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Abstract

This thesis introduces and studies four new language models with focus on regulation and
parallelism in automata and grammars. First, state-synchronized automata systems, present
systems consisting of a finite number of pushdown automata controlled by words of a
control language over a set of states. Second, unlimited deep pushdown automata, are
a modification of deep pushdown automata with no restrictions imposed on the depth of
expansion on the pushdown. Third, jumping pure grammars, introduces jumping grammars
with no nonterminal symbols. The last one, k#$-rewriting systems, extends #-rewriting
systems with additional pushdown memory.

The contents of this thesis are divided into three parts. The first part outlines the
motivation for introduction of the studied language models and puts them into the context
of related formal language theory areas. Furthermore, it gives an overview of the structure
of the thesis, reviews fundamental notions of formal language theory and gives a survey
of current knowledge related to the subject of research. The second part presents the core
of this thesis. Here, formal definitions of all newly introduced language models are given
and their expressive power is studied. Finally, this thesis is concluded with a summary of
achieved theoretical results as well as related open problem areas, and an outline of the
possibilities for further research along with a sketch of possible applications.
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Abstrakt

Tato práce zkoumá a zavádí čtyři nové jazykové modely se zaměřením na regulované
a paralelní verze automatů a gramatik. První z modelů, stavově synchronizované systémy
automatů, zavádí systémy složené z konečného počtu zásobníkových automatů jejichž
činnost je řízena slovy z řídícího jazyka nad množinou stavů. Druhý model, neomezené
hluboké zásobníkové automaty, je variantou hlubokých zásobníkových automatů z nichž
bylo sejmuto omezení kladené na hloubku expanze na zásobníku. Třetí model, skákající
čisté gramatiky, zavádí skákající gramatiky bez neterminálních symbolů. Poslední model,
k#$-přepisující systémy, rozšiřuje #-přepisující systémy o přídavnou zásobníkovou paměť.

Text této práce je členěn do tří částí. První část uvádí motivaci k zavedení studovaných
jazykových modelů a zasazuje je do kontextu souvisejících oblastí teorie formálních jazyků.
Je zde také uveden přehled o celkové organizaci práce, základních pojmů teorie formálních
jazyků a současných poznatků souvisejících s předmětem výzkumu. Druhá část tvoří
jádro této práce. Jsou v ní formálně definovány všechny nově zavedené jazykové modely
a studována jejich vyjadřovací síla. Poslední část uzavírá tuto práci souhrnem získaných
teoretických výsledků společně se souvisejícími otevřenými problémy a nastiňuje cesty
dalšího výzkumu spolu s výhledy na možná využití.
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matů, neomezené hluboké zásobníkové automaty, gramatiky, čisté gramatiky, skákající gra-
matiky, skákající čisté gramatiky, přepisování, paralelní přepisování, skákající přepisování,
přepisující systémy, #-přepisující systémy, k#$-přepisující systémy

Bibliografická Citace

KUČERA, Jiří. Nové Paralelní a Regulované Automaty a Gramatiky. Brno, 2021. Di-
sertační práce. Vysoké učení technické v Brně, Fakulta informačních technologií. Školitel
Meduna Alexander.



Rozšířený Abstrakt

Mezi nejčastější způsoby, kterými lze v teorii formálních jazyků formálně popsat jazyk,
patří gramatiky, automaty, a algebraický zápis. Gramatiky pracují na principu generování
slov daného jazyka z počátečního symbolu gramatiky postupnou aplikací daných pravidel.
Automaty, naproti tomu, pracují opačným způsobem. Automaty čtou vstupní slovo sym-
bol po symbolu na základě čehož mění svoji vnitřní konfiguraci. Slovo patří do jazyka
přijímaného automatem tehdy a jen tehdy došlo-li k přečtení všech symbolů slova na vstu-
pu a automat se nachází v koncovém stavu. Automaty a gramatiky jsou někdy souhrně
označovány jako přepisující systémy, neboť při jejich činnosti dochází k přepisování jejich
vnitřní konfigurace.

Dle Chomského klasifikace[9] lze rozdělit gramatiky do dvou skupin na gramatiky
s bezkontextovými pravidly a gramatiky s kontextovými pravidly. Výhodou gramatik
s bezkontextovými pravidly je jejich snadný a intuitivní způsob užití při definici jazyka,
nevýhodou pak slabší vyjadřovací síla. Gramatiky s kontextovými pravidly tímto ne-
dostatkem netrpí, ovšem za cenu jejich komplexnosti použití[88]. Vzhledem ke skutečnosti,
že svět není bezkontextový, teorie formálních jazyků se začala zabývat způsoby jak zvýšit
vyjadřovací sílu bezkontextových gramatik. Jedním z cílů, jak toho bylo dosaženo, bylo
zavedení tzv. regulovaného přepisování[21], kdy je aplikace pravidla podmíněna splněním
dotatečných požadavků, např. výskytem symbolů ve větné formě nebo předchozí ap-
likací jiného pravidla. Vyjadřovací sílu automatů a gramatik lze také ovlivnit jejich
seskupením[4, 7, 15, 18] do systémů. V takovém systému představují automaty a gra-
matiky tzv. komponenty, které spolu mohou navíc vzájemně komunikovat podle předem
daného protokolu.

Tato práce obohacuje teorii formálních jazyků o čtyři nové jazykové modely. Prvním
modelem jsou stavově synchronizované automatové systémy, publikované v [53]. Stavově
synchronizovaný automatový systém je definován jako systém složený obecně z n zá-
sobníkových automatů jako komponent a řídícího jazyka, jehož slova jsou utvořena ze
stavů jednotlivých komponent. Výpočetní krok lze v tomto systému provést tehdy a jen
tehdy, mohou-li všechny komponenty provést svůj výpočetní krok současně a zároveň
nachází-li se slovo utvořené z aktuálních stavů komponent v řídícím jazyce. Ve stavově
synchronizovaném automatovém systému je vstupní slovo čteno pouze první komponentou.

Druhým modelem jsou neomezené hluboké zásobníkové automaty. Jejich činnost je
založena na principu hlubokých zásobníkových automatů[68], ovšem s tím rozdílem, že
hloubka expanze symbolu na zásobníku není nijak omezena. V principu je tak možné ex-
pandovat libovolný symbol na zásobníku. Neomezené hluboké zásobníkové automaty jsou
prezentovány ve dvou variantách—absolutně neomezené hluboké zásobníkové automaty
a relativně neomezené hluboké zásobníkové automaty. U první varianty, publikované
v [54], dochází k expanzi prvního vhodného symbolu nejblíže vrcholu zásobníku. U druhé
varianty, dosud nepublikované, dochází k expanzi symbolu relativně od místa předchozí
expanze.

Třetí model, skákající čisté gramatiky, publikované v [49], jsou tvořeny čistými gra-
matikami nad nimiž jsou definovány čtyři derivační módy—klasický sekvenční, klasický
paralelní, skákající sekvenční a skákající paralelní. Skokem se v kontextu skákajících



gramatik rozumí vymazání levé části aplikovaného pravidla z větné formy a následným
zapsáním části pravé na libovolné místo v téže větné formě v rámci jednoho derivačního
kroku. Pojem paralelní potom označuje, že musejí být v rámci jednoho derivačního kroku
přepsány veškeré symboly větné formy současně.

Posledním modelem, publikovaným v [48], jsou k#$-přepisující systémy. Jedná se o #-
přepisující systémy[52] rozšířené o přídavnou zásobníkovou paměť oddělenou od konfigu-
race #-přepisujícího systému symbolem $. Nachází-li se nalevo od symbolu $ nedostatek
nebo nadbytek symbolů # takový, že nelze aplikovat žádné přepisovací pravidlo, dojde za
pomocí speciálních pravidel buď k přesunu dostatečného počtu neterminálů a jejich trans-
formaci na symboly # nebo k přesunu nadbytečného počtu symbolů # a jejich transformaci
na neterminály z/do zásobníkové paměti napravo od symbolu $.

U všech modelů byla v práci studována jejich vyjadřovací síla. Získané výsledky
jsou podloženy matematickými důkazy. Stavově synchronizované automatové systémy
a neomezené hluboké zásobníkové automaty jsou Turingovsky úplné. Skákající čisté gra-
matiky byly studovány s bezkontextovým tvarem pravidel. Použití rozdílných derivačních
módů u skákajících čistých gramatik vede k množství rozdílných rodin jazyků, jejichž
vztah je znázorněn na Obrázku 1. k#$-přepisující systémy mají stejnou vyjadřovací sílu
jako k-omezené stavové gramatiky. Mimo jiné bylo dokázáno, že rodina jazyků gene-
rovaných programovanými gramatikami indexu k je vlastní podmnožinou rodiny jazyků
generovaných k-omezenými stavovými gramatikami.
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Part I
Introduction and State of the Art

This part gives an introduction to this thesis. It puts the topic of the research into the
context of formal language theory, reviews the mathematical background to avoid possible
confusion, and gives a survey of related rewriting systems. The contents are organized into
three chapters.

Chapter 1, the introductory chapter of this thesis, briefly introduces formal language
theory with focus on regulated, cooperative, and parallel rewriting. It also explains the
motivation for introduction and examination of new language models presented in the
following part and outlines how the contents are organized.

Chapter 2 reviews notation and terminology used in the following chapters to make this
thesis self-contained. Specifically, it gives an overview of fundamental notions of formal
language theory with related mathematical background and reviews the language models
concerning the Chomsky hierarchy of language families.

Chapter 3 gives a survey of the current state of knowledge. It discusses rewriting systems
related to the topic of research, especially those utilizing regulated, cooperative, and parallel
rewriting. Emphasis is laid on how rewriting works in these systems, as well as what its
impact on their descriptive/expressive power is.



Chapter 1
Introduction

During the last decades, information technology has become an essential part of almost
every aspect of everyday life in modern human civilization. With the ability of information
exchange and processing, information technology plays a crucial role in research, industry,
health care, and many others areas. However, none of this would be possible without
intensive research in areas concerning information technology itself, mainly in mathematics,
physics, chemistry, and computer science. One of the areas that have a big impact on
information technology development is the formal language theory.

The formal language theory (see [86–88]) studies ways of expressing languages mathe-
matically along with their properties. It provides valuable tools that can be used everywhere
where a problem can be represented by a formal language, such as constructing a compiler
(see [3]), defining a protocol for information exchange, but also in biology and linguistic.
The most common methods used to define languages formally are grammars, automata,
and algebraic notation. In principle, grammars work as generative devices. A grammar
generates a language from its initial symbol by consecutive applications of rules. In con-
trast, automata are devices for language recognition. An automaton reads an input word
symbol by symbol, changing its state accordingly. If the automaton enters its final state
and all input symbols have been read, the input word belongs to the language recognized
by the automaton. Grammars and automata are sometimes commonly referred to as rewrit-
ing systems because when generating or recognizing a language, grammars and automata1
rewrite their inner state2.

Work on formal language theory started evolving when Noam Chomsky published his
two famous papers Three models for the description of language (see [9]) and On certain
formal properties of grammars (see [10]). In his work, Chomsky restricts the form of rules
of phrase-structured grammars, which led to the hierarchy of language families recently
known as the Chomsky hierarchy. The area of formal language theory that focuses only on
languages from the Chomsky hierarchy is referred as the classical formal language theory.

According to forms of their rules, grammars from the Chomsky hierarchy can be divided
into two groups: grammars with context-free rules and grammars with non-context-free
rules. Both types of grammars have both advantages and disadvantages. When using a

1 There are two ways of defining automata. The first one (see [31]) defines automata using a transition
function. The second one (see [66, 89]) defines automata similarly to grammars: instead of a transition
function, it uses a set of rules where both sides of a rule are sequences of symbols.
2 A sentential form for grammars and a configuration for automata.

2



1 Introduction 3

non-context-free rule, a sequence of symbols is rewritten; in the case of a context-free
rule it is just one symbol. This difference becomes evident when defining a language.
Non-context-free rules are not trivial to work with. Their left-hand sides must be designed
very carefully in order to ensure that the resulting grammar really generates the desired
language.

Context-free rules, on the other hand, can be used in a much more intuitive way but
their expressive power is relatively weak. Considering these facts, it is then no surprise that
finding new way of using grammars with context-free rules in ways that can generate non-
context-free languages has become a vivid research topic of the modern formal language
theory. The most known achievement in this area is regulated rewriting.

Regulated Rewriting

Regulated rewriting (see [21, 72]) studies rewriting systems extended with additional mech-
anism that control the way their rules are applied with the aim of improving their expressive
power. To demonstrate the principle on context-free grammars, when performing a deriva-
tion step, a rule can be applied only if its left-hand side matches a symbol in the current
sentential form; in case of more than one match, any of the matching symbols can be
rewritten. However, when context-free grammars are regulated, additional criteria must be
fulfilled. Such a criterion can be for instance a prescribed order of application of rules.
This can be achieved, for example, by organizing rules into sequences called matrices (see
[1]), by specifying successors to every rule (see [82], the original paper on programmed
grammars), or by specifying a pattern in which rules should be applied (see [5]). Another
criterion, used in random context grammars (see [95]), is the presence or absence of specific
symbols in sentential form.

Equipped with a mechanism that controls the application of rules, context-free grammars
are able to generate languages that are not context-free. Moreover, some regulated grammars
are capable of generating any recursively enumerable language (see [21, 72] for examples).

Besides regulated grammars, there also exist regulated automata, but research in this area
is not as intensive as in the case of regulated grammars. Some representatives of regulated
automata are regulated pushdown automata (see [43, 44]), self-regulating automata (see
[61, 62]), or jumping finite automata (see [71]).

Parallel and Cooperative Rewriting

Till now, only rewriting systems that work sequentially have been mentioned. In the real
world, however, most processes are done simultaneously. This can be seen in the growth of
red algae, which was the motivation behind L-systems (see [56, 57]). L-systems, which were
introduced in [56, 57], later started being referred to as 0L systems due to intensive research
in this area (see Chapter L Systems in [88]). In 0L systems, context-free rules are applied
to simultaneously rewrite every symbol in a sentential form during one rewriting step. As
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a consequence, 0L systems are capable of expressing languages that are not context-free;
however, there exist context-free languages that cannot be expressed by 0L systems.

Another trait of real-world processes is that besides being performed simultaneously, they
also communicate with their environment. Communication of entities that work together
to reach their common goal became the inspiration behind the introduction of grammar
and automata systems. Cooperating/distributed grammar systems (see [14]), for example,
were inspired by problem-solving method called the blackboard model. In these systems,
grammars are treated as agents that work on a shared sentential form (a blackboard). The
cooperation is reached via derivation modes which determine how long one agent can work
continuously on the sentential form.

Besides cooperative/distributive grammar systems, where only one grammar can actively
work on a sentential form during one derivation step, parallel communicating grammar
systems (see [91]) are worth mentioning. As opposed to cooperating/distributed grammar
systems, every grammar—called a component—works on its own sentential form. Com-
munication in these grammar systems is handled via query symbols – at some point during a
derivation, one of the components produces a special symbol that is subsequently replaced
by the sentential form of different component.

With their connection to many research areas, such as DNA computing, parallel comput-
ing or distributed computing, grammar and automata systems have become a vivid research
topic in the modern formal language theory (see [15]). Multi-generative grammar systems
(see [58]) are another significant result in this area. Grammars in these systems can be
synchronized by either rules3 or nonterminal symbols. An interesting property of multi-
generative grammar systems is that they generate n-languages—sets containing n-tuples of
words—which makes them suitable for practical tasks, e.g. compiling source program to
multiple targets in one step (see Chapter 7 in [58]).

Principles similar to the ones used in grammar systems have also been used in automata
systems. To list several examples, automata in distributed pushdown automata systems
(see [18]) use protocols for cooperation similar to grammars in cooperating/distributed
grammar systems; parallel communicating pushdown automata systems (see [17]) and
parallel communicating finite automata systems (see [60]) use query pushdown symbols
and query states, respectively, and n-accepting restricted automata systems (see [6]) were
introduced as a counterpart to multi-generative grammar systems.

This list of grammar and automata systems is not comprehensive. There exist other types
of grammar and automata systems, such as grammar and automata systems with teams (see
[4, 34]).

Motivation

The aim of research behind this thesis was to establish new language models with a focus on
parallel and regulated rewriting and investigate their expressive power with respect to the

3 A similar approach can be noticed also in scattered context grammars (see [28]), where rules are ordered
into tuples and it is then possible to transmit information between separated parts of the sentential form.
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Chomsky hierarchy of languages. More precisely, this thesis presents four new language
models:

I. State-synchronized automata systems, published in [53], are systems consisting gen-
erally of n pushdown automata. The communication between automata is done via
their states. The idea of using states in the communication process between automata
in automata systems has been examined before (see e.g. [6, 60]); however, in state-
synchronized automata systems states are used in a more elegant and natural way. In
state-synchronized automata systems, the synchronization is handled by finite control
language containing words formed from states of specific automata. A computation
step can be performed if and only if all automata can make their moves simultaneously
and their states form a word of control language.

II. Unlimited deep pushdown automata are a modification of deep pushdown automata.
Deep pushdown automata (see [68]) allow expansion of pushdown symbols deeper
on their pushdown, but the depth of expansion is limited. As a result, they are
able to accept languages that are not context-free, but not every context-sensitive
language. It is natural to modify deep pushdown automata by not imposing a limit
on the depth of expansion. Unlimited deep pushdown automata are presented in
two variants: absolutely unlimited deep pushdown automata, published in [54], and
relatively unlimited deep pushdown automata (not yet published). The main difference
between them is the way the pushdown symbol that should be expanded is chosen.
Absolutely unlimited deep pushdown automata expand the first suitable pushdown
symbol at any depth. Relatively unlimited deep pushdown automata keep the position
on the pushdown as a part of their configuration. A pushdown symbol is expanded
relatively to this position and the position is updated.

III. Jumping pure grammars, published in [49], work like jumping grammars (see [51])
while being based on pure grammars (see [26, 63, 89]). As jumping versions of
automata and grammars became a vivid topic in the modern formal language theory
(see [8, 22, 23, 40, 42, 51, 69, 71]), it is natural to contribute to this topic by introducing
the jumping versions of pure grammars. Jumping pure grammars were studied with
four modes of derivations: classical sequential, classical jumping, parallel sequential,
and parallel jumping.

IV. k#$-rewriting systems, published in [48], extend #-rewriting systems (see [52]) with
additional pushdown-like storage. As shown in Section 4 in [52], the language family
generated by #-rewriting systems of index k coincides with the language family
generated by programmed grammars of the same index. The motivation behind the
idea of introducing k#$-rewriting systems was twofold: (a) to prove the conjecture
that #-rewriting systems of index k extended with additional pushdown-like storage
generate the language family which coincides with the language family generated by
k-limited state grammars and (b) to show that if the conjecture from (a) holds the
language family generated by programmed grammars of index k is a proper subset of
the language family generated by k-limited state grammars.
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Organization

After the introduction given in this chapter, Chapter 2 reviews fundamental mathematical
terms and notation used in this thesis to eliminate the risk of confusion. Chapter 3 discusses
rewriting systems studied so far related to the subject of research carried out within this
thesis.

Starting with Chapter 4, the following four chapters present the core of this thesis.
Chapter 4 defines state-synchronized automata systems and studies their language properties
with respect to the type of their components. Chapter 5 defines and studies absolutely and
relatively unlimited deep pushdown automata. In Chapter 6, jumping pure grammars are
defined and examined. Finally, k#$-rewriting systems are defined and examined in Chapter
7. All four chapters also demonstrate defined formal models by showing examples and give
formal proof of all stated theorems.

Finally, Chapter 8 concludes this thesis by summarizing achieved theoretical results,
together with open problem areas, and outlines the possibilities for further research along
with a sketch of possible applications.



Chapter 2
Mathematical Background

The aim of this chapter is to review fundamental terminology concerning formal language
theory and related mathematical notation used throughout this thesis and thus to minimize
the risk of possible confusion.

This chapter is divided into four sections. Section 2.1 reviews basic notions from set
theory and algebra. Section 2.2 gives the survey of definitions of fundamental elements of
formal language theory, especially word, language, and operations on them. Finally, the
last two sections, Section 2.3 and Section 2.4, summarize essential types of grammars and
automata along with their expressive power.

The content of this chapter is based on [29, 66, 88, 92].

2.1 Sets and Relations

A set P is a collection of mutually distinct elements taken from some prespecified universe
U. For an element a, a ∈ P denotes that a is a member of P. Analogously, a /∈ P denotes
that a is not a member of P. The number of members in P, the cardinality of P, is denoted
by card(P). P is said to be finite if its cardinality is a nonnegative integer. Otherwise, P is
said to be infinite. The set that has no members, the empty set, is denoted by ∅.

Sets can be characterized by enumerating their elements. For example, {a, b, c} charac-
terizes a set with three elements a, b, and c. Whenever the meaning is clear, ellipsis can
be used. Thus, a set of all octal digits can be written as {0, 1, . . . , 7}. Frequently, a set P
can be characterized by stating that P contains all elements from the universe U that fulfill
some property π. This is formally expressed as

P = {a | π(a)}

The set of all positive and the set of all nonnegative integers are denoted by N and N0,
respectively.

For two sets P and Q, P ∪ Q, P ∩ Q, and P − Q denote the union, intersection, and
difference of sets P and Q, respectively. By P ⊆ Q, it is denoted that P is a subset of Q.
Moreover, if P , Q, P is said to be a proper subset of Q, written as P ⊂ Q. Two sets P and
Q are said to be incomparable if P * Q and Q * P. The power set of P, 2P, is defined as
2P = {X | X ⊆ P}. Sets whose members are other sets are called families of sets rather
than sets of sets.

7
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Let n ≥ 1 and let a1, a2, . . . , an be n elements. Then (a1, a2, . . . , an) denotes the ordered
n-tuple consisting of n elements a1, a2, . . . , an in this order. In further text, terms pairs,
triples, quadruples, quintuples, sextuples, and septuples will be used rather than 2-tuples,
3-tuples, 4-tuples, 5-tuples, 6-tuples, and 7-tuples, respectively.

Let n be a positive integer and let A1,A2, . . . ,An be n sets. The Cartesian product of n
sets A1,A2, . . . ,An, denoted A1 × A2 × · · · × An, is defined as a set

A1 × A2 × · · · × An = {(x1, x2, . . . , xn) | xi ∈ Ai, 1 ≤ i ≤ n}

of ordered n-tuples. If A1 = A2 = · · · = An = A, the Cartesian product of n sets
A1,A2, . . . ,An will be shortly denoted4 as Cn(A).

Let P and Q be two sets and let ρ ⊆ P × Q. Then, ρ is said to be a binary relation, or
just a relation5 for short, from P to Q. Usually, (p, q) ∈ ρ is written in more convenient
way as pρq. If P = Q, then ρ is said to be a relation on P or a relation over P. The inverse
relation of ρ, ρ−1, is defined as ρ−1 = {(y, x) | xρy}.

The domain of ρ, domain(ρ), and the range of ρ, range(ρ), are defined as

domain(ρ) = {x | xρy, y ∈ Q}

and
range(ρ) = {y | xρy, x ∈ P}

respectively.
For a set P, a relation ρ over P is said to be

(a) reflexive if for every x ∈ P, xρx;

(b) antisymmetric if for every x, y ∈ P, xρy and yρx implies x = y;

(c) transitive if for every x, y, z ∈ P, xρy and yρz implies xρz.

If ρ is a relation over P that is reflexive, antisymmetric, and transitive, then ρ is said to be a
partial order on P and the pair (P, ρ) is said to be a partially ordered set.

Let A be a set. The identity relation over A, idA, is defined as

idA = {(x, x) | x ∈ A}

For two relations ρ and σ over A,

ρ ∘ σ = {(x, z) | xρy, yσz; x, y, z ∈ A}

is the composition of ρ and σ. For k ≥ 0, the k-fold product of ρ, ρk , is recursively defined
as follows

ρ
k =

{︃
idA for k = 0
ρ ∘ ρk−1 for k ≥ 1

4 To not confuse with the nth power of a language L, which is denoted Ln.
5 In further text, no relations other than binary are used.
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The transitive closure of ρ, ρ+, and the reflexive and transitive closure of ρ, ρ*, are defined
as

ρ
+ =

∞⋃︁
i=1
ρ

i and ρ
* =

∞⋃︁
i=0
ρ

i

respectively.
Let (P,≤) be a partially ordered set and let S ⊆ P. An element l ∈ P is a minimum—or

least—element in P, denoted min P, if and only if p ∈ P implies l ≤ p. An element x ∈ P
is an upper bound for S if and only if for every a ∈ S, a ≤ x. If x is a least element of all
upper bounds of S, then x is called the supremum of S, denoted by sup S.

Similarly, an element m ∈ P is a maximum—or greatest—element in P, denoted max P,
if and only if p ∈ P implies p ≤ m. An element x ∈ P is a lower bound for S if and only if
for every a ∈ S, x ≤ a. If x is a greatest element of all lower bounds of S, then x is called
the infimum of S, denoted by inf S.

Let A and B be two sets. A function (mapping) φ from A to B is a relation φ ∈ A × B
such that for every a ∈ A

card({b | aφb, b ∈ B}) ≤ 1

If domain(φ) = A, φ is said to be total. Otherwise, φ is partial. In case of functions, a
preferred way to express that (x, y) ∈ φ is φ(x) = y instead of xφy.
φ is an injection if for every y ∈ B, card({x | φ(x) = y, x ∈ A}) ≤ 1. φ is a surjection

if for every y ∈ B, card({x | φ(x) = y, x ∈ A}) ≥ 1. φ is a bijection if it is both injection
and surjection.

Let S be a finite set and let I = {1, 2, . . . , card(S)} be a set of indices. Then, the set of
all permutations of elements of S, perm(S), is a set of all bijections from I to S.

Let n ≥ 1. A set J ⊆ Cn(N0) is said to be linear if there exist α, β1, β2, . . . , βm ∈ Cn(N0),
m ≥ 0 such that

J = {α +
m∑︁

i=1
kiβi | k j ∈ N0, 1 ≤ j ≤ m}

If J is the union of a finite number of linear sets, then J is said to be semilinear.

2.2 Words and Languages

An alphabet Σ is a finite nonempty set of elements, called symbols. A word over Σ is
recursively defined as follows: (1) the word that contains no symbols, the empty word,
denoted by ε, is a word over Σ; (2) for every word w over Σ and for every symbol a ∈ Σ,
wa is a word over Σ. The set of all words over Σ is denoted as Σ*. Σ+ = Σ* − {ε} denotes
a set of all non-empty words over Σ.

Given a word x = a1a2 . . . ak from Σ*, ai ∈ Σ, 1 ≤ i ≤ k. Then the length of x, |x|,
is defined as |x| = k. For ε, |ε| = 0. If x and y are two words from Σ*, then xy is the
concatenation of x and y.

Let i ≥ 0 and let x ∈ Σ*. The ith power of x, xi, is defined recursively as follows

xi =

{︃
ε for i = 0
xxi−1 for i ≥ 1
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Let w ∈ Σ*. If w = uv for some u, v ∈ Σ*, then u is said to be a prefix of w and v is said
to be a suffix of w. If u /∈ {ε,w}, then u is said to be a proper prefix of w. Similarly, if
v /∈ {ε,w}, then v is said to be a proper suffix of w. If w = uzv for some u, z, v ∈ Σ*, then
z is said to be a subword of w. If z /∈ {ε,w}, then z is said to be a proper subword of w.
prefix(w), suffix(w), and subword(w) denote sets of all prefixes, suffixes, and subwords of
w, respectively. The set of all symbols that appear in w is denoted alph(w), formally

alph(w) = {a | w = uav, a ∈ Σ, u, v ∈ Σ
*}

For a ∈ Σ, Oa(w) denotes the number of occurrences of a in w, formally

Oa(w) = card({u | w = uav, u, v ∈ Σ
*})

For W ⊆ Σ, the number of occurrences of symbols from W in w, OW(w), is defined as

OW(w) =
∑︁
a∈W

Oa(w)

Let k ≥ 0. Then

kprefix(w, k) =
{︃

u if w = uv, |u| = k, u, v ∈ Σ*

w otherwise

A language, L, over an alphabet Σ is a subset of Σ*, formally L ⊆ Σ*. If L = Σ*, then L
is said to be the universal language over Σ.

It is obvious that properties and operations that are applicable on sets are also applicable
on languages. Therefore, a language can be finite, infinite, or empty. In addition to set
theory operations like union, intersection, and difference, there are also operations that can
be performed only with languages. Such an operation is concatenation of languages. For
two languages L1 and L2 over an alphabet Σ, the concatenation of L1 and L2, L1L2, is
defined as

L1L2 = {xy | x ∈ L1, y ∈ L2}

For some i ≥ 0, the ith power of language L, Li, is recursively defined as

Li =

{︃
{ε} for i = 0
LLi−1 for i ≥ 1

The (Kleene) closure of L, L*, and the positive closure of L, L+, are defined as

L* =
∞⋃︁
i=0

Li and L+ =
∞⋃︁
i=1

Li

respectively.
Analogously to set theory, sets whose members are languages are called families of

languages. A language family L is said to be ε-free if for every L ∈ L , ε /∈ L.
A language L over an alphabet Σ is said to be a prefix language if and only if for every

pair of words u, v ∈ L it holds that u is not a proper prefix of v. The family of all prefix
languages will be denoted as Lpfx.
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Let Σ = {a1, a2, . . . , an} be an alphabet. For w ∈ Σ*, the commutative (Parikh) image
of w, φ(w), is defined as

φ(w) = (Oa1(w),Oa2(w), . . . ,Oan(w))

For L ⊆ Σ*, the commutative (Parikh) map of L, φ(L), is defined as

φ(L) = {φ(w) | w ∈ L}

L is said to be a semilinear if and only if φ(L) is a semilinear set. A language family is
semilinear if and only if it contains only semilinear languages.

Let Σ and ∆ be two alphabets. A mapping h from Σ* to ∆* is called a morphism if for
every x, y ∈ Σ* it holds that h(xy) = h(x)h(y). For L ⊆ Σ*, extend the definition of h to
h(L) = {h(w) | w ∈ L}.

Let k ∈ N0 and let Σ and ∆ be two alphabets. For some L ⊆ Σ*, a morphism h from Σ*

to ∆* is said to be k-erasing if and only if w ∈ L implies |w| ≤ k|h(w)|.
Let L be a family of languages. L is closed under linear erasing if and only if

h(L) ∈ L for all L ∈ L and for all k-erasing morphisms h, k ≥ 0.

2.3 Grammars

This section defines devices for generating languages called grammars. In formal language
theory, grammars play an important role as language models.

Definition 2.3.1. A general unrestricted grammar (abbreviated GUG), G, is a quadruple
G = (V,T, P, σ), where

∙ V is a total alphabet;

∙ T ⊆ V is an alphabet of terminal symbols;

∙ P ⊆ V+ × V* is a finite set of rewriting rules;

∙ σ ∈ V+ is the axiom.

Symbols from (V − T) are called nonterminal symbols.
If P ⊆ V*(V − T)V* × V* and σ ∈ (V − T), then G is said to be an unrestricted, or
phrase-structure, grammar, abbreviated UG. In this case, σ is instead labeled as S and is
called the start symbol.
Moreover, if V = T, then G is said to be a pure grammar (see [63]), abbreviated PG. In this
case, G = (V,T, P, σ) is shortened to G = (T, P, σ).
A rewriting rule, or just a rule for brevity, (x, y) ∈ P is usually written as x → y. Rewriting
rules are sometimes called productions. A rule x → y ∈ P satisfying y = ε is said to be
an erasing rule. If for every rule x → y from P it holds that y , ε, then G is said to be
propagating.
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The G-based relation of direct derivation, ⇒G, over V* is defined as follows: uxv ⇒G uyv
if and only if x → y ∈ P, where u, v, x, y ∈ V*. For k ≥ 0, ⇒k

G denotes the k-fold
product of ⇒G; ⇒+G denotes the transitive closure of ⇒G, and ⇒*

G denotes the reflexive
and transitive closure of ⇒G. If u ⇒*

G v for some u, v ∈ V*, then u ⇒*
G v is said to be a

derivation of v from u. When no confusion exists, u ⇒*
G v can be shortened to u ⇒* v. A

word x ∈ V* is called a sentential form if and only if σ ⇒*
G x.

The language generated by G, L(G), is defined as

L(G) = {w | σ ⇒*
G w,w ∈ T*}

Observe that from the definition of k-fold product, ⇒0
G = idV* , and hence u ⇒0

G v if
and only if u = v.

Sometimes it is useful to label rule x → y with a unique label, r , as r : x → y.

Definition 2.3.2. Let G = (V,T, P, σ) be a general unrestricted grammar. Let Ψ be a set of
rule labels such that card(Ψ) = card(P), and ψ be a bijection from Ψ to P that maps labels
to rules. For a rule x → y ∈ P and a label r ∈ Ψ, r : x → y symbolizes ψ(r) = x → y. For
brevity, to express that r ∈ Ψ, x → y ∈ P, and ψ(r) = x → y, the notation r : x → y ∈ P
is used. In terms of variables and values, Ψ can be considered a set of variables and ψ as
evaluation function that maps variables (rule labels) to their values (rules). Rule labels and
rules can then be treated equivalently.
For a rule r : x → y ∈ P, x is the left-hand side of r , denoted as lhs(r), and y is the
right-hand side of r , denoted as rhs(r).
Let n ≥ 0. Let u0 ⇒n

G un be a derivation and πn ∈ P* be a sequence of rules such that
u0, un ∈ V*, π0 = ε and if n ≥ 1, then ui−1 ⇒G ui, where ui−1 = zi lhs(ri)z′i , ui = zi rhs(ri)z′i ,
πi = πi−1ri, ri ∈ P, and zi, z′i ∈ V*, for all 1 ≤ i ≤ n. The derivation u0 ⇒n

G un according
to πn is then expressed as u0 ⇒n

G un [πn]. Depending on the value of n, u0 ⇒n
G un [πn] can

mean u0 ⇒G un [πn], u0 ⇒*
G un [πn], or u0 ⇒+G un [πn]. For a word w ∈ L(G) such that

σ ⇒*
G w [π], π is called a parse, or Szilard word, of w.

The family of languages generated by unrestricted grammars coincides with the family
of recursively enumerable languages, denoted as RE. Formally,

RE = {L(G) | G is an unrestricted grammar}

In connection with recursively enumerable languages, Alonzo Church (see [11]) made
the statement later known as Church’s Thesis. According to Church’s Thesis, a language L is
recursively enumerable if and only if there exists an effective procedure that characterizes it.
Church’s Thesis cannot be proven because there is no a formal definition of what should be
considered as an effective procedure. In general, the term effective procedure is understood
as any method for solving problems intuitively considered as algorithmically solvable.
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Chomsky Hierarchy of Language Families

The generative capacity of unrestricted grammars can be reduced by restricting the form
of the rules. The Chomsky classification of grammars (see [9, 10]) is based on such
restrictions.

Definition 2.3.3. Let G = (V,T, P, S) be an unrestricted grammar.

∙ If every rule x → y ∈ (P − {S → ε}) is of the form

x = uAv, y = uzv

where A ∈ (V − T), z ∈ V+, u, v ∈ V*, and S → ε ∈ P implies that S /∈ alph(y),
then G is said to be a context-sensitive grammar (abbreviated CSG). The language
generated by context-sensitive grammar is called a context-sensitive language. The
family of context-sensitive languages is denoted as CS.

∙ If every rule from P is of the form A → x, where A ∈ (V − T), x ∈ V*, then G
is said to be a context-free grammar (abbreviated CFG). The language generated by
context-free grammar is called a context-free language. The family of context-free
languages is denoted as CF.

∙ If every rule from P is of the form A → xBy or A → x, where A,B ∈ (V − T),
x, y ∈ T*, then G is said to be a linear grammar (abbreviated LG). The language
generated by linear grammar is called a linear language. The family of linear languages
is denoted as LIN.

∙ If every rule from P is of the form A → xB or A → x, where A,B ∈ (V−T), x ∈ T*,
then G is said to be a right-linear grammar (abbreviated RLG). Moreover, if every
rule from (P − {S → ε}) is of the form A → aB or A → a, where A,B ∈ (V − T),
a ∈ T, and S → ε ∈ P implies that B , S, then G is said to be a regular grammar
(abbreviated RG). The language generated by a right-linear and a regular grammar is
called a right-linear and a regular language, respectively. The family of right-linear
languages and the family of regular languages coincide and are denoted as REG.

The following theorem represents the Chomsky hierarchy of language families.

Theorem 2.3.4.
REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE

Proof. See [66].

An important subfamily of context-free languages are the Dyck languages. Let n ≥ 1
and Σn = {ai, bi | 1 ≤ i ≤ n}. The Dyck language Dn over Σn is generated by the grammar

({S} ∪ Σn, Σn, {S → SS, S → ε} ∪ {S → aiSbi | 1 ≤ i ≤ n}, S)
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2.4 Automata

While grammars work as language generators, automata work as language recognizers. In
general, given a word, w, and an automaton, M, w belongs to the language recognized by M
if and only if M enters the final configuration after reading all symbols of w. This section
recalls definitions of several fundamental types of automata.

Definition 2.4.1. A finite automaton (abbreviated FA), M, is a quintuple M = (Q, Σ,R, s, F),
where

∙ Q is a finite set of states;

∙ Σ is an input alphabet, Q ∩ Σ = ∅;

∙ R ⊆ Q(Σ ∪ {ε}) × Q is a finite set of rules;

∙ s ∈ Q is the initial state;

∙ F ⊆ Q is a set of final states.

A rule (pa, q) ∈ R is usually written as pa → q. M is said to be a deterministic finite
automaton (abbreviated dFA) if and only if R ⊆ QΣ × Q and for every rule r ∈ R, it holds

card({r ′ | r ′ ∈ R, lhs(r ′) = lhs(r)}) ≤ 1

A configuration of M is a word from QΣ*.
The M-based relation of direct move, ⊢M, over QΣ* is defined as follows: paw ⊢M qw if
and only if pa → q ∈ R, p, q ∈ Q, a ∈ (Σ ∪ {ε}), and w ∈ Σ*. As usual, for k ≥ 0, ⊢k

M
denotes the k-fold product of ⊢M; ⊢*

M denotes the reflexive and transitive closure of ⊢M,
and ⊢+M denotes the transitive closure of ⊢M. If χ ⊢*

M χ′ for some configurations χ and χ′ of
M, then χ ⊢*

M χ′ is said to be a move from χ to χ′. When no confusion exists, χ ⊢*
M χ′ can

be shortened to χ ⊢* χ′.
The language accepted by M, L(M), is defined as

L(M) = {w | sw ⊢*
M f ,w ∈ Σ

*, f ∈ F}

L (FA) and L (dFA) denote the family of languages accepted by finite automata and the
family of languages accepted by deterministic finite automata, respectively.

Notions defined in Definition 2.3.2 can also be extended to finite and other kinds
of automata. Thus, if M is an arbitrary automaton, n ∈ N0, and χ0 and χn are two
configurations of M, then χ0 ⊢n

M χn [πn] denotes the move from χ0 to χn according to πn.
If w is a word over M’s input alphabet that is contained in χ0 and χn is a final configuration
of M, then πn is a parse of w.

Theorem 2.4.2.
L (FA) = L (dFA) = REG
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Proof. See [66].

Definition 2.4.3. A pushdown automaton (abbreviated PDA), M, is a septuple M =

(Q, Σ, Γ,R, s, S, F), where

∙ Q is a finite set of states;

∙ Σ is an input alphabet;

∙ Γ is a pushdown alphabet, Q, Σ and Γ are pairwise disjoint;

∙ R ⊆ ΓQ(Σ ∪ {ε}) × Γ*Q is a finite set of rules;

∙ s ∈ Q is the initial state;

∙ S ∈ Γ is the initial pushdown symbol;

∙ F ⊆ Q is a set of final states.

A rule (Apa, xq) ∈ R is usually written as Apa → xq. M is said to be a deterministic
pushdown automaton (abbreviated dPDA) if and only if for every rule r ∈ R, it holds that

card({r ′ | r ′ ∈ R, lhs(r ′) ∈ prefix(lhs(r))}) ≤ 1

A configuration of M is a word from Γ*QΣ*.
The M-based relation of direct move, ⊢M, over Γ*QΣ* is defined as follows: uApaw ⊢M
uxqw if and only if Apa → xq ∈ R, A ∈ Γ, u, x ∈ Γ*, p, q ∈ Q, a ∈ (Σ∪{ε}), and w ∈ Σ*.
As usual, for k ≥ 0, ⊢k

M denotes the k-fold product of ⊢M; ⊢*
M denotes the reflexive and

transitive closure of ⊢M, and ⊢+M denotes the transitive closure of ⊢M. If χ ⊢*
M χ′ for some

configurations χ and χ′ of M, then χ ⊢*
M χ′ is said to be a move from χ to χ′. When no

confusion exists, χ ⊢*
M χ′ can be shortened to χ ⊢* χ′.

There are three types of languages accepted by M:

(a) the language accepted by M by final state, L(M) f , defined as

L(M) f = {w | Ssw ⊢*
M γ f ,w ∈ Σ

*, γ ∈ Γ
*, f ∈ F}

(b) the language accepted by M by empty pushdown, L(M)ε, defined as

L(M)ε = {w | Ssw ⊢*
M q,w ∈ Σ

*, q ∈ Q}

(c) the language accepted by M by final state and empty pushdown, L(M) f ε, defined as

L(M) f ε = {w | Ssw ⊢*
M f ,w ∈ Σ

*, f ∈ F}

L (PDA) f , L (PDA)ε, and L (PDA) f ε denote the family of languages accepted by push-
down automata by final state, the family of languages accepted by pushdown automata
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by empty pushdown, and the family of languages accepted by pushdown automata by fi-
nal state and empty pushdown, respectively. Analogously, L (dPDA) f , L (dPDA)ε, and
L (dPDA) f ε denote the family of languages accepted by deterministic pushdown automata
by final state, the family of languages accepted by deterministic pushdown automata by
empty pushdown, and the family of languages accepted by deterministic pushdown automata
by final state and empty pushdown, respectively.

Theorem 2.4.4. Following identities and inclusions hold:

(a) L (PDA) f = L (PDA)ε = L (PDA) f ε = CF

(b) REG ⊂ L (dPDA) f ⊂ CF

(c) L (dPDA)ε = L (dPDA) f ε = (L (dPDA) f ∩ Lpfx)

Proof. See [66, 88].

The L (dPDA) f language family coincides with the family of languages called de-
terministic context-free languages. The (L (dPDA) f ∩ Lpfx) language family is called
the family of deterministic-prefix context-free languages. Observe that contrary to PDA,
L (dPDA)ε ⊂ L (dPDA) f . To demonstrate this, consider a deterministic context-free lan-
guage L that is not a prefix language, e.g. L = {a, aa}, and a dPDA M such that L(M) f = L.
Clearly, there is no way how to convert M to dPDA M′ such that L(M)ε = L because when
M′ reads a, it is not possible to decide whether to read the next symbol a or empty the
pushdown in a deterministic way.

Definition 2.4.5. Let M = (Q, Σ, Γ,R, s, S, F) be a PDA. For q1, q2, q3 ∈ Q, γ1, γ2, γ3 ∈ Γ*,
and w1,w2,w3 ∈ Σ*, a move γ1q1w1 ⊢ γ2q2w2 ⊢ γ3q3w3 is said to be a turn if |γ1| ≤ |γ2|
and |γ2| > |γ3|. Let α, β, χ, χ′ be four configurations of M and let α ⊢* β and χ ⊢* χ′ be two
moves. Then χ ⊢* χ′ is said to be included, or contained, in α ⊢* β if α ⊢* χ ⊢* χ′ ⊢* β.
M is said to be a one-turn PDA (abbreviated 1t-PDA) if for all w ∈ Σ*, every move from
Ssw includes at most one turn. Analogously to PDA, L (1t-PDA) f , L (1t-PDA)ε, and
L (1t-PDA) f ε denote language families accepted by one-turn PDA by final state, empty
pushdown, and by final state and empty pushdown, respectively.

Theorem 2.4.6. Let X ∈ { f , ε, f ε}. Then, L (1t-PDA)X = LIN.

Proof. See [88].

Definition 2.4.7. A two-pushdown automaton (abbreviated 2PDA), M, is an 8-tuple M =
(Q, Σ, Γ,R, s, S1, S2, F), where

∙ Q is a finite set of states;

∙ Σ is an input alphabet;

∙ Γ is a pushdown alphabet, Q, Σ, and Γ are pairwise disjoint;
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∙ R ⊆ Γ{#}ΓQ(Σ ∪ {ε}) × Γ*{#}Γ*Q is a finite set of rules, # /∈ (Q ∪ Σ ∪ Γ);

∙ s ∈ Q is the initial state;

∙ S1 ∈ Γ is the initial symbol on pushdown 1;

∙ S2 ∈ Γ is the initial symbol on pushdown 2;

∙ F ⊆ Q is a set of final states.

A rule (A#Bpa, x#yq) ∈ R is usually written as A#Bpa → x#yq. M is said to be a
deterministic two-pushdown automaton (abbreviated d2PDA) if and only if for every rule
r ∈ R, it holds that

card({r ′ | r ′ ∈ R, lhs(r ′) ∈ prefix(lhs(r))}) ≤ 1

A configuration of M is a word from Γ*{#}Γ*QΣ*.
The M-based relation of direct move, ⊢M, over Γ*{#}Γ*QΣ* is defined as follows:

uA#vBpaw ⊢M ux#vyqw if and only if A#Bpa → x#yq ∈ R

where A,B ∈ Γ, u, v, x, y ∈ Γ*, p, q ∈ Q, a ∈ (Σ ∪ {ε}), and w ∈ Σ*. As usual, for k ≥ 0,
⊢k

M denotes the k-fold product of ⊢M; ⊢*
M denotes the reflexive and transitive closure of

⊢M, and ⊢+M denotes the transitive closure of ⊢M. If χ ⊢*
M χ′ for some configurations χ and

χ′ of M, then χ ⊢*
M χ′ is said to be a move from χ to χ′. When no confusion exists, χ ⊢*

M χ′

can be shortened to χ ⊢* χ′.
There are three types of languages accepted by M:

(a) the language accepted by M by final state, L(M) f , defined as

L(M) f = {w | S1#S2sw ⊢*
M γ1#γ2 f ,w ∈ Σ

*, γ1, γ2 ∈ Γ
*, f ∈ F}

(b) the language accepted by M by empty pushdown, L(M)ε, defined as

L(M)ε = {w | S1#S2sw ⊢*
M #q,w ∈ Σ

*, q ∈ Q}

(c) the language accepted by M by final state and empty pushdown, L(M) f ε, defined as

L(M) f ε = {w | S1#S2sw ⊢*
M # f ,w ∈ Σ

*, f ∈ F}

L (2PDA) f , L (2PDA)ε, and L (2PDA) f ε denote the family of languages accepted by
two-pushdown automata by final state, the family of languages accepted by two-pushdown
automata by empty pushdown, and the family of languages accepted by two-pushdown
automata by final state and empty pushdown, respectively. Analogously, L (d2PDA) f ,
L (d2PDA)ε, and L (d2PDA) f ε denote the family of languages accepted by deterministic
two-pushdown automata by final state, the family of languages accepted by deterministic
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two-pushdown automata by empty pushdown, and the family of languages accepted by
deterministic two-pushdown automata by final state and empty pushdown, respectively.

Definition 2.4.8. Let M = (Q, Σ, Γ,R, s, S1, S2, F) be a two-pushdown automaton. For
x1, x2, y1, y2, z1, z2 ∈ Γ*, o, p, q ∈ Q, a, b ∈ (Σ ∪ {ε}), and w ∈ Σ*, let T denote a move

x1#x2oabw ⊢ y1#y2pbw ⊢ z1#z2qw

If for some i ∈ {1, 2}, it holds that |xi| ≤ |yi| and |yi| > |zi|, then T is said to be a turn. If for
all i ∈ {1, 2}, it holds that |xi| ≤ |yi| and |yi| > |zi|, then T is said to be a simultaneous turn.
M is said to be a simultaneously one-turn 2PDA (abbreviated s1t-2PDA) if for all w ∈ Σ*,
every move from S1#S2sw either includes no turn or includes one simultaneous turn. Anal-
ogously to 2PDA, L (s1t-2PDA) f , L (s1t-2PDA)ε, and L (s1t-2PDA) f ε denote language
families accepted by simultaneously one-turn 2PDA by final state, empty pushdown, and
by final state and empty pushdown, respectively.

Theorem 2.4.9. Let X ∈ {2PDA, d2PDA, s1t-2PDA} and Y ∈ { f , ε, f ε}. Then, L (X)Y =
RE.

Proof. See [66, 67].

Last, recall a definition of Turing machine and linear bounded automaton that will be
used in proofs appearing later in this thesis.

Definition 2.4.10. A Turing machine (abbreviated TM), M, is a septuple

M = (Q, Σ, Γ,∆,R, s, F)

where

∙ Q is a finite set of states;

∙ Σ is an input alphabet;

∙ Γ is a tape alphabet, Γ ∩ Q = ∅, Σ ⊂ Γ;

∙ ∆ ∈ (Γ − Σ) is the blank symbol;

∙ R ⊆ Q × Γ × Q × Γ × {dL, dR} is a finite set of rules;

∙ s ∈ Q is the initial state;

∙ F ⊆ Q is the set of final states.

A rule (p,X, q,Y, d) ∈ R is usually written as pX → qYd ∈ R.
A configuration of M is a word from Γ*QΓ+.
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The M-based relation of direct move, ⊢M, over Γ*QΓ+ is defined as follows:

1. αpXβ ⊢M αYqβ if and only if pX → qYdR ∈ R

2. αp ⊢M αYq if and only if p∆→ qYdR ∈ R

3. αZpXβ ⊢M αqZYβ if and only if pX → qYdL ∈ R

4. αZp ⊢M αqZY if and only if p∆→ qYdL ∈ R

where p, q ∈ Q, X,Y,Z ∈ Γ, and α, β ∈ Γ*. For k ≥ 0, ⊢k
M, ⊢+M, and ⊢*

M are defined as
usual.
The language accepted by M, L(M), is defined as

L(M) = {w | sw ⊢*
M α f β,w ∈ Σ

*, α, β ∈ Γ
*, f ∈ F}

If for every w ∈ Σ*, sw ⊢*
M χ implies that |sw| ≥ |χ|, where χ ∈ Γ*QΓ+, M is called a

linear bounded automaton (abbreviated LBA).
Languages accepted by Turing machines and linear bounded automata are exactly recur-
sively enumerable and context-sensitive languages, respectively.



Chapter 3
Rewriting Systems as Language Models

Formally, a rewriting system (see [90]) is a pair (V,R), where V is a total alphabet and
R ⊆ V* × V* is a finite set of rewriting rules. The definition of the rewriting system is so
general to cover any language model based on rewriting. Thus, grammars, automata, and
even grammar and automata systems can be all considered to be rewriting systems. Given
a rewriting system Ω = (V,R), it depends only on the meaning of symbols from V and the
definition of a rewriting step and the language of Ω whether Ω represents a grammar or
an automaton. For example, Definition 3.1 in [90] on page 46 defines finite deterministic
automaton as a rewriting system (Σ, P), where Σ is divided into two disjoint alphabets:
alphabet ΣQ of states and alphabet ΣT of input symbols. However, it is more convenient to
have these alphabets defined separately, as demonstrated in Definition 2.4.1.

The aim of this chapter is to give a survey6 of rewriting systems known so far that were
studied during the research of new language models presented in the second part of this
thesis.

Following the introductory Chapter 1, this chapter is organized into two sections. Section
3.1 is dedicated to regulated rewriting systems. Here are discussed selected types of
regulated grammars and automata, like programmed grammars, deep pushdown automata,
and jumping grammars. Section 3.2 is focused on rewriting systems where parallel and
cooperative rewriting is performed. This includes for instance L-systems and various types
of grammar and automata systems. In both sections, attention is paid to how rewriting is
done and how it influences the expressive power of a given rewriting system.

3.1 Regulated Rewriting

Given a rewriting systemΩ = (V,R) and a word u ∈ V*. In general, every rule x → y ∈ P,
where x has an occurrence in u, can be applied on u. In case that Ω is regulated, there is an
additional regulating device (see [21]) that chooses from all possible applicable rules only
a subset of candidates that fulfill given conditions.

In [21], regulated rewriting is classified into three groups:
∙ prescribed sequences of rules;

6 Grammars and automata that have a direct connection with the Chomsky hierarchy form a fundamental
part of the classical theory of formal languages and hence they were discussed in Chapter 2 instead of here.
This chapter is primarily focused on rewriting systems from modern formal language theory.

20
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∙ dependence on previously applied rules;

∙ context conditions.

Meduna and Zemek (see [72]) divide regulated rewriting into rule-based and context-based,
where rule-based regulated rewriting contains the first two groups from the classification
in [21]. Note that the classification of regulated rewriting is not comprehensive and also
that there are no strict borders between these groups. There are also cases with combined
regulations (see Chapter 6 in [21]).

Regulated Grammars

As noted in the introduction, regulated grammars were introduced as a consequence of
attempts to increase the generative capacity of context-free grammars. The early idea of
how to do it was controlling derivation steps using matrices.

Such regulated grammars are called matrix grammars (see [1]). A matrix grammar H
consists of a context-free grammar G = (V,T, P, S) and a finite set of matrices M, where
matrix is a sequence of rules from P. A word w ∈ L(G) belongs to L(H) if and only if its
parse can be broken to matrices from M.

As shown in Example 1.1.1 in [21], there exists a matrix grammar that can generate
the non-context-free language {anbncn | n ≥ 1}. On the other hand, as it follows from
Theorem 2.2 and Theorem 2.1 from Chapter 3 in [87], there are context-sensitive languages
that cannot be generated by any matrix grammar.

A similar approach as in matrix grammars can be seen also in regular-controlled gram-
mars (see [5]). Like matrix grammars, also a regular-controlled grammar H consists of
a context-free grammar G, but instead of a finite set of matrices it uses as its regulating
device a regular language Ψ, called control language, over the set of rules of G. A word
w ∈ L(G) belongs to L(H) if and only if its parse belongs to Ψ.

Matrix grammars and regular-controlled grammars are examples of grammars regulated
by prescribed sequences of rules. An example of regulated grammars where rule to be
applied depends on rules that were applied previously are programmed grammars.

Definition 3.1.1. A programmed grammar with appearance checking (see [82]), abbreviated
PRG, is a triple H = (G, σ,φ), where

∙ G = (V,T, P, S) is a context-free grammar;

∙ σ and φ are total mappings from P to 2P.

Let r ∈ P. Then, σ(r) and φ(r) are said to be the success field of r and the failure field of r ,
respectively. If G is propagating, then H is said to be a propagating programmed grammar
with appearance checking. If for every p : A → x ∈ P it is satisfied that φ(p) = ∅, then
H is said to be a programmed grammar without appearance checking or just programmed
grammar.
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The H-based relation of direct derivation,⇒H, over (V*×P) is defined as follows: (y, p) ⇒H
(z, r) if and only if either

y = uAv, z = uxv, p : A → x ∈ P, r ∈ σ(p)

or
y = z, p : A → x ∈ P,A /∈ alph(y), r ∈ φ(p)

where A ∈ (V−T) and u, v, x ∈ V*. As usual, for k ≥ 0, ⇒k
H denotes the k-fold product of

⇒H, ⇒+H denotes the transitive closure of ⇒H, and ⇒*
H denotes the reflexive and transitive

closure of ⇒H. If α⇒*
H β for some α, β ∈ (V*×P), then α⇒*

H β is said to be a derivation
of β from α. Whenever it is clear, α⇒*

H β can be briefly written as α⇒* β.
The language generated by H, L(H), is defined as

L(H) = {w | (S, p) ⇒*
H (w, r),w ∈ T*, p, r ∈ P}

PRG, PRG−ε, PRGac, and PRG−ε
ac denote the family of languages generated by pro-

grammed grammars, the family of languages generated by propagating programmed gram-
mars, the family of languages generated by programmed grammars with appearance check-
ing, and the family of languages generated by propagating programmed grammars with
appearance checking, respectively.

Since programmed grammars, matrix grammars and regular-controlled grammars are
mutually convertible (see Theorem 2.2 and Theorem 2.4 from Chapter 3 in [87]), they
characterize the same family of languages.

Observe that programmed grammars with appearance checking have a method to handle
situations when a rule cannot be applied. This can be extended also to regular-controlled
grammars (see [27]) and matrix grammars (see [1]) by adding an appearance checking set.
In short, if a context-free rule cannot be applied and its left-hand side appears in appearance
checking set, its application is skipped and a derivation proceeds with a next rule.

Appearance checking provides a framework to do simple branching based on symbol
appearance to matrix, regular-controlled, and programmed grammars. For instance, one
can implement constructions like "if X has at least one occurrence in sentential form, apply
rule r1; otherwise, apply rule r2" with it. Such an extension is powerful enough to describe
arbitrary recursively enumerable language (see Theorem 1.2.5 and Theorem 2.1.1’ in [21]).

As an example of regulated grammars with regulation based on context conditions is
worth mentioning random context grammars (see [95]). In a random context grammar,
every context-free rule has two sets associated with it—a set of permitting symbols and a
set of forbidding symbols. A rule can be then applied on the sentential form if and only
if all its permitting symbols occur in the sentential form and simultaneously none from its
forbidding symbols occurs in it. If the set of forbidding (permitting) symbols is empty for
every rule in a random context grammar G, then G is said to be a permitting (forbidding)
grammar. In their general form, random context grammars are capable of generating every
recursively enumerable language (Theorem 2.7, Chapter 3 in [87]). In [98] has been proven
that permitting grammars and propagating permitting grammars generate the same family
of languages. The question of whether the same holds also for forbidding grammars remains
open.
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Besides matrix, programmed, regular-controlled, and random context grammars many
other types of regulated grammars can be found in the literature (see [20, 21, 72, 87]).
Some examples worth to mention are vector grammars[12], one-sided random context
grammars[70], indexed grammars[2], tree controlled grammars[19], additive/multiplicative
valence grammars[76], ordered grammars[25], or macro grammars[24].

Finite Index

Roughly speaking, the index of a grammar G is the number that limits the number of
occurrences of nonterminal symbols in a sentential form of G. If such a number is a
positive integer, then the index of grammar is finite. Otherwise, it is infinite. The following
definition recalls the (slightly modified) definition of the index of grammar from [21].

Definition 3.1.2. Let G be an arbitrary grammar and let V, T, P, and S be its total alphabet,
alphabet of terminal symbols, set of rewriting rules, and start symbol, respectively. For
π ∈ P*, define

Ind(π,G) = max{OV−T(x) | S ⇒*
G x [ρ], x ∈ V*, ρ ∈ prefix(π)}

Furthermore, for w ∈ T*, define

Ind(w,G) = min{Ind(π,G) | S ⇒*
G w [π]}

Then, the index of G, Ind(G), is defined as

Ind(G) = sup{Ind(w,G) | w ∈ L(G)}

Let X be the family of languages generated by grammars of type X and let G (X) be a set of
grammars of type X. Then, for L ∈ X, define

IndX(L) = inf{Ind(G) | L(G) = L,G ∈ G (X)}

For a family X, set

nX = {L | L ∈ X, IndX(L) ≤ n}, n ≥ 1
finX =

⋃︁
n≥1

nX

With the finite index restriction introduced, all language families of regulated grammars
discussed so far coincide and even appearance checking has no effect here. This is due to
the fact that the order of appearance of nonterminal symbols, together with their number of
occurrences, can be encoded in a finite number of ways. As a result, regulated grammar of
one type is able to simulate a regulated grammar of a different type. However, this does not
apply to all regulated grammars, see for instance Theorem 3.1.4 and Theorem 3.1.5 in [21].
Another interesting fact about the finite index is that its introduction leads to an infinite
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hierarchy of language families. The following theorem demonstrates this on programmed
grammars but it is also present in matrix grammars, random context grammars, and other
types of regulated grammars (see Chapter 3 in [21]).

Theorem 3.1.3. Let X be one of PRG, PRG−ε, PRGac, or PRG−ε
ac . Let n ≥ 1. Then,

nX ⊂ n+1X.

Proof. See [21].

The proof of Theorem 3.1.3 is based on pumping lemma for finite index languages
generated by matrix grammars (see Lemma 3.1.6 in [21]). As this pumping lemma will be
used to prove the proper inclusion of language families later in Chapter 7, it is recalled, for
finite index languages generated by programmed grammars7, by the following lemma.

Lemma 3.1.4. Let n ≥ 1. For every infinite language L ∈ nPRG, there exists a word z ∈ L
which can be written in the form

z = u1v1w1x1u2v2w2x2 . . . ukvkwk xkuk+1

with k ≤ n, |v1x1v2x2 . . . vk xk | > 0, and

u1v
i
1w1xi

1u2v
i
2w2xi

2 . . . ukv
i
kwk xi

kuk+1 ∈ L

for all i ≥ 1.

Proof. See [21].

Regulated Automata

Regarding regulated grammars, it becomes natural to ask whether there exist automata
counterparts accepting the same language families as well. In [43], Kolář and Meduna
equipped pushdown automata with the same regulating device that was used in regular-
controlled grammars—a control language. Like in regular-controlled grammars, a word is
accepted by a regulated pushdown automaton if and only if it is accepted by the underlying
pushdown automaton and simultaneously its parse belongs to the control language.

The family of languages accepted by regulated pushdown automata with a regular
control language coincides with the family of context-free languages. This is a difference in
comparison to regular-controlled grammars, where the language family strictly lies between
context-free and context-sensitive families of languages. With a linear control language,
regulated pushdown automata are able to accept every recursively enumerable language
(see [43] for proofs).

In [44], Kolář and Meduna show that every recursively enumerable language can be also
accepted by one-turn atomic regulated pushdown automata controlled by linear control
language.

7 Recall that nPRG coincides with the family of languages of index n generated by matrix grammars.
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An interesting way of regulation based on memorizing applied rules is used in self-
regulating finite automata, introduced in [62] by Masopust and Meduna, where regulation
is carried out in the following way: a self-regulating finite automaton M reads one input
symbol, makes a move, and records used rule until it enters the special state, called the turn
state. After that point, called a turn, M selects a rule associated with the first recorded rule
and continues doing moves. If M works in all-move mode, the next rule to be selected is the
rule associated with the second recorded rule, etc. If M does not work in all-move mode, it
works in the first-move mode. Note that during the processing of recorded rules, M records
the sequence of following rules as well. After the last recorded rule has been processed,
M makes a turn and starts processing the new sequence of recorded rules. The process
continues until M reads its whole input. According to the number of turns and the move
mode, self-regulating finite automata are divided into n-turn first-move self-regulating finite
automata and n-turn all-move self-regulating finite automata.

Observe that if M makes m moves from its start state to its turn state before the first turn,
the number of moves that M makes to accept its input must be divisible by m.

Meduna and Masopust also showed in [61, 62] that for some n ≥ 0, n-turn first-move
self-regulating finite automata accept the family of languages generated by (n + 1)-parallel
right linear grammars and n-turn all-move self-regulating finite automata accept the family
of languages generated by (n + 1)-right linear simple matrix grammars.

There exist also self-regulating pushdown automata (see [61]), which are capable of
accepting every recursively enumerable language if they are working in all-move mode.

Both regulated pushdown automata and self-regulating finite automata base their regula-
tion on a prescribed sequence of rules and on rules that were used previously, respectively.
In deep pushdown automata, introduced by Meduna in [68] (and by Křivka and Meduna in
[50] under the name deep top-down parsers), moves are regulated by the pushdown content.
More precisely, every rule in a deep pushdown automaton M has a number associated with
it, called depth. M works like an ordinary pushdown automaton except that during the
application of a rule of depth m it rewrites the mth topmost pushdown symbol with a word.

Definition 3.1.5. A deep pushdown automaton (abbreviated DPDA), M, is a septuple
M = (Q, Σ, Γ,R, s, S, F), where

∙ Q, Σ, Γ, s, S, and F are defined as in pushdown automaton, Q, Γ, and N are pairwise
disjoint, Σ ⊆ Γ, and # ∈ (Γ − Σ) is the special symbol, called bottom symbol;

∙ R ⊆ (NQ(Γ − (Σ ∪ {#})) × Q(Γ − {#})+) ∪ (NQ{#} × Q(Γ − {#})*{#}) is a finite
set of rules.

A rule (mpA, qx) ∈ R is usually written as mpA → qx and it is said to be a rule of depth
m. If there is a rule npA → qx ∈ R such that for every rule mp′A′ → q′x′ ∈ R it holds
n ≥ m, then M is said to be of depth n. The depth of M will be denoted as depth(M).
Set Ξ = Q × Σ* × (Γ − {#})*{#}. Then, χ ∈ Ξ is said to be a configuration of M.
The M-based relation of direct pop move, p⊢M, over Ξ is defined as follows:

(p, aw, ay) p⊢M (p,w, y)
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where p ∈ Q, a ∈ Σ, w ∈ Σ*, and y ∈ Γ*.
The M-based relation of direct expansion move, e⊢M, over Ξ is defined as follows:

(p,w, uAv) e⊢M (q,w, uxv)

if and only if mpA → qx ∈ R and OΓ−Σ(u) = m − 1, where p, q ∈ Q, w ∈ Σ*, A ∈ Γ, and
u, v, x ∈ Γ*. A move

(p,w, uAv) e⊢M (q,w, uxv) [mpA → qx]

is also referred as an expansion of depth m.
The M-based relation of direct move, ⊢M, is then defined as ⊢M = p⊢M ∪ e⊢M. For k ≥ 0,
p⊢k

M, e⊢k
M, ⊢k

M, p⊢+M, e⊢+M, ⊢+M, p⊢*
M, e⊢*

M, and ⊢*
M are defined as usual.

The language accepted by M, L(M), is defined as

L(M) = {w | (s,w, S#) ⊢*
M ( f , ε, #),w ∈ Σ

*, f ∈ F}

The language accepted by M by empty pushdown, L(M)ε, is defined as

L(M)ε = {w | (s,w, S#) ⊢*
M (q, ε, #),w ∈ Σ

*, q ∈ Q}

Let M (DPDA) denote the set of all deep pushdown automata. Then, for every k ≥ 1,

DPDAk = {L(M) | M ∈ M (DPDA), 1 ≤ depth(M) ≤ k}
DPDAε

k = {L(M)ε | M ∈ M (DPDA), 1 ≤ depth(M) ≤ k}

denote the language families accepted by deep pushdown automata.

Accepting power of deep pushdown automata of depth m coincide with the generative
capacity of m-limited state grammars (discussed in the next subsection). Thus, language
families accepted by deep pushdown automata form the infinite hierarchy of language
families between context-free and context-sensitive language families.

Theorem 3.1.6. Let n ≥ 1. Then, DPDAn = DPDAε
n = ST−ε

n .

Proof. See [50, 68].

Another example of regulated automata are k-counter automata (see [31]). A k-counter
automaton is a finite automaton equipped with k integer counters as additional storage. Two
counters are enough to accept every recursively enumerable language.
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Combination of Grammar and Automata Approach

Up till now, only regulated automata and grammars were discussed. However, there are
also rewriting systems that combine parts that are essential to either grammars or automata.
Such a rewriting system, for example, are state grammars (see [36]), where derivation steps
are driven by states. Specifically, a rule r in a state grammar G is consisting of two parts—a
context-free part and a transition part. r can be applied if and only if its state is the same
as the current state of G and simultaneously a nonterminal symbol A to be rewritten is
contained in the current G’s sentential form. If these conditions are met, then the leftmost
occurrence of A is rewritten and simultaneously G changes its current state according to r .

Definition 3.1.7. A state grammar (abbreviated STG), G, is a sextuple G = (V,T,K, P, S, s),
where

∙ V is a total alphabet;

∙ T ⊆ V is an alphabet of terminal symbols;

∙ K is a finite set of states, K ∩ V = ∅;

∙ P ⊆ (V − T) × K × V* × K is a finite set of rules;

∙ S ∈ (V − T) is the start symbol;

∙ s ∈ K is the initial state.

A rule (A, p, x, q) ∈ P is usually written as (A, p) → (x, q). G is said to be propagating if
and only if (A, p) → (x, q) ∈ P implies x , ε.
The G-based relation of direct derivation, ⇒G, over V* × K is defined as follows:
(uAv, p) ⇒G (uxv, q) if and only if (A, p) → (x, q) ∈ P and for every (B, p) → (y, t) ∈ P,
B /∈ alph(u), where p, q, t ∈ K, A,B ∈ (V − T), and u, v, x, y ∈ V*.
Let k ≥ 1. The G-based relation of k-limited direct derivation, k⇒G, over V*×K is defined
as follows: (uAv, p) k⇒G (uxv, q) if and only if (A, p) → (x, q) ∈ P, OV−T(uA) ≤ k, and
for every (B, p) → (y, t) ∈ P, B /∈ alph(u), where p, q, t ∈ K, A,B ∈ (V − T), and
u, v, x, y ∈ V*.
For l ≥ 0, ⇒l

G, k⇒l
G, ⇒*

G, k⇒*
G, ⇒+G, and k⇒+G are defined as usual.

The language generated by G, L(G), is defined as

L(G) = {w | (S, s) ⇒*
G (w, q),w ∈ T*, q ∈ K}

The language generated by G in k-limited way, L(G, k), is defined as

L(G, k) = {w | (S, s) k⇒*
G (w, q),w ∈ T*, q ∈ K}

ST, ST−ε, STk , and ST−ε
k denote language families generated by state grammars, propa-

gating state grammars, state grammars in k-limited way, and propagating state grammars
in k-limited way, respectively. Set

ST∞ =
⋃︁

n≥1
STn ST−ε

∞ =
⋃︁

n≥1
ST−ε

n
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The following theorem summarizes generative capacity of state grammars. The identity
ST = RE has been proven in [32], the rest has been proven in [36].

Theorem 3.1.8. Let n ≥ 1. Then,

(a) CF = ST−ε
1 , ST−ε

n ⊂ ST−ε
n+1, ST−ε

n ⊂ ST−ε
∞ ⊂ ST−ε = CS;

(b) ST = RE.

Proof. See [32, 36].

Observe that in [21], state grammars are defined with no requirement of rewriting the
leftmost nonterminal symbol during the direct derivation step. As a consequence, state
grammars from [21] have the same generative capacity as matrix grammars.

Finite state control as a regulating device is used also in #-rewriting systems of finite
index, introduced by Křivka, Meduna, and Schönecker in [52]. #-rewriting systems work
like state grammars except for these differences: there is no requirement of rewriting the
leftmost nonterminal symbol, there is just one nonterminal symbol #, called bounder, and
for some #-rewriting system Ω of index n, every configuration of Ω must contain no more
than n occurrences of #.

Definition 3.1.9. A #-rewriting system (abbreviated #RS),Ω, is a quadrupleΩ = (Q, Σ, s,R),
where

∙ Q is a finite set of states;

∙ Σ is an alphabet, # ∈ Σ is a special symbol called bounder, Q ∩ Σ = ∅;

∙ s ∈ Q is the initial state;

∙ R ⊆ Q × N× {#} × Q × Σ* is a finite set of rules.

A rule (p, n, #, q, x) ∈ R is usually written as pn# → qx. A configuration of Ω is a word
from QΣ*.
The Ω-based relation of direct rewriting step, ⇒Ω, over QΣ* is defined as follows:
pu#v ⇒Ω quxv if and only if pn# → qx ∈ R and O#(u) = n − 1, where p, q ∈ Q, n ∈ N,
and u, x, v ∈ Σ*. For m ≥ 0, ⇒m

Ω, ⇒*
Ω, and ⇒+Ω are defined as usual.

The language generated by Ω, L(Ω), is defined as

L(Ω) = {w | s# ⇒*
Ω qw, q ∈ Q,w ∈ (Σ − {#})*}
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Let k ≥ 1. If s# ⇒*
Ω qy implies O#(y) ≤ k, q ∈ Q, y ∈ Σ*, thenΩ is said to be #-rewriting

system of index k. The family of languages generated by #-rewriting systems of index k is
denoted by Lk(#RS).

#-rewriting systems of index k have the same generative capacity as programmed gram-
mars of index k.

Theorem 3.1.10. Let k ≥ 1. Then, Lk(#RS) = kPRG.

Proof. See [47, 52].

Jumping Rewriting

Regulating devices discussed so far aim to decrease the number of possible ways of rewriting
a configuration of some rewriting system. For instance, in regular-controlled grammars,
those applications of context-free rules that will lead to a parse not belonging to control
language must be discarded even though such a parse can be valid in sense of context-free
grammars.

Regulation based on jumping works in the opposite way. Instead of reducing the number
of possible ways of rewriting, they are increased. To demonstrate it on example, take a
definition of jumping grammars, introduced by Křivka and Meduna in [51]. In general, a
jumping grammar is an unrestricted grammar with additional relations of direct derivation
defined (see Definition 3.1.11). Given an unrestricted grammar G = (V,T, P, S), four words
u, v, u′, v′ ∈ V*, and a rule x → y ∈ P. Normally, uxv ⇒G u′yv′ such that u = u′ and
v = v′. However, if jumping is in effect, then uxv j⇒G u′yv′ such that uv = u′v′. In other
words, x is first erased from uxv and then y is inserted at any position inside uv. Thus,
there are many more possibilities how to rewrite uxv according to x → y in jumping mode
compared to the normal case.

Definition 3.1.11. Let G = (V,T, P, S) be an unrestricted grammar. Let u, v ∈ V*. Define
four G-based relations of direct derivation over V* as follows:

(i) u s⇒G v if and only if u ⇒G v;

(ii) u l j⇒G v if and only if u = wt xz, v = wytz, x → y ∈ P, and w, t, z ∈ V*;

(iii) u r j⇒G v if and only if u = wxtz, v = wtyz, x → y ∈ P, and w, t, z ∈ V*;

(iv) j⇒G = l j⇒G ∪ r j⇒G.

Let h ∈ {s, l j, r j, j}. For k ≥ 0, h⇒k
G, h⇒*

G, and h⇒+G are defined as usual.
The language generated by G in h-mode, L(G, h⇒), is defined as

L(G, h⇒) = {w | S h⇒*
G w,w ∈ T*}
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Let X denote the type of a grammar. Then,

L (X, h⇒) = {L(G, h⇒) | G ∈ G (X)}

denotes the family of languages generated by a grammar of type X in h-mode.

To show how jumping rewriting affects the generative capacity of unrestricted grammars,
recall some results from [51]. Normally, regular grammars generate the family of languages
that is strictly included in the family of context-free languages. In jumping mode, regular
grammars are able to generate languages that are not context-free, but there also exist
regular languages that cannot be generated by any regular grammar working in jumping
mode. That is L (RG, j⇒) − CF , ∅ and REG − L (RG, j⇒) , ∅.

In the case of unrestricted grammars, jumping has no influence on their generative
capacity. This is because rules of unrestricted grammars work with context and thus if a
right-hand side of a rule is inserted in the wrong place during a derivation step, the entire
derivation is blocked. Therefore, L (UG, j⇒) = RE.

Besides jumping grammars, there also exist jumping automata. In [71], Meduna and
Zemek introduced jumping finite automata. Just like in the case of jumping grammars,
jumping finite automata differ from ordinary finite automata in the definition of how a
direct move is performed. If a jumping automaton M is in a state p and it is going to
perform a move according to some rule pa → q, then (1) M moves the reading head to an
arbitrary position on its input tape such that the next symbol to be read will be a, (2) M reads
a by erasing it from the input tape, and (3) M changes its state to q. Simply said, the reading
head literally "jumps" over M’s input tape. Meduna and Zemek also introduced general
jumping finite automata that work exactly like jumping finite automata but they are capable
of reading words instead of symbols from their input. Meduna and Křivka (see [51]) show
that L (RG, j⇒) and L (RLG, j⇒) coincide with the families of languages accepted by
jumping finite automata and general jumping finite automata, respectively. Properties and
complexity of jumping finite automata were also studied in [22, 23].

Other examples of jumping grammars and automata that can be found in the literature
are one-way jumping finite automata (see [8]), double-jumping finite automata (see [40]),
jumping 5’→ 3’ Watson-Crick finite automata (see [41]), or jumping scattered context
grammars (see [69]).

3.2 Parallel and Cooperative Rewriting

The previous section discussed rewriting systems in which only one rewriting rule is applied
during a single rewriting step. This section focuses on rewriting systems where during a
single rewriting step more than one rule can be applied simultaneously. Additionally, this
section also focuses on multi-component rewriting systems where components are working
under some level of cooperation.
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Parallel Rewriting

A well-known example of rewriting systems with parallel rewriting are Lindenmayer systems
(or briefly L-systems), named according to their inventor, biologist Aristid Lindenmayer
(see [56, 57]). In the original L-systems, later called 0L systems, all symbols are terminal
symbols and during a single rewriting step every symbol must be rewritten. Rewriting rules
in 0L systems are context-free with a terminal alphabet as their domain.

Definition 3.2.1. An 0L system, H, is a triple H = (Σ, P, σ), where Σ is an alphabet of
terminal symbols, P ⊆ Σ × Σ* is a finite set of rules, domain(P) = Σ, and σ ∈ Σ+ is the
axiom. H is said to be propagating if a → x ∈ P implies x , ε.
The H-based relation of direct derivation, ⇒H, over Σ* is defined as follows: u ⇒H v if
and only if u = a1a2 . . . an, v = x1x2 . . . xn, and ai → xi ∈ P, where ai ∈ Σ, xi ∈ Σ*,
1 ≤ i ≤ n, and n ≥ 1. For k ≥ 0, ⇒k

H, ⇒+H, and ⇒*
H are defined as usual.

The language generated by H, L(H), is defined as L(H) = {w | σ ⇒*
H w,w ∈ Σ*}. 0L and

0L−ε denote families of languages generated by 0L systems and propagating 0L systems,
respectively.

In [85], Rozenberg and Doucet show that 0L ⊂ CS and also that 0L is incomparable
with CF and REG. Chapter 5 in [88] gives a survey of other variants of L-systems that were
investigated, like E0L systems, which are 0L systems extended about nonterminal symbols
so they are able to generate every context-free language.

The following lemma from [85] will be used in further proofs.

Lemma 3.2.2. Let G be a 0L system. Then there exists a number k such that for every word
w ∈ L(G) there exists a derivation such that |u| ≤ k|w| for every word u in that derivation.

L-systems are an example of rewriting systems that work in a fully parallel way. The
n-parallel right linear grammars (see [79]) and n-right linear simple matrix grammars (see
[33]) are fully parallel in the sense of rewriting nonterminal symbols. In an n-parallel
right linear grammar, the start symbol is first rewritten to a sentential form containing n
nonterminal symbols and then during every derivation step all nonterminal symbols are
simultaneously rewritten by application of n right linear rules. A derivation step in n-right
linear simple matrix grammars is performed similarly but in addition rules that are applied
during a single derivation step must be organized into a tuple, called matrix, where the first
rule from the matrix is applied on the first leftmost nonterminal symbol, the second rule to
the second one, and so on. Both n-parallel right linear grammars and n-right linear simple
matrix grammars are capable of generating languages that are not context-free, they induce
an infinite hierarchy of language families, and their language families, are strictly included
in CS (see [80, 97]).

Parallel rewriting can be also observed in scattered context grammars (see [28]). The way
how scattered context grammars work is very similar to the one seen in n-right linear simple
matrix grammars. The rules are also organized in tuples, but they are context-free and not
all nonterminal symbols in a sentential form must be rewritten during a single derivation
step (however, all of the rules from a tuple must be applied). Observe that organizing rules
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into tuples provides a tool for transferring information from one part of a sentential form
to another. This, together with context-free rules and partial parallelism8, gives scattered
context grammars the ability to generate any recursively enumerable language (see [64, 65]).

More examples of grammars with parallel rewriting can be found in the literature (see
[37–39, 46, 55]).

In automata, parallel rewriting is usually performed via multiple reading and/or writing
heads that operate over an input tape (or tapes). Some examples of such a kind of automata
are multi-head finite automata (see [81]) or n-parallel jumping finite automata (see [42]).
An n-parallel jumping finite automaton M has its input tape divided into n regions, where
each region has its own reading head and a state attached to it. Each head processes its
region independently of other heads by performing jumping moves over the region, like in
jumping finite automata. A word is accepted by M if all symbols from every region have
been read and every region has the state associated with it considered as final. In [42],
Meduna and Kocman studied several modes of jumping. For a mode where jumping is
performed in right direction on a tape, n-parallel jumping finite automata accept exactly the
same family of languages that is generated by n-parallel right linear grammars.

Multi-Component Rewriting Systems

Rewriting systems discussed so far were treated as independent language modeling devices.
However, rewriting systems can be organized into larger structures, which become also
rewriting systems. Rewriting systems that are parts of such structures are commonly called
components and these structures can thus be generally referred to as multi-component
rewriting systems. Grammar and automata systems are examples of multi-component
rewriting systems where components are grammars and automata, respectively.

T0L and ET0L systems can also be considered to be multi-component rewriting systems
(see [83, 84]). Like in 0L systems, a T0L system consists of an alphabet, the axiom, but
contrary to 0L system it can contain more than one set of rules, called tables (hence the
letter "T" in the name). In other words, a T0L system consists of the finite number of 0L
systems as its components with a shared alphabet and axiom. During a single rewriting
step, only one component can perform a rewriting. ET0L systems work exactly like T0L
systems but they can additionally use nonterminal symbols.

A similar approach to rewriting as in T0L and ET0L systems can be observed also in
cooperating/distributed grammar systems (see [14]). A cooperating/distributed grammar
system Γ of degree n consists of n context-free grammars as its components, where compo-
nents have a common alphabet of terminal and nonterminal symbols and the start symbol.
The sentential form is also shared between components. When Γ starts its derivation pro-
cess, the ith component of Γ, Gi, is selected to perform a sequence of derivation steps on
the shared sentential form. After a certain number of derivation steps, Gi stops so another
component of Γ can take its place. The whole process is repeated until the shared sentential
form becomes a word containing only terminal symbols.

8 With full parallelism, scattered context grammars will be of the finite index and then of less generative
capacity than context-sensitive grammars (see [21]).
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A number of derivation steps performed by a single component can be further restricted
by modes of derivation. A component of a cooperating/distributed grammar system can
work under four modes of derivation, namely terminating derivation (component performs
as many derivation steps as possible), k-steps derivation (component performs exactly k
derivation steps), at least k-steps derivation (component performs at least k derivation
steps), and at most k-steps derivation (component performs at most k-derivation steps).
With no mode, a component can perform as many derivation steps as desirable. In or-
dinary cooperating/distributed grammar systems, all components must be working under
the same derivation mode. This does not hold for hybrid cooperating/distributed grammar
systems (see [74, 77]), where the derivation mode of specific components can be different.
Cooperating/distributed grammar systems generate families of languages that lie between
context-free and context-sensitive language families. Cooperating/distributed grammar sys-
tems with three components working in terminating derivation mode generate the language
family generated by ET0L systems (see [15]).

T0L, ET0L, and cooperating/distributed grammar systems are examples of multi-com-
ponent rewriting systems where only one component can work on a sentential form in a
given time and the others must wait. Components in parallel communicating grammar
systems and multi-generative grammar systems, on the other hand, work simultaneously.

Like in cooperating/distributed grammar systems, a parallel communicating grammar
system Γ of degree n (see [91]) also consists of n context-free grammars as its components
with shared alphabets of the terminal and nonterminal symbols. What is different is that
each component works on its own sentential form and some nonterminal symbols are treated
as query symbols. The derivation process in Γ is performed in the following way. In the
beginning, all components work independently of each other on derivation steps over their
sentential forms. When some component, Gi, produces a query symbol, which works as a
reference to another component, G j , the derivation process is stopped, the query symbol
is replaced by G j’s sentential form, and then the derivation process continues again. The
language of Γ is the language of Γ’s first component.

Parallel communicating grammar systems can work in returning mode (the requested
component, that is a component whose sentential form was used to replace a query symbol,
starts a next derivation step from its start symbol) or in non-returning mode (the requested
component starts the next derivation from its current sentential form). They can be also
centralized, which means that only the first component is allowed to produce query symbols.

Parallel communicating grammar systems with components containing only regular rules
induce an infinite hierarchy of language families with respect to the number of components
(see [35, 78]). The language family generated by matrix grammars is strictly included in
the language family generated by parallel communicating grammar systems with context-
free components (see [73]). However, parallel communicating grammar systems with
context-free components are still less powerful than unrestricted grammars (see [15]).

Multi-generative grammar systems were introduced by Lukáš and Meduna in [58, 59].
A multi-generative grammar system Γ consists of n context-free grammars and a finite
control set. Γ is said to be canonical if all its components are restricted to do only leftmost9
derivations, general if there are no restrictions placed on its components, or hybrid if at
least one component, but not all, are restricted to do only leftmost derivations.
9 In leftmost derivations, only the leftmost nonterminal symbol of a sentential form can be rewritten.
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Each component of Γ works on its sentential form in a synchronized way. That is, Γ can
perform a single derivation step if and only if all of its components can perform a single
derivation step and simultaneously, either rules used must form a tuple from the Γ’s control
set if Γ is rule synchronized or left-hand sides of rules used must form a tuple from the Γ’s
control set if Γ is nonterminal synchronized.

There are three types of languages generated by Γ: the language generated by the first
component of Γ, the language consisting of all words generated by all components of Γ, and
the language that contains the words formed by the concatenation of words of particular
components of Γ.

Whether multi-generative grammar systems are rule synchronized or nonterminal syn-
chronized has no impact on their generative capacity. Canonical multi-generative grammar
systems with two components have enough power to generate every recursively enumerable
language (see [58]).

Concerning grammar systems, it became natural to study their automata counterparts as
well. Parallel communicating finite automata systems, introduced by Mitrana, Mateescu,
and Martín-Vide in [60], are based on a similar principle as parallel communicating grammar
systems. In a parallel communicating finite automata system M, every finite automaton
component has its own state and input tape and thus it works independently on others.
Communication between components is done via query states. When some component
moves to query state, its next state is the state of the requested component and, if M works
in returning mode, the next state of the requested component becomes its initial state. At
the start, all components of M have the same content written on their input tapes.

In parallel communicating pushdown automata systems (see [17]), the communication
between components is based on query pushdown symbols. When a pushdown query
symbol become the topmost one in a component’s pushdown, it is replaced by the content
of the pushdown of the requested component. In returning mode, the next step is resetting
the requested component’s pushdown to its initial content.

Parallel communicating automata systems are more powerful than their grammatical
counterparts. For instance, parallel communicating pushdown automata systems working in
returning mode and with three components are able to accept every recursively enumerable
language (see [17]).

As an answer to multi-generative grammar systems, Čermák and Meduna introduce
two variants of n-accepting restricted pushdown automata systems (see [6, 7]). In both
variants, components work simultaneously and are synchronized by a finite control set.
The difference lies in how components are synchronized.

In the first variant, n-accepting state-restricted pushdown automata systems, each com-
ponent has assigned status that indicates whether the component is enabled or disabled and
a control set containing so-called switch rules that specify a relation between components
states and their statuses. When a system is going to perform a move, the first step is that
all enabled components perform their moves and all disabled components are stay in their
current configuration. Then, according to the states of all components, the corresponding
switch rule is selected and according to this rule statuses of all components are changed. If
such a switch rule does not exist, the statuses of all components remain unchanged.
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In the second variant, n-accepting move-restricted pushdown automata systems, com-
ponents are synchronized exactly in the same way as in rule synchronized multi-generative
grammar systems.

Components in both variants of n-accepting restricted pushdown automata systems
accept their input by empty pushdown. Furthermore, both variants of n-accepting restricted
pushdown automata systems have the same power and they are language equivalents to
canonical multi-generative grammar systems of the same degree (see [6]).

The list of so far discussed grammar and automata systems is not comprehensive, but
it demonstrates that when rewriting systems cooperate with each other their language
descriptive power may increase. More examples of grammar and automata systems can be
found in the literature (see [4, 16, 18, 34]).



Part II
New Language Models

This part forms the core of this thesis. It presents four new language models, published in
papers On state-synchronized automata systems ([53]), Absolutely unlimited deep pushdown
automata ([54]), Jumping pure grammars ([49]), and On k#$-rewriting systems ([48]). It
also presents extra material not included in mentioned papers due to the size limit. The
content of this part is divided into four chapters.

Chapter 4 presents state-synchronized automata systems. It gives formal definitions
of such automata systems and demonstrates them on examples. Then, it discusses their
accepting power concerning the number and type of components.

Chapter 5 presents two kinds of unlimited deep pushdown automata—absolutely unlim-
ited deep pushdown automata (published in [54]) and relatively unlimited deep pushdown
automata (yet unpublished). It gives their formal definitions, demonstrates them on exam-
ples, and investigates their accepting power.

Chapter 6 presents jumping pure grammars. First, it defines jumping pure grammars
and their language families via modes of direct derivations. Then, it investigates the mutual
relations of language families generated by jumping pure grammars with context-free rules.

Chapter 7 presents k#$-rewriting systems. It defines them formally, shows them on
example, and compares their generative capacity with programmed grammars of index k
and state grammars working in k-limited way. This chapter also gives the full formal proofs
of their shortened versions published in [48].



Chapter 4
State-Synchronized Automata Systems

This chapter presents state-synchronized automata systems that were introduced in [53].
State-synchronized automata systems were inspired by the previous work on automata
systems reviewed in Chapter 3. The aim was to find a new type of automata system whose
components work simultaneously and the communication between components is secured
by states, but in a simpler way than in parallel communicating finite automata systems or
n-accepting state-restricted pushdown automata systems. As a consequence, components in
state-synchronized automata systems are controlled by words from a finite control language
over states of particular components and a move is performed if and only if all components
can do their move simultaneously and their states form a word from control language.

The content of this chapter is divided into two sections. Section 4.1 gives a formal
definition of state-synchronized automata systems and demonstrates them on examples.
Section 4.2 then studies state-synchronized automata systems with finite, pushdown, and
one-turn pushdown automata as components and investigates their accepting power.

4.1 Definitions and Examples

Recall the definition of state-synchronized automata system published in [53].

Definition 4.1.1. Let n be a positive integer. A state-synchronized automata system of
degree n (abbreviated SCASn) is an (n + 1)-tuple Γ = (M1,M2, . . . ,Mn,Ψ), where Mi
is an FA or a PDA, and it is referred to as the ith component of Γ, for all 1 ≤ i ≤ n.
Ψ ⊆ Q1Q2 . . .Qn is a control language of Γ, where Qi is the set of states in Mi, 1 ≤ i ≤ n.
Furthermore, Σ, Γi, si, Si, and Fi denote the input alphabet of Γ, the pushdown alphabet of
Mi, the initial state of Mi, the initial symbol on Mi’s pushdown, and the set of final states
in Mi, respectively, for all 1 ≤ i ≤ n. If Mi is an FA, then set Γi = ∅ and Si = ε, for all
1 ≤ i ≤ n.
A configuration of Γ is an n-tuple (χ1, χ2, . . . , χn), where χi is a configuration of Mi, for all
1 ≤ i ≤ n.
Let πi be the mapping from Γ*i QiΣ

* to Qi such that πi(xiqiw) = qi, xi ∈ Γ*i , qi ∈ Qi,
w ∈ Σ*, for all 1 ≤ i ≤ n. Furthermore, let α = (χ1, χ2, . . . , χn) and α′ = (χ′1, χ′2, . . . , χ′n) be
two configurations of Γ. The Γ-based relation of direct move, ⊢Γ, is defined as follows: if

37
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for every 1 ≤ i ≤ n it holds that χi ⊢Mi χ
′
i, and π1(χ1)π2(χ2) . . . πn(χn) ∈ Ψ, then α ⊢Γ α′.

For k ≥ 0, ⊢k
Γ, ⊢*

Γ, and ⊢+Γ are defined as usual.
Analogously to PDA, define three types of languages accepted by Γ as

L(Γ) f =

{︃
w

⃒⃒⃒⃒
⃒ (S1s1w, S2s2, . . . , Snsn) ⊢*

Γ (γ1 f1, γ2 f2, . . . , γn fn)
γi ∈ Γ*i , fi ∈ Fi, 1 ≤ i ≤ n,w ∈ Σ*

}︃

L(Γ)ε =
{︃
w

⃒⃒⃒⃒
⃒ (S1s1w, S2s2, . . . , Snsn) ⊢*

Γ (q1, q2, . . . , qn)
qi ∈ Qi, qi ∈ Fi if Mi is an FA, 1 ≤ i ≤ n,w ∈ Σ*

}︃

L(Γ) f ε =

{︃
w

⃒⃒⃒⃒
⃒ (S1s1w, S2s2, . . . , Snsn) ⊢*

Γ ( f1, f2, . . . , fn)
fi ∈ Fi, 1 ≤ i ≤ n,w ∈ Σ*

}︃

The following example demonstrates the capability of SCASn to accept a language which
is not context-free.

Example 4.1.2. Let Γ = (M,M′,Ψ) be an SCAS2, where M, M′ are PDAs defined as

∙ M = ({s, qa, qb, qc, f }, {a, b, c}, {S,A,B,C},R, s, S, { f }), where R contains rules

Ssa → SAqa Aqaa → AAqa Aqab → Aqb Aqbb → Aqb
Aqbc → qc Aqcc → qc Sqc → f

∙ M′ = ({s′, q′
a, q

′
b, q

′
c, f ′}, {a, b, c}, {S,A,B,C},R′, s′, S, { f ′}), where R contains rules

Ss′ → Sq′
a Sq′

a → Sq′
a Sq′

a → SBq′
b Bq′

b → BBq′
b

Bq′
b → q′

c Bq′
c → q′

c Sq′
c → f ′

and Ψ is a control language of Γ defined as Ψ = {ss′, qaq′
a, qbq′

b, qcq′
c}. The word

aaabbbccc is accepted by Γ in this way

(Ssaaabbbccc, Ss′) ⊢Γ (SAqaaabbbccc, Sq′
a)

⊢Γ (SAAqaabbbccc, Sq′
a)

⊢Γ (SAAAqabbbccc, Sq′
a)

⊢Γ (SAAAqbbbccc, SBq′
b)

⊢Γ (SAAAqbbccc, SBBq′
b)

⊢Γ (SAAAqbccc, SBBBq′
b)

⊢Γ (SAAqccc, SBBq′
c)

⊢Γ (SAqcc, SBq′
c)

⊢Γ (Sqc, Sq′
c)

⊢Γ ( f , f ′)

Clearly, L(Γ) f = L(Γ)ε = L(Γ) f ε = {anbncn | n ≥ 1}.

Observe that SCASn Γ, where n ≥ 1, do not need to contain a word inΨwhich is formed
from states from a final configuration to make a successful final computation step. On the
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other hand, as will be shown later in Definition 4.1.3, it would be useful to introduce Ψ f as

Ψ f = Ψ ∪
{︃

q1q2 . . . qn

⃒⃒⃒⃒
⃒ (γ1q1, γ2q2, . . . , γnqn) is a final configuration of Γ
γi ∈ Γ*i , qi ∈ Qi, 1 ≤ i ≤ n

}︃

Let Γ be an SCASn, for some n ≥ 1. Define ℛΓ as the Cartesian product ℛΓ =

R1 ×R2 ×· · ·×Rn, where Ri is the set of rules of the ith component of Γ, for all 1 ≤ i ≤ n.
If α ∈ ℛΓ, then α(i) denotes the ith element of α, and clearly α(i) ∈ Ri, for all 1 ≤ i ≤ n.

Define the mapping πl from ℛΓ to Q1Q2 . . .Qn as

πl(α) = π1(lhs(α(1)))π2(lhs(α(2))) . . . πn(lhs(α(n)))

That is πl maps an n-tuple of rules

(A1p1a1 → x1q1,A2p2 → x2q2, . . . ,Anpn → xnqn)

to the word p1p2 . . . pn. The mapping πr from ℛΓ to Q1Q2 . . .Qn is defined analogously
as πr(α) = π1(rhs(α(1)))π2(rhs(α(2))) . . . πn(rhs(α(n))).

Now, let introduce the definition of determinism in SCASn.

Definition 4.1.3. Let Γ be an SCASn, for some n ≥ 1. Then Γ is said to be deterministic
(abbreviated dSCASn) if for every α ∈ ℛΓ, such that πl(α) ∈ Ψ and πr(α) ∈ Ψ f , the
following holds

card({α′ | α′ ∈ ℛΓ, πr(α′) ∈ Ψ f , lhs(α′(i)) ∈ subword(lhs(α(i))), 1 ≤ i ≤ n}) = 1

Clearly, the SCAS2 from Example 4.1.2 is deterministic. The following example shows
the difference between deterministic and nondeterministic SCASn according to Definition
4.1.3.

Example 4.1.4. Consider SCAS2 Γ = (M1,M2,Ψ), where M1, M2 are PDAs defined as

∙ M1 = ({s, q1, q2, f }, {a, b}, {S,A,B}, {

r1 : Ssa → Sq1, r3 : Sq1 → S f
r2 : Ssb → Sq2, r4 : Sq2 → S f

}, s, S, { f })

∙ M2 = ({s′, q′
1, q

′
2, f ′}, {a, b}, {S,A,B}, {

r ′1 : Ss′ → Sq′
1, r ′3 : Sq′

1 → SA f ′

r ′2 : Ss′ → Sq′
2, r ′4 : Sq′

2 → SB f ′
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}, s′, S, { f ′})

and Ψ = {ss′, q1q′
1, q2q′

2}. This SCAS2, depending on its input, modifies either its first or
second pushdown. According to Definition 4.1.3, the allowed combinations of rules are

(r1, r ′1) : card({(r1, r ′1)}) = 1
(r2, r ′2) : card({(r2, r ′2)}) = 1
(r3, r ′3) : card({(r3, r ′3)}) = 1
(r4, r ′4) : card({(r4, r ′4)}) = 1

so Γ is a dSCAS2. Observe that condition πr(α′) ∈ Ψ f is necessary because its omission
leads to

(r1, r ′1) : card({(r1, r ′1), (r1, r ′2)}) = 2
(r2, r ′2) : card({(r2, r ′2), (r2, r ′1)}) = 2
(r3, r ′3) : card({(r3, r ′3)}) = 1
(r4, r ′4) : card({(r4, r ′4)}) = 1

which is in contradiction with the fact that Γ is deterministic.

4.2 Accepting Power

Synchronization by states as defined in Definition 4.1.1 provides a powerful framework
for information exchange between components of SCASn. As will be demonstrated by the
following theorems, two pushdown components are sufficient to accept every recursively
enumerable language, both in a deterministic and nondeterministic way.

Theorem 4.2.1. For every recursively enumerable language L over an alphabet Σ, there
exists a deterministic SCAS2, Γ = (M1,M2,Ψ), where

Mi = (Qi, Σ, Γi,Ri, si, Si, Fi)

is a PDA, 1 ≤ i ≤ 2, such that L(Γ) f = L.

Proof. Let L be a recursively enumerable language over an alphabet Σ. Then there
exists a deterministic two-pushdown automaton, M, such that L = L(M) f . Let M =

(Q, Σ, Γ̂,R, s, S1, S2, F) be a deterministic two-pushdown automaton such that L = L(M) f .
From M, construct a dSCAS2 Γ in the following way:

1. set Q1 = ∅, Q2 = ∅, and Ψ = ∅;

2. set Γ1 = Γ2 = Γ̂;

3. for every rule r : A#Bpa → x#yq ∈ R:

∙ add states p̄, ¯⟨r⟩, and q̄ to Q1;

∙ add states p̂, ^⟨r⟩, and q̂ to Q2;
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∙ add rules Ap̄a → A ¯⟨r⟩ and A ¯⟨r⟩ → xq̄ to R1;

∙ add rules Bp̂ → B ^⟨r⟩ and B ^⟨r⟩ → yq̂ to R2;

∙ add words p̄p̂, q̄q̂, and ¯⟨r⟩ ^⟨r⟩ to Ψ;

4. set F1 = { f̄ | f ∈ F} and F2 = { f̂ | f ∈ F}.

From the construction above follows that if M is deterministic, then Γ must also be deter-
ministic. The next step serves to prove that L(M) f = L(Γ) f .

Claim 4.2.2. If u0#v0q0w0 ⊢i
M ui#viqiwi, then

(u0q̄0w0, v0q̂0) ⊢2i
Γ (ui q̄iwi, vi q̂i)

where ui ∈ Γ*1 , vi ∈ Γ*2 , qi ∈ Q, q̄i ∈ Q1, q̂i ∈ Q2, and wi ∈ Σ*, for all i ≥ 0.

Proof. The proof is established by induction on i ≥ 0.

Basis. For i = 0, u0#v0q0w0 ⊢0
M u0#v0q0w0 implies that

(u0q̄0w0, v0q̂0) ⊢0
Γ (u0q̄0w0, v0q̂0)

Thus, the basis holds.

Induction Hypothesis. Suppose that the claim holds for all 0 ≤ i ≤ k, for some k ≥ 0.

Induction Step. If

u0#v0q0w0 ⊢k
M uk#vk qkwk ⊢M uk+1#vk+1qk+1wk+1

then there exists a rule r : A#Bqka → x#yqk+1 ∈ R such that uk = γA, vk = δB,
uk+1 = γx, vk+1 = δy, and wk = awk+1, where γ ∈ Γ*1 , δ ∈ Γ*2 . Then, there also exist rules
Aq̄ka → A ¯⟨r⟩ ∈ R1, A ¯⟨r⟩ → xq̄k+1 ∈ R1, Bq̂k → B ^⟨r⟩ ∈ R2, B ^⟨r⟩ → yq̂k+1 ∈ R2, and
words q̄k q̂k, q̄k+1q̂k+1, ¯⟨r⟩ ^⟨r⟩ ∈ Ψ, which implies that

(u0q̄0w0, v0q̂0) ⊢2k
Γ (uk q̄kwk, vk q̂k)

⊢Γ (uk
¯⟨r⟩wk+1, vk

^⟨r⟩)
⊢Γ (uk+1q̄k+1wk+1, vk+1q̂k+1)

and the claim holds for k + 1 as well. Therefore, Claim 4.2.2 holds.

Claim 4.2.3. If (u0q̄0w0, v0q̂0) ⊢2i
Γ (ui q̄iwi, vi q̂i), then

u0#v0q0w0 ⊢i
M ui#viqiwi
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where ui ∈ Γ*1 , vi ∈ Γ*2 , qi ∈ Q, q̄i ∈ Q1, q̂i ∈ Q2, and wi ∈ Σ*, for all i ≥ 0.

Proof. The proof is established by induction on i ≥ 0. Observe that only an even number
of computation steps is possible in Γ (see the construction of Γ from M above).

Basis. For i = 0
(u0q̄0w0, v0q̂0) ⊢0

Γ (u0q̄0w0, v0q̂0)

implies that u0#v0q0w0 ⊢0
M u0#v0q0w0. Thus, the basis holds.

Induction Hypothesis. Suppose that the claim holds for all 0 ≤ i ≤ k, for some k ≥ 0.

Induction Step. If

(u0q̄0w0, v0q̂0) ⊢2k
Γ (uk q̄kwk, vk q̂k)

⊢Γ (uk
¯⟨r⟩wk+1, vk

^⟨r⟩)
⊢Γ (uk+1q̄k+1wk+1, vk+1q̂k+1)

then there exist rules Aq̄ka → A ¯⟨r⟩ ∈ R1, A ¯⟨r⟩ → xq̄k+1 ∈ R1, Bq̂k → B ^⟨r⟩ ∈ R2,
B ^⟨r⟩ → yq̂k+1 ∈ R2, and words q̄k q̂k, q̄k+1q̂k+1, ¯⟨r⟩ ^⟨r⟩ ∈ Ψ, such that uk = γA, vk = δB,
uk+1 = γx, vk+1 = δy, γ ∈ Γ*1 , δ ∈ Γ*2 , wk = awk+1, and r : A#Bqka → x#yqk+1 ∈ R.
This implies immediately that

u0#v0q0w0 ⊢k
M uk#vk qkwk ⊢M uk+1#vk+1qk+1wk+1

which proves that the claim holds for k + 1 as well. Therefore, Claim 4.2.3 holds.

From Claim 4.2.2 and Claim 4.2.3, it follows immediately that for every w ∈ Σ*

S1#S2sw ⊢*
M γ1#γ2 f if and only if (S1s1w, S2s2) ⊢*

Γ (γ1 f1, γ2 f2)

where γ1 ∈ Γ*1 , γ2 ∈ Γ*2 . Therefore, L(M) f = L(Γ) f , and Theorem 4.2.1 holds.

Theorem 4.2.4. For every recursively enumerable language L over an alphabet Σ, there
exists a deterministic SCAS2, Γ = (M1,M2,Ψ), where

Mi = (Qi, Σ, Γi,Ri, si, Si, Fi)

is a PDA, 1 ≤ i ≤ 2, such that L(Γ)ε = L.

Proof. Let L be a recursively enumerable language over an alphabet Σ. Then there exists
a deterministic two-pushdown automaton, M, such that L = L(M)ε. The rest of proof is
analogous to the proof of Theorem 4.2.1.

Theorem 4.2.5. For every recursively enumerable language L over an alphabet Σ, there
exists a deterministic SCAS2, Γ = (M1,M2,Ψ), where

Mi = (Qi, Σ, Γi,Ri, si, Si, Fi)



4.2 Accepting Power 43

is a PDA, 1 ≤ i ≤ 2, such that L(Γ) f ε = L.

Proof. The proof is analogous to the proof of Theorem 4.2.4.

Theorem 4.2.6. Let k ≥ 3. For every recursively enumerable language L over an alphabet
Σ, there exists a deterministic SCASk

Γ = (M1,M2, . . . ,Mk,Ψ)

where Mi is a PDA, for all 1 ≤ i ≤ k, such that L = L(Γ) f .

Proof. Let L be a recursively enumerable language over an alphabet Σ. Then, by Theorem
4.2.1, there exists a deterministic SCAS2, Γ′, such that all its components are PDAs and
that L = L(Γ′) f . Let Γ′ = (M′

1,M′
2,Ψ

′) be a deterministic SCAS2, where M′
i is a PDA,

1 ≤ i ≤ 2, such that L = L(Γ′) f . Let k ≥ 3. From Γ′, construct a deterministic SCASk

Γ = (M1,M2, . . . ,Mk,Ψ)

where Mi is a PDA, for all 1 ≤ i ≤ k, in the following way:

1. M1 = M′
1, M2 = M′

2;

2. Mi = ({si}, Σ, {Si}, {Sisi → Sisi}, si, Si, {si}), for all 3 ≤ i ≤ k;

3. Ψ = Ψ′{s3s4 . . . sk}.

It is obvious that components M3 to Mk are redundant in Γ. Therefore, L(Γ) f = L(Γ′) f ,
and Theorem 4.2.6 holds.

Theorem 4.2.7. Let k ≥ 3. For every recursively enumerable language L over an alphabet
Σ, there exists a deterministic SCASk

Γ = (M1,M2, . . . ,Mk,Ψ)

where Mi is a PDA, for all 1 ≤ i ≤ k, such that L = L(Γ)ε.

Proof. Let L be a recursively enumerable language over an alphabet Σ. Then, by Theorem
4.2.4, there exists a deterministic SCAS2, Γ′, such that all its components are PDAs and
L = L(Γ′)ε. Let Γ′ = (M′

1,M′
2,Ψ

′) be a deterministic SCAS2, where M′
i is a PDA, 1 ≤ i ≤ 2,

such that L = L(Γ′)ε. Let k ≥ 3. From Γ′, construct a deterministic SCASk

Γ = (M1,M2, . . . ,Mk,Ψ)

where Mi is a PDA, for all 1 ≤ i ≤ k, in the following way:

1. Let M′
1 = (Q′

1, Σ, Γ
′
1,R′

1, s
′
1, S′

1, F′
1). Then M1 = (Q1, Σ, Γ1,R1, s1, S1, F′

1), where

∙ Q1 = Q′
1 ∪ {s1, q1}, where s1, q1 /∈ Q′

1;
∙ Γ1 = Γ

′
1 ∪ {S1}, where S1 /∈ Γ′1;
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∙ R1 = R′
1 ∪ {S1s1 → S1S′

1s′1, S1p → q1 | p ∈ Q′
1}.

2. Analogously, construct M2 from M′
2.

3. For all 3 ≤ i ≤ k, set Mi = ({si, pi, qi}, Σ, {Si}, {Sisi → Si pi, Si pi → Si pi, Si pi →
qi}, si, Si, ∅).

4. Set Ψ = Ψ′{p3p4 . . . pk} ∪ {s1s2 . . . sk, q1q2 . . . qk}.

Γ works in the following way:

1. During its move from si to s′i , Mi pushes S′
i on its pushdown, for all 1 ≤ i ≤ 2.

Simultaneously, M j moves from s j to p j , for all 3 ≤ j ≤ k.

2. Γ accepts (or rejects) its input word. During this phase, M1 and M2 perform their
moves by using the same sequences of rules like M′

1 and M′
2, respectively. M3 through

Mk loop over states p3 through pk , respectively.

3. When M′
1 and M′

2 in Γ′ empty their pushdowns, the pushdowns of M1 and M2 in Γ have
S1 and S2 on their tops, respectively. At this point, M1 through Mk deterministically
empty their pushdowns by moving to states q1 through qk , respectively.

Thus, Γ accepts its input word if and only if Γ′ accepts its input word, which completes the
proof of Theorem 4.2.7.

Theorem 4.2.8. Let k ≥ 3. For every recursively enumerable language L over an alphabet
Σ, there exists a deterministic SCASk

Γ = (M1,M2, . . . ,Mk,Ψ)

where Mi is a PDA, for all 1 ≤ i ≤ k, such that L = L(Γ) f ε.

Proof. Prove this by analogy with Theorem 4.2.7 except that states q1 through qk are
final.

Corollary 4.2.9. Let n ≥ 2. For every recursively enumerable language L, there exists a
deterministic SCASn, Γ, such that all its components are PDAs and L = L(Γ) f .

Proof. This follows from Theorem 4.2.1 and Theorem 4.2.6.

Corollary 4.2.10. Let n ≥ 2. For every recursively enumerable language L, there exists a
deterministic SCASn, Γ, such that all its components are PDAs and L = L(Γ)ε.

Proof. This follows from Theorem 4.2.4 and Theorem 4.2.7.

Corollary 4.2.11. Let n ≥ 2. For every recursively enumerable language L, there exists a
deterministic SCASn, Γ, such that all its components are PDAs and L = L(Γ) f ε.

Proof. This follows from Theorem 4.2.5 and Theorem 4.2.8.
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The family of recursively enumerable languages can be also characterized by SCASn,
where n ≥ 2, such that all its components are one-turn PDAs. However, the question of
whether the same holds also for deterministic SCASn remains an open problem10.

Theorem 4.2.12. Let x ∈ { f , ε, f ε}. For every recursively enumerable language L over an
alphabet Σ, there exists an SCAS2, Γ = (M1,M2,Ψ), where both M1 and M2 are one-turn
pushdown automata, such that L = L(Γ)x .

Proof. Let x ∈ { f , ε, f ε}. Let L be a recursively enumerable language over an alphabet
Σ. By Theorem 2.4.9, there exists a simultaneously one-turn two-pushdown automaton,
M, such that L = L(M)x . Following Theorem 4.2.1, construct Γ from M. Clearly,
following the proof of said theorem, L(Γ) f = L(M) f , and as the construction of Γ from
M preserves operations on pushdowns, both M1 and M2 are one-turn pushdown automata.
From Theorem 4.2.4 and Theorem 4.2.5 it follows by analogy that Γ can be constructed
from M, where L(Γ)ε = L(M)ε and L(Γ) f ε = L(M) f ε, respectively, and both M1 and M2 are
one-turn pushdown automata as well.

Theorem 4.2.13. Let x ∈ { f , ε, f ε} and k ≥ 3. For every recursively enumerable language
L over an alphabet Σ, there exists an SCASk , Γ = (M1,M2, . . . ,Mk,Ψ), where Mi is a one-
turn PDA, for all 1 ≤ i ≤ k, such that L = L(Γ)x .

Proof. Let x ∈ { f , ε, f ε} and k ≥ 3. Let L be a recursively enumerable language over an
alphabet Σ. Then, by Theorem 4.2.12, there exists an SCAS2, Γ′ = (M′

1,M′
2,Ψ

′), where M′
1

and M′
2 are both one-turn PDAs, such that L = L(Γ′)x . From Γ′, construct Γ and then prove

the identity of languages accepted by Γ′ and Γ in a way analogous to proofs of Theorem
4.2.6, Theorem 4.2.7, and Theorem 4.2.8. Observe that components M3 through Mk of Γ
are all one-turn PDAs.

Corollary 4.2.14. Let x ∈ { f , ε, f ε} and n ≥ 2. For every recursively enumerable language
L, there exists an SCASn, Γ, such that all its components are one-turn PDAs and L = L(Γ)x .

Proof. This follows from Theorem 4.2.12 and Theorem 4.2.13.

Open Problem 4.2.15. Let n ≥ 2. Then, there exists a recursively enumerable language
that cannot be accepted by any dSCASn such that all its components are one-turn PDAs.

The previous results are summarized in the following theorem.

Theorem 4.2.16. For every L ∈ RE, there exist

(a) an SCASn Γ such that all its components are PDAs and L = L(Γ)x , where n ≥ 2 and
x ∈ { f , ε, f ε};

(b) an dSCASn Γ such that all its components are PDAs and L = L(Γ)x , where n ≥ 2
and x ∈ { f , ε, f ε};

10 The conjecture is that it is not possible because a nondeterminism is a key element here.



4.2 Accepting Power 46

(c) an SCASn Γ such that all its components are one-turn PDAs and L = L(Γ)x , where
n ≥ 2 and x ∈ { f , ε, f ε}.

Proof. This theorem follows from Corollary 4.2.9, Corollary 4.2.10, Corollary 4.2.11,
Corollary 4.2.14, and from the obvious observation that deterministic SCASns with two and
more pushdown components are no more powerful than their nondeterministic counterparts.

Next, the case when no more than one pushdown component is permitted in SCASn is
studied.

Lemma 4.2.17. Let x ∈ { f , ε, f ε} and n ≥ 1. For every SCASn

Γ = (M1,M2, . . . ,Mn,Ψ)

where for some 1 ≤ i ≤ n, Mi is a PDA, and for all 1 ≤ j ≤ n, i , j, M j is an FA, there
exists a PDA, M, such that L(M)x = L(Γ)x .

Proof. Let x ∈ { f , ε, f ε}. For n = 1, Γ has only one component, which is a PDA, and
therefore Lemma 4.2.17 holds immediately. Below, it is shown that the lemma holds for
n ≥ 2 as well, where only the case that no component of Γ except for the first one can be a
PDA is considered (the other situations can be proved analogously).
Let n ≥ 2 and Γ = (M1,M2, . . . ,Mn,Ψ) be an SCASn, where M1 is a PDA, and M2 through
Mn are FAs. From Γ, construct a PDA, M, such that L(M)x = L(Γ)x , in the following way:

1. Let M1 = (Q1, Σ, Γ1,R1, s1, S1, F1) be a PDA from Γ, and let

Mi = (Qi, Σ,Ri, si, Fi)

be an FA from Γ, for all 2 ≤ i ≤ n.

2. Set M = (Q, Σ, Γ1,R, ⟨s1s2 . . . sn⟩, S1, F), where

Q = {⟨ω⟩ | ω ∈ Ψ ∪ F1F2 . . . Fn}

R =

⎧⎪⎨⎪⎩A⟨ω1⟩a → x⟨ω2⟩

⃒⃒⃒⃒
⃒⃒⃒ Ap1a → xq1 ∈ R1, pi → qi ∈ Ri, 2 ≤ i ≤ n
ω1 = p1p2 . . . pn,ω2 = q1q2 . . . qn
⟨ω1⟩, ⟨ω2⟩ ∈ Q

⎫⎪⎬⎪⎭
F = {⟨ω⟩ | ω ∈ F1F2 . . . Fn}

To prove that L(Γ)x = L(M)x , first establish the two following claims.

Claim 4.2.18. If (up1w, p2, . . . , pn) ⊢i
Γ (u′q1w

′, q2, . . . , qn), then

u⟨p1p2 . . . pn⟩w ⊢i
M u′⟨q1q2 . . . qn⟩w′
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where u, u′ ∈ Γ*1 , w,w′ ∈ Σ*, pi, qi ∈ Qi, 1 ≤ i ≤ n, and ⟨p1p2 . . . pn⟩, ⟨q1q2 . . . qn⟩ ∈ Q.

Proof. The proof is made by induction on i ≥ 0.

Basis. For i = 0, (up1w, p2, . . . , pn) ⊢0
Γ (up1w, p2, . . . , pn) implies

u⟨p1p2 . . . pn⟩w ⊢0
M u⟨p1p2 . . . pn⟩w

so the claim holds for i = 0.

Induction Hypothesis. Suppose that the claim holds for all 0 ≤ i ≤ k, for some k ≥ 0.

Induction Step. If

(uAp1aw, p2, . . . , pn) ⊢Γ (uxo1w, o2, . . . , on) ⊢k
Γ (u′q1w

′, q2, . . . , qn)

then there exist rules Ap1a → xo1 ∈ R1, p j → o j ∈ R j , 2 ≤ j ≤ n, and words
p1p2 . . . pn, o1o2 . . . on ∈ Ψ ∪ F1F2 . . . Fn. According to the construction of M from Γ, this
implies that there also exists a rule A⟨p1p2 . . . pn⟩a → x⟨o1o2 . . . on⟩ ∈ R, so

uA⟨p1p2 . . . pn⟩aw ⊢M ux⟨o1o2 . . . on⟩w ⊢k
M u′⟨q1q2 . . . qn⟩w′

and the claim holds for k + 1 as well. Therefore, Claim 4.2.18 holds.

Claim 4.2.19. If u⟨p1p2 . . . pn⟩w ⊢i
M u′⟨q1q2 . . . qn⟩w′, then

(up1w, p2, . . . , pn) ⊢i
Γ (u′q1w

′, q2, . . . , qn)

where u, u′ ∈ Γ*1 , w,w′ ∈ Σ*, pi, qi ∈ Qi, 1 ≤ i ≤ n, and ⟨p1p2 . . . pn⟩, ⟨q1q2 . . . qn⟩ ∈ Q.

Proof. The proof is made by induction on i ≥ 0.

Basis. For i = 0, u⟨p1p2 . . . pn⟩w ⊢0
M u⟨p1p2 . . . pn⟩w implies

(up1w, p2, . . . , pn) ⊢0
Γ (up1w, p2, . . . , pn)

so the claim holds for i = 0.

Induction Hypothesis. Suppose that the claim holds for all 0 ≤ i ≤ k, for some k ≥ 0.

Induction Step. If

uA⟨p1p2 . . . pn⟩aw ⊢M ux⟨o1o2 . . . on⟩w ⊢k
M u′⟨q1q2 . . . qn⟩w′

then there exists a rule A⟨p1p2 . . . pn⟩a → x⟨o1o2 . . . on⟩ ∈ R, which implies that there
must exist words p1p2 . . . pn, o1o2 . . . on ∈ Ψ ∪ F1F2 . . . Fn, and rules Ap1a → xo1 ∈ R1,
p j → o j ∈ R j , 2 ≤ j ≤ n, in Γ, so

(uAp1aw, p2, . . . , pn) ⊢Γ (uxo1w, o2, . . . , on) ⊢k
Γ (u′q1w

′, q2, . . . , qn)
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and the claim holds for k + 1 as well. Therefore, Claim 4.2.19 holds.

From Claim 4.2.18 and Claim 4.2.19, it follows immediately that for every w ∈ Σ*

1. (S1s1w, s2, . . . , sn) ⊢*
Γ (γ f1, f2 . . . , fn) if and only if S1⟨s1s2 . . . sn⟩w ⊢*

M γ⟨ f1 f2 . . . fn⟩

2. (S1s1w, s2, . . . , sn) ⊢*
Γ (q1, q2, . . . , qn) if and only if S1⟨s1s2 . . . sn⟩w ⊢*

M ⟨q1q2 . . . qn⟩

3. (S1s1w, s2, . . . , sn) ⊢*
Γ ( f1, f2, . . . , fn) if and only if S1⟨s1s2 . . . sn⟩w ⊢*

M ⟨ f1 f2 . . . fn⟩

where γ ∈ Γ*1 , qi ∈ Qi, fi ∈ Fi, 1 ≤ i ≤ n. Therefore, L(M)x = L(Γ)x , and Lemma 4.2.17
holds.

Lemma 4.2.20. Let x ∈ { f , ε, f ε} and n ≥ 1. For every PDA, M, there exists an SCASn,
Γ = (M1,M2, . . . ,Mn,Ψ), where M1 is a PDA, and M2 through Mn are FAs, such that
L(Γ)x = L(M)x .

Proof. Let x ∈ { f , ε, f ε}. Let M = (Q, Σ, ΓM,R, s, S, F) be a PDA. For n = 1, Γ = (M,Q),
and the lemma holds immediately. For some n ≥ 2, construct an SCASn

Γ = (M1,M2, . . . ,Mn,Ψ)

where M1 is a PDA, and Mi is an FA, for all 2 ≤ i ≤ n, such that L(Γ)x = L(M)x , in the
following way:

1. Set M1 = M.

2. For every 2 ≤ i ≤ n, set Mi = ({si}, Σ, {si → si}, si, {si}).

3. Set Ψ = Q{s2s3 . . . sn}.

Thus, for every w ∈ Σ*

1. (Ssw, s2, . . . , sn) ⊢*
Γ (γ f , s2, . . . , sn) if and only if Ssw ⊢*

M γ f

2. (Ssw, s2, . . . , sn) ⊢*
Γ (q, s2, . . . , sn) if and only if Ssw ⊢*

M q

3. (Ssw, s2, . . . , sn) ⊢*
Γ ( f , s2, . . . , sn) if and only if Ssw ⊢*

M f

where γ ∈ Γ*M, q ∈ Q, f ∈ F. Therefore, L(Γ)x = L(M)x , and Lemma 4.2.20 holds.

Theorem 4.2.21. For every L ∈ CF, there is an SCASn Γ containing a PDA and n− 1 FAs
as its components such that L = L(Γ)x , where n ≥ 1 and x ∈ { f , ε, f ε}.

Proof. This theorem follows from Lemma 4.2.17 and Lemma 4.2.20.

Theorem 4.2.22. For every L ∈ LIN, there is an SCASn Γ containing a one-turn PDA and
n − 1 FAs as its components such that L = L(Γ)x , where n ≥ 1 and x ∈ { f , ε, f ε}.

Proof. Let L ∈ LIN and n ≥ 1. Let x ∈ { f , ε, f ε}. Then, there exists a one-turn PDA, M,
such that L is accepted by M. From M, as is demonstrated in Lemma 4.2.20, construct an
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SCASn, Γ, such that L(M)x = L(Γ)x . Thus, Γ has only one PDA as its component, which
must be a one-turn PDA.
Conversely, let Γ be an SCASn with at most one one-turn PDA and arbitrary number of FAs
as its components. Let x ∈ { f , ε, f ε}. By Lemma 4.2.17, there exists a PDA, M, such that
L(Γ)x = L(M)x . By Definition 4.1.1, if it is possible to perform only one turn in a PDA
component of Γ, then no more than one turn is possible to perform in Γ. Therefore, from
the construction of M from Γ in Lemma 4.2.17, it follows that M must be a one-turn PDA,
which implies that L(M)x ∈ LIN.

Corollary 4.2.23. Let x ∈ { f , ε, f ε} and let n ≥ 1. For every L ∈ L (dPDA)x , there is an
dSCASn, Γ, containing a PDA and n − 1 FAs as its components such that L = L(Γ)x .

Proof. It directly follows from Lemma 4.2.17 and Lemma 4.2.20 (follow their proofs for
deterministic variants of SCASns and PDAs).



Chapter 5
Unlimited Deep Pushdown Automata

In [68], Meduna introduced a new language model, called deep pushdown automaton,
which works like pushdown automaton but allows expansion of pushdown symbols deeper
on the pushdown up to a given limit. As recalled in Chapter 3, such modified pushdown
automata are equivalent to k-limited state grammars. A natural question concerning the
limit becomes apparent: how does the accepting power of deep pushdown automata change
if there is no limit imposed on the depth of expansion of the pushdown?

The present chapter introduces such a kind of automata, called unlimited deep pushdown
automata, and studies their accepting power. Section 5.1 gives a definition and example of
absolutely unlimited deep pushdown automata, published in [54], and also gives the formal
proofs of all stated theorems about their accepting power. Section 5.2 does the same for
relatively unlimited deep pushdown automata, which have not yet been published.

5.1 Absolutely Unlimited Deep Pushdown Automata

Recall the definition of unlimited deep pushdown automata from [54]. Informally, during
every move, an absolutely unlimited deep pushdown automaton either pops or expands its
pushdown. In case the topmost pushdown symbol is a symbol from the input alphabet, it
is compared with the current input symbol and if they correspond, the pushdown symbol
is popped and the input symbol is read. Otherwise, the pushdown may be expanded. With
absolutely unlimited deep pushdown expansion, an expandable pushdown symbol is chosen
and its topmost occurrence is rewritten.

Definition 5.1.1. An absolutely unlimited deep pushdown automaton (abbreviated AUD-
PDA), M, is an 8-tuple M = (Q, Σ, Γ, #,R, s, S, F), where

∙ Q is a finite set of states;

∙ Σ is an input alphabet;

∙ Γ is a pushdown alphabet, Γ ∩ Q = ∅, Σ ⊂ Γ;

∙ # ∈ (Γ − Σ) is the special symbol called bottom symbol;

50
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∙ R ⊆ (Q × (Γ− (Σ ∪ {#})) × Q × (Γ− {#})*) ∪ (Q × {#} × Q × (Γ− {#})*{#}) is a
finite set of rules;

∙ s ∈ Q is the initial state;

∙ S ∈ Γ is the initial pushdown symbol;

∙ F ⊆ Q is the set of final states.

A rule (p,A, q, x) ∈ R is usually written as pA → qx ∈ R. M is said to be propagating if
pA → qx ∈ R implies x , ε.
Set Ξ = Q × Σ* × (Γ − {#})*{#}. Then, χ ∈ Ξ is said to be a configuration of M.
The M-based relation of direct pop move, a

p⊢M, over Ξ is defined as follows:

(p, aw, az) a
p⊢M (p,w, z)

where p ∈ Q, a ∈ Σ, w ∈ Σ*, and z ∈ Γ*.
The M-based relation of direct expansion move, a

e⊢M, over Ξ is defined as follows:

(p,w, uAv) a
e⊢M (q,w, uxv)

if and only if pA → qx ∈ R, A /∈ alph(u) and for every A′ ∈ (alph(u)−Σ), pA′ → q′x′ /∈ R,
where p, q, q′ ∈ Q, w ∈ Σ*, A ∈ (Γ − Σ), and u, v, x, x′ ∈ Γ*.
The M-based relation of direct move, a⊢M, is then defined as a⊢M =

a
p⊢M ∪ a

e⊢M. For
k ≥ 0, a

p⊢
k
M, a

e⊢
k
M, a⊢k

M, a
p⊢
+

M, a
e⊢
+
M, a⊢+M, a

p⊢
*
M, a

e⊢
*
M, and a⊢*

M are defined as usual.
The language accepted by M, L(M), is defined as

L(M) = {w | (s,w, S#) a⊢*
M ( f , ε, #),w ∈ Σ

*, f ∈ F}

Additionally, the language accepted by M by empty pushdown, L(M)ε, is defined as

L(M)ε = {w | (s,w, S#) a⊢*
M (q, ε, #),w ∈ Σ

*, q ∈ Q}

AUDPDA and AUDPDA−ε denote the families of languages accepted by AUDPDA and
propagating AUDPDA, respectively.

In the following example, it is demonstrated that absolutely unlimited deep pushdown
automata are capable of accepting languages that are not context-free.

Example 5.1.2. Consider the absolutely unlimited deep pushdown automaton

M = (Q, {a}, {S,A,X,A′,X′, #, a}, #,R, ⟨s⟩, S, {⟨ f ⟩})

with Q = {⟨s⟩, ⟨c⟩, ⟨1⟩, ⟨2⟩, ⟨1′⟩, ⟨2′⟩, ⟨ f ⟩} and R containing rules

⟨s⟩S → ⟨c⟩aSAX ⟨c⟩S → ⟨c⟩aSA
⟨c⟩S → ⟨1⟩ ⟨1⟩A → ⟨2⟩
⟨1⟩X → ⟨1′⟩X′ ⟨2⟩A → ⟨1⟩A′

⟨2⟩X → ⟨ f ⟩ ⟨1′⟩A′ → ⟨2′⟩
⟨1′⟩X′ → ⟨1⟩X ⟨2′⟩A′ → ⟨1′⟩A
⟨2′⟩X′ → ⟨ f ⟩



5.1 Absolutely Unlimited Deep Pushdown Automata 52

Then a word aaaa is accepted by M in the following way:

(⟨s⟩, aaaa, S#) a
e⊢ (⟨c⟩, aaaa, aSAX#) [⟨s⟩S → ⟨c⟩aSAX]
a
p⊢ (⟨c⟩, aaa, SAX#)
a
e⊢ (⟨c⟩, aaa, aSAAX#) [⟨c⟩S → ⟨c⟩aSA]
a
p⊢ (⟨c⟩, aa, SAAX#)
a
e⊢ (⟨c⟩, aa, aSAAAX#) [⟨c⟩S → ⟨c⟩aSA]
a
p⊢ (⟨c⟩, a, SAAAX#)
a
e⊢ (⟨c⟩, a, aSAAAAX#) [⟨c⟩S → ⟨c⟩aSA]
a
p⊢ (⟨c⟩, ε, SAAAAX#)
a
e⊢ (⟨1⟩, ε,AAAAX#) [⟨c⟩S → ⟨1⟩]
a
e⊢ (⟨2⟩, ε,AAAX#) [⟨1⟩A → ⟨2⟩]
a
e⊢ (⟨1⟩, ε,A′AAX#) [⟨2⟩A → ⟨1⟩A′]
a
e⊢ (⟨2⟩, ε,A′AX#) [⟨1⟩A → ⟨2⟩]
a
e⊢ (⟨1⟩, ε,A′A′X#) [⟨2⟩A → ⟨1⟩A′]
a
e⊢ (⟨1′⟩, ε,A′A′X′#) [⟨1⟩X → ⟨1′⟩X′]
a
e⊢ (⟨2′⟩, ε,A′X′#) [⟨1′⟩A′ → ⟨2′⟩]
a
e⊢ (⟨1′⟩, ε,AX′#) [⟨2′⟩A′ → ⟨1′⟩A]
a
e⊢ (⟨1⟩, ε,AX#) [⟨1′⟩X′ → ⟨1⟩X]
a
e⊢ (⟨2⟩, ε,X#) [⟨1⟩A → ⟨2⟩]
a
e⊢ (⟨ f ⟩, ε, #) [⟨2⟩X → ⟨ f ⟩]

In brief, (⟨s⟩, aaaa, S#) a⊢* (⟨ f ⟩, ε, #). Observe that L(M) = L(M)ε = {a2n | n ≥ 0},
which belongs to CS − CF.

Accepting Power

Example 5.1.2 demonstrates that unlimited deep pushdown automata are capable of ac-
cepting languages that are not semilinear. Hence, unlimited deep pushdown automata are
obviously stronger than deep pushdown automata with a finite depth of expansion. More-
over, as shown next, they are capable of accepting every recursively enumerable language.

Lemma 5.1.3. For every (propagating) state grammar, G, there exists a (propagating)
absolutely unlimited deep pushdown automaton, M, such that L(G) = L(M).

Proof. Let G = (V,T,K, P, S, s) be a state grammar. Set N = (V − T). Introduce the
AUDPDA M = (K∪{ f̄ },T,V∪{#}, #,R, s, S, { f̄ }), where R is constructed by performing
the following steps:

(i) for every (A, p) → (x, q) ∈ P, where p, q ∈ K, A ∈ N, and x ∈ V*, add pA → qx to
R;

(ii) for every p ∈ K, add p# → f̄ # to R.
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Claim 5.1.4. Let (S, p) ⇒m
G (wy, q), where p, q ∈ K, w ∈ T*, y ∈ (NT*)*, and m ≥ 0.

Then, (p,w, S#) a⊢*
M (q, ε, y#).

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0, so (S, p) ⇒0
G (S, p), w = ε and y = S. Then

(p, ε, S#) a⊢0
M (p, ε, S#)

so the basis holds.

Induction Hypothesis. Assume that the claim holds for all 0 ≤ m ≤ k, where k is a
non-negative integer.

Induction Step. Let (S, p) ⇒k+1
G (wy, q), where p, q ∈ K, w ∈ T*, and y ∈ (NT*)*. Since

k + 1 ≥ 1, express (S, p) ⇒k+1
G (wy, q) as (S, p) ⇒k

G (w′uAv, t) ⇒G (w′uxv, q) [(A, t) →
(x, q)], where t ∈ K, w′ ∈ T*, u ∈ (NT*)*, A ∈ N, x, v ∈ V*, (A, t) → (x, q) ∈ P,
w = w′ŵ, and ŵy = uxv with ŵ ∈ T*. By the induction hypothesis, there exists a move
(p,w′, S#) a⊢*

M (t, ε, uAv#), which implies that there also exists a move (p,w′ŵ, S#) a⊢*
M

(t, ŵ, uAv#). By the definition of a G-based relation of direct derivation, there is no other
rule rP ∈ P such that lhs(rP) = (A′, t), for all A′ ∈ (alph(u) − T). From the first step of the
construction of R follows that there must be a rule tA → qx ∈ R. Thus, (t, ŵ, uAv#) a

e⊢M
(q, ŵ, uxv#) [tA → qx] and there is no other rule rR ∈ R such that lhs(rR) = tA′, for
all A′ ∈ (alph(u) − T). Since ŵy = uxv, it holds that (q, ŵ, ŵy#) a

p⊢
|ŵ|
M (q, ε, y#), which

completes the induction step.

By the previous claim for y = ε, if (S, s) ⇒*
G (w, q), where q ∈ K and w ∈ T*, then

(s,w, S#) a⊢*
M (q, ε, #). Since q# → f̄ # ∈ R, it also holds that (s,w, S#) a⊢*

M ( f̄ , ε, #). Thus,
w ∈ L(G) implies w ∈ L(M), so L(G) ⊆ L(M).

Claim 5.1.5. Let (p,w, S#) a⊢m
M (q, ε, ŵy#), where p, q ∈ K, w, ŵ ∈ T*, y ∈ (NT*)*, and

m ≥ 0. Then, (S, p) ⇒*
G (wŵy, q).

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0. Then, w = ŵ = ε, y = S, and

(p, ε, S#) a⊢0
M (p, ε, S#)

As (S, p) ⇒0
G (S, p), the basis holds.

Induction Hypothesis. Assume that the claim holds for all 0 ≤ m ≤ k, where k is a
non-negative integer.

Induction Step. Let (p,w, S#) a⊢k+1
M (q, ε, ŵy#), where p, q ∈ K, w, ŵ ∈ T*, and y ∈ (NT*)*.

Since k + 1 ≥ 1, express (p,w, S#) a⊢k+1
M (q, ε, ŵy#) as

(p,w, S#) a⊢k
M χ

a⊢M (q, ε, ŵy#)
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where χ is a configuration of M whose form depends on whether the last move is a popping
move or an expansion.

(I) Assume that χ a
p⊢M (q, ε, ŵy#). In the greater detail, let

χ = (q, a, aŵy#)

with a ∈ T such that w = w′a, where w′ ∈ T*. Thus

(p,w, S#) a⊢k
M (q, a, aŵy#) a

p⊢M (q, ε, ŵy#)

Since (p,w, S#) a⊢k
M (q, a, aŵy#), it holds that

(p,w′, S#) a⊢k
M (q, ε, aŵy#)

By the induction hypothesis, (S, p) ⇒*
G (w′aŵy, q). As w = w′a, (S, p) ⇒*

G (wŵy, q).

(II) Assume that χ a
e⊢M (q, ε, ŵy#). If this expansion is made by the rule introduced in

step (ii), then q = f̄ , ŵ = ε, y = ε, and the induction step follows from the induction
hypothesis. Therefore, suppose that this expansion is made by a rule introduced in
step (i). In greater detail, suppose that χ = (t, ε, uAv#) and

(t, ε, uAv#) a
e⊢M (q, ε, uxv#)

by using tA → qx ∈ R, where t ∈ K, A ∈ N, u ∈ (NT*)*, v, x ∈ V*, and ŵy = uxv.
By the induction hypothesis, (p,w, S#) a⊢k

M (t, ε, uAv#) implies (S, p) ⇒*
G (wuAv, t).

As tA → qx ∈ R, (A, t) → (x, q) ∈ P and for every A′ ∈ (alph(u) − T), there is
no other rule rP ∈ P such that lhs(rP) = (A′, t). Thus, (S, p) ⇒*

G (wuAv, t) ⇒G
(wuxv, q). Thus, (S, p) ⇒*

G (wŵy, q) since ŵy = uxv.

Consider the previous claim for ŵ = y = ε to see that

(s,w, S#) a⊢*
M (q, ε, #)

implies (S, s) ⇒*
G (w, q). Let w ∈ L(M). Then

(s,w, S#) a⊢*
M ( f̄ , ε, #)

can be expressed as (s,w, S#) a⊢*
M (q, ε, #) a

e⊢M ( f̄ , ε, #). Observe that the last move is made
by a rule introduced in step (ii). By the previous claim, (S, s) ⇒*

G (w, q), so w ∈ L(G).
Thus, w ∈ L(M) implies w ∈ L(G), so L(M) ⊆ L(G).
As L(M) ⊆ L(G) and L(G) ⊆ L(M), L(G) = L(M). Thus, Lemma 5.1.3 holds. Since the
construction of M from G preserves the propagating property, the lemma also holds for
propagating state grammars and absolutely unlimited deep pushdown automata.

Lemma 5.1.6. For every (propagating) absolutely unlimited deep pushdown automaton,
M, there exists a (propagating) state grammar, G, such that L(M){[} = L(G), where [ is a
new symbol such that [ /∈ ⋃︀

x∈L(M) alph(x).

Proof. Let M = (Q, Σ, Γ, #,R, s, S, F) be an absolutely unlimited deep pushdown automaton.
Set N = (Γ − Σ). Introduce the state grammar, G = (Γ ∪ {Z, [}, Σ ∪ {[},K, P, s̄,Z), where

K = Q ∪ {s̄, f̄ }
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and P is constructed by performing the following steps:

(i) add (Z, s̄) → (S#, s) to P;

(ii) for every pA → qx ∈ R, where p, q ∈ Q, A ∈ N, and x ∈ Γ*, add (A, p) → (x, q) to
P;

(iii) for every p ∈ Q, add (#, p) → ([, f̄ ) to P.

Claim 5.1.7. Let (S#, p) ⇒m
G (wy#, q), where p, q ∈ Q, w ∈ Σ*, y ∈ ((N − {#})Σ*)*, and

m ≥ 0. Then, (p,w, S#) a⊢*
M (q, ε, y#).

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0, so (S#, p) ⇒0
G (S#, p), w = ε and y = S. Then (p, ε, S#) a⊢0

M (p, ε, S#), so
the basis holds.

Induction Hypothesis. Assume that the claim holds for all 0 ≤ m ≤ k, where k is a
non-negative integer.

Induction Step. Let (S#, p) ⇒k+1
G (wy#, q), where p, q ∈ Q,w ∈ Σ*, and y ∈ ((N−{#})Σ*)*.

Observe that rules introduced in steps (i) and (iii) are not used.
Since k + 1 ≥ 1, express (S#, p) ⇒k+1

G (wy#, q) as

(S#, p) ⇒k
G (w′uAv, t) ⇒G (w′uxv, q) [(A, t) → (x, q)]

where t ∈ Q, w′ ∈ Σ*, u ∈ ((N − {#})Σ*)*, A ∈ N, x, v ∈ Γ*, (A, t) → (x, q) ∈ P, and
wy# = w′uxv. Express w as w = w′ŵ with ŵ ∈ Σ*, so ŵy# = uxv. By the induction
hypothesis, (S#, p) ⇒k

G (w′uAv, t) implies

(p,w′, S#) a⊢*
M (t, ε, uAv)

which implies (p,w′ŵ, S#) a⊢*
M (t, ŵ, uAv). As (A, t) → (x, q) ∈ P and there is no other

rule rP ∈ P such that lhs(rP) = (A′, t), for all A′ ∈ (alph(u)−Σ), tA → qx ∈ R must be the
only applicable rule on (t, ŵ, uAv). Thus, (t, ŵ, uAv) a

e⊢M (q, ŵ, uxv). Since ŵy# = uxv, it
holds that

(q, ŵ, ŵy#) a
p⊢

|ŵ|
M (q, ε, y#)

which completes the induction step.

Consider any w ∈ L(G). Observe that w = w′[, where w′ ∈ Σ*. Next, observe that G
generates w as

(Z, s̄) ⇒G (S#, s) [(Z, s̄) → (S#, s)]
⇒*

G (w′#, q) (Claim 5.1.7 with y = ε)
⇒G (w′[, f̄ ) [(#, q) → ([, f̄ )]
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where q ∈ Q, and (Z, s̄) → (S#, s) ∈ P and (#, q) → ([, f̄ ) ∈ P are rules introduced in
steps (i) and (iii) of the construction of P, respectively. Thus, (s,w′, S#) a⊢*

M (q, ε, #). Thus,
w′[ ∈ L(G) implies w′ ∈ L(M), so L(G) ⊆ L(M){[}.

Claim 5.1.8. Let (p,w, S#) a⊢m
M (q, ε, ŵy#), where p, q ∈ Q, w, ŵ ∈ Σ*, y ∈ ((N−{#})Σ*)*,

and m ≥ 0. Then, (S#, p) ⇒*
G (wŵy#, q).

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0. Then, w = ŵ = ε, y = S, and (p, ε, S#) a⊢0
M (p, ε, S#). As (S#, p) ⇒0

G
(S#, p), the basis holds.

Induction Hypothesis. Assume that the claim holds for all 0 ≤ m ≤ k, where k is a
non-negative integer.

Induction Step. Let (p,w, S#) a⊢k+1
M (q, ε, ŵy#), where p, q ∈ Q, w, ŵ ∈ Σ*, and y ∈

((N − {#})Σ*)*. Since k + 1 ≥ 1, express (p,w, S#) a⊢k+1
M (q, ε, ŵy#) as (p,w, S#) a⊢k

M
χ a⊢M (q, ε, ŵy#), where χ is a configuration of M whose form depends on whether the last
move is a popping move or an expansion.

(I) Assume that χ a
p⊢M (q, ε, ŵy#). More specifically, let

χ = (q, a, aŵy#)

with a ∈ Σ such that w = w′a, where w′ ∈ Σ*. Thus

(p,w, S#) a⊢k
M (q, a, aŵy#) a

p⊢M (q, ε, ŵy#)

Since (p,w, S#) a⊢k
M (q, a, aŵy#), it holds that (p,w′, S#) a⊢k

M (q, ε, aŵy#). By the
induction hypothesis, (S#, p) ⇒*

G (w′aŵy#, q). As w = w′a, (S#, p) ⇒*
G (wŵy#, q).

(II) Assume that χ a
e⊢M (q, ε, ŵy#). More specifically, let χ = (t, ε, uAv), where t ∈

Q, A ∈ N, u ∈ ((N − {#})Σ*)*, and v ∈ Γ*. By the induction hypothesis,
(p,w, S#) a⊢k

M (t, ε, uAv) implies (S#, p) ⇒*
G (wuAv, t). Consider that (t, ε, uAv) a

e⊢M
(q, ε, uxv) [tA → qx], tA → qx ∈ R, with ŵy# = uxv. Following the construction
of P, there must be a rule (A, t) → (x, q) ∈ P introduced in step (ii). As there is no
other rule rP ∈ P such that lhs(rP) = (A′, t), there is also no other rule rR ∈ R such
that lhs(rR) = tA′, for all A′ ∈ (alph(u) − Σ). Thus, (wuAv, t) ⇒G (wuxv, q), and by
putting the previous sequences of derivations together, (S#, p) ⇒*

G (wŵy#, q) since
ŵy# = uxv.

By the previous claim for y = ŵ = ε, if (s,w, S#) a⊢*
M (q, ε, #), where q ∈ Q and w ∈ Σ*,

then (S#, s) ⇒*
G (w#, q). As P contains rules introduced in steps (i) and (iii), it also holds

that (Z, s̄) ⇒G (S#, s) ⇒*
G (w#, q) ⇒G (w[, f̄ ). Thus, w ∈ L(M) implies w[ ∈ L(G), so

L(M){[} ⊆ L(G).
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As L(M){[} ⊆ L(G) and L(G) ⊆ L(M){[}, L(M){[} = L(G). Thus, Lemma 5.1.6 holds.
Since the construction of G from M preserves the propagating property, the lemma also holds
for propagating absolutely unlimited deep pushdown automata and state grammars.

Theorem 5.1.9. AUDPDA = RE

Proof. Since ST = RE, RE ⊆ AUDPDA follows directly from Lemma 5.1.3. The rest
directly follows from Church’s Thesis.

Theorem 5.1.10. AUDPDA−ε = CS

Proof. Inclusion CS ⊆ AUDPDA−ε follows directly from Lemma 5.1.3.
From Lemma 5.1.6, it follows that for every propagating AUDPDA M, it holds L(M){[} ∈
CS, where [ /∈ ⋃︀

x∈L(M) alph(x). Since CS is closed under linear erasing, it also holds that
L(M) ∈ CS and hence AUDPDA−ε ⊆ CS.

5.2 Relatively Unlimited Deep Pushdown Automata

The concept of expansion relative to the depth on pushdown was first introduced by Meduna
and Křivka in [50] in the form of relatively deep top-down parsers, but they were never
studied. In a relatively deep top-down parser, an expansion is done in three ways: let
X be an expandable pushdown symbol at a given position. Then, either (1) expand the
next pushdown symbol that is above X and move the position further down to the next
expandable pushdown symbol, (2) expand the next pushdown symbol that is below X and
move the position up to the next expandable pushdown symbol, or (3) just expand X and
set the position to the next expandable pushdown symbol with the same depth as X.

Relatively unlimited deep pushdown automata originate from the relatively deep top-
down parsers, but their definition of expansion is adjusted to be more intuitive: they first
expand X and then they move the position up, down, or stay still.

Definition 5.2.1. A relatively unlimited deep pushdown automaton (abbreviated RUDPDA),
M, is an 8-tuple M = (Q, Σ, Γ, #,R, s, S, F), where

∙ Q, Σ, Γ, #, s, S, F are defined as in Definition 5.1.1;

∙ R ⊆ ({−1, 0, 1}×Q×(Γ−(Σ∪{#}))×Q×(Γ−{#})*)∪(Q×{#}×Q×(Γ−{#})*{#})
is a finite set of rules.

Rules (k, p,A, q, x) ∈ R and (p,A, q, x) ∈ R are usually written as kpA → qx ∈ R and
pA → qx ∈ R, respectively. M is said to be propagating if kpA → qx ∈ R implies x , ε.
Set Ξ = Q × Σ* × (Γ − {#})*{#} × N. Then, χ ∈ Ξ is said to be a configuration of M.
The M-based relation of direct pop move, r

p⊢M, over Ξ is defined as follows:

(p, aw, az, i) r
p⊢M (p,w, z, i)
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where p ∈ Q, a ∈ Σ, w ∈ Σ*, z ∈ Γ*, and i ∈ N.
The M-based relation of direct expansion move, r

e⊢M, over Ξ is defined as follows:

(p,w, uAv, i) r
e⊢M (q,w, uxv, j)

if and only if kpA → qx ∈ R, where p, q ∈ Q, w ∈ Σ*, u, x, v ∈ Γ*, i, j ∈ N, and

∙ either A ∈ Γ − (Σ ∪ {#}), k ∈ {−1, 0, 1}, and j = i + k = OΓ−Σ(uA) + k;

∙ or A = #, k = ε, and j = i = OΓ−Σ(uA).

The M-based relation of direct move, r⊢M, is then defined as r⊢M =
r
p⊢M ∪ r

e⊢M. For
m ≥ 0, r

p⊢
m
M, r

e⊢
m
M, r⊢m

M, r
p⊢
+

M, r
e⊢
+
M, r⊢+M, r

p⊢
*
M, r

e⊢
*
M, and r⊢*

M are defined as usual.
The language accepted by M, L(M), is defined as

L(M) = {w | (s,w, S#, 1) r⊢*
M ( f , ε, #, 1),w ∈ Σ

*, f ∈ F}

Additionally, the language accepted by M by empty pushdown, L(M)ε, is defined as

L(M)ε = {w | (s,w, S#, 1) r⊢*
M (q, ε, #, 1),w ∈ Σ

*, q ∈ Q}

RUDPDA and RUDPDA−ε denote the families of languages accepted by RUDPDA and
propagating RUDPDA, respectively.

In the following example, it is demonstrated how relatively deep pushdown automata
work during a process of accepting a word from a non-context-free language.

Example 5.2.2. Consider the relatively unlimited deep pushdown automaton

M = (Q, {a, b, c}, {S,A,B,C, N,�, #, a, b, c}, #,R, ⟨s⟩, S, {⟨ f ⟩})

where Q is induced by R and R contains rules

0⟨s⟩S → ⟨ra⟩aA� 1⟨xB⟩C → ⟨xB⟩C
0⟨ra⟩A → ⟨ra⟩aAA 0⟨xB⟩B → ⟨xA⟩
0⟨ra⟩A → ⟨rb⟩bBA 1⟨xA⟩B → ⟨xA⟩B
0⟨rb⟩B → ⟨rb⟩bBB 0⟨xA⟩A → ⟨r⟩
0⟨rb⟩B → ⟨rc⟩cCB (−1)⟨r⟩� → ⟨r⟩�
0⟨rc⟩C → ⟨rc⟩cCC (−1)⟨r⟩A → ⟨r⟩A
0⟨rc⟩C → ⟨t⟩NC (−1)⟨r⟩B → ⟨r⟩B

1⟨t⟩N → ⟨xC⟩N (−1)⟨r⟩C → ⟨r⟩C
(−1)⟨xC⟩� → ⟨h⟩ 0⟨r⟩N → ⟨t⟩N

0⟨xC⟩C → ⟨xB⟩ 0⟨h⟩N → ⟨ f ⟩
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Then a word aabbcc is accepted by M in the following way:

(⟨s⟩, aabbcc, S#, 1) r
e⊢M (⟨ra⟩, aabbcc, aA�#, 1) [0⟨s⟩S → ⟨ra⟩aA�]
r
p⊢M (⟨ra⟩, abbcc,A�#, 1)
r
e⊢M (⟨ra⟩, abbcc, aAA�#, 1) [0⟨ra⟩A → ⟨ra⟩aAA]
r
p⊢M (⟨ra⟩, bbcc,AA�#, 1)
r
e⊢M (⟨rb⟩, bbcc, bBAA�#, 1) [0⟨ra⟩A → ⟨rb⟩bBA]
r
p⊢M (⟨rb⟩, bcc,BAA�#, 1)
r
e⊢M (⟨rb⟩, bcc, bBBAA�#, 1) [0⟨rb⟩B → ⟨rb⟩bBB]
r
p⊢M (⟨rb⟩, cc,BBAA�#, 1)
r
e⊢M (⟨rc⟩, cc, cCBBAA�#, 1) [0⟨rb⟩B → ⟨rc⟩cCB]
r
p⊢M (⟨rc⟩, c,CBBAA�#, 1)
r
e⊢M (⟨rc⟩, c, cCCBBAA�#, 1) [0⟨rc⟩C → ⟨rc⟩cCC]
r
p⊢M (⟨rc⟩, ε,CCBBAA�#, 1)
r
e⊢M (⟨t⟩, ε, NCCBBAA�#, 1) [0⟨rc⟩C → ⟨t⟩NC]
r
e⊢M (⟨xC⟩, ε, NCCBBAA�#, 2) [1⟨t⟩N → ⟨xC⟩N]
r
e⊢M (⟨xB⟩, ε, NCBBAA�#, 2) [0⟨xC⟩C → ⟨xB⟩]
r
e⊢M (⟨xB⟩, ε, NCBBAA�#, 3) [1⟨xB⟩C → ⟨xB⟩C]
r
e⊢M (⟨xA⟩, ε, NCBAA�#, 3) [0⟨xB⟩B → ⟨xA⟩]
r
e⊢M (⟨xA⟩, ε, NCBAA�#, 4) [1⟨xA⟩B → ⟨xA⟩B]
r
e⊢M (⟨r⟩, ε, NCBA�#, 4) [0⟨xA⟩A → ⟨r⟩]
r
e⊢M (⟨r⟩, ε, NCBA�#, 3) [(−1)⟨r⟩A → ⟨r⟩A]
r
e⊢M (⟨r⟩, ε, NCBA�#, 2) [(−1)⟨r⟩B → ⟨r⟩B]
r
e⊢M (⟨r⟩, ε, NCBA�#, 1) [(−1)⟨r⟩C → ⟨r⟩C]
r
e⊢M (⟨t⟩, ε, NCBA�#, 1) [0⟨r⟩N → ⟨t⟩N]
r
e⊢M (⟨xC⟩, ε, NCBA�#, 2) [1⟨t⟩N → ⟨xC⟩N]
r
e⊢M (⟨xB⟩, ε, NBA�#, 2) [0⟨xC⟩C → ⟨xB⟩]
r
e⊢M (⟨xA⟩, ε, NA�#, 2) [0⟨xB⟩B → ⟨xA⟩]
r
e⊢M (⟨r⟩, ε, N�#, 2) [0⟨xA⟩A → ⟨r⟩]
r
e⊢M (⟨r⟩, ε, N�#, 1) [(−1)⟨r⟩�→ ⟨r⟩�]
r
e⊢M (⟨t⟩, ε, N�#, 1) [0⟨r⟩N → ⟨t⟩N]
r
e⊢M (⟨xC⟩, ε, N�#, 2) [1⟨t⟩N → ⟨xC⟩N]
r
e⊢M (⟨h⟩, ε, N#, 1) [(−1)⟨xC⟩�→ ⟨h⟩]
r
e⊢M (⟨ f ⟩, ε, #, 1) [0⟨h⟩N → ⟨ f ⟩]

In short, (⟨s⟩, aabbcc, S#, 1) r⊢*
M (⟨ f ⟩, ε, #, 1).Observe that L(M) = L(M)ε = {anbncn | n ≥

1}, which belongs to CS − CF.

Accepting Power

Following theorems show that also relatively unlimited deep pushdown automata and
their propagating variants can accept every recursively enumerable and context-sensitive
language, respectively.

Theorem 5.2.3. RUDPDA = RE



5.2 Relatively Unlimited Deep Pushdown Automata 60

Proof. RUDPDA ⊆ RE follows directly from Church’s Thesis. To demonstrate that
RE ⊆ RUDPDA, let L ∈ RE. Without any loss on generality, suppose that there exists a
Turing machine M = (Q, Σ, Γ,∆,R, s, F) such that

L = L(M) = {w | sw ⊢*
M f wα,w ∈ Σ

*, α ∈ (Γ − Σ)*, f ∈ F}

From M, construct a RUDPDA M′ = (Q′, Σ, Γ′, #′,R′, s′, S′, { f ′}), (Q ∪ Γ) ∩ (Q′ ∪ Γ′) = Σ,
such that L(M′) = L(M), in the following way:

1. Set Q′ = {s′, f ′} ∪ {⟨q⟩ | q ∈ Q} ∪ {⟨r⟩ | r ∈ R}.

2. Set Γ′ = {S′,Z′, #′} ∪ {X̄ | X ∈ Γ} ∪ Σ.

3. Set R′
0 = {0s′S′ → s′S′ā, 0s′S′ → ⟨s⟩ā | a ∈ Σ}.

4. Set R′
1 = {1⟨p⟩X̄ → ⟨q⟩Ȳ | pX → qYdR ∈ R}.

5. Set R′
2 = {⟨p⟩#′ → ⟨r⟩Z′#′, 1⟨r⟩Z′ → ⟨q⟩Ȳ | r : p∆→ qYdR ∈ R}.

6. Set R′
3 = {(−1)⟨p⟩X̄ → ⟨q⟩Ȳ | pX → qYdL ∈ R}.

7. Set R′
4 = {⟨p⟩#′ → ⟨r⟩Z′#′, (−1)⟨r⟩Z′ → ⟨q⟩Ȳ | r : p∆→ qYdL ∈ R}.

8. Set R′
5 = {0⟨ f ⟩X̄ → f ′X̄ | X ∈ Γ} ∪ {0 f ′ā → f ′a | a ∈ Σ} ∪ {0 f ′X̄ → f ′ | X ∈

(Γ − Σ)}.

9. Set R′ =
⋃︀

0≤i≤5 R′
i.

First, M′ applies rules from R′
0 to prepare M’s tape on the pushdown. Then, by applying

rules from
⋃︀

1≤i≤4 R′
i, M′ simulates moves performed by M. Finally, by applying rules

from R′
5, M′ empties the pushdown and finishes its computation.

Therefore,
(s′,w, S′#′, 1) r⊢*

M′ (⟨s⟩,w, h(w)#′, 1)
r⊢*

M′ (⟨ f ⟩,w, h(wα)#′, 1)
r⊢M′ ( f ′,w, h(wα)#′, 1)
r⊢*

M′ ( f ′, ε, #′, 1)

if and only if sw ⊢*
M f wα, where h is a morphism from Γ* to Γ′* defined as h(a) = ā.

Theorem 5.2.4. RUDPDA−ε = CS

Proof. First, it will be demonstrated that for every propagating RUDPDA

M = (Q, Σ, Γ, #,R, s, S, F)

there exists a linear bounded automaton M′ = (Q′, Σ, Γ′,∆′,R′, s′, { f ′}) that simulates M.
Let w ∈ L(M). Then, M′ will accept w by performing the following steps:

(I) First, M′ rewrites its initial configuration s′w to the configuration that represents the
initial configuration of M. Observe that as M is propagating, the number of symbols
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on its pushdown does not exceed |w| + 1. Therefore, every input symbol is replaced
by M′ by a symbol of the form ⟨a,X,Y⟩, where a ∈ Σ is the original input symbol,
X ∈ (Γ ∪ {�}) is a pushdown symbol, � /∈ Γ denotes a free space on a pushdown,
and Y ∈ ({+,−} ∪ Ω) is an auxiliary symbol, where + denotes that input symbol
has not been read by M yet, − denotes that input symbol has been read by M and
simultaneously popped from M’s pushdown, and Ω is an alphabet of symbols used to
temporarily mark the current position of M′’s head on the tape. Note that from the M′’s
point of view, − works as a left bounder, and M′ should not move its head left behind
−. Also note that the bottom symbol, #, is not encoded directly, but is implicit. Now,
M′ contains three tapes in one—input, pushdown, and auxiliary—without exceeding
the space given by w.
Summing it up, if w = a1a2a3 . . . an, then

s′a1a2a3 . . . an ⊢*
M′ ⟨s⟩

⎡⎣ a1 a2 a3 . . . an
S � � . . . �
+ + + . . . +

⎤⎦
in this step, where ⟨s⟩ ∈ Q′ is a state that corresponds s.

(II) Suppose that

(p,w′, uAv, i) r
e⊢M (q,w′, uxv, i + 1) [1pA → qx]

where p, q ∈ Q, w′ ∈ Σ*, A ∈ (Γ − (Σ ∪ {#})), u, v, x ∈ Γ*, i ∈ N, 1pA → qx ∈ R,
is going to be simulated by M′. Then, M′ takes the following actions:

1. M′ ensures there is enough space to rewrite A with x on the pushdown tape.
If there is not enough space, then it means that the size of the M’s pushdown
exceeds |w| and thus M never accepts its input.

2. M′ moves v (|x| − 1) cells to the right.
3. M′ replaces A with x.
4. If xv = x1X1x2X2v2, x1, x2 ∈ Σ*,X1,X2 ∈ (Γ − (Σ ∪ {#})), v2 ∈ Γ*, M′ moves

its head to X2. Otherwise, M′ moves its head to the end of pushdown tape and
records the information about missing symbols inside its state. This reflects the
situation that M, to make accepting its input possible, must apply q# → ty#,
t ∈ Q, y ∈ (Γ − {#})* as its next rule.

5. M′ enters the state corresponding to q.

(III) Suppose that

(p,w′, uAv, i) r
e⊢M (q,w′, uxv, i − 1) [(−1)pA → qx]

where p, q ∈ Q, w′ ∈ Σ*, A ∈ (Γ−(Σ∪{#})), u, v, x ∈ Γ*, i ∈ N, (−1)pA → qx ∈ R,
is going to be simulated by M′. Then, M′ takes the following actions:

1. M′ replaces A with x by following the steps (II.1) to (II.3).
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2. If u = u1X1u2, u1 ∈ Γ*,X1 ∈ (Γ− (Σ∪{#})), u2 ∈ Σ*, M′ moves its head to X1.
Otherwise, M′—and by extension M—will be blocked and unable to accept w.

3. M′ enters the state corresponding to q.

(IV) Suppose that

(p,w′, uAv, i) r
e⊢M (q,w′, uxv, i) [0pA → qx]

where p, q ∈ Q, w′ ∈ Σ*, A ∈ (Γ − (Σ ∪ {#})), u, v, x ∈ Γ*, i ∈ N, 0pA → qx ∈ R,
is to be simulated by M′. Then, M′ takes the following actions:

1. M′ replaces A with x by following the steps (II.1) to (II.3).
2. If xv = x1X1v1, x1 ∈ Σ*,X1 ∈ (Γ − (Σ ∪ {#})), v1 ∈ Γ*, M′ moves its head to

X1. Otherwise, like in step (II), M′ moves its head to the end of pushdown tape
and records the information about the missing symbol inside its state.

3. M′ enters the state corresponding to q.

(V) Suppose that

(p,w′, u#, i) r
e⊢M (q,w′, ux#, i) [p# → qx#]

where p, q ∈ Q, w′ ∈ Σ*, u, x ∈ (Γ − {#})*, i ∈ N, p# → qx# ∈ R, is going to be
simulated by M′. Then, M′ takes the following actions:

1. If M′ has not recorded that there are any missing symbols (on its pushdown tape)
in its state, it saves its head’s current position, records this information inside its
state and moves its head to the end of pushdown tape.

2. M′ ensures that there is enough space to append x to the end of pushdown tape
and then performs the action.

3. If x = x1X1x2X2y, x1, x2 ∈ Σ*,X1,X2 ∈ (Γ− Σ), y ∈ Γ* and in its state, M′ has
recorded that two symbols from (Γ − (Σ ∪ {#})) are missing on its pushdown
tape, then M′ moves its head to X2 and removes the recorded information from
its state. The process is similar in case one symbol is missing. If OΓ−Σ(x) = 1
and two symbols are needed, M′ updates the information in its state accordingly.

4. If M′ has recorded that its head should be restored to its original position in its
state, then M′ restores it and removes the recorded information from its state.

5. M′ enters the state corresponding to q.

(VI) Suppose that
(p, aw′, az, i) r

p⊢M (p,w′, z, i)

where p ∈ Q, a ∈ Σ, w′ ∈ Σ*, z ∈ Γ*, i ∈ N, is going to be simulated by M′. Then,
M′ takes the following actions:

1. M′ saves its head’s current position.
2. M′ finds the leftmost symbol ⟨a, a,+⟩ and rewrites it to the symbol ⟨a, a,−⟩.
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3. M′ restores the original position of its head.

(VII) Suppose that M has accepted its input. That is, its configuration is ( f , ε, #, 1), f ∈ F.
At this point, M′ finishes M’s simulation and its configuration is⎡⎣ a1 a2 a3 . . . an

a1 a2 a3 . . . an
− − − . . . −

⎤⎦ ⟨ f ⟩

where ⟨ f ⟩ ∈ Q′ corresponds to f . Then,⎡⎣ a1 a2 a3 . . . an
a1 a2 a3 . . . an
− − − . . . −

⎤⎦ ⟨ f ⟩ ⊢*
M′

⎡⎣ a1 a2 a3 . . . an
a1 a2 a3 . . . an
− − − . . . −

⎤⎦ f ′

and thus w is accepted by M′ if and only if it is accepted by M.

To show that CS ⊆ RUDPDA−ε, suppose without any loss on generality that for every
L ∈ CS there exists a linear bounded automaton M = (Q, Σ, Γ,∆,R, s, F) such that

L = L(M) = {w | sw ⊢*
M f w,w ∈ Σ

*, f ∈ F}

From M, construct a RUDPDA M′ = (Q′, Σ, Γ′, #′,R′, s′, S′, { f ′}) by following the steps in
Theorem 5.2.3. Observe that

(⟨s⟩,w, h(w)#′, 1) r⊢*
M′ (⟨ f ⟩,w, h(w)#′, 1) if and only if sw ⊢*

M f w

and hence R′
5 can be constructed as

R′
5 = {0⟨ f ⟩ā → f ′ā, 0 f ′ā → f ′ā | a ∈ Σ}

Thus (s′,w, S′#′, 1) r⊢*
M′ ( f ′, ε, #′, 1) if and only if sw ⊢*

M f w and since M′ is propagating,
CS ⊆ RUDPDA−ε.



Chapter 6
Jumping Pure Grammars

In pure grammars, as recalled in Definition 2.3.1, all symbols from the total alphabet are
terminal symbols. As a consequence, given a pure grammar G, every sentential form
produced by G is also a word that belongs to L(G).

This chapter presents pure grammars extended with derivation modes that allow jumping
rewriting, both in a sequential and parallel way. The focus is laid mostly on pure grammars
with context-free rules and on relations between families of languages they generate.

The contents of this chapter, published in [49], are organized into four sections. Section
6.1 defines the notion of jumping pure grammars and the corresponding language families.
In greater detail, jumping pure grammars are defined as pure grammars that can work
in four derivation modes: classical sequential and parallel mode and jumping sequential
and parallel mode, where jumping sequential mode in fact consist of two other modes—
left jumping and right jumping sequential modes. Section 6.2 gives a survey of several
elementary properties of jumping pure grammars. Section 6.3 studies mutual relations
between SPCF, JSPCF, PPCF, JPPCF, CF, and CS families. Finally, Section 6.4 gives
remarks on propagating jumping pure grammars and jumping pure grammars with unary
alphabets.

6.1 Definitions

First, define six derivation modes for pure grammars. Classical sequential ( s⇒) and
classical jumping ( l j⇒, r j⇒, j⇒) derivation modes are defined analogously with
jumping grammars. Parallel sequential derivation mode ( p⇒) is a generalization of direct
derivation in 0L systems and parallel jumping derivation mode ( jp⇒) adds the element of
jumping to it.

Definition 6.1.1. Let G = (Σ, P, σ) be a pure grammar. The six G-based relations of direct
derivations, s⇒G, l j⇒G, r j⇒G, j⇒G, p⇒G, and jp⇒G, over Σ* are defined as follows:

(i) s⇒G, l j⇒G, r j⇒G, and j⇒G are defined exactly as in Definition 3.1.11 with the
difference that they are defined over Σ*.

(ii) For u, v ∈ Σ* and some n ≥ 1, u p⇒G v if and only if u = x1x2 . . . xn, v = y1y2 . . . yn,
and xi → yi ∈ P, where xi, yi ∈ Σ*, 1 ≤ i ≤ n.

64
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(iii) For u, v ∈ Σ* and some n ≥ 1, u jp⇒G v if and only if u = x1x2 . . . xn, v =

yp(1)yp(2) . . . yp(n), p ∈ perm({1, 2, . . . , n}), and xi → yi ∈ P, where xi, yi ∈ Σ*,
1 ≤ i ≤ n.

Let h ∈ {s, l j, r j, j, p, jp}. For k ≥ 0, h⇒k
G, h⇒+G, and h⇒*

G are defined as usual. The
language generated by G in h-mode, L(G, h⇒), is defined as

L(G, h⇒) = {w | σ h⇒*
G w,w ∈ Σ

*}

Generally speaking, if a pure grammar works under a derivation mode defined in Defini-
tion 6.1.1, then it is referred to as a jumping pure grammar. Note that sequential derivation
modes are special cases of the jumping ones.

To demonstrate how using the jumping derivation modes can influence generated lan-
guage, consider a pure grammar G = (Σ, P, a), where Σ = {a, b, c, d} and

P = {a → abcd, a → a, b → b, c → c, d → d}

Observe that L(G, s⇒) = L(G, p⇒) = {a}{bcd}* is a regular language, but

L(G, j⇒) = L(G, jp⇒) = {w | Oa(w) = 1,Ob(w) = Oc(w) = Od(w),w ∈ Σ
+}

is a non-context-free language.
Next, families of languages generated by pure grammars in h-mode, where h ∈

{s, l j, r j, j, p, jp}, are defined.

Definition 6.1.2. Let G (PG), G (PG−ε), G (PCFG), and G (PCFG−ε) denote the set of all
pure grammars, the set of all propagating pure grammars, the set of all pure context-free
grammars, and the set of all propagating pure context-free grammars, respectively. Then

1. SP = {L(G, s⇒) | G ∈ G (PG)}

2. SP−ε = {L(G, s⇒) | G ∈ G (PG−ε)}

3. JSP = {L(G, j⇒) | G ∈ G (PG)}

4. JSP−ε = {L(G, j⇒) | G ∈ G (PG−ε)}

5. PP = {L(G, p⇒) | G ∈ G (PG)}

6. PP−ε = {L(G, p⇒) | G ∈ G (PG−ε)}

7. JPP = {L(G, jp⇒) | G ∈ G (PG)}

8. JPP−ε = {L(G, jp⇒) | G ∈ G (PG−ε)}

9. SPCF = {L(G, s⇒) | G ∈ G (PCFG)}

10. SPCF−ε = {L(G, s⇒) | G ∈ G (PCFG−ε)}
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11. JSPCF = {L(G, j⇒) | G ∈ G (PCFG)}

12. JSPCF−ε = {L(G, j⇒) | G ∈ G (PCFG−ε)}

13. PPCF = {L(G, p⇒) | G ∈ G (PCFG)}

14. PPCF−ε = {L(G, p⇒) | G ∈ G (PCFG−ε)}

15. JPPCF = {L(G, jp⇒) | G ∈ G (PCFG)}

16. JPPCF−ε = {L(G, jp⇒) | G ∈ G (PCFG−ε)}

6.2 Elementary Properties

This section introduces some properties of language families defined in Definition 6.1.2,
which will be referred in proofs in the next section.

Theorem 6.2.1. The following inclusions hold:

(a) SPCF ⊂ CF

(b) 0L ⊂ PPCF

(c) Let X ∈ {SP, JSP,PP, JPP, SPCF, JSPCF,PPCF, JPPCF}. Then, X−ε ⊆ X.

Proof.

(a) By its definition, SPCF characterize the family of languages generated by pure context-
free grammars and hence SPCF ⊂ CF by [63, 88].

(b) Clearly, 0L ⊆ PPCF. Let L = {a, aab}. Observe that for a pure context-free
grammar G = ({a, b}, {a → aab}, a), it holds that L = L(G, p⇒) and hence L ∈
PPCF. Obviously, L /∈ 0L, because by Definition 3.2.1, every 0L system H such that
L ⊆ L(H) must contain a rule with b on its left-hand side and thus L(H) − L , ∅.

(c) Obvious.

Theorem 6.2.2. SPCF and JSPCF are semilinear.

Proof. Since CF is semilinear (see [75]) and SPCF ⊂ CF, SPCF must be also semilinear.
Consider any pure context-free grammar G = (Σ, P, σ). From the definitions of s⇒ and

j⇒ it follows that φ(L(G, s⇒)) = φ(L(G, j⇒)), where φ(L) is a Parikh map of L. Thus,
JSPCF is semilinear as well.

Theorem 6.2.3. SPCF ⊂ PPCF

Proof. First, it will be proven that SPCF ⊆ PPCF. Let G = (Σ, P, σ) be a pure context-free
grammar. From G, construct a pure context-free grammar

G′ = (Σ, P ∪ {a → a | a ∈ Σ}, σ)
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Now, the following two claims will be proven.

Claim 6.2.4. Let w ∈ Σ*. If σ s⇒m
G w, then σ p⇒*

G′ w.

Proof. The claim is proved by induction on m ≥ 0. As σ is the axiom of both G and G′, the
induction basis is obvious. Assume that the claim holds for all 0 ≤ m ≤ k, where k ≥ 0.
Let σ s⇒k+1

G w. Express σ s⇒k+1
G w as σ s⇒k

G uav s⇒G uxv, where u, v, x ∈ Σ*,
a ∈ Σ, a → x ∈ P, and uxv = w. By the induction hypothesis, there exists a derivation
σ p⇒*

G′ uav. By the construction of G′ from G, uav p⇒*
G′ uxv.

Claim 6.2.5. Let w ∈ Σ*. If σ p⇒m
G′ w, then σ s⇒*

G w.

Proof. The claim is proved by induction on m ≥ 0. As in Claim 6.2.4, the induction basis
is obvious. Assume that the claim holds for all 0 ≤ m ≤ k, where k ≥ 0.
Let σ p⇒k+1

G′ w. Express σ p⇒k+1
G′ w as σ p⇒k

G′ x p⇒G′ w, where x ∈ Σ*. Set n = |x|.
Express x and w as x = a1a2 . . . an and w = y1y2 . . . yn, respectively, where ai ∈ Σ,
yi ∈ Σ*, and ai → yi ∈ (P ∪ {a → a | a ∈ Σ}), 1 ≤ i ≤ n. Observe that ai , yi implies
ai → yi ∈ P, for all 1 ≤ i ≤ n, and hence x s⇒*

G w.

By Claim 6.2.4 and Claim 6.2.5, σ s⇒*
G w if and only if σ p⇒*

G′ w. That is, L(G, s⇒) =
L(G′, p⇒) and thus SPCF ⊆ PPCF.

Let L = {a2n | n ≥ 0}. As L /∈ CF, L /∈ SPCF. Let G = ({a}, {a → aa}, a). Clearly,
L = L(G, p⇒) and thus L ∈ PPCF. Hence, SPCF ⊂ PPCF.

Corollary 6.2.6. SPCF ⊂ 0L

Proof. It follows directly from the construction of G′ from G in the proof of Theorem 6.2.3
and from the fact that G′ is 0L system.

Theorem 6.2.7. SPCF ⊂ (CF ∩ PPCF)

Proof. For every L ∈ SPCF, it holds that L ∈ CF (Theorem 6.2.1.a) and simultaneously
L ∈ PPCF (Theorem 6.2.3), and hence SPCF ⊆ (CF ∩ PPCF).
Let L = {ab, ccdd} be a language over Σ = {a, b, c, d}. Clearly, L ∈ CF and also
L ∈ PPCF since there is a pure context-free grammar

G = (Σ, {a → cc, b → dd, c → c, d → d}, ab)

such that L = L(G, p⇒).
By contradiction, it will be demonstrated that there is no pure context-free grammar G′ =
(Σ, P′, σ) such that L(G′, s⇒) = L.
Clearly, σ must be either ab or ccdd. If ccdd is chosen as the axiom, there must exist rule
c → ε or d → ε in P′ and hence cdd or ccd are contained in L, which is a contradiction.
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On the other hand, if ab is chosen instead, then there is no possible way to directly derive
ccdd from ab by using s⇒. Thus, L /∈ SPCF, which completes the proof.

Corollary 6.2.8. SPCF ⊂ (CF ∩ 0L)

Proof. It follows directly from Theorem 6.2.7 and its proof.

Corollary 6.2.9. For a unary alphabet, 0L = PPCF = JPPCF.

Proof. It follows directly from the definition of p⇒ and jp⇒ and from the definition of
⇒ in 0L systems (see Definition 3.2.1).

Corollary 6.2.10. For a unary alphabet, SPCF = JSPCF.

Proof. It follows directly from the definition of s⇒ and j⇒.

Corollary 6.2.11. For a unary alphabet, JSPCF ⊂ JPPCF.

Proof. It follows directly from Corollary 6.2.9, Corollary 6.2.10, and Theorem 6.2.3.

The following lemma is a generalization of Lemma 3.2.2.

Lemma 6.2.12. Let G be a pure context-free grammar. Let h ∈ {s, j, p, jp}. Then there
exists a number k such that for every word w ∈ L(G, h⇒) there exists a derivation such that
|u| ≤ k|w| for every word u in that derivation.

Proof. It follows directly from the proof of Lemma 4.8 in [85].

Theorem 6.2.13. CS − JPPCF , ∅

Proof. The language L = {ap | p is a prime} over a unary alphabet {a} is a well-known
context-sensitive non-context-free language (see [31]). By using contradiction, it will be
shown that L /∈ JPPCF. Assume that there is a pure context-free grammar G = ({a}, P, σ)
such that L(G, jp⇒) = L. Obviously, a → ε /∈ P and σ = a2 since 2 is the smallest prime.
As 3 is also prime, a2

jp⇒*
G a3 and then there must be rules a → a ∈ P and a → a2 ∈ P.

Thus, a2
jp⇒*

G a4, which is a contradiction because 4 is not a prime.

Theorem 6.2.14. CS − JSPCF , ∅

Proof. Let L = {ap | p is a prime}. By Theorem 6.2.13, L /∈ JPPCF. Since L is a unary
language and for unary languages it holds that JSPCF ⊂ JPPCF (see Corollary 6.2.11),
L /∈ JSPCF.

Theorem 6.2.15. JPPCF ⊂ CS

Proof. Let G = (Σ, P, σ) be a pure context-free grammar. Clearly, there is an unrestricted
grammar H = (V, Σ, P′, S) such that L(H) = L(G, jp⇒). More precisely, H can be con-
structed in the way that H simulates G. In this case, Lemma 6.2.12 also holds for H.
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Observe that Lemma 6.2.12 is the workspace theorem, and every language from JPPCF
must be therefore context-sensitive.
By Theorem 6.2.13, CS − JPPCF , ∅ and hence JPPCF ⊂ CS.

Theorem 6.2.16. JSPCF ⊂ CS

Proof. JSPCF ⊆ CS can be proven analogously as in Theorem 6.2.15. By Theorem 6.2.14,
CS − JSPCF , ∅ and hence JSPCF ⊂ CS.

6.3 Relationship with the Chomsky Hierarchy of Languages

This section investigates all mutual relations between SPCF, JSPCF, PPCF, JPPCF, CF,
and CS. They are referred to as language subfamilies 𝒜 through 𝒯 and visualized in Figure
1 using an Euler diagram. More precisely, in this diagram, JSPCF, PPCF, JPPCF, CF
form a Venn diagram with sixteen subfamilies contained in CS; in addition, four more
subfamilies are depicted by placing SPCF as a subset of CF∩ PPCF (see Theorem 6.2.7).
Hereafter, twenty subfamilies in the following thirteen theorems and seven open problems
(Theorems and Open Problems 6.3.1 through 6.3.20) are studied.

Theorem 6.3.1. (Subfamily 𝒜)

PPCF − (CF ∪ JSPCF ∪ JPPCF) , ∅

Proof. Let Σ = {a, b} be an alphabet. Let L = {a2nb2n | n ≥ 0} be a language over Σ.
Clearly, L ∈ PPCF, since there exists a pure context-free grammar, G = (Σ, {a → aa, b →
bb}, ab), such that L(G, p⇒) = L. L /∈ CF and L /∈ JSPCF is satisfied since L is not
semilinear. By contradiction, it will be shown that L /∈ JPPCF.
Consider that there is a pure context-free grammar, G′ = (Σ, P′, σ′), such that L(G′, jp⇒) =
L. Observe that ab ∈ L(G′, jp⇒). Let a → x, b → y be rules from P′, x, y ∈ Σ*. Then,
there exist two derivations, ab jp⇒G′ xy and ab jp⇒G′ yx. Now, consider the following
cases:

∙ x = ε (y = ε). If y ∈ L (x ∈ L), then either ab is the only word derivable using
jp⇒G′ or there is a derivation y jp⇒*

G′ z (x jp⇒*
G′ z) such that ba ∈ subword(z),

which is a contradiction. If y /∈ L, such as y ∈ {ε, a, b} (x /∈ L, such as x ∈ {ε, a, b}),
then ab jp⇒G′ y (ab jp⇒G′ x), so y ∈ L (x ∈ L), which is a contradiction as well.

In the following cases, it is assumed that x , ε and y , ε.

∙ x = bx′ or y = by′, where x′, y′ ∈ Σ*. Then, there is a derivation ab jp⇒G′ bz, where
z ∈ Σ*, and thus bz ∈ L, which is a contradiction.

∙ x = x′a or y = y′a, where x′, y′ ∈ Σ*. Then, there is a derivation ab jp⇒G′ za, where
z ∈ Σ*, and thus za ∈ L, which is a contradiction.
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∙ x = ax′b and y = ay′b, where x′, y′ ∈ Σ*. Then, there is a derivation ab jp⇒G′ z
such that ba ∈ subword(z), which is a contradiction.

If a → x or b → y is missing in P′, then L is finite—a contradiction. No other cases are
possible, which completes the proof.

Several intersections of some language families are hard to investigate. Such an inter-
section is PPCF∩JSPCF. At the moment, it is not known whether PPCF∩JSPCF ⊆ CF
or not. For this reason, the properties of subfamilies ℬ and 𝒞 are left as open problems.

Open Problem 6.3.2. (Subfamily ℬ) Is it true that

(PPCF ∩ JSPCF) − (CF ∪ JPPCF) , ∅?

Open Problem 6.3.3. (Subfamily 𝒞) Is it true that

(PPCF ∩ JSPCF ∩ JPPCF) − CF , ∅?

Theorem 6.3.4. (Subfamily 𝒟)

(PPCF ∩ JPPCF) − (CF ∪ JSPCF) , ∅

Proof. For unary alphabet, 0L = PPCF = JPPCF (Corollary 6.2.9). Since CF and JSPCF
are both semilinear, it is sufficient to find any non-semilinear language over unary alphabet
which is also contained in PPCF. Such a language is indisputably {a2n | n ≥ 0}.

Theorem 6.3.5. (Subfamily ℰ)

SPCF − (JSPCF ∪ JPPCF) , ∅

Proof. Let Σ = {a, b, c} be an alphabet. Let L = {ancbn | n ≥ 0} be a language over
Σ. Clearly, there exists a pure context-free grammar G = (Σ, {c → acb}, c) such that
L(G, s⇒) = L and hence L ∈ SPCF. By contradiction, it will be proven that L is neither
jumping sequential pure context-free nor jumping parallel pure context-free language.
L /∈ JSPCF. Assume that there is a pure context-free grammar G′ = (Σ, P′, σ′) such that
L(G′, j⇒) = L. Clearly, σ′ = c must be the axiom since there must be no erasing rules in
P′ (observe that ab, ac, cb /∈ L). Because acb ∈ L, there must be a rule c → acb ∈ P′.
However, acb j⇒G′ abacb and abacb /∈ L, which is a contradiction.
L /∈ JPPCF. Assume that there is a pure context-free grammar H = (Σ,R,ω) such that
L(H, jp⇒) = L. First, let k ≥ 1 and assume that ω = akcbk is an axiom. Since ω jp⇒*

H c,
there must be a rules a → ε, b → ε, and c → c contained in R. Now, assume that

∙ d̂ → dx ∈ R, d̂ ∈ {a, b}, d ∈ Σ, x ∈ Σ*; then, ω jp⇒*
H udxcv and ω jp⇒*

H ucdxv
and obviously d = a implies ucdxv /∈ L and d = b implies udxcv /∈ L, u, v ∈ Σ*;
d = c is obvious;
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∙ d̂ → xd ∈ R, d̂ ∈ {a, b}, d ∈ Σ, x ∈ Σ*; then, ω jp⇒*
H uxdcv and ω jp⇒*

H ucxdv
and obviously d = a implies ucxdv /∈ L and d = b implies uxdcv /∈ L, u, v ∈ Σ*;
d = c is obvious.

Therefore, a → x, b → y ∈ R implies x = y = ε. Hence, only rules of the form c → z,
where z ∈ L, can be considered. However, the finiteness of R implies the finiteness of L,
which is a contradiction.
Clearly, the axiom must be ω = c, which implies that R contains rules of the form c → z,
where z ∈ L. Obviously, there must be also rules a → x, b → y ∈ R, x, y ∈ Σ*. If
x = y = ε, L must be finite. Thus, assume that x , ε or y , ε. Then, like before, a word
which is not contained in L can be derived—a contradiction.

Theorem 6.3.6. (Subfamily ℱ)

(SPCF ∩ JSPCF) − JPPCF , ∅

Proof. Let Σ = {a, b, c} be an alphabet and let L = {aa, aab, aac, aabc} be a language over
Σ. Consider a pure context-free grammar

G = (Σ, {b → ε, c → ε}, aabc)

Clearly, L(G, s⇒) = L(G, j⇒) = L and hence L ∈ (SPCF ∩ JSPCF).
By contradiction, it will be shown that L /∈ JPPCF. Assume that there exists a pure
context-free grammar G′ = (Σ, P′, σ) such that L(G′, jp⇒) = L. Since σ ∈ L and L ⊆
{aa}{b}*{c}*, there must be a rule a → x ∈ P′ with x ∈ Σ*. However, this implies that
there must be a derivation σ jp⇒*

G′ aa jp⇒G′ xx. The only word from L that has a form
xx is aa so a → a is the only rule with a on its left-hand side so a → a ∈ P′.
As the next step, choose σ. Clearly, σ , aa. Furthermore, σ /∈ {aab, aac} since σ jp⇒G′

aabc implies that σ jp⇒*
G′ abca, and abca /∈ L. Thus, the only possibility is to choose

σ = aabc. However, aabc jp⇒G′ aab means that {b → b, c → ε} ⊆ P′ or {b → ε, c →
b} ⊆ P′. In both cases, aabc jp⇒G′ aba. As aba /∈ L, there is no pure context-free
grammar G′ such that L(G′, jp⇒) = L, which is a contradiction.

Theorem 6.3.7. (Subfamily 𝒢)

SPCF ∩ JSPCF ∩ JPPCF , ∅

Proof. Let G = ({a}, {a → a, a → aa}, a) be a pure context-free grammar. It is easy to see
that

L(G, s⇒) = L(G, j⇒) = L(G, jp⇒) = {a}+

Open Problem 6.3.8. (Subfamily ℋ) Is it true that

(SPCF ∩ JPPCF) − JSPCF , ∅?
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Theorem 6.3.9. (Subfamily ℐ)

(PPCF ∩ CF) − (SPCF ∪ JSPCF ∪ JPPCF) , ∅

Proof. Let L = {aabb, ccdd} be a language over an alphabet Σ = {a, b, c, d}. Clearly,
L ∈ CF. Since there exists a pure context-free grammar G = (Σ, {a → c, b → d}, aabb)
such that L(G, p⇒) = L, L ∈ PPCF. Furthermore, observe that derivations aabb s⇒ ccdd
(aabb j⇒ ccdd) or ccdd s⇒ aabb (ccdd j⇒ aabb) cannot be performed due to the
definition of s⇒ ( j⇒) and hence there is no pure context-free grammar G′ such that
L(G′, s⇒) = L (L(G′, j⇒) = L). Thus, L /∈ SPCF and L /∈ JSPCF.
Now, suppose that there is a pure context-free grammar H = (Σ, P, σ) such that

L(H, jp⇒) = L

For σ = aabb, there is a derivation aabb jp⇒H ccdd. If a → ε ∈ P or b → ε ∈ P, then
aabb jp⇒H x, where x /∈ L. Thus, a → y and b → z, where y, z ∈ {c, d}, are only
possible rules in P. However, aabb jp⇒H cdcd, and since cdcd /∈ L, there is no pure
context-free grammar H such that L(H, jp⇒) = L. The same concept applies to σ = ccdd.
Therefore, L /∈ JPPCF.

Open Problem 6.3.10. (Subfamily 𝒥 ) Is it true that

(PPCF ∩ CF ∩ JSPCF) − (SPCF ∪ JPPCF) , ∅?

Open Problem 6.3.11. (Subfamily 𝒦) Is it true that

(PPCF ∩ CF ∩ JSPCF ∩ JPPCF) − SPCF , ∅?

Theorem 6.3.12. (Subfamily ℒ)

(PPCF ∩ CF ∩ JPPCF) − (SPCF ∪ JSPCF) , ∅

Proof. Consider a language L = {ab, cd, dc} over an alphabet Σ = {a, b, c, d}. Clearly,
L is neither a classical sequential pure context-free nor jumping sequential pure context-
free language since at some point during a derivation, two symbols must be rewritten
simultaneously.
As L is a finite language, L ∈ CF. As there exists a pure context-free grammar

G = (Σ, {a → c, b → d, c → d, d → c}, ab)

such that L(G, p⇒) = L(G, jp⇒) = L, L ∈ (PPCF ∩ JPPCF).

Theorem 6.3.13. (Subfamily ℳ)

CF − (PPCF ∪ JSPCF ∪ JPPCF) , ∅

Proof. Let Σ = {a, b} and let L = {anbn | n ≥ 1} be a language over Σ. Indisputably,
L is a well-known context-free language. According to [85], L /∈ 0L. Observe that every
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language L′ that belongs to (PPCF − 0L) can be generated by pure context-free grammar
G = (Σ, P, σ) where exists c ∈ Σ such that for every x ∈ Σ*, c → x /∈ P. Thus, if
L ∈ (PPCF − 0L), then L must be a finite language (since either a or b blocks deriving of
any word from axiom), which is a contradiction. Therefore, L /∈ (PPCF − 0L) and clearly
L /∈ PPCF. Next, it will be demonstrated that L /∈ JSPCF and L /∈ JPPCF.
L /∈ JSPCF. Suppose that L ∈ JSPCF, so there exists a pure context-free grammar
G′ = (Σ, P′, σ′) such that L(G′, j⇒) = L. As a, b /∈ L, there are no erasing rules in P′

and thus σ′ = ab must be the axiom. Now consider a derivation ab j⇒G′ aabb. There
are exactly two possibilities how to get the word aabb directly from the axiom ab—either
expand a to aab (a → aab ∈ P′) or expand b to abb (b → abb ∈ P′). Due to the definition
of j⇒, ab j⇒G′ baab in the first case, and ab j⇒G′ abba in the second case. Since neither
baab nor abba belong to L, L /∈ JSPCF, which is a contradiction.
L /∈ JPPCF. Suppose that L ∈ JPPCF, so there exists a pure context-free grammar
H = (Σ,R,ω) such that L(H, jp⇒) = L. As for all k ≥ 0, ak, bk /∈ L, there are no erasing
rules in R and thus ω = ab must be the axiom. Clearly, ab jp⇒H aabb. There are exactly
three ways how to get aabb from ab:

∙ a → a ∈ R, b → abb ∈ R. In this case ab jp⇒H aabb implies that ab jp⇒H abba,
but abba /∈ L.

∙ a → aa ∈ R, b → bb ∈ R. In this case ab jp⇒H aabb implies that ab jp⇒H bbaa,
but bbaa /∈ L.

∙ a → aab ∈ R, b → b ∈ R. In this case ab jp⇒H aabb implies that ab jp⇒H baab,
but baab /∈ L.

Thus, L /∈ JPPCF, which is a contradiction.

Open Problem 6.3.14. (Subfamily 𝒩 ) Is it true that

(CF ∩ JSPCF) − (PPCF ∪ JPPCF) , ∅?

Theorem 6.3.15. (Subfamily 𝒪)

(CF ∩ JSPCF ∩ JPPCF) − PPCF , ∅

Proof. Let Σ = {a, b} be an alphabet and let

L = {aabb, abab, abba, baab, baba, bbaa}

be a language over Σ. Since L is finite, L is context-free. Given a pure context-free grammar

G = (Σ, {a → a, b → b}, aabb)

Clearly, L(G, j⇒) = L(G, jp⇒) = L. Hence, L ∈ (CF ∩ JSPCF ∩ JPPCF).
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By contradiction, it will be shown that L /∈ PPCF. Assume that there is a pure context-free
grammar H = (Σ, P, σ) such that L(H, p⇒) = L. First, it will be shown that there are no
erasing rules in P:

∙ If a → ε ∈ P and b → ε ∈ P, then ε ∈ L, which is a contradiction.

∙ If a → ε ∈ P, then b → x ∈ P implies that x ∈ {aa, bb, ab, ba} because for every
w ∈ L, |w| = 4. Clearly, if b → aa ∈ P, then aaaa ∈ L, and if b → bb ∈ P, then
bbbb ∈ L. As obvious, both cases present a contradiction. On the other hand, if there
are no rules in P starting from b apart from b → ab and/or b → ba, then aabb /∈ L,
which is a contradiction. Similarly for b → ε ∈ P.

Since all words in L have the same length and there are no erasing rules in P, only unit rules
can be contained in P. Because aaaa /∈ L and bbbb /∈ L, either P = {a → a, b → b} or
P = {a → b, b → a}. In both cases, there is no way to achieve L. Thus, there is no pure
context-free grammar H such that L(H, p⇒) = L, and hence L /∈ PPCF.

Theorem 6.3.16. (Subfamily 𝒫)

(CF ∩ JPPCF) − (PPCF ∪ JSPCF) , ∅

Proof. Consider a language

L′ = {aabb, ccdd, cdcd, cddc, dccd, dcdc, ddcc}

over an alphabet Σ = {a, b, c, d}. Clearly, L′ ∈ CF and also L′ ∈ JPPCF because there is
a pure context-free grammar

G = (Σ, {a → c, b → d, c → c, d → d}, aabb)

such that L(G, jp⇒) = L′. To prove that L′ /∈ PPCF, follow the steps of the proof that
L /∈ PPCF of Theorem 6.3.15. Because it is not possible to rewrite two or more symbols
simultaneously during a direct derivation step by using j⇒, it holds that L′ /∈ JSPCF.

Open Problem 6.3.17. (Subfamily 𝒬) Is it true that

JSPCF − (CF ∪ PPCF ∪ JPPCF) , ∅?

Theorem 6.3.18. (Subfamily ℛ)

(JSPCF ∩ JPPCF) − (CF ∪ PPCF) , ∅

Proof. Let Σ = {a, b, c} be an alphabet and let

L = {w | Oa(w) − 1 = Ob(w) = Oc(w),w ∈ Σ
+}

be a language over Σ. L ∈ (JSPCF ∩ JPPCF) since there is a pure contex-free grammar

G = (Σ, {a → abca, a → a, b → b, c → c}, a)
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such that L(G, j⇒) = L(G, jp⇒) = L. By pumping lemma for context-free languages,
L /∈ CF.
By contradiction, it will be shown that L /∈ PPCF. Assume that there is a pure context-free
grammar H = (Σ, P, σ) such that L(H, p⇒) = L. As a first step, it will be shown that σ = a.
Assume that σ , a. Then, σ p⇒*

H a implies that a → ε ∈ P and hence ε ∈ L, which is a
contradiction. Thus, a must be the axiom, and a → x ∈ P implies that x ∈ L.
Let l = 3 max{|β| | α → β ∈ P}. The smallest possible value of l is 3. Let ω = al+1blcl .
Clearly, ω ∈ L. Then there is a direct derivation step θ p⇒H ω, where θ ∈ L. Next, the
following observations about θ and P will be made:

(1) θ , a, since a → ω /∈ P. The choice of l excludes such situation.

(2) θ contains all three symbols a, b, and c.

(3) a → a ∈ P is the only rule with a on its left-hand side that is used during θ p⇒H ω.
Observe that if a → x ∈ P is chosen to rewrite a during θ p⇒H ω, then x ∈ L and x
must be a subword of ω. Only x = a meets these requirements.

(4) θ can be expressed as a+θ′, where θ′ ∈ {b, c}*. This follows from the form of ω and
the observation (3).

(5) During θ p⇒H ω rules b → y, c → y′ ∈ P are used such that each of y, y′ do not
contain at least one symbol from Σ. This is secured by the choice of l.

(6) Every rule with b on its left-hand side in P has the same commutative image of its right-
hand side and every rule with c on its left-hand side in P has the same commutative
image of its right-hand side. To not break the number of occurrences of symbols a, b,
and c in ω during θ p⇒H ω, when b → y ∈ P is used, the corresponding c → y′ ∈ P
must be also used simultaneously. To preserve the proper number of occurrences of
a, b, and c in ω, it holds that

card({ψ(β) | b → β ∈ P}) = 1 and card({ψ(γ) | c → γ ∈ P}) = 1

where ψ(w) denotes a commutative image of w.

Now, the ways how a+θ′ p⇒H ω could be made will be inspected. Suppose that the first
symbol of θ′ is b:

∙ b → ε ∈ P was used. Then, c → bc ∈ P must be used (c → cb is excluded since c is
not before b in ω). As there are at least two cs in θ′, applying c → bc brings c before
b which is in a contradiction with the form of ω.

∙ Let i ≥ 1 and let b → ai ∈ P. Then, c → bi+1ci+1 ∈ P. Since |bi+1ci+1| is at most l
3 ,

there are at least two occurrences of c in θ′ and c appears before b in ω.

∙ Let i ≥ 1 and let j be a non-negative integer such that j ≤ i + 1. Let b → aib j ∈ P.
Then c → bkcm ∈ P, where j + k = m = i + 1. As in the previous case, when these
rules are used during θ p⇒H ω, b appears before a or c appears before b in ω.
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∙ No as were added during θ p⇒H ω. In this case, the only rules with b and c on their
left-hand sides in P can be either b → bc and c → ε, or b → b and c → c, or b → c
and c → b. This implies that the only way how to get θ from a is to use the a → θ

rule that is clearly not in P.

The case that c is the first symbol of θ′ proceeds analogously. Therefore, ω /∈ L(H, p⇒),
which implies that L /∈ PPCF.

Theorem 6.3.19. (Subfamily 𝒮)

JPPCF − (CF ∪ PPCF ∪ JSPCF) , ∅

Proof. Let Σ = {a, b, c, â, b̂, ĉ} be an alphabet and let

L = {âb̂ĉ} ∪ {w | Oa(w) − 1 = Ob(w) = Oc(w),w ∈ {a, b, c}+}

be a language over Σ. Following the pumping lemma for context-free languages, L /∈ CF.
Since there is a pure context-free grammar G = (Σ,R, âb̂ĉ), where

R = {â → a, b̂ → ε, ĉ → ε, a → abca, a → a, b → b, c → c}

such that L(G, jp⇒) = L, L ∈ JPPCF. By contradiction, it will be shown that L /∈ JSPCF
and L /∈ PPCF.
Suppose that L ∈ JSPCF. Then, there is a pure context-free grammar H = (Σ, P, σ) such
that L(H, j⇒) = L. As the first step, choose σ. From the definition of L, a ∈ L and
every word x ∈ L − {a} holds |x| ≥ 3. Since only one symbol can be erased during direct
derivation step by j⇒ and there is no word of length 2 contained in L, σ = a must be chosen
as the axiom. Because abca ∈ L and âb̂ĉ ∈ L, there must be two derivations, a j⇒*

H abca
and a j⇒*

H âb̂ĉ, which implies that there exists also a derivation a j⇒*
H âb̂ĉbca. However,

âb̂ĉbca /∈ L, which is a contradiction.
Next, suppose that L ∈ PPCF, so there exists a pure context-free grammar H′ = (Σ, P′, σ′)
such that L(H′, p⇒) = L. In this case, σ′ = âb̂ĉ must be chosen as the axiom. If a is chosen,
then a p⇒*

H′ abca and a p⇒*
H′ âb̂ĉ implies that a p⇒*

H′ u1au2âu3, u1, u2, u3 ∈ Σ*, and
u1au2âu3 /∈ L. If abca or similar is chosen, then abca p⇒*

H′ a implies that a p⇒*
H′ ε, and

ε /∈ L. Without loss of generality, assume that for every α → β ∈ P′, β ∈ {a, b, c}* (this
can be assumed since âb̂ĉ is the only word over {â, b̂, ĉ} in L). As a ∈ L, a → ε, a → b,
and a → c are not contained in P′. The observations (1) to (3) from the proof of Theorem
6.3.18 hold also for H′. The rest of proof is similar to the proof of Theorem 6.3.18.

Theorem 6.3.20. (Subfamily 𝒯 )

CS − (CF ∪ JSPCF ∪ PPCF ∪ JPPCF) , ∅

Proof. Let L = {ap | p is a prime} be a language over unary alphabet {a}. L ∈ CS and
L /∈ CF are well-known containments (see [31]). By Theorem 6.2.13 and Theorem 6.2.14,
L /∈ JPPCF and L /∈ JSPCF. As for unary languages PPCF = JPPCF, L /∈ PPCF.

The summary of theorems 6.3.1 through 6.3.20 is visualized in Figure 1.
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𝒞
?

𝒟

ℰ

ℱ

𝒢

ℋ
?

ℐ

𝒥
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𝒦
?

ℒ

ℳ

𝒩
?

𝒪

𝒫

𝒬
?

ℛ

𝒮

𝒯

{a2n b2n | n ≥ 0} ∈ 𝒜 {anbn | n ≥ 1} ∈ ℳ
{a2n | n ≥ 0} ∈ 𝒟 {aabb, abab, abba, baab, baba, bbaa} ∈ 𝒪
{ancbn | n ≥ 0} ∈ ℰ {aabb, ccdd, cdcd, cddc, dccd, dcdc, ddcc} ∈ 𝒫

{aa, aab, aac, aabc} ∈ ℱ
{︂
w

⃒⃒⃒⃒
Oa(w) − 1 = Ob(w) = Oc(w)
w ∈ {a, b, c}+

}︂
∈ ℛ

{a}+ ∈ 𝒢 {âb̂ĉ} ∪
{︂
w

⃒⃒⃒⃒
Oa(w) − 1 = Ob(w) = Oc(w)
w ∈ {a, b, c}+

}︂
∈ 𝒮

{aabb, ccdd} ∈ ℐ {ap | p is a prime} ∈ 𝒯
{ab, cd, dc} ∈ ℒ

Figure 1. Summary of hierarchy between SPCF, JSPCF, PPCF, JPPCF, CF, and CS language
families (? stands for an open problem of the existence of a witness language).

6.4 Remarks on Propagating and Unary Case

As stated in Theorem 6.2.1.c, it is natural that the family of languages generated by propa-
gating pure grammars is included in the family of languages generated by pure grammars
in which the presence of erasing rules is allowed. For

X ∈ {SP,PP, JSP, JPP, SPCF,PPCF, JSPCF, JPPCF}

it is easy to see that a language {ε, a} is contained in X but it is not contained in X−ε.
Therefore, given a language L, the more interesting question is whether L − {ε} can
be generated by both a pure grammar and a propagating pure grammar under a specific
derivation mode. As will be shown further, such a question can be answered positively for
pure context-free grammars but it is left as an open problem for pure grammars in general.

Theorem 6.4.1. Let X ∈ {SPCF, JSPCF,PPCF, JPPCF}. Then, X−ε ⊂ X.
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Proof. Let L1 = {a, ab} and L2 = {aa, aab} be two languages over Σ = {a, b}. Further-
more, let G = (Σ, {a → a, b → ε}, ab) and G′ = (Σ, {a → a, b → ε}, aab) be two pure
context-free grammars.

(a) SPCF−ε ⊂ SPCF. Since L1 = L(G, s⇒), L1 ∈ SPCF. Assume that L1 ∈ SPCF−ε;
then, there is a propagating pure context-free grammar

H = (Σ, P, σ)

such that L(H, s⇒) = L1. Obviously, σ = a, so a → ab ∈ P. Hence, a s⇒*
H abb and

since abb /∈ L1, L1 /∈ SPCF−ε.

(b) JSPCF−ε ⊂ JSPCF. L1 ∈ JSPCF and L1 /∈ JSPCF−ε are proved analogously to
(a).

(c) PPCF−ε ⊂ PPCF. Since L2 = L(G′, p⇒), L2 ∈ PPCF. Assume that L2 ∈ PPCF−ε,
so there is a propagating pure context-free grammar

H = (Σ, P, σ)

such that L(H, p⇒) = L2. Obviously, σ = aa and then either {a → a, a → ab} ⊆ P
or {a → aa, a → b} ⊆ P. Hence, aa p⇒*

H abab or aa p⇒*
H a4 and since

{abab, a4} ∩ L2 = ∅, L2 /∈ PPCF−ε.

(d) JPPCF−ε ⊂ JPPCF. L2 ∈ JPPCF and L2 /∈ JPPCF−ε are proved analogously to
(c).

Open Problem 6.4.2. Let X ∈ {SP, JSP,PP, JPP}. Is the inclusion X−ε ⊆ X, in fact,
proper?

Most of the relations between investigated language families (even for those which
are generated by propagating pure context-free grammars—the most of languages used in
Figure 1 have this property) can be derived from Figure 1 and from mentioned theorems.
The following theorems cover the rest.

Theorem 6.4.3. SPCF and PPCF−ε are incomparable, but not disjoint.

Proof. Let L = {aa, aab} be a language over alphabet Σ = {a, b}. Obviously, there is a pure
context-free grammar G = (Σ, {a → a, b → ε}, aab) such that L(G, s⇒) = L, so L ∈ SPCF.
By Theorem 6.4.1, L /∈ PPCF−ε. Conversely, there is a language L′ = {a2n | n ≥ 0} over
{a} such that L′ /∈ SPCF and L′ ∈ PPCF−ε (see 𝒟 in Figure 1 and observe that to get L′

no erasing rules are needed). Finally, {a}+ ∈ (SPCF ∩ PPCF−ε).

Theorem 6.4.4. SPCF and 0L−ε are incomparable, but not disjoint.

Proof. Analogous to the proof of Theorem 6.4.3.
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Table 1. Mutual relations between investigated language families. A denotes the language family
from the first column, B the language family from the table header. If the relation in the cell given
by A and B is ?, then A?B. A‖B means that A and B are incomparable, but not disjoint, ? stands
for an open problem, and the meaning of ⊂, =, and ⊃ is as usual.

A

B

SPC
F

SPC
F
−
ε

JSPC
F

JSPC
F
−
ε

PPC
F

PPC
F
−
ε

JPPC
F

JPPC
F
−
ε

0L 0L
−
ε

SPCF = ⊃ ‖ ‖ ⊂ ‖ ‖ ‖ ⊂ ‖
SPCF−ε ⊂ = ‖ ‖ ⊂ ⊂ ‖ ‖ ⊂ ⊂
JSPCF ‖ ‖ = ⊃ ‖ ‖ ‖ ‖ ‖ ‖
JSPCF−ε ‖ ‖ ⊂ = ‖ ‖ ? ? ‖ ‖
PPCF ⊃ ⊃ ‖ ‖ = ⊃ ‖ ‖ ⊃ ⊃
PPCF−ε ‖ ⊃ ‖ ‖ ⊂ = ‖ ‖ ‖ ⊃
JPPCF ‖ ‖ ‖ ? ‖ ‖ = ⊃ ‖ ‖
JPPCF−ε ‖ ‖ ‖ ? ‖ ‖ ⊂ = ‖ ‖
0L ⊃ ⊃ ‖ ‖ ⊂ ‖ ‖ ‖ = ⊃
0L−ε ‖ ⊃ ‖ ‖ ⊂ ⊂ ‖ ‖ ⊂ =

The mutual relation between JSPCF−ε and JPPCF−ε is either incomparability or
JSPCF−ε ⊂ JPPCF−ε, but the answer is not known as of now. The same goes for
JSPCF−ε and JPPCF.

Open Problem 6.4.5. What is the relation between JSPCF−ε and JPPCF−ε?

Open Problem 6.4.6. What is the relation between JSPCF−ε and JPPCF?

Theorem 6.4.7. PPCF−ε and 0L are incomparable, but not disjoint.

Proof. Let L1 = {aa, aab} and L2 = {a, aab} be two languages over {a, b}. L1 /∈
PPCF−ε, L1 ∈ 0L, L2 ∈ PPCF−ε, and L2 /∈ 0L proves the incomparability, while
{a}+ ∈ (PPCF−ε ∩ 0L) proves the disjointness.

In Table 1, a complete survery of all mutual relations between investigated language
families is given. For completeness, the relation between 0L and 0L−ε (see [30]) is included
as well.

If only unary alphabets are considered, the relations between investigated language
families change rapidly. By Theorem 6.2.3, Corollary 6.2.9, and Corollary 6.2.10, for every
unary alphabet the following holds

SPCF = JSPCF ⊂ PPCF = JPPCF = 0L

Trivially
SPCF−ε = JSPCF−ε ⊂ PPCF−ε = JPPCF−ε = 0L−ε
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SPCF−ε JSPCF−ε

SPCF JSPCF

PPCF JPPCF 0L

PPCF−ε JPPCF−ε 0L−ε

Figure 2. Mutual relations between investigated language families in the case of unary alphabets.
Straight line between two families means that these families are identical. The arrow from family A
to family B denotes that A ⊂ B.

holds for every unary alphabet as well. The following theorem demonstrates that for unary
alphabets, SPCF and PPCF−ε are incomparable, but not disjoint. Then, in Figure 2 the
mutual relations between investigated language families for unary alphabets are visualized.

Theorem 6.4.8. In case of unary alphabets, SPCF and PPCF−ε are incomparable, but not
disjoint.

Proof. Clearly, the language {a}+ is contained in both SPCF and PPCF−ε. Since the
language {ε, a, aa} from SPCF is not contained in PPCF−ε, SPCF * PPCF−ε. Conversely,
PPCF−ε * SPCF since PPCF−ε is not semilinear.



Chapter 7
k#$-Rewriting Systems

As recalled in Chapter 3, #-rewriting systems of index k coincide with programmed gram-
mars of the same index. This is because the number of nonterminal symbols that can
simultaneously occur in a sentential form is limited by k in both language models. The fact
that #-rewriting systems have only one nonterminal symbol, #, poses no problem here since
they also use states and thus every combination of at most k nonterminal symbols can be
simply encoded by a state (see proof in [52]).

This chapter presents a modification of #-rewriting systems of index k, called k#$
rewriting systems. The essence of the modification consists in extending #-rewriting systems
with additional pushdown-like storage. More precisely, a configuration of a k#$-rewriting
system is consist of two parts delimited by $. The part on the left is a configuration
of a #-rewriting system, the part on the right is a pushdown-like storage. When the
number of #s is going to exceed k during a rewriting step, the extra #s are transformed
to nonterminal symbols and pushed to the pushdown-like storage. Conversely, when the
number of #s is insufficient to perform a rewriting step, the missing #s are obtained by
popping nonterminal symbols from the pushdown-like storage and transforming them back
into #s. The information on how to transform a nonterminal symbol to # and back is
recorded in a state.

The content of this chapter, published also in [48], is divided into two sections. Section
7.1 gives the definition of k#$-rewriting systems and demonstrates them on an example.
Section 7.2 states and proves the theorems about the generative capacity of k#$-rewriting
systems. It will be shown that k#$-rewriting systems have the same generative capacity as
state grammars working in k-limited way. Furthermore, k#$-rewriting systems will be used
as a tool to prove the proper inclusion of the language family generated by programmed
grammars of index k in the language family generated by state grammars in a k-limited
way.

7.1 Definition and Example

A formal definition of k#$-rewriting systems—which were roughly described at the begin-
ning of this chapter—will be given in the following paragraphs.

Definition 7.1.1. Let k ∈ N. A k#$-rewriting system (abbreviated k#$RS), M, is a quintuple
M = (Q,V, Σ, s,R), where

81
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∙ Q is a finite set of states;

∙ V is a total alphabet, V ∩ Q = ∅;

∙ Σ is an alphabet containing # and $ called bounders, Σ ⊆ V;

∙ s ∈ Q is the initial state;

∙ R = (Re ∪ Rr ∪ Rl), where

Re ⊆ (Q × N× {#} × Q × (Σ − {$})*)
Rr ⊆ (Q × {#} × {$} × Q × {$} × (V − {#, $})*)
Rl ⊆ (Q × {$} × (V − Σ) × Q × {#} × {$})

is a finite set of rules.

Rules (p, n, #, q, x) ∈ R, (p, #, $, q, $, y) ∈ R, and (p, $,A, q, #, $) ∈ R, are usually written as
p n# → qx ∈ R, p#$ → q$y ∈ R, and p$A → q#$ ∈ R, respectively.
Let Ξ ⊆ Q(Σ−{$})*{$}(V−{#, $})* such that χ ∈ Ξ if and only if O#(χ) ≤ k. Then Ξ is
the set of all configurations of M.
The M-based relation of direct rewriting step, ⇒M, over Ξ is defined as follows:

∙ pu#v$α ⇒M quxv$α if and only if p n# → qx ∈ R, O#(u) = n − 1, p, q ∈ Q,
u, v, x ∈ (Σ − {$})*, α ∈ (V − {#, $})*, and n ∈ N;

∙ pu#$α ⇒M qu$xα if and only if p#$ → q$x ∈ R, p, q ∈ Q, u ∈ (Σ − {$})*, and
x, α ∈ (V − {#, $})*;

∙ pu$Aα ⇒M qu#$α if and only if p$A → q#$ ∈ R, p, q ∈ Q, u ∈ (Σ − {$})*,
A ∈ (V − Σ), and α ∈ (V − {#, $})*;

∙ pux$α ⇒M pu$xα if and only if p ∈ Q, u ∈ (Σ − {$})*, x ∈ (Σ − {#, $})*, and
α ∈ (V − {#, $})*;

∙ pu$xα ⇒M pux$α if and only if p ∈ Q, u ∈ (Σ − {$})*, x ∈ (Σ − {#, $})*, and
α ∈ (V − {#, $})*.

For m ≥ 0, ⇒m
M, ⇒+M, and ⇒*

M are defined as usual.
The language generated by M, L(M), is defined as

L(M) = {w | s#$ ⇒*
M qw$, q ∈ Q,w ∈ (Σ − {#, $})*}

The family of languages generated by k#$-rewriting systems is denoted as Lk(#$RS).

The following example demonstrates the generative capacity of k#$-rewriting systems.

Example 7.1.2. Let M = (Q,V, Σ, s,R) be a 2#$-rewriting system, where

Q = {s, p, p′, p(1), p(2), p(X), p(Y), q, f , f (A), f (B)}
V = {A,B,X, a, b, c, d, 0, 1, 0̄, 1̄, [1, [2, ]1, ]2, #, $}
Σ = {a, b, c, d, 0, 1, 0̄, 1̄, [1, [2, ]1, ]2, #, $}
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and R contains rules
1: s 1# → p## 9: p(Y)

1# → q
2: p 1# → p′a#b 10: q 1# → f
3: p′ 2# → p(1)c# 11: f $A → f (A)#$
4: p′ 2# → p(2)d# 12: f $B → f (B)#$
5: p(1)#$ → p(X)$X[1A]1 13: f (A)

1# → f (A)0#1
6: p(2)#$ → p(X)$X[2B]2 14: f (B)

1# → f (B)0̄#1̄
7: p(X)$X → p#$ 15: f (A)

1# → f 01
8: p(X)$X → p(Y)#$ 16: f (B)

1# → f 0̄1̄
First, M generates two # bounders. Second, M uses rules 2 through 7 to generate the
following structure

am#bmz1z2 · · · zm#$φ(zmzm−1 · · · z1)
where zi ∈ {c, d}, for all 1 ≤ i ≤ m, m ≥ 1, and φ is a morphism from {c, d}* to
{A,B, [1, [2, ]1, ]2}* such that φ(c) = [1A]1 and φ(d) = [2B]2. Finally, M uses rules 8
through 16 to finish the rewriting. Thus, the language generated by M is

L(M) =
{︃
w

⃒⃒⃒⃒
⃒ w = anbnz1z2 . . . znh(zn, i1)h(zn−1, i2) . . . h(z1, in)

zi ∈ {c, d}, 1 ≤ i ≤ n, i j ≥ 1, 1 ≤ j ≤ n, n ≥ 1

}︃

where h is a mapping from {c, d}×N to {0, 1, 0̄, 1̄, [1, [2, ]1, ]2}* such that h(c, i) = [10i1i]1
and h(d, i) = [20̄i1̄i]2.
For instance, M generates aabbdc[10011]1[20̄1̄]2 in the following way

s#$ ⇒M p##$ [1]
⇒M p′a#b#$ [2]
⇒M p(2)a#bd#$ [4]
⇒M p(X)a#bd$X[2B]2 [6]
⇒M pa#bd#$[2B]2 [7]
⇒M p′aa#bbd#$[2B]2 [2]
⇒M p(1)aa#bbdc#$[2B]2 [3]
⇒M p(X)aa#bbdc$X[1A]1[2B]2 [5]
⇒M p(Y)aa#bbdc#$[1A]1[2B]2 [8]
⇒M qaabbdc#$[1A]1[2B]2 [9]
⇒M f aabbdc$[1A]1[2B]2 [10]
⇒M f aabbdc[1$A]1[2B]2
⇒M f (A)aabbdc[1#$]1[2B]2 [11]
⇒M f (A)aabbdc[10#1$]1[2B]2 [13]
⇒M f aabbdc[10011$]1[2B]2 [15]
⇒M f aabbdc[10011]1[2$B]2
⇒M f (B)aabbdc[10011]1[2#$]2 [12]
⇒M f aabbdc[10011]1[20̄1̄$]2 [16]
⇒M f aabbdc[10011]1[20̄1̄]2$
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7.2 Generative Capacity

First, the identity of STk and Lk(#$RS) for every k ≥ 1 will be proven.

Lemma 7.2.1. Let k ≥ 1. Then, STk ⊆ Lk(#$RS).

Proof. Let G = (V,T,K, P, S, s) be a state grammar. Without any loss on generality, suppose
that V ∩ {#, $} = ∅. Now, construct a k#$-rewriting system

M = (Q,V′, Σ, s′,R)

from G such that L(G, k) = L(M). First, set

Q =
⋃︀k

i=0{⟨q; l; u⟩ | q ∈ K, u ∈ (V − T)i, 0 ≤ l ≤ k}
V′ = V ∪ {#, $}
Σ = T ∪ {#, $}
s′ = ⟨s; 0; S⟩

In Q, each state contains three pieces of information—(1) the current state of G, (2) auxiliary
substate of the simulation (0 stands for regular state, and 1 through k stand for auxiliary
substates), and (3) the first k nonterminal symbols from the current sentential form of G.
The positions of these k symbols correspond to #s in the simulation of G by M.
Next, construct R. Let

rules(p, u) =
{︃

r

⃒⃒⃒⃒
⃒ r: (B, p) → (x, q) ∈ P,B ∈ ((V − T) ∩ alph(u))

p, q ∈ K, x ∈ V+, u ∈ V*

}︃

and let g and h be two morphisms from V* to (Σ − {$})* and from V* to (V′ − Σ)*,
respectively, defined as

g(x) =
{︃

# for every x ∈ (V − T)
x for every x ∈ T

h(x) =
{︃

x for every x ∈ (V − T)
ε for every x ∈ T

Initially, set R = ∅. For every rule (A, p) → (x, q) ∈ P and for every state ⟨p; 0; uAv⟩ ∈ Q
such that rules(p, u) = ∅ perform the following steps:

(A) If k − |uv| ≥ |h(x)|, then add ⟨p; 0; uAv⟩ |uA|# → ⟨q; 0; uh(x)v⟩g(x) to R.

(B) If k − |uv| < |h(x)|, then express v as v = Xm−1Xm−2 · · ·X0, where Xi ∈ (V′ − Σ),
0 ≤ i ≤ m − 1, m = |v|, and

(i) for every i such that 0 ≤ i ≤ m − 1, add ⟨p; i; uAv⟩#$ → ⟨p; i + 1; uAv⟩$Xi to
R;
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(ii) add ⟨p; m; uAv⟩#$ → ⟨q; 0; u⟩$x to R.

Finally, for every state ⟨p; 0; u⟩ ∈ Q such that |u| ≤ k − 1 and for every B ∈ (V′ − Σ) add
rule

⟨p; 0; u⟩$B → ⟨p; 0; uB⟩#$

to R. The construction of M is completed.

Claim 7.2.2. Let (S, p) k⇒m
G (wy, q), where p, q ∈ K, w ∈ T*, y ∈ ((V − T)T*)*,

and m ≥ 0. Then, ⟨p; 0; S⟩#$ ⇒*
M ⟨q; 0; kprefix(h(y), k)⟩wg(α)$β, where y = αβ, α ∈

(T*(V − T))|kprefix(h(y),k)|, and β ∈ V*.

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0, so (S, p) k⇒0
G (S, p), w = ε and y = S. Then,

⟨p; 0; S⟩#$ ⇒0
M ⟨p; 0; kprefix(h(S), k)⟩g(α)$β

Since kprefix(h(S), k) = S, it holds that α = S and β = ε, and hence

⟨p; 0; kprefix(h(S), k)⟩g(α)$β = ⟨p; 0; S⟩#$

Therefore, the basis holds.

Induction Hypothesis. Suppose that the claim holds for all 0 ≤ m ≤ l, where l is a
non-negative integer.

Induction Step. Let (S, p) k⇒l+1
G (wy, q), where p, q ∈ K, w ∈ T*, and y ∈ ((V −

T)T*)*. Since l + 1 ≥ 1, express (S, p) k⇒l+1
G (wy, q) as (S, p) k⇒l

G (w′uAv, t) k⇒G
(w′uxv, q), where t ∈ K, w′ ∈ T*, u ∈ ((V − T)T*)*, |h(u)| ≤ k − 1, A ∈ (V − T),
x, v ∈ V*, (A, t) → (x, q) ∈ P, w = w′ŵ, and ŵy = uxv with ŵ ∈ T*. By the
induction hypothesis, ⟨p; 0; S⟩#$ ⇒*

M ⟨t; 0; kprefix(h(uAv), k)⟩w′g(uAz)$z̄, where v =

zz̄, z ∈ (T*(V − T))|kprefix(h(uAv),k)|−|h(uA)|, and z̄ ∈ V*. As (A, t) → (x, q) ∈ P, the
following rules were added to R during its construction, based on the relation between
k − |kprefix(h(uAv), k)| + 1 and |h(x)|:

(A) k − |kprefix(h(uAv), k)| + 1 ≥ |h(x)|. Then, based on construction of R,

⟨t; 0; kprefix(h(uAv), k)⟩ |h(uA)|# → ⟨q; 0; kprefix(h(uxv), k)⟩g(x) ∈ R

Now, the following three cases must be considered:

1. OV−T(uAv) ≥ k and OV−T(x) = 1. Then,

⟨t; 0; kprefix(h(uAv), k)⟩w′g(uAz)$z̄
⇒*

M ⟨q; 0; kprefix(h(uxv), k)⟩w′g(uxz)$z̄
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Clearly, uxz can be expressed as ŵα. As h(uxv) = h(ŵy) = h(y), g(uxz) =
g(ŵα) = ŵg(α), w = w′ŵ, and β = z̄, the following holds

⟨q; 0; kprefix(h(uxv), k)⟩w′g(uxz)$z̄
= ⟨q; 0; kprefix(h(y), k)⟩wg(α)$β

2. OV−T(uAv) ≥ k and OV−T(x) = 0. Then,

⟨t; 0; kprefix(h(uAv), k)⟩w′g(uAz)$z̄
⇒*

M ⟨q; 0; h(uxz)⟩w′g(uxz)$z̄

and since for every B ∈ (V′ − Σ) it holds that

⟨q; 0; h(uxz)⟩$B → ⟨q; 0; h(uxzB)⟩#$ ∈ R

there exists
⟨q; 0; h(uxz)⟩w′g(uxz)$z̄

⇒*
M ⟨q; 0; kprefix(h(uxv), k)⟩w′g(uxz′)$z̄′

with z′ ∈ (T*(V − T))|kprefix(h(uxv),k)|−|h(ux)|, z̄′ ∈ V*, and v = z′ z̄′. Again, uxz′

can be expressed as ŵα and with β = z̄′, the following holds

⟨q; 0; kprefix(h(uxv), k)⟩w′g(uxz′)$z̄′

= ⟨q; 0; kprefix(h(y), k)⟩wg(α)$β

3. OV−T(uAv) < k and OV−T(uxv) ≤ k. Then,

⟨t; 0; kprefix(h(uAv), k)⟩w′g(uAz)$z̄
⇒*

M ⟨q; 0; kprefix(h(uxv), k)⟩w′g(uxz)$z̄

As in previous cases, set ŵα = uxz and β = z̄. Therefore,

⟨q; 0; kprefix(h(uxv), k)⟩w′g(uxz)$z̄
= ⟨q; 0; kprefix(h(y), k)⟩wg(α)$β

(B) k − |kprefix(h(uAv), k)| + 1 < |h(x)|. Express kprefix(h(uAv), k) as h(uA)δ, where
δ = D1D2 . . .D|δ|, Di ∈ (V − T), 1 ≤ i ≤ |δ|. Furthermore, express z as
d1D1d2D2 . . . d|δ|D|δ|, where di ∈ T*, 1 ≤ i ≤ |δ|. As there are the following
rules in R introduced by step (B.i) of the construction of R

⟨t; 0; h(uA)δ⟩#$ → ⟨t; 1; h(uA)δ⟩$D|δ|
⟨t; 1; h(uA)δ⟩#$ → ⟨t; 2; h(uA)δ⟩$D|δ|−1

...
⟨t; |δ| − 1; h(uA)δ⟩#$ → ⟨t; |δ|; h(uA)δ⟩$D1

there exists
⟨t; 0; kprefix(h(uAv), k)⟩w′g(uAd1D1 . . . d|δ|D|δ|)$z̄

⇒*
M ⟨t; 1; h(uA)δ⟩w′g(uAd1D1 . . . d|δ|−1D|δ|−1)$d|δ|D|δ| z̄
...

⇒*
M ⟨t; |δ|; h(uA)δ⟩w′g(uA)$zz̄
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Since step (B.ii) of the construction of R introduces a rule

⟨t; |δ|; h(uA)δ⟩#$ → ⟨q; 0; h(u)⟩$x

to R, there also exists

⟨t; |δ|; h(uA)δ⟩w′g(uA)$zz̄ ⇒*
M ⟨q; 0; h(u)⟩w′g(u)$xzz̄

Finally, for every state ⟨o; 0; γ⟩ ∈ Q such that |γ| ≤ k − 1 and for every B ∈ (V′− Σ),
there is a rule

⟨o; 0; γ⟩$B → ⟨o; 0; γB⟩#$
in R and hence

⟨q; 0; h(u)⟩w′g(u)$xzz̄ ⇒*
M ⟨q; 0; kprefix(h(uxv), k)⟩w′g(uz′)$z̄′

where z′ ∈ (T*(V − T))|kprefix(h(uxv),k)|−|h(u)|, z̄′ ∈ V*, and xv = z′ z̄′. Express uz′ as
ŵα and set z̄′ = β. Thus,

⟨q; 0; kprefix(h(uxv), k)⟩w′g(uz′)$z̄′ = ⟨q; 0; kprefix(h(y), k)⟩wg(α)$β

and the claim holds.

Claim 7.2.3. Let ⟨p; 0; S⟩#$ ⇒m
M ⟨q; i; h(αᾱ)⟩wg(α)$ᾱβ, where p, q ∈ K, 0 ≤ i ≤ k,

w ∈ (Σ − {#, $})*, α ∈ ((V′ − Σ)(V′ − {#, $})*)*, OV′−Σ(α) ≤ k, ᾱ, β ∈ (V′ − {#, $})*,
OV′−Σ(ᾱ) = i, and m ≥ 0. Then, (S, p) k⇒*

G (wαᾱβ, q).

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0, so ⟨p; 0; S⟩#$ ⇒0
M ⟨p; 0; S⟩#$, w = ε, α = S, ᾱ = ε and β = ε. Then,

(S, p) k⇒*
G (S, p) and the basis holds.

Induction Hypothesis. Suppose that the claim holds for all 0 ≤ m ≤ l, where l is a
non-negative integer.

Induction Step. Let ⟨p; 0; S⟩#$ ⇒l+1
M ⟨q; ̂; h(αᾱ)⟩wg(α)$ᾱβ, where p, q ∈ K, 0 ≤ ̂ ≤ k,

w ∈ (Σ−{#, $})*, α ∈ ((V′−Σ)(V′−{#, $})*)*, OV′−Σ(α) ≤ k, and ᾱ, β ∈ (V′−{#, $})*,
OV′−Σ(ᾱ) = ̂. Since l + 1 ≥ 1, express ⟨p; 0; S⟩#$ ⇒l+1

M ⟨q; ̂; h(αᾱ)⟩wg(α)$ᾱβ as

⟨p; 0; S⟩#$ ⇒l
M ⟨t; ı̂; h(uAvα̂)⟩w′g(uAv)$α̂z ⇒M ⟨q; ̂; h(uxv′ᾱ)⟩w′g(uxv′)$ᾱβ

where t ∈ K, 0 ≤ ı̂ ≤ k,w′ ∈ (Σ−{#, $})*, A ∈ (V′−Σ)∪{ε}, u ∈ ((V′−Σ)(V′−{#, $})*)*,
x, v, v′, α̂, z ∈ (V′ − {#, $})*, OV′−Σ(uAv) ≤ k, OV′−Σ(α̂) = ı̂, w = w′ŵ, and ŵα = uxv′

with ŵ ∈ (Σ − {#, $})*. By the induction hypothesis, (S, p) k⇒*
G (w′uAvα̂z, t). M can

rewrite ⟨t; ı̂; h(uAvα̂)⟩w′g(uAv)$α̂z to ⟨q; ̂; h(uxv′ᾱ)⟩w′g(uxv′)$ᾱβ according to the one
of following cases:

Case 1. t = q, ı̂ = ̂, A = x, v = v′v̄, ᾱ = v̄α̂, z = β, and v̄ ∈ (Σ − {#, $})*. In this case, the
following holds

(w′uAv′v̄α̂z, t) k⇒*
G (wαᾱβ, q)
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Case 2. t = q, ı̂ = ̂, A = x, v′ = vv̄, α̂ = v̄ᾱ, z = β, and v̄ ∈ (Σ − {#, $})*. In this case, the
following holds

(w′uAvv̄ᾱz, t) k⇒*
G (wαᾱβ, q)

Case 3. t = q, ı̂ = ̂ = 0, A = x, α̂ = ᾱ = ε, z = Bβ, v′ = vB, and B ∈ (V′ − Σ). In this
case, the rewriting step was performed by rule ⟨q; 0; h(uv)⟩$B → ⟨q; 0; h(uvB)⟩#$,
which was introduced to R for every state ⟨q; 0; h(uv)⟩ ∈ Q, |h(uv)| ≤ k − 1, for
every B ∈ (V′−Σ). Since this rule only changes symbol B to # and updates M’s state
to remember #’s meaning, the following holds

(w′uAvα̂Bβ, t) k⇒*
G (w′uxv′ᾱβ, q) k⇒*

G (wαᾱβ, q)

Case 4. ı̂ = ̂ = 0, v = v′, α̂ = ᾱ and z = β. In this case, ⟨t; 0; h(uAv)⟩ |h(uA)|# →
⟨q; 0; h(uxv)⟩g(x) ∈ R was used, so there exists a rule (A, t) → (x, q) in P such that
rules(t, u) = ∅ and hence

(w′uAvα̂z, t) k⇒G (w′uxvα̂z, q) k⇒*
G (wαᾱβ, q)

Case 5. t = q, ı̂ = ̂ − 1, A = x, v = v′B, ᾱ = Bα̂, z = β, and B ∈ (V′ − Σ). In this case,
⟨t; ı̂; h(uAvα̂)⟩#$ → ⟨t; ı̂+1; h(uAv′ᾱ)⟩$B ∈ R introduced in step (B.i) was used, and
hence

(w′uAv′Bα̂z, t) k⇒*
G (wαᾱβ, q)

Case 6. ̂ = 0, v = x = v′ = ᾱ = ε, β = yα̂z, and y ∈ (V′ − {#, $})*. In this case,
⟨t; ı̂; h(uAα̂)⟩#$ → ⟨q; 0; h(u)⟩$y ∈ R introduced in step (B.ii) was used, which
means that there is a rule (A, t) → (y, q) in P such that rules(t, u) = ∅. Therefore,

(w′uAvα̂z, t) k⇒G (w′uyvα̂z, q) k⇒*
G (wαᾱβ, q)

which completes the induction step.

If p and y in Claim 7.2.2 are set to s and ε, respectively, then (S, s) k⇒*
G (w, q) implies

⟨s; 0; S⟩#$ ⇒*
M ⟨q; 0; ε⟩w$ which proves L(G, k) ⊆ L(M). Conversely, for p = s, i = 0,

and α = ᾱ = β = ε in Claim 7.2.3, ⟨s; 0; S⟩#$ ⇒*
M ⟨q; 0; ε⟩w$ implies (S, s) k⇒*

G (w, q),
which proves L(M) ⊆ L(G, k). Hence, L(G, k) = L(M) and the lemma holds.

Lemma 7.2.4. Let k ≥ 1. Then, Lk(#$RS) ⊆ STk .

Proof. Let M = (Q,V, Σ, s,R) be a k#$-rewriting system. Without any loss on generality,
suppose that ¿ /∈ V and #i /∈ V, for all 1 ≤ i ≤ k. From M, construct a state grammar

G = (V′,T,K, P, #1, s′)

such that L(M) = L(G, k). First, set

V′ = (V − {#, $}) ∪ {#i | 1 ≤ i ≤ k}
T = Σ − {#, $}
K = {⟨p; i⟩ | p ∈ Q, 0 ≤ i ≤ k} ∪ {⟨p; i; r⟩ | p ∈ Q, 0 ≤ i ≤ k, r ∈ R}

∪ {⟨p; i; nr, jo⟩ | p ∈ Q, r ∈ R, 0 ≤ i ≤ k, 1 ≤ j ≤ k}
∪ {⟨p; i; nr,Xo⟩ | p ∈ Q, r ∈ R,X ∈ (V − Σ) ∪ {¿}, 0 ≤ i ≤ k}
∪ {qfail}

s′ = ⟨s; 1⟩
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In K, each state records the current state of M and the number of #s in the current configu-
ration of M. Sometimes, it also contains the simulated rule, r , and additional information
about either the leftmost non-# nonterminal symbol, X, or simulation progress, denoted by
j. Note that X = ¿ if the simulation of a rule from R of the form r: p$A → q#$ has started.
In addition, K contains a special state qfail that puts G to a configuration that rules out the
next derivation step in G, which unsuccessfully stops the simulation of M.
Let τ be a mapping from (Σ − {$})* × {1, 2, . . . , k} to (T ∪ {#i | 1 ≤ i ≤ k})* defined
recursively as follows

∙ τ(ε, i) = ε, for every 1 ≤ i ≤ k

∙ τ(ax, i) = aτ(x, i), for every a ∈ (Σ − {#, $}), x ∈ (Σ − {$})*, and 1 ≤ i ≤ k

∙ τ(#x, i) = #iτ(x, i + 1), for every x ∈ (Σ − {$})* and 1 ≤ i ≤ k − 1

Now, construct P. Initially, set P = ∅. For every state ⟨p; κ⟩ ∈ K and for every rule
r: p n# → qx ∈ R such that n ≤ κ and κ − 1 + O#(x) ≤ k perform the following steps:

(A) If O#(x) = 0 and κ − n = 0, then add

(#1, ⟨p; κ⟩) → (#1, ⟨p; κ; r⟩)
(#κ, ⟨p; κ; r⟩) → (x, ⟨q; κ − 1⟩)

to P.

(B) If O#(x) = 0 and κ − n ≥ 1, then

∙ add (#1, ⟨p; κ⟩) → (#1, ⟨p; κ; r⟩) to P;
∙ add (#n, ⟨p; κ; r⟩) → (x, ⟨q; κ − 1; nr, 1o⟩) to P;
∙ for every 1 ≤ i ≤ κ − n − 1, add

(#n+i, ⟨q; κ − 1; nr, io⟩) → (#n+i−1, ⟨q; κ − 1; nr, i + 1o⟩)
to P;

∙ add (#κ, ⟨q; κ − 1; nr, κ − no⟩) → (#κ−1, ⟨q; κ − 1⟩) to P.

(C) If O#(x) = 1, then add

(#1, ⟨p; κ⟩) → (#1, ⟨p; κ; r⟩)
(#n, ⟨p; κ; r⟩) → (τ(x, n), ⟨q; κ⟩)

to P.

(D) If O#(x) ≥ 2, then

∙ add (#1, ⟨p; κ⟩) → (#1, ⟨p; κ; r⟩) to P;
∙ add (#n, ⟨p; κ; r⟩) → (#n, ⟨p; κ; nr, 1o⟩) to P;
∙ for every 0 ≤ i ≤ κ − n − 1, add

(#κ−i, ⟨p; κ; nr, i + 1o⟩) → (#κ+η−i, ⟨p; κ; nr, i + 2o⟩)
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to P, where η = O#(x) − 1;
∙ add (#n, ⟨p; κ; nr, κ− n+ 1o⟩) → (τ(x, n), ⟨q; κ + η⟩) to P, where η = O#(x)− 1.

Next, for every state ⟨p; κ⟩ ∈ K such that κ ≥ 1 and for every rule r: p#$ → q$x ∈ R, add

(#1, ⟨p; κ⟩) → (#1, ⟨p; κ; r⟩)
(#κ, ⟨p; κ; r⟩) → (x, ⟨q; κ − 1⟩)

to P.
Finally, for every state ⟨p; κ⟩ ∈ K such that κ ≤ k−1 and for every rule r: p$A → q#$ ∈ R,
add

∙ (A, ⟨p; κ⟩) → (A, ⟨p; κ; r⟩) if κ = 0

∙ (#1, ⟨p; κ⟩) → (#1, ⟨p; κ; r⟩) if κ ≥ 1

∙ (A, ⟨p; κ; r⟩) → (A, ⟨p; κ; nr, ¿o⟩)
∙ (X, ⟨p; κ; nr, ¿o⟩) → (X, ⟨p; κ; nr,Xo⟩), for all X ∈ (V − Σ)

∙ (Y, ⟨p; κ; nr,Yo⟩) → (Y, qfalse), for all Y ∈ (V − Σ), where Y , A

∙ (A, ⟨p; κ; nr,Ao⟩) → (#κ+1, ⟨q; κ + 1⟩)

to P. Now, the construction of G is completed.

Claim 7.2.5. Let p#$ ⇒m
M qwα$β, where p, q ∈ Q,w ∈ (Σ−{#, $})*, α ∈ ({#}(Σ−{$})*)*,

β ∈ (V − {#, $})*, and m ≥ 0. Then,

(#1, ⟨p; 1⟩) k⇒*
G (wτ(α, 1)β, ⟨q; O#(α)⟩)

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0, p#$ ⇒0
M p#$, w = ε, α = #, and β = ε. Then, (#1, ⟨p; 1⟩) k⇒*

G (#1, ⟨p; 1⟩)
and the basis holds.

Induction Hypothesis. Suppose that the claim holds for all 0 ≤ m ≤ l, where l is a
non-negative integer.

Induction Step. Let p#$ ⇒l+1
M qwα$β, where p, q ∈ Q, w ∈ (Σ − {#, $})*, α ∈ ({#}(Σ −

{$})*)*, and β ∈ (V − {#, $})*. Since l + 1 ≥ 1, express p#$ ⇒l+1
M qwα$β as

p#$ ⇒l
M tw′uA#v$z ⇒M qw′uxv′$β

where t ∈ Q, w′ ∈ (Σ − {#, $})*, u ∈ ({#}(Σ − {$})*)*, A# ∈ {#, ε}, x, v, v′ ∈ (Σ −
{$})*, z ∈ (V − {#, $})*, w = w′ŵ, and ŵα = uxv′ with ŵ ∈ (Σ − {#, $})*. By the
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induction hypothesis, (#1, ⟨p; 1⟩) k⇒*
G (w′τ(uA#v, 1)z, ⟨t; O#(uA#v)⟩). M can perform

tw′uA#v$z ⇒M qw′uxv′$β in the following ways:

(I) tw′uA#v$z ⇒M qw′uxv′$β, where t = q, A# = x, v = v′v̄, β = v̄z, and v̄ ∈
(Σ− {#, $})*. This rewriting step only transfers terminal symbols from the left to the
right relatively to $. Clearly,

(w′τ(uA#v, 1)z, ⟨t; O#(uA#v)⟩)
k⇒*

G (w′τ(uxv′, 1)β, ⟨q; O#(uxv′)⟩)
k⇒*

G (wτ(α, 1)β, ⟨q; O#(α)⟩)

(II) tw′uA#v$z ⇒M qw′uxv′$β, where t = q, A# = x, v′ = vv̄, v̄ = v̄β, and v̄ ∈
(Σ − {#, $})*. This rewriting step only transfers terminal symbols from the right to
the left relatively to $. Thus,

(w′τ(uA#v, 1)z, ⟨t; O#(uA#v)⟩)
k⇒*

G (w′τ(uxv′, 1)β, ⟨q; O#(uxv′)⟩)
k⇒*

G (wτ(α, 1)β, ⟨q; O#(α)⟩)

(III) tw′uA#v$z ⇒M qw′uxv′$β, where A# = #, v = v′, z = β, O#(u) = n − 1, and
1 ≤ n ≤ k. This rewriting step was performed by applying a rule r: t n# → qx ∈ R.
Set κ = O#(uA#v). G simulates application of r in one of the following ways:

(1) κ − n = 0 and O#(x) = 0. Then, (#1, ⟨t; κ⟩) → (#1, ⟨t; κ; r⟩) ∈ P and
(#κ, ⟨t; κ; r⟩) → (x, ⟨q; κ − 1⟩) ∈ P, so

(w′τ(uA#v, 1)z, ⟨t; O#(uA#v)⟩)
k⇒G (w′τ(uA#v, 1)z, ⟨t; O#(uA#v); r⟩)
k⇒G (w′τ(uxv′, 1)β, ⟨q; O#(uxv′)⟩)
k⇒*

G (wτ(α, 1)β, ⟨q; O#(α)⟩)

where O#(uA#v) − 1 = κ − 1 = O#(uxv′).
(2) κ − n ≥ 1 and O#(x) = 0. Then, (#1, ⟨t; κ⟩) → (#1, ⟨t; κ; r⟩) ∈ P and

(#n, ⟨t; κ; r⟩) → (x, ⟨q; κ − 1; nr, 1o⟩) ∈ P, so

(w′τ(uA#v, 1)z, ⟨t; O#(uA#v)⟩)
k⇒G (w′τ(uA#v, 1)z, ⟨t; O#(uA#v); r⟩)
k⇒G (w′τ(ux, 1)τ(v′, n + 1)β, ⟨q; κ − 1; nr, 1o⟩)

If κ − n ≥ 2, then there are rules

(#n+1, ⟨q; κ − 1; nr, 1o⟩) → (#n, ⟨q; κ − 1; nr, 2o⟩)
(#n+2, ⟨q; κ − 1; nr, 2o⟩) → (#n+1, ⟨q; κ − 1; nr, 3o⟩)

...
(#κ−1, ⟨q; κ − 1; nr, κ − n − 1o⟩) → (#κ−2, ⟨q; κ − 1; nr, κ − no⟩)
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in P. Set η̄ = κ − n = O#(v′). Since κ − n ≥ 2, it follows that also η̄ ≥ 2, so v′

can be expressed as v′ = δ1δ2 . . . δη̄, where δi ∈ (Σ−{#, $})*{#}(Σ−{#, $})*,
for all 1 ≤ i ≤ η̄, and G can perform the following sequence of derivation steps:

(w′τ(ux, 1)τ(δ1δ2 . . . δη̄, n + 1)β, ⟨q; κ − 1; nr, 1o⟩)
k⇒G (w′τ(uxδ1, 1)τ(δ2δ3 . . . δη̄, n + 2)β, ⟨q; κ − 1; nr, 2o⟩)
k⇒G (w′τ(uxδ1δ2, 1)τ(δ3δ4 . . . δη̄, n + 3)β, ⟨q; κ − 1; nr, 3o⟩)
...

k⇒G (w′τ(uxδ1δ2 . . . δη̄−1, 1)τ(δη̄, n + η̄)β, ⟨q; κ − 1; nr, η̄o⟩)
The simulation of r is finished by the rule

(#κ, ⟨q; κ − 1; nr, κ − no⟩) → (#κ−1, ⟨q; κ − 1⟩) ∈ P

If κ − n ≥ 2, then

(w′τ(uxδ1δ2 . . . δη̄−1, 1)τ(δη̄, n + η̄)β, ⟨q; κ − 1; nr, η̄o⟩)
k⇒G (w′τ(uxδ1δ2 . . . δη̄, 1)β, ⟨q; κ − 1⟩)
k⇒*

G (wτ(α)β, ⟨q; O#(α)⟩)

Otherwise, κ − n = 1, and

(w′τ(ux, 1)τ(v′, n + 1)β, ⟨q; κ − 1; nr, 1o⟩)
k⇒G (w′τ(uxv′, 1)β, ⟨q; κ − 1⟩)
k⇒*

G (wτ(α)β, ⟨q; O#(α)⟩)

where τ(v′, n + 1) = v1#κv2, v1, v2 ∈ T*, and O#(uxv′) = κ − 1 = O#(α).
(3) O#(x) = 1. Then, (#1, ⟨t; κ⟩) → (#1, ⟨t; κ; r⟩) ∈ P and (#n, ⟨t; κ; r⟩) →

(τ(x, n), ⟨q; κ⟩) ∈ P, so

(w′τ(uA#v, 1)z, ⟨t; O#(uA#v)⟩)
k⇒G (w′τ(uA#v, 1)z, ⟨t; O#(uA#v); r⟩)
k⇒G (w′τ(uxv, 1)z, ⟨q; O#(uxv)⟩)
k⇒*

G (wτ(α, 1)β, ⟨q; O#(α)⟩)

(4) O#(x) ≥ 2. Set η = O#(x) − 1. If κ − n ≥ 1, then the following rules were
introduced to P:

(#1, ⟨t; κ⟩) → (#1, ⟨t; κ; r⟩)
(#n, ⟨t; κ; r⟩) → (#n, ⟨t; κ; nr, 1o⟩)

(#κ, ⟨t; κ; nr, 1o⟩) → (#κ+η, ⟨t; κ; nr, 2o⟩)
(#κ−1, ⟨t; κ; nr, 2o⟩) → (#κ+η−1, ⟨t; κ; nr, 3o⟩)

...
(#n+1, ⟨t; κ; nr, κ − no⟩) → (#η+n+1, ⟨t; κ; nr, κ − n + 1o⟩)

(#n, ⟨t; κ; nr, κ − n + 1o⟩) → (τ(x, n), ⟨q; κ + η⟩)

Set η̄ = κ − n and express v as v = δ1δ2 . . . δη̄, where

δi ∈ (Σ − {#, $})*{#}(Σ − {#, $})*
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for all 1 ≤ i ≤ η̄. Then, G is able to perform the following sequence of
derivation steps:

(w′τ(uA#v, 1)z, ⟨t; κ⟩)
k⇒G (w′τ(uA#v, 1)z, ⟨t; κ; r⟩)
k⇒G (w′τ(uA#δ1δ2 . . . δη̄, 1)z, ⟨t; κ; nr, 1o⟩)
k⇒G (w′τ(uA#δ1δ2 . . . δη̄−1, 1)τ(δη̄, κ + η)z, ⟨t; κ; nr, 2o⟩)
k⇒G (w′τ(uA#δ1δ2 . . . δη̄−2, 1)τ(δη̄−1δη̄, κ + η− 1)z, ⟨t; κ; nr, 3o⟩)
...

k⇒G (w′τ(uA#, 1)τ(δ1δ2 . . . δη̄, η + n + 1)z, ⟨t; κ; nr, κ − n + 1o⟩)
k⇒G (w′τ(uxv, 1)z, ⟨q; κ + η⟩)
k⇒*

G (wτ(α, 1)β, ⟨q; O#(α)⟩)

Observe that κ + η − (κ − n − 1) = η + n + 1 and O#(uxv) = κ + η = O#(α)
since r removes one and add O#(x) # symbols.
If κ − n = 0, only the rules

(#1, ⟨t; κ⟩) → (#1, ⟨t; κ; r⟩)
(#n, ⟨t; κ; r⟩) → (#n, ⟨t; κ; nr, 1o⟩)

(#n, ⟨t; κ; nr, 1o⟩) → (τ(x, n), ⟨q; κ + η⟩)

from P were used during the simulation of r by G as demonstrated by the
following sequence of derivation steps:

(w′τ(uA#v, 1)z, ⟨t; κ⟩)
k⇒G (w′τ(uA#v, 1)z, ⟨t; κ; r⟩)
k⇒G (w′τ(uA#v, 1)z, ⟨t; κ; nr, 1o⟩)
k⇒G (w′τ(uxv, 1)z, ⟨q; κ + η⟩)
k⇒*

G (wτ(α, 1)β, ⟨q; O#(α)⟩)

(IV) tw′uA#v$z ⇒M qw′uxv′$β, where A# = #, x = v = v′ = ε, β = yz, and y ∈
(V − {#, $})*. Then, a rule r: t#$ → q$y ∈ R was applied and hence (#1, ⟨t; κ⟩) →
(#1, ⟨t; κ; r⟩) ∈ P and (#κ, ⟨t; κ; r⟩) → (x, ⟨q; κ − 1⟩) ∈ P. Hence,

(w′τ(uA#v, 1)z, ⟨t; κ⟩)
k⇒G (w′τ(uA#v, 1)z, ⟨t; κ; r⟩)
k⇒G (w′τ(u, 1)yz, ⟨q; κ − 1⟩)
k⇒*

G (wτ(α, 1)β, ⟨q; O#(α)⟩)

(V) tw′uA#v$z ⇒M qw′uxv′$β, where A# = ε, x = v = ε, v′ = #, z = Aβ, and
A ∈ (V − Σ). In this case, a rule r: t$A → q#$ ∈ R was applied, so for every
X,Y ∈ (V − Σ), where Y , A, the following rules

(A, ⟨t; κ⟩) → (A, ⟨t; κ; r⟩) if κ = 0
(#1, ⟨t; κ⟩) → (#1, ⟨t; κ; r⟩) if κ ≥ 1

(A, ⟨t; κ; r⟩) → (A, ⟨t; κ; nr, ¿o⟩)
(X, ⟨t; κ; nr, ¿o⟩) → (X, ⟨t; κ; nr,Xo⟩)
(Y, ⟨t; κ; nr,Yo⟩) → (Y, qfalse)
(A, ⟨t; κ; nr,Ao⟩) → (#κ+1, ⟨q; κ + 1⟩)
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were introduced in P. Hence, G simulates the application of r in the following way:

(w′τ(uA#v, 1)Aβ, ⟨t; κ⟩)
k⇒G (w′τ(uA#v, 1)Aβ, ⟨t; κ; r⟩)
k⇒G (w′τ(uA#v, 1)Aβ, ⟨t; κ; nr, ¿o⟩)
k⇒G (w′τ(uA#v, 1)Aβ, ⟨t; κ; nr,Ao⟩)
k⇒G (w′τ(ux#, 1)β, ⟨q; κ + 1⟩)
k⇒*

G (wτ(α, 1)β, ⟨q; O#(α)⟩)

Observe that A must be the first nonterminal symbol just behind #i nonterminals,
1 ≤ i ≤ k. When z = BAβ, with B ∈ (V − Σ) and B , A, then G reaches the state
qfalse and the simulation is blocked.

Claim 7.2.6. SetΩ = {nr,Xo | r ∈ R,X ∈ ({1, 2, . . . , k}∪ (V−Σ)∪{¿})}∪R and express
K as K = KQ ∪ KΩ ∪ {qfalse}, where

KQ = {⟨p; i⟩ | p ∈ Q, 0 ≤ i ≤ k}
KΩ = {⟨p; i; Z⟩ | p ∈ Q, 0 ≤ i ≤ k,Z ∈ Ω}

Define a binary operation ∙ from KQ × (Ω ∪ {λ}) to K such that

⟨p; i⟩ ∙ Z = ⟨p; i; Z⟩, for all Z ∈ Ω
⟨p; i⟩ ∙ λ = ⟨p; i⟩

Furthermore, set N# = {#i | 1 ≤ i ≤ k} and define a morphism τ̄ from (N#∪T) to (Σ−{$})
such that τ̄(a) = a for every a ∈ T and τ̄(X) = # for every X ∈ N#.
Based on the state G enters, the following two cases are considered:

(a) Let (#1, ⟨p, 1⟩) k⇒m
G (wαβ, ⟨q,O#(τ̄(α))⟩ ∙ Z), where p, q ∈ Q, w ∈ T*, α ∈ (N#(N# ∪

T)*)*, β ∈ (V − {#, $})*, Z ∈ (Ω ∪ {λ}), and m ≥ 0. Then, p#$ ⇒*
M qwτ̄(α)$β.

(b) Let (#1, ⟨p, 1⟩) k⇒m
G (wαβ, qfalse), where p ∈ Q, w ∈ T*, α ∈ (N#(N# ∪ T)*)*, β ∈

(V − {#, $})*, and m ≥ 0. Then, p#$ ⇒*
M q̄wτ̄(α)$β, where q̄ ∈ Q, β = z1Yz2Az3,

Y,A ∈ (V−Σ), Y , A, z1 ∈ (Σ−{#, $})*, z2 ∈ (V−{A, #, $})*, z3 ∈ (V−{#, $})*,
and there is a rule r̄: q̄$A → q′#$ ∈ R, q′ ∈ Q, such that r̄ is not applicable on
q̄wτ̄(α)$β.

Proof. This claim is proved by induction on m ≥ 0.

Basis. Let m = 0, so (#1, ⟨p; 1⟩) k⇒0
G (#1, ⟨p; 1⟩), where w = ε, α = #1, β = ε, and Z = λ.

Then, p#$ ⇒*
M p#$ and the basis holds. Observe that the basis also holds for the case (b)

of this claim. Since ⟨p; 1⟩ , qfalse, (#1, ⟨p; 1⟩) k ̸⇒0
G (#1, qfalse) and the implication is true

by default.

Induction Hypothesis. Suppose that the claim holds for all 0 ≤ m ≤ l, where l is a
non-negative integer.

Induction Step. Let (#1, ⟨p; 1⟩) k⇒l+1
G (wαβ,Z ), where p ∈ Q, w ∈ T*, α ∈ (N#(N# ∪

T)*)*, β ∈ (V − {#, $})*, and either Z = ⟨q; O#(τ̄(α))⟩ ∙ Z, q ∈ Q, Z ∈ (Ω ∪ {λ}), or
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Z = qfalse. Since l + 1 ≥ 1, express (#1, ⟨p; 1⟩) k⇒l+1
G (wαβ,Z ) as (#1, ⟨p; 1⟩) k⇒l

G
(w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ), where w′ ∈ T*, u ∈ (N#(N# ∪ T)*)*, A# ∈ (N# ∪ {ε}),
x, v, v′ ∈ (N# ∪ T)*, z ∈ (V − {#, $})*, ŵα = uxv′, w = w′ŵ, ŵ ∈ T*, and either
Z ′ = ⟨t; O#(τ̄(uA#v))⟩ ∙ Z′, t ∈ Q, Z′ ∈ (Ω ∪ {λ}), or Z ′ = qfalse.
By the induction hypothesis,

p#$ ⇒*
M χ

where χ = tw′τ̄(uA#v)$z, if Z ′ = ⟨t; O#(τ̄(uA#v))⟩ ∙ Z′, or χ = q̄w′τ̄(uA#v)$z, if Z ′ =
qfalse, and there is a rule r̄: q̄$A → q′#$ ∈ R such that r̄ is not applicable on χ, where
q̄, q′ ∈ Q, z = z1Yz2Az3, Y,A ∈ (V−Σ), Y , A, z1 ∈ (Σ−{#, $})*, z2 ∈ (V−{A, #, $})*,
and z3 ∈ (V − {#, $})*. Set κ = O#(τ̄(uA#v)). Based on the form of the applied rules, G
can perform

(w′uA#vz,Z ′) k⇒G (w′uxv′β,Z )

according to one of the following cases:

Case 1. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using (#1, ⟨t; κ⟩) → (#1, ⟨t; κ; r⟩) ∈ P,
where r ∈ R. In this case Z ′ = ⟨t; O#(τ̄(uA#v))⟩∙Z′, Z = ⟨t; O#(τ̄(uxv))⟩∙Z, t = q,
Z′ = λ, Z = r , O#(τ̄(u)) = 0, A# = #1 = x, v = v′, O#(τ̄(v)) = κ− 1, and z = β. Thus,

tw′
τ̄(uA#v)$z ⇒*

M qw′
τ̄(uxv)$z ⇒*

M qwτ̄(α)$β

Case 2. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using (#κ, ⟨t; κ; r⟩) → (x, ⟨q; κ −
1⟩) ∈ P, where r ∈ R and x ∈ T*. In this case, Z ′ = ⟨t; O#(τ̄(uA#v))⟩ ∙ Z′,
Z = ⟨q; O#(τ̄(uxv))⟩ ∙ Z, Z′ = r , Z = λ, O#(τ̄(u)) = κ − 1, A# = #κ, v = v′,
O#(τ̄(v)) = 0, and z = β. Based on the construction of P, r is of the form t κ# → qx
and therefore

tw′
τ̄(uA#v)$z ⇒M qw′

τ̄(uxv)$z ⇒*
M qwτ̄(α)$β

Case 3. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using (#n, ⟨t; κ; r⟩) → (x, ⟨q; κ −
1; nr, 1o⟩) ∈ P, where 1 ≤ n ≤ κ − 1, r ∈ R, x ∈ T*, and r is of the form t n# → qx.
In this case, Z ′ = ⟨t; O#(τ̄(uA#v))⟩ ∙ Z′, Z = ⟨q; κ − 1⟩ ∙ Z, Z′ = r , Z = nr, 1o,
O#(τ̄(u)) = n − 1, A# = #n, v = v′, O#(τ̄(v)) = κ − n, and z = β. Thus,

tw′
τ̄(uA#v)$z ⇒M qw′

τ̄(uxv)$z ⇒*
M qwτ̄(α)$β

Case 4. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using

(#n+i, ⟨t; κ; nr, io⟩) → (#n+i−1, ⟨t; κ; nr, i + 1o⟩) ∈ P

where 1 ≤ n ≤ κ, 1 ≤ i ≤ κ − n, 2 ≤ n + i ≤ κ, and r ∈ R is a rule of the
form t′ n# → t x′ with t′ ∈ Q and x′ ∈ T*. In this case, Z ′ = ⟨t; O#(τ̄(uA#v))⟩ ∙ Z′,
Z = ⟨q; κ⟩ ∙ Z, t = q, Z′ = nr, io, Z = nr, i + 1o, O#(τ̄(u)) = (n + i) − 1, A# = #n+i,
x = #n+i−1, v = v′, O#(τ̄(v)) = κ− (n+ i), and z = β. Clearly, τ̄(#n+i) = τ̄(#n+i−1) and
then

tw′
τ̄(uA#v)$z ⇒*

M qw′
τ̄(uxv)$z ⇒*

M qwτ̄(α)$β
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Case 5. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using (#κ+1, ⟨t; κ; nr, κ − n + 1o⟩) →
(#κ, ⟨t; κ⟩) ∈ P, where 1 ≤ n ≤ κ and r ∈ R is of the form t′ n# → t x′ with t′ ∈ Q
and x′ ∈ T*. In this case, Z ′ = ⟨t; O#(τ̄(uA#v))⟩ ∙ Z′, Z = ⟨q; κ⟩ ∙ Z, t = q,
Z′ = nr, κ− n+1o, Z = λ, O#(τ̄(u)) = κ−1, A# = #κ+1, x = #κ, v = v′, O#(τ̄(v)) = 0,
and z = β. Clearly, as in the previous case,

tw′
τ̄(uA#v)$z ⇒*

M qw′
τ̄(uxv)$z ⇒*

M qwτ̄(α)$β

Case 6. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using

(#n, ⟨t; κ; r⟩) → (x, ⟨q; κ⟩) ∈ P

where 1 ≤ n ≤ κ, r ∈ R, and x = x1#nx2 with x1, x2 ∈ T*. In this case, Z ′ =
⟨t; O#(τ̄(uA#v))⟩ ∙ Z′, Z = ⟨q; κ⟩ ∙ Z, Z′ = r , Z = λ, O#(τ̄(u)) = n − 1, A# = #n,
v = v′, O#(τ̄(v)) = κ− n, and z = β. Following the construction of P, r is of the form
t n# → qτ̄(x) and hence

tw′
τ̄(uA#v)$z ⇒M qw′

τ̄(uxv)$z ⇒*
M qwτ̄(α)$β

Case 7. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using

(#n, ⟨t; κ; r⟩) → (#n, ⟨t; κ; nr, 1o⟩) ∈ P

where 1 ≤ n ≤ κ and r ∈ R is of the form t n# → q′x′ with q′ ∈ Q, x′ ∈ (Σ − {$})*,
and O#(x′) ≥ 2. In this case, Z ′ = ⟨t; O#(τ̄(uA#v))⟩ ∙ Z′, Z = ⟨q; κ⟩ ∙ Z, t = q,
Z′ = r , Z = nr, 1o, O#(τ̄(u)) = n − 1, A# = x = #n, v = v′, O#(τ̄(v)) = κ − n, and
z = β. Clearly,

tw′
τ̄(uA#v)$z ⇒*

M qw′
τ̄(uxv)$z ⇒*

M qwτ̄(α)$β

Case 8. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using (#κ−i, ⟨t; κ; nr, i + 1o⟩) →
(#κ+η−i, ⟨t; κ; nr, i + 2o⟩) ∈ P, where 0 ≤ i ≤ κ − n − 1, 1 ≤ n ≤ κ − 1, r ∈ R is of
the form t n# → q′x′ with q′ ∈ Q, x′ ∈ (Σ − {$})*, O#(x′) ≥ 2, and η = O#(x′) − 1.
In this case, Z ′ = ⟨t; O#(τ̄(uA#v))⟩ ∙ Z′, Z = ⟨q; κ⟩ ∙ Z, t = q, Z′ = nr, i + 1o,
Z = nr, i + 2o, O#(τ̄(u)) = (κ − i) − 1, A# = #κ−i, x = #κ+η−i, v = v′, O#(τ̄(v)) = i,
and z = β. As τ̄(A#) = τ̄(x), the following holds

tw′
τ̄(uA#v)$z ⇒*

M qw′
τ̄(uxv)$z ⇒*

M qwτ̄(α)$β

Case 9. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using

(#n, ⟨t; κ; nr, κ − n + 1o⟩) → (x, ⟨q; κ + η⟩) ∈ P

where 1 ≤ n ≤ κ, x ∈ (N# ∪ T)*, η = O#(τ̄(x)) − 1, η ≥ 1, and r ∈ R is of the
form t n# → qτ̄(x). In this case, Z ′ = ⟨t; O#(τ̄(uA#v))⟩ ∙ Z′, Z = ⟨q; κ + η⟩ ∙ Z,
Z′ = nr, κ − n + 1o, Z = λ, O#(τ̄(u)) = n − 1, A# = #n, v = v′, O#(τ̄(v)) = κ − n, and
z = β. Therefore, it is clear that

tw′
τ̄(uA#v)$z ⇒M qw′

τ̄(uxv)$z ⇒*
M qwτ̄(α)$β
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Case 10. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using (#κ, ⟨t; κ; r⟩) → (y, ⟨q; κ−1⟩) ∈
P, where r ∈ R and y ∈ (V′ − N#)*. In this case, Z ′ = ⟨t; O#(τ̄(uA#v))⟩ ∙ Z′,
Z = ⟨q; κ − 1⟩ ∙ Z, Z′ = r , Z = λ, O#(τ̄(u)) = κ − 1, A# = #κ, x = v = v′ = ε, and
β = yz. Following the construction of P, r is of the form t#$ → q$y and

tw′
τ̄(uA#v)$z ⇒M qw′

τ̄(uxv′)$yz ⇒*
M qwτ̄(α)$β

Case 11. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using

(A, ⟨t; κ⟩) → (A, ⟨t; κ; r⟩) ∈ P

where A ∈ (V′ − N# − T), κ = 0, and r ∈ R is of the form t$A → q′#$ with q′ ∈ Q.
In this case, Z ′ = ⟨t; O#(τ̄(uA#v))⟩ ∙ Z′, Z = ⟨q; κ⟩ ∙ Z, t = q, Z′ = λ, Z = r ,
A# = x = ε, v = v′, z = β = z1Az2, z1, z2 ∈ (V′ − N#)*, and OV′−N#−T(z1) ≤ k − 1.
Hence,

tw′
τ̄(uA#v)$z ⇒*

M qw′
τ̄(uxv′)$β⇒*

M qwτ̄(α)$β

Case 12. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using

(A, ⟨t; κ; r⟩) → (A, ⟨t; κ; nr, ¿o⟩) ∈ P

where A ∈ (V′ − N# − T) and r ∈ R is of the form t$A → q′#$ with q′ ∈ Q. In
this case, Z ′ = ⟨t; O#(τ̄(uA#v))⟩ ∙ Z′, Z = ⟨q; κ⟩ ∙ Z, t = q, Z′ = r , Z = nr, ¿o,
A# = x = ε, v = v′, z = β = z1Az2, z1, z2 ∈ (V′−N#)*, and κ+OV′−N#−T(z1) ≤ k−1.
Hence,

tw′
τ̄(uA#v)$z ⇒*

M qw′
τ̄(uxv′)$β⇒*

M qwτ̄(α)$β

Case 13. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using

(X, ⟨t; κ; nr, ¿o⟩) → (X, ⟨t; κ; nr,Xo⟩) ∈ P

where X ∈ (V′−N#−T) and r ∈ R is of the form t$A′ → q′#$ with A′ ∈ (V′−N#−T)
and q′ ∈ Q. In this case, Z ′ = ⟨t; O#(τ̄(uA#v))⟩∙Z′, Z = ⟨q; κ⟩∙Z, t = q, Z′ = nr, ¿o,
Z = nr,Xo, A# = x = ε, v = v′, z = β = z1Xz2, z1 ∈ T*, z2 ∈ (V′ − N#)*, and
κ ≤ k − 1. Hence,

tw′
τ̄(uA#v)$z ⇒*

M qw′
τ̄(uxv′)$β⇒*

M qwτ̄(α)$β

Case 14. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using

(Y, ⟨t; κ; nr,Yo⟩) → (Y, qfalse) ∈ P

where Y ∈ (V′−N#−T) and r ∈ R is of the form t$A′ → q′#$ with A′ ∈ (V′−N#−T),
A′ , Y, and q′ ∈ Q. In this case, Z ′ = ⟨t; O#(τ̄(uA#v))⟩∙Z′, Z = qfalse, Z′ = nr,Yo,
A# = x = ε, v = v′, z = β = z1Yz2A′z3, z1 ∈ T*, z2 ∈ (V′ − N# − {A′})*,
z3 ∈ (V′ − N#)*, and κ + OV′−N#−T(z1Yz2) ≤ k − 1. With q̄ = t, it follows that

tw′
τ̄(uA#v)$z ⇒*

M tw′
τ̄(uxv′)$β⇒*

M q̄wτ̄(α)$β
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and the rule r: q̄$A′ → q′#$ ∈ R is not applicable on q̄wτ̄(α)$β.

Case 15. G performs (w′uA#vz,Z ′) k⇒G (w′uxv′β,Z ) using

(A, ⟨t; κ; nr,Ao⟩) → (#κ+1, ⟨q; κ + 1⟩) ∈ P

where A ∈ (V′ − N# − T) and r ∈ R is of the form t$A → q#$. In this case,
Z ′ = ⟨t; O#(τ̄(uA#v))⟩ ∙ Z′, Z = ⟨q; κ + 1⟩ ∙ Z, Z′ = nr,Ao, Z = λ, A# = x = ε,
v′ = v#κ+1, and z = Aβ. Therefore,

tw′
τ̄(uA#v)$z ⇒M qw′

τ̄(uxv′)$β⇒*
M qwτ̄(α)$β

If p = s and α = β = ε are used in Claim 7.2.5, then s#$ ⇒*
M qw$ implies (#1, ⟨s; 1⟩) k⇒*

G
(w, ⟨q; 0⟩) which proves L(M) ⊆ L(G, k). Conversely, for p = s, α = β = ε, and Z = λ
in Claim 7.2.6, (#1, ⟨s; 1⟩) k⇒*

G (w, ⟨q; 0⟩) implies s#$ ⇒*
M qw$ which proves L(G, k) ⊆

L(M). Hence, L(M) = L(G, k) and the lemma holds.

Theorem 7.2.7. Let k ≥ 1. Then, Lk(#$RS) = STk .

Proof. It directly follows from Lemma 7.2.1 and Lemma 7.2.4.

Next, it will be shown that Lk(#RS) is properly included in Lk(#$RS) for every k ≥ 1.

Theorem 7.2.8. Let k ≥ 1. Then, Lk(#RS) ⊂ Lk(#$RS).

Proof. The inclusion Lk(#RS) ⊆ Lk(#$RS) follows directly from the definitions of #-
rewriting system of index k and k#$-rewriting system. Now, a language contained in
Lk(#$RS) but not in Lk(#RS) needs to be found.
For k = 1, such a language is D2. As L1(#$RS) = CF (by [36] and Theorem 7.2.7),
D2 ∈ L1(#$RS), but D2 /∈ L1(#RS) (see page 169 in [21]).
For k ≥ 2, let Σk = {ai | 1 ≤ i ≤ 4k − 2} be an alphabet. Define a language Lk over Σk as

Lk = {ai
1ai

2 . . . a
i
4k−2 | i ≥ 1}

By Theorem 4 in [36], Lk ∈ STk and since Lk(#$RS) = STk , Lk ∈ Lk(#$RS) as well.
Since kPRG = Lk(#RS), as recalled in Theorem 3.1.10, it will be be demonstrated by
Lemma 3.1.4 that Lk /∈ Lk(#RS). Assume that Lk ∈ Lk(#RS). Therefore, there exists
z ∈ Lk such that

z = u1v1w1x1u2v2w2x2 . . . ulvlwl xlul+1

with l ≤ k, |v1x1v2x2 . . . vl xl | > 0, and

u1v
i
1w1xi

1u2v
i
2w2xi

2 . . . ulv
i
lwl xi

lul+1 ∈ Lk
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L1(#$RS) ⊂ L2(#$RS) ⊂ · · · ⊂ Ln(#$RS)

∪ ∪ ∪

L1(#RS) ⊂ L2(#RS) ⊂ · · · ⊂ Ln(#RS)

Figure 3. The relations between #-rewriting systems with finite index and k#$-rewriting systems.

for every i ≥ 1. Now, consider the following cases:

∙ There exists y ∈ {v1, x1, v2, x2, . . . , vl, xl} such that card(alph(y)) ≥ 2. In this case,
there exists i ≥ 1 such that

u1v
i
1w1xi

1u2v
i
2w2xi

2 . . . ulv
i
lwl xi

lul+1 /∈ Lk

∙ All v1, x1, v2, x2, . . . , vl, xl are words over unary alphabet. As for k ≥ 2 it is always true
that 4k − 2 > 2k, there will always be symbols from alph(z) that are not contained in
alph(v1x1v2x2 . . . vl xl). Hence there must exist i ≥ 1 such that

u1v
i
1w1xi

1u2v
i
2w2xi

2 . . . ulv
i
lwl xi

lul+1 /∈ Lk

Such z ∈ Lk does not exist and therefore Lk /∈ Lk(#RS) for every k ≥ 2.

The relationship between infinite hierarchies of #-rewriting systems of finite index and
k#$-rewriting systems is summed up in Figure 3.



Part III
Conclusion

This part, consisting only of Chapter 8, closes this thesis by summing up achieved
theoretical results and encountered open problems. It also gives suggestions for further
research and application areas.



Chapter 8
Conclusion

In this thesis four new language models were presented—state-synchronized automata
systems, unlimited deep pushdown automata, jumping pure grammars, and k#$-rewriting
systems.

As summarized in Theorem 4.2.16, state-synchronized automata systems with two or
more pushdown components are capable of accepting every recursively enumerable lan-
guage, both in a deterministic and nondeterministic way. Considering the nondeterministic
way, this also holds for the case when components are one-turn pushdown automata.
However, the accepting power of state-synchronized automata systems with two or more
one-turn pushdown automata components that work in a deterministic way remains as an
open problem.

Recursively enumerable languages can also be accepted by both types of unlimited deep
pushdown automata, as demonstrated by Theorem 5.1.9 and Theorem 5.2.3. Both types
can be further restricted to accept only context-sensitive languages by forbidding the use of
erasing rules (see Theorem 5.1.10 and Theorem 5.2.4).

In Figure 1 and Table 1, mutual relations of language families generated by jumping
pure grammars with context-free rules are visualized. Clearly, jumping rewriting has no
impact on generative capacity when only unary alphabets are considered (see Figure 2).
Some mutual relations between language families depicted in Figure 1 are not yet known.
Below can be found the list of all open problems concerning jumping pure grammars:

∙ Is it true that (PPCF ∩ JSPCF) − (CF ∪ JPPCF) , ∅ (Open Problem 6.3.2)?

∙ Is it true that (PPCF ∩ JSPCF ∩ JPPCF) − CF , ∅ (Open Problem 6.3.3)?

∙ Is it true that (SPCF ∩ JPPCF) − JSPCF , ∅ (Open Problem 6.3.8)?

∙ Is it true that (PPCF∩CF∩JSPCF)−(SPCF∪JPPCF) , ∅ (Open Problem 6.3.10)?

∙ Is it true that (PPCF∩CF∩ JSPCF∩ JPPCF)−SPCF , ∅ (Open Problem 6.3.11)?

∙ Is it true that (CF ∩ JSPCF) − (PPCF ∪ JPPCF) , ∅ (Open Problem 6.3.14)?

∙ Is it true that JSPCF − (CF ∪ PPCF ∪ JPPCF) , ∅ (Open Problem 6.3.17)?

∙ Let X ∈ {SP, JSP,PP, JPP}. Is the inclusion X−ε ⊆ X, in fact, proper (Open Problem
6.4.2)?
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∙ What is the relation between JSPCF−ε and JPPCF−ε (Open Problem 6.4.5)?

∙ What is the relation between JSPCF−ε and JPPCF (Open Problem 6.4.6)?

k#$-rewriting systems, as proven by Theorem 7.2.7, have the same generative capacity
as state grammars working in k-limited way. By Theorem 7.2.8, it was proved that #-
rewriting systems of index k are properly included in k#$-rewriting systems, which implies
kPRG ⊂ STk .

8.1 Suggestions for Further Research

Besides the open problems listed above, several ideas concerning further investigation of
presented language models have arisen. The present section gives a survey of possible
directions of further research.

State-Synchronized Automata Systems

Chapter 4 gives a definition of state-synchronized automata systems and studies their
accepting power. However, it does not discuss the possible application areas of such
systems. As communication between components is performed in a simple way, it can
be easily implemented on hardware level. Therefore, one of the possible directions of
further research can be designing a method of conversion of a concurrent system, which is
described in a suitable modeling language, to state-synchronized automata system and then
converting this state-synchronized automata system to a digital circuit. Focus can be put
on the economical way of these conversions, like the number of states and transitions of
particular components, the size of a control language, or the complexity of the final digital
circuit.

Another area of application of state-synchronized automata systems worth studying can
be compiler design. For instance:

∙ Augmenting LL grammars with respect to state-synchronized automata systems.

∙ Studying power of state-synchronized automata systems if their first pushdown com-
ponent can accept only LL languages.

∙ Using state-synchronized automata systems the models for parallel syntax and seman-
tic analysis.

Finally, state-synchronized automata systems can be studied in association with models for
concurrency, e.g. transition systems (see [96]).



8.1 Suggestions for Further Research 103

Unlimited Deep Pushdown Automata

Recall the definition of direct expansion move of absolutely unlimited deep pushdown
automata from Definition 5.1.1:

The M-based relation of direct expansion move, a
e⊢M, over Ξ is defined as

follows:
(p,w, uAv) a

e⊢M (q,w, uxv)

if and only if pA → qx ∈ R, A /∈ alph(u) and for every A′ ∈ (alph(u) − Σ),
pA′ → q′x′ /∈ R, where p, q, q′ ∈ Q, w ∈ Σ*, A ∈ (Γ − Σ), and u, v, x, x′ ∈ Γ*.

Now, introduce three modifications of direct expansion move defined above:

(a) The M-based relation of direct expansion move, a
e⊢M, over Ξ is defined as follows:

(p,w, uAv) a
e⊢M (q,w, uxv)

if and only if pA → qx ∈ R and A /∈ alph(u), where p, q ∈ Q, w ∈ Σ*, A ∈ (Γ − Σ),
and u, v, x ∈ Γ*.

(b) The M-based relation of direct expansion move, a
e⊢M, over Ξ is defined as follows:

(p,w, uAv) a
e⊢M (q,w, uxv)

if and only if pA → qx ∈ R, where p, q ∈ Q, u,w ∈ Σ*, A ∈ (Γ − Σ), and v, x ∈ Γ*.

(c) The M-based relation of direct expansion move, a
e⊢M, over Ξ is defined as follows:

(p,w, uAv) a
e⊢M (q,w, uxv)

if and only if pA → qx ∈ R, where p, q ∈ Q, w ∈ Σ*, A ∈ (Γ − Σ), and u, v, x ∈ Γ*.

How will the accepting power of absolutely unlimited deep pushdown automata change in
the case of (a), (b), and (c)?

Other areas of interest concerning unlimited deep pushdown automata could focus on
studying their normal forms or how the number of turns on a pushdown will change their
accepting power.

Jumping Pure Grammars

Regarding jumping pure grammars, plenty of ideas to advance the topic come to mind.
Other than resolving stated open problems and studying jumping pure grammars with other
than context-free rules, there are also areas where further investigation of jumping pure
grammars can be directed, namely:

(I) Closure Properties. Given the families of languages from Definition 6.1.2, which
ones of them are closed under intersection, union, concatenation, complement, and
other operations over languages?
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(II) New Relations of Direct Derivation. Let G = (Σ, P, σ) be a pure grammar. Define two
G-based relations of direct derivation over Σ*, jf⇒G (jumping folding) and sw⇒G
(swapping), as follows:

∙ u1xu2 jf⇒G v1yv2yv3 if and only if u1u2 = v1v2v3, x → y ∈ P, and u1, u2, v1,
v2, v3, x, y ∈ Σ*;

∙ uxtyv sw⇒G uyt xv if and only if x → y ∈ P and u, v, t, x, y ∈ Σ*.

What language families are generated by jumping pure grammars working under direct
derivation relations defined above?

(III) Regulated Rewriting. Consider using regulating devices discussed in Chapter 3, like
prescribed sequences of rules or context conditions, for jumping pure grammars. How
does it change their power?
Furthermore, consider using Levenshtein distance (see [13]) as a regulating device.
Let G = (Σ, P, σ) be a pure grammar. For u, v ∈ Σ*, let d`(u, v) denote the Levenshtein
distance between u and v (i.e. the minimum number of insertions, deletions, or sub-
stitutions of symbols needed to transform u to v). Furthermore, let h ∈ {l j, r j, j, jp}
and let k ∈ N. What is the generative capacity of pure grammars generating their
words under h⇒ such that u h⇒ v implies d`(u, v) ≤ k?

(IV) Applications Perspectives. In Chapter 6, jumping pure grammars were studied only
theoretically. It is then right to ask how they can be used practically. One area where
jumping pure grammars can find their place is genetic algorithms.
Genetic algorithms (see [45]) were inspired by natural evolution and are usually used
to find an approximate solution of NP-hard problems. In a genetic algorithm, a
solution to a problem is represented by a chromosome. A chromosome is a sequence
of genes, where gene can represent a property or a parameter, depending on what
kind of problem is being solved. A set of chromosomes is called a population. The
important part of a genetic algorithm is a fitness function. Its purpose is to map
a chromosome to its fitness value and its definition depends on the given problem.
Based on fitness value, it is decided whether an individual’s chromosome survives or
not.
The genetic algorithm works as follows. At start, initial population is generated. Then
individuals with the best fitness value are selected. These individuals will become
parents of a new population. Two parental chromosomes, uv and xy, are combined
to make a new pair of chromosomes, xv and uy, called offspring. This process is
called crossover. Offspring are then included in the new population. Sometimes,
some offspring genes are randomly changed. This process is called mutation and it
introduces a diversity element. The new population is then used in the next iteration
of the algorithm. The algorithm terminates when there are no notable differences
between the new and old population.
From the formal language theory point of view, genes can be represented by symbols,
chromosomes by words, and population by finite languages. Suppose that individuals’
chromosomes consist of genes a, b, and c and only individuals with chromosomes
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with the number of as equal to the number of bs can survive. This can be expressed
by the language

L f = {w | Oa(w) = Ob(w),w ∈ {a, b, c}+}

generated by the jumping sequential context-free pure grammar

G f = ({a, b, c}, {c → cc, c → ab, a → a, b → b}, c)

Of course, L f can be also generated by the unrestricted grammar

H f = ({S,A,B, a, b, c}, {a, b, c}, P, S)

with P containing rules

S → SS S → AB S → c
SA → AS SB → BS AS → SA
AB → BA BS → SB BA → AB
A → a B → b

However, as can be seen, G f contains only 4 rules and hence describes L f in a more
economical way than H f .

(V) Automata Counterparts. Related to (IV), what kind of automata are suitable to
effectively recognize languages generated by jumping pure grammars?

k#$-Rewriting Systems

The proposed areas considered for further investigation of k#$-rewriting systems are:

(I) Since a new characterization of STk has been given, for some k ≥ 1, what is
the relationship between k#$-rewriting systems and generalized #-rewriting systems
(studied in Sections 4.1.4 and 5.1.3 of [47])?

(II) Considering [93], k#$-rewriting systems can be further discussed in terms of picture
languages or 2D languages.

(III) Related to the study given in [94], what is the relationship between multi-head finite
automata and k#$-rewriting systems?
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Notation Index

Term Page Meaning
∅ 7 empty set
⊢M 14 M-based relation of direct move
⇒G 12 G-based relation of direct derivation
{0, 1, . . . , 7} 7 a set containing digits from 0 to 7
2P 7 power set of P
a⊢M 51 M-based relation of direct move (AUDPDA)
a
e⊢M 51 M-based relation of direct expansion move (AUDPDA)
a
p⊢M 51 M-based relation of direct pop move (AUDPDA)
{a | π(a)} 7 a set containing all elements that fulfill some property π
A1 × A2 8 Cartesian product of A1 and A2

a ∈ P 7 a is a member of P
a /∈ P 7 a is not a member of P
(a1, a2, . . . , an) 8 n-tuple
{a, b, c} 7 a set containing elements a, b, and c
alph(w) 10 the set of all symbols that appear in w

card(P) 7 cardinality of P
Cn(A) 8 Cartesian product of n sets A
depth(M) 25 a depth of DPDA M
d`(u, v) 104 Levenshtein distance between u and v

Dn 13 Dyck language of index n
domain(ρ) 8 domain of ρ
ε 9 empty word
e⊢M 26 M-based relation of direct expansion move (DPDA)
G (X) 23 a set of grammars of type X
h⇒G 29 G-based relation of h-mode direct derivation
idA 8 identity relation over A
Ind(G) 23 the index of a grammar G
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Term Page Meaning
Ind(π,G) 23 the index of a G-based derivation induced by parse π
Ind(w,G) 23 the index of a G-based derivation of word w

IndX(L) 23 the index of a language L generated by a grammar of type X
inf S 9 infimum of S
j⇒G 29 G-based relation of jump direct derivation
jf⇒G 104 G-based relation of jumping folding direct derivation
jp⇒G 64 G-based relation of parallel jump direct derivation
k⇒G 27 G-based relation of k-limited direct derivation
kprefix(w, k) 10 the prefix of w of length k
L+ 10 positive closure of language L
L* 10 (Kleene) closure of language L
Li 10 ith power of language L
L(G) 12 language generated by grammar G
L(G, h⇒) 29 language generated by G using h⇒
L(G, k) 27 language generated by G in k-limited way
lhs(r) 12 left-hand side of a rule r

l j⇒G 29 G-based relation of left jump direct derivation
L1L2 10 concatenation of languages L1 and L2

L(M) 14 language accepted by automaton M
L(M)ε 15 language accepted by M by empty pushdown
L(M) f 15 language accepted by M by final state
L(M) f ε 15 language accepted by M by final state and empty pushdown
max P 9 maximum in P
M (DPDA) 26 the set of all deep pushdown automata
min P 9 minimum in P
N 7 the set of all positive integers
N0 7 the set of all nonnegative integers
Oa(w) 10 the number of occurrences of a in w

OW(w) 10 the number of occurrences of symbols from W in w

p⇒G 64 G-based relation of parallel direct derivation
p⊢M 25 M-based relation of direct pop move (DPDA)

P − Q 7 difference of P and Q
P ∩ Q 7 intersection of P and Q
P ∪ Q 7 union of P and Q
P ⊂ Q 7 P is a proper subset of Q
P ⊆ Q 7 P is a subset of Q
perm(S) 9 set of all permutations of elements of S
prefix(w) 10 the set of all prefixes of w
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Term Page Meaning
pρq 8 (p, q) ∈ ρ
ρ+ 9 transitive closure of ρ
ρ* 9 reflexive and transitive closure of ρ
ρk 8 k-fold product of ρ
ρ ∘ σ 8 composition of ρ and σ
r⊢M 58 M-based relation of direct move (RUDPDA)
r
e⊢M 58 M-based relation of direct expansion move (RUDPDA)
r
p⊢M 57 M-based relation of direct pop move (RUDPDA)

r : x → y 12 a rule x → y has a label r
range(ρ) 8 range of ρ
ℛΓ 39 Cartesian product of sets of rules of components of Γ
rhs(r) 12 right-hand side of a rule r

r j⇒G 29 G-based relation of right jump direct derivation
Σ+ 9 a set of all non-empty words over Σ
Σ* 9 a set of all words over Σ

10 the universal language over Σ
s⇒G 29 G-based relation of sequential direct derivation
subword(w) 10 the set of all subwords of w
suffix(w) 10 the set of all suffixes of w
sup S 9 supremum of S
sw⇒G 104 G-based relation of swapping direct derivation
U 7 universe
u0 ⇒n

G un [πn] 12 un is derived from u0 by consecutive application of sequence of
rules πn

φ(L) 11 commutative (Parikh) map of L
φ(w) 11 commutative (Parikh) image of w
φ(x) = y 9 (x, y) ∈ φ
χ0 ⊢n

M χn [πn] 14 a move from χ0 to χn performed by consecutive application of
sequence of rules πn

|x| 9 length of word x
xi 9 ith power of word x
x → y 11 (x, y)
xy 9 concatenation of words x and y

Ψ f 39 control language of SCAS extended about words formed from
states from its final configurations



Language Family Index

Family Page Description
0L 31 family of languages generated by 0L systems
0L−ε 31 family of languages generated by propagating 0L systems
AUDPDA 51 family of languages accepted by absolutely unlimited deep

pushdown automata
AUDPDA−ε 51 family of languages accepted by propagating absolutely un-

limited deep pushdown automata
CF 13 context-free languages
CS 13 context-sensitive languages
DPDAk 26 family of languages accepted by deep pushdown automata of

depth k
DPDAε

k 26 family of languages accepted by deep pushdown automata of
depth k by empty pushdown

finX 23 family of languages of finite index generated by grammars of
type X

JPP 65 family of languages generated by pure grammars in jumping
parallel mode

JPP−ε 65 family of languages generated by propagating pure grammars
in jumping parallel mode

JPPCF 66 family of languages generated by pure context-free grammars
in jumping parallel mode

JPPCF−ε 66 family of languages generated by propagating pure context-
free grammars in jumping parallel mode

JSP 65 family of languages generated by pure grammars in jumping
sequential mode

JSP−ε 65 family of languages generated by propagating pure grammars
in jumping sequential mode

JSPCF 66 family of languages generated by pure context-free grammars
in jumping sequential mode

JSPCF−ε 66 family of languages generated by propagating pure context-
free grammars in jumping sequential mode
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Family Page Description
L (1t-PDA)ε 16 family of languages accepted by one-turn pushdown automata

by empty pushdown
L (1t-PDA) f 16 family of languages accepted by one-turn pushdown automata

by final state
L (1t-PDA) f ε 16 family of languages accepted by one-turn pushdown automata

by final state and empty pushdown
L (2PDA)ε 17 family of languages accepted by two-pushdown automata by

empty pushdown
L (2PDA) f 17 family of languages accepted by two-pushdown automata by

final state
L (2PDA) f ε 17 family of languages accepted by two-pushdown automata by

final state and empty pushdown
L (d2PDA)ε 17 family of languages accepted by deterministic two-pushdown

automata by empty pushdown
L (d2PDA) f 17 family of languages accepted by deterministic two-pushdown

automata by final state
L (d2PDA) f ε 17 family of languages accepted by deterministic two-pushdown

automata by final state and empty pushdown
L (dFA) 14 family of languages accepted by deterministic finite automata
L (dPDA)ε 16 family of languages accepted by deterministic pushdown au-

tomata by empty pushdown
L (dPDA) f 16 family of languages accepted by deterministic pushdown au-

tomata by final state
L (dPDA) f ε 16 family of languages accepted by deterministic pushdown au-

tomata by final state and empty pushdown
L (FA) 14 family of languages accepted by finite automata
LIN 13 linear languages
Lk(#$RS) 82 family of languages generated by k#$-rewriting systems
Lk(#RS) 29 family of languages generated by #-rewriting systems of index

k
L (PDA)ε 15 family of languages accepted by pushdown automata by empty

pushdown
L (PDA) f 15 family of languages accepted by pushdown automata by final

state
L (PDA) f ε 15 family of languages accepted by pushdown automata by final

state and empty pushdown
Lpfx 10 prefix languages
L (s1t-2PDA)ε 18 family of languages accepted by simultaneously one-turn two-

pushdown automata by empty pushdown
L (s1t-2PDA) f 18 family of languages accepted by simultaneously one-turn two-

pushdown automata by final state
L (s1t-2PDA) f ε 18 family of languages accepted by simultaneously one-turn two-

pushdown automata by final state and empty pushdown
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Family Page Description
L (X, h⇒) 30 family of languages generated by grammars of type X using

h⇒
nX 23 family of languages of index n generated by grammars of type

X
PP 65 family of languages generated by pure grammars in classical

parallel mode
PP−ε 65 family of languages generated by propagating pure grammars

in classical parallel mode
PPCF 66 family of languages generated by pure context-free grammars

in classical parallel mode
PPCF−ε 66 family of languages generated by propagating pure context-

free grammars in classical parallel mode
PRG 22 family of languages generated by programmed grammars
PRGac 22 family of languages generated by programmed grammars with

appearance checking
PRG−ε 22 family of languages generated by propagating programmed

grammars
PRG−ε

ac 22 family of languages generated by propagating programmed
grammars with appearance checking

RE 12 recursively enumerable languages
REG 13 regular languages
RUDPDA 58 family of languages accepted by relatively unlimited deep

pushdown automata
RUDPDA−ε 58 family of languages accepted by propagating relatively unlim-

ited deep pushdown automata
SP 65 family of languages generated by pure grammars in classical

sequential mode
SP−ε 65 family of languages generated by propagating pure grammars

in classical sequential mode
SPCF 65 family of languages generated by pure context-free grammars

in classical sequential mode
SPCF−ε 65 family of languages generated by propagating pure context-

free grammars in classical sequential mode
ST 27 family of languages generated by state grammars
ST−ε 27 family of languages generated by propagating state grammars
STk 27 family of languages generated by state grammars in k-limited

way
ST−ε

k 27 family of languages generated by propagating state grammars
in k-limited way

ST∞ 27 family of languages generated by state grammars in finitely
limited way

ST−ε
∞ 27 family of languages generated by propagating state grammars

in finitely limited way



Subject Index

0L
system, 31

#-rewriting
system, 28

of index k, 29

absolutely unlimited deep pushdown
automaton, 50

alphabet, 9
input, 14–16, 18, 37, 50
pushdown, 15, 16, 37, 50
tape, 18
total, 11, 27

appearance checking set, 22
automaton

absolutely unlimited deep pushdown, 50
deep pushdown, 25
finite, 14, 37

jumping, 30
n-parallel jumping, 32
n-turn all-move self-regulating, 25
n-turn first-move self-regulating, 25
self-regulating, 25

general jumping finite, 30
linear bounded, 19
one-turn pushdown, 16
pushdown, 15, 25, 37
regulated pushdown, 24
relatively unlimited deep pushdown, 57
simultaneously one-turn two-pushdown,

18
two-pushdown, 16

axiom, 11, 31

bijection, see function

binary
relation, 8

blank symbol, 18
bottom symbol, 25, 50
bounder, 28, 82

cardinality, 7
Cartesian product, 8
Chomsky

hierarchy of language families, 13
Church’s Thesis, 12
closure

Kleene, 10
transitive, 9
transitive and reflexive, 9

commutative
image, 11
map, 11

component, 32, 37
composition, 8
concatenation

of languages, 10
of words, 9

configuration
of #-rewriting system, 28
of absolutely unlimited deep pushdown

automaton, 51
of deep pushdown automaton, 25
of finite automaton, 14
of k#$-rewriting system, 82
of pushdown automaton, 15
of relatively unlimited deep pushdown

automaton, 57
of state-synchronized automata system,

37
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of Turing machine, 18
of two-pushdown automaton, 17

context-free
grammar, 13, 21
language, 13

context-sensitive
grammar, 13
language, 13

control language, 21, 24, 37
cooperating/distributed grammar system, 32

hybrid, 33

deep pushdown automaton, 25
depth, 25
derivation, 12, 22

direct, 12, 22, 27, 31, 64
k-steps, 33
terminating, 33

deterministic
(-prefix) context-free language, 16
finite automaton, 14
pushdown automaton, 15
state-synchronized automata system, 39
two-pushdown automaton, 17

difference
of languages, 10
of sets, 7

direct
derivation, 12, 22, 27, 31, 64

k-limited, 27
move, 14, 15, 17, 19, 26, 37, 51, 58

expansion, 26, 51, 58
pop, 25, 51, 57

rewriting step, 28, 82
domain, 8
Dyck language, 13

effective procedure, 12
empty

language, 10
set, 7
word, 9

ε-free
family of languages, 10

erasing
rule, 11

ET0L
system, 32

expansion of depth m, 26

failure field, 21
family

of languages, 10
of sets, 7

field
failure, 21
success, 21

final
state, 14, 15, 17, 18, 37, 51

finite
automaton, 14, 37

jumping, 30
n-turn all-move self-regulating, 25
n-turn first-move self-regulating, 25
self-regulating, 25

index, 23
language, 10
set, 7

forbidding
grammar, 22

function, 9
bijection, 9
injection, 9
partial, 9
surjection, 9
total, 9

general
jumping finite automaton, 30
unrestricted grammar, 11

genetic algorithm, 104
grammar

context-free, 13, 21
context-sensitive, 13
forbidding, 22
general unrestricted, 11
jumping, 29
linear, 13
matrix, 21
n-parallel right linear, 31
n-right linear simple matrix, 31
permitting, 22
phrase-structure, 11
programmed, 21

with appearance checking, 21
propagating, 11
pure, 11

jumping, 65
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random context, 22
regular, 13
regular-controlled, 21
right-linear, 13
scattered context, 31
state, 27
unrestricted, 11

grammar system
cooperating/distributed, 32
multi-generative, 33
parallel communicating, 33

hybrid
cooperating/distributed grammar system,

33

incomparable sets, 7
index, 23

finite, 23
infinite, 23

infimum, 9
infinite

index, 23
language, 10
set, 7

initial
pushdown symbol, 15, 17, 37, 51
state, 14, 15, 17, 18, 27, 28, 37, 51, 82

injection, see function
input

alphabet, 14–16, 18, 37, 50
intersection

of languages, 10
of sets, 7

ith power
of languages, 10
of word, 9

jumping
automaton

finite, 30
grammar, 29

pure, 65

k-erasing, 11
k-fold product, 8
k-steps derivation, 33
k#$-rewriting

system, 81

Kleene closure, see closure

L-system, see Lindenmayer system
language, 10

context-free, 13
context-sensitive, 13
control, 21, 24, 37
deterministic-prefix context-free, 16
deterministic context-free, 16
Dyck, 13
empty, 10
finite, 10
infinite, 10
linear, 13
of 0L system, 31
of #-rewriting system, 28
of absolutely unlimited deep pushdown

automaton, 51
of deep pushdown automaton, 26
of finite automaton, 14
of jumping grammar, 29
of jumping pure grammar, 65
of k#$-rewriting system, 82
of programmed grammar, 22
of pushdown automaton, 15
of relatively unlimited deep pushdown

automaton, 58
of state-synchronized automata system,

38
of state grammar, 27
of Turing machine, 19
of two-pushdown automaton, 17
of unrestricted grammar, 12
prefix, 10
recursively enumerable, 12
regular, 13
right-linear, 13
semilinear, 11
universal, 10

left-hand side, 12
Levenshtein distance, 104
Lindenmayer system, 31
linear

bounded automaton, 19
erasing, 11
grammar, 13
language, 13
set, 9
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lower bound, 9

mapping, see function
matrix, 21
matrix grammar, 21
maximum, 9
minimum, 9
morphism, 11
move, 14, 15, 17

direct, 14, 15, 17, 19, 26, 37, 51, 58
expansion, 26, 51, 58
pop, 25, 51, 57

multi-generative grammar system, 33
canonical, 33
general, 33
hybrid, 33
nonterminal synchronized, 34
rule synchronized, 34

n-accepting
move-restricted pushdown automata

system, 35
restricted pushdown automata system, 34
state-restricted pushdown automata system,

34
n-parallel jumping finite automaton, 32
n-parallel right linear grammar, 31
n-right linear simple matrix grammar, 31
n-turn

all-move self-regulating finite automaton,
25

first-move self-regulating finite automaton,
25

nonterminal
symbol, 11

one-turn
pushdown automaton, 16
two-pushdown automaton (simultaneously),

18

pair, 8
parallel communicating finite automata

system, 34
parallel communicating grammar system, 33

centralized, 33
non-returning, 33
returning, 33

parallel communicating pushdown automata
system, 34

Parikh
image, see commutative image
map, see commutative map

parse, 12, 14
partial

function, 9
partial order, 8
permitting

grammar, 22
permutation, 9
phrase-structure

grammar, 11
positive closure, 10
power

set, 7
prefix, 10

language, 10
proper, 10

production, see rule
programmed grammar, 21

with appearance checking, 21
propagating

0L system, 31
absolutely unlimited deep pushdown

automaton, 51
grammar, 11
programmed grammar, 21

with appearance checking, 21
relatively unlimited deep pushdown

automaton, 57
state grammar, 27

proper
prefix, 10
subset, 7
subword, 10
suffix, 10

pure
grammar, 11

pushdown
alphabet, 15, 16, 37, 50
automaton, 15, 25, 37

absolutely unlimited deep, 50
deep, 25
regulated, 24
relatively unlimited deep, 57

query symbol, 34

quadruple, 8
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query
pushdown symbol, 34
state, 34
symbol, 33

quintuple, 8

random context grammar, 22
range, 8
recursively enumerable language, 12
regular

grammar, 13
language, 13

regular-controlled grammar, 21
regulated pushdown automaton, 24
relation, 8

antisymmetric, 8
binary, 8
identity, 8
inverse, 8
reflexive, 8
transitive, 8

relatively unlimited deep pushdown
automaton, 57

rewriting
rule, 11
step

direct, 28, 82
system, 20

right-hand side, 12
right-linear

grammar, 13
language, 13

rule, 11, 14, 15, 17, 18, 25, 27, 28, 31, 51,
57, 82

erasing, 11
label, 12
of depth m, 25
rewriting, 11
switch, 34

scattered context grammar, 31
self-regulating finite automaton, 25

n-turn
all-move, 25
first-move, 25

semilinear
family of languages, 11
language, 11
set, 9

sentential
form, 12

septuple, 8
set, 7

appearance checking, 22
empty, 7
finite, 7
infinite, 7
linear, 9
partially ordered, 8
semilinear, 9

sextuple, 8
start

symbol, 11, 27
state, 14–16, 18, 27, 28, 37, 50, 82

final, 14, 15, 17, 18, 37, 51
grammar, 27
initial, 14, 15, 17, 18, 27, 28, 37, 51, 82
query, 34
turn, 25

state-synchronized automata system, 37
deterministic, 39

subset, 7
proper, 7

subword, 10
proper, 10

success field, 21
suffix, 10

proper, 10
supremum, 9
surjection, see function
switch rule, 34
symbol, 9

blank, 18
bottom, 25, 50
nonterminal, 11
query, 33
start, 11, 27
terminal, 11, 27, 31

system
0L, 31
#-rewriting, 28

of index k, 29
ET0L, 32
k#$-rewriting, 81
Lindenmayer, 31
of parallel communicating finite automata,

34
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of parallel communicating pushdown
automata, 34

rewriting, 20
T0L, 32

Szilard word, see parse

T0L
system, 32

table, 32
tape alphabet, 18
terminal

symbol, 11, 27, 31
terminating derivation, 33
total

alphabet, 11, 27
function, 9

transitive
closure, 9
relation, 8

triple, 8
tuple, 8

Turing machine, 18
turn, 16, 18, 25

simultaneous, 18
state, 25

two-pushdown
automaton, 16

union
of languages, 10
of sets, 7

universal
language, 10

universe, 7
unrestricted

grammar, 11
upper bound, 9

word, 9
empty, 9
length, 9
Szilard, see parse
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