
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS

ÚSTAV INFORMAČNÍCH SYSTÉMŮ

WEBPAGE SEGMENTATIONUTILIZING CLUSTERING

TECHNIQUES
SEGMENTACE WEBOVÝCH STRÁNEK S VYUŽITÍM SHLUKOVACÍCH TECHNIK

PHD THESIS

DISERTAČNÍ PRÁCE

AUTHOR Ing. JAN ZELENÝ

AUTOR PRÁCE

SUPERVISOR Doc. Ing. JAROSLAV ZENDULKA, CSc.

ŠKOLITEL

BRNO 2017

Abstract
Information extraction and other techniques for mining data from the Web get more im-
portant with the development of web technologies and raising amount of information stored
exclusively on the Web. However, with this information, the amount of content that is
completely irrelevant in context of the presented information grows as well. That’s only
one of the reasons why it is so important to intensively study and develop preprocessing of
information stored on the Web. Segmentation algorithms are one of the possible ways of
web page preprocessing. This thesis is dedicated to utilization of clustering techniques for
improving the efficiency of existing web page segmentation algorithms, as well as finding
completely new ones.

Abstrakt
Získávání informací a jiné techniky dolování dat z webových stránek získávají na důležitosti
s tím, jak se rozvíjí webové technologie a jak roste množství informací uložených na webu,
jakožto jediném nosiči těchto informací. Spolu s tímto množství informací také ale roste
množství obsahu, který není v kontextu prezentovaných informací ničím důležitý. To je
jedním z důvodů, proč je důležité se intenzivně věnovat předzpracování informací uložených
na webu. Segmentační algoritmy jsou jedním z možných způsobů předzpracování. Tato
práce se věnuje využití shlukovacích technik pro zefektivnění existujících, ale i nalezení
zcela nových algoritmů použitelných pro segmentaci webových stránek.

Keywords
web page preprocessing, document preprocessing, segmentation, clustering, template, VIPS

Klíčová slova
zpracování webových stránek, zpracování dokumentů, segmentace, shlukování, šablona, VIPS

Reference
ZELENÝ, Jan. Web page segmentation utilizing clustering techniques. Brno, 2017. PhD
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor Zen-
dulka Jaroslav.

Web page segmentation utilizing clustering techniques

Declaration
I hereby declare that this thesis is my own work that has been created under the supervision
of Doc. Ing. Jaroslav Zendulka, CSc. It is based on my previously published research. Other
information was provided to me by Ing.Radek Burget Ph.D.

. .
Jan Zelený

April 10, 2017

Acknowledgements
I would like to thank Ing. Radku Burget, Ph.D. for outstanding professional leadership
and mentorship of my scientific research throughout the entire span of my studies. I would
also like to thank Doc. Ing. Jaroslav Zendulka, CSc. for leadership and professional
consultations.

Contents

1 Introduction 3

2 The World Wide Web 5
2.1 WWW as a Distributed Source of Information 5
2.2 Web Sites . 6
2.3 Web Pages . 8

3 Web Page Preprocessing: State of the Art 13
3.1 Page Segmentation . 13
3.2 Template detection . 21

4 Motivation and Goals of the Thesis 28

5 Web Site Processing Using Clustering Techniques 29
5.1 High level design . 31

6 Box Clustering Segmentation 33
6.1 Extracting boxes . 34
6.2 Connecting the boxes . 37
6.3 Composite Dissimilarity Model . 38
6.4 Base Dissimilarity . 39
6.5 Cluster Dissimilarity . 43
6.6 Entity Dissimilarity . 44
6.7 Box Clustering . 45

7 Template clustering 51
7.1 Template clustering overview . 51
7.2 Template storage . 53
7.3 Working with the Cluster Set . 55
7.4 Matching DOM Tree to the Cluster Set . 56
7.5 DOM Tree Mapping . 58

8 Experimental Implementation 62
8.1 Template clustering specifics . 63
8.2 Box Clustering specifics . 64

1

9 Evaluation 65
9.1 Template Count . 65
9.2 Evaluation of the BCS . 66
9.3 Evaluation of BCS with template clustering 71

10 Conclusion 73
10.1 Summary of Contributions . 73
10.2 Possible Improvements and Future Work . 74

2

Chapter 1

Introduction

In recent years the World Wide Web has seen such a great expansion, it has become the
most important source of information in the world. Many newspapers and magazines have
their electronic counterpart, there is also a large number of blogs and community portals
containing vast amounts of information. Because people realize the importance of this data
source, there is a lot of research and development in this area. The number of algorithms
designed to process the data stored on the World Wide Web and give it some meaning grows
in proportion to the growth of the Web.

The largest group of the Web processing tasks falls into the area of data mining. This
includes the tasks like information retrieval, content extraction and classification and others.
Another big group of tasks targets web page restructuring for small screen devices. While
this thesis will focus on the former group, there are some severe issues that apply to all the
algorithms working with content of the Web that need to be solved in order to make the
algorithms efficient.

These issues come from the fact that each web page is a combination of useful infor-
mation, navigation, related topics, comments, advertisement and many more disruptive
elements. Moreover, the useful information on the web can be disseminated, there can even
be more different pieces of information (or topics) on one web page.

To address these issues, new methods of preprocessing web pages have to be developed
to make the data processing algorithms themselves successful. These preprocessing methods
often come in some form of web page partitioning. The designation “some form of web page
partitioning” means any algorithm that can split a web page into separate areas. Each of
these areas will then carry a content somehow different from the content of other areas. The
differentiation parameters depend on the intended usage of the preprocessed data. In case
of the data mining tasks, the partitioning is often complemented by classification with the
intended result being identification of the blocks that are either relevant in the context of
the web page or that are important for the subsequent algorithm. In case of restructuring
for mobile devices, the subsequent goal is to rearrange the web page or even remove some
blocks that are not considered important.

Template detection methods are a good example of those that perform some form of web
page partitioning. While they are usually perceived only as remotely related to this area,
the definition of page partitioning fits what they do – they separate a page to useful content
and the noisy remainder around it. In contrast, web page segmentation methods target
specifically the task of web page partitioning. They output a set of different blocks, each
block internally consistent. The consistency is usually defined either semantically (content
or the structure of contained elements) or visually.

3

From the perspective of human intervention, there are supervised, semi-supervised and
unsupervised segmentation methods. This thesis will focus on the area of unsupervised web
page segmentation. Even though the area has been extensively researched, there are only a
few ways how is the partitioning task approached. There are two aspects of the web page
segmentation that are considered important – accuracy and speed. The existing segmen-
tation methods emphasize one, keeping the other within the range of what is considered
acceptable.

Algorithms in the group of vision-based segmentation try to perceive the page as user
viewing it would perceive it and perform the segmentation based on visual cues. These
methods therefore strongly prefer accuracy, with performance being only secondary. Their
performance disadvantage is implied by the fact that the visual cues need to be calculated
according to very complex specification.

This thesis proposes a new way how to segment web pages, using the aforementioned
visual cues and clustering techniques. The motivation is to come up with such an algorithm,
that will be superior to all the existing algorithms in terms of speed-accuracy balance.
The proposed method is built from ground up. While it does not share almost anything
with current segmentation algorithms, some of its parts are inspired by template detection
algorithms which are remotely related to segmentation algorithms.

Another important difference of the algorithm proposed here and all the others that
can be found in the literature is its high level design. Compared to others, the algorithm
described here can be split into two parts, each one working on a different level and ad-
dressing a different use case. While the first part addresses segmentation of individual web
pages, the second part takes care of the use case where multiple pages are processed over
any period of time. Taking care of this particular use case significantly improves scaling of
the algorithm. Note that clustering techniques are utilized in both parts of the algorithm.

This thesis has three parts which are organized as follows: The first part introduces
the background and state of the art. Chapter 2 describes basic concepts of the Web, from
protocols used for communication to the structure of a web page. Most concepts described
there are further used throughout the entire thesis. The chapter 3 summarizes current state
of the art in the area of page segmentation and template detection. The description of
template detection methods focuses on those concepts that are important for the template
clustering covered in chapter 7. Chapter 4 formally declares what is the scope of the thesis.

The second part covers the design of the proposed algorithm. First, its general archi-
tecture and targeted use cases are introduced in chapter 5. The segmentation core of the
algorithm is closely analyzed in chapter 6. Chapter 7 explains the template clustering as a
means to significantly improve scaling of segmentation algorithms. Because the description
in this part of the thesis is mostly theoretical, chapter 8 fills in some specifics of the reference
program that was implemented to prove the design.

The third part concludes the thesis. Chapter 9 evaluates the result got by running the
reference implementation. Some discussion over the retrieved results is included. Finally,
chapter 10 summarizes the content of the thesis, the contributions this thesis brings to the
research field and it also outlines some plans for the future development.

4

Chapter 2

The World Wide Web

The original notion, from which the concept of the World Wide Web, or simply known as the
Web has been derived, was introduced in late ’80s of the 20th century. Since then the World
Wide Web has grown rapidly, soon becoming the most important data and information
source in the world. However the data stored on the Web is not organized and it is vastly
fragmented.

2.1 WWW as a Distributed Source of Information

The Web is a network of interlinked documents which can be accessed via the Internet.
Every document on the Web can contain external resources like images and visual style
definitions. All these entities together create an oriented graph of resources, commonly
known as Webgraph. Similar pages and sites are closely clustered in this graph, because
they usually contain links referencing one another. In this context, “similar pages” express
topic-related similarity.

Every document and every resource available on the Web has its unique identifier, so
called Uniform Resource Identifier or simply URI. On the Web, URI can be used to identify
either names or locations. However, in the context of this thesis, it will be used only to
identify locations. It is therefore possible to use more specific type of URI, called Uniform
Resource Locator or simply URL. The syntax of URLs used on the web is as follows[52]:

scheme://domain:port/path?query_string#fragment_id

Scheme is usually http or https when using encrypted communication. Domain can be
also replaced by IP address. Both domains and addresses have to be considered since some
web content is available only through IP address and on the other hand, some content is only
available through the domain name. Each domain can contain several levels of subdomains.
On the Web, these distinguish content either physically (on another server) or virtually
separated from other parts.

Port number in the scheme is optional, standard is used when not given: 80 for HTTP
and 443 for HTTPs connection. The path can represent either real path to some resource
on the server or it can be only virtual. The latter case is more common on modern web
sites, as the path is easy to read and remember and it can fully substitute the functionality
of query strings. When the virtual path is used, it supports the concept of templates as
presented in section 2.2. Both query strings and virtual paths are used almost exclusively
by server side scripts. Fragment id is used to designate a certain place in the document.

5

The structure of the URL can be perceived as corresponding to the structure of informa-
tion on the Web. In the common understanding, the Web consists of vast numbers of web
sites, each web site corresponds to a certain domain. All the content within one web site
usually shares some common purpose. Each site consists of multiple web pages, each one
identified by the corresponding path within the site. From the information hierarchy stand-
point, each web page can be considered as a unit of information. This is where the common
understanding of the Web ends, however as section 3.1 explains, the modern understanding
of the information on the Web further splits each web page into so called segments – atomic
carriers of the information on the Web[13, 35, 50].

The contents of the Web are available by means of HTTP protocol. HTTP stands for
HyperText Transfer Protocol. It is stateless protocol utilizing client-server architecture,
designed specifically for the needs of the Web. Client-server architecture dictates the basic
concept of communication. Clients send requests to the server and it sends back a response
to each request. The communication is always client-induced. Stateless protocol means that
there is no state of the communication (or context) kept neither on the client, nor on the
server. This soon proved to be a problem, especially for dynamic content display. Therefore
some methods have been improved to overcome these problems. Despite these methods the
core of the protocol remains stateless. That means that every request has to contain all the
information required from the client to complete desired action and send back its result.

When considering traversal of the graph of the Web, the HTTP allows only two methods,
both directly requiring the client to explicitly traverse between nodes. One is by reading
hyperlinks and following them and the other one is by means of redirection response codes.
These response codes are used by servers to indicate that the client needs to take additional
action to get the content, for example request it from another URL. When traversing through
the graph, the client can also hand an information to the server about the previous node
it visited. Discovering the graph of the Web (by traversing it) is the core of some content
classification algorithms[49, 48, 32].

2.2 Web Sites

In theory, each HTML document can be stored on different server but in reality they are
grouped to web sites. The web site is a set of web pages that present one thing, represent
certain entity (like company, person, product, etc.) or serve a common purpose. The web
site is contained within one domain and creates a sub-graph of the graph of the Web. In the
previous section a correlation between web sites and domain names was offered. However it’s
important to note that even web sites can contain a certain hierarchy within themselves.
News sites are a good example of such hierarchy – different areas of interest (domestic,
foreign, sports, . . .) often have their own subdomains and slightly different design. This
hierarchy is usually accompanied by a corresponding hierarchy of subdomains. This thesis
will however disregard the hierarchy and each site within this hierarchy will be treated on
its own. Therefore any reference to a web site in the following text should be understood
as a reference to a single web site within this hierarchy.

One of the most important things about web sites is that there are certain regularities
within each site. These regularities help user to navigate and find desired information easily
on the site. In his work, Nielsen [41] suggested that these regularities are needed and the
Web and all pages on it should follow the trend of using them. Since the year of publishing
the paper (1999) the Web has really moved in that direction and basic items like navigation
are similarly placed on the web pages throughout the entire Web even though these places

6

change over time, adapting themselves to current trends in UI design. More than regularities
on web pages, Nielsen also suggested usage of templates on web pages. Among other things
these templates create high level of coherence within the site and thus allow even non-skilled
web authors to create user friendly web.

Figure 2.1: Example of web page structure

Figure 2.1 shows a web page with its basic regions outlined. The template of that very
page is shown in figure 2.2. The gray parts show the template itself – the skeleton of areas
common to multiple pages. White parts represent either blank places which can be replaced
by a content different for each page or their ancestor nodes. In [19], Gibson et al. found
that templates represent over 40% of the data on the web with additional 30% of visible
items on the page appearing in the template, thus creating a large redundancy of data and
making some frequency-based data mining methods inaccurate1. Gibson also showed that
the percentage of data in templates grows each year. The concept of templates has been
strongly supported by modern web content management systems.

Templates correspond to classes of pages contained within the web site. There are
multiple reasons why templates are important. Their importance for web creators is in
their implied capability to generate content from minimal user input (product code, category
name, . . .). For web-processing algorithms their importance is given by the fact they can
be utilized to actually identify the useful content on the web with minimal effort. The
concept of templates also allows to represent a whole set of web pages by one common
entity describing the set using the template, as the following chapters demonstrate.

1This problem is addressed by segmenting the web page

7

body

div#page

div.content

div#header div#menuline div#menu div#undercol div#footerdiv#main

ul

li li li

div#rightdiv#left div#main ul

li li li

p p div#content

address

table#contentable

Figure 2.2: Schema of a template

2.3 Web Pages

As the previous text outlined, in the standard understanding of the Web, a web page is the
basic carrier of the information. That was true for a long period of time when web pages
were quite simple and coherent, containing only limited amount of information. However
as one can observe, with the rising amount of information on the Web, individual pages
contain much more information and structure as well. The deeper structure of web pages
often has a side effect of crumbled semantics of the contained information –with the stronger
structure authors often utilize the possibility to include some information that is only loosely
related (sometimes even completely unrelated) to the main content. Because the topic of
individual parts of the web page can vary, it can no longer be considered an atomic carrier
of the information [13] and the individual parts of the page take its place as atomic units
of information on the web.

The structure of a web page and the information dispersion correspond to the way how
web pages are generated. The concept of templates outlined above is utilized on majority
of web pages with complex structure. Figure 2.3 shows how is the final web page generated
from the template. In this perspective, template is just a basic structure which, together
with some additional resources, defines the layout and visual appearance of the final web
page. All the useful data on the web page are taken from external data source, usually
a database. In the context of data mining on the Web, the intention is to reverse the
process and thus get the data as they are stored in the database before they are merged
with templates.

2.3.1 Web Page Rendering

The content on the Web can be presented in several different formats, however the most
common one is a classic web page with content written in HyperText Markup Language

8

Figure 2.3: Web page life cycle

(HTML). HTML and its derivate XHTML are both languages based upon SGML (Standard
Generalized Markup Language, ISO 8879). The concept of hypertext was introduced in 1965
by T. H. Nelson [40] and it refers to a text which is not strictly linear and can contain a
links to other texts. In HTML, the most common links are called hyperlinks and they link
the page with other pages. Other links may connect the page to its external resources like
style sheets. HTML based document is basically normal text document enriched by markup
strings called tags. These tags enrich the text by adding semantic and visual information
to the part of the text enclosed by the tag.

One of the commonly known recommendations for web developers is that simple (X)HTML
document shouldn’t contain much visual information. If it does, this information is different
in each browser since W3C recommendations don’t specify the resulting look exactly. In
recent years the trend is to fully separate visual information from structure of the web page
and enhance the semantic information given by the markup language. The visual informa-
tion should be then added in separated file called style sheet. In case of (X)HTML files, the
content of their corresponding style sheet files is written in language called Cascading Style
Sheets (CSS). Typical CSS file contains a set of declaration blocks where each block looks
like the outline below. The bloc typically starts with selector specifying which parts of the
(X)HTML document will be affected by the block and continues with a set of declarations
that modify visual appearance of the affected parts of the (X)HTML document.

selector {
visual-feature: setting;
visual-feature-2: setting-2;
...

}

Rules how to process CSS are defined in various W3C recommendations[10]. CSS is
cascading because style definitions can create cascades (more rules can match one tag). In
these cascades, the more specific rule always takes precedence over the less specific. For

9

example tag#id takes precedence over tag, therefore visual feature settings which are in
both rules are taken from tag#id. In combination with the possibility of multiple CSS files
attached to one (X)HTML document and the possibility to create inline style definitions in
the document or even within each tag, this makes computation of resulting visual output
very complex. This computation is called rendering and the big picture of the process is
displayed in figure 2.4.

Figure 2.4: Rendering cycle of the web page

As figure 2.4 shows, the rendering process has multiple steps. The first one is transfor-
mation of HTML and CSS source to corresponding Document Object Model (DOM). The
DOM is architecture independent model used to represent SGML-based documents. More
detailed description of DOM is provided in the next section. DOM is especially used in the
area of World Wide Web as a means to work with XHTML and HTML documents. The
model can be used to describe all content, structure and visual style of the web page. The
most important thing about DOM is that it is the only representation of web page that is
unified across all client programs and is always up-to-date. That is particularly important
for current web pages since the layout of many of them is influenced by JavaScript and some
web applications even render entire pages with JavaScript. Both these cases are displayed
in figure 2.4. The latter one is time based, as it is triggered at the time of displaying the
web page to the user.

DOM is not the final representation of the document from user’s perspective. The
DOM model only defines how the web page should be modeled in order to be represented
accurately. But to render the web page or to represent its visual layout accurately, the DOM
has to be converted to a rendering tree2. Garsiel in 2009 [18] inspected and described the
rendering process including its data structures, rendering tree being one of them. After the

2Rendering tree is not widely recognized term, as each rendering engine calls it differently. This term
was chosen as it accurately describes its purpose.

10

rendering tree is composed, the page can be displayed to user and if there are some scripts
on the page, they can be executed.

2.3.2 DOM and Rendering Trees

The previous section outlined roles of both the Document Object Model and the rendering
tree in the process of displaying the web page. DOM is a very complex model as specification
[56] and its predecesors prove so for simplification only the features that are important for
this thesis follow.

The central entity in the Document Object Model is a DOM node. When converting the
source code to DOM, every element of the page is converted to a DOM node. When nesting
of elements in the HTML source is taken into account, all nodes together form a DOM tree
that represents the web page as a whole. In this representation, every DOM node can be
considered to be root of a subtree representing all the content within the corresponding tag
in the HTML source and linked CSS.

The DOMmodel contains only a few basic data types like string, time stamp (represented
by integer value) and user data blob. All other entities in the model are understood to be
of an object data type. The particular type of an entity is defined by the interfaces it
implements – each entity can implement one or more interfaces that are declared by the
DOM specification.

From this perspective, the DOM node is just a basic interface in the DOM model, all
entities are derived from it by inheriting additional interfaces. As the tree representation
of the data in DOM model implies, each DOM node can have, 0..N child nodes. The
DOM specification precisely defines what entity types can contain which child types. For
instance, text nodes cannot contain any children but nodes representing HTML attributes
can contain text or references to other entities. There is one interesting case of the parent-
child relationship: attributes of HTML elements. As per the specification, these can be
represented by one of the basic data types as properties of the DOM node representing the
element. However this approach is deprecated, standard child nodes of the Attr type should
be used instead.

To accommodate all the relationships between nodes within the tree, the DOM model
defines an ordered collection data type. That is necessary so each DOM node could store
the information about its child nodes. The fact that the collection is ordered shows an
important feature of the DOM tree – the sibling nodes are ordered and this order matters.
Position of node among its siblings is important for calculation of its visual position and it
is also used in some algorithms that analyze web pages.

While the DOM tree is directly derived from the HTML source code and thus represents
semantical structure of the document, the rendering tree on the other hand represents the
visual aspect of the page. As it was stated above, its design is purely implementation
specific, some of the aspects are common across all the implementations:

• it is derived from the DOM tree

• by default, the nesting (and thus the entire structure) corresponds to the DOM tree

• its structure is highly influenced by style definitions

• it is used to put all the elements on the canvas correctly

11

Because it represents the page as user would see it rendered, the rendering tree is im-
portant for vision-based algorithms processing the page. It contains the calculated visual
information which would have to be re-calculated by the processing algorithm which would
be neither efficient nor accurate (unless the calculation would be exactly the same as used
by the rendering engine).

12

Chapter 3

Web Page Preprocessing: State of the
Art

First, it is important to define what should be understood by web page preprocessing. There
are many techniques how to preprocess the web page. Their goals and results strongly
depend on the main tasks that the preprocessing is preparing data for. The two most
common task classes are data mining operations and adaptive view of the web page.

The latter one is used for example for small-screen devices. It’s about re-ordering ele-
ments on the web page[1, 25] where we need to detect areas that should not be broken apart
when performing the reordering itself. For data mining applications, the goals include sim-
ple cleanup of the noisy and irrelevant information and detection of smaller and internally
consistent areas where the internal consistency can be defined either visually or logically.
Nowadays the data mining tasks are more common so the context of this thesis will be in
that area from now on, unless specified otherwise.

The motivation of web page preprocessing in the area of data mining is usually to allow
more precise results of the subsequent mining techniques such as information retrieval and
content classification. The page preprocessing also enables the concept of splitting web
page into smaller segments that has been described above. That allows refining results of
techniques that were seemingly unrelated before. These include algorithms that perform
clustering on the graph of the Web[49].

This chapter will introduce some preprocessing algorithms that can be found in the liter-
ature. While page segmentation algorithms primarily compete with the algorithm proposed
in this thesis, template detection algorithms are here mostly because they introduce general
mindset and some concrete concepts that are utilized in the design described in the following
chapters.

3.1 Page Segmentation

As defined in chapter 1, page segmentation is a process of partitioning the web page into
smaller, internally coherent parts, called segments[13, 35]. It is important to note that
generally the entire web page does not have to be covered by the set of segments. Considering
that, the page segmentation can be more precisely defined as a process of identification of
coherent or significant parts within the page.

There are two basic groups of methods how to perform page segmentation – code-based
and vision-based methods. In general, code-based methods are much faster but quality of

13

their results highly depends on heuristics they use and type of page they inspect (some
heuristics perform well only on some types of pages, e.g. news articles). Because they don’t
need the page to be rendered, they rely on inspecting either the HTML code or (more often)
the DOM tree which is what makes them fast and scalable.

Vision-based methods on the other hand have greater potential for accuracy1. This
potential comes from the fact that large portion of information from the web page, such
as computed CSS styles, is not evaluated by code-based methods. The approach of vision-
based methods is to render the page first and then utilize the calculated visual information.
That means these methods try to view the page as user would. By this perspective it is
then possible to produce very good results in cost of great computational complexity. This
complexity is obviously caused by time consumption of the rendering process, as described
in section 2.3.1.

3.1.1 Code-based Segmentation

As said before, code-based segmentation methods are further divided based on the type of
heuristics that are used. In this thesis, the distinction is based on representation of the web
page that is being inspected. Text-based methods inspect textual representation of the web
page, whereas DOM-based methods first transform the textual representation to a DOM tree
which is then inspected.

Text-based methods

Text based methods[33, 15, 11, 26] fall into the code-based method category. They utilize
features of the text content of the web page and build heuristics on them. An example
of such is a method called NCE, proposed by Laber et al. in [33]. NCE is an algorithm
intended to identify and extract the relevant content (i.e. the article) from news web pages.

Finding the location of the article on the web page is based on density of links in the
text. Assuming the inspected page is described by a DOM tree D, T is a subtree of D,
function A(T) returns concatenated content of all the tags <a> in subtree T , TEXT (T)
returns the entire content of subtree T and chars(t) returns the number of characters in a
text t, the link density of the subtree T is calculated as:

linkdensity(T) =
chars(A(T))

chars(TEXT (T))
(3.1)

the link density is practically a measure specifying how much non-navigational text is
contained in subtree T . The core assumption for locating the article is that in every page’s
DOM tree there is a node N which with a positive real number γ has a corresponding forest
F = Tv|visachildofN ; linkdensity(Tv) ≤ γ which has very high F1 score. The F1score
(also called the F −measure) is often used in statistical analysis of binary classification,
Laber et al. just define new metrics precision and recall.

Assuming C is a chunk of text, words(C) is a bag of words corresponding with that text,
|A| denotes the cardinality of the bag and rel_words(D) is a bag of all relevant words2 on

1The accuracy is usually defined as a consistency between the result and human perception of the page.
2defined by human observer

14

the web page represented by by DOM tree D, the metrics are defined as:

precision(C) =
|words(C) ∩ rel_words(D)|

|rel_words(D)|
(3.2)

recall(C) =
|words(C) ∩ rel_words(D)|

|words(C)|
(3.3)

The algorithm itself just performs depth-first-search traversal of the DOM tree and tries
to find a node N which fits the conditions described above. To sum up, this heuristic is
almost purely based on quantity of text and hyperlink content of DOM nodes. Laber et al.
also propose other two heuristics used for identifying comments for the article and the title
of the article. Both heuristics are again based on counting characters of DOM subtrees.
In addition to these text-based heuristics, the algorithm for finding comments uses one
DOM-based heuristic for finding a repetitive patterns in the DOM tree.

DOM-based methods

Another group of code-based segmentation algorithms performs general inspection of the
DOM tree and segments the content using various heuristics[22, 50, 24]. Some related infor-
mation extraction [53] and document cleaning [54, 61] approaches share the same concept
too. In their extensive article about information extraction[22], Hong et al. introduce their
technique for traversing the DOM tree and selecting relevant content. They focus on re-
trieval of repeating pieces of web page with different content by means of algorithm called
WISH, which will be briefly described below. The algorithm is divided in several steps. In
the first step, they extract content candidates.

The following stages only filter results the algorithm identified during the first stage.
Output of the first stage is a list of all groups of repeating content (data records) on the
page. All heuristics used in these stages are based on observations, which are summarized
in [22]. The observations are as follows:

1. Repeating data records take large portion of the page

2. Data records are usually repeated more than three times on a page

3. A regular expression can be devised for description of single data record. Since all
data records share the same template, it will apply on all of them

4. Data records usually consist of a small amount of distinct HTML tags

The WISH algorithm recognizes four types of data regions: the main content, advertise-
ments, menus and menu bars. Only the first one is deemed relevant in the paper and
the purpose of filtering stage is to get rid of the others. Each of these groups contains
data records, which have slightly different characteristics. First, the filtering targets adver-
tisements. Data records containing advertisement are observed to contain less than three
HTML tags in each data record, so the filter traverses the data region list and deletes all
data regions which correspond to this rule. The second filter targets those data regions,
in which records don’t contain similar tree structures. This filter is based on observation
number three. Similarity of tree structures can be inspected for example by means of tree
edit distance algorithms as described later in section 3.2.3, but these algorithms are too
complex and they would make this method very inefficient. So instead a simple heuristic is
used, which compares a number of distinct tags on each level of both trees. The last step

15

is to filter out those regions with less than three records, as it was observed that they are
irrelevant on the most pages. After the list of data regions is filtered, the most important
part comes. Now every data region has to be assigned its relevancy score. The scoring
function described in [22] is partially based on observation one. It determines the size of
area taken by data records by counting characters and images each data record contain.
For better precision, it also takes line breaks and similar elements representing free space in
records into account. Besides these heuristics, a depth within the DOM tree is taken into
account as well. Data region with the best score is considered to be the main content of the
page. This very sophisticated method is based on many observed and empirically proved
values and it is the best example how various heuristics are used in content detection.

There are three main categories of features that can be used for heuristic:

• Markup-based features —perhaps the most extensive category. It’s possible to analyze
parents of the node, the node itself and its child nodes. Some special nodes like
 and are usually interesting, as they designate higher importance of
the contained text and child nodes. Another possibility is to investigate line breaking
elements (usually used for detection of content separator).

• Content-based features —these represent features gathered from analyzing characters,
words and sentences.

• Document-related features —features in this category include position in the document
or a content-based features related to the context of the entire document.

3.1.2 Vision-based Segmentation

Vision-based methods are all those that use visual features of elements in a web page to de-
termine the partitioning. In the literature, the dominating method is the first one described
here: VIPS. It is the pioneering method of this approach which has not been unambiguously
surpassed by any other algorithm. That’s also where this group of methods got its name.

VIPS

A pioneering work in vision-based page segmentation was laid down by Cai et al. in [13].
In this work an algorithm called Vision-Based Page Segmentation or more commonly VIPS
was proposed. This algorithm gave name to the entire family of segmentation methods
which followed this approach. A large portion of subsequent work was derived from the
very concept this algorithm introduced. It’s worth noting that while the algorithm is the
first one that uses visual information contained in the web page, the originally described
implementation is not entirely vision-based when strictly following the description in section
2.3.2 and 3.1, as it does not use the rendering tree, it only uses the information stored within
the DOM tree.

The algorithm is built on the concept of Degree of Coherence (or simply DoC). It is a
metrics, represented by integer or real number, defined for each block. As the name suggests,
it is directly proportionate to the internal visual consistency of that block. Intuitively,
parent node cannot have greater DoC than any of its children. A threshold value affecting
granularity of the result is related to DoC. It’s called Permitted Degree of Coherence or
simply PDoC.

The VIPS algorithm processed the web page in several steps. The first step is an
extraction of visual blocks. It consists of a top-down tree traversal through the DOM

16

tree and inspection of visual cues. The traversal is iterative – in each iteration a new node
representing visual block is detected in the DOM tree. After this detection a decision is
made whether the block shall be recursively segmented further or not.

The second step is separator detection. Separator is defined as horizontal or vertical
line or rather rectangular area which does not intersect any of previously detected blocks.
The algorithm is initialized by a single separator covering the whole page. Then for each
block we perform a detection of its relation to each existing separator (relations are visually
outlined on figures 3.1, 3.2 and 3.3 respectively):

• if the block is fully covered by area of a separator, divide this separator into two

• if the block partially intersects a separator, shrink that separator, so the intersection
is eliminated

• if the block fully intersects with a separator (i.e. covers entire height of a horizontal
separator or entire width of vertical separator), remove the separator entirely

Figure 3.1: Divide the separator Figure 3.2: Shrink the separator

Figure 3.3: Delete the separator

The algorithm is finished by removing separators at the edges of document. After we
have all separators, we assign the weights based on visual difference of adjacent blocks.
Note that on each level of the block tree this algorithm produces either only vertical or only
horizontal separators, but the direction is changing in each level of the block tree.

The final step of VIPS is content structure construction. In this step we iterate through a
list of previously found separators and merge visual blocks adjacent to them. It’s important
to merge blocks adjacent to separators with the smallest weight first. The merging continues
until all blocks meet the granularity requirement DoC >= PDoC.

Besides the shortcoming of not fully rendering the web page, there are a few others:

17

• In some cases direct division of a visual block is impossible and utilization of virtual
blocks is required. This can have negative impact on further processing, because blocks
are not really present in the document.

• Resulting tree represents page segmentation but some information such as mutual
position of blocks is missing. That information might be useful for results refinement
or by some subsequent algorithms.

Even though VIPS is the oldest algorithm and has its shortcomings, it has not been
unequivocally superseded in both accuracy and processing time. There has been a lot of
work in the area that improved its accuracy [35, 34, 68, 59, 60] and adapted it to modern
standards in HTML[3, 2] but that work has been derived from the original approach and
still uses the original VIPS as a core. Some alternative algorithms that rival VIPS exist as
well, those will be covered in the following sections.

Box Tree Analysis

Burget in [12] introduced a bottom-up method based on some concepts introduced by VIPS.
The algorithm he described has a goal to deal with some VIPS shortcomings. It creates a
tree of visual areas in four steps:

1. Create temporary tree of boxes

2. Find boxes which represent standalone visual areas

3. Detect continuous areas

4. Find significant areas

The box is a basic compound of the web page created by rendering it according to
specifications. It is defined as a rectangular area with defined position and width/height
and visually containing either another set of boxes or a content of the web page.

The first step of the algorithm creates a tree of these boxes, computing their like dimen-
sions, position, visual features and nesting in the process. The structure of the tree defines
visual nesting of the boxes. There are three possible nesting relations that two boxes can
have:

• Boxes don’t intersect. In that case they are not related.

• One box is completely nested in another. In that case the larger one is considered a
parent of the smaller one.

• Boxes have a partial intersection. This is detected by mutual position of boxes’ corners.
In this case a z position is important to calculate the visibility. If we consider that
higher z position means that the box is on top of the box with lower z position, then
a box with lower z is considered to be a parent. Also we have to extend boundaries
of the parent box to accommodate the entire child box.

The whole page is representing a root node of the box tree. Only two rules apply in the
tree: parent box contains all child boxes and all child nodes on the same level of the tree
mustn’t have intersection with each other.

In the second step a tree of visual areas is created by merging boxes created in step one.
Visual area contains exactly one box which is visually distinct from adjacent boxes. The
distinction is defined by one or more of the following three features:

18

• The box directly contains just textual content

• The box contains nested boxes and it is separated by border at least on one side

• The color of the box is set and it’s different from the color of parent box

If the box is not visually distinct, it’s merged with adjacent boxes and the whole process
is repeated. The final tree of visual areas corresponds with the tree of visual boxes.

The third step brings more merging. This time visually similar nodes (e.g. adjacent
paragraphs of text) are merged into one continuous block. In this step the information
about mutual block position is required.

Significant areas are looked for in the last step. Optical separators like borders, lines
or just big spaces between blocks are used for this. An extended version of the method
for separator detection presented in VIPS algorithm is used to achieve this. The first
part corresponds to the VIPS separator detection. The second part then applies inverse
approach. The division works the same way as the division of separators in VIPS does, the
only difference is the opposite role of separator and a block of content – in the beginning the
entire page area is considered to be a content and it is then divided by particular separator
blocks (e.g. big spaces between text, borders or horizontal rulers).

This method demonstrates some advantages over VIPS. The most important one is that
it’s strictly focused on visual information rather than the DOM tree. That can bring better
results e.g. for absolute positioning on the web page.

Web Content Clustering

Another method entirely independent on VIPS was presented by Alcic et al. in [6]. While the
paper does not offer any particular design, it brings up and analyzes the idea of segmenting
the web page using clustering algorithms. The concept is based on the observation that
each web page is just a set of pieces of the content and that these pieces can be grouped
together in such a way that each group represents one topic. The underlying assumption is
that each such group can be created by clustering the right content pieces. The paper offers
validation of that assumption by presenting an overview of both parts necessary – clustering
algorithms and metrics.

The first part of the paper covers the metrics that can be used. A few very basic metrics
are explored individually:

• mutual position of nodes within the DOM tree of the web page (DOM-based distance)

• semantic distance of the content using WordNet-based generalization of concepts and
TF-IDF3

• mutual position of the nodes on the rendered web page (vision-based distance)

The vision-based distance is outlined in figure 3.4. While the formal specification is not
fundamental, it’s worth stating that the distance is calculated as euclidean distance without
the square root between the closest points of the two boxes.

Three clustering algorithms are compared in the second part of the paper: partitioning
algorithms represented by k-means and k-medoids, hierarchical agglomerative clustering and

3Term Frequency-Inverse Document Frequency is distance metrics used in plain text data mining

19

Figure 3.4: Vision-based content distance

density-based clustering represented by DBSCAN. Of these three the DBSCAN was proved
to be the most convenient.

The most interesting conclusion of the paper was that using the vision-based distance
didn’t bring results that would be significantly better than the other two metrics, no matter
which clustering algorithm was used. Instead, the DBSCAN in combination with the DOM-
based distance showed the best average statistical results.

Other Vision-based Segmentation Methods

In the latest research, authors often avoid using the HTML-based heuristics by using alter-
native ways of block detections. Sections 3.1.2 and 3.1.2 both describe methods going in
that direction and some more examples follow. Liu et al. [36] constructs a graph of spa-
tial relationships among the rendered elements that is later partitioned with a Gomory-Hu
clustering algorithm and Zeng et al. [66] compute a seam degree and content similarity of
the individual blocks in order to divide larger visual blocks to smaller parts. Finally, Xu et
al. [62] applies the Gestalt laws of grouping on the extracted visual blocks.

Other vision-based algorithms use entirely graphical representation of the input docu-
ment that allows to abstract from the HTML-related implementation details. Cormier et
al. [14] uses an edge detection algorithm for detecting the visual separators between the
content blocks. Similarly, Wei et al. [58] uses Hough transform for the same purpose and
Kong et. al [27] recognize atomic objects using image processing methods and perform their
grouping by using a spatial graph grammar.

3.1.3 Hybrid Segmentation

The hybrid approaches combine the DOM-based and vision-based ones in order to obtain
higher segmentation accuracy or for specific applications. Sanoja et al. [45] and Manabe et
al. [39] both combine the content structure (DOM) with the visual information obtained

20

from a web browser in order to increase the accuracy in comparison to the VIPS algorithm.
Safi et al. [44] process the input document in two steps: first, a visual information analysis
is performed and in the second step, DOM tree filtering is performed based on the analysis
results with the aim of supporting visually impaired users. Finally, Fumarola et al. [16]
combine the DOM with a visual information model in order to extract visually presented
lists from the input documents. More generic content extraction use case is presented by
Song et al. [51]

3.2 Template detection

The goal of template detection methods such as [37, 31, 30, 17, 4] is to find and filter
redundant information (noise) on the web page[9]. Because they do not try to separate
individual segments on the page, they are generally faster than segmentation methods.
The only expception are those template detection algorithms that detect templates using
segments[5, 29] instead of DOM nodes. However, that group is not interesting for the
purpose of this thesis and therefore will not be considered further. The reason is that these
algorithms are not suitable for template clustering (lower speed, unsuitable input) where
they are being used in this thesis.

The goal of template detection algorithms implies that the format of their results is
slightly different from the format of segmentation methods. Among other things it means
these methods are only loosely related to this thesis from the result-related perspective.
Their importance however lies in their speed. This thesis will inspect the means these
algorithms use to provide the result quickly. It will be later demonstrated that some of
the features of template detection algorithms can be used to improve the performance of
segmentation algorithms in certain use cases.

Besides operating on DOM trees rather than render trees, another key factor that makes
these methods fast is the fact that they process multiple pages at once. For this approach
to work, the pages that are processed at once have to be based on the same template. The
detection of whether or not are two pages based on the same template is the part that will
be utilized to boost the page segmentation.

3.2.1 Site Style Tree

A work performed by Yi et al. [63] uses a tree structure called Site Style Tree. Its basic idea
is that the DOM tree can describe layout of the page, but it is difficult to use it for studying
presentation style of the web site. The Site Style Tree, also referred to simply as SST, is
derived from a set of DOM trees which share the same template. The usual experience is
that these DOM trees represent web pages that all come from the same site.

The Style Tree is composed of nodes similar to nodes in DOM tree. They contain tag
designation and attributes relevant to visual representation of the node. No other attributes
are present, but one additional is needed – a counter of pages which contain that particular
node on that particular level of a DOM tree. The construction of SST is not complicated – it
consists only of merging of DOM trees of pages using the same template. For each node
we try to find whether its child nodes are already in the SST as children of that node. For
every child that is we only increment its counter in SST node. Those that aren’t in SST are
converted to SST nodes and incorporated to the tree. This is just the basic concept. Some
modifications can be performed in order to achieve better results:

21

1. node merging – is it possible that two sibling nodes in SST are in fact one node dis-
played differently on some pages. We can merge them in one in case their tags and
attributes are the same and their content is similar. This similarity is described in
detail in [63].

2. virtual leaf nodes – leaf nodes tend to fragment the page, therefore it is convenient to
use their parents as virtual leaf nodes instead

The goal of the following algorithm is to clean the page of content which is not important
and is considered to be a noisy information. In this context, noisy information is defined
differently than in the previous sections. To define noisy information, it is first necessary to
define node importance. For each node N we can define its importance as its entropy EN :

EN =

child_count∑
i=0

−pi· log pi (3.4)

where pi is a probability of i-th child node appearing in the node N. This metrics alone is
very inaccurate, as it would for example imply that the page as a whole is always very noisy.
An extended metrics is used instead: the importance of non-leaf nodes is derived not only
from their own entropy but also from the average entropy of their child nodes. Based on
this importance metrics, it is possible to distinguish four notable element categories. Based
on the noise level associated with the element it is possible to classify element as:

• noisy element element that has importance under a defined level or

• maximal noisy element noisy element, which does not have noisy parent

And based on the noisiness of element’s child nodes, it is possible to classify element as:

• meaningful elements elements, which have no children marked as noisy or

• maximal meaningful elements meaningful element, which does not have meaningful
parent

It is possible to reduce the SST significantly by deleting all child nodes elements that are
classified as maximal meaningful, maximal noisy, or both. Consider SST outlined in figure
3.5 as an example. In this example, if the gray-shaded are classified as noisy, the resulting
simplified SST is displayed in figure 3.6. The simplified SST can be then considered as a
template to which a DOM tree of every page is mapped and can be filtered accordingly.
The process is very simple and very fast. However there are some situations when this
algorithm is not completely convenient. Sometimes a situation occurs when meaningful
element contain noisy descendants (which are of course not its children), which can’t be
filtered by simplified SST and full SST has to be used.

3.2.2 Pagelets

Yossef et al. in their work [8] introduced a concept of utilizing pagelets in template detection.
Pagelets are defined as a logical regions within the web page, which have a single function
(e.g. navigational function or a text topic). What is also important is that a pagelet can’t
be a part (child) of another pagelet. That means its parent can’t have the same function.

Yossef builds on the following principles to find pagelets, known not only in web page
processing context:

22

body

img

a

div

#text span #text

div

h1

div

p p p

div
count: 2 count: 1

count: 10 count: 10count: 10

Figure 3.5: Outline of SST

body

h1

p p p

div

div divdiv

Figure 3.6: Simplified SST

1. Relevant linkage principle – links point to relevant resources (the principle can be also
applied on citations in scientific work)

2. Topical unity principle – documents often linked from the same document are related

3. Lexical affinity principle – proximity of the link and text (or two links or blocks of
text) on the page usually means that they are related

To find a template, it is first necessary to compute pagelet shingles. These are defined as
text fingerprints which aren’t influenced by small changes in the text. Yossef introduces two
algorithms for finding a templates. The first one, the Local Template Detection Algorithm
has very simple principle: M pagelets gathered from a set of distinct pages are grouped
using clustering algorithm based on their shingle and each group represents a part of the
template. The Global Template Detection Algorithm adds one more step. Grouping of
pagelets is again done based on their shingles. After this step is done, a graph is created
where pagelets represent vertices and connections between parent pages of pagelets are
represented by edges between vertices representing those pagelets. The resulting template
is then created by every component of the graph which is not a singleton.

23

3.2.3 Tree Mapping and Tree Edit Distance

The tree edit distance problem has been known for several decades[46]. It has been used for
evaluation of structural differences between generic tree structures. In the context of data
mining on the Web, it’s used to evaluate differences between DOM trees. Note that further
text will always refer to the tree edit distance between two DOM trees unless explicitly
stated otherwise. In particular, algorithms working with the tree edit distance can tell how
similar are two given trees (i.e. to determine if they belong to the same template) or which
parts do the two trees share (i.e. to identify the template itself).

The tree edit distance comparison uses three basic operations with nodes in the tree:
insert, replace and remove. Each operation type can have its cost defined but usually they
all have the same value. The problem of tree edit distance can be defined as finding a
mapping from tree A to tree B with minimal cost. The mapping has three important rules:
(1) only one operation can be performed on each node, (2) the order between siblings has
to be preserved and (3) the ancestor-successor relation between any two nodes has to be
preserved.

The generic tree edit distance problem on unordered trees is proved to be NP-complete
[67] and algorithms solving generic tree mapping weren’t much efficient. In the practi-
cal application, however, it is possible to define restricted formulation. By imposing some
restrictions (e.g. [55]), four new definitions of the problem are formulated and fast algo-
rithms utilizing them are proposed: alignment, distance between isolated trees, top-down
and bottom-up. The latter two are used in template detection and will be briefly described
further.

Top-down Approach

When having two DOM trees T1, T2 and nodes t1 and t2 belonging to trees T1 and T2
respectively, the basic principle of a top-down mapping can be informally described as: if
mapping of node t1 to node t2 exists, mapping of parent of node t1 to parent of node t2 also
has to exist.

Restricted top-down mapping (RTDM) follows the same principle, but it also restricts
replacements of different nodes to the leaves of the trees. If the mapping between two DOM
trees T1 and T2 is defined as a relation designated M , the restricted top-down mapping can
be described as: if there are two non-root non-identical nodes t1 and t2 in trees T1 and T2
respectively and (t1, t2) ∈M , then there can be no descendants of theirs present in M

The restricted top-down mapping is outlined in figure 3.7. The DOM trees T1 and T2
are given, the mapping is indicated by the dashed lines. It is possible to see that for every
node, the conditions above are met.

The RTDM algorithm uses matrix representation of child nodes of roots of T1 and T2.
For each couple (t1, t2); t1 ∈ children(T1), t2 ∈ children(T2) it evaluates cost of substitution,
deleting children of t1 and inserting all children of t2 to be the new children of t1. From
these three options it always chooses the one with minimal cost. If both t1 and t2 have
descendants and the subtrees aren’t equal, the algorithm computes their minimal mapping
cost recursively. To speed things up, RTDM uses pre-step based on ideas presented in [55].

The algorithm expects input consisting of a set of pages that are based on the same
template. The template structure is constructed by comparing DOM trees of all these
pages and expanding them by wildcard nodes (by either adding them or replacing/removing
original DOM nodes). A complete table of rules how to expand the tree is described in [43].
The resulting tree is called node extraction pattern tree. This tree with wildcards removed

24

T1 T2

A A

BB C D

E EF G

H

Figure 3.7: Restricted top-down mapping

represents the template. Filtering content from web pages is then just about removing all
parts which don’t correspond with wildcards in the node extraction pattern tree.

Bottom-up Approach

The bottom-up tree mapping was described by Valiente in [55]. As its designation says, it
is based on a tree traversal from its bottom. The definition is exactly inverse compared to
top-down mapping definition. The mapping M between trees T1 and T2 is bottom-up if for
every couple (t1, t2) ∈M , where t1 and t2 are nodes of T1 and T2 respectively, the following
condition is valid: ∀ci ∈ children(t1) : ∀cj ∈ children(t2) : (ci, cj) ∈ M . Less formally it is
possible to say that a node can be mapped only if all of its children are mapped as well. A
graphical example of bottom-up mapping is shown in figure 3.8

a

a

a

r

o

u

e

e

e

c

r

a

a

e

e

ce

e

T1 T2

Figure 3.8: Bottom up mapping

Valiente proposed an algorithm, which has linear time complexity and is therefore
amongst the best in the literature[57]. He transforms input DOM trees into directed acyclic
graph G. Vertices of the graph are representing equivalence classes of nodes in both trees.
The equivalence relation is defined as follows: node t1 and node t2 are equivalent if and only

25

if subtrees rooted in t1 and t2 respectively are isomorphic. Directed edges in graph G are
between those vertices u and v for which applies that there are nodes x and y in either of
the trees T1 and T2 which are in parent-child relationship and x ∈ u and y ∈ v.

Finding the mapping between input trees utilizes walking through one tree, searching
for nodes in the second tree which are equivalent to it and checking their subtrees for
isomorphism. Building a template then consists of following steps:

1. create a list of mapped nodes contained in T1

2. sorting the list by nodes’ height (node closer to the root goes first)

3. retrieve a path from each node in the list to the root of T1 and append the path
extended with the subtree to the template tree

4. delete all nodes in the appended subtree from the list

Tree Paths Approach

While the similarity of two pages is described in the previous sections as a mapping distance
between the DOM trees, Gottron suggests[20] other distance measuring methods which
he proves to be significantly faster than RTDM. His work can be considered somewhere
between page segmentation and template detection, though it is closer to the latter one.
For segmenting a page he retrieves other pages through hyperlinks on the first page. On
these retrieved pages he performs template-detection and then uses the template to segment
the original page. On the beginning of the process every text node is considered to be a page
segment. For each such segment its frequency of appearing in different pages is counted. If
this frequency is high, that very likely means that it is a part of the template. Basically the
algorithm evaluates informational gain (Entropy) for each block and it discards those with
low gain.

Gottron describes three methods to calculate structural distance between two pages:

1. Common paths distance

2. Common path shingles distance

3. Common tag sequence shingles distance

The first one is based on enumerating all root-leaf paths in the tree (i.e. paths that begin
at the root of the tree and end with a leaf node – for each leaf in the tree there is one path).
The distance is then measured as a size of intersection of sets S1 and S2containing all paths
from trees T1 and T2 respectively.

The second method improves precision of the first one. It considers splitting paths
to a smaller pieces, called path shingles. The advantage of this approach is that the first
algorithm would detect two paths non-equal even with one node differentiating whereas this
algorithm would only evaluate the particular shingle as non-equal and the rest would be
included in the intersection.

The third method solves the computational complexity of comparing two sequences of
tags each representing the entire web page. Instead the sequences are again split into shingles
and shingles are then compared to each other with much less demands on computer power.

26

3.2.4 Template Detection Algorithms as Clustering Metrics

When inspecting template detection algorithms, one prevailing feature emerges. It has been
said in the previous text that the same methods that can identify common parts on the
web pages can be used to determine how similar two web pages i and j are. In fact, these
algorithms meet all the conditions that distance metrics for clustering algorithms have to
meet:

d(i, j) ≥ 0 (3.5)
d(i, i) = 0 (3.6)
d(i, j) = d(j, i) (3.7)
d(i, j) ≤ d(i, h) + d(h, j) (3.8)

That effectively means it is possible to write a clustering algorithm that would group
together web pages for further processing that are based on the same template. From all
the algorithms listed above, the tree-mapping algorithms might seem to be the best option
for this task, as they tend to be as precise as possible in practical application. However
as Gottron demonstrated in [20], the tree path method is comparably precise while being
much more efficient, even in the most simple variant. That’s why it’s the best candidate for
utilization in this thesis.

27

Chapter 4

Motivation and Goals of the Thesis

Various methods for preparing web pages for data mining procedures have been introduced
in the previous chapter. These methods approach the problem of web page preprocessing
from several completely different directions, focusing on different problems which can be
encountered during different data mining tasks.

In the initial phases of the research it became clear that the concept of page segments
being atomic carriers of information on the Web is becoming increasingly important. How-
ever while there has been some effort in the area of web page segmentation, the vision-based
page segmentation has not progressed much further since its discovery. Several algorithms
were created, but most of them are built on top of VIPS algorithm. Many of them propose
just some heuristics to improve its results, but the fundamental design remains the same.
The research in this area has been stagnant most likely because of large time complexity of
visual segmentation. Especially in the area of the Web, the time complexity is very impor-
tant considering the need for algorithm application on a large scale. The problem is that
this time complexity is not balanced out by equally significant gain in accuracy.

As a consequence of lack of development in recent years, vision-based page segmentation
algorithms often don’t fully take modern technologies like HTML5 and CSS3 into account.
These technologies make the web pages more dynamic and, when rendered, often very
different from the DOM tree. This thesis focuses on solving both mentioned areas. Its goal
is to design a new vision-based segmentation method, which:

1. Will consider new technologies used in the process of development of web pages

2. Will be optimized from the perspective of time complexity

The task of designing a new vision-based segmentation method can be divided into four
parts, each one being an important partial goal that needs to be fulfilled in order to consider
the design acceptable.

1. Formal specification of the problem

2. Design of new segmentation method and its formal specification

3. Design of data structures and algorithm optimization with focus on time complexity

4. Experimental evaluation of the new method’s properties

28

Chapter 5

Web Site Processing Using Clustering
Techniques

As the previous chapters show, there are many ways how to approach web page segmen-
tation. Some of them focus on speed, others aim for precision and some try to optimize
both but they sacrifice granularity of the result. In the context of data mining, the area of
main focus shifts depending on the ultimate objective of the application that performs the
segmentation. The ultimate objective is meant in terms of the intended subsequent task
that is to be performed on the data. The most common objectives are:

• identification of the most relevant content on the page

• identification of individual building blocks of the web page

• identification of similar pages within the web site

This thesis focuses on two particular use cases of web page segmentation. In both
cases the segmentation is expected to be only the first step in the web page preprocessing.
In other words, some subsequent treatment is expected to take place in order to finish
the preprocessing. One example of such subsequent treatment is classification of segments
identified on the page, as the segmentation itself will not tell what kind of content do these
segments contain. Therefore the segmentation can’t be used to replace template detection
by itself. Instead, it offers solid foundation for other algorithm to achieve that.
Single-page segmentation: this is very generic use case. It covers virtually any scenario
where segmentation can be used. In context of this thesis it is rather marginal but it
is included to demonstrate the quality of the segmentation core that is described in this
thesis. URL address of the page that is to be segmented is the only input in this use case.
The scenario, displayed in figure 5.1, is very simple:

1. A web page is fetched from the Internet in a form of its source code

2. The code of the web page is transformed to the corresponding DOM tree

3. All the linked resources are fetched from the Internet and the information they contain
is merged into the DOM tree

4. The DOM tree is transformed to a rendering tree by a browser rendering engine1

1CSSBox rendering engine is used in the design described in this thesis (http://cssbox.sourceforge.net/)

29

5. Segmentation is performed on the rendering tree

6. A set of visual areas is presented on the output of the segmentation algorithm that
can be used for further processing

Figure 5.1: Use case: segmentation of a single web page

Multi-page segmentation: this is an extension of the previous use case. This one is based
on an assumption that in practical applications users will often want to extract information
from more than just one web page. Automated environment can be a really good example
of utilizing this approach. While the actual implementation may differ, the proof of concept
designed in this thesis is just a simple crawler mechanism. The intention of this mechanism
is to process a certain number of web pages from one web site. Most likely this number
will be unlimited, i.e. the intention will be to process all the web pages on the web site.
If the number of processed web pages is limited, it is difficult to determine what pages
exactly will be processed. The order in which the pages will be processed is also difficult
to set or even determine upfront. Therefore the most likely consumers of this approach are
automated applications which usually don’t strictly require to know this information. This
use case requires the following input: starting URL, domain name of the inspected site (if
the consumers wants to limit processing to one site only) and the number of web pages that
are to be processed. The use case, displayed in figure 5.2, can be described as follows:

1. A segmentation of one page is performed as described above

2. All hyperlinks are extracted from the DOM tree of the page and put at the end of a
to-be-inspected queue

3. If the limit number of pages is reached, the algorithm ends

4. The first URL from the queue is taken and if it has not been inspected before, the
segmentation starts from point 1.

30

Figure 5.2: Use case: segmentation of multiple web pages in one run

5.1 High level design

By its design, the system is intuitively adapted to the two use cases described above. Graph-
ical representation of the entire system is displayed in figure 5.3. The diagram shows high
level view of the individual components and the data as they flow between them. The com-
ponents with doubled side lines are the key parts of the system that will be closely described
in the following chapters. This section will cover the rest of the components, as they are
rather straightforward in the proof-of-concept implementation. Obviously the implemen-
tation of all these components can be more complex if the intended use of the system is
different.

The very first component processing the data is URL selector. The trivial but sufficient
implementation uses just a simple queue. Before the processing begins, the initial URL
specified by user is put into the queue. The selector always selects the first URL in the
queue and sends it to the next component for processing.

The next components in the pipeline are URL fetcher and DOM parser. Their job is
to fetch the web page represented by URL and to transfer it to DOM tree respectively.
There are many implementations of these components that handle most of the work. The
only thing that has to be checked explicitly is content type, as the URL fetcher fetches any
document from the Web. By definition, this document does not have to be a web page,
therefore it’s crucial to check for that and if the document is not a web page, it has to be
skipped.

One aspect of the system that is not directly visible is the iterative nature of the internal
functionality. This iterativeness is implied by the feedback of URL addresses via URL
extractor. This component scans the DOM tree for any links to other documents it contains.

31

Figure 5.3: Architecture of the proposed segmentation system

Once the list is extracted, it is pushed to the end of the queue in URL selector and the
addresses are therefore scheduled for inspection in the following iterations.

The last component that is not straightforward but is handled like a black box is the
CSSBox rendering engine. In theory any rendering engine can be used, however the CSS-
Box has been designed from ground up to be used in segmentation algorithms and as a
consequence it offers variety of information on the output that other engines don’t. One
component that poses to be simple one in the diagram is Template storage. In theory this
can be any external database but there are some design requirements that have to be met.
The complete design of the storage will be depicted in detail in chapter 7.

32

Chapter 6

Box Clustering Segmentation

The Box Clustering Segmentation (BCS) is one of the core pieces of the segmentation method
presented in this thesis. From the perspective of functionality, it’s the most important
component. It is the only component that influences precision of the result and it has great
effect on the performance as well. BCS is designed to be a pure vision-based method. Also,
in contrast to other segmentation methods presented in chapter 3, BCS is designed to give
flat results. That means, it produces a tiled arrangement of segments rather than their
hierarchy, which is the usual layout of segmentation results.

The internal composition of the BCS process is displayed in figure 6.1. The algorithm
takes rendering tree produced by CSSBox as an input. This rendering tree contains all the
information about visual features of the web page but it also contains all the information
that was stored in the original DOM tree, as it stores references to its individual DOM
nodes. This, however, does not mean that the DOM tree is taken as input of the algorithm,
just that all of its information was absorbed by the rendering tree in the most convenient
way.

Figure 6.1: Internal composition of Box Clustering Segmentation

33

Even though the main part of the output data is designated Set of segments, it’s impor-
tant to realize that some boxes on the web page might not be a part of any segment in the
set. Such boxes are assumed unimportant and it is therefore acceptable not to cluster them.
However for further processing these boxes still might be important, that’s why they are a
part of the output as well. And while they are intentionally disregarded in the big picture
displayed in figure 5.3, including them there is trivial.

The BCS algorithm works in several phases. As the name suggests, the algorithm aims
to cluster the smallest visual elements on the web page into coherent groups. For this to
work, the smallest visual elements have to be identified first, as they don’t always correspond
to leaves in the rendering tree. Then the distance between individual elements has to be
calculated using criteria described in section 6.4. In further text, this distance metrics is also
called dissimilarity, as the distance between two elements on the web page is determined by
their visual dissimilarity. After the dissimilarity is calculated, it is used to create and then
iteratively extend clusters.

6.1 Extracting boxes

The box extraction is the first step of the Box Clustering Segmentation. Even though it
can be perceived just as a preprocessing, it is an important part of the BCS algorithm, as
it influences both precision and performance.

In order to properly understand the preprocessing nature of the box extraction, it’s
important to understand how the rendering tree produced by CSSBox looks like. It is
basically a tree of boxes where each box represents a rectangular area in the rendered
page. Each box in the rendering tree corresponds to a particular node (or its part) in the
input DOM tree; i.e. it is always possible to identify the source DOM node that generated
a particular box. A reference to the corresponding DOM node is contained in the data
structure representing the box. Cardinality of the relation is 1..N , as one DOM node can
generate multiple boxes. Elementary visual boxes that represent atomic units of the content
are leaf nodes in the rendering tree. Lines of text and images are the most common examples
of the atomic units of the page content. However the atomic units in general are not always
convenient for clustering, as they can sometimes have slightly larger bounding boxes.

The box extraction algorithm traverses the rendering tree and selects boxes that should
be used for further processing. All the boxes are transformed to simplified data structures
during the selection process. In the following text, the designation box will be used for these
simplified data structures. In the data model used by Box Clustering Segmentation, these
simplified boxes are the basic building blocks of the segmented web page. Each box contains
just minimal amount of information – only the data required for subsequent segmentation
steps (the dissimilarity measurement in particular).

• Box position in the page

• Dimensions of the box

• The averaged color of the box

In the following sections, various properties of boxes will be referenced. Therefore a
proper formal definition of the simplified box structure follows. Note that this thesis uses
a coordinate model that is common in web design. The basic unit in that model is a pixel
and coordinate system starts in the top left corner of the web page. When talking about

34

position, terms like top, down, above, below and others have their intuitive semantics, that
is e.g. top edge means “top from user’s perspective”.

Definition 1 (Box structure) Let the box m be defined as 7-tuple m = (left, right,
top, bottom,width, height, color) where left, right, top and bottom are integer values that
represent positions of the respective edges of the box; width = right−left; height = bottom−
top and color is a composite value representing mean color of the box.

Assuming the 7-tuple will be named, each element in that 7-tuple will be referred to by
its name as well, separated from the . This can be illustrated by example: having box m
defined, the pair representing its top-left corner would be defined as (m.top,m.left).

The boxes are extracted from the rendering tree using a recursive algorithm performing
a pre-order traversal of the rendering tree. The general idea is to consider the nodes of the
tree that are actually visually accessible in the page, i.e. the user looking at the page can
see them. This refers to the fact that many tricks are used on modern web pages to achieve
the intended layout and some boxes on the web page might not actually be visible.

The rest of the content, i.e. the boxes that are visible, is usually represented by leaf
nodes in the rendering tree (that represent the actual content of the page). However, as
mentioned above, there are some exceptions from this rule. The following list provides a
deeper look into the box extraction process:

1. Text nodes are always leaf nodes. They contain a line or its part. Graphically, each
text box is a minimal bounding box of the text contained. These nodes are directly
transformed to box areas.

2. Image nodes are always leaf nodes. They represent a particular image and therefore,
they share its properties like position and size.

3. Childless boxes that don’t fall into previous categories are omitted.

4. One-child boxes that don’t fall into previous categories are viewed as subtrees rooted
at the child box. These subtrees are then inspected for branches and if there are none,
the smallest box in the subtree with non-transparent background is returned. If there
is no such box, the leaf box is returned.

After the box extraction is completed, it is still possible that some extracted boxes will
visually contain other boxes. Therefore, an additional detection and filtering is performed.
In this additional step the extraction algorithm tries to construct a tree structure based on
visual nesting of previously extracted boxes. If any any visual nesting is detected, only the
nested boxes are kept, the ones containing them are filtered out.

The output of the box extraction algorithm after the filtering step can be described as
a set of boxes where no two boxes overlap. The overlap is defined as follows:

Definition 2 (Box overlap and containment) Two boxes m and n overlap if
m.right ≥ n.left∧m.left ≤ n.right∧m.bottom ≥ n.top∧m.top ≤ n.bottom. Box m visually
contains box n if m.left ≤ n.left∧m.right ≥ n.right∧m.top ≤ n.top∧m.bottom ≥ n.bottom

Unless specified otherwise, the rest of chapter 6 assumes that boxes that are being worked
with are non-overlapping.

35

6.1.1 Box color

While other values are straightforward to get, the box color has to be calculated during the
extraction process. In the set of boxes B, there are three types of boxes from the perspective
of what they represent: lines of text, images and other content (for example boxes with no
content, their purpose being only visual on the web page). For the color component of the
dissimilarity model, it is crucial to represent each box with the right color. Because one
of the key features of the Box Clustering segmentation is its speed, the goal is to pick just
one – visually the most significant – color per box.

Boxes with no content have the most simple color representation, as their background
color is picked (or the background color of their parent in the rendering tree if they are
transparent). For every image the average color is calculated. All the pixels in the image
are iterated over and the mean values of the red, blue and green components put together
the average value. If the image is not using RGB color model, proper transformation is
performed first.

For text, the situation is much more complex. The color of the text box has to take
various circumstances into account, for example background color, font weight and slant and
text decorations. The rules below are original to the BCS and were specifically designed
to accommodate all the different combinations of font decorations that can be specified
in HTML and CSS. HSV color model is used, as it simply allows modifications of the
color brightness. When calculating the text color, the following rules are evaluated (in the
specified order):

1. The specified color of the text is taken as the starting value that is modified in the
following steps

2. If the text is white, set hue to the hue of background, saturation to a value > 0.
Saturation is selected as the component to be modified (decreased) in the following
steps.

3. If the text is gray or black, brightness is selected to be modified (decreased) in the
following steps.

4. If the text is black, set brightness to value as small as possible but > 0.

5. If the text is colored, saturation is selected as the component to be modified (increased)
in the following steps.

6. If the text is decorated, modify the selected color component by 20%.

7. If the text is italic, modify the selected color component by 20%.

8. If the text is bold, modify the selected color component by 30%.

9. If the selected color component is out of range < 0, 1 >, set it to the nearest value in
that range.

Once calculated, only the color value will be carried by the box 7-tuple, no additional
information is included.

36

6.2 Connecting the boxes

The previous step produces a set of boxes which are atomic elements of visual content of
the web page. The goal of connection-creating algorithm is to iterate over this set and for
each box to identify other boxes that will be preferentially evaluated for clustering with that
box.

This part of the segmentation process is crucial for performance of the entire algorithm,
as the number of connections between boxes strongly influences the computational time of
the clustering step. A naive approach would be to create a connection between every two
boxes. However, with thousands of boxes being on a web page (which is not uncommon),
the size of the box set increases so much it raises time and space demands of the algorithm
beyond practical usability. It is therefore desirable to optimize the number of connections
as much as possible.

To understand the selected optimization, it is first important to understand what is
called projected overlap. Projected overlap can be best described as overlap of boxes in
one-dimensional space, i.e. when the boxes were projected to individual axes.

Definition 3 (Projected overlap and semi-alignment) Let m and n be two boxes on
a web page. The projected overlap of boxes m and n is defined as a function pov : (m,n)→
{x, y, o} where x and y indicate projected overlap on the respective coordinate axes of the
web page and o designates “no projected overlap”. The following rules apply:

pov(m,n) =


x if m.right ≥ n.left ∧m.left ≤ n.right
y if m.bottom ≥ n.top ∧m.top ≤ n.bottom
o otherwise

(6.1)

The two boxes m and n are in semi-alignment if pov(m,n) 6= o.

There is also finer grained version of projected overlap that is used when determining
the distance between boxes. Is is called mutual position.

Definition 4 (Mutual position of two boxes) Let a set of possible positions be P =
{a, b, l, r, o} where a, b, l, r designate position above, below, left and right respectively and o
designates “other position”. The position of box m relative to box n is defined as a function
pos : (m,n)→ P where the following rules apply:

pos(m,n) =


a if m.bottom ≤ n.top ∧ pov(m,n) = x
b if m.top ≥ n.bottom ∧ pov(m,n) = x
l if m.right ≤ n.left ∧ pov(m,n) = y
r if m.left ≥ n.right ∧ pov(m,n) = y
o otherwise

(6.2)

Note that as per section 6.1, overlapping boxes are not allowed in the model, thus all the
conditions of pov(m,n) are mutually exclusive. The same applies to pos(m,n).

Figure 6.2 graphically depicts semi alignment of boxes. The dark blue box is being
inspected, the light blue boxes are semi-aligned with it while the red boxes are not.

The chosen optimization of the connection-creating algorithm is to connect only boxes
that are a) adjoined and b) semi-aligned. There are two reasons why this representation
was chosen:

• It’s easier to extract directly adjoined boxes during subsequent processing.

37

Figure 6.2: Boxes that are selected to be connected

• Experimental observation showed that visually related boxes are always organized like
this

6.3 Composite Dissimilarity Model

A proper model for evaluating the dissimilarity between the elements on the web page, that
will be described more closely in this section, is one of the main pillars of any segmentation
algorithm. There are two types of entities featuring in the dissimilarity model – boxes and
their clusters. The relation between these two types is denoted in figure 6.3.

Cluster Page area

Box
Page area

Box
Page area

Box
Page area

Box
Page area

Box
Page area

a) A small part of a web page b) corresponding page area hierarchy

Figure 6.3: Hierarchy of visual areas representing boxes and their clusters

The model is called composite because it contains two main dissimilarity components,
based on the type of entities between which the dissimilarity value is calculated. The first
compound, called base dissimilarity, is based on visual features of individual boxes and is
therefore defined only between two boxes. On the other hand, the second one, called cluster

38

dissimilarity, is used to express the dissimilarity when at least one of the two entities is a
cluster.

Generally, the value of dissimilarity and/or its compounds is floating-point number in
the range of < 0, 1 > with straight proportionality semantics, i.e. the higher the value gets,
the higher the dissimilarity is.

6.4 Base Dissimilarity

Base dissimilarity can be theoretically calculated between any two boxes on a web page.
But to follow the optimization rule established in section 6.2, it is calculated only between
those pairs of boxes that are connected.

The model of base dissimilarity can be also perceived as a composite one but from a
different perspective. It does not combine multiple measurement methods but it measures
three different visual aspects of the dissimilarity between two boxes – relative distance be-
tween the boxes, their shape dissimilarity and the dissimilarity of their colors. Even though
alignment score is taken into account as well, it can’t be considered related strictly to the
dissimilarity between two boxes. All these components will be detailed further in this sec-
tion. The final value of base dissimilarity, designated as bdis(m,n) in the previous text is
calculated as follows:

bdis(m,n) =



0 if distance(m,n) = 0

1 if distance(m,n) = 1 distance(m,n)+
dis_shape(m,n)+
dis_color(m,n)


3 ∗ alignment_score(m,n)

otherwise

(6.3)

There are two reasons why only three visual aspects of boxes are used: 1) all the three
aspects are defined for all the boxes on every web page that exists and 2) it makes the
dissimilarity model more simple. That is good for the performance of the algorithm. On
the other hand it opens the possibility to argue that the precision of the algorithm might
be affected. That argument might be true to a certain degree however, against the expecta-
tions, not having overly sophisticated dissimilarity model made it possible to fine tune the
clustering step significantly. If a research is conducted in the future that finds other aspects
that can be included in the dissimilarity model, it will be very cheap improvement of the
Box Clustering Segmentation precision, when compared to improvements of the clustering
algorithm

6.4.1 Relative Distance

Distance calculation is based on obvious fact that the closer two boxes are, the higher is the
likelihood of them belonging to the same cluster. The distance measurement is based on
relative distances between adjacent boxes. To calculate relative distance, it is first necessary
to know absolute distances. This starts with identifying what we call a direct neighborhood
of each box. The direct neighborhood of box X includes just those boxes that are closest
to it in terms of absolute distance. The way how the absolute distances are computed is
graphically expressed in figure 6.4.

39

X

A
B

(0,0) x

y

abs(A,X)

abs(B,X)

Figure 6.4: Absolute distance measurement between boxes

Definition 5 (Absolute Distance and Direct Neighborhood of a Box) Let B be a
set of boxes on a web page and let m,n ∈ B. Absolute distance between two boxes is a
function abs : B ×B → R:

abs(m,n) =


n.top−m.bottom if pos(m,n) = a
m.top− n.bottom if pos(m,n) = b
n.left−m.right if pos(m,n) = l
m.left− n.right if pos(m,n) = r
∞ otherwise

(6.4)

.
Direct neighborhood of box m is defined as Nm = {n|n ∈ B ∧ pos(m,n) 6= o ∧ @k ∈ B :

(pos(m, k) = pos(m,n) ∧ abs(m, k) < abs(m,n))}

Using the direct neighborhoods and absolute distances, it is possible to calculate the
relative distance, denoted distance():

Definition 6 (Relative distance) Let B be a set of all boxes on a web page. For each
box m ∈ B and its direct neighborhood Nm, there is a maximal neighborhood distance
maxd(m) = abs(m, k) where k ∈ Nm ∧ @l ∈ Nm : abs(m, l) > abs(m, k). For each n ∈ Nm

the relative distance, designated distance(m,n), is calculated as:

distance(m,n) =

abs(m,n)

maxd(m)
+
abs(m,n)

maxd(n)

2
(6.5)

With this definition, the relative distance represented by the function distance() ex-
presses how far the two boxes are from each other in the context of their direct neighbor-
hoods. There are two things to be noted here:

1. The connections between boxes, as described in section 6.2, have formal equivalent in
the set of all direct neighborhoods

2. The semantics of the distance value is exactly the same as semantics of the dissimilarity
values. It can assume values in the range < 0, 1 > with direct proportionality.

40

6.4.2 Shape

While the reason for distance measurement is obvious, shape comparison might not be at
first. The premise here is that two adjacent boxes that have similar shape are more likely
to belong to the same cluster than two boxes with completely different shapes. The most
common case where the shape dissimilarity plays significant role are menu items, especially
in vertical menus. Another very common situation is demonstrated by a simple paragraph
of text where each line creates a separate box and all such boxes have very similar shape.

To properly evaluate shape dissimilarity, it’s important to pay attention to two visual
features – aspect ratio and surface of the two boxes. Let’s have two boxes m,n ∈ B. The
following equations define how the aspect ratio dissimilarity is calculated. There is a con-
dition for the ratio dissimilarity to have the same semantics as other dissimilarities. This
condition determines how the function ratio() should look like. Using simple absolute value
of difference between the two ratios is not possible, as it can result to values higher than 1.
To get these values into the range, it has to be divided by the maximal possible value this
difference can result in. In the following equations, variables rm and rn represent aspect
ratios of the respective boxes whereas ratio(m,n) is a formulation of the ratio dissimilarity.
Note that while each aspect ratio is expressed as ratio of width to height, having it vice
versa does not change the result.

rm =
m.width

m.height
(6.6)

rn =
n.width

n.height
(6.7)

ratio(m,n) =
max{rm, rn} −min{rm, rn}

max{rm, rn}2 − 1

max{rm, rn}

(6.8)

The second part of shape dissimilarity measurement is the size dissimilarity. Symbols
used in the following equations correspond to the symbols in the previous ones: sm and sn
represent surface size of the respective boxes and size(m,n) expresses the size dissimilarity
itself. The same condition that determines the design of the ratio function also determines
the design of the size() function. Knowing this condition, the design of the function is
straightforward.

sm = m.width ∗m.height (6.9)
sn = n.width ∗ n.height (6.10)

size(m,n) = 1− min{sm, sn}
max{sm, sn}

(6.11)

The final shape dissimilarity is simply calculated as a mean value of ratio and size:

dis_shape(m,n) =
ratio(m,n) + size(m,n)

2
(6.12)

6.4.3 Color

Color comparison is again an obvious one. Boxes with the same color are likely to belong
to the same cluster than boxes with completely different colors. The process of assigning

41

each box a color is described in section 6.1.1. Color dissimilarity of two boxes is based on
color distance calculation. The color distance is commonly used term in computer graphics.
It is a metrics used to quantify the difference between two colors. It is commonly denoted
as ∆E and there are many formulas to calculate it. The actual choice of the most suitable
formula depends on the application[47].

The International Commission on Illumination came up with several formulas that work
on Lab and LCH color spaces. They are all based on the fact that the human eye is more
sensitive to changes in chroma than to changes in lightness[47]. As opposed to RGB color
space, both Lab and LCH color spaces allow a separate calculation for lightness and chroma.
More recent formulas[7, 38] compensate for perceptional non-uniformities in some areas of
the color space.

Both Lab and LCH based color distances were evaluated for their potential utilization
in the BCS algorithm. However an observation has been made during the experiments that
simple euclidean RGB -based difference offers much better results. The most likely cause for
this observation is that on most web pages, hue is used much more often than chroma to
visually distinguish components on the web page that belong to different semantic blocks
of the web page (e.g. navigation vs. article heading).

Because the results of the color distance have to match all the other components of the
box comparison, a normalization has to be carried out. This is done by dividing the euclidean
distance by the maximal diagonal distance in the RGB color space. In the standard RGB
model which is used here, each color channel can assume values in the range < 0, 1 >, thus
the maximal diagonal distance is 1.732. Using Cm = (Rm, Gm, Bm) and Cn = (Rn, Gn, Bn)
as the color representations of boxes m and n respectively, the formula to calculate the color
distance is the following:

dis_color =

√
(Rn −Rm)2 + (Gn −Gm)2 + (Bn −Bm)2

1.732
(6.13)

6.4.4 Alignment

Alignment is not strictly one of the components of the dissimilarity model, as it is not
a visual aspect of either the boxes or their dissimilarity. It is however used as adjusting
value that is applied as the last step of dissimilarity calculation. From the more formal
perspective, alignment should be perceived as a way of scoring the dissimilarity between the
two boxes in the context of their surroundings. The rationale to use this adjustment came
from the observation how VIPS algorithm works – thanks to the top-down approach, the
VIPS algorithm implicitly puts stronger separators around content that is aligned. Because
clustering algorithms by design don’t support such behavior, it has to be emulated, as the
final result is very desirable.

Alignment is represented by an integer value that specifies how many boxes are aligned
with the two that are being inspected. Obviously for this integer to be higher than one, the
two inspected boxes need to be aligned themselves (either their top or left edges need to
have the same coordinate). Formally, the value can be described by definition

Definition 7 (Alignment score) Let B be the set of boxes on a web page and let m,n ∈
B;m 6= n be two boxes. The alignment score is a function B ×B → N that is defined as:

42

alignment_score(m,n) =


|{b|b ∈ B ∧ b.left = m.left}| if m.left = n.left
|{b|b ∈ B ∧ b.top = m.top}| if m.top = n.top
1 otherwise

(6.14)

6.5 Cluster Dissimilarity

Aside from the Base Dissimilarity, Cluster Dissimilarity is the second component of the
compound dissimilarity model used in BCS. It is used only during the clustering step of the
algorithm. It is different from the base dissimilarity because clusters can’t inherit features
of the boxes they contain. The only option how to do that reliably would be to determine
how exactly individual boxes contribute to the appearance of the entire cluster. However
this task would be too time consuming for the algorithm to be practically usable.

Cluster dissimilarity is a model that works solely with dissimilarity values and con-
nections calculated in the previous steps. Before the cluster dissimilarity model can be
explained, the structure of a cluster has to be defined.

Definition 8 (Cluster) Let B be a set of all boxes on a web page. Cluster c is a designation
of a set of boxes Bc ⊆ B.

Cluster dissimilarity model is demonstrated in figure 6.5. As a prerequisite of this
model, the definition of direct neighborhood must be extended so it can accommodate both
clusters and boxes. The model derives direct neighborhood of each cluster from direct
neighborhoods of all the boxes contained in that cluster. Informally, it is possible to say
that direct neighborhood of cluster c includes boxes that are in direct neighborhood of any
of the boxes within the cluster c and all clusters containing at least one box that is in direct
neighborhood of any box within the cluster c.

Definition 9 (Unclustered Boxes and Direct Neighborhood of a Cluster) Let B and
C respectively be sets of boxes and clusters on a web page. Furthermore, let Bc = c be a
cluster, m ∈ B be a box and Nm its direct neighborhood. A set of unclustered boxes on the
page is defined as BU = {b|b ∈ B;@c ∈ C : (b ∈ Bc)}.

For cluster c, its direct neighborhood is defined as Nc = {m|m ∈ BU ∧ ∃n ∈ Bc : n ∈
Nm} ∪ {d|d ∈ C ∧ ∃m ∈ Bc, n ∈ Bd : n ∈ Nm}.

For dissimilarity, the situation is similar – the value of dissimilarity between a cluster
and any entity in its direct neighborhood represents the mean value of dissimilarities be-
tween that entity and all the boxes contained in the cluster. In figure 6.5, the box-cluster
connection X represents connections A, B and C when cluster c is created. The dissimilarity
assigned to X therefore is derived from their respective dissimilarities. The optimal way how
to derive the value would be via some weights based on the visual importance of each box
within the cluster. However, that would be too time-consuming so a simple mean value is
used instead.

The previous text only uses connections as simple pairs of boxes that are adjacent where
each such pair has a corresponding dissimilarity value defined by the cdis function. However,
the concepts of connection cardinality and cumulative dissimilarity introduce additional
functions card() and cumul() which are defined as follows:

43

Figure 6.5: Demonstration of cluster dissimilarity model

Definition 10 (Connection cardinality and cumulative dissimilarity) Let B, BU and
C respectively be sets of boxes, unclustered boxes and clusters on a web page. Also, let
Ne designate direct neighborhood of entity e. Functions card : C × C ∪ BU → N and
cumul : C × C ∪ BU → R, which respectively represent connection cardinality and cumula-
tive dissimilarity, are defined as:

card(c, e) = |{m|m ∈ Bc ∧ e ∈ Nm}| (6.15)

cumul(c, e) =
∑

∀m∈Bc

d(m, e) (6.16)

Note that function d() is described in definition 11. When a cluster is being created, all
the unclustered boxes are scanned and those that are about to become cluster neighbors
are selected for processing. For each of these future neighbors the value of cumulative
dissimilarity and cardinality is calculated and the final dissimilarity cdis is then calculated
as their quotient:

cdis(c, b) =
cumul(c, b)

card(c, b)
(6.17)

6.6 Entity Dissimilarity

Now when both compounds of the dissimilarity model are formally defined, it’s also possible
to define how are they combined. Section 6.3 offers informal description. Formally, the value
of dissimilarity when both compounds are combined is called Entity dissimilarity and it’s
defined as follows:

Definition 11 (Entity dissimilarity) Let B and C respectively be sets of boxes and clus-
ters on a web page and let e1, e2 ∈ B∪C be two entities. The entity dissimilarity d is defined
as:

d(e1, e2) =


bdis(e1, e2) if e1 ∈ B ∧ e2 ∈ B
cdis(e1, e2) if e1 ∈ C
cdis(e2, e1) if e1 /∈ C ∧ e2 ∈ C

(6.18)

44

6.7 Box Clustering

The clustering algorithm implements bottom-up hierarchical clustering where the depth of
the hierarchy is limited to two levels – clusters at the top level and boxes at the bottom level.

Definition 12 (Goal of the algorithm) Goal of the algorithm is to find such a cluster
set C that will minimize the set of unclustered boxes BU where the following rule applies:
@e1, e2 ∈ C ∪BU : (d(e1, e2) ≤ CT).

The algorithm is iterative, exactly one new cluster is created by merging two existing
entities in every iteration. Several steps take place for that to happen:

1. Selection of the most similar pair of entities

2. Mergeability testing

3. Candidate creation

4. Overlap testing and cluster extending

5. Cluster verification and commission

All of these steps will be closely analyzed in the following text and then the algorithm will
be described in detail.

Selection of the most similar pair of entities

Selection of the most similar pair of entities is straightforward, as all the information required
in directly stored in the graph of entities.

However, the component handling the selection has one important non-trivial task: to
stop the clustering algorithm when appropriate. Obviously, the algorithm will stop once
the set of relations is empty. However that’s not the most common case. In order to set
a stopping point, a border has to be established that the algorithm will not cross. In case
of BCS, that border is represented by a Clustering Threshold, designated also as CT . The
CT is a numeric value that can assume values between 0 and 1. Its purpose corresponds to
that of Permitted Degree of Coherence (PDoC) used in VIPS algorithm[13]. It has to be
set in advance and it stays the same for the entire page. Picking the right value of CT is a
difficult task and every web page has a different optimal value. If it’s too low, many boxes
will end up unclustered. On the other hand, if picked too high, some clusters that should
be separate are merged instead. Compared to VIPS, there is also another consequence: The
results can also look completely different with different values of CT . That’s caused by the
phase of overlap testing and cluster extending.

Selecting the right value of CT for the web page is application specific so deeper analysis
is out of scope of this thesis, much like selecting PDoC is out of scope of the VIPS algorithm.
In practical applications, several approaches can be taken, for example an iterative or bi-
sective approach with the number of unclustered boxes being used as an indicator when
to stop. This solution is acceptable in the use case of batch processing, as the template
clustering step will compensate the performance impact.

45

Mergeability testing

Mergeability testing is important especially in later iterations of the clustering algorithm.
The idea of this testing is to prevent merging clusters that should not be merged because of
their visual inconsistencies. These inconsistencies are based on the shape of clusters, their
density and their disjunction. Before describing the individual constituents, it’s important
to establish a few auxiliary definitions.

Minimal bounding rectangle of each cluster is important for cluster density but it’s also
convenient for detecting overlap between the cluster and other entities on the web page.

Definition 13 (Minimal Bounding Rectangle) Let BU and C respectively be a set of
unclustered boxes and a set of clusters on a web page. Furthermore, let c ∈ C be a cluster.
In this subset, there is one or more boundary defining boxes: the topmost box bt ∈ Bc;@b ∈
Bc : (b.top < bt.top) establishes top boundary of the set, the bottommost box bb ∈ Bc; @b ∈
Bc : (b.bottom > bb.bottom) establishes the bottom boundary of the set, the leftmost box
bl ∈ Bc;@b ∈ Bc : (b.left < bl.left) establishes the left boundary of the set and the rightmost
box br ∈ Bc;@b ∈ Bc : (b.right > br.right) establishes the right boundary of the set.

Minimal bounding rectangle function MBR : BU ∪ C → N6 produces six-tuples
(left, right, top, bottom,width, height) where individual components of MBR(e), e ∈ BU ∪
C are defined as:

left =

{
bl.left if e ∈ C
e.left if e ∈ BU

(6.19)

right =

{
br.right if e ∈ C
e.right if e ∈ BU

(6.20)

top =

{
bt.top if e ∈ C
e.top if e ∈ BU

(6.21)

bottom =

{
bb.bottom if e ∈ C
e.bottom if e ∈ BU

(6.22)

width = right− left (6.23)
height = bottom− top (6.24)

(6.25)

Semi alignment cardinality expresses how many semi-alignments are there between boxes
within a cluster and their direct neighbors that are also within the cluster.

Definition 14 (Semi-alignment Cardinality) Let c = Bc be a cluster and let Nm des-
ignate direct neighborhood of box m. Cardinality of horizontal and vertical semi-alignment
relations within cluster c is respectively defined as:

hc(c) = |{{m,n}|m,n ∈ Bc ∧ n ∈ Nm ∧ pov(m,n) = y}| (6.26)
vc(c) = |{{m,n}|m,n ∈ Bc ∧ n ∈ Nm ∧ pov(m,n) = x}| (6.27)

Cluster shape is the first indicator evaluated when testing for mergeability. It is defined
differently than the box shape as described in section 6.4.2.

Definition 15 (Cluster shape) Let C be a set of clusters and let c ∈ C be a cluster.
The function cshape : C → {col, row, blob} which describes the cluster shape is defined as

46

follows.

cshape(c) =


col if hc(c) < 0.5· vc(c)
row if hc(c) > 2· vc(c)
blob otherwise

(6.28)

The purpose of the cluster shape is to identify columns and rows in a web page. In-
formally, each row in the web page consists of a number of boxes that are placed side by
side. Similarly, each column in the page consists of a number of boxes being placed one
below another. While the Definition 15 partially covers this, it only says which connection
direction (horizontal or vertical) prevails between the boxes within the cluster. It does not
say anything about the number of boxes that are aligned in the prevailing direction. This
information is covered by cluster density.

Definition 16 (Cluster density) Let C be a set of clusters and let c ∈ C be a cluster.
The function cdens : C → R which describes the cluster density is defined as follows.

cdens(c) =


hc(c)

MBRc.width if cshape(c) = row
vc(c)

MBRc.height
if cshape(c) = col

undefined otherwise
(6.29)

The last indicator used in the process of merge testing is cluster disjunction, which is
defined in Definition 17. This definition itself is quite straightforward but it first requires
entity overlap to be set. With the definition of cluster corresponding to the definition of
box, it is possible to use Definition 2 for both boxes and clusters. Now back to the cluster
disjunction: simply put, the cluster created by merging the two entities must not overlap
with any other entity on the web page.

Definition 17 (Entity overlap and Cluster disjunction) Let BU and C respectively
be set of unclustered boxes and a set of clusters on a web page. Furthermore, let c ∈ C
be a cluster and let e1, e2 ∈ BU ∪ C be two entities.

Entities e1 and e2 overlap if MBR(e1).right ≥ MBR(e2).left ∧ MBR(e1).left ≤
MBR(e2).right ∧MBR(e1).bottom ≥ MBR(e2).top ∧MBR(e1).top ≤ MBR(e2).bottom.
The cluster c is disjunct if @e ∈ BU ∪ (C − c) : (e overlaps with c).

The merge test of two entities contains the following set of conditions.

• If the two entities are y-projection-overlapped columns and their density ratio is not
in the interval of < 0.5, 2 >, forbid the merge

• If the two entities are x-projection-overlapped rows and their density ratio is not in
the interval of < 0.5, 2 >, forbid the merge

• If the shapes of the two entities differ and cluster created by their merge is not disjunct,
forbid the merge

• Otherwise allow the merge

The idea behind the interval < 0.5, 2 > can be best demonstrated on a part of a web page
displayed in figure 6.6. A human observer recognizes there are two columns of content on
this piece of page. Assuming the clustering algorithm has already clustered both columns
and is now evaluating their potential merge, it’s desirable to stop it as each of the columns

47

is likely to contain a different type of information. In this case, the first rule applies and
the interval specifies to stop the merge if either of the columns has twice as many rows as
the other one. While other values can be considered as borders of the interval, this one was
empirically verified to produce good results.

Figure 6.6: Columns on the web page

Candidate creation

During the candidate creation process a temporary cluster is created that has all the relevant
features as the real cluster would have but is not yet committed, i.e. it’s not a part of set
of all the clusters on the web page C.

The reason to take this intermediate step is that the overlap testing can potentially
forbid the creation of the cluster. When such case happens, the algorithm needs to have an
option to revert back. So in essence the candidate cluster exists only so that all the features
that are required for extending the cluster during the overlap detection are present. These
features include:

• position on the page

• dimensions

• references to all the boxes that would be contained within the cluster

There is no need for formal definition of candidate cluster, as the cluster definition
accommodates all the features. Note that if either of the two entities that are being processed
in the currently running iteration is a cluster, it’s boxes are considered instead of the cluster
itself. This is crucial for the flat output of BCS.

48

Overlap testing and cluster extending

This is perhaps the most complex part of the clustering algorithm. The point of this part
of the algorithm is to adjust clusters so they don’t overlap with other clusters and/or boxes
that are not part of the cluster. If the candidate cluster cannot be adjusted to match
the conditions, its creation is prevented and the clustering algorithm continues by starting
another iteration (selection of the most similar pair of entities, . . .).

The Algorithm 1 shows the process of iterative overlap testing and cluster extending. It
only needs a set of boxes B, a set of clusters C, the current candidate cluster cc and the
two entities m,n that were merged into the candidate cluster. The algorithm returns true
and updates the cluster candidate cc if it can be extended. Otherwise it returns false.

Algorithm 1 Overlap testing and cluster extending
1: function extendAndTest(IN: B, C, m, n, INOUT: cc)
2: repeat
3: BO ← {b|b ∈ B ∧ b /∈ Bcc ∧ b overlaps cc}
4: if ∃k ∈ C − {m,n} : Bk ∩BO 6= ∅ then
5: return false
6: end if
7: if ∃b ∈ BO : (@bcc ∈ Bcc : (b overlaps bcc)) then
8: return false
9: end if

10: Bcc ← Bcc ∪BO

11: until B0 = ∅
12: return true
13: end function

Cluster verification and commission

Because the candidate cluster was used in the previous steps, it has to be transformed to a
standard cluster that can be used in further iterations of the clustering algorithm. Several
partial actions have to be carried out during this operation. From the formal perspective,
the only interesting one is updating the set of clusters C on the web page. If either of the
two original entities m and n was a cluster, it must be removed and the cluster candidate
cc must be added:

C = (C − {m,n}) ∪ {cc} (6.30)

BCS main loop

The main loop reflects the description throughout the entire chapter. The input of the
algorithm is the threshold value CT and a set of boxes B.

49

Algorithm 2 BCS main loop
1: function bcs(IN: B, CT) C ← ∅
2: loop
3: if |BU | < 2 then
4: return C
5: end if
6: m,n← m,n ∈ BU ∪ C : @x, y ∈ BU ∪ C : (d(x, y) < d(m,n))
7: if d(e) > CT then
8: return C
9: end if

10: ratio = cdens(m)
cdens(n)

11: if cshape(m) = cshape(n) then
12: if cshape(m) = column then
13: if pov(m,n) = y ∧ ¬(0.5 ≤ ratio ≤ 2) then
14: continue
15: end if
16: else if cshape(m) = row then
17: if pov(m,n) = x ∧ ¬(0.5 ≤ ratio ≤ 2) then
18: continue
19: end if
20: end if
21: else
22: if m ∪ n is not disjunct then
23: continue
24: end if
25: end if
26: create cluster candidate cc
27: if extendAndTest((B,C, cc,m, n)) then
28: continue
29: end if
30: commitCluster((B,C,m, n, cc))
31: end loop
32: end function

50

Chapter 7

Template clustering

The previous chapter described the core of the segmentation algorithm that is used in both
use cases specified in chapter 5. In figure 5.3, it was designated Box Clustering Segmentation.
This chapter will focus on the rest of the non-trivial components that were not covered in
previous chapters. In figure 5.3, these are designated Template storage, Template comparator
and Node mapping.

These components are used mostly in the multi-page segmentation scenario displayed in
figure 5.2. Because all the components are fixed parts of the architecture and their func-
tionality is the same in both segmentation scenarios, they affect the single-page segmen-
tation scenario displayed in figure 5.1 as well – for example when performing segmentation
repeatedly on similar pages after some time (assuming the Template storage is permanent).
However the multi-page segmentation use case is still the primary target of the template
clustering, therefore this chapter will focus on in.

7.1 Template clustering overview

First let’s emphasize focus of the crawler algorithm as stated in chapter 5. The focus of the
algorithm is to process one site at a time. If there are any link leading to other sites, they
should be scheduled for later inspection and revisited only after processing of the current
site is finished. Even though this scenario is considerably specific, the template clustering
algorithm is generic and can be used in virtually any scenario or crawler design. However,
this specific scenario perfectly demonstrates potential of the template clustering and that’s
why the following text will assume it if not specified otherwise.

In the multi-page segmentation scenario, the standard approach is to segment every web
page separately before sending it to further processing. For some large servers like world-
wide news servers, this means performing the segmentation task hundreds of thousands of
times. Even though this example might be extreme, it’s obvious that this approach does not
scale at all and the time required to process even mid-sized web sites is unacceptably long.
The template clustering algorithm is designed specifically to address this scaling issue.

The general idea of the template clustering can be presented as follows. When processing
more pages within the same site, it is possible to indirectly increase the performance of
segmentation by actually performing it only on a limited number of pages and transform
these pages so they can represent their respective template-based clusters. When, in one
of the following iterations of the multi-page segmentation scenario, the inspected page is
matched to an existing cluster, an isomorphic mapping between the page and the structure

51

representing the corresponding cluster can be used to get the results of page segmentation
without performing it.

One of the advantages of this approach is that the optimization achieved is in direct
correlation with the number of web pages processed – the more pages are processed, the
greater the optimization actually is (measured in both relative and absolute scale). An-
other advantage is that the template clustering algorithm does not require all the pages to
be processed at once. Instead, partial data set can be retrieved, the process interrupted
and continued any time later. That is also why this approach works on the single-page
segmentation scenario.

Figure 7.1: Block schema of the template clustering

The high-level overview of the Cluster-based Page Segmentation is outlined in figure 7.1.
It presents the relevant parts extracted from figure 5.3. As the outline demonstrates, there
are three main parts of the template clustering system. The Template comparator is the first
point of contact for incoming data. The comparator basically employs clustering metrics to
find out if the incoming DOM tree matches to any of the previously known templates that
are stored in the Template storage. The purpose of the last component, designated Node
mapping, is to identify similarities between the incoming DOM tree and the matched DOM
tree loaded from the storage in order to assign the right DOM nodes to the right visual
areas.

Before going deeper into the details of template clustering, it is appropriate to mention
some of the design specifics, as they are important for understanding some of the details.
Most often, the clustering is performed on a complete set of values. However this approach
is not practically usable in any of the targeted use cases. There are two reasons for that:

• It is not possible to estimate upfront how many pages will be in the set.

52

• Large web sites like news servers keep publishing new content and therefore, the set
of web pages will never be completed.

Both these reasons imply that some form of stream clustering algorithm is required.
That aligns with another preferred feature – to store as few data as possible in order to
optimize the memory and disk space consumption in practical applications. To achieve this
goal, none of the segmented web pages are stored in the existing clusters. Only minimal
structures represent the individual clusters. These structures will be further called Cluster
Representatives.

7.2 Template storage

This component has to be explained first, as the definition of the data structures stored in
it is crucial for understanding the Template comparator. As stated in section 7.1, once the
web page is segmented it is transformed so it can represent an entire cluster of pages.

To avoid confusion created by combination of box clustering and template clustering,
the clusters as defined in the previous chapter will be referred to as visual areas in this
chapter. The reason for introducing this alias is to clearly distinguish between clusters of
boxes and clusters of web pages.

Let’s focus directly on the cluster set consisting only of the minimal clusters as introduced
in section 7.1. That means, each cluster consists only of its Cluster Representative. There
are three parts that need to be considered:

• Templates represented by structures derived from DOM trees

• Set of the visual areas that are returned by the Box Clustering Segmentation algorithm

• Mapping between the previous two.

The set of visual areas, denoted V , is equal to the set of clusters defined in chapter
6, therefore its definition will not be repeated here. The first part of each Cluster Rep-
resentative that is to be described is a template representation in a form of DOM tree
based structures. Even though an unmodified DOM tree would serve the intended purpose
as well, its lightweight abstraction is used instead. This lightweight abstraction is called
pruned DOM tree. Using it saves space both on the disk and in memory. It also improves
time performance as the redundant data don’t have to be loaded, stored and repeatedly
inspected. The following definitions therefore define the pruned version of the DOM tree,
as used in each Cluster Representative.

Definitions 18 and 19 formally introduce the structure of reduced DOM node and pruned
DOM tree. Identically to the structure of DOM tree itself, the structure of its abstraction
is carried within each reduced DOM node. Therefore a) no set of edges is required in the
DOM tree, even though it is essentially a graph and b) the most important information in
the DOM tree pair is a reference to its root node.

Definition 18 (Reduced DOM node) Let N be a set of all DOM nodes in a web page.
A reduced DOM node n ∈ N is defined as a pair n = (Cn, An) where Cn ⊆ N is an ordered
set of its child nodes and An = {(key, value)} is a set of its attributes.

Definition 19 (Pruned DOM tree) Pruned DOM tree is defined as a pair D = (N,nr)
where N is a set of all DOM nodes in the tree and nr ∈ N is a root node of the tree.

53

Definition 18 expresses how does the reduced DOM node look. Similarly to standard
DOM model, this is a key entity in the pruned DOM tree. It comprehensibly defines
structure of the tree in a way that allows easy handling by algorithms. Defining the structure
is the main goal of reduced DOM nodes. However, to be useful, they need to contain some
information as well. All the information is actually not contained in the node itself. Instead,
every piece of information that is used is transferred to the set of attributes which effectively
condenses it all into one point, keeping the node structure simple.

Structure of the DOM tree is defined by relations between the DOM nodes. One of
the key features pointed out in section 2.3.2 that contributes to setting the structure is the
order of sibling nodes. The same order has to be preserved in the pruned DOM tree so this
important information is not lost in the transformation. The following definition specifies
the relation on top of the elements of Cn which makes the set ordered.

Definition 20 (Order of the sibling nodes) Let n = (Cn, An) be a reduced DOM node
and ci, cj ∈ Cn, i 6= j. The element order in Cn is defined as a condition i < j ↔
ci precedes cj in the HTML code.

Attributes are the smallest units of information in the pruned DOM tree. The design
proposed here establishes a middle ground between the two approaches allowed in the DOM
model and enumerated in section 2.3.2. That supports flexibility while keeping the overhead
at minimum. Because the set of attributes does not contain only a set of what is considered
to be an attribute in the standard DOM model but it also contains other information, such
as style definitions, the flexibility is its key feature.

Now that the structure of the pruned DOM tree is defined and tangible, it’s possible
to use it as a base of structure that is important for the clustering algorithm–DOM path.
The clustering algorithm works with sets of these paths. Note that these sets are not
multisets. The DOM tree itself can contain multiple paths leading to different nodes of
the tree but having the same representation (as specified in Definition 21). However, the
intended application of the path sets does not require this property to be preserved so only
one instance of each path is kept in the set.

Definition 21 (DOM path and set of DOM paths) Let D = (N,nr) be a pruned DOM
tree. A DOM path in the tree D is defined as a k-tuple p = (n0, n1, . . . , nk) where n0 = nr
and ∀0 < i ≤ k : (ni ∈ Cvi−1) and Cnk

= ∅. A set of DOM paths is designated PD.

The format of the pruned DOM tree in combination with how was structure of a cluster
and the set of clusters defined in chapter 6 implies an image where each Cluster Representa-
tive can be viewed as a combination of pruned DOM tree D and a set of visual areas V . This
combination is disunited, as the individual components are only loosely coupled and there
are no direct links between them. When mapping between the two is included, this changes
significantly. The reason for storing this information is purely practical. When performing
the Box Clustering Segmentation, the algorithm exactly knows which DOM nodes belong
to every cluster that is returned. Storing this information for the future reference eliminates
the need to heuristically (and very probably inaccurately) analyze all the relations later.

The mapping between the pruned DOM tree D and the set of visual areas V starts
at relations between individual elements of these two entities. Definition 22 declares how
the visual containment is determined and then definition 23 explains how is the mapping
defined.

Definition 22 (Visual containment) Let D = (N,nr) be a pruned DOM tree represent-
ing a web page and let n = (Cn, An) be a node within that tree. Furthermore, let a be a

54

visual area bounding a part of the web page. The visual area a visually contains the node n
if and only if the textual and media content of DOM subtree rooted at node n is a part of
textual and media content of the part of the web page that is bounded by area a and a does
not visually contain the parent node pn. The relation of a containing n will be denoted as
a� n.

Definition 23 (Visual to DOM Mapping) Let D = (N,nr) be a pruned DOM tree and
let a be a cluster representing one visual area in the set of visual areas V . The Visual-to-
DOM mapping Ma for cluster a is defined as a set of DOM nodes visually contained by the
cluster Ma = {n|n ∈ N ∧ a � n}. The mapping M between the set of visual areas V and
DOM tree D is defined as a set of Visual-to-DOM mappings of all clusters in the set V :
M = {(a,Ma)|a ∈ V }.

Now that all the components of Cluster Representative and relations between them are
defined, it’s possible to define the Cluster Representative itself.

Definition 24 (Cluster Representative) Let D be a pruned DOM tree, V a set of visual
areas and M a Visual-to-DOM mapping between D and V . The Cluster Representative r is
defined as a 4-tuple r = (u,D, V,M) where u denotes URL of the original web page.

7.3 Working with the Cluster Set

Now that all data types in the Template storage are specified, the algorithm behind the
Template comparator can be designed. Let’s repeat some of the specifics of the comparator.
Its goal is to determine if the Template storage contains any record of previously segmented
web page that the incoming one resembles. The record will be stored in form of a Cluster
Representative. If such record exists, the entire Cluster Representative shall be returned
for further processing. If such record does not exist, the page shall be sent for segmentation
and stored afterwards.

This description outlines the entire big picture that is shown in figure 7.1. Algorithm
3 shows the orchestration of the process more formally. As the figure 7.1 shows, there are
two inputs of the algorithm: the incoming web page represented by its DOM tree and the
contents of the Template storage, represented by a set of Cluster Representatives R. The
orchestration algorithm returns a Custer Representative, as it contains all the components
displayed in figure 7.1.

Algorithm 3 Orchestration of the BCS and Template clustering
1: function processPage(DOMinput, R)
2: Din ← pruneDom(DOMinput)
3: r ← matchDom(R,Din)
4: if r = nil then
5: V ← BCS(DOMinput)
6: M ← mapVisualToDom(Din, V)
7: r ← (Din, V,M)
8: R← R ∪ {r}
9: end if

10: return r
11: end function

55

The streaming nature of the algorithm is clearly visible, as the result is returned immedi-
ately and no processing is scheduled for later. There are some functions which have not yet
been described, nor explained. Function pruneDom on line 2 transforms the standard DOM
tree to the pruned one according to definitions 19, 18 and 20. The process is straightforward,
therefore it won’t be described more closely. Function BCS represents the Box Clustering
Segmentation as described in chapter 6. Functions matchDom and mapVisualToDom will be
both described more closely.

7.4 Matching DOM Tree to the Cluster Set

This section will cover internal functionality of the matchDom function. Since it is a stream
clustering function, its internal process can be as simple as matching the incoming tree to
each Cluster Representative that is stored from previous segmentation runs and returning
the best match.

In its most crude design, the function just iterates over all the records and compares
the incoming DOM tree with the DOM tree of each Cluster Representative. However this
approach does not scale at all. There are several possible ways how to address the scaling
issue. One of them would be some sort of indexing, based on the DOM tree layout. However
designing proper indexing data structures and algorithms is well beyond the focus of this
thesis. Therefore an alternative approach was selected.

This alternative approach is based on the assumption that there is only a very limited
set of templates on every web site. Iterating over this limited set is much more scalable,
mainly because the set of templates does not extend much over time. The only thing that
can happen is that the design of the web site is changed in which case the old template set
for that site can be replaced entirely by the new set and in the end the algorithm has to
iterate over approximately the same amount of Cluster Representatives.

This approach lies in pre-selecting the set of templates for the site that the incoming
web page comes from, thus filtering out the irrelevant Cluster Representatives. The default
behavior of the preselecting algorithm is to take the second level domain of URL of the
incoming web page and filter out those that don’t match. Since the URL is stored as a
plain string, this is pretty simple, as string indexes are a common feature of almost every
database engine.

Algorithm 4 illustrates how the function matchDom works. The process of filtering out the
irrelevant cluster representatives is represented by function filterByDomain on line 5. One
of its inputs is URL of the page on the input which is obtained by function getPageUrl on
line 4. This does not need to be described, as the information about URL can be associated
with the DOM tree in several different forms and its extraction is always trivial, regardless
of the implementation. The filtering process itself will also not be described closely, as it is
covered by external database engine in practical applications and its value to this thesis is
minimal.

After the set of Cluster Representatives for the site is selected, the algorithm simply
iterates over the set and checks similarity of the incoming web page to each Cluster Repre-
sentative. This process is covered by lines 6 to 21 in the algorithm 4. Only one requirement
that has to be met remains and that is fast DOM-to-DOM matching algorithm. Now the
template detection algorithms become important, because the design of some of them allows
their usage as metrics in the clustering algorithm as section 3.2.4 explains.

The best algorithm for the task, as reasoned in section 3.2.4, is the Common Paths
Distance algorithm. It was proven to be significantly faster than standard tree-edit-distance

56

Algorithm 4 Finding the corresponding Cluster Representative
1: function matchDom(IN: R,Din) . Din = (NDin , nr, PDin)
2: bestMatch← 0
3: ret← nil
4: uDin ← getPageUrl(Din)
5: Rfiltered ← filterByDomain(R, uDin)
6: for all r ∈ R do
7: match← 0
8: sum← 0
9: for all pathin ∈ PDin do

10: for all pathr ∈ PDr do
11: sum← sum+ 1
12: if pathr = pathin then
13: match← match+ 1
14: end if
15: end for
16: end for
17: match← match

sum
18: if match ≥ 0.7 ∧match > bestMatch then
19: ret← r
20: bestMatch← match
21: end if
22: end for
23: return ret
24: end function

algorithms while still being precise enough to match a DOM tree to the right template (if
such template exists). The chosen algorithm is also the reason why a tree of paths is stored
as a part of each Cluster Representative. A modified version of the original algorithm is used
in this thesis. The core is essentially the same and it is outlined on lines 8 to 19 in algorithm
4. The adjustments made to the original algorithm are not visible in the algorithm 4, as
they lie in modification of the paths in the path set:

• All the nodes that do not represent any HTML element (e.g. attribute nodes, text
nodes, etc.) are filtered out

• If an element has an id attribute, its name is used in combination with the id value
in the path. This is important considering that the set of paths is not a multiset.

These simple modifications improve the results of the matching algorithm significantly
and enable higher level of result granularity. That means, more clusters are created, thus
less false-positives for cluster matches are encountered.

The threshold of 0.7 was taken from the original paper and experiments prove that it is
applicable even when taking the modifications introduced above into account.

The best match that is above this threshold (if there are any such matches) is returned
as the template that the incoming page is based on. When such match is found, it is possible
to use the corresponding set of visual areas and map them to the DOM tree of the incoming
web page. If no matching Cluster Representative is found, the page is considered to be
based on a new template that the algorithm has not encountered yet.

57

7.5 DOM Tree Mapping

Mapping the nodes of the processed page to those stored in the matched Cluster Represen-
tative is the last step in the process when a match is identified. This step is necessary for
retrieving the actual contents of the visual areas and producing the segmentation result.
The mapping procedure is trivial for Cluster Representatives themselves, as the mapping is
already a part of their stored structure.

In case of any other page that matches the cluster, the process is more complex. Again,
we have a set of visual areas of the matched Cluster Representative, the corresponding set
of Cluster Representative’s DOM nodes Dr and the mapping between the two sets. We
also have a content stored within set of nodes of the DOM tree of the incoming web page
Din. Because it’s impossible to directly adjust the mapping so it connects visual areas
with nodes of the incoming DOM tree, the only option is to replace nodes of the Cluster
Representative’s DOM tree with nodes of the incoming DOM tree in a working copy of the
mapping M . The first step in this process is to find an isomorphic mapping between the
two DOM trees in order to know which nodes of the Dr are to be replaced and which nodes
of the Din will be replacing them.

The tree-mapping problem for two DOM trees is quite complex in general, as many
examples demonstrate [43, 55]. However, as I explain in my previous work [64], this scenario
is very specific so it’s possible to introduce some simplifications. Most of them are based on
features of DOM trees that are stated in section 2.3.2.

The most important simplification, however, is that for purposes of locating the right
content within Din, the algorithm does not have to perform full node-to-node mapping.
Instead, it is sufficient to locate a subtree located at a specific node. The assumption
is that once the root is found, all descendant nodes correspond in both trees. To verify
this assumption, the mapping algorithm performs a validation of the found root node by
comparing the selected subtree of Din with the corresponding subtree in Dr.

The mapping algorithm can be divided into two steps. When a node belonging to Dr is
selected from the mapping M , the first step is to find the corresponding node within Din.
This step is called Node identification. Because the first step just select a node from the
tree Din, the mapping algorithm must then verify in step two that the selected node is the
right one.

Node identification

In this step the goal is to find the corresponding node in the DOM tree Din, having a node
from Dr as input. Because the number of nodes that are to be mapped can be potentially
very high, the main requirement for the node identification process is speed. There are also
some secondary requirements like uniqueness of results and reliability (i.e. the method must
return the corresponding node or nothing if the node is not found).

In this step, there is one key feature of DOM trees that is utilized and that is the order
preservation, i.e. the fact that order matters in DOM trees. Therefore it’s safe to consider
that DOM node of Din and a corresponding DOM node of Dr will be on the same position
within their siblings, the same applies for its parent and the same applies recursively up
to the root node of a DOM tree. The structure that utilizes this feature is called path of
positions. It is formalized in definition 25. Basically it’s a string of numbers that identifies
the path from DOM tree root to the searched node.

58

Definition 25 (Path of positions) Let the path of positions pn from root of given DOM
tree to a node in that DOM tree n be defined as a sequence :
pn = (p1, p2, . . . , pk) where 1 ≤ pi ≤ k is a position of a node withing its siblings. i is an
index designating a level of each node on the path in the DOM tree and k is a level of the
searched node n.

This representation is just the simplest form of the path of positions. While the tree
mapping algorithm is not concerned with verification in this phase, some degree of error
detection is desirable. A mechanism called feature fingerprinting is implemented for this
error detection. The path of positions extended by feature fingerprints is called path of
distinguished positions.

Feature fingerprint can be perceived as a combination of various attributes that DOM
nodes can have. These attributes can be either visual (like size or position of rendered
box corresponding to the DOM node), tree-based (e.g. tag name or value of any specific
attribute) or content-based (e.g. word count). Specific combination of these features can
be used to detect if each node on the path of positions is the one that is supposed to be
there. For example Hao et al. in [21] use combination of position within one level of the
tree combined with visual position and size.

While feature fingerprinting constitutes a good way to improve reliability of the node
identification process and uniqueness of its results, it is still not reliable enough so the need
for subtree verification in step two of the tree mapping process is still valid.

Considering the requirements for node identification, visual feature can be ruled out, as
calculating them would cause performance degradation of the entire process. One additional
requirement for the features that are used in fingerprints is for them to be as generic as
possible – it is pointless to use a feature that only a fraction of DOM nodes contain. That’s
why the final design uses another feature of DOM trees mentioned in section 2.3.2 and that
is the fact that each element in the HTML code has a name and therefore each node in the
pruned DOM tree has a label assigned to it that represents that name.

Definition 26 shows the fingerprint that is a part of node descriptor used in the path of
distinguished positions. It utilizes the DOM node label together with id attribute (if the
element in question has one) and the number of nodes on the level of the node (i.e. the
number of siblings including the node itself). The path of distinguished positions is then a
sequence of these descriptors as definition 27 describes.

Definition 26 (Node descriptor) Let dn be a descriptor of node n. The descriptor is
an 4-tuple dn = (pn, cntn, idn, lbln) where cntn and pn designate the total count of nodes
within the sibling array and the position of node in this array respectively and idn and lbln
represent feature-fingerprint of the node n.

Definition 27 (Path of distinguished positions) The path of distinguished positions dpn
from root of given DOM tree to a node in that DOM tree n is defined as a sequence of de-
scriptors :
pn = (d1, d2, . . . , dk) where di : 1 ≤ i ≤ k is a descriptor of a node that is on the path on
i-th level of the DOM tree hierarchy. k is a level of the searched node n.

Algorithm 5 demonstrates how the node is located within the incoming DOM tree. It
shows that the approach is really straightforward and therefore really fast. In fact, thanks
to utilizing the sibling order feature of DOM model, the time complexity of this algorithm

59

Algorithm 5 Locating DOM node using path of distinguished positions
1: function locateNode(Din, dp) . Din = (Nin, nr, Pin)
2: n← nr . n = (pn, Cn, An)
3: i← 0
4: if |dp| = 0 then
5: return n
6: end if
7: repeat
8: di ← dp[i] . di = (pi, cnti, idi, lbli)
9: if |Cn| 6= cnti then . test for sibling count match

10: return nil
11: end if
12: n1← Cn[pi] . n1 = (pn1, Cn1, An1)
13: if idi 6= nil ∧ (′id′, idi) /∈ An1 then . test for ID match
14: return nil
15: end if
16: if idi = nil ∧ ∃X : (′id′, X) ∈ An1 then . 2nd test for ID match
17: return nil
18: end if
19: if (′lbl′, lbli) /∈ An1 then . test for label match
20: return nil
21: end if
22: n← n1
23: i← i+ 1
24: until i < |dp|
25: return n
26: end function

is O(n) where n denotes the depth of the DOM tree. Conditions on lines 9, 13, 16 and 19
of the algorithm 5 also show that the algorithm also cares about reliability of results.

There are two ways how to make use of paths of distinguished positions. In practical
applications, they are most likely to be calculated during the construction of pruned DOM
tree and stored within DOM nodes themselves. Another option is to construct them after-
wards, using references to reduced DOM nodes as starting points. The algorithm to do that
is trivial, as it basically behaves like reversed algorithm 5.

Subtree verification

While feature fingerprinting is somewhat reliable, it has been clearly stated its that their
reliability is not 100%. There is a method for verification of the result that offers even
greater degree of reliability for most subtrees that can be located within a DOM tree. The
verification is based on simple premise that two nodes, each in a different DOM tree, are
equivalent if their content is equivalent (mostly in terms of its structure).

This premise comes back to the concept of templates where the core structure of two
web pages based on the same template is the same, therefore the position of all nodes
belonging to the template will be the same on both pages. This rule does not apply for the
actual content of the two web pages, as it is not part of the core template structure. For
the same reason the content of the two subtrees is not important for the verification, as

60

properly working segmentation algorithms do not select just parts of a content block to be
in a visual area. In this context, definition 28 is used as a formal specification of the subtree
equivalence.

Definition 28 (Subtree equivalence) The content of two nodes, each in a different DOM
tree, is considered equivalent if subtrees rooted at each of the two nodes are equivalent.

Because the resemblance between subtrees comparison and some template detection
algorithms is used to establish the content equivalence, it is possible to seek solution in the
area of template detection again. The solution resides in utilizing the same algorithm that
is already used in this thesis. The subtree equivalence is again determined using comparison
of path sets and the same modified version of the algorithm introduced by Gottron in [20]
is used.

While it would be theoretically possible to use this algorithm for every node on the path
of distinguished positions, the demands for both time and space complexity would be too
high to do that. That’s why this is only used to verify that the node identified in the first
step of the algorithm is the right one.

61

Chapter 8

Experimental Implementation

This chapter will provide the information that is not important for the designed segmenta-
tion algorithm but it clarifies some of the practical aspects of the proof of concept imple-
mentation that was used for experimental evaluation of the algorithm.

The experimental program was written in Java. That is the only way how to reliably
compare the algorithm with other algorithms in existence. The original VIPS algorithm[13]
is closed source and based on a proprietary library but there is an alternative available that
was written in Java and based on CSSBox. Writing the Box Clustering Segmentation in Java
and base it on CSSBox is very convenient for subsequent comparison, as some disturbing
influences like using different rendering core don’t have to be taken into account when
evaluating the results. Besides that, CSSBox also provides a great amount of information
about structure of the rendered page that other engines either don’t provide at all or they
have to be worked around to get the information.

The implementation will be now analyzed component by component, using the system
component diagram (figure 5.3) as a reference. For every component the specifics that differ
significantly from the design laid down in previous sections will be closely explained and the
difference justified.

The architecture represented by the component diagram starts with URL selector. In
practical implementation, this component uses three lists of URLs instead of one. While
the list (used as queue) of URLs scheduled for processing would be sufficient, it’s also a
good idea to include a list of visited URLs. Because pages within web sites are deeply
interconnected by hyperlinks, the crawler might start looping, never to inspect the entire
site (or go out of a small set of interlinked web pages for that matter). The third list used
is for URLs that go out of the web site. This has practical implications that will be covered
in the text below.

For the next two components in the chain (URL fetcher and DOM parser), the reference
implementation uses functionality offered by Java language itself. Since there is nothing
special about these tasks, it is possible to use the standard Java library.

The subsequent processing, however, diverges from the schema in figure 5.3. The di-
vergence is shown in figure 8.1. In the original schema, the DOM tree is passed as in-
put to two components –URL extractor and template comparator. However, as algorithm
3 demonstrates, template comparator actually needs pruned DOM tree to compare it to
stored Cluster Representatives. Considering the wider context, it means that two traversals
through the DOM tree are required. To save some computation time, it’s convenient to
traverse through the tree just once and extract both of the information at the same time.

62

That’s exactly what DOM browser does. Because it’s just an implementation detail, it is
not included in the schema in figure 5.3.

8.1 Template clustering specifics

Figure 8.1: DOM browser

In the next step the pruned DOM tree is compared to the templates that are stored in the
database. The reference implementation has some specifics here as well. OrientDB 1 is used
as database engine for the template storage. It is object-oriented database with persistent
storage. That means the data is stored on disk. The problem is that searching the data on
the disk is too slow and comparing all Cluster Representatives with the incoming pruned
DOM tree would have a significant performance impact, one that would marginalize benefits
of the entire template clustering, especially with higher numbers of templates stored in the
database. Therefore a subset of the data has to be loaded to memory. The pre-selecting
technique described in section 7.4 was designed specifically to address this issue. Before a
web site processing starts, all the templates that belong to that web site are loaded into
memory and that in-memory instance is used from that point until the site is processed.

This is where the third queue of URLs is important. It is used specifically for the crawler
to stay on one web site for as long as possible. Performed measurements confirm that loading
the data from the database is slower by as much as several orders of magnitude compared
to the in-memory processing. Using the queue of outbound links makes sure the data has
to be loaded only so many times which further improves the performance of the algorithm.

Another important implementation detail is that every piece of data described in section
7.2 is stored in the database, no computation has to be performed on the data once it’s
stored in the database. Even the mapping relation M is stored as a set of references to
other objects, which makes the implementation quite fast: once the data is loaded from the
database, all object references are loaded as well and traversing through the data is very
simple.

1http://www.orientechnologies.com/orientdb/

63

8.2 Box Clustering specifics

The implementation of the Box Clustering Segmentation matches the detailed description
given in chapter 6. There are just a few remarks that are worth mentioning, as they were
not important in that chapter but are useful in a real world application.

The first thing to note is creation of mapping between clusters and DOM nodes. That
is quite simple, as each cluster carries references to all boxes that are within it and each box
has a reference to the DOM node which produced it. This is a feature of CSSBox and while
the BCS algorithm internally uses its own structures to represent boxes, the reference to the
DOM node is preserved there. In effect, the mapping is transparently moved from CSSBox
all the way to Cluster Representatives, no further adjustments are made by the program.

Going through the process of Box Clustering Segmentation, the first step is cluster
creation. One thing that was not mentioned in section 6.1 is that CSSBox produces some
faulty boxes. These can be for example boxes with no content and not actually existing on
the page or boxes which have coordinates placing the box outside of the page. There are
some heuristics in the reference implementation that try to find these and filter them out
but occasionally these boxes are missed by the heuristics and the segmentation results are
then distorted.

Connection creation and similarity calculation are straightforward and no traps are there.
Then there is the clustering step. Because the definitions in section 6.7 are declarative, the
imperative nature of the algorithm is somewhat hidden. In reality, the algorithm uses a
structure called list of relations which can be described as the set of edges in a graph, en-
hanced with some extra information to save computational time. This information includes
pieces like cardinality and direction of each edge and similarity of the connected boxes. To
ensure that the order of elements in the list is correct, a sorting operation has to be per-
formed in every iteration of the clustering algorithm. This brings the performance down
quite a bit. The edge pruning demonstrated in figure 6.2 was devised specifically to reduce
the effect of the sort operation. Measurements showed that building the relation set using
only the limited set of boxes improves the performance of the entire BCS by approximately
30%.

Another potential performance issues are brought by the fact that a lot of testing for
overlap happens during the entire clustering process, especially when extending the cluster
to accommodate overlapping boxes. To make this process as efficient as possible, an external
library was used to perform the overlap testing. The library is called Java Spatial Index
Library 2) and it is open source, licensed under LGPLv2. The library uses R-Tree structures
so its implementation is quite efficient.

2http://sourceforge.net/projects/jsi/

64

Chapter 9

Evaluation

This chapter will summarize and evaluate various aspects of the proposed segmentation
algorithm and it will compare it with the VIPS algorithm which is still the most widely
used segmentation algorithm. Both the quality of results and the performance boost will be
evaluated here; the data presented is the same as it is in the original paper[65].

Experimental type of evaluation is the most suitable, as the time complexity analysis
does not offer clear picture. The complexity of the BCS algorithm is polynomial, with
asymptote at O(n4) where n designates the number of boxes on the web page. However
that case is so extreme that it cannot be encountered on real life web pages. The actual
computational time is so dependent on all visual attributes of individual boxes that it
cannot be determined. The problem is that the the number of boxes does not influence
the computational time that much, the visual attributes are at least equally important and
no single one of them can be taken as one attribute of the time complexity evaluation.
Making the asymptote a function of all these attributes would make the comparison to
other algorithms impractical. The experimental comparison therefore offers a better way
how to compare the proposed algorithm with existing solution.

This chapter provides comparison with the VIPS algorithm. The implementation used
here was written as master’s thesis by Tomáš Popela [42] and it was designed specifically
for the purpose of this comparison. That implies two things: it was written in Java and
it uses the CSSBox as the rendering core. That way it’s possible to make a safe compari-
son – otherwise the results would be influenced by both runtime environment and different
results provided by the rendering core. The VIPS implementation is in compliance with the
algorithm as described in [13].

9.1 Template Count

One of the key points of the template clustering described in chapter 7 is to make the
algorithm as scalable as possible. However the entire concept is based on the assumption
that the number of templates on one web site is very small compared to the total number
of pages generated using these templates. Another important assumption was that at a
certain point the number of templates does not grow any more and in general it grows only
very slowly in comparison with the number of pages inspected.

Most of the performance experiments in following sections are performed on a set of 500
inspected web pages. To demonstrate how many templates are registered by the system for
the web site after the inspection of 500 web pages, table 9.1 presents template count for the

65

web sites that will occur in further evaluations. Also to better illustrate how much does
template clustering help in the process of segmentation, it also contains the information
about hit ratio. The number there specifies what is the percentage of pages that didn’t have
to be processed by the segmentation algorithm and their content was instead retrieved via
the isomorphic mapping.

One important observation was made during the testing: when the site is inspected for
the first time, most of the templates are discovered quite early in the process. If the number
of processed web pages was increased from 500 to 1000, the number of detected templates
rose in two extreme cases by more than 33% but in all other cases by less than 22%. This
demonstrates a logarithmic growth of the cluster set size, leading to confirmation of all
the assumptions stated above. Figure 9.1 graphically demonstrates the growth of template
count with raising number of inspected pages within a single site. It confirms that the
number of templates discovered on a single site converges fast to a relatively small number.

site template count hit ratio
businessinsider.com 10 98%
e15.cz 25 95%
fedora.cz 20 96%
gizmodo.com 3 99.4%
idnes.cz 50 90%
lidovky.cz 33 93.4%
novinky.cz 22 95.6%
slashdot.org 18 96.4%
telegraph.co.uk 42 91.6%
reuters.com 37 92.6%
yahoon news 56 88.8%

Table 9.1: Template counts for different sites

9.2 Evaluation of the BCS

BCS is direct competitor of VIPS, it will be therefore evaluated against it. The following
criteria are important in the comparison.

• performance of each algorithm

• accuracy of segmentation results

• stability of each algorithm

• general usability of results

In order not to run test separately for each of the tested criteria, the following sequence
of actions is performed for every tested web page.

1. render the page, get the rendering tree

2. let a user create reference segmentation of the web page.

66

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400 500 600 700 800 900 1000

T
em

pl
at

es
 fo

un
d

Pages processed

businessinsider.com
e15.cz

fedora.cz
gizmodo.com

idnes.cz
lidovky.cz

novinky.cz
reuters.com
slashdot.org

telegraph.co.uk
yahoo

Figure 9.1: The dependency of cluster count on page count

3. run each algorithm ten times on that rendering tree, each time with different value of
CT/PDoC

4. measure accuracy of the algorithm in each run

5. compute the mean run time of each algorithm

6. compare run times and the accuracy of results

Let’s designate the algorithm to be stable if the quality of its results is stable across
different web pages. In that context, it’s necessary to pick the right web pages on which
the segmentation is going to be performed. To test stability thoroughly, a wide variety of
different layouts needs to be selected for segmentation. Several layout types of web pages
are considered:

• Complex index pages – pages like news indexes are characterized as highly complex
and strongly structured. There are multiple logical areas on the page, each covering
different topic or announcing different article. On top of that, every area consists of a
small number of elements. Another characteristic is that there are often patterns on
these pages, as all the articles are displayed using the same template.

67

• Articles – pages like these contain one main block of text, usually consisting of multiple
paragraphs. Besides this one big block, there are some smaller areas that are usually
related to navigation and some small pieces of generic information (like contact or
news on company web sites).

• Simple web pages – this is a good example of some minimalistic web pages, usually
educational ones. The main characteristics of web pages like these is a minimal amount
of logical areas with varying number of boxes constituting them.

For the evaluation of BCS, a dataset of real web pages containing all the mentioned page
types was created. In this dataset, there are 8 different types of pages from 5 news web
sites. These pages are listed in all the tables below. Note that the businessinsider.com and
yahoo news sites don’t use paging and it was therefore not possible to statistically process
their respective index pages. A set of 100 pages of every type was collected. That makes
800 pages in total. Then, three volunteers independently created a reference segmentation
for every page from the set. In total, that makes 2400 annotated pages from the three
volunteers. To facilitate the work of the volunteers and to ensure consistent segmentation
of all pages of each of the eight types by a single volunteer, we have used a semi-automatic
segmentation tool. This approach is based on the fact that all the pages of the same type
share the same template that is used for generating their HTML code. The tool lets the
user segment one page and then maps the segmentation results to the other 99 pages of the
same type and lets the user verify the correctness of that mapping for each page.

As for the usability, this thesis compares how usable is the format of results by any
application that wants to use the results for further processing. This will be discussed in
one of the subsections below.

9.2.1 Performance

Table 9.2 demonstrates the first part of the algorithm evaluation – the run times of both
algorithms. As explained above, multiple web page types are represented in the table. As
the table 9.2 demonstrates, the BCS algorithm is superior to the VIPS in terms of time
necessary to process a web page. This difference gets bigger with decreasing complexity of
evaluated web page.

page VIPS time BCS time
businessinsider.com (article) 522ms 20ms

idnes.cz (index) 1079ms 39ms
idnes.cz (article) 723ms 53ms
novinky.cz (index) 28126ms 699ms
novinky.cz (article) 390ms 18ms
reuters.com (index) 475ms 15ms
reuters.com (article) 442ms 37ms
yahoo news (article) 342ms 21ms

Table 9.2: Algorithm run time comparison

9.2.2 Accuracy, stability and usability

Evaluating the accuracy is more complex. In statistical analysis in general, F-score is a
common way how to evaluate accuracy. However, no method commonly used specifically

68

for evaluating the accuracy of segmentation algorithms was found in the literature. In [28],
the F-score is used but the underlying method for matching segments is only very crude. It
matches the textual content of detected segments to the textual content of the anticipated
ones. There is, however, an alternative that we can use. As this thesis proposes, the page
segmentation task, regardless of how it’s performed, is basically a clustering task – each
segment being a cluster of page elements and the page as a whole being clustering. In data
clustering, Adjusted Rand Index (ARI) [23] is being used to measure similarity between two
clusterings.

Due to the lack of existence of commonly accepted reliable method for segmentation
accuracy evaluation, both the F-score and ARI are being used in this evaluation. The
evaluation is based on visual perception of detected segments. That visual perception can
be understood as interpretation of what does ideally segmented page look like. Each box in
such page is assigned to at most one visual area, there are no areas on the page containing no
boxes and no areas overlap. Moreover, each visual area has to meet a semantic condition: the
boxes in the area have to constitute one unit of content that is coherent visually, semantically
or (preferably) both. The method description follows. For better orientation, note that
the following text distinguishes detected areas and selected areas. While the former one
designates an area detected by the tested algorithm, the latter one refers to an area that is
manually selected by human observer.

• initialize the ARI contingency table by zeros

• manually mark all selected areas on the web page that meet the semantic condition

• for each detected area:

1. find “detected” boxes: all rendered boxes that intersect with the detected area

2. find all selected areas that share at least one box with the detected area

3. for each such selected area:

(a) find “selected” boxes: all rendered boxes that intersect with the selected area
(b) calculate precision and recall using sets of “detected” and “selected” boxes
(c) fill the line in the ARI contingency table that corresponds to the “detected”

area

• if there are any selected areas that do not share boxes with any detected areas, set
the recall value for each of them to 0

• calculate sums in the ARI contingency table

• calculate ARI and F-Score for the web page

This sequence is repeated for every segmentation result (with varying Threshold and PDoC)
and for every manual selection of visual areas available for the evaluation.

To evaluate stability, we will use the results of accuracy evaluation.

Accuracy and stability

Table 9.3 shows F-score and ARI comparison of BCS and VIPS. For each comparison, the
best respective values of both algorithms were chosen. The F-score value is a real number

69

page BCS ARI VIPS ARI BCS F VIPS F
businessinsider.com (a) 0,5704 0,7010 0,6345 0,7394

idnes.cz (article) 0,6629 0,7240 0,5570 0,5720
idnes.cz (index) 0,5954 0,7926 0,5522 0,7259

novinky.cz (article) 0,7670 0,7877 0,6446 0,7191
novinky.cz (index) 0,5303 0,9121 0,4265 0,9043
reuters.com (article) 0,6123 0,6786 0,5914 0,6943
reuters.com (index) 0,5832 0,8160 0,5145 0,7569
yahoo news (article) 0,7556 0,5626 0,7102 0,5446

Table 9.3: Algorithm accuracy comparison using the ARI and F-score metrics
between 0 and 1, where higher values are better. ARI score is between -1 and 1, higher
values are better.

The results show that the accuracy of VIPS is slightly better, especially when processing
structured pages. The reason is that BCS is too aggressive when creating clusters, thus
effectively overlooking the structure. VIPS on the other hand does much better job in
finding repeating patterns in the web page. When processing pages with less structure, the
accuracy of BCS and VIPS is comparable, in some cases BCS is even better than VIPS.

Stability of both algorithms was calculated using the same data that was used to populate
table 9.3. The stability was calculated for each page type in each web site. As such, each
number in table 9.4 represents the stability of BCS across multiple instances of the same
page (i.e. different pages with the same template but different content in that template).

page BCS ARI VIPS ARI BCS F VIPS F
businessinsider.com (a) 0,1275 0,1740 0,0358 0,0721

idnes.cz (article) 0,0646 0,0766 0,0424 0,0794
idnes.cz (index) 0,0733 0,0078 0,0108 0,0070

novinky.cz (article) 0,1274 0,1406 0,0404 0,0731
novinky.cz (index) 0,0529 0,0140 0,0558 0,0219
reuters.com (article) 0,1316 0,1687 0,0301 0,0847
reuters.com (index) 0,0328 0,0516 0,0203 0,0336
yahoo news (article) 0,2089 0,1658 0,1000 0,0539

Table 9.4: Algorithm stability comparison: Standard deviation of the results in the dataset

Again, both algorithms are comparable. In some cases the stability of BCS is almost
three times better than that of VIPS, in others, it’s exactly the opposite. Not looking
at the degree of superiority, the stability of BCS is better in 5 data sets, i.e. 62.5% of
measurements.

Usability

One problem remains in the evaluation system presented above and that is the hierarchy of
visual area presented by VIPS. Note that this complication helps to prove that flat structure
of results is much more usable for further processing. To eliminate the ambiguity that the
hierarchy presents, only the leaf areas of the hierarchy will be used for the evaluation.

To better demonstrate the advantage of the flat output of BCS in the evaluation process,
the difference between the two output models is displayed in figure 9.2. The BCS flat model

70

is quite straightforward – it is just a set of groups, each of which can be further processed right
away. The VIPS tree model on the other hand is not that simple. Figure 9.2 visualizes the
different levels of the output tree with different shades of gray and the internal consistency
level by numbers in the leaf areas. It may be understandable for a human observer; however,
in context of an automatic processing, one needs to perform a subsequent analysis of the
segmented result to select the right area set. The simplification of picking only the leaf
nodes of the tree is the only viable alternative. For that reason, it’s possible to consider the
flat model being the most distinct advantage of BCS when compared to VIPS and other
hierarchy-producing algorithms.

Figure 9.2: Output model comparison: a) VIPS tree model and b) BCS flat model

9.3 Evaluation of BCS with template clustering

The general evaluation focuses on running the proposed method on small chunks of web
sites that were presented in section 9.1. The comparison is between the algorithm combining
both Box Clustering Segmentation and template clustering and the plain VIPS algorithm.
The crawler is given the URL presented in column site as a starting point. Since the link
extraction is deterministic, the set of pages that the evaluation was performed on remains
the same. To reduce the risk of processing completely different content, night hours were
chosen to perform the test, as the content of the web sites does not change too much at this
time.

The test consisted of running segmentation on 500 web pages and calculating total time
it took to perform the segmentation. Equally to the performance test in section 9.2, the
timers here were also embedded in the code, so only the real time of segmentation was
counted.

Table 9.5 shows the results of the test. The last column of the table is the most in-
formative one. The results clearly say that in the use case of multi page segmentation,
the proposed method is on average more than 80 percent more efficient than plain VIPS.
In combination with results described in previous section, it’s visible that the difference in
efficiency is directly correlated with the simplicity of the web site – both in terms of layout
simplicity and site structure simplicity (i.e. the number of templates used).

71

site VIPS BCS + template clustering savings
businessinsider.com 1 538 298ms 33 741ms 97,81%
idnes.cz 1 173 891ms 262 486ms 77,64%
novinky.cz 350 613ms 21 791ms 93,78%
reuters.com 882 502ms 38 752ms 95,61%
yahoo news 1 307 889ms 40 955ms 96,87%
e15.cz 669 041ms 37 939ms 94,33%
fedora.cz 740 950ms 16 836ms 97,73%
gizmodo.com 932 351ms 31 816ms 96,59%
lidovky.cz 759 109ms 81 828ms 89,22%
slashdot.org 1 990 743ms 53 739ms 97,30%
telegraph.co.uk 3 490 337ms 1 080 180ms 69,05%

Table 9.5: Performance of the proposed algorithm

72

Chapter 10

Conclusion

The proposed method can be used in real life applications as a preprocessor of the content
on the World Wide Web. Obviously the method offers the greatest potential when used in
unsupervised high volume preprocessing. In this context, it means processing thousands of
web pages as a stream of data. In these volumes, even a small relative performance boost
is significant in absolute numbers. The significance of performance boost this thesis offers
is even higher. Even when web pages are not processed in such high volumes, the boost is
considerable.

As for precision of the Box Clustering Segmentation algorithm, this thesis demonstrates
that the results are comparable to the most commonly used existing method –VIPS. In
some cases the precision of BCS algorithm is even better while its stability is slightly better
in general.

Some issues of the proposed method remain when segmenting large and complex web
pages. Considering the targeted use case, their impact can be perceived as marginal, as the
complex web pages usually serve as guide posts, with minimal amount of useful content. If
the significance of such pages was higher, there are techniques how to enhance the proposed
method to overcome this problem.

10.1 Summary of Contributions

The proposed method presents a completely fresh perspective on the web page segmentation
task. The main contributions contained in this thesis include:

1. Performance superiority: the segmentation method proposed in this thesis performs
better on every level when compared to current algorithms. The combination of these
individual levels multiplies the performance benefit.

2. Quality of result: while the overall quality of results is comparable, there are some
aspects that make Box Clustering Segmentation better than the rest. Using the flat
model for results is much more convenient for consumers of these results, as no further
post-processing is required. Better handling of some web pages is also one of the
significant contributions this thesis makes.

3. Pure vision-based method: even though previous methods claimed to be vision based,
this is, to the best knowledge of the author, the first method that is really based
purely on visual cues. This contribution is most significant on highly dynamic web
pages where other cues, such as DOM tree features, might be highly misleading.

73

4. Re-usability: the fact that the Box Clustering Segmentation segmentation algorithm
is not tightly bound to the DOM model implies that it can be used for other document
types, if there is a convenient parser that provides the right input to the segmentation
algorithm.

5. Boost of segmentation methods in general: the template clustering approach not being
tightly bound to the Box Clustering Segmentation presents a way how to significantly
improve the performance of all vision-based segmentation algorithms in the field.

Aside from these main contributions, this thesis offers some that are more general but
almost equally important.

1. Practical application: we rarely want to segment just one page and never visit it again.
While the existing methods focus on this only task, this thesis provides more complex
view of the segmentation problem. When considering the big picture (i.e. how is the
algorithm likely to be used), the design of the methods shifts to address the specific
needs of targeted use cases.

2. New research areas: this thesis proofs that clustering techniques can be successfully
used at different levels of the web page preprocessing. While there was some existing
work in the area before, the author is not aware of any comprehensive research on
this topic. The research provided in this thesis can serve as a base for future scientific
work in this area.

3. Connection of two different research areas: to author’s best knowledge, this thesis is
the first one that combines web page segmentation with template detection to get the
benefits of both while minimizing their drawbacks.

Finally, one of the contributions of this thesis is a working implementation of both
techniques described in this thesis. The architecture of this implementation allows simple
utilization of each part separately.

10.2 Possible Improvements and Future Work

The most obvious area that needs to be improved is the segmentation of complex web pages
that don’t contain any larger continuous regions. One way to address this is to pay attention
to more visual cues, as the subset that the algorithm now uses is quite minimal.

Another way that has a potential to improve segmentation result on complex pages is
pattern analysis. Most of these complex web pages consist of large number of boxes that
are organized in patterns so their identification has a lot of potential. Naturally, this will
have impact on all web pages, not just the complex ones.

The last potential area of research is adaptive segmentation. Such approach would mean
to perform a preliminary scan of a page and then application of different algorithms or at
least algorithm parameters on different parts of the web page. This would improve results
on those web pages where the layout complexity varies in different areas (e.g. some structure
at the top of the page, solid content in the middle and complex footer).

74

Bibliography

[1] Hamed Ahmadi and Jun Kong. User-centric adaptation of web information for small
screens. Journal of visual languages & computing, 23(1):13–28, 2012.

[2] Elgin Akpinar and Yeliz Yesilada. Vision based page segmentation: Extended and
improved algorithm. Technical Report eMINE Technical Report Deliverable 2 (D2),
Middle East Technical University, Ankara, Turkey, 2012.

[3] M. Elgin Akpinar and Yeliz Yesilada. Vision based page segmentation algorithm:
Extended and perceived success. In Revised Selected Papers of the ICWE 2013
International Workshops on Current Trends in Web Engineering - Volume 8295,
pages 238–252, New York, NY, USA, 2013. Springer-Verlag New York, Inc.

[4] Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. Temex: The web
template extractor. In Proceedings of the 24th International Conference on World
Wide Web, WWW ’15 Companion, pages 155–158, New York, NY, USA, 2015. ACM.

[5] Derar Alassi and Reda Alhajj. Effectiveness of template detection on noise reduction
and websites summarization. Information Sciences, 219:41 – 72, 2013.

[6] Sadet Alcic and Stefan Conrad. Page segmentation by web content clustering. In
Proceedings of the International Conference on Web Intelligence, Mining and
Semantics, WIMS ’11, pages 24:1–24:9, New York, NY, USA, 2011. ACM.

[7] David Alman. Industrial colour-difference evaluation. Technical report, Internation
Commission on Illumination, 1995.

[8] Ziv Bar-Yossef and Sridhar Rajagopalan. Template detection via data mining and its
applications. In Proceedings of the 11th international conference on World Wide Web,
WWW ’02, pages 580–591, New York, NY, USA, 2002. ACM.

[9] Jayendra Barua, Dhaval Patel, and Ankur Kumar Agrawal. Removing noise content
from online news articles. In Proceedings of the 20th International Conference on
Management of Data, COMAD ’14, pages 113–116, Mumbai, India, India, 2014.
Computer Society of India.

[10] Bert Bos, Tantek Celik, Ian Hickson, and Håkon Wium Lie. Cascading style sheets
level 2 revision 1 (CSS 2.1) specification. W3C Recommendation, June 2011.

[11] Zhan Bu, Chengcui Zhang, Zhengyou Xia, and Jiandong Wang. An far-sw based
approach for webpage information extraction. Information Systems Frontiers,
16(5):771–785, 2014.

75

[12] Radek Burget. Visual area classification for article identification in web documents.
In Proceedings of the 2010 Workshops on Database and Expert Systems Applications,
DEXA ’10, pages 171–175, Washington, DC, USA, 2010. IEEE Computer Society.

[13] Deng Cai, Shipeng Yu, Ji rong Wen, and Wei ying Ma. VIPS: a vision-based page
segmentation algorithm. Microsoft technical report MSR-TR-2003-79, November
2003.

[14] Michael Cormier, Karyn Moffatt, Robin Cohen, and Richard Mann. Purely
vision-based segmentation of web pages for assistive technology. Computer Vision and
Image Understanding, 2016, 2016.

[15] Hassan F. Eldirdiery and A. H. Ahmed. Detecting and removing noisy data on web
document using text density approach. International Journal of Computer
Applications, 112(5):32–36, February 2015.

[16] Fabio Fumarola, Tim Weninger, Rick Barber, Donato Malerba, and Jiawei Han.
Extracting general lists from web documents: A hybrid approach. In Proceedings of
the 24th International Conference on Industrial Engineering and Other Applications
of Applied Intelligent Systems Conference on Modern Approaches in Applied
Intelligence - Volume Part I, IEA/AIE’11, pages 285–294, Berlin, Heidelberg, 2011.
Springer-Verlag.

[17] Bo Gao and Qifeng Fan. Multiple template detection based on segments. In Advances
in Data Mining. Applications and Theoretical Aspects, pages 24–38. Springer, 2014.

[18] Tali Garsiel. How browsers work: behind the scenes of modern web browsers.
http://taligarsiel.com/Projects/howbrowserswork1.htm, October 2009.

[19] David Gibson, Kunal Punera, and Andrew Tomkins. The volume and evolution of
web page templates. In Special interest tracks and posters of the 14th international
conference on World Wide Web, WWW ’05, pages 830–839, New York, NY, USA,
2005. ACM.

[20] Thomas Gottron. Bridging the gap: from multi document template detection to
single document content extraction. In Proceedings of the IASTED International
Conference on Internet and Multimedia Systems and Applications, EuroIMSA ’08,
pages 66–71, Anaheim, CA, USA, 2008. ACTA Press.

[21] Qiang Hao, Rui Cai, Yanwei Pang, and Lei Zhang. From one tree to a forest: a
unified solution for structured web data extraction. In Proceedings of the 34th
international ACM SIGIR conference on Research and development in Information
Retrieval, SIGIR ’11, pages 775–784, New York, NY, USA, 2011. ACM.

[22] Jer Lang Hong, Eu-Gene Siew, and Simon Egerton. Information extraction for search
engines using fast heuristic techniques. Data Knowl. Eng., 69(2):169–196, February
2010.

[23] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification,
2(1):193–218, 1985.

76

http://taligarsiel.com/Projects/howbrowserswork1.htm

[24] K. Jiang and Y. Yang. Noise reduction of web pages via feature analysis. In
Information Science and Control Engineering (ICISCE), 2015 2nd International
Conference on, pages 345–348, April 2015.

[25] V Kalaivani and K Rajkumar. Reappearance layout based web page segmentation for
small screen devices. International Journal of Computer Applications, 49(20), 2012.

[26] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. Boilerplate detection
using shallow text features. In Proceedings of the Third ACM International
Conference on Web Search and Data Mining, WSDM ’10, pages 441–450, New York,
NY, USA, 2010. ACM.

[27] J. Kong, O. Barkol, R. Bergman, A. Pnueli, S. Schein, K. Zhang, and C. Zhao. Web
interface interpretation using graph grammars. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 42(4):590–602, July 2012.

[28] RA Kreuzer, Jurriaan Hage, and Ad Feelders. A quantitative comparison of semantic
web page segmentation algorithms. Master’s thesis, Universiteit Utrecht, Faculty of
Science, 2013.

[29] S. S. Krishna and J. S. Dattatraya. Schema inference and data extraction from
templatized web pages. In Pervasive Computing (ICPC), 2015 International
Conference on, pages 1–6, Jan 2015.

[30] AH Kulkarni and BM Patil. Template extraction from heterogeneous web pages with
cosine similarity. International Journal of Computer Applications, 87(3):5, 2014.

[31] Harshal H Kulkarni and Manasi K Kulkarni. Template extraction from heterogeneous
web pages. International Journal of Electrical, Electronics and Computer
Engineering, 4(1):125, 2015.

[32] Kaushal Kumar and Fungayi Donewell Mukoko Abhaya. Pagerank algorithm and its
variations: A survey report. IOSR Journal of Computer Engineering (IOSR-JCE),
14(1):38–45, 2013.

[33] Eduardo Sany Laber, Críston Pereira de Souza, Iam Vita Jabour, Evelin
Carvalho Freire de Amorim, Eduardo Teixeira Cardoso, Raúl Pierre Rentería,
Lúcio Cunha Tinoco, and Caio Dias Valentim. A fast and simple method for
extracting relevant content from news webpages. In Proceedings of the 18th ACM
conference on Information and knowledge management, CIKM ’09, pages 1685–1688,
New York, NY, USA, 2009. ACM.

[34] Long Li, An Min Zhou, Yong Fang, Liang Liu, and Qian Wu. An improved
VIPS-based algorithm of extracting web content. In Material Science, Civil
Engineering and Architecture Science, Mechanical Engineering and Manufacturing
Technology II, volume 651 of Applied Mechanics and Materials, pages 1806–1810.
Trans Tech Publications, 11 2014.

[35] Wei Liu, Xiaofeng Meng, and Weiyi Meng. ViDE: A vision-based approach for deep
web data extraction. IEEE Trans. on Knowl. and Data Eng., 22(3):447–460, March
2010.

77

[36] Xinyue Liu, Hongfei Lin, and Ye Tian. Segmenting webpage with gomory-hu tree
based clustering. Journal of Software, 6(12):2421–2425, 2011.

[37] Erik Lundgren, Panagiotis Papapetrou, and Lars Asker. Extracting news text from
web pages: An application for the visually impaired. In Proceedings of the 8th ACM
International Conference on PErvasive Technologies Related to Assistive
Environments, PETRA ’15, pages 68:1–68:4, New York, NY, USA, 2015. ACM.

[38] M. R. Luo, G. Cui, and B. Rigg. The development of the cie 2000 colour-difference
formula: Ciede2000. Color Research and Application, 26(5):340–350, 2001.

[39] Tomohiro Manabe and Keishi Tajima. Extracting logical hierarchical structure of
html documents based on headings. Proceedings of the VLDB Endowment,
8(12):1606–1617, 2015.

[40] T. H. Nelson. Complex information processing: a file structure for the complex, the
changing and the indeterminate. In Proceedings of the 1965 20th national conference,
ACM ’65, pages 84–100, New York, NY, USA, 1965. ACM.

[41] Jakob Nielsen. User interface directions for the web. Commun. ACM, 42(1):65–72,
January 1999.

[42] Tomáš Popela. Implementace algoritmu pro vizuální segmentaci www stránek.
Master’s thesis, Brno University of Technology, Faculty of Information Technology,
2012.

[43] D. C. Reis, P. B. Golgher, A. S. Silva, and A. F. Laender. Automatic web news
extraction using tree edit distance. In Proceedings of the 13th international conference
on World Wide Web, WWW ’04, pages 502–511, New York, NY, USA, 2004. ACM.

[44] Waseem Safi, Fabrice Maurel, Jean-Marc Routoure, Pierre Beust, and Gaël Dias. A
Hybrid Segmentation of Web Pages for Vibro-Tactile Access on Touch-Screen Devices.
In 3rd Workshop on Vision and Language (VL 2014) associated to 25th International
Conference on Computational Linguistics (COLING 2014), pages 95 – 102, dublin,
Ireland, Aug 2014.

[45] A. Sanoja and S. Gançarski. Block-o-matic: A web page segmentation framework. In
Multimedia Computing and Systems (ICMCS), 2014 International Conference on,
pages 595–600, April 2014.

[46] Stanley M Selkow. The tree-to-tree editing problem. Information processing letters,
6(6):184–186, 1977.

[47] Abhay Sharma. Understanding Color Management. Graphic Design/Interactive
Media Series. Thomson/Delmar Learning, 2004.

[48] Aditi Sharma, Nishtha Adhao, and Anju Mishra. A survey: Static and dynamic
ranking. International Journal of Computer Applications, 70(14), 2013.

[49] Dilip Kumar Sharma and AK Sharma. A comparative analysis of web page ranking
algorithms. International Journal on Computer Science and Engineering,
2(08):2670–2676, 2010.

78

[50] Shengsheng Shi, Chengfei Liu, Yi Shen, Chunfeng Yuan, and Yihua Huang. Autorm:
An effective approach for automatic web data record mining. Knowledge-Based
Systems, 89:314–331, 2015.

[51] Dandan Song, Fei Sun, and Lejian Liao. A hybrid approach for content extraction
with text density and visual importance of dom nodes. Knowledge and Information
Systems, 42(1):75–96, 2015.

[52] Mark MCCAHILL Tim BERNERS-LEE, Larry MASINTER. Rfc 1738.
http://tools.ietf.org/html/rfc1738, December 1994.

[53] E. Uzun, H. V. Agun, and T. Yerlikaya. Web content extraction by using decision
tree learning. In 2012 20th Signal Processing and Communications Applications
Conference (SIU), pages 1–4, April 2012.

[54] Erdinç Uzun, Hayri Volkan Agun, and Tarık Yerlikaya. A hybrid approach for
extracting informative content from web pages. Information Processing &
Management, 49(4):928 – 944, 2013.

[55] Gabriel Valiente. An efficient bottom-up distance between trees. In Proceedings of the
8th International Symposium of String Processing and Information Retrieval, pages
212–219. Press, 2001.

[56] Anne van Kesteren, Aryeh Gregor, Alex Russell, and Robin Berjon. W3c dom4. W3C
Recommendation, November 2015.

[57] Karane Vieira, André Luiz Costa Carvalho, Klessius Berlt, Edleno S. Moura,
Altigran S. Silva, and Juliana Freire. On finding templates on web collections. World
Wide Web, 12(2):171–211, June 2009.

[58] T. Wei, Y. Lu, X. Li, and J. Liu. Web page segmentation based on the Hough
transform and vision cues. In 2015 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA), pages 865–872. IEEE, 2015.

[59] Daiyue Weng, Jun Hong, and David A. Bell. Extracting data records from query
result pages based on visual features. In Advances in Databases: 28th British National
Conference on Databases, BNCOD 28, Manchester, UK, July 12-14, 2011, Revised
Selected Papers, pages 140–153, Berlin, Heidelberg, 2011. Springer.

[60] Daiyue Weng, Jun Hong, and David A. Bell. Automatically annotating structured
web data using a svm-based multiclass classifier. In Web Information Systems
Engineering – WISE 2014: 15th International Conference, Thessaloniki, Greece,
October 12-14, 2014, Proceedings, Part I, pages 115–124, Cham, 2014. Springer
International Publishing.

[61] Yu-Chieh Wu. Language independent web news extraction system based on text
detection framework. Information Sciences, 342:132 – 149, 2016.

[62] Zhen Xu and James Miller. Identifying semantic blocks in web pages using gestalt
laws of grouping. World Wide Web, pages 1–22, 2015.

79

http://tools.ietf.org/html/rfc1738

[63] Lan Yi, Bing Liu, and Xiaoli Li. Eliminating noisy information in web pages for data
mining. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’03, pages 296–305, New York, NY, USA,
2003. ACM.

[64] Jan Zeleny and Radek Burget. Isomorphic mapping of dom trees for cluster-based
page segmentation. In Proceedings of the Twelfth International Conference on
Informatics INFORMATICS’2013, INFORMATICS ’13, 2013.

[65] Jan Zeleny, Radek Burget, and Jaroslav Zendulka. Box clustering segmentation: A
new method for vision-based web page preprocessing. Information Processing and
Management, 2017.

[66] Jun Zeng, Brendan Flanagan, Sachio Hirokawa, and Eisuke Ito. A web page
segmentation approach using visual semantics. IEICE Transactions on Information
and Systems, E97-D(2):223–230, February 2014.

[67] Kaizhong Zhang, Rick Statman, and Dennis Shasha. On the editing distance between
unordered labeled trees. Inf. Process. Lett., 42:133–139, May 1992.

[68] W. Zhu, S. Dai, Y. Song, and Z. Lu. Extracting news content with visual unit of web
pages. In Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), 2015 16th IEEE/ACIS International
Conference on, pages 1–5, June 2015.

80

	Introduction
	The World Wide Web
	WWW as a Distributed Source of Information
	Web Sites
	Web Pages

	Web Page Preprocessing: State of the Art
	Page Segmentation
	Template detection

	Motivation and Goals of the Thesis
	Web Site Processing Using Clustering Techniques
	High level design

	Box Clustering Segmentation
	Extracting boxes
	Connecting the boxes
	Composite Dissimilarity Model
	Base Dissimilarity
	Cluster Dissimilarity
	Entity Dissimilarity
	Box Clustering

	Template clustering
	Template clustering overview
	Template storage
	Working with the Cluster Set
	Matching DOM Tree to the Cluster Set
	DOM Tree Mapping

	Experimental Implementation
	Template clustering specifics
	Box Clustering specifics

	Evaluation
	Template Count
	Evaluation of the BCS
	Evaluation of BCS with template clustering

	Conclusion
	Summary of Contributions
	Possible Improvements and Future Work

