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1 Introduction 

1.1 Motivation 

It has been over half of the century since Watson and Crick discovered the molecular structure of 

deoxyribonucleic acid (DNA). DNA, the code of life, codes the genetic information that we inherited 

from our ancestors and will partly pass on to our offsprings. Every single cell within our body 

contains nearly the same genetic information. However, every single individual (as a system of 

multiple cells communicating with each other) contains a collection of single nucleotide 

polymorphisms (SNPs) that distinguishes him from the rest of the population. One of the crucial tasks 

of nowadays computational biology is to shed light on this genetic diversity. A process of revealing a 

particular SNP is called SNP-typing or genotyping. Genotyping is feasible thanks to powerful 

algorithms relying on robust statistical methods assuming sufficiently strong signal that supports a 

genetic variant in a population. Invariant to the screening technology used, we need to operate with 

sufficient amount of biological material to obtain strong signal supporting our observation. This is 

usually not a problem, as, i. e., blood sample from an individual would likely contain sufficient 

amount of genetic material from multiple cells. Although all the cells within one individual should in 

theory contain the same genetic information, there is a plethora of factors related to their function that 

can alter the DNA dynamically during their lifetime – i.e. epigenetics or de-novo mutations (Junker 

and van Oudenaarden, 2014; Shapiro et al., 2013). Therefore, there is an increasing motivation 

constantly driven by new scientific discoveries to look at the DNA on a single cell level. One big 

driver are cancer studies, where we know that cancer cells are highly heterogeneous due to increased 

mutagenesis. Knowing the precise genetic structure of a cancer cell can be crucial when assessing the 

therapy. Another example, where analysis on single cell level is of a great benefit, is examining 

structure of DNA and biological processes in highly complex tissues  i.e. brain. At last, but not least, 

reproductive biology is a field where knowing the precise genetic information of a single cell is 

crucial. During creation of reproductive cells in human, the process called recombination shuffles the 

genetic information.  This shuffling is unique per cell and helps us understand potential genetic 

disorders transmitted to offspring, causes of miscarriages etc. A very practical example, that is 

possible thanks to advanced medical technology, is in-vitro fertilization. During this procedure, a set 

of female eggs is monitored and genetically screened and only the eggs with the best fitness (in terms 

of likelihood of genetic diseases) will be used for in-vitro fertilization.  

When analyzing data from multiple cells in a pool (termed bulk DNA), we accept that the 

obtained signal is an average of all cells in the sample. We illustrated many examples, where this is 

not good enough. Thanks to sophisticated methods of molecular biology, we are now able to sort cells 

from a tissue and pick an individual cell and extract DNA. The amount of single cell DNA, unlike in 
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bulk DNA is however very little for successful screening and therefore, the DNA has to be ,,copy-

pasted‖. This process is possible, it is called whole-genome amplification, however, it deteriorates the 

signal and can compromise the whole analysis by introducing bias to the data (Spits et al., 2006; 

Vanneste et al., 2012). 

Machine learning has been successfully applied to many interdisciplinary fields including 

bioinformatics, biomedical research and medicine. Algorithms and statistical methods from this field 

many times improved the state of the art biological model by providing valuable and accurate 

predictions in situations, where searching through the whole space of possible values would be simply 

too costful or fatal. 

SNP array has been an affordable technology for screening variants in DNA of an individual 

for over a decade and a package of hardware-software solution for revealing the genotype has shown 

high accuracy when bulk DNA is analysed, but not the single cell (Vanneste et al., 2012).   

This works gives on overview of strategies for bioinformatics analysis of genomic data and 

then particularly focuses on algorithms for bulk DNA and single-cell genotyping. It pinpoints the 

specificities of the single-cell environment compared to standard bulk DNA processing and it 

particularly researches the anatomy of noise and possibilities of improvement of genotyping. An 

original machine learning algorithm is proposed that tackles the noise problem. Additionally, few 

algorithms have been designed for single cell genomics, particularly area of reproductive biology, 

that, together with the novel machine learning solution, improve the current state of the art in 

bioinformatics of single cell and allow to look at fine genomic events at the single cell level. 

1.2  Goals of the thesis 

Given the motivation in the introduction, this work primarily focuses on investigating solutions for 

single-cell genotyping using data from SNP arrays. Based on the literature survey, there are satisfying 

solutions for genotyping the bulk DNA with SNP array, but none of them was specifically designed 

to genotype DNA from a single cell. Documented by multiple studies, the single cell data contains 

noise caused by amplification of the genetic material. This is a problem, because errors in the data can 

lead to false biological conclusions and therefore compromise the whole workflow. Standard 

genotyping algorithms fail, because they do not assume deteroriated signal caused by erroneous 

amplification. As a direct consequence, they both,  allow high Type I and Type II errors. 

1.2.1 Research questions 

To solve the question of reliable genotyping of single cell data, we can formulate following research 

questions: 

1. Is it possible to describe pattern of noise in the SNP array single-cell data? 
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2. Is is possible to design a machine learning method that would distinguish the good quality 

data from the noise and improve precision of a single-cell genotype? 

1.3 Structure of this summary 

During his doctoral studies, the author of this thesis was member of two research groups
1
 and the 

results presented here are author‘s contribution to their scientific outcome. The research groups 

actively supported the informatics research of the author with the exclusive data and this is 

accordingly reflected in the structure and the content of the work.   

The next chapter will introduce the most important theoretical background of this work. As the single 

cell analysis shares many steps with standard analysis of bulk genomic data, we will also present 

generic workflow and pinpoint the specificities of the single cell environment. Chapter 3 is dedicated 

to the novel algorithm for single cell data filtration using machine learning called SureTypeSC. 

Chapter 4 then validates this approach and Chapter 5 demonstrates few newly designed knowledge 

extraction algorithms over single-cell data. Chapter 6 shows applications of SureTypeSC in various 

practical scnearios of biological inference. Chapter 7 summarizes the contribution and proposes ideas 

for future research. 

  

                                                      
1
 Institute of Biophysics of the Czech Academy of Sciences, Department of Plant Developmental Genetics in 

Brno, Czech Republic and Center for Chromosome Stability, Department of Cellular and Molecular Medicine, 

University of Copenhagen, Denmark 
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2 Genomics 

„Genomics is the study of the full genetic complement of an organism (the genome). It employs 

recombinant DNA, DNA sequencing methods, and bioinformatics to sequence, assemble, and analyse 

the structure and function of genomes.―
2
 

2.1 Workflow for processing genomic data 

A generic workflow for processing genomic data is shown in Figure 2.1. The whole methodology can 

be dividied into two consecutive parts: `laboratory part` (Figure 2.1A) and `software part` (Figure 

2.1B). The main interest of this work is the software part and will be discussed in more detail. From 

the laboratory part, (a) whole genome amplification (WGA),  and (b) microarray technology are 

crucial for this work. WGA is a bottleneck of the state of the art single cell analysis as it has the 

greatest impact on the accuracy of the software part. Microarray an affordable technology for testing 

thousands of genomic position in parallel manner. The reader is refered to Vogel (2019). for details 

and references on the other steps of the laboratory part. 

 

Figure 2.1. Workflow for processing of the genomics data. (A) Laboratory part starts with material collection and DNA 

extraction. Should the material be from single cell, whole genome amplification is required. Subsequently, library of 

genomic data is created and screened by two commonly used technologies – microarrays or next-generation sequencing. (B) 

The signal from both microarray or NGS is preprocessed and then, a machine learning model is created from the data to 

predict primary information (i.e. genotyping). Knowledge extraction then takes into account the genomic context and draws 

biological conclusions about the data (i.e. presence of recombination event) 

2.1.1 WGA 

WGA is a crucial step in the the single cell analysis (Figure 2.1) due to the critically low amount of 

DNA. The criterion for a good performing whole genome amplification method is amplification 

evenness and low error rate. Evenness refers to the ability to evenly cover the whole genome 

(Blanshard et al., 2018). While there is couple of amplification kits available on the market at the 

                                                      
2
 https://www.nature.com/subjects/genomics 

https://www.nature.com/subjects/genomics
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moment (Blanshard et al., 2018), their common drawback is that they introduce bias to the data 

(Figure 2.2) 

 

Figure 2.2. WGA – cause of errors in the single cell genotyping. The heterozygous locus in the dashed rectangle is 

correctly amplified with nearly equal amounts of both of the alleles (top) and then correctly genotyped as AB. Other 

situation is that, due to erroneous whole genome amplification, one of the alleles has suboptimal signal (bottom branch). 

This causes wrong detection of homozygous genotype. 

2.1.2 Microarrays 

DNA microarray, also known as biochips or DNA chips, is a technology that allows parallel 

measurement of genetic information using hybridization principle. Hybridization is a biochemical 

reaction, where two complementary DNA strands attach to each other by hydrogen bond to create 

duplex. The generic technology consists a set of  `probes` and `targets`. Probes are distributed on a 

solid surface and contain short fragments of DNA of known sequence. Target is the DNA of interest. 

The target DNA is usually fragmented into smaller pieces and  fluorescently labeled to enable the 

detection. Once in contact with the probes on microarray, the labeled fragments will specifically 

hybridize with the arranged probes and the signal is then measured and quantified (Figure 2.3).  

 

Figure 2.3. Principle of microarray. The microarray contains spots with short fragments attached to a bead (lines attached 

to marker A and marker B). Once hybridized with the fluorescently labeled material to analyse (target), the signal can be 

quantitatively assesed from the intensity of the fluorescence. 

Illumina SNP array 

Illumina platform called Illumina BeadChip (Illumina, Inc.), that will be exclusively presented in this 

work, is using universal probes of 50 nucleotides. The actual genotyping takes place one nucleotide 
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after the probe using single nucleotide extension assay (Illumina Infinium Assay protocol, Illumina 

Inc.). Depending on the target SNP, the complementary nucleotide carries either red or green 

fluorescent signal (A, T or G,C, respectively). The output of the Illumina technology is therefore one 

raw measurement for the A allele and one for the B allele at each SNP. The number of SNPs and 

samples that can be analysed in parallel on one chip varies from 4 to 12 samples and from ~300k 

SNPs to 1 million SNPs depending on the specific product
3
.   

2.1.3 Problem definition 

Every SNP i on an array is assigned a tuple of raw intensities   , defined as follows: 

   (     )  (3.1)  

     
  (3.2)  

Where     is affine space. Genotyping is a mapping function   in a multiclass classification 

problem     

  *  +   
  *        + (4.1)  

To simplify the problem, we can put following fuzzy definitions over   : 

                     (3.1)  

                   (3.2)  

         (3.3)  

 

2.1.4 Single-cell genotyping 

Currently, there is couple of tools available for genotyping of SNP array data (Vogel, 2019). To the 

best of our knowledge, there is not a specialized algorithm available for the single cell genotyping 

from SNP arrays. Zamani Esteki et al. (2015) performed evaluation of two genotyping algorithms 

trained on bulk DNA  in the single cell environment and attempted to adjust them to single cell data. 

An important summary of this is shown in Figure 2.4, where the authors analysed the homozygous 

and heterozygous genotypes separately. As both methods give a score or measure of confidence of a 

genotype, they were systematically increasing the thresholds to acchieve better accuracy. The results 

suggest that while GenoSNP (Giannoulatou et al., 2008) has generally higher call rate, it also suffers 

from lower accuracy compared to GenCall, particularly for the heterozygous calls. Zamani Esteki et 

al. decided to proceed with GenCall due to better overall properties. Adjusting the threshold of the 

GenCall algorithm to the single cell envorinment came at cost of significant data loss (call rate ~60 % 

at accuracy below 90 % , Figure 2.4). To give a frame of reference, validation studies on bulk DNA 

indicate both accuracy and call rate above 99% on average for both algorithms (Ritchie et al., 2011). 

                                                      
3
 Information and details about a particular SNP array technology available at www.illumina.com 



 9 

 

Figure 2.4. Comparison of performance of GenCall (A) and GenoSNP (B) on the single cell data amplified by 

multiple displacement amplification (MDA, technology of WGA). The dashed vertical line shows the actual threshold 

that was selected by Zamani Esteki et al.(2015) for the genotyping as tradeoff of accuraccy and call rate. Hmz means 

homozygous, Htz is heterozygous. 
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3 Novel algorithm for noise filtration 

3.1 Introduction 

This chapter presents original algorithm that removes noisy genotypes from single-cell data caused by 

whole genome amplification (WGA). It presents results from study published in Vogel et al. (2019). 

To understand the noise, it is crucial to define a reference population of single cells where we know 

the ground truth. 

We operate with two categories of biological data. Bulk genomic DNA (gDNA) is 

characterized by sufficient amount of genetic material (pool), has great support in genotyping tools 

and gives very precise genotype estimation. On contrary, single cell DNA (scDNA) is characterized 

by very small amounts of DNA (from one cell) and needs to undergo a single cell path of the 

workflow for processing genomic data (Figure 2.1). This protocol causes deterioration of the signal 

and random erroneous genotypes at the output (Figure 2.2).  

3.2 Datasets of biological data 

We operated with two human cell lines, GM12878 and GM7228. For these, we had both, gDNA and 

scDNA. We additionally obtained bulk DNA samples for GM7224 and GM7225 that are parents of 

GM7228. Multiple samples (clones) were processed per cell line (Figure 3.1).  

3.2.1 Groundtruth genotype from gDNA 

Great amount of supporting data allowed us to create high confidence genotype for both, GM7228 

and GM12878 (Figure 3.1). We used the parental information for GM7228 and consensus approach 

to retain only genotypes that matched the parental inheritance pattern and were 100% concordand 

within the samples. For GM12878, only retained SNPs that matched the deep sequencing study from 

Eberle et al. (2017) and were 100% concordant within the samples (Figure 3.1) 

3.3 Comparison of scDNA to gDNA 

We compared the scDNA genotypes of GM12878 and GM7228 with their corresponding reference 

created from gDNA (Section 3.2.1). We used two genotyping strategies: 

 Minimal quality check (QC001) – genotypes with minimal GenCall threshold accepts 

virtually all calls 
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 Standard quality check  (QC015) . genotypes with standard GenCall threshold recommended 

by the vendor 

 

Figure 3.1. Strategy for creating high confidence groundtruth genotype and comparison to scDNA to create reference 

population of single cell data. For the individual GM7228 there were parental genomes available (GM7224 and GM7225). 

For the individual GM12878, there wre results of deep next-generation sequencing analysis (Platinum Genome Sequencing, 

Eberle et al., 2017) available.  

Table 3.1 Rules for evaluating the correct genotypes based on parental information 

mother (GM07224) father (GM07225) proband (GM07228) 

AB AB {AB,AA,BB} 

AA AA {AA} 

BB BB {BB} 

AB BB {AB,BB} 

AB AA {AA,AB} 

AA BB {AB} 

 

Table 3.2. Summary of genotype calls from single cells
a
 

 QC001
b
 QC015c 

Cell line
d
 + - NC

 
+ - NC 

 M SD M SD M SD M SD M SD M SD 

GM 
07228 

0.39 0.02 0.05 0.01 0.05 0.01 0.36 0.02 0.04 0.01 0.1 0.01 

GM 
12878 

0.4 0.02 0.06 0.02 0.04 0.01 0.37 0.03 0.04 0.01 0.09 0.02 

Total 0.8 0.11 0.09 0.73 0.08 0.19 

Total 
counts 

28.7 million SNPs, 104 cells 
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a 
values are proportions; 

b 
GenCall cutoff 0.01; 

; c 
GenCall cutoff  0.15; 

d 
+: concordant with reference genotype; -: disconcordant with reference genotype; NC: no calls; M: 

mean; SD: standard deviation 

 

Using the standard QC015, 73% SNPs  from the two single cell datasets called correctly, 

whereas 8% SNPs  were not concordant with the reference genotype (Table 3.2). 19% SNPs gave `no 

calls` The true positive rate was higher when we used a minimal QC (0.01) compared to the standard 

QC of GenCall (39%, SD=0.02% and 36%, SD=0.02%, respectively, for cell line GM07228 and 

40%, SD=0.02% to 37%, SD=0.03% for GM12878, Table 3.2). In total for both datasets, the GenCall 

algorithm in its standard configuration (QC015) rejects about 7% of correctly genotyped SNPs from 

WGA DNA.  

3.4 Structure of noise in single cell 

Systematic comparison of the scDNA with the reference reveals presence of noise (Table 3.2). To test 

whether the noise creates a distinct pattern, we performed following steps: 

1. We randomly selected 10,000 SNPs from the single cell data GM07228 and extracted the 

normalized itensities. 

2. We transformed the intensities using logarithmic transformation (MA transformation; 

Vogel, 2019) 

3. We estimated  density function separately for erroneous calls and correct calls on the M 

and A values using bivariate normal kernel (Genton, 2002). 

The results (Figure 3.2) indicate that, as expected,  the correctly genotyped SNPs (positive class) 

build three clusters corresponding to AA, BB and AB genotypes. The noisy data (negative class) also 

builds  three clusters corresponding to the transition between AB and AA or AB and BB (two clusters 

of allele drop-outs; ADO) and onec luster with allele drop-ins (ADI). The data suggests good 

separability of the errorneous clusters from the correct clusters since the centers of the clusters are 

non-overlapping. 
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Figure 3.2. MA plot of 10,000 randomly selected SNPs from single cell data. Every dot corresponds to one variant 

from single cell (A). 2D density function with bivariate normal kernel was applied on the data to reveal the erroneous 

clusters (B). Red clusters correspond to mistyped SNPs (noise), blue clusters show true signal. ADO clusters mark 

erroneous transitions from heterozygous to homozygous genotype and ADI cluster marks erroneous transition from 

homozygous to heterozygous genotype. 

3.5 Training dataset 

3.5.1 Feature selection 

We compared our single cell datasets to the reference genotype in Section 3.3. More specifically, for 

every candidate single cell call for SNP i and sample s we assigned a label     :       *          +, 

depending on the match or mismatch with the corresponding reference genotype call. The training 

dataset is then a set of  of triplets (               ), where (          ) are input features and       is the 

output feature. Note that we omit sample index s in further explanation, as we do not distinguish 

between the origins of SNPs in the training data set.  We included all autosomal single cell calls with 

GenCall score above 0.01 (QC001) totaling 14,403,139 SNPs for training (GM07228) and 

11,737,508 SNPs for validation (GM12878). Lowering the GenCall score threshold for accepting a 

SNP allowed us to include potentially poorly amplified SNPs and to capture the full error pattern. 

3.5.2 Problem of imbalanced dataset 

Table 3.2 suggests that the training data is highly imbalanced with positive class being the majority 

class. The positive class is our target class, and the analysed single cell datasets reflect the `real 

world` class ratio. Neverthless, as we operated with sufficient amount of data we performed 

downsampling of the positive datasets to obtain the same amount of positive and negative samples. 



 14 

3.6 SureTypeSC 

SureTypeSC is a novel machine learning method that combines nonparametric (in terms of statistical 

distribution) supervised method embodied in Random Forest (RF) that adapts to the noise in the 

single cell. RF is trained on the reference dataset described in Section 3.2. The fitted RF then 

estimates the regions of noise and high quality SNPs in unseen data. These regions are then 

formalized using a parametric model. This is a second layer of the algorithm and consists of a system 

of Gaussian mixtures called Gaussian discriminant analysis. 

 

Figure 3.3. Scheme of a prototype for SureTypeSC based on machine learning with two layers  organized in cascade. 

The prototype of SureTypeSC is schemed in Figure 3.3. Classification of unsen SNP data is 

first performed with Layer 1 (RF trained on reference data). RF in the single layer mode directly 

classifies the unseen data. In the standard, two layered mode, RF estimates the positive and negative 

classes for the further improvement with Layer 2. Layer 2 accepts the classification from Layer 1 and 

creates an initial cluster estimate, which is then iteratively refined. Subsequently, the genotypes from 

the unseen SNP population are evaluated again with the fitted model from Layer 2. Figure 3.3 also 

illustrates parameters of the model, that can be subsequently subjected to experiments. This is i.e. 

threshold for the positive class defined for RF. This parameter influences the input of the Layer 2 and 

therefore the output of the final classification. Experiments with this and other parameters of the 

model are described and discussed in Vogel (2019). The following two subsections discuss both 

layers of the algorithm in a greater detail. 

3.6.1 Basic Random Forest layer 

We chose RF (Breiman, 2001) for the initial training and classification. The kernel density estimation 

in Section 3.4 suggests that the function that separates the erroneous clusters from the clusters of 
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correct data (red and blue contours in Figure 3.2B) is non-linear. The ensemble nature of Random 

Forest has by definition the ability to fit different trees to different parts of the input space and 

therefore mimic a non-linear separating function that, in theory, can increase the classification 

accuracy. 

3.6.2 Refinement using Gaussian Discriminant Analysis 

The second layer of the algorithm is Gaussian Discriminant Analysis (GDA) that formalizes the 

genotype clusters obtained from the RF step and potentially improves the classification. GDA models 

positive and negative class separately using GMM and defines a scoring function that discriminates 

the data based on their affinity to positive and negative class. The general concept of GDA was 

adapted from Ng (2019) and Hastie et al. (2016).  

Let   *                   ̂ +  denote a set of   SNPs that were classified by 

the trained RF, where     *        +  ̂   *   +. Therefore,     (           ̂) is a quadruplet 

of the logarithmic difference, logarithmic average, genotype predicted by GenCall (QC 0.01) and 

class prediction by RF at the j-th SNP. We assume that both the positive (T) and negative (F) classes, 

which are represented by pairs    (     ), are drawn from mixtures of multivariate normal 

distributions and define the following system of Gaussian discriminants:   

 

 ̂          ( ) (3.1) ( 

 ( ̂)    ̂(   )   ̂ (3.2)  

 (  | ̂   )    (  |  )  ∑     (   |         )

 

   

 (3.3)  

 (  | ̂   )    (  |  )  ∑     (   |         )

 

   

 (3.4)  

 

Where: 

   denotes probability  ( ̂      )  

   is multivariate normal density function with parameters    (with mean    and covariance 

matrix    ) 

    is an indicator variable that denotes the genotype class, where       ̂  

     is  the  mixture  component weight  representing  the probability  that  a  random tuple 

(      ) was generated by component k.  

The complete set of parameters for the presented Gaussian discriminants is given as    ̂ *   +  

{   ̂      ̂     ̂      ̂  }.  

The log-likelihood function   for classes from  ̂ is defined as follows:  
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   ( )  ∑   (     ̂)

 

   

 (3.5)  

We use an Expectation Maximization algorithm (Dempster et al., 1977) to estimate the 

parameters    of the positive and negative class that maximize their log-likelihood function (Eq. 3.5). 

The EM algorithm is divided into an Expectation-Step (E-Step) and a Maximization-Step (M-Step). 

These are run in iterations separately for the positive and negative classes until convergence is 

reached.   ̂ is total number of SNPs in the particular class. The details of the algorithms are in Vogel 

(2019). 

After the parameters of both classes have been estimated by the EM algorithm, they are 

subjected to a second run. Here, the class membership  ̂ is hidden from the algorithm and every SNP 

i is evaluated for both Gaussian discriminants using the following formula: 

(                  )  ,   (     ̂)    (     ̂)- (3.6)  

 
The final classification (membership to a positive or a negative class) is determined by higher value 

from the pair (                 ).   

3.6.3 Scoring function 

The key role of a genotyping algorithm is to report the likelihood of a certain genotype in form of a 

score or a posterior probability. Besides GenCall having its own scoring scheme, we used the 

following equations to estimate the probability of a certain SNP being correctly genotyped: 

 

1. Random Forest: the score of a genotype of  the ith SNP is given as a proportion of the trees 

in the forest that voted for a particular genotype being correct: 

 

           (       ) (3.7)  
 

2. The scoring strategy of SureTypeSC is inferred from its second layer (GDA) as the class-

conditional posterior probability of a genotype falling into positive class T: 

 

              
            ( )

∑             ( )  *   +
 

(3.8)  
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4 Validation 

The validation strategy for the novel model for filtering the single-cell data presented in Chapter 3 is 

summarized in Figure 4.1. The results of the validation part were published in Vogel et al (2019). 

 

Figure 4.1. Training and testing strategy for SuretypeSC. (A) The RF was trained on ground truth data from GM07228 

and used to predict the values of GM12878. The GDA was used to fit the predicted values of GM12878 (B) The RF was 

trained on the ground truth data from GM07228 and used for prediction and scoring on the testing data, GM12878. (C) The 

GDA trained on ground truth from GM07228 and prediction and scoring took place on the testing data, GM12878. 

We analyse the performance of SureTypeSC, but also its constitutive single layers. We 

therefore denote, consistently with the previous explanations, the single layers by their acronyms (RF 

and GDA) and the cascade solution by their combination (RF-GDA). To pinpoint the differences in 

performance and to show the improvements SureTypeSC achieves in the single cell domain, we 

included the performance of GenCall in all validation analyses. GenCall represents the current state of 

the art and has been used in multiple single-cell genotyping analyses (Ottolini et al., 2016; Esteki et 

al., 2015; Handyside et al., 2010). As we operate with multiple single-cells (46 or 58 cells; Section 

3.2), we calculate mean values and standard deviation or confidence intervals to capture the 

variability. We refer the reader to Vogel (2019) for test of statistical significance of the differences 

between the performances of the algorithms. We always evaluate the heterozygous and homozygous 

genotypes separately. Having reliable method for heterozygous loci improves detection power of 
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many knowledge extraction algorithms from single cell data (Chapter 5 and Chapter 6).  We use 

validation metrics from two categories: 

 procedures that capture the whole spectrum of classification outcomes (visual representation 

and ROC-AUC score);  

 validation metrics that operate with fixed classification thresholds; these procedures mimic 

the real applications where we have to decide for a particular cutoff to retrieve the 

information about rejecting or accepting a particular genotype; we used accuracy, precision, 

recall and F1-score  

We discuss the antagonistic relationship of precision and recall and demonstrate different threshold 

settings to allow high recall or precision of the algorithm. 

4.1 Validation curves and ROC-AUC score 

We first demonstrate the performance of the algorithms using ROC and Precision Recall curves. 

These metrics gave us visual insight into overall performance of the classifiers, invariant to the score 

cutoffs used. For the heterozygous calls, RF-GDA outperforms all tested algorithms (Figure 4.2, 

Figure 4.3 and  Table 4.1). While GenCall achieves a 74% ROC-AUC score on average, this is 

increased to 86%, 87% and 92% for RF, GDA and RF-GDA, respectively (Table 4.1). For the 

homozygous regions, the RF outperforms GenCall at all points of the ROC and Precision-Recall 

curves, which is supported by the increase in the ROC-AUC score from an average of 67% (GenCall) 

to 81% for the RF (Table 4.1 and Figure 4.2A). This is further increased with the GDA or RF-GDA 

(both 83%, Table 4.1). Interestingly, at a precision of approx. 93%, the RF curve crosses that of the 

GDA and RF-GDA and recalls more true positive homozygous calls (Figure 4.3). This suggests that 

the RF alone might be a good option if higher recall is required at the costs of lower precision, which 

is nevertheless higher than GenCall in the homozygous regions. GenCall crosses the Precision-Recall 

curve of the RF-GDA at a precision around 88% and recalls more true positives (Figure 4.3A). This 

is, however, very close to a recall of 100%, which also means accepting all calls without any 

filtration. 

Table 4.1  ROC-AUC score of the genotyping algorithms on independent dataset GM12878a
 

GenCall 
 

RF 
 

GDA 
 

RF-GDA 

het homo 
 

het homo 
 

het homo 
 

het homo 

0.74±0.01 0.67±0.015 
 

0.86 ± 0.004 0.81 ± 0.012 
 

0.87 ± 0.005 0.83 ± 0.013 
 

0.92 ± 0.004 0.83 ± 0.012 

a values are mean proportions over 46 cells ± confidence interval at 95% 
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Figure 4.2. ROC curve for homozygous (A) and heterozygous (B) calls. 

 

Figure 4.3. Precision-recall curve for homozygous (A) and heterozygous (B) 

4.2 Evaluation with fixed thresholds 

In this evaluation strategy, we selected recommended classification threshold for the GenCall 

algorithm. For RF, GDA and RF-GDA, we selected thresholds that emphasize on the differences in 

performance Results show that in this configuration, GenCall recalls 68% of the true positive 

heterozygous genotypes at precision of 97% (Table 4.2). The RF-GDA has 84% recall and achieves 

average precision of 99% and thus outperforms GenCall in both precision and recall. Having similar 

precision than RF-GDA, single layers RF and GDA recall fewer true positive heterozygous genotypes 

(Table 4.2). 

High precision and recall are reflected in high harmonic mean of precision and recall (F1-

score) for the RF-GDA (Table 4.2) and high rate of correctly classified SNPs (accuracy, Table 4.2). 

GenCall recalls 96% of the true positive homozygous genotypes on average at precision 89%.  At 

similar recall, the RF alone increases precision by 2%. GDA and RF-GDA further improve precision, 

but at the cost of recall. Both methods achieve an average precision of 92% at 90% recall for the 
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homozygous calls (Table 4.2). Recalling fewer true positives at higher precision causes a drop in the 

F1-score for GDA and RF-GDA. This is because recall declines much quicker than the precision 

increases (Figure 4.3A). The effect of lower recall from the GDA and RF-GDA is also mirrored in the 

lower accuracy. As GDA and RF-GDA have higher precision, they are also more likely to reject 

correct SNPs, thereby decreasing the number of true positives. 

Table 4.2 Performance of the genotyping algorithms on independent dataset GM12878a
 

          Alg. 
Metrics 

GenCall b RF GDA RF-GDA g 

  het homo het c homod hete homof het homo 

accuracy 0.68 ± 0.01 0.86 ± 0.012 0.71 ± 0.013 0.88 ± 0.008 0.63 ± 0.009 0.85 ± 0.01 0.84 ± 0.014 0.85 ± 0.01 

F1-score 0.8 ± 0.01 0.92 ± 0.007 0.82 ± 0.012 0.93 ± 0.005 0.76 ± 0.011 0.91 ± 0.007 0.91 ± 0.011 0.91 ± 0.007 

precision 0.97 ± 0.01 0.89 ± 0.009 0.99 ± 0.001 0.91 ± 0.008 0.99 ± 0.001 0.92 ± 0.008 0.99 ± 0.001 0.92 ± 0.008 

recall 0.68 ± 0.01 0.96 ± 0.005 0.7 ± 0.017 0.96 ± 0.001 0.61 ± 0.013 0.9 ± 0.005 0.84 ± 0.017 0.9 ± 0.006 

a
 values are mean proportions over 46 cells ± confidence interval at 95%; 

 b
 GenCall score threshold 0.15; 

 c 
Random Forest score threshold 0.6 and 

d
 0.15 ; 

 e 
Gaussian 

Discriminant Analysis score threshold 0.8 and 
f
 0.5 ; 

 g 
RF-GDA score threshold 0.15 
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5 Knowledge extraction from single cell 

data 

As presented in the generic workflow in Figure 2.1, creating a model over the intensity data and 

genotyping is not a final step of the analysis. The whole workflow would have zero practical impact 

without proper interpretation of the data and analysis of the context. We call this process knowledge 

extraction and will present few algorithms from this category. The presented algorithms are either 

optimization of the previously published concepts or present original solutions for knowledge 

extraction – this is clearly distinguished in the text.  

5.1 Data model of recombination in meiosis 

5.1.1 Introduction 

Meiosis is a type of cell division that gives rise to human reproductive cells. An important mechanism 

that occurs during development of reproductive cells is homologous recombination. It is a process, 

where the parental homologous chromosomes swap genetic material (swap of greeb and yellow in 

Figure 5.1B).  

The genetic information inherited from the same parent (here, continuous stretch of green or 

yellow in Figure 5.1) is called haplotype block. During the first stage of meiotic divison, the 

homologous chromosomes segregate and give rise to two different cells – oocyte
4
 and first polar body 

(PB1, Figure 8.1C). The sister chromatids segregate upon fertilization or artificial activation of oocyte 

in the lab (Models II-1 and II-2, respectively, Figure 5.1D,E; Ottolini et al., 2015). During this 

process, second polar body (PB2) is extruded (Figure 5.1D,E).  

5.1.2 Meiotic pathways and data models 

Thanks to advanced laboratory technologies, we are able to obtain data for most of the pathways 

(models) depicted in Figure 5.1 using model in Figure 2.1 and SNP arrays (Section 2.1.2). 

Analogously to Chapter 3, we can identify two categories of data – accurate information from bulk 

genomic DNA (Figure 5.1A) and noisy genotype information from single cell DNA represented by 

the products of female meiosis (Figure 5.1C,D,E).  

 

                                                      
4
 we use the term oocyte and egg interchangeably 
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Figure 5.1. Generation of human oocytes. The genomic DNA (A) is replicated and undergoes recombination (B). The 

homologous chromosomes segregate and give rise to two different cells – oocyte and polar body (C).  The sister chromatids 

segregate upon fertilization (D) or artificial activation of oocyte in the lab (E).(F) Illustration of crossover point. After 

recombination, the two diploid cells share their recombinant DNA. 

5.1.3 Model I – reconstructing crossovers from Duos 

Figure 5.1C shows stage of the meiotic division with two cells that both posses two strands of DNA.  

It is apparent that the recombinant parts of the chromosome share the same combinations of alleles 

(green and yellow building heterozygous genotype), whereas the part of the chromosome that did not 

recombine contain only information from one parent (Figure 5.1F). If we therefore compare the 

genotypes from these two cells and mark matching genotypes with 1 and varying genotypes with 0, 

we would ideally obtain a regular expression , -*   +, -* +, where n is the size of the 

chromosome and m is the size of the recombinant part of the chromosome. The transition point 

between 1 and 0 would represent the crossover.  However, following needs to be taken into accound: 

(a) Genotypes will also match by chance and (b) Genotypes contain errors causes by WGA. The 

observed sequence at the output is therefore ,   -* +, where n is the size of the chromosome. 

Design of a new algorithm 
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Let AB→ ~0.5, AA→ ~0 and BB→ ~1, where the (real) numbers are B-allele frequences inferred 

from the normalization procedure of the GenCall algorithm (Vogel, 2019). The algorithm assumes 

that the differences between the regions that did not recombine are high and  iteratively marks the 

absolute distances of the B-allele frequences of the loci of the two cells.. It is however assumed that 

these regions can also contain markers with zeros when the corresponding homozygous SNPs from 

two cells match by chance as explained previously. Sufficiently high threshold (currently 0.95), 

however, filters these markers out (function MarkAndSelect(.))  

The candidate homozygous loci (with markers close to 1) then undergo a segmentation 

procedure. (SegmentHomRegions(.)), that performs segmentation on the homozygous regions and 

separates them into potentially multiple homozygous segments. For the actual segmentation, a 

Variational Bayesian GMM is employed, as this allocates number of segments dynamically (Blei and 

Jordan, 2006). The boundaries of these segments then determine the positions of the crossovers. The 

pseudocode of the algorithm is in Vogel (2019). 

5.1.4 Model II – reconstructing crossovers from Trios 

The algorithm for finding crossovers in Trios is more complex due to number and types of cells 

involved – we operate with diploid PB1 and haploid PB2 and Oocyte (Section 5.1.2). It firstly only 

selects heterozygous SNPs from maternal genomic DNA (Figure 5.1A). These are termed as 

informative, as they contain both alleles that can be tracked in the PB1, PB2 and Egg (Figure 5.1D).  

Secondly, the algorithm compares one of the haploid cells (PB2 or Oocyte) from the same individual 

to all the other cells. This haploid cell is termed as hypothetical common ancestor or reference and its 

purpose is to determine the origin of the haplotype blocks (Figure 5.1). We call the regions that are 

shared with the reference as `in phase` and the procedure of determining the origin of haplotype 

blocks as phasing. The transition between two haplotype blocks is crossover. However, the reference, 

although initially assumed as a homogenious haplotype block, also potentially carries crossovers. If 

this is the case, an artificial crossover would appear in all the other cells that underwent phasing .  

The original implementation of the algorithm requires user interaction and manipulation 

throughout the analysis (Ottolini et al., 2016). I.e., the transitions between the haplotype blocks and 

common crossovers need to be visually inspected and marked and corrected manually. We reflected 

these drawbacks on following changes to the design of the algorithm:  

 we automated the process by designing algorithm for resolving common crossovers and 

transitions between the haplotypes 

 we optimized the algorithm by designing operations on matrices and vectors that can be 

efficiently implemented in one of the high level numerical libraries (Numpy for Python,  Walt 

et al., 2011) 
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The pseudocode of the optimized algorithm is shown in Algorithm 1. Note that the requirements for 

minimal number of input trios  (    ) were previously validated in Ottolini et al. (2016).  

 

Algorithm 1: Crossover detection in Trios 

Input: D={n vectors of genotypes- gDNA, PB1, PB2 and Egg} from the same individual}, where 

|n|=1+3x and x is number of trios (>=3) 

Output: Cx={list of crossover positions per cell per chromosome} 

1. Mask out loci where      *     + and        and        

//we only operate with informative SNPs and het PB2 and Egg are likely an error  

2. Convert genotypes to B-allele frequencies (AA←0, BB←1 AB←0.5) 

3. Phase(D, Ref): perform | X-Ref |, where X  *           +  

a. Return Dphased 

4. Smooth_Haplotype(Dphased): apply 1D mode filter to phased data 

a. Return Dsmoothed 

5. ResolveCx(Dsmoothed) – resolve common crossovers in reference 

6. Phase(Dsmoothed, Refresolved) 

7. Report crossovers and haplotype blocks 

Function Phase 

The function applies fast arithmetic operations to all chromosomes in all cells in the trio that 

compares all data to the reference cell. It returns mask to every chromosome present in the dataset 

with  0 for loci in phase with the reference, 1 for loci out of phase and 0.5 for heterozygous loci. 

Function Smooth_Haplotype 

Function processes the phased genotypes with 1D mode filter. 1D mode filter is analogous to median 

filter with mode as the smoothing function. Median filter is a non-linear technique to remove noise 

(or generally outliers) from the data and prevent edges (Bovik et al., 1987). The edges are boundaries 

of the phases/haplotypes (and therefore crossover points) and there are two categories of outliers 

present in the data: 

 True technical noise caused by whole genome amplification 

 Heterogeneity of the heterozygous region as this can not only possess AB, but also AA and 

BB if the alleles are matching by chance (Section 5.1.3) 

The task is to unify the phases by removing the erroneously phased genotypes caused by 

aforementioned reasons, but preserve the edges (crossovers) to obtain two haplotypes and a 

heterozygous region. The details and the pseudocode of the algorithm is in Vogel (2019).  

 

Function ResolveCx 
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Function creates a matrix of crossovers and subsequently searches for common crossovers that 

indicate crossover in the reference cell. As crossovers are defined by transition of haplotypes in a 

matrix (haplotype transition is indicated with 1 in matrix cx, Algorithm 2), the number of common 

crossovers per locus is sum over all columns (colSum in Algorithm 2)  The crossover is then 

subsequently resolved and phases are added to the reference sequence. 

 

Algorithm 2: Function ResolveCx 

Input: Collection of phased and smoothed trios Dphased from the same individual including reference 

Ref without crossovers 

Output: Refresolved with resolved crossovers and added phases 

1. Init matrix of crossovers cx of the same  dimensions as  Dphased 

2. For cell in Dphased:: 

a. For pos in cell 

i. cx[pos,cellid] ← phase[i]!=phase[i+1] 

b. For row in cx: 

i. If colSum(row) = total number of haploid cells in Dphased 

a. Ref[row] ← 1 

3. Init Refresolved with dimensions identical to Ref 

4. For pos in Ref: 

a. Refresolved [pos] = cumSum(Ref[pos]!=Ref[pos+1]) mod 2 

 

Note that step 2ai in Algorithm 2 marks all transitions between haplotypes and then 2bi checks for 

common crossovers. Once the crossovers are added to the reference, step 4a corrects for haplotype 

transitions between introduced crossovers using cumulative sum (cumSum). 

After the common crossovers are resolved, the cells undergo a second round of phasing – now 

with a phased reference. The phasing procedure (Algorithm 2) is universal in this matter and can be 

again used to adjust the phases of all cells in respect of crossover in the reference cell.  

5.2 Gene conversions 

5.2.1 Introduction 

Crossover and recombination contributes to heterogeneity of the human population by shuffling the 

genetic information during meiosis. While crossover is a reciprocal transfer of genetic information 

that maintains the same amount of alleles for every locus, so called gene conversions are non-

reciprocal. A required condition for both, crossover and gene conversion is presence of double strand 

breaks (DSBs). DSBs are subsequently resolved by either crossover, or gene conversion, where the 

missing gap in  DNA is synthetised in favor of one of the alleles. The detailed mechanism is 

explained thoroughly  elsewhere (Chen et al., 2007).  



 26 

5.2.2 Detection of GCs in Trios 

The detection of gene conversions is based on mendelian inheritance patterns  (law of segregation). 

The design of the algorithm is summarized in Algorithm 3 and the principle is straightforward – every 

locus that shows allelic imbalance (different counts of allele A and B over all three cells per locus) is 

a potential gene conversion. 

 

Algorithm 3: Detect GC 

Input: quadruplet of genotype vectors Q={gDNA, PB1, PB2, Egg} from a single individual 

Output: list of GC 

1. Convert genotypes to B-allele freq: AB ← 0.5, AA ← 0, BB ← 1.0  

2. Select loci where gDNA=0.5 and PB1=0.5 

3. For every locus l in Q: 

a. If         , -  (     , -     , -)     

i. Report GC at locus l 
 

As incidence of ADI is much lower than ADO,  and the probability of transition between two 

homozygous genotypes (AA ↔ BB) is low, Algorithm 3 only takes  loci where PB1 is heterozygous. 

Due to potential noise present in the data, Algorithm 3 in this form requires high confidence 

genotypes (application to real data in Chapter 6). 

5.3 Conclusion 

In this chapter we presented algorithms for knowledge extraction from single cell data, namely data 

from female meiosis. We show applications of these algorithms on real data and dicsuss how noise 

affects the quality of the knowledge extraction in the next chapter. 
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6 Applications of SureTypeSC 

6.1 Introduction 

In this chapter, we demonstrate practical applications of the novel algorithm for filtering genotypes 

(Chapter 3) and algorithm for knowledge extraction from single cell data (Chapter 5). We will use 

single cell data from products of female meioses (Chapter 5) or reference single cell data (Chapter 3). 

The goal is to show performance of the novel filtering algorithm on these data in comparison with the 

state of the art algorithm GenCall and discuss the quality of genotyping in relation to the knowledge 

extraction. 

6.2 Improved crossover detection 

6.2.1 Duos 

We demonstrate the functionality of the algorithm for crossover detection in Duos (Section 5.1.3)  on 

chromosome 1 of a PB1-oocyte duo from  Gruhn et al. (in resubmission). We were interested how the 

algorithm performs on original unfiltered data and with different stringencies of GenCall (QC015, 

QC087 and QC095) and SureTypeSC (RF-GDA015, RF-GDA057, RF-GDA075). 

The results suggest, that increased stringency contributes to clearer homozygous segments by 

removing poor quality signal – this is true for both, GenCall and RF-GDA. (Figure 6.1) However, 

RF-GDA shows higher specificity towards the noise for similar number of markers (QC087 and RF-

GDA have 8,799 and 8,751 points in Figure 6.1D and Figure 6.1E, respectively. This is also 

supported by highly stringent GenCall (QC095), that still fails to reject few likely false positives 

(dispersed green points around green cluster in Figure 6.1F). 

RF-GDA075 effectively cleans up the signal and enables clearer separation of the 

homozygous clusters with the segmentation algorithm. Note that the red singleton in Figure 6.1G 

could be either FP left out by SureTypeSC  or gene conversion (Section 5.2). The algorithm currently 

takes this marker as a boundary for the crossover (Fig. 8.5H).  

6.2.2 Trios  

We applied for detecting crossovers presented in Section 5.1.4 for detection of crossovers in Trios 

and were interested in performance of the algorithm with data from standard GenCall (QC015) and 



 28 

data filtered with RF-GDA. We demonstrate the differences between the results on chr17 from a trio 

from an in-house data collection of Hoffmann Lab at University of Copenhagen
5
.  

 

Figure 6.1. Visual representation of the results of the crossover detection algorithm in duos using different filtering 

strategies. The points other than blue represent clustered segments of homozygous data. (A) Raw data is the genotyping 

data from GenCall from  GenomeStudio with no filtering. (B) is the data fitlered with standard GenCall threshold 0.15. (C)  

is raw data filtered with algorithm RF-GDA from SureTypeSC using standard threshold 0.15. (D) is GenCall algorithm with 

stringend threshold 0.87.  (E) RF-GDA with threshold that keeps the same amount of markers as QC087. (F) GenCall with 

very strict threshold close to 1. (G) RF-GDA previously validated for high precision. (H) Likely crossovers inferred from 

boundaries of the segments clustered from G. 

Comparison of the outputs of both genotyping strategies (Figure 6.2) indicates, that: 

 The density of the heterozygous SNPs is higher with RF-GDA075 – this is expected and is 

concordant with the validation study that SureTypeSC can resolve more true positive 

heterozygous SNPs (Chapter 4). 

                                                      
5
 https://icmm.ku.dk/english/research-groups/hoffmann-group/ 

https://icmm.ku.dk/english/research-groups/hoffmann-group/
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  As a direct consequence of the previous point, we observe artificial crossovers and 

transitions between haplotypes in the heterozygous regions after smoothing with data from 

GenCall (QC015, Figure 6.2). An artificial haplotype is non-reciprocal (lacking support in 

PB2 and Egg).  I.e.  haplotype switch in PB1 from heterozygous to haplotype1  should trigger 

haplotype transition in one of the other cells. These events are marked with rectangles. in 

Figure 6.2B. 

  

Figure 6.2. Results of the the phasing stage and the smoothing stage of the crossover detection algorithm for data 

coming from GenCall with standard threshold (QC015) and RF-GDA075. Heterozygous regions (containing both green 

and yellow haplotypes) are in violett , and the parental phases in green and yellow. The solid rectangles indicate artifical 

haplotype blocks. 

6.3 Direct detection of gene conversions 

6.3.1 Genotyping with GenCall 

Algorithm for detection of gene conversions (Section 5.2) does not distinguish between gene 

conversions and errors caused by MDA amplification. Running the algorithm on the data with QC015 

reveals 2449 gene conversion events with heterozygous PB1 (Figure 6.3). As we are taking into 

account only heterozygous SNPs that span about 16%  in a diploid cell (around 50,000 heterozygous 

SNPs in 300k microarray). This fraction corresponds to            in human genome. Assuming 

the gene conversion tract has length around 100 bp on average (Padhukasahasram and Rannala, 

2012), 2449 detected gene conversion span roughly 250.000 bp. This corresponds to gene conversion 

rate of          per bp, per meiosis. Rate of gene conversion has been previously estimated as 5.9 

× 10
−6

 per bp, per meiosis (Williams et al., 2015), which is roughly 10.000 times less than what we 

predicted. It is to conclude that most of the detected gene conversions from genotypes using standard 

genotyping using GenCall false positives.  
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Table 6.1. Possible combination of alleles where loci in PB1 are heterozygous 

PB1 PB2 Egg Status 

AB AA BB Mendelian inheritance 

AB AA AA Gene conversion BB→AA  or ADI in PB1 

AB BB AA Mendelian inheritance 

AB BB BB Gene conversion AA→BB  or ADI in PB1 

6.3.2 Filtering with SureTypeSC 

We were futhermore interested in numbers of gene conversion after we filter the genotypes with 

SureTypeSC aimed for high precision (RF-). Figure 6.3 shows the results on top of the results of 

standard GenCall. The number of gene conversion events is reduced to only 10. This corresponds to 

gene conversion rate of          per bp, per meiosis. A lower number than reported in Williams et 

al. (2015) can be explained by the fact that we only taken into account the heterozygous part of the 

genome of PB1, but neverthless suggests that we were able to separate noise from the truth signal and 

detect gene conversions directly. 

 

 

Figure 6.3. Results of gene conversion detection on a trio from in-house oocyte collection. Green – gene conversions 

detected by GenCall (QC015); red – detected gene conversion after data filtering with SureTypeSC. 
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6.4 Detection of copy number variants 

To this end, we assumed that the cells have correct numbers of chromosomes.. However, aneuploidies 

and copy number variants (CNVs) add an extra level of uncertainty to the data. Aneuploidy is 

presence of an abnormal number of chromosomes in a cell. In context of female meiosis, it is 

estimated that 5 % of pregnancies are affected by this chromosome abnormality, which can be fatal 

for the fetus or cause major genetic disorders (Hassold and Hunt, 2001). CNVs are conditions  where 

only part of the chromosome is deleted or duplicated. Similarly to aneuploidies, they can have fatal 

consequences to the female oocyte  (Martin et al., 2015). 

We were interested whether SureTypeSC would improve biological insight when used for high 

precision (RF-GDA with stringent threshold. We assessed copy number variants (CNVs) in human 

oocyte data (Ottolini et al., 2015) and successfully resolved chromosomal deletion. The loss of a 

chromosome or chromosome segment results in one cell with only A and B calls (no heterozygous 

SNPs). The loss, however, is obscured by ADI when using the standard GenCall algorithm (Figure 

6.4). SureTypeSC removes the ADIs (erroneous AB), increasing the certainty of the inference (Vogel 

et al., 2019). 

 

Figure 6.4. Segmental aneuploidy in a human oocytes.  (A) The oocyte (Model I) is diploid, but contains a partial deletion 

(the entire q arm). (B) After WGA, the genotyping algorithm should reject the signal noise from SNPs on the q arm. 

However, the B allele frequency of genotyped SNPs passed the quality control of GenCall (C). In contrast, the B allele 

frequency plot of SureTypeSC (D) correctly rejects genotypes from the deleted chromosome arms calling only a few SNPs. 
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(E) shows the logarithmic ratio of observed vs. expected signal intensities along the chromosome. It confirms that the area 

of the chromosomal loss has lower signal (negative logR). 

6.5 Detecting subpopulations in the single cells  

6.5.1 Introduction 

To this end,  we assumed that all variants in the cell line GM12878 (Chapter 3)  that do not match the 

reference genome (`erroneous variants`) are allele drop outs or allele drop ins (Figure 6.5A). 

However, it has been previously reported, that the populations of cells of the same type are often 

heterogeneious (Altschuler and Wu, 2010). We were curious whether some of erroneous variants 

could be real and therefore used to detect heterogeneity within a cell population. We were interested 

in whether we could use SureTypeSC with high precision to reveal biological variability within the 

tested cell line GM12878.  

6.5.2 Results 

We performed high precise genotype filtering using GenCall and RF-GDA (SureTypeSC) of 46 cells 

from GM12878 (Section 3.2). Both algorithms were adjusted for high recall (GenCall score 0.87, 

SureTypeSC score 0.75). To explore the heterogeneity in terms of concordance with the reference 

bulk DNA genome, we coded variant genotypes that corresponded the reference with one and variants 

not matching the reference with zero. Similarly to Zafar et al., 2016, we imputed the missing 

genotypes with value 0.5 and used Hamming distance to calculate the pairwise dissimilarity between 

the 46 cells in GM12878. We then performed hierarchical clustering on all SNPs that contained at 

least one non-reference variant across the 46 cells. We included raw  genotypes (QC001) ,genotypes 

from stringent GenCall (0.87), and SureTypeSC (0.75) and used Ward distance for hierarchical 

clustering. We assessed stability of the clusters by performing bootstrap analysis implemented in the 

fpc package in R. We subsequently labelled the clusters with clusterwise Jaccard bootstrap mean 

(calculated from 1000 replicates) indicating the stability of the cluster (Figure 6.5).  

The hierarchical clustering reveals there are potentially four subpopulations of cells in 

GM12878 cell line that are invariant to the type of filtration used (Figure 6.5B, C, D). The bootstrap 

analysis, however, reveals that only the RF-GDA consistently gives four stable subpopulations 

(Jaccard mean bootstrap value for a cluster > 0.75, Hennig 2007).  

The unstable clusters present in the trees from the minimal filter (QC 0.01) and ‗high precision‘ 

genotyping using GenCall suggest non-reproducible noise being transferred to the bootstrapped 

replicates that is removed by SureTypeSC. Using a high precision mode, SureTypeSC, but not 

GenCall, was able to stably detect four subpopulations in the reference GM12878 cell line. Thus, 
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SureTypeSC most likely revealed true heterogeneity within the single cell population (Vogel et al., 

2019). 

 

Figure 6.5. Detected errors and potential variants in the 46 cells of GM12878. (A) Histogram of detected ADI and ADO 

in raw data (left panel), data filtered with GenCall at high precision (GenCall score 0.87, middle panel) and data filtered 

with SureTypeSC (right panel).  Hierarchical clustering on raw data (B), on data from GenCall (C) and from RF-GDA 

(SureTypeSC, D). The histograms were generated in R using hclust and evaluated using the clusterboot function from the R 

package fpc.  The red rectangles show the potential subpopulations and the numbers indicate the Jaccard bootstrap mean. 

Labels are coloured according to the following rules (obtained from Henning 2007 and manual of the fpc package): Green 

labels indicate highly stable clusters (>0.85), blue labels indicate stable clusters (>0.75); orange labels might indicate a 

pattern, however the membership of the cells to a particular cluster is doubtful; red labels (<0.6) indicate unstable clusters. 

RF-GDA is the only algorithm that gives four stable clusters. 
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7 Conclusion 

The rapid evolution of single cell genomics is constantly reinforced by hundreds of exciting 

discoveries about how our body works on a fine level of single cell. A lot of knowledge from various 

fields of biology is required to explain how cancer cells develop, how cells in our brain communicate 

or which factors contribute to successful pregnancy. Precise genetic information about a cell is one of 

the pieces to the puzzle. 

Accurate detection of genotype of a single cell is still challenging due to preciousness of the 

genetic material. While the laboratory techniques are trying to improve the methodology to deliver 

more accurate signal, it is a matter of fact that the whole genome amplification is the bottleneck of the 

whole process. 

This work targets an important issue of single cell bioinformatics – how to reliably distinguish 

between a genotype artefact and real signal in the single-cell data. While this problem has been solved 

algorithmically for NGS data by various approaches, the SNP array technology has been left behind. 

This is unfortunate, because SNP array offers a cost-efficient alternative for analysing thousands of 

genomic loci with good coverage, which is confirmed by accuracy and call rate over 99% for 

standard, bulk DNA. 

In this work, a reference population of single cell samples from SNP array was gathered and 

the noise that is coming through when using the state of the art genotyping workflow for SNP arrays 

was analysed. A cascade machine learning method that learns the pattern of noise in the single cell 

data was developed. Thorough validation of the method reveals that it is possible to recall more 

single-cell genotypes with better precision than with the current state of the art represented by the 

GenCall algorithm. 

Furthermore, algorithms for knowledge extraction from products of female meiosis were 

designed and optimized, particularly for crossover detection. The improved genotype detection has 

direct impact on quality of the knowledge gathered from the data. It is likely that the presented 

algorithms can improve both, diagnostics and biological inference.  

SureTypeSC was tested on a reference population of single cells. As these cells were clones, 

one would expect that the only source of heterogeneity is random noise. It however turns out, that 

after noise removal, the cells still contain differences and create subpopulations. This confirms what 

mentioned at the very beginning of this work – heterogeneity is everywhere within our body. Ability 

of deciphering of subpopulations in the single cell data would have a likely application in cancer 

biology. 
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7.1 Summary of contribution 

As mentioned at the beginning, this work was motivated by research interests of two scientific groups 

that I was member of during my doctoral studies. These groups supported my bioinformatics research 

with databases of biological data. The biological conclusions were inferred based on evidence found 

by methods presented in this work. Related to research questions asked in Section 1.2.1, I summarize 

the contribution of this thesis in the following points: 

 I generated a reference population of single cells from SNP arrays with a reliable genotype 

confirmed by information from bulk DNA. This is a valuable resource for future research 

serving as a training dataset 

 I identified pattern of noise in the data and based on this, I designed, implemented and 

validated an original two stage machine learning method named SureTypeSC. The method 

evaluates a single-cell genotype from SNP array and calculates a confidence measure. The 

algorithm outperforms current state of the art in genotyping of single-cell SNP array data 

 I designed and implemented algorithms for crossover detection in single-cell data from 

female meiosis. I demonstrated application and benefits of using SureTypeSC with these 

algorithms. I furthermore showed how SureTypeSC can help to solve other relevant questions 

of single-cell bioinformatics: aneuploidy detection, subpopulations clustering and gene 

conversion analysis. 
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Abstract 

Single-cell genotyping is a challenging part of genomics that deals with insufficient amount of DNA 

for analysis and methods that amplify the single cell DNA introduce bias in the data. This thesis maps 

the state of the art of bioinformatics analysis in genomics, particularly SNP array genotyping and 

proposes and implements original method for tackling the noise in the single-cell data. Moreover, few 

original algorithms for knowledge extraction from single-cell data are presented and the functionality 

of the workflow is demonstrated on real data from products of female meiosis. 
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