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Abstract 

Single-cell genotyping is a challenging part of genomics that deals with insufficient amount of DNA 

for analysis and methods that amplify the single cell DNA introduce bias in the data. This thesis maps 

the state of the art of bioinformatics analysis in genomics, particularly SNP array genotyping and 

proposes and implements original method for tackling the noise in the single-cell data. Moreover, few 

original algorithms for knowledge extraction from single cell data are presented and the functionality 

of the workflow is demonstrated on real data from products of female meiosis. 

 

 

 

 

 

Abstrakt 

Single-cell genotypovanie je náročnou oblasťou genomiky kvôli nedostatku DNA a metódy, ktoré 

DNA amplifikujú, dáta zašumujú. Táto práca mapuje aktuálne trendy v bioinformatickej analýze 

genomických dát, najmä genotypovanie SNP micročipov a navrhuje a implementuje pôvodnú metódu 

na odstránenie šumu zo single-cell dát. Ďalej prezentuje niekoľko originálnych algoritmov na 

získavanie znalostí zo single cell dát a funcionalita celého workflow je demonštrovaná na reálnych 

dátach - produktoch meiózy u žien. 
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1 Introduction 

1.1 Motivation 

It has been over half of the century since Watson and Crick discovered the molecular structure of 

deoxyribonucleic acid (DNA). DNA, the code of life, codes the genetic information that we inherited 

from our ancestors and will partly pass down to our offsprings. Every single cell within our body 

contains nearly the same genetic information. However, every single individual (as a system of 

multiple cells communicating with each other) contains a collection of single nucleotide 

polymorphisms (SNPs) that distinguishes him from the rest of the population. One of the crucial tasks 

of nowadays computational biology is to shed light on this genetic diversity. A process of revealing a 

particular SNP is called SNP-typing or genotyping. Genotyping is feasible thanks to powerful 

algorithms relying on robust statistical methods assuming sufficiently strong signal that supports a 

genetic variant in a population. Invariant to the screening technology used, we need to operate with 

sufficient amount of biological material to obtain strong signal supporting our observation, This is 

usually not a problem, as, i.e. blood sample from an individual would likely contain sufficient amount 

of genetic material from multiple cells. 

Although all the cells within one individual should in theory contain the same genetic 

information, there is a plethora of factors related to their function that can alter the DNA dynamically 

during their lifetime – i.e. epigenetics or de-novo mutations (Junker and van Oudenaarden, 2014; 

Shapiro et al., 2013). Therefore, there is an increasing motivation constantly driven by new scientific 

discoveries to look at the DNA on a single cell level. One big driver are cancer studies, where we 

know that cancer cells are highly heterogeneious due to increased mutagenesis. Knowing the precise 

genetic structure of a cancer cell can be crucial when assessing the therapy. Another example, where 

analysis on single cell level is of a great benefit, is examining structure of DNA and biological 

processes in highly complex tissues  i.e. brain (Emery and Barres, 2008). At last, but not least, 

reproductive biology is a field where knowing the precise genetic information of a single cell is 

crucial. During creation of reproductive cells in human, the process called recombination shuffles the 

genetic information. This shuffling is unique per cell and helps to understand potential genetic 

disorders transmitted to offspring, causes of miscarriages etc. A very practical example, that is 

possible thanks to advanced medical technology, is in-vitro fertilization. During this procedure, a set 

of female eggs is monitored and genetically screened and only the eggs with the best fitness (in terms 

of likelihood of genetic diseases) will be used for in-vitro fertilization (Handyside et al., 1992; 

Friedler, 2012).  

When analyzing data from multiple cells in a pool (termed bulk DNA), we accept that the 

signal we obtain is an average of all cells in the sample due to their heterogeneity. We illustrated 
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many examples, where this is not good enough. Thanks to sophisticated methods of molecular 

biology, we are now able to sort cells from a tissue, pick an individual cell and extract DNA. The 

amount of single cell DNA, unlike in bulk DNA is however very little for successful screening and 

therefore, the DNA has to be ,,copy-pasted‖. This process is possible, it is called whole-genome 

amplification, but it deteriorates the signal and can compromise the whole analysis by introducing 

bias to the data (Spits et al., 2006; Vanneste et al., 2012). 

Machine learning has been successfully applied to many interdisciplinary fields including 

bioinformatics, biomedical research and medicine. Algorithms and statistical methods from this field 

of computer sciences many times improved the state of the art biological model by providing valuable 

and accurate predictions in situations, where searching through the whole space of possible results 

would be simply too costful or fatal (Prompramote et al., 2005). 

SNP array has been an affordable technology for screening variants in DNA of an individual 

for over a decade and a package of hardware-software solution for revealing the genotype has shown 

high accuracy when bulk DNA is analysed, but not the single cell (Vanneste et al., 2012).   

This work gives on overview of strategies for bioinformatics analysis of genomic data and then 

particularly focuses on algorithms for bulk DNA and single-cell genotyping. It pinpoints the 

specificities of the single-cell environment compared to standard bulk DNA processing and 

particularly researches the anatomy of noise and possibilities of improvement of genotyping. An 

original machine learning algorithm is proposed that tackles the noise problem. Additionally, few 

algorithms have been designed for single cell genomics, particularly area of reproductive biology, 

that, together with the novel machine learning solution, improve the current state of the art in 

bioinformatics of single cell and allow to look at fine genomic events at the single cell level. 

1.2  Goals of the thesis 

Given the motivation in the introduction, this work primarily focuses on investigating solutions for 

single-cell genotyping using data from SNP arrays. Based on the literature survey, there are satisfying 

solutions for genotyping of bulk DNA with SNP arrays, but none of them was specifically designed 

to genotype DNA from a single cell. Documented by multiple studies, the single cell data contains 

noise caused by amplification of the genetic material. This is a problem, because errors in the data can 

lead to false biological conclusions and therefore compromise the whole workflow. Standard 

genotyping algorithms fail, because they do not assume deteroriated signal caused by erroneous 

amplification. As a direct consequence, they allow both, high Type I and Type II errors. 

1.2.1 Research questions 

To solve the problem of reliable genotyping of single cell data, we can formulate following research 

questions: 
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1. Is it possible to describe pattern of noise in the SNP array single cell data? 

2. Is is possible to design a machine learning method that would distinguish the good quality 

data from the noise and improve precision of a single-cell genotype? 

  

1.3 Structure of this thesis 

During his doctoral studies, the author of this thesis was member of two research groups
1
 and the 

results presented here are author‘s contribution to their scientific outcome. The research groups 

actively supported the informatics research of the author with the exclusive data and this is reflected 

in the structure and the content of the work. 

Chapter 2 will give an overview of the necessary terms and principles of the molecular biology. 

As the single-cell analysis shares many steps with standard analysis of bulk genomic data, we will 

present a generic workflow and pinpoint the specificities of the single-cell environment. While SNP 

array is the main source of data in this work, other approaches, namely next generation sequencing 

(NGS) is a valuable validation resource and will be therefore discussed as well. Chapter 3 then 

presents data preprocessing strategies for SNP arrays and NGS. With the remaining chapters, the 

work specializes on genotyping from SNP arrays and Chapter 4 therefore explains models that were 

previously used in the area of genotyping or principles of the models that will be utilized for single 

cell genotyping in later stage of this work. Here, we also demonstrate the limitations of using standard 

genotyping algorithms in the single cell environment. Chapter 5 then builds up on the state of the art 

methods and presents a design for a new method aimed for precise single cell genotyping. Chapter 6 

validates the proposed methods and presents optimal parameters of the model as a result of performed 

experiments. Chapter 7 presents algorithms for knowledge extraction from the single cell data and 

Chapter 8 then demonstrates application of the novel machine learning algorithm on these knowledge 

extraction methods. Finally, Chapter 9 summarizes the contribution and proposes ideas for future 

research. 

  

                                                      
1
 Department of Plant Developmental Genetics at the Institute of Biophysics of the Czech Academy of 

Sciences, in Brno, Czech Republic and Center for Chromosome Stability, Department of Cellular and 

Molecular Medicine, University of Copenhagen, Denmark 
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2 Genomics 

„Genomics is the study of the full genetic complement of an organism (the genome). It employs 

recombinant DNA, DNA sequencing methods, and bioinformatics to sequence, assemble, and analyse 

the structure and function of genomes.―
2
 

Genotyping is detection of an individual‘s genotype as a collection of alleles (variants of 

genes). While genotyping is the central topic of this thesis, it is necessary to put it into the context of 

genomics and explain underlying biological processes The collection of biological terms explained in 

this chapter will be used throughout the thesis. On top of this, a generic workflow for processing 

genomic data will be presented that serves as a visual guide for the subsequent chapters. 

2.1 Biology 

2.1.1 DNA 

Virtually every cell of our body contains a molecule of DNA. DNA consists of two long 

polynucleotide chains (double helix) linked together by hydrogen bond. Each chain, or strand, is 

composed of four types of nucleotide subunits. Nucleotides are composed of a nitrogen-containing 

base and a five-carbon sugar, to which is attached one or more phosphate groups (Figure 2.1A). For 

the nucleotides in DNA, the sugar is deoxyribose (hence the name deoxyribonucleic acid), and the 

base can be either adenine (A), cytosine (C), guanine (G), or thymine (T). The nucleotides are 

covalently linked together in a chain through the sugars and phosphates, which thus form a backbone 

of alternating sugar–phosphate–sugar–phosphate (Figure 2.1B). Because it is only the base that 

differs in each of the four types of subunits, each polynucleotide chain in DNA can be thought of as a 

necklace: a sugar–phosphate backbonestrung with four types of beads (the four bases A, C, G, and T). 

These same symbols (A, C, G, and T) are also used to denote the four different nucleotides (Alberts et 

al., 2015). The sequence of nucleotides encodes the phenotype – an individual‘s visible traits. 

The set of DNA molecules is tightly packed into chromosomes and a complete set of 

chromosomes is genome. The human genome consists of 23 chromosomal pairs (Figure 2.1D). Each 

pair consists of homologous chromosomes (or homologs; one inherited from the mother and the other 

one from the father). Naturally, both homologs have the same order of genomic entities (genes) and 

are compatible, but they differ in some nucleotides. This gives rise to alleles – different variants of 

genes (Figure 2.1E). The first 22 pairs of chromosomes are called autosomal chromosomes and the 

                                                      
2
 https://www.nature.com/subjects/genomics 

https://www.nature.com/subjects/genomics
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last pair is sex chromosomes. The type of pairing of the sex chromosomes defines the gender - X and 

X for female and X and Y for male. 

2.1.2 Central dogma of molecular biology 

Central dogma of molecular biology is a key principle describing the transfer of genetic information 

stored in DNA into proteins. It consists of three basic steps: 

 Replication of DNA – is a natural process of DNA amplification, where the original DNA 

double-helix is first depleted and gives rise to two single stranded DNA molecules (ssDNA); both 

ssDNAs source as a template for DNA synthesis of a complementary strand to the template DNA. 

The output of this process is four strands of DNA (or two double strand DNA - dsDNA). 

 Transcription from DNA to RNA –   DNA is transcribed to various types of RNA. The RNA that 

is coding genes is messenger RNA as it carries the information about the gene to ribosome. The 

reader is refered to Wu et al., 2014 for  a comprehensive overview of other types of RNAs 

(transfer RNA, long and small non-coding RNAs, etc). 

 Translation of RNA into proteins – a portion of RNA (mRNA) is translated to amino-acid (three 

ribonucleotides build a codon that is translated into amino acid); a set of amino-acids is chained 

up into protein. Protein is a basic structural brick of a cell. 

2.1.3 Ploidy and homologous recombination 

As explained in Section 2.1.1, genomic DNA of human organism has 23 pairs of homologous 

chromosomes. Each homologous pair is created from parental chromosomes (green and yellow 

strands in Figure 2.2 representing maternal and parental DNA). The number of sets of chromosomes 

(number of homologs per chromosome) is often refered to as ploidy (Hartl, 2012). Human genome is 

diploid by default, as it consists of  two copies of each chromosome, but human sex cells are haploid 

and merge to a diploid genome during fertilization. During gametogenesis (generation of sex cells), 

the amount of genetic material first doubles and then reduces  (diploid genomic DNA to haploid 

gametes in Figure 2.2). This type of division is also called meiosis. The replicated chromosomes can 

undergo recombination – a process of reciprocal exchange of genetic material between homologous 

chromosomes (swap of green and yellow in Figure 2.2). Recombination is considered as one of the 

main drivers of human evolution (Rieger et al., 1968). 
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Figure 2.1. Structure and compounds of DNA. (A) Building blocks of DNA: sugar-phosphate and base build a nucleotide. 

(B) DNA strand composed of covalently linked nucleotides. (C) Double stranded DNA: the strands  are linked by hydrogen 

bond .and adapt the typical double-helix structure of DNA. (D) DNA is packed into 23 chromosomal pairs.3 (E) In each pair 

of chromosomes (homolog), the chromosomes have the same order of genes but the nucleotides can differ. 

 

Figure 2.2. Meiosis and homologous recombination during gametogenesis. Genomic DNA is firstly replicated. The 

homologous chromosomes then undergo recombination – they swap part of their genetic material. This is then distributed 

into haploid cells. 

                                                      
3
 Picture taken from https://www.mun.ca/biology/scarr/FISH_chromosome_painting.html  

https://www.mun.ca/biology/scarr/FISH_chromosome_painting.html
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2.1.4 Structural variations in human genome 

The DNA of humans is identical in more than 99%. The rest accounts for  structural variants (Feuk et 

al., 2006). Most of the variants are SNPs (Figure 2.3), which means that the difference is only in one 

nucleotide. The genomic position of the SNP is called genomic site or locus. 

 

Figure 2.3. Illustration of a single nucleotide polymorphism. The individuals share most of the genotype. The differences 

between them are defined mostly by changes in a single nucleotide. 

The genomic variants between individuals are interpreted using a common reference individual 

– this is usually a reference genome that has been previously established using  a great amount of 

sequencing data and multiple bioinformatics tools to assure high quality.  

Interestingly, variants that are present at more than 1% in the human population account for 

90% of the variability (Collins et al., 1998). Most of these variable sites are biallelic, which means 

that only two variants of a gene are observed: 

 Major allele A – corresponds to the reference genome 

 Minor allele B – differs from the reference genome and is fixed at a rate 1% in the population 

or higher. This rate is called minor allele frequency (MAF). 

Although the majority of the human genome shows no variation, the rest accounts for all 

variability including pathological phenotypes. The neighboring SNPs are usually inherited together – 

this gives an opportunity to reduce a full set of SNPs present in a population to tag SNPs that define a 

haplotype – this is a group of alleles that are inherited together from a single parent (green or yellow 

strands after recombination in Figure 2.2). The reduction to tag SNPs allows us to describe an 

individual using approximatelly 500,000 markers (The International HapMap Consortium, 2003)..  

The presence of tag SNPs and haplotype blocks gave rise to population studies that were aggregated 

in HapMap project (The International HapMap Consortium, 2003)..  

The International HapMap project 

The HapMap project collects the information about variability in the population (represented in tag 

SNPs and haplotype blocks) and draws conclusions about presence of certain phenotypes and diseases 

in subpopulations. HapMap screened all SNPs with minor allele frequency of 5 % or greater. The 

latest version of HapMap database incorporates 1.6 million SNPs from 1184 individuals from 11 
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global populations (The International HapMap Consortium, 2010). HapMap project with its huge 

statistical foundation is often considered as standard for quality assesment of SNP data (Montpetit et 

al., 2006) and a main resource for creating reference populations of SNPs with an optimal minor 

allele frequency (Illumina, Inc., 2010). 

2.1.5 Heterogeneity and single-cell genomics 

The heterogeneity as explained in Section 2.1.4 is not only present between individuals, but also at 

much finer scale, between tissues of a single individual and clones of cells from one tissue (as it is 

typical for i.e. . lymphocytes participating on the immune system of human) of an identical cell line 

(Figure 2.4). Two particular issues are specific to the single cell analysis:  

 how to isolate a single cell, and 

 how to increase the amount of DNA. 

The latter is important because a single cell does not contain sufficient amount of DNA required by 

the screening technologies (Shapiro et al., 2013). 

 

Figure 2.4. Heterogeneity is present at different levels – between individual donors of genetic information, between 

the tissues of a donor and clones of single cells from the same tissue. (McLeod and Mauck, 2017) 

2.2 Workflow for processing genomic data 

A generic workflow for processing genomic data is shown in Figure 2.5. The whole methodology can 

be dividied into two consecutive parts: `laboratory part` (Figure 2.5A) and `software part` (Figure 

2.5B). The distinct processes from the laboratory part will be briefly presented in the subsequent text. 

It is important to understand that the single cell analysis requires WGA (Figure 2.5A) and to 

understand the principle and differences between microarray technology and NGS. The rest of the 

thesis (Chapter 3 onwards) will be dedicated to software part, as it is of the main interest of this work. 
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Figure 2.5. Workflow for processing of the genomic data. (A) Laboratory part involves distinct steps starting from 

material collection and DNA extraction. Should the material be from single cell, whole genome amplification is required. 

Subsequently, library of genomic data is created and screened by two commonly used technologies – microarrays or next-

generation sequencing. (B) The signal from both microarray or NGS need to be preprocessed and then, a machine learning 

model is created from the data to predict primary information about the data (i.e. genotyping). Knowledge extraction then 

takes into account the genomic context and draws biological conclusions about the data (i.e. presence of recombination 

event) 

2.2.1 Material collection and DNA extraction 

Material collection is a broad term that involves isolating the target tissue in form of a biological 

sample. For single-cell environment, isolating the target biological samples requires isolating a single 

cell from a tissue. This can be currently performed by various laboratory procedures including 

fluroescence-activated cell sorting (FACS), magnetic-activated cell sorting (MACS), laser capture 

microdissection (LCM), manual cell picking and microfluidic. These methods differ in specific 

properties including robustness and accuracy and are discussed in detail in Hu et al. (2016). 

DNA extraction is nowadays a routine process of molecular biology, supported by numerous 

laboratory kits and validation studies. The protocol includes cell lysis (cell membrane removal), 

protein denaturation and removal of other cell contaminants (Psifidi et al., 2015). 

Both material collection and DNA extraction are nowadays very accurate processes and deliver 

purified DNA that undergoes subsequent  amplification and library preparation.  

2.2.2 WGA and Library preparation 

WGA is a crucial step in the the single cell analysis (Figure 2.5) due to the critically low amount of 

DNA.We will first present  polymerase chain reaction (PCR) as a ―mother‖ of all amplification 

methods, followed by state of the art WGA methods. The criterion for a good performing whole 

genome amplification method is amplification evenness and low error rate. Evenness refers to the 

ability to evenly cover the whole genome (Blanshard et al., 2018).  

PCR 

PCR is an enzymatic assay that allows amplification of a specific DNA fragment. The DNA fragment 

is defined by special sequences – primers. Primers are complementary to the target sequence and 
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serve as extension point for the DNA polymerase . The DNA polymerase is crucial enzyme in the 

reaction that synthetizes many copies of the target DNA from the pool of prepared building blocks – 

nucleotides (Garibyan and Avashia, 2013). 

PCR is a highly sensitive technique  but it is highly exponential – therefore, some fragments 

would amplify much more frequently than the others which would negatively affect the coverage of 

the genome. 

Whole genome amplification 

The  original WGA method was PCR based and is still used though its limited genome coverage. An 

example is improved degenerate oligonucleotide-primed PCR (improved DOP-PCR; Blagodatshik, et 

al., 2017). There are quasi-linear methods such as PicoPlex (Rubicon Genomics) or SurePlex 

(Illumina Inc.) and Multiple Annealing and Looping-Based Amplification Cycles (MALBAC; Yikon 

Genomics). They all have a ―linear‖ phase, followed by a limited number of PCR-based cycles. MDA 

is a method based on isotermal reactions  (SureMDA; Illumina Inc) and has been widely used due to 

relatively good coverage and low error rate of its polymerase (Blanshard et al., 2018). The most 

recent method is LIANTI, that uses repetitive DNA (transposons) to fragment the single-cell genome 

(Chen et al., 2017). The overview of the WGA methods with selected properties are displayed in 

Table 2.1. 

 

Table 2.1. Overview of the WGA methods 

WGA method Genome 

Coverage (%) 

SNP 

Accuracy 

SNP FPRa Amplification 

Principle 

Amplification Enzyme 

DOC-PCR 45 Low 2 ×10-4 Exponential PCR DNA polymerase 

MDA 87 High (1-2) × 10-5 Exponential Phi29 DNA polymerase 

PicoPlex or MALBAC 73 Low (1-4) × 10-4 Quasilinear PCR DNA polymerase 

LIANTI 95 High (2-5) × 10-6 Linear T7 RNA polymerase 

a 
SNP false positive rate 

Library preparation 

Library preparation is the last step before processing the material with NGS or microarrays. The 

procedure involves DNA fragmentation into smaller, equally-sized pieces and ligation (attachment) of 

adapters. The adapter is a small sequence of DNA with known structure that acts as a barcode and 

enables categorization of the fragments of the analysed DNA molecules. 

2.2.3 Microarrays 

DNA microarray, also known as biochip or DNA chip, is a technology that allows parallel 

measurement of genetic information using hybridization principle. Hybridization is a biochemical 

reaction, where two compatible (complementary, Section 2.1) DNA strands attach to each other by 
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hydrogen bond to create duplex. The generic technology consists of a set of `probes` and `targets`. 

Probes are distributed on a solid surface and contain short fragments of DNA of known sequence. 

Target is the DNA of interest. The target DNA is usually fragmented into smaller pieces and  

fluorescently labeled to enable the detection. Once in contact with the probes on microarray, the 

labeled fragments specifically hybridize with the arranged probes and the signal is then measured and 

quantified (Figure 2.6). There are microarrays specifically designed to measure particular genetic 

information, in the subsequent text, we will focus on SNP arrays. 

 

Figure 2.6. Principle of microarray. The microarray contains spots with short fragments attached to a bead (lines attached 

to marker A and marker B). Once hybridized with the fluorescently labeled material to analyse (target), the signal can be 

quantitatively assesed from the intensity of the fluorescence. 

SNP arrays allow a parallel analysis of a complete set of tag SNPs (Section 2.1.4) in a cost 

efficient manner. There are two main technologies available in the market – SNP array from 

Affymetrix (Affymetrix, Inc., California, United States) and from Illumina (Illumina Inc., California, 

United States). These technologies share a common principle although they use different chemistries. 

The chip contains up to millions of micro-wells containing probes that are specifically designed to 

target a particular variant. The probes are fluorescently labeled and therefore the signal can be 

subsequently quantified, evaluated and converted to a genotype. Figure 2.7 illustrates their principle.  

Affymetrix platform 

Affymetrix is the first company that offered SNP array as a commercial product. Affymetrix SNP 

array can currently accommodate 1 Mio. Every SNP site is represented by a set of probes (probeset). 

Each probe is 25 nucleotides long. There are types of probes associated with allele A or B and each 

probe is complementary or nearly complementary to its target site. Each probeset has 24-40 probes, 

containing both perfect matches (PM) as well as mismatches (MM). The purpose of MM is to 

measure the background noise. The outcome of the raw intensity measure is a quartet of  PMA, 

MMA, PMB and MMB. Using computational techniques, this quartet is then converted to AA, AB or 

BB (LaFramboise, 2009). 
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Illumina platform 

Illumina platform called Illumina BeadChip (Illumina, Inc.) is using universal probes of 50 

nucleotides. The actual genotyping takes place one nucleotide after the probe using single nucleotide 

extension assay (Illumina Infinium Assay protocol, Illumina Inc.). Depending on the target SNP, the 

complementary nucleotide carries either red or green fluorescent signal (A, T or G,C, respectively). 

The output of the Illumina technology is therefore one raw measurement for the A allele and one for 

the B allele at each SNP The number of SNPs and samples that can be analysed in parallel on one 

chip varies from 4 to 12 samples and from ~300k SNPs to 1 million SNPs depending on the specific 

product
4
.   

 

 

 

 

Figure 2.7. Principle of SNP array technology of two main chip producers on the market. (A) Affymetrix and (B) 

Illumina (LaFramboise, 2009). The SNP that is to be detected is in top and it is either an allele having A or C (A/C). The 

Affymetrix chemistry  contains (A) probes for both alleles and therefore both types of probes will bind to the target, yet the 

probe with the correct allele more efficiently (all 25 bases are complementary). The quality of binding itself corresponds to 

the strength of the output signal. Illumina‘s probes (B) are universal and the actual SNP of interest is one nucleotide after the 

probe. Using the single nucleotide extension chemistry, a complementary nucleotide binds to the target SNP and emits a red 

or green signal   

                                                      
4
 Information and details about a particular SNP array technology available at www.illumina.com. 
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2.2.4 NGS 

Sequencing in general, unlike microarray, that targets sequences that match the predefined probes,  

aims to determine the primary structure of DNA, RNA or other biomolecule. NGS is a high-troughput 

technology that allows analysis of millions of fragments of DNA in a parallel manner.  The output of 

the technology is generally millions to billions short DNA reads (50 – 300 nucleotides) that 

correspond to random (or by a primer defined) position in DNA (Slatko et al., 2018). Two basic 

approaches in NGS will be presented: (a) sequencing by hybridization and (b) sequencing by 

synthesis (SBS). 

Sequencing by hybridization 

Sequencing by hybridization mostly resembles the microarray technology. Here, an array of DNA 

oligonucleotides of known sequence is used as a probe to hybridize to labeled fragments of the DNA 

to be sequenced  After multiple rounds of hybridization and washing away the non-hybridized DNA, 

it is possible to determine whether the probe sequence contains the labeled data. This approach, 

similarly to microarrays, relies on specific probes and can target known SNPs or diseases, and it is 

often used in diagnostics (Slatko et al., 2018). 

Sequencing by synthesis  

Most SBS technologies are based on the following principle: individual DNA molecules to be 

sequenced are distributed to specific locations (well, chamber or solid substrate). DNA is then 

amplified in these locations. The DNA synthesis then involves incorporation of single nucleotides 

from a pool to the amplified DNA fragments.These nucleotides are specifically labeled per base 

and/or emit light when imaged to allow detection. Massive parallelism of this method allows to 

generate millions of DNA sequences in a sequence run and SBS is currently the prevalent technology 

in NGS. Two up-to-date SBS technologies are from Ion Torrent andIllumina (Slatko et al., 2018).  

Ion Torrent is based on electrochemical principle and converts the nucleotide sequence into 

digital information directly, on a semiconductor chip.  During DNA synthesis, when a correct 

nucleotide is incorporated, a hydrogen ion is released. This causes the change of pH and can be 

recorded as a change in voltage by a sensor. By sequentially flooding and washing with pool with 

only one type of nucleotide at a time, the voltage changes only if the appropriate nucleotide is 

incorporated (Slatko et al., 2018). 

Illumina provides the currently leading technology in NGS. The sequencing is based on so-

called bridge amplification. Briefly, fragments of DNA (500 nucleotides) are attached to a glass 

surface with both ends to create ,,bridges‗‗  and subsequently amplified 1000 times and more to create 

clusters. These clusters are then hybridized with fluorescently labeled nucleotides and the information 

about intensity is stored in a series of images.. The nucleotides are determined from the images using 

base-calling algorithms (Wright et al., 2017).  
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Figure 2.8. Principle of Illumina sequencing. Adapter sequences (in blue and violett) are attached  to the sequenced DNA 

molecule to allow identification. The DNA is then guided to a flowcell, where it is amplified using bridge amplification. 

Elongating a DNA strand complementary to the target DNA molecule from a pool of prepared, fluorescently labeled 

nucleotides, determines the sequence of the molecule. The fluorescent dyes are captured – the dye strategy currently 

involves either 4 channel or 2 channel chemistry5.    

2.3 Conclusion 

In this chapter, we presented the underlying biological principles and terms to understand the further 

text. In Section 2.2, we presented the generic workflow for analysing genomic data and described the 

laboratory processes and state of the art of the technology – microarrays (particularly SNP arrays) and 

NGS. These technologies share some characteristics in terms of massive parallelism and biochemical 

reactions. However, while microarrays require a predefined set of templates (probes) they are targeted 

for analysis of known, well defined markers. The genome coverage is entirely function of number of 

designed probes. NGS (particularly sequencing by synthesis) generally does not have this restriction 

and is aimed to sequence continuous fragments of the whole genome (or specific parts of the genome 

defined by PCR primers). They also differ in their output – while raw data of a SNP array is 

represented by set of signals (intensities, real values)  for green and red channel (Illumina), the output 

of NGS is defined by set of short DNA sequences (reads, strings). The next chapter deals with 

strategies of preprocessing of both, SNP arrays and NGS. 

                                                      
5
 Image taken from Illumina, Inc, available at www.illumina.com  
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3 Data preprocessing 

This chapter demonstrates strategies for preprocessing data coming from microarrays, namely SNP 

arrays and NGS. We assume the Illumina BeadChip SNP array technology (Section 2.2.3) as 

exclusively data from this technology will be used in the further text. The NGS (Section 2.2.4) 

preprocessing techniques generally do not depend on a particular vendor and therefore, the problem 

here will be defined in a more generic way. 

3.1 SNP array data preprocessing 

3.1.1 Problem definition 

Every SNP i on an array is assigned a tuple of raw intensities   , defined as follows: 

   (     )  (3.1)  

     
  (3.2)  

Where    and   corresponds to red and green raw signal intensities, respectively.    .is affine space 

which is a generalization of vector space. While vector space    is closed under operation of addition 

and scalar multiplication and point (0,0) is of a special significance (additive identity), the affine 

space does not hold a special significance point and the addition of two vectors is not defined 

(Bamberg, 1991). Intuitively, we can also introduce following fuzzy definition over the tuple   : 

                     (3.3)  

                   (3.4)  

         (3.5)  

Where    and    correspond to homozygous genotype and    is heterozygous genotype. The 

preprocessing of   involves two major steps: 

1. Normalization 

2. Background correction and outlier detection 

Step 1 is important in order to perform comparisons across arrays by removing variance of non-

biological origin and step 2 is important for correct interpretation of the data (Lamy et al., 2011). The 

motivation and need for data preprocessing is illustrated on inter-sample differences (Figure 3.1. In 

the following text, we will present few preprocessing strategies that tackle the problem of uneven 

signal between samples, as well as the x and y channels.  

 

Notation 

Consistent with previous definitions, we applied following notation for further explanation of the 

normalization procedures. 
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  *          + 

  *          + 

    

     

         * (   )           ( )        ( )+ 

         * (   )        ( )            ( )+ 

Where   is the total number of markers on the chip,                define sets of random selections 

of data boundary points for the   and   axis, respectively. 

 

Figure 3.1. Boxplots of raw signal X (top) and Y (bottom) from multiple samples(x axis). Every boxplot contains all 

markers (nearly 300,000). Different properties of both, X and Y are apparent across the samples. 

3.1.2 Affine transformation 

The affine tranformation combines normalization and transformation of the data in one procedure.The 

purpose of the transformation is to translate and scale intensities that likely represent homozygous 

genotypes. The procedure (also refered to as 6 degree of freedom affine transformation, Kermani, 

2008) consists of the following steps: 

1. Outlier removal 

2. Background estimation 

3. Rotational estimation 

4. Shear estimation 

5. Scaling estimation 

Outlier removal 

The markers on the chip are divided into subbeadpools based on similar physical properties.The 

division into subbeadpools is predefined by the vendor. Within each subbeadpool, intensities are 

considered as outliers and are removed from the analysis,if: 

 smaller than the 5th smallest value or 1st percentile of all SNPs, or 
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 larger than 5th largest value or 99th percentile of all SNPs 

Background estimation 

The goal of this step is to estimate the additive constant caused by background noise. We select 400 

boundary points from        and       . For these boundary points, linear functions are 

approximated and their intercept defines the new origin   : 

    (     )  (3.6)  

Where (     ) is the distance vector from the default (0,0) origin. The distance vector represents the 

shift of data caused by background noise. The data is therefore translated in regards to the new origin. 

Rotational and shear estimation 

The linear approximations of points from        and        define the new x and y axis. The angle 

between the new and the original x-axis and the new and the original y-axis is measured and noted as 

parameter   (rotational angle) and T (shear), respectively.  

Scaling estimation 

       and        are used again to calculate the scaling factor for the transformation of the points. 

Scaling factor    for the x-axis is defined as mean value of x-intensities from          and, 

analogously,    is defined as mean value of y-intensities from        . 

Normalization 

The normalization process takes parameters calculated in the previous steps and applies Algorithm 1. 

Algorithm 1: AffineNormalization 

Input: tuple    with    and    and parameters                    

Output: normalized intensities         and          

Apply pipeline in Eq. 3.7-3.14 and return (               ) 

           (3.7)  

           
(3.8)  

                         (3.9)  

                          (3.10)  

                 (3.11)  

          (3.12)  

                (3.13)  

                (3.14)  
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3.1.3 Quantile normalization 

Different physical properties of the red and green dye (Section 2.2.3) cause unidentical statistical 

distribution of the x and y intensities and quantile normalization is a common method to use for the 

SNP array data to correct for this bias (Bolstad et al., 2003; Staaf et al., 2008). A need for a 

normalization method is illustrated in Figure 3.2. The principle is to split the two vectors of signal 

intensities into nearly equal sizes (quantiles) and then align them onto a diagonal in   . The aligment 

procedure is done by substituting the original quantile value with the mean of the particular quantiles 

for signal x and y (Bolstad et al., 2003). 

Formally, assuming     with signal intensities X and Y, let    (         ) for         be 

the vector of k-th quantiles for X and Y ,   (
 

√ 
  
 

√ 
)  is the unit diagonal and         |. We 

apply a projection formula in Eq. 3.15. 

        (
 

 
∑    

*   +

   

 
 

 
∑    

*   +

   

 ) (3.15)  

Algorithm 2 then illustrates the method. Note that this approach can be extended to   datasets, and 

therefore data from multiple microarrays can be compared and normalized to a common range 

(Bolstad et al., 2003).  

 

Algorithm 2: QuantileNormalization 

Input: matrix M with dimensions    , where column 1 is dataset X and column 2 is dataset Y and p 

=|X|=|Y|  

Output: matrix M‘ with normalized values 

1. Create          ( ) by sorting every column of    

2. Take means across the rows of    and create   
   

3. Get the normalized values by rearranging   
  to have te the same order as the original matrix 

  

Figure 3.2. Statistical properties of Xnorm vs. Ynorm. (A) Scatter plot of signal intensities normalized with affine 

transformation. Dashed line shows theoretical relationship, whereas the solid line is the approximated regression line 

indicating disproportion between x and y. Red, yellow and green correspond to homozygous BB, heterozygous AB and 

homozygous AA cluster (B) Boxplots of x and y indicating different distribution parameters. Taken from Staaf et al. (2008). 



 22 

3.1.4 MA transformation 

The MA transformation is useful in the situations when the variability between different microarray 

experiments and SNPs is high, which is also the case demonstrated in Figure 3.1. The idea is that 

instead of working with the signal values x and y directly, these are transformed to logarithmic 

difference (M) and logarithmic average (A). This transformation assumes that the differences in 

signals present in different microarray experiments and SNPs correlate with   and  . The MA 

transformation is an application of the Bland-Altman transformation (Bland and Altman, 1999) that 

has been used extensively in the analyses of gene expression data when intensity values for two 

channels are compared using microarrays.  

Formally, we apply a linear-log transformation for every SNP i carrying a tuple of intensities 

(     ) by calculating the values mi and ai, as follows: 

       (  )      (  ) (3.16)  

   
 

 
,    (  )      (  )- (3.17)  

It has been previously shown, that m-feature has powerful discriminative ability to separate the 

three genotype clusters and is able to reduce variability between experiments and SNPs (Carvalho et 

al., 2007). The a-feature is a good general indicator of the signal quality (Ritchie et al., 2011). 

3.2 NGS data preprocessing 

3.2.1 Introduction 

The outcome of the generic NGS technology millions of short sequences (or reads) coming from 

random loci in the genome. The parameter that defines the throughput is so called sequencing depth, 

that is calculated as     , where   is read length,   is number of reads and   is size of the genome 

(Sims et al., 2014). Although there might be signal normalization steps involved in the NGS 

preprocessing, this is usually implemented in hardware an is not available for alteration. Therefore, 

the goal is to find the most probable origin of the sequence in the genome, also called hit or match. 

This process is called alignment. The alignment gives an overview of the distribution of the reads 

over the genome and is a fundamental step in bioinformatics of NGS. Prior to the alignment, adapter 

removal and quality check are applied to the NGS data (Wright et al., 2017).  

3.2.2 Problem definition 

Consider an alphabet   *       +, where the symbols in   represent nucleotides (Chapter 2). Let 

 ̅     * + , where – is symbol note in   called gap symbol.. Let               and    
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           be two sequences over  . An alignment of sequences   and   is a two-row matrix   with 

entries in  ̅ such that: 

1. The first (second) row contains the letters of   ( ) in the original order 

2. One or more gaps may appear between two consecutive letters of   in each row. 

3. Each column contains at least one letter of  . 

 

Following functions can be defined over matrix  : 

 A scoring function         that assigns a score to each pair of nucleotides from  . Then, the 

matrix with values from all possible outputs of   is called a scoring matrix.  

 A gap penalty function         * + that assigns a non-positive integer value to every gap of 

length         (   ) in an alignment 

 An alignment score is the sum of scores of each pair of symbols 

An example of   is in Figure 3.3 

 

Figure 3.3. Example of sequence alignment 

 

Formal definitions were adapted form Chao and Zhang, (2009)  and Orlova (2010). 

3.2.3 Alignment strategies 

The goal of the alignment is to find the configuration of   that maximizes the alignment score. This 

is generally an NP hard problem and can be solved by dynamic programming implemented in the 

Neddleman-Wunsch algorithm (Needleman and Wunsch, 1970) if the global alignment is desired (i.e. 

aligning two sequences of similar sizes) or Smith-Waterman  algorithm (Smith and Waterman, 1981), 

if the task is to find similar regions between two sequences (local alignment). These algorithms have 

quadratic time complexity (Krane, 2002). 

The problem of NGS mapping means alignment of multiple sequences (`reads`) to a target 

(`reference`) genome. This involves millions of alignment matrices, which is computationally not 

tractable with dynamic programming.  For these reasons, several heuristic approaches have been 

developed starting from BLAST (Altschul et al., 1990), BLAT (Kent, 2002) to Bowtie (Langmead et 

al., 2009) and BWA (Li and Durbin, 2009).  

The reference genome is often not available and the sequencing depth is not high enough to 

perform de novo assembly. In this case, clustering methods are applied, which is particularly 

advantageous in case of repetitive elements (Novak et al., 2010). The abundance of the repetitive 

element in the genome in combination with a clustering method allows to create a consensus 
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sequence even though the coverage is low. The consensus then can be annotated and manipulated as 

an average element representing the population and subsequently aligned against other 

macromolecules sequenced by NGS (i.e. mRNA to measure transcription of transposons and small 

non coding RNAs to explain silencing of transposons; Kubat et al., 2014). Another strategy is to 

maintain the genomic clusters of repetitive elements and use secondary NGS dataset to refine the 

description of the original clusters and genomic abundance and subsequently measure their 

transcription profiles (Steflova et al., 2013). Working directly with the genomic cluster allows to 

capture variability of the whole population of a particular repetitive element family. 
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4 Machine learning models for genotyping 

While the previous chapter discussed general data preprocessing in genomics of DNA, this chapter 

will specifically focus on computional models used for genotyping of SNP array. Referring back to 

the generic workflow (Figure 2.5), these algorithms correspond to the process Machine learning. 

Firstly, we present computational models that are either commonly used in genotyping or will be used 

further in the practical part of this work. All these methods fall in the machine learning area and, 

therefore, their inputs and outputs  will be defined in a generic manner, in notation conventional for 

machine learning. Then, known implementations of computational models presented at the beginning 

of this chapter will be briefly demonstrated. Subsequently, evaluation metrics that will be used for 

validation in the later stages of this work will be presented. Finally, we will  show the performance of 

selected models in the single cell environment. 

4.1 Problem definition 

Let   be a labeled set of  input-output pairs   *(     )+   
  called training set and   is the number 

of training examples. Each input    is a  -dimensional vector of features. Output    is a response 

variable, that can be categorical or nominal (   *      +) or real-valued. When    is categorical, the 

problem is known as classification, when    is real-value, the problem is called regression. When C = 

2, then the problem is binary classification, if    , it is multiclass classification. The goal is to learn 

a mapping from input x to output y  called supervised machine learning (Murphy, 2012). 

Let   *(  )+   
  be, consistent with previous definition, set of inputs without an 

assigned response variable. The task is to find pattern in the data is called unsupervised machine 

learning (Murphy, 2012). 

Genotyping is a mapping function   in a multiclass classification problem     

  *  +   
  *        + (4.1)  

Where    is tuple of intensities as defined in Chapter 3, Eq 3.1. 

4.2 Neural networks 

Neural network is a computational model inspired by biological network of neurons in human brain. 

A multilayer neural network consists of a set of connected input/output layers and n hidden layers 

with associated weights (Figure 4.1A). The hidden and output layers consist of units shown in Figure 

4.1B. The learning process involves adjusting the weights to enable prediction of the correct label for 

the input data (Han et al., 2011).  
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Backpropagation algorithm 

Backpropagation algorithm is a learning procedure that iteratively aims to minimize the error between 

the value predicted by the neural network and the actual label   . The algorithm consists of the 

following steps: 

1. Initialize the weights to small random numbers 

2. For each feature vector xi in  : 

 Pass xi to the input layer. Every unit of the input layer passes the received feature to the 

associated unit in the hidden layer (Figure 4.1A). Each unit j in the hidden layer then 

calculates a linear combination of its inputs as follows:  

   ∑         
 

 (4.1)  

Where     is the weight of connection from unit i in the previous layer to unit j, Oi is the 

output of unit i from the previous layer; and    is the bias of the unit that acts as threshold that 

varies the activity of the unit.     is then passed to the activation function (Figure 4.1B) that is 

a logistic or sigmoid function. The output       of the unit is then calculated as follows: 

    
 

      
 (4.2)  

The activation function maps the input to the interval <0,1>. The values are then passed to the 

output layer (assuming one hidden unit, otherwise to the next layer of hidden units). Units of 

the output layer process the values using the same Eq. 4.1 and 4.2.  

3. The error is backpropagated by updating the weights and biases to reflect the prediction error.  

For each output unit j calculate Errj: 

       (    )(     ) (4.3)  

Where    is the output value of the unit j and    is the label of the training example xi. 

For  each hidden layer unit j, the Errj  is calculated as weighted sum of the units in the next layer: 

       (    )∑       
 

 (4.4)  

Where     is the weight of the connection between hidden layer unit j and unit k in the next layer 

and      is error of the unit k.  

4. The weights and biases are updated in order to reflect the propagated errors using following 

equations: 

             (4.5)  

             (4.6)  

          (4.7)  

          (4.8)  
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Where      is change in weight    ,     is change in bias    and l is learning rate – a 

constant from interval <0,1>.  

5. The algorithm terminates if one of the following conditions is met: 

 All      are below a certain very small threshold, which means that further updating of the 

weights had little impact on quality of the model 

 The percentage of misclassified training examples is below certain threshold 

 Pre-specified number of iterations has expired 

 

Figure 4.1. Feed-forward neural network with one hidden layer and its unit. The topology of the network (A) 

demonstrates fully connected nodes of a neural network with input compatible with feature vector x from   with  D 

dimensions. (B) Scheme of a hidden or input unit. The values (output from previous layer) linearly combined and then 

mapped y an activation function to the output. Taken from Han et al., 2011. 

The topology presented here corresponds to multilayer feed-forward neural network, where all 

nodes are fully connected. It has been previously shown that this type of neural network can 

approximate any continuous function (Hornik et al., 1989). In general, the topology of the network 

and type of the activation function are largely determined by the application domain (Mago and 

Bhatia, 2012).  

Although training time of the neural networks is comparatively long and the interpretability 

(system of weights, hidden units and  number of training parameters) is often difficult, they deal very 
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well with noisy continuous data and are able to classify patterns on which they have been not trained. 

Normalization of the data is crucial prior to the training (Han et al., 2011). 

4.3 Mixture models 

Mixture models are probabilistic models falling into category of unsupervised learning methods. They 

assume subpopulations in the input data that can be modeled by a simpler probabilitic distribution. 

The total distribution of the model is then composed by linear combination of the simpler models. 

Mixture models are viewed as soft-clustering methods. Soft in this context means that a membership 

of a training example to a cluster is defined by a probabilistic density function and is not fixed as in 

case of hard-clustering (i.e. k-means).  

4.3.1 Generic definition of a mixture model 

Formally, having training example (  )    without response variable (Section 4.1), a mixture model 

is defined with following parameters and equations (Murphy, 2012): 

 latent or indicator variable     *       + representing discrete latent state indicating the 

membership of     to one of   subpopulations called mixing components or base distributions; 

note that if element     , then all other elements are 0 

 we note the likelihood  (       )    (  ), where    is k-th base distribution of any type 

 the overall model is then 

 (     )  ∑    (     )

 

   

 (4.9)  

Where    is mixing weight that satisfies        and ∑      
    and   is set of 

parameters of the mixture model. 

 consistent with the initial definition of indicator variable    , we can incorporate it in the formula: 

 (     )  ∏,    (     )-
  

 

   

  (4.10)  

 

4.3.2 Gaussian mixture model  

Gaussian mixture model (GMM) is the most widely used mixture model. Here, every mixing 

component K is modelled with the Gaussian distribution. Consistent with the generic form of mixture 

model in Eq. 4.10, for GMM we assume (   ): 

    ~ (     
 ), where    is mean and   

   variance of component k of the Gaussian (normal) 

distribution  . We call this univariate normal distribution 
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 The complete form of the univariate GMM is then as follows: 

 (    )  ∏ (        )
  

 

   

 (4.11)  

In the practical analysis, however, D > 1 and therefore, we have to substitute variance    for 

covariance matrix   . Covariance matrix is a generalization of variance for multiple dimensions 

displaying variability between the features of the training example. The distribution of component K 

is called multivariate Gaussian distribution and bivariate Gaussian distribution for D=2 The joint 

distribution of  (  )  is given by  ( ) (    ), and the marginal distribution of    is then obtained by 

summing the joint distribution over all possible states of z to give (Eq. 4.12): 

 (  )  ∑ ( ) (    )  ∑   (        )

 

   

 

 

 (4.12)  

4.3.3 Parameter inference and EM algorithm 

We assume N training examples from   with   dimensions, that we model with mixture of 

multivariate Gaussians The data can be represented by an     matrix. The indicator variable will 

be denoted as matrix   with dimensions    . Coming from the Gaussian mixture distribution Eq.  

4.4, we can define a log-likelihood function: 

   (        )   ∑    

 

   

{∑   (        )

 

   

}  (4.13)  

The objective is to maximize this function. Calculating the maximum analytically is computationally 

extensive. The Expectation Maximization (EM; Dempster et al., 1977) algorithm offers an effective 

solution by iterativelly approximating the parameters of the mixture components to maximize the 

outcome of the log-likelihood function. In respect to definitions in Section 4.3.2 and assuming 

multivariate Gaussian mixture model, the parameters are  mean, component weight and covariance. 

The EM algorithm consists of two steps:  Expectation step (E) and maximization step (M). 

These steps are repeated iteratively until convergence is reached or predefined number of iterations is 

exceeded. We define a responsibility   of a component  .  This is posterior probability that a random 

data point belongs to component  .  Then, the EM algorithm is as follows: 

1. Initialize the means  , covariances   and the mixture weights   for every component  . This 

can be done arbitrarily or by pre-clustering using a hard-clustering method like k-means 

(Bishop, 2006) 

2. E-step. Calculate the responsiblities based on current parameters: 

 (   )  
    (        )

∑    (        )
 
   

 (4.14)  
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3. M-step. Evaluate the parameters based on the responsibilities calculated in step 2. 

  
     

 

  
∑ (   )

 

   

   (4.15)  

  
    

 

  
∑ (   )(     

   )(     
   ) 

 

   

  (4.16)  

  
    

  
 

 (4.17)  

Where    ∑  (   )
 
     

4. Evaluate the log-likelihood using Eq. 4.13. Check for convergence, if not satisfied, go to  

step 2. 

The convergence is usually defined as numerical difference between log likelihood outcomes of two 

adjancent iterations or a maximum number of iterations. 

4.3.4 Variational Bayes GMM 

In the previous definition of Gaussian Mixture, we assume that we known the number of components 

  a priori (Section 4.3.1 and 4.3.2). Parameter    is, however, not known in many practical problems. 

Variational Bayes GMM is a model that solves this problem by employing statistical distribution over 

the parameters of GMM. Assuming infinite  , the posterior distribution of the latent variable   can be 

defined by Bayesian statistics (Eq. 4.18) and the log marginal probability of the observations with  

integral over   (Eq. 4.19): 

 (     )  
 (     )

 (   )
 (4.18)  

    (   )     ∫ (     )   (4.19)  

Analytical compuation of integral in Eq. 4.19 is computationally intractable and therefore 

optimization algorithm of variational inference is applied . Similarly to EM algorithm (Section 4.3.3), 

algorithm of variational inference approximates the exact solution. The distribution over the 

parameters of the model   is often modelled with Dirichlet process (Blei and Jordan, 2006). 

Therefore, the model in principle defines distribution over distribution (Teh, 2010). Assuming so 

called full model (where every component   has its covariance matrix   ), we can define following 

distributions over the parameters of the model: 

       (         ) (4.20)  

     (     ) (4.21)  

          (     ) (4.22)  

            (   ) (4.23)  
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Where      distribution is parametrized by two shape parameters,         distribution is 

generalization of gamma distribution, where    is the degree of freedom and    is the scale matrix. 

For the probability density functions and further details on these distributions, we refer the reader to 

Krishnamoorthy (2006). Similarly to the EM algorithm, the algorithm iterates over    from   and 

updates the parameters of the distributions. The details on the update rules and statistical inference of 

the algorithm can be found elsewhere (Bishop, 2006; Blei and Jordan, 2006). The convergence of the 

algorithm is defined by computing so called variational lower bound (Blei and Jordan, 2006) – a 

strategy implementing the Kullback-Leibler (KL) divergence that measures the difference between 

two probability distributions. Here, we assume approximation of the real distribution (called 

reference) with the distribution estimated by variational inference. The variational bound for log 

likelihood of observing training examples   from   is then defined as the sum of all KLs for all 

parameters over all training samples and components (Blei and Jordan, 2006). Note that while in 

theory, the number of components   is infinite, there is often a restriction on this parameter in the 

implementation by defining the maximal number of components. However, after the parameter 

convergence of the variational inference algorithm, some component weights    might be close to 

zero, which practically eliminates them and maintains the good component number adaptability of 

this type of GMM (Pedregosa et al., 2011). 

4.4 Kernel density estimation 

Kernel density estimation, unlike Gaussian mixture, is a non-parametric density estimation, where no 

assumption about functional form of data distribution is made. The idea of the algorithm is that we 

treat       as an indicator of high-probability density in its vicinity. The probability density at a 

random point depends on the distance of this point from   .  

Formally, let             be an independent and identically distributed training example 

with an unknown density  . The kernel density estimation of   is then: 

  ̂( )  
 

  
∑ .
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 (4.24)  

Where  () is a kernel and   is bandwith (smoothing parameter). Kernel is a non-negative real-valued 

integrable function (Han et al., 2011). Gaussian function with mean of 0 and a variance of 1 is 

frequently used as kernel: 
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    (4.25)  

 

There are other types of kernels used in machine learning, a comprehensive review can be found in 

Genton (2001). 
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4.5 Random Forest 

Random Forests (Breiman, 2001) belong to a group of ensemble classifiers. Ensemble classifiers 

combine multiple (simpler) classifiers to create an improved composite model. Random Forest 

consists of system of decision trees that all contribute to final classification and   decision trees play 

the role of simple classifiers         in the composite model (Figure 4.2). 

Decision tree is a graph based structure where the inner nodes are tests on a particular feature 

and the leaves represent the predicted class. As illustrated in Figure 4.3, the algorithm for creating a 

decision tree consists of system of questions in every node that, based on the answers,  aims to 

perfectly split the training data into nearly homogenous classes. Two metrics are broadly used to 

measure the degree of  inhomogeneity or inpurity: entropy  and Gini index. 

 

Figure 4.2. Composite classification model (adapted from Han et al., 2011). The training data D is split up into several 

sets that are trained on simpler models (M1  - Mk). When applying the composite model to unseen data, the votes of simpler 

models are combined into a single vote resulting in prediction. 

Consistent with the previous definitions, let   be the set of training examples having to be 

classified into c classes and    the fraction of items from   belonging to class  :.  

 The entropy    (Eq. 4.26) is an indicator of impurity.Impurity is minimized  if a single      and 

the rest is 0 and maximized if all the pi‘s are equal.  

  ∑       

 

   

 (4.26)  

 

 The Gini index   (Eq. 4.27) is zero, if   contains only one class. 

    ∑  
 

 

   

 (4.27)  

 

In context of the decision tree and selection of the node for the split, the training algorithm always 

seeks to minimize the weighted average of the   of the resulting children nodes: 
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 if a certain test on feature divides the training examples into   different subsets          , then 

the decision about the next test on feature (children node) is done by finding the minimum of 

∑
  

 
 
     (  ); 

 the splitting operation is done recursivelly and the training dataset is split into smaller subsets. To 

prevent overtraining, the procedure often finishes if there is no increase (or increase smaller than 

threshold) on purity of the subsets;  

 alternatively, the tree can be built completely until no further division of any subtree is possible. 

Then, however, a procedure of tree pruning is necessary to prevent overtraining. Tree pruning 

deletes the unecessary nodes by collapsing or other techniques (Kearns and Mansour, 1998). 

Random forest, as a composite system of decision trees that increases accuracy and prevents 

overfitting (Breiman, 2001), can be built using two distinct approaches: 

 Bagging, and 

 Forest-RC 

Bagging is a procedure that assigns random subset of training data to k decision trees with 

replacement (some samples may occur more than once). Every decision tree is therefore trained on a 

subset of data and eventually on a subset of input features. The final membership of a sample to a 

class is decided by majority vote of all decision trees.  

Forest-RC uses random linear combinations of input features instead of existing attributes. This 

is useful when there are only few attributes available as this reduces the correlation between the trees 

in the forest (Han et al., 2011). 

Random Forest implements an built-in training validation metrics called out of bag (OOB) 

estimate or OOB score. It is calculated as prediction performance of trees that were not included for 

training of the current bootstrap of data. 

 

Figure 4.3. Illustration of a decision tree on a biological program of protein-protein interaction prediction. (A) 

Training data set with 4 input features, one response variable (Interact) and metadata column (Gene Pair). (B) Creation of 
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the decision tree by systematic browsing of the feature space. The pie charts indicate fractions of labeled data reaching the 

particular branch (Kingsford and Salzberg, 2008). 

4.6 Genotyping algorithms  

In relation to presented computational models in Sections 4.2 and 4.3 and normalization methods 

presented in Section 3.1,  this section will give an overview of published implementations that use the 

aforementioned principles for genotyping. First, algorithms for genotyping Illumina SNP arrays 

(Section 2.2.3) will be discussed. Most of the algorithms have a complex statistical backround and,  

based on the strategy of genotyping, they can be divided into `within sample` and `reference based` 

models. Within sample models rely on unsupervised  learning and do not require a reference dataset. 

On the other hand, the reference based implementations are based on some underlying genotype 

population that serves as reference – this is usually HapMap (Section 2.1.4).  

GenCall 

The GenCall algorithm is part of Illumina‘s genotyping module. First, raw intensities are normalized 

by employing affine transformation on the data (Section 3.1.2).  The polar coordinates      are fitted 

into predefined genotype clusters with their centroid predicted by a neural network. R is a sum of 

normalized intensities (      and      , Section 3.1.2) and   is a product of the affine 

transformation defining the rotational angle during the normalization. The neural network was trained 

on bulk DNA from the Phase I HapMap Project (International HapMap Consortium, 2005) for three 

global populations with minor allele frequency (MAF) >0.05. The topology of the neural network is 

not known, as GenCall is a proprietary algorithm. The samples from HapMap form a centroid as the 

default position to which the genotype is inferred by determining the nearest cluster (Figure 4.4). A 

confidence score, known as the GenCall score (GC), is assigned to every SNP and is used as a 

measure of quality. As a default, genotypes with GC values lower than 0.15 are considered false 

positives. The user has an option to generate new cluster files (‘recluster‘) using the user-derived data, 

however this step requires sufficient coverage of all three genotypes for every SNP – according to 

Illumina‘s documentation this is approximately 100 individuals per locus per population (Illumina, 

2014). Illumina‘s algorithm and its default configuration are optimized for bulk DNA. 

GenoSNP 

GenoSNP (Giannoulatou et al., 2008) is using quantile normalization (Section 3.1.2) to normalize the 

raw intensities between the red and green channels. The normalized values for each SNP i are then 

converted to log scale using following formula: 

           (         ) (4.1)  

            (         ) (4.2)  
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Where         and         are output of quantile normalization for SNP i. A four component 

mixture of t-distribution is fitted to the data. Three components correspond to the three genotypes and 

the forth component is to capture outliers. GenoSNP is using two different algorithms to infer the 

parameters of the mixture model: Expectation-Maximization and Variational Bayes (Section 4.3). 

GenoSNP does not use any reference population to evaluate the data – the analysis is purely based on 

a within sample strategy. GenoSNP gives posterior of a called genotype as a measure of confidence.  

 

 

Figure 4.4. Visual output of GenomeStudio that is implementing the GenCall algorithm. Three genotype clusters 

inferred from HapMap are apparent with their elliptically shaped centroids. The points represent genotypes for a particular 

SNP locus rs3128117. False positives single cell calls are apparent as they fall into wrong cluster due to suboptimal signal 

intensities. 

Illuminus 

Illuminus (Teo et al., 2007) is using  normalization from GenCall and furthermore converts the 

normalized intensities to strength   and contrast   defined as follows: 

      (                  ) (4.3)  

   
               
               

 (4.4)  

Where         and         are output of affine transformation for SNP i (Section 3.1.2). Illuminus is 

using three-component mixture of multivariate truncated t distributions where the components 

correspond to genotypes AA,BB and AB. An Expectation-Maximization procedure is used to fit the 

parameters of the model. Similarly to GenoSNP, Illuminus does not use reference population to asses 

the final score of the genotypes.  

CRLMM 

In the program CRLMM, the raw intensities are first quantile normalized (Section 3.1.3) using 

distributions from training samples from HapMap. Subsequently, log ratios (M) of intensities and 

average log intensities (A) are calculated per SNP basis (MA transformation, Section 3.1.4). A three 
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component model is fitted to the data and furthermore, a spline curve is approximated for every 

component. The bias is corrected according to the fitted spline (Carvalho et al. 2007). Subsequently, a 

hierarchical model is created per SNP basis to account for potential probe effects. Similarly to the 

bias correction step, there is one Gaussian component for every genotype. The mean and standard 

deviation of a particular SNP are derived from the training HapMap samples.  

4.7 Evaluation of performance 

Evaluation of the computational models used in genomics, particularly in genotyping is discussed 

from two perspectives: machine learning theory and genotyping. While genotyping is a multiclass 

problem defined in Section 4.1, the evaluation evalutes the results as a binary classifier – either is the 

genotype correctly genotyped or not. 

4.7.1 General evaluation of a classifier 

We assume a binary classifier. The training examples from   are labeled as positive (P;     )or 

negative (N;     ). In context of genotyping, the SNP that has been correctly resolved belongs to 

the positive class and the SNP that has been mistyped belongs to the negative class. The main class in 

the context of genotyping is P. If classified on labeled data, we can come across the following cases: 

 True positives (TP) – positive examples that were correctly classified as such 

 True negatives  (TN) – negative examples that were correctly classified as negative 

 False positives (FP) – negative examples that were incorrectly classified as positive 

 False negatives  (FN) – positive examples that were incorrectly classified as negative 

The relationship between predicted data and the labels can be also represented using a confusion 

matrix (Table 4.1.) 

Table 4.1. Confusion matrix. 

 Prediction  

  Yes No Total 

Actual class 

Yes TP FN P 

No FP TN N 

Total P‗ N‗ P + N 

 

In the next chapters, we operate with following performance metrics: 

 Recall, sensitivity or true positive rate (TPR): 
  

     
 

  

 
 

 Precision:  
  

     
 

 Specificity:  
  

 
 

 Accuracy:  
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 False positive rate (FPR):  
  

 
 

  

     
 = 1 - Specificity 

Precision and recall can be combined into a single measure called          : 

   
(    )                  

                    
 (4.5)  

If      then it is harmonic mean of precision and recall, noted as         .       decides about 

the weight of precision and recall, other, commonly used beta values are    (where recall is weighted 

twice as much as precision) and      (where precision is weighted twice as much as recall). 

4.7.2 Graphical representation of performance 

Visual representation of the performance is useful for comparison of multiple classifiers. The most 

common method is Receiver operating characteristics (ROC) curve that displays trade-off between 

TPR and FPR. To plot an ROC curve, the classifier needs to output the probability for the predicted 

class. Applying various thresholds, one can calculate TPR and FPR for a particular threshold and 

display it as a point in the XY scatter plot. Interpolation of these points gives rise to ROC curve. The 

area under the curve is another measure of the quality  of the classifier. The larger the area under the 

curve, the better is the performance of the classifier – it is able to pick up most of the positive samples 

by minimizing the rate of incorrectly classified negative samples as positive (FPs). 

The other type of an evaluation curve is Precision-Recall curve. It displays the trade-off 

beween precision and recall or sensitivity. Precision-recall curve is more informative than widely 

used ROC curve in case of dealing with imbalanced data (Saito et al., 2017). This is illustrated  in Fig. 

4.6. While ROC curve (Figure 4.5A) shows exactly same characteristics for both balanced and 

imbalanced dataset with 1000 positive examples, precision-recall curve is sensitive to the amount of 

negative examples (Figure 4.5B). This is due to the fact that a negative example is much more likely 

to be misclassified as the number of negative examples increases (Figure 4.5B), which affects 

precision.  

4.7.3 Specific evaluation of genotyping 

There are metrics specific to the area of genotyping. Some of them either overlap or are identical with 

the metrics commonly used in the machine learning theory. 

Call rate 

Called genotype is a genotype that met the quality criteria (i.e. defined threshold) of a particular 

genotyping algorithm. In machine learning theory this is a positive prediction, that corresponds to the 

sum of TP and FP. No-call (NC) is a genotype that failed the quality control. In terms of 

classification, this is reffered to as negative prediction, which corresponds to the sum of TN and FN.   
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Allele drop-in 

Allele drop-in (ADI) is an erroneous heterozygous call. This means, that a homozygous allele (AA or 

BB) was incorrectly classified as heterozygous allele (AB). This type of error is a FP.  

 

Allele drop-out 

Allele drop-out (ADO) is an erroneous homozygous call. A heterozygous allele (AB) was incorrectly 

classified as homozygous allele.. This type of error is similarly to ADI considered as FP. 

 

 

Figure 4.5. Illustration of ROC curve (A) and Precision-Recall curve (B) on balanced and imbalanced dataset6 

4.8 Single-cell genotyping 

As shown in Section 4.6, there is couple of tools available for genotyping of SNP array data. To the 

best of our knowledge, there is not a specialized algorithm available for the single cell genotyping 

from SNP arrays. Zamani Esteki et al. (2015) performed evaluation of two genotyping algorithms 

(GenoSNP and GenCall) in the single cell environment and attempted to adjust them to single cell 

data. An important summary of this is shown in Figure 4.6, where. Zamani Esteki et al. analysed the 

homozygous and heterozygous genotypes separately. As both methods give a score or measure of 

confidence of a genotype, they were systematically increasing the thresholds to acchieve better 

accuracy. The results suggest that while GenoSNP has generally higher call rate, it also suffers from 

                                                      
6
 adapted from https://classeval.wordpress.com/simulation-analysis/roc-and-precision-recall-with-imbalanced-

datasets/ 

https://classeval.wordpress.com/simulation-analysis/roc-and-precision-recall-with-imbalanced-datasets/
https://classeval.wordpress.com/simulation-analysis/roc-and-precision-recall-with-imbalanced-datasets/
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lower accuracy compared to GenCall, particularly for the heterozygous calls. The authors of the study 

decided to proceed with GenCall due to better overall properties. Adjusting the threshold of the 

GenCall algorithm to the single cell envorinment came at cost of significant data loss (call rate ~60 % 

at accuracy below 90 % , Figure 4.6). To give a frame of reference, validation studies on bulk DNA 

indicate both accuracy and call rate above 99% on average for all genotyping algorithms presented in 

this chapter (Ritchie et al., 2011). 

 

Figure 4.6. Comparison of performance of GenCall (A) and GenoSNP (B) on the single cell data amplified by MDA. 

The dashed vertical line shows the actual threshold that was selected by Zamani Esteki et al. for the genotyping as tradeoff 

of accuraccy and call rate. Hmz means homozygous, Htz is heterozygous. 

4.9 Conclusion 

In this chapter, we summarized the existing genotyping algorithms for Illumina SNP arrays and their 

underlying models (Sections 4.2, 4.3 and 4.6). We defined evaluation procedures (Section 4.7) and 

highlighted the suboptimal performance of the standard algorithms on single cell data compared to 

bulk DNA (Section 4.8). 
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5 Novel algorithm for noise filtration 

5.1 Introduction 

This chapter describes original algorithm that removes noisy genotypes from single-cell data caused 

by whole genome amplification. It largerly presents results from the published study by Vogel et al. 

(2019). To understand the noise, it is crucial to define a reference population of single cells where we 

know the ground truth. First, the creation of the reference dataset of single cell population is 

described, followed by data preprocessing and description of the prototype, workflow and 

implementation.  As we work with biological data, it is important to reflect the biological and 

computational perspective on the data in the terminology:  

• term `sample` for a biological entity – this is usually one cell from the dataset;  

• term `training example` (or `testing example`) wherever we refer to the input of the algorithm 

(usually a single SNP) and it is consistent with the definition of   in Chapter 4. 

• term `dataset` refers to collections of samples 

To remind the reader, we operate with two categories of biological data. Bulk genomic DNA 

(gDNA) is characterized by sufficient amount of genetic material (pool), has great support in 

genotyping tools (Section 4.6) and gives very precise genotype estimation. On contrary, single cell 

DNA (scDNA) is characterized by very small amounts of DNA (from one cell) and needs to undergo 

a single cell path of the workflow for processing genomic data (Figure 2.5). This protocol causes 

deterioration of the signal and random erroneous genotypes at the output. The bottleneck of the 

workflow is illustrated in Figure 5.1. 

 

Figure 5.1. WGA – cause of errors in the single cell genotyping. The heterozygous locus in the dashed rectangle is 

correctly amplified with nearly equal amounts of both of the alleles (top) and then correctly genotyped as AB. The bottom 

branch illustrates erroneous whole genome amplification, where one of the alleles has suboptimal signal. This causes wrong 

detection of homozygous genotype. 



 41 

5.2 Datasets of biological data 

We operated with two human cell lines, GM12878 and GM7228 that we obtained from the NIGMS 

Human Genetic Cell Repository at the Coriell Institute for Medical Research, New Jersey, USA. 

Additionally, we obtained bulk DNA samples for GM7224 and GM7225 that are parents of GM7228 

(Table 5.1). We used standard single-cell processing protocol with MDA (Section 2.2.2; SureMDA, 

Illumina Inc., California, USA)  and Infinium Karyomapping Assay Kit (Illumina Inc., California, 

USA). We used GenomeStudio v2.0.2 software with Genotyping Module v1.9 (Illumina Inc., 

California, USA) for genotype calling. The details of the laboratory protocol can be found in Vogel et 

al. (2019).  

Table 5.1 Overview of the SNP array data 

Inidividual Types # of samples 

GM7228 {gDNA; scDNA} {9, 58} 

GM7224 {gDNA} {5] 

GM7225 {gDNA} {5} 

GM12878 {gDNA;scDNA} {5,45} 

 

5.2.1 Groundtruth genotype from gDNA 

We used parental information and the consensus approach to create a high confidence genotype for 

individual GM7228 and consensus approach and sequencing information to create high confidence 

genotype for GM12878. The strategy for both is illustrated in Figure 5.2. 

In order to exclude potential miscalls, only genotypes matching the parental inheritance pattern 

were accepted for gDNA (Table 5.2). Furthermore, as multiple samples per individual were available, 

only genotype calls that were 100 % concordant were accepted. There was no family information for 

the individual GM12878 in the SNP array data. However, GM12878 is part of the Platinum Genome 

Sequencing  Projects (Eberle et al., 2017) and therefore, high confidence sequencing data were 

available for this individual. Due to filtering of variants that were not concordant, did not follow the 

inheritance pattern or did not match the sequencing reference, we excluded 2.1 % of the autosomal 

SNPs from GM12878 and 4.2 % of the autosomal SNPs from GM07228. These numbers of retained 

SNPs are high and confirm that, although stringent criteria applied for the filtration, a large number of 

variants from the bulk gDNA are of a high quality. 
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Figure 5.2. Strategy for creating high confidence groundtruth genotype and comparison to scDNA to create reference 

population of single-cell data. For the individual GM7228 there were parental genomes available (GM7224 and GM7225). 

For the individual GM12878, there were results of deep next-generation sequencing analysis (Platinum Genome 

Sequencing, Eberle et al., 2017) available.  

Table 5.2 Rules for evaluating the correct genotypes based on parental information 

mother (GM07224) father (GM07225) proband (GM07228) 

AB AB {AB,AA,BB} 

AA AA {AA} 

BB BB {BB} 

AB BB {AB,BB} 

AB AA {AA,AB} 

AA BB {AB} 

 

5.2.2 Single cell genotyping with standard Illumina algorithm 

Reliable high confidence genotypes (`reference`) described in the previous subsection allowed us to 

compare the single cell genotypes to the reference (Figure 5.2) and evalute the accuracy of the 

genotyping of single cell data cell by cell (more than 28.7 million SNP genotypes). We used two 

strategies to check the quality:  

 minimal filtration using GenCall score 0.01 (QC001) that passes virtually all variants 

(including the strongly biased ones) and allows us to see the full error pattern in the data, and 

 standard filtration using GenCall score 0.15 (QC015) that is recommended by Illumina.  

Table 5.3 gives a detailed overview of the results. Homozygous genotypes (AA, BB) and 

heterozygous genotypes (AB) were analyzed separately and then together (`all`). Using the standard 
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QC cutoff (QC015), 73% SNPs (20.9 million) were correctly genotyped according to the reference, 

and 8% SNPs (2.36 million) were false positives. 19% SNPs were rejected, having failed to fall  

Table 5.3. Detailed overview of the analysed single cell datasets 

         QC001a 

Data

set 
Region 

+   

(M) 

+  

(M %) 

+  

(SD) 

+  

(SD %) 

-  

(M) 

- 

(M%) 

-  

(SD) 

-  

(SD%) 

NC  

(M) 

NC  

(M%) 

NC 

(SD) 

NC  

(SD%) 

7228 

AB 43,226 7.8 7,633 1.4 1,949 0.4 1,583 0.3 

27,389 5 3,586 0.65 AA,BB 174,821 31.7 4,424 0.8 28,333 5.1 6,971 1.3 

all 218,048 39.5 11,047 2 30,282 5.5 7,970 1.4 

1287

8 

AB 39,897 7.2 8,799 1.6 1,990 0.4 1,638 0.3 

21,364 3.9 3,835 0.7 AA,BB 183,543 33.2 4,585 0.8 29,732 5.4 8,139 1.5 

all 223,441 40.5 12,823 2.3 31,721 5.7 9,427 1.7 

  Total 22,925,096 (79.8%) 3,215,551 (11.2%) 2,571,343 (9%) 

 
 

QC015b 

Data

set 
Region 

+ a 

(M)  

+  

(M %) 

+  

(SD) 

+  

(SD%) 

-  

(M)  

-  

(M %) 

-  

(SD) 

-  

(SD %) 

NC  

(M) e 

NC 

(M%) 

NC 

(SD) 

NC 

(SD%) 

7228 

AB 30,382 5.5 7,038 1.3 666 0.1 564 0.1 

54,500 9.9 7,432 1.4 AA,BB 168,863 30.6 7,029 1.3 21,309 3.9 6,314 1.1 

all 199,245 36.1 13,087 2.4 21,975 4 6,634 1.2 

1287
8 

AB 27,357 5 8,075 1.5 715 0.1 665 0.1 

49,343 8.9 8,394 1.5 AA,BB 176,238 31.9 8,102 1.5 22,874 4.1 7,355 1.3 

all 203,595 36.9 15,730 2.9 23,589 4.3 7,831 1.4 

  Total 20,921,603 (72.9%) 2,359,645 (8.2%) 5,430,742 (18.9%) 
a+ are true positives (correctly classified by GenCall algorithm following specified threshold), - are false positives (misclassified by the 

GenCall algorithm); M is mean, SD is standard deviation across all cells in the particular dataset 

 

within the genotype clusters defined by bulk DNA genotypes from HapMap (illustration in Figure 

4.4). To capture the variability between the cells, we also displayed the data in per cell format with 

mean value (M) and standard deviation (SD, Table 5.3). The true positive rate was higher when we 

used a minimal QC (0.01) compared to the standard QC of GenCall (40%, SD=2% and 36%, SD=2%, 

respectively, for cell line GM07228 and 40%, SD=2% to 37%, SD=3% for GM12878. These 

differences in true positive rates are statistically significant (p<0.0001, Figure 5.3). In total for both 

datasets, the GenCall algorithm rejects about 7% of correctly genotyped SNPs from WGA DNA and 

increases precision by 3%.  

5.3 Structure of noise in single cell 

Systematic comparison of the scDNA with the reference reveals presence of noise (Table 5.3). To test 

whether the noise creates a distinct pattern, we performed following steps: 

1. We randomly selected 10,000 SNPs from the single cell data GM07228 and extracted the 

normalized (affine-transformed) itensities. 
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2. We further transformed the intensities using MA transformation (Section 3.1.4, Figure 

5.4A). 

3. We estimated density function separately for erroneous calls and correct calls on the M 

and A values using bivariate normal kernel (Section 4.4) 

4. The results (Figure 5.4) indicate that, as expected, the correctly genotyped SNPs build 

three clusters corresponding to AA, BB and AB genotypes. The noisy data also builds  

three clusters correspondingto the transition between AB and AA or AB and BB (two 

clusters of allele drop-outs; ADO) and one cluster with allele drop-ins (ADI). The data 

suggests good separability of the errorneous clusters from the correct clusters since the 

centers of the clusters are non-overlapping. 

 

Figure 5.3. Rates of correct calls, incorrect calls and no-calls for 58 individual cells of GM7228 and 46 cells of 

GM12878. Each dot represents one cell. The proportions of SNPs within each single cell, that were correctly typed, 

incorrectly typed, or not typed (rejected due low GenCall score) are shown in the plots from left to right. Paired t-test was 

used to draw differences between cells typed with GenCall score 0.01 and GenCall score 0.15. The number of asterisks 

above the graps corresponds to level of significance of the difference (**** corresponds to p-value<0.0001) 
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Figure 5.4. MA plot of 10,000 randomly selected SNPs from single cell data. Every dot corresponds to one variant 

from single cell (A). 2D density function with bivariate normal kernel was applied on the data to reveal the erroneous 

clusters (B). Red clusters correspond to mistyped SNPs (noise), blue clusters show true signal. ADO clusters mark 

erroneous transitions from heterozygous to homozygous genotype and ADI cluster marks erroneous transition from 

homozygous to heterozygous genotype. 

5.4 Training dataset 

5.4.1 Feature transformation 

The MA transformation in Figure 5.4 illustrates feasible input features for training. As partly 

discussed in Section 3.1.4, these features contribute to generalization of the problem and decrease the 

intragroup variability. We confirm this on fraction of our single cell data by systematically analysing 

statistical properties of raw intensities without any normalization, intensities normalized with affine 

transformation and intensities normalized with MA transformation (Figure 5.5). It is aparent, that 

lacking normalization shows great variability between the samples (Figure 5.5A). The affine 

transformation partly brings the data into comparable scale, however the variability is still relatively 

high (Figure 5.5B). Finally, the MA transformation on the top of the affine transformation displays 

the data from multiple samples in a common scale, descreases the variability and allows to merge 

SNPs from various single cell samples into one bigger dataset (Figure 5.5C). The effect of MA 

transformation can be explained as follows: Samples and the red and green channels analyzed in 

different labs or on different chips accumulate certain bias (other than bias from the whole genome 

amplification). Instead of analysing the signals independently (displaying and analysing red and green 

signal separately), the MA transformation cancels out the lab and sample specific bias and allows to 

display the true signal in a logarithmic scale. 



 46 

 

Figure 5.5. Boxplots of single cell intensities without any normalization (A), X channel after affine transformation (B) 

and M value after MA transformation of X and Y channel (C). 

5.4.2 Feature selection 

We compared our single cell datasets to the reference genotype. More specifically, for every 

candidate single-cell call for SNP i and sample s we assigned a label     :       *          +, 

depending on the match or mismatch with the corresponding reference genotype call. The training 

dataset is then a set of  of triplets (               ), where (          ) are input features and       is the 

output feature. Note that we omit sample index s in further explanation, as we do not distinguish 

between the origins of SNPs in the training data set.  We included all autosomal single cell calls with 

GenCall score above 0.01 (QC001) totaling 14,403,139 SNPs for training (GM07228) and 

11,737,508 SNPs for validation (GM12878). Lowering the GenCall score threshold for accepting a 

SNP allowed us to include potentially poorly amplified SNPs and to capture the full error pattern. 
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5.4.3 Problem of imbalanced dataset 

Table 5.3 suggests that the training data is highly imbalanced with positive class being the majority 

class. The positive class is our target class, and the analysed single cell datasets reflect the `real 

world` class ratio.  Neverthless, as we operated with sufficient amount of data we performed 

downsampling of the positive datasets to obtain same amount of positive and negative samples. We 

discuss this issue and perform further experiments in Chapter 6. 

5.5 SureTypeSC 

SureTypeSC is a novel machine learning method that combines nonparametric (in terms of statistical 

distribution) supervised method embodied in Random Forest (RF) that adapts to the noise in the 

single cell. RF is trained on the reference dataset described in Section 5.2. The fitted RF then 

estimates the regions of noise and high quality SNPs in unseen data. These regions are then 

formalized using a parametric model. This is a second layer of the algorithm and consists of a system 

of Gaussian mixtures called Gaussian discriminant analysis. 

 

 

Figure 5.6. Scheme of prototype for SureTypeSC based on machine learning with two layers  organized in cascade. 

The prototype of SureTypeSC is schemed in Figure 5.6. Classification of unsen SNP data is 

first performed with Layer 1 (RF trained on reference data). RF in the single layer mode directly 

classifies the unseen data. In the standard, two layered mode, Random Forest estimates the positive 

and negative classes for the further improvement with Layer 2. Layer 2 accepts the classification from 

Layer 1 and creates an initial cluster estimate, which is then iteratively refined. Subsequently, the 

genotypes from the unseen SNP population are evaluated again with the fitted model from Layer 2. 

Figure 5.6 also illustrates parameters of the model, that can be subsequently subjected to experiments. 
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This is i.e. threshold for the positive class defined for RF. This parameter influences the input of the 

Layer 2 and therefore the output of the final classification. Experiments with this and other 

parameters of the model are described and discussed in in Chapter 6. The following two subsections 

discuss both layers of the algorithm in a greater detail. 

5.5.1 Basic Random Forest layer 

We chose Random Forest classifier for the initial training and classification. The kernel density 

estimation in Section 5.3 suggests that the function that separates the erroneous clusters from the 

clusters of correct data (red and blue contours in Figure 5.4B) is non-linear. The ensemble nature of 

Random Forest has by definition the ability to fit different trees to different parts of the input space 

and therefore mimic a non-linear separating function that, in theory, can increase the classification 

accuracy. We implemented the Random Forest algorithm in scikit package (Pedregosa et al., 2011) 

and for the basic implementation, we adjusted following parameters of the Random Forest algorithm: 

• the number of trees was increased from 10 to 30; according to experiments in Oshiro et al. 

(2012), a theoretical upper limit is 128 trees and further increase in number of trees does not 

contribute to higher accuracy. However, our data suggest that forests with more than 30 trees 

contribute minimally to the accuracy of the model but increase the size of the model substantially; 

this is discussed and supported by experiments with the model data in Chapter 6. 

• the number of features to consider when looking for the best split was set to two (maximum) 

5.5.2 Refinement using Gaussian Discriminant Analysis 

The second layer of the algorithm is a Gaussian Discriminant Analysis (GDA) that formalizes the 

genotype clusters obtained from the RF step and potentially improves the classification. GDA models 

positive and negative class separately using GMM and defines a scoring function that discriminates 

the data based on their affinity to positive and negative class. The general concept of GDA was 

adapted from Ng (2019) and Hastie et al. (2016).  

Let   *                   ̂ +  denote a set of   SNPs that were classified by 

the trained RF, where     *        +  ̂   *   +. Therefore,     (           ̂) is a quadruplet 

of the logarithmic difference, logarithmic average, genotype predicted by GenCall (QC 0.01) and 

class prediction by RF at the j-th SNP. We assume that both the positive (T) and negative (F) classes, 

which are represented by pairs    (     ), are drawn from mixtures of multivariate normal 

distributions and define the following system of Gaussian discriminants:   

 

 ̂          ( ) (5.1) ( 

 ( ̂)    ̂(   )   ̂ (5.2)  

 (  | ̂   )    (  |  )  ∑     (   |         )

 

   

 (5.3)  
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 (  | ̂   )    (  |  )  ∑     (   |         )

 

   

 (5.4)  

 

Where: 

   denotes probability  ( ̂      )  

   is multivariate normal density function with parameters    (with mean    and covariance 

matrix    ) 

    is an indicator variable that denotes the genotype class, where       ̂  

     is  the  mixture  component weight  representing  the probability  that  a  random tuple 

(      ) was generated by component k.  

The complete set of parameters for the presented Gaussian discriminants is given as    ̂ *   +  

{   ̂      ̂     ̂      ̂  }. Decomposing the definition of    , we obtain following  list of all 

components lying in two mixture models: 

• a cluster of true heterozygous SNPs (ABTRUE ) 

• a cluster of false heterozygous SNPs (ABFALSE ) 

• a cluster of true homozygous SNPs (AATRUE ) 

• a cluster of false homozygous SNPs (AAFALSE ) 

• a cluster of true homozygous SNPs (BBTRUE ) 

• a cluster of false homozygous SNPs (BBFALSE ) 

We use maximum likelihood estimation to estimate the parameters   . The log-likelihood 

function   for classes from  ̂ is defined as follows:  

 

   ( )  ∑   (     ̂)

 

   

 (5.5)  

 

We use an Expectation Maximization algorithm (Dempster et al., 1977) to find optimal solution for 

  ̂ of the positive and negative class that maximize their log-likelihood function (Eq. 5.5). As shown 

in Section 4.3.3, the EM algorithm is divided into an Expectation-Step (E-Step) and a Maximization-

Step (M-Step). These are run in iterations separately for the positive and negative classes until 

convergence is reached.   ̂ is total number of SNPs in the particular class.  

 

EM algorithm for the cluster and class refinement: 

For every SNP i   with label  ̂ in  ̂: 

1. E-step - calculate membership weights - probabilities of (     ) belonging to a cluster k 

using either initialization parameters   ̂
     if this is the first iteration, otherwise   ̂
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      ̂   .      ̂   |     ̂
 /= 

 
  (  |      ̂    ̂)      ̂

∑  (  |      ̂      ̂)      ̂
 
   

 

for               

(5.6)  

 

2. M-step 

• Calculate new component weights for the next iteration 

 

     ̂
    

∑       ̂
  ̂
   

  ̂
 (5.7)  

 

• calculate new means for the next iteration 

 

    ̂
    

∑       ̂  
  ̂
   

∑       ̂
  ̂
   

 (5.8)  

 

• calculate new covariances for the next iteration: 

 

    ̂
    

∑       ̂  (       ̂
   )(       ̂

   ) 
  ̂
   

    ̂
 (5.9)  

 

at the end of the M-step we obtain new parameter estimates Θ
t+1 

 

3. Calculate log likelihood using Equation 5.5 and if the relative change in the overall 

likelihood is smaller than a threshold, halt. Otherwise proceed with the E-step with 

parameters from Θ
t+1

.  

 

After the parameters of both classes have been estimated by the EM algorithm, they are subjected to a 

second run. Here, the class membership  ̂ is hidden from the algorithm and every SNP i is evaluated 

for both Gaussian discriminants using the following formula: 

 

(                  )  ,   (     ̂)    (     ̂)- (5.10)  

 
The final classification (membership to a positive or a negative class) is determined by higher value 

from the pair (                 ). 

 



 51 

5.5.3 Scoring function 

The key role of a genotyping algorithm is to report the likelihood of a certain genotype in form of a 

score or a posterior probability. Besides GenCall having its own scoring scheme, we used the 

following equations to estimate the probability of a certain SNP being correctly genotyped: 

 

1. Random Forest: the score of a genotype of the ith SNP is given as a proportion of the trees 

in the forest that voted for a particular genotype being correct: 

 

           (       )  (5.11)  
 

2. The scoring strategy of SureTypeSC is inferred from its second layer (GDA) as the class-

conditional posterior probability of a genotype falling into positive class T: 

              
            ( )

∑             ( )  *   +
 (5.12)  

 

5.6 Implementation of the algorithm 

To summarize the implementation of the methodology, we genotyped 58 single cells from GM07228 

using standard Illumina genotyping workflow (GenomeStudio) and generated high confidence 

genotypes generated from the bulk DNA from the trio (paternal, maternal and son- GM07228; 

Section 5.2). We set up a parallel branch for testing 46 single cell genotypes (subject to Chapter 6) 

from cell line GM12878 (Section 5.2). The intensities were stored in the Genotype Call Files (*.gtc), 

the information about SNPs and probe content was stored in BeadPool Manifest file (*.bpm). The 

cluster files (*.egt) carry the reference information for each locus. All files were available prior to the 

single-cell genotyping analysis (the intensity files are the final product of the BeadChip scanning 

procedure and *.egt and *.bpm are available online from Illumina). We then exported the data from 

GenomeStudio, indexed using chromosomal position (chromosome and position) and SNP ID (id) in 

a dataframe structure from pandas library (McKinney, 2010) . The MA-transformed data were fitted 

to the two-layered machine learning model and validated using both independent and cross-validated 

datasets (Chapter 6). The machine learning core is represented by an original algorithm aimed 

towards noise removal in single cell data called SureTypeSC. The first layer is represented by 

Random Forest (Section 5.5.1), whereas the second layer is a system of Gaussian mixtures (Section 

5.5.2) called Gaussian Discriminant analysis. The machine learning methods were implemented using 

package scikit (Pedregoza et al., 2011).  
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Figure 5.7. Flowchart for single cell analysis of the presented data, filtration and validation. 
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6 Validation and experiments with the 

model 

This chapter presents the validation process for the proposed algorithm presented in Chapter 5. The 

validation is carried out in two ways – using cross-validation and on independent dataset that was 

created from a different individual than the training dataset. The results of the validation part (without 

experiments in Section 6.3) were published in Vogel et al. (2019). 

We analyse the performance of SureTypeSC, but also its constitutive single layers. We 

therefore denote, consistently with the previous explanations, the single layers by their acronyms (RF 

and GDA) and the cascade solution by their combination (RF-GDA). To pinpoint the differences in 

performance and to show the improvements SureTypeSC achieves in the single cell domain, we 

included the performance of GenCall in all validation analyses. GenCall represents the current state of 

the art and has been used in multiple single-cell genotyping analyses (Ottolini et al., 2016; Zamani 

Esteki et al., 2015; Handyside et al., 2010). As we operate with multiple single-cells (46 or 58 cells; 

Section 5.2), we calculate mean values and standard deviation or confidence intervals to capture the 

variability of the results and perform statistical tests, whenever applicable, to show the significance of 

the measured differences in the performance. We always evaluate the heterozygous and homozygous 

genotypes separately. Having reliable method for heterozygous loci improves detection power of 

many knowledge extraction algorithms from single cell data (subject to Chapter 7 and 8).  

We perform validation procedures from two categories (Section 4.7): 

 procedures that capture the whole spectrum of classification outcomes by changing the 

classification threshold (visual representation and ROC-AUC score);  

 validation procedures that operate with fixed classification thresholds; these procedures 

mimic the real applications where we have to decide for a particular cutoff to retrieve the 

information about rejecting or accepting a particular genotype; we used 

accuracy,precision,recall and F1-score (defined in Section 4.7) 

We discuss the antagonistic relationship of precision and recall and how different thresholding 

strategies can be beneficial for achieving high recall or precision of the algorithm. 

The second part of the chapter deals with different experiments with the model. As pointed out 

in Chapter 5, SureTypeSC includes parameters that can be adjusted and would theoretically influence 

the performance of the classification. Based on the results of the performed experiments, we will 

discuss whether these parameters can further improve the classification. 

Table 6.1 summarizes validation strategies and metrics carried out in this chapter. The reader is 

refered to particular section for details. 
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Table 6.1. Overview of the validation strategies 

Atribute/Strategy  Cross validation 
Validation (standard 

genotyping) 

Validation (high precision 

genotyping) 
Experiments  

Training GM7228 GM7228 GM7228 GM7228 

Testing GM7228 GM12878 GM12878 GM12878 

Parametersa default thresholds threshold Table 6.5 
thresholds  in Table 6.7 and 

Table 6.8 
per experiment 

Categories het and homo het and homo het and homo per experiment 

Tested 

algorithms 
GenCall, SureTypeSC GenCall, SureTypeSC GenCall, SureTypeSC 

layers of 

SureTypeSC 

Metrics 

precision,recall,F1-

score, accuracy, ROC-

AUC score 

precision,recall,F1-score, 

accuracy, ROC curve, 

ROC-AUC score, 

Precision-Recall curve 

matrix of posterior 

probabilities, ADI, ADO 

and call rate 

ROC-AUC score 

Comparison 
mean and CI across 10 

folds 

mean and CI across 46 

cells, paired t-test 
mean and CI across 46 cells per experiment 

Main objective 

consistency check, 

comparison to the state 

of the art and between 

layers of SureTypeSC 

comparison to the state of 

the art and between layers 

of SureTypeSC 

maximize precision 

test impact of 

various parameters 

on performance 

Section 6.1 6.2 6.2.3-6.2.4 6.3 

a 
by default, various threshold were tested, other parameters were experimented in the experimental section  

6.1 Cross-validation 

The cross-validation divides the input dataset into m parts, whereas m-1 parts (folds) are used to build 

the model and the remaining part is used for testing. This partitioning is done m times, randomly.  

The classification dataset for genotyping of single cell is always imbalanced – the target class 

is the correctly genotyped SNPs and is the majority class. On contrary, the mistyped SNPs represent 

the minority class. We therefore used stratification to ensure that every fold contains both correctly 

genotyped and mistyped SNPs with nearly equal ratio. We chose m=10. To tackle the imbalance 

problem, we always balanced the training fold by down-sampling the correctly genotyped SNPs. We 

evaluated the performance of every testing fold and scored the genotypes of all algorithms using the 

GenCall score (Section 4.6) or Eq. 5.11 and 5.12 for SureTypeSC (Section 5.5).   
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Table 6.2. Results of the cross-fold validation on dataset GM7228a 

Genotype homozygous 

Algorithm/Metrics
b
 precision recall ROC-AUC accuracy F1-score 

GDA 0.93±0.001 0.86±0.009 0.82±0.003 0.82±0.007 0.89±0.005 

RF 0.94±0.002 0.73±0.006 0.79±0.002 0.73±0.005 0.82±0.004 

RF-GDA 0.93±0.001 0.86±0.008 0.82±0.004 0.82±0.006 0.89±0.004 

GenCall 0.89±0.002 0.89±0.005 0.66±0.005 0.81±0.005 0.89±0.003 

 heterozygous 

 
precision recall ROC-AUC accuracy F1-score 

GDA 0.99±0.001 0.87±0.006 0.89±0.009 0.86±0.005 0.92±0.003 

RF 0.99±0.001 0.82±0.007 0.88±0.005 0.82±0.006 0.90±0.004 

RF-GDA 0.99±0.001 0.87±0.004 0.89±0.006 0.86±0.003 0.92±0.002 

GenCall 0.98±0.002 0.70±0.002 0.75±0.003 0.70±0.001 0.82±0.001 

a values are mean proportions over 46 cells ± confidence interval
  

b
score of 0.5 was used for GDA, RF, and RF-GDA and  default (recommended) score 0.15 for GenCall 

 

We performed the classification using fixed classification thresholds (0.5) and by Illumina 

recommended classification threshold for GenCall (0.15). Consistent with random sampling of the 

SNPs, the mean performances of all algorithms have narrow confidence intervals (at 95%), which 

suggests that the algorithms are invariant to SNP selection (Table 6.2). Greater variability between 

folds would mean that some SNPs are easier/harder to classify than the others. The results indicate 

that RF-GDA and GDA outperform GenCall in all metrics and for both, homozygous and 

heterozygous genotypes, except for the recall for homozygous genotypes. While ROC-AUC is, 

however, lower for homozygous GenCall then for the other algorithms, this could be likely an issue 

of suboptimal thresholding for SureTypeSC. Thresholds will be adjusted in the next section. It is also 

apparent that the parametric model (GDA) outperforms RF except for the precision for the 

homozygous calls, where RF achieves higher score. However, there is virtually no difference between  

GDA and the cascade model RF-GDA in this test. 

6.2 Validation on independent dataset 

In this performance analysis, we used the SNP genotypes obtained from 58 single cells from cell line 

GM07228 for training and the SNP genotypes obtained from 46 single cells from a different cell line, 

GM12878 (Table 5.3), for testing. The genotyping data from the testing set were obtained at an 

independent time, with different batches of WGA reactions and genotyping arrays. This avoids 

systematic errors introduced by the chemistry used to obtain the genotypes. We used both, metrics 

that describe the classifiers‘ performance at various cutoffs (`Validation curves and ROC-AUC 

score`), as well as metrics that statically describe the performance at particular score cutoff (`Static 

evaluation`). The performance between homozygous and heterozygous regions may vary - we 

therefore analysed them separately. In the last part of the section, we conclude how SureTypeSC 
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contributes to error reduction in terms of allele drop outs and allele drop ins. We summarize the 

datasets involved in training/testing and the scoring strategy of genotypes in Figure 6.1. 

 

Figure 6.1. Training and testing strategy for SuretypeSC. (A) The RF was trained on ground truth data from GM07228 

and used to predict the values of GM12878. The GDA was used to fit the predicted values of GM12878 (B) The RF was 

trained on the ground truth data from GM07228 and used for prediction and scoring on the testing data, GM12878. (C) The 

GDA trained on ground truth from GM07228 and prediction and scoring took place on the testing data, GM12878. 

6.2.1 Validation curves and ROC-AUC score 

We first demonstrate the performance of the algorithms using ROC and Precision Recall curves. 

These metrics gave us visual insight into overall performance of the classifiers, invariant to the score 

cutoffs used. For the heterozygous calls, RF-GDA outperforms all tested algorithms, which is also 

quantified by the ROC-AUC score (Figure 6.2, Figure 6.3 and Table 6.3). While GenCall achieves a 

74% ROC-AUC score on average, this is increased to 86%, 87% and 92% for RF, GDA and RF-

GDA, respectively (Table 6.3). The mean differences of the ROC-AUC scores are at p < 0.001 (Table 

6.4). For the homozygous regions, the RF outperforms GenCall at all points of the ROC and 

Precision-Recall curves, which is supported by the increase in the ROC-AUC score from an average 

of 67% (GenCall) to 81% for the RF (Table 6.3 and Figure 6.2A). This is further increased with the 

GDA or RF-GDA (both 83%, Table 6.3). Interestingly, at a precision of approx. 93%, the RF curve 

crosses that of the GDA and RF-GDA and recalls more true positive homozygous calls (Figure 6.3). 

This suggests that the RF alone might be a good option if higher recall is required at the costs of 

lower precision, which is nevertheless higher than GenCall in the homozygous regions. GenCall 
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crosses the Precision-Recall curve of the RF-GDA at a precision around 88% and recalls more true 

positives (Figure 6.3A). This is, however, very close to a recall of 100%, which also means accepting 

all calls without any filtration.  

 

Table 6.3  ROC-AUC score of the genotyping algorithms on independent dataset GM12878a
 

GenCall    RF   GDA   RF-GDA  

het homo   het  homo   het homo   het homo 

0.74±0.01 0.67±0.015 
 

0.86 ± 0.004 0.81 ± 0.012 
 

0.87 ± 0.005 0.83 ± 0.013 
 

0.92 ± 0.004 0.83 ± 0.012 

a values are mean proportions over 46 cells ± confidence interval at 95% 

 

Table 6.4  Analysis of the differences in ROC-AUC score using paired t-test. 

    heterozygous homozygous 

Alg1 Alg2 MDEa upperb lowerc  p-value MDE upper lower p-value 

GenCall    GDA        -0.137 -0.122 -0.151 1.04E-22 -0.165 -0.161 -0.170 5.14E-48 

 
RF -0.127 -0.115 -0.140 2.60E-24 -0.142 -0.137 -0.148 1.07E-42 

 
RF-GDA     -0.182 -0.166 -0.198 2.03E-26 -0.164 -0.159 -0.169 7.00E-46 

RF-GDA     GDA        0.045 0.048 0.042 1.33E-34 -0.002 -0.001 -0.003 2.06E-04 

 
RF 0.054 0.058 0.051 6.07E-32 0.021 0.022 0.021 1.51E-41 

RF         GDA        -0.009 -0.006 -0.013 1.56E-07 -0.023 -0.022 -0.025 1.24E-32 

a mean of  differences of algorithm1 and algorithm2 from 46 cells of GM12878 
b lower bound of the 95% confidence interval 
c  upper bound of the 95% confidence interval 

 

 

Figure 6.2. ROC curve for homozygous (A) and heterozygous (B) calls. 
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Figure 6.3. Precision-recall curve for homozygous (A) and heterozygous (B) 

6.2.2 Evaluation using confusion matrix 

Evaluation using confusion matrix (Section 4.7.1) requires classification threshold to be established 

prior to the evaluation to determine the membership of a SNP to positive or negative class. Similarly 

to cross validation (Section 6.1), we selected default (and recommended) classification threshold for 

the GenCall algorithm. For RF, GDA and RF-GDA, we selected thresholds that emphasize on the 

differences in performance and compared the measurements using paired t-test. Results show that 

GenCall recalls 68% of the true positive heterozygous genotypes at precision of 97% (Table 6.5). The 

RF-GDA has 84% recall and achieves average precision of 99% and thus outperforms GenCall in 

both precision and recall. Having similar precision than RF-GDA, single layers RF and GDA recall 

fewer true positive heterozygous genotypes (Table 6.5). 

High precision and recall are reflected in high harmonic mean of precision and recall (F1-

score) for the RF-GDA (Table 6.5) and high rate of correctly classified SNPs (accuracy, Table 6.5). 

GenCall recalls 96% of the true positive homozygous genotypes on average at precision 89%. At 

similar recall, the RF alone increases precision by 2.5% (p < 0.0001; Table 6.6). 

Table 6.5 Performance of the genotyping algorithms on independent dataset GM12878a
 

          Alg. 
Metrics 

GenCall b RF GDA RF-GDA g 

  het homo het c homod hete homof het homo 

accuracy 0.68 ± 0.01 0.86 ± 0.012 0.71 ± 0.013 0.88 ± 0.008 0.63 ± 0.009 0.85 ± 0.01 0.84 ± 0.014 0.85 ± 0.01 

F1-score 0.8 ± 0.01 0.92 ± 0.007 0.82 ± 0.012 0.93 ± 0.005 0.76 ± 0.011 0.91 ± 0.007 0.91 ± 0.011 0.91 ± 0.007 

precision 0.97 ± 0.01 0.89 ± 0.009 0.99 ± 0.001 0.91 ± 0.008 0.99 ± 0.001 0.92 ± 0.008 0.99 ± 0.001 0.92 ± 0.008 

recall 0.68 ± 0.01 0.96 ± 0.005 0.7 ± 0.017 0.96 ± 0.001 0.61 ± 0.013 0.9 ± 0.005 0.84 ± 0.017 0.9 ± 0.006 

a
 values are mean proportions over 46 cells ± confidence interval at 95%; 

 b
 GenCall score threshold 0.15; 

 c 
Random Forest score threshold 0.6 and 

d
 0.15 ; 

 e 
Gaussian 

Discriminant Analysis score threshold 0.8 and 
f
 0.5 ; 

 g 
RF-GDA score threshold 0.15 

 

GDA and RF-GDA further improve precision, but at the cost of recall. Both methods achieve an 

average precision of 92% at 90% recall for the homozygous calls (Table 6.5). Recalling fewer true 

positives at higher precision causes a drop in the F1-score for GDA and RF-GDA. This is because 

recall declines much quicker than the precision increases (Figure 6.3A). The effect of lower recall 
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from the GDA and RF-GDA is also mirrored in the lower accuracy. As GDA and RF-GDA have 

higher precision, they are also more likely to reject correct SNPs, thereby decreasing the number of 

true positives. 

Evaluation of the single layers 

The two-layered architecture, RF-GDA, generally outperforms its constituent single layers (RF or 

GDA alone). Combining the RF and GDA together is particularly advantageous in the heterozygous 

regions, where the RF-GDA performs better in all metrics (Figure 6.4). For the homozygous calls, the 

RF-GDA performs better than single RF and GDA in precision (mean difference 1.7% and 0.2% for 

RF and GDA, respectively, p < 0.0001, Table 6.6). However, the single GDA has better ROC-AUC 

score, which is 0.2% higher in the GDA than in RF-GDA (p < 0.001,Table 6.4). The ROC curves in 

Figure 6.2 and Precision-Recall curves in Figure 6.3 confirm that the difference is minor, since the 

RF-GDA and GDA largely overlap. Collectively, the benefits of the two layered RF-GDA compared 

Table 6.6. Analysis of statistical differences between the tested algorithms on independent dataset GM12878 with 

paired t-test 

  
region heterozygous homozygous 

Alg1 Alg2 metrics MDEa upperb lowerc p-value MDE upper lower p-value 

GenCall GDA accuracy 0.045 0.05 0.04 3.51E-21 0.016 0.019 0.013 1.52E-15 

  
F1 score 0.040 0.041 0.038 2.53E-43 0.014 0.015 0.013 1.28E-29 

  
precision -0.025 -0.016 -0.034 3.17E-06 -0.033 -0.031 -0.035 5.53E-37 

  
recall 0.064 0.066 0.062 2.19E-48 0.063 0.064 0.062 3.60E-57 

 
RF accuracy -0.035 -0.033 -0.037 1.26E-34 -0.019 -0.014 -0.024 2.19E-09 

  
F1 score -0.021 -0.020 -0.023 5.01E-30 -0.010 -0.007 -0.013 2.01E-08 

  
precision -0.025 -0.016 -0.034 2.11E-06 -0.019 -0.018 -0.020 8.40E-36 

  
recall -0.020 -0.015 -0.026 1.36E-09 0.000 0.005 -0.006 8.69E-01 

 
RF-GDA accuracy -0.169 -0.166 -0.172 8.44E-56 0.015 0.017 0.012 3.68E-14 

  
F1 score -0.112 -0.110 -0.114 1.72E-55 0.013 0.014 0.012 1.35E-27 

  
precision -0.026 -0.016 -0.036 3.07E-06 -0.035 -0.034 -0.038 5.50E-35 

  
recall -0.162 -0.155 -0.168 1.22E-40 0.064 0.066 0.063 1.31E-49 

RF GDA accuracy 0.080 0.085 0.075 8.24E-33 0.035 0.038 0.032 3.28E-28 

  
F1 score 0.061 0.063 0.059 8.16E-44 0.024 0.026 0.021 1.12E-24 

  
precision 0.000 0.000 0.000 1.64E-01 -0.014 -0.014 -0.015 3.24E-37 

  
recall 0.084 0.089 0.080 3.88E-37 0.063 0.069 0.058 2.73E-26 

RF-GDA GDA accuracy 0.213 0.221 0.206 2.95E-43 0.001 0.002 0.001 7.31E-06 

  
F1 score 0.152 0.154 0.150 1.65E-60 0.001 0.001 0.000 1.10E-02 

  
precision 0.001 0.001 0.001 2.73E-05 0.002 0.003 0.002 3.60E-13 

  
recall 0.226 0.231 0.220 3.06E-51 -0.001 0.000 -0.002 4.90E-02 

 
RF accuracy 0.133 0.137 0.130 3.35E-51 -0.033 -0.030 -0.036 1.42E-26 

  
F1 score 0.091 0.093 0.089 4.51E-51 -0.023 -0.021 -0.026 6.09E-23 

  
precision 0.001 0.001 0.000 2.52E-03 0.017 0.018 0.016 1.21E-32 

  
recall 0.141 0.143 0.139 2.50E-59 -0.065 -0.058 -0.071 1.86E-24 

a mean of  differences of algorithm1 and algorithm2 from 46 cells of GM12878; b lower bound of the 95% confidence interval; c  upper 

bound of the 95% confidence interval 
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to its single layers is the maximized precision and recall for the heterozygous calls. This is due to 

sensitivity of the EM algorithm to outliers, which are effectively reduced in the RF step (Vogel et al., 

2019). There is a further benefit in the maximized precision in the homozygous calls at the relatively 

modest loss of true positive calls. Interestingly, the cascade approach of RF-GDA was not beneficial 

when tested on cross validated data (Section 6.1). We assume that this is due to different training and 

testing performance of the GDA layer. Cross validation uses data from the same dataset (yet different 

folds) for training and testing. It is therefore likely that the probability distribution of the data in the 

folds is nearly identical. When, however GDA trained and tested on completely different datasets 

with possible shift in the distribution between the training and testing data, the performance of GDA 

is suboptimal compared to RF-GDA, particularly for heterozygous calls. The results therefore suggest 

that RF-GDA is more adaptable and less sensitive to overfitting compared to single GDA. 

 

 

Figure 6.4. Comparison of performance of the single layers (RF, GDA) vs. a combined two layered architecture (RF-

GDA) on 46 cells from GM12878. Each dot represents one cell. The pairwise statistics for the 46 single cells was 

performed using paired t-test. Each asterisk represents level of significance. 
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6.2.3 Matrix of posterior probabilities 

Our observations suggest that SureTypeSC can effectively improve precision of both homozygous 

and heterozygous SNPs (on average, 99% for heterozygous calls and 92% for homozygous calls, 

Table 6.5). Having a high precision is a crucial assumption for many single cell analyses as Chapter 8 

will discuss. Precision can be further improved at the cost of recall, particularly for homozygous 

SNPs, as Figure 6.3 suggests. We therefore adjusted both SureTypeSC and GenCall for high 

precision, recalling ~47% of the true positive SNPs. To compare their performance, we developed a 

simple statistical toolkit that shows a detailed view of confidence in AA, BB or AB calls using a 

transition matrix of posterior probabilities  (Table 6.7).  

Table 6.7 Precision rates with GenCall and SureTypeSC on single cell line from GM12878a 

 
QC001b 

         REF                                    
SC 

AA AB BB NC Call_rate 

AA 0.851 ± 0.01 0.008 ± 0.001 0 ± 0 0.084 ± 0.01 0.364 ± 0.003 

AB 0.149 ± 0.01 0.946 ± 0.012 0.129 ± 0.008 0.57 ± 0.01 0.151 ± 0.007 

BB 0 ± 1e-04 0.046 ± 0.01 0.87 ± 0.008 0.076 ± 0.01 0.407 ± 0.002 

NC 0 ± 0 0 ± 0 0 ± 0 0.27 ± 0.01 0.077 ± 0.003 

 
GenCallc 

         REF                                     
SC 

AA AB BB NC Call_rate 

AA 0.895 ± 0.01 0 ± 1e-04 0 ± 0 0.268 ± 0.002 0.18 ± 0.002 

AB 0.105 ± 0.01 0.993 ± 0.004 0.089 ± 0.009 0.385 ± 0.004 0.035 ± 0.003 

BB 0 ± 0 0.007 ± 0.004 0.911 ± 0.009 0.312 ± 0.003 0.203 ± 0.002 

NC 0 ± 0 0 ± 0 0 ± 0 0.035 ± 4e-04 0.583 ± 0.007 

 
GDAd 

         REF                                   
SC 

AA AB BB NC Call_rate 

AA 0.967 ± 0.01 0.002 ± 2e-04 0 ± 0 0.226 ± 0.002 0.189 ± 0.001 

AB 0.033 ± 0.01 0.995 ± 8e-04 0.022 ± 0.003 0.37 ± 0.003 0.065 ± 0.005 

BB 0 ± 0 0.003 ± 5e-04 0.978 ± 0.003 0.37 ± 0.004 0.148 ± 0.006 

NC 0 ± 0 0 ± 0 0 ± 0 0.034 ± 6e-04 0.599 ± 0.01 

 
RFe 

         REF                                    
SC 

AA AB BB NC Call_rate 

AA 0.949 ± 0.007 0.002 ± 2e-04 0 ± 0 0.266 ± 0.003 0.172 ± 7e-04 

AB 0.051 ± 0.007 0.995 ± 8e-04 0.038 ± 0.005 0.328 ± 0.005 0.09 ± 0.007 

BB 0 ± 0 0.003 ± 5e-04 0.962 ± 0.005 0.37 ± 0.003 0.158 ± 0.004 

NC 0 ± 0 0 ± 0 0 ± 0 0.035 ± 6e-04 0.58 ± 0.01 

 
RF-GDAf 

         REF                                   
SC 

AA AB BB NC Call_rate 

AA 0.972 ± 0.004 0.002 ± 2e-04 0 ± 0 0.252 ± 0.004 0.17 ± 0.001 

AB 0.028 ± 0.004 0.996 ± 6e-04 0.022 ± 0.003 0.326 ± 0.005 0.089 ± 0.008 

BB 0 ± 0 0.003 ± 4e-04 0.978 ± 0.003 0.389 ± 0.004 0.134 ± 0.006 

NCe 0 ± 0 0 ± 0 0 ± 0 0.034 ± 7e-04 0.607 ± 0.013 
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a elements of the table show confidence (precision) rates (and ± confidence intervals at 95%)  of a particular SC genotype (column) being 

genotyped as in reference (row), the last column shows the call rates in the single cell data;  NC is no call; 
b GenCall with score threshold 

0.01;c GenCall at high precision (score threshold 0.87);d Gaussian Discriminant Analysis at high precision (score threshold 0.9); e Random 
Forest at high precision (score threshold 0.79); f cascade Random Forest and Gaussian Discriminant analysis at high precision (score 

threshold 0.75); gincidence transitions from AA,AB and BB in SC to  No Calls (NC) in Reference is always 0; this is due to quality check of 

the reference - SNPs that are not concordant within the replicates are set to NC and automatically set to NC in the single cell as well 
     

Elements of transition matrix of posterior probabilities  (         ), where      is the 

reference  call (in columns) and     is the single cell call (in rows); posterior probability in this 

context is a confidence measure of genotype     having a truth value of     .  (         ) is 

calculated using following equation: 

 (    |   )  
∑              

∑           
 (7.1)  

Table 6.7  shows that compared to GenCall, RF-GDA achieves major improvements of 8% 

and 7% confidence of AA and BB, respectively, and an improvement of 0.3% in confidence of an AB 

genotype. We also analysed the performance of the single layers. These outperform GenCall as well, 

but achieve lower precision then RF-GDA. 

6.2.4 Reduction of error rates  

Incorrect genotype calls arise predominantly from imbalances in the allele frequencies generated 

during the chemical reaction when the whole genome is amplified. The deviation from a 1:1 allele 

ratio of heterozygous SNPs can lead to allele drop out (ADO). Analogously, mistyping of a 

homozygous SNP results in allele drop in (ADI). We calculated the ADO and ADI rates for GenCall 

and SureTypeSC at high precision using the transition matrices (Table 6.7) and following formulas: 

      (     )   (     )  

      (     )     (      )   (     )     (      ) 

Calculation of ADI is straightforward. For calculation of ADO, we have calculate proportion of  

homozygous single-cell AA calls ( (      )) and proportion of homozygous single cell BB calls 

( (      )) and multiply these with the corresponding elements of the transition matrix. 

Results show that at a call rate (Section 4.7) of 42% for GenCall and 39% for SureTypeSC, 

GenCall is able to decrease ADI 7 times and SureTypeSC 12.5 times compared to minimal filtering 

(GenCall QC0.01). The ADO rate is decreased 1.5 times by GenCall and 5.6 times by SureTypeSC 

(Table 6.8). Although SureTypeSC outperforms GenCall and minimizes the error incidence, the loss 

of data is inevitable (call rate 39%, Table 6.8). 

Table 6.8 Allele drop-in, allele drop-out and call rate with all tested algorithm at high precision 

  Min. QCa GenCall
b
 RF

c
 GDA

d
 RF-GDA

e
 

ADI 0.05±0.01 0.007±0.003 0.005±0.0007 0.005±0.0007 0.004±0.0005 

ADO 0.14±.009 0.096±0.01 0.045±0.006 0.03±0.004 0.025±0.004 
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Call rate 0.92±0.003 0.42±0.01 0.42±0.01 0.4±0.01 0.39±0.01 

aGenCall score threshold 0.01,bGenCall score threshold 0.87, c RF score threshold 0.7, d  GDA score threshold 0.9,e  RF-

GDA score threshold 0.75 

6.3 Experiments 

We performed a set of experiments with the model to show the sensitivity towards the parameters and 

quantity of the training data used. The experiments are summarized in  

Table 6.9. Most of the parameters that revealed as optimal by these experiments, were implemented 

in the program and validated in Sections 6.1 and 6.2. This is clearly distinguished in Table 6.9. We 

used ROC-AUC score as objective function for measuring the performance. The advantage of ROC-

AUC score, as mentioned earlier in the text, is that it captures the overall performance of the classifier 

and is not dependent on the classification threshold. We also used out of bag score (OOB, Section 

4.5) in one of the experiments to evaluate the training procedure of RF.  

If not stated otherwise, the default parameters for the experiments were: 

 Number of trees: 30 

 Training dataset: GM7228 

 Testing dataset: GM12878 

 Number of input training cells: 58 

 Ratio of positive and negative samples: 1 

 Data for GDA-model creation:  aggregated chromosomes 1-22 

 Inter-layer threshold for RF-GDA: 0.5 

 

Table 6.9 Overview of the experiments performed on the model 

 Category Parameters tested 
Layers tested 

Validateda 
RF GDA RF-GDA 

Robustness   Number of  trees yes no no yes 

Robustness   Partitioning of the input data no no yes yes 

Sensitivity to size of 

the training data 

 Number of cells included in the training 

dataset 
yes no yes no 

Sensitivity to quality 

of the training data 

 Ratio of positive and negative samples in 

the training dataset 
yes yes yes yes 

Sensitivity to quality 

of the training data 

 Threshold of the RF-score for the GDA-

layer 
yes no yes yes 

 a indicates whether optimal parameters revealed by the experiment were implemented and validated in Section 6.1-6.2 

6.3.1 Number of trees in Random Forest 

We tested how the number of trees n in the Random Forest influence the classification performance. 

We started with n=5 and incremented up to 100 trees and evaluated the ROC-AUC score in every 



 64 

iteration. The results (Figure 6.5) suggest that with first few n, RF benefits from adding every extra 

tree to the forest. Figure 6.5 shows that for n=5, the average ROC-AUC score is aroud 0.785. For 

n=30, that we chose for the implementation, the ROC-AUC score is ~0.81. Note that from n=25, the 

contribution to the improvement of the ROC-AUC fades and the ROC-AUC score stabilizes at ~0.815 

with n=75. Based on the testing data, we can conclude that n=30 gives a good tradeoff between 

performance and complexity of the Random Forest. 

6.3.2 Partitioning the input space for GDA 

In the cascade configuration, the output of RF is used to feed the GDA layer (Figure 5.6). As of 

default, we create one aggregate model for all analysed chromosomes. We were interested how 

succesful the classification would be if we trained a separate model per chromosome. We therefore 

ran a comparative analysis where we first classified all chromosomes using one aggregate GDA 

model (noted as `aggregate`) and then performed an independent run where we fitted a separate 

model per each chromosome (noted as `single`). We then listed the performance per chromosome 

(Figure 6.6). We compared the groups analysed with the `aggregate` and `single` model using paired 

t-test (Table 6.10). Collectivelly, Figure 6.6 and Table 6.10 show that for the majority of the 

chromosomes (14), aggregate model gives slightly better results. These differences are statistically 

significant (p-value < 0.0001), however, very small (Table 6.10). As creating one aggregate model is 

computationally more efficient than creating a separate model per chromosome,  it is advantageous to 

use the aggregate strategy unless some chromosome suffer from aneuploidy (wrong number of 

chromosomes due to cancer or error in the cell division). Aneuploidy would cause deviation of the 

signal caused by factor other than MDA (Section 2.2.2). 

 

Figure 6.5. Relationship of size of the Random Forest (number of trees) and the performance of the classifier.X axis 

shows number of trees, Y axis shows mean ROC-AUC score across 46 cells from the testing individual GM12878. The 

vertical line demonstrates the number of  trees  in the current implementation (30)  
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Figure 6.6. ROC-AUC score over 46 cells from GM12878. Every dot represents one cell and every dotplot represents 

results of an aggregate or single model. 

Table 6.10. Results of paired t-test between aggregate and singlea 

Chromosome MDEb Direction of differencec 

1 0.005 + 

2 0.004 + 

3 0.004 + 

4 -0.002 - 

5 -0.003 - 

6 0.001 + 

7 -0.004 - 

8 -0.003 - 

9 -0.001 - 

10 -0.004 - 

11 -0.001 - 

12 0.004 + 

13 -0.002 - 

14 0.005 + 

15 0.010 + 

16 0.003 + 

17 0.005 + 

18 0.002 + 

19 0.002 + 

20 0.006 + 

21 0.002 + 

22 0.001 + 

Total 
 

14+;8- 
a measurements were performed across 46 cells from GM12878 
b mean difference estimate from paired t-test 
c + means `aggregate` model has better score, - means `single` model has better score  
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6.3.3 Effects of balanced and imbalanced training dataset  

In the original implementation the dataset is balanced prior to the training. We were interested how 

using the original, highly imbalanced dataset (roughly 9:1 in favor of the positive class) affects the 

performance. We visualised the results using ROC and Precision-Recall curves. As shown in Figure 

6.7 balancing the dataset is advantageous for the first layer of the algorithm (RF) in the heterozygous 

area of the genome (Figure 6.7A,C), but, surprisingly, does not affect the GDA layer or affects it only 

minimally. This is probably related to the size of the input training dataset, which is big enough (58 

cells) to accumulate sufficient amount of information for the minority class. It will be interesting to 

observe how sensitive the model is to the size of the input (training) dataset and how this affects the 

performance of the second layer. The problem of sufficient amount of training data is discussed in the 

following subsection. 

 

Figure 6.7. Comparison of performance of RF, GDA and RF-GDA using balanced training data (dashed; ratio1) and 

imbalanced original data (solid line; ratio0). (A) ROC curve for homozygous SNPs; (B) ROC curve for heterozygous 

SNPs; (C) Precision-Recall curve for homozygous SNPs; (D) Precision-Recall curve for heterozygous SNPs; The bands 

along the curves represent confidence intervals at 95% over 46 cells of GM12878.  

6.3.4 Effect of the size of the training dataset 

Here, we measured how number of cells in the training dataset affect the training and testing 

performance. The training performance was measured for Random Forest using out of bag  (OOB) 



 67 

score. The testing score was assesed as in the previous experiments – using ROC-AUC score.  

Similarly to Section 6.3.1, where we were systematically increasing number of trees, in this 

experiment, we were systematically increasing the number of input cells for the training algorithm 

(interval from         ). Figure 6.8 suggests that system with only few cells is relatively 

unstable – for the first few cells, every addition of a cell to the training algorithm causes shift of the 

mean score. The effect is similar for ROC-AUC score of the validation data (GM12878; blue curve in 

Figure 6.2) and for OOB during the training (training on GM7228; green curve). The GDA in the 

second layer is dependent on the results of the RF and therefore, as expected, ROC-AUC score of RF-

GDA has similar trend as ROC-AUC of RF on its own. As the number of cells in the system 

increases, the changes between the iterations decrease and the system stabilizes at ~40 cells. As the 

model was originally trained on all available cells (56), these results suggest that lowering the number 

of cells in the training data will not harm the performance.  

 

Figure 6.8. Relationship of training dataset size (in number of cells) and the mean ROC-AUC score over 46 testing 

cells from GM12878. 

6.3.5 Effect of the inter-layer threshold 

As described previously, the GDA-layer accepts data processed by the RF-layer in the form of 

positive and negative class (Section 5.5.2). This approach is beneficial as shown in the validation part 

(Section 6.2). As by default, the positive class for fitting with GDA consists of SNPs that have RF 

score at least 0.5 and the rest is considered as negative class. We were interested how the RF-score 

(termed as inter-layer threshold) influences the performance of the GDA layer and therefore changed 

this parameter systematically. The results are shown in Figure 6.9. As the inter-layer threshold 

increases, the amount of relevant positive examples for the GDA-input decreases and the amount of 
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relevant negative examples increases. The peak performance is in interval of inter-layer threshold 

<0.5; 0.7>. After this interval, the amount of positive samples is likely insufficient to fit the GDA 

layer and the performance of RF-GDA declines. RF labeled the testing data GM12878 with an 

average score of 0.66. This number falls into the interval of peak performance. Selecting average RF-

score for the inter-layer threshold can be therefore a good rule of thumb for setting the optimal 

performance of the cascade classifier.  

 

Figure 6.9. Relationship of the threshold for classification output of RF (inter-layer score) and the performance of 

the consequent GDA layer. 

6.4 Conclusion 

In the validation part, we have shown that our algorithm can increase accuracy of single-cell 

genotyping for heterozygous SNPs from 68% to 84%, by increasing both, recall (also from 68% to 

84%) and precision (from 97% to 99%). We improve precision for homozygous SNPs from 89% to 

92%. This is at the cost of recall. We then discuss how even higher precision can be achieved for 

single cells by adjusting the classification threshold. The applications for these findings will be 

explained in Chapter 8. 

In the second part of the chapter, we performed experiments with the model, that show: 

 Increasing the number of trees in the first layer benefits the overall performance; performance of 

the RF layer stabilizes with ~50 trees and we do not observe further improvement of the RF layer; 

after 30 trees, we observe only minor improvements and therefore use this number in the 

implementation as an optimal cutoff between performance and complexity 

 We show that under assumption that we work with normal, healthy samples (i.e. constant and 

correct numbers of input chromosomes), it is beneficial to aggregate all chromosomes in one 
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GDA model. Splitting them can locally (for some chromosomes) contribute to slightly better 

classification performance, however, at the cost of higher complexity and running times (creating 

separate models per each chromosome). 

 Balancing the training dataset benefits the homozygous SNPs in the RF-layer. As RF-layer due its 

good performance in the homozygous regions can be potentially used independently, this finding 

has practical implications for the application part of this work 

 The number of cells for training of the system contribute to better performance. The training and 

testing performance fluctuate with the first few cells and then stabilize at ~40 cells. Decreasing 

the number of cells from 58 to 40 will therefore speed up the learning and likely not harm the 

performance. 

 Choosing the mean RF-score value for the inter-layer threshold gives optimal performance of RF-

GDA. Increasing the threshold beyond this negatively affects the performance as the GDA likely 

does not obtain enough truly positive SNPs to create the model. 
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7 Knowledge extraction 

As presented in the generic workflow in Figure 2.5, creating a model over the intensity data and 

genotyping is not a final step of the analysis. The whole workflow would have zero practical impact 

without proper interpretation of the data and analysis of the context. We call this process knowledge 

extraction and will present few algorithms falling into this category. The presented algorithms are 

either optimization of the previously published concepts or present original solutions for knowledge 

extraction – this is clearly distinguished in the text. 

7.1 Recombination events in human oocytes 

7.1.1 Introduction 

We will refer to the biological introduction, particularly to Section 2.1.3, but will elaborate on female 

reproductive cells. As presented previously, human genome has 23 pairs of homologous 

chromosomes and each homologous pair has been created from parental chromosomes (green and 

yellow strands in Figure 7.1A representing maternal and parental DNA). Oocytes are female 

reproductive organs that are generated during process called female gametogenesis in ovaries. During 

gametogenesis, the amount of genetic materials first doubles to give rise to primary oocyte (Figure 

7.1B). The parental genetic information in the primary oocyte can then undergo recombination 

between homologous chromosomes (Section 2.1.3) . 

Recombination is illustrated as exchange of green and yellow stretches of DNA in Figure 

7.1B. The genetic information inherited from the same parent (here, continuous stretch of green or 

yellow) is called haplotype block. During the first stage of meiotic divison, the homologous 

chromosomes segregate and give rise to two different cells – oocyte
7
 and polar body (PB1, Figure 

7.1C). The sister chromatids segregate upon fertilization or artificial activation of oocyte in the lab 

(Models II-1 and II-2, respectively, Figure 7.1D and Figure 7.1E; Ottolini et al. 2015). During this 

process, PB2 is extruded (Figure Figure 7.1D, E). 

7.1.2 Meiotic pathways and data models 

Thanks to advanced laboratory technologies, we are able to obtain data for most of the pathways 

(models) depicted in Figure 7.1 using the generic workflow (Figure 2.5) and SNP arrays (Section 

2.2.3). Analogously to Chapter 5, we can identify two categories of data – accurate information from 

bulk genomic DNA (Figure 7.1A) and noisy genotype information from single cell DNA represented 

                                                      
7
 We use the term oocyte and egg interchangeably. 
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by the products of female meiosis (Figure 7.1C,D,E). Depending on whether the cell is diploid or 

haploid, there are several constraints on the data. The notation for genotypes is consistent with the 

notation used in Chapter 4.  

 

 

Figure 7.1. Generation of human oocytes. The genomic DNA (A) is replicated and undergoes recombination (B). The 

homologous chromosomes segregate and give rise to two different cells – oocyte and polar body (C).  The sister chromatids 

segregate upon fertilization (D) or artificial activation of oocyte in the lab (E). 

Genomic DNA 

Genomic DNA represents diploid information. As this is combination of alleles from maternal and 

paternal genome, we can observe both heterozygous and homozygous calls. Let       note the 

genomic DNA. Then: 

      *           +   

where    corresponds to NoCall or missing value,    and    present the homozygous genotypes 

and    is the heterozygous genotype. 

Model I 
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Both, PB1 and oocyte are diploid at this stage of meiosis which implies the same constraints on the 

genotypes as it is in case of the genomic DNA (both homozygous and heterozygous calls are 

possible). Let          define the PB1 and oocyte genotypes, then: 

      *           +  

     *           +  

Model II-1 

At this stage of meiosis, PB1 and zygote are diploid. However, PB2 is haploid and therefore only 

homozygous calls should appear in this data. Let           and     define the genotypes for PB1, 

PB2 and zygote, then following constraints are applied on the genotypes: 

      *           +  

     *        +  

     *           +  

Model II-2 

This model is feasible thanks to artificial activation of oocyte which mimics the presence of sperm. 

Yet, the sperm genotype is not present, the oocyte remains haploid. Similarly to Model II-1, this 

implies following rules for the genotypes: 

      *           +  

     *        +  

      *        +  

 

Conventions and limitations of the technology 

From previous definitions and Figure 7.1, it is apparent that AB genotype means that the parental 

alleles are different. We, however, do not have information whether A belongs to the mother and B 

belongs to the father and vice versa. We only have information about them being different.  

Algorithmic detection of crossovers 

To summarize the previous biological context we define crossover as the position on the chromosome 

where the reciprocal exchange of genetic information initiates (recombination) and causes transition 

of parental haplotypes. This can be detected for both, Model I and Model II illustrated in Figure 7.1. 

As Model I and Model II contain two and three cells, we refer to them as to Duos and Trios, 

respectively.  To the best of our knowledge, the algorithm for detecting crossovers in Duos is 

currently not publicly available and we therefore designed an original solution. For detecting 

crossovers in Trios, we took the concept of an algorithm published in Ottolini et al., 2016, optimized  

and fully automated for batch processing. 
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7.1.3 Model I – reconstructing crossovers from Duos 

Figure 7.1C shows stage of the meiotic division with two cells that both posses two strands of DNA.  

It is apparent that the recombinant parts of the chromosome share the same combinations of alleles 

(green and yellow building heterozygous genotype), whereas the part of the chromosome that did not 

recombine contain only information from one of the parents (Figure 7.2). If we therefore compare the 

genotypes from these two cells and mark matching genotypes with 1 and varying genotypes with 0, 

we would ideally obtain a regular expression , -*   +, -* +, where n is the size of the 

chromosome and m is the size of the recombinant part of the chromosome. The transition point 

between 1 and 0 would represent the crossover. However, following factors need to be taken into 

account: 

 Genotypes will also match by chance 

 Genotypes contain errors causes by MDA (Chapter 5).  

The sequence at the output is therefore expected to be ,   -* +, where n is the size of the 

chromosome. 

 

Figure 7.2. Shared heterozygous genotypes and non-shared homozygous genotypes with crossover between them 

marked with asterisk. 

Design of a new algorithm 

We designed an algorithm for the crossover detection in Duos (Algorithm 1) that uses simple 

arithmetics with B allele frequency and runs a function and a procedure in cascade. The B-allele 

frequency feature is interpolated from the three canonical clusters of the reference SNP array data 

implemented in GenCall (Section 4.6). Approximate values of B allele frequences intuitively 

correspond to the proportion of the minor B allele in the genotype and are in Table 7.1 

The algorithm assumes that absolute differences in regions that did not recombine (and are 

therefore homozygous) are close to one. Therefore, it iteratively marks the absolute distances between 

B-allele frequences of the loci of the two cells.. It is however assumed that these regions can also 

contain markers with zeros when the corresponding homozygous SNPs from two cells match by 

chance as explained previously. Sufficiently high threshold (currently 0.95) filters these markers out. 

This is implemented in function MarkAndSelect(.). Subsequently, the candidate homozygous loci 

(with markers close to 1) undergo segmentation procedure (procedure SegmentHomRegions). 

Procedure SegmentHomRegions performs segmentation on the homozygous regions and separates 

them into potentially multiple homozygous segments. For the actual segmentation, a variational 
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Bayessian GMM is employed, as this allocates number of segments dynamically (Section 4.3.4). The 

boundaries of these segments then determine the positions of the crossovers. 

 

Table 7.1 Theoretical values of B allele frequences. 

Genotype B allele freq 

AA 0 

BB 1 

AB 0.5 

 

Algorithm 1: Crossover detection in Duos 

Input: vectors Bfreq_1 and Bfreq_2 in corresponding to two cells from Model I 

Output: list of crossovers 

1. CandidateLoci←MarkAndSelect(Bref_1, Breq_2) 

2. SegmentHomRegions(CandidateLoci) 

 

Function: MarkAndSelect(.) 

For chromosome in Chromosomes 

For locus in chromosome: 

  Mark[locus]  ← abs(Bfreq_1[locus]-Bfreq_2[locus]) 

  Select[locus]  ← Mark[locus]>threshold 

Return Select 

Procedure: SegmentHomRegions(.) 

For chromosome in Chromosomes: 

  Segment(chromosome) 

  ReportCrossovers() 

 

7.1.4 Model II – reconstructing crossovers from Trios 

The algorithm for finding crossovers in Trios is more complex due to number and types of cells 

involved –  we operate with Model II-2, as this does not contain the paternal DNA (sperm) and 

therefore allows better resolution (Ottolini et al., 2015). The algorithm firstly only selects 

heterozygous SNPs from maternal genomic DNA (Figure 7.1A). These are termed as informative, as 

they contain both alleles that can be tracked in the PB1, PB2 and Egg (Figure 7.1E).  Secondly, the 

algorithm compares one of the haploid cells (PB2 or Oocyte) from the same individual to all the other 

cells. This haploid cell is termed as hypothetical common ancestor or reference and its purpose is to 

determine the origin of the haplotype blocks (green and yellow strand in Figure 7.1). We call the 

regions that are shared with the reference as `in phase` and the procedure of determining the origin of 
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haplotype blocks as phasing. The reference, although initially assumed to be a homogenious 

haplotype block, also potentially carries crossovers. If this is the case, an artificial crossover would 

appear in all the other cells that underwent phasing. This needs to be examined (Figure 7.3) and 

phases corrected by adding a crossover to the reference (Ottolini et al. 2016).  

The original implementation of the algorithm requires user interaction and manipulation 

throughout the analysis (Ottolini et al. 2016). I.e. the transitions between the haplotype blocks and 

common crossovers need to be visually inspected and marked and corrected manually. We reflected 

these drawbacks on following changes to the design of the algorithm:  

 we automated the process by designing algorithm for resolving common crossovers and 

transitions between the haplotypes 

 we optimized the algorithm by designing operations on matrices and vectors that can be 

efficiently implemented in one of the high level numerical libraries (Numpy for Python,  Walt 

et al., 2011) 

The pseudocode of the optimized algorithm is shown in Algorithm 2. Details on the functions are 

below Algorithm 2. Note that the requirements for minimal number of input trios  (    ) were 

previously validated in Ottolini et al, 2016.  

 

Algorithm 2: Crossover detection in Trios 

Input: D={n vectors of genotypes- gDNA, PB1, PB2 and Egg} from the same individual}, where 

|n|=1+3x and x is number of trios (>=3) 

Output: Cx={list of crossover positions per cell per chromosome} 

1. Mask out loci where      *     + and        and        

//we only operate with informative SnPs and het PB2 and Egg are likely an error  

2. Convert genotypes to B-allele frequencies (AA←0, BB←1 AB←0.5) 

3. Phase(D, Ref): perform | X-Ref |, where X  *           +  

a. Return Dphased 

4. Smooth_Haplotype(Dphased): apply 1D mode filter to phased data 

a. Return Dsmoothed 

5. ResolveCx(Dsmoothed) – resolve common crossovers in reference 

6. Phase(Dsmoothed, Refresolved) 

7. Report crossovers and haplotype blocks 
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Figure 7.3. Demonstration of the phasing procedure and crossover detection using a single reference (PB2 from 

Trio1). (A) Firstly, the cells from all the other trios are compared to the reference chromatid and labeled in yellow or orange 

depending on the cell being in phase with the reference or not, respectively. Secondly, in order to resolve crossover in the 

reference chromatid, common crossovers in all the other haploid cells are detected (red dashed rectangles), removed and  

added to the reference chromatid (B).  (C) Genotype of the phased maternal haplotype (Ottolini et al., 2015). 

Function Phase 

The function applies fast arithmetic operations to all chromosomes in all cells in the trio that 

compares all data to the reference cell. It returns mask to every chromosome present in the dataset 

with  0 for loci in phase with the reference, 1 for loci out of phase and 0.5 for heterozygous loci. 

Function Smooth_Haplotype 

Function processes the phased genotypes with 1D mode filter. 1D mode filter is analogous to median 

filter with mode as the core function. Median filter is a non-linear technique to remove noise (or 

generally outliers) from the data and prevent edges (Bovik et al., 1987). The edges are boundaries of 

the phases/haplotypes and there are two categories of outliers present in the data: 

 True technical noise caused by whole genome amplification 

 Heterogeneity of the heterozygous region as this can not only possess AB, but also AA and 

BB if the alleles are matching by chance (Section 7.1.3) 

Table 7.2 demonstrates this problem and shows motivation for application of a smoothing filter. The 

task is to unify the phases by removing the erroneously phased genotypes caused by aforementioned 

reasons, but preserve the edges (crossovers) to obtain two haplotypes and a heterozygous region. 

Similar approach was previously used for haplotype smoothing in Zamani Esteki et al. (2015). 

Algorithm 3 shows the design of the smoothing filter, that uses 2D matrix to store (or reference) 

elements of the sliding window of size k. The size of the window for chromosome chr,     , is 

calculated dynamically per chromosome using Eq 8.1 (Zamani Esteki et al., 2015). The calculations 

take only informative SNPs, that is loci that are heterozygous in the genomic DNA. 
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)      (7.1) 

 

where      is chromosome k-specific window,    is the size of the window for chromosome 

(currently set to 21 informative SNPs),         is total amount of informative SNPs for chromosome 

chr  and      is the total amount of informative SNPs for chromosome 1. 

 

Table 7.2 Demonstratrion on how errors in genotyping affect phasing procedure 

SNP ID Diploid cell Reference Phase Status Haplotype Crossover 

1 AA AA 0 Correct 

0 

FP due ADI (SNP 1 and 2) 
2 AB AA 0.5 ADI 

3 BB BB 0 Correct No crossover 

4 AA AA 0 Correct 
TP (SNP 4 and 5) 

5 AA BB 1 Correct 

1 6 AA BB 1 Correct No crossover 

7 BB AA 1 Correct 
TP (SNP 7 and 8) 

8 AB AA 0.5 Correct 

0.5 

9 AB BB 0.5 Correct FP (SNP 9 and 10) 

 

 

 

FP (SNP 10 and 11) 

10 AA AA 1 ADO/Correct 

11 

AB BB 0.5 C 

Correct 

 

Algorithm 3: Function Smooth_Haplotype
8
 

Input: vector x and window size k, where k mod 2 =1 

Output: Smoothed vector xsmooth 

1. Calculate center of the window k2 =(k-1) // 2  

2. Init matrix y=          

3. Copy x to k2-th column of matrix y 

4. For i =0 to k2-1 

a. j= k2 -i 

b. Copy elements x[0 to  |x|-j] →  y[j,i]  

c. Copy  x[0] j-times →  y[0,i] 

d. Copy x[j to |x|-1] →  y[0 to |x| - j- 1, |x| - (i + 1)] 

e. Copy x[|x|-1] j-times →  y[|x| - j to |x| - 1, |x| - (i + 1)] 

5. For every column in y:  

a. Calculate mode and add to xsmooth 

 

                                                      
8
 The design of the algorithm was inspired by https://gist.github.com/bhawkins/3535131 

https://gist.github.com/bhawkins/3535131
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Figure 7.4. 2D translation of the mode filter sliding window for k=5 an on sequence x with length 10. Every column 

contains one-step walk of the sliding window. The boundaries are extended by k2=2 

Note that 4c and 4e assures the endpoints are extended k2 times to meet the condition |x| = 

|xsmooth | and operation Copy is copy by reference (indices of x).  Translating the problem into 2D array 

allows implementation in a  fast numerical framework in high level language, i. e. Numpy in Python 

(Van der Walt et al., 2011). A principle of populating the 2D matrix Algorithm 3 is shown in Figure 

7.4. 

 

Function ResolveCx 

Function creates a matrix of crossovers and subsequently searches for common crossovers that 

indicate crossover in the reference cell. As crossovers are defined by transition of haplotypes in a 

matrix (haplotype transition is indicated with 1 in matrix cx, Algorithm 4), the number of common 

crossovers per locus is sum over all columns (colsum in Algorithm 4)  The crossover is then 

subsequently resolved and phases are added to the reference sequence. 

 

Algorithm 4: Function ResolveCx 

Input: Collection of phased and smoothed trios Dphased from the same individual including reference 

Ref without crossovers 

Output: Refresolved with resolved crossovers and added phases 

1. Init matrix of crossovers cx of the same  dimensions as  Dphased 

2. For cell in Dphased:: 

a. For pos in cell 

i. cx[pos,cellid] ← phase[i]!=phase[i+1] 

b. For row in cx: 

i. If colsum(row) = total number of haploid cells in Dphased 

a. Ref[row] ← 1 

3. Init Refresolved with dimensions identical to Ref 

4. For pos in Ref: 

a. Refresolved [pos] = cumsum(Ref[pos]!=Ref[pos+1]) mod 2 
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Figure 7.5. Visualisation of the algorithm for resolving common crossovers. 

Note that step 2ai in Algorithm 4 marks all transitions between haplotypes and then 2bi checks for 

common crossovers. Once the crossovers are added to the reference, step 4a corrects for haplotype 

transitions between introduced crossovers using cumulative sum (cumsum). A visual example of the 

algorithm ResolveCx is in Figure 7.5. After the common crossovers are resolved, the cells undergo a 

second round of phasing – now with a phased reference. The procedure Phase in Algorithm 2 is 

universal in this matter and can be again used to adjust the phases of all cells in respect to crossover 

in the reference cell.  

7.2 Gene conversions 

7.2.1 Introduction 

Crossover and recombination contributes to heterogeneity of the human population by shuffling the 

genetic information during meiosis. While crossover is a reciprocal transfer of genetic information 

that maintains the same amount of alleles for every locus, gene conversion is non-reciprocal. A 

required condition for both, crossover and gene conversion is presence of double strand breaks 

(DSBs). DSBs are subsequently resolved by either crossover, or gene conversion. In case of gene 

conversion, the missing gap in DNA is synthetised in favor of one of the alleles.  This causes allelic 

imbalance (Figure 7.6). The detailed mechanism is explained thoroughly elsewhere (Chen et al., 

2007).  
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Figure 7.6. Gene conversion vs. crossover9 

Thanks to availability of the data for all products of female meiosis (Section 7.1), we are able 

to formulate an algorithm to detect  the gene conversions directly. 

7.2.2 Detection of GCs in Trios 

The detection of gene conversions is based on mendelian inheritance patterns  (law of segregation). 

The design of the algorithm is summarized in Algorithm 5 and the principle is that every locus that 

shows allelic imbalance (different counts of allele A and B over all three cells per locus) is a potential 

gene conversion. The algorithm takes into account only heterozygous PB1 as confidence in 

heterozygous genotypes is generally higher (Table 6.7). 

 

Algorithm 5: Detect GC 

Input: quadruplet of genotype vectors Q={gDNA, PB1, PB2, Egg} from a single individual 

Output: list of GC 

1. Convert genotypes to B-allele freq: AB ← 0.5, AA ← 0, BB ← 1.0  

2. Select loci where gDNA=0.5 and PB1=0.5 

3. For every locus l in Q: 

a. If         , -  (     , -     , -)     

i. Report GC at locus l 

 

Due to potential noise present in the data, Algorithm 5 in this form requires high confidence genotype 

data. This will be discussed in Chapter 8. 

7.3 Conclusion 

In this chapter we presented algorithms for knowledge extraction from single-cell data, namely data 

from female meiosis. We partly discussed how noise would theoretically affect performance of these 

                                                      
9
 Figure taken from http://www.web-books.com/MoBio/Free/Ch8D4.htm 

http://www.web-books.com/MoBio/Free/Ch8D4.htm
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algorithms. We will elaborate on this in the next chapter and show practical examples of biological 

inference. 
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8 Applications of SureTypeSC 

8.1 Introduction 

In this chapter, we demonstrate practical applications of the novel algorithm for filtering genotypes 

(Chapter 5) and algorithms for knowledge extraction from the single-cell data (Chapter 7). We will 

use both, data from female meiosis and reference dataset described in Section 5.4. The goal is to show 

performance of the novel filtering algorithm on these data in comparison with the state of the art 

algorithm, GenCall and how the quality of genotyping affects the knowledge extraction. We operate 

with various thresholds of the algorithms depending on the application.  

8.2 Improved crossover detection 

8.2.1 Duos 

We demonstrate the functionality of the algorithm for crossover detection in Duos (Algorithm 1, 

Section 7.1.3) on chromosome 1 of a PB1-oocyte duo from Gruhn et al. (in resubmission). We were 

interested how the algorithm performs on original unfiltered data and with different stringencies of 

GenCall and SureTypeSC. The results are shown in Figure 8.1. The strategies for testing different 

thresholds were following (number of markers after filtration corresponds to number of points in 

Figure 8.1): 

a. Raw data without any filtration (`Raw data`, 22,905 markers)  and standard GenCall genotyping 

(QC015, 18,111 markers) 

b. Standard RF-GDA from SureTypeSC (RF-GDA015, 16,442 markers) 

c. GenCall with high stringency (QC087, 8,799 markers) 

d. RF-GDA057 with threshold that accepts similar amount of markers as QC087 (8751 markers) 

e. QC095 as an example of extreme filtering of GenCall with only few points left. 

The results suggest that increased stringency contributes to clearer homozygous segments by 

removing poor quality signal – this is true for both, GenCall and RF-GDA. However, RF-GDA shows 

higher specificity towards the noise for similar number of markers –the segments are clearer with less 

noise (Figure 8.1B vs. Figure 8.1C and Figure 8.1D vs. Figure 8.1E). Lower specificity of GenCall 

towards noise is confirmed in Figure 8.1F, where highly stringent GenCall (QC095) still fails to reject 

few likely false positives (dispersed green points around green cluster in Figure 8.1F).    

Concordant with our validation studies in Chapter 6, RF-GDA075 (threshold used for high 

precision with empirical error rates in Table 6.7) effectively cleans up the signal and enables the 

clearest separation of the homozygous clusters with the segmentation algorithm. Note that the red 
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singleton in Figure 8.1G could be either FP left out by SureTypeSC or gene conversion (Section 7.2). 

The algorithm currently takes this marker as a boundary for the crossover (Fig. 8.5H), which might be 

wrong. 

 

Figure 8.1. Visual representation of the results of the crossover detection algorithm in duos using different filtering 

strategies. The points other than blue represent clustered segments of homozygous data. (A) Raw data is the genotyping 

data from GenCall from  GenomeStudio with no filtering. (B) is the data filtered with standard GenCall threshold 0.15. (C)  

is raw data filtered with algorithm RF-GDA from SureTypeSC using standard threshold 0.15. (D) is GenCall algorithm with 

stringend threshold 0.87. (E) RF-GDA with threshold that maintains the same amount of markers as QC087. (F) GenCall 

with highly stringent threshold close to 1. (G) RF-GDA previously validated for high precision. (H) Likely crossovers 

inferred from boundaries of the segments clustered from G. 

8.2.2 Trios  

We applied Algorithm 2 presented in Section 7.1.4 for detection of crossovers in Trios and were 

interested in performance of the algorithm with data from standard GenCall (QC015) and data filtered 

with RF-GDA. We demonstrate the differences between the results on chr17 from one trio from a 
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data collection from University of Copenhagen
10

. Comparison of the outputs of both genotyping 

strategies (Figure 8.2) indicates, that: 

 The density of the heterozygous SNPs is higher with RF-GDA075 – this is expected and is 

concordant with the validation study that SureTypeSC can resolve more true positive 

heterozygous SNPs (Chapter 6) 

  As a direct consequence of the previous point, we observe artificial crossovers and 

transitions between haplotypes in the heterozygous regions after smoothing with data from 

GenCall (QC015, Fig. 8.10B). The theory of artificial crossovers was illustrated in Table 7.2. 

An artificial haplotype transition is non-reciprocal (lacking support in PB2 and Egg).  I.e.  

haplotype switch in PB1 from heterozygous to haplotype1  should trigger haplotype switch in 

one of the other cells, otherwise it is considered artificial. These events are marked with 

rectangles in Figure 8.2B. 

  

Figure 8.2. Results of the the phasing stage and the smoothing stage of the crossover detection algorithm fro Trios for 

data coming from GenCall with standard threshold (QC015) and RF-GDA075. Heterozygous regions (containing both 

green and yellow haplotypes) are in violett , and the parental phases in green and yellow. The solid rectangles indicate 

artifical haplotype blocks. 

8.3 Direct detection of gene conversions 

8.3.1 GenCall 

Algorithm 5 for detection gene conversion (Section 7.2) does not distinguish between gene 

conversions and errors caused by MDA amplification. As mentioned in Section 7.2, Algorithm 5 

takes into account only loci heterozygous in PB1. As incidence of ADI is much lower than ADO  

(Table 6.8), heterozygous genotypes are more reliable (Table 6.7) and the probability of transition 

between two homozygous genotypes (AA ↔ BB; Table 6.7) is close to zero. The possible scenarios 

                                                      
10

 https://icmm.ku.dk/english/research-groups/hoffmann-group/ 

https://icmm.ku.dk/english/research-groups/hoffmann-group/
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are then listed in Table 8.1. Running the algorithm on the data with QC015 (empirical error rates in 

Table 6.8) reveals 2449 gene conversion events with heterozygous PB1 (Figure 8.3). As we are taking 

into account only heterozygous SNPs these span about 16% in a diploid cell (around 50,000 

heterozygous SNPs in 300k microarray, Table 5.3). This fraction corresponds to            in 

human genome. Assuming the gene conversion tract has length around 100 bp on average 

(Padhukasahasram and Rannala, 2013), 2449 detected gene conversions span roughly 250,000 bp. 

This corresponds to gene conversion rate of          per bp, per meiosis. Rate of gene conversion 

has been previously estimated as 5.9 × 10
−6

 per bp, per meiosis (Williams et al., 2015), which is 

roughly 10.000 times less than what we predicted. It is to conclude that most of the detected gene 

conversions from genotypes using standard genotyping using GenCall are false positives and product 

of noise.  

Table 8.1. Possible combination of alleles where loci in PB1 are heterozygous 

PB1 PB2 Egg Status 

AB AA BB Mendelian inheritance 

AB AA AA Gene conversion BB→AA  or ADI in PB1 

AB BB AA Mendelian inheritance 

AB BB BB Gene conversion AA→BB  or ADI in PB1 

8.3.2 SureTypeSC 

We were futhermore interested in numbers of gene conversion after we filter the genotypes with 

SureTypeSC aimed for high precision (RF-GDA with error rates in Table 6.8). Figure 8.3 shows the 

results on top of the results of standard GenCall. The number of gene conversion events is reduced to 

only 10. This corresponds to gene conversion rate of         per bp, per meiosis. A lower number 

than reported in Williams et al., 2015 can be explained by the fact that we only taken into account the 

heterozygous part of the genome of PB1, but neverthless suggests that we were able to separate noise 

from the truth signal and detect gene conversions directly. 

8.3.3 Validation with NGS data 

To asses whether the 10 gene conversion that we detected on data with SureTypeSC are real, we 

performed whole genome next-generation sequencing (Section 2.2.4) at a target depth 50x. We used 

standard worklow (Figure 2.5) for preprocessing of the NGS data (Section 3.2) and computational 

pipeline GATK for genotyping (Van der Auwera et al., 2013). Table 8.2 shows that four conversions 

(in bold) were confirmed by NGS. 
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Figure 8.3. Results of gene conversion detection on a trio from a randomized oocyte collection. Green – gene 

conversions detected by GenCall (QC015); red – detected gene conversion after data filtering with SureTypeSC. 

 

Table 8.2. Results of the validation of putative gene conversions from a randomized oocyte collection1 

SNP ID  Chr Position  SureTypeSC (SNP array) NGS 

gDNA PB1 PB2 Egg PB1 PB2 Egg 

rs4659015 1 120145883 AC AC C C AA C C 

rs12682402 8 38381884 TC TC C C TT C C 

rs17835873 10 47605782 AG AG A A GA A A 

rs7074244 10 47608158 AC AC A A CA A A 

rs11259756 10 47634190 TC TC T T TC T T 

rs11530438 11 49836893 TC TC T T CC T T 

rs1045162 17 20903080 AC AC C C AA C C 

rs9303700 17 34450463 TG TG G G GT G G 

rs448372 19 22993128 TC TC G G AA G G 

rs2005736 22 18912119 TC TC C C TT C C 

1 the alleles  from SNP array were converted to nucleotides11  

                                                      
11

 Script for converting alleles to nucleotides available at https://github.com/Illumina/GTCtoVCF 

https://github.com/Illumina/GTCtoVCF
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8.4 Detection of copy number variants 

8.4.1 Introduction 

To this end, we assumed that the cells have correct numbers of chromosomes (Section 2.1.3). 

However, aneuploidies and copy number variants (CNVs) add an extra level of uncertainty to the 

data. Aneuploidy is presence of an abnormal number of chromosomes in a cell. In context of female 

meiosis, it is estimated that 5 % of pregnancies are affected by this chromosome abnormality, which 

can be fatal for the fetus or cause major genetic disorders (Hassold and Hunt, 2001). CNVs are 

conditions where only part of the chromosome is deleted or duplicated. Similarly to aneuploidies, 

they can have fatal consequences to the female oocyte  (Martin et al., 2015). 

8.4.2 Results 

We were interested whether SureTypeSC would improve biological insight when used for high 

precision (RF-GDA with stringent threshold, Table 6.7 and Table 6.8). We assessed copy number 

variants (CNVs) in human oocyte data (Ottolini et al., 2015) and successfully resolved chromosomal 

deletion. The loss of a chromosome or chromosome segment results in one cell with only A and B 

calls (no heterozygous SNPs). The loss, however, is obscured by ADI when using the standard 

GenCall algorithm (Figure 8.4). SureTypeSC removes the ADIs (erroneous AB), increasing the 

certainty of the inference (Vogel et al., 2019). 

8.5 Detecting subpopulations in the single cells  

8.5.1 Introduction 

In this section, we will return back to our reference single cell dataset GM12878 that we used for 

testing of SureTypeSC (Chapter 6). To this end, we assumed that all variants in the cell line that do 

not match the reference genome (`erroneous variants`) are allele drop outs or allele drop ins (Figure 

8.5A). However, it has been previously reported, that the populations of cells of the same type are 

often heterogeneious (Altschuler and Wu, 2010). We were curious whether some of erroneous 

variants could be real and therefore used to detect heterogeneity within a cell population. We were 

interested in whether we could use SureTypeSC with high precision to reveal biological variability 

within the tested cell line GM12878.  
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Figure 8.4. Segmental aneuploidy in a human oocytes.  (A) The oocyte (Model I) is diploid, but contains a partial deletion 

(the entire q arm). (B) After WGA, the genotyping algorithm should reject the signal noise from SNPs on the q arm. 

However, the B allele frequency of genotyped SNPs passed the quality control of GenCall (C). In contrast, the B allele 

frequency plot of SureTypeSC (D) correctly rejects genotypes from the deleted chromosome arms calling only a few SNPs. 

Figure (E) shows the logarithmic ratio of observed vs. expected signal intensities along the chromosome. It confirms that the 

area of the chromosomal loss has lower signal (negative logR). 

8.5.2 Methodology 

We performed high precise genotype filtering using GenCall and RF-GDA (SureTypeSC) of 46 cells 

from GM12878 (Section 5.2). Both algorithms were adjusted for high recall (GenCall threshold 0.87, 

SureTypeSC threshold 0.75). To explore the heterogeneity in terms of concordance with the reference 

bulk DNA genome, we coded variant genotypes that corresponded to the reference with one and 

variants not matching the reference with zero. Similarly to Zafar et al. (2016), we imputed the missing 

genotypes with value 0.5 and used Hamming distance to calculate the pairwise dissimilarity between 

the 46 cells in GM12878. We then performed hierarchical clustering on all SNPs that contained at 

least one non-reference variant across the 46 cells. We included raw,non-filtered genotypes (QC001), 

genotypes from GenCall (0.87), and SureTypeSC (0.75) and used Ward distance for hierarchical 

clustering. We assessed stability of the clusters by performing bootstrap analysis implemented in the 

fpc package in R. We subsequently labelled the clusters with clusterwise Jaccard bootstrap mean 

(calculated from 1000 replicates) indicating the stability of the cluster (Figure 8.5).  
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8.5.3 Results 

The hierarchical clustering reveals there are potentially four subpopulations of cells in GM12878 cell 

line that are invariant to the type of filtration used (Figure 8.5B, C, D). The bootstrap analysis, 

however, reveals that only the RF-GDA consistently gives four stable subpopulations (Jaccard mean 

bootstrap value for a cluster > 0.75, Hennig 2007). 

The unstable clusters present in the trees from the minimal filter (QC 0.01) and ‗high precision‘ 

genotyping using GenCall suggest non-reproducible noise being transferred to the bootstrapped 

replicates that is removed by SureTypeSC. Using a high precision mode, SureTypeSC, but not 

GenCall, was able to stably detect four subpopulations in the reference GM12878 cell line. Thus, 

SureTypeSC most likely revealed true heterogeneity within the single-cell population (Vogel et al., 

2019). 

 

Figure 8.5. Detected errors and potential variants in the 46 cells of GM12878. (A) Histogram of detected ADI and ADO 

in raw data (left panel), data filtered with GenCall at high precision (GenCall score 0.87, middle panel) and data filtered 

with SureTypeSC (right panel). Hierarchical clustering on raw data (B), on data from GenCall (C) and from RF-GDA 

(SureTypeSC, D). The histograms were generated in R using hclust and evaluated using the clusterboot function from the R 

package fpc.  The red rectangles show the potential subpopulations and the numbers indicate the Jaccard bootstrap mean. 

Labels are coloured according to the following rules (obtained from Henning 2007 and manual of the fpc package): Green 

labels indicate highly stable clusters (>0.85), blue labels indicate stable clusters (>0.75); orange labels might indicate a 

pattern, however the membership of the cells to a particular cluster is doubtful; red labels (<0.6) indicate unstable clusters. 

RF-GDA is the only algorithm that gives four stable clusters. 
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8.6 Conclusion 

In this chapter we demonstrated the benefits of using SureTypeSC with single-cell data in connection 

to the knowledge algorithms explained previously and few other examples from Vogel et al. (2019). 

We show that SureTypeSC effectively filters out bias and thereby refines the detection of biological 

phenomenon (crossovers, Section 8.2) or allows its detection that was previously note possible due to 

low sensitivity of the state of the art algorithms (gene conversion and  copy number variants; Section 

8.3 and 8.4). We also demonstrated potential application of SureTypeSC for clustering of 

subpopulations in the single cell data. While some results presented in this chapter are supported by 

statistical testing (bootstrapping of subpopulations, Section 8.5) or inner controls (low logR values for 

the chromosomal deletion; Section 8.4), other require robust validation on bigger datasets (crossover 

detection; Section 8.2) . 

  



 91 

9 Conclusion 

The rapid evolution of single cell genomics is constantly reinforced by hundreds of exciting 

discoveries about how our body works on a fine level of single cell. A lot of knowledge from various 

fields of biology is required to explain how cancer cells develop, how cells in our brain communicate 

or which factors contribute to successful pregnancy. Precise genetic information about a cell is one of 

the pieces to the puzzle. 

Accurate detection of genotype of a single cell is still challenging due to preciousness of the 

genetic material. While the laboratory techniques are trying to improve the methodology to deliver 

more accurate signal, it is a matter of fact that the whole genome amplification is the bottleneck of the 

whole process. 

This work targets an important issue of single cell bioinformatics – how to reliably distinguish 

between a genotype artefact and real signal in the single-cell data. While this problem has been solved 

algorithmically for NGS data by various approaches, the SNP array technology has been left behind. 

This is unfortunate, because SNP array offers a cost-efficient alternative for analysing thousands of 

genomic loci with good coverage, which is confirmed by accuracy and call rate over 99% for 

standard, bulk DNA. 

In this work, a reference population of single cell samples from SNP array was gathered and 

the noise that is coming through when using the state of the art genotyping workflow for SNP arrays 

was analysed. A cascade machine learning method that learns the pattern of noise in the single cell 

data was developed. Thorough validation of the method reveals that it is possible to recall more 

single-cell genotypes with better precision than with the current state of the art represented by the 

GenCall algorithm. 

Furthermore, algorithms for knowledge extraction from products of female meiosis were 

designed and optimized, particularly for crossover detection. The improved genotype detection has 

direct impact on quality of the knowledge gathered from the data. It is likely that the presented 

algorithms can improve both, diagnostics and biological inference.  

SureTypeSC was tested on a reference population of single cells. As these cells were clones, 

one would expect that the only source of heterogeneity is random noise. It however turns out, that 

after noise removal, the cells still contain differences and create subpopulations. This confirms what 

mentioned at the very beginning of this work – heterogeneity is everywhere within our body. Ability 

of deciphering of subpopulations in the single cell data would have a likely application in cancer 

biology. 

While in the core of this work, I mainly focused on the SNP array technology, it is important to 

mention that NGS remains to have an important role for this thesis namely as a validation tool. It is 

common practice in life sciences to acquire information with various technologies and then create 
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consensus (or reject the hypothesis). This was also the situation when confirming the reference 

genotype for the training dataset, or, more importantly, for biological inference - in case of gene 

conversions – where I found feasible candidates using SureTypeSC and then partly confirmed the 

hypothesis with NGS data. 

9.1 Summary of contribution 

As mentioned at the beginning, this work was motivated by research interests of two scientific groups 

that I was member of during my doctoral studies. These groups supported my bioinformatics research 

with databases of biological data. The biological conclusions were inferred based on evidence found 

by methods presented in this work. Related to research questions asked in Section 1.2.1, I summarize 

the contribution of this thesis in the following points: 

 I generated a reference population of single cells from SNP arrays with a reliable genotype 

confirmed by information from bulk DNA. This is a valuable resource for future research 

serving as a training dataset 

 I identified pattern of noise in the data and based on this, I designed, implemented and 

validated an original two stage machine learning method named SureTypeSC. The method 

evaluates a single cell genotype from SNP array and calculates a confidence measure. The 

algorithm outperforms current state of the art in genotyping of single-cell SNP array data 

 I designed and implemented algorithms for crossover detection in single-cell data from 

female meiosis. I demonstrated application and benefits of using SureTypeSC with these 

algorithms. I furthermore showed how SureTypeSC can help to solve other relevant questions 

of single-cell bioinformatics: aneuploidy detection, subpopulations clustering and gene 

conversion analysis. 

9.2 Future perspectives 

The functionality of the presented filtering algorithm for single-cell SNP array data could be likely 

shifted from detection to imputation. While currently it is not the goal to correct the erroneous 

genotypes and these are simply rejected, in future, they could be perhaps imputed by using the 

parameters from the second layer of the model. This would likely lead to a multiclass classification 

problem. 

While Gaussian mixture model is used as a central structure of the second layer of the 

algorithm, it would be perhaps beneficial to experiment with probability distributions other than 

Gaussian. Multivariate truncated t distribution previously used in genotyping (Teo et al., 2008) is one 

of the candidates that could potentially deal with presence of outliers in the data (Vogel et al., 2019). 

The other possibility would be to employ variational Bayesian inference over GMM (Section 4.3.4). 
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While preliminary results do not show any benefits of this method on the presented single-cell data, 

more comprehensive experiments with the parameters could bring improvement over the current 

method. The motivation here is the central limit theorem and infinite number of Gaussian components 

that the variational inference allows. 

The algorithms for crossover inference certainly require validation on more comprehensive 

datasets. More importantly, prior knowledge about positions of crossovers from population studies 

(Kong et al., 2010) could motivate development of Hidden Markov Model over the data. This, in 

combination with SureTypeSC, could likely improve the crossover inference by eliminating the false 

positive events detected in the data.  
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