significantly limits the pos-
sibility of prefix set updates. Moreover, the need to decode the shape of a node from its
shape bitmap negatively influences matching performance. Because of all these limitations,
SST is not a viable option for prefix matching in core networks, which is also illustrated by
the fact that there is no hardware architecture implementing this algorithm. Nevertheless,
it may be useful as a reference algorithm for an assessment of memory requirements.

Prefix Partitioning Lookup Algorithm

Prefix Partitioning Lookup Algorithm (PPLA) developed by Le and Prasanna [21] is the
newest prefix matching algorithm described in the thesis. This algorithm focuses on mini-
mizing the memory footprint of a prefix set representation, while keeping sufficient through-
put for 100 Gbps networks. As all other prefix matching algorithms described so far in this
section, PPLA represents a prefix set by a trie. However, it utilizes the trie representa-
tion just for partitioning the set of prefixes into 𝑘 disjoint subsets that are used for prefix
matching in 𝑘 separate processing pipelines. Once the prefix set is partitioned, each subset
is represented by a separate binary search tree (for minimum memory requirements) or
2-3 tree (for easy prefix set updates) and mapped onto stages of a corresponding pipeline.

Although an FPGA implementation of PPLA is able to perform 410/390 MLPS (Million
Lookups Per Second) for an IPv4/IPv6 prefix set consisting of over 330 000 unique prefixes,
the main advantage of the PPLA algorithm is its high memory efficiency. When prefix
subsets are represented by a binary search tree, an average memory efficiency ratio (i.e.,
the number of bytes of memory needed for storing one byte of a prefix) achieved by the
algorithm is 1.00 for IPv4 prefix sets and 0.91 for IPv6 prefix sets. The main drawback of
this algorithm is connected with the initial partitioning of a prefix set, which introduces
very high preprocessing overhead. Therefore, PPLA may experience the degradation of
matching performance and memory efficiency when the prefix set is frequently updated.

3.2 Rule Set Generators

This section focuses on synthetic rule set generators for benchmarking both 1-dimensional
and multi-dimensional packet classification, which were already briefly introduced in Sec-
tion 2.2.2. All 1-dimensional generators implement the generation of IP prefixes (i.e., clas-
sification rules for benchmarking IP lookup). More precisely, they are specialized on gen-
erating IPv6 prefixes because currently available real IPv6 prefix sets are not suitable for
benchmarking as they are expected to significantly grow in size in the future. The situation
is different in case of multi-dimensional generators. They primarily support the generation
of IPv4 5-tuples, but some of them also allow to generate IPv6 5-tuples or classification
rules specifying a condition for more than 5 header fields.

Non-random Generator

Non-random Generator, which has been developed by Wang et al. [36], is the first of two
IPv6 prefix set generators described in this thesis. It converts an input IPv4 prefix set to an
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output IPv6 prefix set in a way that preserves selected features of the input and generates
the output with respect to IPv6 allocation policies.

As each input IPv4 prefix is converted to a single output IPv6 prefix, the size of the
output prefix set is directly inherited from the input set. To determine the exact length of
an output IPv6 prefix, Non-random Generator doubles the length of an input IPv4 prefix
and sometimes adjusts the resulting value (e.g., to get also odd prefix lengths). Finally, the
value of the output IPv6 prefix is composed of leading three bits 001 followed by the number
of AS (Autonomous System) corresponding to the input prefix, the input IPv4 prefix itself,
and possibly some randomly generated bits (to get a prefix of the given length).

Since Non-random Generator was the first generator of synthetic IPv6 prefix sets, it
was extremely useful at the time of its origin. Nevertheless, prefix sets generated by this
tool do not correspond to current real IPv6 prefix sets because their generation is based on
sets of IPv4 prefixes. Therefore, newer generators are based on currently available real sets
of IPv6 prefixes.

V6Gene

A well-known example of a generator based on real sets of IPv6 prefixes is called V6Gene [37].
This tool has been designed by Zheng and Liu, who aimed to overcome the reasons that
prevent real IPv6 prefix sets from being used for benchmarking IPv6 lookup algorithms.
V6Gene thus starts from a real prefix set of a small size and systematically enlarges this
set by new prefixes generated in a way that simulates the allocation of address prefixes in
the real IPv6 world.

The generation phase of the V6Gene’s run is divided into two parallel branches, which
implement different algorithms introducing new IPv6 prefixes into the input prefix set.
While the first branch simulates the allocation of IPv6 prefixes from LIR (Local Internet
Registry) prefixes that already exist in the prefix set to their subscribers, the second branch
allocates IPv6 prefixes from a limited number of newly introduced LIR prefixes.

As the generation process is based on real IPv6 prefix sets in V6Gene, this tool can
generate synthetic prefix sets that are closer to real IPv6 prefix sets than the output
of Non-random Generator. However, the generator does not explicitly account for pre-
fix aggregations and splits known from real prefix sets. Moreover, although the authors
highlighted the availability of their tool, currently there is no publicly available V6Gene’s
implementation.

ClassBench

ClassBench [34], which has been introduced by Taylor and Turner, is probably the most
often used multi-dimensional synthetic rule set generator. The most important component
of this tool is the Filter Set Generator that implements the generation of synthetic IPv4
5-tuples according to an input seed (referred to as a parameter file in [34]) and a small set
of high-level parameters. The remaining tools then implement the construction of the seed
from a real rule set (the Filter Set Analyzer) and the generation of a synthetic header trace,
which is able to comprehensively exercise a packet classification algorithm utilizing a given
rule set (the Trace Generator).

The Filter Set Generator’s input seed contains several statistical distributions that
jointly make possible to generate a condition for each header field belonging to an IPv4
5-tuple. In general, the Filter Set Generator implements the generation of individual classi-
fication rule’s conditions as sampling corresponding distributions stored in the input seed.
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However, because of interdependence of some distributions (e.g., the PPC distribution de-
pends on the protocol value and the prefix pair length distribution depends on the selected
PPC), sampling has to be done in a specific order. Moreover, generating some conditions
of a classification rule is not as straightforward as sampling a distribution, which is true
especially for source/destination address prefixes.

A great popularity of ClassBench has been caused not only by the Filter Set Generator’s
ability to produce realistic IPv4 5-tuples for benchmarking packet classification algorithms,
but also by providing a set of twelve input seeds extracted from real classification rule sets
of various origin (access control lists, firewalls, IP chains). Since the time of ClassBench’s
publication, these seeds have become de facto standard inputs for the generation of synthetic
data for benchmarking various packet classification algorithms. However, ClassBench is no
longer sufficient for current needs of the research community as it focuses on IPv4 5-tuples
only and does not support the generation of IPv6 5-tuples or classification rules comprising
a condition for more than 5 header fields. These drawbacks have been addressed by more
recent multi-dimensional synthetic rule set generators ClassBenchv6 and FRuG.

ClassBenchv6

In order to allow the generation of synthetic classification rules with IPv6 address prefixes,
Sun et al. have proposed ClassBenchv6 [32], a reshaped version of ClassBench for the
IPv6 world. Similarly to original ClassBench, this tool generates IPv6 5-tuples according
to statistical distributions stored in an input seed. However, rather than using a seed
extracted from a real set of IPv6 5-tuples, ClassBenchv6 builds on similarities between
IPv4 and IPv6 environments (similar allocation policies, retained Internet topology and
classification use cases, continuing evolution of the Internet) and predicts an IPv6 seed
from an IPv4 seed corresponding to a real rule set.

Since ClassBenchv6 generates IPv6 5-tuples in a similar way as the Non-random Gen-
erator produces IPv6 prefixes, it also has similar benefits and drawbacks. The prediction of
IPv6 trie-based distributions based on corresponding IPv4 distributions was useful during
the initiation phase of IPv6 deployment. Nevertheless, it is no longer valid.

FRuG

Even though both ClassBench and ClassBenchv6 theoretically allow to generate conditions
for selected header fields beyond IPv4/IPv6 5-tuple (e.g., IPv4 flags in ClassBench and
IPv6 flow label in ClassBenchv6), the full support of rules with a condition for more than
5 header fields was not available until Ganegedara, Jiang, and Prasanna had introduced
FRuG [14].

This synthetic rule set generator allows the user to fully control the size and structure
of generated rule sets and also to define specific distribution for each included header field,
which makes it a powerful benchmark to assess various packet classification algorithms.
However, only MAC address and IP address fields can be set to follow corresponding dis-
tributions from an input set. Distributions for other header fields have to be manually
configured by the user, making this generator less attractive if a realistic set of synthetic
rules needs to be generated. Moreover, even though FRuG currently supports the gen-
eration of condition for 12 header fields utilized in OpenFlow 1.0.0, it neither explicitly
considers specifics of OpenFlow rule sets nor allows to easily specify correlation among
header fields of generated rules.
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Chapter 4

Addressing Performance of
Algorithms

As described in details in Section 2.2.1, packet classification algorithms targeting core net-
works are required to support growing transfer rates and an increasing number of rules
as well as bits involved in packet classification. Therefore, this chapter deals with im-
proving the performance of classification algorithms in order to meet the above mentioned
requirements.

Since matching a condition specified as an exact value or wildcard is trivial, the greatest
improvement of classification algorithms’ performance can be achieved by optimizing either
prefix matching or range matching. Because prefix matching is utilized in IP lookup (i.e.,
probably the most common type of packet classification in core networks) and also in
the majority of multi-dimensional packet classification algorithms, this thesis addresses
the performance of packet classification algorithms via improvements of prefix matching.
Focus on matching prefixes is also beneficial because a prefix is a typical representation for
conditions on IP addresses, which are the widest dimension in current classification rules.
Moreover, supporting IPv6 may be more expensive than supporting additional header fields
with respect to the number of bits involved in packet classification.

The performance of current CPUs prohibits software implementation of packet clas-
sification algorithms. Thus, packet classification algorithms have to be implemented in
hardware. Because of availability, flexibility, and configurability, this thesis targets imple-
mentation in FPGAs. The inherent parallelism of this technology and the availability of
distributed on-chip memory on current FPGAs also seamlessly supports pipelined process-
ing, which is a necessity for a high-performance implementation of classification algorithms.
Nevertheless, because of a limited number of on-chip memory blocks, the rule set has to be
represented using a memory-efficient data structure.

This chapter addresses the performance of classification algorithms by introducing a
memory-efficient trie-based representation of a prefix set together with a pipelined hardware
architecture for prefix matching based on this representation in an FPGA. The prefix set
representation was designed according to the results of the analysis of available prefix
sets (real IPv4 and IPv6, generated IPv6) and it allows to store the whole data structure
representing a prefix set into memory blocks available on current FPGAs. Subsets of these
memory blocks are allocated to particular pipeline stages of the architecture, which allows
the pipeline stages to access their memory blocks independently of each other. Thus, the
architecture achieves matching performance required in 100 Gbps networks.
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Figure 4.1: Newly proposed nodes.

4.1 Proposed Prefix Set Representation

Since the representation of a prefix set in TBM consists mainly of internal nodes without
prefixes or leaf nodes, memory requirements of this algorithm may be substantially reduced
by even a bit more efficient encoding of these nodes. To this end, this section proposes a
new multibit trie representation of a prefix set that utilizes thirteen different types of node.

The nodes of the proposed prefix set representation can be divided into two groups:
(1) nine newly proposed nodes and (2) four variants of a standard TBM node. The newly
proposed nodes are illustrated in Figure 4.1, which is organized as a grid of three columns
and three rows. The nodes of each column and row share the same property, which is also
reflected in their name (#B encodes the number of branches, P stands for prefixes, and L
marks leaf nodes). Utilized variants of a TBM node ensure completeness and efficiency of
the representation in less common situations. They include a standard node for 𝑆𝐿 = 3
(TBM3) and a set of leaf nodes for 𝑆𝐿 = 3, 4, 5 (TBM3-L, TBM4-L, TBM5-L), which do
not contain the external bitmap and child pointer.
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The size of each newly proposed node mainly depends on its maximum allowed branch
length, which is same for all branches of a node. Apart from the branch length, the size
of newly proposed nodes is also influenced by the presence of child and prefix pointers,
which is already encoded in the node’s name. The child pointer is utilized in every node
without the -L suffix in its name and the prefix pointer is present in every node, whose
name contains P. The size of TBM node’s variants is determined by the number of bits in
the external and internal bitmaps as well as by the presence of the child pointer, which is
utilized in TBM3 only (note that all TBM-based nodes contain the prefix pointer).

The mapping of proposed nodes onto a trie is done according to an algorithm, which
starts from the root node and continues in breadth-first order towards the leaves of the trie.
At each position, the algorithm performs a trial mapping of all proposed types of node and
determines the best type for the current position using Equation 4.1, where 𝑝 is the number
of covered prefix nodes, 𝑛 is the number of all covered trie nodes, and 𝑠𝑖𝑧𝑒 is the size of a
selected node type. Although the algorithm does not guarantee a globally optimal mapping
of proposed nodes onto the trie, it represents a working solution that is locally optimal and
has acceptable time complexity.

𝑐𝑜𝑠𝑡 =

⎧⎨⎩
𝑝

𝑠𝑖𝑧𝑒 if 𝑝 > 0

𝑛
𝑠𝑖𝑧𝑒 otherwise

(4.1)

4.2 Proposed Hardware Architecture

In order to achieve performance required in 100 Gbps networks, prefix matching based on
the proposed representation has to be implemented in hardware using a processing pipeline,
in which each processing element (PE) performs one step of the matching algorithm. Since
the prefix set representation proposed in the previous section can be classified as a multibit
trie, the result of prefix matching is available after processing at most 𝑛 nodes, where 𝑛
is the height of a tree representing the prefix set; therefore, the pipeline has to consist of
𝑛 PEs. Because each of these PEs accesses a memory storing a prefix set representation
independently, the memory has to be able to support 𝑛 parallel memory accesses per clock
cycle. To satisfy this requirement, it is convenient to implement the processing pipeline in
an FPGA chip, which allows to allocate one or more independent on-chip memory blocks
to each PE.

A proposed hardware architecture for prefix matching based on the prefix set represen-
tation introduced in the previous section is shown in Figure 4.2. This architecture consists
of two processing pipelines with uniform PEs and dual-port memories shared between PEs
from corresponding stages. By utilizing the dual-port nature of memory blocks available in
an FPGA, the architecture can achieve double the performance of a single-pipeline archi-
tecture without the need to compromise on memory accesses. A memory allocated to each
pipeline stage comprises two parallel parts, each of which has data width of 80 bits (i.e.,
the maximum size of a node). While the first part of the memory stores data words with
an even address, the second part is used for storing data words with an odd address. Such
internal organization of the memory makes possible to read the whole node in one clock
cycle even if its representation is not aligned on the beginning of a data word, which may
cause storing the node in two consecutive data words.

Figure 4.2 also shows a high-level architecture of a PE that implements one step of the
prefix matching algorithm. The processing of a prefix set representation’s node in the PE
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follows the fetch-decode-execute paradigm, which is known from processing instructions in a
CPU. First of all, the PE fetches from the memory the representation of the node, which is
subsequently decoded and the obtained values are sent in parallel to the execute submodule.
This submodule actually executes one step of prefix matching (i.e., it searches for matching
prefixes and determines the address of the next node) and sets the PE’s outputs accordingly.

Combinatorial logic of the fetch and execute submodules of the PE is relatively complex,
which limits the maximum frequency they can safely operate on. Therefore, in order to
achieve desired matching performance, each of them contains two sets of intra-stage reg-
isters. In total, each PE contains four sets of intra-stage registers, which means that the
latency of processing a node within the PE is five clock cycles.

Figure 4.2: The pipelined hardware architecture that implements prefix matching based on
the prefix set representation from Section 4.1. The figure also shows a high-level architecture
of a PE utilized in employed processing pipelines.
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4.3 Experimental Evaluation

This section evaluates the prefix set representation proposed in Section 4.1 and the pipelined
hardware architecture implementing prefix matching based on the representation, which was
designed in Section 4.2. The mapping of the proposed representation’s nodes on a trie has
been implemented in the Netbench tool [27]. Thus, it is possible to compare the memory
efficiency of the proposed representation with prefix set representations utilized in TBM
and SST algorithms. On the other hand, the evaluation of the designed architecture is
allowed by its implementation on a Xilinx Virtex-6 XC6VSX475T FPGA, which has been
done using Xilinx ISE 14.3.

The proposed prefix set representation was assessed on real IPv4 and IPv6 prefix sets
from forwarding tables of core routers and synthetic IPv6 prefix sets generated by Non-
random Generator [36]. Its comparison with with the TBM and SST algorithms in terms of
memory requirements is provided in Table 4.1 that shows memory required for the proposed
representation and the percentage of memory it saves when compared to TBM and SST. The
proposed representation overcomes both TBM and SST, but the amount of saved memory is
higher for TBM (between 34.67 % and 76.31 %) than for SST (between 8.65 % and 19.98 %),
which was designed with the aim of minimizing memory requirements. Moreover, it is shown
that sparse prefix trees of IPv6 prefix sets allow to save more memory because they are well
suited for the utilization of memory-efficient newly proposed nodes introduced in Figure 4.1.
It is also clear that all selected prefix sets can be stored in an on-chip memory available on
the target FPGA, when encoded using the proposed representation.

Prefix Set Prefixes Memory [kb] Saved Memory
IPv4 Proposed TBM (SL=5) SST (K=32)

rrc00 332 118 6 330.8 34.67 % 8.65 %
IPv4-space 220 779 3 571.4 37.37 % 12.49 %
route-views 442 748 7 779.8 34.85 % 11.34 %

IPv6 Proposed TBM (SL=3) SST (K=32)
AS1221 10 518 475.8 55.82 % 19.16 %
AS6447 10 814 493.8 56.11 % 19.98 %

Generated IPv6 Proposed TBM (SL=4) SST
rrc00_ipv6 319 998 21 264.3 75.63 % N/A
IPv4-space_ipv6 150 157 10 412.2 76.31 % N/A
route-views_ipv6 439 880 29 039.5 75.57 % N/A

Table 4.1: Memory requirements of the proposed prefix set representation and the percent-
age of memory it saves when compared to the TBM and SST algorithms on selected prefix
sets.

Table 4.1 also allows to compute an average memory efficiency ratio (i.e., an average
number of bytes required for storing one byte of a prefix) of the proposed prefix set repre-
sentation. This parameter of the proposed representation, which equals to 1.08 in case of
generated IPv6 prefix sets and 0.85 in case of IPv4 prefix sets, is necessary for comparison
with the PPLA algorithm. According to [21], the average memory efficiency ratio of PPLA
on generated IPv6 prefix sets is 0.90 when prefixes are encoded using a set of binary search
trees. Therefore, the proposed representation is slightly worse than PPLA on in this case.
However, it is significantly better on IPv4 prefix sets, for which [21] reports the average
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memory efficiency ratio of 1.00. The memory efficiency of the proposed representation on
real IPv6 prefix sets cannot be compared with PPLA, because PPLA was not evaluated on
this type of data.

Since the proposed prefix set representation is based on a trie, in which multiple prefixes
share the same path through a prefix tree up to some level, it should exhibit a better memory
efficiency ratio on large prefix sets (e.g., generated IPv6) then on small prefix sets (e.g.,
real IPv6). Nevertheless, this is not the case on real and generated IPv6 prefix sets used
in the performed evaluation. The most probable explanation of this unexpected situation
is that the utilized Non-random Generator [36] does not model the process of IPv6 address
allocation correctly, as discussed in Section 3.2. Although there are other IPv6 prefix
set generators (e.g., V6Gene [37]), the Non-random Generator was used in order to fairly
compare the results of the performed evaluation with results presented in [21].

The utilization of FPGA resources (both absolute and percentage) and the maximum
operating frequency after place & route of the proposed architecture on the target FPGA
chip are shown in Table 4.2. Apart from resource utilization and the maximum operating
frequency of a single PE, the table also shows these values for a complete processing pipeline
and the whole proposed architecture comprising two pipelines. Even though the length of
each processing pipeline (23 PEs) makes possible to perform prefix matching using any of
the selected prefix sets, the whole architecture fits into the target FPGA.

LUTs Registers Frequency
(% of All) (% of All) [MHz]

1 PE 3 647 1 825 127.162
(1.23 %) (0.31 %)

1 pipeline (23 PEs) 83 881 41 957 127.162
(28.19 %) (7.05 %)

2 pipelines (46 PEs) 167 762 83 950 127.162
(56.37 %) (14.11 %)

Table 4.2: Resource utilization and the maximum frequency of the proposed pipelined
hardware architecture after place & route on Xilinx Virtex-6 XC6VSX475T using Xilinx
ISE 14.3.

Each processing pipeline is able to provide one matching result per clock cycle, thus
the total matching performance of the whole architecture is almost 255 MLPS, translating
into throughput of 170 Gbps for the shortest Ethernet frames. Operating frequency and
the number of pipeline stages also together determine the overall latency of the proposed
architecture. Because each PE consists of five pipeline stages, the whole pipeline contains
5 · 23 = 115 stages. Since processing in one stage takes approximately 7.86 ns, the overall
latency of processing in the full pipeline is 903.90 ns. Overall latency also dictates the size of
a buffer for packets that wait for the result of prefix matching in the proposed architecture.
To support throughput of 170 Gbps, the capacity of the packet buffer has to be at least
18.75 kB. Nevertheless, this buffer can be implemented in an external memory in order to
save precious memory resources available on an FPGA chip.
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Chapter 5

Addressing Algorithms
Benchmarking

Because the requirements on the performance of packet classification algorithms are contin-
uously increasing, the development of classification algorithms that meet these requirements
is still an active process. To verify that newly developed algorithms fulfill given require-
ments, they have to be benchmarked using a set of classification rules. However, since many
packet classification algorithms leverage inherent properties of real classification rule sets to
improve their performance [33], benchmarking using an arbitrary set of classification rules
would not provide valid results. Therefore, to correctly benchmark a packet classification
algorithm, a real rule set has to be used. The problem of this requirement is that real rule
sets are not publicly available for the majority of packet classification use cases, mostly
because of security reasons.

This chapter addresses the issues of packet classification benchmarking by introducing
ClassBench-ng, a new open source tool for the generation of synthetic IPv4, IPv6, and
OpenFlow 1.0.0 rule sets. Its generation process is based on an input seed that specify sta-
tistical properties of all header fields, for which the matching conditions are to be generated.
Therefore, to make the ClassBench-ng output rule set as close as possible to a real classifi-
cation rule sets, it is important to ensure that such a seed contains properties that precisely
reflect the current trends. The chapter thus presents also the feature of ClassBench-ng that
allows to create input seeds from real rule sets. This feature aims to make the proposed
tool attractive in the long term and for a wide number of different use cases.

5.1 ClassBench-ng: Next Generation ClassBench

The ClassBench-ng toolkit tightly integrates rule set generation and analysis in order to
allow accurate as well as flexible generation of IPv4, IPv6, and OpenFlow rule sets. It also
defines the structure of a seed, which stores the results of rule set analysis and serves as an
input to the rule set generation process. The ClassBench-ng seed contains several statistical
distributions that allow to completely characterize all considered types of generated rule
sets in an anonymous and scalable way.

Since original ClassBench already defines seed’s structure for the IPv4 case and provides
a rule set generator that accepts such seeds, ClassBench-ng utilizes these components and
supplements them with a rule set analyzer, which is not publicly available, although it
has been presented in [34]. Using parts of ClassBench is valid even though they were
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designed more than 10 years ago and the Internet has changed significantly since that time.
Indeed, the results of the performed analysis demonstrate that the value of IPv4 prefix set
parameters has not almost changed and the expected changes were correctly reflected. This
is also the case for parameters related to protocol and ports.

To support the analysis and generation of IPv6 and OpenFlow rules, ClassBench-ng
extends seed’s structure and also both IPv4 rule set analyzer and generator. Fortunately,
the IPv4 prefix set parameters defined in original ClassBench are also able to characterize
sets of IPv6 prefixes, when extended to 129 instead of 33 levels of a trie. On the other
hand, OpenFlow support has to be added from scratch using the distribution for Open-
Flow rule types and separate statistical distributions for OpenFlow-specific header fields,
both of which represent important characteristics of OpenFlow rule sets. The analysis and
generation tools have to be extended such that they are able to produce and consume,
respectively, such a modified seed.

Figure 5.1 shows a high-level architecture of ClassBench-ng comprising four main build-
ing blocks, which are presented in details in the following subsections.

Figure 5.1: The high-level architecture of ClassBench-ng.

Improved ClassBench

For over a decade, researchers have used original ClassBench in order to generate synthetic
classification rule sets for the benchmarking of packet classification algorithms. However, a
test campaign evaluating the fidelity of ClassBench, which was performed in the course of
this thesis’ preparations, revealed that the rule set generation process of ClassBench is not
always accurate. While the layer four ports and protocol of generated rules accurately follow
the input seed, the IPv4 prefixes show lower accuracy. The most probable explanation
of such errors is based on parameters interdependence. To prevent a complex resolving
of dependencies among the prefix set parameters, ClassBench assigns each parameter a
priority and tries to meet the required distributions in an order given by the priority of
corresponding parameters.

ClassBench-ng improves the generation process of ClassBench by iteratively building
an output rule set with source and destination prefix set characteristics as close as possible
to the distributions from the input seed. First of all, the tool uses original ClassBench and
generates a 100-times larger initial rule set. Then it prunes the tries representing source
and destination IP prefixes of this rule set to converge on a solution which is accurate and
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contain the target number of IP prefixes. Once the pruned source and destination tries are
available, Improved ClassBench selects such rules that contain source and destination IP
prefixes available in the pruned tries. To find these rules, the tool constructs a bipartite
graph in which each node represents a prefix from either source or destination trie and
each edge connecting two nodes represents a rule that contains corresponding source and
destination IP prefixes. The rules that ClassBench-ng is looking for are represented by
maximum matching in the constructed bipartite graph.

IPv6 Generation

The IPv6 Generation block extends the improved version of the original ClassBench’s rule
set generator with support for the generation of IPv6 rules. Since both IPv4 and IPv6
prefix sets can be represented using a trie and the trie-related parameters utilized in original
ClassBench are able to catch current IPv6 dynamics, an IPv6 seed straightforwardly extends
the trie-related parameters to allow the specification of corresponding distributions for up
to 129 trie levels. In the same way ClassBench-ng also extends the improved process of
IPv4 rule sets generation, i.e., it adds support for the generation of IP prefixes according
to trie-related distributions specified in the IPv6 seed.

OpenFlow Analysis

The OpenFlow Analysis block takes as an input OpenFlow rules and generates the cor-
responding OpenFlow seed. The OpenFlow seed is a backward-compatible extension of a
5-tuple seed (i.e., the seed utilized in original ClassBench) consisting of three main sections:
(1) a rule type distribution, (2) a 5-tuple seed, and (3) an OpenFlow-specific fields seed.
The first section represents header fields dependency observed in the analyzed rule set. The
structure of the second section is exactly the same as of a standalone 5-tuple seed, thus
it is possible to use an OpenFlow seed for the generation of 5-tuple rules using original
ClassBench (or its improved version that is employed in ClassBench-ng). Finally, the last
section contains separate statistical distributions for OpenFlow-specific header fields. Each
of these distributions utilizes one of the following representations:

∙ values — a distribution over a set of original values;

∙ parts — a distribution over a set of the selected part of original values;

∙ size — a total number of unique original values;

∙ null — no representation.

Currently, ClassBench-ng is able to correctly parse rule sets represented in the for-
mat utilized by the ovs-ofctl command line tool [2] and generate the appropriate Open-
Flow 1.0.0 seed. This format is primarily aimed at representing flow table entries of Open-
Flow switches (note that each flow table entry corresponds to an OpenFlow rule). However,
since the IPv4 prefix and IPv4 5-tuple are also valid OpenFlow rules, the OpenFlow Analy-
sis block is able to parse these types of classification rules as well. Although the ovs-ofctl
tool supports both IPv4 and IPv6 prefixes, ClassBench-ng currently supports parsing of
IPv4 prefixes only.
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OpenFlow Generation

The OpenFlow Generation block generates a set of OpenFlow rules from an input OpenFlow
seed. It starts with the generation of a set of IPv4 5-tuples, which follow the parameters
specified in the seed, using the Improved ClassBench block of ClassBench-ng. Each gen-
erated 5-tuple is then transformed to an OpenFlow rule that complies with a rule type
generated according to the corresponding distributions stored in the seed. In particular,
some of the 5-tuple fields might be removed and other OpenFlow-specific fields might be
added.

The generation of values for OpenFlow-specific header fields is driven by representation
utilized for particular header fields. However, in order to generate consistent OpenFlow
rules, further constraints on the generated values have to be sometimes applied (e.g., the
value of eth_type must be set according to utilized header fields from higher levels or the
value of vlan_id must not be 0x000 nor 0xFFF).

5.2 Experimental Evaluation
This section evaluates the fidelity of ClassBench-ng’s rule set generation for IPv4 prefixes,
IPv6 prefixes, and OpenFlow rules. The evaluation does not focus on layer four ports and
protocol because ClassBench-ng directly uses the values of these header fields generated by
original ClassBench, which provides accurate results in this case.

In order to fairly compare ClassBench-ng with other synthetic rule set generators, the
evaluation presented in this section is based on the value of root-mean-square error (RMSE)
that is computed using Equation 5.1. In this equation, 𝑛 represents the number of generated
rule sets, 𝑦 is the target value of an evaluated parameter, and 𝑦𝑖 stands for the parameter’s
value extracted from the generated sets. The performed experiments were carried on by
generating 𝑛 = 10 rule sets using tool-specific seeds extracted from an original rule set.
The characteristics of the original rule set thus represent the target values (i.e., 𝑦) against
which were compared the same characteristics of the generated sets (i.e., 𝑦𝑖) obtained from
various rule set generators.

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑦 − 𝑦𝑖)2 (5.1)

IPv4 Prefixes Generation

The comparison of ClassBench-ng, ClassBench, and FRuG on the generation of IPv4 pre-
fixes utilized an original rule set that had been generated by ClassBench using the acl4
seed provided with this tool. Because both ClassBench-ng and FRuG support the transfor-
mation of an input rule set into the corresponding seed, they were used to generate input
seeds for the compared rule set generators from the original rule set (note that a seed for
ClassBench-ng can also be used in original ClassBench). Finally, these seeds were utilized
in the compared tools to generate rule sets, whose trie-related characteristics were assessed
using RMSE.

Figures 5.2 show the comparison of RMSE obtained for ClassBench-ng, ClassBench,
and FRuG on each trie level. According to these results, ClassBench-ng fully outperforms
original ClassBench and except for only one trie level also FRuG in terms of the branching
probability distribution (Figure 5.2b). The situation is more balanced with respect to the
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(b) Branching probability distribution (two-children nodes).
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(c) Average skew distribution.

Figure 5.2: The comparison of trie-related parameters’ root-mean-square error on each trie
level when generating IPv4 prefix sets using ClassBench-ng, ClassBench, and FRuG.
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average skew distribution (Figure 5.2c). In this case, ClassBench-ng is more precise on
approximately 50 % of trie levels when compared against ClassBench and on more than
80 % of levels when compared against FRuG. However, Figure 5.2a shows a poor fidelity of
ClassBench-ng with respect to the prefix length distribution.

It is not possible to improve ClassBench-ng’s generation fidelity for the prefix length
distribution without impacting negatively on the other parameters. Nevertheless, in case
of the prefix length distribution RMSE is 10-times lower compared to other trie-related
parameters. Therefore, ClassBench-ng is the most accurate rule set generator among the
compared tools on average.

IPv6 Prefixes Generation

When comparing the quality of ClassBench-ng’s IPv6 prefix set generation against Non-
random Generator, two original rule sets were used. An input seed for ClassBench-ng
was extracted from an IPv6 prefix set from a core router, while Non-random Generator’s
input consisted directly of an IPv4 prefix set from the same router obtained on the same
day. Although such a setup does not lead to an entirely fair comparison of the tools, it
is enforced by their different requirements on input data. ClassBench-ng requires a seed
extracted from a rule set of a target type (an IPv6 prefix set in this case) and Non-random
Generator expects an IPv4 prefix set on its input. Thus, using IPv4 and IPv6 prefix sets
originating from the same core router leads to the fairest comparison of the tools.

Both ClassBench-ng and Non-random Generator achieve a comparable quality of IPv6
prefixes generation in terms of the prefix length distribution. However, ClassBench-ng is
more precise with respect to the branching probability distribution, while Non-random Gen-
erator wins the comparison on the average skew distribution. Individual figures illustrating
these results are not shown due to space limitations.

OpenFlow Rules Generation

The fidelity of ClassBench-ng’s OpenFlow rules generation was compared against FRuG on
two important characteristics of an OpenFlow rule set: (1) header fields dependency repre-
sented by the rule type parameter and (2) separate statistical distributions for OpenFlow-
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Figure 5.3: The comparison of root-mean-square error for rule types utilized in OpenFlow
rule sets generated by ClassBench-ng and FRuG.
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specific header fields. To fairly compare ClassBench-ng with FRuG, input seeds for both
generators were extracted from a rule set utilized in an Open vSwitch deployed in a data-
center, which was chosen as an original rule set.

Figure 5.3 compares ClassBench-ng’s RMSE on particular rule types utilized in the
original rule set against RMSE obtained on these rule types with FRuG. In this experiment
ClassBench-ng clearly outperforms FRuG as it achieves higher RMSE for rule types 1304
and 2048 only. Therefore, ClassBench-ng is more accurate in characterizing the relationship
between header fields, i.e., which fields are more likely to be specified together in a rule.

ClassBench-ng is also more accurate than FRuG with respect to the generation of
OpenFlow-specific header fields, as shown in Figure 5.4. Since header fields vlan_id,
vlan_prio, and ip_tos are always wildcarded in the original rule set, the figure compares
average RMSE of the generators on the in_port, mac_src, mac_dst, and eth_type header
fields only. While the average RMSE of both generators is almost the same (and very low)
for in_port, ClassBench-ng is clearly more accurate than FRuG for all other fields.

The whole comparison of ClassBench-ng and FRuG is in favor of the sooner. It is also
important to note that ClassBench-ng produces consistent OpenFlow rules, which satisfy
all constraints introduced in Section 5.1.
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Figure 5.4: An average root-mean-square error of ClassBench-ng and FRuG for all evaluated
OpenFlow-specific header fields. The average for each header field was computed from all
RMSE values of that particular field.
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Chapter 6

Conclusions

This thesis deals with packet classification that is one of the most common operations im-
plemented in networking devices. Although the basic principle of packet classification has
always been the same, a rapid development of the Internet, which we have been experiencing
since the beginning of this century, has significantly increased the requirements that have
to be met by current packet classification algorithms deployed in core networks. Namely,
growing transfer rate has led to a shorter time available for the classification of a single
packet, while the number of bits involved in the classification decision has increased due
to accelerated adoption of the IPv6 and OpenFlow protocols. Moreover, the complexity
of packet classification has also been increased by a growing number of classification rules.
Therefore, the majority of current packet classification research address the performance of
packet classification algorithms. However, as the requirements on the algorithms are con-
tinuously increasing, improving their performance is still an active process producing novel
classification algorithms that have to be benchmarked, ideally using real sets of classifica-
tion rules. Unfortunately, such rule sets are not publicly available for most of the packet
classification use cases. Current research thus further focuses on the generation of synthetic
rule sets applicable to benchmarking packet classification algorithms. These two issues in
current research on packet classification are also addressed in this thesis, which has been
directed by the goals set in Section 1.1.

The performance of packet classification algorithms is addressed by an FPGA-based
implementation of prefix matching [24, 23] that is able to perform almost 255 MLPS for
both IPv4 and IPv6 prefixes, which translates into throughput of 170 Gbps when consider-
ing the shortest Ethernet frames. Such lookup performance is enabled by a newly proposed
pipelined hardware architecture utilizing on-chip memory blocks available in current FPGA
chips. Although the whole architecture consists of two processing pipelines (to use both
ports of on-chip memory blocks), each of which comprises 23 stages (to support matching
IPv6 prefixes), it easily fits into the target FPGA chip (Xilinx Virtex-6 XC6VSX475T).
In addition, because the amount of the on-chip memory is limited, prefix sets are encoded
using a novel memory-efficient representation that allows to completely store any of the
available prefix sets in the on-chip memory of the target FPGA. The proposed prefix set
representation is more memory efficient than representations utilized in both TBM and
SST algorithms, especially for IPv6 prefix sets corresponding to sparse prefix trees. Fur-
thermore, even though the proposed representation is slightly worse than the representation
utilized in the PPLA algorithm in case of generated IPv6 prefix sets, it is significantly bet-
ter on real IPv4 prefix sets. Since the proposed prefix set representation and pipelined
hardware architecture together allow to perform prefix matching with throughput required
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in 100 Gbps networks (regardless the version of the IP protocol), it can be concluded that
the first goal of this thesis has been successfully achieved.

To enable a realistic assessment of classification algorithms’ performance parameters,
this thesis introduces a synthetic rule set generator called ClassBench-ng [22], which com-
bines features of existing 1-dimensional and multi-dimensional generators in a single tool
and explicitly supports also the generation of OpenFlow 1.0.0. rule sets. Though original
ClassBench provides all necessary features for the generation of IPv4 5-tuples, generated
IPv4 prefix sets do not precisely follow corresponding distributions specified in an input
seed. ClassBench-ng thus builds on the original ClassBench tool, but it improves the Class-
Bench’s process of IPv4 prefixes generation and extends this process with the support for
the generation of IPv6 prefixes. Nevertheless, the main contribution of ClassBench-ng is
a newly added OpenFlow toolchain comprising not only a rule set generator but also a
rule set analyzer that is capable of analyzing IPv4 and OpenFlow rule sets specified in the
ovs-ofctl format. Since ClassBench-ng contains the rule set analyzer producing a seed
together with the rule set generator utilizing such seed on its input, it is able to generate
synthetic rule sets with properties similar to the analyzed real rule set and also to adjust
the seed when the properties of the real set changes. Although the generation of IPv4
prefixes in ClassBench-ng is not more accurate than in original ClassBench or FRuG with
respect to all trie-related parameters, on average ClassBench-ng outperforms both of these
tools. The situation is similar for IPv6 prefixes generation, in which case the precision of
ClassBench-ng is comparable with Non-random Generator, i.e., a specialized 1-dimensional
generator of IPv6 prefixes. ClassBench-ng achieves the best results in case of OpenFlow
rules generation, where it is clearly more accurate than FRuG with respect to both rule type
and individual OpenFlow-specific header fields. In summary, the proposed ClassBench-ng
toolchain is capable of generating synthetic IPv4, IPv6, and OpenFlow 1.0.0 rule sets, which
follow statistical distributions extracted from real rule sets, and the precision of its rule set
generation process is comparable or better than the precision of similar rule set generators.
Therefore, the second goal of this thesis has also been achieved.

Despite the goals set for this thesis have been successfully achieved, there are numerous
options for future work in the addressed areas. Currently, there is an ongoing effort at the
development of a trace generator for ClassBench-ng that will allow to generate a packet
header trace for a given rule set. Using such trace it will be possible to comprehensively
assess not only the expected worst case performance of a packet classification algorithm
utilizing the given rule set, but also its actual average performance under a traffic load.
Once the trace generator will be finished, the next steps may focus on further extensions
of the presented solutions. It would be interesting either to allow incremental updates
of a prefix set while keeping a high memory efficiency of its representation or to make
the ClassBench-ng’s rule set analyzer able to extract a seed from different types of real
rule sets specified in various formats. Nevertheless, even more appealing would be to
address challenges brought by a continuous and accelerating evolution of the Internet. This
category currently includes improving the performance of the prefix matching architecture
to support 400 Gbps Ethernet and extending ClassBench-ng to support further versions of
the OpenFlow standard.
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