
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

STROMOVĚ OMEZENÉ GRAMATIKY JAKO
PROSTŘEDEK PRO DŮKAZ BEZKONTEXTOVOSTI
CONTEXT-FREENESS RESULTING FROM TREE-RESTRICTED GRAMMARS

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR PRÁCE Ing. ONDŘEJ SOUKUP
AUTHOR

VEDOUCÍ PRÁCE prof. RNDr. ALEXANDER MEDUNA, CSc.
SUPERVISOR

BRNO 2017

Abstrakt
Tato disertační práce představuje derivační stromy několika různých typů gramatik ve
zobecněné Kurodově normální formě; jmenovitě obecné a regulárně řízené gramatiky, gra-
matiky s rozptýleným kontextem a spolupracující distribuované gramatické systémy. Defin-
uje jednoduché stromové rysy založené na kontextových vlastnostech jednotlivých disku-
tovaných gramatik a dokazuje, že pokud existuje limitující konstanta k taková, že každá
věta generovaného jazyka L odpovídá řetězci listových uzlů derivačního stromu, ve kterém
je výskyt definovaných stromových rysů omezen konstantou k, jazyk L je ve skutečnosti
bezkontextový. Tato práce dále ukazuje, že dosažený výsledek představuje silný nástroj
důkazu bezkontextovosti jazyka. Vše je doplněno příklady praktického využití nástroje.

Abstract
The present thesis introduces derivation trees for several different types of grammars in
generalized Kuroda normal forms; namely, general, regular-controlled, and scattered con-
text grammars and cooperating distributed grammar systems. It defines simple tree-based
properties related to non-context-free properties of all grammars in question and shows that
if there exists a limiting constant k such that every sentence in the generated language L
is the frontier of a derivation tree in which the number of occurrences of the defined tree-
based properties is limited by k, the language L is in fact context-free. The thesis explains
that this result represents a powerful tool for showing languages to be context-free. It also
provides illustrations and examples which sketch how to apply this tool in practice.

Klíčová slova
Obecné gramatiky, regulárně řízené bezkontextové gramatiky, gramatiky s rozptýleným kon-
textem, spolupracující distribuované gramatické systémy, normalní formy, derivační stromy,
omezené derivační stromy, bezkontextovost, bezkontextovost konečného indexu.

Keywords
General grammars, regular-controlled context-free grammars, scattered context grammars,
cooperating distributed grammar systems, normal forms, derivation trees, restricted deriva-
tion trees, context-freeness, context-freeness of finite index.

Citace
Ondřej Soukup: Context-Freeness Resulting from Tree-Restricted Grammars, disertační
práce, Brno, FIT VUT v Brně, 2017

Context-Freeness Resulting
from Tree-Restricted Grammars

Declaration
I declare that I created this thesis individually under the supervision of prof. Alexander
Meduna and partially under supervision of prof. Erzsébet Csuhaj-Varjú. I mentioned all
the literature and publications, from which I drew.

. .
Ondřej Soukup

May 29, 2017

Acknowledgment
First of all, I would like to thank prof. Alexander Meduna for his professional guidance
and supervision of this work, his continuous initiative, and enthusiasm thanks to which this
project could be created. Part of this thesis is also based on the work written in cooperation
with prof. Erzsébet Csuhaj-Varjú to whom I am very thankful too. Considerable thanks
also belong to Zbyněk Křivka for his significant help and many pieces of advice. Last but
not least am extremely grateful to my family for long years of support and care.

This work was partially supported by Erasmus+ grant.

c© Ondřej Soukup, 2017.
This thesis was created as a school work at Brno University of Technology, Faculty of
Information Technology. The work is protected by copyright law and its use without author’s
permission is illegal, except the cases listed in law.

Contents

1 Introduction 2

2 Languages and Their Models 8
2.1 Languages . 8
2.2 Grammars . 10
2.3 Automata . 19

3 Graph-Based Representation of Derivation 20
3.1 Graphs and Trees . 20
3.2 Derivation Trees . 22

4 Proof Techniques in Formal Language Theory 32
4.1 Positive Proofs . 32
4.2 Negative Proofs . 37

5 Hierarchy of Language Families 47

6 Tree-Restricted Grammars 51
6.1 General Grammars . 51
6.2 Regular-Controlled Grammars . 54
6.3 Scattered Context Grammars . 64
6.4 Cooperating Distributed Grammar Systems 75

7 How to Prove Context-Freeness 85

8 Conclusion 92

A Publications 99

1

Chapter 1

Introduction

Formal language theory has always intensively struggled to establish conditions under which
certain grammars generate only a proper subfamily of the family of languages generated
by this type of grammars as a whole because results like this often significantly simplify
proofs that some languages are members of the subfamily. To illustrate by a specific exam-
ple, consider the well-known workspace theorem for context-sensitive languages of general
grammars (see Theorem 4.1.1), which fulfills a crucially important role in the grammati-
cally oriented theory of formal languages as a whole (see Theorem III.10.1 in [50]). This
theorem represents a powerful tool to demonstrate that if a general grammar G generates
each of its sentences by a derivation satisfying a prescribed condition (specifically, this con-
dition requires that there is a positive integer k such that G generates every sentence y
in the generated language L(G) by a derivation in which every sentential form x satisfies
|x| ≤ k|y|), then L(G) is a member of the context-sensitive language family. Regarding
the membership in the context-free language family, however, formal language theory lacks
a result like this. To fill this gap, the present thesis establishes several tree-based condi-
tions so every grammar in question satisfying these conditions generates a member of the
context-free language family.

More specifically, we discuss general, regular-controlled context-free, and scattered con-
text grammars and cooperating distributed grammar systems. In general, all of these types
of grammars (for definitions see Section 2.2) are significantly stronger than ordinary context-
free grammars. In fact, general and scattered context grammars are as strong as Turing
machines and, therefore, they are computationally complete. Regular-controlled grammars
are as powerful as matrix grammars—that is, they generate the family of matrix languages.
The generative power of cooperating distributed grammar systems ranges from the power of
context-free grammars up to matrix grammars or extended tabled zero-sided Lindermayer
systems depending on the derivation mode respectively (see [28, 35, 42, 48, 50] for details).
Surprisingly, the present thesis demonstrates that under some very natural and simple con-
ditions placed upon their derivation trees, their power significantly lessens. As a matter of
fact, under these conditions, they generate only the family of context-free languages—or
even context-free languages of finite index.

In theory of formal languages we have typically a numerous different ways how to dis-
prove that some language belongs to a certain family of languages and, thus, obtain a
negative proof of a membership in this family of languages (for details see Section 4.2).
The most significant examples are indisputably various pumping lemmas; namely, for reg-
ular, linear, and context-free languages. They introduce necessary (rarely also sufficient)
conditions for a language to belong to the language family in question such that for a lan-

2

guage L and a sufficiently long sentence w ∈ L, there are certain substrings of w which
may be so called pumped to again obtain a sentence in L. However, we usually use these
lemmas counterwise showing that for a language L and any sufficiently long sentence w,
there do not exist substrings specified by the given lemma which can be pumped to obtain-
ing sentences in L. To give another example, there are several proof techniques to show
that some languages are not recursively enumerable and, so, beyond the power of general
grammars; specifically, reduction or diagonalization. On the other hand, there are only a
few proof techniques to obtain positive proof of membership of a language in a language
family. The most significant example is definitely the workspace theorem explained before.
Especially, except for example constructing a context-free grammar, there is no general
proof technique for proving context-freeness. Though, this thesis aims to contribute to the
subject of proving context-freeness by showing that some non-context-free grammars under
some simple derivation-tree-based restrictions generate context-free languages.

The following simple but natural idea stands in the background of this thesis.

Basic Idea. The vast majority of non-context-free grammars is in some way based upon the
very basic concept of context-free rules. Additionally, they introduce some mechanisms to
increase their generative power. Some of them allow the rules to be applied only in a certain
context of neighbouring symbols, restrict the mutual order of the rule applications, perform
parallel applications of several context-free rules at once, or alternate between several sets of
context-free rules under the given conditions. Each of these additional mechanisms provides
the power beyond context-free grammars, since it may be applied at any time during the
whole derivation process. It can be also very naturally captured by the specific properties
of corresponding derivation trees. Then, if we restrict these derivation trees, so the number
of these specific properties occurring within them is less or equal to some constant value,
the generative power probably significantly decreases.

The initial thoughts indicated that the resulting generated family of languages for any
of these restricted grammars is precisely the family of context-free languages. Later in
Chapter 6, we provide rigorous proofs and detailed explanation that this basic idea in fact
holds true; except for regular-controlled context-free grammars in which case the restriction
is even more significant. To give an insight we sketch the results achieved for all grammars
in question.

I. First, we introduce tree-based conditions for context-freeness of general grammars.
Recall that a general grammar G is in Kuroda normal form (see Section 2.2) if any
rule satisfies one of these forms

AB → CD, A→ BC, A→ B, A→ a, A→ ε

where A, B, C, D are nonterminals, a is a terminal, and ε is the empty string. We
define the notion of a derivation tree t graphically representing a derivation in G by
analogy with this notion in terms of an ordinary context-free grammar (for details see
Section 3.2). In addition, however, we introduce context-dependent pairs of nodes in
t as follows. In t, two paths are neighbouring if no other path occurs between them.
Let p and q be two neighbouring paths in t. Let p contain a node k with a single
child l, where k and l are labelled with A and C, respectively, and let q contain a
node m with a single child n, where m and n are labelled with B and D, respectively.
Let this four-node portion of t; consisting of k, l, m, and n; graphically represent an

3

...

rp q

...

kA

lC

...

...

m B

n D

...

context dependency

Figure 1.0.1: Illustration of context dependency in derivation tree of general grammar.

application of AB → CD. Then, k and m are a context-dependent pair of nodes (see
Fig. 1.0.1).

The present thesis proves that the language of G, L(G), is context-free if there is a
constant k such that every w ∈ L(G) is the frontier of a derivation tree d in which
any pair of neighbouring paths contains k or fewer context-dependent pairs of nodes.

II. Second, we present tree-based conditions for regular-controlled grammars to generate
context-free languages. Consider a context-free grammar G with the following rules

S → AB, A→ C, B → D

and the next derivation
S ⇒ AB ⇒ CB ⇒ CD.

Let us look at the process of the derivation from the perspective of the derivation tree.
During the first step a branching node is introduced. Then, the derivation continues
into the left branch. However, the last derivation step takes place within the different
branch; which is the right one. We call this phenomenon path-change and discuss it
in terms of regular-controlled grammars.

n1S

n2A

n4C

n3 B

n5 D

Figure 1.0.2: Illustration of path-change in derivation tree. The dashed lines denote the
path of the derivation. Notice that the consecutive rewritings of the node labelled A and
the node labelled B take place within the different branches of the derivation tree.

4

In essence, we put restrictions on the number of path-changing derivation steps. It
is proved that the language generated by a regular-controlled grammar is context-
free—in fact context-free of index k—if there is a constant k such that every sentence
w in the generated language is the frontier of a derivation tree corresponding to
some derivation within which there are k or fewer path-changing derivation steps. Of
course, this k is an upper bound and the minimal index is possibly lower.

Since the tree-based restrictions are independent of the control mechanism, the achieved
result holds for well-known matrix grammars (see [1]) as well.

III. Third, we turn our attention to the scattered context grammars. Recall that a scat-
tered context grammar G is in binary form (see Section 2.2) if in G any rule satisfies
one of these forms

(A,B)→ (C,D), (A)→ (BC), (A)→ (X)

where A, B, C, D are nonterminals, X is a nonterminal, terminal, or the empty string.
We define the notion of a derivation tree t graphically representing a derivation in
G by analogy with this notion in terms of an ordinary context-free grammar. In
addition, however, we introduce context-dependent pairs of nodes in t as follows.
Assume that by applying (A,B) → (C,D), G simultaneously rewrites A and B to
C and D, respectively. This application is graphically depicted in Fig. 1.0.3, where
nodes k, m, l, and n are labelled with A, B, C, and D, respectively. Then, k and m
is a context-dependent pair of nodes.

...

kA

lC

...

...

m B

n D

...

contex
t depe

ndency

Figure 1.0.3: Illustration of context dependency in derivation tree of scattered context
grammar.

Based upon the context-dependent pairs of nodes, the present thesis places a simple
restriction upon derivation trees for a scattered context grammar G and demonstrates
that under this restriction, its language L(G) is context-free. In essence, this restric-
tion, sketched in Fig. 1.0.4, requires the existence of a constant k ≥ 0 such that for
any sentence x ∈ L(G), there is a derivation tree t with frontier x so t can be divided
into a set of connected subgraphs satisfying conditions (i) and (ii):

(i) any pair of context-dependent nodes contained in t occurs within one of these
subgraphs, and

5

(ii) none of these subgraphs contains more than k pairs of context-dependent nodes.

It is worth pointing out that the number of these connected subgraphs and, thus, the
total number of context dependencies is not limited at all.

b

a

Figure 1.0.4: A sketch of the context-dependence-based restrictions in scattered context
grammars. The graph represents derivation tree, where triangles are its subgraphs accord-
ing to some division. Dashed lines depict the context dependencies. If we add context
dependency a, restriction (i) is violated since the affected nodes occur in the different sub-
graphs of the division of the derivation tree. Suppose that k = 3. Then, adding context
dependency b violates restriction (ii) since there occurs a subgraph with more than k con-
text dependent pairs of nodes. However, for k > 3, adding context dependency b is still
legal since both restrictions remain satisfied.

IV. Finally, as the fourth type of grammatical models we cover cooperating distributed
grammar systems. They represent a composition of several context-free grammars
called components with common alphabets but distinct rule sets. While generat-
ing a single sentence, the components alternate under the conditions specified by so
called derivation mode. Consider a cooperating distributed grammar system with n
components and a derivation

u⇒ψ
i v ⇒

ψ
j w,

where ψ is a derivation mode and 1 ≤ i, j ≤ n, i 6= j. Then, the first derivation step
is performed by component i and the second by different component j. We call this
phenomenon component change. In the sense of derivation trees, for a cooperating
distributed grammar system G and a sentence w with the derivation tree t there are
several layers within t from the root to the leaf nodes, where every layer corresponds
to a different component of G (as depicted in Fig. 1.0.5).

These layers are in fact specific cuts of the derivation tree. We denote them component-
change cuts. Based on this notion, the thesis shows that restricting the number of pos-
sible component-change cuts within the derivation trees of sentences of a cooperating
distributed grammar system by a constant value results in generation of context-free
language regardless of the used mode of derivations.

Apart from their obvious theoretical value, these results may be of some interest in
practice, too. Specifically, some language processors, such as parsers, frequently require
that the languages processed by them are context-free. As obvious, the results stated
above may fulfill a useful role during the verification of this requirement.

6

Figure 1.0.5: Illustration of component-change-based layers of derivation trees in cooperat-
ing distributed grammar systems. Consider a grammar system with two components and
some derivation whose derivation tree is illustrated by the triangle. First component gen-
erates sentential form from the start symbol, which corresponds to the topmost layer of the
derivation tree. Then, the components change and the second one continues with the gen-
eration from the current sentential form. It corresponds to the second topmost grey-dotted
layer of the derivation tree, etc.

The thesis is organized as follows. After this introductory chapter, Chapter 2 gives all
the necessary terminology concerning languages, grammars, and automata. In the case that
the reader is already familiar with theory of formal languages, the chapter may be skipped
and serve later as a reference for the notion. Then, in Chapter 3, we first introduce some
basic knowledge of graphs and trees to next put it in connection with grammar-based notion
of derivation introducing derivation trees which denote hierarchical structure of rewritings
in a derivation of a sentence. Chapter 4 presents important proof techniques in formal lan-
guage theory demonstrating, on one hand, how to prove that a language belongs to a certain
family of languages and, on the other hand, how to disprove a membership of a language
in a certain language family. It also explains current deficiencies in this area of research.
The following Chapter 5 puts together all previous language-related knowledge establishing
hierarchy of language families. Finally, in Chapter 6 we establish the main results of this
thesis and explain their validity in detail. We present simple tree-based conditions under
which general, regular-controlled context-free, and scattered context grammars and cooper-
ating distributed grammar systems generate context-free languages. After that, Chapter 7
shows how to apply the main results in practice for proving context-freeness of languages.
The thesis is closed by stating several open problems rising from the subject of this work
and by suggesting some future research perspectives.

7

Chapter 2

Languages and Their Models

In this introductory chapter, we define all the basic notions concerning formal language
theory which is necessary to properly understand and follow the main matter of this work,
however, if the reader is already familiar with the basics of formal languages, the chapter
may be skipped and treated as a reference for terminology. We assume that the reader
is familiar with discrete mathematics including set theory (see [2, 9, 21]). Some of the
following definitions and notions were introduced in [14, 43].

2.1 Languages

For a set W , card(W) denotes its cardinality. An alphabet Σ is a finite, nonempty set of
elements called symbols. If card(Σ) = 1, then Σ is a unary alphabet. A string or, synony-
mously, a word over Σ is any finite sequence of symbols from Σ. We omit all separating
commas in strings; that is, for a string a1, a2, . . . , an, for some n ≥ 1, we write a1a2 · · · an
instead. The empty string, denoted by ε, is the string that is formed by no symbols, i.e.
the empty sequence. By Σ∗, we denote the set of all strings over Σ (including ε). Set
Σ+ = Σ∗ − {ε}.

Let x be a string over Σ, i.e. x ∈ Σ∗, and express x as x = a1a2 · · · an, where ai ∈ Σ,
for all i = 1 . . . , n, for some n ≥ 0 (the case when n = 0 means that x = ε). The length
of x, denoted by |x|, is defined as |x| = n. The reversal of x, denoted by reversal(x), is
defined as reversal(x) = anan−1 · · · a1. The alphabet of x, denoted by alph(x), is defined as
alph(x) = {a1, a2, . . . , an}; informally, it is the set of symbols appearing in x. For U ⊆ Σ,
#U (x) denotes the number of occurrences of symbols from U in x. If U = {a}, then instead
of #{a}(x), we write just #a(x). The leftmost symbol of x, denoted by lms(x), is defined
as lms(x) = a1 if n ≥ 1 and lms(x) = ε otherwise. The rightmost symbol of x, denoted
by rms(x), is defined analogously. If n ≥ 1, then for every i = 1, . . . , n, let sym(x, i) denote
the ith symbol in x. Notice that |ε| = 0, reversal(ε) = ε, and alph(ε) = ∅,

Let x and y be two strings over Σ. Then, xy is the concatenation of x and y. Note
that xε = εx = x. If x can be written in the form x = uv, for some u, v ∈ Σ∗, then u is a
prefix of x and v is a suffix of x. If 0 < |u| < |x|, then u is a proper prefix of x; similarly, if
0 < |v| < |x|, then v is a proper suffix of x. Define prefix(x) = {u | u is a prefix of x} and
suffix(x) = {v | v is a suffix of x}. For every i ≥ 0, prefix(x, i) is the prefix of x of length
i if |x| ≥ i, and prefix(x, i) = x if |x| < i. If x = uvw, for some u, v, w ∈ Σ∗, then v is a
substring of x. The set of all substrings of x is denoted by sub(x). Moreover,

sub(y, k) =
{
x | x ∈ sub(y), |x| ≤ k

}
8

Let n be a nonnegative integer. Then, the nth power of x, denoted by xn, is a string over Σ
recursively defined as

(1) x0 = ε
(2) xn = xxn−1 for n ≥ 1

Let x = a1a2 · · · an be a string over Σ, for some n ≥ 0. The set of all permutations of x,
denoted by perm(x), is defined as

perm(x) =
{
b1b2 · · · bn | bi ∈ alph(x), for all i = 1, . . . , n, and
(b1, b2, . . . , bn) is a permutation of (a1, a2, . . . , an)

}
Note that perm(ε) = {ε}.

A language L over Σ is any set of strings over Σ, i.e. L ⊆ Σ∗. The set Σ∗ is called the
universal language because it consists of all strings over Σ. If L is a finite set, then it is
a finite language; otherwise, it is an infinite language. If card(Σ) = 1, then L is a unary
language. The empty language is denoted by ∅. All the common set operations are also
applicable on languages.

The alphabet of L, denoted by alph(L), is defined as

alph(L) =
⋃
x∈L

alph(x)

The permutation of L, denoted by perm(L), is defined as

perm(L) =
{

perm(x) | x ∈ L
}

The reversal of L, denoted by reversal(L), is defined as

reversal(L) =
{

reversal(x) | x ∈ L
}

As all languages are sets, all common operations over sets can be applied to them. There
are also some special operations which apply only to languages. The concatenation of L1

and L2, denoted by L1L2, is the set

L1L2 =
{
x1x2 | x1 ∈ L1 and x2 ∈ L2

}
Note that L{ε} = {ε}L = L. For n ≥ 0, the nth power of L, denoted by Ln, is recursively
defined as

(1) L0 = {ε}
(2) Ln = Ln−1L

Let Σ be an alphabet. For x, y ∈ Σ∗, the shuffle of x and y, denoted by shuffle(x, y), is
defined as

shuffle(x, y) =
{
x1y1x2y2 · · ·xnyn | x = x1x2 . . . xn, y = y1y2 · · · yn,
xi, yi ∈ Σ∗, 1 ≤ i ≤ n, n ≥ 1

}
Let Σ and Γ be two alphabets. Let K and L be languages over alphabets Σ and Γ,
respectively. A total function σ from Σ∗ to 2Γ∗ such that σ(uv) = σ(u)σ(v), for every
u, v ∈ Σ∗, is a substitution. A substitution is ε-free if it is defined from Σ∗ to 2Γ+

. If σ(a)
for every a ∈ Σ is finite, then σ is said to be finite. By this definition, σ(ε) = {ε} and
σ(a1a2 · · · an) = σ(a1)σ(a2) · · ·σ(an), where n ≥ 1 and ai ∈ Σ, for all i = 1, 2, . . . , n, so σ is

9

completely specified by defining σ(a) for each a ∈ Σ. For L ⊆ Σ∗, we extend the definition
of σ to

σ(L) =
⋃
w∈L

σ(w)

A total function ϕ from Σ∗ to Γ∗ such that ϕ(uv) = ϕ(u)ϕ(v), for every u, v ∈ Σ∗, is a
homomorphism or, synonymously, a morphism. As any homomorphism is a special case of
finite substitution, we specify ϕ by analogy with the specification of σ. For L ⊆ Σ∗, we
extend the definition of ϕ to

ϕ(L) =
{
ϕ(w) | w ∈ L

}
By analogy with substitution, ϕ is ε-free if ϕ(a) 6= ε, for every a ∈ Σ. By ϕ−1, we denote
the inverse homomorphism, defined as

ϕ−1(u) =
{
w | ϕ(u) = w

}
By analogy with set theory, sets whose members are languages are called families of

languages. We define them by describing their properties as follows or by introducing formal
models which specify their respective strings as shown in Sections 2.2 and 2.3.

Definition 2.1.1. For an alphabet Σ and a positive integer k, a lagauge L consisted of
finitely many strings w1, w2, . . . , wk ∈ Σ∗ is called finite language. The family of finite
languages is denoted by FIN. �

Definition 2.1.2. A language L over an alphabet Σ is called regular if it can be constructed
by a finite number of applications of the operations union, concatenation, and power from
subsets of Σ ∪ {ε}. By REG we denote the family of all regular languages. �

Let τ be a k-ary operation on languages and let L be a family of languages. We say
that L is closed under the operation τ , if, for all languages L1, L2, . . . , Lk ∈ L, τ(L1,
L2, . . . , Lk) is also an element of L. A language family is called an abstract family of
languages (abbreviated AFL) if it is closed under union, concatenation, positive power,
ε-free homomorphism, inverse homomorphism, and intersection with regular language. An
AFL is called full if it is closed with respect to an arbitrary homomorphism. A family of
languages closed under all AFL operations except concatenation and positive iteration is
termed a semi-AF ; a semi-AFL is full if it is closed under an arbitrary homomorphism.

2.2 Grammars

In this section, we define language-generating devices called grammars which play a major
role in formal language theory as well as in this work.

Definition 2.2.1. A general grammar1 (GG for short) is a quadruple

G = (V, T, P, S)

where V is a total alphabet, T ⊂ V is an alphabet of terminals, N = V − T is an alphabet
of nonterminals, P is a finite relation from V ∗NV ∗ to V ∗, S ∈ N is the start symbol.

Pairs (u, v) ∈ P are called rewriting rules (abbreviated rules), and are written as u→ v.
A rewriting rule u → v ∈ P satisfying v = ε is called an erasing rule. If there is no such

1also referred as phrase-structure grammar

10

rule in P , then we say that G is a propagating grammar. A rule u → v ∈ P is called
context-free if u consists of a single nonterminal, otherwise, it is a non-context-free rule.
Define the domain of P as dom(P) = {A | A→ x ∈ P}.

The G-based direct derivation relation over V ∗ is denoted by ⇒G and defined as

x⇒G y

if and only if x = x1ux2, y = x1vx2, and u→ v ∈ P , where x1, x2 ∈ V ∗.
Since ⇒G is a relation, ⇒k

G is the kth power of ⇒G, for k ≥ 0, ⇒+
G is the transitive

closure of ⇒G, and ⇒∗G is the reflexive-transitive closure of ⇒G. Let D : S ⇒∗G x be a
derivation, for some x ∈ V ∗. Then, x is a sentential form. If x ∈ T ∗, then x is a sentence.
If x is a sentence, then D is a terminal derivation.

The language of G, denoted by L(G), is the set of all sentences defined as

L(G) =
{
w ∈ T ∗ | S ⇒∗G w

}
�

Next, for every general grammar G, we define two sets, F (G) and T (G). F (G) contains
all sentential forms of G. T (G) contains all sentential forms from which there is a derivation
of a string in L(G). The notion also applies for other later defined types of grammars.

Definition 2.2.2. Let G = (V , T , P , S) be a general grammar. Then,

F (G) = {x ∈ V ∗ | S ⇒∗G x}

is the set of all sentential forms of G and

T (G) = {x ∈ F (G) | x⇒∗G y, y ∈ T ∗}

is the set of all sentential forms from which there is a derivation of a string in L(G). �

For brevity, we often denote a rule u → v with a unique label r as r : u → v, and
instead of u→ v ∈ P , we simply write r ∈ P . The notion of rule labels is formalized in the
following definition.

Definition 2.2.3. Let G = (V , T , P , S) be a general grammar. Let Ψ be a set of symbols
called rule labels such that card(Ψ) = card(P), and ψ be a bijection from P to Ψ. For
simplicity and brevity, to express that ψ maps a rule, u → v ∈ P , to r, where r ∈ Ψ, we
write r : u→ v ∈ P ; in other words, r : u→ v means that ψ(u→ v) = r. For r : u→ v ∈ P ,
u and v represent the left-hand side of r, denoted by lhs(r), and the right-hand side of r,
denoted by rhs(r), respectively. We extend ψ from P to P ∗ in the following way

(1) ψ(ε) = ε
(2) ψ(r1r2 · · · rn) = ψ(r1)ψ(r2) · · ·ψ(rn)

for any sequence of rules r1r2 · · · rn, where ri ∈ P , for all i = 1, 2, . . . , n, for some n ≥ 1.
Let w0, w1, . . . , wn be a sequence of strings, where wi ∈ V ∗, for all i = 0, 1, . . . , n, for

some n ≥ 1. If wj−1 ⇒G wj according to rj, where rj ∈ P , for all j = 1, 2, . . . , n, then we
write

w0 ⇒n
G wn [r1r2 · · · rn]

For any string w, we write
w ⇒0

G w [ε]

11

For any two strings w and y, if w ⇒n
G y [%] for n ≥ 0 and % ∈ Ψ∗, then we write

w ⇒∗G y [%]

If n ≥ 1, which means that |%| ≥ 1, then we write

w ⇒+
G y [%]

If w = S, then % is called the sequence of rules (rule labels) used in the derivation of y. �

In what follows, for any grammar G, we automatically assume that V , N , T , P , S, and
Ψ denote its total alphabet, the alphabet of nonterminals, the alphabet of terminals, the
set of rules, the start symbol, and the set of rule labels, respectively.

Definition 2.2.4. A recursively enumerable language is a language generated by a general
grammar. The family of recursively enumerable languages is denoted by RE. �

Definition 2.2.5. A general grammar G = (V, T, P, S) is monotone if x→ y ∈ P implies
|x| ≤ |y|; additionally, if ε ∈ L(G), S → ε ∈ P and S /∈ alph(y). �

Definition 2.2.6. A context-sensitive grammar is a general grammar G =
(
V, T, P, S

)
such that every u→ v in P is of the form

u = x1Ax2, v = x1yx2

where x1, x2 ∈ V ∗, A ∈ N , and y ∈ V +. A context-sensitive language is a language
generated by a context-sensitive grammar. The family of context-sensitive languages is
denoted by CS. �

Theorem 2.2.1 (see [48]). The families of languages generated by monotone and context-
sensitive grammars are equivalent.

Definition 2.2.7. A context-free grammar is a general grammar which has only context-
free rules. A context-free language is a language generated by a context-free grammar. The
family of context-free languages is denoted by CF. Propagating CFGs characterize CF as
well (see [48]). �

Definition 2.2.8. Context-free grammar G = (V, T, P, S) is of index k (kCFG for short),
for some k ≥ 1, if for every w ∈ L(G) there exists a derivation

S ⇒ x1 ⇒ x2 ⇒ · · · ⇒ xn ⇒ w

where #N (xi) ≤ k, for all 1 ≤ i ≤ n, for some n ≥ 0. L is a context-free language of index
k if there exists a kCFG G, where L(G) = L. The family of all context-free languages of
index k generated by kCFGs is denoted by kCF. �

Definition 2.2.9. A linear grammar is a general grammar G =
(
V, T, P, S

)
such that every

rule in P is of the form
A→ xBy or A→ x

where A,B ∈ N and x, y ∈ T ∗. A linear language is a language generated by a linear
grammar. The family of linear languages is denoted by LIN. �

12

Definition 2.2.10. A regular grammar is a general grammar G =
(
V, T, P, S

)
such that

every rule in P is of the form
A→ aB or A→ a

where A,B ∈ N and a ∈ T . A regular language is a language generated by a regular
grammar. The family of regular languages is denoted by REG. �

Next, we define two regulated grammars which generates their sentences by context-free
grammars regulated by additional control mechanisms.

Definition 1. A matrix grammar (MG for short) is a pair H = (G,M), where

• G = (V, T, P, S) is a context-free grammar;

• M is a finite language over the alphabet of rules (M ⊆ P ∗).

For x, y ∈ V ∗, m ∈M , H performs a direct derivation step from x to y according to the
matrix m denoted by x⇒H y [m], if and only if there are x0, x1, . . . , xn such that x0 = x,
xn = y, and

• x0 ⇒G x1 [p1]⇒G x2 [p2]⇒G . . . ⇒G xn [pn], and

• m = p1p2 . . . pn, where pi ∈ P , 1 ≤ i ≤ n, for some n ≥ 1.

The transitive and reflexive closure is defined and denoted as usual. Then,

L (H) = {x ∈ T ∗ | S ⇒∗H x}

is the language generated by H. Let MT denotes the family of languages generated by
matrix grammars; the family of matrix languages introduced in [1].

Definition 2.2.11. A regular-controlled grammar (an RCG for short) H is a pair H = (G,
C), where

• core grammar G = (V, T, P, S) is a context-free grammar;

• control language C ⊆ P ∗ is a regular language.

If S ⇒∗G w [α] and αβ ∈ C, for some α, β ∈ P ∗, we put S ⇒∗H w [α] or S ⇒∗H w for short.
The language generated by H, denoted by L(H), is defined as

L(H) = {w ∈ T ∗ | S ⇒∗G w [α], α ∈ C}

The family of all regular-controlled languages is denoted by RC. �

Let us demonstrate the notion of regular-controlled grammars.

Example 2.2.1. Let H = (G,C) be an RCG with G = ({S,A,B}, {a, b}, P, S), where

P = { 1: S → AB,
2: A→ aA, 3: B → aB,
4: A→ bA, 5: B → bB,
6: A→ a, 7: B → a,
8: A→ b, 9: B → b }

13

and
C = 1{23, 45}∗{67, 89}.

Observe the control language. After applying the initial rule, there are always consecutive
pairs of rules 23 and 45 applied. Eventually, the derivation finishes with application of rules
67 or 89. Then,

L(H) = {ww | w ∈ {a, b}+}
which is the well-known non-context-free context-sensitive language. �

Example 2.2.2. Let H = (G,C) be an RCG with G = ({S,A,B}, {a, b, c, d}, P, S), where

P = { 1: S → aAcB,
2: A→ aA, 3: B → cB,
4: A→ bA, 5: B → dB,
6: A→ b, 7: B → d }

and
C = 1{23}∗{45}∗67.

Observe the construction of H. By the control language, after the application of the initial
rule, first, zero or more consecutive applications of rules 23 are performed, second, zero or
more consecutive applications of rules 45 are performed. Finally, the derivation finishes by
the rules 67. Then,

L(H) = {ambncmdn | m,n ≥ 1}
which is the well-known non-context-free context-sensitive language. �

Next, we define the notion of scattered context grammars.

Definition 2.2.12. A scattered context grammar (SCG for short) G is a quadruple G =
(V , T , P , S), where V , N , T , S, and Ψ have the same meaning as in the case of general
grammars and

P ⊆
∞⋃
m=1

Nm × (V ∗)m

is a finite set of scattered context rules. Instead of p : (A1,A2,. . . ,An,x1,x2,. . . ,xn) ∈ P ,
where p ∈ Ψ, Ai ∈ N , xi ∈ V ∗, for 1 ≤ i ≤ n, for some n ≥ 1, we write p : (A1, A2, . . . , An)→
(x1, x2, . . . , xn). If

u = u0A1u1A2 . . . un−1Anun
v = u0x1u1x2 . . . un−1xnun

and p : (A1, A2, . . . , An)→ (x1, x2, . . . , xn) ∈ P , where ui ∈ V ∗, 0 ≤ i ≤ n, then G makes a
derivation step from u to v according to p, symbolically written as u ⇒G v [p] or, simply,
u ⇒G v. Set len(p) = n. If len(p) ≥ 2, p is said to be a non-context-free rule while
for len(p) = 1, p is said to be context-free. Define ⇒k

G , ⇒∗G , and ⇒+
G in the standard

way.
The language of G is L(G) = {w ∈ T ∗ | w ∈ F (G)}. A language L is a scattered

context language if there exists a scattered context grammar G such that L = L(G). The
family of scattered context languages coincide with RE (see [40]). �

Notice that if for a scattered context grammar G, every rule p is of len(p) = 1, G is in
fact a context-free grammar.

Finally, we define cooperating distributed grammar systems.

14

Definition 2.2.13. Let n ≥ 1 be a positive integer. A cooperating distributed grammar
system (CDGS for short) of degree n is an (n+ 3)-tuple

Γ = (V, T, S, P1, . . . , Pn),

where V, T, S are defined as in Definition 2.2.1 and Pi is a finite set of context-free rules,
called component of Γ, for i = 1, . . . , n; then, Gi = (V, T, Pi, S) is a context-free grammar.

Let u, v ∈ V ∗. Then,

u⇒≤kΓ(i) v, u⇒
=k
Γ(i) v, u⇒≥kΓ(i) v, u⇒

∗
Γ(i) v

iff
u⇒l

Gi
v, u⇒k

Gi
v, u⇒m

Gi
v, u⇒∗Gi

v

respectively, for some i = 1, . . . , n and 1 ≤ l ≤ k ≤ m. Additionally, u ⇒t
Γ(i) v iff u ⇒∗Gi

v and dom(Pi) ∩ alph(v) = ∅. Let ψ ∈ {∗, t} ∪ {≤k,=k,≥k | k ≥ 1}. Then, ψ is called
mode of derivation. The language generated in ψ-mode by a CDGS G of degree n is defined
as

L(Gψ) = {w ∈ T ∗ | S ⇒ψ
Γ(i1) w1 ⇒ψ

Γ(i2) w2 ⇒ψ
Γ(i3) · · · ⇒

ψ
Γ(im) wm,

1 ≤ ij ≤ n, 1 ≤ j ≤ m,m ≥ 1, wm = w}.
Let n ≥ 1 be an integer and ψ be a mode of derivation. By CDψ

n we denote the family of
all languages L, for which there is a CDGS G of degree n such that L(Gψ) = L. �

Theorem 2.2.2. (Csuhaj-Varjú et al. [12]).

1. Let ψ ∈ {∗,=1,≥1} ∪ {≤k | k ≥ 1}. For n ≥ 1, CDψ
n = CF.

2. Let ψ ∈ {=k,≥k | k ≥ 2}. For n ≥ 3,

CF = CDψ
1 ⊂ CDψ

2 ⊆ CDψ
n ⊆ CDψ

n+1 ⊆MT,

where MT is the family of matrix languages.

3. For n ≥ 3,
CF = CDt

1 = CDt
2 ⊂ CDt

3 = CDt
n = ET0L,

where ET0L is the family of languages generated by extended tabled zero-sided Lin-
denmayer systems.

For definitions and properties of MT and ET0L see [43].

Normal Forms

In this section, we convert previously introduced grammars into several normal forms.

Definition 2.2.14. Let G = (V , T , P , S) be a general grammar. G is in the Kuroda
normal form (see [27]) if every rule in P is of one of the following four forms

(i) AB → CD (ii) A→ BC (iii) A→ a (iv) A→ ε

where A,B,C,D ∈ N , and a ∈ T . Additionally, if every rule in P is of one of the forms
(i) through (iii), G is a monotone general grammar in the Kuroda normal form. �

15

Theorem 2.2.3 (see [27]). A language L is recursively enumerable iff L = L(G), where
G is a general grammar in the Kuroda normal form.

Theorem 2.2.4 (see [27]). A language L is context-sensitive iff L = L(G), where G is a
monotone general grammar in the Kuroda normal form.

Definition 2.2.15. Let G = (V , T , P , S) be a general grammar. G is in the binary form
if any p ∈ P has one of the following three forms

(i) AB → CD (ii) A→ BC (iii) A→ X

where A,B,C,D ∈ N , X ∈ V ∪ {ε}. �

Theorem 2.2.5. A language L is recursively enumerable iff L = L(G), where G is a
general grammar in the binary form.

Proof. Let G = (V, T, P, S) be a general grammar in the binary form. Notice that if G is
not in the Kuroda normal form, P contains rules of the form A → B, where A,B ∈ N .
Construct G′ = (V, T, P ′, S) as follows. Put all rules from P which satisfy Kuroda normal
form to P ′. For every A,B ∈ N , where A⇒∗G B,

1. for every r : B → u ∈ P , where r satisfy Kuroda normal form, introduce new rule
A→ u into P ′;

2. for every r : XB → Y Z ∈ P , introduce new rule XA→ Y Z into P ′;

3. for every r : BX → Y Z ∈ P , introduce new rule AX → Y Z into P ′.

Obviously, L(G) = L(G′) and G′ is in the Kuroda normal form. �

Theorem 2.2.6. A language L is context-sensitive iff L = L(G), where G is a monotone
general grammar in the binary form.

Proof. Prove by analogy with Theorem 2.2.5. �

Definition 2.2.16. Let G = (V, T, P, S) be a context-free grammar. G is in the Chomsky
normal form (see [6]) if any p ∈ P has one of these forms,

(i) A→ BC (ii) A→ a (iii) S → ε

where A,B,C ∈ N and a ∈ T . �

Theorem 2.2.7 (see [6]). A language L is context-free iff L = L(G), where G is a context-
free grammar in the Chomsky normal form.

Definition 2.2.17. Let G = (V, T, P, S) be a context-free grammar. G is in the binary
form if any p ∈ P has one of the following two forms

(i) A→ BC (ii) A→ X

where A,B,C ∈ N , X ∈ V ∗, and #N (X) ≤ 1. �

Theorem 2.2.8. A language L is context-free iff L = L(G), where G is a context-free
grammar in the binary form.

16

Proof. Since the binary form of context-free grammars is a generalized Chomsky normal
form and every context-free grammar in Chomsky normal form is also in the binary form,
Theorem 2.2.8 holds. �

Definition 2.2.18. A regular-controlled grammar is in the binary form if its core grammar
is in the binary form. �

Theorem 2.2.9. Let H = (G,C) be an arbitrary regular-controlled grammar. Then, there
exists a regular-controlled grammar H ′ = (G′, C ′) in the binary form, where L(H) = L(H ′).

Proof. We introduce Algorithm 1 for conversion of a regular-controlled grammar into a
corresponding regular-controlled grammar in the binary form and prove its correctness.

Algorithm 1 Conversion of RCG into the binary form
Input: An arbitrary RCG H = (G,C), G = (V, T, P, S).
Output: RCG H ′ in the binary form with L(H ′) = L(H).
1: Construct H ′ = (G′, C ′), G′ = (V ′, T, P ′, S); C ′ = P ′ = ∅, V ′ = V .
2: for all r ∈ P do
3: if r satisfies the binary form then
4: P ′ ← P ′ ∪ {r}
5: P ← P − {r}
6: end if
7: end for
8: i← 0
9: while there exists r : A→ w ∈ P do
10: for uXv = w and alph(u) ∩N = ∅ and X ∈ N do
11: N ′ ← 〈uX〉, 〈v〉
12: P ′ ← P ′ ∪ {r1 : A→ 〈uX〉〈v〉, r2 : 〈uX〉 → uX}
13: if 〈v〉 → v satisfies the binary form then
14: P ′ ← P ′ ∪ {r3 : 〈v〉 → v}
15: else
16: P ← P ∪ {r3 : 〈v〉 → v}
17: end if
18: end for
19: Define a new homomorphism hi over P ∪ P ′:
20: hi(x) = r1r2r3, for x = r;
21: hi(x) = x, otherwise.
22: P ← P − {r}
23: i← i+ 1
24: end while // P = ∅
25: C ′ ← {w | w = hi(hi−1(· · ·h1(h0(x)) · · ·)), x ∈ C}

Claim 1. Algorithm 1 is correct.

Proof. Basic idea. The initial steps 1 through 8 construct a template for the resulting
grammar which enters the following iterative process.

During 9 through 24 every rule which does not satisfy binary form is decomposed and
replaced by three new rules. The first and the second rule is in the binary form. If the third
rule does not satisfy the binary form, it enters the following iterative process, however, with

17

shorter right-hand side than the replaced one; this ensures the finiteness of the procedure.
Additionally, a new homomorphism is introduced to substitute the replaced rule in the
control language with the sequence of newly introduced rules. This iterative process finally
defines a finite hierarchy of homomorphisms.

Since REG is closed under homomorphism (see [50]), in the last 25th step of the algo-
rithm a new control language is established by application of the defined homomorphisms.
The complete rigorous proof is left to the reader. �

Since for any RCG H we can construct an RCG H ′ in the binary form, where L(H) =
L(H ′), Theorem 2.2.9 holds. �

Definition 2.2.19. Let G = (V, T, P, S) is a scattered context grammar. G is in the binary
form if any p ∈ P has one of the following three forms

(i) (A,B)→ (C,D) (ii) (A)→ (BC) (iii) (A)→ (X)

where A,B,C,D ∈ N , X ∈ V ∪ {ε}. �

Theorem 2.2.10. A language L is recursively enumerable iff L = L(G), where G is a
scattered context grammar in the binary form.

Proof. Since the binary form is generalized version of 2-limited form of scattered context
grammars from [43], theorem holds. For details see Theorem 4.7.11. in [43].

The following example introduces propagating scattered context grammar in the binary
form which generates a non-contetx-free context-sensitive language.

Example 2.2.3. Let G = (V, T, P, S) be an SCG, where

V = {S,A,B,C, Ā, B̄, ā, b̄, c̄, a, b, c},
T = {a, b, c}, and

P = { 1: (S)→ (AB), 6: (A)→ (a),
2: (A,B)→ (Ā, B̄), 7: (B)→ (b̄c̄),
3: (Ā)→ (āA), 8: (ā)→ (a),
4: (B̄)→ (b̄C), 9: (b̄)→ (b),
5: (C)→ (Bc̄), 10: (c̄)→ (c) }.

G is obviously propagating SCG in the binary form. Observe the rules of G. Initially, rule
1 generates AB. The derivation may possibly finish by the rules 6 and 7 or continue by the
rule 2. After the rule 2, rules 3, 4, and 5 must be applied. Without any loss of generality,
suppose that rules 8, 9, and 10 are applied only at the very end of every derivation. Then,

ākAb̄kBc̄k ⇒3
G ā

k+1Ab̄k+1Bc̄k+1 [345],

for k ≥ 0. For example aaabbbccc is generated as follows.

S ⇒G AB [1] ⇒G ĀB̄ [2]
⇒G āAB̄ [3] ⇒G āAb̄C [4]
⇒G āAb̄Bc̄ [5] ⇒G āĀb̄B̄c̄ [2]
⇒G āāAb̄B̄c̄ [3] ⇒G āāAb̄b̄Cc̄ [4]
⇒G āāAb̄b̄Bc̄c̄ [5] ⇒G āāab̄b̄Bc̄c̄ [6]
⇒G āāab̄b̄b̄c̄c̄c̄ [7] ⇒8

G aaabbbccc [8 8 9 9 9 10 10 10]

Clearly, L(G) = {akbkck | k ≥ 1} which is the well-known non-context-free context sensitive
language—L(G) ∈ CS−CF (see Chapter 5 for the proof). �

18

2.3 Automata

Language accepting devices called automata stay as the essential counterparts to grammars.
However, we do not cover them in an exhaustive way, since in this work they represent only
a minor matter.

Definition 2.3.1. A finite automaton (an FA for short) is a quintuple M = (Q, Σ, R,
s, F), where Q is a finite set of states, Σ is an input alphabet, where Q ∩ Σ = ∅, R ⊆
Q× (Σ∪{ε})×Q is a finite relation, called the set of transitions, s ∈ Q is the initial state,
F ⊆ Q is the set of final states.

Instead of (p, a, q) ∈ R, we write pa → q ∈ R. A configuration of M is any word from
QΣ∗. The relation of a direct move, denoted by `, is defined over QΣ∗ as follows: if pax,
qx ∈ QΣ∗, and pa→ q ∈ R, then pax ` qx in M .

Let `k, `∗, and `+ denote the kth power of `, for some k ≥ 0, the reflexive and
transitive closure of `, and the transitive closure of `, respectively. The language accepted
by M is denoted by L(M) and defined as

L(M) =
{
w ∈ Σ∗ | sw `∗ f , f ∈ F

}
.

As it is well-known, the family of finite automata describes REG (see [35]). �

Next, we define two special variants of finite automata.

Definition 2.3.2. Let M = (Q, Σ, R, s, F) be a finite automaton. M is said to be
deterministic (DFA for short) if and only if pa → q ∈ R implies that a 6= ε and pa →
q1, pa → q2 ∈ R implies that q1 = q2, for all p, q, q1, q2 ∈ Q and a ∈ Σ. M is said to be
complete if and only if M is deterministic and for all p ∈ Q and all a ∈ Σ, pa→ q ∈ R for
some q ∈ Q. �

Deterministic finite automata and complete DFAs characterize REG as well as finite
automata do and every FA can be converted into an equivalent DFA or complete DFA
(see [22, 35, 51]).

19

Chapter 3

Graph-Based Representation of
Derivation

This chapter introduces how to represent hierarchical structure of a derivation in the sense
of rewritten symbols based on graphs; more precisely, tree structures known as derivation
trees. Every symbol introduced by a grammar during the derivation of a sentence corre-
sponds to a node of some derivation tree. All preceding nodes represent symbols which led to
introduction of the node in question primarily with the start symbol as the root node, while
all successor nodes represent symbols which the node is rewritten to with terminal symbols
as the leaf nodes. This representation is essential for the main focus of this work. We
later describe the relation between several graph-related properties of derivations of some
grammar and the actual power of the grammar. Specifically, we demonstrate that putting
some constant restrictions upon these properties of derivations of some non-context-free
grammar in fact results into generation of a context-free language.

3.1 Graphs and Trees

In this section, we define all necessary graph-related notions.

Definition 3.1.1. A directed graph G is a pair G = (V,E), where V is a finite set of
nodes, and E ⊆ V × V is a finite set of edges. For a node v ∈ V , the number of edges
of the form (x, v) ∈ E, x ∈ V , is called an in-degree of v and denoted by in-d(v). For a
node v ∈ V , the number of edges of the form (v, x) ∈ E, x ∈ V , is called an out-degree
of v and denoted by out-d(v). Let (v0, v1, . . . , vn) be an n-tuple of nodes, for some n ≥ 0,
where vi ∈ V , for 0 ≤ i ≤ n, and there exists an edge (vk, vk+1) ∈ E, for every pair of
nodes vk, vk+1, where 0 ≤ k ≤ n − 1, then, we call it a path of the length n or simply
a path. Let (v0, v1, . . . , vn) be a path of the length n, for some n ≥ 0, where vi 6= vj, for
0 ≤ i ≤ n, 0 ≤ j ≤ n, i 6= j, then, we call it a walk. Let (v0, v1, . . . , vn) be a walk in
G, for some n ≥ 0, except that v0 = vn, then, we call it a cycle. A graph G is acyclic if
it contains no cycle. A graph G is connected if for every pair of nodes u, v ∈ V there is
a path (v0, v1, . . . , vn), for some n ≥ 0, where v0 = u and vn = v or v0 = v and vn = u;
otherwise, it is disconnected. For a graph G = (V,E), a pair (U, V − U), U ⊆ V , is a cut;
then, GU = (U,EU) with EU = E−{(u, v) | u /∈ U or v /∈ U} is called the graph generated
by U . �

20

Definition 3.1.2. An (oriented) tree is a directed acyclic graph t = (V,E), with a specified
node r̂ ∈ V called the root such that in-d(r̂) = 0, and for all x ∈ V − {r̂}, in-d(x) = 1 and
there exists a path (v0, v1, . . . , vn), where v0 = r̂, vn = x, for some n ≥ 1. The depth of t,
depth(t), is the length of the longest path in t.

Let t = (V,E) be a tree. For v, u ∈ V , where (v, u) ∈ E, v is called a parent of u, u is
called a child of v, respectively. For v, u, z ∈ V , where (v, u), (v, z) ∈ E, u is called a sibling
of z. A node without any children is called a leaf. Define a partial order relation < over V
as follows. For a path α = (m0,m1, . . . ,mk), where m0 = r̂, mi < mk, 0 ≤ i ≤ k−1. Then,
mi is called a predecessor of mk and mk is called a descendant of mi. A tree t′ = (V ′, E′)
is a subtree of t if ∅ ⊂ V ′ ⊆ V , E′ ⊆ E ∩ (V ′ × V ′), and in t, no node in V − V ′ is a
descendant of a node in V ′; t′ is an elementary subtree of t if depth(t′) = 1.

Let u, v ∈ V be two nodes, where u 6= v. Let α = (m0,m1, . . . ,mk) and β = (n0, n1, . . . , nr)
be two paths, where m0 = n0 = r̂, mk = u, and nr = v, for some k, r ≥ 0. Let
0 ≤ j ≤ min(k, r) be maximal integer such that mi = ni, for all 0 ≤ i ≤ j. Then, the
node mj is called the lowest common predecessor of u and v. Note that if u is a predecessor
of v it is also the lowest common predecessor of u and v.

An ordered tree t is a tree, where for every set of siblings there exists a linear ordering.
Assume o has the children n1, n2, . . . , nr ordered in this way, where r ≥ 1. Then, n1

is the leftmost child of o, nr is the rightmost child of o, ni is the direct left sibling of
ni+1, ni+1 is the direct right sibling of ni, 1 ≤ i ≤ r − 1, and for 1 ≤ j < k ≤ r, nj is a
left sibling of nk and nk is a right sibling of nj. Let us extend the ordering according to
the transitive closure of parent-children relation. Then, for a tree t we have a left-to-right
ordered sequence of leafs l1, l2, . . . , lk, for some k ≥ 1.

An ordered tree is called labelled, if there exists a set of labels L and a total mapping
l : V → L. Let t be a labelled ordered tree, then the string of labels of all leaves written in
the left-to-right order is called the frontier of t and denoted by frontier(t). In what follows
we substitute a node of a tree by its label if there is no risk of confusion. �

Next, we define the notion of neighbouring paths.

Definition 3.1.3. Let t be an ordered tree, and let t contain node o. Let α = (o, m1, m2,
. . . , mr) and β = (o, n1, n2, . . . , ns) be two paths in t, for some r, s ≥ 1, such that o is the
parent of m1 and n1, where

1. m1 is the direct left sibling of n1;

2. mi is the rightmost child of mi−1, and nj is the leftmost child of nj−1, 2 ≤ i ≤ r,
2 ≤ j ≤ s.

Then, α and β are two neighbouring paths in t, α is the left neighbouring path to β, and
β is the right neighbouring path to α. �

Let us demonstrate the defined notions by the following example.

Example 3.1.1. Consider a graph t = (V,E), where

V = { a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s },
E = { (a, b), (a, c), (b, d), (b, e), (b, f), (c, g),

(d, h), (e, i), (e, j), (f, k), (g, l), (g,m), (g, n),
(i, o), (j, p), (l, q), (p, r), (q, s) }.

21

Since in-d(a) = 0, in-d(x) = 1, and there exists a path from a to x, for any x ∈ {b, c, d, e,
f , g, h, i, j, k, l, m, n, o, p, q, r, s}, t is a tree with the root node r̂ = a. The root a is
the only node without any parent. It has two children b and c; b is a sibling of c and c is a
sibling of b. Assume t is left-to-right ordered according to the illustration in Fig. 3.1.1.

a

b

d

h

e

i

o

j

p

r

f

k

c

g

l

q

s

m n

Figure 3.1.1: Labelled ordered tree t

Then, the leftmost child of b is d, while the rightmost is f . The node d is a left sibling
of f , however, it is not the direct left sibling, which is e. The node f is the parent of k, but
k has no child, so it is a leaf node. horksmn = frontier(t).

Consider the node e. The nodes a and b are predecessors of e, while i, j, o, p, and r
are e’s descendants. The nodes c or d are not in predecessor relation with e, since they
are neither predecessors of e, nor descendants of e. The node a is the lowest common
predecessor of c and d, b is the lowest common predecessor of h and j, and a is the lowest
common predecessor of a and p.

The sequence of nodes bejpr is a path in t. The path bfk is neighbouring to bejpr;
unlike abfk, eio, or bdh. �

3.2 Derivation Trees

We represent a generative process of a derivation of some grammar by a sequence of sentence
forms together with applied rules. However, to more appropriately denote its hierarchical
structure of rewritten symbols from the start symbol to terminal symbols we often use
so-called derivation trees described in this section.

Definition 3.2.1. Let t be a labelled ordered tree. A left-bracketed representation of t
denoted by lb-rep(t) can be obtained by applying the following recursive rules:

1. If t has a root labelled r̂ with subtrees t1, . . . , tk ordered in this way, then

lb-rep(t) = r̂〈lb-rep(t1), . . . , lb-rep(tk)〉.
We sometimes omit separating commas if there is no risk of confusion.

2. If t has a root labelled r̂ with no direct descendants, then lb-rep(t) = r̂. �

Example 3.2.1. Consider labelled ordered tree t from Example 3.1.1. The left-bracketed
representation of t is as follows.

a〈b〈d〈h〉e〈i〈o〉j〈p〈r〉〉〉f〈k〉〉c〈g〈l〈q〈s〉〉mn〉〉〉
�

22

Based on the left-bracketed representation of a tree, we construct derivation trees for
general grammars by the following procedure. Together with one-dimensional textual rep-
resentation of the derivation tree we present graphical representation which is often more
readable.

Definition 3.2.2. Let G = (V, T, P, S) be a GG (in the binary form).

1. For p : A → x ∈ P , A〈x〉 is the rule tree that represents p; assume x = x1x2 . . . xn,
where xi ∈ V , for 1 ≤ i ≤ n (n = 2 for a GG in the binary form).

A

x1 x2 . . . xn

2. The derivation trees representing derivations in G are defined recursively as follows:

(a) One-node tree with a node labelled X is the derivation tree corresponding to
X ⇒0 X in G, where X ∈ V . If X = ε, we refer to the node labelled X as
ε-node (ε-leaf); otherwise, we call it non-ε-node (non-ε-leaf).

X

(b) Let d be the derivation tree representing X ⇒∗G uAv [%] with frontier(d) = uAv,
and let p : A→ x ∈ P . The derivation tree that represents

X ⇒∗G uAv [%]⇒G uxv [p]

is obtained by replacing the ith non-ε-leaf in d labelled A, with rule tree corre-
sponding to p, A〈x〉, where i = |uA|; assume x = x1x2 . . . xn, where xi ∈ V , for
1 ≤ i ≤ n.

A A

x1 x2 . . . xn

(c) Let d be the derivation tree representing X ⇒∗ uABv [%] with frontier(d) =
uABv, and let p : AB → CD ∈ P . The derivation tree that represents

X ⇒∗ uABv [%]⇒ uCDv [p]

is obtained by replacing the ith and (i + 1)th non-ε-leaf in d labelled A and B
with A〈C〉 and B〈D〉, respectively, where i = |uA|.

3. A derivation tree in G is any tree t for which there is a derivation represented by t
(see 2 in this definition). �

23

A B A

C

B

D

Note that if G is context-free, its derivation tree is obtained omitting 2c, since G has
no non-context-free rules. Additionally, notice that a node labelled by ε is always a leaf-
node—it denotes an erasion of a nonterminal.

After replacement in 2c, the nodes A and B are the parents of the new leaves C and D,
respectively, and we say that A and B are context-dependent, alternatively speaking, we say
that there is a context dependency between A and B. In a derivation tree, two nodes are
context-independent if they are not context-dependent. If a node is labelled by terminal, it
is called a terminal node; otherwise, it is a nonterminal node. If a node has more than one
nonterminal child, it is called a branching node; otherwise, it is a non-branching node.

Definition 3.2.3. Let G = (V, T, P, S) be a GG. Then, for any p : A → x ∈ P , G4(p)
denotes the rule tree corresponding to p. For any A⇒∗ x [%] in G, where A ∈ N , x ∈ V ∗,
and % ∈ P ∗, G4(A⇒∗ x [%]) denotes the derivation tree corresponding to A⇒∗ x [%]. Just
like we often write A ⇒∗ x instead of A ⇒∗ x [%], we sometimes simplify G4(A ⇒∗ x [%])
to G4(A⇒∗ x) in what follows if there is no danger of confusion. Let GN denotes the set
of all derivation trees in G. Finally, by G4x ∈ GN, we mean any derivation tree whose
frontier is x, where x ∈ F (G). �

The previous tree-related notions also apply for regular-controlled grammars, scattered
context grammars and cooperating distributed grammar systems, as explained later, which
this work also deals with, however, with one exception. For SCGs with their parallel rules
Definition 3.2.2 is not satisfactory. Therefore, we present the following slightly modified
definition of derivation trees of SCGs.

Definition 3.2.4. Let G = (V, T, P, S) be an SCG in the binary form.

1. For p : (A) → (x) ∈ P , A〈x〉 is the rule tree that represents p. For p : (A,B) →
(x, y) ∈ P , A〈x〉 and B〈y〉 are the rule trees that represent p. Graphical representation
follows 1 of Definition 3.2.2.

2. The derivation trees representing derivations in G are defined recursively as follows:

(a) Follows 2a of Definition 3.2.2.

(b) Follows 2b of Definition 3.2.2.

(c) Let d be the derivation tree representing X ⇒∗G uAvBw [%] with frontier(d) =
uAvBw, and let p : (A,B)→ (C,D) ∈ P . The derivation tree that represents

X ⇒∗G uAvBw [%]⇒G uCvDw [p]

is obtained by replacing the ith and jth non-ε-leaf in d labelled A and B with
A〈C〉 and B〈D〉, respectively, where i = |uA| and j = |uAvB|.

24

A B A

C

B

D

3. A derivation tree in G is any tree t for which there is a derivation represented by t
(see 2 in this definition). �

Remark that after replacement in 2c the nodes A and B are context-dependent similarly
like in the case of GGs.

Example 3.2.2. Consider a grammar G from example Example 2.2.3. For the derivation
S ⇒∗G aabbcc, the derivation tree G4(S ⇒∗G aabbcc) is as follows.

S〈A〈Ā〈ā〈a〉A〈Ā〈ā〈a〉A〈ε〉〉〉〉〉B〈B̄〈b̄〈b〉C〈B〈B̄〈b̄〈b〉C〈B〈ε〉c̄〈c〉〉〉〉c̄〈c〉〉〉〉〉

More often, we use the graphical representation of a derivation tree, as it is in Figrure 3.2.1,
since the bracketed representation is clearly readable only for very small derivations.

S

A

Ā

ā

a

A

Ā

ā

a

A

ε

B

B̄

b̄

b

C

B

B̄

b̄

b

C

B

ε

c̄

c

c̄

c

Figure 3.2.1: Graphical representation of G4aabbcc

Let us remark that the dashed lines only denote the context-dependent nodes and are
not a part of the derivation tree. �

In the following definition, we formalize mutual context dependencies between two neigh-
bouring paths within a derivation tree.

Definition 3.2.5. Let G be a general grammar and t ∈ GN be a derivation tree. Assume
that α = (o,m1,m2, . . . ,mr) and β = (o, n1, n2, . . . , ns) are two neighbouring paths in t,
where r, s ≥ 0, α is the left neighbouring path to β, and mr and ns are leafs. Then, there is
an l-tuple γ = (g1, g2, . . . , gl) of nodes from α and l-tuple δ = (h1, h2, . . . , hl) of nodes from

25

β, where gp < gq, for 1 ≤ p < q ≤ l, l < min(r, s), and gi and hi are context-dependent, for
1 ≤ i ≤ l. Let % = p1p2 . . . pl be a string of non-context-free rules corresponding to context
dependencies between γ and δ. We call % the right context of α and the left context of β or
the context of α and β. Consider a node mi, where 1 ≤ i ≤ r, and two (l− k+ 1)-tuples of
nodes σ = (gk, gk+1, . . . , gl) and ϕ = (hk, hk+1, . . . , hl), where k is a minimal integer such
that mi < gk. Then, a string of non-context-free rules τ = pkpk+1 . . . pl corresponding to
context dependencies between σ and ϕ, for some 1 ≤ k ≤ l, is called the right descendant
context of mi. Analogously, we define the notion of the left descendant context of a node
nj in β, for some 1 ≤ j ≤ s. �

We demonstrate the newly introduced notions by the following example.

Example 3.2.3. Let G = (V , T , P , S) be a general grammar, where

V = {S, Sa, Sb, X,Xa, Xb, Za, Zb, A, 1, 2, 3, Ax, a, a,B,Bx, b, b},
T = {a, b}, and P contains the following rules:

(1) S → SaBx

(2) S → SbAx

(3) Sa → ZaX

(4) Sb → ZbX

(5) X → XX

(6) X → AB

(7) X → BA

(8) X → AXb

(9) X → BXa

(10) Xa → XA

(11) Xb → XB

(12) ZaA→ AZa

(13) ZaB → BZa

(14) ZbA→ AZb

(15) ZbB → BZb

(16) Za → A

(17) Zb → B

(18) AB → AxB

(19) BA→ BxA

(20) BAx → BxAx

(21) AA→ a1

(22) 1A→ a2

(23) 2A→ a3

(24) 3Ax → aa

(25) Ax → a

(26) AAx → aa

(27) 1Ax → aa

(28) 2Ax → aa

(29) BB → bBx

(30) BxB → bBx

(31) BxBx → bb

(32) a→ a

(33) b→ b

At this point, let us make only an informal observation that L(G) is the language of all
nonempty strings above T consisted of an equal number of as and bs, where every sequence
of as is of a length between 1 and 5 and every sequence of bs is longer or equal 3. A rigorous
proof comes later in Chapter 7.

The string aabbba can be obtained by the following derivation:

S ⇒ SbAx [(2)] ⇒ ZbXAx [(4)]
⇒ ZbAXbAx [(8)] ⇒ ZbAXBAx [(11)]
⇒ ZbAABBAx [(6)] ⇒ AZbABBAx [(14)]
⇒ AAZbBBAx [(14)] ⇒ AABBBAx [(17)]
⇒ AAxBBBAx [(18)] ⇒ AAxBBBxAx [(20)]

⇒ aaBBBxAx [(26)] ⇒ aabBxBxAx [(29)]

⇒ aabbbAx [(31)] ⇒ aabbba [(25)]

⇒ aabbba [(32)] ⇒ aabbba [(32)]

⇒ aabbba [(33)] ⇒ aabbba [(33)]
⇒ aabbba [(33)] ⇒ aabbba [(32)]

26

A graph representing G4(S ⇒∗ aabbba) is illustrated in Fig. 3.2.4.

S

Sb

Zb

A

a

a

X

A

Zb

A

Ax

a

a

Xb

X

A

Zb

B

B

b

b

B

Bx

b

b

B

Bx

b

b

Ax

Ax

a

a

14

14

18

20

26

29

31

Figure 3.2.2: G4aabbba

Let us note that dashed lines, numbers, and double circle contour only denote the
context dependencies, applied non-context-free rules, and a specific node, respectively, and
are not the part of the derivation tree.

Pairs of context-dependent nodes are linked with dashed lines, all the other nodes are
context-independent. Since aabbba = frontier(G4aabbba), all the leafs are terminal nodes.
Every other node is nonterminal node. For a pair of neighbouring paths α = SbZbAaa and
β = SbXAZbAAxaa, a string % = 14 26 is their context, it is the left context of β and the
right context of α. Consider the double circled node A. Then, τ = 26 is the left descendant
context of A and ϕ = 14 18 is the right descendant context of A. �

Two consecutive derivation steps may follow a common path with respect to the corre-
sponding derivation tree or take place in different parts of it. Let us formalize this by the
following definition.

Definition 3.2.6. Let G = (V, T, P, S) be a GG. Consider a derivation in G of length
n ≥ 2, S ⇒n w, for some w ∈ V ∗. If the derivation is performed as

S ⇒n−2 uAv ⇒ uxByv ⇒ uxzyv,

where uxzyv = w, for some u, v, w, x, y, z ∈ V ∗ and A,B ∈ N , we call the n-th step of the
derivation path-preserving—indeed, in a resulting derivation tree, the nodes corresponding
to consecutively rewritten nonterminals A and B belong to the same path from r̂. Other-
wise, the derivation step is path-changing. By definition, the initial derivation step of any
derivation is always path-preserving. �

Example 3.2.4. Let G = ({S,A,B}, {a, b, c, d, e, f}, P, S) be a CFG with

27

P = { 1: S → aSb, 2: S → AB,
3: A→ cAd, 4: A→ ε,
5: B → eBf , 6: B → ε }.

Obviously, L(G) = {an1cn2dn2en3fn3bn1 | n1, n2, n3 ≥ 0} which is non-linear context-free
language of index 2. Consider the following derivation.

S ⇒G aSb⇒G aABb⇒G acAdBb⇒G acAdeBfb⇒G acdeBfb⇒G acdefb [123546]

A graph representing G4(S ⇒∗G acdefb [123546]) is illustrated in Fig. 3.2.3. Solid lines de-
note the edges of the tree, while the dashed lines denote the path of the derivation. If they
overlap, the derivation step is path-preserving; otherwise, it is path-changing. By the defi-
nition, the initial derivation step is always path-preserving. Then, the graph demonstrates
that there are precisely three path-changing derivation steps in S ⇒∗G acdefb [123546]. �

S

a S

A

c A

ε

d

B

e B

ε

f

b

Figure 3.2.3: G4(S ⇒∗ acdefb [123546])

All the previous notation concerning CFGs (as a special case of GGs) and their deriva-
tion trees still applies for regular-controlled grammars, since their core grammars are CFGs.
However, as the following example demonstrates, not every derivation of a core grammar
is legal according to the control language.

Example 3.2.5. Let H = (G,C) be an RCG with G from Example 3.2.4 and

C = {1}∗{2}{3}∗{4}{5}∗{6}

Obviously, G is in the binary form. Even though L(H) = L(G), the derivation S ⇒∗G
acdefb [123546] from Example 3.2.4 is not legal in H, since 123546 /∈ C. However, 123456 ∈
C and, thus,

S ⇒H aSb⇒H aABb⇒H acAdBb⇒H acdBb⇒H acdeBfb⇒H acdefb [123456]

in H. A graph representing G4(S ⇒∗G acdefb [123456]) is illustrated in Fig. 3.2.4.
Notice that there is only one path-changing derivation step despite the grammar is

clearly of index 2. Indeed, a grammar with only linear rules is obviously of index 1 and
no path-changing derivation steps occur in its derivations. For a grammar in the binary
form the index as well as the minimal number of path-changing derivation steps increase

28

S

a S

A

c A

ε

d

B

e B

ε

f

b

Figure 3.2.4: G4(S ⇒∗ acdefb [123456])

by one for every branching derivation step, because every branch must be ones terminated
in a successful derivation. Therefore, if there is a constant k limiting the number of path-
changes, the index of a grammar is at most k + 1 (for proof see Section 6.2). �

Next, we define a division of a tree into a set of connected subgraphs.

Definition 3.2.7. Let t = (V,E) be a tree. Define a k-division of a tree into a set of k
connected subgraphs recursively as follows. Set t as 1-division of t itself. Let t′ = (V,E′) be
a k-division of t; t′ is a set of k connected but mutually disconnected subgraphs. Construct
t′′ = (V,E′′) setting E′′ = E′ − (u, v), where (u, v) ∈ E′. Then, t′′ is (k + 1)-division of t.
A division of a tree t = (V,E) is any t′ = (V,E′), where E′ ⊆ E. �

Let us illustrate k-division by the following example.

Example 3.2.6. Consider a tree t = (V,E) from Example 3.1.1. A 4-division t′ = (V,E′) of
t, where E′ = E − {(a, b), (b, f), (g, n)},

V = { a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s },
E′ = { (a, c), (b, d), (b, e), (c, g),

(d, h), (e, i), (e, j), (f, k), (g, l), (g,m),
(i, o), (j, p), (l, q), (p, r), (q, s) },

in fact represents a set of 4 separated connected subgraphs

t1 = ({a, c, g, l,m, q, s}, {(a, c), (c, g), (g, l), (g,m), (l, q), (q, s)}),
t2 = ({b, d, e, h, i, j, o, p, r}, {(b, d), (b, e), (d, h), (e, i), (e, j), (i, o), (j, p), (p, r)}),
t3 = ({f, k}, {(f, k)}),
t4 = ({n}, {}).

Figure 3.2.5 illustrates t′. �

Let us turn our attention to cooperating distributed grammar systems. Just point out
that all the previous tree-related notion concerning CFGs as a special case of GGs can be
easily generalized for CDGSs since their components are CFGs. Detailed definitions are,
thus, left to the reader.

Definition 3.2.8. Let t = (V,E) be a tree and (U, V −U) be a cut, U ⊆ V . (U, V −U) is
a cut by layer if graph generated by U , GU , is a tree and r̂ ∈ U . �

29

a

b

d

h

e

i

o

j

p

r

f

k

c

g

l

q

s

m n

Figure 3.2.5: Tree division t′

A CDGS generates a sentence by possibly using several different components. Then,
informally speaking, certain parts of a derivation tree correspond to the certain components
of CDGS. The following definition describes this formally.

Definition 3.2.9. Let n be a positive integer. Let G = (V, T, S, P1, . . . , Pn) be a CDGS of
degree n, ψ be a derivation mode, and there is a derivation of a length m ≥ 2

S ⇒ψ
i1
w1 ⇒ψ

i2
w2 ⇒ψ

i3
· · · ⇒ψ

ik
wk ⇒ψ

ik+1
wk+1 ⇒ψ

ik+2
· · · ⇒ψ

im
wm,

where wj ∈ V ∗, 1 ≤ ij ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ m − 1. If ik 6= ik+1, we call ik+1th
derivation step a component change. Let the graph

G = (V,E) = G4(S ⇒ψ
i1
· · · ⇒ψ

im
wm)

be a derivation tree corresponding to the previous derivation. A cut (U, V − U) is a
component-change cut (cccut for short) if for the graph generated by U , GU , GU = (U,EU) =

G4(S ⇒ψ
i1
· · · ⇒ψ

ik
wk). �

Notice that every component-change cut is also a cut by layer.

Example 3.2.7. Let G = ({S,A}, {a}, P1, P2, P3, S) be a CDGS with

P1 = {1: S → AA}, P2 = {2: A→ S}, P3 = {3: S → a}.

and consider the derivation mode t. Then, obviously, L(Gt) = {a2k | k ≥ 0} which is a
well-known non-context-free context-sensitive language. Consider the following derivation.

d = S ⇒t
1 AA⇒t

2 SA⇒t
2 SS ⇒t

3 aS ⇒t
3 aa

A graph representing G4(d) is illustrated in Fig. 3.2.6. Moreover, it represents various cuts.
Remark that the numbers represent nodes themselves while the symbols from {S,A, a}
represent node labels corresponding to the derivation.

First, the dotted line denotes the cut ({2, 3},{1, 4, 5, 6, 7}) which is neither cut by layer,
nor component-change cut. Second, the dashed line denotes the cut ({1, 2, 3, 5},{4, 6, 7})
which is a cut by layer, since a graph generated by {1, 2, 3, 5} is a tree and contains a root
of G4(d), however, not a component-change cut, since alph(SA)∪ dom(P2) 6= ∅ and, thus,
there cannot follow a component change in t derivation mode. Finally, the two solid lines
represent the cuts ({1, 2, 5},{3, 4, 6, 7}) and ({1, 2, 3, 5, 6},{4, 7}) which are the only possible
component-change cuts of G4(d). �

30

1:S

2:A

3:S

4:a

5:A

6:S

7:a

Figure 3.2.6: G4(d)

Finally, let us point out that neither representation covers the full information about
the whole derivation process alone and we usually combine them. Indeed, since there may
be numerous possibilities how to apply a single rule, having only the sequence of applied
rules need not to give us the exact knowledge of the resulting sentence. Conversely, having
only the sequence of intermediate sentence forms may give us insufficient information on
of the applied rules in the case there are more of them acting similarly. Both of these
representations give us no direct inside into the hierarchical tree structure of the rewritten
symbols; of course, we may reconstruct this from the knowledge of the applied rules or
intermediate sentence forms. On the other hand, having only a derivation tree for the
resulting terminal sentence does not give us any information on the order of applied rules
during the derivation. Therefore, we usually use multiple different representations of the
derivation at once to get that certain advantage of each of them.

31

Chapter 4

Proof Techniques in Formal
Language Theory

In this two-section chapter for each of the main formal language families we describe process
of obtaining positive or negative proof of membership of a language in a the family.

4.1 Positive Proofs

Theory of formal languages always intensively struggled for a certain language to effectively
determine to which family of languages it precisely belongs to. Nevertheless, it is a straight-
forward task only for very simple languages and, thus, a challenging area for researchers to
investigate. There exist some well-known procedure patterns following which we can obtain
a positive proof that some language is for example regular or context-sensitive, however,
let us point out that this is always a creative process; or we can say that there exists no
algorithm for proving of language-family membership.

Obviously, we can always perform this by constructing a grammar or an automaton
corresponding to a certain language family and showing that it describes the language in
question. However, it is usually not as easy as it may seem to be, so we often tend to
determine some sufficient conditions under which, e.g., a more powerful type of grammars
generates a certain subfamily of languages, since it is easier to describe the language with
more powerful tool. Then, we have to show that the grammar satisfies those conditions
which immediately results in the proof of membership of the language in the subfamily.
There are, sadly, only a few language families among the most well-knowns, which we
present in Chapter 5, known for having such sufficient conditions for a language to belong
to them—with workspace condition for context-sensitive languages in the front which is
also a subject of this section.

In the present section, we first briefly discuss the positive proofs of regularity, since nec-
essary but also sufficient conditions for a language to be regular are introduced in Section 4.2
which gives the detailed explanation of several so-called pumping lemmas for regular lan-
guages. The positive proofs of context-freeness are the main matter of this work, however,
in this section we present only the former results. The reader may find the new ones in
Chapter 6 with the detailed explanation together with practical examples in Chapter 7. The
main focus of the present section is directed to the detailed explanation of workspace con-
ditions for context-sensitive languages (the proof was taken from [48]). Finally, we discuss
conditions for a languages to be recursively enumerable.

32

How to Prove Regularity

The most straightforward approach to proving regularity of a language L is constructing a
regular grammar G or a finite automaton M and showing that L(G) = L or L(M) = L,
respectively. Since the family of regular languages is in fact a smallest and, thus, the less
complicated abstract family of languages in Chomsky hierarchy described later in Chapter 5,
it is often a viable option.

On the other hand, observe Definition 2.1.2 of regular language. Based on this we can
simply prove a regularity a of a language without constructing any grammar or automaton
by showing that we can obtain the language by a finite number of basic string (or language)
operations. We demonstrate this by the following example.

Example 4.1.1. Consider a language L of all strings of odd length above alphabet Σ =
{a, b}. Let Lpair = {aa, ab, ba, bb} be the language of all pairs of symbols above Σ. Then,

ΣL∗pair

denote the language L and, thus, L ∈ REG. �

Sometimes we need to show that some more powerful, usually context-free, grammar
generates in fact a regular language. Then, we can obtain a proof of this by showing
that the grammar satisfies some sufficient conditions for a language to be regular. We
skip explanation of this possible approach for showing regularity here and postpone it to
Section 4.2, where we present two so-called pumping lemmas which introduce necessary
and also sufficient conditions for regularity. They are mostly used to disprove regularity,
however, they may also serve for the opposite purpose. Nevertheless, let us note that the
problem of regularity is generally undecidable for context-free languages (see [22]) and,
thus, always a matter of a creative proof process.

How to Prove Context-Freeness

Effective proving of the context-freeness of a language is the main subject of this work. We
can, obviously, construct a context-free grammar and show that it generates the language
in question as well as we can make this kind of construction prove in the case of showing
regularity. However, it indisputably requires a unique creative proof process. There exists
well-known pumping lemma for context-free languages (see Section 4.2) which is widely
used to demonstrate that certain languages are beyond the power of context-free gram-
mars, but we lack any proof pattern analogical to this at least generally describing some
necessary steps to obtain a positive proof of context-freeness which we could in some sense
mechanically follow.

Ideally, we would take some more powerful grammar, for example general, by which
we can more easily describe the given language. Then, by showing that it obeys a certain
restrictions prove that the generated language is in fact context-free. Unfortunately, there
are no such restrictions representing a sufficient conditions for context-freeness known so
far. However, in Chapter 6 we introduce such restrictions for not only general grammars,
but also parallel and regulated grammars and grammar systems, represented by scattered
context and regular-controlled grammars and cooperating distributed grammar systems,
respectively. Moreover, in Chapter 7 we give some practical examples of showing context-
freeness to demonstrate the application perspectives of the newly acquired results.

33

How to Prove Context-Sensitivity

Observe that in a nonempty sentential form in a context-sensitive grammar the length of the
consecutive sentential forms is increasing monotonically. This means that in a derivation
of a terminal string w all the sentential forms have the length less than or equal to |w|.
Now assume that a language L is generated by a general grammar such that there is a
nonnegative integer k with the property that for each sentence w, w ∈ L(G), there exists
a derivation of w in G such that the workspace does not exceed k|w|, that is there is a
derivation S ⇒∗G w such that all sentential forms from the derivation have the length less
than or equal to k|w|.

If G has the above property, then L(G) is a context-sensitive language. Let us define
the notion formally as follows.

Definition 4.1.1. Let G = (V, T, P, S) be a general grammar and consider a derivation d
of a string w according to grammar G,

d : S = w0 ⇒G w1 ⇒G · · · ⇒G wn = w.

for some n ≥ 0. The workspace of w by the derivation d is

WSG(w, d) = max{|wi| | 0 ≤ i ≤ n}.

The workspace of w is

WSG(w) = min{WSG(w, d) | d is a derivation of w}.

Observe that WSG(w) ≥ |w| for all G and w. �

The following theorem, due to Jones (see [25]), is a powerful tool in showing languages
to be context-sensitive.

Theorem 4.1.1 (Workspace Theorem). If G is a general grammar and if there is a
nonnegative integer k such that

WSG(w) ≤ k|w|
for all nonempty sentences w ∈ L(G), then L(G) is a context-sensitive language. �

Proof. Basic Idea. Let G = (V, T, P, S) be a general grammar with L(G) = L satisfying
workspace theorem for some nonnegative integer k. Since the workspace of general grammar
never extends k|w|, for any sentence w ∈ L, we can simulate general grammar G by some
context-sensitive grammar (or monotone general grammar) G′ = (V ′, T, P ′, S′) as follows—
we give just a gist of the construction. Define nonterminal symbols of V ′ as a compositions
of k (or less) symbols 〈A1|A2| · · · |Ak〉, Ai ∈ V , 1 ≤ i ≤ k, and define the rules of P ′ to work
above these compositions in the way the rules of P do with the separate symbols. Then,
obviously, we can simulate the generative process of G above workspace of the length k|w|
with only |w| long workspace. �

We refer the reader to [50] for the detailed proof of the above theorem. An immediate
consequence is the following corollary.

Corollary 4.1.1. Let L be a recursively enumerable language that is not a context-sensitive
language. Then, for every nonnegative integer k and for every general grammar G gener-
ating L, there is a sentence w ∈ L such that WSG(w) ≥ k|w|. �

34

By the application of this corollary we can in fact prove that some languages are be-
yond the power of context-sensitive grammars and, thus, non-context-sensitive, as shown
in Section 4.2 which discusses negative proofs. In this chapter we instead demonstrate how
to apply Workspace Theorem to prove that some language is context-sensitive.

Example 4.1.2. Consider a language above the unary alphabet

L = {w ∈ {a}∗ | 3|w| = 2n + 1 for some n ≥ 1}.
Since the language of all unary strings with length of a power of 2 is the well-known context-
sensitive language (see [43]), we can guess that L is also context-sensitive. However, it
may be a bit tricky to show this by constructing a context-sensitive or monotone general
grammar, since it has to work in only a one third of usual workspace. Nevertheless, we may
perform this by constructing a general grammar and showing that it satisfies workspace
conditions for context-sensitive languages.

Construct a general grammar G = ({A,B,C,D,E, F,X, a}, {a}, P, S) with

P = { 1: S → ACXB,
2: CX → XXC,
3: CB → DB,
4: CB → E,
5: XD → DX,
6: AD → AC,
7: XE → EX,
8: AE → FX,
9: FXXX → aF,

10: F → ε }
and let us investigate the language L(G). First, after using the initial rule 1, G applies the
following rules in a loop. By rule 2, C moves from left to right while doubling the number
of Xs. A serves as the left border, where D is rewritten back to C by rule 6, while B
represents the right border, where C is rewritten to D by rule 3. By rule 5, D is moved
again from right to left. As a result

S ⇒∗G AXkCB

where k = 2n for some n ≥ 1. Eventually, CB is rewritten to E by rule 4 and E is moved
to the right by rule 7. Then, by rule 8

AXkCB ⇒G AX
kE ⇒k

G AEX
k ⇒G FX

k+1.

Finally, by rule 9 every three occurrences of X from left to right are rewritten to a single a
and the derivation finishes by rule 10. However, to successfully rewrite all Xs to as k + 1
needs to be a multiple of 3.

Clearly, L(G) = L. Let us analyze the workspace ofG. Initial rule extends the workspace
from 1 to 4 with a single X. Then, the number of Xs is extended to 2n for some n ≥ 1,
generating the string AX2nCB with workspace of the length 2n + 3. In the rest of the
derivation G applies the rules which preserves or shorten the sentential form. Therefore,
2n + 3, for some n ≥ 1, is the length of the longest sentential form within any derivation
and thus WSG(w) = 2n + 3 for every w ∈ L(G), where |w| = (2n + 1)/3. Therefore,

WSG(w)

|w| =
2n + 3

2n+1
3

=
2n + 1 + 2

2n+1
3

=
(2n + 1 + 2) ∗ 3

2n + 1
=

(2n + 1) ∗ 3 + 6

2n + 1
= 3 +

6

2n + 1

35

The obtained expression is dependent on the length of the sentence, however, since the
value is decreasing, we can easily determine that its maximum is obtained for the minimal
possible length which is n = 1. Then,

3 +
6

21 + 1
= 5 = m

where m is the Workspace Theorem constant which proves that L is, indeed, a context-
sensitive language. �

How to Prove Recursive Enumerability

The family of recursively enumerable languages in fact represents the class of all exist-
ing algorithmically solvable problems. We usually characterize it by introducing some so-
called computationally complete formal models as Turing machines and recursive functions
(see [45, 54]) or general grammars which we present in this work. All of them were shown to
be equivalent in terms of descriptive power. Nevertheless, any such formal characterization
of RE indisputably follows from the fundamental Turing-Church thesis.

Turing-Church Thesis. Let L be a language. Then, L ∈ RE if and only if there is a
procedure that defines L by listing all its strings.

Observe that Turing-Church thesis is indeed a thesis, not a theorem because it cannot
be proved, since it is based on an intuitive notion of procedure. Originally, Turing-Church
thesis have been stated in terms of Turing machines in [54], however, as general grammars
and Turing machines are equivalent (see [35]), we consider a general grammar as a model of
this intuitive procedure which is obviously perfectly correct and legal from a mathematical
viewpoint. Alongside with this, there exists also well-known characterization of recursively
enumerable languages by context-free languages.

Theorem 4.1.2 (see [18]). For every recursively enumerable language K, there exist two
context-free languages, L1 and L2, and a homomorphism h such that

K = h
(
L1 ∩ L2

)
Determination of whether a language is recursively enumerable or not is rarely a straight-

forward process, since non-context-sensitive recursively enumerable languages represent
enormously complicated types of problems. Proving that a certain language is recursively
enumerable is often a question of whether there exists an algorithm to solve the task which
the language represents or not and, thus, rather a subject of decidability. Unlike workspace
conditions for context-sensitive languages, there exists no general pattern for showing a
language to be recursively enumerable.

Moreover, there are languages beyond the family of recursively enumerable languages,
as shown in Chapter 5, which, thus, cannot be recognized by any existing procedure. There
exist several formally introduced procedures how to show that some language is not recur-
sively enumerable and, therefore, beyond the power of general grammars; usually reduction
to Post correspondence (see [46]) or other well-known unsolvable problem.

36

4.2 Negative Proofs

There are several ways to classify a language into a specific family of languages; for example,
this can be done by demonstrating that the language is generated by a corresponding
grammar or accepted by a corresponding automaton. Nevertheless, we sometimes cannot
easily introduce a direct prove. However, by disclaiming a membership of a language in
a certain family of languages we can indirectly prove that the language belongs to some
superfamily of languages. More specifically, first we need to determine precise properties
that every language belonging to some family of languages must fulfill. Then, by showing
that a certain language does not meet these properties we also prove that it does not belong
to this language family.

To prove that a language is for example not regular or context-free, the most commonly
used tools are the pumping properties of languages, which are usually stated as pumping
lemmas. The term pumping intuitively describes the property that any sufficiently long
sentence of the language has a nonempty substring that can be so-called pumped. This
means that if the substring is replaced by an arbitrary number of copies of the same sub-
string, the resulting sentence is still in the language. Throughout this section, we introduce
technique of negative proofs by several pumping lemmas. Theoretical subjects are always
followed by examples of how to utilize it practice.

First, we show that there are necessary conditions for a language to be regular (we
follow Section 4.1 in [48]). Moreover, two of the introduced pumping lemmas specify not
only necessary but also sufficient conditions for a language to be regular. Therefore, even
though they are mainly used to disprove regularity of a language, we may actually use them
to prove that a certain language is regular. Next, we turn to context-free languages. Based
on [38], we introduce another pumping lemma which specifies a necessary conditions for a
language to be context-free and, thus, by which we can disprove context-freeness as well.
However, as stated in [48], we lack knowledge of a sufficient conditions for a language to be
context-free—which is, indeed, a subject of this work. Then, as a special case of context-
freeness, we demonstrate how to disprove linearity by introducing a pumping lemma for
linear languages. Finally, we utilize Work Space theorem for context-sensitive languages
introduced in the previous section in a proof of non-context-sensitivity.

How to Disprove Regularity

There are many versions of pumping lemmas for regular languages. The most commonly
used version is necessary but not sufficient condition for regularity; every regular language
satisfies these conditions, but those conditions do not necessarily imply regularity. The first
necessary and sufficient condition was introduced by Jaffe in [24]. Another necessary and
sufficient pumping lemma, which is called block pumping, was established by Ehrenfeucht,
Parikh, and Rozenberg in [15]. It is in contrast with context-freeness of languages, for
which only some necessary pumping conditions are known, but no conditions are known to
be also sufficient (see [48]).

In the following, we describe four pumping lemmas for regular languages; two necessary
pumping lemmas and two necessary and sufficient pumping lemmas. We will give a proof
for the first and the third, but omit the proofs for the second and the fourth. Examples
will also be given to show these lemmas can be used to prove the non-regularity of a certain
languages.

The first pumping lemma below was originally formulated in [3] and has appeared in

37

many introductory books (see [8, 22, 23, 51, 57]).

Lemma 4.2.1. Let L be a regular language over Σ. Then, there is a constant k, depending
on L, such that for each w ∈ L with |w| ≥ k there exist x, y, z ∈ Σ∗ such that w = xyz and

1. |xy| ≤ k,

2. |y| ≥ 1,

3. xytz ∈ L for all t ≥ 0.

Proof. Since L ∈ REG, there exists a DFA M = (Q, Σ, R, s, F) (see Definition 2.3.2),
where k = |Q| is the number of states of M and L(M) = L. For a string w = a1a2 . . . an ∈ L,
we denote the computation of M on w by the sequence of transitions

q0a1a2 . . . an ` q1a2 . . . an ` · · · ` qn−1an ` qn

where q0, q1, . . . , qn ∈ Q, q0 = s, qn ∈ F , and qiai+1 → qi+1 ∈ R for all i, 0 ≤ i < n.
If n ≥ k, the above sequence has states qi and qj , 0 ≤ i < j ≤ n, such that qi = qj .

Then, for each t ≥ 0, we have the transition sequence

q0a1 . . . {ai+1 . . . aj}t . . . an `∗ qi{ai+1 . . . aj}t . . . an
`∗ qi{ai+1 . . . aj}t−1 . . . an
`∗ qi{ai+1 . . . aj}t−2 . . . an

...
`∗ qi{ai+1 . . . aj}2 . . . an
`∗ qi{ai+1 . . . aj}1 . . . an
`∗ qi{ai+1 . . . aj}0 . . . an
`∗ qn

also in M . Let x = a1a2 . . . ai, y = ai+1 . . . aj , and z = aj+1 . . . an. Then, xytz ∈ L for all
t ≥ 0, where |xy| ≤ k and |y| ≥ 1. �

The lemma states that every regular language possesses the above pumping property.
Therefore, any language that does not possess the property is not a regular language. When
proving non-regularity, we usually proceed in the following way.

(1) Assume that L is regular.

(2) Select a string w ∈ L whose length depends on the pumping-lemma constant k so
that |w| ≥ k is necessarily true.

(3) For all possible decompositions of w into xyz satisfying the pumping-lemma condi-
tions, find t ≥ 0 such that xytz /∈ L, which contradicts Lemma 4.2.1.

(4) The contradiction obtained in (3) means that the assumption in (1) is incorrect;
therefore, L is not regular.

Let us demonstrate the proof of non-regularity by the following example.

Example 4.2.1. Consider a language L = {anbn | i ≥ 0}. Assume that L is regular and k is
a pumping-lemma constant. Chose a sentence w = akbk which is obviously in L. Clearly,
|w| ≥ k. By the pumping lemma, w = xyz for some x, y, z ∈ Σ∗ such that

38

1. |xy| ≤ k,

2. |y| ≥ 1, and

3. xytz ∈ L for all t ≥ 0.

By 1. and 2., we have y = am, for some 1 ≤ m ≤ k. However, xy0z = xz = ak−mbk is not
in L. Thus, 3. does not hold, and, therefore, L does not satisfy the pumping property of
Lemma 4.2.1. �

The pumping lemma has used to show the non-regularity of many languages, e.g., the
set of all binary numbers whose value is prime [22], the set of all palindromes over a finite
alphabet [23], or the set of all strings of length i2 for i ≥ 0 [57].

However, not only regular languages but also some non-regular languages satisfy the
pumping property of Lemma 4.2.1 as shown in the following example.

Example 4.2.2. Let L ⊆ Σ∗ be an arbitrary non-regular language and L# = #+L, where
/∈ Σ. Then, L# satisfies the conditions of Lemma 4.2.1 with the constant k being 1. For
any string w ∈ #+L, we can chose x = ε and y = #. However, L# is not regular, which
can be shown as follows. Let h be a morphism defined by h(a) = a for each a ∈ Σ and
h(#) = ε. Then, obviously, L = h(L#). Assume that L# is regular. Then, L is regular
since regular languages are closed under morphism (see [50]). Nevertheless, this contradicts
the assumption. Thus, L# is not regular. �

Note that for each language L ⊆ Σ∗, we can construct a distinct language L# ⊆
(Σ ∪ {#})∗ that satisfies Lemma 4.2.1. Consequently, there are uncountably many non-
regular languages that satisfy the pumping lemma.

Below, we give two more examples of non-regular languages that satisfy the pumping
condition of Lemma 4.2.1, which are quite simple and interesting.

Example 4.2.3. Let L ⊆ b∗ be an arbitrary non-regular language. Then, the languages

1. a+L ∪ b∗ and

2. aL ∪ aa+{a, b}∗ ∪ b∗

are non-regular, but satisfy the pumping condition of Lemma 4.2.1. �

Next, we introduce the second pumping lemma for regular languages.

Lemma 4.2.2. Let L be a regular language over Σ. Then, there is a constant k depending
on L such that for all u, v, w ∈ Σ∗, if |w| ≥ k, then there exist x, y, z ∈ Σ∗, y 6= ε such that
w = xyz and for all t ≥ 0 it holds that uxytzv ∈ L iff uwv ∈ L

Any language that satisfies the pumping condition of Lemma 4.2.2 satisfies also the
pumping condition of Lemma 4.2.1. This follows by setting u = ε and |w| = k in the
condition of Lemma 4.2.2. However, the converse is not true. We can show that there exist
languages that satisfy the pumping condition of Lemma 4.2.1, but do not satisfy that of
Lemma 4.2.2. For example, let L = {anbn | n ≥ 0} and consider the language L# = #+L
as in Example 4.2.2. Clearly, L# satisfies the pumping condition of Lemma 4.2.1. However,
if we chose u = #, v = ε, and w = akbk for Lemma 4.2.2, where k is the constant
(corresponding to L#), it is clear that there do not exist x, y, z as required by the lemma.

39

Therefore, the set of languages that satisfy the pumping condition of Lemma 4.2.2 is a
proper subset of the set of languages that satisfy the condition of Lemma 4.2.1. In other
words, Lemma 4.2.2 can rule out more non-regular languages. In this sense, we say that
Lemma 4.2.2 is a stronger pumping lemma for regular languages than Lemma 4.2.1.

Nevertheless, Lemma 4.2.2 still does not give a sufficient condition for regularity. We
show in the following that there exist non-regular languages that satisfy the pumping con-
dition of Lemma 4.2.2. In fact, the number of such languages is uncountable. A different
proof was given in [15].

Example 4.2.4. Let L ba an arbitrary non-regular language over Σ and $ /∈ Σ. Define

L$ = {$+a1$+a2$+ . . . $+am$+ | a1a2 . . . am ∈ L,m ≥ 0}.

We can easily prove that L$ is non-regular. Let Σ$ denote Σ ∪ {$}. We now show that L$

satisfies the pumping condition of Lemma 4.2.2. Let k = 3 be the constant for the pumping
lemma. To establish the nontrivial implication of the statement of the lemma, it suffices
to show that for any u,w, v ∈ Σ∗$ with uwv ∈ L and |w| ≥ 3, there exist x, y, z ∈ Σ∗$ with
w = xyz and y 6= ε such that uxyizv ∈ L$ for all i ≥ 0. We can simply chose y = $. �

The next pumping lemma, introduced by Jaffe [24], gives a necessary and sufficient
condition for regularity. A detailed proof of the following lemma can be found also in [51].

Lemma 4.2.3. A language L ⊆ Σ∗ is regular iff there is a constant k ≥ 1 such that for all
w ∈ Σ∗, if |w| ≥ k then there exist x, y, z ∈ Σ∗ such that w = xyz and y 6= ε, and for all
i ≥ 0 and all v ∈ Σ∗, wv ∈ L iff xyizv ∈ L.

Proof. Only If. The only if part is relatively straightforward. Let M be a complete DFA
that accepts L and k the number of states of M . For any string w of length l ≥ k, e.g.,
w = a1a2 . . . al, let the state transition sequence of M on w be

q0a1a2 . . . al ` q1a2 . . . al ` · · · ` ql−1al ` ql

where q0 is the start state. Since there are at most k distinct states among q0, q1, . . . , ql
and k < l + 1, it follows that qi = qj for some 0 ≤ i < j ≤ l. This implies that the
transition from qi to qj is a loop back to the same state. Let x = a1 · · · ai, y = ai+1 · · · aj ,
and z = aj+1 · · · al (x = ε if i = 1 and z = ε if j = l). Then, for all i ≥ 0,

q0xy
iz `∗ ql,

so M is in the same state ql after reading each string xyiz, i ≥ 0. Therefore, for all i ≥ 0
and for all v ∈ Σ, xyizv ∈ L iff wv ∈ L.

If. Let L be a language which satisfies the pumping condition of the lemma and k be
the constant. We prove that L is regular by constructing a DFA ML using the pumping
property of L and, then, proving that L(ML) = L.

Construction. The DFA ML = (Q,Σ, R, s, F) is defined as follows. Each state in Q corre-
sponds to a string w, in Σ∗, with length less than k, i.e.,

Q = {qw | w ∈ Σ∗ and |w| ≤ k − 1},

s = qε and F = {qw ∈ Q | w ∈ L}. The set of transition rules R is defined as

40

1. If |w| < k − 1, then for each a ∈ Σ,

qwa→ qwa.

2. If |w| = k − 1, then by the pumping property of L, for each a ∈ Σ, wa can be
decomposed into xyz, y 6= ε, such that for all v ∈ Σ∗, xyzv ∈ L iff xzv ∈ L. There
may be a number of such decompositions. We chose the one such that xy is the
shortest (and y is the shortest if there is a tie). Then, define

qwa→ qxz.

Now we show that the language accepted by ML is exactly L. We prove this by induction
on the length of a string w ∈ Σ∗.

Basis. Observe the construction of ML. It is clear that for all words that |w| < k, w ∈
L(ML) iff w ∈ L by the definition of ML.

Induction Hypothesis. Suppose that the lemma holds for all strings w shorter than some n,
where n ≥ k.

Induction Step. Consider a string w ∈ Σ with |w| = n. Let w = w0v, where |w0| = k. By
the construction of ML, we have

sw `∗ q and sxz `∗ q

where q = qxz for some x, z ∈ Σ∗ and w0 = xyz, y ∈ Σ+, and for any v′ ∈ Σ∗, w0v
′ ∈ L iff

xzv′ ∈ L. We replace the arbitrary v′ by v, then we have that w ∈ L iff xzv ∈ L. Since
xz and w0 reach the same state in ML, xzv and w = w0v will reach the same state, i.e.,
w ∈ L(ML) iff xzv ∈ L(ML). Notice that |xzv| < n. By the hypothesis, xyzv ∈ L(ML) iff
xzv ∈ L. So, we conclude that w ∈ L(ML) iff w ∈ L. �

Example 4.2.5. Let L = {anbn | i ≥ 0} and L# = #+L. We have shown that L# satisfies
the pumping condition of Lemma 4.2.1. Now we demonstrate that L# does not satisfy the
pumping condition of Lemma 4.2.3. Assume the contrary. Let k ≥ 1 be the constant of
Lemma 4.2.3 for L#. Consider the string w = #akbk and any decomposition w = xyz such
that y 6= ε. If y does not contain the symbol #, that is y ∈ (a+∪ b+∪a+b+), then let v = ε
and, clearly, wv ∈ L# but xy2zv /∈ L#. If y contains the symbol #, then let v = a and we
have wv = xyzv /∈ L# but xzv ∈ L#. So, L# does not satisfy the pumping condition of
Lemma 4.2.3. �

Notice that Lemma 4.2.3 requires a decomposition w = xyz that works for all wv,
v ∈ Σ∗. Another necessary and sufficient pumping lemma for regularity, which does require
this type of global condition, was given by Ehrenfeucht, Parikh, and Rozenberg [15]. The
latter is called the block pumping lemma and is very similar to Lemma 4.2.2 except that
the decomposition of w into xyz has to be along the given division of w into substrings
(blocks) w1, . . . , wk, so each x, y, and z has to be a catenation of those substrings.

Lemma 4.2.4. (Block Pumping) L ⊆ Σ∗ is regular iff there is a constant k ≥ 1 such
that for all u, v, w ∈ Σ∗, if w = w1 · · ·wk, for some w1, . . . , wk ∈ Σ∗, then there exist
1 ≤ m < n ≤ k such that w = xyz with y = wm+1 · · ·wn, x, z ∈ Σ∗, and for all i ≥ 0,
uwv ∈ L iff uxyizv ∈ L. �

41

Example 4.2.6. Let L = {anbn | i ≥ 0} and let L$ be defined as in Example 4.2.4. We have
shown in Example 4.2.4 that L$ satisfies the pumping property of Lemma 4.2.2. Here we
show that L$ does not satisfy the pumping property of Lemma 4.2.4. Assume the contrary.
Let k be the constant of the lemma and choose u = ε, w1 = $a, w2 = $a, . . . , wk = $a,
v = ($b)k, and w = w1 · · ·wk. Then, uwv ∈ L$. However, clearly, there do not exist m,n,
1 ≤ m < n ≤ k, such that y = wm+1 · · ·wn, w = xyz, and

uxzv = uw1 · · ·wmwn+1 · · ·wkv = ($a)k−n+m($bk)$ ∈ L$,

which is a contradiction. �

In Lemma 4.2.4, the pumping condition is sufficient for the regularity of L even if we
change the statement

”
for all i ≥ 0“ to

”
for i = 0“. Then, the pumping property becomes

a cancellation property. It has been shown that the pumping and cancellation properties
are equivalent (see [15]). A similar result can be obtained for Lemma 4.2.3.

How to Disprove Context-Freeness

When examining complicated formal languages, we often need to demonstrate that they are
non-context-free and, therefore, beyond the power of context-free grammars. The present
section based on [38] explains how to make a demonstration like this. We again introduce
pumping properties which every context-free language satisfies. Then, we can show that
some languages are not context-free by proving that for their sentences these properties do
not apply. Unfortunately, these pumping conditions are necessary, however, not sufficient
for language to be context-free, so we cannot obtain a positive statement about context-
freeness by application of the presented lemma.

The pumping lemma established in this section is frequently used to disprove that a
language K is context-free. The lemma says that for every L ∈ CF, there is a constant
k ≥ 1 such that every z ∈ L with |z| ≥ k can be expressed as z = uvwxy with vx 6= ε so that
L also contains uvmwxmy, for every m ≥ 0. Consequently, to demonstrate the non-context-
freeness of a language, K, by contradiction, assume that K ∈ CF and k is its pumping-
lemma constant. Select a string z ∈ K with |z| ≥ k, consider all possible decompositions of
z into uvwxy, and for each of these decompositions, prove that uvmwxmy is out of K, for
some m ≥ 0, which contradicts the pumping lemma. Thus, K /∈ CF. Without any loss of
generality, we prove the pumping lemma based on CFGs satisfying Chomsky normal form
(see Definition 2.2.16).

Before we can establish pumping lemma, we need to prove the following theorem con-
cerning a depth of a derivation tree of any sentence of context-free grammar in Chomsky
normal form.

Theorem 4.2.1. Let G = (V, T, P, S) be a CFG in Chomsky normal form. For every
derivation A ⇒∗ x in G, where A ∈ N and x ∈ T ∗, its corresponding derivation tree
∆(A⇒∗ x) satisfies |x| ≤ 2depth(∆(A⇒∗x))−1.

Proof. (by induction on depth(∆(A⇒∗ x)) ≥ 1).

Basis. Let depth(∆(A ⇒∗ x)) = 1, where A ∈ N and x ∈ T ∗. Because G is in Chomsky
normal form, A ⇒∗ x [A → x] in G, where x ∈ T , so |x| = 1. For depth(∆(A ⇒∗ x)) = 1,
2depth(∆(A⇒∗x))−1 = 20. As 20 = 1, |x| ≤ 2depth(∆(A⇒∗x))−1 in this case, so the basis holds
true.

42

Induction Hypothesis. Suppose that this lemma holds for all derivation trees of depth n or
less, for some n ≥ 0.

Induction Step. Let A⇒∗ x in G with depth(∆(A⇒∗ x)) = n+1, where A ∈ N and x ∈ T ∗.
Let A⇒∗ x [r%] in G, where r ∈ P and % ∈ P ∗. As G is in Chomsky normal form, r : A→
BC ∈ P , where B,C ∈ N . Let B ⇒∗ u [ϕ], C ⇒∗ v [θ], ϕ, θ ∈ P ∗, x = uv, % = ϕθ so that
A ⇒∗ x can be expressed in greater detail as A ⇒ BC [r] ⇒∗ uC [ϕ] ⇒∗ uv [θ]. Observe
that depth(∆(B ⇒∗ u [ϕ])) ≤ depth(∆(A⇒∗ x))−1 = n, so |u| ≤ 2depth(∆(B⇒∗u))−1 by the
induction hypothesis. Analogously, as depth(∆(C ⇒∗ v [θ])) ≤ depth(∆(A⇒∗ x))−1 = n,
|v| ≤ 2depth(∆(C⇒∗v))−1. Thus, |x| = |u| + |v| ≤ 2depth(∆(B⇒∗u))−1 + 2depth(∆(C∗v))−1 ≤
2n−1 + 2n−1 = 2n = 2depth(∆(A⇒∗x))−1. �

Corollary 4.2.1. Let G = (V, T, P, S) be a CFG in Chomsky normal form. For every
derivation A ⇒∗ x in G, where A ∈ N and x ∈ T ∗ with |x| ≥ 2m for some m ≥ 0, its
corresponding derivation tree ∆(A⇒∗ x) satisfies depth(∆(A⇒∗ x)) ≥ m+ 1.

Proof. This corollary follows from Lemma 4.2.1 and the contrapositive law. �

Lemma 4.2.5 (Pumping Lemma for Context-Free Languages). Let L be an infinite
context-free language. Then, there exists k ≥ 1 such that every string z ∈ L satisfying
|z| ≥ k can be expressed as z = uvwxy, where 0 < |vx| < |vwx| ≤ k, and uvmwxmy ∈ L,
for all m ≥ 0.

Proof. Let L ∈ CF, and L = L(G), where G = (V, T, P, S) is a CFG in Chomsky normal
form. Let G have n nonterminals, for n ≥ 1; in symbols, card(N) = n. Set k = 2n. Let
z ∈ L(G) satisfying |z| ≥ k. As z ∈ L(G), S ⇒∗ z, and by Corollary 4.2.1, depth(∆(S ⇒∗
z)) ≥ card(N) + 1, so ∆(S ⇒∗ z) contains some subtrees in which there is a path with
two or more nodes labelled by the same nonterminal. Express S ⇒∗ z as S ⇒∗ uAy ⇒+

uvAxy ⇒+ uvwxy with uvwxy = z so that the derivation tree corresponding to A ⇒+

vAx ⇒+ vwx contains no proper subtree with a path containing two or more different
nodes labelled with the same nonterminal. To prove that 0 < |vx| < |vwx| ≤ k, recall that
every rule in P has on its right-hand side either a terminal or two nonterminals because
G is in Chomsky normal form. Thus, A ⇒+ vAx implies 0 < |vx|, and vAx ⇒+ vwx
implies |vx| < |vwx|. As the derivation tree corresponding to A⇒+ vAx⇒+ vwx contains
no subtree with a path containing two different nodes labelled with the same nonterminal,
depth(∆(A⇒∗ vwx)) ≤ card(N) + 1, so by Lemma 4.2.1, |vx| < |vwx| ≤ 2n = k. Finally,
we demonstrate that for all m ≥ 0, uvmwxmy ∈ L. As S ⇒∗ uAy ⇒+ uvAxy ⇒+ uvwxy,
S ⇒∗ uAy ⇒+ uwy, so uv0wx0y = uwy ∈ L. Similarly, since S ⇒∗ uAy ⇒+ uvAxy ⇒+

uvwxy, S ⇒∗ uAy ⇒+ uvAxy ⇒+ uvvAxxy ⇒+ · · · ⇒+ uvmAxmy ⇒+ uvmwxmy, so
uvmwxmy ∈ L, for all m ≥ 1. Thus, Lemma 4.2.5 holds true. �

We usually use the pumping lemma in a proof by contradiction to demonstrate that a
given language L is not context-free. Typically, we make a proof of this kind in the following
way.

(1) Assume that L is context-free.

(2) Select a string z ∈ L whose length depends on the pumping-lemma constant k so that
|z| ≥ k is necessarily true.

(3) For all possible decompositions of z into uvwxy satisfying the pumping-lemma con-
ditions, find m ≥ 0 such that uvmwxmy /∈ L, which contradicts Lemma 4.2.5.

43

(4) The contradiction obtained in (3) means that the assumption in (1) is incorrect;
therefore, L is not context-free.

Example 4.2.7. Consider L = {anbncn | n ≥ 1}. Next, under the guidance of the recom-
mended proof structure preceding this example, we demonstrate that L /∈ CF.

(1) Assume that L ∈ CF.

(2) In L, select z = akbkck with |z| = 3k ≥ k, where k is the pumping-lemma constant.

(3) By Lemma 4.2.5, z can be written as z = uvwxy so that this decomposition satisfies
the pumping-lemma conditions. As 0 < |vx| < |vwx| ≤ k, either vwx ∈ {a}∗{b}∗
or vwx ∈ {b}∗{c}∗. If vwx ∈ {a}∗{b}∗, uv0wx0y has k cs but fewer than k as or
bs, so uv0wx0y /∈ L, but by the pumping-lemma, uv0wx0y ∈ L. If vwx ∈ {b}∗{c}∗,
uv0wx0y has k as but fewer than k bs or cs, so uv0wx0y /∈ L, but by the pumping
lemma, uv0wx0y ∈ L. In either case, we obtain the contradiction that uv0wx0y /∈ L
and, simultaneously, uv0wx0y ∈ L.

(4) By the contradiction obtained in (3), L /∈ CF. �

Omitting some obvious details, we usually proceed in a briefer way than above when
proving the non-context-freeness of a language by using Lemma 4.2.5.

Example 4.2.8. Let L = {anbmanbm | n,m ≥ 1}. Assume that L is context-free. Set
z = akbkakbk with |akbkakbk| = 4k ≥ k. By Lemma 4.2.5, express z = uvwxy. Observe
that 0 < |vx| < |vwx| ≤ k implies uwy /∈ L in all possible occurrences of vwx in akbkakbk;
however, by Lemma 4.2.5, uwy ∈ L—a contradiction. Thus, L /∈ CF. �

Even some seemingly trivial unary languages are not context-free as shown next.

Example 4.2.9. Consider L = {an2 | for some n ≥ 0}. To demonstrate L /∈ CF, assume
that L ∈ CF and select z = ak

2 ∈ L where k is the pumping-lemma constant. As a
result, |z| = k2 ≥ k, so z = uvwxy, which satisfies the pumping-lemma conditions. As
k2 < |uv2wx2y| ≤ k2 + k < k2 + 2k + 1 = (k + 1)2, we have uv2wx2y /∈ L, but by
Lemma 4.2.5, uv2wx2y ∈ L—a contradiction. Thus, L /∈ CF. �

How to Disprove Linearity

For general grammars with rules restricted to the linear form (see Definition 2.2.9), which is
that each of them contains at most a single nonterminal on the right hand side, we introduce
a slightly modified pumping lemma based on the previous pumping lemma for context-free
languages; indeed, the languages of these linear grammars represent obviously a bit more
restricted language family. The pumping properties shown in the following pumping lemma
are necessary but again not sufficient, as demonstrated later, for a language to be linear.
Therefore, it can be used only to prove that a certain language is not linear.

Lemma 4.2.6. Let L be an infinite linear language. Then, there exists k ≥ 1 such that
every string z ∈ L satisfying |z| ≥ k can be expressed as z = uvwxy, where

1. |vx| > 0,

2. |uvxy| ≤ k, and

44

3. uviwxiy ∈ L, for all i ≥ 0.

Proof. Assume that L is an infinite linear language. Then, there exists a linear grammar
G = (V, T, P, S) with L(G) = L, where |N | = k, for some k ≥ 1. Since L is infinite, there
exists a string z ∈ L and a derivation

A0 ⇒G u1A1y1 ⇒G u1u2A2y2y1 ⇒G · · · ⇒G u1u2 . . . unyn . . . y2y1 = z,

where A0 = S, n ≥ k, Al → ul+1Al+1yl+1 ∈ P , for 0 ≤ l ≤ n − 2, and An → unyn ∈ P .
Then, however, there exist Ai, Aj , where Ai = Aj , and 0 ≤ i < j ≤ k; informally speaking,
since G has a finite number of nonterminals, some of them must necessarily occur repeatedly
in a sufficiently long derivation. Let u = u1u2 · · ·ui−1, v = uiui+1 · · ·uj−1, w = uj · · · yj ,
x = yj−1 · · · yi+1yi, and y = yi−1 · · · y2y1, so we can express z as z = uvwxy. Since Ai and
Aj are the same nonterminal

Aj ⇒∗G w implies Ai ⇒∗G w and
Ai ⇒∗G vAjx implies Aj ⇒∗G vAjx.

Consequently, from uvwxy ∈ L it follows that uvlwxly ∈ L, for any l ≥ 0, which completes
the proof of Lemma 4.2.6. �

We demonstrate how to disprove linearity by the next example.

Example 4.2.10. Consider the language L = {ambmcndn | m,n ≥ 0}. Assume that L is
linear. Let z = akbkckdk, where k ≥ 1 is the pumping lemma constant for L. Obviously,
z ∈ L and |z| ≥ k. Then, z = uvwxy, where |vx| > 0 and |uvxy| ≤ k, which implies that
v = a+ and/or x = d+. By Lemma 4.2.6, uv0wx0y ∈ L, where there are k bs and cs but less
than k as and/or ds, so uv0wx0y /∈ L. This is a contradiction and, thus, the assumption
does not hold. �

Unfortunately, the presented pumping property of linear languages is not sufficient for
a language to be linear as shown in the following example.

Example 4.2.11. Let L ⊆ Σ∗ be an arbitrary non-linear language and L# = #+L#+, where
/∈ Σ. Then, L# satisfies the conditions of Lemma 4.2.6 with the constant k being 2. For
any string w ∈ #+L#+, we can chose u = y = ε and v = x = #. However, L# is not linear,
which can be shown as follows. Let h be a morphism defined by h(a) = a for each a ∈ Σ
and h(#) = ε. Then, obviously, L = h(L#). Assume that L# is linear. Then, L is linear
since linear languages are closed under morphism (see [2]). Nevertheless, this contradicts
the assumption. Thus, L# is not linear. �

How to Disprove Context-Sensitivity

In Section 4.1 we specified workspace space condition that any general grammar must
satisfy in order to generate context-sensitive language. We often benefit from them while
showing that a certain recursively enumerable language is also context-sensitive. On the
other hand, since these conditions are necessary for a language to be context-sensitive, we
can also introduce a proof of non-context-sensitivity based on these workspace conditions
as stated in Corollary 4.1.1 and demonstrated next.

45

Example 4.2.12. Consider a language L = {w ∈ {a}∗ | 2|w|+ 1 is prime}. The languages of
all strings which length is a prime or a power of 2 are well-known context-sensitive languages
(see [14]) which may suggest that also L is a context-sensitive language. However, next we
disprove this by showing that no general grammar G with L(G) = L can satisfy workspace
conditions for context-sensitive languages. We present just the idea of the proof since the
exhaustive version is beyond the subject of this work.

Assume that there exists a general grammar G = (V, T, P, S) with L(G) = L satisfying
workspace conditions for context-sensitive languages. Then, it generates any w ∈ L(G)
within WSG(w) ≤ k|w|, for some nonnegative integer k. It is currently not precisely
determined what is the time complexity of ideal primality testing, however, it was already
shown that it is worst than logarithmic (see [10]). In the sense of general grammars, to test
a primality of some p ≥ 1 grammar G performs a computation through n = f(p) different
configurations, where f is a function which grows faster then log2. Observe that the number
of all possible configurations of G is k|w| · |V |. Then,

k|w| · |V | ≥ f(2|w| + 1) > log2(2|w| + 1) > log2(2|w|) = |w|

where k and |V | are constants, so, the expression k|w|·|V | grows linearly with |w|. However,
the expression f(2|w| + 1) grows faster than linearly with |w| and, therefore, there is some
integer m ≥ 1, where for every |w| ≥ m

k|w| · |V | < f(2|w| + 1)

which is a contradiction. As a result, the assumption that there exists a general grammar
generating L under the workspace conditions for context sensitive languages is incorrect
and the language L is, thus, non-context-sensitive recursively enumerable language. �

Let us only point out that non-context-sensitive recursively enumerable languages are
often extremely complicated and these kinds of proofs, thus, very exhaustive and sometimes
even a matter of decidability.

46

Chapter 5

Hierarchy of Language Families

Languages from very simple finite ones through regular, context-free, context-sensitive up
to recursively enumerable languages differ enormously in the sense of their structure, de-
cision properties and, of course, the complexity of their description. Some of them can
be described in a very simple way—by length of their sentences, composition of symbols,
etc.—while the others require extremely complicated formal models to be precisely grasp
or are even beyond the decidability. Theory of formal languages always tended to classify
them into various families according to their properties and establish hierarchies to prop-
erly express differences in their complexity on the rigorous formal basis. Most importantly,
in [5] Noam Chomsky first introduced the well-known Chomsky hierarchy of languages and
their respective formal models which still stays as an essential formal language classifica-
tion. Concerning the families of regular, context-free, context-sensitive, and recursively
enumerable languages, the next important theorem was stated.

Theorem 5.0.1 (Chomsky Hierarchy, see [5, 6]).

REG ⊂ CF ⊂ CS ⊂ RE

Since this topic is vital for the purpose of this work, let us explain the relations between
these well-known language families in a greater detail and also cover other important lan-
guage families which we need to deal with. Therefore, let us now briefly re-establish the
proof of Theorem 5.0.1.

Proof. First of all, observe grammars introduced in Section 2.2.

(1) Every context-sensitive grammar is also a general grammar. It holds by the definition.

(2) We previously stated that for every context-free grammar there is a propagating
context-free grammar generating the same language. Moreover, every propagating
context-free grammar is also a context-sensitive. Indeed, a context-free rule is in fact
a context-sensitive rule with a zero-length context.

(3) Every regular grammar is also a context-free grammar. A regular grammar has every
rule of one of the forms

A→ aB or A→ a

and both of them are also context free-rules.

47

From (1) through (3)
REG ⊆ CF ⊆ CS ⊆ RE

and we only need to show that these inclusions are in fact proper.
Consider the well-known context free language

L = {anbn | n ≥ 0}.

By Example 4.2.1, L /∈ REG. Thus, REG 6= CF. Since REG ⊆ CF, REG ⊂ CF.
Consider the following example.

Example 5.0.1. Let G = ({S,A,B,C, C̄, a, b, c}, {a, b, c}, P, S) be a general grammar with

P = { 1 : S → ABC, 2 : AB → AABBC̄ 3 : C̄B → BC̄, 4 : C̄C → CC
5 : A→ a, 6 : B → b 7 : C → c }.

G is obviously monotone and, thus, L(G) ∈ CS. Let us investigate a language L(G).
By the initial rule 1 the string ABC is obtained. Then, by applications of the rule 2

potentially As, Bs, and C̄s are added, one of each at the same time. By the rule 3, C̄ is
moved to the right to be rewritten to C once it occurs by another C. Eventually, all upper-
case letters are rewritten to the lower-case ones which completes the derivation. Then,

L(G) = {anbncn | n ≥ 1}.

A fully rigorous proof is left to the reader. �

Recall Example 4.2.7 which proves that the language L = {anbncn | n ≥ 1} is non-
context-free. Then, however, CF 6= CS and since CF ⊆ CS, it holds that CF ⊂ CS.

In Example 4.2.12 we show that there exist non-context-sensitive recursively enumerable
languages. Consequently, CS 6= RE. Since, CS ⊆ RE, we obtain CS ⊂ RE, and the proof
of validity of Chomsky Hierarchy is complete. �

Alongside with the previous well-known language families, we recognize numerous other
important families of languages. Some of them also play an important role in the subject
of this work and, thus, we investigate their relations to the other language families. First
of all, let us analyse the family of finite languages.

Theorem 5.0.2.
FIN ⊂ REG

Proof. Let L ⊆ Σ∗ be a finite language. Construct a finite automaton M = (Q, Σ, R, s,
F) as follows. Let k = |x|, where x is the longest string in L. Set

Q = {qw | w ∈ Σ∗ and |w| ≤ k}

and s = qε. If ε ∈ L, put qε to F . For every w ∈ L, where w = a1 · · · an, for ai ∈ Σ,
1 ≤ i ≤ n, n ≥ 0, put

1. qεa1 → qa1 and

2. qa1···aj−1aj → qa1···aj−1aj to R, for 2 ≤ j ≤ n, and

3. qa1···an to F .

48

Then, obviously, for every w ∈ L, where w = a1a2 · · · an, for ai ∈ Σ, 0 ≤ i ≤ n, n ≥ 0, we
have a computation

qεa1a2 · · · an ` qa1a2 · · · an ` · · · ` qa1a2···an ,

where qε = s and qa1a2···an ∈ F . Consequently, w ∈ L(M) if w ∈ L. The opposite
implication is left to the reader. As a result

FIN ⊆ REG.

To show that the inclusion is in fact proper, consider a general grammar

G = ({A, a}, {a}, {A→ Aa,A→ a}, A).

By Definition 2.2.10, G is regular and, thus, L(G) ∈ REG. Since clearly L(G) = a+ which
is an infinite language, L(G) /∈ FIN. Then, FIN 6= REG which completes the proof. �

Next, we show that the family of linear languages is a proper superfamily of the family
of regular languages and a proper subfamily of the family of context-free languages.

Theorem 5.0.3.
REG ⊂ LIN ⊂ CF

Proof. By the definitions introduced in Section 2.2, any regular grammar is also a linear
grammar and every linear grammar is also a context-free grammar. Therefore,

REG ⊆ LIN ⊆ CF

and we only need to prove that these inclusions are in fact proper.
Consider the following example.

Example 5.0.2. Let G = ({S, a, b}, {a, b}, {S → aSb, S → ε}, S) be a general grammar.
Obviously, G is linear (see Definition 2.2.9) and L(G) = {anbn | n ≥ 0}. �

Let L = {anbn | n ≥ 0}. By the previous example, L ∈ LIN. However, by Exam-
ple 4.2.1, L /∈ REG and, thus REG 6= LIN. Consequently,

REG ⊂ LIN.

Example 5.0.3. Let G = ({S,A,B, a, b, c, d}, {a, b, c, d}, P, S) be a general grammar, where

P = {S → AB,A→ aAb,A→ ε,B → cBd,B → ε}.

Obviously, G is a context-free grammar (see Definition 2.2.9). Let us investigate the lan-
guage of G. By the initial rule it produces a string AB, from which equally long sequences
of as and bs are produced by rewriting A to aAb and equally long sequences of cs and ds are
produced by rewriting B to cBd. The derivation once finishes by erasing both nonterminals.
Therefore, L(G) = {ambmcndn | m,n ≥ 0}. �

Let L = {ambmcndn | m,n ≥ 0}. By the previous example, L ∈ CF. However, by
Example 4.2.10, L /∈ LIN and, thus LIN 6= CF. Consequently,

LIN ⊂ CF

which completes the proof of Theorem 5.0.3. �

49

The last introduced language families plays a rather marginal role in the subject of
this work and, so, we do not provide proves of their superiority or inclusion to the other
presented language families which the reader may find in the referenced literature.

It was proved that families of context-free languages of finite index form an infinite hier-
archy of language families above regular languages and there are also context-free languages
of an infinite index—indeed, by observing the definition we can see that 1CF denotes exactly
the family of linear languages, while their unlimited versions coincide with the definition of
the context-free grammar (for details see [26, 47, 49]).

Theorem 5.0.4.

LIN = 1CF ⊂ 2CF ⊂ 3CF ⊂ · · · ⊂ ∞CF = CF

Matrix grammars first defined and studied in [1] as the very basic concept of controlled
rewriting plays an indisputably significant role in the theory of formal languages. Most
importantly, it was proved that this abstract family of languages lays in between of the
family of context-free and the family of context-sensitive languages. In this study they
serve rather as a reference family of languages since it was also proved that they coincide
with the family of regular-controlled languages.

Theorem 5.0.5 (see [42]).

CF ⊂ RC = MT ⊂ CS

Putting together Theorem 5.0.1, 5.0.2, 5.0.3, 5.0.4, and 5.0.5, we obtain the following
corollary summarizing the hierarchical relations of all the considered language families.

Corollary 5.0.1.

FIN ⊂ REG ⊂ LIN = 1CF ⊂ 2CF ⊂ · · · ⊂ ∞CF = CF ⊂ RC = MT ⊂ CS ⊂ RE

Beyond this crucial hierarchical classification of language families there are also lan-
guages which cannot be generated by any grammar; as shown next, they in fact represent
the vast majority of languages which, unfortunately, corresponds to algorithmically unsolv-
able problems.

Theorem 5.0.6. For any alphabet Σ there exists a language L ⊆ Σ∗, where L /∈ RE.

Proof. For any language L ∈ RE, L ⊆ Σ∗, there is a general grammar in Kuroda normal
from G = (V,Σ, P, S) with L(G) = L (see Theorem 2.2.3). Since the normal form limits
the number of possible rules of P depending on the number of symbols in V , for a certain
V we may systematically generate all possible general grammars in Kuroda normal form.
Then, we can algorithmically generate all possible general grammars in Kuroda normal
form above the given alphabet beginning with those with just one nonterminal symbol
and continuously extending the nonterminal alphabet. Consequently, the set of all possible
general grammars in Kuroda normal form above the given alphabet is countable. However,
since the set of all strings Σ∗ above the given alphabet Σ is infinite, the set of all possible
languages 2Σ∗ is uncountable (follows from Cantor’s diagonal argument introduced in [4]).
The proof of the theorem, then, follows from the difference in the cardinality of the set of
all grammars and the set of all languages above the given alphabet. �

50

Chapter 6

Tree-Restricted Grammars

In this chapter, we introduce the main results of this thesis. We put simple tree-based con-
ditions for grammars in question and demonstrate that if a grammar satisfy these conditions
it in fact generates a context-free language.

6.1 General Grammars

First of all, we focus on the general grammars. As already mentioned (see Section 2.2), they
characterize the family of recursively enumerable languages and are, thus, computationally
complete. For simplicity, let us consider only general grammars in the binary form (see
Definition 2.2.15), since they are equally powerful. In contrast to context-free grammars,
general grammars in the binary form can rewrite two neighbouring nonterminals at ones
and, thus, perform rewriting of a symbol in context of neighbouring symbols. In the sense
of the derivation tree, this introduces two context-dependent nodes occurring in two neigh-
bouring paths; for brevity, we now omit erasing rules. Next, we show that limiting the
number of context dependencies between two neighbouring paths decrease the generative
power significantly; in fact, precisely to the power of context-free grammars. However,
notice that we do not limit the total number of context dependencies at all.

Theorem 6.1.1. A language L is context-free iff there is a constant k ≥ 0 and a general
grammar G such that L = L(G) and for every x ∈ L(G), there is a tree G4x ∈ GN that
satisfies:

1. any two neighbouring paths contain no more than k pairs of context-dependent nodes;

2. out of neighbouring paths, every pair of nodes is context-independent.

Proof. Construction. Consider any k ≥ 0. Let G = (V, T, P, S) be a GG such that L(G) =
L. Recall, N = V − T . Let Pcs ⊆ P denote the set of all non-context-free rules of G. Set

N ′ = {Al|r | A ∈ N, l, r ∈ (Pcs ∪ {ε})k}.

Construct a grammar G′ = (V ′, T, P ′, Sε|ε), where V ′ = N ′ ∪ T . Set P ′ = ∅. Construct P ′

by performing (I) through (IV) given next.

(I) For all A→ B ∈ P , A,B ∈ N , and l, r ∈ (Pcs ∪ {ε})k, add Al|r → Bl|r to P ′;

(II) for all A→ a ∈ P , A ∈ N , a ∈ (T ∪ {ε}), add Aε|ε → a to P ′;

51

(III) for all A→ BC ∈ P , where A,B,C ∈ N , and r, l, x ∈ (Pcs∪{ε})k, add Al|r → Bl|xCx|r
to P ′;

(IV) for all p : AB → CD ∈ P , A,B,C,D ∈ N , x, z ∈ (Pcs∪{ε})k, and y ∈ (Pcs∪{ε})k−1,
add Ax|py → Cx|y and Bpy|z → Dy|z to P ′.

Basic idea. Notice nonterminal symbols. Since every pair of neighbouring paths of G
contains a limited number of context-dependent nodes, all of its context-dependencies are
encoded in nonterminals. G′ nondeterministically decides about all context-dependencies
while introducing a new pair of neighbouring paths by rules (III). A new pair of neighbouring
paths is introduced with every application of

Al|r → Bl|xCx|r,

where x encodes a new descendant context. Context dependencies are realized later by
context-free rules (IV).

Since P ′ contains no non-context-free rule, G′ is context-free. Next, we proof L(G) = L(G′)
by establishing Claims 2 through 4. Define the new homomorphism γ : V ′ → V , γ(Al|r) =
A, for Al,r ∈ N ′, and γ(a) = a otherwise.

Claim 2. If S ⇒m w in G, where m ≥ 0 and w ∈ V ∗, then Sε|ε ⇒∗ w′ in G′, where w′ ∈ V ′∗
and γ(w′) = w.

In what follows, for brevity, we sometimes denote a node of derivation tree by the symbol
by which it is labelled if there is no risk of confusion.

Proof. We prove this by induction on m ≥ 0.

Basis. Let m = 0. That is S ⇒0 S in G. Clearly, Sε|ε ⇒0 Sε|ε in G′, where γ(Sε|ε) = S, so
the basis holds.

Induction Hypothesis. Suppose that there exists n ≥ 0 such that Claim 2 holds for all m
with 0 ≤ m ≤ n.

Induction Step. Let S ⇒n+1 w in G. Then, S ⇒n v ⇒ w, where v ∈ V ∗, and there exists
p ∈ P such that v ⇒ w [p]. By the induction hypothesis, Sε|ε ⇒∗ v′, where γ(v′) = v, in
G′. Next, we consider the following four forms of p.

(I) Let p : A → B ∈ P , for some A,B ∈ N . Without any loss of generality, suppose
l and r are a left descendant context and a right descendant context of A. By the
construction of G′, there exists a rule p′ : Al|r → Bl|r ∈ P ′. Then, there exists a
derivation v′ ⇒ w′ [p′] in G′, where γ(w′) = w.

(II) Let p : A → a ∈ P , for some A ∈ N and a ∈ T ∪ {ε}. Since a is a terminal symbol,
it corresponds to a node with empty descendant contexts. By the construction of G′,
there exists a rule p′ : Aε|ε → a ∈ P ′. Then, there exists a derivation v′ ⇒ w′ [p′] in
G′, where γ(w′) = w.

(III) Let p : A→ BC ∈ P , for some A,B,C ∈ N . Without any loss of generality, suppose l
and r are a left descendant context and a right descendant context of A, and x ∈ (Pcs∪
{ε})k is a context of neighbouring paths beginning at this node. By the construction
of G′, there exists a rule p′ : Al|r → Bl|xCx|r ∈ P ′. Then, there exists a derivation
v′ ⇒ w′ [p′] in G′, where γ(w′) = w.

52

(IV) Let p : AB → CD ∈ P , for some A,B,C,D ∈ N . By the assumption stated in
Theorem 6.1.1, A and B occur in two neighbouring paths denoted by α and β, re-
spectively. Without any loss of generality, suppose that a context of α and β is a
string c ∈ (Pcs ∪ ε)k, where c = pcf , and l is a left descendant context, r is a right
descendant context of A, B, respectively. By the construction of G′, there exist two
rules

p′l : Al|pcf → Cl|cf , p′r : Bpcf |r → Dcf |r ∈ P ′.

Then, there exists a derivation v′ ⇒2 w′ [p′lp
′
r] in G′, where γ(w′) = w.

Notice ((IV)). The preservation of the context is achieved by nonterminal symbols. Since
the stored context is reduced symbol by symbol from left to right direction in both α and
β, G′ simulates the applications of non-context-free rules of G.

We covered all possible forms of p, so the claim holds. �

Claim 3. Every x ∈ F (G′) can be derived in G′ as follows.

Sε|ε = x0 ⇒d1 x1 ⇒d2 x2 ⇒d3 · · · ⇒dh−1 xh−1 ⇒dh xh = x,

for some h ≥ 0, where di ∈ {1, 2}, 1 ≤ i ≤ h, so that

1. if di = 1, then xi−1 = uAl|rv, xi = uzv, xi−1 ⇒ xi [Al|r → z], where u, v ∈ V ′∗,
z ∈ {Bl|r, Cl|xDx|r, a}, for some Al|r, Bl|r, Cl|x, Dx|r ∈ N ′, a ∈ (T ∪ {ε});

2. if di = 2, then xi−1 = uAx|pyBpy|zv, xi = uCx|yDy|zv, and

uAx|pyBpy|zv ⇒ uCx|yBpy|zv [Ax|py → Cx|y]⇒ uCx|yDy|zv [Bpy|z → Dy|z],

for some u, v ∈ V ′∗ and Ax|py, Bpy|z, Cx|y, Dy|z ∈ N ′.

Proof. Since G′ is context-free, without any loss of generality in every derivation of G′ we
can always reorder applied rules to satisfy Claim 3. �

Claim 4. Let Sε|ε ⇒d1 x1 ⇒d2 · · · ⇒dm−1 xm−1 ⇒dm xm in G′ be a derivation that satisfies
Claim 3, for some m ≥ 0. Then, S ⇒∗ w in G, where γ(xm) = w.

Proof. We prove this by induction on m ≥ 0.

Basis. Let m = 0. That is Sε|ε ⇒0 Sε|ε in G′. Clearly, S ⇒0 S in G. Since γ(Sε|ε) = S,
the basis holds.

Induction Hypothesis. Suppose that there exists n ≥ 0 such that Claim 4 holds for all m
with 0 ≤ m ≤ n.

Induction Step. Let Sε|ε ⇒d1 x1 ⇒d2 · · · ⇒dn−1 xn−1 ⇒dn xn ⇒dn+1 xn+1 in G′ be a
derivation that satisfies Claim 3. By the induction hypothesis, S ⇒∗ v, v ∈ V ∗, where
γ(xn) = v, in G. Divide the proof into two parts according to dn+1.

(A) Let dn+1 = 1. By the construction of G′, there exists a rule p′ ∈ P ′ such that
xn ⇒dn+1 xn+1 [p′]. Next, we consider the following three forms of p′.

53

(I) Let p′ : Al|r → Bl|r ∈ P ′, for some A,B ∈ N and l, r ∈ (Pcs ∪ {ε})k. By the
construction of G′, rule p′ is introduced by some rule p : A → B ∈ P . Then,
there exists a derivation v ⇒ w [p], where γ(xn+1) = w.

(II) Let p′ : Aε|ε → a ∈ P ′, for some A ∈ N and a ∈ T ∪ {ε}. By the construction
of G′, rule p′ is introduced by some rule p : A → a ∈ P . Then, there exists a
derivation v ⇒ w [p], where γ(xn+1) = w.

(III) Let p′ : Al|r → Bl|xCx|r ∈ P ′, for some A,B,C ∈ N and l, r, x ∈ (Pcs ∪ {ε})k.
By the construction of G′, rule p′ is introduced by some rule p : A → BC ∈ P .
Then, there exists a derivation v ⇒ w [p], where γ(xn+1) = w.

(B) Let dn+1 = 2. Then, xn ⇒dn+1 xn+1 is equivalent to

u1Ax|pyBpy|zu2 ⇒ u1Cx|yBpy|zu2 [p′1]⇒ u1Cx|yDy|zu2 [p′2],

where xn = u1Ax|pyBpy|zu2, xn+1 = u1Cx|yDy|zu2, and

p′1 : Ax|py → Cx|y, p
′
2 : Bpy|z → Dy|z ∈ P ′,

for some u1, u2 ∈ V ′∗ and Ax|py, Bpy|z, Cx|y, Dy|z ∈ N ′. By the construction of G′,
rules p′1 and p′2 were introduced by some rule p : AB → CD ∈ P , Then, there exists
a derivation v ⇒ w [p], where γ(xn+1) = w.

We covered all possibilities, so the claim holds. �

By Claims 2 and 4, S ⇒∗ w in G iff Sε|ε ⇒∗ w′ in G′, where γ(w′) = w. If S ⇒∗ w in
G and w ∈ T ∗, then w ∈ L(G). Since γ(w′) = w′ = w, for w ∈ T ∗, w′ ∈ L(G′). Therefore,
L(G) = L(G′) and Theorem 6.1.1 holds. �

Consider Theorem 6.1.1. Observe that the second condition is superfluous whenever
G is monotone. Since a grammar is in the binary form and no symbol can be erased, all
context dependencies are within pairs of neighbouring paths.

Theorem 6.1.2. A language L is context-free iff there is a constant k ≥ 0 and a monotone
general grammar G such that L = L(G) and for every x ∈ L(G), there is a tree G4x ∈ GN,
where any two neighbouring paths contain no more than k pairs of context-dependent nodes.

Proof. Prove this by analogy with the proof of Theorem 6.1.1. �

We proved that Theorems 6.1.1 and 6.1.2 introduce necessary but also sufficient con-
ditions for a general grammar to generate context-free language. Later in Chapter 7 we
demonstrate how to use this result to obtain a positive proof of context-freeness of a lan-
guage in practice.

6.2 Regular-Controlled Grammars

Now we turn our attention to regulated grammars; namely, grammars regulated by regular
control languages over the set of rules called regular-controlled grammars (see Section 2.2).
They were introduced in [19] and are as powerful as matrix grammars, so, they define the
family of matrix languages. Every RCG consists of a context-free grammar G and a regular

54

language C above the rules of G and the sentences in C define the only valid derivations of
G. Therefore, this control mechanism ensures a certain order of the applied rules. Let us
look at it from the derivation-tree point of view. Even an ordinary context-free grammar can
introduce rule-application synchronization based on nonterminal symbols within a single
branch of the derivation tree. On top of this, RCGs can synchronize the applications of
rules also in the case when the path of the derivation changes a branch of the derivation
tree. However, what if we limit the number of possible path changes by a constant? The
present section demonstrates that the language of an RCG limited in this way is context-
free. Moreover, for a limiting constant k, the language is in fact context-free of index k+ 1,
where, additionally, this index is only an upper bound. As a result, this restriction of the
derivation trees of RCGs is even more restrictive than we originally estimated.

Theorem 6.2.1. If there is a constant k ≥ 0 and a regular-controlled grammar H in binary
form such that, for every w ∈ L(H), there exists a derivation of w in H with at most k
path-changing derivation steps, then L(H) is a context-free language, and moreover, it is
of index k + 1.

An RCG satisfying restriction from Theorem 6.2.1 is said to be k-restricted.

Proof. Let H̄ = (Ḡ, C̄), Ḡ = (V̄ , T, P̄ , S), be an RCG in the binary form such that
L(H̄) = L and let k ≥ 0 be a constant such that for every x ∈ L(H̄), there exists a
derivation S ⇒∗ x in H̄ with k or fewer path-changing derivation steps.

Preliminary transformation. Construct H = (G,C), G = (V, T, P, S), as follows. Initially,
set C = ∅, V = V̄ , and P = {r | r : A → w ∈ P̄ ,#N̄ (w) = 1}. Define the new homo-
morphism h over P as h(x) = x, for all x ∈ P . For every rule r : A → BC ∈ P̄ , where
A,B,C ∈ N̄ , add new nonterminal 〈r〉 to N and two new rules

r1 : A→ 〈r〉C, r2 : 〈r〉 → B

to P and redefine h so that h(r) = r1r2. For every rule r : A → w ∈ P̄ , where A ∈ N̄ and
w ∈ T ∗, add new nonterminal 〈r〉 to N and two new rules

r1 : A→ 〈r〉, r2 : 〈r〉 → w

to P and redefine h so that h(r) = r1r2. Finally set C = h(C̄).

Claim 5. L(H̄) = L(H).

Proof. Since H is constructed so that every rule of the form r : A → BC or r : A → w is
substituted by two always consecutively applied rules r1 : A → 〈r〉C and r2 : 〈r〉 → B or
r1 : A → 〈r〉 and r2 : 〈r〉 → w, respectively, working equally, it is obvious that the claim
holds. �

Moreover, the preliminary transformation does not add any new branching and, thus,
preserves k as a valid limit of path-changes.

The previous transformation aims to simplify the next construction proof. We avoid
path-changes during branching and directly before leafs. Additionally, after every branch-
ing the derivation always continues with the left child node.

Construction. Let M = (Q,P,R, s, F) be a finite automaton such that L(M) = C. Set

55

N̄ = {〈Ā|q|r|s|t|f〉 | A ∈ N ; q ∈ Q; r, s, t ∈ (Q ∪ {ε})k; f ∈ F ∪ {ε}},
N ′ = {〈A|q|r|s|t|f〉 | A ∈ N ; q ∈ Q; r, s, t ∈ (Q ∪ {ε})k,

f ∈ F ∪ {ε}} ∪ {〈S′|s|ε|ε|ε|ε〉} ∪ N̄ ,

where S′ /∈ N . Set V ′ = N ′∪T . Construct a context-free grammarG′ = (V ′, T, P ′, 〈S′|s|ε|ε|ε|ε〉).
Set P ′ = ∅. Construct P ′ by performing (I) through (VI) given next.

(I) For all x ∈ (Q ∪ {ε})k and f ∈ F , add 〈S′|s|ε|ε|ε|ε〉 → 〈S|s|ε|ε|x|f〉 to P ′;

(II) for all r : A → uBv ∈ P , qr ` p ∈ R, x, y, z ∈ (Q ∪ {ε})k, and f ∈ F ∪ {ε}, where
B ∈ N , uv ∈ T ∗, add

(i) 〈A|q|x|y|z|f〉 → u〈B|p|x|y|z|f〉v,

(ii) 〈Ā|q|x|y|z|f〉 → u〈B|p|x|y|z|f〉v to P ′;

(III) for all r : A → uBv ∈ P , qr ` p ∈ R, g ∈ Q, x, y, z ∈ (Q ∪ {ε})k, and f ∈ F ∪ {ε},
where B ∈ N , uv ∈ T ∗, add 〈A|g|gx|qy|z|f〉 → u〈B|p|x|y|z|f〉v to P ′;

(IV) for all r : A→ w ∈ P and qr ` p ∈ Q, where w ∈ T ∗, add

(i) 〈A|q|p|ε|ε|ε〉 → w,

(ii) 〈Ā|q|p|ε|ε|ε〉 → w to P ′;

(V) for all r : A→ w ∈ P and qr ` f ∈ Q, where w ∈ T ∗, f ∈ F , add

(i) 〈A|q|ε|ε|ε|f〉 → w,

(ii) 〈Ā|q|ε|ε|ε|f〉 → w to P ′;

(VI) for all r : A → BC ∈ P , qr ` p ∈ R, B,C ∈ N , g ∈ Q, x1x2, y1y2, z1z2z3z4 ∈
(Q ∪ {ε})k, f ∈ F ∪ {ε}, f1f2 = f , add

(i) 〈A|q| shuffle(x1, x2)| shuffle(y1, y2)|gz1z2z3z4|f〉 →
〈B|p| shuffle(x1, gz1)| shuffle(y1, z2)|z3|f1〉〈C̄|g| shuffle(x2, z2)| shuffle(y2, z1)|z4|f2〉,

(ii) 〈Ā|q| shuffle(x1, x2)| shuffle(y1, y2)|gz1z2z3z4|f〉 →
〈B|p| shuffle(x1, gz1)| shuffle(y1, z2)|z3|f1〉〈C̄|g| shuffle(x2, z2)| shuffle(y2, z1)|z4|f2〉,

(iii) 〈A|q| shuffle(x1, x2)|g shuffle(y1, y2)|z1z2z3z4|f〉 →
〈B|p| shuffle(x1, z1)| shuffle(y1, z2)|z3|f1〉〈C̄|g| shuffle(x2, z2)| shuffle(y2, z1)|z4|f2〉,

(iv) 〈Ā|q| shuffle(x1, x2)|g shuffle(y1, y2)|z1z2z3z4|f〉 →
〈B|p| shuffle(x1, z1)| shuffle(y1, z2)|z3|f1〉〈C̄|g| shuffle(x2, z2)| shuffle(y2, z1)|z4|f2〉 to
P ′.

Define the new morphism γ : V ′∗ → V ∗ such that for 〈A|q|x|y|z|f〉 ∈ N ′, γ(〈A|q|x|y|z|f〉) =
A, γ(x) = x otherwise.

Basic idea. The context-free grammar G′ is designed to simulate the derivations of H. Since
in any derivation of H there are k or fewer path-changes, G′ nondeterministically decides
about all the path-changes during the initial derivation step. To satisfy the restrictions given
by control language C, the automaton M , L(M) = L, is encoded in the rules of G′. While
performing linear derivations, the consecutivity of states is ensured. When a new branching
node is introduced, it is nondeterministically decided about path-changes between both
subtrees of the derivation tree which are encoded in nonterminals and simulated by context
free rules.

56

Let us describe the composite nonterminal symbols in greater detail. For a symbol

〈A|q|x|y|z|f〉

composed of symbol A, states q and f , and the stings of zero up to k states x, y, and
z, we refer to A, q, x, y, z, and f as the first, second, third, fourth, fifth, and sixth
component, respectively. The first component encodes nonterminal symbol itself, while the
others encode states of the finite automaton M with L(M) = C. The second component
encodes the current state of M . The third component holds the string of states from which
there is a path-change underneath the current branch of the derivation tree, while the fourth
component holds the string of states into which there is a path-change underneath the
current branch of the derivation tree. The fifth component represents a string of branching
states, which are to be set as the branching ones during the rest of the derivation. Finally,
the sixth component encodes the final state of M to be reached.

Let us informally describe six classes of the rules of G′:

(I) An initial rule of the form 〈S′|s|ε|ε|ε|ε〉 → 〈S|s|ε|ε|x|f〉 rewriting the start symbol is
applied only once at the beginning of any derivation. It nondeterministically generates
x—a string of all states in which there is a path-change—and f—a final state of M to
be reached—which are then saved in the fifth and sixth component of a nonterminal,
respectively.

(II) The rules of the form 〈A|q|x|y|z|f〉 → u〈B|p|x|y|z|f〉v simulate consecutive path-
preserving linear derivations which are designed to follow transitions in M or path-
changes into the right child of a new branching node. The first component of a
nonterminal represents nonterminal in G, while the second represents a state of M .

(III) The rules of the form 〈A|g|gx|qy|z|f〉 → u〈B|p|x|y|z|f〉v represent path-changes.
Since the third component of a nonterminal represents a string of states in which
the path-changes out of the subtree of the current node occur, a path-change may be
performed only when the first symbol corresponds to the current state of M . The
fourth component represent a string of states in which the path-changes into the sub-
tree of the current node occur. Since there is a path-change out and the node is
not terminal, if the derivation is successful, there once follows a path-change back
simulated by the rule.

Notice that the rules (III) cannot rewrite noterminals from N̄ generated by the
rules (VI). They simulate path-change out and the following path-change back at once
which, however, does not correspond to a path-change into the right subbranch of a
new branching node.

(IV) The rules of the form 〈A|q|p|ε|ε|ε〉 → w act slightly similarly to (III), however, a new
node is terminal and M does not terminate yet, thus, a path-change out of the current
branch must be performed, but there is no path-change back. Additionally, all the
previously nondeterministically planed path-changes must be already done—fourth
and sixth component of a nonterminal is empty and the third contains precisely one
state.

(V) A rule of the form 〈A|q|ε|ε|ε|f〉 → w terminates the current derivation with respect
to M , therefore, there follows no path-change. In every successful derivation there is
always exactly one such rule applied.

57

(VI) The last class of the rules represents branching. Since G is in the binary form, ev-
ery node has at most two children. Moreover, by the preliminary transformation of
H it is ensured that the derivation follows by rewriting the left newly introduced
nonterminal, thus, we do not consider other cases (e.g. path-changing while branch-
ing). To terminate the right branch, there must once occur a path-change into it
which is planed while branching. A path-change may lead from the subtree of the left
branch—(i)-(ii)—or is already planed—(iii)-(iv).

The third and fourth components of 〈A|q| shuffle(x1, x2)| shuffle(y1, y2)|z1z2z3z4|f〉
are nondeterministically divided into newly introduced branches, but the mutual order
of the states is preserved, and some path-changes from the fifth component may be
nondeterministically planed between both new branches. Finally, if f ∈ F , it is
decided into which branch it is put.

We note that there is a lot of rules or nonterminals which possibly do not occur in any
successful derivation. Moreover, a nondeterministic generation and distribution of path-
changing states may result into blocking of a derivation. As we prove next, this, however,
does not change the language of the grammar.

However, before we complete the proof of Theorem 6.2.1, let us clarify the construction
part of it by providing the following illustrative example.

Example 6.2.1. Consider RCG H = (G,C) from Example 3.2.5 and let k = 1. Recall
G = ({S,A,B, a, b, c, d, e, f}, {a, b, c, d, e, f}, P, S), C = {1}∗{2}{3}∗{4}{5}∗{6}, and

P = { 1: S → aSb, 2: S → AB,
3: A→ cAd, 4: A→ ε,
5: B → eBf , 6: B → ε }.

Construct H ′ = (Ḡ, C̄) according to the preliminary transformation of the proof of Theorem
6.2.1 with Ḡ = ({S,A,B, 〈2〉, 〈4〉, 〈6〉, a, b, c, d, e, f}, {a, b, c, d, e, f}, P̄ , S),

P̄ = { 1: S → aSb, 21 : S → 〈2〉B, 22 : 〈2〉 → A,
3: A→ cAd, 41 : A→ 〈4〉, 42 : 〈4〉 → ε,
5: B → eBf , 61 : B → 〈6〉, 62 : 〈6〉 → ε },

and C̄ = {1}∗{21}{22}{3}∗{41}{42}{5}∗{61}{62}. Define an FA M = {{s, sq, q, qp, p, pf ,
f}, {1, 21, 22, 3, 41, 42, 5, 61, 62}, R, s, {f}} with

R = { s1 ` s, s21 ` sq, sq22 ` q,
q3 ` q, q41 ` qp, qp42 ` p,
p5 ` p, p61 ` pf , pf62 ` f }.

Next, we define a CFG simulating H ′, however, to make it as readable as possible, we list
only essential nonterminals and rules; despite this example is quite simple, the grammar
contains thousands of them, but only very few nonterminals are reachable and terminating
(see [38]) and very few rules applicable in any derivation. Define

G′ = (V ′, {a, b, c, d, e, f}, P ′, 〈S′|s|ε|ε|ε|ε〉)

with

V ′ = {〈S′|s|ε|ε|ε|ε〉, 〈S|s|ε|ε|p|f〉, 〈〈2〉|sq|p|ε|ε|ε〉, 〈B|p|ε|ε|ε|f〉,
〈A|q|p|ε|ε|ε〉, 〈〈4〉|qp|p|ε|ε|ε〉, 〈〈6〉|pf |ε|ε|ε|f〉} ∪ {a, b, c, d, e, f}

58

P ′ = { 0̇ : 〈S′|s|ε|ε|ε|ε〉 → 〈S|s|ε|ε|p|f〉,
1̇ : 〈S|s|ε|ε|p|f〉 → a〈S|s|ε|ε|p|f〉b,
2̇ : 〈S|s|ε|ε|p|f〉 → 〈〈2〉|sq|p|ε|ε|ε〉〈B|p|ε|ε|ε|f〉,
3̇ : 〈〈2〉|sq|p|ε|ε|ε〉 → 〈A|q|p|ε|ε|ε〉,
4̇ : 〈A|q|p|ε|ε|ε〉 → c〈A|q|p|ε|ε|ε〉d,
5̇ : 〈A|q|p|ε|ε|ε〉 → 〈〈4〉|qp|p|ε|ε|ε〉,
6̇ : 〈〈4〉|qp|p|ε|ε|ε〉 → ε,
7̇ : 〈B|p|ε|ε|ε|f〉 → e〈B|p|ε|ε|ε|f〉f ,
8̇ : 〈B|p|ε|ε|ε|f〉 → 〈〈6〉|pf |ε|ε|ε|f〉,
9̇ : 〈〈6〉|pf |ε|ε|ε|f〉→ ε,

. . .
}.

For easier referencing, we add a unique label to each rule. Consider the derivation 123456
in G from Example 3.2.5. The corresponding derivation in G′ is as follows.

〈S′|s|ε|ε|ε|ε〉 ⇒ 〈S|s|ε|ε|p|f〉 [0̇]

⇒ a〈S|s|ε|ε|p|f〉b [1̇]

⇒ a〈〈2〉|sq|p|ε|ε|ε〉〈B|p|ε|ε|ε|f〉b [2̇]

⇒ a〈A|q|p|ε|ε|ε〉〈B|p|ε|ε|ε|f〉b [3̇]

⇒ ac〈A|q|p|ε|ε|ε〉d〈B|p|ε|ε|ε|f〉b [4̇]

⇒ ac〈〈4〉|qp|p|ε|ε|ε〉d〈B|p|ε|ε|ε|f〉b [5̇]

⇒ acd〈B|p|ε|ε|ε|f〉b [6̇]

⇒ acde〈B|p|ε|ε|ε|f〉fb [7̇]

⇒ acde〈〈6〉|pf |ε|ε|ε|f〉fb [8̇]

⇒ acdefb [9̇]

However, it also corresponds to s121223414256162 `∗ f in M and, thus, to H ′. Notice step
0̇, where 〈S|s|ε|ε|p|f〉 is generated. It encodes that the grammar must once simulate a path-
change in state p and apply terminating rule entering final state f—which is step 9̇—with
respect to M . In branching step 2̇, state p is put to the third component of 〈〈2〉|sq|p|ε|ε|ε〉
which encodes that it once must be reached in the left branch—this is done in step 6̇—and
to the second component of 〈B|p|ε|ε|ε|f〉 simulating that the derivation continues from the
same state with respect to M . Fig. 6.2.1 demonstrates how G′ follows M .

�

Claim 6. If S ⇒m w in H, where m ≥ 0 and w ∈ V ∗, then 〈S′|s|ε|ε|ε|ε〉 ⇒∗ w′ in G′,
where w′ ∈ V ′∗ and γ(w′) = w.

Proof. We prove the statement by induction on m ≥ 0.

Basis. Let m = 0. That is, S ⇒0 S in H. Clearly, 〈S′|s|ε|ε|ε|ε〉 ⇒ 〈S|s|ε|ε|x|f〉 in G′,
where γ(〈S|s|ε|ε|x|f〉) = S, for some x ∈ (Q ∪ {ε})k and f ∈ F , so the basis holds.

Induction Hypothesis. Suppose that there exists n ≥ 0 such that Claim 6 holds for all m
with 0 ≤ m ≤ n.

Induction Step. Let S ⇒n+1 w in H. Then, S ⇒n v ⇒ w, where v ∈ V ∗, and there
exists r ∈ P such that v ⇒ w [r]. By the induction hypothesis, 〈S′|s|ε|ε|ε|ε〉 ⇒∗ v′, where
γ(v′) = v, inG′. Next, we consider the following five forms of r according to the construction
of G′.

59

〈S′|s|ε|ε|ε|ε〉

〈S|s|ε|ε|p|f〉

a 〈S|s|ε|ε|p|f〉

〈〈2〉|sq|p|ε|ε|ε〉

〈A|q|p|ε|ε|ε〉

c 〈A|q|p|ε|ε|ε〉

〈〈6〉|qp|p|ε|ε|ε〉

ε

d

〈B|p|ε|ε|ε|f〉

e 〈B|p|ε|ε|ε|f〉

〈〈4〉|pf |ε|ε|ε|f〉

ε

f

b

s1 ⊢ s

s21 ⊢ sq

sq22 ⊢ q

q3 ⊢ q

q41 ⊢ qp

qp42 ⊢ p

p5 ⊢ p

p61 ⊢ pf

pf62 ⊢ f

Figure 6.2.1: G′4(〈S′|s|ε|ε|ε|ε〉 ⇒∗ acdefb [0̇1̇2̇3̇4̇5̇6̇7̇8̇9̇])

(1) Let r : A → u1Bu2 ∈ P , for some A,B ∈ N , u1, u2 ∈ T ∗, and v ⇒ w [r] is
a path-preserving derivation step or a path-changing derivation step into a node
with some sibling. By the construction of G′, there exists a rule 〈A|q|x|y|z|f〉 →
u1〈B|p|x|y|z|f〉u2 in P ′, where qr ` p ∈ R, x, y, z ∈ (Q ∪ {ε})k, and f ∈ F ∪ {ε}.
Without any loss of generality, suppose q, x, y, z, f are correct. Then, there exists a
derivation

v′ ⇒ w′ [〈A|q|x|y|z|f〉 → u1〈B|p|x|y|z|f〉u2]

in G′, where γ(w′) = w.

(2) Let r : A → u1Bu2 ∈ P , for some A,B ∈ N , u1, u2 ∈ T ∗, and v ⇒ w [r] is a path-
changing derivation step into a node without siblings. By the construction of G′, there
exists a rule 〈A|g|gx|qy|z|f〉 → u1〈B|p|x|y|z|f〉u2 in P ′, where g ∈ Q, qr ` p ∈ R,
x, y, z ∈ (Q ∪ {ε})k, and f ∈ F ∪ {ε}. Without any loss of generality, suppose
g, q, x, y, z, f are correct. Then, there exists a derivation

v′ ⇒ w′ [〈A|g|gx|qy|z|f〉 → u1〈B|p|x|y|z|f〉u2]

in G′, where γ(w′) = w.

(3) Let r : A→ x ∈ P , for some A ∈ N , x ∈ T ∗, and alph(w)∩N 6= ∅. By the construction
of G′, there exists a rule 〈A|q|p|ε|ε|ε〉 → x in P ′, where qr ` p ∈ R. Without any loss
of generality, suppose q is correct. Then, there exists a derivation

v′ ⇒ w′ [〈A|q|p|ε|ε|ε〉 → x]

in G′, where γ(w′) = w.

60

(4) Let r : A→ x ∈ P , for some A ∈ N , x ∈ T ∗, and w ∈ T ∗. By the construction of G′,
there exists a rule 〈A|q|ε|ε|ε|f〉 → x in P ′, where qr ` f ∈ R, f ∈ F . Without any
loss of generality, suppose q is correct. Then, there exists a derivation

v′ ⇒ w′ [〈A|q|ε|ε|ε|f〉 → x]

in G′, where γ(w′) = w.

(5) Let r : A → BC ∈ P , for some A,B,C ∈ N . By the construction of G′, there exists
a rule 〈A|q|x1|y1|z1|f1〉 → 〈B|p|x2|y2|z2|f2〉〈C|g|x3|y3|z3|f3〉 in P ′, where qr ` p ∈ R,
xi,yi,zi ∈ (Q ∪ {ε})k, fi ∈ F ∪ {ε}, and without any loss of generality, suppose
q,g,xi,yi,zi,fi are correct, for 1 ≤ i ≤ 3. Then, there exists a derivation

v′ ⇒ w′ [〈A|q|x1|y1|z1|f1〉 → 〈B|p|x2|y2|z2|f2〉〈C|g|x3|y3|z3|f3〉]
in G′, where γ(w′) = w.

We covered all possible forms of p, so the claim holds. �

Let us remark that assumption of correctness of nonterminals of G′ results from the fact
that the rules cover all possibilities—that is there is always a proper rule to be used.

Claim 7. Consider any w ∈ T ∗, where w /∈ L(H). Then, w /∈ L(G′).

Proof. We prove this by contradiction.

Assumption. Suppose there exists w ∈ T ∗, where w /∈ L(H) and w ∈ L(G′).

1. First, suppose w /∈ L(G). That is, there exists a derivation

〈S′|s|ε|ε|ε|ε〉 ⇒ 〈S|s|ε|ε|x|f〉 ⇒∗ u⇒ v [A→ X]⇒∗ w,
in G′, where γ(u) ; γ(v) in G, for some u, v ∈ V ′∗, 〈S|s|ε|ε|x|f〉 ∈ N ′, and A →
X ∈ P ′. Then, γ(A) → γ(X) /∈ P . However, since by the construction of G′ every
non-initial rule A→ X ∈ P ′ is introduced according to some γ(A)→ γ(X) ∈ P , this
is a contradiction.

2. Second, suppose w ∈ L(G), however, for every derivation S ⇒∗ w [d] in G, d /∈ C. In
the terms of M , there is no derivation sd `∗ q̄, for any q̄ ∈ Q, or sd ` q̄ and q̄ /∈ F .
Consider a derivation

〈S′|s|ε|ε|ε|ε〉 ⇒ 〈S|s|ε|ε|x̄|f̄〉 ⇒∗ w,
in G′, for some 〈S|s|ε|ε|x̄|f̄〉 ∈ N ′, and a corresponding derivation S ⇒∗ w [d] in G,
for some d ∈ R∗.

(a) Suppose there is no derivation sd `∗ q̄, for any q̄ ∈ Q. Then, there exist u, v ∈ V ′∗
and 〈A|q|x|y|z|f〉 → X ∈ P ′, where

〈S′|s|ε|ε|ε|ε〉 ⇒ 〈S|s|ε|ε|x̄|f̄〉 ⇒∗ u⇒ v [〈A|q|x|y|z|f〉 → X]⇒∗ w,
in G′, and a corresponding derivation

S ⇒∗ γ(u) [d1]⇒ γ(v) [r]⇒∗ w [d2]

in G, where d1rd2 = d, r : A → γ(X) ∈ P , sd1 `∗ q, and there is no derivation
sd1r `∗ q′, for any q, q′ ∈ Q.

61

i. Suppose γ(u)⇒ γ(v) [r] is a path-preserving derivation step. Then,

〈A|q|x|y|z|f〉 → X

is from (II) or (IV) through (VI) depending on X. By the construction
of G′, the rule 〈A|q|x|y|z|f〉 → X is introduced according to a transition
qr ` p ∈ R, for some p ∈ Q. Therefore, however, sd1r `∗ p in M , which is a
contradiction.

ii. Suppose γ(u) ⇒ γ(v) [r] is a path-changing derivation step. The states
in which the path-changing derivation steps are always to be performed—
represented by the string x̄—are nondeterministically generated by the ini-
tial derivation step

〈S′|s|ε|ε|ε|ε〉 ⇒ 〈S|s|ε|ε|x̄|f̄〉

in the fifth component of 〈S|s|ε|ε|x̄|f̄〉. Therefore, q ∈ alph(x̄). However,
before the path-change can be simulated by G′, the state must get to the
third and fourth component of some nonterminals which can be done by the
rule (VI) only. Then, by some rule

〈A1|q1|x1|y1|z1|f1〉 → 〈A2|q2|x2|y2|z2|f2〉〈A3|q3|x3|y3|z3|f3〉 ∈ P ′,

where #q(z1) ≥ #q(z2) + #q(z3) + 1,

〈S|s|ε|ε|x̄|f̄〉 ⇒∗ u1〈A1|q1|x1|y1|z1|f1〉u2

⇒ u1〈A2|q2|x2|y2|z2|f2〉〈A3|q3|x3|y3|z3|f3〉u2,

for some u1, u2 ∈ V ′∗. Therefore, q ∈ alph(x2) or q ∈ alph(x3) and since
these two cases are symmetric, without any loss of generality, let us consider
only q ∈ alph(x2). Then, also q3 = q and

〈A3|q3|x3|y3|z3|f3〉 = 〈A3|q|x3|y3|z3|f3〉

or q ∈ alph(y3) and to once get rid of it

〈A3|q3|x3|y3|z3|f3〉 ⇒∗ w1〈A|g|gx|qy|z|f〉w2

for some w1, w2 ∈ V ′∗. Either 〈A3|q|x3|y3|z3|f3〉 or 〈A|g|gx|qy|z|f〉 repre-
sents the target of the path-change later denoted by Z. Additionally, G′

must once get rid of q in x2, otherwise, the derivation is not successful.
Hence,

〈A2|q2|x2|y2|z2|f2〉 ⇒∗ v1Y v2,

where Y = 〈A4|q|qx4|y4|z4|f4〉 which consequently allows an application of
a rule (III) erasing q, for some v1, v2 ∈ V ′∗ and 〈A4|q|qx4|y4|z4|f4〉 ∈ N ′, or
Y ∈ T ∗ and

〈A2|q2|x2|y2|z2|f2〉 ⇒∗ v1〈A′|q′|q|ε|ε|ε〉v2 [〈A′|q′|q|ε|ε|ε〉 → Y]
⇒ v1Y v2,

62

for some 〈A′|q′|q|ε|ε|ε〉 → Y ∈ P ′. Combining the previous observations and
statements, we get

〈S′|s|ε|ε|ε|ε〉 ⇒∗ u1v1Y v2w1Zw2u2.

Since G′ is a context-free grammar, without any loss of generality, we can
suppose that the derivation follows M—that is, sd1 ` q ∈ M . Then, the
derivation

u1v1Y v2w1Zw2u2 ⇒ u1v1Y v2w1Xw2u2

represents a path-changing derivation step changing the path of the deriva-
tion from Y to X. By the construction of G′, the rule 〈A|q|x|y|z|f〉 → X
or 〈A|g|gx|qy|z|f〉 → X by which the last derivation step is performed is
introduced according to a transition qr ` p ∈ R, for some p ∈ Q. Therefore,
however, sd1r `∗ p in M , which is a contradiction.

(b) Suppose sd `∗ q̄, where q̄ ∈ Q − F . In every successful derivation of G′, there
is precisely one rule (V) applied—G′ must once get rid of f̄ generated by the
initial derivation step—which represents final accepting transition of M . Since
G′ is a context free grammar, without any loss of generality, we can consider
an application of such rule is always performed at the end of any successful
derivation; this is also consistent with M and, thus, C. Then, however, q̄ ∈ F ,
which is a contradiction.

Since the assumption always results in contradiction, it is incorrect. �

By Claim 6, if S ⇒∗ w in H, then 〈S′|s|ε|ε|ε|ε〉 ⇒∗ w′ in G′, where γ(w′) = w. If
S ⇒∗ w in H and w ∈ T ∗, then w ∈ L(H). Since γ(w′) = w′ = w, for w ∈ T ∗, w′ ∈ L(G′).
By Claim 7, L(G′) − L(H) = ∅. Therefore, L(H) = L(G′). By Claim 5 L(H̄) = L(H) and
Theorem 6.2.1 holds. �

Corollary 6.2.1. Let L be a context-free language of an infinite index. Then, there exists
no k-restricted regular-controlled grammar H such that L(H) = L, for any 1 ≤ k <∞.

Corollary 6.2.2. If there is a constant k ≥ 0 and a propagating regular-controlled gram-
mar H in binary form such that, for every w ∈ L(H), there exists a derivation of w in H
with at most k path-changing derivation steps, then L(H) is a context-free language, and
moreover, it is of index k + 1.

We introduced the binary form of regular-controlled grammars to simplify the proof of
Theorem 6.2.1. Notice, however, it can be generalized for all k-restricted RCGs. A proof
of the following theorem is, thus, left to the reader.

Theorem 6.2.2. If there is a constant k ≥ 0 and a regular-controlled grammar H such
that, for every w ∈ L(H), there exists a derivation of w in H with at most k path-changing
derivation steps, then L(H) is a context-free language, and moreover, it is of index k + 1.

The control mechanism of regular-controlled grammars influences the order in which
the core grammars apply their rules. However, the notion of path-change as well as the
given restrictions are independent of this control mechanism and are related only to the
core grammars and their derivation trees. Therefore, we can state the achieved result in a
more general context.

63

Corollary 6.2.3. If there is a constant k ≥ 0 and a (propagating) matrix grammar H such
that, for every w ∈ L(H), there exists a derivation of w in H with at most k path-changing
derivation steps, then L(H) is a context-free language, and moreover, it is of index k + 1.

6.3 Scattered Context Grammars

Parallelism as a computational phenomenon stands indisputably as a crucial area of in-
terest for theoretical computer scientists for long decades. In this section we focus on
first grammatical model working in parallel, scattered context grammars (see Section 2.2).
Originally, scattered context grammars were defined in [20], later in [56] their generalized
versions with erasing rules (see also [34]) were introduced. They were widely studied in
numerous publications (see for example [13, 16, 17, 29–33, 36, 37, 39, 41, 44, 52, 53, 55]).
For a detailed inside into scattered context grammars consult [40].

The general versions of scattered context grammars characterize the family of recursively
enumerable languages and are, thus, computationally complete, while their propagating
versions characterize the family of context sensitive languages. In essence, an SCG is a
context-free grammar which, however, possibly apply several context-free rules in parallel.
In this way the grammar in fact introduces context-dependencies between simultaneously
rewritten symbols. Since they are equally powerful (see Theorem 2.2.10), let us consider
only SCGs in the binary form. From the derivation-tree point of view, there occur pairs
of context-dependent nodes. Let k ≥ 0 be a constant. In what follows, we show that if
these context-dependent pairs of nodes are clustered into mutually context-independent (k
or less)-tuples, the generated language is context-free. Let us emphasize that we do not
limit the total number of context dependencies at all. Moreover, this result can be of some
use in practice, since we can obtain a positive proof of context-freeness based on it.

Theorem 6.3.1. A language L is context-free iff there is a constant k ≥ 0 and a scattered
context grammar G in the binary form such that L = L(G) and for every x ∈ L(G), there
is a tree t = G4x ∈ GN for which there exists a division t′ such that in every subgraph of
t′ there are k or fewer pairs of context-dependent nodes and every pair of nodes from two
different subgraphs is context-independent.

We divide the proof into only if and if part.

Proof. Only If. Let L be a context-free language. Then, there exists a context-free grammar
G, where L(G) = L. However, G is in fact also scattered context grammar without non-
context-free rules. Without any loss of generality, suppose G is in the Chomsky Normal
form (see Definition 2.2.16); then, G also satisfies the binary form. For any x ∈ L(G)
there is a tree t = G4x ∈ GN and a division t′ = t; the 1-division of t. Since G has no
non-context-free rules, there are no context-dependent nodes in t′ so k = 0 which completes
the only if part of the proof.

If. Construction. Consider any k ≥ 0. Let G = (V, T, P, S) be an SCG which satisfies
restrictions from Theorem 6.3.1 such that L(G) = L. Recall N = V − T . Let Pcs ⊆ P
denote the set of all non-context-free rules of G. Set

N ′ = {Ax|y|z | A ∈ N, x, y, z ∈ (Pcs ∪ {ε})k}.

Construct a grammar G′ = (V ′, T, P ′, Sε|ε|ε), where V ′ = N ′ ∪T . Set P ′ = ∅. Construct P ′

by performing (I) through (V) given next.

64

(I) For all A ∈ N and x ∈ (Pcs ∪ {ε})k, add Aε|ε|ε → Ax|ε|ε to P ′;

(II) For all (A)→ (B) ∈ P , A,B ∈ N , and x, y, z ∈ (Pcs ∪ {ε})k, add
Ax|y|z → Bx|y|z to P ′;

(III) for all (A) → (BC) ∈ P , where A,B,C ∈ N , x, y, z ∈ (Pcs ∪ {ε})k, x = x1x2x3,
y = shuffle(y1, y2), and z = shuffle(z1, z2), add

Ax|y|z → Bx1|y1x3|z1Cx2|y2|z2x3 to P ′;

(IV) for all p : (A,B) → (C,D) ∈ P , where A,B,C,D ∈ N , and x, y, z, x′, y′, z′ ∈ (Pcs ∪
{ε})k, add Ax|py|z → Cx|y|z and Bx′|y′|pz′ → Dx′|y′|z′ to P ′;

(V) for all (A)→ (a) ∈ P , A ∈ N , a ∈ (T ∪ {ε}), add Aε|ε|ε → a to P ′.

For every rule X → Y ∈ P ′, introduce a unique label p such that p : X → Y .

Basic idea. From the derivation-tree-based restrictions we know that all the context de-
pendencies are in fact divided into at maximum k-tuples each of which is located inside a
specific subgraph of the derivation tree without any relation to the outer nodes. Then, G
can store them in nonterminals. Since any connected subgraph of tree is also a tree, it has a
root node which is obviously context-independent. During the derivation while introducing
nonterminal corresponding to the root node of a new subgraph, G′ nondeterministically
decides about all the context dependencies inside the subgraph with a rule (I), distributes
them by rules (II) and (III), satisfies them by rules (IV), and finally generates a terminal
string by rules (V).

Since P ′ contains no non-context-free rule, G′ is context-free. First, we establish several pre-
liminary claims. Claims 8 through 12 given next prove that the derivations in G′ coincides
with the subgraph-division-based structure of G.

Claim 8. Let Sε|ε|ε ⇒∗G′ w, where w ∈ T ∗. Then, Sε|ε|ε ⇒∗G′ v [%] ⇒∗G′ w [ϕ], where %
contains no rules (V) and ϕ contains only rules (V).

Proof. Rules (V) generate only terminal symbols. Since G′ is context-free grammar, appli-
cations of these rules may be postponed to the very end of every derivation, without any
loss of generality, to satisfy the claim. �

Claim 9. Let Sε|ε|ε ⇒∗G′ w ⇒∗G′ w′, where w = uAx|y|zv, for some u, v ∈ V ′∗, Ax|y|z ∈ N ′,
x, y, z ∈ (Pcs ∪ {ε})k, and w′ ∈ T ∗. Then, Ax|y|z ⇒∗G′ a1a2 . . . an, for some n ≥ 0, where
ai = Aiε|ε|ε, for some Ai ∈ N , 1 ≤ i ≤ n.

Proof. Suppose that G′ satisfies Claim 8. Then,

Sε|ε|ε ⇒∗G′ w ⇒∗G′ w′′ ⇒∗G′ w′ [ϕ],

where w,w′′ ∈ N ′∗ and ϕ contains only rules (V). Since these rules are of the form Aε|ε|ε → a,
w′′ = A1ε|ε|εA2ε|ε|ε . . . Akε|ε|ε, Ai ∈ N , 1 ≤ i ≤ k, for some k ≥ 0, and the claim holds. �

Claim 10. Let
Sε|ε|ε ⇒∗G′ u1 ⇒G′ v1 [r1]

⇒∗G′ u2 ⇒G′ v2 [r2]
...

⇒∗G′ un ⇒G′ vn [rn]⇒∗G′ w,

65

where w ∈ T ∗, ui, vi ∈ V ′∗, 1 ≤ i ≤ n, and r1, r2, . . . , rn are all the rules (I) applied in the
derivation, for some n ≥ 0. Then, there exists a derivation

Sε|ε|ε ⇒∗G′ u′1 ⇒G′ v
′
1 [r1]

⇒∗G′ u′2 ⇒G′ v
′
2 [r2]

...
⇒∗G′ u′n ⇒G′ v

′
n [rn]⇒∗G′ w,

where ui = a1a2 . . . aki, for some ki ≥ 0, and aj = Ajε|ε|ε, for some Aj ∈ N , 1 ≤ j ≤ ki,
1 ≤ i ≤ n.

Proof. We establish the proof by induction on n ≥ 0.

Basis. Let n = 0. Then, the basis holds trivially.

Induction Hypothesis. Suppose that there exists m ≥ 0 such that Claim 10 holds for all n
with 0 ≤ n ≤ m.

Induction Step. Consider a derivation

Sε|ε|ε ⇒∗G′ u1 ⇒G′ v1 [r1]

⇒∗G′ u2 ⇒G′ v2 [r2]
...

⇒∗G′ um ⇒G′ vm [rm]
⇒∗G′ um+1 ⇒G′ vm+1 [rm+1]⇒∗G′ w,

where w ∈ T ∗, ui, vi ∈ V ′∗, 1 ≤ i ≤ m + 1, and r1, r2, . . . , rm, rm+1 are all the rules (I)
applied in the derivation. Since rm+1 : Aε|ε|ε → Ax|ε|ε, for some A ∈ N and x ∈ (Pcs∪{ε})k,
um+1 = αAε|ε|εβ, for some α, β ∈ V ′∗. Without any loss of generality, suppose the derivation
satisfies Claim 8. Then, α, β ∈ N ′∗ and by Claim 9,

α⇒∗G′ a1a2 . . . ak
β ⇒∗G′ b1b2 . . . bl

for some k, l ≥ 0, where ai = Aiε|ε|ε, for some Ai ∈ N , 1 ≤ i ≤ k, and bj = Bjε|ε|ε, for some
Bj ∈ N , 1 ≤ j ≤ l. Therefore,

Sε|ε|ε ⇒∗G′ αAε|ε|εβ ⇒∗G′ a1a2 . . . akAε|ε|εb1b2 . . . bl

which satisfies the claim and, thus, completes the proof. �

Claim 11. Let
Sε|ε|ε ⇒∗G′ uAε|ε|εv ⇒G′ uAx|ε|εv [r]⇒∗G′ w,

where w ∈ T ∗, u, v ∈ V ′∗, and r : Aε|ε|ε → Ax|ε|ε is a rule (I), for some A ∈ N , x ∈
(Pcs ∪ {ε})k. Then,

Sε|ε|ε ⇒∗G′ uAε|ε|εv ⇒G′ uAx|ε|εv [r]⇒∗G′ ua1a2 . . . akv [%]⇒∗G′ w,

where ai = Aiε|ε|ε, for some Ai ∈ N , 1 ≤ i ≤ k.

Proof. By Claim 9, Ax|ε|ε ⇒∗G′ a1a2 . . . ak, where ai = Aiε|ε|ε, for some Ai ∈ N , 1 ≤ i ≤ k,
and since G′ is context-free grammar, without any loss of generality, we can always reorder
the rules in the derivation to satisfy Claim 11. �

66

Claim 12. Every terminal derivation of G′ is performed as

Sε|ε|ε ⇒∗G′ A1,1ε|ε|εA1,2ε|ε|ε · · ·A1,i1ε|ε|ε · · ·A1,n1ε|ε|ε
⇒G′ A1,1ε|ε|εA1,2ε|ε|ε · · ·A1,i1x1|ε|ε · · ·A1,n1ε|ε|ε [r1]

⇒∗G′ A2,1ε|ε|εA2,2ε|ε|ε · · ·A2,i2ε|ε|ε · · ·A2,n2ε|ε|ε
⇒G′ A2,1ε|ε|εA2,2ε|ε|ε · · ·A2,i2x2|ε|ε · · ·A2,n2ε|ε|ε [r2]

...

⇒∗G′ Am,1ε|ε|εAm,2ε|ε|ε · · ·Am,imε|ε|ε · · ·Am,nmε|ε|ε
⇒G′ Am,1ε|ε|εAm,2ε|ε|ε · · ·Am,imxm|ε|ε · · ·Am,nmε|ε|ε [rm]

⇒∗G′ Am+1,1ε|ε|εAm+1,2ε|ε|ε · · ·Am+1,nm+1ε|ε|ε
⇒∗G′ w [%],

where w ∈ T ∗, Ai,ji ∈ N , xi ∈ (Pcs ∪ {ε})k, 1 ≤ i ≤ m, 1 ≤ ji ≤ ni, r1, r2, . . . , rm are all
the rules (I) applied in the derivation, for some m,ni ≥ 0, % contains only the rules (V),
there are no other rules (V) applied, and every derivation

Aj,1ε|ε|εAj,2ε|ε|ε · · ·Aj,ijxj |ε|ε · · ·Aj,nj ε|ε|ε
⇒∗G′ Aj+1,1ε|ε|εAj+1,2ε|ε|ε · · · · · ·Aj+1,nj+1ε|ε|ε [ϕ]

where ϕ contains no rule (I), can be expressed as uAj,ijxj |ε|ε
v ⇒∗G′ uxv [ϕ], for some

u, v, x ∈ V ′∗, 0 ≤ j ≤ m.

Proof. The claim follows from Claims 8 through 11. �

The following Claims 13 through 17 help to prove that G′ simulates non-context-free
rules of G correctly.

Claim 13. Consider a derivation satisfying Claim 12,

Sε|ε|ε ⇒∗G′ uAε|ε|εv

⇒G′ uAp1p2···pn|ε|εv [r]

⇒∗G′ uB1ε|ε|εB2ε|ε|ε · · ·Bmε|ε|εv [%]

⇒∗G′ w

where w ∈ T ∗, u, v ∈ V ′∗, A,Bi ∈ N , pj ∈ Pcs, 0 ≤ i ≤ m, 0 ≤ j ≤ n, for some m ≥ 0,
n ≥ 1, r ∈ P ′ is a rule (I), and % ∈ P ′∗ contains no rule (I). Then, for every pj,

uAp1p2···pj ···pn|ε|εv ⇒∗G′ uu1Bx|y1pjy2|zu2v [ϕ]

where % = ϕσ, for some σ ∈ P ′∗, u1, u2 ∈ V ′∗, B ∈ N , and x, y1, y2, z ∈ (Pcs ∪ {ε})k.

Proof. Since n ≥ 1, p1p2 · · · pn 6= ε in Ap1p2···pn|ε|ε.

Ap1p2···pn|ε|ε ⇒∗G′ B1ε|ε|εB2ε|ε|ε · · ·Bmε|ε|ε [%],

so G′ must once get rid of p1p2 · · · pn. Observe the rules of G′. This obviously cannot
be done by any rule (I), (II), and (V). The rules (IV) are of the form Ax|y|z → Bx′|y′|z′ ,

67

where |xyz| = |x′y′z′|+ 1, however, x = x′. Thus, their applicability depends on the rules
(III) since they are of the form Ax1x2x3,y,z → Bx1,y′x3,z′Cx2,y′′,z′′x3 , where |x1x2x3| ≥ |x1x2|,
|y′x3| ≥ |y′|, and |z′′x3| ≥ |z′′|, for some Ax1x2x3,y,z, Bx1,y′x3,z′ , Cx′′,y′′,z′′x3 ∈ N ′∗. So, for
every pj in Ap1p2···pn|ε|ε, 0 ≤ j ≤ n, there is p′j ∈ P ′ such that

p′j : Xx1x2x3|y|z → Yx1|y′x3|z′Zx2|y′′|z′′x3 ,

where % = %1p
′
j%2, x3 = xapjxb, for some Xx1x2x3|y|z, Yx1|y′x3|z′ , Zx2|y′′|z′′x3 ∈ N ′. Then,

uAp1p2···pj ···pn|ε|εv ⇒∗G′ uu′Xx1x2x3|y|zu
′′v [%1]

⇒G′ uu
′Yx1|y′xapjxb|z′Zx2|y′′|z′′x3u

′′v [p′j]

⇒∗G′ B1ε|ε|εB2ε|ε|ε · · ·Bmε|ε|ε [%2]

which completes the proof. �

Claim 14. Let Sε|ε|ε ⇒∗G′ uAx|y1py2|zv ⇒∗G′ w, where w ∈ T ∗, u, v ∈ V ′∗, Ax|y1py2|z ∈ N ′,
and p ∈ Pcs. Then,

Sε|ε|ε ⇒∗G′ uAx|y1py2|zv′Bx′|y|z1pz2w′ ⇒∗G′ w,
where Bx′|y|z1pz2 ∈ N ′, v′, w′ ∈ V ′∗.

Proof. Consider a derivation Sε|ε|ε ⇒∗G′ uAx|y1py2|zv ⇒∗G′ w, where u, v ∈ V ′∗, Ax|y1py2|z ∈
N ′, p ∈ Pcs, and w ∈ T ∗. Then, by the construction of P ′,

Sε|ε|ε ⇒∗G′ u′Xx1x2x3px4|y′|z′v
′

⇒G′ u
′Yx1|y′1x3px4|z′1Zx2|y′2|z′2x3px4v

′ [r]

⇒∗G′ uAx|y1py2|zv
⇒∗G′ w

for some u′, v′ ∈ V ′∗, Xx1x2x3px4|y′|z′ , Yx1|y′1x3px4|z′1 , Zx2|y′2|z′2x3px4 ∈ N
′, and r ∈ P ′ is a rule

(III). Moreover,
u′Yx1|y′1x3px4|z′1 ⇒

∗
G′ uAx|y1py2|zv1 and

Zx2|y′2|z′2x3px4v
′ ⇒∗G′ v2,

where uAx|y1py2|zv1v2 = uAx|y1py2|zv. Then, since G′ is context-free,

Sε|ε|ε ⇒∗G′ u′Xx1x2x3px4|y′|z′v
′

⇒G′ u
′Yx1|y′1x3px4|z′1Zx2|y′2|z′2x3px4v

′ [r]

⇒∗G′ uAx|y1py2|zv1Zx2|y′2|z′2x3px4v
′

⇒∗G′ uAx|y1py2|zv
⇒∗G′ w

which completes the proof, so the claim holds. �

Claim 15. Consider a derivation satisfying claims 12 through 14,

Sε|ε|ε ⇒∗G′ uAε|ε|εv

⇒G′ uAp1p2···pn|ε|εv [r]

⇒∗G′ uB1ε|ε|εB2ε|ε|ε · · ·Bmε|ε|εv [%]

⇒∗G′ w

68

where w ∈ T ∗, u, v ∈ V ′∗, A,Bi ∈ N , pj ∈ Pcs, 0 ≤ i ≤ m, 0 ≤ j ≤ n, for some m ≥ 0,
n ≥ 1, r ∈ P ′ is a rule (I), and % ∈ P ′∗ contains no rule (I). Then, for every pj in
Ap1p2···pn|ε|ε, 1 ≤ j ≤ n,

Sε|ε|ε ⇒∗G′ uAε|ε|εv

⇒G′ uAp1p2···pj ···pn|ε|εv [r]

⇒∗G′ uw1v [%1]
⇒G′ uw2v [r1]
⇒∗G′ uw3v [%2]
⇒G′ uw4v [r2]
⇒∗G′ uB1ε|ε|εB2ε|ε|ε · · ·Bmε|ε|εv [%3]

⇒∗G′ w

where w1, w2, w3, w4 ∈ V ′∗, % = %1r1%2r2%3, and r1r2 = perm(p′1p
′
2), for some rules p′1, p

′
2 ∈

P ′ introduced in (IV) of the construction of the form

p′1 : Xx1|pjy1|z1 → Xx1|y1|z1
p′2 : Yx2|y2|pjz2 → Yx2|y2|z2

Xx1|pjy1|z1 , Xx1|y1|z1 , Yx2|y2|pjz2 , Yx2|y2|z2 ∈ N ′.

Proof. By claims 13 and 14,

Sε|ε|ε ⇒∗G′ uAε|ε|εv

⇒G′ uAp1p2···pj ···pn|ε|εv [r]

⇒∗G′ uXx1|y1pjy′1|z1w
′Yx2|y2|z2pjz′2v [%1]

⇒∗G′ uB1ε|ε|εB2ε|ε|ε · · ·Bmε|ε|εv [%2]

⇒∗G′ w

for some Xx1|y1pjy′1|z1 , Yx2|y2|z2pjz′2 ∈ N
′, w′ ∈ V ′∗, where % = %1%2. Observe the rules of G′.

Only the rules (IV) are of the form Ax|y|z → Bx′|y′|z′ , where y > y′ or z > z′; namely, they
are of the form Ax|p1y|p2z → Bx|y|z, p1, p2 ∈ Pcs ∪ {ε}, |p1p2| = 1. In %2, G′ must once get
rid of pj in Xx1|y1pjy′1|z1 and Yx2|y2|z2pjz′2 , so %2 = %ar1%br2%c, where r1r2 = perm(p′1p

′
2) and

p′1, p
′
2 ∈ P ′ are of the form

p′1 : X ′x1|pjy1|z1 → X ′x1|y1|z1
p′2 : Y ′x2|y2|pjz2 → Y ′x2|y2|z2

for some X ′x1|pjy1|z1 , X
′
x1|y1|z1 , Y

′
x2|y2|pjz2 , Y

′
x2|y2|z2 ∈ N

′, and the claim holds. �

The following two claims prove that simulation of two different non-context-free rules of
G by G′ proceeds properly; informally, two context-free rules simulating one non-context-
free never cross with the ones simulating the other one.

Claim 16. Consider a derivation satisfying claims 12 through 15,

Sε|ε|ε ⇒∗G′ uAε|ε|εv

⇒G′ uAp1p2···pn|ε|εv [q]

⇒G′ uXx|y1ry2sy3|zv [%]

⇒∗G′ uB1ε|ε|εB2ε|ε|ε · · ·Bmε|ε|εv [ϕ]

⇒∗G′ w

69

where w ∈ T ∗, u, v ∈ V ′∗, A,X,Bi ∈ N , r, s, pj ∈ Pcs, x, y1, y2, y3, z ∈ (Pcs ∪ {ε})k,
0 ≤ i ≤ m, 0 ≤ j ≤ n, for some m ≥ 0, n ≥ 2, q ∈ P ′ is a rule (I), and %ϕ ∈ P ′∗ contains
no rule (I). Then, there exists a derivation

Sε|ε|ε ⇒∗G′ uAε|ε|εv

⇒G′ uAp1p2···pn|ε|εv [q]

⇒G′ uXx|y1ry2sy3|zv [%]

⇒∗G′ uB1ε|ε|εB2ε|ε|ε · · ·Bmε|ε|εv [ϕ′]

⇒∗G′ w

where ϕ′ = ϕ1r
′ϕ2s

′ϕ3 and

r′ : Xrxr|ryr|zr → Xrxr|yr|zr
s′ : Xsxs|sys|zs → Xsxs|ys|zs

for some Xrxr|ryr|zr , Xrxr|yr|zr , Xsxs|sys|zs, Xsxs|ys|zs ∈ N ′.

Proof. Let there exist a derivation

Sε|ε|ε ⇒∗G′ uAε|ε|εv

⇒G′ uAp1p2···pn|ε|εv [q]

⇒G′ uXx|y1ry2sy3|zv [%]

⇒∗G′ uB1ε|ε|εB2ε|ε|ε · · ·Bmε|ε|εv [ϕ]

⇒∗G′ w

where w ∈ T ∗, u, v ∈ V ′∗, A,X,Bi ∈ N , r, s, pj ∈ Pcs, x, y1, y2, y3, z ∈ (Pcs ∪ {ε})k,
0 ≤ i ≤ m, 0 ≤ j ≤ n, for some m ≥ 0, n ≥ 1, q ∈ P ′ is a rule (I), and %ϕ ∈ P ′∗ contains
no rule (I). By Claim 15, ϕ = ϕ1p1ϕ2p2ϕ3 and p1p2 = perm(r′s′), where

r′ : Xrxr|ryr|zr → Xrxr|yr|zr
s′ : Xsxs|sys|zs → Xsxs|ys|zs

for some Xrxr|ryr|zr , Xrxr|yr|zr , Xsxs|sys|zs , Xsxs|ys|zs ∈ N ′. r′ and s′ are the rules (IV). The
rules (IV) of the form Ax|y|z → Bx′|y′|z′ , where |y| = |y′| + 1, process y from left to right
direction, so they preserve the order of c1c2 · · · cn = y. Also the rules (I), (II), and (V)
cannot reorder symbols of y.

Finally, examine the rules (III) of the form

Ax|y|z → Bx1|y′x3|z′Bx2|y′′|z′′x3 ,

where y = shuffle(y′y′′). Suppose y = y1ry2sy3. Then, if both r and s are put into y′ or y′′,
since the shuffle operation preserves the order of symbols, the claim is satisfied. Otherwise,
if r is put into y′ and s into y′′ or r is put into y′′ and s into y′ and ϕ = ϕ1sϕ2rϕ3, since
G′ is context-free, there is a derivation ϕ′ = ϕ′1rϕ

′
2sϕ

′
3 which satisfies the claim. �

Claim 17. Consider a derivation satisfying claims 12 through 15,

Sε|ε|ε ⇒∗G′ uAε|ε|εv

⇒G′ uAp1p2···pn|ε|εv [q]

⇒G′ uXx|y|z1rz2sz3v [%]

⇒∗G′ uB1ε|ε|εB2ε|ε|ε · · ·Bmε|ε|εv [ϕ]

⇒∗G′ w

70

where w ∈ T ∗, u, v ∈ V ′∗, A,X,Bi ∈ N , r, s, pj ∈ Pcs, x, z1, z2, z3, z ∈ (Pcs ∪ {ε})k,
0 ≤ i ≤ m, 0 ≤ j ≤ n, for some m ≥ 0, n ≥ 1, q ∈ P ′ is a rule (I), and %ϕ ∈ P ′∗ contains
no rule (I). Then, there exists a derivation

Sε|ε|ε ⇒∗G′ uAε|ε|εv

⇒G′ uAp1p2···pn|ε|εv [q]

⇒G′ uXx|y|z1rz2sz3v [%]

⇒∗G′ uB1ε|ε|εB2ε|ε|ε · · ·Bmε|ε|εv [ϕ′]

⇒∗G′ w

where ϕ′ = ϕ1r
′ϕ2s

′ϕ3 and

r′ : Xrxr|yr|rzr → Xrxr|yr|zr
s′ : Xsxs|ys|szs → Xsxs|ys|zs

for some Xrxr|yr|zr , Xrxr|yr|rzr , Xsxs|ys|zs, Xsxs|ys|szs ∈ N ′.

Proof. Prove by analogy with Claim 16. �

Claim 18. Every x ∈ F (G′), where x⇒∗G′ w and w ∈ T ∗, can be derived in G′ as follows.

Sε|ε|ε = x0 ⇒d1
G′ x1 ⇒d2

G′ x2 ⇒d3
G′ · · · ⇒

dh−1

G′ xh−1 ⇒dh
G′ xh = x,

for some h ≥ 0, where di ∈ {1, 2}, 1 ≤ i ≤ h, so that

(1) if di = 1, then xi−1 = uAx|y|zv, xi = uzv, xi−1 ⇒G′ xi [Ax|y|z → z], where u, v ∈ V ′∗,
z ∈ {Bx|y|z, CxC |yC |zCDxD|yD|zD , a}, for some a ∈ (T ∪ {ε}), Ax|y|z, Bx|y|z, CxC |yC |zC ,
DxD|yD|zD ∈ N ′;

(2) if di = 2, then xi−1 = uAx|py|zvBx′|y′|pz′w, xi = uCx|y|zvDx′|y′|z′w, and

uAx|py|zvBx′|y′|pz′w ⇒G′ uCx|y|zvBx′|y′|pz′w [Ax|py|z → Cx|y|z]

⇒G′ uCx|y|zvDx′|y′|z′w [Bx′|y′|pz′ → Dx′|y′|z′]

for some u, v, w ∈ V ′∗, Ax|py|z, Bx′|y′|pz′ , Cx|y|z, Dx′|y′|z′ ∈ N ′, and

p : (A,B)→ (C,D) ∈ P.

Proof. Follows from claims 13 through 17. �

Define the finite substitution γ from V ∗ to V ′∗as

γ(A) = {Ax|y|z | x, y, z ∈ (P ∪ {ε})k},

for A ∈ N , and γ(a) = a otherwise. Let γ−1 be the inverse of γ. Next, we proof L(G) =
L(G′) by establishing Claims 19 and 20.

Claim 19. If S ⇒m
G w ⇒∗G w̄, where m ≥ 0, w ∈ V ∗, and w̄ ∈ T ∗, then Sε|ε|ε ⇒∗G′ w′,

where w′ ∈ V ′∗ and w′ ∈ γ(w).

71

Proof. We prove the claim by induction on m ≥ 0.

Basis. Let m = 0. That is, S ⇒0
G S ⇒∗G w̄, for some w̄ ∈ T ∗. Clearly, Sε|ε|ε ⇒0

G′ Sε|ε|ε,
where Sε|ε|ε ∈ γ(S), so the basis holds.

Induction Hypothesis. Suppose that there exists n ≥ 0 such that Claim 19 holds for all m
with 0 ≤ m ≤ n.

Induction Step. Let S ⇒n+1
G w ⇒∗G w̄, for some w ∈ V ∗ and w̄ ∈ T ∗. Then, S ⇒n

G v ⇒G

w ⇒∗G w̄, where v ∈ V ∗, and there exists p ∈ P such that v ⇒G w [p]. By the induction
hypothesis, Sε|ε|ε ⇒∗G′ v′, where v′ ∈ γ(v). Next, we consider the following three forms of p
according to the binary form of G.

(i) Let p be of the form p : (A) → (X). Then, v = u1Au2, u1, u2 ∈ V ∗, and u1Au2 ⇒G

u1Xu2 [p], where u1Xu2 = w. Since Sε|ε|ε ⇒∗G′ v′, where v′ ∈ γ(u1){Ax|y|z}γ(u2),
v′ ∈ γ(v), for some x, y, z ∈ (Pcs∪{ε})k. Without any loss of generality, suppose that
x, y, z are correct; we can obviously make this assumption since the rules of G′ cover
all possibilities. Consider the following two cases depending on whether X ∈ N .

(a) Let X ∈ N .

(1) Suppose A corresponds to the root node of a subgraph ti in some h-division
t′ of tree t = G4(S ⇒∗G w̄), where 1 ≤ h ≤ k, 1 ≤ i ≤ h, which satisfies
Theorem 6.3.1. Then, x = y = z = ε and, by the construction of G′,
there exists a rule Aε|ε|ε ⇒G′ Ax̄|ε|ε ∈ P ′ introduced in (I), where x̄ =
p1p2 · · · pl ∈ P ∗, 0 ≤ l ≤ k. Without any loss of generality, suppose that
p1p2 · · · pl corresponds to all non-context-free rules of ti and they are in a
proper order; since rules introduced in (I) cover all possibilities, we can make
this assumption. By this rule v′ ⇒G′ v

′′ and since γ−1(Aε|ε|ε) = γ−1(Ax̄|ε|ε),
v′′ ∈ γ(v).

(2) Let v̄ = v′′ if (1) is performed and v̄ = v′ otherwise. Consequently, v̄ ∈
γ(u1){Ax′|y′|z′}γ(u2), for some Ax′|y′|z′ ∈ N ′, and, by the construction of G′,
there exists a nonterminal Xx′|y′|z′ ∈ N ′ and a rule Ax′|y′|z′ → Xx′|y′|z′ ∈ P ′
by which v̄ ⇒G′ w

′, where w′ ∈ γ(u1){Xx′|y′|z′}γ(u2), and since Xx′|y′|z′ ∈
γ(X), w′ ∈ γ(u1Xu2) and the claim holds.

(b) Let X /∈ N ; that is X ∈ T . Then, x = y = z = ε and, by the construction
of G′, there exists a rule Aε|ε|ε → X ∈ P ′ by which v′ ⇒G′ w

′, where w′ ∈
γ(u1){X}γ(u2). Since X ∈ T , γ(X) = X and γ(u1){X}γ(u2) = γ(u1Xu2)
which satisfies the claim.

Note that even if A corresponds to the root node of a subgraph ti in some
h-division t′ of tree t = G4(S ⇒∗G w̄), where 1 ≤ h ≤ k, 1 ≤ i ≤ h, according
to Theorem 6.3.1, t′i is obviously without any context-dependent nodes since it
contains only one terminal node.

(ii) Let p be of the form p : (A)→ (BC). Then, v = u1Au2, u1, u2 ∈ V ∗, and u1Au2 ⇒G

u1BCu2 [p], where u1BCu2 = w. Since Sε|ε|ε ⇒∗G′ v′, where v′ ∈ γ(v), v′ ∈
γ(u1){Ax|y|z}γ(u2), for some x, y, z ∈ (Pcs ∪ {ε})k. Without any loss of general-
ity, suppose that x, y, z are correct; we can obviously make this assumption since the
rules of G′ cover all possibilities.

72

(1) Suppose A corresponds to the root node of a subgraph ti in some h-division
t′ of tree t = G4(S ⇒∗G w̄), where 1 ≤ h ≤ k, 1 ≤ i ≤ h, which satisfies
Theorem 6.3.1. Then, x = y = z = ε and, by the construction of G′, there
exists a rule Aε|ε|ε ⇒G′ Ax̄|ε|ε ∈ P ′ introduced in (I), where x̄ = p1p2 · · · pl ∈ P ∗,
0 ≤ l ≤ k. Without any loss of generality, suppose that p1p2 · · · pl corresponds
to all non-context-free rules of ti and they are in a proper order; since rules
introduced in (I) cover all possibilities, we can make this assumption. By this
rule v′ ⇒G′ v

′′ and since γ−1(Aε|ε|ε) = γ−1(Ax̄|ε|ε), v
′′ ∈ γ(v).

(2) Let v̄ = v′′ if (1) is performed and v̄ = v′ otherwise. Then, v̄ ∈ γ(u1){Ax′|y′|z′}γ(u2),
for some Ax′|y′|z′ ∈ N ′, and, by the construction of G′, there exist two nonter-
minals Bx′′|y′′|z′′ , Cx′′′|y′′′|z′′′ ∈ N ′ and a rule Ax′|y′|z′ → Bx′′|y′′|z′′Cx′′′|y′′′|z′′′ ∈ P ′
by which v̄ ⇒G′ w

′, where w′ ∈ γ(u1){Bx′′|y′′|z′′}{Cx′′′|y′′′|z′′′}γ(u2), and since
Bx′′|y′′|z′′ ∈ γ(B) and Cx′′′|y′′′|z′′′ ∈ γ(C), w′ ∈ γ(u1BCu2) and the claim holds.

(iii) Let p be of the form p : (A,B)→ (C,D). Then, v = u1Au2Bu3, u1, u2, u3 ∈ V ∗, and
u1Au2Bu3 ⇒G u1Cu2Du3 [p], where u1Cu2Du3 = w. Since Sε|ε|ε ⇒∗G′ v′, where v′ ∈
γ(v), v′ ∈ γ(u1){AxA|yA|zA}γ(u2){BxB |yB |zB}γ(u3), for some xA, yA, zA, xB, yB, zB ∈
(Pcs∪{ε})k. Without any loss of generality, suppose that xA, yA, zA, xB, yB, zB are cor-
rect; we can obviously make this assumption since the rules of G′ cover all possibilities.
By the construction of G′, there exist two nonterminals CxC |yC |zC , DxD|yD|zD ∈ N ′
and two rules

AxA|yA|zA → CxC |yC |zC ,

BxB |yB |zB → DxD|yD|zD ∈ P ′

by which v′ ⇒2
G′ w

′, where w′ ∈ γ(u1){CxC |yC |zC}γ(u2){DxD|yD|zD}γ(u3), and since
CxC |yC |zC ∈ γ(C) and DxD|yD|zD ∈ γ(D), w′ ∈ γ(u1Cu2Du3) and the claim holds.

Note that A and B cannot correspond to the root node of any subgraph ti in any
h-division t′ of tree t = G4(S ⇒∗G w̄), where 1 ≤ h ≤ k, 1 ≤ i ≤ h, according to
Theorem 6.3.1 since A and B are context-dependent.

We covered all possible forms of p and Claim 19 holds. �

Claim 20. Let Sε|ε|ε ⇒d1
G′ x1 ⇒d2

G′ · · · ⇒
dm−1

G′ xm−1 ⇒dm
G′ xm be a derivation that satisfies

Claim 18, for some m ≥ 0. Then S ⇒∗G w, where xm ∈ γ(w).

Without any loss of generality, suppose G′ satisfies Claim 8 through 18.

Proof. We prove the claim by induction on m ≥ 0.

Basis. Let m = 0. That is, Sε|ε|ε ⇒0
G′ Sε|ε|ε and, clearly, S ⇒0

G S, where Sε|ε|ε ∈ γ(S), so
the basis holds.

Induction Hypothesis. Suppose that there exists n ≥ 0 such that Claim 19 holds for all m
with 0 ≤ m ≤ n.

Induction Step. Let

Sε|ε|ε ⇒d1
G′ x1 ⇒d2

G′ · · · ⇒
dn−1

G′ xn−1 ⇒dn
G′ xn ⇒

dn+1

G′ xn+1,

for some xi ∈ V ∗ and di ∈ {1, 2}, 1 ≤ i ≤ n + 1. By the induction hypothesis, S ⇒∗G
v, where xn ∈ γ(v). Let us divide the proof into two cases depending on dn+1 ∈ {1, 2}.

73

(i) Let dn+1 = 1. Then, xn ⇒dn+1

G′ xn+1 by some rule p′ : Ax|y|z → X ∈ P ′, xn =
u1Ax|y|zu2, xn+1 = u1Xu2, for some Ax|y|z ∈ N ′ and X,u1, u2 ∈ V ∗, and v =
γ−1(u1Ax|y|zu2) = γ−1(u1)Aγ−1(u2). Next, we consider the following four forms
of p′ according to the construction of G′.

(a) Let p′ be of the form p′ : Aε|ε|ε → Ax̄|ε|ε, for some x̄ ∈ (Pcs ∪ {ε})k; obviously,
x = y = z = ε and X = Ax̄|ε|ε. However, since γ−1(Aε|ε|ε) = γ−1(Ax̄|ε|ε) and
xn ∈ γ(v), xn+1 ∈ γ(v) and the claim holds trivially.

(b) Let p′ be of the form p′ : Ax|y|z → Bx|y|z, for some Bx|y|z ∈ N ′; X = Bx|y|z. By
the construction of G′, p′ was introduced according to some p : (A) → (B) ∈ P
by which

γ−1(u1)Aγ−1(u2)⇒G γ
−1(u1)Bγ−1(u2).

Since Bx|y|z ∈ γ(B) and

γ(γ−1(u1)Bγ−1(u2)) = {u1}γ(B){u2},

u1Bx|y|zu2 ∈ γ(γ−1(u1)Bγ−1(u2)) and the claim holds.

(c) Let p′ be of the form p′ : Ax|y|z → Bx′|y′|z′Cx′′|y′′|z′′ , for some Bx′|y′|z′ , Cx′′|y′′|z′′ ∈
N ′; X = Bx′|y′|z′Cx′′|y′′|z′′ . By the construction ofG′, p′ was introduced according
to some p : (A)→ (BC) ∈ P by which

γ−1(u1)Aγ−1(u2)⇒G γ
−1(u1)BCγ−1(u2).

Since Bx′|y′|z′Cx′′|y′′|z′′ ∈ γ(BC) and

γ(γ−1(u1)BCγ−1(u2)) = {u1}γ(BC){u2},

u1Bx′|y′|z′Cx′′|y′′|z′′u2 ∈ γ(γ−1(u1)BCγ−1(u2)) and the claim holds.

Note that the correctness of x, y, z, x′, y′, z′, x′′, y′′, z′′ in

p′ : Ax|y|z → Bx′|y′|z′Cx′′|y′′|z′′

follows from Claim 8 through 18.

(d) Let p′ be of the form p′ : Aε|ε|ε → a, for some a ∈ T ; obviously, x = y = z = ε
and X = a. By the construction of G′, p′ was introduced according to some
p : (A) → (a) ∈ P by which γ−1(u1)Aγ−1(u2) ⇒G γ−1(u1)aγ−1(u2). Since
a = γ(a) and γ(γ−1(u1)aγ−1(u2)) = {u1au2}, u1au2 ∈ γ(γ−1(u1)aγ−1(u2)) and
the claim holds.

(ii) Let dn+1 = 2. Then, xn ⇒dn+1

G′ xn+1 by two rules

p′1 : AxA|yA|zA → CxC |yC |zC ,

p′2 : BxB |yB |zB → DxD|yD|zD ∈ P ′,

xn = u1AxA|yA|zAu2BxB |yB |zBu3, and xn+1 = u1CxC |yC |zCu2DxD|yD|zDu3, for some
AxA|yA|zA , BxB |yB |zB , CxC |yC |zC , DxD|yD|zD ∈ N ′ and u1, u2, u3 ∈ V ∗. Then, γ−1(xn) =
γ−1(u1)Aγ−1(u2)Bγ−1(u3) = v and, by the construction of G′, p′1 and p′2 were intro-
duced based on some rule p : (A,B)→ (C,D) ∈ P by which

γ−1(u1)Aγ−1(u2)Bγ−1(u3)⇒G γ
−1(u1)Cγ−1(u2)Dγ−1(u3).

74

Since CxC |yC |zC ∈ γ(C), DxD|yD|zD ∈ γ(D), and

γ(γ−1(u1)Cγ−1(u2)Dγ−1(u3)) = {u1}γ(C){u2}γ(D){u3},

u1CxC |yC |zCu2DxD|yD|zDu3 ∈ γ(γ−1(u1)Cγ−1(u2)Dγ−1(u3)) and the claim holds.

We covered all possible forms of dn+1 and Claim 20 holds. �

Finally, we establish L(G) = L(G′). Consider Claim 19 with w ∈ T ∗. Then, S ⇒∗G w
implies that Sε|ε|ε ⇒∗G′ w′, where γ(w′) = w, and since for w ∈ T ∗ it holds that γ(w) = w,
w′ = w. Thus, L(G) ⊆ L(G′). Consider Claim 20 with xm ∈ T ∗. Then, Sε|ε|ε ⇒∗G′ xm
implies that S ⇒∗G w, where γ(xm) = w, and since for xm ∈ T ∗, it holds that γ(xm) =
xm = w. Thus, L(G′) ⊆ L(G). Hence, L(G) = L(G′), which completes the if part of the
proof and Theorem 6.3.1 holds. �

Later in Chapter 7 we demonstrate how to utilize the established result in practice to
obtain a positive proof that some language is context-free.

6.4 Cooperating Distributed Grammar Systems

Alongside with parallel processing of information discussed in the previous section in sense
of scattered context grammars, lot of computational systems nowadays consist of numerous
processors distributed over a long distance. Cooperating distributed grammar systems (see
Section 2.2) introduced in [11] which this section focuses on may stand as an appropriate
model to represent this kind of computation.

In essence, a CDGS is an n-tuple of context-free grammars which alternate generating
the common sentence under the conditions given by derivation mode; one component starts
generation from the start symbol, then, the other continues with the sentence form gener-
ated by the first one, etc. Depending on the used derivation mode their power ranges from
context-free grammars up to matrix grammars or extended tabled zero-sided Lindenmayer
systems. Let us investigate the derivation process of a CDGS from the derivation-tree point
of view. The derivation tree is composed of several layers in the top-down way, where each
of them corresponds to the part of the derivation performed by one of the components.
A change of the component corresponds to a certain cut of the derivation tree. Next, we
prove that if we limit the possible number of these cuts in every derivation tree of a CDGS
it in fact generates a context-free languages. Most importantly, this gives us necessary but
also sufficient conditions for a language to be context-free.

For a brevity, for a CDGS G, component i, and a derivation mode t, we write ⇒t
i instead

of ⇒t
G(i) , in what follows, if there is no risk of confusion.

Theorem 6.4.1. A language L is context-free iff there is a constant k ≥ 0 and a coop-
erating distributed grammar system G = (V, T, S, P1, . . . , Pn) of degree n ≥ 1 such that
L = L(Gt), and for every w ∈ L(Gt), there exists a derivation d

d = S ⇒t
i1 · · · ⇒t

im w

in G of a length m ≥ 1, where 1 ≤ ij ≤ n, 1 ≤ j ≤ m, with G4(d) in which there exists k
or fewer component-change cuts.

75

Proof. Construction. Let k ≥ 0 be a constant. Let G = (V, T, S, P1, . . . , Pn) be a CDGS of
degree n ≥ 1 such that for every w ∈ L(Gt), there exists a derivation d

d = S ⇒t
i1 · · · ⇒t

im w

in G of a length m ≥ 1, where 1 ≤ ij ≤ n, 1 ≤ j ≤ m, with G4(d) in which there exists
k or fewer component-change cuts. Without any loss of generality, consider n = 3 (see
Theorem 2.2.2)—for n ∈ {1, 2}, P2 or P3 is empty. Define CFG G′ = (V ′, T, P ′, S′) as
follows. Initially, set

N ′ = {〈A, i, x〉 | A ∈ N, i ∈ {1, 2, 3}, x ∈ {1, 2, 3, ε}k} ∪ {S′}

and P ′ = ∅. Define the function D : N ′ × V → N ′ ∪ T , as D(〈A, i, x〉, a) = a, for a ∈ T ,
D(〈A, i, x〉, B) = 〈B, i, x〉, for B ∈ N . Define the morphism γ : N ′∪T → N ∪T as γ(a) = a,
for a ∈ T , γ(〈A, i, x〉) = A, for 〈A, i, x〉 ∈ N ′. Construct P ′ by performing (I) through (III)
given next.

(I) For all i ∈ {1, 2, 3}, and x ∈ {1, 2, 3, ε}k, where S ∈ dom(Pi), add

S′ → 〈S, i, x〉 to P ′;

(II) for all i ∈ {1, 2, 3}, A→ w in Pi, and x ∈ {1, 2, 3, ε}k, where w = a1a2 · · · az, for some
z ≥ 0, aj ∈ N ∪ T , and 0 ≤ j ≤ z, add

〈A, i, x〉 → D(〈A, i, x〉, a1)D(〈A, i, x〉, a2) · · · D(〈A, i, x〉, az) to P ′;

(III) for all i ∈ {1, 2, 3}, A /∈ dom(Pi), and x ∈ {1, 2, 3, ε}k, where x = ax′, for some
a ∈ {1, 2, 3}, add

〈A, i, x〉 → 〈A, a, x′〉 to P ′.

Basic Idea. Every nonterminal 〈A, i, x〉 ∈ N ′ encodes the corresponding nonterminal
A ∈ N , currently active component i, and a string of the following active components
in their precise order, x. G′ simulates the derivations in G as follows. By some initial rule
(I), a first active component i and an order of the following active components x are nonde-
terministically chosen. While i is an active component, the rules (II) are applied rewriting
all the possible nonterminals according to Pi; since G′ is context-free, without any loss of
generality we can reorder derivation steps in this way. When there is no applicable rule in
Pi, G′ simulates a change of a component by the rules (III).

Claim 21. For every derivation
S ⇒t

i1 · · · ⇒t
im w

in G of a length m ≥ 0, for 1 ≤ ij ≤ n, 1 ≤ j ≤ m, there exists a derivation S ⇒∗ w′ in
G′, where γ(w′) = w.

We prove Claim 21 by induction on m.

Proof. Basis. If m = 0, S = w. Then, by some rule (I), S′ ⇒ 〈S, i, x〉, where γ(〈S, i, x〉) =
S, and the claim holds.

Induction Hypothesis. Suppose there exists ` such that the claim holds for all 0 ≤ m ≤ `.

76

Induction Step. Consider a derivation S ⇒t
i1
· · · ⇒t

i`+1
w in G, for some 1 ≤ i`+1 ≤ n.

Since `+ 1 ≥ 1, we can express the derivation as

S ⇒t
i1 · · · ⇒t

i`
v ⇒t

i`+1
w.

By the induction hypothesis S ⇒∗ v′ in G′, where γ(v′) = v. Then, v is of the form
u0A1u1 · · ·Azuz, u0, uj ∈ T ∗, Aj ∈ N , 1 ≤ j ≤ z, and v′ is of the form

u0〈A1, i, x〉u1 · · · 〈Az, i, x〉uz.
Without any loss of generality, suppose x corresponds to the following active components
of G. If i 6= i`+1, x = i`+1x

′ and by the rules (III)

u0〈A1, i, x〉u1 · · · 〈Az, i, x〉uz ⇒z u0〈A1, i`+1, x
′〉u1 · · · 〈Az, i`+1, x

′〉uz;
otherwise, x′ = x. Express v ⇒t

i`+1
w as

v = w0 ⇒ w1 [p1]⇒ w2 [p2]⇒ · · · ⇒ wo [po] = w,

where pj ∈ Pi`+1
, for 1 ≤ j ≤ o, o ≥ 0. Suppose there exists wj , 1 ≤ j ≤ o − 1, where

S ⇒∗ w′j in G′, γ(w′j) = wj , and

wj = wj1Awj2 ⇒ wj1ywj2 [pj+1] = wj+1

by some rule pj+1 : A→ y ∈ Pi`+1
. Then, w′j = w′j1〈A, i`+1, x

′〉w′j2 , y = a1a2 · · · ar, for some
r ≥ 0, and by the construction of G′ there exists a rule (II)

〈A, i`+1, x
′〉 → D(〈A, i`+1, x

′〉, a1)D(〈A, i`+1, x
′〉, a2) · · · D(〈A, i`+1, x

′〉, ar) = y′,

where γ(y′) = y. Then, by this rule w′j ⇒ w′j+1, where γ(w′j+1) = wj+1. Notice that for
w0 = wj , S ⇒∗ w′j holds trivially by the induction basis which completes the proof. �

Claim 22. Every derivation of x ∈ L(G′) can be derived in G′ as follows.

S′ = x0 ⇒d1 x1 ⇒d2 x2 ⇒d3 · · · ⇒dh−1 xh−1 ⇒dh xh = x,

for some h ≥ 0, where di ∈ {I, II, III}, 1 ≤ i ≤ h, so that

1. if di = I, then xi−1 = S′, xi = 〈S, j, y〉, for some 1 ≤ j ≤ n and y ∈ {1, 2, 3, ε}k, and
by some rule (I), S′ ⇒ 〈S, j, y〉.

2. if di = II, then

xi−1 = u0〈A1, j, y〉u1〈A2, j, y〉u2 · · ·uz−1〈Az, j, y〉uz,
where u0, ul ∈ T ∗, 〈Al, j, y〉 ∈ N ′, 1 ≤ l ≤ z, for some 1 ≤ j ≤ n, y ∈ {1, 2, 3, ε}k,
and z ≥ 0, and xi−1 ⇒∗ xi only by the rules (II) of the form 〈A, j, y〉 → X so that
there is no 〈B, j, y〉 ∈ alph(xi), where 〈B, j, y〉 → Y is a rule (II), for any A,B ∈ N ,
X,Y ∈ V ′∗.

3. if di = III, then

xi−1 = u0〈A1, j, y〉u1〈A2, j, y〉u2 · · ·uz−1〈Az, j, y〉uz,
where u0, ul ∈ T ∗, 〈Al, j, y〉 ∈ N ′, 1 ≤ l ≤ z, for some 1 ≤ j ≤ n, y ∈ {1, 2, 3, ε}k,
z ≥ 0, and y = ay′, where a ∈ {1, 2, 3}, and

xi−1 ⇒z xi = u0〈A1, a, y
′〉u1〈A2, a, y

′〉u2 · · ·uz−1〈Az, a, y′〉uz
is obtained by the rules (III) of the form 〈Al, j, y〉 → 〈Al, a, y′〉.

77

Proof. Let us inspect the rules of G′. Since S′ is the start symbol and never occurs on the
right-hand side of any rule, 1. is trivial. Observe (II) and (III) of construction; the rules
are designed that the left hand sides of (II) and (III) are mutually exclusive. In (II), while
rewriting 〈A, i, x〉, each right-hand side nonterminal inherits i and x and, therefore, until
there is an applicable rule (II), it cannot be rewritten by any rule (III). Since G′ is a CFG,
without any loss of generality, we can reorder any derivation to first apply all possible rules
(II) before applying any rule (III) which completes 2. Finally, if there is no applicable rule
(II), all nonterminals are of the form 〈A, i, x〉 with same i and x. If x = ax′, for some
a ∈ {1, 2, 3}, all nonterminals can be rewritten by the rules (III) which completes 3. The
rigorous proof is left to the reader. �

Claim 23. For every derivation

S′ = x0 ⇒d1 x1 ⇒d2 x2 ⇒d3 · · · ⇒dh−1 xh−1 ⇒dh xh = w′,

in G′, for some h ≥ 1, where di satisfies Claim 22, and 1 ≤ i ≤ h, there is a derivation

S ⇒t
i1 · · · ⇒t

im w

in G of a length m ≥ 0, for 1 ≤ ij ≤ n, 1 ≤ j ≤ m, where γ(w′) = w.

We proof Claim 23 by induction on h.

Proof. Basis. If h = 1, S′ ⇒I 〈S, i, x〉 = w′, for some i ∈ {1, 2, 3} and x ∈ {1, 2, 3, ε}k.
Then, with S = w, γ(w′) = w, so the basis holds.

Induction Hypothesis. Suppose there exists ` such that the claim holds for all 1 ≤ h ≤ `.
Induction Step. Consider a derivation

S′ ⇒d1 · · · ⇒d`+1 x`+1 = w′,

in G′. Since `+ 1 ≥ 2, there exists v′ = x`, where

S′ ⇒d1 · · · ⇒d` x` ⇒d`+1 x`+1.

By the induction hypothesis, S ⇒t
i1
· · · ⇒t

im
v, where γ(v′) = v, for some m ≥ 0. Next,

we consider two cases depending on d`+1.

a) If d`+1 = II, x` ⇒d`+1 x`+1 can be expressed as

x` = x0 ⇒ x1 [p1]⇒ x2 [p2]⇒ · · · ⇒ xz−1 [pz−1]⇒ xz [pz] = x`+1,

where pj is a rule (II), 1 ≤ j ≤ z, for some z ≥ 0. Every rule pj ∈ P ′ was introduced
based on some rule qj ∈ Pim+1 , for some 1 ≤ im+1 ≤ n. Then, there exists a derivation

v = x′0 ⇒ x′1 [q1]⇒ x′2 [q2]⇒ · · · ⇒ x′z−1 [qz−1]⇒ x′z [qz] = w,

where γ(w′) = w. Moreover, by Claim 22, it can be expressed as v ⇒t
im+1

w in G and
the claim holds.

b) If d`+1 = III, by the rules (III) applied in x` ⇒d`+1 x`+1, with v = w, γ(w′) = w
holds trivially, which completes the proof. �

78

By Claims 21 through 23, S ⇒t
i1
· · · ⇒t

im
w in G, for some m ≥ 0, 1 ≤ ij ≤ n,

1 ≤ j ≤ m, if and only if S ⇒∗ w′ in G′, where γ(w′) = w. If w ∈ T ∗, γ(w′) = w′ = w.
Then, L(Gt) = L(G′) and Theorem 6.4.1 holds. �

Theorem 6.4.2. A language L is context-free iff there is a constant k ≥ 0 and a coop-
erating distributed grammar system G = (V, T, S, P1, . . . , Pn) of degree n ≥ 1 such that
L = L(G≥h), for any h ≥ 1, and for every w ∈ L(G≥h), there exists a derivation d

d = S ⇒≥hi1 · · · ⇒
≥h
im

w

in G of a length m ≥ 1, where 1 ≤ ij ≤ n, 1 ≤ j ≤ m, with G4(d) in which there exists k
or fewer component-change cuts.

Proof. Construction. Let h, k ≥ 0 be two constants. Let G = (V, T, S, P1, . . . , Pn) be a
CDGS of degree n ≥ 1 such that for every w ∈ L(G≥h), there exists a derivation d

d = S ⇒≥hi1 · · · ⇒
≥h
im

w

in G of a length m ≥ 1, where 1 ≤ ij ≤ n, 1 ≤ j ≤ m, with G4(d) in which there exists k
or fewer component-change cuts. Define CFG G′ = (V ′, T, P ′, S′) as follows. Initially, set

N ′ = {〈A, x, y〉 | A ∈ N, x ∈ {1, 2, . . . , n, ε}k, y ∈ {1h, 2h, . . . , nh, ε}k} ∪ {S′}

and P ′ = ∅. Define the function τ : N × N∗ → N∗ as τ(l, a1a2 · · · aj) = ala2·l · · · ac·l, where
c · l ≤ j, (c+ 1) · l > j, for l, c, ai ∈ N, 1 ≤ i ≤ j. Define the morphism γ : N ′ ∪ T → N ∪ T
as γ(a) = a, for a ∈ T , γ(〈A, x, y〉) = A, for 〈A, x, y〉 ∈ N ′. Construct P ′ by performing (I)
through (V) given next.

(I) For all x ∈ {1h, 2h, . . . , nh, ε}k, x 6= ε, add

S′ → 〈S, τ(h, x), x〉 to P ′;

(II) for all i ∈ {1, . . . , n}, A→ w ∈ Pi, x ∈ {1, 2, . . . , n, ε}k−1, and y ∈ {1, 2, . . . , n, ε}(h·k)−1,
where w = w0A1w2A2w3 · · ·wl−1Alwl, w0, wj ∈ T ∗, Aj ∈ N , 1 ≤ j ≤ l, for some l ≥ 1,
add

〈A, ix, iy〉 → w0〈A1, ix, y1〉w2〈A2, ix, y2〉w3 · · ·wl−1〈Al, ix, yl〉wl
to P ′, where y = perm(y1y2 · · · yl) such that for every aq ∈ {1, . . . , n}, where yc =
a1a2 · · · aq · · · ap, 1 ≤ c ≤ l, 1 ≤ q ≤ p, p ≥ 0, y is of the form

y = u0a1u1a2u2 · · ·uq−1aquq · · ·up−1apup;

(III) for all i, j ∈ {1, . . . , n}, A→ w ∈ Pi, x ∈ {1, 2, . . . , n, ε}k−1, and y ∈ {1, 2, . . . , n, ε}(h·k)−1,
where i 6= j, w = w0A1w2A2w3 · · ·wl−1Alwl, w0, wt ∈ T ∗, At ∈ N , 1 ≤ t ≤ l, for some
l ≥ 1, add

〈A, ix, jy〉 → w0〈A1, ix, y1〉w2〈A2, ix, y2〉w3 · · ·wl−1〈Al, ix, yl〉wl

to P ′, where jy = perm(y1y2 · · · yl) such that for every aq ∈ {1, . . . , n}, where yc =
a1a2 · · · aq · · · ap, 1 ≤ c ≤ l, 1 ≤ q ≤ p, p ≥ 0, jy is of the form

jy = u0a1u1a2u2 · · ·uq−1aquq · · ·up−1apup;

79

(IV) for all A→ w ∈ Pi and x ∈ {1, 2, . . . , n, ε}k, where w ∈ T ∗, add

〈A, x, ε〉 → w to P ′.

(V) for all i, j ∈ {1, . . . , n}, where i 6= j, A ∈ N , x ∈ {1, 2, . . . , n, ε}k−1, and y ∈
{1, 2, . . . , n, ε}(h·k)−1, add

〈A, ix, jy〉 → 〈A, x, jy〉 to P ′;

Basic Idea. Every nonterminal 〈A, x, y〉 ∈ N ′ encodes the corresponding nonterminal A ∈
N , a string of following simulated active components of G, x, and a string of h-tuples
of components corresponding to the rules to be applied, y. By an initial rule (I), all the
following component activations are nondeterministically planed. The leftmost symbol of
x denotes the current active component. When a component i is active, the leftmost is
in y are continuously consumed with every application of a rule (II) simulating a rule in
Pi. After consuming of h is, additional rules from Pi may be simulated by the rules (III),
so, ≥ h mode is followed. In both (II) and (III), the rules to be applied, encoded in y,
are distributed into the right-hand-side nonterminals while preserving their mutual order.
Then, if y = ε and, thus, the nonterminal does not encode any rules to be applied, it can
be rewritten to a terminal string by some rule (IV). Finally, by the rules (V), a component
changes are simulated.

Claim 24. For every derivation

S ⇒≥hi1 · · · ⇒
≥h
im

w

in G of a length m ≥ 0, for 1 ≤ ij ≤ n, 1 ≤ j ≤ m, there exists a derivation S ⇒∗ w′ in
G′, where γ(w′) = w.

We prove Claim 24 by induction on m.

Proof. Basis. If m = 0, S = w. Then, by some rule (I), S′ ⇒ 〈S, x, y〉, where γ(〈S, x, y〉) =
S, and the claim holds.

Induction Hypothesis. Suppose there exists ` such that the claim holds for all 0 ≤ m ≤ `.
Induction Step. Consider a derivation S ⇒≥hi1 · · · ⇒≥hi`+1

w in G, for some 1 ≤ i`+1 ≤ n.
Since `+ 1 ≥ 1, we can express the derivation as

S ⇒≥hi1 · · · ⇒
≥h
i`

v ⇒≥hi`+1
w.

By the induction hypothesis S ⇒∗ v′ in G′, where γ(v′) = v. Then, v is of the form
u0A1u1 · · ·Azuz, u0, uj ∈ T ∗, Aj ∈ N , 1 ≤ j ≤ z, and v′ is of the form

u0〈A1, ix, i`+1
h1y1〉u1 · · · 〈Az, ix, i`+1

hzyz〉uz,

where h1 + h2 + · · · + hz = h, x = τ(h, y), and y = perm(y1y2 · · · yz) such that for every
aq ∈ {1, . . . , n}, where yc = a1a2 · · · aq · · · ap, 1 ≤ c ≤ z, 1 ≤ q ≤ p, p ≥ 0, y is of the
form y = u0a1u1a2u2 · · ·uq−1aquq · · ·up−1apup, for some 1 ≤ i ≤ n. Without any loss of
generality, suppose that the string x corresponds to the following active components of G.
If i 6= i`+1, x = i`+1x

′ and by the rules (V)

80

u0〈A1, ix, i`+1
h1y1〉u1 · · · 〈Az, ix, i`+1

hzyz〉uz ⇒z

u0〈A1, i`+1x
′, i`+1

h1y1〉u1 · · · 〈Az, i`+1x
′, i`+1

hzyz〉uz;
otherwise, x′ = x. Express v ⇒≥hi`+1

w as

v = w0 ⇒ w1 [p1]⇒ w2 [p2]⇒ · · · ⇒ wo [po] = w,

where pj ∈ Pi`+1
, for 1 ≤ j ≤ o, o ≥ h. Suppose there exists wj , 1 ≤ j ≤ o − 1, where

S ⇒∗ w′j in G′, γ(w′j) = wj , and

wj = wj1Awj2 ⇒ wj1b0B1b1 · · ·Brbrwj2 [pj+1] = wj+1

by some rule pj+1 : A → b0B1b1 · · ·Brbr ∈ Pi`+1
, where b0, bl ∈ T ∗, Bl ∈ N , 1 ≤ l ≤ r, for

some r ≥ 0. Then, w′j = w′j1〈A, i`+1x
′, y′〉w′j2 , and by the construction of G′ there exist the

following three cases depending on y′ and r.

1. Suppose y′ = i`+1ȳ and r > 0, for any ȳ ∈ {1, 2, . . . , n, ε}∗. Then, there exists a
rule (II),

〈A, i`+1x
′, i`+1ȳ〉 → b0〈B1, i`+1x

′, ȳ1〉b2 · · · 〈Br, i`+1x
′, ȳr〉br ∈ P ′

by which

wj1〈A, i`+1x
′, i`+1ȳ〉wj2 ⇒ wj1b0〈B1, i`+1x

′, ȳ1〉b2 · · · 〈Br, i`+1x
′, ȳr〉brwj2 = w′j+1,

where ȳ = perm(ȳ1ȳ2 · · · ȳr) such that for every aq ∈ {1, . . . , n}, ȳc = a1a2 · · · aq · · · ap,
1 ≤ c ≤ l, 1 ≤ q ≤ p, p ≥ 0, ȳ is of the form

ȳ = u0a1u1a2u2 · · ·uq−1aquq · · ·up−1apup.

Obviously, γ(w′j+1) = wj+1.

2. Suppose y′ = īȳ and r > 0, for any ī ∈ {1, 2, . . . , n} and ȳ ∈ {1, 2, . . . , n, ε}∗, where
ī 6= i`+1. Then, there exists a rule (III),

〈A, i`+1x
′, īȳ〉 → b0〈B1, i`+1x

′, ȳ1〉b2 · · · 〈Br, i`+1x
′, ȳr〉br ∈ P ′

by which

wj1〈A, i`+1x
′, i`+1ȳ〉wj2 ⇒ wj1b0〈B1, i`+1x

′, īȳ1〉b2 · · · 〈Br, i`+1x
′, īȳr〉brwj2 = w′j+1,

where īȳ = perm(ȳ1ȳ2 · · · ȳr) such that for every aq ∈ {1, . . . , n}, ȳc = a1a2 · · · aq · · · ap,
1 ≤ c ≤ l, 1 ≤ q ≤ p, p ≥ 0, ȳ is of the form

ȳ = u0a1u1a2u2 · · ·uq−1aquq · · ·up−1apup.

Obviously, γ(w′j+1) = wj+1.

3. Suppose y′ = ε and r = 0. Then, wj+1 = wj1b0wj2 and there exists a rule (IV),
〈A, i`+1x

′, ε〉 → b0, by which

wj1〈A, i`+1x
′, ε〉wj2 ⇒ wj1b0wj2 = w′j+1,

where γ(w′j+1) = wj+1.

81

Notice that for w0 = wj , S ⇒∗ w′j holds trivially by the induction basis which completes
the proof. �

Claim 25. Every derivation of w ∈ L(G′) can be derived in G′ as follows.

S′ = x0 ⇒d1 x1 ⇒d2 x2 ⇒d3 · · · ⇒d1 xh+1 ⇒dh xh = w,

for some h ≥ 0, where di ∈ {I, II|III|IV, V }, 1 ≤ i ≤ h, so that

1. if di = I, then xi−1 = S′, xi = 〈S, x, y〉, for some x ∈ {1, 2, . . . , n, ε}k and y ∈
{1h, 2h, . . . , nh, ε}k, and by some rule (I), S′ ⇒ 〈S, x, y〉.

2. if di = II|III|IV , then

xi−1 = u0〈A1, jx, j
h1y1〉u1〈A2, jx, j

h2y2〉u2 · · ·uz−1〈Az, jhzx, yz〉uz,

where u0, ul ∈ T ∗, 〈Al, jx, yl〉 ∈ N ′, 1 ≤ j ≤ n, x ∈ {1, 2, . . . , n, ε}k−1, yl ∈
{1, 2, . . . , n, ε}∗, h1 + h2 + · · · + hz = h, 1 ≤ l ≤ z, and z ≥ 0, and xi−1 ⇒∗ xi
only by the rules (II), (III), and (IV) so that

xi = u′0〈B1, jx, y
′
1〉u′1〈B2, jx, y

′
2〉u′2 · · ·u′z′−1〈Bz′ , jx, y′z′〉u′z′ ,

where u′0, u
′
l′ ∈ T ∗, 〈Bl′ , jx, y′l′〉 ∈ N ′, 1 ≤ l′ ≤ z′, for some z′ ≥ 0, and y1y2 · · · yz =

perm(y′1y
′
2 · · · y′z′).

3. if di = V , then

xi−1 = u0〈A1, jx, y1〉u1〈A2, jx, y2〉u2 · · ·uz−1〈Az, jx, yz〉uz,

where u0, ul ∈ T ∗, 〈Al, jx, yl〉 ∈ N ′, 1 ≤ j ≤ n, x, yl ∈ {1, 2, . . . , n, ε}∗, 1 ≤ l ≤ z,
z ≥ 0, and ju /∈ {y1, y2, . . . , yz}, for any u ∈ {1, 2, . . . , n, ε}∗, and xi−1 ⇒∗ xi only by
the rules (V) of the form 〈A, jx, y〉 → 〈A, x, y〉, where

xi = u0〈A1, x, y1〉u1〈A2, x, y2〉u2 · · ·uz−1〈Az, x, yz〉uz.

Proof. Let us inspect the rules of G′. Since S′ is the start symbol and never occurs on
the right-hand side of any rule, 1. is trivial. Observe (II)-(V) of the construction; the
rules are designed that the left hand sides of (II)-(IV) and (V) are mutually exclusive. In
(II)-(IV), while rewriting 〈A, jx, y〉 and, thus, simulating activated component Pj of G,
each right-hand-side nonterminal inherits ix. If y = jy′, only the rules (II) are applicable.
Observe

xi−1 = u0〈A1, jx, j
h1y1〉u1〈A2, jx, j

h2y2〉u2 · · ·uz−1〈Az, jhzx, yz〉uz

in 2. Since h1 + h2 + · · ·+ hz = h, there must be precisely h applications of the rules (II).
Additionally, G′ may apply possibly any number of the rules from (III) and (IV) which
follows ≥ h mode. Since G′ is a CFG, without any loss of generality, we can reorder any
derivation to first apply all rules (II)-(IV) before applying any rule (V) which completes
2. Finally, after simulating ≥ h derivation steps of Pj all nonterminals are of the form
〈A, ix, y〉 with same i and x, where i is not a prefix of y. Then, all nonterminals can be
rewritten by the rules (V) which completes 3. The fully detailed rigorous proof is left to
the reader. �

82

Claim 26. For every derivation

S′ = x0 ⇒d1 x1 ⇒d2 x2 ⇒d3 · · · ⇒dh−1 xr−1 ⇒dh xr = w′,

in G′, for some r ≥ 1, where di satisfies Claim 25, and 1 ≤ i ≤ r, there is a derivation

S ⇒≥hi1 · · · ⇒
≥h
im

w

in G of a length m ≥ 0, for 1 ≤ ij ≤ n, 1 ≤ j ≤ m, where γ(w′) = w.

We proof Claim 23 by induction on r.

Proof. Basis. If r = 1, S′ ⇒I 〈S, x, y〉 = w′, for some x ∈ {1, 2, . . . , n, ε}k and y ∈
{1h, 2h, . . . , nhε}k. Then, with S = w, γ(w′) = w, so the basis holds.

Induction Hypothesis. Suppose there exists ` such that the claim holds for all 1 ≤ r ≤ `.
Induction Step. Consider a derivation

S′ ⇒d1 · · · ⇒d`+1 x`+1 = w′,

in G′. Since `+ 1 ≥ 2, there exists v′ = x`, where

S′ ⇒d1 · · · ⇒d` x` ⇒d`+1 x`+1.

By the induction hypothesis, S ⇒≥hi1 · · · ⇒
≥h
im

v, where γ(v′) = v, for some m ≥ 0. Next,
we consider two cases depending on d`+1.

a) If d`+1 = II|III|IV , x` ⇒d`+1 x`+1 can be expressed as

x` = x0 ⇒ x1 [p1]⇒ x2 [p2]⇒ · · · ⇒ xz−1 [pz−1]⇒ xz [pz] = x`+1,

where pj is a rule (II), (III), or (IV), 1 ≤ j ≤ z, for some z ≥ 0. Every rule pj ∈ P ′
was introduced based on some rule qj ∈ Pim+1 , for some 1 ≤ im+1 ≤ n. Then, there
exists a derivation

v = x′0 ⇒ x′1 [q1]⇒ x′2 [q2]⇒ · · · ⇒ x′z−1 [qz−1]⇒ x′z [qz] = w,

where γ(w′) = w. Moreover, by Claim 25, it can be expressed as v ⇒≥him+1
w in G and

the claim holds.

b) If d`+1 = V , by the rules (V) applied in x` ⇒d`+1 x`+1, with v = w, γ(w′) = w holds
trivially, which completes the proof. �

By Claims 24 through 26, S ⇒≥hi1 · · · ⇒≥him w in G, for some m ≥ 0, 1 ≤ ij ≤ n,
1 ≤ j ≤ m, if and only if S ⇒∗ w′ in G′, where γ(w′) = w. If w ∈ T ∗, γ(w′) = w′ = w.
Then, L(G≥h) = L(G′) and Theorem 6.4.2 holds. �

Theorem 6.4.3. A language L is context-free iff there is a constant k ≥ 0 and a coop-
erating distributed grammar system G = (V, T, S, P1, . . . , Pn) of degree n ≥ 1 such that
L = L(G=h), for any h ≥ 1, and for every w ∈ L(G=h), there exists a derivation d

d = S ⇒=h
i1 · · · ⇒=h

im w

in G of a length m ≥ 1, where 1 ≤ ij ≤ n, 1 ≤ j ≤ m, with G4(d) in which there exists k
or fewer component-change cuts.

83

Proof. Prove the theorem by analogy with the proof of Theorem 6.4.2 omitting step (III)
of the construction. �

As a special case, let us consider the following theorem for = h derivation mode, where,
however, we force the component changes to never chose the same component twice in a
row.

Theorem 6.4.4. A language L is finite iff there is a constant k ≥ 0 and a cooperating
distributed grammar system G = (V, T, S, P1, . . . , Pn) of degree n ≥ 1 such that L = L(G=h)
and for every w ∈ L(G=h), there exists a derivation d

d = S ⇒=h
i1 · · · ⇒=h

im w

in G of a length m ≥ 1, where 1 ≤ ij ≤ n, 1 ≤ im ≤ n, 1 ≤ j < m, and ij 6= ij+1, with

G4(d) in which there exists k or fewer component-change cuts.

Proof. Let h, k ≥ 1 be two constants. Let G = (V, T, S, P1, . . . , Pn) be a CDGS of degree
n ≥ 1 such that L = L(G=h), for any h ≥ 1, and for every w ∈ L(G=h), there exists a
derivation d

d = S ⇒=h
i1 · · · ⇒=h

im w

in G of a length m ≥ 1, where 1 ≤ ij ≤ n, 1 ≤ j ≤ m with G4(d) in which there exists k or
fewer component-change cuts. Then, m ≤ h ·(k+1) and since P1∪P2∪· · ·Pn is finite, there
exist only a finite number of possible derivations. Therefore, G generates a finite number
of terminal strings. �

In the following chapter, we demonstrate how to use the achieved results to obtain a
positive prove of context-freeness of a language.

84

Chapter 7

How to Prove Context-Freeness

Even though this thesis is mainly theoretically oriented, in the present chapter, however, we
demonstrate its practical impact. As presented in Section 4.1, a proof of context-freeness
is not a straightforward process. Indeed, unlike Workspace Theorem for context-sensitive
languages, the theory of formal languages lacked a proof scheme to more automate the
process of proving that a certain language is context-free. Nevertheless, in Chapter 6 we
described necessary but also sufficient conditions for language to be context-free based
on general grammars, scattered context grammars, and cooperating distributed grammar
systems. Under the given derivation-tree restrictions these grammars characterize precisely
the family of context-free languages. Moreover, we can obtain a positive proof of a context-
freeness of a language L by following the next three-step proof scheme.

1. Construct a general or scattered context grammar in binary form, or cooperating
distributed grammar system G.

2. Prove L(G) = L.

3. Prove that G satisfies conditions given by the respective theorem.

As a result L ∈ CF. The following three examples show how to use this proof scheme to
prove context-freeness of some non-trivial context-free languages.

Example 7.0.1. Reconsider the grammar G from Example 3.2.3. Following the proof scheme
sketched above, we next prove that L(G) ∈ CF.

Consider G constructed in Example 3.2.3. Next, we show that for G,

L(G) = {w ∈ (A ∪ {ε})(BA)∗(B ∪ {ε}) | #a(w) = #b(w),
A = {ai | 1 ≤ i ≤ 5}, B = {bi | i ≥ 3}, and |w| > 0}.

Without any loss of generality, every terminal derivation of G can be divided into the
following 5 phases, where each rule may be used only in a specific phase:

(a) (1)–(4) (b) (5)–(11) (c) (12)–(17) (d) (18)–(31) (e) (32)–(33)

Next, we describe these phases in a greater detail.

(a) First, we generate one of the following two strings by rules (1) through (4).

ZaXBx, ZbXAx

Possibly applicable rule (25) may be postponed for phase (d) without affecting the
derivation, since rules in the previous phases cannot rewrite Ax.

85

(b) The rules (5) through (11) are the only with X, Xa, or Xb on their left-hand sides,
therefore, we can group all their applications in a sequence to get a sentential form
from

{Za, Zb}{A,B}∗{Ax, Bx}.

(c) The rules (12) through (17) possibly shift Za or Zb to the right and rewrite it to A
or B, respectively. Since these rules are the only with Za, Zb on their left-hand sides,
they can be always prioritized before the rest of rules without any loss of generality.

{A,B}∗{Ax, Bx}

(d) All the remaining rules may be applied in this phase. However, we can exclude rules
(32) and (33), so we get a sentential form from

{a, b}∗.

(e) Since rules (32) and (33) are context-free and produce terminal symbols, they can be
always postponed until the end of any successful derivation.

{a, b}∗ = T ∗

Let us add a few remarks concerning (a) through (e).
Phase (a) is very straightforward. Only notice that it is decided whether the generated

string finally ends with a or b and the paired symbol is stored in Za or Zb for phase (c).
In phase (b) an arbitrary string of As and Bs is generated from the initial symbol X.

However, for every A, one B is generated and vice versa, so their numbers are always kept
equal.

In phase (a) the grammar decides about the last symbol and stores the paired one,
which, however, need not to be the first one. Therefore, phase (c) determines its final
position, while possibly shifting it to the right and finally rewriting to A or B.

Phase (d) is the most tricky. It starts with a sentential form wc, where w ∈ {A,B}∗,
c ∈ {Ax, Bx}. Informally speaking, it consists of the sequences of As which should be at
most 5 symbols long, and Bs which should be at least 3 symbols long. Rules (18) through
(31) are designed to ensure these restrictions. To give an example, suppose wc is as follows.

wc = AAAABBBBABBBAAx

First, by rules (18) through (20) the last symbol in every sequence is marked with index
x. Otherwise, rules (24) through (28) and rule (31) never become applicable and all the
unmarked sequences become permanent resulting into an unsuccessful derivation. The last
sequence is already marked.

AAAABBBBABBBAAx
⇒ AAAAxBBBBABBBAAx [(18)]
⇒ AAAAxBBBBAxBBBAAx [(18)]
⇒ AAAAxBBBBxAxBBBAAx [(20)]
⇒ AAAAxBBBBxAxBBBxAAx [(19)]

86

Notice, one symbol sequence of As is legal. Then, every sequence of As is processed in
left-to-right direction by rules (21) through (24), but can be successfully rewritten earlier
by rules (25) through (28), in the case it consists of less than 5 symbols. Thus, a longer
sequence leads to an unsuccessful derivation.

AAAAxBBBBxAxBBBxAAx
⇒ a1AAxBBBBxAxBBBxAAx [(21)]
⇒ aa2AxBBBBxAxBBBxAAx [(22)]
⇒ aaaaBBBBxAxBBBxAAx [(27)]
⇒ aaaaBBBBxaBBBxAAx [(25)]
⇒ aaaaBBBBxaBBBxaa [(26)]

If the processing does not start from the leftmost symbol in the current sequence, it remains
permanent. Every sequence of Bs is processed by applying rule (29), zero or multiple times
rule (30), and finally rule (31). It ensures the lengths of sequences of Bs are at least 3
symbols.

aaaaBBBBxaBBBxaa

⇒ aaaabBxBBxaBBBxaa [(29)]

⇒ aaaabbBxBxaBBBxaa [(30)]

⇒ aaaabbbbaBBBxaa [(31)]

⇒ aaaabbbbabBxBxaa [(29)]

⇒ aaaabbbbabbbaa [(31)]

Notice, it depends on the order of applied rules only within one sequence. Multiple sequences
may be processed at random without affecting the derivation.

In phase (e), a resulting terminal string is generated by rules (32) and (33).

aaaabbbbabbbaa⇒∗ aaaabbbbabbbaa

Therefore, if the derivation is terminating, we achieve a string with an equal number of
as and bs, where every sequence of as is at most 5 symbols long and every sequence of bs is
at least 3 symbols long.

Grammar G is obviously a monotone general grammar in the binary form. Let us now
show that for any x ∈ L(G), there is G4x ∈ GN, where any two neighbouring paths contain
no more than 2 pairs of context-dependent nodes.

Every pair of context-dependent nodes in G4x corresponds to one non-context-free rule
in S ⇒∗ x. Consider the six phases sketched above. Observe that phases (a), (b), and (e)
contain only context-free rules, so we have only to investigate (c) and (d). On the other
hand, (c) and (d) contain no rule of the form A → BC, thus the number of neighbouring
paths remains unchanged.

In (c) by rules (12) through (17) the derivation may proceed in left-to-right direction
through the whole sentence form (except the rightmost symbol) introducing a context
dependency between every pair of neighbouring paths.

In (d), first, the context dependency is introduced between all neighbouring paths repre-
senting the borders between the sequences of As and Bs by rules (18) through (20). Second,
every sequence of As or Bs is processed in the left-to-right direction by non-context-free

87

rules (21) through (31) introducing a context dependency between all neighbouring paths
representing symbols inside the sequences of As and Bs.

No other non-context-free rule is applied, therefore, no other context-dependent pair
of nodes can occur. Then, every pair of neighbouring paths may contain at most one
context-dependent pair of nodes introduced in phase (c) and one introduced in phase (d).

Since G is a monotone GG in the binary form, where for every x ∈ L(G), there is

G4x ∈ GN, where any two neighbouring paths contain no more than 2 pairs of context-
dependent nodes, by Theorem 6.1.2, L(G) ∈ CF. �

Example 7.0.2. Let G = (V, T, P, S) be an SCG, where

V = {S,A,B, S̄, Ā, B̄, ā, b̄, a, b, A1, A2, A3, A4, A5, B1, B2, B3, B4, B5},

T = {a, b}, and

P = { 1: (S)→ (S̄S), 4: (A)→ (āĀ), 8: (A,B)→ (A1, B1),
2: (S̄)→ (AB), 5: (Ā)→ (Aā), 9: (A,B)→ (A2, B2),
3: (S)→ (ε), 6: (B)→ (b̄B̄), 10: (A,B)→ (A3, B3),

7: (B̄)→ (Bb̄), 11: (A,B)→ (A4, B4),
12: (A,B)→ (A5, B5),

13: (A5)→ (b̄A4), 18: (B5)→ (āB4), 23: (ā)→ (a),
14: (A4)→ (b̄A3), 19: (B4)→ (āB3), 24: (b̄)→ (b),
15: (A3)→ (b̄A2), 20: (B3)→ (āB2),
16: (A2)→ (b̄A1), 21: (B2)→ (āB1),
17: (A1)→ (b̄), 22: (B1)→ (ā) }.

G is obviously in the binary form. Observe the rules of G. Without any loss of generality,
we can reorder the applications of the rules of G to satisfy six-phased generative process as
follows.

(1) Initially, rules 1 through 3 generate a sentential form w1 ∈ {AB}∗.

(2) Then, by rules 4 through 7 w1 ⇒∗G w2, where w2 = X1X2 · · ·Xh,

Xi = āmiAāmi b̄niBb̄ni ,

mi, ni ≥ 0, 1 ≤ i ≤ h, for some h ≥ 0.

(3) The rules 8 through 12—all the context sensitive rules of G—rewrite As and Bs to
their indexed forms. We can assume that they are always applied to the neighbouring
A and B; otherwise, there occurs a prefix of a sentential form with more Bs than As
which obviously cannot be rewritten to its indexed form. Consequently, every odd
index corresponds to the following even one.

w3 = X1X2 · · ·Xh, Xi = āmiAgi ā
mi b̄niBgi b̄

ni ,

mi, ni ≥ 0, 1 ≤ gi ≤ 5, 1 ≤ i ≤ h, for some h ≥ 0.

(4) With rules 13 through 17 every indexed A is rewritten to 1 through 5 b̄s according to
its index.

w4 = X1X2 · · ·Xh, Xi = āmi b̄gi āmi b̄niBgi b̄
ni ,

mi, ni ≥ 0, 1 ≤ gi ≤ 5, 1 ≤ i ≤ h, for some h ≥ 0.

88

(5) With rules 18 through 22 every indexed B is rewritten to 1 through 5 ās according
to its index.

w5 = X1X2 · · ·Xh, Xi = āmi b̄gi āmi b̄ni āgi b̄ni ,

mi, ni ≥ 0, 1 ≤ gi ≤ 5, 1 ≤ i ≤ h, for some h ≥ 0.

(6) Finally, a terminal sentence is generated by rules 23 and 24.

w6 = X1X2 · · ·Xh, Xi = amibgiamibniagibni ,

mi, ni ≥ 0, 1 ≤ gi ≤ 5, 1 ≤ i ≤ h, for some h ≥ 0.

As a result
L(G) = {X1X2 · · ·Xh | Xi = amibgiamibniagibni ,

mi, ni ≥ 0, 1 ≤ gi ≤ 5, 1 ≤ i ≤ h, h ≥ 0}.
To show that L(G) is context-free, let us observe the phases of the generative process of

G in greater detail. First, S ⇒∗G w [%], where % ∈ {1, 2, 3}. Figure 7.0.2 shows the structure
of G4(S ⇒∗G w [%]).

S

S̄

A B

S

S̄

A B

S

S̄

A B

. . .

Figure 7.0.1: Graphical representation of G4w

Continuing the derivation, a sentence form is of the form X1X2 · · ·Xh, where Xi corre-
sponds to left subgraph of some S-labelled node in Figure 7.0.2, 1 ≤ i ≤ h, h ≥ 0. Observe
that in phase (3) a pair of context sensitive nodes is introduced in every Xi portion of the
derivation tree. Since no more context dependencies are introduced we can find a division
depicted in Figure 6.

S

S̄

... . . .

S

S̄

... . . .

S

S̄

... . . .

. . .

Figure 7.0.2: Division of G4w

The division in Figure 6 satisfies Theorem 6.3.1, for k = 1, so, L(G) ∈ CF. �

89

Example 7.0.3. Let G = (V, T, S, P1, P2, P3, P4, P5) be a CDGS of degree 5, where

V = {S,A,B,C, Ā, B̄, C̄,X, Y, (,), [,]}, T = {(,), [,]}, and

P1 = { 1: S → S, 2: S → ABC1000, 3: Ā→ XAY, 4: B̄ → XBY },
P2 = { 5: A→ Ā, 6: C → C̄ },
P3 = { 7: B → B̄, 8: C̄ → ε},
P4 = { 9: A→ ε, 11: B → ε },
P5 = { 11: X → (X)X, 12: X → ε },
P6 = { 13: Y → [Y]Y, 14: Y → ε }.

Consider derivation mode ≥ 2. Observe the rules of G. Every derivation starts with
component P1. Rule 1 is necessary to satisfy the derivation mode condition, then, rule 2
generates the sentence form

ABC1000

Continuing with component P4 blocks the derivation in case there is some C remaining.
Thus, the derivation continues with component P2, where both rules 5 and 6 need to be
applied not to block the derivation later, rule 6 possibly multiple times—without any loss
of generality, suppose always the leftmost C is rewritten—, to generate a sentence form

ĀBC̄kC l

For some k ≥ 1, l ≥ 0. The derivation continues with component P3. The rule 7 must
be applied not to block the derivation later. In any successful derivation the number of
applications of rule 6 and 8 equals, so, let us suppose that component P3 always erases all
C̄s. As a result

ĀB̄C l

Next, component P1 is activated again generating

XAYXBY C l

Components P1, P2, and P3 are activated in cycle in the described way always erasing at
least one C and generating one X and Y from both A and B.

XnAY nXnBY nCr

After all Cs are removed, P4 erases A and B.

XnY nXnY n

Components P5 and P6 are possibly applicable earlier in the derivation, however, since
no other component rewrites X and Y , we can postpone them till the very end of every
derivation without any loss of generality. First, P5 generates a string of the well-known
Dyck language (see [7]) over {(,)} from every X. Second, P6 generates a string of the Dyck
language over {[,]} from every Y . Therefore,

L(G) = {w ∈ XnY nXnY n | X and Y are Dyck languages
over {(,)} and {[,]}, respectively, and n ≤ 1000}.

90

We prove that L(G) ∈ CF according to Theorem 6.4.2. Since the theorem says that for
every w ∈ L(G) there exists a derivation satisfying the prescribed restrictions, we have to
identify such w which derivation has the highest minimum of necessary component changes.

As we shown previously, every derivation, first, activates components P1, P2, and P3

multiple times in a cycle. However, since every cycle consumes at least one C and there
are precisely 1000 Cs present, these components change at most thousand times. Then,
component P4 is activated and the derivation finishes with components P5 and P6. The
number of possible component changes between components P5 and P6 is not limited,
nevertheless, the same sentence can be always obtain with only one activation of both and
we are looking for a minimum. All together, any w ∈ L(G) can be generated with at
most 1003 component changes, which corresponds to 1003 component-change cuts in the
resulting derivation tree, and, therefore, by Theorem 6.4.2, L(G) ∈ CF. �

91

Chapter 8

Conclusion

Let us conclude this work by summarising all the achieved results and, since it represents
brand new area of research, by discussing perspectives for the future investigation.

The present thesis introduced graph-related features of derivation trees of general gram-
mars, regular-controlled grammars, scattered context grammars, and cooperating distributed
grammar systems; context dependencies between neighbouring paths, path changes, tree
divisions, and component-change cuts, respectively. We placed constant restrictions on the
number of these derivation-tree features and proved that they results in context-freeness.
This knowledge is on one hand interesting from the theoretical point of view, however, on
the other hand, as we demonstrated in the previous chapter, it can be also utilized to obtain
a positive prove of context-freeness of a language. Moreover, we introduced simple proof
pattern which can simplify some proofs of this kind.

For theoretical computer scientists a question of precise membership of a language in a
language family among the Chomsky hierarchy of languages represents essential but chal-
lenging task. Direct prove by constructing respective corresponding grammar or automaton
requires a unique creative approach and is rarely straightforward. We knew several tools
to simplify this kind of proof; namely, pumping lemmas or workspace theorem; however,
specifically for indisputably very important family of context-free languages we had no
such tool (as we explained in Chapter 4.1). In this thesis we introduced derivation-tree-
restriction-based approach to this matter and explained how to obtain a positive proof of
context-freeness. This new proof-simplifying tool may help proving context-freeness sig-
nificantly. Nevertheless, this area of research still offers lot of interesting and challenging
questions to be answered in the future. In what follows, we suggests some follow-up topics
rising from the subject of this work.

We indisputably selected very important representatives of grammar theory, however,
this study is definitely not exhaustive in this sense which rises the following open problem.

Open Problem 1. How to naturally restrict derivation trees of other types of grammars
to characterize some language subfamilies? How to use these derivation-tree restrictions
while proving that some languages belong (or not) to the language subfamily?

We studied influence of constant restrictions placed on the number of the introduced
derivation-tree-related features of generated sentences on the generative power of grammars
in question and proved it reduces the generative power significantly. Indeed, a constant
restriction is very natural, nevertheless, not the only possible restriction. Certainly, there
are several approaches to functional restrictions. Since it is closely related topic indisputably

92

suitable for the following future study, however, it requires thorough investigation, we just
give several gists and state some open problems.

First of all, let us consider general grammars and the following open problem.

Open Problem 2. Consider a general grammar G with every w ∈ L(G) having a deriva-
tion tree with k|w| or less context dependent pairs of nodes within every pair of neighbouring
paths. Can we find such a grammar for every language L ∈ CS? Is there a GG restricted
in this way generating a non-context-sensitive language? Or is this restriction in fact an
equivalence of Workspace Theorem for context-sensitive languages?

Let us give a rough insight into this matter. It is quite easy to estimate that this less
restrictive condition allows the general grammars to generate non-context-free languages as
shown by the next example.

Example 8.0.1. Consider a general grammar G = ({S,A,B,X}, {a, b, c}, P, S) with

P = {S → AB,A→ aAbX,Xb→ bX,XB → Bc,A→ ε,B → ε}.

Clearly, L(G) = {anbncn | n ≥ 0} which is the well-known non-context-free context-sensitive
language. Moreover, with every a, b, and c introduced into the sentence form, one context
dependency between all pairs of symbols between A and B is introduced too. Suppose
that in the resulting derivation tree there is a pair of neighbouring paths between which
there exists a context dependency for every such triple of symbols; this is the highest pos-
sible number of context dependencies among all pairs of neighbouring paths, since no other
context dependencies occur. Then, the upper bound of these dependencies is linearly de-
pendent on the length of the resulting sentence, so the conditions stated in Open Problem 2
are met. �

With k related to workspace constant we might be able to simulate this workspace-
restricted grammar by context-dependence restricted grammar in above defined way, since
the limited workspace results in a limited number of possible configurations. The rest of
the proof and even the validity of this idea is, however, beyond the scope of this thesis.

For general grammars, scattered context grammars, and cooperating distributed gram-
mar systems we proved that the constant restrictions on the number of occurrences of
introduced derivation-tree-related features result in context-freeness. However, in the case
of regular-controlled grammars, this restriction is even stronger. This opens the following
questions.

Open Problem 3. Consider non-constant restriction on the number of path-changes of
regular-controlled grammars, such as functions over the sentential form lengths. What is
the generative power of regular-controlled grammars restricted in this way? How to restrict
path changes to obtain versions of regular-controlled grammars characterizing precisely the
family of context-free languages?

We also investigate non-context-free derivation-tree-related properties of scattered con-
text grammars and proved that putting constant restrictions on them results in context-
freeness. Namely, we showed that if context dependent pairs of nodes are clustered into
(unlimited number of) mutually context-independent k-tuples with some given k, the gen-
erated language is context-free. Since the original generative power of SCGs covers all
recursively enumerable languages this restriction and the resulting loss of generative power
is significant which gives rise to the following open problem.

93

Open Problem 4. Are there any derivation-tree related conditions for scattered context
grammars resulting these grammars to characterize precisely some family of languages be-
tween context-free and recursively enumerable languages; for example context-sensitive or
matrix languages?

An interesting results may be also achieved in this area of research regarding cooperating
distributed grammar systems. We introduced the notion of component-change cuts and
proved that if we limit this by a constant the resulting language is context-free. However,
what if we describe the number of component-changes by some function and, moreover,
force the grammar system to perform precisely that many component changes? Let us
introduce some initial investigation of this matter, however, the details would require a
separate study.

Open Problem 5. Investigate the families of languages generated by CDGSs satisfying
the following conditions:

1. Let f : N→ N be an integer function.

2. Let ψ ∈ {≤l,=l,≥l | for some l ≥ 1} ∪ {t, ∗}.

3. Let G = (V, T, S, P1, . . . , Pn) be a CDGS of degree n ≥ 1 such that for every w ∈
L(Gψ), there exists a derivation d

d = S ⇒ψ
i1
· · · ⇒ψ

ik
w

in G, where 1 ≤ ij ≤ n, 1 ≤ j ≤ k, so, in G4(d) there is precisely k component-change
cuts, where k = f(x), for some x ∈ N.

Let us denote the language of CDGS G using derivation mode ψ restricted by a function
f by L(Gψ,f) and the family of languages of CDGSs of degree n using derivation mode ψ
restricted by a function f by CDψ,f

n .

First, let us state that CDψ
n ⊆ CDψ,f

n if f : k = x, for x ∈ N. Since any number
of component-change cuts is allowed, it is, in fact, unrestricted. Observe the following
example.

Example 8.0.2. Let
G = ({S, a}, {a}, S, {S → Sa, S → a})

be a CDGS using derivation mode ⇒=1. Obviously, G is of degree 1 and uses only reg-
ular rules. Moreover, using ⇒=1 CDGSs are only as powerful as context-free grammars.
However, with f : k = 22x − 1, x ∈ N,

L(G=1,f) = {a22
k

| k ≥ 0} ∈ (CS−ET0L).

Notice that the component changes in fact do not change to any different component (there
is only one), however, due to the derivation mode, the component is deactivated after every
single derivation step, so the component must be activated again. �

We can also consider f ′(x), where f ′ returns the nearest Fibonacci or prime number y,
where y ≤ x, and various combinations to generate languages beyond the ordinary CDGS’
families of languages.

94

Open Problem 6. Categorize CDGS’ languages by functional relation between component-
change cuts and the length of the generated sentence:

1. Let f : N→ N be an integer function.

2. Let ψ ∈ {≤l,=l,≥l | for some l ≥ 1} ∪ {t, ∗}.

3. Let G = (V, T, S, P1, . . . , Pn) be a CDGS of degree n ≥ 1 such that for every w ∈
L(Gψ), there exists a derivation d

d = S ⇒ψ
i1
· · · ⇒ψ

ik
w

in G, where 1 ≤ ij ≤ n, 1 ≤ j ≤ k, so, in G4(d) there is precisely k component-change
cuts, where k = f(|w|).

Observe the following two examples.

Example 8.0.3. Consider a language L1 = {a2n | n ≥ 0}. L1 ∈ (ET0L −MT). For
grammar G1,

G1 = {{S,A, a}, {a}, S, {S → AA}, {A→ S}, {S → a}},

and derivation mode ⇒t, L(Gt1) = L1. Obviously, for every w ∈ L(Gt1), k = log2(|w|),
where k is the number of component-change cuts. �

Example 8.0.4. Consider a language L2 = {anbncn | n ≥ 0}. L2 ∈ (MT − CF). For
grammar G2,

G2 = {{S,A,A′, B,B′, a, b, c}, {a, b, c}, S, {S → S, S → A′B′, A→ ε,B → ε},
{A→ aA′b, B → B′c}, {A′ → A,B′ → B}},

and derivation mode ⇒ψ, where ψ ∈ {=2, t}, L(Gψ2) = L2. Then, for every w ∈ L(Gψ2),
k = |w|, where k is the number of component-change cuts. �

To generate L1 we naturally need more powerful language generating model than to
generate L2. However, on the basis of the previous examples, it is evident that while
generating sentences of L1 CDGS performs considerably less component changes. Could
we state any general claim on this issue?

References

[1] S. Abraham. Some questions of language theory. In Proceedings of the 1965
conference on Computational linguistics, pages 1–11. Association for Computational
Linguistics, 1965.

[2] A.V. Aho and J.D. Ullman. The Theory of Parsing, Translation, and Compiling.
Prentice-Hall, Series in Automatic Computation, 1972.

[3] Y. Bar-Hillel, M. Perles, and E. Shamir. Pumping lemmas for regular sets. Z.
Phonetik. Sprachwiss. Kommunikationsforsch, 14:143–172, 1961.

[4] G. Cantor. Ueber eine elementare frage der mannigfaltigkeitslehre. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 14:75–78, 1891.

95

[5] N. Chomsky. Three models for the description of language. IRE Transactions on
Information Theory, 2(3):113–124, 1956.

[6] N. Chomsky. On certain formal properties of grammars. Information and Control,
2:137–167, 1959.

[7] N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free
languages. Computer programming and formal systems, pages 118–161, 1963.

[8] D.I.A. Cohen. Introduction to Computer Theory. Wiley, New York, 1991.

[9] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.
McGraw-Hill, 2002.

[10] R. Crandall and C. Pomerance. Prime Numbers: A Computational Perspective.
Springer., 2nd edition, 2005.

[11] E. Csuhaj-Varjú and J. Dassow. On cooperating/distributed grammar systems.
Journal of Information Processing and Cybernetics, 26:49–63, 1990.

[12] E. Csuhaj-Varjú, J. Kelemen, Gh. Păun, and J. Dassow. Grammar Systems: A
Grammatical Approach to Distribution and Cooperation. Gordon and Breach Science
Publishers, Inc., Newark, NJ, US, 1st edition, 1994.

[13] E. Csuhaj-Varjú and G. Vaszil. Scattered context grammars generate any recursively
enumerable language with two nonterminals. Information Processing Letters,
110:902–907, 2010.

[14] J. Dassow and G. Păun, editors. Regulated Rewriting in Formal Language Theory.
Akademie-Verlag, Berlin, 1989.

[15] A. Ehrenfeucht, R. Parikh, and G. Rozenberg. Pumping lemmas for regular sets.
SIAM Journal of Computing, 10(3):536–541, 1981.

[16] H. Fernau. Scattered context grammars with regulation. Annals of Bucharest
University, Mathematics-Informatics Series, 45(1):41–49, 1996.

[17] H. Fernau and A. Meduna. A simultaneous reduction of several measures of
descriptional complexity in scattered context grammars. Information Processing
Letters, 86(5):235–240, 2003.

[18] S. Ginsburg, S. A. Greibach, and M. Harrison. One-way stack automata. Journal of
the ACM, 14(2):389–418, 1967.

[19] S. Ginsburg and E. Spanier. Finite-turn pushdown automata. SIAM Journal on
Control, 4:429–453, 1968.

[20] S. A. Greibach and J. E. Hopcroft. Scattered context grammars. Journal of
Computer and System Sciences, 3(3):233–247, 1969.

[21] P. Halmos. Naive Set Theory. Springer-Verlag, New York, US, 1974.

[22] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, 1979.

96

[23] J.M. Howie. Automata and Languages. Oxford University Press, Oxford, 1991.

[24] J. Jaffe. A necessary and sufficient pumping lemma for regular languages. SIGACT
News, pages 48–49, 1978.

[25] N.D. Jones.
”
a survey of formal language theory“. Technical Report, 3, 1966.

[26] N.D. Jones. A note on the index of a context-free language. Information and Control,
16:201–202, 1970.

[27] S.-Y. Kuroda. Classes of languages and linear-bounded automata. Information and
Control, 7:207–223, 1964.

[28] C. Martín-Vide, V. Mitrana, and G. Păun, editors. Formal Languages and
Applications, chapter 13, pages 249–274. Springer, Berlin, 2004.

[29] T. Masopust. Scattered context grammars can generate the powers of 2. In
Proceedings of the 13th Conference and Competition EEICT 2007, volume 4, pages
401–404. Faculty of Electrical Engineering and Communication, Brno University of
Technology, 2007.

[30] T. Masopust and A. Meduna. On descriptional complexity of partially parallel
grammars. Fundamenta Informaticae, 87(3):407–415, 2008.

[31] T. Masopust, A. Meduna, and J. Šimáček. Two power-decreasing derivation
restrictions in generalized scattered context grammars. Acta Cybernetica,
18(4):783–793, 2008.

[32] T. Masopust and J. Techet. Leftmost derivations of propagating scattered context
grammars: A new proof. Discrete Mathematics and Theoretical Computer Science,
10(2):39–46, 2008.

[33] A. Meduna. Scattered rewriting in the formal language theory. In Missourian Annual
Conference on Computing, pages 26–36, Columbia, US, 1991.

[34] A. Meduna. Symbiotic e0l systems. artificial life: Gramatical models. Bucharest,
pages 122–129, 1995.

[35] A. Meduna. Automata and Languages: Theory and Applications. Springer, London,
UK, 2000.

[36] A. Meduna. Terminating left-hand sides of scattered context grammars. Theoretical
Computer Science, 2000(237):424–427, 2000.

[37] A. Meduna. Descriptional complexity of scattered rewriting and multirewriting: An
overview. Journal of Automata, Languages and Combinatorics, 7(4):571–577, 2002.

[38] A. Meduna. Formal Languages and Computation: Models and Their Applications.
Taylor & Francis, New York, US, 2014.

[39] A. Meduna and J. Techet. Reduction of scattered context generators of sentences
preceded by their leftmost parses. In DCFS 2007 Proceedings, pages 178–185, High
Tatras, SK, 2007.

97

[40] A. Meduna and J. Techet. Scattered Context Grammars and their Applications. WIT
Press, 2010.

[41] A. Meduna and M. Švec. Grammars with Context Conditions and Their
Applications. Wiley, New Jersey, 2005.

[42] A. Meduna and P. Zemek. Regulated Grammars and Their Transformations. Faculty
of Information Technology, Brno University of Technology, Brno, CZ, 2010.

[43] A. Meduna and P. Zemek. Regulated Grammars and Automata. Springer US, 2014.

[44] D. Milgram and A. Rosenfeld. A note on scattered context grammars. Information
Processing Letters, 1:47–50, 1971.

[45] P. Odifreddi. Classical Recursion Theory, volume 2. Elsevier, 1999.

[46] E. L. Post. A variant of a recursively unsolvable problem. Bull. Amer. Math. Soc.,
52, 1946.

[47] G. Păun. On the index of grammars and languages. Information and Control,
35:259–266, 1977.

[48] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, Vol. 1:
Word, Language, Grammar. Springer, New York, 1997.

[49] A. Salomaa. On the index of a context-free grammar and language. Information and
Control, 14:474–477, 1969.

[50] A. Salomaa. Formal Languages. Academic Press, London, 1973.

[51] A. Salomaa. Computation and Automata. Cambridge Univeristy Press, Cambridge,
1985.

[52] J. Techet. A note on scattered context grammars with non-context-free components.
In 3rd Doctoral Workshop on Mathematical and Engineering Methods in Computer
Science, pages 225–232. Brno University of Technology, Brno, CZ, 2007.

[53] J. Techet. Scattered Context in Formal Languages. PhD thesis, Faculty of
Information Technology, Brno University of Technology, 2008.

[54] A. M. Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical Society,
42(2):230–265, 1936.

[55] G. Vaszil. On the descriptional complexity of some rewriting mechanisms regulated
by context conditions. Theoretical Computer Science, 330(2):361–373, 2005.

[56] V. Virkkunen. On scattered context grammars. Acta Universitatis Ouluensis,
20(6):75–82, 1973.

[57] D. Wood. Theory of Computation. Wiley, New York, 1987.

98

Appendix A

Publications

2017

1. A. Meduna and O. Soukup. Jumping Scattered Context Grammars. Fundamenta Informaticae.
Amsterdam: IOS Press, 2017, vol. 2017(152), 1-36. ISSN 0169-2968.

2016

2. A. Meduna and O. Soukup. Simple Matrix Grammars and Their Leftmost Variants. Interna-
tional Journal of Foundations of Computer Science. 2016, vol. 27(3), 359-373. ISSN 0129-0541.

2015

3. J. Kučera and A. Meduna and O. Soukup. Absolutely Unlimited Deep Pushdown Automata.
In: Proceedings of the 10th Doctoral Workshop on Mathematical and Engineering Methods in
Computer Science (MEMICS 2015). Telč: Litera, 2015, 36-44. ISBN 978-80-214-5254-1.

4. Meduna and O. Soukup. and P. Zemek. Ordered Pure Multi-Pushdown Automata. Theoretical
and Applied Informatics. Warsaw: 2015, vol. 27(1), 25-47. ISSN 1896-5334.

2014

5. A. Meduna and O. Soukup. Computational Completeness Resulting from Scattered Context
Grammars Working Under Various Derivation Modes. In: Proceedings of MEMICS’14. Brno:
NOVPRESS s.r.o., 2014, 89-100. ISBN 978-80-214-5022-6.

6. O. Soukup. Leftmost Simple Matrix Grammars. In: Sudent EEICT - Proceedings of the 20th
Conference. Brno: Brno University of Technology, 2014, 269-273. ISBN 978-80-214-4924-4.

99

	Introduction
	Languages and Their Models
	Languages
	Grammars
	Automata

	Graph-Based Representation of Derivation
	Graphs and Trees
	Derivation Trees

	Proof Techniques in Formal Language Theory
	Positive Proofs
	Negative Proofs

	Hierarchy of Language Families
	Tree-Restricted Grammars
	General Grammars
	Regular-Controlled Grammars
	Scattered Context Grammars
	Cooperating Distributed Grammar Systems

	How to Prove Context-Freeness
	Conclusion
	Publications

