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Abstract
The goal of the thesis is to present methods for acceleration of shadows and lighting. The
main focus of the thesis is an acceleration of per-sample precise shadows using shadow vol-
umes on different platforms. Other parts of this thesis also describe methods for increasing
the precision of shadow map based methods and lighting.

Abstrakt
Cílem této práce je prezentovat metody pro akceleraci výpočtů stínů a osvětlení. Práce se
zabývá akcelerací na vzorek přesných stínů pomocí stínových těles na různých platformách.
Obsahem práce je také zvýšení přesnosti stínových map a zvýšení přesnosti osvětlování
scény s mnoha světly.
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Preface

In this short part of the thesis, I will describe some personal things that give context to the
rest of the text. This section is informal and readers are welcome to skip it, but I feel the
need to write it down. I would like to start with how I worked on this thesis and how other
school activities interfered with it.

This thesis was large part of eight years of my life. I worked on it during my Ph.D.
studies at Faculty of Information Technology in Brno. I worked on it semi-regularly since
the deadline was always someday in the future. I was distracted by way too many other
school activities and side projects. These other activities took big chunk of my time which
led to a lot of postpones. A lot of ideas presented in this thesis were formed in the first two
years of my study, but I was unable to finish the implementation back then. In the rest of
the preface I will describe some selected activities that distracted me.

In the first year of my doctoral studies, I was invited to the team reSound with Michal
Zachariáš, István Szentandrási and Rudolf Kajan to participate in Imagine Cup 2013 com-
petition. We created an augmented reality game where player’s goal was to ”control“ music.
The game was quite innovative due to the augmented reality nature and we won the na-
tional round and went to St. Petersburg. In the international round, we placed ourselves
in top 5 teams and were told that we chose the wrong category - game category instead
of innovation category. An the end of the event, I had an some ideas of how to acceler-
ate shadow rendering witch led to further research later. This event was one of my first
distractions and it predetermined my inability to refuse work on side projects.

I helped friends (Jan Navrátil, Jozef Kobrtek) with their doctoral theses and took a
part in other projects and cooperated with different IT companies.

I have work with embedded systems for NXP company. I designed and implemented
some vision algorithms for their automobile computer systems. All algorithms were de-
signed for their i.MX8 processors and were GPU accelerated using OpenVX for its build-in
Vivante GPU. Other task was to design and implement GPU accelerated inference engine
for convolutional neural networks. I used OpenCL and together with Roman Juránek we
developed system for training and inference neural nets for their embedded platforms.

In the last one or two years I have cooperated with Smarter Instruments company
and have worked with Looking Glass holographic displays. We have been developing our
own multi-platform holographic renderer together with Tomáš Chlubna. As the renderer
works on Linux, I combined my knowledge from times when I worked for NXP and created
holographic renderer for embedded systems, see Figure 1.

I also helped with project for company Honeywell. The goal was to analyze properties
of vision based navigation for flying drones in situations where the GPS is not reliable - in
cities with high buildings. We simulated the algorithms and drones in virtual environment,
see Figure 2.
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Figure 1: The left image shows NXP development board i.MX 8MQuadLite. This passive
cooling device is able to render holographic images for Looking Glass display using our
open renderer. The right image shows simplified diagram of holographic renderer.

Figure 2: The image shows environment where virtual drones were tested. The environment
and drone trajectories were created in Blender.

Maybe the biggest part of my doctoral studies was (and still is) teaching. I love teaching,
sharing knowledge and helping students. Nowadays, I teach in six different courses - all
related to compute graphics. I also lead (with Tomáš Starka) voluntary seminars for students
on different IT topics and arrange so called ”rendering readings“. These readings are weekly
meetings with others interested in computer graphics where we dissect a scientific paper.
I constantly try to innovate lectures, unify and redistribute information between lectures
and improve student projects and lab tasks. Every doctoral student has to teach. I usually
teach at least 8 times more than common doctoral student. It is not uncommon for me to
have more teaching hours than most academics in my faculty (even docents and professors).
This determination or even obsession led to one of the most memorable moments in my
life. I was chosen by students as the best teacher for bachelor studies in my faculty in 2019.

This is just a small sample of all project I have participated in. All of side projects had
one obvious drawbacj. I didn’t invest enough time into finishing this thesis. It took much
longer that I thought. It could have been easily finished four years earlier.

The development of algorithms, methods and approaches described in this thesis started
as early as in 2012. The company Cadwork informatik AG have been co-operating with Fac-
ulty of Information Technology in Brno. Tomáš Starka and Jan Pečiva have been developing
rendering algorithms for CAD software and one of the rendering tasks was to design real-
time shadowing algorithm. There were specific requirements for the shadowing algorithm.
The main four requirements were:
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∙ The algorithm had to be real-time or at least interactive.

∙ It had to handle arbitrary models with complex triangle settings, including non-
manifolds, models with holes and edges with any number of connected triangles.

∙ It had to produce per-sample precise shadows with no refinement over time.

∙ It had to be multi-platform, running on any graphic processing unit and operating
system.

There is a very large body of scientific papers published on topic of shadow algorithms
and there is a lot of diverse methods for rendering of several types of shadows with different
attributes. From the vast spectrum of methods, the algorithm called Shadow Volumes was
chosen as it fulfills all requirements. Other methods for rendering shadows were considered,
mainly Shadow Mapping or ray-tracing. Ray-tracing produces per-sample precise shadows
and works with arbitrary models, but it is/was slower that other methods. Ray-tracing
requires good acceleration structures in order to run at least interactively. With recent
introduction of hardware specific units (ray-tracer cores) on NVIDIA Turing graphics cards,
designed to handle sub-tasks of ray-tracing, ray-tracing is starting to be viable option.

On the other hand, Shadow mapping is by far one of the fastest methods for rendering
shadows. That fact is the reason why it is used in most today’s video games. There is a lot
of different variants of Shadow Mapping algorithm and the base algorithm can also be used
as subpart of other visual algorithms. The main difficulty of Shadow Mapping is it’s visual
quality. It produces wide variety of visual artifacts and for each of them there exists a lot
of scientific papers of how to solve them or at least how to mitigate them.

The selected algorithm - Shadow Volumes can render per-sample precise shadows in
real-time. However, some of its faster variants have problems with non manifold models and
other complex triangle settings. Furthermore, the algorithm sometimes produces imperfect
shadows due to hardware specific reasons. Some of the methods described in this thesis are
used by Cadwork informatik AG company in their applications today.

The goal of the thesis is to describe new approaches and additions to the vast topic of
rendering of shadows. It summarizes algorithms and methods developed during eight years.
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Chapter 1

Introduction

Lighting and shadows are important parts of our everyday life. They are not as obvious as
air or water, but without them our lives would be greatly different. They help us navigate in
our environment, help us understand the composition of the world and even create feelings.
Good lighting can create mood and atmosphere, while shadows can highlight important
objects. They are well understood in arts, movies and video games. Without them, our
lives would be much blander, see the Figure 1.1. The goal of this text is to present new
ideas of how to compute shadows that are precise and robust in every situation and lighting
algorithms.

Figure 1.1: The image shows photograph of Špilberk castle. Shadows and lighting are re-
moved on the right side leaving only textures and colors.

6



Chapter 2

Basics of Lights and Shadows

The goal of this thesis is to present methods for acceleration of shadow computation and
lighting on different hardware platforms. This chapter describes overall properties of lights
and shadows and their importance in rendering of scenes.

2.1 Light Sources
Lights and light sources illuminate 3D scenes and create shadows. Shadows can only arise
in scenes with a light source. There are many types of light sources. Algorithms for shadow
computation are usually specialized for different kinds of lights. This short section describes
the most common light sources in virtual environments.

A light source can be small or large and can create soft or hard shadows, see Figure 2.1.

Figure 2.1: Point light sources create hard shadows, the left side. Large light sources (or
area lights) create soft shadows, the right side. The shadow border smoothness depends
on the light source size and the distance of the light and the shadow caster to the shadow
receiver. Soft shadows are usually more computationally expensive.

Formally, the light source can be described as a set L of points in 3D space that emit
light energy. If the set L contains infinite number of points, it is usually described as area
or volume light source. If the set contains only one point, it describes point light source.
If the point emits the light only to certain directions, the light is called spot light. If the
point is located in infinity, the light is called directional light. Types of point light sources
are visualized in Figure 2.2.

Light sources can be primary or secondary, creating direct or indirect illumination, see
Figure 2.3.

The most of this work is focused on omnidirectional point light sources.
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Figure 2.2: The left side of the image shows omnidirectional point light. The middle part
shows spot light source. The right side shows directional light source. All light types are able
to create hard shadows. Omnidirectional light sources are usually the most computationally
expensive point light sources.

primary light source

secondary
light sources

Figure 2.3: The image shows primary light source and secondary light sources. Primary
light sources emit light by themselves, secondary light sources are created when a light
is reflected off a surface. Primary light sources create direct illumination while secondary
light sources create indirect illumination. Secondary point light sources are sometimes called
virtual point light sources (VPL).
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2.2 Shadows
Shadows are an important part of 3D rendering. They improve depth perception and visual
quality, see Figure 2.4 and Figure 2.5.

Figure 2.4: The left side of the figure shows a scene with three spheres without shadows. All
spheres seem to be located at the same height above the ground. Also, spheres appear to
have the same radius. The right side of the figure shows the same scene but with shadows.
The shadows improved the depth perception and the ability of the viewer to recognize the
relation between objects in the scene. The red sphere is the largest, while the blue sphere
is the smallest. The red sphere is located much closer to the ground. The shading alone
cannot help the viewer as the scene is illuminated with directional light.

Figure 2.5: The left side of the figure shows the Conference room without shadows. The
right side of the figure shows the same scene with shadows. The visualization quality is
improved.

There are many ways of defining shadows. A mathematical way to define a shadow (as
presented in the Siggraph 2013 course Efficient Real-time Shadows by Eisemann [26]) can
be seen in Figure 2.6.
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lit
penumbra

umbra

Figure 2.6: This Figure is inspired by Figure 1.4 from the book Real-Time Shadows by
Eisemann [25]. The omnidirectional area light source L is a set of points that emits a light.
The surface point 𝑃 is considered shadowed if there is an occluding geometry between 𝑃
and L and not all rays from L reach the point 𝑃 . If none of rays from L reaches the point
𝑃 , the region is called umbra. If some rays from light L reaches the point 𝑃 , the region
is called penumbra. Penumbra regions or soft shadows can only arise in scenes lit by area
light sources or in scenes with transparent objects. Hard shadows arise in scenes lit by point
light sources.
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Following algorithms require the definition of shadow caster and receiver, see Figure 2.7.

A

B

C

Figure 2.7: Objects 𝐴 and 𝐶 are shadow casters. Object 𝐵 is shadow receiver. In reality, all
object are shadow casters and receivers. However, It is useful to distinguish between objects
that can receive shadows (shadows can be seen by camera on their surfaces) and shadow
casters that influence observed shadows. Shadow casters are sometimes called blockers or
occluders.

There are different kind of shadows. Hard shadows and soft shadows are just two cate-
gories. There are also indirect shadows, see Figure 2.8.

indirect shadow

direct shadow

Figure 2.8: The image shows direct and indirect shadows. The indirect shadows arise as
the light from light source bounces off the big orange block and illuminates gray wall. The
indirect shadows are soft even if the light is point source. Indirect shadows are caused by
indirect lighting.

Other than that, ambient occlusion can be considered as a form of shadow, see Figure 2.9.
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Figure 2.9: The left side of the image shows Observatory scene illuminated with point light
source. All surfaces are gray and geometric details are lost in shadow regions. The right
side of the image shows effects of ambient occlusion. Corners and slits are much darker
preserving details. Ambient occlusion is a cheap method for computing indirect shadows
and other effects of indirect illumination.

Generally, concept of shadows is redundant as it can be defined in other way. Outgoing
surface radiance can fully describe light and dark regions as is defined in rendering equation,
Equation 2.1. The rendering equation was introduced by Kajiya [50] and Immel et al. [44]
and can describe illumination in a scene:

𝐿𝑜(p, 𝜔𝑜) = 𝐿𝑒(p, 𝜔𝑜) + 𝐿𝑟(p, 𝜔𝑜) (2.1)

The terms in Equation 2.1 are:

∙ p is a surface point.

∙ 𝜔𝑜 is a direction from the surface point p.

∙ 𝐿𝑜 is an outgoing surface radiance from the point p in the direction 𝜔𝑜.

∙ 𝐿𝑒 is an emitted radiance from the point p in the direction 𝜔𝑜. This term is zero for
surface points that are not light sources.

∙ 𝐿𝑟 is a reflected radiance from the point p in the direction 𝜔𝑜. This term is summation
of all incoming radiance to the point p, see Equation 2.2.

𝐿𝑟(p, 𝜔𝑜) =

∫︁
Ω
𝑓𝑟(p, 𝜔𝑜, 𝜔𝑖)𝐿𝑖(p, 𝜔𝑖) cos(np, 𝜔𝑖)𝑑𝜔𝑖 (2.2)

The equation Equation 2.2 describes reflected radiance. The reflected radiance is sum-
mation of all incoming radiance over the hemisphere with a center in the surface point
p.

∙ 𝐿𝑟 is the reflected radiance from the point p in the direction 𝜔𝑜.
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∙ 𝑓𝑟 describes surface properties and it is called bidirectional reflectance distribution
function BRDF. This term modulates how much of the incoming light energy from
direction 𝜔𝑖 to direction 𝜔𝑜 for point p is reflected.

∙ 𝐿𝑖 is an incoming radiance at the point p from another surface point in the direction
𝜔𝑖.

∙ np is the surface normal of the point p.

The rendering equation is fundamental basis in computer graphics. The equation de-
scribes equilibrium of light energy in a scene. Every surface point emits or reflects some
amount of light. Shadows or dark regions of a scene produce less light while lit and light
regions produce more light. With this concept, shadows are the difference in observed out-
going radiance.

The rendering equation is recursive and hard to compute. A lot of research is aimed at
solving it effectively and precisely. Partial approximations and specializations are useful,
because they allow the computation in real-time. The concept of shadows is one of these
specializations.

2.3 Basic Shadow Algorithms
There is large spectrum of real-time shadow algorithms. A lot of algorithms is based on
core ideas of shadow mapping or shadow volumes. This section describes basis of shadow
mapping and shadow volumes and defines common terms.

Shadow algorithms require definitions of a scene, a view-sample, a shadow-sample and
a light source, see Figure 2.10.

view-sample

shadow-sample

light

camera

geometryview ray

Figure 2.10: A scene geometry is composed of triangles. A view-sample (red point) is the
closest intersection point of a view ray from camera with the scene geometry. A view-
sample is associated with a screen space pixel. There is usually one view-sample per pixel.
If multi-sampling is enabled, there can be multiple view-samples per pixel. Point light source
illuminates the scene. Some algorithms draw the scene from light point of view and create
shadow-samples (blue point).
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2.3.1 Shadow Mapping

Shadow mapping is probably the most widespread shadow algorithm today. There are many
reasons. It is very fast algorithm with support in hardware. The performance is quite stable.
It is relatively easy to implement. It supports an arbitrary soup of triangles. It is commonly
used as a part of other algorithms. Shadow mapping and its variants are used by wast
majority of computer games today.

The main idea behind shadow mapping is to render a scene two times, see Figure 2.11.

shadow map

shadow-sample

camera

light

view-sample

Figure 2.11: The image shows shadow mapping algorithm. The first render pass rasterizes
a scene from light point of view. The rasterization creates shadow-samples that are stored
in a 2D texture called shadow map. Shadow map stores depth values for each shadow-
sample 𝑑𝑠. A shadow sample could be viewed as a small square facing light source, which
casts shadow into the scene. The second render pass rasterizes a scene from camera point
of view. Each view-sample is projected into the shadow map and the algorithm finds the
closest shadow-sample. If the shadow-sample depth 𝑑𝑠 is less than the view–sample depth
𝑑𝑣, the view–sample is shadowed.

Shadow mapping in its bare form suffers from wide variety of visual artifacts. A lot
of research is aimed at quality improvements, performance improvements and extensions
such as transparency, soft shadows and omnidirectional light sources. Shadow mapping is
described with more details in later sections.

2.3.2 Shadow Volumes

Next algorithm is Shadow volumes. The main idea is shown in Figure 2.12. The algorithm
produces per sample precise shadows. Shadow volumes are supported by hardware with
stencil operations. Generally, shadow volumes are slower than shadow mapping. While
quality improvements is the main research topic for shadow mapping, most of the research
on shadow volumes is focused on performance. The algorithm is geometry based which can
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cause some problems with complex geometry. Shadow volumes were widely used in gaming
industry but today are mostly replaced by shadow mapping due to its speed. Detailed
description of shadow volume algorithms is presented in following sections.

There are other shadow techniques like projected shadows and ray-tracing, but they are
out of scope of this text.

view-sample

light

shadow volume

camera

triangle

Figure 2.12: The image shows shadow volume algorithm. The algorithm creates shadow vol-
ume geometry that encloses shadows. Shadow volumes are created using a scene geometry.
If a view-sample lies within any shadow volume, it is shadowed.
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Chapter 3

Precise Hard Shadows

This section describes algorithms and methods for per sample precise hard shadows render-
ing, see Figure 3.1. There is a lot of different shadowing methods. Some methods are focused
on speed, some are useful for soft shadows, some for transparent or volumetric shadows.
Even if the category of methods is limited to just precise hard shadows, it contains tens
of scientific papers and additional topics. The goal of this section is to describe most of
the real-time per sample precise methods for rendering hard shadows. The first part of the
section describes floating-point arithmetic, geometry and topology. These general topics are
important for precise algorithms. Next part describes shadow volume algorithms and their
variants. The last section describes various sample precise shadow methods.

Figure 3.1: The figure shows Villa scene illuminated with point light source. Sample precise
shadows are cast from each part of the geometry: thin tree branches and iron gate bars.
The image was rendered using silhouette shadow volume algorithm.
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3.1 Robustness and Floating-point Arithmetic
This section describes common problems that arise when dealing with floating-point num-
bers and their significance for rendering algorithms. In-depth discussion about floating-point
numbers can be found in ”What Every Computer Scientist Should Know about Floating-
Point Arithmetic“ by Goldberg [34] which describes most of the issues. The motivation for
this section can be seen in Figure 3.2.

Figure 3.2: The image shows different visual artifact that can affect precise shadow ren-
dering. The top left image shows incorrect silhouette computation. The bottom left image
shows z-fight caused by different vertex winding orders. The top right shows artifacts caused
by incorrect plane computation for silhouette algorithm with hierarchical rasterization. The
bottom right shows incorrectly lit or shadowed pixels. All of these issues can be traced to
floating-point arithmetic.

3.1.1 Floats

The floating-point standard IEEE 754 [95] specifies the definition of floating-point values,
restrictions and operations on them.

The binary format of float is usually divided into three parts: sign, exponent and sig-
nificand, see Figure 3.3.

In mathematics, addition and multiplication of three real values 𝑎, 𝑏, 𝑐 ∈ R is commuta-
tive and associative. Resulting value does not depend on the order of variables: 𝑎+ 𝑏+ 𝑐 =
𝑎+ 𝑐+ 𝑏 = 𝑐+ 𝑏+ 𝑎 = · · · and 𝑎 · 𝑏 · 𝑐 = 𝑎 · 𝑐 · 𝑏 = · · · . This is true for some floating-point
values, see Table 3.1, but it is not generally true, see Table 3.2.
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S
(sign)

E
(biased exponent) (trailing significand field)

T

1 bit MSB LSB MSB LSBw bits t = p-1 bits

Figure 3.3: The figure shows binary representation of floating-point value as specified in
[95]. A value is encoded in 𝑘 bits, where 𝑆 is 1-bit sign, biased exponent is encoded in
w-bits and trailing significand is encoded in 𝑡 = 𝑝− 1 bits. For 32 bit floating-point value:
𝑘 = 32, 𝑝 = 24, 𝑠 = 1 and 𝑤 = 8 according to Table 3.5 in [94]. The significand is encoded
in 23 bits because the leading bit is implicitly encoded in the biased exponent. The Figure
is modified Figure 3.1 from [94].

a b c (a+b)+c a+(b+c)
float 2 3 5 10 10
hex 0x40000000 0x40400000 0x40a00000 0x41200000 0x41200000

Table 3.1: This table shows three floating-point values 𝑎, 𝑏, 𝑐 stored in IEEE 754. The third
row shows hexadecimal representation. The last two columns show result of addition in
different order of variables. The computation of these expressions gives the same result.

a b c (a+b)+c a+(b+c)
float 1e+08 100 100 1e+08 1e+08
hex 0x4cbebc20 0x42c80000 0x42c80000 0x4cbebc38 0x4cbebc39

Table 3.2: This table shows three floating-point values 𝑎, 𝑏, 𝑐 stored in IEEE 754. The third
row shows hexadecimal representation. The last two columns show result of addition in
different order of variables. As can be seen, the addition of three floating-point values is
not associative. The problem arises (but is not limited) when adding extreme values (either
small or large).

This simple fact introduces issues for certain precise algorithms as well as for precise
shadow computation. Problems with floating-point values affect geometry computing as is
described in Section 3.1.2.

3.1.2 Geometry and Plane Construction

The construction of geometric primitives, such as lines and planes, is affected by floating-
point arithmetic. The ordering of variables determines the resulting values, discussed in
Section 3.1.1. This section describes manifestation of floating-point issues in geometry con-
struction, see Figure 3.4.

As can be seen in Figure 3.4 and Figure 3.5, even the most simple task of computing
a plane from three points in 3D space can introduce problems. One of the solutions to
plane construction is points ordering. The ordering ensures the deterministic computation.
Two 3D points can be ordered using less operator described in Algorithm 1. However, the
ordering can introduce additional computational cost.
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Figure 3.4: The figure shows three points 𝐴, 𝐵 and 𝐶, each represented using 3 floating-
point values. A plane (4 floating-point values) is constructed using these three points. Due
to floating-point precision, points 𝐴, 𝐵, 𝐶 may not lie on the constructed plane. Next issue
(ordering) is described in Figure 3.5.
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Figure 3.5: The figure shows three points 𝐴, 𝐵 and 𝐶. Plane normal is constructed us-
ing function: nor(𝐴,𝐵,𝐶) = (𝐵 − 𝐴) × (𝐶 − 𝐴). Plane is constructed using function
plane(𝐴,𝐵,𝐶) = (nor(𝐴,𝐵,𝐶),−nor(𝐴,𝐵,𝐶) ·𝐴) . Different order of points during con-
struction does not result in the same plane, plane(𝐴,𝐵,𝐶) ̸= plane(𝐵,𝐴,𝐶). One of the
solution to this problem can be seen in Figure 3.6.

Algorithm 1: This algorithm describes ordering operator (relation <) for two 3D
points.

Data: 3D points A,B
Result: true if A < B, false otherwise

1 i = 0;
2 while i < 3 do
3 if A𝑖 < B𝑖 then
4 return true
5 if A𝑖 > B𝑖 then
6 return false
7 i = i + 1;
8 return false
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Figure 3.6: This figure shows algorithm for deterministic construction of a plane in 3D. The
input of the algorithm is in form of three points in 3D space (top left). First step of the
algorithm is to sort input points (top middle). Then it constructs normal vector from sorted
points (top right). In the final step (bottom), the plane is constructed using normal vector
and the first sorted point. The orientation of the normal vector (and the plane) is flipped if
the ordering step swapped exactly two points. All six orderings can be seen in Figure 3.7.
Ordering operator can be seen in Algorithm 1. Similar algorithm for plane construction was
used in implementation of [93].
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Figure 3.7: This figure shows six possible cases of plane construction from three points, see
Figure 3.6. Three points 𝐴, 𝐵 and 𝐶 are sorted. The top row shows three cases, where
none or all points were swapped during sorting. The bottom row shows remaining three
cases, where exactly two points were swapped during sorting. The normal vector and plane
orientation have to be flipped for bottom cases.
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3.2 Geometry and Topology
Precise shadow algorithms require detailed geometry description. Algorithms like shadow
volumes are sensitive to geometrical properties of models. Some simple algorithms are able
to compute shadows only from watertight models and fail when working with more general
geometry. This section describes geometry and topology of models that are suitable for
algorithms described in following sections.

First, algorithms usually require triangulated model. Polygons have to contain exactly
three points, see the Figure 3.8.

Figure 3.8: Most modeling software support polygons with arbitrary number of vertices.
These polygons can be triangulated without loss of generality. The left side shows a model
as usually displayed in modeling tool and the right side shows preprocessed, triangulated
model.

Edges can be shared among multiple triangles. Intersection edges are not considered as
a part of a model. Triangles are oriented using vertex window order, see the Figure 3.9.

shared edge

opposite verticescounter clockwise
vertex winding order

clockwise
vertex winding order

not an edge

Figure 3.9: Triangles are composed of three 3D vertices described by three floating-point
numbers and three edges. Vertices are ordered in clockwise or counter clockwise manner.
The ordering is called vertex winding order. The triangle winding order determines its
orientation. If two triangles intersect, the intersection edge is not considered as a part of
the geometry. Two or more triangles can share an edge; the third vertex of each adjacent
triangle is called opposite vertex.

21



Simplest models are usually watertight. More general models can contain holes or slits,
see Figure 3.10.

Figure 3.10: The left side shows an example of watertight model, the right side shows a
model with a hole.

Good models are usually oriented. However, it is not always the case and some faces
can have flipped normal vectors, see Figure 3.11.

Figure 3.11: The left side shows properly oriented model. Every face has the same vertex
winding order. All normals point outside. The right side shows non-oriented model. The
black face has opposite vertex winding order and its normal vector points inside.

A model can be 2-manifold or contain edges with arbitrary number of adjacent triangles,
see Figure 3.12. Non-manifold models are usually harder to process.

Figure 3.12: The pair on the left shows 2-manifold and non-manifold object. A neighborhood
around any point has to be homeomophic to 2D euclidean space. The neighborhood around
a point on a shared edge does not resemble 2D space for non-manifold. The right side shows
two triangles intersecting each other. This can still be considered as 2-manifold for following
algorithms. Two triangles represent separate surfaces.
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A model can contain degenerated or near degenerated triangles, see the Figure 3.13.

Figure 3.13: If a triangle contains two or three vertices that are located at the same position,
the triangle is degenerated. Triangles degenerate into lines or points. Small triangles or
triangles with very small interior angles are near degenerated. Such triangles can cause
several problems due to floating-point arithmetic.

Finally, following shadow algorithms consider the most general models that can contain
arbitrary geometry described in this section, see the Figure 3.14.

Figure 3.14: The image shows the most general model. A model does not have to be water-
tight, oriented nor 2-manifold. It can also contain degenerated or near degenerated triangles.
Robust algorithm have to cope with every possible geometric configuration.
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3.3 Shadow Volumes
This section describes shadow volume algorithms for computing precise hard shadows. Addi-
tional information about shadow volumes can be found in the sections 2.3 Shadow Volumes
of the book Real-Time Shadows [25].

The concept of shadow volumes (or shadow polygons) was first introduced in 1977 by
Franklin Crow [17]. A shadow volume is a volume in the space that contains a shadow. It
is usually defined as a set of polygons enclosing shadowed space. If a point in space (view-
sample) lies within any shadow volume, it is shadowed. There are several ways of shadow
volume construction. There are also several ways of using shadow volumes for shadow
rendering.

3.3.1 Shadow Volume Construction

The most simple way of shadow volume construction involves homogeneous coordinates as
shown in Figure 3.15.

A

BC

D

EF

L

Figure 3.15: The left side of the image shows a triangle 𝐴𝐵𝐶 and point light source L.
The middle image shows the shadow volume. The right side of the image shows exploded
shadow volume. Points 𝐷, 𝐸 and 𝐹 lie in infinity and are constructed using the light source
and triangle points. Let 𝑃 = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧, 1) be a vertex of the triangle and 𝐿 = (𝑙𝑥, 𝑙𝑦, 𝑙𝑧, 1)
be the light position in homogeneous coordinates. The corresponding point 𝑃 ′ in infinity is
defined as 𝑃 ′ = 𝑃 − 𝐿 = (𝑝𝑥 − 𝑙𝑥, 𝑝𝑦 − 𝑙𝑦, 𝑝𝑧 − 𝑙𝑧, 0). This construction is applicable only
for omnidirectional point light sources. If the light is directional, the construction has to be
modified, see Figure 3.16.
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Figure 3.16: The left side of the image shows a triangle 𝐴𝐵𝐶 illuminated using directional
light source 𝐿. Let 𝑃 = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧, 1) be a vertex of the triangle and 𝐿 = (𝑙𝑥, 𝑙𝑦, 𝑙𝑧, 0)
the light position in homogeneous coordinates. The light from light sources illuminates
the scene in direction −𝐿. The corresponding point 𝑃 ′ in infinity does not depend on 𝑃
and can be constructed using formula 𝑃 ′ = −𝐿. The point 𝑃 ′ coordinates are therefore
𝑃 ′ = (−𝑙𝑥,−𝑙𝑦,−𝑙𝑧, 0). The construction of shadow volume for directional light sources and
omnidirectional light sources (Figure 3.15) can be unified. Without loss of generality, let
𝐿 = (𝑙𝑥, 𝑙𝑦, 𝑙𝑧, 𝑙𝑤) be a light source. If 𝑙𝑤 = 1 then the light source is point light source.
If 𝑙𝑤 = 0 then the light source is directional light source. The corresponding vertex 𝑃 ′ in
infinity is constructed using 𝑃 ′ = (𝑝𝑥𝑦𝑧𝑙𝑤 − 𝑙𝑥𝑦𝑧, 0) = (𝑝𝑥𝑙𝑤 − 𝑙𝑥, 𝑝𝑦𝑙𝑤 − 𝑙𝑦, 𝑙𝑧𝑙𝑤 − 𝑙𝑧, 0).
The orientation of shadow volume polygons is important, otherwise shadows will not be
correctly computed, see Figure 3.17.
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Figure 3.17: The figure shows two triangles, an orange and a green and their corresponding
shadow volume polygons. The normal of orange triangle is facing the light source L. The
normal of green triangle is back-facing the light source. All shadow volume polygons have
to be oriented in the same way with normals pointing either inside or outside. The green
triangle is back-facing the light source, therefore the orientation of its polygons is incorrect.
Shadow volumes of back-facing triangles need to be flipped. When a shadow volume is
constructed for every triangle in the scene, the shadow volume algorithm can compute the
shadow, see Figure 3.19.
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3.3.2 Naive Algorithm

One of the first implementations of shadow volumes in hardware was presented by Fuchs
et al. [32] and can be seen in Algorithm 2 and Figure 3.18.

Algorithm 2: This algorithm describes modified implementation of shadow vol-
umes using Pixel-Plane machines by Fuchs et al. [32]. The description of the al-
gorithm can be found in section Naive Shadow-Volume Algorithm [25]. The main
idea is to rasterize a full screen quad for each triangle and test underlying view-
samples against shadow volume. The algorithm was implemented using Pixel-Plane
machine that allowed fast evaluation.

Data: scene, light
Result: shadowMask

1 clear(𝑠ℎ𝑎𝑑𝑜𝑤𝑀𝑎𝑠𝑘);
2 viewSamples := rasterize(scene);
3 foreach triangle in scene do
4 shadowVolume := computeShadowVolume(𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, 𝑙𝑖𝑔ℎ𝑡);
5 sampleCoords := rasterizeFullScreenQuad();
6 foreach coord in sampleCoords do
7 viewSample := viewSamples[coord];
8 if viewSample is inside shadowVolume then
9 shadowMask[coord] = 1;

10 return shadowMask

Figure 3.18: This image shows hardware implementation of shadow volumes using Pixel-
Planes. The left part shows the scene without shadows from camera point of view. The
middle part sequentially processes each triangle in the scene and creates shadow mask. The
right side shows the final image.

26



3.3.3 Z-pass Stencil Algorithm

Z-pass algorithm was implemented using stencil buffer in 1991 by Tim Heidmann [41]. The
basic idea behind stencil algorithm is to count how many times does a ray from camera
intersect front-facing and back-facing shadow volume geometry. The counting is performed
during rasterization of shadow volume geometry into stencil buffer. If fragment passes the
depth test, it increases or decreases stencil value depending on the fragment orientation.
The stencil buffer is a memory on GPU that can store integer values (usually 8-bit values)
for each screen-space sampling location. The stencil buffer and specialized hardware allows
atomic counting of rasterized fragments. The algorithm is visualized in Figure 3.19

-1
0 = +1 -1

+1

+1

0 != +1

Figure 3.19: This figure visualizes the Z-pass shadow volume algorithm. The left part of the
image shows a scene with two triangles - blue and green. The scene is illuminated by point
light source. The camera views the scene and renders two view-samples - red and blue
points. The blue view-sample is shadowed. The middle part of the image shows shadow
volumes of both triangles. The right part of the image shows the shadow volume algorithm.
The ray from camera to the blue view-sample intersects one front-facing shadow volume
polygon. The stencil value of the blue sample is +1. The ray from camera to the red view-
sample intersects one front-facing and one back-facing shadow volume polygon. The stencil
value of the red sample is 0. Each time a ray from camera intersects front-facing shadow
volume polygon, the stencil value is incremented and each time a ray from camera intersects
back-facing shadow volume polygon, the stencil value is decremented. This is the reason
why the orientation of shadow volume polygon is important, as stated in Figure 3.17. If the
stencil value is not equal to 0, then the view-sample is shadowed. Z-pass algorithm is not
without a problem, see Figure 3.20.
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Figure 3.20: This figure shows one of the problems of Z-pass algorithm. The left part of
the image shows the same scene, as in Figure 3.19, but with one additional red triangle.
The blue triangle is shadowed by green triangle. Shadows are inverted, parts of the scene
that should be lit are shadowed and parts of the scene that should be shadowed are lit.
The right part of the image shows shadow volumes of red and green triangle. The Z-pass
algorithm, in the Figure 3.19, counts wrong stencil values for red and blue samples. The
counting is biased by shadow volume from blue triangle that decreases stencil value by 1.
One of the solutions to this issue is to count the number of times the camera is inside a
shadow volume and modify stencil values accordingly. This might work, but the problem is
more complicated, see Figure 3.21.

Figure 3.21: This figure shows full impact of problem with Z-pass algorithm. The left part of
the image shows the same scene, as in Figure 3.20, but the camera is much closer to triangles.
The shadow is not trivially inverted as can be seen in Figure 3.20. In the middle part of
the image, the near plane of the camera intersects the scene and shadow volume geometry.
The right part of the image shows clipped triangles and shadow volume geometry. A view-
ray does not originate in the center of projection but it originates on the near plane. The
blue view-sample is lit, because the ray does not intersect any non-clipped shadow volume
polygon.
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3.3.4 ZP+ Algorithm

ZP+ algorithm aims to solve Z-pass algorithm problems (see Figure 3.21). The algorithm
was developed by Hornus et al. [43]. The main idea behind this approach is to project
geometry onto the camera near plane from light position, see Figure 3.22.

Figure 3.22: The image shows ZP+ algorithm that solves robustness of Z-pass algorithm.
The top left part of the image shows the same scene as in the Figure 3.21. The scene and
the shadow volume is clipped by the camera’s near plane, top right part of the image. In
the bottom left part, the green triangle is projected onto the near plane using light position.
The bottom right part of the image shows fixed shadow volume geometry.

The ZP+ algorithm computes correct shadows under certain conditions. The main prob-
lem of ZP+ algorithm is that it does not work if the light source is close to the near plane.
If the light source is close to the near plane, the projection of the scene geometry onto the
plane is heavily affected by numerical precision.
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3.3.5 Z-pass with Near-plane Clamping

Another fix to basic Z-pass algorithm is to use ++ZP algorithm. The algorithm was intro-
duced in the book Real-Time Shadows [25]. The near-plane clamping of shadow volumes
can be seen in the Figure 3.23.

Figure 3.23: This image shows Z-pass algorithm with near-plane clamping supported by
GPU hardware. The left part of the image shows the shadow volume intersecting the near-
plane. Blue parts of the shadow volume should be clipped. If the near-plane clamping is
active, blue parts of the shadow volume are projected onto the near-plane - the right side of
the image. This mitigates one of the problems of the Z-pass algorithm, see Figure 3.21. How-
ever, triangles that do not intersect near-plane can still bias stencil value, see Figure 3.20.
The solution for that can be seen in Figure 3.24.

1x1 camera

Figure 3.24: This figure shows ++ZP algorithm. In addition to near-plane clamping (Fig-
ure 3.23), a small 1x1 pixel size camera is created at the light position. The small light
camera points to the original camera. This small light camera rasterizes scene polygons and
counts the number of times the original camera is inside a shadow volume. This algorithm is
still not completely robust, because it requires two different projections and rasterizations.
Due to floating-point issues, the counting might be inconsistent.
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3.3.6 Z-fail Algorithm

Another algorithm for computing shadows using shadow volumes is Z-fail algorithm. The
Z-fail algorithm was first introduced by Bilodeau [9] and was also independently used in
Doom 3 by Carmack [14]. It was also mentioned in GDC by Dietrich [21].

Z-fail algorithm solves issues with the basic Z-pass algorithm. Z-pass algorithm counts
ray intersections with shadow volumes in front of the nearest surface to the camera. Z-fail
algorithm counts ray intersections behind the nearest surface, see Figure 3.25.

0 = +1 -1

0 != +1

0 = 0

0 = 0

0 != -1

0 = +1 -1

Figure 3.25: This image shows the difference between Z-pass and Z-fail algorithm. Z-pass
algorithm on the left counts ray intersections with shadow volume that are closer to the
camera than the nearest surface. Z-fail algorithm on the right counts ray intersections
that are farther than the nearest surface. As can be seen, the different way of intersection
counting is interchangeable. The Z-fail algorithm still needs modification in order to work
properly, see Figure 3.26.

Z-fail algorithm requires rasterization of triangles that are located in infinity. In order
to avoid far plane clipping, the camera far plane has to be moved to infinity. Perspective
matrices allow this modification [37] and Cass Everitt [28] showed such matrix. The matrix
is constructed from standard projection matrix by limiting the far plane distance. The new
matrix does not significantly affect depth precision [100], [55]. Today’s hardware supports
triangle clamping to the far plane so such modifications are not necessary.
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Figure 3.26: This image shows incorrect computation of shadows for Z-fail algorithm. On
the left, the black sample is considered shadowed even if it is not inside any shadow volume.
The stencil value is decremented once as the ray intersects back-facing shadow volume (blue
point). The way to solve this issue is to modify definition of shadow volume geometry and
introduce near caps. Near caps extend shadow volume polygons by shadow caster triangles.
The right side of the image shows the shadow volume that is slightly shifted away from the
triangle due to visualization purposes. The ray, in addition, intersects the front facing near
cap which fixes stencil value. Near caps has to be located exactly at the same position as
the shadow casting geometry. The introduction of near caps does not solve all issues, see
Figure 3.27.
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Figure 3.27: This image shows side effects of near caps for Z-fail algorithm. If the camera
views the geometry from roughly the same position as the light source, the stencil value will
never be decremented by back-facing shadow volume geometry. The way to solve this is to
introduce far caps. Far caps, together with near caps close shadow volume geometry and
create watertight volumes. While near caps have to lie at the same position as the shadow
casting geometry, far caps have to be projected into infinity. The right side of the image
shows Z-fail algorithm with introduction of both types of caps. The near cap is shifted away
from the triangle and the far cap is not drawn in infinity for visualization purposes. The
modified shadow volume definition can be seen in Figure 3.28.
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Figure 3.28: The figure shows extended definition of shadow volume geometry for Z-fail
algorithm, see figure Figure 3.15. Shadow volume geometry is extended by near and far
cap, (sometimes called front and back or light and dark caps). Near cap is identical to
shadow casting triangle. Far cap is shadow casting triangle projected to infinity from light
source.
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3.3.7 Acceleration

Shadow volume algorithms require rasterization of big amount of fragments. They are view
dependent, fill rate intensive algorithms. The research is aimed not only at robustness but
also at acceleration. There are methods for reduction of geometry complexity as well as
rasterization cost.

Subsamping

The easiest method for acceleration of shadow volume algorithms is to reduce resolution of
shadows. This can be done by reduction of the stencil buffer resolution and upsampling of
the resulting shadows. By sacrificing the quality, the resolution reduction provides roughly
linear speedup as was shown by Röttget et al. [89].

Light Range and Attenuation

Another simple acceleration method is to compute shadows only in parts of a scene affected
by a light source, see Figure 3.29.

Figure 3.29: Light intensity decreases with distance. There are many ways how to attenuate
a light, but the most common is quadratic falloff. Point light sources can be enclosed within
a bounding sphere with finite radius. If a view-sample lies outside of the bounding sphere,
the light contribution is smaller than the smallest displayable intensity difference. Therefore,
any geometry outside the bounding sphere is in shadow. On the left side of the image, the
camera frustum views the scene with two triangles. The shadow volume of green triangle
is clipped by frustum planes and covers large portion of screen space (purple color). In
the middle, the light is enclosed in the bounding sphere and in the bounding sub-frustum.
The light contribution outside of the bounding volume is negligible. On the right side,
the shadow volume is clipped by light’s sub-frustum reducing screen space footprint. The
two dimensional bounding quad using GPU was proposed by [60] and [70]. Later, it was
extended to 3D bounding sub-frustum by [28] and [69].

Z-pass or Z-fail

Z-pass based algorithms are usually faster than Z-fail based algorithms. Z-fail algorithm
requires raterization of capping geometry which increases the fill rate. However, Z-fail al-
gorithm can be faster, if the number of changes to the stencil buffer is smaller. This can
occur if most of shadow volumes are closer to the camera than the view-samples. Z-fail can
be faster for certain subset of view-samples, see Figure 3.30, so the choice of algorithm can
be made per view-sample.
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zfail better
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Figure 3.30: The image shows three view-samples, red, green and blue. The number of
stencil buffer changes is smaller for red view-sample, if the selected algorithm is Z-pass. The
number of stencil buffer changes is smaller for blue view-sample, if the selected algorithm
is Z-fail. The right side shows possible position of split plane. If a view-sample is in front
of split plane the algorithm chooses Z-pass. If a view-sample is behind, it chooses Z-fail.

Laine [56] proposed solution which choose the algorithm according to split plane depth
and suggested possible split plane constructions. The algorithms requires unavailable hard-
ware extensions in order to be viable and could be implemented with use of hierarchical
depth buffer [38].

Level of Detail

The shadow volume rasterization is usually the slowest part, but sometimes, with complex
geometry, it might by useful to accelerate geometry computation as well. Level of detail
algorithms reduce geometric complexity of shadow volumes, but usually don’t significantly
affect the number of rasterized shadow volume samples. The topic of level of details and
shadows can be traced to Clark [16], who proposed shadow quality adaptation. The qual-
ity adaptation is based on screen space shadow size. Level of detail is usually applied to
shadow casters. However, simplified shadow caster geometry can create rendering artifacts,
imprecise shadow borders or self-shadowing, see the Figure 3.31.

For shadow volumes, Zimoa [111] proposed mitigation which modifies shadow volume
extrusion. Govindaraju et al. [36] also proposed level of details for shadows. Mattausch et
al. proposed method that exploits hardware tessellation for smooth shadow borders [67].

Some today’s video games use level of details for shadows. For example, The Witcher
3: Wild Hunt uses separate geometry for rendering view-samples and for creating shadows.
The game uses shadow map based algorithms which renders simplified world geometry. This
accelerates shadow rendering, but can also cause unwanted artifacts. In one instance, the
geometry simplification process removed roofs of some houses leaving their interiors always
lit by the sun.
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Figure 3.31: The image shows one of problems with level of details applied to shadow
volumes. The left part shows orange object that casts shadows from shadow caster that
is not simplified (blue). The right part shows the same object but the shadow volume is
cast from simplified object (blue). The inner parts of orange objects are self shadowed by
simplified shadow caster.

Culling

Another option of shadow acceleration is to cull shadow casters whose shadows do not
influence final image. Casters that lie completely inside shadow volumes of other casters do
not need to be processed. Likewise, casters that only influence invisible parts of a scene can
be culled as well, see Figure 3.32. Some of the ideas were presented by Clark [16].

A

B C

Figure 3.32: Shadow volume of the object A can be culled, because it is completely enclosed
in shadow volume of the object B. Shadow volume of the object C can be culled, because
it does not affect any visible shadow receivers.

Shadow volumes can be clipped by each other [6], [4]. Clipped shadow volumes contain
less geometry which leads to performance improvements, see Figure 3.33. However, the
clipping is costly operation making the approach unusable.

Approach by McCool [68] tries to reconstruct shadow volumes using shadow map. The
approach produces many small shadow volume quads and also produces artifacts on shadow
borders. Lloyd et al. [64] proposed casters culling that do not influence shadows. The method
is based on depth and stencil buffer from a light point of view. Other method by Stich
[97] uses culling based on hierarchical structures and visibility of bounding boxes’ shadow
volumes.
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Figure 3.33: The left side shows 3 shadow volumes. Some shadow volume polygons are inside
other shadow volumes. The middle and the right side shows clipped and merged shadow
volumes.

Clamping and Clipping

Another viable way to to accelerate shadow volume rendering was presented by Lloyd [64].
The idea is to clip parts of shadow volumes that do not contribute to shadows, see the
Figure 3.34
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Figure 3.34: The left side shows full shadow volume of the object B. Some parts of the
shadow volume cannot contribute to the shadow because they don’t contain any shadow
receiver geometry. The right side shows clipped and clamped shadow volume. The process
creates more shadow volume polygons, but the fill rate is reduced creating balance between
geometric and rasterization load.

Hierarchical Approaches

Shadow volume algorithms are fill rate intensive. The performance is lower for larger screen
resolution. Some researchers focused on hierarchical rasterization approaches. Aila [1] pro-
posed solution that tests 8x8 pixel tiles with shadow volumes. If a tile does not contain
shadow border, a single pixel can be used for shadow computation. This can dramatically
reduce the number of rasterized samples. Only boundary tiles require full rasterization, see
Figure 3.35. However, the solution requires specialized hardware modifications in order to
be viable.

The idea was further developed by Sintorn et al. [93]. Instead of using 2 level hierarchy
with 8x8 pixel tiles, they use full hierarchical depth and stencil buffer, see Figure 3.36. They
use tiles with 8x4 or 4x8 subtiles, this ensured good mapping to GPU warp size. While the
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Figure 3.35: The image shows Aila’s algorithm, where only boundary tiles require full
rasterization. The left part shows a simple scene with two triangles. The right part shows
shadow volume rasterization. Green tiles require single pixel to correctly compute shadow.
Yellow tiles are rasterized in full resolution.

solution reduces number of changes to shadow mask, it is only starting to be viable for
large resolutions (4k x 4k).

Sintorn et al. [92] also proposed an extension. The extension builds view-sample cluster
hierarchy and use full 3D test for cluster elimination. Cluster hierarchy is built using morton
code, see Figure 3.37.
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Figure 3.36: The image shows Sintorn’s hierarchical CUDA based shadow volume rasteri-
zation. The idea is based on testing depth buffer tiles with shadow volumes. If a tile lies
outside of a shadow volume, it does not need to be traversed deeper. If a tile lies inside
a shadow volume, corresponding bit is set in hierarchical stencil shadow mask. Only if a
tile intersects a shadow volume, it needs to be traversed deeper. Green tiles are trivially
accepted as they lie inside the shadow volume. Orange tiles are trivially rejected. Yellow
tiles intersect shadow volume and need to be traversed deeper.

Figure 3.37: The left part shows Sponza scene from camera point of view. The right part
shows view-samples in 3D space and two selected levels for view-sample hierarchy. Sin-
torn’s algorithm for every triangle shadow volume traverses the hierarchy and compute its
contribution to parts of the shadow.
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3.3.8 Silhouette Algorithms

So far, all described shadow volume algorithms use per-triangle shadow volume geome-
try. This works well, but the performance of shadow volume algorithms is reduced, see
Figure 3.38.

Figure 3.38: The left side shows edges in Sponza scene and the right side shows silhouette
edges. The number of silhouette edges is much smaller which improves shadow volume
performance.

Shadow volume rasterization is commonly the slowest part. Per-triangle shadow volumes
contain unnecessary polygon which have to be rasterized, see Figure 3.39.

Figure 3.39: The figure shows two triangles and their corresponding shadow volumes. Red
polygons are identical, but they have different orientation. A ray from camera has to inter-
sect both or none. Therefore, the stencil value is decremented and incremented at the same
time leading to no change. Silhouette based algorithms remove such polygons and reduce
rasterization cost, see Figure 3.40.
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Figure 3.40: The image shows two triangles and the silhouette shadow volume. The red
edges are silhouettes and only these silhouette edges are used during sides construction.
By removing unnecessary edges, the shadow volume becomes simpler and the rasterization
cost is reduced.

The Shadow Volume algorithm, in its basic form, constructs shadow volume from every
triangle in a scene. Therefore, almost all of shadow volume sides are rasterized twice. Shared
edges produce same shadow volume sides multiple times. A shared edge among two triangles
produces two identical sides with same or opposite orientation, see Figure 3.41.

Figure 3.41: The top row shows two triangles that share an edge. The edge is a silhouette
edge, because shadow volume sides have the same orientation. The bottom row shows a
non-silhouette edge.

Non-silhouette edges can be skipped during rasterization. A silhouette edge should be
shared by two triangles, one front facing a light and the other back facing the light. If a model
is 2-manifold, watertight and oriented, this assumption is correct. The assumption breaks
if one of the conditions is not true. The research over the years incrementally extended the
silhouette extraction algorithms to more general cases. One of the first implementations in
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hardware was proposed by Brennan [13] and Brabec [12]. McGuire [70] implemented the
whole algorithm in vertex shader. Van Waveren in 2005 [105] extracted silhouettes using
SSE instructions on CPU for DOOM 3. Geometry shader based solution was proposed by
[97]. Many of the solutions requires 2-manifold models. Bergeron [8] focused on manifold
objects with boundary edge cases. Aldridge [3] further removed constraints and proposed
algorithm for non-manifold oriented meshes. Finally, Kim [52] presented algorithm for any
non-manifold object. Overview of silhouette algorithms is provided by Kolivand [54].

The most general algorithm by Kim Byungmoon in 2008 [52] is able to extract silhouettes
from arbitrary triangle models. The principle of the algorithm is visualized in Figure 3.42
and in Figure 3.44.

+3 -1
-1 -1 +1

-1 +2
+1 -2

-1

Figure 3.42: The image shows principle of Kim’s algorithm [52]. Points 𝐸0 - 𝐸10 represent
edges and black line segments represent triangles. The only non-silhouette edge is edge 𝐸7.
Red and blue dashed lines represent shadow volume sides. During rasterization, shadow
volume sides do not simply increment or decrement stencil value, but they add a value
called multiplicity 𝑚. The algorithm computes multiplicity value for every edge using light-
plane, see the Figure 3.43. Multiplicity value is in range [−𝑛, 𝑛], where 𝑛 is the number
of triangles connected to an edge. Multiplicity value is computed by examining every tri-
angle connected to an edge. If a triangle lies in front of edge’s light plane, multiplicity is
incremented. Multiplicity is decrement for triangles that are behind the light plane. Light
plane is constructed using edge vertices and light position. Multiplicity values of 𝐸0, 𝐸7,
𝐸8 and 𝐸9 are +3, 0, +1 and −2. If 𝑚 ̸= 0, the edge is silhouette. The algorithm requires
rasterization of shadow volume sides multiple times in order to modify stencil value by 𝑚.
Some hardware support incrementation and decrementation of stencil value by arbitrary
value.
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Figure 3.43: The image shows light-plane and multiplicity computation. The edge is shared
by 3 triangles, two are in front of the light-plane and one is behind. The multiplicity value
is +1.
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Figure 3.44: The image shows the idea of Kim’s algorithm. Three triangles share an edge
with multiplicity +3. A ray from camera colides with silhouette shadow volume and com-
putes stencil value, left side. This can be imagined as three separate triangles with per
triangle shadow volumes, right side.

While Kim’s algorithm supports arbitrary geometry, it still suffers from visual artifacts
if special care is not taken during GPU implementation. Visual artifacts arise when the
algorithm computes multiplicity. The multiplicity value has to be consistent among all three
triangle edges. The consistency ensures that shadow volume sides have proper orientation,
see Figure 3.45.

Eisemann et al. [25] suggested an algorithm which precomputes triangle planes and cre-
ates edge list. The edge list contains all edges with adjacent precomputed triangle planes.
Precomputed planes ensured correct multiplicity computation. Pečiva et al. [85] proposed
similar edge list structure. However, the solution does not require precomputed triangle
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Figure 3.45: The left column shows a scene with a single triangle shadow caster. The
middle column shows corresponding shadow volumes. Red polygons face the viewer while
blue polygons back face the viewer. The bottom part shows visual artifacts caused by
inconsistent multiplicity computation. The inconsistency is caused by different light plane
computation and floating-point arithmetic. The issue arises when the light source is close
to triangle plane. The right side shows side view of two light planes. Both planes are
computed using the same edge and light source, but due to floating-point precision and
order of operands, they are different.

planes. The edge list contains opposite vertices for each adjacent triangle. When the algo-
rithm detects inconsistency (by computing all possible cases), it discards the problematic
triangle. Milet et al. [72] presented algorithm that robustly computes multiplicity using
reference edge. The idea is to always compute multiplicity using the same reference edge.
Then the algorithm transforms the reference multiplicity to edge multiplicity. For Z-fail
algorithm, the multiplicity has to be computed even for near and far caps.
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Robust Silhouette Computation

The robust silhouette computation is essential for correct silhouette shadow volume ren-
dering. The algorithm proposed by Milet et al. [72] computes silhouettes in parallel using
Kim’s general method with concept of reference edge. The algorithm requires special data
structure for each model’s edge, see Figure 3.46.

...

...

...all edges:

vertices:

edge struct:

Figure 3.46: The right side shows a shared edge A, B with three adjacent triangles. The
edge with opposite vertices is stored in edge structure. The left side shows model vertices
𝑉𝑖 and the edge structure. The edge structure contains number of opposite vertices, indices
to edge vertices and opposite vertices. The edge structure can contain vertices directly, if
the indirection is not required. If the implementation requires fixed-sized edge structure,
edges with many adjacent triangles can be split into multiple instances.

The algorithm extracts silhouette edges in parallel. Each thread computes multiplicity
value using one edge structure, see Algorithm 3.

Algorithm 3: This algorithm draws silhouette shadow volume sides. The algo-
rithm processes every edge, computes multiplicities and draws correctly oriented
sides multiplicity times. The function computeMultiplicity robustly computes mul-
tiplicity value using reference edge, see Algorithm 4. The function drawSide is
visualized in Figure 3.47.

Data: edge structures - 𝑒𝑑𝑔𝑒𝑠, 𝑙𝑖𝑔ℎ𝑡
1 foreach edge in edges do // in parallel

2 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 = 0;
3 foreach 𝑂𝑖 in edge.oppositeVertices do
4 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 += computeMultiplicity(𝑒𝑑𝑔𝑒.𝐴, 𝑒𝑑𝑔𝑒.𝐵,𝑂𝑖, 𝑙𝑖𝑔ℎ𝑡);
5 𝑖 = 0;
6 while 𝑖 ≤ |𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦| do // draw side multiplicity times

7 if 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 > 0 then
8 drawSide(𝑒𝑑𝑔𝑒.𝐴, 𝑒𝑑𝑔𝑒.𝐵, 𝑙𝑖𝑔ℎ𝑡);
9 else // flip winding order

10 drawSide(𝑒𝑑𝑔𝑒.𝐵, 𝑒𝑑𝑔𝑒.𝐴, 𝑙𝑖𝑔ℎ𝑡);
11 𝑖 = 𝑖+ 1;
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Figure 3.47: The function drawSide draws one side with correct orientation given by the
order of input variables. The vertex winding order matches the order of edge vertices.

The algorithm computes multiplicity of reference edge (the largest oriented edge of
adjacent triangle) and transforms it to correct edge multiplicity, see Algorithm 4.

Algorithm 4: The computeMultiplicity function computes multiplicity of one
adjacent triangle. First, it finds the smallest and the largest vertex and creates
reference edge. Then it computes reference multiplicity and transforms it to cor-
responding edge multiplicity.

Data: edge vertices 𝐴,𝐵, opposite vertex 𝑂 and 𝑙𝑖𝑔ℎ𝑡
Result: 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦

1 [𝑅𝑚𝑖𝑛, 𝐹,𝑅𝑚𝑎𝑥] = sort([𝐴,𝐵,𝑂]); // 𝑅𝑚𝑖𝑛 → 𝑅𝑚𝑎𝑥 is the reference edge

2 𝑛 = (𝑅𝑚𝑎𝑥 −𝑅𝑚𝑖𝑛)× (𝑙𝑖𝑔ℎ𝑡−𝑅𝑚𝑖𝑛); // light plane normal

3 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 = sign(𝑛 · (𝐹 −𝑅𝑚𝑖𝑛)); // -1 0 +1

4 if hasReferenceEdgeOppositeOrientation(𝐴,𝐵,𝑂) then
5 return -referenceMultiplicity
6 else
7 return referenceMultiplicity

The orientation has to be computed consistently. Edge orientation in edge list can be
arbitrary and the algorithm has to cope with it, see Figure 3.48.
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Figure 3.48: The image shows an example of computation of reference edge algorithm. The
left side shows one triangle with shadow volume. The exploded shadow volume shows vertex
winding orders and orientations. All normals point outside. Counter clockwise sides front
face the viewer. The middle part shows the principle. Input edges are arbitrary oriented.
First, the algorithm finds reference edge and computes reference multiplicity. A reference
edge starts in the smallest and ends in the largest vertex of a triangle. Then, the algorithm
transforms the reference multiplicity to edge multiplicity. If an edge has opposite orientation
than the reference edge, the transformation negates reference multiplicity. The right side
shows rendering. If an edge multiplicity is negative, the algorithm flips vertex winding order.
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3.3.9 Rasterization Issues

Methods for computing shadows using shadow volumes require counting of ray intersec-
tions with shadow volumes. The counting is usually performed by rasterization of shadow
volumes into stencil buffer. Although some of the robustness issues with shadow volumes
were addressed by one or the other method, there are still other problems.

Rasterization on the GPU by itself can produce inconsistent results, see Figure 3.49.

Figure 3.49: The image shows two clipped triangles - red and green. Both triangles are
located at the same depth relative to the camera. Vertices of both triangles are identical,
but the image still suffers from depth fight artefact. The reason is different vertex winding
orders. The red triangle is drawn with counter clockwise winding order while the green
with clockwise winding order. Depth values are not same. This issue affects some consumer
hardware (AMD and Intel GPUs) and can create inconsistent shadows, see Figure 3.50.
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Figure 3.50: This image shows shadow volume issues caused by rasterization. The left side
shows a simple scene with 4 triangles illuminated by a point light source. Yellow triangles
cast shadows using Z-fail algorithm. The Z-fail algorithm requires rasterization of near-caps.
Near-caps are located at the same position as shadow casters. Orientation of some of near-
caps has to be flipped in order to keep consistent shadow volume orientation, see Figure 3.17.
The flipping changes triangle winding order. Some hardware produces inconsistent depth
values for different vertex winding orders, see Figure 3.49. The right green triangle has
clockwise vertex winding order and has to be flipped which leads to z-fight artefact. One of
the solution to this problem was proposed by Milet at el. [75], where near-caps are projected
to infinity. Another issue arises with per-triangle shadow volumes algorithms. They require
the same shadow volume sides for shared triangle edges, see Figure 3.39. Usually, these
identical sides have different vertex winding orders. This creates empty space in between
them, right side of the image. This can be imagined as light leaking through slit between two
connected triangles. The solution for this issue is to store such sides in separate buffer and
rasterize them later with correct vertex winding order and flipped stencil operation. The
issue is not limited to per-triangle shadow volumes and can occur with silhouette based
shadow volumes as well. If an edge is shared among many triangles, it can be split into
multiple identical edges with fewer number of connected triangles.
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3.4 Other Precise Shadow Methods
There are other real-time methods for precise shadow rendering. Some methods are based
on shadow volumes, other on shadow mapping. This section briefly describes these methods.

Sample Based Visibility

Sintorn et al. developed precise method based on shadow mapping [91]. The idea extends
the concept of shadow map, see Figure 3.51.

Figure 3.51: The image shows Sintorn’s method. The shadow map does not store depths
of shadow-samples, but it stores all projected view-samples. The algorithm first renders a
scene from camera point of view. Then it projects all view-samples into shadow map space.
Each shadow texel contains a list of view-samples.

When the extended shadow map construction is finished, the algorithm renders every
triangle from light point of view. During triangle rasterization, each fragment looks into
the shadow map and tests underlying view-samples against triangle’s shadow volume, see
the Figure 3.52.

Figure 3.52: The image shows shadowing step of Sintorn’s algorithm. Triangles are ras-
terized from light point of view. Each rasterized fragment invokes routine which tests all
underlying view-samples against triangle’s shadow volume planes. The left side shows stan-
dard rasterization. Red view-samples are shadowed by the triangle, but their fragment is not
rasterized. The conservative raterization extends borders of the triangle by half of a pixel.
The right sides shows the same process but with conservative rasterization. No view-samples
are missed.

Triangles have to be conservatively rasterized in order to avoid artifacts on triangle’s
edges. Conservative rasterization is available in some consumer GPUs, but it can also be
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implemented manually. Conservative rasterization also suffers from floating-point problems
for near degenerated triangles. The method is 3 times slower than regular shadow mapping
with 8𝑘2 resolution.

Hybrid Ray-traced Shadows

The algorithm was developed by Story [98] and is based on shadow mapping. The main
idea is to store triangle indices into deep primitive map rather than to store depth value.
The algorithm is similar to Sintorn’s method. While Sintorn’s method stores view-samples
into shadow map texel list, this method stores triangles, see Figure 3.53. The method
conservatively rasterizes scene triangles from light point of view and stores triangles IDs
into every covered fragment list. Then it rasterizes the scene from camera point of view
and tests view-samples against shadow volumes of triangles stored in texels lists. The size
of triangle lists is scene and light dependent and has to be chosen manually.
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Figure 3.53: The image shows the principle of Story’s algorithm. The left side shows a scene
rendered from camera point of view. The right side shows deep primitive map. Each texel
contains a list of triangle IDs. View-samples are projected into the map and tested against
lists. The red view-sample is inside shadow volume of green triangle.

Partitioned Shadow Volumes

Gerhards at al. developed method that partitions scene space according to shadow volume
planes [33]. The main idea is to quickly build acceleration structure from per-triangle shadow
volumes. The structure uses ternary object partitioning tree, see Figure 3.54.

The algorithm incrementally builds TOP tree with randomized triangle order. An ex-
ample of TOP tree can be seen in the Figure 3.55.

The algorithm was further developed and extended by Mora [76] and Deves [20].
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Figure 3.54: The image shows ternary object partitioning tree (TOP). The left side shows
a triangle with a shadow volume. The middle part shows four shadow volume planes. Tree
nodes represent one plane. Each node has three children. The right child contains objects
strictly in front of the node’s plane, the left child contains object strictly behind and the
middle child contains intersecting objects. The right side of the image shows TOP tree for
single shadow volume.
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Figure 3.55: The image shows simple TOP tree structure in 2D. The left side shows three
triangles with shadow volume planes. The tree is built with random triangle order. When
the tree is built, it can be used for querying shadow information of view-samples.
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Irregular Z-buffer Methods

The concept of irregular z-buffer was proposed by Johnson [48]. The idea is to enable
irregular sampling of the scene. Common sampling stores samples in regular grid. Johnson
presented irregular shadow mapping method. The method was further developed later by
Wyman [109]. Z-only prepass creates samples that are inserted into linked lists of light-space
texels, see Figure 3.56. A linked list contains only view-sample pointers and is constructed
using atomic comp-swap operation. View-samples are tested by conservatively rasterized
triangles. The process is similar to Sintorn’s algorithm.

camera view light view linked lists

Figure 3.56: The image shows Irregular z-buffer method for shadow rendering. The left
side shows a scene render from camera point of view. View-samples form regular grid. The
middle part shows view-samples projected to light space forming irregular pattern. The
right side shows linked lists of shadow map texels.
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Chapter 4

Robust Silhouette Shadow
Volumes on Contemporary
Hardware

The section describes an algorithm, which produces shadow volumes for an arbitrary tri-
angle model without visual artifacts. The algorithm has been implemented, optimized, and
evaluated for a number of contemporary hardware platforms. The main contribution is
removal of visual artifacts caused by limited precision of floating-point arithmetics (see
Figure 4.1), overview of the implementation and result of the optimizations on individual
platforms. The full content of this section can be found in paper [85].

Figure 4.1: The Figure shows the difference between the original algorithm and the new
robust algorithm. The right image of each couple shows result of new algorithm. The first
couple of images shows very simple model, where artefacts are most visible. The second
couple shows artefacts on more complex model, which could appear in real applications.

4.1 Introduction
Shadow volumes (SV) method is a traditional and popular method for shadow casting in
computer graphics. The research on shadow volumes is summed up in the previous sections.

An alternative for rendering shadows is shadow mapping [106]. It is very frequently
used as it generally offers high performance; however, the shadow maps approach suffers
from visual imperfections caused by the limited shadow map resolution. The shadow map
approach is massively used in game industry where high performance is critical and scenes
can be adjusted so that visual artefacts are not too visible or do not occur. On the other
hand, these features limit the applicability of the approach in e.g. CAD systems, where
the scene is given by the model being constructed and may be incompatible with the
requirements of the shadow maps approach to work well.
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While the SV approaches produces per-pixel correct results, they are affected by some
performance issues. In its simple form, the applications were using a SV generated for each
triangle of the object geometry, which could be very rasterization demanding. This fact
lead to development of more sophisticated methods, which construct a SV only from the
possible silhouette edges of the occluder geometry, that has positive impact on fill-rate.
Many of the of silhouette algorithms expect 2-manifold, oriented or watertight objects as
their input. Kim in 2008 [52] presented the algorithm that works with any mesh objects.

Unfortunately, during the implementation of the algorithm presented in [52] one can
find out that the algorithm is not completely robust and often produces results with vi-
sual artefacts. This is caused by limited precision of floating-point arithmetics. Thus, this
section describes robust algorithm, based on Kim’s algorithm, that is free from visual arti-
facts. Additionally, it summarizes optimized implementation for a number of contemporary
hardware platforms (CPUs and GPUs).

4.2 Algorithm Description and Robustness improvement
The algorithm, described in [52], generates the output shadow silhouette based on the
triangular mesh representing the model and the position of light source.

4.2.1 Description of the Algorithm

The input of the algorithm is a triangular mesh and light source position and the output
is a silhouette represented by a set of edges selected from the input model. The algorithm
can be briefly described as follows:

1. The triangular model is converted into an edge representation. Every edge occurs
only once even though it is shared among more triangles. Each edge in the new
representation is described by its vertices and list of all opposite vertices (OVs). The
OVs are vertices of the triangles sharing the edge that do not belong to the edge. See
Figure 4.2.

2. For each edge from the edge set, an oriented light plane (LP) is evaluated from edge
vertices and the position of the light source.

3. For each OV belonging to the edge, multiplicity is calculated as +1 or -1 depending
on which side of LP the OV lies. If the OV lies exactly on the LP, its multiplicity is 0.
The final multiplicity of an edge is given by the sum over the multiplicities of every
OV. See Figure 4.2.

4. Finally, the set of edges forming the silhouette is a subset of all the edges such that
their multiplicity is not 0.

4.2.2 Implementation and Problems

The above mentioned algorithm processes the model with the “by edge” approach. The
multiplicity could also be calculated with the “by triangle” approach (with identical re-
sults). In parallel implementation, the “by edge” approach, is better than “by triangle”
implementation, although the latter may seem more natural. The main reason is that the
edges are independent to each other, so this avoids concurrent memory writes. While the
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Figure 4.2: Multiplicity of Edge 𝑃0-𝑃1 for the Opposite Vertices (OVs) 𝑇0-𝑇2.

“by triangle” approach would lead to usage of atomic operations. Therefore, the “by edge”
implementation is exploited.

The algorithm assumes that the evaluation of multiplicity is consistent within each
triangle. Unfortunately, this is not the case for floating-point arithmetics used in HW. In
the example shown in Figure 4.3, the “by edge” approach could evaluate multiplicities
inconsistently for the triangle which is (almost) parallel to the LP. While the error was
demonstrated for a single triangle model, such error can occur in a more complex model for
individual triangles and ruin the whole silhouette leading into visible artefacts in shadows
(see the Figure 4.1).

Figure 4.3: The grey triangle generates a SV. The green and red triangles represent the
two orientations of the light plane (LP). The lower part shows erroneous calculation. In the
upper right part, triangle is in front of LP with respect to the viewer. In the lower right,
this is incorrectly evaluated, therefore the vertex 𝑉0 is assumed to be behind.

4.2.3 The Proposed Robust Algorithm

The proposed algorithm resolves the above issue connected with the inconsistency of triangle
edges multiplicity evaluation. The main idea of the improvement is that the triangles,
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where the inconsistency can occur, are removed from the silhouette calculation. Because
these triangles are (almost) parallel with the LP (their shadow volume would be zero),
they cannot affect the shape of the resulting shadow. In fact, the removal of the triangles is
equivalent to evaluation of its edges multiplicity to 0 which would occur in triangles parallel
to the LP if the precision was not limited.

The question is “What is the most efficient way to remove such triangles?”. Note that
while the “by triangle” approach permits to simple discard the computed triangle, the “by
edge” approach does not. One possible solution would be to evaluate “how close to parallel”
the triangle is to the LP but in this case, the evaluation would have to be consistent for each
triangle edge leading more or less to the same problem. Therefore, a solution was taken to
“simulate” evaluation of the “other two edges” of the triangle formed by the edge and each
OV. The modification to the original algorithm changes the step 3:

3. For each OV belonging to the edge a triangle is formed from OV and the edge. The
multiplicity is evaluated for every side of this triangle and its remaining vertex as
+1 or -1 depending on which side of LP the vertex lies. If the vertex lies exactly on
the LP, its multiplicity is 0. If the evaluation of the multiplicity is inconsistent, the
triangle is disregarded (the OV multiplicity is set to 0). Note also, that the same
order of vertices and edges in triangles must be preserved for each edge evaluation.
The final multiplicity of an edge is given by the sum over the multiplicities of every
OV. See Figure 4.2.

The actual multiplicity evaluation for the edge AB for the light source position L and
set O of all OV, each in homogeneous coordinates, is as follows:

The LP itself is defined as:

V = (L𝑥 −A𝑥L𝑤,L𝑦 −A𝑦L𝑤,L𝑧 −A𝑧L𝑤)

N = normalize((A−B)×V)

LP = (N𝑥,N𝑦,N𝑧,−N ·A) (4.1)

The multiplicity of the edge is:

𝑚 =
∑︁
o∈O

sign(LP · o) (4.2)

Where |𝑚| denotes the number of times the side of SV, extruded from this particular edge,
is actually drawn/rendered.

Of course, the evaluation of the above set of expressions, for each edge of the triangle
(instead of just once for each triangle), introduces a computational overhead. While some
subexpression results can be reused, a significant overhead remains. However, it turns out
that the cost of additional arithmetics, especially in case of exploitation of powerful compu-
tational platform, is less costly than increased memory traffic or synchronization operations
needed in alternative approaches.

4.3 Hardware Platforms
The hardware platforms selected for implementation of the presented algorithms are selected
in order to represent the wide range of contemporary hardware being used in the segment
of “personal computers”. Measurements were carried out on Windows 7 x64 SP1. As for
the accelerated graphics, samples of the most frequently used “mainstream” boards and not
necessarily the highest performance ones were selected:
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4.3.1 Intel Platforms

Intel HD 3000 - driver version: 9.17.10.3062 This is a representative of the frequently oc-
curring boards in low cost devices, such as notebooks and netbooks. Processor: i7-2600K,
RAM: 16GB

Intel HD 4000 - driver version: 9.18.10.3071, release date: 2013-03-19 This is a repre-
sentative of the frequently occurring boards in low cost devices, such as notebooks and
netbooks. Processor: i5-3570K, RAM: 8GB

4.3.2 GPU Platforms

GeForce 650 Ti, 2GB GDDR5, 128bit This board was selected as one of the mid-range
graphics boards by NVidia, being a mainstream in the graphics boards. GeForce 650 Ti
provides the Nvidia Keppler architecture while it is a cost effective solution, providing 768
computing cores compared to 1536 of hi-end GeForce 680 and 192 of low-end GeForce GT
630. Driver version: 314.07 Processor: i7-2600K, RAM: 16GB

Radeon HD 7950, 3GB GDDR5, 384bit This is a representative of the high performance
graphics board. Driver version: 13.1 Processor: i7-2600K, RAM: 16GB

4.3.3 Platforms Summary

The boards were plugged into a personal computer. To enable reasonable comparison of
performance, all the graphics accelerators were used in the same PC with exception of
the HD4000 graphics, where it was impossible for technical reasons (HD3000 and HD4000
graphics cannot be generally included in one computer).

4.4 Experiments and Results
The experiments were conducted in order to evaluate the achieved results, to assess feasi-
bility of exploitation of the presented approach at the above mentioned platforms and in
different applications, and to verify that the approach works well.

The performance of the algorithm was tested under these conditions: the robust version
compared to the original version with no robustness, objects of simple shape compared to
more complex shapes with similar number of triangles, varying levels of geometric complex-
ity of the same object and scenes containing several separated objects.

4.4.1 Robust Versus Traditional Implementation

The purpose of this test was to evaluate whether at all and how much the implementation
of the robustness of the algorithm adversely affects performance. The conditions for the
test were made similar to the real applications conditions in terms of the size of the scene
(∼105-106 triangles). The test was performed on a scene that did not exhibit significant
occurrence of visual artefacts caused by the traditional implementation.

The results of experiments are shown in the Table 4.1. Note that performance of the
robust algorithm was slightly worse than in the traditional implementation (the adverse
effect of additional calculations was less than 10% at all platforms), but this is true only
in case of scenes exhibiting no or little visual artefacts. In scenes with larger amount of
artefacts, performance of the robust implementation was mostly better and the larger the
amount of artefacts, the worse the traditional implementation performed also from the
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GF650Ti AMD7950 HD3000 HD4000
CPU 4.9 5.0 12.9 13.9 9.9 11.2 6.3 5.9
AVX+OMP 4.9 5.1 11.8 13.5 10.0 12.4 6.6 8.6
GS 30.0 40.0 92.0 98.0 n/a n/a 4.4 8.7
OpenCL 42.0 41.0 83.0 80.0 n/a n/a 7.6 7.7

Table 4.1: Results of experiment (the first value shows FPS of the robust implementation,
the second value is the original implementation)

GF650Ti AMD7950 HD3000 HD4000

CPU 4.9 5.0 12.9 7.8 9.9 11.0 6.3 5.4
5.5 5.5 13.3 9.6 12.2 10.0 9.6 5.5

AVX+OMP 4.9 5.1 12.9 4.3 9.9 6.2 6.3 6.0
5.5 5.5 12.8 5.2 12.8 5.1 11.9 6.2

GS 30.0 30.0 92.0 95.0 n/a n/a 4.4 n/a
34.0 34.0 156.0 124.0 n/a n/a 6.0 n/a

OpenCL 42.0 52.0 83.0 96.0 n/a n/a 8.1 8.2
54.0 67.0 142.0 147.0 n/a n/a 11.3 6.0

Table 4.2: Results for one particular GPU and one platform consisting of 4 tests on dif-
ferent scenes: 10 individual bunnies (top left), 10 baked bunnies (top right), 10 individual
spheres (bottom left), and 10 baked spheres (bottom right). Bold values highlight the fastest
implementation for each scene for selected GPU.

computational time point of view probably due to the fact that the artefacts caused increase
in the fill rate. Overall, quite surprisingly, the decrease of performance in the robust method
is not a problem on any platform.

4.4.2 Simple Versus Complex Shapes

The purpose of the next test was to evaluate how the shape of the objects influences the
rendering times. Therefore, scene consisting of simple shapes, spheres, and scene consisting
of complex shapes, bunnies, similarly large in terms of triangles, were compared. The size
of the scene in this case was about the usual application size (∼6.5 · 105 triangles). One
measurement was performed for the scene consisting of more (10) objects, one for the scene
consisting of a single object but with the same complexity as in the previous case; this was
done in order to check whether the number of objects affects the calculation speed.

4.4.3 Number of Triangles in the Scene

The consequent test was focused on the behavior of the algorithm in rendering of the scene
depending on the number of triangles in the scene. The goal was to learn how the algorithm
performs when the number of triangles changes from relatively low (∼105 triangles) to
relatively high (∼106 triangles).

It can be seen that, as expected, performance of the algorithm decreases with the in-
creased size of the object in terms of triangles. However, what was not as expectable is
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GF650Ti AMD7950 HD3000 HD4000

CPU 3.9 35.0 5.1 81.0 5.3 34.0 37.0 20.0
3.4 27.0 8.4 61.0 6.5 32.0 4.4 18.5

AVX+OMP 3.9 35.0 5.7 81.0 4.9 32.0 4.2 23.0
3.4 28.0 9.3 63.0 6.7 34.0 5.0 24.0

GS 23.0 165.0 85.0 650.0 n/a n/a 3.7 15.0
18.7 100.0 84.0 482.0 n/a n/a 3.1 19.3

OpenCL 43.0 192.0 91.0 430.0 n/a n/a 6.0 19.3
13.4 26.0 22.0 54.0 n/a n/a 4.4 9.1

Table 4.3: Computational performance based on the number of triangles in the scene. Re-
sults for one particular GPU and one platform consisting of 4 tests on different scenes: one
sphere with 106 (top left), one sphere with 105 triangles (top right), 10x10 spheres each
with 104 (bottom left), and 10x10 spheres with 103 triangles (bottom right).

the fact that on different platforms, performance does not decrease uniformly and also that
performance is not affected uniformly in different implementations on the same platforms.
Additionally, in cases where the number of triangles is large, performance is also adversely
affected by subdivision of the scene into separate objects as described below.

4.4.4 Number of Isolated Objects in the Scene

The goal of this final test was to demonstrate how the algorithm performs in dynamic
scenes.The test was performed along with the above mentioned testing of performance with
changing number of triangles in the scene. It shows that the number of isolated objects does
have impact on results, especially in case of some platforms, probably due to synchronization
and data transfer issues.

4.4.5 Hardware Platforms

The implementation was tested on following platforms:

∙ AMD Radeon HD 7950 (driver version: 13.1)

∙ GeForce 650 Ti (driver version: 314.07)

∙ HD3000 integrated Intel GPU (driver version: 9.17.10.3062)

∙ HD4000 integrated Intel GPU (driver version: 9.18.10.3071)

First three GPUs were tested with Intel i7-2600K with 16GB RAM. The HD4000 was tested
with Intel i5-3570K with 8GB RAM. All the measurements were carried out on Windows
7 x64 SP1.

4.4.6 Interpretation of the Results

Some of the results observed in the above tests are especially worth mentioning and they
are listed below:
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∙ Performance of “OpenCL” implementation is very good on all the platforms for which
OpenCL is available. The current solution heavily suffers from the synchronization
between OpenCL and OpenGL contexts. This mainly occurs in scenes containing
many separate objects because synchronization must be performed for each object.
Unfortunately, OpenCL solution is not supported by the HD3000.

∙ The “Geometry Shader” implementation performs well in scenes with many separate
objects. The performance declines with increasing complexity of models more than in
OpenCL implementation.

∙ CPU+AVX+OMP performance is sometimes surprisingly less than the standard CPU
implementation. On the other hand, measurements carried out on i5-3570K (Ivy
Bridge architecture) showed 4-30% performance increase (16% in average), compared
to standard one. Despite the fact that the CPU is capable of processing 8(4) threads
concurrently, maximum performance increase is only 30% in its peak. The reason
is that not all parts of the algorithm can be parallelized or rewritten using AVX
intrinsics.

It is most suitable to use OpenCL implementation (where available) for scenes which
do not contain too many (less than 100) objects. Geometry shader solution can be used in
situations where the scene contains larger number of separated objects. CPU+AVX+OMP
implementation should be used on modern CPUs in situations where the above solutions
are not available. Standard CPU implementation should be used otherwise.

4.5 Conclusions
This section presented a novel approach to Shadow Silhouette Shadow Volumes that leads
into a more robust implementation, which has been tested and evaluated on a number of
different hardware platforms.

The proposed approach proved to be working well and producing quality shadows with
no visual artifacts. At the same time, it exhibits high performance in variety of hardware
platforms. The algorithm can be efficiently implemented in CPU both using the traditional
instructions and the SIMD instructions as well as in GPU using Geometry Shaders as well
as using OpenCL.

The most efficient achieved implementation was in OpenCL for a scene containing 106

triangles, followed by the Geometry Shader implementation that is usable also with Intel
HD 4000 platform. However, the OpenCL implementation suffers from synchronization
slowdowns in case the scene is divided into more independent objects. As for the CPU
implementations, while they are generally slower than the GPU ones, the SIMD instructions
(AVX) and parallelism boosts performance on the latest CPU architectures.

Overall, the proposed approach performs very well and at the same time it is robust
and precise in terms of “per pixel” precision of the shadows. Therefore, it represents a very
good alternative to shadow methods.

Future work includes improvements of the OpenCL implementation in terms of syn-
chronization in scenes containing more objects and general improvements of the triangle
tests. The future work also includes more thorough evaluation on more platforms and more
scenes.
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Chapter 5

Fast and Robust Tessellation-Based
Silhouette Shadows

This section presents a new, simple, fast and robust approach in computation of per-sample
precise shadows. The method uses tessellation shaders for computation of silhouettes on
arbitrary triangle soup. The robustness is reached by novel silhouette computation based
on reference edge. New method was compared with other methods and evaluated on multiple
hardware platforms and different scenes (Figure 5.1), providing better performance than
current state-of-the art algorithms. The full content of this section can be found in paper
[72].

Figure 5.1: Test scenes - Crytek Sponza and Spheres

5.1 Introduction
Novel tessellation methods are based on silhouette shadow volumes. Shadow volumes are
closely described in previous sections.

Shadow Mapping (SM) algorithm, proposed by [106], is an alternative approach to
shadow volumes. It uses depth information from light source stored in a texture. Shadow
mapping is nowadays massively used in games thanks to its performance, but suffers from
spatial and often temporal aliasing problems and produces imperfect shadows because of
limited shadow map resolution [23]. Low resolution is not an issue for games, because
scenes can be adjusted so that visual artifacts are suppressed or a filtering method is
applied, but applications for visualization in architecture or industrial design require pixel-
correct shadows for object visualization. Per-sample precise alias-free shadow maps (AFSM)
algorithm was proposed by [91]. The method stores multiple samples into a list for each
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shadow map pixel and conservatively rasterizes triangles into shadow map using CUDA.
Individual samples stored in the lists are then tested against shadow volume of the triangle.
As authors stated, their per-sample precise method is three times slower than standard
shadow mapping with resolution of 8096 by 8096 texels.

While producing per-sample correct shadows, SV are affected by performance issues.
In its naive form, when a volume is generated for every triangle in the scene, resulting
performance is very low due to rasterization of a large amount of triangles. More efficient
way is to construct shadow volumes only from silhouette edges of the occluding geometry,
which has positive impact on fill-rate.

Several silhouette-based methods were published since then, utilising novel hardware
features to speed up silhouette calculation.

Most of the silhouette methods are not completely robust and also cannot handle non
2-manifold casters. [52] proposed an algorithm for any complex triangle caster, but unfortu-
nately it is not robust. Kim’s algorithm was improved in [85] using deterministic multiplicity
calculation. The novel method further extends and simplifies Peciva’s method.

[93] also proposed a shadowing technique based on CUDA software rasterization of per-
triangle shadow frusta. This technique uses a small bias when testing sample depth against a
triangle plane to avoid self-shadowing. This bias, however, may cause a shadowed fragment
to be lit in the final result, moreover, it is also scene-dependent.

5.2 Method Description
This section presents three tessellation based methods - two per-triangle approaches and
one robust silhouette method.

The silhouette method is based on the work of [52]. The algorithm calculates so-called
multiplicity of an edge. Light plane from light source through the edge is computed and all
opposing vertices are tested, if they are in front or behind the plane. According to the test,
multiplicity is incremented or decremented. Absolute value of multiplicity is the number of
times an infinite quad needs to be drawn from this edge.

5.2.1 Per-Triangle Methods

These methods require no pre-processing and work with arbitrary triangle soup. In the
first variant, input tessellation patch has 3 points, which are identical to triangle points.
Tessellation factors are 3 (inner) and 1 (outer, for all sides), equal spacing and reversed
triangle winding. The resulting patch can be seen in Figure 5.2 b.

The algorithm constructs a simple volume in evaluation shader, see the Algorithm 5.
Front cap needs to be rendered in second pass in order to close the volume.

The second per triangle method is a single-pass version for z-fail and tessellates quads
instead of triangles. An input tessellation patch contains three points of a triangle. The
quad is tessellated using outer factors (1, 5, 1, 5), inner (5,1) and fractional odd spacing,
resulting in a shape seen in Figure 5.3 b.

Evaluation shader then twists the shape in order to create a volume, note Figure 5.3.
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Figure 5.2: The image shows the process of first (two pass) per triangle tessellation method.
Initial triangle in 𝑎) is tessellated using outer factors (1, 1, 1) and inner (3) 𝑏). Tessellation
process creates points 𝐴′, 𝐵′, 𝐶 ′. The patch is then deformed 𝑐) and new tessellated points
are pushed to infinity to form a volume with back cap 𝑑).

Algorithm 5: Evaluation shader in two-pass per-triangle method
Data: triangle points P[3], light position L, tessellation coordinates T = (𝑥, 𝑦, 𝑧),

𝑥, 𝑦, 𝑧 ∈ ⟨0, 1⟩
Result: world-space coordinates 𝑋

1 𝑐 = 𝑥 · 𝑦 · 𝑧; // outer points 𝐴,𝐵,𝐶 have only one non zero coordinate

2 if 𝑐 == 0 then
3 X = P[0] · 𝑥+P[1] · 𝑦 +P[2] · 𝑧; // points 𝐴,𝐵,𝐶

4 X𝑤 = 1;
5 else
6 𝑖 = getIndexOfLargestVectorElement(T);
7 X = 𝑙𝑤 ·P[𝑖]− L; // points 𝐴′, 𝐵′, 𝐶′

8 X𝑤 = 0;

5.2.2 Silhouette Method

The method finds silhouette edges by looping over every edge in the model. Each edge is
processed in parallel in Tessellation Control Shader where multiplicity is computed. An
input patch can be seen in the Figure 5.4.

A model’s vertex buffer has to be extended by 𝐸𝑛 vertices, which is the number of edges
in the model. Element buffer can be used for reduction of memory requirements, see the
Figure 5.5.

Kim’s algorithm [52], as in its core proposal, might have problems if multiplicities are
not calculated in a deterministic way. In the older approach by Peciva et al. [85], it was
fixed by calculating multiplicity per triangle. If the 3 results throughout all 3 edges is
not consistent, it discards the triangle from further processing, because it means that the
triangle is almost parallel to the light and does not cast a shadow. This novel algorithm
further improved the approach - multiplicity is computed only once for each opposite vertex
using reference edge.
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Figure 5.3: Single-pass per triangle method, a full shadow volume is created in a single
pass. The method tessellates quads 𝑎). The tessellation factors are (1, 5, 1, 5),(5, 1) 𝑏).
Unfortunately, tessellation hardware creates one additional quad (point 10 and 11) at the
end of the strip. Points 10 and 11 are merged with 8, 9. Light cap is visualized as blue, dark
cap grey 𝑐). The algorithm then joins points 0-7, 1-5, 2-9, 4-8 and pushed points 5, 6, 7 to
infinity 𝑑) to make the volume 𝑒).

Figure 5.4: The image shows an input patch for tessellation control shader. It is composed
of two vertices that describe an edge, one integer that contains number of opposite vertices
and 𝑛 opposite vertices. Because the patch size must be constant, some positions might not
be used.

A choice of reference edge has to be the same for all occurrences of a triangle. This can
be achieved for example by introducing vertex ordering - Equation 5.1 and Algorithm 6.

A < B ⇔ greater(A,B) < 0

A = B ⇔ greater(A,B) = 0

A > B ⇔ greater(A,B) > 0 (5.1)

In order to guarantee consistency, reference edge of a triangle in the algorithm is con-
structed using smallest and larges vertex of a triangle, as in Algorithm 6. More options for
such method are available, but evaluation per each triangle occurrence must be consistent
in order to get correct results.
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Model Vertices Extra Vertices
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Figure 5.5: Combining per-edge patch data using Element Buffer Object. Vertex Buffer
Object needs to be extended by 𝐸𝑛 (number of edges) vertices, where 𝑋𝑖 is number of
adjacent triangles to edge 𝐸𝑖. Because input vertices are 4-component vectors and 𝑋𝑖 is
scalar value, only a single value per vector is used.

Algorithm 6: Function greater(A,B) used for vertex ordering.
Data: Vertices A,B
Result: Result 𝑟 of comparison

1 S = sign(A−B);
2 K = (4, 2, 1);
3 𝑟 = S ·K

To simulate behaviour of Kim’s algorithm (edge casts a quad as many times as it has
multiplicity), the algorithm tessellates a quad from an edge using inner tessellation levels
(𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 · 2 − 1, 1) and then it bends the tessellated quad in evaluation shader in a
way to create 𝑚 overlapping quads, as seen in the Figure 5.6, which demonstrates edge
A-B having multiplicity of 3. The procedure of multiplicity calculation is described in the
Algorithm 7 and in the Algorithm 8.

After tessellation, the algorithm transforms tessellation coordinates into vertex position
of the shadow volume quad in the evaluation shader. The implementation is described in
the Algorithm 9 and in the Equation 5.2.

A = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 1)
𝑇

B = (𝑏𝑥, 𝑏𝑦, 𝑏𝑧, 1)
𝑇

C = (𝑎𝑥 − 𝑙𝑥, 𝑎𝑦 − 𝑙𝑦, 𝑎𝑧 − 𝑙𝑧, 0)
𝑇

D = (𝑏𝑥 − 𝑙𝑥, 𝑏𝑦 − 𝑙𝑦, 𝑏𝑧 − 𝑙𝑧, 0)
𝑇 (5.2)

Because caps are not generated, this method can also be used with simpler z-pass
algorithm.
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Algorithm 7: Modified algorithm for computation of final multiplicity of an edge
A,B using reference edge concept.

Data: Edge A,B, A < B, set O of opposite vertices O𝑖 ∈ O, light position L in
homogeneous coordinates

Result: Multiplicity 𝑚
1 𝑚 = 0;
2 for O𝑖 ∈ O do
3 if A > O𝑖 then
4 𝑚 = 𝑚+ compMultiplicity(O𝑖,A,B,L);
5 else
6 if B > O𝑖 then
7 𝑚 = 𝑚− compMultiplicity(A,O𝑖,B,L);
8 else
9 𝑚 = 𝑚+ compMultiplicity(A,B,O𝑖,L);

Algorithm 8: compMultiplicity(A,B,C,L) function used in Algorithm 7
Data: Vertices A,B,C; A < B < C; light position L in homogeneous coordinates
Result: Multiplicity 𝑚 for one opposite vertex

1 X = 𝐶 −𝐴;
2 Y = (𝑙𝑥 − 𝑎𝑥𝑙𝑤, 𝑙𝑦 − 𝑎𝑦𝑙𝑤, 𝑙𝑧 − 𝑎𝑧𝑙𝑤);
3 N = X×Y;
4 𝑚 = sign(N · (B−A));

Algorithm 9: This algorithm transforms tessellation coordinates into the vertex
of shadow volume side. Vertices A,B,C,D are computed using Equation 5.2.

Data: Vertices A,B,C,D, tessellation coordinates 𝑥, 𝑦 ∈ ⟨0, 1⟩ and multiplicity 𝑚
Result: Vertex V in world-space

1 P0 = A;
2 P1 = B;
3 P2 = C;
4 P3 = D;
5 𝑎 = round(𝑥 ·𝑚);
6 𝑏 = round(𝑦);
7 𝑖𝑑 = 𝑎 · 2 + 𝑏;
8 𝑡 = (𝑖𝑑 mod 2) ˆ (⌊𝑖𝑑/4⌋ mod 2);
9 𝑙 = ⌊(𝑖𝑑+ 2)/4⌋ mod 2;

10 𝑛 = 𝑡+ 𝑙 · 2;
11 V = P𝑛;
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Figure 5.6: The image shows the transformation of a quad into three overlapping shadow
volume sides. The transition from part a) to part b) is tessellation of quad with Multi-
plicity = 3. Only green and blue triangles will be drawn. Yellow and gray triangles will
be degenerated. The transition from part b) over part c) to part d) shows degeneration
process. Red and purple vertices 3, 4 and 7, 8 from part a) form only one vertex in part d).
The transition from part d) to part e) shows rotation around red and purple vertices. This
transformation creates three overlapping sides of shadow volume. Positions of vertices A,
B, C, D that form initial quad, can be computed according to Equation 5.2.

5.2.3 Implementation

All methods are implemented in Lexolights, an open-source multi-platform program based
on OpenSceneGraph and Delta3D, using OpenGL.

Single-pass per-triangle method suffers from inconsistent rasterization of two identical
triangles at the same depth but with different winding - depth of fragments from both
triangles differs, which resulted in z-fighting artifacts. The algorithm has to push the front
cap’s fragments into depth of 1.0f, so they would fail the depth test, otherwise self-shadowing
artifacts can be observed. Bypassing early depth test in rasterization due to assigning depth
values in fragment shader causes significant performance loss over two-pass method. This
method served as a basis for silhouette-based approach.

For caps generation in silhouette-based method, the algorithm uses gemetry shader
and multiplicity calculation. It calculates triangle’s orientation towards light source via
reference edge. It was also necessary for keeping calculations consistent throughout the
rendering process of shadow volumes.

Because tessellation factors are limited to 64, there is also a limit of maximum multi-
plicity per edge that this algorithm is able to process. According to equation to calculate
tessellation factor 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 ·2−1, maximum multiplicity of an egde is 32, which should
be more than enough for majority of models. But, for example, well-known Power Plant
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Sponza R280 G680
Resolution TS GS TS GS

800x600 112 130 51 49 175 178 62 61
1024x768 116 124 49 50 177 178 61 60
1366x768 107 116 48 48 159 160 60 61

1920x1080 95 101 47 46 122 126 60 59

Table 5.1: Performance of two deterministic methods measured in FPS on Sponza scene
at different resolutions. First column for each method denotes original algorithm (3 edges)
and second value denotes our new method using a single reference edge.

model (12M triangles) has some edges, which have multiplicity of 128. In that case, they
would have to be split into more edges.

5.3 Experiments
Methods are compared against already available shadow volumes implementations on mod-
ern hardware - robust geometry shader implementation and standard shadow mapping.
They are also evaluated against Sintorn’s AFSM [91]. Two-pass per-triangle method is also
tested against similar geometry shader implementation. For shadow volumes approaches,
z-fail was used; shadow map resolution was 8k x 8k texels.

Testing platform had following configuration: Intel Xeon E3-1230V3, 3.3 GHz; 16GiB
DDR3; GPUs: AMD Radeon R9 280X 3 GiB GDDR5, nVidia GeForce GTX 680 2 GiB
GDDR5; Windows 7 x64; driver version: 13.12 (AMD), 334.89 (nVidia).

5.3.1 Testing Scenes

camera flythroughs were created in two testing scenes, each having one point light source.

∙ Sphere scene: synthetic scene containing adjustable number of spheres (typically 100)
with configurable amount of details. Flythrough has 16 seconds.

∙ Crytek Sponza: popular model used to evaluate computer graphics algorithms. 262 267
triangles, 40 seconds.

5.3.2 Results

Crytek Sponza scene was used in the first set of tests. Tests evaluated the method in
different resolutions and compared it to the geometry shader implementation. Also, both
implementations were compared to older variant of deterministic multiplicity calculation
as seen in the Table 5.1 and in the Figure 5.7. Geometry shader implementation provides
more stable frames per second (FPS) with change of resolution, but fails to outperform the
new tessellation algorithm on both graphic cards. Moreover, the new determinism method
is faster in majority of cases, with some exceptions in geometry shader implementation,
where it is on-par with older type of determinism, using all 3 edges.

Majority of tests were performed on a sphere scene with adjustable amount of geometry.
First, a simple flythrough in a scene containing 100 spheres was used with different amount
of triangles per test, the results can be seen in the Table 5.2 and graph in the Figure 5.8.
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Figure 5.7: Dependence of performance (FPS) on resolution of original and new method,
measured on Sponza scene.

Spheres10x10 R280 G680
Triangles TS GS TS GS

32400 984 995 490 484 739 825 542 540
67600 921 963 488 487 624 667 494 513
102400 615 729 484 479 491 555 372 402
360000 203 233 270 272 218 228 131 135

1081600 72 88 104 110 82 94 46 49
1440000 56 72 84 91 67 81 36 39
1960000 34 41 59 62 49 58 26 28

Table 5.2: Performance of two determinism methods measured in FPS on a scene with
10x10 spheres at different triangle count.

On GTX680, tessellation using reference edge is the fastest, no matter the number of
triangles, although the performance gap gets smaller with increasing number of triangles
in a scene. R9 280X showed different results, tessellation was more than 2x faster when the
scene contained only 32K triangles but at approximately 300K, geometry shader method
took a lead.

Another testing scenario contained a scene with only 1 box (12 triangles) and a sphere
with different amount of Table 5.3, results can be seen in the Table 5.3 and in the Fig-
ure 5.9. The results have the same characteristic as those from a scene having 100 spheres
- tessellation is dominant on GTX680, whereas on Radeon R9 280X it is geometry shader.
In previous measurement, geometry shader became dominant at about 3500 triangles per
sphere, which is also observable in this measurement.

This test was further extended to performance dependency on number of objects in a
scene while maintaining constant amount of geometry. This measurement was carried out

70



105 106

200

400

600

800

104.51 5 · 104 2 · 1053 · 105 5 · 105 106.29

Number of triangles

FP
S

Dependence of performance on number of triangles for 10x10 spheres

R280TS Orig
R280TS Ref
G680TS Orig
G680TS Ref
R280GS Orig
R280GS Ref
G680GS Orig
G680GS Ref

Figure 5.8: Dependence of performance (FPS) on number of triangles on a scene with 10x10
spheres using original and new deterministic method.
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Figure 5.9: Dependence of performance on number of triangles for one tessellated sphere
for original and new method.

on Sphere scene, having 1 million triangles (with max 2% deviation) in every case. No
hardware instancing was used, every object was drawn via separate draw call. Results can
be seen in the Table 5.4 and in the Figure 5.10.

Contrary to previous measurements, tessellation was faster on R9 280X, starting from
103 objects, although reference edge was faster only in 40% cases. Moreover, as can be
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Spheres1x1 R280 G680
Triangles TS GS TS GS

336 3000 3010 2830 2750 2940 2990 2780 2780
1308 2950 2980 2730 2700 2830 2860 2650 2630

15612 1820 2050 2540 2650 1960 1980 1460 1570
102412 613 741 945 995 822 992 465 503
360000 196 245 299 323 281 353 149 163
577600 122 155 186 203 180 224 94 103

1000000 73 92 111 119 106 134 55 60
1960000 37 46 56 60 54 68 28 31
3686400 19 25 30 32 29 36 0.5 0.5

Table 5.3: Performance of two deterministic methods measured in FPS on a scene with 1
sphere having different amount of triangles. First value denotes original method and second
value denotes reference edge based method. On GTX 680, GS and 3.6M triangles, the GPU
ran out of its memory and performance dropped to 0.5 FPS.

Spheres 1M R280 G680
Objects TS GS TS GS

1 73 92 111 120 106 134 55 60
4 74 94 113 121 101 126 53 58
25 64 76 97 101 76 88 46 50
64 68 76 90 89 61 66 40 43

100 64 70 84 82 58 62 39 42
240 58 55 70 64 50 49 35 36
399 53 48 61 54 36 36 27 28
625 43 38 53 46 29 27 22 22
851 40 44 46 50 24 25 19 20
1250 35 37 28 31 19 19 16 16
2500 23 19 15.1 15.4 12 11 10.8 10.1
3116 21.2 21.5 12.8 12.5 11.1 11.2 9.1 9.2
3920 15.7 14 10.1 10.12 9.1 8.7 7.7 7.5
5100 14.8 14.2 7.8 7.75 8.2 8.2 6.7 6.8

15600 7.45 6.45 3.07 3.14 10.5 9.1 3.6 3.6

Table 5.4: Dependence on number of objects for spheres scene with 1M triangles. Bold
values represent the fastest algorithm/implementation per GPU.
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Figure 5.10: Dependence on number of objects for spheres scene with 1M triangles.

seen in the Figure 5.10, there is a slight increase in FPS in both geometry shader and
tessellation implementations at about 1000 objects on Radeon. On GTX680, tessellation
method was faster in every case; reference edge provided increased performance only in a
half of measurements, but in all other cases the difference was only 1-3 FPS.

Sintorn in his AFSM paper [91] stated that his per-pixel precise shadow maps are 3-
times slower than standard 8Kx8K shadow mapping. In order to evaluate the algorithm
against AFSM, a shadow mapping test was conducted with resolution metioned above.
Results can be seen in the Table 5.5 and Figure 5.11.

Spheres10x10 R280 G680
Triangles TS SM TS SM

32400 995 252 825 245
67600 963 250 667 237

102400 729 244 555 225
360000 233 219 228 190
1081600 88 168 94 135
1440000 72 155 81 115
1960000 41 120 58 103

Table 5.5: Shadow Mapping vs Tessellation Silhouettes, 10x10 sphere scene, FPS

Not only the novel algorithm managed to outperform shadow mapping with triangle
count up to ~400K triangles, but at almost 2M triangles the method was on par or faster
than AFSM - R9 280X dropped to 34% of SM performance whereas GTX680 was only 44%
slower than 8K shadow mapping.

Following tests compared silhouette methods with two-pass per-triangle tessellation im-
plementation and 8K shadow mapping, results can be seen in the Table 5.6 and in the
Figure 5.12.
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Figure 5.11: Shadow Mapping vs Tessellation Silhouettes on a scene with 10x10 spheres,
measured in frames per second.

R280 G680
Method Spheres Sponza Spheres Sponza

TS Triangle 5.8 102 7.9 83
TS Silhouette 23.7 130 32 185

GS Triangle 3.1 51 4.9 73
GS Silhouette 34 49 14.8 62

SM 93 0 74 0

Table 5.6: Overall comparison of GS, TS methods and classic 8K shadow mapping on testing
scenes - Sponza, and Spheres with 4M triangles. Shadow mapping was not evaluated on
Sponza scene (zeros).

One can observe that per triangle tessellation method is even faster than both geometry
shader methods running on Sponza scene. It is also worth noting that per-triangle geometry
shader based method provides more performance on this scene than silhouette-based ap-
proach. On GTX680, the difference between silhouette and per-triangle tessellation method
is 122%, whereas on R9 280X card it is faster only by 27%.

With increased amount of geometry in synthetic test scene, the situation turns around
in favor to silhouette methods. Also the performance difference between shadow mapping
and tessellation on Radeon drops under 1/3 ratio, but GeForce is still able to maintain 43%
of SM performance.

5.4 Conclusions
Three new shadow volume methods were developed using tessellation shaders.
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Figure 5.12: Overall comparison of methods on testing scenes - Sponza and Spheres with
4M triangles.

Spheres 100k R280 G680
Objects TS GS TS GS

1 630 765 962 1025 825 1003 470 510
4 561 657 881 920 660 742 410 441

25 534 583 630 645 445 453 340 352
64 443 448 485 475 297 289 273 273

100 485 531 403 408 234 237 211 212
225 307 258 199 203 147 145 124 125
900 99 103 48 49 61 61 45.5 45.7
2500 34 36 16 17 28.5 28.6 17 16.8
3600 24 25 11 12 20.3 20 11.8 11.7

Table 5.7: Dependence on number of objects for spheres scene with 100k triangles.

The two-pass per-triangle tessellation method is, in some cases, faster than silhouette
algorithm implemented in geometry shader, but loses performance as geometry amount in
the scene grows. Compared to geometry shader per-triangle implementation, it was faster
in every measurement.

Tests and measurements show that the silhouette method is more efficient, mostly in
scenes with higher amount of geometry. GeForce GTX680 benefited mostly from this al-
gorithm, being faster than geometry shader silhouette method. As for Radeon R9 280X,
geometry shader method is more suitable. Tessellation method on Radeon proved to be
faster in Sponza scene, but synthetic tests on sphere scene showed that its performance is
dominant only up to ~300K of triangles when having multiple objects in the scene, or only
up to 15K triangles when only a single detailed object was drawn. In less detailed scenes it
was able to outperform nVidia-based card, but only up to aforementioned 300K triangles.

The robust algorthm was sped up by using a novel method of multiplicity computation
based on reference edge, which was able to provide up to 31% performance gain in tessel-
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Figure 5.13: Dependence on number of objects for spheres scene with 100k triangles.

lation method (13.5% in average), maximum speedup in geometry shader was 10.7% with
average of 3.4%.

In comparison to standard SM and Sintorn’s Alias-Free Shadow Maps (AFSM), the
new tessellation method provides better performance than 8K shadow maps up to ~400K
triangles and then falls to 43% performance of shadow mapping at 4M triangles on GeForce,
34% on Radeon, which is on par or better than AFSM (it’s 3-times slower than 8K SM)
and is also simpler to implement.
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Chapter 6

Fast Robust and Precise Shadow
Algorithm for WebGL 1.0 Platform

This section presents fast and robust per-pixel correct shadow algorithm for WebGL plat-
form. The algorithm is based on silhouette shadow volumes and it rivals the standard
shadow mapping in terms of performance. The performance is usually superior when com-
pared with high resolution shadow maps. Moreover, it does not suffer from a number of
artifacts of shadow mapping and always provides per-pixel correct results.

WebGL 1.0 provides just vertex and fragment shaders. Thus, the algorithms evaluate
silhouette edges in vertex shaders. Specially precomputed data are fed to the vertex shaders
that extrude shadow volume sides just for silhouette edges. Some optimizations are deployed
for performance and data size reasons that are important especially on low performance
configurations, such as cost-effective tablets and mobile phones. This section also evaluates
the solution on number of models. The solution performs on par with high resolution omni-
directional shadow mapping. The full content of this section can be found in paper [75].

Figure 6.1: Three testing scenes - Sponza, Conference Room and Sibenik rendered using
WebGL on NVIDIA Shield.

6.1 Introduction
Shadows are an important visual cue for human perception of 3D space, providing human
brain with additional information about the structure of the scene that is usually visualized
as a 2D image on the computer screen.
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Two popular methods for shadow visualizations are used nowadays - shadow volumes
[17] and shadow mapping [106]. Shadow mapping got its hardware acceleration in 2001
with GeForce 3 and became popular shadow method in computer games and other areas.
However, shadow mapping is prone to visual artifacts [65]. Tremendous amount of research
was done to lessen these artifacts to some extent, for instance [96][107][110][88]. Another
approach is to adjust the scene design in a way that artifacts will not become visible.
Such approach is probably largely used in computer game industry but it is usually not
acceptable in CAD systems, where precise visualization of the model is required.

Shadow volumes got their hardware support in 1991 when hardware stencil buffer was
introduced [41]. Unfortunately, Heidmann’s algorithm that became known as z-pass was not
robust when the viewer himself was in shadow. Thus, [14] and [9] proposed z-fail algorithm.
Finally, [28] presented robust z-fail algorithm that should provide correct visual results for
any arbitrary scene.

As shadow volumes work partially in image space, they are capable to deliver per-pixel
precise shadows. However, rasterizing large shadow volume extents made them fill-rate lim-
ited in most cases. The extrusion of shadow volumes only from silhouette edges, instead of
every edge, became the main performance optimization. The algorithm for finding silhou-
ette edges on manifold meshes was described by [8]. [12] was the first to show the silhouette
algorithm implemented entirely in graphics hardware. [69] described silhouette algorithm
implemented in vertex shader only using specially precomputed mesh. [105] developed op-
timized silhouette construction using SSE2 instructions for computer game Doom 3. [97]
used then-new geometry shader for silhouette algorithm.

Many silhouette algorithms require 2-manifold triangle meshes to work correctly. More
general algorithms were proposed to alleviate this restriction. [3] requires the mesh to
be orientable only. [52] showed an algorithm that works on arbitrary meshes, however it
exhibits visual artifacts from time to time due to limited numerical precision of both GPU
and CPU computing units. [85] made the algorithm robust and verified its artifact-free
property on a number of computing platforms. [72] showed the further performance gains
when implemented using tessellation shaders.

6.2 Algorithm
The algorithm is based on the robust silhouette algorithm developed by [85] and enhanced
algorithm by [72]. However, they present CPU, multi-core CPU, geometry shader, OpenCL
and tessellation shader implementations in their papers, while the only GPU computing
capabilities available in WebGL 1.0 are vertex and fragment shaders. This algorithm uses
vertex shader and it is based on the idea of [69] where vertex shader is fed by a specially
constructed mesh data. These mesh data processed by vertex shaders, extrudes shadow
volume only on silhouette edges. [69] designed solution just for 2-manifold meshes so this
new method merges McGuire’s approach with the algorithm presented in [85]. Furthermore,
following sections present a number of data-related optimizations for memory footprint
reduction.

6.2.1 Overview

The core idea of the algorithm is to find the edges that form the outline of the possible
silhouette on the model for the given light position. Then, the edges of the silhouette are
extruded to infinity and closed by caps at the model and at the infinity as required by z-fail
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algorithm, forming the shadow volume of the model. The silhouette is subset of all edges
of a model that satisfies the following condition: edge is considered as silhouette edge when
number of light-facing and light-back-facing triangles adjacent to this edge is not equal.

The computed shadow volume is used for shadow visualization using traditional stencil
z-fail approach that is described in detail in [24]. Two-sided stenciling optimization is used
as it is supported by WebGL 1.0. Briefly, the algorithm works in three steps:

1. render the regular scene, producing z-values to the z-buffer and producing scene with
ambient light to the color buffer

2. render the stencil mask using the shadow volume geometry and set stencil function to
act whenever z-test fails; front faces are set to increment and back faces to decrement
stencil value on z-test fail.

3. render the regular scene with the light switched on while setting stencil test in such a
way that the color buffer is updated only in places with zero stencil value, e.g. update
only lit regions.

The core of the algorithm lies within the step 2. The algorithm uses two shader programs
- a program for sides-data and a program for caps-data. These programs compute Shadow
Volume (SV) for particular scene transformation and light position.

6.2.2 Basic Input Data

First step of the algorithm is the construction of shadow-geometry. The shadow-geometry
is composed of two parts: data for SV sides (sides-data) and data for SV caps (caps-data)
(see Figure 6.5).

Data for sides are composed of all edges of input scene. Every edge is described with its
vertices and a set of opposite vertices O = {O0,O1, . . . ,O𝑛−1}. An edge and its opposite
vertices form triangles that are attached to that edge. There are also additional data for
every edge (see Section 6.2.4 and Section 6.2.5).

Caps-data are composed of triangles of input scene with additional information.
These two parts are preprocessed and stored in separate files along the scene files.

Though that its not necessary, It is trade of between the on load construction and download
time. Neither one of the two approaches influences the measurements of performance.

6.2.3 Multiplicity computation

The multiplicity is computed as follows: The algorithm constructs a plane using the light
position and edge’s two vertices. The plane is called a lightplane. The lightplane divides
space into two subspaces. Then, the algorithm iterates through the opposite vertices of the
edge and counts their number in both light plane subspaces. Difference between these two
numbers is the edge multiplicity, see Figure 6.2. If it is zero, the edge is not silhouette edge
and no edge extrusion happens. If it is non-zero, then absolute value of multiplicity gives
the number of how many times the algorithm needs to extrude the side. The number of
extrusion translates directly to the number of stencil buffer modification. The sign of the
edge multiplicity gives the extruded quad winding order, which will either increment or
decrement stencil buffer value.
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6.2.4 Vertex Shader for Sides

In order to compute multiplicity, VS has to receive an edge, a set of opposite vertices and a
light source. A light source position can be specified using uniform variable. The algorithm
uses vertex attributes for edges and sets of opposite vertices (see Figure 6.3).

This section closely describes shader for sides and format of sides-data. Every edge of the
scene can extrude 𝑛 sides of SV (see [52]), where 𝑛 is the number of attached triangles to this
edge, see Figure 6.2. Let 𝑛 be a maximal multiplicity - 𝑚𝑎𝑥𝑀𝑢𝑙𝑡. Let 𝑐𝑢𝑟𝑀𝑢𝑙𝑡 be a currently
computed multiplicity. It has the following property: −𝑚𝑎𝑥𝑀𝑢𝑙𝑡 ≤ 𝑐𝑢𝑟𝑀𝑢𝑙𝑡 ≤ 𝑚𝑎𝑥𝑀𝑢𝑙𝑡.
A computed multiplicity determines the number of sides extruded from the edge. The
algorithm uses the algorithm for computation of multiplicity proposed in [72].

+ +

-
Figure 6.2: Edge P0 → P1 has 𝑛 = 3 opposite vertices: O = {O0,O1,O2}. Its maximum
multiplicity is 𝑛 = 3. Current multiplicity of this edge, given by light source and transfor-
mation, is +1. One quad P0,P1,P2,P3 is extruded using edge and light source. This quad
has the same orientation as light plane (black arrow).

The computation of multiplicity is accelerated using parallelization by vertex shaders
(VS). In order to prevent writes and reads from memory the algorithm computes and draws
shadow-data in one step. To make this streaming concept possible, VS has to receive all
the data for all potential SV sides. Let 𝑠 be an index of a potential side.

One side of the volume is composed of 2 triangles and 6 vertices. Let 𝑣 be an index of
vertex. The vertex shader has to receive 𝑚𝑎𝑥𝑀𝑢𝑙𝑡 · 6 vertices per every edge. For example,
18 vertices for 𝑚𝑎𝑥𝑀𝑢𝑙𝑡 = 3. For every vertex, VS computes current multiplicity - 𝑐𝑢𝑟𝑀𝑢𝑙𝑡.
𝑐𝑢𝑟𝑀𝑢𝑙𝑡 determines whether a vertex is useful or not.

Useless vertex lies on a shadow volume side for which the condition 𝑠 > |𝑐𝑢𝑟𝑀𝑢𝑙𝑡| is
satisfied. All useless vertices are transformed to (0, 0, 0). This transformation ensures that
useless sides of SV will be degenerated and will not be rasterized.

Useful vertices have to be moved to one of the four possible positions: P𝑖𝑑 (see Fig-
ure 6.2):

𝑡𝑜𝐼𝑛𝑓(P,L) = (𝑝𝑥𝑙𝑤 − 𝑙𝑥, 𝑝𝑦𝑙𝑤 − 𝑙𝑦, 𝑝𝑧𝑙𝑤 − 𝑙𝑧, 0) (6.1)
P0 = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 1)

P1 = (𝑏𝑥, 𝑏𝑦, 𝑏𝑧, 1)

P2 = 𝑡𝑜𝐼𝑛𝑓(P0,L)

P3 = 𝑡𝑜𝐼𝑛𝑓(P1,L) (6.2)

In Equation 6.2 P0 → P1 symbolizes an edge and L = (𝑙𝑥, 𝑙𝑦, 𝑙𝑧, 𝑙𝑤) symbolizes light
position. 𝑖𝑑 depends on index of vertex 𝑣 and computed multiplicity 𝑐𝑢𝑟𝑀𝑢𝑙𝑡 according to
Equation 6.3, Equation 6.4 and Equation 6.5:
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𝑖𝑑 =

{︂
𝑖𝑑𝐶𝐶𝑊 if 𝑐𝑢𝑟𝑀𝑢𝑙𝑡 > 0
𝑖𝑑𝐶𝑊 otherwise (6.3)

𝑖𝑑𝐶𝑊 =

{︂
6− 𝑣 if 𝑣 > 2
𝑣 otherwise (6.4)

𝑖𝑑𝐶𝐶𝑊 =

{︂
𝑣 − 2 if 𝑣 > 2
2− 𝑣 otherwise (6.5)

...=

=
...=
...

Figure 6.3: The image shows data structure for sides of SV. Every vertex (V) contains 𝑛+2
4D vectors. A and B are vertices of an edge and O𝑗 are opposite vertices. Forth components
of A and B are used for special purposes - storing number of opposite vertices, index of
side and indices 𝑖𝑑𝐶𝑊 , 𝑖𝑑𝐶𝐶𝑊 . Side (S) contains 6 vertices (two triangles). If 𝑚𝑎𝑥𝑀𝑢𝑙𝑡 is
𝑛, there has to be 𝑛 sides for every edge (E). Sides data are composed of 𝑚 edges of input
model.

Pseudo code implemented in VS for sides-data (Figure 6.3) is in Algorithm 10.

Algorithm 10: Pseudo code for one vertex of a volume side extrusion in Vertex
Shader.

Data: Edge vertices A,B, set O, light position L, side id 𝑠, indices 𝑖𝑑𝐶𝐶𝑊 ,
𝑖𝑑𝐶𝑊 , model-view projection matrix M

Result: 𝑔𝑙_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
1 compute vertices P𝑖 according to Equation 6.2;
2 𝑐𝑢𝑟𝑀𝑢𝑙𝑡 = computeMultiplicity(A,B,O,L);
3 if 𝑠 < |𝑐𝑢𝑟𝑀𝑢𝑙𝑡| then
4 compute 𝑖𝑑 according to Equation 6.3;
5 𝑔𝑙_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = M ·P𝑖𝑑;
6 else
7 𝑔𝑙_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (0, 0, 0, 0);

6.2.5 Vertex Shader for Caps

In order to compute multiplicity, VS has to receive all vertices of triangles and light source
position. Similarly to sides, all vertices of a triangle are sent to VS using vertex attributes
(see Figure 6.4).
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A shader for SV caps works with scene triangles. Six vertices are needed in order to
create a couple of caps (front and back cap). The vertex shader is therefore executed 6 ·𝑚
times, where 𝑚 is the number of scene triangles.

In order to prevent errors, both caps have to be properly oriented. The orientation has
to be the same as orientation of sides and has to be set deterministically. The algorithm
uses deterministic computation of multiplicity destribed in [72]. Compared to sides, there
is only one opposite vertex.

First, VS finds reference edge using method described in [72]. Then it computes mul-
tiplicity using third vertex and reference edge. The multiplicity determines orientation of
particular triangle.

=

...

=

Figure 6.4: The image shows data structure for caps of SV. Every vertex (V) contains 3 4D
vectors. A,B,C are vertices of scene triangles. Forth component of A is used for special
purposes - storing index of vertex 𝑣. Six vertices form couple of front and back cap. Caps
data are composed of 𝑚 couples for 𝑚 triangles of input model.

Furthermore, in order to avoid z-fight, the method shifts front cap to infinity. After
transforming the vertex into the clip space, it simply sets its z component to its w. The
shifting can be seen on Figure 6.5. This ensures that the front cap always fails the depth test.
The far plane clipping is avoided by using the modified projection matrix, which effectively
sets the far plane into infinity [70]. Let A = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 𝑎𝑤) be vertex of front cap in clip
space. The shifted vertex B toward infinity from camera can be computed according to
Equation 6.6:

B = (𝑏𝑥, 𝑏𝑦, 𝑏𝑧, 𝑏𝑤) = (𝑎𝑥, 𝑎𝑦, 𝑎w, 𝑎w) (6.6)
Pseudo code implemented in VS for caps-data (Figure 6.4) can be seen in Algorithm 11.

6.2.6 Data Size Optimizations

The size of shadow-geometry can be large in comparison to size of the input scene. For
example, an input scene having 𝑒 = 1000 edges and 𝑚𝑎𝑥𝑀𝑢𝑙𝑡 = 3, the size of sides-data
can be evaluated using Equation 6.7.

𝑒 ·𝑚𝑎𝑥𝑀𝑢𝑙𝑡 · 6 · (2 +𝑚𝑎𝑥𝑀𝑢𝑙𝑡) · 4 · 4 = 1440000[𝑏𝑦𝑡𝑒𝑠] (6.7)
Every edge can produces up to 3 sides. Every side contains 6 vertices. Every vertex

contains 5 vertex attributes with size of 4 floats.
Size of sides-data can be reduced 𝑚𝑎𝑥𝑀𝑢𝑙𝑡 · 6 times. In the example shown in Equa-

tion 6.7, the reduced size would be 80000[𝑏𝑦𝑡𝑒𝑠]. Reduction can be achieved by using com-
bination of instancing and drawing a shadow-geometry using multiple draw calls. The in-
stancing is present in every current mainstream browser as an extension.

82



Front Cap

Back Cap
Sides

Light

Figure 6.5: The image shows shadow volume that is constructed from a triangle. The front
cap is shifted to infinity using homogeneous coordinates in order to prevent self-shadowing
artifacts.

Algorithm 11: Pseudo code for caps in Vertex Shader.
Data: Triangle vertices P0,P1,P2, light position L, vertex id 𝑣, model-view

projection matrix M
Result: 𝑔𝑙_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

1 𝑐𝑢𝑟𝑀𝑢𝑙𝑡 = computeMultiplicity(P0,P1,P2,L);
2 if 𝑐𝑢𝑟𝑀𝑢𝑙𝑡 = 0 then
3 𝑔𝑙_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (0, 0, 0, 0);
4 return;
5 if 𝑐𝑢𝑟𝑀𝑢𝑙𝑡 < 0 then
6 swap(P0,P1);
7 if 𝑣 < 3 then
8 V = M ·P𝑣;
9 𝑔𝑙_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (𝑉𝑥, 𝑉𝑦, 𝑉𝑤, 𝑉𝑤);

10 else
11 𝑔𝑙_𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = M · 𝑡𝑜𝐼𝑛𝑓(P5−𝑣,L);

The modification is simple. First step is to remove additional data 𝑖𝑑𝐶𝑊 , 𝑖𝑑𝐶𝐶𝑊
and 𝑠 from vertex attribute 𝐵.𝑤, see Figure 6.3. After this step, every vertex 𝑉 in edge
𝐸 in the Figure 6.3 has the same data. Therefore, it is necessary to compute 𝑖𝑑𝐶𝑊 and
𝑖𝑑𝐶𝐶𝑊 inside VS using 𝑔𝑙_𝑉 𝑒𝑟𝑡𝑒𝑥𝐼𝐷 and Equation 6.3, Equation 6.4 and Equation 6.5.
Unfortunately, WebGL 1.0 does not support 𝑔𝑙_𝑉 𝑒𝑟𝑡𝑒𝑥𝐼𝐷, so the algorithm has to simulate
its behaviour using additional vertex attribute. Also, the variable 𝑠 has to be sent to VS
using another vertex attribute. The variable 𝑠 can be also computed using 𝑔𝑙_𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐼𝐷,
but it is not present in WebGL 1.0. Another option is to use multiple drawcalls and uniform
variables. The final equation for computation of size of sides-data is as follows:

16 · (2 +𝑚𝑎𝑥𝑀𝑢𝑙𝑡) · 𝑒[𝑏𝑦𝑡𝑒𝑠] (6.8)

𝑒 is number of edges in input scene.
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Size of caps-data can be also reduced using similar approach. The final equation for
computation of size of caps-data is as follows:

48 · 𝑡[𝑏𝑦𝑡𝑒𝑠] (6.9)

where 𝑡 is number of triangles in input scene.

6.3 Measurements and Evaluation
The evaluation is focused on three aspects:

∙ performance comparison with shadow mapping methods

∙ performance on various devices using popular scenes

∙ synthetic tests to provide deeper insights

Shadow mapping cannot be directly compared to shadow volumes as shadow volumes
provide omnidirectional shadows. Therefore, cube shadow mapping is selected as competing
algorithm. Optimizations might be developed to use only cube faces that contribute to the
final image. This often lessens the performance requirements to maintain only some faces
of the cube shadow map, but indoor scenes, e.g. room with the light in the middle, often
requires all the cube shadow map faces, depending on the camera view configuration. The
algorithm is compared to full cube shadow mapping.

The comparison uses standard shadow mapping instead of one of its optimized versions,
such as LiSPSM [107] or CSM [22]. These optimized versions focus on shadow visual quality
which makes the algorithm more complex. This additional complexity does not generally
improve the performance but has slightly opposite effect.

Regarding the second point, the algorithm is evaluated on several test scenes and hard-
ware configurations, including handheld devices. Desktop measurements were carried out
on high-end graphics hardware. Handheld platform was represented by NVIDIA SHIELD
tablet with Tegra K1 SOC running Android 5.0.1, desktop platform by Radeon R9 290X
and GeForce GTX 980 running in system with Intel Core i7 4790, 16GB of memory and
Windows 7. The web browser was Firefox version 36.0 on both - desktop and NVIDIA
SHIELD tablet. Firefox browser was chosen as it provided the best means for measure-
ments. WebGL 1.0 lacks support for OpenGL queries, so the timing had to be manually
measured, which was not possible in some browsers like Google Chrome and Opera because
glFinish is implemented asynchronously in these browsers. The algorithm was measured
using ANGLE1 and with disabled ANGLE. The measurements were carried out on popular
well-known scenes: Crytek Sponza, Conference Room and Sibenik Cathedral using scenes
flythrough.

Regarding the third point, specially designed synthetic scenes were used to provide
an insight into the algorithm performance in relation to the scene complexity and scene
properties, in particular number of edges, max multiplicity, and screen resolution. Following
graphs and tables illustrate the algorithm behavior for combination of these three. The main
idea behind these metrics is that SV are thought to be mainly fillrate bound, thus change
in resolution should change the performance. The cube shadow mapping was tested with

1Almost Native Graphics Layer Engine, graphics abstraction layer translating WebGL and OpenGL ES
2.0 into DirectX calls, used f.e. in Chrome or Firefox
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Sponza Conf. room Sibenik
method R290 G980 R290 G980 R290 G980
no shadow 3.3 3.9 1.0 0.9 0.7 1.1
SM1 13.5 13.8 4.0 3.5 1.7 1.6
SM2 13.4 14.1 5.2 3.8 3.0 2.4
SM4 16.1 15.3 9.8 6.4 8.5 5.7
SM8 37.0 21.8 28.2 15.5 28.9 18.7
SV 14.5 19.2 7.4 11.0 7.1 10.1

Table 6.1: Average frame time (ms) for flythroughs using ANGLE.

Sponza Conf. room Sibenik
method R290 G980 Shield R290 G980 Shield R290 G980 Shield
no shadow 2.5 2.5 31.8 1.0 1.3 21.5 0.8 1.1 12.9
SM1 6.8 5.6 77.8 3.8 2.9 43.9 1.9 1.8 37.1
SM2 8.0 5.6 75.9 5.3 3.5 57.5 3.6 2.8 55.0
SM4 15.0 8.4 0.0 11.2 6.0 0.0 10.3 6.0 131.2
SM8 41.7 22.9 0.0 34.2 16.0 0.0 36.0 18.8 0.0
SV 14.7 22.2 207.5 8.0 15.3 165.4 7.6 13.1 73.0

Table 6.2: Average frame time (ms) for flythroughs without using ANGLE.

resolution of 2k, 4k and 8k per side. On NVIDIA SHIELD Tablet, only 2k by 2k was tested
due to hardware limitations. Every test scene contains single point light source. The canvas
resolution for flythroughs was 1920x1080, unless specified otherwise.

6.3.1 Popular Scenes

The tests were carried out on following well-known models: Crytek Sponza (262k triangles),
Conference Room (331k triangles) and Sibenik Cathedral (75k triangles). Performance on
these scenes has been measured by camera flythrough. Averaged frame rendering time for
each scene is shown in Table 6.1, Table 6.2.

As can be seen in the Table 6.1, the new method is faster than 8k omnidirectional
shadow mapping (e.g. 8192x8192x6) on both - high-end NVIDIA and AMD cards. Even on
shadow mapping optimized pipeline, the new method is slightly faster. This is no longer
true for 4k and 2k shadow mapping, however 2k and 4k shadow mapping does not provide
sufficient shadow resolution, especially on modern high-resolution 4k displays, resulting in
visual artefacts, see Figure 6.6. On the other hand, the proposed algorithm always provides
per-pixel correct solution or per-fragment, if antialiasing is used, because shadow volumes
perform its computation in screen space.

The frame times are shown in Figure 6.7, Figure 6.8, Figure 6.9, Figure 6.12, Figure 6.13,
Figure 6.10, Figure 6.14, Figure 6.15, Figure 6.11.

Figure 6.7, Figure 6.12, Figure 6.14 show the results for GeForce GTX 980. As can be
seen, shadow volume performance is view dependent. Anyway, the performance is higher
than 8k shadow mapping for about two thirds of flythrough in Crytek Sponza scene.

On Radeon R9 290X, the performance of shadow volumes is more stable as shown in
Figure 6.8, Figure 6.13 and Figure 6.15. Shadow volumes performance roughly equals to
the performance of 4k shadow mapping, sometimes even rivaling 2k shadow maps.
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Figure 6.6: The image shows diference in quality between shadow mapping and shadow
volumes.

Finally, the Figure 6.9 shows the performance on NVIDIA SHIELD tablet. The per-
formance is not on interactive level, but we consider 4 FPS in FullHD on tablet for such
large scene as acceptable. The performance is more stable than on GeForce GTX 980 (only
about 20% fluctuation compared to 40%) and roughly only ten times slower than high-end
NVIDIA GPU. This seems to go in hand with number of shader processors available on the
devices, e.g. 192 vs. 2048. Unfortunately, using larger cube shadow maps was not possible
on NVIDIA SHIELD device.
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Figure 6.7: The figure shows flythrough Crytek Sponza on GeForce GTX 980. SM is very
well optimized, even for large shadow map resolutions, but SV also manage to be real-time
for most view points, although not as stable.

6.3.2 In-depth Performance Analysis

Next measurements were focused on rendering stages. The stages are:

1. rendering of ambient scene
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Figure 6.8: The figure shows flythrough Crytek Sponza on AMD platform. The SV seem
to provide an interesting alternative to SM. While it behaves more stable than on NV
platform, it also manages to be faster than 4k SM in average and completely outperforming
8K SM.
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Figure 6.9: The figure shows flythrough Crytek Sponza on NVIDIA SHIELD. Both methods
perform are slow and only interactive. Although SM performs better here, it must be taken
into account that it is only 2k cubemap, compared to previous results where SV are on-par
with 4K SM and difference between 2K SM and SV were much bigger. Thus quality-wise,
shadow volumes are better alternative to SM on this platform as well.

2. silhouette edge set evaluation in vertex shaders

3. rasterization of shadow volumes
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Figure 6.10: Flythrough for Conference room on NVIDIA SHIELD tablet.
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Figure 6.11: Flythrough for Sibenik scene on NVIDIA SHIELD tablet.

4. blending of lit parts of the scene

The results depend on screen resolution. Test were done with resolutions: 800x600, 1920x1080,
2560x1600 and 3840x2160, that corresponds roughly to 0.5, 2, 4 and 8 megapixels video
output. The test was carried out on Sponza flythrough.

The results of flythroughs are shown in graphs for 1920x1080 and 800x600 resolution.
The average values of flythroughts are presented in tables.

As can be seen in the Figure 6.16, the shadow volume rasterization is the most varying
part. As the scene view changes during the animation, the shadow volumes changes occupied
space on the screen, sometimes producing smaller, sometimes higher rasterization work.
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Figure 6.12: Flythrough for Conference Room scene on GeForce GTX 980.
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Figure 6.13: Flythrough for Conference Room scene on Radeon R9 290X.

Table 6.3 and Table 6.4 show average times of all four rendering stages on Sponza
flythrough for four output resolutions. As can be seen from the results, the first and last
stage (ambient scene rendering and blending of lit scene) grows rather slowly with increasing
output resolution. For resolution increase from 0.5 to 8 megapixels, e.g. 16 times, ambient
scene rendering time increases only about 50% on GeForce GTX 980 and by 25% on Radeon
R9 290X. For blending stage, GeForce GTX 980 time increases only about 8% and Radeon
R9 290X time increases by 25%. The second stage (silhouette edge set evaluation) takes
constant time. Shadow volume rasterization grows rapidly. About 36 times on GeForce
GTX 980 and about 16 times on Radeon R9 290X.
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Figure 6.14: Flythrough for Sibenik scene on GeForce GTX 980.
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Figure 6.15: Flythrough for Sibenik scene on Radeon R9 290X.

6.3.3 Synthetic tests

Synthetic tests were designed to get more detailed insight into the algorithm performance
characteristics. The core of the algorithm is the evaluation of edges whether they are sil-
houette edges or not. The task is performed by vertex shaders. The synthetic tests were
focused on execution time of vertex shader for various numbers of edges and various edge
multiplicities. To avoid side effects of shadow volume side rasterization, output triangles
were degenerated at the end of vertex shader. Furthermore, all other rendering passes (am-
bient pass and final blending pass, numbered 1 and 3 in the Section 6.2.1) were removed.
Thus, the measured frame time should be equal to the silhouette edge set computation plus
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Figure 6.16: The figure shows timings of algorithm stages. Data lines in each sub graph
represents stages; from bottom to top: ambient pass, computation of SV, rasterization of
SV and blend pass. It was measured using flythrough in Sponza scene. Y axis is time in
miliseconds and X axis represents animation frames. The top row shows measurements for
GeForce GTX 980 and bottom row for Radeon R9 290X. The left column is for 800x600
resolution while the right column is for 1920x1080 resolution.

some frame overhead. The results for multiplicity 1,2 and 9 are shown in Table 6.5. All
the results are shown on Figure 6.17, Figure 6.18 and Figure 6.19 for GeForce GTX 980,
Radeon R9 290X and NVIDIA SHIELD tablet respectively.

For the edge multiplicity 1 and number of edges in model increasing from 10’000 to
90’000, the frame time grows linearly from 0.1ms to 0.6ms on GeForce GTX 980, from 0.07
to 0.35 on Radeon R9 290X and from 1.49 to 6.88 on NVIDIA SHIELD tablet. Using the
approximation 𝑐0𝑒 + 𝑐1 = 𝑡, the time of single edge computation (𝑐0) is 6.13ns and frame
overhead (𝑐1) is 22.9us. For Radeon R9 290X, the edge evaluation time is 4.02ns and frame
overhead is 33.0us.

Measured rendering times can be approximated using the Equation 6.10:

stage 800x600 1920x1080 2560x1600 3840x2160
4 3.1 3.1 3.4 3.8
3 0.8 6.7 14.3 28.8
2 5.3 5.5 5.2 5.8
1 3.6 3.9 4.6 5.3

Table 6.3: GeForce GTX 980 average times in milliseconds for Sponza flythroughs for all
four stages and resolutions.
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stage 800x600 1920x1080 2560x1600 3840x2160
4 1.8 1.9 2.0 2.3
3 1.5 6.1 12.2 24.0
2 3.1 3.2 3.1 3.2
1 3.5 3.5 3.9 4.4

Table 6.4: Radeon R9 290X average times in milliseconds for Sponza flythroughs for all four
stages and resolutions.

edges G980 R290 Shield
9999 0.10 0.15 1.14 0.07 0.11 0.58 1.49 2.64 82.26

19998 0.15 0.28 2.23 0.10 0.18 1.11 2.70 4.77 155.46
30000 0.21 0.41 3.32 0.14 0.25 1.64 2.96 6.71 226.99
39999 0.28 0.54 4.39 0.17 0.32 2.16 3.45 9.02 302.42
49998 0.34 0.67 5.48 0.21 0.39 2.69 4.05 11.01 393.20
60000 0.40 0.80 6.56 0.24 0.46 3.22 5.02 13.32 445.64
69999 0.47 0.93 7.64 0.28 0.53 3.75 5.47 15.31 519.09
79998 0.54 1.05 8.73 0.31 0.60 4.27 6.14 17.28 592.94
90000 0.60 1.18 9.81 0.35 0.67 4.80 6.88 19.09 664.40

Table 6.5: Silhouette edge computation time for different edge counts and multiplicities.
Three columns for each device represent 1,2 and 9 multiplicities.

𝑓(𝑒,𝑚) = (𝑘0𝑚
2 + 𝑘2𝑚+ 𝑘4)𝑒+ (𝑘1𝑚

2 + 𝑘3𝑚+ 𝑘5) = 𝑡 (6.10)

Where 𝑚 is edge multiplicity, 𝑒 is number of edges in thousands and 𝑡 is measured rendering
time in milliseconds. Using weighted least square approximation, the following coefficients
that characterizes each of our tested graphics devices were estimated:

The approximation by the Equation 6.10 allows easy computation of edge evaluation
time for various multiplicities.

For the constant number of edges and increasing maximal multiplicity, the execution
time grows quadratically as can be seen on Figure 6.17, Figure 6.18 and Figure 6.19. Radeon
R9 290X seems to be faster about two times in edge evaluation time.

All the tests above were carried out on silhouette edges. For the purpose of verification,
the special test composed of all non-silhouette edges was designed and tt verified that the

koef G980 R290 Shield
k0 0.0008437815 0.0004229571 0.0940159968
k1 0.0017681964 0.0001344101 0.309259332
k2 0.0044036999 0.0017166787 -0.1703702257
k3 -0.0119359553 0.0017862163 -1.3526614536
k4 0.000884234 0.0014015652 0.1437560834
k5 0.0430166459 0.0333773652 2.022957563

MWSE [%] 0.9806859032 2.8303320077 9.4299797482

Table 6.6: Coefficients for the polynomial approximation on different platforms. The MSWE
means mean weighted least square error.
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Figure 6.17: Behavior of the algorithm for sides implemented using VS on GeForce GTX
980. Red lines are approximated using polynomial in Equation 6.10.
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Figure 6.18: Behavior of the algorithm for sides implemented using VS on Radeon R9 290X.
Red lines are approximation using polynomial in Equation 6.10.

execution time was the same. The test scene was a sphere with light source inside. In such
scene, there are no silhouette edges.
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Figure 6.19: Behavior of the algorithm for sides implemented using VS on NVIDIA SHIELD.
Red lines are approximation using polynomial in Equation 6.10.

6.4 Conclusion and Future Work
This section presented fast and precise method for shadow rendering in web applications
using WebGL API. Despite limitations of WebGL 1.0 (only vertex and fragment shader,
no queries, etc.), the algorithm is able to compute silhouette shadow volumes on GPU.
The algorithm is robust and works with any arbitrary triangle meshes, producing precise
per-pixel (or per-sample) correct shadows.

The algorithm was tested on number of well-known scenes and it proved to be faster
than omnidirectional shadow mapping with resolution 8k on GeForce GTX 980 and Radeon
R9 290X while not suffering from any artifacts seen on shadow mapping. On Radeon R9
290X, it performs even better and outperforms 4k omnidirectional shadow mapping. Among
the algorithms for precise shadows, this algorithm is one of the fastest for WebGL.

Contribution of this algorithm is the silhouette edge evaluation for arbitrary model
implemented in vertex shader, shadow data space optimizations to limit large amounts of
shadow-data transmitted over network and robust rendering of shadow volume caps by
moving them to infinity.

The future work might reduce the bandwidth requirements by not transmitting the
topology data for shadow rendering but generating them on the client side from the scene
data. The Javascript performance might limit its usefulness. A tempting idea is to use
compute shaders for the algorithm once they are available as WebGL extension or included
in future WebGL releases.
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Chapter 7

Silhouette Extraction for Shadow
Volumes Using Potentially Visible
Sets

The full content of this section can be found in paper [53]. This section presents a novel
approach for accelerated silhouette computation based on potentially visible sets stored
in the octree acceleration structure. The scene space, where the light source can appear,
is subdivided into voxels. The octree voxels contain two precomputed sets of edges that
potentially or always belong to the silhouette, see the Figure 7.1. The novel method of octree
compression for reduction of the memory footprint of the resulting acceleration structure is
also presented. Using the novel technique, the algorithm is able to considerably decrease the
computational complexity of finding the silhouette. The performance is also less sensitive
to the number of edges.

Figure 7.1: left: Wireframe representation of a given model. middle: Voxelized space
around the model. One voxel on the lowest octree level is selected, based on the light
position, and all potentially-silhouette (need to be tested) and silhouette edges (guaranteed
to be silhouette) can be collected by ascending the octree hierarchy. right: Red coloured
edges are those that are a part of the silhouette after testing the set of potentially silhouette
edges (all red and black ones). Only a small subset of model edges needs to be tested, which
considerably reduces the computational complexity.
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7.1 Introduction
Solving surface visibility from a light source (or another point in space in general) is a very
fundamental problem of computer graphics. Determining, whether a point on a surface is
lit from a point light source has been subject of research for decades, as documented by
Woo and Poulin [108]. Over the course of history, two major techniques were developed
to address this problem in the field of rasterization – Shadow Maps and Shadow Volumes.
Although the majority of the derived methods of the above mentioned techniques are based
on Shadow Maps, Shadow Volumes still provide an important option for scenarios requiring
sample-precise shadows, which can be problematic when Shadow Maps are involved due to
their discrete nature and limited resolution.

Crucial part of the algorithm of Shadow Volumes is silhouette extraction, i.e. finding
the subset of edges that have both visible and non visible triangles connected to them from
the light’s perspective. Such edges are subsequently extruded as the shadow volume side
and rendered into the stencil buffer on the GPU. Usually, all the edges are tested during
the rendering of a single frame to determine whether they get extruded or not.

The new method is focused on improving the silhouette extraction performance of the
Shadow Volumes by reducing the number of edges that need to be tested during the Shadow
Volumes rendering of an arbitrary triangle soup. Edge indices are stored in an octree-
like structure created by voxelizing selected scene space. This octree is later traversed by
the GPU to acquire two sets of edges – one set that requires further testing (potentially
silhouette edges, PE), the second set is known to be silhouette (silhouette edges, SE) and
edges inside the set are extruded immediately.

The remainder of the chapter is organized as follows. Section 7.2 outlines the previous
work, focusing on Shadow Volumes and silhouette extraction. The following Section 7.3 in-
troduces the reader to the details of novel algorithm, being divided into octree construction,
compression and traversal. Section 7.4 discusses implementation details and problems. Per-
formance and practical analysis as well as limitations are described in Section 7.5. Finally,
conclusions are drawn in Section 7.6.

7.2 Related Work
Shadow volumes and silhouettes are described in previous sections.

Silhouette extraction methods can be divided into 3 categories – image space, object
space, and hybrid (computing in object space, displaying in image space), as categorized by
Isenberg et al. [45]. The majority of these methods were used to provide object contours for
non-photorealistic rendering, but some of the object-based methods are interesting from the
perspective of Shadow Volumes. Johnson and Cohen [47] use a hierarchy of normal cones to
determine edge visibility. Olson and Zhang [79] propose octree as an acceleration structure
to store Hough transform of a 3D mesh. Gooch [35] and Benichou and Elber [7] designed a
preprocessing method based on projecting face normals onto a Gaussian sphere. However,
all of these methods are limited to 2-manifold objects.

With the introduction of programmable graphics pipeline, research started to focus more
on the ad-hoc algorithms, mostly due to the fact that the new pipeline provided mechanisms
to determine the silhouette during the rendering process with zero or minimal preprocessing.
Silhouettes can be computed in almost any programmable shader stage, specifically vertex
[13] [72], geometry [97], [85], requiring practically no preprocessing, tessellation [75] or
compute (OpenCL) [85] shaders.
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Gerhards et al. [33] use BSP trees constructed from per-triangle frusta. Fragments are
then tested against this structure, whether they are lit or shadowed. This method, however,
needs to rebuild the data structure each time the light source or geometry is changed by
even a rigid transformation.

The proposed method does not require rebuilding (unless the light source moves outside
the targeted space) and it is also invariant to affine transformation – the correct voxel in
the octree is selected by applying an inverse transformation of the object to the light source
and then traversing from the corresponding voxel.

7.3 Algorithm
The algorithm is based on the concept of the potentially visible set (PVS) introduced by
Airey et al. [2]. It precomputes the results of brute force silhouette extraction for a discrete
set of world-space voxels. The brute force extraction process therefore does not need to be
executed on all scene edges but only on a small subset that cannot be precomputed, see
Figure 7.1. This section describes the construction of a compression structure for storing
the PVS in an effective manner. It also describes the modified extraction process.

The algorithm can be broken down into two major stages: construction and traversal.

7.3.1 Silhouette Extraction

The brute force silhouette extraction process is described in previous sections and it is based
on Kim’s algorithm [52] with concept of reference edge [72].

A

B

C

D
light plane

triangle plane

Figure 7.2: Edge AB is not a silhouette edge because triangles ABC and ABD do not lie on
the same side of the light plane. Two triangles partition the world space into four subspaces.

A model is composed of vertices that are connected by edges/triangles. In general, from
1 to 𝑁 triangles can be connected to a single edge. Kim et al. [52] proposed a technique
that computes the difference in the number of triangles on the left and the right side of the
light plane (Figure 7.2) called edge multiplicity 𝑚 ∈ [−𝑁,𝑁 ]. Without loss of generality,
edges with more then 2 connected triangles can be transformed into several simpler edges
by splitting and duplicating. If an edge is connected to only one triangle, it is considered
a silhouette edge in every case. The new method works with edges having maximum of 2
adjacent triangles connected to them.
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7.3.2 Octree Construction

The voxelization step voxelizes space around a model. The size of the space is given by
scaled bounding box (AABB) with user-specified scaling factor, Figure 7.3. The scaling
factor depends on the user’s needs and on the type of the scene (closed-space scenes will
do even with factor 1, open scenes or simple models require larger factors, around 5–10).

Figure 7.3: The algorithm supports custom scales of the scene bounding box. If a larger
scale is selected, the light can be moved farther from the model. The image shows three
different scales with the same voxelization level (in this case 2 levels of octree, 4 × 4 × 4
voxels).

This scaled bounding volume circumscribes all the possible light positions. The user can
then choose the maximal level of the octree hierarchy, see Figure 7.4. AABB scaling and
maximum octree depth define the octree granularity and voxel size on the deepest level.

Figure 7.4: The algorithm supports a custom level of voxelization. The image shows three
levels (1,2,3) of depth of the octree for the same scale of the scene bounding box.

The depth level of 3–5 is suitable in most scenarios. Larger scales tend to consume
too much memory (as described in Section 7.5.1, each octree level increases the amount of
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memory by a factor of 4). The next step is to find two sets (SE and PE) for every voxel
in the lowest level of the octree. The algorithm tests each edge against all voxels on the
lowest level of the octree, as seen in Figure 7.5. If any plane constructed from the triangles
adjacent to edge 𝐸 intersects the voxel, 𝐸 is considered a PE. If none of the triangle planes
intersects the voxel and multiplicity of 𝐸 is non-zero, it is stored among SE (set of silhouette
edges). The multiplicity can be computed against any point inside the voxel because the
whole voxel lies within one of the four subspaces, as demonstrated in Figure 7.2.

no silhouette silhouettepotential silhouette edge triangle

Figure 7.5: Overview of the proposed approach in 2D. The image shows voxels for one
edge. The left side of the image shows the first step of the voxel building algorithm. Voxels
are classified into 3 categories – no silhouette, silhouette and potentially silhouette. The
next step is to propagate this classification into higher levels (middle image). The right
image shows the improvement of compression stage of building algorithm. The octree is
transformed into a tree with nodes containing many different subsets of edges defined by
bitmasks.

The next step is to propagate PE and SE into higher levels of the octree. An edge
can be propagated to the parent node if it is contained in all of its children. Both types of
edges are propagated. The propagation process already significantly reduces the memory
footprint. This propagation scheme is referred as “basic compression”.

The last optional step in octree construction is advanced compression. It extends the
propagation step by allowing edges to be moved to their parent node even if not all of them
are contained in all of its children. These sets of edges are marked with bitmasks corre-
sponding to voxel shapes, see Figure 7.6. Every subvoxel in these voxel shapes contains the
same set of edges, see Figure 7.7. This extended propagation is referred as “8-bit compres-
sion” as the bit mask size is 8-bit integer. Edges can also be propagated into grandparents
(from 64 sibling voxels) which can further improve the compression ratio. That compression
scheme is referred as “64-bit compression”. Octree node data are shown in Figure 7.6.

7.3.3 Traversal

The traversal part of the algorithm has to copy SE and PE subsets from the octree into
two continuous buffers. The light position determines which subsets of edges have to be
copied to the linear buffers, see Figure 7.8.
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Node

Silhouettes

Potential silhouettes

Children

Figure 7.6: Node data in 2D space for the 8-bit compression. One node contains sets of
silhouette and potentially silhouette edges, each addressed by its bitmask value. If a set
shape does not intersect the triangle planes of an edge, the edge is stored into the set. The
largest set shape is chosen if multiple set shapes do not intersect the triangle planes. A
node also contains pointers to child nodes.

A and B only A only B

A
B

Figure 7.7: The first two images show two edges – 𝐴 and 𝐵. Each edge partitions all voxels
into voxel shapes for silhouette case and of potential silhouette case. If some voxel shapes
are the same for both edges, the edge subsets of those voxel shapes contain both edges
(middle image). Otherwise, voxel shapes contain only one edge.

The PE linear buffer is in the final part of the brute force silhouette extraction pro-
cess. However, the PE set is very small compared to the set of all edges which leads to
performance improvement.

7.4 Implementation
The whole process was implemented both on CPU and GPU (OpenGL). The construction
process relies on two compute shaders: the first one is used to load the data to the octree,
the second one for propagation to upper levels.

For larger models, adding edges to the lowest level of the octree is running in batches.
The batch size is limited by the GPU memory size.

Usually, not all edges get stored neither in PE nor in SE buffer of a voxel, thus their
size can be limited to a percentage of total edge count (the factor of 0.8 works for most
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Figure 7.8: 2D illustration of all edge subsets that contain silhouette edges for a given light
position. The hierarchy level is 3. The union of all subsets forms the set of all precomputed
silhouette edges. Similar subsets are selected for all potentially silhouette edges. Note that
some subsets could be empty. A single edge is contained only in one of the subsets (the
largest possible).

cases and can be seen for example in Table 7.1). This increases the batch size and speeds
up the building process.

Data are then copied back to the system memory. Before the edge propagation, which
is also implemented in a compute shader, the algorithm needs to sort the edges, which is
carried out on the CPU in parallel.

At first, the compression was implemented as a multi-core post-processing of the octree,
but such implementation, although parallelized, was 20− 170× slower than 8-bit compres-
sion, based on particular scene. For the 8-bit scenario, the advanced compression was moved
to the compute shader which tests the edges against octree voxels, because it is in this very
step that the bitmask is already known. However, porting the 64-bit compression scheme
to GPU seemed problematic as the potential number of sub-voxels is 264, which would lead
to excessive memory footprint, thus it was performed as CPU post-processing. Due to im-
plementation reasons, compressed nodes using bitmasks other than all-bits-set are located
only in max_depth-1 for 8-bit compression or max_depth-2 for 64-bit.

During traversal, the algorithm first determines the (𝑋,𝑌, 𝑍) voxel coordinates within
the octree from the light position (flooring the floating point coordinates), which are then
converted to linear voxel index. If a light source lies on the boundary between two or more
voxels, only one voxel is selected according to Equation 7.1 where 𝑙 is the light position and
𝐴 and 𝐵 are minimal and maximal corners of the voxel:

𝑙𝑥 ∈ [𝐴𝑥, 𝐵𝑥) ∧ 𝑙𝑦 ∈ [𝐴𝑦, 𝐵𝑦) ∧ 𝑙𝑧 ∈ [𝐴𝑧, 𝐵𝑧). (7.1)

The traversal process depends on the compression level. For non-compressed and 8-bit
compression scenarios, the algorithm traverses the octree and computes an exclusive scan
of sizes of all necessary sub-buffers, which serves as the input to the second stage that
performs the actual data copy from selected subsets to two linear buffers, one for PE, the
other for SE. Traversal for 64-bit compression splits the pre-processing and prefix scan into
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base c8 c64 pot sil
depth scale (MB) (s) (MB) (s) (MB) (s) (n) (%) (n) (%)

1 52 0.62 16 0.58 5 11.39 19668 16.76 16105 72.20
2 57 0.60 18 0.57 5 14.69 21586 18.40 15649 69.91
4 58 0.61 18 0.57 5 17.12 22088 18.82 15514 69.25
8 58 0.61 18 0.57 5 17.98 22179 18.90 15494 69.26

3

16 58 0.61 18 0.57 6 18.35 22147 18.87 15498 69.19

1 235 1.77 77 1.54 27 21.37 10291 8.77 18801 84.28
2 256 1.75 84 1.55 29 29.13 11359 9.68 18531 82.85
4 262 1.75 86 1.54 30 32.38 11610 9.89 18469 82.51
8 263 1.75 86 1.53 30 35.10 11688 9.96 18444 82.37

4

16 263 1.74 86 1.53 30 35.32 11690 9.96 18448 82.42

1 1022 7.67 341 6.82 127 62.17 5304 4.52 20405 91.52
2 1122 7.71 376 6.78 139 76.00 5876 5.01 20266 90.62
4 1147 7.78 385 6.78 141 81.60 6008 5.12 20246 90.45
8 1155 7.69 388 6.79 143 83.72 6038 5.15 20236 90.41

5

16 1155 7.75 388 6.77 142 86.69 6051 5.16 20237 90.39

Table 7.1: Build test of Šibenik scene, consisting of 117 342 edges. We evaluated the build
times and resulting octree size under various voxel sizes and scales. The 3rd and 4th columns
contain results for octree build with basic compression scheme. Columns tagged “c8” and
“c64” show build times and sizes when using 8-bit or 64-bit advanced compression schemes.
The numbers in “Pot Avg” and “Sil Avg” columns show the average number of PE and
SE acquired during octree traversal, tested from each lowest level voxel. The next to last
column tells the average amount of edges from the full edge count that needs to be tested.
The last column describes the average amount of SE acquired from octree as the percentage
of all silhouette edges observed from light position in the middle of each lowest level voxel.

two steps as the amount of sub-voxels increases to several thousands. Splitting the stage
also helps reducing the count of the global memory reads.

7.5 Results
Evaluation took place on the following test setup: Intel Core i5 6500, 16GB of DDR4, nVidia
GeForce RTX 2080Ti (11GB of GDDR6, driver version 419.17), Windows 10 Pro x64. The
test application was built using Visual Studio 2015 x64.

7.5.1 Build and Compression Tests

Comprehensive tests were conducted on the Šibenik, Conference, and Sponza scenes. The
aim was to evaluate the building time and the size of the octree structure, based on the
octree deepest level, size of the voxelization area, and compression type.

Table 7.1, Table 7.2, and Table 7.3 show the performance evaluation of the building
process under various octree settings, with respect to the selected light source position
inside the scene’s bounding box. 3 types of builds are compared: with basic compression
only (first two coloured columns), 8-bit GPU compression (c8) and 64-bit CPU compression
(c64).
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base c8 c64 pot sil
depth scale (MB) (s) (MB) (s) (MB) (s) (n) (%) (n) (%)

1 80 0.84 25 0.79 8 34.95 34338 17.61 19426 65.87
2 93 0.84 29 0.78 9 50.55 39952 20.49 18481 62.37
4 96 0.84 30 0.79 10 59.29 41323 21.19 18288 61.56
8 97 0.84 31 0.78 10 62.89 41656 21.36 18265 61.46

3

16 97 0.84 31 0.78 11 64.99 41794 21.43 18243 61.32

1 379 2.55 121 2.54 42 69.81 18675 9.58 23055 78.19
2 431 2.64 139 2.53 48 106.65 21857 11.21 22317 75.35
4 443 2.62 144 2.52 50 124.19 22595 11.59 22187 74.71
8 446 2.64 145 2.53 51 134.23 22783 11.68 22154 74.54

4

16 447 2.65 146 2.54 52 136.04 22832 11.71 22149 74.51

1 1786 10.66 581 8.80 209 150.24 9894 5.07 25738 87.29
2 2044 11.49 668 8.92 238 222.80 11698 6.00 25234 85.18
4 2102 11.12 687 8.61 245 265.10 12123 6.22 25151 84.69
8 2120 11.23 694 8.81 248 284.60 12219 6.27 25141 84.58

5

16 2121 11.28 694 8.96 249 291.80 12241 6.28 25135 84.56

Table 7.2: Build test of Conference scene, consisting of 195 019 edges. Check Table 7.1 for
column description.

base c8 c64 pot sil
depth scale (MB) (s) (MB) (s) (MB) (s) (n) (%) (n) (%)

1 192 1.56 60 1.40 19 270.59 83074 19.26 31640 58.98
2 202 1.57 63 1.38 20 332.78 86744 20.11 30845 57.30
4 205 1.59 65 1.37 20 361.90 87829 20.37 30661 57.08
8 206 1.62 65 1.37 21 373.43 88157 20.44 30644 57.08

3

16 206 1.60 66 1.38 21 379.24 88382 20.49 30618 57.02

1 893 5.31 289 5.10 96 586.34 44817 10.39 39567 73.72
2 930 5.36 302 4.62 101 705.98 47044 10.91 39029 72.58
4 943 5.40 306 4.62 102 783.30 47414 10.99 38933 72.34
8 946 5.42 306 4.64 103 819.03 47559 11.03 38906 72.34

4

16 948 5.41 307 4.61 103 837.29 47636 11.05 38899 72.34

1 4111 21.17 1359 15.45 498 1210.22 23895 5.54 45123 84.18
2 4305 21.37 1425 15.90 504 1517.91 25094 5.82 44867 83.47
4 4345 21.20 1438 16.18 522 1635.41 25321 5.87 44782 83.34
8 4351 21.25 1441 16.36 511 1735.49 25374 5.88 44819 83.30

5

16 4357 21.13 1443 16.26 519 1789.33 25376 5.88 44782 83.31

Table 7.3: Build test of Sponza scene, consisting of 431 246 edges. Check Table 7.1 for
column description.
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One of the first noticeable things is that 8-bit compression on GPU performs actually
faster than the non-compressed version of the algorithm. This is due to fact that GPU
compression occurs in the very first stage of the algorithm, thus the following stages have
to process a smaller amount of data. However, the 64-bit compression is performed as a
post processing step and it happens on the CPU, thus being very slow, even though the
algorithm was written using OpenMP. The 64-bit compression was also tested on the AMD
ThreadRipper system with 24 cores, which improved the 64-bit compression build time
by around 60%, but other two methods performed significantly slower, probably due to
different architectures of the two processors.

It can be seen that the amount of memory required to store the octree increases with a
factor of 4 with each octree level, but also the average amount of extracted SE increases by
around 10% and the average number of PE that needs to be tested is almost halved with
increasing octree depth, for each of the tested scenes.

This test, however, shows the biggest weakness of the algorithm. The memory consump-
tion is, for a particular model, strongly dependent on the algorithm’s settings. For practical
use, the 8-bit compression scheme seems to be the best choice, in terms of both the building
speed and the size of the resulting octree structure.

The memory consuption can be approximated using Equation 7.2, where 𝑆 is an ap-
proximation of the resulting size of the octree structure in MB, 𝑒 is the number of edges in
millions, 𝑑 is octree depth and 𝑐 is compression ratio:

𝑆(𝑒, 𝑑, 𝑐) = 𝑒 · 8𝑑 · 𝑉𝑑 · 𝑐 (7.2)

Based on the results in Table 7.1, Table 7.2, and Table 7.3, the average compression
ratios can be estimated to 0.32 for 8-bit compression scheme and 0.11 for 64-bit scheme
by dividing the compressed octree size with non-compressed octree. Values 𝑉𝑑 define the
approximate size of a single voxel per 1 million edges. These values were calculated as
𝑉𝑑(𝑑, 𝑒) = 𝑆𝑚/8𝑑/𝑒, where 𝑆𝑚 is the measured size of non-compressed octree. Values ob-
tained by this equation are 𝑉3 = 0.93, 𝑉4 = 0.53 and 𝑉5 = 0.30.

The average relative deviation of Equation 7.2 is 6%.

7.5.2 Silhouette Extraction Tests

The new method (with 8-bit compression) was compared to a brute-force compute shader
implementation of silhouette extraction, based on an OpenCL implementation and multi-
plicity theorem described in [85]. Both methods output edge indices as their result. This
test contained 26 models in total, mixing popular models (Sponza, Šibenik, Buddha, Con-
ference, Gallery, Bunny1) with two types of synthetic scenes – the first type were scenes
consisting of uniform grid of increasing amount of spheres, having 33 750 to 1 574 640 edges.
The second type consisted of randomly positioned spheres differing in numbers, having
124 200 to 933 120 edges. The algorithm was evaluated with two levels of octree depth (3
and 5) posing as best and worst case, and scene scales 1, 2, 4, 8, and 16.

In a single test run, the light source moved through the octree volume in a 10× 10× 10
grid, both for novel method and the brute-force approach. From each light position, the
traversal time was evaluated as average of 5 runs. In total, 75 000 measurements were made
in each scene: 50 000 for novel approach and 25 000 for brute force method.

The result can be seen in Figure 7.9. The novel accelerated approach has reduced the
sensitivity of the algorithm to the number of edges, compared to the brute force approach.

1freely available at https://casual-effects.com/data/
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Figure 7.9: Average extraction times for compilation of 26 scenes (sorted by the number
of edges). Red line represents bruteforce compute shader method, blue line represents our
new proposed method. The area around the lines represents (+-) mean absolute deviation.

Compression Average
(ms)

Max Abs Deviation
(ms)

basic 0.098 0.011
8-bit 0.102 0.012
64-bit 0.134 0.013

Table 7.4: Comparison between compression levels on Sponza scene. Average octree traversal
time calculated from 1000 different light positions in the scene and maximum absolute
deviation from the average.

The new method performs always better on models having more than 200 000 edges and
it is also more stable. Its average absolute variance is almost half, compared to the brute
force method.

The performance difference when using different compression ratios was also evaluated.
The light source moved around in Sponza scene in the same way as described in the previous
test. The results can be seen in Table 7.4. The complexity of the 64-bit compression traversal
outweighs its benefits in the form of lower size, thus the 8-bit compression scheme seems to
be the best choice.

The extraction time for brute force approach can be estimated as 𝑡𝑏 = 𝐸 ·𝐾 where 𝐸 is
the number of edges and 𝐾 is extraction complexity. Novel method yields 𝑡𝑡 = 𝑃 ·𝐸 ·𝐾+𝑇
where 𝑇 is traversal cost and 𝑃 is the ratio of potential edges, which can be seen in 2nd
last column of Table 7.1, Table 7.3 and Table 7.2. Based on the build test results, the 𝑃
can be estimated to be 0.2, 0.1 and 0.05 for octree levels 3, 4 and 5. According to the
measurements, 𝑇 was 0.075 ms in average and was not dependent on the number of edges.
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7.6 Conclusion

Figure 7.10: One of the possible extensions to the algorithm. Instead of using one hierarchical
structure, the algorithm would use two – one for the close vicinity of the model and one for
all the other space around. The green part shows the hierarchical structure as presented, the
orange parts is the second hierarchical structure. The second structure uses angles instead
of voxels.

This section presents a novel approach to accelerated silhouette extraction by storing
pre-computed PVS in an octree, as well as novel octree compression schemes.

The majority of the building process was implemented on GPU using OpenGL and
compute shaders. The building process is reasonably fast when using 8-bit compression
scheme, as it processes less data then the basic compression scheme. The resulting octree can
be stored in a file to avoid repetitive builds in subsequent runs. Experimentally, the octree
size can be reduced using 64-bit compression to around 12% of basic compression scheme,
but the compression itself was used as a post-processing step on CPU, thus not performing
as fast as the GPU implementation. In terms of performance, 64-bit compression also lagged
behind due to having a more complicated traversal. The 8-bit compression scheme provides
the best results in terms of octree size and traversal speed.

Compared to the brute-force approach, the new method is less sensitive to the number of
edges. It is also more stable, in terms of maximal absolute deviation. The biggest drawback
of the method is its memory consumption and also spatial limitation due to the nature of
voxelization. The method also would not work well on scenes with dynamic geometry (e.g.
morphing).

This method could be further improved by storing triangle indices instead of edges. In
theory, it could reduce memory footprint of the method even more. The whole structure
does not need to reside on the GPU but can be streamed as needed. Future research could
also evaluate usage of homogeneous coordinates, which may create hierarchy with unlimited
spatial span, see Figure 7.10.
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Chapter 8

Shadow Mapping, Many Lights

Previous sections describe sample precise shadow methods focused main on robustness and
performance. This section briefly describes shadow mapping methods with focus on quality
improvements and algorithms for scenes with many light sources.

8.1 Shadow Mapping
Basic shadow mapping principle is described in the previous section. Shadow map based
methods are fast real-time algorithms affected by variety of visual artifacts. A lot of research
is aimed at visual artifacts mitigation. Most of the problems can be traced to difference in
samplings from camera and light point of view, Figure 8.1. Jagged edges and self shadowing
(Figure 8.2) are one of the most common problems. Self shadowing is usually mitigated
using a small bias introduced to depth comparison. This bias, however, can create other
problem - missing shadows. Jagged edges are mitigated by large spectrum of methods.
A lot of methods try to modify shadow sampling to improve coverage of view-samples.
Such methods are based on fitting, partitioning, warping or other techniques. Fitting tries
to find minimal required shadow frusta. Partitioning splits space into multiple areas each
with separate shadow map. Warping reparameterizes sampling using scene deformation
techniques. Most methods can be combined together, some are viable only under certain
circumstances.
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self-shadowing

jagged shadow edges

a shadow-sample
do not lie on a shadow-ray

Figure 8.1: The image shows difference in samplings from camera and light point of view.
The distribution of view-samples (blue) is different than the distribution of shadow-samples
(red). In the ideal situation, every shadow-sample lies on a ray from the light to the view-
sample and every view-sample has exactly one corresponding shadow-sample. Some possible
visual artifacts can be seen in the Figure 8.2
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Figure 8.2: The image shows common visual artifacts that affect shadow mapping algorithm.
The top left part shows jagged shadow edges caused by a low shadow sampling rate. The
top right part shows self shadowing caused by regular sampling and imprecise shadow-
sample placement. The bottom left part shows the self shadowing artifact (also known as
shadow acne) and the right one shows one possible mitigation. The mitigation biases the
depth comparison removing shadow acne, but it also introduces new artifact. The shadow
is missing near the shadow caster.
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8.1.1 Fitting

The fitting tries to find the smallest shadow frusta. When a scene is rendered from a light
point of view, it is desirable to render only the necessary parts of the scene. Brabec [11]
introduced fitting and focusing techniques. In order to find minimal shadow frusta, it is
necessary to construct convex hull containing useful geometry, Figure 8.3. The process of
finding minimal shadow frusta can be improved using visibility information. Bittner et al.
[10] proposed method for caster culling. Lauritzen et al. [58] analyzed distribution of samples
in order to further reduce shadow frusta size. The fitting mitigates jagged shadow edges
but also introduces a new problem - temporal aliasing. When the camera, the light source
or objects in the scene move, the fitting produces different shadow frusta creating flickering
artifacts. Valient [102] and Zhang et al. [29] tried to address this issue. More information
about fitting can be found in the book Real-Time Shadows [25].

Figure 8.3: The image shows process of finding minimal shadow frusta. The top left image
shows a scene enclosed in a bounding box (blue), a light source, and a camera with view
frustum (red). The top right image shows intersection of the view frusta and the scene
bounding box (magenta). The intersection forms a volume containing all possible shadow
receivers. The volume is extended with the light source in the left bottom image, Wimmer
2006 [71]. The extension is then clipped with the scene bounding box creating the convex
hull. In the final step, the convex hull is tightly enclosed within shadow frusta. The process
can be improved with view-samples and visible surfaces examination, Figure 8.4.
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Figure 8.4: The image shows improved process of finding minimal shadow frusta. The pro-
cess involves examination of view-samples and visible surfaces (black line segments). It is
more computationally expensive but provides tighter shadow frusta with better sampling.
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8.1.2 Partitioning

While fitting finds more optimal shadow frusta, it cannot solve all the problems. View-
samples can easily be distributed in such a way that the minimal shadow frusta size is not
reduced at all. Other approaches are trying to solve this issue by space partitioning and
multiple shadow maps, see Figure 8.5

Z-Partitioning is one of the most common global partitioning schemes. It is named
cascaded shadow maps and it was proposed by Engel [27]. It was also proposed by other
authors: z-partitioning by Lloyd [63] or parallel split shadow maps [110]. The positions
of splits are important. Some authors suggested logarithmic splitting or weighted average
between the logarithmic and linear approaches. Others proposed methods that analyze
view-sample distribution.

Researchers over the years introduced many partitioning schemes and in detail descrip-
tion is out of scope of this thesis. More information about partitioning can be found in the
book Real-Time Shadows [25] in section Global Partitioning.

Figure 8.5: The image shows partitioning process for sample distribution improvement. In
this example, three shadow maps (red, blue, orange) are used, each focusing on a different
part of the scene. The space is partitioned along camera’s z-axis.
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8.1.3 Warping

While partitioning generally creates multiple shadow maps, warping can be used with a
single shadow map. Warping tries to modify the distribution of shadow-samples that are
generated in regular grid during shadow map rasterization. Today’s hardware does not
support irregular rasterization. Warping algorithms warp and deform scene geometry in
order to achieve irregular sampling, Figure 8.6.

Figure 8.6: The left side shows irregular sampling that is unsupported by hardware ras-
terization. The right side shows regular grid based sampling. The scene is warped and
deformed in such a way that samples are distributed in the desired irregular pattern. If the
scene contains large triangles, warping process cannot correctly deform the space. Green
line segments are tessellated in order to allow better sample distribution.

There are global warping schemes that apply single warping function to the whole scene.
Stamminger [96] introduced concept of perspective shadow maps which uses perspective
projection as the warping function. Perspective shadow maps were further extended by
other authors. Wimmer proposed light space perspective shadow maps [107]. Martin et al.
proposed trapezoidal shadow maps [66]. Lloyd proposed logarithmic perspective shadow
maps [62]. Global warping schemes have smaller degree of freedom and do not drastically
deform scenes.

Local warping schemes, on the other hand, can significantly deform scenes. The warping
process is localized, which means that some parts of a scene are warped more than others.
The local warping function adapts to the scene, light, camera and samples properties. Rosen
proposed rectilinear texture warping [88]. The method uses two 1D warping functions that
are derived using so-called importance map. The importance map highlights parts of the
scene that require higher sampling and the warping functions enlarge them. The importance
map is constructed using view-samples. Jia proposed distorted shadow mapping [46] which
tries to enlarge shadow borders. Milet et al. proposed non-orthogonal texture warping [73]
extending Rosen’s method. Instead of using two 1D warping functions, they used two sets
of 1D warping functions giving the warping process more degree of freedom.
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8.1.4 Other Techniques

Different approaches have also been proposed. Some researchers combined shadow mapping
and shadow volumes, others used information from previous frames or tried to filter shadow
maps.

Temporal Reprojection

Daniel Scherzer proposed shadow maps with temporal reprojection [90]. The algorithm
uses information from previous frames stored in history buffer. Each frame is rasterized
with subpixel jitter in order to improve sampling overtime. The history buffer is updated
every frame. The algorithm can be summed as follows:

1. Evaluate shadows for every view-ample using standard shadow mapping algorithm.

2. Transform history buffer to the current frame.

3. Update the history buffer using the current shadow map.

4. Shadow every view-sample using updated history buffer.

The method uses a term confidence which represents the closeness of a view-sample to the
closest shadow-sample. In other words, it measures the correctness of shadow map test. If
the view-sample is exactly at the same position as shadow-sample, the confidence is one.
The history buffer is updated in order to increase confidence. The method converges into
per sample correct shadows after sixty frames.

Figure 8.7: The shadow adaptation over time after one, twenty, forty and sixty frames. The
image is taken from paper [90].

Hybrid Approaches

Shadow volume algorithms are sample correct shadowing techniques, but they are slower
than shadow map based methods. On the other hand, shadow mapping algorithms are not
sample correct but they are fast. Hybrid methods try to combine both approaches. Shadow
mapping alias artefacts mainly occur on the edges of shadows. The hybrid method described
by Eric Chan [15] uses shadow volumes on shadow borders and shadow mapping elsewhere.
Shadow volumes algorithm is computed only on a small subset of pixels.

First step of the algorithm creates standard shadow map. Shadow mapping is applied
only on view-samples whose shadow-samples are surrounded by eight samples with the
same shadow result. This constraint prevents usage of shadow mapping on the shadow
edges. View-samples that do not meet this constraint are marked. These marked pixel are
shadowed using Shadow volume algorithm. Algorithm suffers from visual artifacts caused
by imperfect rasterization, Figure 8.8.
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Hybrid: 256x256 Hybrid: 512:512 Hybrid: 1024x1024 Shadow Volumes

Figure 8.8: The top row shows result of hybrid method. The bottom row shows regions,
where the standard shadow mapping is used (visualized in red) and where the shadow vol-
ume algorithm is used (visualized in green and black). Visual artifacts are highlighted using
red and green squares. Artifacts are caused by imperfect shadow mapping rasterization. If
a triangle is too small, it can be missed by rasterization. Also, a small slit between two
triangles can create incorrect shadows. The image is taken and modified from Chan’s paper
[15].

8.2 Many Lights
Recent scenes in compute graphics contain huge amount of light sources. The computation
of lighting becomes more and more expensive with the increasing number of light sources.
The common lighting model in computer graphics application is Phong lighting model
[86]. The final color is computed from three components: ambient, diffuse and specular
colors. Computation of these components have to performed on every view-sample. If a
scene contains 𝐿𝑛 light sources and 𝑆𝑛 view-samples, the Phong lighting equation has to
be evaluated 𝐿𝑛 · 𝑆𝑛 times. Some methods are focused on reduction of 𝑆𝑛 while others on
𝐿𝑛.

8.2.1 Deferred Shading

Deferred shading [40] reduces the number of view-samples 𝑆𝑛. This method rasterizes a
scene into so-called geometric buffer or G-Buffer. The buffer usually contains three 2D
arrays storing positions, normals and colors. After the G-Buffer is constructed, the lighting
is computed using the stored information. This process ensures that the Phong lighting
equation is done only on the closest view-samples. This can also be achieved using forward
shading with pre z-pass.

8.2.2 Tiled Shading

Tiled shading was introduced in 2011 by Ola Olsson et al. in paper called Tiled Shading [80].
Their method reduces an average number of light sources per view-sample. The method
assumes that if the light source is far away from a view-sample, its contribution will be
negligible. The intensity of light decreases with the distance according to the inverse square
law [61]. A Light source can be enclosed within a bounding sphere and it can only affect
samples which lie inside. A list of light sources can be assembled for each view-sample, which
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would be inefficient. Instead, the algorithm constructs lists for screen tiles. The algorithm
can be described as follows:

1. Screen samples are grouped together forming 2D grid of tiles in screen space.

2. The light list is assembled for each screen tile.

3. View-samples are illuminated using information stored in lists.

A Light source insertion can be seen on Figure 8.9. If a screen-space bounding quad of a
light source intersects a bounding quad of a tile, the light is inserted into the tile’s list. The
intersection test can be extended by usage of bounding boxes. In order to extend bounding
quads to bounding boxes, the minimal and maximal depth of the tile has to be found.

Figure 8.9: The image shows screen divided into 2D grid of tiles. Lights are represented as
blue bounding quads, green tiles contain only one light source, blue tiles contain two light
sources and orange tile contains three light sources

Tiled shading provides lighting acceleration, but it also increases precision. The light
accumulation is done in register using full floating-point precision. It has one drawback.
The total illumination of the scene is decreased. This is caused by reduction of radii of
influence of light sources. Tiled shading was extended by Harada in paper A 2.5D Culling
for Forward+ [39]. The extension provides better, depth-based light culling.
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8.2.3 Clustered Shading

Tiled shading clusters screen samples based on their 2D position. Clustered shading de-
scribed in paper Clustered Deferred and Forward Shading in 2012 by Ola Olsson [81] creates
clusters differently.

The algorithm creates clusters containing samples that have similar 3D position. Nor-
mals of screen samples can be used for clustering as well. The clustering creates clusters
with smaller number of screen samples. A light list of each cluster contains a smaller num-
ber of light sources. A light is inserted into light list only if its 3D bounding box intersects
cluster and normal cone of the cluster points toward the light source. Clusters can be seen in
Figure 8.10. Clustered shading speeds up lighting even more than Tiled Shading; however,
the construction of clusters is more computationally demanding.

Figure 8.10: The left part of the image shows the original scene. The middle part shows
clustering based on 3D positions of screen samples. Flat regions produce clusters that are
similar to tiles in Tiled Shading. The right part shows clustering based on 3D positions and
normals of screen samples. The image is taken from paper [81].

O’Donnel et al. introduced Tiled Light Trees [84]. The method adapts hierarchical accel-
eration structure according to light source distribution. Tokuyoshi et al. proposed Stochastic
Light Culling for VPLs on GGX Microsurfaces [99]. The approach uses ellipsoid to enclose
virtual point light sources. Archer et al. introduced Hybrid Lighting for faster rendering of
scenes with many lights [5]. The algorithm improved building of a 3D light grid.

While tiled or clustered shading only computes lighting, Olsson et al. proposed method
that also computes shadows using virtual shadow maps [82] and [83].
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8.2.4 Light Cuts

Light cuts is an algorithm that clusters light sources. It was introduced in 2005 by Bruce
Walter in paper Lightcuts: A Scalable Approach to Illumination [104]. Light sources are
grouped together by their influence on a scene. If light sources are close to each other and
have similar color and intensity, they are clustered. The clustering is done hierarchically.
Hierarchical clusters could greatly reduce computation time of illumination. Screen samples
can be illuminated using clusters of lights, in case of no significant visual artefact. Light
cuts can be seen in Figure 8.11. The algorithm is scalable and it is commonly used for
realistic illumination computation.

Figure 8.11: The image shows a scene illuminated with four light sources. Four light sources
are clustered into a tree (right side). Four separate images show different cuts of the light
tree.
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Chapter 9

An Improved Non-Orthogonal
Texture Warping for Better
Shadow Rendering

In interactive applications, shadows are traditionally rendered using the shadow mapping
algorithm. The disadvantage of the algorithm is limited resolution of the depth texture
which may lead to aliasing artifacts on shadow edges. This section introduces an improved
depth texture warping with non-orthogonal grid that can be employed for all kinds of
light sources. For instance, already known approaches for reducing aliasing artifacts are
widely used in outdoor scenes with directional light sources, but they are not directly
applicable for omnidirectional light sources. The new method shows that the improved
warping parameterization reduces the aliasing artifacts and it is able to present high quality
shadows regardless of a light source or a camera position in the scene, Figure 9.1. The full
content of this section can be found in paper [73].

SV SM RTW

NEW NEW-DV MIN-SM

Figure 9.1: The figure shows the difference in quality of shadows cast from Observatory scene
using different methods. Red pixels are wrongly evaluated. From left to right: Shadow Vol-
umes (SV), Shadow Mapping (SM), Rectilinear Texture Warping (RTW), the new solution,
the new solution using only desired view (DV), SM + minimal shadow frustum.
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9.1 Introduction
The quality of computer-generated imagery is still being improved. Nowadays, computers
can synthesize images in nearly photorealistic quality and in real-time. One of the most
important visual cues, still worth improving, are shadows. The two key algorithms for
shadow rendering [106, 17] have been accelerated on GPUs. The shadow volumes approach
[17] suffers from the need to render a large amount of data to gather necessary information
for rendering shadows. On the other hand, shadow mapping approach [106] is limited by
the size of depth texture. In this section, this problem is addressed with the improved depth
texture parameterization that makes use of the available resources more efficient.

The resolution of the shadow map determines the number of samples that can be utilized.
Some approaches were introduced that improve sampling of the important parts of the scene.
These approaches work well for outdoor scenes where the major part of lighting comes from
the directional light source [110]. This type of light sources can be processed efficiently with
the shadow mapping algorithm. On the other hand, the basic shadow mapping algorithm
cannot easily address omnidirectional light sources and it needs additional improvements,
e.g. using cube shadow maps, or an alternative parameterization [11, 88, 46]. In this case,
the improved sampling is difficult to achieve using approaches mentioned above because the
algorithms would need non-trivial modification.

Since the omnidirectional point light sources can cast shadows into all directions, the
regions where the need to improve scene sampling exists can be distributed throughout the
depth textures. It all depends on the scene complexity and also on the mutual position of
the light source and the camera. While outdoor scenes are lit by directional light source,
the important parts are located in front of the camera and the importance decreases with
a distance from the camera.

Various approaches have been introduced that can parameterize the shadow map and
thus improve sampling on selected parts of the scene based on the scene analysis [103, 78,
88, 46]. However, neither of these approaches is fully automatic or robust enough and they
work only in few cases when the scene is lit with directional light sources or the light source
is outside a camera view frustum.

The new solution computes an improved parameterization based on importance driven
depth texture warping. Regions in the depth texture, where the sampling is not optimal, can
be identified. These regions can be enlarged in order to get higher sampling rate. The novel
method employs modern GPUs in the warping process thus these additional computing
steps have no crucial impact on an overall performance.

The new approach introduces an additional step that is performed before the tradi-
tional shadow mapping algorithm is applied. In this step, a non-orthogonal warping grid is
computed and this grid is used during the shadow rendering step.

Main contributions are:

∙ Introduction of a novel importance function for determining sampling rate of depth
texture. This function extends the set of functions introduced by Rosen et al. [88],

∙ The non-orthogonal warping grid which leads to better control of importance-based
warping without affecting the nearest regions in the texture (in the same row and/or
column).
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9.2 Previous Work
The shadow mapping algorithm was first published in 1978 [106]. Since then, many ap-
proaches addressing its aliasing issues have been published.

Stamminger and Drettakis [96] introduced an idea of creating depth texture after per-
forming of perspective projection. This step emphasizes regions in front of the camera where
the aliasing errors are mostly observable. However, results of this approach are dependent on
the mutual position of a camera and a light source. In some cases, creating depth texture in
post-perspective space may lead to very unpleasant results because of the perspective trans-
formation function. Also, the overall results are influenced by objects outside the camera
view frustum because they introduce additional complexity to the computation.

Fernando et al. [30] introduced a hierarchical structure by subdividing shadow map
into smaller shadow map pages having different resolutions due to different level of aliasing
in different parts of the current camera view frustum. With camera being dynamic, this
hierarchical structure needs to be updated per frame and due to limitations of graphics
hardware of that time, significant part of the algorithm runs on CPU.

This method was further optimized by Lefohn et al. [59]. Evolution of GPU hardware
allowed more of the algorithm to move on the graphic chip itself by programmable vertex
and pixel shader pipeline stages.

Parallel-split shadow maps approach was introduced by Zhang et al. [110]. The idea is to
split view frustum into multiple parts according to depth, split light frustum into multiple
ones and then independent shadow maps are rendered for each layer. Splitting view frustum
is based on a practical splitting algorithm which averages logarithmic and uniform splitting
scheme. However, this method is targeted and optimized for outdoor scenes and it would
need some amount of work to adapt it for indoor scenes and namely omnidirectional point
light sources. Also, the approach does not deal with the perspective aliasing error correctly.

Based on Zhang, Lauritzen et al. introduced Sample distribution shadow maps which
further improves partitioning, [58]. The camera frustum is partitioned automatically based
on receiver sample distribution given by depth buffer, eliminating areas with no shadow
samples. This sample distribution is also used to compute tightly-bound light-space parti-
tion frusta.

The first method that addressed the problem of important regions distributed in the
depth texture was introduced by Rosen [88]. He introduced the rectilinear warping maps
that could easily control the sampling in particular parts of the depth texture. This could be
controlled by importance function and the approach could be used for point light sources
without complex modification. Nevertheless, the rectilinear warping schema is not com-
pletely local. Other parts of a scene may receive unneeded resolution. This can lead to
reduction in overall quality.

Similar approach was published by Jia et al. [46]. They do not limit the approach
to perpendicular splitting planes; therefore, they can control the results more precisely.
However, this approach needs multiple render passes of the scene to analyze the scene and
then decides the dividing schema. This might introduce certain issues for complex scenes.

Finally, some approaches that were focused only on point light sources have been pub-
lished recently [103, 78]. They discussed possibilities for improving shadow quality using
Dual-Paraboloid shadow maps [11]. But this technique is not sufficient due to its nonlinear
transformation during generation of depth textures. This introduces additional limitations
regarding model quality and especially size of polygons.
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9.2.1 Scene Sampling and Parameterization

The shadow mapping algorithm works with two types of samples. A view-sample is a point
on a scene surface that is described by its 3D position (and other properties such as color,
normal vector etc.). The view samples are generated by sampling the scene’s geometry from
a camera point of view. Secondly, shadow-samples are generated by sampling the scene from
a light source point of view. In both cases, the sampling is performed using an orthogonal
grid with a predefined resolution.

However, multiple view samples can be projected onto one shadow sample and then
aliasing can be observed in the final image as jagged edges of the shadows. This is caused
by uniform rasterization of a texture produced by a graphics hardware.

Another solution is to parameterize the sampling using a warping function 𝑦 = 𝑓(𝑥).
The function enlarges important parts of a scene in order to increase shadow sampling rate.
This technique increases a probability that shadows for different view samples are resolved
by different shadow samples. There are two types of the warping function - global and
local. The global warping function can be defined by a transformation matrix. This warping
function mostly depends on a mutual position of a camera, a light source and geometry
and ignores properties of view samples [96]. The local warping function is derived from
properties of view samples and scene analysis [88, 46].

9.2.2 Rectilinear Texture Warping

The novel algorithm is partially based on Rectilinear Texture Warping (RTW) approach
[88]. RTW approach utilizes various properties of view samples, e.g. distance to a camera,
normal vector or edge detection. The warping function can be constructed using forward,
backward or hybrid analysis.

The first step in the forward analysis is rendering of the scene from a light source point
of view. Then, the importance map is computed.One additional rendering step is necessary
to compute shadows. In the backward analysis, the G-buffer with the scene’s depth and
color is rendered from a camera point of view. Then, the importance analysis is performed
using samples projected into the light space. The hybrid analysis combines both approaches.

The backward analysis is the fastest method because it requires the scene to be rendered
only two times. The first rendering pass is used to create a depth buffer from a camera. The
second rendering pass creates a warped shadow map. Its complexity is linear with relation
to the number of light sources.

The warping function in RTW is composed of two 1D warping functions that operate
on projection plane of a light source (see Figure 9.2). These functions are derived from an
importance map. The importance map is constructed by projection of view samples onto
the projection plane of a light source. Multiple view samples can be projected into one pixel
of the importance map. For every pixel, the importance value is computed using the view
sample properties. The 1D warping functions are derived separately for column and rows
according to a maximal importance value. Since the functions parameterize vertical and
horizontal component of the shadow map separately they produce an orthogonal warping
grid.
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Figure 9.2: Two 1D warping functions in the light space enlarge parts of the scene that are
important according to the importance map.

9.3 Shadow Rendering Using Non-Orthogonal Warping Grid
The basic idea of the novel algorithm is to achieve better distribution of view samples in the
shadow map. Every shadow sample resolves shadow for all view samples that were projected
on it. The ideal situation occurs when one texel from the shadow map samples a surface
that is projected onto one pixel in the image space. However, this is hardly achievable in
most of the scenes because of the scene complexity, geometry and mutual position of the
camera and the light source. Because of this fact, it can be assumed that the best result is
observed when the number of view samples for all shadow samples is the same.

In the new approach, the importance map has the same resolution as the shadow map.
Every pixel in the importance map stores the number of view samples that are sampled
by the given shadow sample. The importance map can be created by projection of view
samples into to the light space and incrementing a counter by one. This step can be easily
accelerated by contemporary GPUs.

The complete algorithm for shadow computing consists of the following steps:

1. Render a scene from a camera point of view to G-buffer

2. Project every view sample into the importance map

3. Compute prefix-sum for every row in the importance map

4. Construct the set of warping functions for rows according to Equation 9.4. Use the
prefix-sum from the Step 3

5. Smoothen the set of warping functions, e.g. using weighted average

6. Project every view sample onto the importance map (and increment by 1) leveraging
the set of warping functions created in the previous step

7. Repeat the Steps 2-5 for all columns
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8. Create shadow map using both sets of warping functions

9. Evaluate shadows in the scene using G-buffer, the set of warping functions and the
warped shadow map

The first step is generation of the G-buffer. Apart from other properties, it contains
positions of view samples that are needed for importance estimation.

x

y

x

y

Figure 9.3: Importance map for RTW, Left: Combination of two 1D warping functions,
Right: two 1D warping functions. It can be seen that blue parts are oversampled. The
larger cells cover more important areas of the shadow map.

The most important are the steps 2-7 where the algorithm constructs the set of 1D
warping functions. Warping functions are derived in different manner than Rosen [88]. For
every row and every column, the algorithm constructs one 1D warping function separately
and thus it does not allocate unneeded resolution in other parts of the shadow map. The
degree of freedom for warping functions is increased using this approach and it should not
allow the situation illustrated on the Figure 9.3. The steps are described in detail in the
following section.

9.3.1 Construction of 1D Warping Functions

For one row of the importance map, let 𝑓(𝑥) be a function that returns the number of view
samples on a normalized position 𝑥 and let 𝑔(𝑥)be its corresponding prefix-sum function:

𝑛 = 𝑓(𝑥) 𝑥 ∈ ⟨0, 1⟩ (9.1)

𝑠 = 𝑔(𝑥) =

∫︁ 𝑥

0
𝑓(𝑥)𝑑𝑥 (9.2)

For evenly distributed view samples in the row, the ratio of the number of view samples
on all positions before 𝑥, i.e. 𝑔(𝑥), and the total number of view samples 𝑔(1) = 𝑁 is equal
to ratio of the position 𝑥 and the row length:

𝑔(𝑥)

𝑔(1)
=

𝑥

1
(9.3)
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Expression 𝑔(𝑥)/𝑔(1) > 𝑥/1 implies that there are more view samples than the number
of samples 𝑥 and thus the area needs to be enlarged to achieve uniform sampling rate. On
the other hand, expression 𝑔(𝑥)/𝑔(1) < 𝑥/1 implies that there are less view samples and
the area can be smaller.

The warping function can be derived as an offset 𝑜(𝑥) that has to be added to the actual
view sample position. The offset function is given by:

𝑜(𝑥) =
𝑔(𝑥)

𝑁
− 𝑥 (9.4)

If a view sample is projected onto a particular row in the shadow map, then a new
sample position 𝑥′ in the row is given by:

𝑥′ = 𝑥+ 𝑜(𝑥) (9.5)

Before warping functions for columns are constructed, the importance map needs to
be recomputed. The newly derived set of 1D warping functions for rows is applied to the
importance map. After this step, the number of view samples that have to be redistributed
in a given column is nearly constant (see Figure 9.4). When 1D warping functions for
columns are derived, all view samples are distributed almost uniformly.

Figure 9.4: Left: Five rows of the importance map. Blue dots indicate view samples. Right:
the importance map constructed using the set of row warping functions. Columns in the
left do not contain the same number of view samples. Columns in the right contain approx-
imately the same number of view samples.

As it is mentioned in the Section 9.2.2, the RTW algorithm constructs two 1D warping
functions - one for rows and one for columns. The novel algorithm improves this approach
and constructs a set of warping functions for all rows and all columns. Nevertheless, these
functions need to be smoothened in order to prevent them from providing too different
offsets. Otherwise, the large polygons that are linearly rasterized would not be processed
correctly. The smoothing step is included in the RTW algorithm as well. Rosen performs this
step on the warping functions. However in the novel approach, the smoothing is performed
among all warping functions. It can be implemented, for instance, as a weighted average
of the results based on the number of view samples on a row or a column respectively (see
Figure 9.5).

The complete warping function can be expressed as:
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Figure 9.5: Top Left: Importance map. Top Right: The importance map after application
of row warping functions - importance map for columns. Bottom left: a set of warping
functions for every row of the importance map. Bottom right: warping functions smoothed
using an averaging window shown in green. Yellow color in warping functions means positive
offset to the right for certain position in the row. Blue color means offset to the left.

𝑤𝑎𝑟𝑝(𝑥, 𝑦) = (𝑥+ 𝑜(𝑖)𝑥 (𝑥), 𝑦 + 𝑜(𝑗)𝑦 (𝑦)) (9.6)
𝑖 = ⌊𝑦 · 𝑤⌋
𝑗 = ⌊(𝑥+ 𝑜(𝑖)𝑥 (𝑥)) · 𝑤⌋

where 𝑤 is the shadow map resolution (number of pixels in a row), 𝑜(𝑖)𝑥 (𝑥) is a warping
function for 𝑖𝑡ℎ row, 𝑜(𝑗)𝑦 (𝑦) is a warping function for 𝑗𝑡ℎ column.
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When both sets of warping functions are applied, the view samples projected onto the
projection plane of a light source are better spread as can be seen on the Figure 9.6.

100

0

Figure 9.6: Top Left: Scene rendered from a camera point of view. Top Right: the importance
map created from view samples. Bottom Left: reprojected view samples using only row
warping functions. Bottom right: reprojected view samples using both sets for warping
functions. It can be seen that view samples are more spread across the importance map in
the final stage. Light parts of second image are pixels with no view samples. These pixels
correspond to those shadow map pixels that are unused - they resolve shadowing equation
for invisible parts of the scene. In the final image, these light parts almost disappear and
the number of projected view-samples for each shadow map texel is reduced.

Once the algorithm constructs both sets of the warping functions, the shadow map can
be generated (see Step 8 of the proposed algorithm). A surface point with a world-space
coordinate v = (𝑣0, 𝑣1, 𝑣2, 1) is projected onto the shadow map in Algorithm 12. Final
shadow map can be seen in Figure 9.7.
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Algorithm 12: Warping function that can be used in vertex / evaluation
shader. Steps 1, 2 project vertex into normalized coordinates of shadow map.
Step 3 moves vertex according to warping funcions. Steps 4, 5 project vertex
back into shadow map clip space.

Input: v - vertex in world space, 𝑀 - light projection view matrix
Output: p - vertex in the shadow map clip space

1 a = 𝑀 · v;
2 b = ((𝑎1, 𝑎2)/𝑎4 + 1)/2;
3 c = warp(b);
4 d = (c · 2− 1) · 𝑎4;
5 p = (𝑑1, 𝑑2, 𝑎3, 𝑎4);

9.3.2 Minimal Shadow Frustum Extension

The algorithm was improved by finding a minimal shadow frustum (MSF) [96] and it was
extended using rotating caliper. Using this technique, the algorithm projects only parts of
the scene that are visible in the camera view frustum and occluders outside the frustum
that cast shadows on objects inside the frustum.

However, since the algorithm is complex, it runs on CPU and thus it may influence
rendering speed. Moreover, issues caused by precision of floating point operations have to
be considered during implementation.

The goal of this additional improvement is to verify whether the MSF does not provide
better results with a less cost.

Rosen et al. presented a desired view (DV) function that works similarly to the MSF.
However, they did not clearly show how it influences the overall quality. The novel algorithm
supports the DV as well, but it is only used as pre-process step before computing the
importance map.

DV simply finds minimum and maximum view samples coordinates in the importance
map. In addition, the MSF rotates the bounding box to an optimal position and adjusts
near and far planes.

Rosen et al. computes DV in RTW approach from the importance map by finding
first/last row and column that contains an importance value greater than zero. In the new
algorithm, DV is computed by parallel reduction over the set of view samples projected
into the shadow map space. DV does not contribute to warping process, it only focuses the
relevant part of shadow map. The DV function can be applied before construction of the
warping functions (before the Step 2 of the Algorithm 12):

9.3.3 Implementations Details

The algorithm was implemented in OpenGL 4.4 using compute shaders. The importance
map is created using image atomic operation imageAtomicAdd delivered with OpenGL.

The solution requires additional memory as compared to the basic shadow mapping
algorithm. It uses deferred shading for creating the G-buffer that requires set of 2D textures.
For storing the warping functions, it needs two one-channel floating point 2D textures that
have the same resolution as the shadow map. Further, the algorithm requires few textures
for storing temporary results - the importance map, prefix sum map and storage for not
smoothed warping functions. The additional memory requirements are thus dependent on
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the shadow map resolution. For instance, when the shadow map with resolution 𝑤 = 1024
is used, the algorithm needs to allocate additional 20 MB of the memory.

The memory requirements can be decreased by using e.g. another format of textures. For
instance, 16bit textures for the importance map or prefix-sum map. Also, with increasing
number of lights, the memory requirements increase only for storing the warping functions:
8𝑤2[bytes] for one light source.

9.4 Results and Discussion
The results were measured on a PC running Intel Core i7 4790 with 16GB of memory with
a high-end GPU: NVidia GTX 980. Operation system was Linux Ubuntu 14.04.2.

The novel algorithm was compared with the Rectilinear Texture Warping algorithm
(RTW) [88], the basic shadow mapping algorithm (SM), accelerated silhouette-based shadow
volumes algorithm (SV) [72] and the shadow mapping algorithm extended with the min-
imal shadow frustum (MIN-SM). The quality and speed of all approaches was measured
(see Table 9.1 and Figure 9.1).

Method time per frame [ms]
SM 1.596
MIN-SM 1.7
SV 8.750
RTW 3.296
New 4.708
New-DV 2.521

Table 9.1: Performance comparison of implemented methods. Times are in miliseconds.
Measured for Observatory scene on 1024×1024 resolution with 512×512 resolution for the
shadow map.

Regarding quality comparison, the shadow volumes algorithm was selected as the ground
truth. It provides sample-precise shadows and, moreover, it also defines a lower boundary
for speed. No solution based on the shadow mapping algorithm can be slower than the
silhouette-based shadow volume approach, otherwise the shadow volume is better option.

The RTW algorithm is the most similar approach to the new solution. RTW algorithm
was implemented with backward analysis used for creation of the importance map. The
timings for the crucial steps of both approaches can be seen in Table 9.2. The implementa-
tion uses both the distance to eye importance function and the desired view function in all
reference images (Figure 9.1).

Also, comparison with the shadow mapping algorithm extended with the minimal shadow
frustum (MSF) shows some interesting results. The main reason for including this method
is to find out if the MSF is not sufficient enough for rendering images with a similar quality.
Rosen did not describe this extension and did not show any results.

The algorithm was measured on three scenes (see Figure 9.8). Various types of scenes
(outdoor as well as indoor) were selected in order to show that the new solution can be
adapted to different environment and types of light sources. Times for all scenes are shown
in Table 9.3.

Figure 9.8 shows differences from the reference solution (shadow volumes algorithm).
Red pixels are incorrectly computed.
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As it can be seen in Table 9.3, the novel method is slightly slower than RTW but it
produces better visual results (see Figure 9.1 and Figure 9.8). Measurements show that
computing MSF is not expensive and it may be suitable in some situations. Also, it did
not provide the best quality. Computing desired view (DV) function in the new method is
the third fastest method but visual results are worse than using MSF. Results also show
that DV function plays a major role in decreasing alias error, but in some situation it is
not sufficient.

scene Conf. room Sponza Observatory
new rtw new rtw new rtw

desired view 13.9 89.1 15.4 82.5 18.4 86.8imp. map 68.4 61.0 69.0
shadow map 14.4 7.3 19.9 14.1 8.2 9.3
final pass 3.3 3.5 3.7 3.2 4.4 3.8

Table 9.2: Overhead of algorithm steps in new and RTW algorithm for different scenes.
Values are in percent.

Scene Conf. room Sponza Observatory
triangles 126665 261978 52583
gbuffer 2.16 2.229 1.84
SV 9.64 18.41 14.96
SM 0.21 0.40 0.16
RTW 3.14 3.47 3.02
New 3.63 3.84 3.23

Table 9.3: Performance comparison of implemented methods for different scenes. Times are
in miliseconds.

Minimal Shadow Frustum

The experimental results show that performance of DV and MSF depends on current hard-
ware setup. MSF performs better than DV when running on fast CPU and slow GPU.

The impact of both approaches on the quality was compared. The MSF or DV performs
better when a small part of a scene is rendered. However, in real world scenes the camera
renders a bigger part of a scene and in these cases the warping techniques perform better
(see Figure 9.8 and Figure 9.7). The MSF or DV do not generate the view frustum small
enough and thus artifacts on shadow edges are more apparent.

9.4.1 Limitations

The novel algorithm as well as the RTW algorithm have to deal with linear rasterization
unit. The result of new warping process can be seen in Figure 9.6 (bottom right). The
warping functions distort the space. Nowadays, the rasterization pipeline can handle only
the triangle vertices. If the warping function changes rapidly between two vertices, some
errors can be observed (see Figure 9.8 top, right for missing shadows under curtains). The
novel approach uses a few techniques to deal with these errors.

First, The adaptive tessellation provided by OpenGL is utilized. The similar improve-
ment was suggested by Rosen et al. Further, the size of smoothing window when averaging
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the warping functions is optimized. The wider the window is, the less different are the
warping functions. In the extreme case, the new solution converts to the RTW algorithm.
Another solution is to use weights during smoothing step. It can influence sizes of offset
values.

9.5 Conclusion and Future Work
This chapter presents an extension of the Rectilinear Texture Warping algorithm achieved
through the improved non-orthogonal warping grid constructed using the set of 1D warping
functions. The novel importance warping function results in less artifacts at the shadow
edges.

The improvement has been evaluated on various testing scenes. The proposed method
is fast and provides better results than the RTW algorithm. Also, various improvements
and extensions that can be used together with the solution are discussed.

Standard methods for alias reduction globally change sampling rate using partitioning
of a scene where directional light sources are commonly used. The novel method changes
sampling rate locally and thus it can be used with other kinds of light sources using DPSM
or cube maps.

The future work includes adaptation the algorithm for other visual effects, e.g. mirrors,
refraction etc.

The novel algorithm is applicable to cube shadow maps and DPSM, see the Figure 9.9
and the Figure 9.10. Interesting observation is that the warping process works better on
dual paraboloid shadow maps than on cube shadow maps, Figure 9.11. The warping on
DPSM has more freedom to redistribute view-samples in the importance map.
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Figure 9.7: Images show shadow maps (grey squared images) for Observatory scene. From
left to right: shadow mapping (SM), Rectilinear Texture Warping (RTW), new solution,
new solution using only DV.
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Figure 9.8: Images show difference between shadow mapping techniques and shadow vol-
umes. Images in the first column show basic shadow mapping. The second column shows
RTW method and third column shows the new warping method. First scene is Sponza, sec-
ond scene is Observatory and last scene is Conference room. Times are shown in Table 9.3.
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Figure 9.9: The image shows the novel warping process applied to cube shadow mapping.
Top left shows shadow volumes, top right shows cube shadow mapping. Bottom left shows
cube shadow mapping with desired view. Bottom right shows cube shadow mapping with
desired view and warping. The warping process improves the quality in most parts of the
scene.
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Figure 9.10: The image shows the novel warping process applied to dual paraboloid shadow
mapping. Parts show shadow volumes, DPSM, DPSM with desired view, DPSM with desired
view and warping. The warping significantly improves the quality.
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Figure 9.11: The image shows the novel warping process applied to CSM (left) and DPSM
(right). The top row shows standard CSM/DPSM algorithm without the novel approach.
The middle row shows CSM/DPSM algorithm with the novel approach. The bottom row
shows warped shadow map. The warping process works better on DPSM and outperforms
CSM. For CSM, the warping is restricted to one cube map face. The warping cannot redis-
tribute view-samples between faces. For DPSM, the warping has more freedom and produces
better importance maps. The base DPSM algorithm produces worse results than base CSM
algorithm, but the warping improves the quality of DPSM much more.
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Chapter 10

Improved Computation of
Attenuated Light with Application
in Scenes with Many Light Sources

This chapter presents and investigates methods for fast and accurate illumination of scenes
containing many light sources that have limited spatial influence, e.g. point light sources.
For speeding up the computation, current graphics applications use an assumption that
the light sources range can be limited using bounding spheres due to their limited spatial
influence and illumination is computed only if a surface lies within the sphere.

This chapter explores the differences in illumination between scenes illuminated with
spatially limited light sources and physically more correct computation where the light ra-
dius is infinite. Results show that the difference can be decreased if appropriate ambient
lighting is added. The contribution is the method for fast estimation of ambient lighting in
scenes illuminated by numerous light sources. A method for elimination of color disconti-
nuities at the edges of the bounding spheres is also proposed.

The solution is tested on two different scenes: a procedurally generated city and the
Sibenik cathedral, Figure 10.1. The approach allows correct lighting computation in scenes
with numerous light sources without any modification of the scene graph or other data
structures or rendering procedures. It thus can be applied in various systems without any
structural modifications. The full content of this section can be found in paper [74].

Figure 10.1: Leftmost image: Streets of a city illuminated with 628 light sources with use
of attenuation shown in Equation 10.1. Second image: Illumination with use of attenuation
shown in Equation 10.2. Mean squared error is 𝑀𝑆𝐸 = 0.033 for 𝑡𝑎𝑡𝑡 = 0.0297. Third image:
The same, except for ambient lighting; 𝑀𝑆𝐸 = 0.011. Rightmost image: Illumination with
use of attenuation shown in Equation 10.4 and with use of ambient lighting; 𝑀𝑆𝐸 = 0.0195.
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Contemporary graphics hardware is able to render scenes with many light sources in
real time [101, 80, 81]. For ease of computation, the point light sources can be bounded
by a sphere; then the light range is limited to a given radius of the bounding sphere. The
new method deals with rendering of large scenes with complex geometry and numerous
point light sources – either real or virtual. Proper evaluation of a per-pixel light source
contribution is a costly operation [40]. However, it is not necessary to exactly evaluate
lighting in areas where the light contribution is minimal. For this purpose, the point light
sources are encapsulated by bounding spheres and the contribution behind the border of
the sphere is replaced with estimated ambient light.

To save fill rate, only screen quads or screen-space patches/tiles are rendered for every
light source [80] in the deferred shading manner. In its nature, the influence of the light
source is unlimited and therefore the light contribution to the whole scene has to be taken
into account. The most common lighting model used in computer graphics applications is
Phong lighting model [86, 31]. Here, the final color is computed from three parts: diffuse,
specular, and ambient colors. The goal is to introduce a fast estimation of ambient lighting
that might be applied in every frame without any impact on the overall rendering speed.

Point light sources usually do not significantly illuminate the whole scene due to their
limited radius given by light attenuation. They can be divided and clustered into tiles and
thus the rendering time can reach real-time rates even for a huge number (e.g. 2k+) of light
sources in the scene [80, 81]. In these approaches, each light source is assigned to a screen
tile according to the screen-space bounding volume of the light source (typically a sphere).
The size of the volume can be large compared to the recognizable contribution of the light
source to a given surface. Large bounding volumes, however, decrease the computation
performance and thus Olsson et al. advise to set the light radius reasonably small. This can
lead to color discontinuity in the computed illumination as can be seen in Figure 10.1.

Dynamic light sources do not present a serious problem in the approaches introduced
by Olsson et al. since movement of the light source can smooth out the illumination dis-
continuities and the discontinuities are hardly recognizable by a human observer.

A similar situation can be observed in techniques based on Virtual Point Light sources
(VPLs) [51]. VPLs are employed to approximate the indirect illumination in real-time
applications [18, 87]. In these approaches, the properties of the materials or their BRDFs
can have a significant impact on the amount of indirect light in the scene. This assumption
is not taken into account and the ambient term of the lighting model is set invariably.

For speeding up the computation, the light sources are static and reused between mul-
tiple frames [57]. Colors of the light sources may vary due to various materials they belong
to. Furthermore, many light sources might be clustered, for instance, according to their
position in space [104, 19]. These techniques handle non-diffuse materials and illumination
from a wide variety of sources, but they are far from real-time rendering rate.

The ambient term in the material definition ensures the scene to be lit even when no
light source illuminates the surface directly. The ambient term should be reasonably small
for every material. The amount of light that reaches distant surfaces should vary according
to the number of light sources in the scene and their defined radius and spatial distribution.
This estimation is not taken into account in any of the previously mentioned approaches.

This chapter describes plausible estimation of ambient lighting that minimizes the effect
of inappropriately chosen light truncation caused by the limited spatial influence of light
sources. This approach does not need any structural changes in the existing rendering
frameworks. The global ambient term is estimated from the properties of all light sources.
The estimation process is described in Section 10.2.
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AmbientGradient

Figure 10.2: The assumption of limited spatial influence of point light sources. left: Range-
unlimited illumination. right: Bounding spheres of light sources represented as orange
circles. The algorithm estimates ambient lighting outside of bounding spheres and eliminates
discontinuities on the borders of the bounding spheres.

Furthermore, a simple method for color discontinuities elimination on the edges of the
bounding spheres is proposed. For this purpose, a simple windowing function is applied
directly on the GPU to every pixel. The derivation of the function is explained in Sec-
tion 10.1.1.

Proposed methods are described and experimental results show the achieved improve-
ment. A method for fast estimation of ambient lighting in scenes illuminated by many
point light sources and a method for reducing discontinuities and artifacts in the final ren-
ders with use of a range-limited illumination are proposed. The measurements show that
the added ambient lighting reduces the mean squared error and the windowing function
provides better visual outcomes.

10.1 Lighting Attenuation
This section describes the lighting attenuation and its modifications. Tiled shading [80]
and Clustered deferred and forward shading [81] use omnidirectional point light sources
represented with spheres. Both methods are based on the assumption (illustrated by Fig-
ure 10.2) that the light sources have a limited spatial influence. The scene outside the light’s
bounding sphere is lit with a constant ambient term.

10.1.1 Attenuated Phong Lighting

The intensity of light naturally decreases with the distance according to the inverse square
law [61]. Attenuated Phong Lighting commonly uses an attenuation coefficient:

𝑎𝑡𝑡0(𝑑) =
1

𝑘𝑐 + 𝑘𝑙𝑑+ 𝑘𝑞𝑑2
(10.1)

Constants 𝑘𝑐, 𝑘𝑙 and 𝑘𝑞 are the constant, linear and quadratic attenuation constants.
Variable 𝑑 is the distance from the light source. Diffuse and specular terms of the Phong
lighting model are multiplied by this attenuation coefficient. This illumination using the
attenuation coefficient Equation 10.1 is referred as range-unlimited illumination (RUI).
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Figure 10.3: The image shows Attenuation coefficient. Constants 𝑘𝑐 = 𝑘𝑙 = 𝑘𝑑 = 1, 𝜇 = .3.
Threshold 𝑡𝑑 = 2. Blue line represents attenuation coefficient given by equation Equa-
tion 10.1. Dotted magenta line represents the threshold 𝑡𝑎𝑡𝑡 = 𝑎𝑡𝑡0(𝑡𝑑). Red line repre-
sents the windowing function. Green line represents the final attenuation coefficient given
by Equation 10.4.

The attenuation coefficient can be seen in Figure 10.3. If the distance from the light
source to the surface point is large, the attenuation coefficient is small and thus the influence
of the light on the surface point is close to negligible. A threshold 𝑡𝑎𝑡𝑡 can be introduced
that modifies Equation 10.1:

𝑎𝑡𝑡1(𝑑) =

{︂
𝑎𝑡𝑡(𝑑) if 𝑎𝑡𝑡(𝑑) ≥ 𝑡𝑎𝑡𝑡
0 otherwise . (10.2)

This modification cuts off the lighting beyond a certain distance and leads to sharp
edges which can be visually unpleasing. The threshold 𝑡𝑎𝑡𝑡 defines the difference of intensity
on the edge. A better result can be obtained by multiplying the attenuation coefficient with
a windowing function:

𝑤(𝑑) = cos

(︂
𝜋

2
· 𝑑

𝑡𝑑

)︂𝜇

, (10.3)

where threshold 𝑡𝑑 represents the distance from the light source to the surface and exponent
𝜇 modifies/defines the windowing function and its value should be 0 < 𝜇 < 1.

The final equation of the attenuation is composed from Equation 10.2 and Equation 10.3:

𝑎𝑡𝑡2(𝑑) =

⎧⎨⎩ 𝑎𝑡𝑡(𝑑) · cos
(︂
𝜋

2
· 𝑑

𝑡𝑑

)︂𝜇

if 𝑑 ≤ 𝑡𝑑

0 otherwise
, (10.4)
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which is continuous but not smooth; the point with the missing derivative is at 𝑎𝑡𝑡2(𝑑) = 0
which does not cause any visible artifacts.

The threshold 𝑡𝑑 corresponds to the threshold 𝑡𝑎𝑡𝑡 and it can be computed from equation
𝑡𝑎𝑡𝑡 = 𝑎𝑡𝑡0(𝑡𝑑):

𝑡𝑑 =

√︁
(𝑘2𝑙 − 4𝑘𝑐𝑘𝑞)𝑡2𝑎𝑡𝑡 + 4𝑘𝑞𝑡𝑎𝑡𝑡 − 𝑘𝑙𝑡𝑎𝑡𝑡

2𝑘𝑞𝑡𝑎𝑡𝑡
(10.5)

Threshold 𝑡𝑑 represents the radius of the light source’s bounding sphere. The illumina-
tion using the attenuation coefficient from Equation 10.2 and Equation 10.4 is referred as
range-limited illumination (RLI). The attenuation coefficient is illustrated in Figure 10.3.

10.2 Ambient Estimation
This section describes the attenuation coefficient and computation of the bounding sphere
radius of the light source given an attenuation coefficient threshold in Section Section 10.1.
This section explores the ambient estimation – i.e. how to determine the appropriate am-
bient term to compensate for the attenuated/truncated light influence. It is certain that if
the lighting is computed only on the surface points which lie within the bounding sphere of
the light source, the total illumination of the scene is decreased. This can be avoided when
a bounding sphere with a larger radius is used and when the number of lights in the scene
is low.

However, tiled shading and clustered deferred and forward shading (which are of interest
in the targeted applications) are suitable for scenes with large numbers (several thousands)
of light sources. Also, the performance of these methods is dependent on the number of
lights per pixel. The number of lights per pixel is positively correlated with the radius of
the bounding sphere of each light source. Therefore, if the total illumination in the scene
is to be increased, the rendering performance will be reduced.

There is an alternative method for increasing the total illumination of the scene: an
appropriate amount of ambient lighting can be added in order to reduce the illumination
difference between the scene illuminated by RUI and RLI. Estimation of the proper ambient
lighting is the goal of this section.

10.2.1 Ambient Estimation Methodology

In order to correctly compute the ambient lighting, the whole scene needs to be illuminated
with RUI lights. Then the ambient lighting can be computed as a difference from total
illumination of the scene and RLI lighting. This approach would be quite accurate but
very computationally expensive. Therefore, the ambient light is estimated with a simple
approximation formula.

The total illumination of the scene is given by Equation 10.6 and it is illustrated for a
simple virtual scene of a line segment in Figure 10.4. The virtual scene contains only one
line segment [−5, 5]. Every point on the line segment has a different normal vector. The
point light source is located in the origin. The total illumination of this virtual scene is the
integral over the illumination of every point located in the scene (line segment). This simple
illustration of the total illumination computation of this virtual scene can be extended to
any complex scene with many light sources.

𝐼0 =
∑︁

𝑙∈𝐿𝑖𝑔ℎ𝑡𝑠

∫︁
𝑆
𝑎𝑡𝑡0(|P𝑙 − x|) · 𝑔𝑙(x)dx (10.6)
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Component P𝑙 is the position of the light source 𝑙, 𝑔𝑙(x) is the sum of the diffuse and
specular terms of the Phong lighting model at surface point x, 𝑆 represents every surface
point in the scene.

The total illumination of the scene with use of attenuation 𝑎𝑡𝑡1 is 𝐼1 ≤ 𝐼0. The goal is
to add an ambient lighting term to minimize the difference 𝐼0 − 𝐼1.

The method requires an assumption that the sum of diffuse and specular terms of Phong
ligthing 𝑔(x) has the character of white noise with mean value 𝑚. This crude assumption
means that there is no coherence of normal vectors and surface color between two surface
points. This is not true for two surface points which lie on the same surface and are rela-
tively close to each other. However, in the large scale, this assumption is reasonable. The
Equation 10.6 can be approximated as:

𝐼0 =
∑︁

𝑙∈𝐿𝑖𝑔ℎ𝑡𝑠
𝑚𝑙

∫︁
𝑆
𝑎𝑡𝑡0(|Pl − x|)dx. (10.7)

If a scene is illuminated only with constant ambient lighting 𝑎, the total illumination in the
scene 𝐼0 is:

=

∫︁
𝑆
𝑎dx = 𝑎|𝑆| = 𝐼0 (10.8)

If all light source are replaced with constant ambient lighting 𝑎, the ambient factor 𝑎 can
be computed as:

𝑎 =
∑︁

𝑙∈𝐿𝑖𝑔ℎ𝑡𝑠

𝑚𝑙

|𝑆|

∫︁
𝑆
𝑎𝑡𝑡0(|Pl − x|)dx, (10.9)

where |𝑆| represents the total surface area of the scene.
The computation of the integral in Equation 10.9 is not feasible for complex scenes.

Therefore, another crude assumption is needed. The assumption is that all surface points
are uniformly distributed in the distance around every light source within a certain maximal
distance 𝑅 (distance from point light source to the farthest point in the scene). This is an
approximation of the object distribution in the scene.

Let 𝐴(𝑟) be a surface area of geometry inside a sphere with radius 𝑟. The assumption
means that the ratio of 𝐴(𝑟1)/𝐴(𝑟2) is close to the ratio of sphere surfaces (4𝜋𝑟21)/(4𝜋𝑟

2
2).

The radii of spheres are within interval 0 < 𝑟 ≤ 𝑅. This assumption may be reasonable for
a scene with uniform complexity of geometry.

The equation Equation 10.9 can be simplified using the additional assumption to:

𝑎 =
∑︁

𝑙∈𝐿𝑖𝑔ℎ𝑡𝑠

𝑚𝑙
4
3𝜋𝑅

3

∫︁ 𝑅

0
4𝜋𝑟2 · 𝑎𝑡𝑡0(𝑟)d𝑟. (10.10)

The integral in Equation 10.10 has an analytical solution. The analytical solution of the
integral (shown in Equation 10.11) can be seen in Equation 10.12.

𝑣(𝑅) =

∫︁ 𝑅

0
𝑟2 · 𝑎𝑡𝑡0(𝑟)d𝑟 (10.11)

𝑣(𝑅) =
𝐵 arctan

(︀
𝐶
𝐴

)︀
𝑘2𝑞𝐴

+
𝑘𝑙 log(𝑎𝑡𝑡0(𝑅))

2𝑘2𝑞
+

𝑅

𝑘𝑞
(10.12)

𝐴 =
√︁

4𝑘𝑐𝑘𝑞 − 𝑘2𝑙 (10.13)

𝐵 = 𝑘2𝑙 − 2𝑘𝑐𝑘𝑞 (10.14)
𝐶 = 𝑙𝑙 + 2𝑘𝑞𝑅 (10.15)
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The ambient lighting can be computed from:

𝑎 =
∑︁

𝑙∈𝐿𝑖𝑔ℎ𝑡𝑠

3𝑚𝑙

𝑅3
(𝑣(𝑅)− 𝑣(0)) . (10.16)

Now, Equation 10.16 can be used to compute the ambient lighting when every light source
is removed (by setting their radius to 0). The final form of the equation for computation of
the ambient lighting is:

𝑎 =
∑︁

𝑙∈𝐿𝑖𝑔ℎ𝑡𝑠

3𝑚𝑙

𝑅3
(𝑣(𝑅)− 𝑣(𝑅𝑙)) , (10.17)

where 𝑅𝑙 is the radius of the bounding sphere of light source 𝑙.
In order to estimate the ambient lighting in the scene, the maximum distance from every

light source 𝑅 and mean value 𝑚 of sum of diffuse and specular term for every light has to
be chosen. If the value of 𝑅 is infinite, the ambient lighting will be zero. If the value of 𝑅 is
too small, the ambient lighting may eventually exceed the diffuse and specular terms. The
mean 𝑚 represents degree of influence of particular light source to the scene and should be
in interval 0 ≤ 𝑚 ≤ 1.

10.3 Experimental Results
The first goal of experimental testing was to determine the difference between the scene
illuminated with range-unlimited illumination and range-limited illumination. The range-
limited illumination is the basic assumption of Tiled shading [80]. The second goal was to
minimize the difference between the scene illuminated with RUI and RLI using appropriate
ambient lighting.

Tiled shading was implemented to compare results. Each scene was illuminated with
range-unlimited illumination (RUI) to obtain ground truth. Then, scenes were illuminated
using tiled shading with range-limited illumination (RLI). Both attenuation coefficient
(Equation 10.2, Equation 10.4) were used. Images with discontinuities were rendered using
attenuation coefficient in Equation 10.2. After that, the ambient lighting was estimated
using Equation 10.17 from Section 10.2 The estimated ambient lighting was used with both
attenuation coefficients and mean squared error (MSE) was computed for result comparison.

The ambient lighting was estimated for attenuation 𝑎𝑡𝑡1(𝑑). Attenuation 𝑎𝑡𝑡2(𝑑) returns
smaller values than 𝑎𝑡𝑡1(𝑑) for 𝜇 > 0. Therefore, the estimated ambient lighting will be
lesser with use of this attenuation and mean squared error potentially higher. However,
since attenuation 𝑎𝑡𝑡2(𝑑) eliminates discontinuities, it provides visually more acceptable
outcomes.

10.3.1 Testing Scenes

Testing scenes contain a procedurally generated city with 922 buildings (represented as
boxes) and the cathedral of Sibenik. Each scene is illuminated with 628 and 400 of light
sources respectively. The city is illuminated with cyan light sources located around the
streets. The cathedral of Sibenik is illuminated with VPLs transformed to usual point light
sources. These two different scenes were selected to compare the results for inside and
outside environments. The focus of the test was to measure the squared error and mean
squared error of scene illuminated with RUI and RLI and to evaluate the visual difference
between the scenes illuminated with use of the windowing function and without the use of
the windowing function.
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Total illumination of scene of line segment [-5,5],

 with one light source located at origin

Figure 10.4: The image shows a model example of total illumination of simple 1D scene. The
scene contains a single line segment [-5,5] with varying normal vector. The total illumination
is represented as the sum of red and green areas. Peaks on the black line represent
the fact that a given surface point is facing towards the light source and has a higher
illumination. Blue line represents the attenuation. When RLI (range-limited illumination)
is used, only the green area is computed and the red area is omitted decreasing the total
illumination. The ambient lighting substitutes red areas. The cyan line represents the
first assumption that replaces illumination at a given point by a mean value.

10.3.2 Comparison to Baseline Solutions

Scenes illuminated with RUI can be seen in the first image of Figure 10.1 and Figure 10.6
and in the first image in the bottom line of Figure 10.7. These images show the correct
illumination (every light source influences every surface point within any distance from it).

The methods proposed by Olsson et al. [80, 81] use range-limited illumination (RLI).
The interest was in the difference between RUI and RLI. The squared error for the scene
of Sibenik cathedral can be seen in Figure 10.5. The left or right image shows the squared
error for scene illuminated with or without ambient lighting, respectively. The mean squared
error is decreased from value 𝑀𝑆𝐸 = 0.013 to value 𝑀𝑆𝐸 = 0.008.

The squared error for the scene of the procedural city is shown in Figure 10.7. If the
ambient lighting is used, the mean squared error is decreased from value 𝑀𝑆𝐸 = 0.0553
to value 𝑀𝑆𝐸 = 0.0326 or 𝑀𝑆𝐸 = 0.0426 with respect to the type of the attenuation
(Equation 10.2 or Equation 10.4). The windowing function slightly increases the squared
error, but it produces visually more acceptable outcomes. This can be seen in Figure 10.1
and Figure 10.7.
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Figure 10.5: The image shows squared error in the cathedral scene illuminated with 400
VPLs. Left image is illuminated without ambient lighting; 𝑀𝑆𝐸 = 0.162. Right image is
illuminated with ambient lighting; 𝑀𝑆𝐸 = 0.018. 𝑡𝑎𝑡𝑡 was set to value 𝑡𝑎𝑡𝑡 = 0.0096.

Figure 10.6: The image shows the cathedral scene illuminated with 400 VPL. The left
image is illuminated with RUI. The middle image is illuminated with RLI without ambient
lighting. The right image is illuminated with RLI with ambient lighting. Some areas in the
middle image are darker that in the left image. It is caused by missing illumination. Light
sources have limited influence and surface points which are located outside of their bounding
spheres are not illuminated. This fact is illustrated in the left image of the Figure 10.5 which
shows the squared error.

10.4 Conclusions
This chapter explores the Phong attenuation used with scenes illuminated with multiple
light sources using tiled shading. First, it discusses the attenuation in Section 10.1 where it
defines three variants of attenuation – range-unlimited illumination with use of attenuation
from Equation 10.1 and two range-limited illumination approaches with use of attenua-
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Figure 10.7: The first image in the top row shows the city scene illuminated with RUI. The
second image in the top row shows the illumination with RLI with use of attenuation from
Equation 10.2. The third image in the top row shows the illumination which differs from the
second image by ambient lighting. The forth image in the top row shows the illumination
with RLI with use of attenuation from Equation 10.4. Bright spots in the images are specular
reflections. The bottom row shows the squared errors of the second, third and forth images.
Mean squared errors are 𝑀𝑆𝐸 = 0.0553, 𝑀𝑆𝐸 = 0.0326 and 𝑀𝑆𝐸 = 0.0426.

tion models from Equation 10.2 and Equation 10.4. A windowing function to eliminate
discontinuities at the border of the light sources’ bounding spheres is proposed.

The second part of this chapter deals with estimation of ambient lighting. A method
for estimation of ambient lighting for scenes illuminated with use of the previously defined
attenuation models is proposed. The method is based on two crude assumptions. First, it
assumes that the sum of diffuse and specular lighting has the character of white noise in
space. Second, it assumes that the surface points in the scene are uniformly distributed
around every light source within certain maximal distance. These two assumptions were
necessary for feasible computation of the integral in Equation 10.6. Both assumptions may
not be suitable for every possible scene. Therefore, the estimated ambient lighting differs
from the exact value. The estimation process requires the mean value of sum of diffuse and
specular lighting of every light source. The mean value was set to 1/2 for every light source
during tests. Also, the estimation requires choice of the maximal distance 𝑅 for every light
source in the scene. It was set to the radius of the bounding sphere of the whole scene.

The ambient estimation process can be quite inaccurate. Both crude assumptions neg-
atively affect the precision. The process can underestimate or overestimate the ambient
lighting and only works reasonably well in synthetic scenes.

Nevertheless, results show that the mean squared error is lower if the scene is illuminated
by RLI with use of ambient lighting. Added ambient lighting reduced the squared error on
surface points which are within the bounding spheres of the most light sources and are
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Figure 10.8: The figure shows testing scenes. The first pair of images shows the procedurally
generated city. The second pair of images shows the cathedral of Sibenik. The second image
of each pair shows the positions of point light sources represented as screen-space bounding
quads.

facing them. It can also increase the squared error elsewhere. The surface points on the
pillars in the third part of Figure 10.8 are not facing most of the light sources. Therefore,
the additional ambient lighting would increase their squared error. On the other hand, the
additional ambient lighting would decrease the squared error on the illuminated surface
points on the wall behind the altar.

The windowing function reduced the discontinuities and provided visually more accept-
able outcomes. This can be seen in Figure 10.1 and Figure 10.7. The windowing function
also reduced the total illumination of the scene and therefore it increased the mean squared
error.

Future work may contain better estimation of the ambient lighting avoiding the above
mentioned two assumptions. The estimation of the ambient lighting could be done per frame
with use of information in the G-buffer to minimize the MSE. Another possibility is to use
a different windowing function for elimination of the discontinuities.
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Chapter 11

Future Goals, Extensions

This chapter describes new extensions to shadow algorithms. These extensions are still in
progress during publication of this thesis and are not yet finished.

11.1 Ray-traced Silhouette Shadow Volumes
Ray-traced silhouette shadow volumes (RSSV) combines silhouette algorithms and view-
sample cluster hierarchy. The view-sample cluster hierarchy algorithm (CPTSV), proposed
by Sintorn et al. [92], computes shadows using per triangle shadow volumes. The method
does not use hardware rasterization, but it uses CUDA in order to traverse sample hierarchy.
The performance of the method decreases with a scene tessellation. The shadow volumes
of each triangle is narrow and the algorithm has to traverse the hierarchy to the leaf level.
On the other hand, silhouette shadow volume algorithms have much better performance,
because the silhouette contains much less geometry. However, silhouette shadow volumes
rasterized on GPUs are fill rate intensive. With increasing screen resolution, the performance
quickly degrades, Figure 11.1.

tessellation level

fps

1 4 resolution

fps

8k600x800

Figure 11.1: The image shows weaknesses of per triangle approaches with sample cluster
hierarchy (left) and silhouette shadow volumes (right). The performance of per triangle
method quickly degrades with tessellation. Silhouette algorithms are less sensitive to tes-
sellation. On the other hand, stencil silhouette algorithms are more sensitive to screen
resolution.

The idea of ray-traced silhouette shadow volumes is to combine both approaches ex-
ploiting their strengths and mitigating their weaknesses.

148



11.1.1 Related Work

Silhouette algorithms and shadow volumes are closely described in previous chapters. The
rest of this section describes CPTSV algorithm in more details. CPTSV algorithm can be
summed as:

1. Render view-samples.

2. Construct view-sample cluster hierarchy.

3. Construct per triangle shadow volumes.

4. Traverse the hierarchy with every shadow volume and remove clusters and samples
that lie inside a shadow volume.

5. Compute shadow mask from remaining clusters and view-samples.

Building a Hierarchy

View-sample cluster hierarchy is constructed using morton codes [77]. A morton code is
computed of every view-sample. A view-sample’s coordinates (𝑥, 𝑦, 𝑧) are quantized into 3
short integers (k) using equation Equation 11.1:

k =

⎛⎝𝑥′

𝑦′

𝑧′

⎞⎠ =

⎛⎜⎝ ⌊𝑥/8⌋
⌊𝑦/8⌋⌊︁

log(−𝑧/𝑛)
log(1+2·tan(𝜑/2)/𝑆𝑦)

⌋︁
⎞⎟⎠ (11.1)

𝑛 is the near plane position, 𝑆𝑦 is the number of clusters in height, 𝜑 is the field-of-
view, (𝑥, 𝑦) is view-sample screen coordinate, and 𝑧 is view space depth computed using
Equation 11.2, where 𝑓 is the far plane position and 𝑑 ∈ [−1, 1] is a view-sample depth:

𝑧 =
2 · 𝑛 · 𝑓

𝑑 · (𝑓 − 𝑛)− 𝑓 − 𝑛
(11.2)

The view frustum is divided exponentially in depth creating voxels, Figure 11.2. Samples
within the same voxel have the same k vector and morton code. The algorithm creates 8x8
screen tiles. A tile is further divided into clusters according to samples depths.

Explicit bounds are computed around every view-sample cluster, Figure 11.3. Bounding
boxes increase traversal performance, but require additional memory.

A morton code is constructed using a k vector by interleaving bits, Figure 11.4.
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Figure 11.2: The image shows view-samples (red) and view frustum voxels, the left side. The
branching factor is 4. View-samples located within the same voxel have the same morton
code prefix. The algorithm constructs the tree from the bottom to the top and computes
explicit bounding box around view-samples, Figure 11.3.

Figure 11.3: The image shows view-sample cluster hierarchy with four levels. Each level
shows explicit bounding boxes.
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morton
tile 8x8

level 0 level 1 level 2 level 3 level 4

Figure 11.4: The image shows a example of a morton code (the resolution is 1024× 512 =
8 · 27 × 8 · 26). The morton code can be divided into 5 parts. Each part addresses a voxel
in corresponding level. The view-sample cluster hierarchy, with the branching factor 32 (5
bits), has five levels. The bottom row shows voxels at each hierarchy level. The leaf level
nodes represent 8x8 screen tiles. Every cluster is enclosed by tight axis aligned bounding
box.
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Traversal

When the hierarchy is built, scene’s triangles are processed and per triangle shadow volumes
(represented as 4 or 7 planes) are constructed. Three additional planes (each for one corner
of a triangle) improve testing and remove large portion of false positives. The traversal step
of the algorithm processes every shadow volume. If a cluster or view-sample lies within a
shadow volume, it is removed from hierarchy, Figure 11.5.

Figure 11.5: The image shows the traversal step of the algorithm. The top left part shows the
view-sample cluster hierarchy and one triangle shadow volume. The hierarchy is traversed
and trivially accepted clusters (green) are removed. Trivially accepted clusters lie completely
inside the shadow volume. Trivially rejected clusters (orange) are not processed deeper. The
traversal process descends deeper for intersecting clusters (yellow). The bottom right part
shows the resulting hierarchy.
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11.1.2 RSSV Algorithm

This section proposes new algorithm. The goal of the algorithm is to reduce the sensitivity
to the number of triangles as well as to the screen resolution, Figure 11.6.
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Figure 11.6: The image shows two flythroughs. The x axis represents animation frames.
The y axis represents frame time. Red lines represents stencil silhouette method. Blue lines
represents CPTSV method. Each line represents one resolution or one tessellation level. As
can be seen, CPTSV method is less sensitive to increasing resolution and silhouette method
is less sensitive to increasing tessellation.

CPTSV method hierarchically rasterizes simple per triangle shadow volumes. The ras-
terization is based on the collision test of two types of convex hulls: bounding volumes
around view-sample clusters and triangle shadow volumes. The test is simple, because both
types of hulls have simple geometry. If a cluster lies inside a shadow volume, it is shadowed.
If a cluster does not lie inside any shadow volume, it is lit. If a cluster intersects a shadow
volume, cluster’s children are tested against the shadow volume.

The main idea of RSSV method is to hierarchically rasterize silhouette shadow volumes
using GPGPU. The problem with that is the complex silhouette shadow volume geometry.
Generally, silhouette shadow volume geometry is not a convex hull. A view-sample cluster
cannot be easily tested.
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Instead, RSSV algorithm tests changes to a stencil value using sample ray concept,
Figure 11.7.
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Figure 11.7: The left side of the image shows standard Z-pass shadow volume algorithm.
Rays from the camera to the white and black view-samples compute stencil values. The
right side shows another way. The stencil value of the black sample is computed using
the stencil values of the white sample. The ray from the white sample crosses a front
facing shadow volume side. This sample ray connecting two view samples computes the
difference between stencil values. A sample ray is an oriented line segment connecting two
view-samples.

In fact, the stencil value of just one single view-sample has to be computed. The rest of
view-sample stencil values can be derived using stencil value differences, Figure 11.8. The
concept is related to the Jordan theorem [49] extended to three dimensions.

-1+1

+0

+1

+1

+0+0
-1

-1

Figure 11.8: The image shows the idea of stencil value differences. Z-pass algorithm com-
putes the stencil value of only one view-sample (magenta). Stencil values of remaining
view-samples can be computed using stencil value differences. Sample rays connect view-
samples forming a string. If a sample rays crosses a shadow volume geometry, the stencil
value of the ray is modified. Since all view-samples form the string, stencil values of view-
samples can be computed using parallel prefix sum of rays’ stencil values. These sample
rays give the RSSV method its name.
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All view-samples can be connected using sample rays forming one long view-sample
string. Once the view-sample string is constructed, all silhouette shadow volume sides and
near caps are tested against it. The process computes stencil values of sample rays. After
that, the algorithm computes parallel prefix sum of sample rays’ stencil values.

In order to accelerate the algorithm, sample rays can be clustered into tiles. One of the
most obvious way of connecting view-samples is to use z-curve [77] in the screen space. The
problem view the z-curve is with its length. The better space filling curve is Hilbert curve
[42], Figure 11.9. These curves support clustering of sample rays.

Figure 11.9: The image shows z-curve (left) and Hilbert curve. White points represent view-
samples. Arrows represent sample rays. Red arrows are longer than necessary which increase
the probability of intersection with a shadow volume. The right side shows Hilbert curve
that minimizes lengths of sample rays. Green squares represents clusters of sample rays.
If a cluster of sample rays does not intersect shadow volume polygons, its children do not
have to be tested.

2D Hilbert curve provides the shortest path through all view-samples in the screen
space. However, view-samples depths are not taken into account. Sample rays in 3D could
be much longer due to the depth discontinuities. Also, if the algorithm computes stencil
value of any sample ray incorrectly, the following view-samples in the string would have
wrong stencil value. This can happen due to floating-point arithmetics. The better and more
viable solution is to create sample ray tree, Figure 11.10. The sample ray tree, implemented
in the testing application can be seen in Figure 11.11. The RSSV algorithm can be summed
up as:

1. Render view-samples

2. Create sample ray tree

3. Extract silhouettes

4. Traverse the hierarchy using silhouette shadow volume sides

5. Traverse the hierarchy using near caps

6. Compute stencil mask
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Figure 11.10: The image shows the concept of sample ray tree. View-samples are clustered
in the similar fashion as in the CPTSV method. In addition, virtual view samples (blue,
red and green) are created. Virtual samples are located at the center of clusters’ bounding
boxes. The stencil value of a view-sample can be computed by summing up differences along
the way from the view-sample to the light source. The sample ray tree allows hierarchical
silhouette shadow volume rasterization.
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Figure 11.11: The image shows the sample ray tree implemented in the testing application.
The top left image shows the scene from the camera point of view. The top right image
shows sample rays from the light source to the zeroth level of the hierarchy. The next images
show sample rays in lower levels of the hierarchy. The bottom left image shows view-sample
clusters. The bottom right image shows view-sample clusters with sample ray tree.

157



Conclusion

The algorithm have been developed using OpenGL and is fully accelerated using GPU.
The algorithm is already able to render shadows, Figure 11.12. Initial measurements show
that the new method performs better than the CPTSV algorithm (around 30% higher
fps). The traversal step is less costly than in the CPTSV algorithm. The new method
requires complex approaches that mitigate problems with floating-point arithmetics, but
they are quite involved and are out of scope of this text. Furthermore, the whole algorithm
can be implemented using just one mega kernel using persistent threads. Currently, the
implementation uses four mega kernels which are not yet merged. Further development is
needed in order to fix few remaining robustness issues and to fully measure attributes of
the method.

Figure 11.12: The left image shows shadows rendered using the new algorithm. The right
side shows stencil values of sample rays at the leaf level. Rays with non-zero stencil values
are visualized. As can be seen, sample rays that intersect silhouette shadow volumes sides
are highlighted.
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Chapter 12

Conclusion

While shadow algorithms have a long history and researchers have focused on many different
approaches, this field is still not fully explored. The larger the field gets, the more concepts
arise. Current methods and algorithms stimulate new ideas for further research. Even the
smallest subsection of the field is large and contains many interesting scientific publications.

This thesis explores state of the art methods for real time precise shadow computation.
It describes shadow volume algorithms and their variants in detail with many illustrations.
Other precise methods based on shadow mapping or hybrid approaches are also covered.

It also summarizes contributions to silhouette computation on different hardware plat-
forms. Algorithms for robust silhouette computation are designed for different GPU pipeline
stages - vertex shaders, geometry shaders, tessellation shaders and compute shaders.

Some presented algorithms are used today by Cadwork informatik AG company in their
web applications and rendering software. The thesis also presents the method for silhouette
extraction based on potential visibility sets.

The next sections describe state of the art algorithms that are focused on improvements
of visual quality of shadow maps. Warping based methods and other approaches are covered.
Improved warping scheme which reduces the amount of visual artifacts is presented.

Following sections briefly visit lighting and many light algorithms and present improve-
ment in visual quality for limited range light sources.

The last section presents new ideas of precise shadow rendering that have not yet been
published.

159



Bibliography

[1] Aila, T.; Akenine-Möller, T.: A Hierarchical Shadow Volume Algorithm. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware. HWWS ’04. New York, NY, USA: ACM. 2004. ISBN 3-905673-15-0. pp.
15–23. doi:10.1145/1058129.1058132.
Retrieved from: http://doi.acm.org/10.1145/1058129.1058132

[2] Airey, J.; Rohlf, J.; Brooks, F., Jr: Towards Image Realism with Interactive Update
Rates in Complex Virtual Building Environments”. ACM SIGGRAPH Computer
Graphics. vol. 24. 03 1990: pp. 41–50. doi:10.1145/91385.91416.

[3] Aldridge, G.; Woods, E.: Robust, geometry-independent shadow volumes. In
Proceedings of the 2nd international conference on Computer graphics and
interactive techniques in Australasia and South East Asia. GRAPHITE ’04. New
York, NY, USA: ACM. 2004. ISBN 1-58113-883-0. pp. 250–253.
doi:10.1145/988834.988877.
Retrieved from: http://doi.acm.org/10.1145/988834.988877

[4] Alex Vlachos, C. D.: Computing Optimized Shadow Volumes. New York, NY, USA:
Charles River Media. 2003. ISBN 9781584502333. 367–371 pp.

[5] Archer, J.; Leach, G.; Knowles, P.; et al.: Hybrid Lighting for faster rendering of
scenes with many lights. The Visual Computer. vol. 34. 05 2018.
doi:10.1007/s00371-018-1535-5.

[6] Batagelo, H.: Real-time shadow generation using BSP trees and stencil buffers. 02
1999. ISBN 0-7695-0481-7. pp. 93–102. doi:10.1109/SIBGRA.1999.805714.

[7] Benichou, F.; Eiber, G.: Output sensitive extraction of silhouettes from polygonal
geometry. In Proceedings. Seventh Pacific Conference on Computer Graphics and
Applications (Cat. No.PR00293). 1999. pp. 60–69.

[8] Bergeron, P.: A General Version of Crow’s Shadow Volumes. IEEE Computer
Graphics and Applications 6. vol. 6, no. 9. 1986: pp. 17–28. ISSN 0272-1716.

[9] Bilodeau, B.; Songy: Real time shadows. Creativity 1999. 05 1999.

[10] Bittner, J.; Mattausch, O.; Silvennoinen, A.; et al.: Shadow Caster Culling for
Efficient Shadow Mapping. In Proceedings of the Symposium on Interactive 3D
Graphics. 01 2011. pp. 81–88. doi:10.1145/1944745.1944759.

[11] Brabec, S.; Annen, T.; Seidel, H.-P.: Practical Shadow Mapping. J. Graph. Tools.
vol. 7, no. 4. December 2002: page 9–18. ISSN 1086-7651.

160

http://doi.acm.org/10.1145/1058129.1058132
http://doi.acm.org/10.1145/988834.988877


doi:10.1080/10867651.2002.10487567.
Retrieved from: https://doi.org/10.1080/10867651.2002.10487567

[12] Brabec, S.; Seidel, H.-P.: Shadow Volumes on Programmable Graphics Hardware.
Computer Graphics Forum (Eurographics). vol. 2003. 2003: pp. 433–440.

[13] Brennan, C.: Shadow Volume Extrusion using a Vertex Shader. ShaderX: Vertex
and Pixel Shader Tips and Tricks. 01 2002: pp. 188–194.

[14] Carmack, J.; Kilgard, M.: John Carmack on Shadow Volumes. NVIDIA Developer
Zone. 2000.
Retrieved from: http://web.archive.org/web/20090127020935/http:
//developer.nvidia.com/attach/6832

[15] Chan, E.; Durand, F.: An Efficient Hybrid Shadow Rendering Algorithm. In
Proceedings of the Fifteenth Eurographics Conference on Rendering Techniques.
EGSR’04. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association. 2004.
ISBN 3-905673-12-6. pp. 185–195. doi:10.2312/EGWR/EGSR04/185-195.
Retrieved from: http://dx.doi.org/10.2312/EGWR/EGSR04/185-195

[16] Clark, J. H.: Hierarchical Geometric Models for Visible Surface Algorithms.
Commun. ACM. vol. 19, no. 10. October 1976: page 547–554. ISSN 0001-0782.
doi:10.1145/360349.360354.
Retrieved from: https://doi.org/10.1145/360349.360354

[17] Crow, F. C.: Shadow algorithms for computer graphics. In Proceedings of the 4th
annual conference on Computer graphics and interactive techniques. SIGGRAPH
’77. New York, NY, USA: ACM. 1977. pp. 242–248. doi:10.1145/563858.563901.
Retrieved from: http://doi.acm.org/10.1145/563858.563901

[18] Dachsbacher, C.; Stamminger, M.: Reflective shadow maps. In I3D ’05: Proceedings
of the 2005 symposium on Interactive 3D graphics and games. ACM. 2005. pp.
203–231.

[19] Davidovič, T.; Georgiev, I.; Slusallek, P.: Progressive Lightcuts for GPU. In ACM
SIGGRAPH 2012 Talks. SIGGRAPH ’12. New York, NY, USA: ACM. 2012. ISBN
978-1-4503-1683-5. pp. 1:1–1:1. doi:10.1145/2343045.2343047.
Retrieved from: http://doi.acm.org/10.1145/2343045.2343047

[20] Deves, F.; Mora, F.; Aveneau, L.; et al.: Scalable Real-Time Shadows using
Clustering and Metric Trees. In Eurographics Symposium on Rendering -
Experimental Ideas and Implementations, edited by W. Jakob; T. Hachisuka. The
Eurographics Association. 2018.

[21] Dietrich, S.: Using the stencil buffer. Game Developers Conference. march 1999.
Retrieved from: https://www.nvidia.pl/object/using_the_stencil_buffer.html

[22] Dimitrov, R.: Cascaded Shadow Maps. Technical report. NVIDIA Corporation.
August 2007.
Retrieved from: http://developer.download.nvidia.com

161

https://doi.org/10.1080/10867651.2002.10487567
http://web.archive.org/web/20090127020935/http://developer.nvidia.com/attach/6832
http://web.archive.org/web/20090127020935/http://developer.nvidia.com/attach/6832
http://dx.doi.org/10.2312/EGWR/EGSR04/185-195
https://doi.org/10.1145/360349.360354
http://doi.acm.org/10.1145/563858.563901
http://doi.acm.org/10.1145/2343045.2343047
https://www.nvidia.pl/object/using_the_stencil_buffer.html
http://developer.download.nvidia.com


[23] Donnelly, W.; Lauritzen, A.: Variance Shadow Maps. In Proceedings of the 2006
Symposium on Interactive 3D Graphics and Games. I3D ’06. ACM. 2006. ISBN
1-59593-295-X. pp. 161–165.
Retrieved from: http://doi.acm.org/10.1145/1111411.1111440

[24] Eisemann, E.; Assarsson, U.; Schwarz, M.; et al.: Casting Shadows in Real Time. In
ACM SIGGRAPH ASIA 2009 Courses. SIGGRAPH ASIA ’09. New York, NY,
USA: ACM. 2009. pp. 0–100. doi:10.1145/1665817.1722963.
Retrieved from: http://doi.acm.org/10.1145/1665817.1722963

[25] Eisemann, E.; Assarsson, U.; Schwarz, M.; et al.: Real-time Shadows. A K
Peters/CRC Press. 2011. ISBN 9781568814384.

[26] Eisemann, E.; Assarsson, U.; Schwarz, M.; et al.: Efficient Real-time Shadows. In
ACM SIGGRAPH 2013 Courses. SIGGRAPH ’13. New York, NY, USA: ACM.
2013. ISBN 978-1-4503-2339-0. pp. 18:1–18:54. doi:10.1145/2504435.2504453.
Retrieved from: http://doi.acm.org/10.1145/2504435.2504453

[27] Engel, W.: Cascaded shadow maps. Charles River Media. 2006.

[28] Everitt, C. W.; Kilgard, M. J.: Practical and Robust Stenciled Shadow Volumes for
Hardware-Accelerated Rendering. CoRR. vol. cs.GR/0301002. 2003.
Retrieved from: http://arxiv.org/abs/cs/0301002

[29] Fan Zhang, A. B., Alexander Zaprjagaev: Practical Cascaded Shadow Maps. Charles
River Media; 2009. 2009. ISBN 978-1-58450-598-3. 305–330 pp.

[30] Fernando, R.; Fernandez, S.; Bala, K.; et al.: Adaptive Shadow Maps. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’01. New York, NY, USA: ACM. 2001. ISBN 1-58113-374-X. pp.
387–390. doi:10.1145/383259.383302.
Retrieved from: http://doi.acm.org/10.1145/383259.383302

[31] Foley, J. D.: Computer graphics: principles and practice. Addison-Wesley
Professional. 1996.

[32] Fuchs, H.; Goldfeather, J.; Hultquist, J. P.; et al.: Fast Spheres, Shadows, Textures,
Transparencies, and Imgage Enhancements in Pixel-Planes. SIGGRAPH Comput.
Graph.. vol. 19, no. 3. July 1985: page 111–120. ISSN 0097-8930.
doi:10.1145/325165.325205.
Retrieved from: https://doi.org/10.1145/325165.325205

[33] Gerhards, J.; Mora, F.; Aveneau, L.; et al.: Partitioned Shadow Volumes. In
Computer Graphics Forum, Proceedings of Eurographics 2015, vol. 34. 05 2015. pp.
0–100. doi:10.1111/cgf.12583.

[34] Goldberg, D.: What Every Computer Scientist Should Know about Floating-Point
Arithmetic. ACM Comput. Surv.. vol. 23, no. 1. March 1991: page 5–48. ISSN
0360-0300. doi:10.1145/103162.103163.
Retrieved from: https://doi.org/10.1145/103162.103163

[35] Gooch, B.; pike J. Sloan, P.; Gooch, A.; et al.: Interactive Technical Illustration.
1999.

162

http://doi.acm.org/10.1145/1111411.1111440
http://doi.acm.org/10.1145/1665817.1722963
http://doi.acm.org/10.1145/2504435.2504453
http://arxiv.org/abs/cs/0301002
http://doi.acm.org/10.1145/383259.383302
https://doi.org/10.1145/325165.325205
https://doi.org/10.1145/103162.103163


[36] Govindaraju, N.; Lloyd, B.; Yoon, S.-e.; et al.: Interactive Shadow Generation in
Complex Environments. ACM Transactions on Graphics. vol. 22. 04 2003.
doi:10.1145/882262.882299.

[37] Graphics, I. C.; Staff, A.: A Trip Down the Graphics Pipeline: The Homogeneous
Perspective Transform. IEEE Comput. Graph. Appl.. vol. 13, no. 3. May 1993: page
75–80. ISSN 0272-1716. doi:10.1109/38.210494.
Retrieved from: https://doi.org/10.1109/38.210494

[38] Greene, N.; Kass, M.; Miller, G.: Hierarchical Z-Buffer Visibility. ACM Computer
Graphics. vol. 27. 09 1993. doi:10.1145/166117.166147.

[39] Harada, T.: A 2.5D Culling for Forward+. In SIGGRAPH Asia 2012 Technical
Briefs. SA ’12. New York, NY, USA: Association for Computing Machinery. 2012.
ISBN 9781450319157. doi:10.1145/2407746.2407764.
Retrieved from: https://doi.org/10.1145/2407746.2407764

[40] Hargreaves, S.: Deferred Shading. GDC. 2004.

[41] Heidmann, T.: Real Shadows, Real Time. Iris Universe, No. 18. 1991: pp. 23–31.

[42] Hilbert, D.: Ueber die stetige Abbildung einer Linie auf ein Flächenstück.
Mathematische Annalen. 1891: pp. 459 – 460.

[43] Hornus, S.; Hoberock, J.; Lefebvre, S.; et al.: ZP+: Correct Z-pass stencil shadows.
Symposium on Interactive 3D Graphics and Games. 01 2005.
doi:10.1145/1053427.1053459.

[44] Immel, D. S.; Cohen, M. F.; Greenberg, D. P.: A Radiosity Method for Non-Diffuse
Environments. In Proceedings of the 13th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’86. New York, NY, USA: Association for
Computing Machinery. 1986. ISBN 0897911962. page 133–142.
doi:10.1145/15922.15901.
Retrieved from: https://doi.org/10.1145/15922.15901

[45] Isenberg, T.; Freudenberg, B.; Halper, N.; et al.: A Developer’s Guide to Silhouette
Algorithms for Polygonal Models. Computer Graphics and Applications, IEEE.
vol. 23. 08 2003: pp. 28 – 37. doi:10.1109/MCG.2003.1210862.

[46] Jia, N.; Luo, D.; Zhang, Y.: Distorted Shadow Mapping. In Proceedings of the 19th
ACM Symposium on Virtual Reality Software and Technology. VRST ’13. New York,
NY, USA: ACM. 2013. ISBN 978-1-4503-2379-6. pp. 209–214.
doi:10.1145/2503713.2503746.
Retrieved from: http://doi.acm.org/10.1145/2503713.2503746

[47] Johnson, D.; Cohen, E.: Spatialized normal cone hierarchies. In Proceedings of the
2001 Symposium on Interactive 3D Graphics. 01 2001. pp. 129–134.
doi:10.1145/364338.364380.

[48] Johnson, G.; Lee, J.; Burns, C.; et al.: The irregular Z-buffer: Hardware acceleration
for irregular data structures. ACM Trans. Graph.. vol. 24. 01 2005: pp. 1462–1482.

163

https://doi.org/10.1109/38.210494
https://doi.org/10.1145/2407746.2407764
https://doi.org/10.1145/15922.15901
http://doi.acm.org/10.1145/2503713.2503746


[49] Jordan, C.: Cours d’analyse de l’Ecole Polytechnique. 1887: pp. 587–594.
Retrieved from: https://www.maths.ed.ac.uk/~v1ranick/jordan/jordan.pdf

[50] Kajiya, J. T.: The Rendering Equation. In Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’86.
New York, NY, USA: Association for Computing Machinery. 1986. ISBN
0897911962. page 143–150. doi:10.1145/15922.15902.
Retrieved from: https://doi.org/10.1145/15922.15902

[51] Keller, A.: Instant radiosity. In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques. SIGGRAPH ’97. New York, NY,
USA: ACM Press/Addison-Wesley Publishing Co.. 1997. ISBN 0-89791-896-7. pp.
49–56. doi:10.1145/258734.258769.
Retrieved from: http://dx.doi.org/10.1145/258734.258769

[52] Kim, B.; Kim, K.; Turk, G.: A Shadow Volume Algorithm for Opaque and
Transparent Non-Manifold Casters. 2008.

[53] Kobrtek, J.; Milet, T.; Herout, A.: Silhouette Extraction for Shadow Volumes Using
Potentially Visible Sets. In International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision (WSCG). Union Agency.
2019. ISBN 978-80-86943-37-4. pp. 9–16. doi:10.24132/JWSCG.2019.27.1.2.
Retrieved from: https://www.fit.vut.cz/research/publication/11975

[54] Kolivand, H.; Sunar, M. S.: A Survey of Shadow Volume Algorithms in Computer
Graphics. IETE Tech Rev 2013. vol. 30. 2013: pp. 38–46.

[55] Kwoon, H. Y.: The Theory of Stencil Shadow Volumes. Wordware Publishing, Inc..
2003. ISBN 1-55622-902-X. 197–278 pp.

[56] Laine, S.: Split-plane shadow volumes. 01 2005. pp. 23–32.
doi:10.1145/1071866.1071870.

[57] Laine, S.; Saransaari, H.; Kontkanen, J.; et al.: Incremental instant radiosity for
real-time indirect illumination. In Proceedings of the 18th Eurographics conference
on Rendering Techniques. EGSR’07. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association. 2007. ISBN 978-3-905673-52-4. pp. 277–286.
doi:10.2312/EGWR/EGSR07/277-286.
Retrieved from: http://dx.doi.org/10.2312/EGWR/EGSR07/277-286

[58] Lauritzen, A.; Salvi, M.; Lefohn, A.: Sample Distribution Shadow Maps. In
Symposium on Interactive 3D Graphics and Games. I3D ’11. New York, NY, USA:
ACM. 2011. ISBN 978-1-4503-0565-5. pp. 97–102. doi:10.1145/1944745.1944761.
Retrieved from: http://doi.acm.org/10.1145/1944745.1944761

[59] Lefohn, A.; Sengupta, S.; Kniss, J. M.; et al.: Dynamic Adaptive Shadow Maps on
Graphics Hardware. In ACM SIGGRAPH 2005 Conference Abstracts and
Applications. August 2005.
Retrieved from: http://graphics.cs.ucdavis.edu/~lefohn/work/glift/

[60] Lengyel, E.: The mechanics of robust stencil shadows. 2002.
Retrieved from: http://www.gamasutra.com/view/feature/2942/
the_mechanics_of_robust_stencil_.php

164

https://www.maths.ed.ac.uk/~v1ranick/jordan/jordan.pdf
https://doi.org/10.1145/15922.15902
http://dx.doi.org/10.1145/258734.258769
https://www.fit.vut.cz/research/publication/11975
http://dx.doi.org/10.2312/EGWR/EGSR07/277-286
http://doi.acm.org/10.1145/1944745.1944761
http://graphics.cs.ucdavis.edu/~lefohn/work/glift/
http://www.gamasutra.com/view/feature/2942/the_mechanics_of_robust_stencil_.php
http://www.gamasutra.com/view/feature/2942/the_mechanics_of_robust_stencil_.php


[61] Lengyel, E.: Mathematics for 3D Game Programming and Computer Graphics,
Second Edition. Charles River Media, Inc.. 2003. ISBN 1584502770.

[62] Lloyd, B.; Govindaraju, N.; Quammen, C.; et al.: Logarithmic Perspective Shadow
Maps. ACM Trans. Graph.. vol. 27. 10 2008. doi:10.1145/1409625.1409628.

[63] Lloyd, B.; Tuft, D.; Yoon, S.-e.; et al.: Warping and Partitioning for Low Error
Shadow Maps. 01 2006. pp. 215–226. doi:10.2312/EGWR/EGSR06/215-226.

[64] Lloyd, B.; Wend, J.; Govindaraju, N.; et al.: CC shadow volumes. 01 2004. pp.
197–206. doi:10.1145/1186223.1186406.

[65] Lloyd, D. B.; Govindaraju, N. K.; Molnar, S. E.; et al.: Practical Logarithmic
Rasterization for Low-error Shadow Maps. In Proceedings of the 22Nd ACM
SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware. GH ’07.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Association. 2007. ISBN
978-1-59593-625-7. pp. 17–24.
Retrieved from: http://dl.acm.org/citation.cfm?id=1280094.1280097

[66] Martin, T.; Tan, T.-S.: Anti-aliasing and Continuity with Trapezoidal Shadow
Maps. 01 2004. pp. 153–160. doi:10.2312/EGWR/EGSR04/153-160.

[67] Mattausch, O.; Scherzer, D.; Wimmer, M.; et al.: Tessellation-Independent Smooth
Shadow Boundaries. Computer Graphics Forum. vol. 4, no. 31. June 2012: pp.
1465–1470. ISSN 1467-8659.
Retrieved from: https:
//www.cg.tuwien.ac.at/research/publications/2012/MATTAUSCH-2012-TIS/

[68] Mccool, M.: Shadow Volume Reconstruction from Depth Maps. ACM Trans.
Graph.. vol. 19. 01 2000: pp. 1–26. doi:10.1145/343002.343006.

[69] McGuire, M.: Efficient Shadow Volume Rendering. In GPU Gems, edited by
R. Fernando. Addison-Wesley. 2004. pp. 137–166.

[70] McGuire, M.; Hughes, J. F.; Egan, K.; et al.: Fast, Practical and Robust Shadows.
Technical report. NVIDIA Corporation. Austin, TX. Nov 2003.
Retrieved from:
http://developer.nvidia.com/object/fast_shadow_volumes.html

[71] Michael Wimmer, D. S.: Robust shadow mapping with light-space perspective shadow
maps. Charles River Media; 1 edition (January 12, 2006). 2006. ISBN 1584504250.
313–330 pp.

[72] Milet, T.; Kobrtek, J.; Zemčík, P.; et al.: Fast and Robust Tessellation-Based
Silhouette Shadows. In 22nd International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision, WSCG 2014, Poster
Papers Proceedings - in co-operation with EUROGRAPHICS Association. University
of West Bohemia in Pilsen. 2014. ISBN 978-80-86943-72-5. pp. 33–38.
Retrieved from: https://www.fit.vut.cz/research/publication/10587

[73] Milet, T.; Navrátil, J.; Zemčík, P.: An Improved Non-Orthogonal Texture Warping
for Better Shadow Rendering. In WSCG 2015 - Full Papers Proceedings. Union

165

http://dl.acm.org/citation.cfm?id=1280094.1280097
https://www.cg.tuwien.ac.at/research/publications/2012/MATTAUSCH-2012-TIS/
https://www.cg.tuwien.ac.at/research/publications/2012/MATTAUSCH-2012-TIS/
http://developer.nvidia.com/object/fast_shadow_volumes.html
https://www.fit.vut.cz/research/publication/10587


Agency. 2015. ISBN 978-80-86943-65-7. pp. 99–107.
Retrieved from: https://www.fit.vut.cz/research/publication/10889

[74] Milet, T.; Navrátil, J.; Herout, A.; et al.: Improved Computation of Attenuated
Light with Application in Scenes with Multiple Light Sources. In Proceedings of
SCCG 2013. Comenius University in Bratislava. 2013. ISBN 978-80-223-3377-1. pp.
155–160.
Retrieved from: http://www.fit.vutbr.cz/research/view_pub.php?id=10278

[75] Milet, T.; Tóth, M.; Pečiva, J.; et al.: Fast robust and precise shadow algorithm for
WebGL 1.0 platform. In ICAT-EGVE 2015 - International Conference on Artificial
Reality and Telexistence and Eurographics Symposium on Virtual Environments.
Eurographics Association. 2015. ISBN 978-3-905674-84-2. pp. 85–92.
doi:10.2312/egve.20151314.
Retrieved from: https://www.fit.vut.cz/research/publication/10946

[76] Mora, F.; Gerhards, J.; Aveneau, L.; et al.: Deep Partitioned Shadow Volumes using
Stackless and Hybrid Traversals. 06 2016.

[77] Morton, G.: A Computer Oriented Geodetic Data Base and a New Technique in File
Sequencing. 01 1966.

[78] Navrátil, J.; Zemčík, P.; Juránek, R.; et al.: A Skewed Paraboloid Cut for Better
Shadow Rendering. In Proceedings of Computer Graphics International 2012.
Springer Verlag. 2012. ISBN 978-1-85899-283-9. page 4.
Retrieved from: http://www.fit.vutbr.cz/research/view_pub.php?id=9880

[79] Olson, M.; Zhang, H.: Silhouette Extraction in Hough Space. Comput. Graph.
Forum. vol. 25. 09 2006: pp. 273–282. doi:10.1111/j.1467-8659.2006.00946.x.

[80] Olsson, O.; Assarsson, U.: Tiled shading. Journal of Graphics, GPU, and Game
Tools 15, 4 (2011). 2011.

[81] Olsson, O.; Billeter, M.; Assarsson, U.: Clustered Deferred and Forward Shading. In
Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on
High-Performance Graphics. EGGH-HPG’12. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association. 2012. ISBN 978-3-905674-41-5. pp. 87–96.
doi:10.2312/EGGH/HPG12/087-096.
Retrieved from: http://dx.doi.org/10.2312/EGGH/HPG12/087-096

[82] Olsson, O.; Sintorn, E.; Kämpe, V.; et al.: Efficient Virtual Shadow Maps for Many
Lights. In Proceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games. I3D ’14. New York, NY, USA: Association for
Computing Machinery. 2014. ISBN 9781450327176. page 87–96.
doi:10.1145/2556700.2556701.
Retrieved from: https://doi.org/10.1145/2556700.2556701

[83] Olsson, O.; Sintorn, E.; Kämpe, V.; et al.: More Efficient Virtual Shadow Maps for
Many Lights. 03 2014. pp. 87–96. doi:10.1145/2556700.2556701.

[84] O’Donnell, Y.; Chajdas, M. G.: Tiled Light Trees. In Proceedings of the 21st ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games. I3D ’17. New

166

https://www.fit.vut.cz/research/publication/10889
http://www.fit.vutbr.cz/research/view_pub.php?id=10278
https://www.fit.vut.cz/research/publication/10946
http://www.fit.vutbr.cz/research/view_pub.php?id=9880
http://dx.doi.org/10.2312/EGGH/HPG12/087-096
https://doi.org/10.1145/2556700.2556701


York, NY, USA: Association for Computing Machinery. 2017. ISBN 9781450348867.
doi:10.1145/3023368.3023376.
Retrieved from: https://doi.org/10.1145/3023368.3023376

[85] Pečiva, J.; Starka, T.; Milet, T.; et al.: Robust Silhouette Shadow Volumes on
Contemporary Hardware. In Conference Proceedings of GraphiCon’2013. GraphiCon
Scientific Society. 2013. ISBN 978-5-8044-1402-4. pp. 56–59.
Retrieved from: http://www.fit.vutbr.cz/research/view_pub.php?id=10408

[86] Phong, B. T.: Illumination for computer generated pictures. Commun. ACM.
vol. 18, no. 6. June 1975: pp. 311–317. ISSN 0001-0782. doi:10.1145/360825.360839.
Retrieved from: http://doi.acm.org/10.1145/360825.360839

[87] Ritschel, T.; Grosch, T.; Kim, M. H.; et al.: Imperfect shadow maps for efficient
computation of indirect illumination. In SIGGRAPH Asia ’08: ACM SIGGRAPH
Asia 2008 papers. ACM. 2008. pp. 1–8.

[88] Rosen, P.: Rectilinear Texture Warping for Fast Adaptive Shadow Mapping. In
Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games. I3D ’12. New York, NY, USA: ACM. 2012. ISBN 978-1-4503-1194-6. pp.
151–158. doi:10.1145/2159616.2159641.
Retrieved from: http://doi.acm.org/10.1145/2159616.2159641

[89] Röttger, S.; Irion, A.; Ertl, T.: Shadow Volumes Revisited. 01 2002. pp. 373–380.

[90] Scherzer, D.; Jeschke, S.; Wimmer, M.: Pixel-correct Shadow Maps with Temporal
Reprojection and Shadow Test Confidence. In Proceedings of the 18th Eurographics
Conference on Rendering Techniques. EGSR’07. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association. 2007. ISBN 978-3-905673-52-4. pp. 45–50.
doi:10.2312/EGWR/EGSR07/045-050.
Retrieved from: http://dx.doi.org/10.2312/EGWR/EGSR07/045-050

[91] Sintorn, E.; Eisemann, E.; Assarsson, U.: Sample Based Visibility for Soft Shadows
Using Alias-free Shadow Maps. In Proceedings of the Nineteenth Eurographics
Conference on Rendering. EGSR’08. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association. 2008. pp. 1285–1292.
doi:10.1111/j.1467-8659.2008.01267.x.
Retrieved from: http://dx.doi.org/10.1111/j.1467-8659.2008.01267.x

[92] Sintorn, E.; Kämpe, V.; Olsson, O.; et al.: Per-triangle Shadow Volumes using a
view-sample cluster hierarchy. 03 2014. pp. 111–118. doi:10.1145/2556700.2556716.

[93] Sintorn, E.; Olsson, O.; Assarsson, U.: An Efficient Alias-free Shadow Algorithm for
Opaque and Transparent Objects Using Per-triangle Shadow Volumes. ACM Trans.
Graph.. vol. 30, no. 6. December 2011: pp. 153:1–153:10. ISSN 0730-0301.
doi:10.1145/2070781.2024187.
Retrieved from: http://doi.acm.org/10.1145/2070781.2024187

[94] Society, I. C.: IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008.
2008: pp. 1–70. doi:10.1109/IEEESTD.2008.4610935.
Retrieved from: https://ieeexplore.ieee.org/servlet/opac?punumber=4610933

167

https://doi.org/10.1145/3023368.3023376
http://www.fit.vutbr.cz/research/view_pub.php?id=10408
http://doi.acm.org/10.1145/360825.360839
http://doi.acm.org/10.1145/2159616.2159641
http://dx.doi.org/10.2312/EGWR/EGSR07/045-050
http://dx.doi.org/10.1111/j.1467-8659.2008.01267.x
http://doi.acm.org/10.1145/2070781.2024187
https://ieeexplore.ieee.org/servlet/opac?punumber=4610933


[95] Society, I. C.: IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019
(Revision of IEEE 754-2008). 2019: pp. 1–84. doi:10.1109/IEEESTD.2019.8766229.
Retrieved from: https://ieeexplore.ieee.org/servlet/opac?punumber=8766227

[96] Stamminger, M.; Drettakis, G.: Perspective Shadow Maps. ACM Trans. Graph..
vol. 21, no. 3. July 2002: pp. 557–562. ISSN 0730-0301. doi:10.1145/566654.566616.
Retrieved from: http://doi.acm.org/10.1145/566654.566616

[97] Stich, M.; Wächter, C.; Keller, A.: Efficient and robust shadow volumes using
hierarchical occlusion culling and geometry shaders. In GPU Gems 3, edited by
H. Nguyen. Addison Wesley Professional. 2007. ISBN 0-321-51526-9. pp. 239–256.

[98] Story, J.: Hybrid Ray-Traced Shadows. Game Developers Conference. March 2015.

[99] Tokuyoshi, Y.; Harada, T.: Stochastic Light Culling for VPLs on GGX
Microsurfaces. Computer Graphics Forum. vol. 36, no. 4. 2017: pp. 55–63.
doi:10.1111/cgf.13224.
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13224.
Retrieved from: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13224

[100] Tomas Akenine-Moller, N. H., Eric Haines: Real-time Rendering. 3rd edition. A K
Peters/CRC Press. 2008. ISBN 1568814240.

[101] Trebilco, D.: Light Indexed Deferred Rendering. In Shader X7: Advanced Rendering
Techniques, edited by W. Engel. 2009.

[102] Valient, M.: Stable rendering of cascaded shadow maps. Charles River Media; 2008.
2008. ISBN 978-1-58450-544-0. 231–238 pp.

[103] Vanek, J.; Navrátil, J.; Herout, A.; et al.: High-quality Shadows with Improved
Paraboloid Mapping. In Advances in Visual Computing. Lecture Notes in Computer
Science 6938. Faculty of Information Technology BUT. 2011. ISBN
978-3-642-24027-0. pp. 421–430.
Retrieved from: http://www.fit.vutbr.cz/research/view_pub.php?id=9695

[104] Walter, B.; Fernandez, S.; Arbree, A.; et al.: Lightcuts: A Scalable Approach to
Illumination. ACM Trans. Graph.. vol. 24, no. 3. July 2005: pp. 1098–1107. ISSN
0730-0301. doi:10.1145/1073204.1073318.
Retrieved from: http://doi.acm.org/10.1145/1073204.1073318

[105] van Waveren, J.: Shadow Volume Construction. 2005.
Retrieved from:
http://fabiensanglard.net/doom3_documentation/37730-293752.pdf

[106] Williams, L.: Casting curved shadows on curved surfaces. SIGGRAPH Comput.
Graph.. vol. 12, no. 3. August 1978: pp. 270–274. ISSN 0097-8930.
doi:10.1145/965139.807402.
Retrieved from: http://doi.acm.org/10.1145/965139.807402

[107] Wimmer, M.; Scherzer, D.; Purgathofer, W.: Light Space Perspective Shadow Maps.
In Rendering Techniques 2004 (Proceedings Eurographics Symposium on Rendering),
edited by A. Keller; H. W. Jensen. Eurographics. Eurographics Association. June

168

https://ieeexplore.ieee.org/servlet/opac?punumber=8766227
http://doi.acm.org/10.1145/566654.566616
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13224
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13224
http://www.fit.vutbr.cz/research/view_pub.php?id=9695
http://doi.acm.org/10.1145/1073204.1073318
http://fabiensanglard.net/doom3_documentation/37730-293752.pdf
http://doi.acm.org/10.1145/965139.807402


2004. ISBN 3-905673-12-6. pp. 143–151.
Retrieved from:
http://www.cg.tuwien.ac.at/research/publications/2004/Wimmer-2004-LSPM/

[108] Woo, A.; Poulin, P.: Shadow Algorithms Data Miner. CRC Press. 2012. ISBN
978-1-4398-8023-4.

[109] Wyman, C.; Hoetzlein, R.; Lefohn, A.: Frustum-Traced Raster Shadows: Revisiting
Irregular z-Buffers. In Proceedings of the 19th Symposium on Interactive 3D
Graphics and Games. i3D ’15. New York, NY, USA: Association for Computing
Machinery. 2015. ISBN 9781450333924. page 15–23. doi:10.1145/2699276.2699280.
Retrieved from: https://doi.org/10.1145/2699276.2699280

[110] Zhang, F.; Sun, H.; Xu, L.; et al.: Parallel-split Shadow Maps for Large-scale
Virtual Environments. In Proceedings of the 2006 ACM International Conference on
Virtual Reality Continuum and Its Applications. VRCIA ’06. New York, NY, USA:
ACM. 2006. ISBN 1-59593-324-7. pp. 311–318. doi:10.1145/1128923.1128975.
Retrieved from: http://doi.acm.org/10.1145/1128923.1128975

[111] Zioma, R.: Reverse extruded shadow volumes. New York, NY, USA: Wirdware
Publishing, Plano, TX. 2003. ISBN 1556229887. 587–593 pp.

169

http://www.cg.tuwien.ac.at/research/publications/2004/Wimmer-2004-LSPM/
https://doi.org/10.1145/2699276.2699280
http://doi.acm.org/10.1145/1128923.1128975

	Preface
	Introduction
	Basics of Lights and Shadows
	Light Sources
	Shadows
	Basic Shadow Algorithms

	Precise Hard Shadows
	Robustness and Floating-point Arithmetic
	Geometry and Topology
	Shadow Volumes
	Other Precise Shadow Methods

	Robust Silhouette Shadow Volumes on Contemporary Hardware
	Introduction
	Algorithm Description and Robustness improvement
	Hardware Platforms
	Experiments and Results
	Conclusions

	Fast and Robust Tessellation-Based Silhouette Shadows
	Introduction
	Method Description
	Experiments
	Conclusions

	Fast Robust and Precise Shadow Algorithm for WebGL 1.0 Platform
	Introduction
	Algorithm
	Measurements and Evaluation
	Conclusion and Future Work

	Silhouette Extraction for Shadow Volumes Using Potentially Visible Sets
	Introduction
	Related Work
	Algorithm
	Implementation
	Results
	Conclusion

	Shadow Mapping, Many Lights
	Shadow Mapping
	Many Lights

	An Improved Non-Orthogonal Texture Warping for Better Shadow Rendering
	Introduction
	Previous Work
	Shadow Rendering Using Non-Orthogonal Warping Grid
	Results and Discussion
	Conclusion and Future Work

	Improved Computation of Attenuated Light with Application in Scenes with Many Light Sources
	Lighting Attenuation
	Ambient Estimation
	Experimental Results
	Conclusions

	Future Goals, Extensions
	Ray-traced Silhouette Shadow Volumes

	Conclusion
	Bibliography

