
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

IMPROVEMENTS OF SHADOW RENDERING
VYLEPŠENÍ VYKRESLOVÁNÍ STÍNŮ

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. JOZEF KOBRTEK
AUTOR PRÁCE

SUPERVISOR prof. Ing. ADAM HEROUT, Ph.D.
ŠKOLITEL

BRNO 2021

Abstract
This thesis describes a set of incremental improvements of the shadow volume algorithm.
First, a novel robust method of silhouette extraction is detailed, including implementation
on several hardware platforms. This technique was later improved, simplified and the whole
shadow volume algorithm ported to hardware tessellation. Next, a novel accelerated sil-
houette extraction algorithm was proposed, based on octree acceleration structure. Finally,
the proposed methods were compared with the latest omni-directional techniques casting
hard shadows.

Abstrakt
Táto práca sa zaoberá inkrementálnym zlepšením techniky tieňových telies. V práci sa
popisuje vylepšenie vykresľovania z pohľadu robustnosti kde bol navrhnutý nový spôsob
deterministického výpočtu siluety na rôznych platformách. Táto technika bola v ďalšom
kroku zjednodušená a celý algoritmus tieňových telies implementovaný prostredníctvom
hardvérovej teselácie. Ďalej bola navrhnutá metóda akcelerovanej extrakcie siluety z modelu
pomocou oktálového stromu. Navrhnuté metódy boli v závere porovnané s aktuálnymi
modernými algoritmami s tvrdými všesmerovými tieňmi.

Keywords
shadows, shadow volumes, silhouette, tessellation, GPGPU, acceleration structures, octree,
shadow maps, visibility, ray tracing, RTX

Klíčová slova
stíny, stínová tělesa, silueta, teselace, GPGPU, akcelerační struktury, oktálový strom,
stínové mapy, viditelnost, vrhání paprsků, RTX

Reference
KOBRTEK, Jozef. Improvements of Shadow Rendering. Brno, 2021. PhD thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor prof. Ing. Adam
Herout, Ph.D.

Improvements of Shadow Rendering

Declaration
Prohlašuji, že jsem tuto dizertační práci vypracoval samostatně pod vedením pana prof.
Adama Herouta a uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

. .
Jozef Kobrtek

September 28, 2021

Acknowledgements
First and foremost, I would like to thank my supervisor prof. Ing. Adam Herout for his
support and mentoring throughout my PhD studies. He helped my sort out any problem
I came across in a very constructive manner. This thesis could not be completed without
my outstanding colleagues, namely Tomáš Milet, Tomáš Starka, Jan Pečiva, Michal Tóth,
Michal Kula and Tomáš Lysek; this research would not be possible without their knowledge
and creativity. I have learned a lot from them – new ways of solving coding problems, deeper
knowledge of design patterns and coding standards and much more. I want to thank Sveťo
Nosko, Tomáš Chlubna, Martin a Petr Musil for their joyful and pleasant company at our
common lunches, for all the events that we organized together and for letting me use their
lab equipment for my DIY projects.

I cannot omit my internship at Škoda Auto. It was a pleasure to cooperate with Antonín
Míšek on very interesting projects in VR and ray tracing. I will remember him as one of
the best supervisors I’ve ever had. I also want to thank my current employer, 2K Czech,
especially my leader Sobo for letting me combine school and work in the way I needed.

Last but not least, I want to express gratitude to the dearest people in my life - my
mother Ida, sister Lenka and girlfriend Ivanka for having patience with me as I was fre-
quently neglecting them. I want to specially dedicate this thesis to my father, who unfor-
tunately had passed away before this thesis was finished.

Contents

1 Introduction 3

2 Background of Shadow Rendering 5
2.1 Definition of a Shadow . 5
2.2 Importance of Shadows as Visual Clues . 6
2.3 Shadows in the Rendering Equation . 7
2.4 Overview of Basic Shadowing Methods . 10

3 Existing Precise Shadows from Non-Extended Light Sources 20
3.1 Stencil Shadow Volumes in Depth . 20
3.2 Algorithms Using Acceleration Structures 33
3.3 Ray Tracing Methods . 38

4 Comparison of Omnidirectional Shadow Mapping Methods 39
4.1 Cube Mapping and Optimizations . 39
4.2 Dual-Paraboloid Shadow Maps . 40
4.3 Implementation . 42
4.4 Test Results . 43
4.5 Evaluation . 46
4.6 Extended Quality Comparison . 47

5 Robust Silhouette Extraction Improvements for Shadow Volumes 51
5.1 Robustness Problems of Shadow Volumes 51
5.2 GPU Implementations . 53
5.3 Implementation Using AVX Intrinsics and OpenMP 54
5.4 Measurements . 55
5.5 Evaluation . 56

6 Shadow Volumes Using Tessellation Shaders 57
6.1 Per-Triangle Tessellation-Based Shadow Volumes 57
6.2 Silhouette-Based Approach . 58
6.3 Implementation . 62
6.4 Measurements . 63
6.5 Evaluation . 68
6.6 Comparison on Modern Hardware . 68

7 Silhouette Extraction Using Precomputed Potentially Visible Set 72
7.1 Precomputed Silhouette Extraction Overview 72

1

7.2 Octree Setup . 72
7.3 Octree Build . 73
7.4 Octree Traversal . 77
7.5 Implementation . 77
7.6 Measurements . 81
7.7 Improvements . 85
7.8 Evaluation . 88

8 Comparison of Omnidirectional Precise Shadow Methods 90
8.1 Selected Methods . 90
8.2 Implementation and Optimizations . 91
8.3 Measurements . 93
8.4 Time Complexity . 104
8.5 Discussion and Conclusion . 104

9 Conclusion 107

Bibliography 109

A List of Publications 120

2

Chapter 1

Introduction

Shadows are a fundamental part of any modern 3D application. Different areas of the
industry put specific criteria on the shadow quality. Games tend to use shadow mapping
as preferred shadowing technique even though it suffers from aliasing problems due to the
discrete nature of the shadow map, but the general simplicity of the method combined with
techniques to mitigate the aliasing problem makes it a usual choice.

On the other hand, there are several areas of CAD/CAM industries where pixel-precise
shadows are required, e.g. house visualizations and design, where shadows not only serve
as a visual clue for presentations and rendering, but also may indicate defects in the model
or scene. Also, being able to render pixel-precise shadows from any arbitrary triangle soup
needs to be addressed as model quality may be lower in certain scenarios, e.g. geometry
having inconsistent triangle winding or model with edges having more than 2 adjacent
triangles.

The focus of this thesis is to improve shadow rendering, particularly shadow volumes,
in terms of robustness (rendering arbitrary triangle soups without artifacts) and speed, not
only of the rendering process but also silhouette extraction, which is a fundamental step
of shadow volumes algorithm. This thesis does not present breakthroughs in the field of
shadow rendering, but shows iterative improvements in shadow volumes and concludes by
providing an extensive comparison of all known modern precise shadowing techniques.

My research started with comparison of omnidirectional shadow mapping techniques
and their optimizations. We compared dual-paraboloid mapping with cube mapping in
terms of speed and quality.

The focus then moved towards pixel-precise shadows, to design a precise and robust
shadow algorithm to handle virtually any triangle soup for shadow rendering. As the
traditional shadow mapping suffers from aliasing problems that are not easy to overcome,
we chose stencil shadow volumes as the basis for our research. The algorithm, at that time,
suffered from robustness problems, which were sometimes more disturbing than shadow
mapping imperfections – blinking triangles caused by numerical issues which could not be
addressed by adding bias – that only moved the problem further away. I was a part of the
team that improved numerical robustness of the stencil shadow volumes, we got rid of bias
in the computations and implemented the method on several platforms. I implemented an
optimized CPU version using OpenMP and AVX instruction sets for silhouette extraction,
being the fastest CPU-based silhouette extraction algorithm. The resulting methods are
still used to this day for shadow rendering in a software by Cadwork company, including
their web presentations.

3

As the hardware evolved, I designed a method to compute shadow volumes using hard-
ware tessellation. Although per-triangle at first, we were able to improve it with Tomáš
Milet by partially collapsing the generated geometry from the tessellator to generate shadow
volume sides. Tessellator is able to subdivide the input primitive up to hundreds of trian-
gles, which was utilized in the silhouette version of the algorithm.

I continued my research focusing on silhouette extraction, designing an algorithm to
speed up silhouette extraction time at the cost of extra memory. I had decided to improve
the silhouette extraction from arbitrary triangle soups as it did not get much focus from the
research community for some time and the available solutions relied mostly on 2-manifold
geometry.

As for my final paper, me and my colleagues have implemented several modern precise
shadowing methods and compared them to hardware-accelerated ray tracing. RTX has
become a phenomenon recently as it has brought ray-tracing from offline or interactive
to real time graphics even on consumer-level hardware. Games have slowly started to
utilize this technology to add more effects like precise reflections, but one of the possible
applications of RTX is also precise and fast shadow rendering, which will be demonstrated
in this thesis.

The thesis is outlined as follows. Chapter 2 introduces the reader into the topic of
shadow rendering, providing overview of all base shadowing algorithms and their develop-
ment over the time. Chapter 3 provides an in-depth analysis of precise shadow methods,
putting emphasis on stencil shadow volumes, as they were the most influential for my re-
search. Chapter 4 compares omnidirectional techniques based on shadow mapping in terms
of speed and quality. The necessity of having precise omnidirectional shadows is outlined
in this chapter as well. Chapter 5 discloses details about the first robust improvement in
silhouette computation for shadow volumes, as well as comparison of the algorithm on sev-
eral hardware platforms. This idea was further expanded in the Chapter 6 where the robust
silhouette computation was further optimized. This new approach was combined with a
new method of computing shadow volumes using the tessellation pipeline stages. Chap-
ter 7 describes a new method of accelerated silhouette computation using octree storing
potentially visible edge sets. This algorithm utilizes a novel compression scheme to reduce
its memory consumption and greatly reduces the number of edges that need to be tested
when computing the silhouette. Chapter 8 provides an extensive comparison of several
modern methods producing precise shadows from omnidirectional light sources. Hardware-
accelerated ray tracing is also among the evaluated methods. Finally, Chapter 9 concludes
the findings of the thesis.

4

Chapter 2

Background of Shadow Rendering

This chapter introduces the reader to the problem of shadow rendering, starting with the
analysis of shadow importance as visual clues, which is supported by several psychological
studies. Shadow rendering techniques evolved over time, starting with ray-traced shadows
while rendering images by scan lines and offline, moving to real-time methods such as
shadow mapping, shadow volumes, planar projected shadows, and going back to ray traced
shadows – but in real time.

2.1 Definition of a Shadow
Several definitions of shadow can be found in the literature. Hasenfratz et al. [41] describes
shadow as “region of space for which at least one point of the light source is occluded”. Dic-
tionaries tend to define shadow for example as “a partial or complete darkness, especially
produced by a body coming between rays of light and a surface” [1]. These definitions, how-
ever, take neither indirect lighting nor transparent occluders into the account. As can be
seen in the Fig. 2.1, neither indirect illumination nor scale is considered as the microscopic
picture of a surface may have areas resembling shadows, although there is no visible shadow
on macro scale. But these micro details are responsible for complex effects under the object’s
surface where light is scattered, attenuated or difracted. These interactions are simulated
by distribution functions (bidirectional reflectance/transmittance/surface scattering distri-
bution functions) and applied in advanced reflectance models like Cook-Torrance, which
uses microfacet distribution to approximate visibility of micro-scale details [30].

Figure 2.1: Electron microscopy detail of a lotus leaf, in different scales. Structures that
cast shadows can be found also on micro scale. But these micro-details affect shading in
terms of larger scale, as seen in the subfigure (c).1

5

Figure 2.2: Shadow shape does not play important role in object’s spatial localization [30].

2.2 Importance of Shadows as Visual Clues
Shadows are something we take for granted in the real world without realizing how im-
portant they actually are for aiding our perception due to our natural focus on tangible
objects. The importance of shadows as visual clues has been verified by several studies.
Psychological studies by Kersten [57, 59, 58] show that shadows have a strong influence on
the perceived three-dimensional motion of objects. He was able to induce apparent motion
in depth of an object even though the object was stationary. In fact, shadows are such a
strong cue that the information provided by the motion of an object’s shadow overrides
other strong sources of information and perceptual biases, such as assumption of constant
object size and general viewpoint. His research also points out that even unnatural light
shadows can induce apparent depth motion of an object when the shadows are moved.

Madison et al. [73] experimentally verified that shadows are a valuable clue for de-
termining whether an object was with contact with the ground. Observers provided most
accurate judgments when shadows and inter-reflections were drawn. Taya and Miura [104]
pointed out that cast shadows are used by our visual system as a cue for predicting the
future position of moving objects. Shadow perception was researched even upon infants,
Imura et al. [50] experimentally verified that perception of object’s trajectory motion from
the motion of of cast shadow emerges around 6th month of age as younger infants were
unable to determine “up” and “depth” motion events.

Shadows are also a clue to determine object’s transparency, as shown by Kawabe [56],
who was able to induce transparency by placing shadows inside the object’s contours.

The shape of the shadow might not necessarily be important. As illustrated by Ni
et al. [87], size matching between casting object and shadow does not necessarily have to
correspond. Wagner [108] pointed out that shadows shape does not have appreciable effect
on the perception of the object size and position, and even higher order interactions indicate
that the shape can be completely ignored, as seen in the Figure 2.2. He also points out
that soft shadows may also negatively effect accurate perception of object’s shape.

Wagner’s findings are applied in the gaming industry. In the early era of computer
games, hardware limitations at the time did not allow for implementation of modern real-
time shadowing techniques such as shadow mapping, so the game developers relied on simple
blob shadows, as seen in the Figure 2.3. This provided sufficient visual clue of the object or
character in the scene. Such a technique can be seen even in modern computer or mobile
phone games.

1Costa, Mafalda; Veigas, Bruno; Jacob, Jorge; et al.: A low cost, safe, disposable, rapid and self-
sustainable paper-based platform for diagnostic testing: Lab-on-paper. In Nanotechnology. vol. 25. 02
2014: doi:10.1088/0957-4484/25/9/094006.

6

Figure 2.3: Super Mario 64 game (1996) using circular blobs as shadows. Source: techn-
abob.com

Ω+
 ωo

n

x
ωi

Lo

Figure 2.4: Rendering equation, calculating radiance 𝐿𝑜 of direction 𝜔𝑜 from point 𝑥

2.3 Shadows in the Rendering Equation
In order to define shadow accurately in terms of computer graphics, we need to start with
the rendering equation 2.1, formulated by Kajiya [54] and using directional form presented
by [49], who omits wavelength dependence as it is not necessary for shadow computation.
Scheme can be seen in Figure 2.4.

𝐿𝑜(𝑥, 𝜔𝑜) = 𝐿𝑒(𝑥, 𝜔𝑜) +

∫︁
Ω+

𝑓𝑟(𝑥, 𝜔𝑖 −→ 𝜔𝑜)𝐿𝑖(𝑥, 𝜔𝑖)| cos(𝜔𝑖, 𝑛)|𝑑𝜔𝑖 (2.1)

We can calculate outgoing radiance 𝐿𝑜 for point 𝑥 on the surface and direction 𝜔𝑜 using
Equation 2.1, where:

• 𝐿𝑒 is emitted radiance from point 𝑥 and direction 𝜔0, non-zero for light sources

• the integral, scattering equation, sums the contribution of all reflected incident radi-
ances 𝐿𝑖 to point 𝑥 from half-space Ω+

• 𝑓𝑟 is bidirectional reflectance distribution function (BRDF) describing the ratio be-
tween the reflected radiance in direction 𝜔𝑜 and incoming radiance 𝜔𝑖 at point 𝑥

7

x

n

x'x''

ωo
ωi

Figure 2.5: Converting rendering equation to surface form [91].

• | cos(𝜔𝑖, 𝑛)| is absolute value of cosine of angle between normal 𝑛 and incoming direc-
tion 𝜔𝑖

The equation defines balance in terms of energy – the light energy entering the system
equals to the energy leaving the system. It also does not take the participating media into
the account – radiance is constant along the rays. In such case, we can define a ray-casting
function 𝑡(𝑥, 𝜔) that computes the first surface point 𝑥′ intersected by a ray from 𝑥 with
direction 𝜔, we can write the incident radiance at 𝑥 using outgoing radiance at 𝑥′ as in
Equation (2.2) [91].

𝐿𝑖(𝑥, 𝜔𝑜) = 𝐿𝑜(𝑡(𝑥, 𝜔),−𝜔) (2.2)

Substituting to Equation (2.1) yields Equation (2.3).

𝐿𝑜(𝑥, 𝜔𝑜) = 𝐿𝑒(𝑥, 𝜔𝑜) +

∫︁
Ω+

𝑓𝑟(𝑥, 𝜔𝑖 −→ 𝜔𝑜)𝐿𝑜(𝑡(𝑥, 𝜔𝑖),−𝜔𝑖)| cos(𝜔𝑖, 𝑛)|𝑑𝜔𝑖 (2.3)

Now, the recurrent nature of the rendering equation becomes obvious. In this form,
the equation makes geometric relations between objects implicit. To make this behaviour
more explicit in the integrand we need to convert the equation into the surface form, as an
integral over area instead of directions on the sphere, as seen in the Figure 2.5.

First, the exitant radiance from point 𝑥 to 𝑥′ is defined as

𝐿(𝑥′ → 𝑥) = 𝐿(𝑥′, 𝜔)

only if 𝑥 and 𝑥′ are mutually visible and 𝜔 = 𝑥′−𝑥
||𝑥′−𝑥|| , e.g. normalized direction vector

from 𝑥 to 𝑥′. We also need to multiply by Jacobian to get area from solid angle, which is
𝐴 = Ω

𝑟2
where Ω is solid angle and 𝑟 is distance. Combining with original | cos(𝜔𝑖, 𝑛)| term

yields geometric coupling term 𝐺(𝑥↔ 𝑥′), as in Equation (2.4).

𝐺(𝑥↔ 𝑥′) =
| cos(𝑛, 𝑥→ 𝑥′)|| cos(𝑛𝑥′ , 𝑥′ → 𝑥)|

||𝑥− 𝑥′||2
(2.4)

and substituting to Equation (2.3), using notation from Figure 2.5, results in:

𝐿𝑜(𝑥→ 𝑥′) = 𝐿𝑒(𝑥→ 𝑥′) +

∫︁
𝐴
𝑓𝑟(𝑥

′′ → 𝑥→ 𝑥′)𝐿𝑜(𝑥
′′ → 𝑥)𝑉 (𝑥′′ ↔ 𝑥)𝐺(𝑥′′ ↔ 𝑥)𝑑𝐴(𝑥′′)

(2.5)

8

where 𝐴 is the sum of all the surfaces in the scene and 𝑉 (𝑥′′ ↔ 𝑥) is binary visibility
function yielding 1 when 𝑥 and 𝑥′′ are mutually visible, zero otherwise [91, 30].

This equation can be further simplified for shadow computation. If we take only the
direct illumination into account, we can remove the equation’s dependency upon itself.
Furthermore, the integral becomes non-zero only for points that are located on the light
source ℒ. Additivity of the integral also allows us to process the light sources sequentially.
We then integrate over all light sources instead of all surfaces of the scene in Equation (2.6),
combining surface form from [91] with simplification stated in [30].

𝐿𝑜(𝑥→ 𝑥′) =

∫︁
ℒ
𝑓𝑟(𝑙→ 𝑥→ 𝑥′)𝐿𝑒(𝑙→ 𝑥)𝑉 (𝑙↔ 𝑥)𝐺(𝑙↔ 𝑥)𝑑ℒ(𝑙) (2.6)

We can also further assume that BRDF function 𝑓𝑟 is mainly diffuse and geometric
term 𝐺 varies little for simple light sources far away from the receiver, which allows for
separation of the integral to two – for functions 𝐺 and 𝐿𝑒. This simplification basically
separates shading and shadows in the rendering equation [30].

𝐿𝑜(𝑥→ 𝑥′) =

∫︁
ℒ
𝑓𝑟(𝑙→ 𝑥→ 𝑥′)𝐺(𝑙↔ 𝑥)𝑑ℒ(𝑙)⏟ ⏞

Shading

· 1

ℒ

∫︁
ℒ
𝐿𝑒(𝑙→ 𝑥)𝑉 (𝑙↔ 𝑥)𝑑ℒ(𝑙)⏟ ⏞

Shadows

(2.7)

In practice, we assume that the light source is homogenous in terms of radiation di-
rection over its surface, which can simplify 𝐿𝑒 to a function of position. Provided it is
uniformly coloured, it can be omitted from the integral as the constant 𝐿𝑐. The result of
this simplification are Equations 2.8a, 2.8b, 2.8c.

𝐿𝑜(𝑥→ 𝑥′) = 𝑑𝑖𝑟𝐼𝑙𝑙𝑢𝑚(𝑥→ 𝑥′,ℒ, 𝐿𝑐) · 𝑉ℒ(𝑥) (2.8a)

𝑉ℒ(𝑥) =
1

|ℒ|

∫︁
ℒ
𝑉 (𝑙↔ 𝑥)𝑑ℒ(𝑙) (2.8b)

𝑑𝑖𝑟𝑒𝑐𝑡𝐼𝑙𝑙𝑢𝑚(𝑥→ 𝑥′,ℒ, 𝐿𝑐) = 𝐿𝑐

∫︁
ℒ
𝑓𝑟(𝑙→ 𝑥→ 𝑥′)𝐺(𝑙↔ 𝑥)𝑑ℒ(𝑙) (2.8c)

where 𝑉ℒ(𝑥) is visibility integral and 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑙𝑙𝑢𝑚 is direct illumination from the light source.
Equation (2.8b) solves soft shadows, as it calculates visibility across the whole surface of
the light source. Although light source is described as surface in the integral, usually just
a single light sample �̀� ∈ ℒ for performance reasons. In that case, integral is replaced with
𝑉 (𝑥, �̀�) in Equation (2.8b) that returns only binary information (visible/not visible) if point
𝑥 and light sample �̀� are mutually visible. Such shadow consists only from umbra and thus
called hard shadow.

2.3.1 Shadow Types

The type of a shadows cast is dependant on the type (and configuration) of the light source.
We define several categories of light sources – point , directional (which equals to a point
light source in the infinity), spotlights, and area (or extended) light sources[92, 115].

Given a point, directional light source or a spotlight, there exists only a single ray
that can hit a point 𝑥, thus corresponding to a binary information lit/shadowed. This
shadow region, which is fully occluded from the light source, is called umbra or hard shadow.

9

(a) Hard shadows (b) Soft shadows

Figure 2.6: A game character casting hard and soft shadows from point light source, shadow
mapping used. Soft shadows were achieved using percentage closer filtering.

Illustration of these light sources can be seen in the Figures 2.7a and 2.7b. It is also the
case when integral Equation (2.8b) becomes 𝑉 (𝑥, �̀�) for a single light sample �̀�.

Shadows from area light sources are modeled using Equation (2.8b) and ideally should
account for every �̀� ∈ ℒ, thus producing a value in the range 0-100%. Umbra is a fully
shadowed region (𝑉ℒ(𝑥) = 0) and penumbra or soft shadow (where 𝑉ℒ(𝑥) > 0 ∧ 𝑉ℒ(𝑥) ≤ 1)
is a partially shadowed region. It is a common practice to mimic penumbra from point
light source using various techniques (e.g. percentage-closer filtering in Shadow Mapping),
as can be seen in Figure 2.6.

Although computer graphics distinguishes only 2 types of shadows, there is also a third
shadow type called antumbra. This type of shadow occurs when the light source is signifi-
cantly larger than the occluder and spans from the end of umbra and between penumbras.
The characteristic of this type of shadow is that when the observer is located inside an-
tumbra, he may observe the occluding object entirely within the disc of the light source
(provided the light source is spherical). When put into context of space bodies, for example
when the Sun, the Moon and the Earth are aligned in a line and the observer, located in the
Moon’s antumbra, observes annular eclipse of the Sun, as seen in the Figure 2.8 [32, 106].
Computer graphics generally recognizes this type of shadow as penumbra.

We can also classify shadows based on the receiver configuration. So-called attached
shadow occurs when the normal of the receiver surface faces away from the light source.
Cast shadows, on the other hand, are shadows on a surface, normal of which is facing the
light source [41]. Example can be seen in the Figure 2.9.

2.4 Overview of Basic Shadowing Methods
Numerous shadowing techniques have been developed over the course of history. The prob-
lem of the shadow calculation is as old as computer graphics itself. One of the first published
algorithms for computing shadows was used for printing an object using a plotter [9]. The
method resembles raycasting in its nature, using ’+’ signs of various sizes as shading levels.
As Heckbert stated in his list of unsolved graphics problems [43], raytracing was used on the
most contemporary images generated by computers and expresses demand for shadowing
methods not utilizing raytracing.

10

umbra

(a) Point light casting umbra

umbra

(b) Directional light (umbra)

umbra

penumbra

penumbra

(c) Area light (umbra, penumbra)

penumbra

penumbra

umbra antumbra

(d) Large area light casting also antumbra

Figure 2.7: Light source and shadow types

(a) Scheme of the Sun eclipse, source: timeanddate.com

(b) Annular eclipse as seen
by observer in the Moon’s an-
tumbra, source: nasa.gov

Figure 2.8

11

Figure 2.9: Cast and attached shadows

Figure 2.10: Planar projection shadows with geometry squashed on top of the projection
surface

2.4.1 Planar Projection Shadows

This shadowing method was introduced by Blinn [14]. The core principle is to project the
occluder’s geometry to a planar receiver by constructing a custom projection matrix 𝑀 that
squashes object’s z-dimension to zero. The occluding object is then drawn in a dark color
on the top of the planar surface using matrix 𝑀 . This method works for point light sources
only and produces hard shadows. Illustration of the method can be seen in Figure 2.10.

Although it is relatively simple to construct the projection matrix 𝑀 , the method
has several drawbacks. First of all, the receiver has to be planar which limits the usage
of the algorithm. Another issue are z-fighting artifacts – shadow geometry cannot be
projected directly on the receiver plane, which would cause blinking artifacts, but the
shadow must be slightly levitating above the plane. Shadow must also be clipped to the
receiver’s boundaries. Another limitation is that the light source might not be positioned
between the object and the plane. By doing so, a so-called anti-shadow is created on the
receiver plane, with vertices projected along the light source, see Figure 2.11. The algorithm
does not support self-shadowing.

Making the shadow semi-transparent and blending it with the receiver will enhance
the visual quality of such solution (the shadow will no longer be just dark but will also
mix with the color of the plane), but double-blending must be resolved as several triangles
might be blended to the same location because the occluder might not be convex. This

12

Figure 2.11: Correct shadow on the left (occluder between the plane and the light source),
incorrect antishadow on the right as the ligh source is below the topmost vertex of the
object [7].

can be avoided by implementing the stencil test. In the first pass, the receiver is drawn
with stencil operation set to increment on depth pass. Consequently, the shadow object is
rendered with depth test disabled and stencil test set to pass only if the stencil value is
one and increment on stencil pass with alpha blending turned on. Using stencil buffer also
limits the shadows to receiver’s area and alleviates the problem with z-fighting [7].

There are several methods that implement soft shadows using planar projection. Heck-
bert et al. [42] and Herf et al. [45] treat area light source as a grid of point lights. For each
of these points a perspective matrix is constructed with frustum having parallelogram as
far clipping plane (which is the shadow receiving plane). Subsequently, all occluders are
rendered into a texture in dark color. Contributions of all such textures are then averaged
in an accumulation texture which is then applied on the receiver plane. The quality of soft
shadows is proportional to the amount of the light samples of the extended light source.

Haines [39] improved on the above mentioned method and trades visual quality for
speed as his method does not require high amount of render passes in order to achieve
soft shadows. First, hard projected shadow is drawn to a texture. The method then finds
all silhouette edges and vertices and constructs quadrilaterals and cones respectively with
gradient vertex colors ranging from dark at the silhouette edges and white at the projected
silhouette edges and cone bases. These objects are then rendered into the shadow texture
from top-down perspective with respect to the receiving plane, creating gradient in the
shadow texture. The diameter of the cone at the silhouette vertex is based on the vertex
height. The resulting texture is then applied on the receiving plane.

When compared to the method by Heckbert et al.[42], Haines’ method produces unre-
alistically big umbra areas, penumbra regions are not physically correct either.

2.4.2 Shadow Texture Techniques

These methods, by design, sit between planar projected shadows and shadows mapping as
they try to solve one of the major problems of planar projected shadows – the inability to
cast a shadow onto a non-planar receiver. Although this group of methods has no official
name, Akenine et al. [7] name them as shadow texture techniques or are known as the drop

13

Figure 2.12: Left image – Haines’ method, right image – Heckbert and Herf’s method
calculated with 256 light samples [39]

(a) (b) (c)

Figure 2.13: Nagy’s shadow texture method – (a) view from light’s perspective, (b) rendered
shadow texture, (c) application of the shadow texture [84].

shadows. These methods include e.g. Nguyen’s algorithm that uses black-on-white texture
[86] or Nagy’s method that uses white-on-black texture to decrease lighting intensity on
shadow receiving surfaces, as seen in the Figure 2.13 [84].

The technique first renders an occluder into a texture in black while the rest of the
texture is initialized to white. The texture does not need to cover the whole area of the
receivers as the information in the texture is needed only in places where the shadow is
cast. The texture is then applied on the potential receivers. The texturing coordinates are
computed using the light’s view-projection matrix and computing light-space projection
coordinates of a vertex which are subsequently normalized to < 0, 1 > and used to sample
the shadow texture.

Some of the drawbacks are shared with the planar projection shadows – the light source
may not lie between the occluder and the receiver, otherwise the shadow is cast backwards.
Also, the application has to keep track of occluder and receiver objects [7, 30].

These methods, however, provide a simple way to produce soft shadows by simply
filtering the shadow texture e.g. by using Gaussian blur. An example of a filteted drop
shadow can be seen in the Figure 2.14.

2.4.3 Shadow Mapping

This algorithm, published in 1978 by Williams [111] solves several limitations of the shadow
textures. Although published earlier than the shadow textures methods, hardware limita-

14

Figure 2.14: Filtered drop shadow rendered in Autodesk Inventor, source:
www.caddcentregp.com

tions didn’t allow for efficient usage of the method. Instead of rendering just the occluders
to a visual texture, shadow mapping renders all visible objects from the light’s perspective
into a depth texture or so-called shadow map, thus the occluders and the receivers are no
longer separated. The shadow map stores depth information of all visible surfaces from
the light source. Current graphics hardware provides sufficient mechanisms for fast shadow
map creation, making it a very popular shadowing algorithm among real-time applications.
The scheme of the algorithm can be seen in the Figure 2.15.

As mentioned above, the first step of the algorithm is creating the shadow map. Scene
geometry, visible from the light’s perspective, is drawn without shading into the shadow
map using light’s view (𝑀𝐿𝑉) and projection (𝑀𝐿𝑃) matrices, as seen in the Figure 2.15a.
Each texel of the shadow map stores depth the closest object to the light source.

The scene is then rendered from the viewer’s perspective and the shadow map is applied
to the scene, see Figure 2.15b. The method calculates normalized device coordinates 𝑣𝐿
using 𝑀𝐿𝑉 and 𝑀𝐿𝑃 for every view sample position 𝑣, see Equation (2.9) [30].

𝑣𝐿 = 𝑀𝐿𝑃 ·𝑀𝐿𝑉 · 𝑣
𝑣𝐿 = 𝑣𝐿/𝑣𝐿.𝑤

(2.9)

The texturing coordinates for sampling the shadow map 𝑣𝑆 are calculated from 𝑣𝐿.𝑥𝑦
by transforming them from range < −1, 1 > to < 0, 1 >. By sampling the shadow map
using 𝑣𝑆 we obtain the depth stored in the shadow map 𝑠𝑚𝑍 . To find out if the view sample
𝑣 lies in shadow or is lit, we need to compare 𝑠𝑚𝑍 with 𝑣𝐿.𝑧 – if the sample’s depth 𝑣𝐿.𝑧
is larger, it lies in shadow.

One of the downsides of this algorithm is limited shadow map resolution which makes
it susceptible to aliasing problems. This problem is evident in the Figure 2.16. A texel
in the shadow map covers a certain area in the scene and if the texel orientation (blue
line) is not perfectly parallel with the object, the depth value the texel represents is only
the value in its centre. In the second step, when the scene is rendered from viewer’s
perspective and shadow map is sampled, the probability that the view sample will be
located exactly in the centre of shadow map’s sample is very low, thus the depth obtained
from the shadow map (𝑠𝑚𝑍) will almost certainly be different from 𝑣𝐿.𝑧, causing artifacts
– so-called moiré pattern or self-shadow aliasing as seen in the Figure 2.17a. This problem

15

(a) Shadow map rendering

ZB

ZA≈ZA'

ZB'

A

B
ZB<ZB'

(b) Applying shadow map

Figure 2.15: Shadow mapping scheme -scene is first rendered from the light’s perspective
into a shadow map (left), which is applied during the second pass when the scene is rendered
from camera (right).

Figure 2.16: Shadow map – samples (blue) contain depth only of its the centre. Grey lines
represent sample boundaries. Blue lines are the depth stored at each shadow map sample,
yellow lines depict the sampling location. It is clear that a sample stores only a single of
many possible depth values (from its centre).

16

(a) Self-shadowing artifacts (b) Peter Panning due to large bias

Figure 2.17: Shadow mapping problems

is also influenced by numerical limits of the graphics processor which can be improved by
making the light’s view frustum more tight (e.g. moving the near clipping plane as far as
possible and placing the far clipping plane as close as possible) [7, 30]. Milet et al. [82]
demonstrated a method to improve shadow map quality by warping using non-orthogonal
grid. This approach locally increases resolution for areas which require increased sampling
rate, resulting in higher quality shadows on the same shadow map resolution. Similarly
to dual paraboloid mapping, it suffers from artifacts caused by linear rasterization where
the scene is insufficiently tessellated, dynamic tessellation should be used to deal with this
issue.

General solution to help (but not eliminate) self-shadow aliasing is to subtract a value
from 𝑣𝐿.𝑧 when comparing to 𝑠𝑚𝑍 , called bias – to basically move the surface slightly
towards the camera [111]. This value might be a constant for the whole scene or computed,
mostly based on the surface angle with respect to the light source because the larger the
angle between the surface and the light, the larger depth range is covered by a single
shadow map texel. Although there are several methods trying to resolve the issue, they
require hand-tuning of the parameters [7]. One of the recent methods by Dou et al.[28]
tries to compute minimal bias required to eliminate false self-shadowing by tracing a ray 𝑅
from light through texel’s centre point to a tangent plane defined by the fragments position
and its normal. The method, however, suffers from noise artifacts when the surface normal
is almost perpendicular to 𝑅.

When the bias is too large, shadow might become detached and a so-called light leaking
or Peter Panning (based on a cartoon character who was able to detach from his own
shadow) can be observed, as in the Figure 2.17b.

The area that a shadow map is able to cover is limited to the light’s frustum. Methods
based on cascaded shadow maps [31, 114, 68] are able to support large shadowed areas
by covering observer’s view frustum with several shadow maps, optimizing their placement
with respect to the quality of the resulting shadows. These methods are suitable for larger
opened scenes with directional light source (sun, moon).

In order to properly model omnidirectional point lights, several frustums have to be
arranged and shadow maps rendered since the field-of-view in perspective projection has
a limited range. Standard procedure, as proposed by [36], is to create a cube map where
each of the six sides is rendered using virtual camera pointing towards one of the directions
defined by the axes of the local coordinate system (±𝑥,±𝑦,±𝑧). This approach requires

17

Figure 2.18: Dual-paraboloid shadow mapping. Two paraboloids act as a mirrors which
reflect incident rays from the hemisphere into the direction of the paraboloid.

the geometry to be rendered up to six times. Brabec et al.[17] discuss a method based
on non-linear projection requiring only two textures instead of six using dual-paraboloid
mapping which captures the scene on two paraboloids attached back-to-back, as seen in
the Figure 2.18. The downside of this method is that the scene geometry must be highly-
tessellated (e.g. triangles should be small), otherwise produces artifacts due to linear inter-
polation of the rasterization unit. Another approach aimed at reducing the amount of the
render passes was proposed by Liao [71]. Instead of using a cube he subdivides the light
space using four tetrahedra. This method was further extended and optimized in [27] to
support large amount of light sources using tiled depth texture and quad tree to assign tiles
of different sizes based on the contribution of the light source in the scene. Although tetra-
hedron mapping requires less memory than cube mapping, the downside of this method is
its higher overhead.

2.4.4 Shadow Volumes

Shadow volumes were first proposed by Crow [24]. The core idea of the algorithm is that
shadows are defined by the volume of space they encompass. Unlike shadow mapping
which operates in the image space, shadow volumes work in the object space. This shadow
volume, or shadow polygon as mentioned in the paper, is constructed from object’s contour
(or silhouette) edges, extruded in the light direction to the infinity and clipped to the
view frustum. Silhouette edges are those edges that have a front and backfacing polygon
attached to them, from the light’s perspective. The method then sorts the shadow polygons
by depth and during the rendering decides whether a fragment lies in the shadow or not by
testing the the number of pierced front and backfacing shadow polygons along the ray cast
from camera to the scene. If more front-facing polygons are hit during the ray traversal,
the resulting fragment is declared as shadowed, lit otherwise. The demonstration of the
method can be seen in the Figure 2.19. Crow’s method, however, does not count with the
case when camera lies inside a shadow volume – the result of the ray test must be reverted
otherwise all shadowed regions will be lit and vice versa. As being the core method of
pixel-precise shadow rendering, it is analyzed in-depth in the Chapter 3.1.

18

+1

-1

+1

A

B

Figure 2.19: Shadow volumes as proposed by Crow[24]. Rays are traced from camera
through the scene and shadow polygons. If a front-facing shadow polygon is hit, the value
of the ray is incremented, decremented when the shadow polygon is back facing. Sample
𝐴 is lit as its ray value is zero, sample 𝐵 is shadowed because the the value of its ray is
non-zero, e.g. non-equal amount of front and back-facing shadow polygons were hit.

2.4.5 Ray-Traced Shadows

Ray-tracing was one of the first method for shadow rendering, mentioned in several early
works, e.g. [9, 24] and was used primarily for offline rendering. Shadows are also a funda-
mental part of Whitted-style ray-tracing [110], which is the basis of all modern ray tracing
algorithms. The core idea is to cast a ray from the fragment position towards the light
source – if the ray hits any occluding geometry, the fragment is considered shadowed. Typ-
ically, an acceleration structure (kD tree, BVH) is used to reduce the number of triangles
tested by culling parts of scene. With the recent development of acceleration structures
and hardware, ray-traced or hybrid approaches became feasible in real-time applications as
well. The ray-tracing methods are described in more detail in the Chapter 3.3.

19

Chapter 3

Existing Precise Shadows from
Non-Extended Light Sources

Different areas of the 3D graphics put various requirements on shadow rendering. Gaming
industry does not usually require pixel precise shadows, the aim is to provide reasonable
quality in certain time budget for a smooth framerate. Imperfections in the shadows can be
solved by filtering and variants of shadow mapping are the usual method of choice. Design
industry (CAM, CAD), however, often requires precise hard shadows which is difficult to
achieve using shadow mapping due to having limited resolution and aliasing problems, thus
other methods must be researched to provide an alternative.

3.1 Stencil Shadow Volumes in Depth
Shadow volumes pose as core method in the field of pixel-precise shadow rendering. As
mentioned in the Chapter 2.4.4, the method was initially meant for ray-tracing where ray
from the camera would increment and decrement its value when entering or leaving a shadow
volume.

3.1.1 Construction

In order to create infinite-sized shadow volume geometry, affine coordinates are not sufficient
as they cannot efficiently represent point at infinity. Homogeneous coordinates are used
instead to extrude from object’s edges. Based on Figure 3.1, let’s consider two points 𝐿
and 𝐴 in homogenous space. Any point 𝐴′ on the line 𝐿𝐴 can be represented as 𝛼𝐿 + 𝛽𝐿
[74]:

𝐴′ = 𝛼𝐿 + 𝛽𝐴 = (𝛼𝐿𝑥, 𝛼𝐿𝑦, 𝛼𝐿𝑧, 𝛼) + (𝛽𝐴𝑥, 𝛽𝐴𝑦, 𝛽𝐴𝑧, 𝛽)

= (𝛼𝐿𝑥 + 𝛽𝐴𝑥, 𝛼𝐿𝑦 + 𝛽𝐴𝑦, 𝛼𝐿𝑧 + 𝛽𝐴𝑧, 𝛼 + 𝛽)
(3.1)

Provided we transform the Equation 3.1 to affine space, we divide by 𝛼+𝛽 resulting in:

(
𝛼𝐿𝑥 + 𝛽𝐴𝑥

𝛼 + 𝛽
,
𝛼𝐿𝑦 + 𝛽𝐴𝑦

𝛼 + 𝛽
,
𝛼𝐿𝑧 + 𝛽𝐴𝑧

𝛼 + 𝛽
, 1) =

(
𝛼

𝛼 + 𝛽
𝐿𝑥 +

𝛽

𝛼 + 𝛽
𝐴𝑥,

𝛼

𝛼 + 𝛽
𝐿𝑦 +

𝛽

𝛼 + 𝛽
𝐴𝑦,

𝛼

𝛼 + 𝛽
𝐿𝑧 +

𝛽

𝛼 + 𝛽
𝐴𝑧, 1)

(3.2)

20

A

A' B

B'

D

C

L

Figure 3.1: Shadow Volume construction. Edge 𝐴𝐵 is common for triangles 𝐴𝐵𝐶 and
𝐴𝐵𝐷. The edge 𝐴𝐵 is a silhouette edge because it has both light front (𝐴𝐵𝐶) and
backfacing (𝐴𝐵𝐷) triangles attached. The points 𝐴′ and 𝐵′ lie in the infinity and together
with points 𝐴 and 𝐵 form a so-called shadow volume side quad.

Under assumption that:

𝛼 + 𝛽

𝛼 + 𝛽
=

𝛼

𝛼 + 𝛽
+

𝛽

𝛼 + 𝛽
= 1 (3.3)

we can substitute the following into the Equation 3.2:

𝑝ℎ𝑖 =
𝛽

𝛼 + 𝛽
;𝛼 ̸= −𝛽 (3.4)

resulting in

((1− 𝜑)𝐿𝑥 + 𝜑𝐴𝑥, (1− 𝜑)𝐿𝑦 + 𝜑𝐴𝑦, (1− 𝜑)𝐿𝑧 + 𝜑𝐴𝑧, 1) =

(𝐿𝑥 − 𝜑𝐿𝑥 + 𝜑𝐴𝑥, 𝐿𝑦 − 𝜑𝐿𝑦 + 𝜑𝐴𝑦, 𝐿𝑧 − 𝜑𝐿𝑧 + 𝜑𝐴𝑧, 1) =

(𝐿𝑥 + 𝜑(𝐴𝑥 − 𝐿𝑥), 𝐿𝑦 + 𝜑(𝐴𝑦 − 𝐿𝑦), 𝐿𝑧 + 𝜑(𝐴𝑧 − 𝐿𝑧), 1) =

𝐿 + 𝜑(𝐴− 𝐿)

(3.5)

Equation 3.5 in affine space does not account for all points in homogenous space, because
of the condition in Equation 3.4. Points, for which 𝛼 = −𝛽, however, exist in homogenous
space and substituting this condition to Equation 3.1 yields:

𝐴′ = −𝛽𝐿 + 𝛽𝐴 = 𝛽(𝐴𝑥𝑦𝑧 − 𝐿𝑥𝑦𝑧, 0) (3.6)

Provided that 𝛼 = 𝛽 = 1, the homogeous coordinates of a point lying on the line 𝐿𝐴 in
the infinity (𝐴′) can be calculated as 𝐴′ = (𝐴𝑥𝑦𝑧 − 𝐿𝑥𝑦𝑧, 0).

The shadow volume side quads should also be properly oriented, e.g. having the vertex
winding such as the normal points outside of the volume. This is carried out by making

21

a dot product between the light position and the triangle plane and reversing the vertex
winding if the test is negative.

A naive approach on shadow volume construction would be to create a shadow volume
per every single triangle, e.g. extruding every triangle in the scene to the infinity. Such
approach is not suitable for modern hardware due to excessive fillrate but there were archi-
tectures such as Pixel Planes that had constant triangle rasterization time, no matter what
area did the triangle cover on the screen [34]. Silhouette-based approach, proposed even
by Crow in his original paper, is more efficient on modern architectures as not so many
shadow volume sides have to be rasterized, thus saving fillrate.

3.1.2 Silhouette Extraction

An edge is considered a silhouette edge if one of the two triangles attached to the edge is
light-facing and one is not; or the normal of one of the triangles points to the light and
the normal of the latter does not. In order to determine whether an edge is silhouette or
not, we first need to construct an equation of the plane for both triangles attached to the
edge. Subsequently, both equations are tested against the light’s homogenous coordinates,
see Equation 3.7, where (𝑎, 𝑏, 𝑐, 𝑑) are the coefficients of the triangle’s plane equation and
(𝑥, 𝑦, 𝑧, 𝑤) are homogenous coordinates of the light source. Provided the result of the test
is positive, the triangle is facing the light source, facing outwards otherwise [33].

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑𝑤

⎧⎪⎨⎪⎩
> 0

= 0

< 0

(3.7)

The geometry data have to be pre-processed in order to acquire topology information
about edge-triangle connectivity. Older implementations of the shadow volume algorithm
performed this test on the CPU. Van Waveren [109] described optimal implementation of a
silhouette extraction and shadow volume geometry generation using SSE2 instruction set.

With the introduction of programmable graphics pipeline, vertex shader silhouette com-
putation and shadow volume geometry generation was proposed by Brabec et al. [18]. First,
the model is pre-processed and topology information is computed. Then, each vertex is
given a unique identifier and transformed vertex coordinates are stored in a floating-point
RGBA texture. Edges are then rendered as single points with additional vertex data in
the vertex attributes. The silhouette test is performed in the fragment shader by fetching
the vertex positions from previously created texture. The result of the test, per edge, is
the written to another texture. Shadow volumes are created using the information in the
vertex texture, the silhouette and the silhouette test data. Vertices of the edges, that are
not silhouette, are moved outside the view frustum in the vertex shader. Because the algo-
rithm uses textures to store vertices, the amount of geometry in the scene is limited due to
hardware limitations at that time.

When geometry shader was introduced to the graphics pipeline, a new algorithm for
computing shadow volume geometry was designed to utilize the new pipeline stage. Stitch
et al. [101] extruded shadow volume side geometry and generate the caps in the geometry
shader using triangle adjacency mode. The geometry shader then receives 6 vertices on the
input for each triangle – 3 vertices of the triangle itself and all opposing vertices for every
edge, see Figure 3.2. Because the adjacency information is generated by the hardware,
no vertex pre-processing is required. Every edge is processed twice to handle some non-
manifold cases like holes (when an edge is connected to a single triangle).

22

0

1

2

3
45

Figure 3.2: Triangle adjacency in geometry shader, vertex order numbered [101]

Eye

Figure 3.3: Normal cone constructed from a simple object. Traversal consists of creating a
cone from the camera position towards the centre of the bounding sphere and testing for
intersection with the normal cone [52].

23

Figure 3.4: A 2-manifold object seen from multiple views, having vertices with degree of 4
(circled). The light source is in the viewer’s position [6].

Johnson et al. [52] designed a normal cone hierarchy algorithm to accelerate culling,
local minimum distance computation or silhouette extraction. The core idea is to build
a binary hierarchical structure where each cell contains a bounding spehere, cone axis
and cone semiangle. The cone axis vector is the average of all normals stored in the
subtree, the cone angle is the maximum angle between the cone axis and normals. When
extracting a silhouette, a view cone is constructed from the camera position towards the
bounding sphere of a node, its direction pointing from camera position to the bounding
sphere centre. The view cone direction is then tested against the nodes cone for intersection
– if intersected, traversal continues through this node. This algorithm is also capable of
producing silhouettes of variable precision by stopping the hierarchy traversal once the cone
angle reaches a certain threshold. This method, however, is unable to handle non-manifold
meshes.

Olson and Zhang [88] designed a silhouette extraction method based on Hough transform
of a mesh stored in an octree. Method of Gooch et al.[38] is based on projecting triangle
normals onto a Gaussian sphere. Every edge is represented by an arc on the Gaussian
sphere. When using orthographic projection, a plane representing the view angle is placed
through the origin of the sphere. Every arc intersected by this plane is a silhouette edge.
They also proposed a hierarchical version of the algorithm. Pop et al. [93] used dual-space
representation of vertices. Silhouette is computed by finding intersection of the viewpoint’s
dual plane with the duals of the mesh edges. This approach, however, is too performance-
expensive [51].

Akenine-Möller et al. [6] explain the degree of a vertex on a silhouette edge as the
number of silhouette edges connected to the vertex. A general misconception for 2-manifold
objects was that the degree of a vertex on a silhouette edge is always 2. The paper proves
that the degree of such edge can be higher than two, but will always be even, as seen in the
Figure 3.4. McGuire [77] performed a statistical measurement on 897 2-manifold models
trying to generalize silhouette size equation. He placed every model inside a sphere and
generated 10 000 points on the sphere as light sources from which he computed the object’s
silhouette. The result of his finding is 𝑠 ≈ 𝑓0.8 where 𝑠 is silhouette size and 𝑓 is the total
number of triangles of the model.

3.1.3 Algorithm Implementations

There are two major implementation of the Shadow Volume algorithm, based on stencil
test settings. Method known as z-pass or depth-pass uses the same principle as designed
by Crow – counting visible fragments of the shadow volume along the ray path from the

24

camera. Z-fail method reverses this test – counts fragments from the infinity towards the
surface.

Z-Pass

Heidmann [44] made a first practical implementation of Crow’s algorithm on modern graph-
ics architecture. He based his approach on Jordan curve theorem in 3D space – whenever
a volume separates the space to interior and exterior, any curve connecting a point in the
interior space with a point in the exterior space will have to intersect a shadow volume un-
even number of times. In order to meet Jordan curve criteria, the shadow volume assumes
to be watertight [29], although this condition may be lifted – Heidmann’s method does not
use capped shadow volumes, which also introduces several fail-cases.

Algorithm 1 Heidmann’s z-pass shadow volumes, camera perspective, per light source
1: Render scene to depth buffer only from camera’s perspective
2: Create shadow volume side quads
3: Clear stencil buffer, disable color and depth writes
4: Set stencil operation to increment on depth test pass
5: Enable back face culling
6: Draw shadow volume side quads
7: Set stencil operation to decrement on depth test pass
8: Enable front face culling
9: Draw shadow volume side quads

In order to count rays entering and leaving the shadow volumes, Heidmann used the
stencil buffer. The algorithm is outlined in Algorithm 1. Drawing front-facing shadow
volume side quads and incrementing the stencil volume simulates a ray entering the shadow
volume, by drawing back-facing shadow volume side quads and decrementing the stencil
value is equal to a ray exiting the volume. The stencil buffer then contains a mask of lit
pixels (zero stencil value) and shadowed (non-zero stencil value). This implementation of
shadow volume algorithm is also known as z-pass.

This approach, however, has several drawbacks. The method produces incorrect results
when the near clipping plane intersects any of the shadow volumes side quads, causing holes
and breaking the Jordan’s theorem. Also, the above-mentioned algorithm does not produce
correct results when camera is located inside the shadow, see Figure 3.5.

Both issues can be solved by so-called capping of the shadow volume at near clipping
plane – either by projecting the scene geometry onto the near clipping plane or initializing
the stencil buffer with the correct values. Diefenbach [26] proposed a method in screen
space to initialize the stencil buffer with “visible internal pixels of the volume”. However,
Everitt et al. [33] found several cases where this method fails. McCool’s [75] method uses
shadow mapping to fix near clipping plane capping. Kilgard’s algorithm [61] tries to cap
the shadow volumes at the near clipping plane by projecting the scene geometry onto it.
Hornus et al. [47] designed a method called ZP+. The method constructs a frustum from
the light source towards the camera’s near plane and shear it so the frustum’s far plane
matches the camera’s near plane. Then, the algorithm uses perspective matrix describing
the frustum to render front facing scene geometry and increment stencil on depth pass. This
initializes the stencil buffer to the correct values for subsequent z-pass shadow volumes. The
numerical problems of this method could be partially alleviated by using depth clamping,

25

-1

A
B

Figure 3.5: Z-pass: inverted shadow test when camera is in shadow

as proposed by Eisemann et al. [30] in method called ++ZP, but because the projection
matrices when rendering from light’s and camera’s perspective are different, the numerical
problems would still occur.

Batagelo et al.[11] designed a hybrid algorithm combining BSP tree and stencil shadows.
Every frame, the algorithm constructs a SVBSP (Shadow Volume BSP tree) from a list of
sorted shadow casting polygons, discarding those that are inside other polygons. Then, the
method computes the set of silhouette edges from the set of visible shadow casting polygons
by traversing the BSP tree which are subsequently used in the z-pass. The authors also
propose capping the shadow volumes by computing the near clipping plane equation in the
world space and clipping every shadow volume polygon against the plane. This process
generates a set of intersection vertices which are sorted in polar order and turned into a
light cap.

These methods are, however, often complex (Kilgard’s method defines several cases that
needs to be addressed separately) and suffer from robustness problems that lead to pixel-
wide cracks in the shadows. Due to floating point precision, the capping geometry might
get clipped away by the front clipping plane, as is the case for ZP+ algorithm.

Z-Fail

Improving robustness of z-pass has been proven to be too problematic, thus a new approach
was designed. Bilodeau and Songy [13] and Carmack [19] independently discovered that
reversing the whole z-pass stencil test also produces correct results. Instead of increment-
ing/decrementing the stencil for shadow volumes in front of an object (= when shadow
volume side quad fragments pass the depth test), stencil buffer is modified for fragments
that fail the depth test, e.g. are behind an object. In other words, rays are now traced
from the infinity towards the point of interest. The algorithm is described in Algorithm 2.

Because of this property, the case in the Figure 3.5 will produce valid results for point
𝐴 because the shadow volume side quad that is penetrated by the ray will not leave any
imprint in the stencil buffer, because it would pass the depth test. Similarly, point 𝐵 would
be correctly shadowed because if we prolonged the ray from the camera to the point 𝐵, we

26

Algorithm 2 Z-fail shadow volumes, camera perspective, per light source
1: Render scene to depth buffer only from camera’s perspective
2: Create shadow volume side quads
3: Clear stencil buffer, disable color and depth writes
4: Set stencil operation to increment on depth test fail
5: Enable front face culling
6: Draw shadow volume side quads
7: Draw shadow volume front and back caps
8: Set stencil operation to decrement on depth test fail
9: Enable back face culling

10: Draw shadow volume side quads
11: Draw shadow volume front and back caps

would intersect a shadow volume quad that is located below the surface, thus failing the
depth test and modifying the stencil buffer values.

Unlike z-pass, which required shadow volume caps only to handle special cases, z-fail
requires the shadow volumes to be watertight, e.g. to be capped on both ends, see Figure 3.6.
A so-called front/light cap consists of light front-facing occluder geometry, a back/dark cap
from back-facing geometry projected to the infinity [19]. In case of directional light source,
the back cap does not need to be rendered as it consists only from a single vanishing point,
the sides are triangles and not quads [112]. Another problem arose as to how to correctly
render back caps at the infinity without being clipped by the far clipping plane. Everitt
et al. [33] designed a projection matrix 𝑃𝑖𝑛𝑓 that would project such geometry to the far
clipping plane, see Equation 3.8, where 𝑁𝑒𝑎𝑟 is the near clipping plane distance, 𝑇 and 𝐵
are y-axis limits (top, bottom), 𝐿 and 𝑅 are x-axis limits (left, right).

𝑃𝑖𝑛𝑓 =

⎡⎢⎢⎣
2·𝑁𝑒𝑎𝑟
𝑅−𝐿 0 𝑅+𝐿

𝑅−𝐿 0

0 2·𝑁𝑒𝑎𝑟
𝑇−𝐵

𝑇+𝐵
𝑇−𝐵 0

0 0 −1 −2 ·𝑁𝑒𝑎𝑟
0 0 −1 0

⎤⎥⎥⎦ (3.8)

Modern hardware has a built-in support for clamping depth values at the far clipping
plane. Calling glEnable(GL_DEPTH_CLAMP) in OpenGL will disable near and far plane clip-
ping during rasterization and will clamp fragment’s depth value to 𝑚𝑖𝑛(𝑧𝑛𝑒𝑎𝑟, 𝑧𝑓𝑎𝑟),𝑚𝑎𝑥(𝑧𝑛𝑒𝑎𝑟, 𝑧𝑓𝑎𝑟)
where 𝑧𝑛𝑒𝑎𝑟 and 𝑧𝑓𝑎𝑟 define the range of the depth buffer. When using this hardware feature,
a conventional projection matrix can be used instead of 𝑃𝑖𝑛𝑓 described in the Equation 3.8.
This feature also enables the algorithm to work with orthogonal projection as well [33]. An
improved version of this extension was proposed by AMD as GL_AMD_depth_clamp_separate,
which allows to choose the plane on which the clamping is performed [16].

Another hardware feature that reduces the number of draw calls is called two-sided
stencil test, in OpenGL as extension GL_EXT_stencil_two_side [60] and since OpenGL
2.0 standardized as core function glStencilOpSeparate. Instead of rendering the front
and back faces separately with different culling and stencil settings twice, shadow volumes
can be rendered once by setting stencil operation for both sides and with culling disabled
[33]. An outline of the optimized algorithm can be seen in Algorithm 3.

Z-fail, although solving several problems of z-pass, has to work with 2-manifold wa-
tertight geometry only. It is also generally slower (up to two times) than z-pass due to
rendering of the front and back caps [30].

27

Figure 3.6: Visualized shadow volume of a sphere. Red – shadow volume side geometry
(extruded silhouette edges), green – front cap, blue – back cap rendered at far clipping
plane. Silhouette of the object can be seen on the boundaries of the front cap. Each
triangle’s normal points outwards of the volume.

Algorithm 3 Z-fail shadow volumes with two-sided stencil testing
1: Render scene to depth buffer only from camera’s perspective
2: Create shadow volume side quads
3: Clear stencil buffer, disable color and depth writes
4: Set two-sided stencil operation to increment on depth test fail for back faces
5: Set two-sided stencil operation to decrement on depth test fail for front faces
6: Draw shadow volume side quads
7: Draw shadow volume front and back caps

28

shadow casting
object

penumbra
wedge

umbra
volume

penumbra wedge

light source

exit point (pb)entry point (pf)

Figure 3.7: Soft shadow volumes generated from penumbra wedges [5]

3.1.4 Soft Shadow Volumes

Although shadow volumes are primarily used when precise shadows are needed, there were
attempts to modify the algorithm for soft shadows. Unlike shadow maps, which can be
easily filtered, the method proposed by Akenine-Möller et al.[5] renders penumbra wedges
similarly to soft projected shadows by Heckbert et al. [42]. The method renders these
wedges into 8-16 bit stencil buffer, which is later used to modulate the scene’s lighting. The
wedges are constructed from silhouette edges and a spherical light source, as seen in the
Figure 3.7. One of the issues the algorithm faces is to address the wedge connectivity to
avoid artifacts, as well as overlapping wedges. The method is limited to 2-manifold objects.

Assarsson et al. [10] further improved this algorithm. Shadow wedge construction from
silhouette edges is now independent on each other. The edge’s vertices 𝑒0, 𝑒1 are sorted by
the distance towards the light and provided 𝑒1 is the vertex closer to the light source, vertex
𝑒0 is moved to the same distance from the light as 𝑒1, creating vertex 𝑒′0. The wedge is then
created from vertices 𝑒′0 and 𝑒1. The shadow is no longer exact, but the above mentioned
approach works faster than the original approach. The shadow geometry is then rendered
in two passes, first pass projects fragments inside the wedges to the area light source, second
pass compensates for overestimated umbra regions from the first pass.

Laine et al. [67] also use two stage algorithm. First step constructs a hemicube accelera-
tion structure from wedges created from extracted silhouette edges. They are conservatively
rasterized onto the hemicube, which is centered and oriented according to the light source.
After this step, each cell in the hemicube contains a list of wedges whose footprint intersects
the cell. Then, the method determines which light samples are visible from point 𝑝 by ac-
quiring the list of corresponding wedges from the hemicube and computing the light source
occlusion. This method was basis for Lehtinen et al. [69], who pointed out on several prob-
lems – the method is overly conservative due to two dimensional nature of the hemicube,
unpredictable performance and big performance penalties when transforming the light. To
address these problems, he rasterizes the wedges into a hierarchical 3D grid, implemented
as BSP tree, where each cell contains the list of wedges either intersecting or containing the
cell. The hierarchical approach greatly improved the performance as the number of wedges
that needed processing during traversal was lowered by an order of magnitude.

29

(a) 2-manifold (b) 2-manifold with a
boundary

(c) Non-manifold

Figure 3.8: Occluder types, based on geometry topology. A 2-manifold mesh consists of
edges having exactly 2 adjacent faces. 2-manifold with edge boundary (mesh with a hole,
a plane, a circle, ...) has 1-2 faces per edge. Non-manifold mesh has more than 2 faces per
edge [62]

3.1.5 Non-Manifold Meshes

The problem of virtually all previously mentioned shadow volume algorithms is their inabil-
ity to handle non-manifold meshes or 2-manifold meshes with a boundary, e.g. meshes with
holes, trailing edges with only one triangle attached or edges with more than 2 adjacent
triangles, as seen in the Figure 3.8. The problem is that non-manifold models may not
generate equal number of front-facing and back-facing shadow volume side quads, relative
to the camera. This was first observed by Bergeron [12] and proposed a solution – to in-
crement/decrement the ray value by 2 when a shadow volume side quad extruded from a
silhouette edge having 2 triangles attached. When the ray hits a quad extruded from an
edge that has only a single triangle attached to it, its value is changed by 1. This algorithm
is able to correctly render shadow volumes from 2-manifold casters with a boundary.

Aldridge et al. [8] pointed out that geometry with more than 2 triangles per edge
also need to be addressed. The paper also notes that triangle winding constraint plays
important role in the current algorithms (all triangles are expected to have consistent
winding throughout the whole model) when determining if an edge is a silhouette one or
not. But winding as a constraint has to be lifted when dealing with arbitrary triangle
soups where an edge might be adjacent to either more than 2 triangles or to triangles with
inconsistent winding. Instead of storing winding information in the edges (with respect to
the triangles), the method stores winding for every triangle with respect to every edge it
connects to. He introduced counters for every edge. If a triangle is determined as light-
facing, the edge counters for all attached edges are either incremented if the triangle and the
edge have the same winding, decremented otherwise. If the edge counter is less than zero,
the edge is then extruded with reversed winding, if positive then the edge is extruded with
the same winding as its direction. If the counter is zero, the edge is not a silhouette edge.
Extruded shadow volume side quads are then rendered edge-counter-times. The algorithm,
however, requires the mesh to be orientable, e.g. not for two-sided geometry. Also, he
ignores light back-facing geometry (e.g. geometry with reversed winding in general) which
may still contribute to object’s shadow. The method would produce different results using
the scene in the Figure 3.9 if triangle winding is reversed for any of the triangles.

Standard graphics APIs don’t allow for arbitrary stencil value to be added, thus when
the edge counter in the algorithm of Aldgridge et al. is greater than 1, the shadow volume
side quad has to be rendered more than once. McGuire [78] tried to solve this issue by

30

A

B

C (+1)

D (+1)

E (-1)

P

Figure 3.9: Edge multiplicity calculation. Edge 𝐴𝐵 is extruded along the light direction,
creating a light-plane 𝑃 . Multiplicity is computed as the number of triangles in front of
the 𝑃 minus triangles at the back. The multiplicity of the edge 𝐴𝐵 is 1.

utilizing additive blending. Adding an arbitrary value to stencil buffer is available on AMD
hardware using GL_AMD_stencil_operation_extended OpenGL extension [96].

Kim et al. [62] extended the algorithm of Aldridge et al. [8] to non-oriented triangle
meshes, being able to render almost any triangle soup, independent of winding. Let’s
consider an edge 𝐴𝐵, as seen in the Figure 3.9. The edge has 3 triangles attached to it
(𝐴𝐵𝐶, 𝐴𝐵𝐷, 𝐴𝐵𝐸). We will call vertices 𝐶, 𝐷 and 𝐸 as opposite vertices with respect to
the edge 𝐴𝐵. Every opposite vertex is then tested against the light plane’s 𝑃 equation. If
the result is positive, the multiplicity of the edge is incremented, if negative – decremented.
The absolute of the resulting multiplicity is the number of times the stencil needs to be
incremented for the extruded non-manifold edge 𝐴𝐵, e.g. the number of times the shadow
volume side quad has to be rendered. Positive multiplicity means that the shadow volume
side quad, extruded from the edge, will be rendered with the same winding as the edge is
stored with, reversed otherwise. Kim has also proven that the resulting stencil mask equals
to the number of surfaces that are between the light source and the receiving surface. One
of the requirements of the algorithm is consistency – when an edge is extracted from a
triangle, it has to be correctly identified no matter the edge direction inside the triangle.
Based on this assumption, even if the winding of all triangles adjacent to a silhouette edge
changes, the multiplicity does not.

Kim designed his method to work with z-pass, although the extension to support z-fail
is trivial. Aldridge et al. were not exact on how to render the caps properly, stating that
either light front or backfacing triangles alone may introduce artifacts. Kim proposed to
render the front cap with multiplicity +1 when camera and light are on the same side, −1
when on opposite sides with respect to the triangle being rendered. The back cap can be
rendered with opposite sign as the front cap. This mean that caps are rendered from all of
the object’s geometry.

Kim’s method also supports transparent shadow casters by utilizing a float buffer instead
of stencil buffer, called a light map. Every extruded edge will multiply the value in the
light map by the transparency value of the caster, per channel. However, only uniformly-
coloured transparent shadow casters are supported. His algorithm, in general, is able to
render almost any triangle soup, but suffers from determinism problems when a triangle is
almost parallel to the light plane.

31

3.1.6 Optimizations

Performance of the shadow volumes algorithm can be improved in several areas. As shadow
volumes rasterize large amount of geometry, several publications were focused on fillrate
reduction. One way to reduce fillrate is to omit shadow casters that are already in shadow.
Vlachos and Card [107] sort the input polygons by the closest vertex from the light’s
perspective. For each polygon, a small frustum from light source is created, the far plane
being the polygon itself. All polygons that are inside this frustum, are discarded from
the input. This method is not suitable for modern large scenes in real-time. CC Shadow
Volumes [72] reduce the amount of rasterization by culling away shadow casters that are
already in shadow. The method uses shadow map and occlusion queries to create a set of
potential shadow casters from light’s perspective and a set of potential shadow receivers from
camera perspective. The algorithm is also able to cull shadow casters whose shadows are
not visible on the screen by rendering bounding volumes of potential shadow receivers into
the stencil buffer when the depth test fails, from light’s viewpoint. This method, however,
is not suitable for omni-directional light sources.

There is a category of methods that use acceleration structures in order to speed up the
rendering process of shadow volumes. Stitch et al. [101] used hierarchical occlusion culling
of axis-aligned bounding boxes (AABB) extended to shadow volumes. The method creates
a shadow volume from node’s AABB and tests it for visibility by an occlusion query. If
the node’s shadow is not visible, all subnodes can be skipped. Binary Space Partitioning
(BSP)-based methods that don’t rasterize shadow volumes are discussed in the Chapter 3.2.

Laine [66] attempted to combine z-pass and z-fail methods, detecting when camera is
in shadow in order to use faster z-pass more frequently. His method uses a low-resolution
shadow map to locally decide whether to use z-pass or z-fail and modified the stencil
algorithm to test the depth against a split plane.

McGuire [76] proposed not to extrude the shadow volumes to infinity, but rather to the
range of the light source. This might, however, cause the dark cap to be visible rather than
being culled. Second proposed optimization is to compute the area on the screen that the
light source covers by projecting a sphere representing the light radius on the screen. Then,
the scissor test is enabled during the shadow volume rendering with dimensions covering
the projected sphere, but such optimization can only be used when the light source is
farther away from the camera. Similar optimization can be used for the depth range –
objects outside the projected sphere’s depth range don’t have to be rendered at all in the
illumination pass. This can be achieved by setting the depth range of the depth buffer to
the range of the projected sphere.

Aila et al. [2] designed a hierarchical depth-stencil buffer method of rendering shadow
volumes. Their algorithm subdivides the screen into 8x8 pixel tiles and stores minimum
and maximum depth per tile, creating an axis-aligned bounding box. This structure is filled
in the depth pre-pass. If the shadow polygon does not intersect the bounding box (tile)
during the shadow volume rendering process, all points inside the bounding box are either
all lit or all shadowed. When all shadow volumes are rendered, the content of the cells is
classified as either being fully lit, fully shadowed or there was an intersection with a shadow
volume, thus a shadow boundary is present in the tile. Second pass of the shadow volume
rendering processes only the tiles that were intersected.

Several optimizations are discussed in Legyels’s GDC’05 talk [70]. Similarly to McGuire,
he describes scissor test optimization based on projecting the light boundaries to the screen
for point light source, as seen in the Figure 3.10. Another optimization is depth bounds

32

LightLight

View FrustumView Frustum

Image PlaneImage Plane

CameraCamera

Image PlaneImage Plane

CameraCamera

Figure 3.10: Limiting shadow volume rendering of point lights. A light range is projected
to the screen and a bounding rectangle is placed around this area, which is ten used for
scissor test during shadow volume rendering [70].

test that works similarly to scissor test optimization but in terms of depth – limiting the
extension of shadow volumes to the light range. This optimization saves depth and stencil
writes for geometry outside the light’s range.

Röttger et al. [95] proposed a modification to shadow volumes that uses alpha channel
using depth test and blending instead of stencil buffer so it could be used on PlayStation
2. Instead of increment and decrement operations, the method is doubling and halving
using gl_BlendFunc(GL_DST_COLOR, GL_ZERO) and setting vertex brightness to either 0.5
or 1; the buffer is initialized with a value of 0.25 which is also a value for a lit fragment.
Because of color value clamping, even if multiple shadow volumes overlap a fragment, its
value will always be either 0.25, 0.5 or 1. The author also proposed to halve the alpha
buffer resolution in order to improve shadow volume fill-rate, but this is contrary to the
shadow volume nature as a precise method.

McGuire [80] offers several guidelines on implementation of shadow volumes in games.
He designed a method to omit the inner model geometry from shadow volume rendering
which might introduce visual artifacts under certain scenarios. Another proposed opti-
mization is not to generate light caps of occluding geometry when it is not viewed by the
camera as they don’t contribute to the shadow count computation. However, modern hard-
ware culling capabilities is able to deal with such geometry easily. He makes use of the
scissor test to limit the range of shadow volumes generation and to save fill rate.

3.2 Algorithms Using Acceleration Structures
Although these methods are similar to shadow volumes, they pose a separate category
as they neither rasterize shadow volumes geometry into the stencil buffer nor do any ray
increment/decrement operation. Instead, these methods traverse an acceleration structure
constructed either from the view samples or from the scene’s geometry to determine view
sample’s light visibility.

3.2.1 Methods Building Acceleration Structure from Scene Geometry

Using BSP trees as an acceleration structure was first proposed in SVBSB (Shadow Volume
BSP) [20]. Each internal node of the SVBSP is associated with a shadow plane, created

33

L

a b
f

g

c
d

e

shadow volumes

a

add ab:

a

add cd:

a

add ef:

outb

outin

outb

in c

outd

outin

outb

cin

gd

in out outf

outin

Figure 3.11: 2D case of SVBSP – adding edges to the tree structure. When edge 𝑒𝑓 is
added, it’s split to two edges at point 𝑔 due to intersection with a plane cast through point
𝑏 [112].

light

p0

p1

p2

p3

p0
p1

p2
p3

Figure 3.12: Planes created from a triangle frustum: 𝑝0 - 𝑝2 shadow planes, 𝑝3 capping
plane. The resulting TOP subtree is displayed on the right. The nodes have positive child
node on the right, intersecting in the middle and negative node on the right. [37].

from the light position and an edge. The tree is built incrementally from a front-to-back
sorted set of polygons with respect to the light source, thus a triangle being processed
is tested only against the planes that are already in the tree (and not future planes), as
seen in the Figure 3.11. To test a fragment, one traverses the SVBSP with view sample
coordinates and finds out, whether it’s located inside a lit or shadowed space of a node,
then traverses the respective child node. The structure, however, needs to be rebuilt when
the light position changes. Also, polygon clipping during the build process is an expensive
operation which introduces numerical errors.

This approach was recently revisited by Partitioned Shadow Volumes (PSV) [37]. Al-
though the acceleration structure needs to be rebuilt when the light source moves, the
method no longer clips polygons, thus avoiding robustness issues. Each triangle shadow
frustum consists of 4 planes – three shadow planes and one capping plane which is con-
structed from the triangle itself, as see in the Figure 3.12. Instead of clipping, every tree
node representing a shadow plane is not binary but ternary – the third intersection node
points to triangles which are intersected by the shadow plane, calling the resulting struc-
ture a TOP tree. The triangles are also not sorted but inserted in random order. When
inserting a triangle, starting from the root node, all the triangle vertices are tested against
a plane. If all vertices lie on the same side of the node’s plane, respective child node is cho-

34

0 1 2 3

4 5 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 3.13: Rasterization of triangle frustum into the hierarchical depth buffer. Green
tiles are trivially rejected, yellow tile failed trivial test but does not intersect, blue tiles are
trivially accepted. Brown and black points of tile 0 are trivial accept and reject test points.
The right part of the image shows a close-up of tile 6 [99].

sen (either positive or negative node). If the plane intersects the triangle, the intersection
node is chosen. This process repeats until a child node is found, which is then replaced
by the shadow frustum of the triangle. Traversal is similar to SVBSB except it ends when
the fragment is tested to be inside a capping plane (which is always stored last for every
frustum). The algorithm is able to support transparent shadow casters.

PSV was improved by Mora et al. [83]. They identified two major shortcomings of
PSV – stack as not being GPU-friendly and lit areas being too costly. The tree depth
complexity increases the cost of lit surfaces because in order to find out if a fragment
is lit, it must not be contained in any of the frustums encountered during the traversal,
thus posing the worst case of the traversal. Mora added depth information to each node,
computed as minimum distance between the triangle and the light source. This allowed
for skipping node testing if the node lies farther away from the light than the fragment
tested. The method proposed a stackless implementation using links inside the structure,
trading register pressure for memory bandwidth and a hybrid approach with shorter stack
and switching to stackless version when the stack is full. However, the implementation of
z-pass stencil shadow volumes that was used during evaluation Mora’s method was very
ineffective.

Deves et al. [25] improved the method even further. Their contribution was improved
scalability with the increasing geometry complexity using clustering. The geometry in the
scene is clustered into the groups of 32 elements, encapsulated with either a sphere or a
capsule, and stored in a metric tree [105]. The metric of choice is the angular distance,
e.g. cone angle created from the light and the bounding sphere or angle between the two
support points of the capsule and the light source. The hierarchy is then built by choosing
a random pivot node and angular distance such that it divides the remaining elements
into possibly two equally-sized sets. The process repeats until all nodes are processed.
Traversal is similar to methods mentioned above, except the fragment is first tested against
the bounding volume, if located inside then tests the triangles, otherwise traversal continues.
This method, however, needs expensive preprocess and is more suitable for scenes with large
amount of geometry, other methods are faster for smaller scenes.

35

Figure 3.14: Left – false positive tile not lying completely outside any plane. Right image
shows the extruded shadow volume of the triangle with extra plane per each vertex as seen
in the right image [98].

3.2.2 Methods Building Acceleration Structure from View Samples

Alias-free shadow maps [3] builds a hierarchy of view samples in order to determine their
visibility. The method uses a 2D BSP tree to construct a view sample hierarchy, then tests
each triangle against the hierarchy for occlusion and traverses down if a node is at least
partially occluded. If all samples in a node are determined as shadowed, whole node is
marked shadowed and is no longer traversed by subsequent geometry.

A version of alias-free shadow maps by Sintorn et al. [97] creates a list per shadow
map texel that stores all view samples which gets projected to this particular shadow map
texel. The method then renders scene triangle using light’s projection and tests whether
the samples, stored in a list in every shadow map texel, are occluded with the currently
rendered primitive. Conservative rasterization must be utilized as even marginally covered
shadow map texels need to be accounted for. The method does not support omni-directional
light sources.

Per-Triangle Shadow Volumes [99] builds a hierarchical depth buffer from the view
samples. A single node defines a bounding box in normalized device coordinates plus depth
min-max value, called a tile. The upper level covers a 4x4 area of the level below. Then, the
method uses software shadow volume rasterizer, written in CUDA, that renders the shadow
frustum of every triangle into the hierarchical depth buffer from camera’s perspective.
CUDA was chosen as no other GPGPU language provided ballot intrinsic at that time.
When rasterizing the shadow frusta, it can either intersect a tile, in which case the tile has
to be subdivided or individual samples tested against the shadow frustum on the lowest
level, completely envelop the tile which results in the whole tile to be marked as shadowed,
or lying out of the tile, see Figure 3.13. When all triangles are processed, the hierarchy is
merged by propagating shadow bitmasks from the upper level to the lower level, where all
the view samples receive shadowed/lit flag. Although this method is capable of producing
shadows from transparent casters, it is dependant on bias value when testing tiles against
the frustum planes. Also cases like tile number 9 on the left side in the Figure 3.13 are
prone to producing false positives.

This technique is further extended in Clustered Per-Triangle Shadow Volumes [98] by
building an acceleration structure from view samples based on their proximity and testing
triangle frusta against the structure. The view samples are grouped into the clusters of 8
by 8. Every cluster then receives a Morton code based on their screen-space coordinates.
Then, a full hierarchical tree is build from the clusters with branching factor of 32 and depth
of 5. Every node contains a 32-bit bitmask indicating the presence of each of the children

36

Figure 3.15: Data structures used by Deep Primitive Map [102].

and its AABB for faster culling. The hierarchy is build in a similar way as in [99] but in
order to address the false positive problem from the previous method caused by wedges
formed of any 2 frustum planes as see in the Figure 3.14, a plane is added per-vertex that
contains the vertex and the light source, making the frustum-tile intersection test robust.
The traversal is dispatched as collection of jobs, each job processes a single triangle and
is assigned to a warp of 32 thread. Each thread of the warp tests the triangle against its
particular child, the result is then broadcast to all warp threads and shadow mask for all
children is set. If the lowest level is processed, the view samples in the cluster are tested,
otherwise the traversal continues for every intersected child.

Story [102] has proposed the Deep Primitive Map (DPM) technique that works similarly
to the IZB, but instead of storing view samples, it makes lists of all triangle IDs that cover
a particular IZB cell. The data structure seen in Figure 3.15 is sampled as a shadow map
to obtain the list of triangle IDs that are ray-tested from the view sample position towards
the light. For the method to work correctly, conservative rasterization needs to be used as
all triangles touching a particular IZB cell must be stored in its list. As the method stores
triangle IDs, the maximum length of the lists has to be experimentally determined for every
scene.

Frustum Traced Shadows [113] conservatively renders the scene geometry against the
IZB. A shadow volume is created from a triangle and the light source and every IZB cell
touched or covered by the triangle then tests its view-space samples against the triangle’s
frustum (shadow volume).

A common problem of all the IZB-based methods is long lists, which cause low GPU
occupancy and slow IZB traversal. In order to match eye and light space sampling, Wyman
et al.[113] propose that ideal parametrization for these methods are cascades, opting for
the technique described by Lauritzen et al.[68]. Story [103] uses dynamic reprojection of
the light space area where the list lengths exceed a selected threshold. A second projection
matrix is computed that projects the selected area into the second IZB list head texture.

37

3.3 Ray Tracing Methods
Ray tracing was the first method used to render shadows in 3D graphics, although an offline
method for several decades. Development of ray tracing focused mostly on improving its
performance by providing better acceleration structures and optimizing ray traversal by
techniques like ray sorting [35] and packeting [94]. The traversal optimizations allow the
ray tracer to better utilize the GPU hardware as secondary rays become very divergent
in direction and invalidate cache data frequently as neighbouring threads may access com-
pletely different parts of the acceleration structure. Also, ray packet saves on the amount
of operations. Shadow rays are different as they either all converge to a single point (point
light) or go in the same direction (directional light). To make matter even simpler, it is usu-
ally sufficient to detect any collision with the scene geometry and not the closest, provided
the scene does not have transparent casters.

Soft shadow can be achieved by distributed ray tracing which casts multiple rays towards
and area light source and averages their results to a percentage of occlusion [22].

A recent method by Boksanský et al. [15] uses standard forward-rendering rasterization
pipeline for shading but recently introduced hardware-accelerated raytracing (nVidia RTX)
for shadows. Bounding volume hierarchy (BVH) is used as an acceleration structure gen-
erated automatically by the RTX API. In order to make the shadow tracing effective, the
method uses penumbra detection and adaptive sampling to lower the number of shadow
rays based on the sample visibility in four previous frames. Data from previous frames are
also used to determine the sampling rate and the filter kernel sizes. With the introduction
of hardware acceleration for ray tracing in modern graphics hardware, ray tracing adapta-
tion as (not only) a shadowing technique for real-time applications will probably increase
in the near future.

38

Chapter 4

Comparison of Omnidirectional
Shadow Mapping Methods

The motivation of this research was to compare omnidirectional techniques available for
shadow mapping, in terms of performance, quality and ease of implementation.

Omnidirectional shadow maps can be represented by faces of a cube map [36]. In this
case, six render passes are needed to fill the data into the cube map faces. Secondly, the
Dual–Paraboloid Shadow Mapping (DPSM) technique [17, 89] can be used. It is capable of
capturing the whole environment in two render passes using parabolic projection. However,
the mapping is not linear and thus not fully supported by contemporary graphics hardware.
Recently, different techniques have been introduced [21, 46] that discuss other types of
parametrizations.

This method was presented on the WSCG conference [85]; my contribution was designing
and implementing the testing framework, including the tests and performing the evaluation.

4.1 Cube Mapping and Optimizations
Cube mapping technique was first proposed by Gerasimov [36] where a set of 6 textures
forming a cubemap captures the the depth from the light source in±𝑥, ±𝑦 and±𝑧 directions
in the same way as standard shadow mapping does. King and Newhall [63] introduced a
method to reduce the number of shadow frusta that needs to be rendered. If the light source
is outside the view frustum, then we can skip rendering of at least one face of the shadow
map, as seen in the Figure 4.1. For our experiments, we used the following technique for
efficient culling of cube map faces. A camera view frustum and each cube map frustum are
tested for their mutual intersection. Those frusta that do not intersect can be discarded
for further rendering because they do not affect the final image. The efficient culling of
arbitrary frustum 𝐹 against the camera view frustum 𝑉 works as follows. A frustum is
defined by 8 boundary points and 12 boundary edges. To determine whether the two frusta
intersect, two symmetric tests have to be performed as seen in the Figure 4.2.

Firstly, it should be tested whether a boundary point of one frustum lies inside other
frustum. Secondly, boundary edges of one frustum are tested for intersection against one
or more clip planes of other frustum. For each face of the cube shadow map, we investigate
whether the camera view frustum intersects the shadow face frustum and vice versa. If
it is not the case, the shadow face frustum does not affect the scene and we can skip the
additional processing. It is also necessary to take into account shadow casters outside the

39

Cullable frustaCullable frusta

Cullable frusta

Figure 4.1: Shadow map frusta from omnidirectional point lights sources in 2D. At least
on of the frustum is cullable if the light is not inside the camera’s view frustum.

F

V

(a) Point-in-frustum test

F

V

(b) Edge-plane frustum test

Figure 4.2: Two-stage frustum test

view frustum. If we cull the shadow caster against the view frustum, the projected shadow
may still be visible in the view frustum. On the other hand, culling the shadow caster
against the cube map frustum draws invisible shadows as well. King also [63] suggests to
use frustum-frustum intersection test described above for the shadow casters as well. Since
we use point light sources, rays are emitted from a single point towards all shadow casters.
This is analogous to the perspective projections. If the shadow casters are enclosed by
bounding objects, frusta representing the projected shadows can be created and then the
frustum-frustum test can be applied in this case as well.

4.2 Dual-Paraboloid Shadow Maps
Parabolic projection, proposed by [17], is based on a totally reflective mirror in a shape of
a paraboloid that reflects incident rays from a hemisphere to the paraboloid direction. The
function of the paraboloid can be seen in the Equation (4.1).

𝑓(𝑥, 𝑦) =
1

2
− 1

2
(𝑥2 + 𝑦2), 𝑥2 + 𝑦2 ≤ 1 (4.1)

40

-1 10

CL

V
x

zsum

NP

Nsum

RN

IN

P

Figure 4.3: Scheme of dual-paraboloid mapping. A vertex 𝑉 is projected to paraboloid
to point 𝑃 . 𝑁𝑃 is the normal vector on the intersection of incident vector 𝐼𝑁 with the
paraboloid, 𝑅𝑁 is its reflected vector along 𝑁𝑃 . 𝑁𝑠𝑢𝑚 is the sum of 𝐼𝑁 and 𝑅𝑁

1.

The texturing coordinates on the shadow map are then computed from the point on the
paraboloid plane (shadow map) where the ray intersects the paraboloid. As seen in the
Figure 2.18, the key observation is that all incident rays are reflected in the same direction.
A point 𝑃 on the paraboloid is given as:

𝑃 = (𝑥, 𝑦, 𝑓(𝑥, 𝑦)) (4.2)

which also equals to the texturing coordinates to address the paraboloid map. The
scheme of the method can be seen in the Figure 4.3. The normal vector 𝑁𝑃 of point 𝑃 can
be obtained as a cross product of partial derivatives (tangents) of the Equation (4.1) with
respect to 𝑥 and 𝑦, as seen in the Equation (4.3).

𝑇𝑥 =
𝛿𝑃

𝛿𝑥
= (1, 0,

𝛿𝑓(𝑥, 𝑦)

𝛿𝑥
) = (1, 0,−𝑥)

𝑇𝑦 =
𝛿𝑃

𝛿𝑦
= (0, 1,

𝛿𝑓(𝑥, 𝑦)

𝛿𝑦
) = (0, 1,−𝑦)

𝑁𝑃 = 𝑇𝑥 × 𝑇𝑦 = (𝑥, 𝑦, 1)

(4.3)

As seen from the Equation 4.3, the reflection vector is always going to be (0, 0,±1) in
paraboloid local coordinate system.

The direction vector of the incident projection ray corresponds to the normalized vertex
position in the paraboloid coordinate system. When we add the reflection vector and the
direction vector, we get a vector that corresponds to the normal at the point of projection
but with different length, 𝑁𝑠𝑢𝑚, as seen in the Equation (4.4) [48].

1http://gamedevelop.eu/en/tutorials/dual-paraboloid-shadow-mapping.htm

41

𝑁𝑃 = (𝑥, 𝑦, 1) ⇐⇒ 𝐼𝑁 + 𝑅𝑁 = 𝑁𝑠𝑢𝑚 = (𝑥𝑠𝑢𝑚, 𝑦𝑠𝑢𝑚, 𝑧𝑠𝑢𝑚)

𝑁𝑃 = (𝑥, 𝑦, 1) ⇐⇒ 𝑁𝑠𝑢𝑚

𝑧𝑠𝑢𝑚
= (

𝑥𝑠𝑢𝑚
𝑧𝑠𝑢𝑚

,
𝑦𝑠𝑢𝑚
𝑧𝑠𝑢𝑚

, 1)
(4.4)

4.3 Implementation
We implemented the testing framework in DirectX 11 and HLSL shading language. Our
implementation does not use any hardware-specific features.

4.3.1 Omnidirectional Shadow Mapping

The omnidirectional part was implemented in a standard shadow map fashion. Camera
was placed to the position of the light source and rendered the selected shadow frusta.
The efficient frustum culling (EFC) is performed on the CPU to determine, which shadow
map frusta are needed to be rendered. We used geometry shader to render up to all 6 cube
shadow map faces in a single pass, using a bitmask in the geometry shader to indicate which
frusta are active. To speed up the rendering process, we also implemented view frustum
culling for the objects being redenred to the shadow maps. We used bounding spheres to
cull the objects.

4.3.2 Dual-Paraboloid Shadow Mapping

There are several differences from standard shadow mapping when rendering using parabolic
projection. Unlike cube mapping, paraboloid mapping requires only up to two passes to
cover the whole scene. Appropriate view matrix is constructed based on the orientation of
the paraboloid. Because we are doing our own projection, the projection matrix is either
unit matrix or can be completely skipped. The vertex shader only poasses the vertices
through, we exploited the geometry shader to render both paraboloids in one pass. We used
similar culling technique to cull paraboloids – we checked for intersection with the plane
separating the paraboloids, if the camera frustum intersects the plane, both paraboloids
are rendered.

vec4 vertexEyeSpace = ModelViewMatrix * vec4(in_Vertex,1.0);
float Length = length(vertexEyeSpace);
float clipDepth = vertexEyeSpace.z;
vertexEyeSpace.xyz = normalize(vertexEyeSpace.xyz);
vertexEyeSpace.xyz += vec3(0, 0, 1); //adding reflection vector Rn
//division by z_sum, obtaining (x,y) position
vertexEyeSpace.xy /= vertexEyeSpace.z;
vertexEyeSpace.z = (Length - near)/(far - near);
vertexEyeSpace.w = 1.f;

Listing 4.1: Vertex Parabolic Projection GLSL code

The vertex transformation core can be seen in the Listing 4.1. The first line transforms
the vertex to paraboloid’s view space. The vertex position in view space is then normalized
to acquire 𝐼𝑁 and vector 𝑅𝑁 (0, 0, 1) is added which produces the 𝑁𝑠𝑢𝑚 normal. Upon

42

Figure 4.4: An example of an artifact on the boundary of the two paraboloids

dividing the normal with its 𝑧 coordinate we obtain the position 𝑃 as noted in the Figure 4.3.
The projected vertex then needs 𝑧 and 𝑤 coordinates, which are supplied on the lines 7 and
8. The computed depth is then stored to the shadow texture. Custom depth clipping is
implemented against the clipping hemisphere in the pixel shader using the 𝑐𝑙𝑖𝑝𝐷𝑒𝑝𝑡ℎ value,
discarding only those fragments that are closer than the near clipping hemisphere.

To obtain the depth value from the shadow map, similar steps are required as during
the shadow map creation. We first find out if the shaded fragment is in the possitive or
negative paraboloid by testing its light’s space depth. Then, (𝑥, 𝑦) coordinates for accessing
the shadow texture are computed, similarly as in the Listing 4.1 and mapped to < 0, 1 >.
The acquired depth is then compared to the depth of currently processed fragment, similarly
as standard shadow mapping algorithm.

The memory footprint of dual paraboloid method is clearly lower than cube shadow
mapping, but there are also several disadvantages to this approach, most notably artifacts
caused by interpolation during the build step. Large polygons cause visual artifacts due
to incorrect interpolation, thus the rendered scene needs to be finely tessellated. Frequent
problem is also the seam between the two paraboloids, see Figure 4.4.

4.4 Test Results
The methods were tested on a Core i5 661 processor running at 3.33 GHz and nVidia
GeForce GTX 560 Ti graphics card. The rendered images had resolution of 1024 × 768.
The tests we carried out in several variants of both methods – unoptimized (rendering all
the geometry in all the frusta), optimized with view frustum culling of rendered objects
(“Optim”) and finally with efficient cube frustum / paraboloid culling (“EFC” / “PC”).
The methods were compared in terms of performance and shadow quality.

43

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

Animation Time [s]

F
ra
m
e
T
im
e
[m
s]

Cube6
Cube6Optim
Cube6Optim+EFC
Dual Paraboloid
Dual Paraboloid Optim
Dual Paraboloid Optim+PC

Figure 4.5: Results of a timed flythrough using several levels of optimizations among DPSM
and Cube Shadow Mapping, time of the whole frame

4.4.1 Performance Evaluation

The methods were tested on a flythrough with a scene of approximately 3 million vertices
and render target and shadow map resolution 1024 × 1024. The results of the flythrough
can be seen in the Figure 4.5 and 4.6.

It is clear that the methods greatly benefited from all optimizations. The most optimized
cube mapping approach takes up only 20 % of rendering time compared to the naive form.
The unoptimized version of cube mapping performed the worst of all methods as it had
to render all the scene geometry 6-times. The DPSM was able to cull one paraboloid at
max, thus often rendering all the scene geoemtry visible from each paraboloid, it seems
that the granularity of cuba mapping poses a performance advantage at times, whereas
DPSM provides lower memory consumption. Cube mapping was able to save up to 83 %
of its performance which can be seen at around 25th second of the flythrough compared to
DPSM, which can only save up to 50 %.

The efficiency of the EFC can be seen in the figure 4.7. As mentioned above, cube
mapping was able to render only to a single frustum in around 25th second of the test where
the best performance was observed and very rarely used all 6 frusta. DPSM rendered to a
single paraboloid most of the time during the test.

Tables 4.1 and 4.2 show the average frame rate among all the tested methods with
respect to increasing shadow map resolution on two differently-sized test scenes. As shadow
map used was a 32-bit float texture, its size ranged from 24 MB (1024 × 1024) to 384 MB
(4096 × 4096) in total for cube mapping, one third of the size for DPSM. If we take the
cube shadow map performance at 1024×1024 as 100 %, increasing resolution to 2048×2048
drops the performance only by 15.56 % in average, increasing to 4096× 4096 causes drop in
performance by 45.4 %. DPSM dropped 11.28 % when switching to 2048×2048 and 40.03 %
in average when the shadow map resolution was set to 4096× 4096. The higher sensitivity

44

0 5 10 15 20 25 30 35
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Animation Time [s]

S
ha

do
w

 M
ap

 C
re

at
io

n
T

im
e

[m
s]

Cube6 Optim

Cube6 Optim + EFC

Dual Paraboloid Optim

Dual Paraboloid Optim + PC

Figure 4.6: Comparing optimizations of DPSM and Cube Shadow Mapping variants, time
of shadow map creation only

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

Animation Time [s]

F
ru

st
ra

/P
la

ne
s

U
se

d

Cube6 Optim + EFC
DP Optim + PC

Figure 4.7: The number of active frusta / paraboloids during the flyghthrough

45

Method 1024 2048 4096
Cube6 75.71 70.04 47.9
Cube6 Optim 150.43 116.76 64.04
Cube6 Optim + EFC 188.71 151.67 89.68
DP 167.95 146.62 97.52
DP Optim 207.24 178.67 109.4
DP Optim + PC 208.15 180.24 110.95

Table 4.1: Averge FPS on a flythrough on a scene with approximately 600 000 vertices

Method 1024 2048 4096
Cube6 19.11 18.38 16.21
Cube6 Optim 57.15 51.23 36.50
Cube6 Optim + EFC 127.47 114.21 83.38
DP 41.50 39.74 33.17
DP Optim 57.47 54.32 42.85
DP Optim + PC 90.56 86.08 69.58

Table 4.2: Averge FPS on a flythrough on a scene with approximately 3 million vertices

to increased resolution among cube mapping is probably due to larger amount of shadow
textures that method requires. Although DPSM uses less video memory, the method is not
as fast as cube mapping as optimizations provide greater performance benefits in terms of
culling.

4.4.2 Quality Evaluation

As discussed in the Chapter 4.2, DPSM suffers from artifacts when the occluding geometry
is insufficiently tessellated as well as artifacts on the line where the two paraboloids are
separated, as seen in the Figure 4.8. It is apparent that cube mapping produces higher
quality shadows than DPSM in every resolution. At 512×512, both methods miss the details
of the tiger’s whiskers, but DPSM does not produce correct shadow even at 4096 × 4096,
although consumes only a third of the memory compared to the cube mapping.

At 512 × 512, both methods miss the details of the tiger’s whiskers, but DPSM does
not produce correct shadow even at 4096 × 4096, although consumes only a third of the
memory compared to cube mapping.

4.5 Evaluation
The initial assumption was that multiple render passes performed by the cube shadow
maps technique should be very time consuming process. The result of the measurement is
that an unoptimized version of the cube shadow maps exhibits the worst performance of
the examined algorithms. When a simple optimization technique was used, it significantly
increased the performance, in fact, the best of the examined algorithms. The performance
and the visual quality of the cube shadow maps is superior compared to the dual-paraboloid
algorithm. The parabolic projection introduced notable artifacts on the boundary of the two
paraboloids and in places where the tessellation of the scene is not sufficient. This it due
to the linear interpolation performed by the rasterization unit in the graphics hardware

46

5122 10242 20482 40962

C
ub

e
S

ha
d

ow
 M

ap
s

D
P

S
M

Figure 4.8: Quality comparison between cube shadow mapping and DPSM in various res-
olutions

Figure 4.9: Reference image, produced by the stencil shadow volumes.

as the parabolic projection is not linear. Where the memory consumption is concerned
and shadow quality is not of such importance, the dual-paraboloid approach is the better
solution.

4.6 Extended Quality Comparison
I compared the same methods versus shadow volumes, which served as a pixel-perfect
reference. I used the same tiger model as in the original comparison and tested under the
same resolutions. The reference shadow rendering using stencil shadow volumes can be seen
in the Figure 4.9. The Figures 4.10 and 4.11 contain the differences versus the reference
image. The red areas are missing the shadow where is should be, the green areas should not
be shadowed compared to the reference image. The shadow that each method produced is
combination of black and green areas.

In order to measure qualitative differences between the methods, I used similar metric as
in [64] to measure dark/lit area coverage, comparing each tested method and resolution to
the shadow volumes. Both the reference and the investigated method image were blurred,

47

(a) (b)

(c) (d)

Figure 4.10: Comparison of cube shadow mapping (left) and dual-paraboloid shadow map-
ping (right) against shadow volumes, resolutions of 512 (top row) 1024 (bottom row), per
texture side. The red areas are missing in the evaluated method’s shadow, compared to the
shadow volumes; green area indicate a shadowed region that was lit in the precise method.

48

(a) (b)

(c) (d)

Figure 4.11: Comparison of cube shadow mapping (left) and dual-paraboloid shadow map-
ping (right) against shadow volumes, resolutions 2048 (top row) and 4096 (bottom row).
The description is identical with Figure 4.10.

49

lit
coverage

dark
coverage

512 Cube 0.785 0.666
DP 0.807 0.153

1024 Cube 0.909 0.846
DP 0.705 0.749

2048 Cube 0.951 0.914
DP 0.860 0.769

4096 Cube 0.968 0.968
DP 0.932 0.907

Table 4.3: Comparison based on lit/dark area coverage based on [64]. The higher the score,
the closer to the precise method (shadow volumes), which would achieve the score of 1.

then the coverage of the shadowed and lit areas was computed for both images. Finally,
each pixel in the particular region (lit, shadowed) in the image of the precise method
was tested against the corresponding pixel from the evaluated method, whether it is also
lit or shadowed. The unmarked pixels were weighted by a number of 15 to increase the
score diversity as the shadow contains a lot of solid area. The resulting score is computed
according to the Equation 4.5, where 𝑆 is the coverage score, 𝑊 weight, 𝑁𝑈 the amount of
unmarked pixels and 𝑁𝑅 the size of the region. The results can be seen in the Table 4.3.

𝑆 = 1− 𝑊 ·𝑁𝑈

𝑁𝑅
(4.5)

Cube Shadow Mapping is better in the dark coverage than Dual-Paraboloid method
in every test case. The situation is similar in lit coverage, despite the situation at 512 ×
512 where DP has better lit area coverage but the shadow coverage was mediocre, see
Figure 4.10b. Cube mapping scores -3 to 22 % more than Dual-Paraboloid on lit coverage,
6.3-77 % better on shadowed, averaging to 8.23 % and 27.6 % respectively. Both methods
are very close at 4096× 4096, the difference is 3.7 % in lit area score and 6.3 % in shadowed
area score.

50

Chapter 5

Robust Silhouette Extraction
Improvements for Shadow Volumes

CAD/CAM environment requires a precise and robust omni-directional shadow algorithm
for displaying arbitrary triangle soups as models produced by the design software can con-
tain triangles with incorrect winding, holes, degenerate triangles or edges with more than
two triangles adjacent to them. To address these needs, we chose shadow volumes as
they are more robust and easier to implement than other methods available at that time.
However, shadow volumes, although producing precise shadows from omni-directional light
sources, suffer from numerical instabilities, which we addressed in the following paper.

These findings were published in a paper presented on GraphiCon’2013 conference [90].
I was responsible for CPU implementation using AVX instruction set and acceleration using
OpenMP to distribute the workload among more threads.

5.1 Robustness Problems of Shadow Volumes
Kim [62] designed a method to handle non-manifold shadow casters, which was used as the
basis for our approach and was described in detail in the Chapter 3.1.5. He introduced the
concept of edge multiplicity – a light plane is created from the edge and the light source. All
the opposing vertices are then tested against the edge and the edge multiplicity is computed
as the difference between the amount of opposing vertices above and below the plane, as
seen in the Figure 3.9. The steps of the algorithm are outlined in the Algorithm 4.

The problem of not only this method but all other stencil shadow volume algorithms
is when OV is very close to the LP. This situation is depicted in the Figure 5.1. The
proposed algorithm resolves the above issue connected with the inconsistency of triangle
edges multiplicity evaluation. The main idea of the improvement is that the triangles,
where the inconsistency can occur, are removed from the silhouette calculation. Because
these triangles are (almost) parallel with the LP (their shadow volume would be zero),
they cannot affect the shape of the resulting shadow. In fact, the removal of the triangles is
equivalent to evaluation of its edges multiplicity to 0 which would occur in triangles parallel
to the LP if the precision was not limited.

One way to solve it in the “per-edge” scenario would be to process also the other two
edges of a triangle when dealing with an edge and a single OV. This evaluation also has
to be consistent, meaning that the vertex order must be preserved for each edge. We do
this by implementing a comparison operator for the vertices and propagating a flag for the

51

Algorithm 4 Robust Shadow Volumes
1: Convert triangle to model to edge representation. Each edge is represented only once,

with the list of all its opposing vertices (OV).
2: Every frame, an oriented light plane (LP) is cast from the edge vertices and the light

source.
3: Edge multiplicity is initialized to 0
4: Each OV of the edge is tested against the LP. If it lies above the plane, increments

the multiplicity of the edge, if below – decrements. Then the OV lies on the plane,
multiplicity value does not change.

5: The set of edges with non-zero multiplicity form the model’s silhouette.
6: Each silhouette edge is rendered extruded as many times as multiplicity with winding

based on the multiplicity sign.
7: if z-fail then
8: Render caps from all scene geometry
9: end if

Figure 5.1: An example of correct (top row) and incorrect (bottom row) multiplicity com-
putation of a grey triangle. Green and red triangle represent a light plane cast from the
light source towards the edge, each color having different orientation. Each situation is sup-
plemented with a side view with the light plane as a reference. In the top right situation,
vertex 𝑉0 is an OV for edge 𝑉1, 𝑉2 and is very close to the light plane. The circle around
the projection of 𝑉0 shows the numerical error margin. We see that in the top case, 𝑉0 is
correctly identified as being behind the light plane. However, when the light slightly moves,
the numerical precision would cause the vertex 𝑉0 to be evaluated incorrectly as being in
front of the light plane.

52

edge, if it is in-order of the triangle’s winding. Thus, we modified step 4 in the Algorithm
4 as follows:

4. Create a triangle from the OV and the edge. Compute multiplicity of all 3 edges as
+1 or −1 by testing the remaining vertex as OV of the respective edge. If the vertex
lies exactly on the plane, its multiplicity is 0. If the multiplicity is not consistent, set
the multiplicity of the current OV to 0. The final edge multiplicity is the sum of all
OV multiplicities.

Algorithm 5 Robust Multiplicity Computation
Function: CalcEdgeSingleOvMultiplicity
Input: Edge (𝑉1, 𝑉2), OV
Output: Multiplicity 𝑚

1: 𝑖𝑠𝑆𝑤𝑎𝑝𝑒𝑑← false
2: if 𝑉1>𝑉2 then
3: Swap(𝑉1, 𝑉2)
4: 𝑖𝑠𝑆𝑤𝑎𝑝𝑒𝑑← true
5: end if
6: 𝑉 ← 𝐿− 𝑉1𝐿𝑤

7: 𝑁 ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒((𝑉1 − 𝑉2)× 𝑉)
8: 𝐿𝑃 ← (𝑁𝑥, 𝑁𝑦, 𝑁𝑧,−𝑁 · 𝑉1)
9: 𝑚← 𝑠𝑖𝑔𝑛(𝐿𝑃 ·𝑂𝑉)

10: if 𝑖𝑠𝑆𝑤𝑎𝑝𝑒𝑑 = true then
11: 𝑚← −1 ·𝑚
12: end if
13: return 𝑚

The actual multiplicity calculation of an edge and its single OV is outlined in the
Algorithm 5. This calculation is evaluated for all 3 edges of a triangle, consisting of an edge
and an one OV, to determine multiplicity consistency. The absolute value of the resulting
multiplicity of an edge, which is the sum of all OV multiplicities, is the number of times
the extruded edge needs to be drawn.

5.2 GPU Implementations
The method was implemented on both CPU and GPU. GPU implementation was carried out
using geometry shaders and via OpenCL kernel using OpenGL – OpenCL interoperability
as compute shaders were not available at that time. Both OpenCL and geometry shader
versions process edges in parallel, iterate over all its adjacent triangles. However instead
of testing the opposite vertex against the light plane, the methods computes multiplicity
by constructing a triangle plane for edge vertices and the opposite vertex and test the
light source against it. To discard triangles having inconsistent multiplicity computation,
the triangle plane is constructed 3-times differently, each triangle vertex being as pivot.
When the triangle facing is inconsistent, the multiplicity of the edge is set to zero. When
the multiplicity is non-zero, both methods cast the processed edge multiplicity-times. The
OpenCL implementation writes all the generated geometry to a vertex buffer object, which
is subsequently drawn using just a vertex shader into the stencil buffer. The caps geometry

53

is generated in the OpenCL kernel as well, geometry shader version uses a separate shader
to render front and back caps of the shadow volumes.

5.3 Implementation Using AVX Intrinsics and OpenMP
The implementation was based on SSE implementation proposed by Van Waveren [109].
The AVX intrinsics were used to load the edge data and opposite vertex, compute the light
planes and compute the multiplicity of the edge.

AVX instruction set provides 256-bit long registers, which allowed us to pack two 4-
component vectors into a single registers, thus processing two edges at once, unlike SSE
with 128-bit long registers (single vector). Registers are represented by a special data type
__m256. We processed 4 edges at once by a single thread, but the results needed to be
updated to their respective triangles, creating a critical section as the whole process was
parallelized by OpenMP. The outline of the computation can be found in the Algorithm 6.

Algorithm 6 AVX OpenMP Multiplicity Computation
1: 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑀𝑎𝑠𝑘𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠()
2: 𝑛𝑜𝑓𝐼𝑡𝑒𝑟𝑠← 𝑛𝑜𝑓𝐸𝑑𝑔𝑒𝑠/4
3: for 𝑛𝑜𝑓𝐼𝑡𝑒𝑟𝑠 in parallel do
4: 𝑒𝑑𝑔𝑒𝑠← 𝐿𝑜𝑎𝑑4𝐸𝑑𝑔𝑒𝑠𝐴𝑉 𝑋()
5: 𝑝𝑙𝑎𝑛𝑒𝑠← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐿𝑖𝑔ℎ𝑡𝑃 𝑙𝑎𝑛𝑒𝑠𝐴𝑉 𝑋()
6: 𝑂𝑉 𝑠← 𝐿𝑜𝑎𝑑𝑁𝑜𝑓𝑂𝑉 𝑠𝐴𝑉 𝑋()
7: for 𝑚𝑎𝑥(𝑂𝑉 𝑠) do
8: 𝑚𝑢𝑙𝑡𝑠← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑀𝑢𝑙𝑡𝑠𝐴𝑣𝑥(𝑒𝑑𝑔𝑒𝑠, 𝑝𝑙𝑎𝑛𝑒𝑠,𝑂𝑉 𝑠)
9: 𝑈𝑝𝑑𝑎𝑡𝑒𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑒𝑑𝑔𝑒𝑠,𝑚𝑢𝑙𝑡𝑠)

10: end for
11: end for
12: 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐿𝑒𝑓𝑡𝑜𝑣𝑒𝑟𝐸𝑑𝑔𝑒𝑠()

The For loop on the line 3 ran in parallel using OpenMP, utilizing all cores in the system.
It took more instructions to properly load the data as they were not optimally stored in
the testing framework, using masked load operations in the step 4. The computation itself
(lines 5, 6, 8) processed data of two edges at once per register. Although the data is
processed per-edge, the results are written to a data structure holding triangle information.
As a triangle is formed by 3 edges, this data has to be updated in a serialized way, we
used atomic operations to update the triangle data. This data is then used to generate the
shadow volume sides.

In order to determine inconsistency in multiplicity calculation, the method marks each
triangle as light front or back facing during the multiplicity evaluation of an adjacent edge,
using the information about the in-order flag of the edge and the sign of the multiplicity
test of the particular opposite vertex. In the final step of the method, a triangle that has
been marked to be both front and back facing, with respect to the light, is discarded from
further processing.

54

Figure 5.2: This image shows the difference between the original algorithm and our robust
algorithm. The right image of each couple shows the result of our robust algorithm. The
first couple of images shows a very simple model, where artefacts are most visible - the light
source is exactly above the edge of the cube. The second couple shows artefacts on more
complex model, which could appear in real applications.

Table 5.1: Performance comparison of new robust method (left) versus the original silhou-
ette method (right). Results in average frames per second (FPS).

5.4 Measurements
We tested the approach on two CPU platforms supporting AVX instruction set – Intel Core
i7-2600K of the “Sandy Bridge” generation (first to introduce the AVX instructions) and
Core i5-3570K of the “Ivy Bridge” generation. Table 5.1 shows the slowdown induced by
the extra computation and memory access required by the robust method. The slow down,
on average, was less than 10 %. The first 3 platforms were evaluated on the i7-2600K CPU,
the last platform on i5-3570K. Apart from CPUs, the methods were tested on AMD Radeon
HD 7950 and nVidia GeForce GTX 650 Ti.

Table 5.2 shows the test results when comparing simple and more complexly shaped
models. All scenes were similar in the amount of triangles, around 65 000. Each scene
also consisted of a variant where all objects were baked into a single one. The bold values
indicate the best result for a particular test scene on a certain hardware platform.

The second test was focused on the behaviour of the methods with increasing amount of
geometry, from 105 to approximately 106 triangles. The results can be seen in the Table 5.3,
top row of each scenario. It can be seen that the amount of geometry has significant impact
on the performance, as the amount of geometry increased by an order of a magnitude, so
did increase the frame time.

The bottom row of the results in each cell in the Table 5.3 uses about the same amount
of geometry, but instead of a single detailed sphere, a grid of 10 x 10 spheres which consists
of approximately the same amount of triangles as a respective scene with a single sphere.
The test shows that the number of isolated objects does not have impact on the results,
probably due to synchronization or data transfers.

The proposed solution also managed to alleviate the problem with triangles almost par-
allel with the light, as can be seen in the Figure 5.2. The robust test is able to remove such
triangles from computation and during our evaluation we experienced no visual artifacts
on none of the test scenes and platforms.

55

Table 5.2: Several implementations compared on multiple test scenes. Each scenario con-
sists of 4 results for 4 different scenes – 10 individual bunnies (top left), 10 baked bunnies
(top right), 10 individual spheres (bottom left), and 10 baked spheres (bottom right). The
results are average FPS.

Table 5.3: Test cases: one sphere with 106 triangles (top left), one sphere with 105 triangles
(top right), 10x10 spheres each with 104 (bottom left), and 10x10 spheres with 103 triangles
(bottom right). The results are average FPS.

5.5 Evaluation
The proposed approach proved to be working well and producing quality shadows with
no visual artifacts. At the same time, it exhibits high performance in variety of hardware
platforms and can be efficiently implemented in CPU both using the traditional instructions
and the SIMD instructions as well as in GPU using Geometry Shaders as well as using
OpenCL.

The OpenCL implementation suffers from synchronization between OpenCL and OpenGL,
which is a necessity when using interoperability between these interfaces. This occurred on
the scenes with many objects as the synchronization had to be performed with each rendered
object. This method favored scenes with up to ∼100 objects. Geometry shader performs
second best and as it is not bound with any synchronization, it’s the fastest method for
scenes with large amount of objects.

It is clear that benefit from the AVX-OpenMP implementation on 2600K was minimal
or in some cases (scenes “10 baked bunnies” and “10 baked spheres”) even slower. Sandy
Bridge CPU benefited more from the implementation, increasing performance up to 30 %;
modern architecture was able to benefit more from the algorithm. One of the reasons the
speedup is not higher could be the critical section for triangle data update which results
in partial serialization. Also, the input data structure format did not favor AVX execution
but other implemented methods benefited from its structure; a more suitable data structure
could have been designed.

56

Chapter 6

Shadow Volumes Using
Tessellation Shaders

With the advancing development of the graphics pipeline and the introduction of the tessel-
lation pipeline, new ways of geometry processing became possible. We saw opportunity in
this new rendering pipeline stages and first produced a prototype of a two-pass per-triangle
shadow volume method utilizing the tessellation pipeline. Second iteration of the algorithm
produced a single-pass method, which then became the basis of a silhouette-based approach.
The following chapter will also discuss the improvements in robust silhouette computation.
These findings were presented on WSCG conference [81]. I am the author of the initial
per-triangle version, then cooperated on the silhouette version and have written most of
the paper.

6.1 Per-Triangle Tessellation-Based Shadow Volumes
The tessellation pipeline consists of 3 stages – control shader whose task is to compute
the tessellation factors to the second stage, the tessellation unit, which is a fixed-function
part of the pipeline that performs the subdivision of the primitive based on the tessellation
factors. The generated vertices are then processed in the evaluation shader [23].

The first prototype of the method was designed around the scheme in the Figure 6.1.
We start with a triangle for which we set the inner tessellation factor to 3 and outer to

Figure 6.1: Creating semi-enclosed shadow volume from a triangle. Initial triangle in 𝑎)
is tessellated using outer factors (1, 1, 1) and inner (3) 𝑏). Points 𝐴′, 𝐵′, 𝐶 ′ are given
positions of the points 𝐴, 𝐵, 𝐶 𝑐) and then pushed to infinity to form a volume with back
cap 𝑑). Front cap is absent and must be rendered in the second pass.

57

a)

0

1

2

3

4

5

6

7

8

9

10

11

b)

0

1

2

3

4

5

6

7

8, 10

9, 11

c)

5

6

7

0

1

2

3 4

8, 10

9, 11
d)

e)

Figure 6.2: Single-pass per triangle method, a full shadow volume is created in a single
pass. One point is added to the triangle in order to form a quad 𝑎) which is then tessellated
using outer factors (1, 5, 1, 5) and inner (5, 1) 𝑏). Points 10 and 11 are merged with 8, 9.
Light cap is visualized as blue, dark cap grey 𝑐). Then we join points 0 – 7, 1 – 5, 2 – 9, 4
– 8 and push points 5, 6, 7 to infinity 𝑑) to make the enclosed shadow volume 𝑒).

1, equal spacing and reversed triangle winding, resulting in the shape in the Figure 6.1𝑏.
The red color denotes the inner part of the volume and green outer. The evaluation shader
moves the points 𝐴′, 𝐵′ and 𝐶 ′ first to the positions of 𝐴, 𝐵 and 𝐶 and the projects them
to the infinity, forming the dark cap. The reason of the reversed vertex ordering is for the
cap to face outwards and not inside the shadow volume. Vertices 𝐴, 𝐵 and 𝐶 retain their
positions. As the volume lacks the light cap, the scene geometry must be rendered again to
seal the volumes from the top as light caps when z-fail version of shadow volumes is needed.

The second iteration of the per-triangle approach is able to produce enclosed shadow
volumes in a single pass. Unlike the initial method, we start with a quad rather than a
triangle. The schematic can be seen in the Figure 6.2. The input quad patch is tessellated
using outer factors (1, 5, 1, 5) and inner (5, 1). The evaluation shader merges vertices
10-8 and 11-9 as they are superfluous. In order to connect the sides of the shadow volume
together, we merge vertices 0 – 7, 1 – 5, 2 – 9 and 4 – 10 to enclose the volume. Vertices 5,
6 and 7 (and their merged counterparts 0 and 1) form the dark cap of the shadow volume.
Vertices 2, 3, 4 and merged 8, 9, 10 for the light cap. As the per-triangle shadow volumes
are slow, we investigated the triangle collapsing even more to design a silhouette-based
approach.

6.2 Silhouette-Based Approach
The silhouette-based approach is based on the findings of collapsible geometry from the
single-pass per-triangle method. In order to extend it to a silhouette approach, we need
edge data instead of the standard geometry as the input for the tessellation stage. The
control shader then computes the edge multiplicity and calculates the tessellation factors.
Evaluation shader bends the tessellated shape to create a set of overlapping quads that
form the shadow volume side geometry.

58

Figure 6.3: The input patch of the tessellation control shader. 𝐴 and 𝐵 are the edge
vertices, 𝑋 is the number of opposite vertices and 𝑂1 −𝑂𝑛 are the opposite vertices.

Model Vertices Extra Vertices

... ...VBO:

EBO: ...

Patch

Figure 6.4: Combining patch data using Vertex Buffer Object (VBO) and Element Buffer
Object (EBO). The VBO is extended by 𝐸𝑛 positions, each storing the number of opposite
vertices of the respective edge.

6.2.1 Input Patch

The input patch can be seen in the Figure 6.3. As vertices may have different amount
of opposite vertices, some of the positions are left empty. In order to reduce the memory
requirements (not to have the scene stored twice), we used slightly altered existing geometry
data, seen in the Figure 6.4. The vertex buffer has to be extended only by 𝐸𝑛 slots, which
is the number of edges in the model. These positions store the number of adjacent triangles
to the edge. Although the vertex data is a 4-component vector, we store only a single value,
leaving 3 values unused. This data structure is then addressed by element buffer (EBO) to
create the patch. The length of the patch is 𝑚𝑎𝑥𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 + 3.

6.2.2 Tessellation Control Shader

A single instance of the control shader computes the edge’s multiplicity from the data in
the input patch. One instance can read the data of the whole patch, thus able to read
all the opposite vertices and compute the multiplicity. For multiplicity computation, we
implemented a faster approach than described in the Chapter 5.1. Instead of testing the
multiplicity coherence among all 3 edges of a triangle, we designed a new method that
requires only a single edge to be tested and is described in the following section. The final
multiplicity is then used to compute the inner and outer tessellation factors as seen in
the Algorithm 7. We used a quad as the tessellated primitive, fractional odd spacing and
clockwise triangle orientation.

59

Algorithm 7 Tessellation Factors Computation
1: 𝑎𝑏𝑠𝑀𝑢𝑙𝑡← 𝑎𝑏𝑠(𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦)
2: 𝑡𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟 ← 2 · 𝑎𝑏𝑠𝑀𝑢𝑙𝑡− 1
3: gl_TessLevelOuter[0]← (𝑎𝑏𝑠𝑀𝑢𝑙𝑡 > 0)
4: gl_TessLevelOuter[1]← 𝑡𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟
5: gl_TessLevelOuter[2]← 1
6: gl_TessLevelOuter[3]← 𝑡𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟
7: gl_TessLevelInner[0]← 𝑡𝑒𝑠𝑠𝐹𝑎𝑐𝑡𝑜𝑟
8: gl_TessLevelInner[1]← 1

Improved Multiplicity Computation

We simplified the robust multiplicity computation described in the Chapter 5.1. Our pre-
vious method always computed multiplicity across all triangle edges to determine if the
triangle should be discarded or not. We now compute the multiplicity only once from each
opposite vertex using a so-called reference edge of a triangle.

The choice of a reference edge needs to be the same for all occurrences of the triangle,
which we also promoted to be winding-independent. For this, we implemented vertex
ordering that would guarantee that the reference edge is always constructed from the 2
smallest vertices of the triangle, based on the metric of choice. The ordering can be seen
in the Equation (6.1) and Algorithm 8. The edge vertices 𝐴, 𝐵 on the input are already
sorted in the pre-process step, simplifying the sorting process in the shader. The metric is
calculated as a sign of a dot product of weights and sign coordinate difference between the
two vertices. The whole process of multiplicity computation can be seen in the Algorithms
9 (multiplicity of a single OV) and 10 (multiplicity of all OVs). Generally speaking, we
moved the computation from per-triangle, as described in the Chapter 5, to per-edge.

𝐴 < 𝐵 ⇐⇒ 𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑉 𝑒𝑐(𝐴,𝐵) < 0

𝐴 = 𝐵 ⇐⇒ 𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑉 𝑒𝑐(𝐴,𝐵) = 0

𝐴 > 𝐵 ⇐⇒ 𝐺𝑟𝑒𝑎𝑡𝑒𝑟𝑉 𝑒𝑐(𝐴,𝐵) > 0

(6.1)

Algorithm 8 Vertex Comparison Function
Function: GreaterVec
Input: Vertices 𝑉1, 𝑉2

Output: -1 (𝑉1 < 𝑉2), 0 (𝑉1 = 𝑉2), 1 (𝑉1 > 𝑉2)
1: 𝑠𝑖𝑔𝑛𝑠← sign(𝑉1 − 𝑉2)
2: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠← (4, 2, 1)
3: 𝑟 ← dot(𝑠𝑖𝑔𝑛𝑠, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠)
4: return sign(𝑟)

6.2.3 Tessellation Evaluation Shader

In order to draw the shadow volume quad multiplicity-times, the resulting shape coming
from the tessellator needs to be bent to create overlapping quads, as seen in the Figure 6.5.
Each invocation of the evaluation shader needs to assign proper coordinates of the generated

60

Algorithm 9 Function to compute the multiplicity of an edge and one OV
Function: ComputeMult
Input: Vertices 𝐴,𝐵,𝐶, 𝐴 < 𝐵, light position 𝐿
Output: Multiplicity 𝑚

1: 𝑋 ← 𝐶 −𝐴
2: 𝑌 ← 𝐿−𝐴𝐿𝑤

3: 𝑁 ← 𝑋 × 𝑌
4: 𝑚← sign(𝑁 · (𝐵 −𝐴))
5: return 𝑚

Algorithm 10 Function to compute the multiplicity of an edge and all of its OVs
Function: ComputeEdgeMult
Input: Edge vertices 𝐴,𝐵, 𝐴 < 𝐵, set of OVs Ω, light position 𝐿
Output: Multiplicity 𝑚

1: 𝑚← 0
2: for 𝑂𝑖 ∈ Ω do
3: if 𝐴 > 𝑂𝑖 then
4: 𝑚← 𝑚 + ComputeMult(𝑂𝑖, 𝐴,𝐵, 𝐿)
5: else
6: if 𝐵 > 𝑂𝑖 then
7: 𝑚← 𝑚− ComputeMult(𝐴,𝑂𝑖, 𝐵, 𝐿)
8: else
9: 𝑚← 𝑚 + ComputeMult(𝐴,𝐵,𝑂𝑖, 𝐿)

10: end if
11: end if
12: end for
13: return 𝑚

a) b)

0

1

2

3

4

5

6

7

8

9

10

11

c)

1 3 5 7 9 11

0 2

4

6

8

10

d)
1

3,4

5

7,8

9

11

0 2

6
10

2
5e)

0

1 3,4

6

7,8

11
9

10

Figure 6.5: Transformation of a quad through the tessellation. 𝑎) an input quad gets
tessellated to the shape in 𝑏) with multiplicity of 3. Only the green-toned triangles will be
rendered, yellow and grey will be degenerated. Transition from 𝑏) through 𝑐) to 𝑑) shows
the process of degeneration by merging vertices 3-4 (red) and 7-8 (purple). Transition from
𝑑) to 𝑒) shows rotation around the red and purple vertices to for the resulting overlapping
series of quads.

61

Algorithm 11 Evaluation Shader
Input: Quad vertices 𝐴,𝐵, 𝐶, 𝐷, tessellation coordinates 𝑥, 𝑦 ∈ [0, 1], multiplicity 𝑚
Output: Vertex 𝑉 in world-space coordinates

1: 𝑃 ← 𝑎𝑟𝑟𝑎𝑦(𝐴,𝐵,𝐶,𝐷)
2: 𝑎← 𝑟𝑜𝑢𝑛𝑑(𝑥 ·𝑚)
3: 𝑏← 𝑟𝑜𝑢𝑛𝑑(𝑦)
4: 𝑖𝑑← 2𝑎 + 𝑏
5: 𝑡← (𝑖𝑑 mod 2)⊕ (⌊𝑖𝑑/4⌋ mod 2)
6: 𝑙← ⌊(𝑖𝑑 + 2)/4⌋ mod 2
7: 𝑛← 𝑡 + 2𝑙
8: 𝑉 ← 𝑃 (𝑛)
9: return 𝑉

vertex, based on its tessellation coordinates. The process is outlined in the Algorithm 11
where ⊕ denotes logical XOR operation. Vertices 𝐴,𝐵,𝐶,𝐷 are edge vertices and their
extrusions to the infinity along the light direction, as in the Equation (6.2) where 𝑉1 and
𝑉2 are the edge vertices and 𝐿 is the light source.

First, the ID of the vertex is calculated from multiplicity and the tessellation coordinates.
The computed ID is then used to select one of the vertices that form the shadow volume
quad.

𝐴 = (𝑉1, 1)𝑇

𝐵 = (𝑉2, 1)𝑇

𝐶 = (𝑉1 − 𝐿, 0)𝑇

𝐷 = (𝑉2 − 𝐿, 0)𝑇

(6.2)

6.3 Implementation
The above mentioned methods were implemented in an open-source application using
OpenGL. One of the first observations was that the single-pass per-triangle method suffers
from inconsistent rasterization of two identical triangles at the same depth but with reversed
winding – depth of the fragments from both triangles differs which resulted in z-fighting
artifacts. We had to manually push the front cap’s fragments into depth of 1.0f, so they
would fail the depth test, otherwise we observed self-shadowing artifacts. By assigning the
depth manually in the fragment shader the early depth test during rasterization did not
occur, resulting in performance loss over two-pass method.

As we used z-fail method of shadow volumes, caps needed to be drawn as well. We drew
the caps using the same multiplicity paradigm described above, to determine the triangle’s
orientation towards the light source. It was also necessary to maintain consistency among
all the calculations, including the caps.

As the maximum tessellation factors are limited, this also poses a limit to maximum
multiplicity the algorithm can handle. Drivers at the time allowed for a maximum of 64 as a
tessellation factor, which according to the Algorithm 7 line 2, yields maximum multiplicity
of 32. However, we have found a case where the multiplicity of 32 is insufficient – the
popular “Power Plant” model has several edges that have multiplicity of 128. Without the

62

Table 6.1: Performance evaluation of both GS and TS robust methods on Sponza scene
under several resolutions, average frames per second. The left column of each method
contains values of the original 3-edge testing method, second column results of the new
reference edge approach.

105.7 105.8 105.9 106 106.1 106.2 106.3
40

60

80

100

120

140

160

180

Numberof pixels

FP
S

Dependenceof performanceonresolutionforSponzascene

R280TSOrig
R280TSRef
G680TSOrig
G680TSRef
R280GSOrig
R280GSRef
G680GSOrig
G680GSRef

Figure 6.6: Dependence of resolution on performance (FPS), measured on Sponza scene.

loss of generality, such edge can be split into multiple instances, each having 32 opposite
vertices.

6.4 Measurements
We performed extensive tests of both per-triangle and silhouette approach. Our new silhou-
ette approach was also compared to Sintorn’s Alias-Free Shadow Maps (AFSM) [100] and
shadow mapping with 8K× 8K resolution. We also put our new method against a similar
geometry shader implementation. The algorithms were tested on nVidia GeForce GTX 680
and AMD Radeon R9 280X and on two scene – flythroughs on Sponza scene that took
16 seconds and through a synthetic scene with a grid of 10× 10 spheres with configurable
amount of triangles, taking 40 seconds.

The first conducted test was on the Sponza scene, comparing tessellation shader (TS)
and geometry shader (GS) implementations, as well as the old and new robust computation.
The results can be seen in the Table 6.1. The dependency on resolution is outlined in the
Figure 6.6. As can be seen, the tessellation implementation outperforms the geometry
shader variant, although the latter has more stable FPS with the increasing resolution.
The new deterministic method is faster in most cases, except for some cases in the GS
implementation.

63

Table 6.2: Comparison of two determinism methods implemented in GS and TS on scene
with 10× 10 spheres with increasing amount of triangles, in FPS. Values in bold represent
performance of the fastest method on particular platform and amount of triangles. Left
column represents old determinism method, right column the new reference edge. Results
in FPS.

105 106

200

400

600

800

104.51 5·104 2·105 3·105 5·105 106.29

Numberof triangles

FP
S

Dependenceof performanceonnumberof trianglesfor10x10spheres

R280TSOrig
R280TSRef
G680TSOrig
G680TSRef
R280GSOrig
R280GSRef
G680GSOrig
G680GSRef

Figure 6.7: Dependence of scene complexity on performance (FPS), measured on a scene
with 10× 10 spheres with increasing amount of triangles.

64

Table 6.3: Test scene having approximately 1 million triangles but increasing amount of
spheres. Results in FPS.

As the sphere scene provided with more flexibility with respect to the amount of objects
and the total geometry, we concluded more tests on this scene. The first scenario was keep-
ing constant amount of spheres (10×10) but increase their tessellation, from approximately
32 000 to almost 2 million triangles, results can be found in the Table 6.2 and the Figure 6.7.
It can be observed that tessellation variant of the algorithm is faster only on scenes with
up to 100 000 triangles on AMD platform. There is a notable drop in performance when
increasing the amount of triangles to 360 000 on AMD platform as the tessellation version
was initially twice as fast as GS. TS implementation is favored on nVidia platform, its
reference edge implementation being the fastest in all of the test cases.

The following test kept constant amount of triangles in the scene to around 1 million
(with maximum deviation of 2 %) but the number of spheres in the scene was increasing.
No hardware instancing was used, every object was drawn using a separate draw call.
Results can be found in the Table 6.3. This test was biased by the CPU overhead due
to increasing amount of draw calls. The results are at times contrary to our previous
measurements, where the reference edge approach is actually slower in the most scenarios.
Also, tessellation approach takes over GS on AMD platform with the increased amount of
draw calls. TS was the fastest method on nVidia platform as in previous tests, but the
optimized reference edge approach being on-par or slightly slower at times, by around 1-3
FPS. This test demonstrates how different platforms deal with the increased amount of
draw calls combined with our rendering algorithms.

We did not directly compare our approach with Sintorn’s AFSM [100], but he claimed
that his algorithm is 3-times slower than 8K shadow mapping (SM). We performed similar
test on a scene with 10×10 spheres and increased the amount of tessellation of the spheres.
The results of the test can be seen in the Table 6.4 and graph in the Figure 6.8. Shadow
mapping performance drops only by 51 % when comparing the cases with the least and most
triangles in the Table 6.4, which is substantially less than shadow volumes which lose 96 %
of the performance, but we were able to outperform shadow mapping on scenes with up to
400K triangles. When evaluating results at almost 2M triangles, the R9 280X dropped to

65

Table 6.4: Comparison of 8k shadow mapping with reference edge TS approach on scene
with 10× 10 spheres, results in FPS.

Figure 6.8: Graph showing performance dependence of TS and SM on the amount of
triangles in a scene with 10× 10 spheres.

66

Table 6.5: Performance ratio between a camera overlooking the whole scene and when
looking away. Left column of each implementation contains values for older robust method,
right for reference edge.

Table 6.6: Comparison of per-triangle and silhouette methods on spheres scene

34 % of SM performance whereas GTX 680 was only 44 % slower than SM. This makes our
method on-par or faster than Sintorn’s AFSM, depending on the platform used.

We have noticed a different behaviour among both of the tested graphics cards when
the camera was not facing the scene. Although OpenSceneGraph, which we used in our test
application, culls non-visible geometry, it does not cull shadow volumes from the rendering
process. We set up two camera views, one looking towards the scene and the second looking
away (an empty view), from the same position. The test was conducted on two scenes, with
a single sphere and a grid of 50× 50 spheres. Both cards seem to deal with such situation
differently, as can be observed in the Table 6.5, which shows the FPS ratios between the
empty view and scene view. GTX 680 was more efficient in culling the non-visible shadow
volume geometry, being up to 5-times faster than the full scene overview. AMD hardware,
at that time, was not very efficient, providing only up to 98 % increase in speed.

The last test conducted was comparison of per-triangle versus the the silhouette methods
and shadow mapping (SM only on the sphere scene as it was not omnidirectional). The
sphere scene had around 4 million triangles and the results are presented in the Table 6.6.
To our surprise, the per-triangle TS method was actually faster than both GS methods on
Sponza scene on both tested platforms, although the difference between per-triangle and
silhouette method is 122 % on nVidia graphics card and only 27 % on AMD. The sphere
test scene, having almost 8-times more triangles, favors silhouette methods. Compared to
shadow mapping, AMD card drops below the 1/3 performance ratio but GTX680 was able
to maintain 44 % of SM performance.

67

6.5 Evaluation
The two-pass per-triangle tessellation method is, in some cases, faster than silhouette algo-
rithm implemented in geometry shader, but loses performance as geometry amount in the
scene increases. Compared to geometry shader per-triangle implementation, the tessella-
tion method proved to be faster in all our tests, no matter the amount of scene complexity.
The silhouette method is more efficient and as we have proven in our measurements, mostly
in the scenes with higher amount of geometry. GeForce GTX680 benefited greatly from
this algorithm, being faster than geometry shader silhouette method in every case. As
for Radeon R9 280X, geometry shader method is more suitable. Tessellation method on
Radeon was faster on Sponza scene, but the synthetic tests on the scene with configurable
amount of spheres and level of detail showed that it’s performance is dominant only up to
300K of triangles when having multiple objects in the scene, or only up to 15K triangles
when only a single detailed object was drawn. was able to outperform nVidia-based card
on the less detailed scenes, but only up to aforementioned 300K triangles.

The robust algorithm was sped up by using a novel method of multiplicity computation,
which was able to provide up to 31 % performance gain in tessellation method (13.5 % in
average), maximum speedup in geometry shader was 10.7 % with average of 3.4 %.

In comparison to standard SM and Sintorn’s Alias-Free Shadow Maps (AFSM), our
tessellation method provides better performance than 8K shadow maps up to 400K triangles
and then falls to 43 % performance of shadow mapping at 4M triangles on GeForce, 34 %
on Radeon, which is on par or better than AFSM (which is 3-times slower than 8K SM)
and is also simpler to implement.

6.6 Comparison on Modern Hardware
I re-measured both geometry shader and tessellation shader implementations on newer
hardware to test the difference between them over the course of several GPU generations.
The tests were conducted on GeForce GTX 2080Ti and AMD Radeon 5700XT running on
AMD ThreadRipper 1920X with 32GB of memory and Windows 10. Several popular test
scenes were selected - Sintorn’s “Villa”, “Conference Room”, “Crytek Sponza”, “Citadel”,
“Buddha” and “Hairball”. The scene properties are described in the Table 8.1. The algo-
rithms were tested on flythroughs having 1000 frames, each frame rendered 5-times and an
average of these times used in the evaluation. Two resolutions were tested: 1920×1080 and
3840× 2160. An average time was computed from the whole flythough. The results can be
seen in the Table 6.7, frame times of 2080Ti in the Figure 6.9 and Figure 6.10 shows the
performance of the Radeon 5700XT.

Based on the data in the Table 6.7, the geometry shader implementation on RTX 2080Ti
is on average 5.36 % faster than the tesselation at 1920 × 1080, the gaps narrows to 1.5 %
in 4K, the biggest difference on the “Buddha” test scene where the geometry shader was
7 % faster. Tessellation was marginally faster in two cases in 4K. I assume that the higher
amount of rasterization in the higher resolution diminished the computational difference
between the methods.

The AMD card shows more decisive results - geometry shader implementation is faster
in every scenario, at full-HD by 8 % in average, at 4K by 2.91 % in average. To compare
both cards, RTX 2080Ti in combination with GSSV is in average 12 % faster in fullHD,
TSSV about 14.7 % faster. The difference between the cards is smaller in 4K - only 1.49 %
in average in GSSV test and 2.88 % in TSSV evaluation.

68

0 200 400 600 800 1000
frame

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
s

villa
gssv
tssv

(a)

0 200 400 600 800 1000
frame

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

m
s

conference
gssv
tssv

(b)

0 200 400 600 800 1000
frame

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
s

sponza
gssv
tssv

(c)

0 200 400 600 800 1000
frame

0

2

4

6

8
m

s

citadel

gssv
tssv

(d)

0 200 400 600 800 1000
frame

0

1

2

3

4

m
s

buddha
gssv
tssv

(e)

0 200 400 600 800 1000
frame

0

5

10

15

20

25

30

35

40

m
s

hairball

gssv
tssv

(f)

Figure 6.9: Comparison of geometry shader (GSSV) and tessellation (TSSV) implementa-
tion of the robust shadow volume algorithms at 1920× 1080 on GeForce RTX 2080Ti.

69

0 200 400 600 800 1000
frame

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
s

villa
gssv
tssv

(a)

0 200 400 600 800 1000
frame

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

m
s

conference
gssv
tssv

(b)

0 200 400 600 800 1000
frame

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
s

sponza
gssv
tssv

(c)

0 200 400 600 800 1000
frame

0

2

4

6

8
m

s

citadel
gssv
tssv

(d)

0 200 400 600 800 1000
frame

0

1

2

3

4

5

6

m
s

buddha
gssv
tssv

(e)

0 200 400 600 800 1000
frame

0

5

10

15

20

25

30

35

40

m
s

hairball
gssv
tssv

(f)

Figure 6.10: Comparison of geometry shader (GSSV) and tessellation (TSSV) implemen-
tation of the robust shadow volume algorithms at 1920× 1080 on Radeon 5700XT.

70

RTX 2080Ti RX 5700XT
1920x1080 3840x2160 1920x1080 3840x2160

GSSV TSSV GSSV TSSV GSSV TSSV GSSV TSSV
Villa 2.31 2.32 5.56 5.52 2.13 2.15 4.84 4.87
Conference 0.71 0.73 1.82 1.83 0.78 0.84 1.70 1.74
Sponza 1.56 1.62 4.32 4.31 1.71 1.84 4.42 4.53
Citadel 4.24 4.38 9.80 9.93 4.52 4.85 8.97 9.18
Buddha 2.22 2.67 3.90 4.20 3.46 4.23 5.46 5.93
Hairball 29.69 30.15 64.12 64.41 28.91 29.48 60.68 61.35

Table 6.7: Average shadow mask creation times in 𝑚𝑠 on both platforms and both algo-
rithms. The bold values mark the faster of the two algorithms, within one platform, scene
and resolution.

The biggest difference was measured on the “Buddha” scene - GeForce was 57 % faster
than Radeon at fullHD, 40.6 % faster at 4K. This scene has higher amount of geometry
but simple silhouette, which means that raw computational power could be more exploited
than raw rasterization performance as the RTX 2080Ti is generally faster than its AMD
counterpart. Compared to previous observations, the tessellation method is no longer faster
than the geometry shader implementation on both platforms.

71

Chapter 7

Silhouette Extraction Using
Precomputed Potentially Visible
Set

Silhouette extraction is a fundamental part of stencil shadow volumes as per-triangle ap-
proach has been proven to be slow. The research around the acceleration of silhouette
extraction was focused mostly on 2-manifold meshes. As the shadow volume algorithms
presented in the previous chapter deal with non-manifold casters, I have decided to design
a method that would improve silhouette extraction speed on such casters.

The paper that describes this new method was presented on WSCG conference [65]. I
am the author of the method, its implementation and wrote the text of the paper.

7.1 Precomputed Silhouette Extraction Overview
Several methods have been designed to improve silhouette extraction of 3D models, as
documented in the Chapter 3.1.2. Most of the methods, however, deal only with 2-manifold
casters and as I stated earlier in the thesis, our focus were arbitrary triangle soups. The
method described in this chapter was based on a method by Airey et al. [4], using brute-
force approach to precompute the sets of potentially silhouette edges and stores them in a
hierarchical data structure. Octree was chosen for this matter. As the resulting acceleration
structure tends to grow in size notably, we designed a compression scheme to reduce the
size of the resulting octree. The whole process is outlined in the Figure 7.1.

7.2 Octree Setup
The octree itself represents the volume where the point light source can be located. This
marks the area where the silhouette computation is accelerated and represents the area
with the highest probability of where the light source will be located. In the actual imple-
mentation, we allow the user to configure the size of the top level of the octree based on
the scene’s AABB and a multiplication factor that scales the size of the AABB. The scaling
factor could be set to lower values (around 1) for closed scenes such as Sponza where the
light source can be located inside the scene’s AABB or higher values (5-10 or more) for
simple models such as Happy Buddha. Figure 7.1b shows very tight fitting of the octree

72

(a) (b) (c)

Figure 7.1: Mechanics of the proposed algorithm 𝑎) A model of a bunny having 5000 edges.
𝑏) We enclose the model by user-defined axis-aligned bounding box which acts as a top level
of the octree and is subsequently subdivided and filled with precomputed sets of silhouette
and potentially silhouette edges. 𝑐) During traversal, only a small amount of edges needs
to be tested (black) and end up as silhouette edges (red).

Figure 7.2: Custom scale of the model’s AABB to cover larger volume for accelerated
silhouette extraction. Image shows two-level octree with same voxelization (4× 4× 4).

around the model, in practice the octree would have to cover much larger space in this
scenario, as depicted in the Figure 7.2.

The depth of the octree can also be customized. We have experimentally found out that
the depth of 3 − 5 is sufficient in the most scenarios, leading to total of 512 − 32 768 cells
on the lowest level, as seen in the Figure 7.3. Larger scales consume too much memory,
as will be described below, because each octree level increases the memory consumption of
the method by a factor of 4.

7.3 Octree Build
The build process fills the octree with sets of potentially silhouette edges (PE) and edges
that are guaranteed to be silhouette (SE) for a particular voxel. At first, the set of all edges
and their opposite vertices is extracted. In order to test an octree voxel (as AABB) against
an edge, a plane is constructed from both the edge vertices and the opposite vertex (OV).

73

Figure 7.3: Custom levels of octree subdivision, from level 1 (8 bottom level voxels) on the
left to 3 (512 voxels) on the right.

This plane is then tested for intersection with the AABB. If any of the planes intersect the
AABB, the edge is stored among the PE set of the particular voxel because if the light
source is located inside the volume the multiplicity of the edge from any point inside the
volume is not consistent and further subdivision is required to store such edge as silhouette.
If the volume is not intersected, two scenarios are possible – either the edge is a SE or is not
silhouette at all. To determine this, multiplicity of the edge is calculated from an arbitrary
point of the voxel, based on the algorithm described in the Chapter 6.2.2. We chose the
minimum point of the voxel’s AABB. The whole process is outlined in the Algorithm 12.

Algorithm 12 Function to compute edge – voxel intersection
Function: GetEdgeVoxelState
Input: Edge vertices 𝐴,𝐵, set of OVs Ω, voxel 𝐴𝐴𝐵𝐵
Output: Status PE/SE/NSE 𝑠, multiplicity 𝑚

1: Π← 𝑃𝑜𝑖𝑛𝑡𝑠(𝐴𝐴𝐵𝐵)
2: 𝑁𝑜𝑓𝑃𝐴𝐴𝐵𝐵 ← 8
3: 𝑚← 0
4: 𝑠← 𝑃𝐸
5: for 𝑂𝑖 ∈ Ω do
6: 𝐸𝑃 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑃 𝑙𝑎𝑛𝑒(𝐴,𝐵,𝑂𝑖)
7: 𝐶 ← 0
8: for 𝑃𝑖 ∈ Π do
9: 𝐶 ← 𝐶 + 𝑇𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑃 𝑙𝑎𝑛𝑒(𝐸𝑃,𝑃𝑖)

10: end for
11: if 𝑎𝑏𝑠(𝐶) == 𝑁𝑜𝑓𝑃𝐴𝐴𝐵𝐵 then
12: 𝑚← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑑𝑔𝑒𝑀𝑢𝑙𝑡(𝐴,𝐵,Ω, 𝐺𝑒𝑡𝑀𝑖𝑛𝑃𝑜𝑖𝑛𝑡(𝐴𝐴𝐵𝐵))
13: if 𝑚 == 0 then
14: 𝑠← 𝑁𝑆𝐸
15: else
16: 𝑠← 𝑆𝐸
17: end if
18: end if
19: end for
20: return (𝑠,𝑚)

𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑑𝑔𝑒𝑀𝑢𝑙𝑡 is the same function as in Algorithm 9. Function 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑃 𝑙𝑎𝑛𝑒
uses similar determinism mechanism as 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑑𝑔𝑒𝑀𝑢𝑙𝑡 – sorts the points before com-

74

Figure 7.4: The image shows voxels for one edge. The left side of the images shows the first
step of the voxel building algorithm. Voxels are classified into 3 categories -– non silhouette,
silhouette and potentially silhouette. The next step is to propagate this classification into
higher levels (middle image). The right image shows the improvement of compression stage
of building algorithm. The octree is transformed into a tree with nodes containing many
different subsets of edges defined by bitmasks.

puting the plane, NSE as a status stands for non-silhouette edge. 2D schematics of the test
can be seen in the Figure 7.4 left.

We chose to build the octree in bottom-up fashion, similarly as Karras et al.[55] as their
method first builds the acceleration structure and then applies post-processing to further
refine it. The proposed method first subdivides the octree’s volume (top-level AABB based
on scene’s AABB) into the smallest voxels based on octree depth. Each voxel is then
processed and tested against every edge in the scene, filling its PE and SE sets of edges.
We store only edge ID’s (and multiplicities for SE) as storing the whole edge would be
superfluous. Then, the PE and SE edges are propagated up the hierarchy. If an edge is
found common in all 8 siblings (voxels that share the same parent), the edge is stored in
the parent instead and removed from all the children. The situation can be observed in the
Figure 7.4 middle. This step already decreases the memory consumption significantly.

Provided we store each edge ID as a 32-bit integer and testing on Sponza model with
279 163 triangles, 431 246 edges and octree deepest level of 5 (32 768 voxels) and AABB
scale factor of 1, this would yield a total of 25 GB of memory. According to the silhouette
estimation proposed by Akenine-Möller and Assarsson [6] which estimates the silhouette
size to 𝑓0.8 where 𝑓 is the number of triangles, the silhouette would be only 22 734 edges.
Provided we store this number of edges in the same octree as mentioned above, we would
end up with around 2.9 GB of memory. These cases are without the edge propagation
up the tree. When real tests was conducted on Sponza, we measured 4644 MB when not
propagated, 4111 MB upon propagation to the upper levels.

7.3.1 Compression Scheme

We decided to address the memory consumption and designed a compression scheme to
push more edges up the hierarchy. As mentioned above, we first propagated edges up the
octree only if all the eight siblings of one parent share the same edge.

But we can propagate the edges even if not all the sibling share the edge. In such case,
we create a bitmask representing the presence of the edge among the parent’s children and
store the edge under such bitmask. In context of an octree, the bitmask is 8-bit long. This
means that it is viable to propagate an edge to parent if it’s included in at least 2 of its
children as the edge would be stored once (32-bit) plus bitmask (8-bit) instead of being

75

Figure 7.5: The first two images show two edges – A and B. Each edge partitions all voxels
into voxel shapes for silhouette case and of potential silhouette case. If some voxel shapes
are the same for both edges, the edge subsets of those voxel shapes contain both edges
(middle image). Otherwise, voxel shapes contain only one edge.

Figure 7.6: Node data in 2D space for the 8-bit bitmask. One node contains sets of PE
and SE edges, each addressed by its bitmask. If a set shape does not intersect the triangle
planes of an edge, the edge is stored into the set. The largest set shape is chosen if multiple
set shapes do not intersect the triangle planes. A node also contains pointers to child nodes.

stored twice (64-bit), which saves around 38 % of memory for the worst case and up to 91 %
when 7 siblings share the edge. The approach can be seen in the Figure 7.4 on the right
as grouping of neighbouring 4 × 4 voxels into a larger chunks. Figure 7.5 demonstrates a
case of 2 edges and a whole level of an octree. Common and disjunct parts are visible in
the images, common parts propagated to the upper levels.

Figure 7.6 shows data representation of a node in a 2D quadtree. Each node, repre-
senting a voxel, contains two sets of edges – PE and SE, each group of edges represented
by a bitmask. This bitmask can be displayed as a shape covering child voxels. If we used
the same test scenario as above, the octree size reduced from 4111 MB to 1359 MB which
is 33 % of the original size.

In the first version of the algorithm we used this compressed edge propagation only
from the lowest to the second lowest level of the octree. As we only propagated between
two levels, we designed a similar approach that propagated edges from the lowest level up
by two levels and used 64-bit mask instead of 8. Although it further reduced the size of an
octree (the test case – from 1359 to 498 MB), the potential amount of bitmask per edge set
rose rapidly, e.g. Sponza’s octree with scale of 1 and maximum level of 5 can have up to
44 643 bitmasks in a single voxel for a one set of edges. This amount of bitmasks also has
negative impact on traversal, which will be described in the following sections.

76

Figure 7.7: Traversal process in 2D for a particular light position through 3 levels of hier-
archy. The union of all subsets forms the set of all precomputed silhouette edges. Similar
subsets are selected for all potentially silhouette edges. Note that some subsets could be
empty. A single edge is contained only in one of the subsets (the largest possible).

7.4 Octree Traversal
The traversal process has to acquire PE and SE subsets from the octree to two buffers.
The light source is first mapped into the space of the octree, which can be traversed either
top-down or bottom-up. The process acquires all edges from the node where all bits of a
bitmask are set and then from all those bitmasks where the the bit of child node on the
traversal path is set. Not all bitmasks are necessarily populated.

When traversing top-down, the method needs to select the appropriate child based on
AABB-point containment test. On the other hand, traversing the octree bottom-up seems
easier because at first, the lowest level voxel index is calculated from the light’s position,
as seen in the Algorithm 13. As the octree is not sparse and stored linearly, it is easy to
compute parent node’s ID as well as the index within parent (ChildID), see Equation (7.2)
and 7.3.

𝑙𝑥 ∈ ⌊𝐴𝑥, 𝐵𝑥),∧𝑙𝑦 ∈ ⌊𝐴𝑦, 𝐵𝑦),∧𝑙𝑧 ∈ ⌊𝐴𝑧, 𝐵𝑧) (7.1)

If a light source lies on a boundary between two or more voxels, only one voxel is
selected according to the Equation (7.1) where 𝑙 is the light position and 𝐴,𝐵 are minimal
and maximal points of the voxel.

𝑃𝑎𝑟𝑒𝑛𝑡 = ⌊𝑁𝑜𝑑𝑒𝐼𝐷 − 1

8
⌋ (7.2)

𝐶ℎ𝑖𝑙𝑑𝐼𝐷 = 𝑁𝑜𝑑𝑒𝐼𝐷 − (8 *𝑁𝑜𝑑𝑒𝐼𝐷 + 1) (7.3)

7.5 Implementation
I have created two versions of the algorithm – the first, presented in the paper, only com-
pressed only one level of the octree, either using 8-bit or 64-bit bitmask. This version was
published in the paper [65] as it was the limit of the 64-bit compression scheme. I later
reimplemented the method to support 8-bit bitmasks on all of its levels and tested against
compute shader implementation of shadow volumes.

77

Algorithm 13 Get lowest level voxel index from light position
Function: GetLowestLevelIndex
Input: Light position 𝐿, Octree 𝑂
Output: Voxel index on the lowest level 𝐼

1: 𝐵𝐵𝑂𝑋 ← 𝑂.getNodeVolume(0)
2: if IsOutside(𝐿, 𝐵𝐵𝑂𝑋) then
3: return − 1
4: end if
5: 𝐷𝐿← 𝑂.getDeepestLevel()
6: 𝑇 ← 2𝐷𝐿

7: 𝑆𝑖𝑛𝑔𝑙𝑒𝑈𝑛𝑖𝑡𝑆𝑖𝑧𝑒← 𝐵𝐵𝑂𝑋.getMin()/(𝑇, 𝑇, 𝑇)
8: 𝑃𝑜𝑠𝑈𝐼 ← ⌊(𝐿−𝐵𝐵𝑂𝑋.getMin())/𝑆𝑖𝑛𝑔𝑙𝑒𝑈𝑛𝑖𝑡𝑆𝑖𝑧𝑒⌋
9: 𝐼 = 0

10: for 𝑖 ∈ [0, 𝐷𝐿− 1] do
11: 𝑄← 8𝑖

12: 𝐼 ← 𝐼 + (((𝑃𝑜𝑠𝑈𝐼.𝑥 >> 𝑖)&1) << 0) ·𝑄
13: 𝐼 ← 𝐼 + (((𝑃𝑜𝑠𝑈𝐼.𝑦 >> 𝑖)&1) << 1) ·𝑄
14: 𝐼 ← 𝐼 + (((𝑃𝑜𝑠𝑈𝐼.𝑧 >> 𝑖)&1) << 2) ·𝑄
15: end for
16: 𝐼 ← 𝐼 + 𝑂getNofNodesInPreviousLevels(DL)
17: return 𝐼

7.5.1 Build Implementation – CPU

The method presented in the paper used bottom-up build process. First, the lowest level
voxels are filled with data. Each voxel goes through all the edges and tests them for PE/SE.
If an 8-bit bitmask is selected, the algorithm tests 8 siblings at once. As such task is easily
parallelizable, I utilized OpenMP to run a single thread per a group of 8 sibling voxels
using voxel-edge test in the Algorithm 12. Potentially silhouette edges are stored without
encoded multiplicity, the silhouette edges use encoding scheme disclosed in the Algorithm
14.

Algorithm 14 Encode edge ID and multipolicity into a single value
Function: EncodeEdgeIdMultiplicity
Input: Edge ID 𝐸, Multiplicity 𝑀 , Number of Bits per Multiplicity 𝐵𝑃𝑀
Output: Encoded edge ID and multiplicity 𝐸𝐸

1: 𝐵𝑖𝑡𝑀𝑎𝑠𝑘 ← (1 << 𝐵𝑃𝑀)− 1
2: 𝐸𝐸 ← (𝐸 << 𝐵𝑃𝑀) | (𝑀 &𝐵𝑖𝑡𝑀𝑎𝑠𝑘)
3: return 𝐸𝐸

After the lowest level of the octree is filled (or two lowest levels if 8-bit bitmask is
chosen), the edges are propagated up the hierarchy, initially only the bitmasks where all
bits are set (e.g. the all siblings share the edge). Every set of 8 siblings is processed
by a single thread. The resulting structure of a voxel contains two unordered maps, each
addressed by a bitmask and containing vectors of edge IDs or encoded IDs with multiplicity.

The 64-bit bitmask compression scheme was implemented as a post-process of the oc-
tree, constructed without the 8-bit compression. Although the compression could have
been integrated to the voxel-edge testing process, the compression scheme did not prove

78

to be interesting by its performance and thus we kept the compression as a separate CPU
postprocess. The postprocess creates a set of all edges stored in 64 siblings and creates
bitmasks for all edges by testing their presence among all siblings. Each set of 64 siblings
is processed by one thread. As the amount of 64-bit bitmasks could be very large, its GPU
implementation would be somewhat complicated.

7.5.2 Build Implementation – GPU

In order to speed up the build process, I designed a GPU algorithm to cope with the issue.
The biggest concern was the memory – size and optimal layout. As described above, the
octree can potentially be very large and in order to bring its construction to GPU, buffers
need to be allocated. As it is not known how much data will be stored in each voxel,
we must assume the worst case – that all the edges may fall into a single bitmask. As
the intermediate octree may not necessarily fit into the GPU memory, I implemented an
iterative approach which processes a batch of voxels against all the scene edges and the
results are then stored back to the CPU memory.

The amount of voxels in a single batch is calculated based on the maximum size of the
buffer we want to allocate for the lowest level voxels (they only store 1 bitmask) divided by
the number of edges. In order to speed up the process, I used speculative buffer size on the
lowest level per mask as ratio of the full number of edges. This optimization could speed up
the process by 20 % by allowing more voxels to be processed at one but when the ratio was
too low, the resulting structure was corrupted. The parent nodes need to allocate space for
all of its bitmasks based on the speculative ratio as well, in total 2 · 255 · 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑖𝑜 ·
𝑛𝑜𝑓𝐸𝑑𝑔𝑒𝑠 for a parent voxel.

The compute shader then tests a group of 8 siblings against an edge, processed by 8
threads in a subgroup (subgroup being the smallest unit of execution on the GPU). In total,
one subgroup of threads (32 on nVidia, 64 on AMD hardware) processes 4 (8 on AMD) sib-
lings. Based on the resulting bitmask, the edge is assigned either to the siblings (not enough
siblings tested to contain) or parent. Ballot intrinsic (extension GL_ARB_shader_ballot)
was used for propagating the result of edge – voxel intersection test among all the siblings.
As the subgroup processes 4-8 groups of siblings, the appropriate result for the particular
group of 8 threads is extracted using bit shifts and masking. To speed up the process, each
workgroup (consisting of several subgroups) first loads a set of edges to shared memory as
these edges will be used by all the threads in the workgroup until they are tested by all
workgroup threads. Loading them only once from the global memory (which is performance
demanding) increased the performance of the solution. Using profiler, the optimal settings
found for the kernel execution were 64 threads (2 subgroups on nVidia hardware) and 31 744
bytes of shared memory per workgroup.

The CPU waits for the kernel to finish execution, the edge data are then copied to the
CPU memory and next batch of lowest level voxels is prepared for processing. The outline
of the algorithm can be seen in the Algorithm 15.

When the lowest two levels are processed, the edges are then propagated up the hierarchy
by another compute shader, which operates similarly as the previous shader. Before the
shader is launched, all edge IDs in all voxels and bitmasks are sorted on the CPU. The
threads also cooperate in sibling groups of 8. Each sibling group of 8 threads iterates over
the edges of the first thread in the group, which skips edges not present in the first but
other threads. This approach produces slightly larger octree (around 1-2 %), but otherwise
all the edges would have to be put into a single set and tested for containment in each

79

Algorithm 15 Adding edges to the lowest and 2nd lowest level of the octree
1: 𝑆𝑍 ← CalcBatchSize()
2: 𝑁𝑜𝑓𝐵𝑎𝑡𝑐ℎ𝑒𝑠← ⌈GetNofVoxelsLowestLevel()/𝑆𝑍⌉
3: 𝐿𝑜𝑎𝑑𝑒𝑑𝑉 𝑜𝑥𝑒𝑙𝑠← 0
4: for 𝑖 ∈ 𝑁𝑜𝑓𝐵𝑎𝑡𝑐ℎ𝑒𝑠 do
5: LoadVoxels(min(𝑆𝑍,GetNofVoxelsLowestLevel()− 𝐿𝑜𝑎𝑑𝑒𝑑𝑉 𝑜𝑥𝑒𝑙𝑠))
6: DispatchCompute()
7: SyncGpuCpu()
8: AcquireVoxelData()
9: end for

sibling or more testing among the sibling threads. The first thread reads the following edge
from its buffer (pivot edge) and all other threads iterate in their buffers (corresponding to
full bitmask), skipping edges that are less than the pivot edge to find the first edge that is
equal or higher than the pivot. Then, a ballot is called to determine if the pivot edge is
present among all the siblings and stored to parent if all threads report it as present. When
the kernel finishes the computation, its results are written back to the main memory. This
process iterates bottom-up, starting with the 2nd lowest level upwards.

7.5.3 GPU Traversal

I primarily focused on providing the fastest possible traversal of the octree. Bottom-up
traversal was chosen as it is easy to compute the lowest level voxel ID where the light
source is detected, as well as parent ID and child ID within the parent. Serialized octree
is loaded to the GPU memory and if necessary, split into chunks of up to 2 GB. However,
evaluation has shown that very large octrees (more than 2 GB) tend to be twice as slow as
those that fit inside the 2 GB; it is thus necessary to adjust the octree parameters to fit it
into the size of 2 GB.

Initially, the process required 3 compute shaders to traverse an octree with 8-bit bit-
masks on the second lowest level. The first traverses the path bottom-top, selecting all the
bitmasks that are valid for processing, gets their sizes and stores them as a prefix scan of
their sizes and starting offsets. This kernel spawns only a single workgroup and each thread
processes one bitmask in node, traversing bottom-up. In order to calculate prefix scan and
its storing index in the global memory using only a single atomic addition, we split a 32-bit
integer into 8 bits for the storing position and 24 for the actual prefix scan. This limits
the amount of edges to 224 which is roughly 16.7 million. The updated implementation
described in the Chapter 7.7.1 does not pose this limitation. We can use 8-bit for storing
the index – the total amount of 8-bit numbers having exactly 𝑖-th bit set is 128 and not
all of them are valid (single bit set), plus the 𝑜𝑐𝑡𝑟𝑒𝑒𝐷𝑒𝑝𝑡ℎ− 1 more masks for levels other
than 2nd lowest is still less than 28 as it is improbable that the octree would be so deep
that the sum would overflow 8-bit limit. As stated above, the octree depth in practice is
no more than 6 levels (0− 5).

The computed prefix sum goes to a kernel performing copy operation – copies edge IDs
for processing into potential and silhouette buffer. Each thread processes a single edge.
First the thread finds its index by binary searching the prefix sum and choosing potentially
silhouette or silhouette buffer, then performs the copy operation.

80

The last kernel takes the edge IDs and processes them – potentially silhouette edges
are tested against the light source and cast, data stored in the silhouette buffer are first
decoded (edge ID, multiplicity) and then cast. To reduce global memory writes, shared
memory is used to perform per-subgroup atomic operations, the result of the subgroup is
then atomically added to global memory variable. This technique is used to allocate index
for storing the cast edges in the global memory. The shadow volume geometry is then
drawn using only a vertex shader.

The octree with 64-bit bitmasks requires more complicated prefix scan implementation
as the amount of buffers can go to thousands. Prefix scan is carried out for potential and
silhouette edges separately, two kernels when the expected amount of bitmasks is less than
1024, 3 kernels if more. 1024 is typical limit on the amount of threads per workgroup. If
more workgroups need to cooperate on the results, an extra kernel is necessary to create
a prefix sum from the last elements of the summed data per workgroup. Finally the third
kernel adds these sums to the respective elements. This approach is based on Harris’s
CUDA algorithm [40].

7.6 Measurements
The tests were designed to evaluate build and traversal process of the octree. The method
was implemented in a test application using OpenGL, compiled in Visual Studio 2015 x64
and tested on Core i5-6500 system with 16 GB of RAM using GeForce RTX 2080Ti graphics
card.

7.6.1 Built Tests

The aim of these tests was to evaluate the building time and octree sizes on several popular
models – Šibenik cathedral, Conference room and Sponza. All models come from McGuire’s
archive [79].

The scenes were evaluated under several different octree settings as seen in the Ta-
bles 7.1, 7.2 and 7.3. We set the octree depth to 3–5 as these values present the most
usable cases. We have also tested the impact of the increasing voxelized space around the
model by scaling the scene’s AABB. The tests cover 3 types of edge propagation – propagat-
ing only those edges that are common for all 8 siblings up the hierarchy, the 8-bit bitmask
utilized to propagate between bottom and 2nd lowest level and 64-bit bitmask compressing
between lowest and 3rd lowest octree level.

One of the first notable things is that the build scheme utilizing 8-bit bitmasks is actually
faster than the scheme without any bitmasks. This is due to fact that GPU compression
occurs in the very first stage of the algorithm thus the following stages have to process
a smaller amount of data. However, the 64-bit bitmask propagation is performed as a
postprocessing step and it happens on the CPU, thus being very slow, even though the
algorithm was written using OpenMP. We tested the 64-bit compression also on the AMD
ThreadRipper system with 24 cores, which improved the 64-bit compression build time
by around 60 %, but other two methods performed significantly slower, probably due to
different architectures of the two processors.

The amount of memory required to store the octree increases roughly by a factor of 4
with every level. On the other hand, the amount of SE extracted from the octree increases
by about 10 % and the amount of PE is halved with every level of the octree. This could
be observed on all test scenes.

81

Table 7.1: Build test of Sibenik scene, consisting of 117 342 edges. We evaluated the build
times and resulting octree size under various voxel sizes and scales. The 3rd and 4th
columns contain results for octree that only propagates edges common for all 8 siblings up
the hierarchy. Columns tagged “c8” and “c64” show build times and sizes when using 8-bit
or 64-bit bitmasks. The numbers in “Pot Avg” and “Sil Avg” columns show the average
number of PE and SE acquired during octree traversal, tested from each lowest level voxel.
The second column from the last tells the average amount of edges from the full edge count
that needs to be tested, the last column describes the average amount of SE acquired from
octree as the percentage of all silhouette edges observed from light position in the middle
of each lowest level voxel.

Table 7.2: Build test of Conference scene, consisting of 195 019 edges. See Table 7.1 for
column description.

82

Table 7.3: Build test of Sponza scene, consisting of 431 246 edges. Check Table 7.1 for
column description.

Tables 7.1, 7.2 and 7.3 also show the algorithm’s biggest weakness – the memory con-
sumption, dependant on the algorithm settings. For practical standpoint, the use of 8-bit
bitmasks seems to be the best choice, in terms of both build time and octree size. The
memory consumption of the method can be expressed by Equation (7.4) where 𝑆 is an
approximation of the resulting size of the octree structure in MB, 𝑒 is the number of edges
in millions, 𝑑 is octree depth and 𝑐 is compression ratio. The compression ratio was com-
puted as an average ratio between the compressed octree and non-compressed version of
the octree. The ratios are 1 for octree without compression (propagating only edges in all
siblings), 0.32 when utilizing 8-bit bitmasks and 0.11 than using 64-bit bitmasks.

𝑆(𝑒, 𝑑, 𝑐) = 𝑒 · 8𝑑 · 𝑉𝑑 · 𝑐 (7.4)

Values 𝑉𝑑 define the approximate size of a single voxel per 1 million edges. These values
were calculated as 𝑉 𝑑(𝑑, 𝑒) = 𝑆𝑚/8𝑑/𝑒, where 𝑆𝑚 is the measured size of non-compressed
octree. Values obtained by this equation are 𝑉3 = 0.93, 𝑉4 = 0.53 and 𝑉5 = 0.30. The
average relative deviation of Equation (7.4) is 6 %.

7.6.2 Silhouette Extraction Tests

In order to test the silhouette extraction, we implemented a brute-force silhouette extrac-
tion method based on OpenCL implementation described in the previous paper [90] but
using faster robustness computation described in the Chapter 6.2.2. The method was im-
plemented in OpenGL’s compute shader and tested every edge for silhouettness. Both
versions of the method outputted edge ID and its multiplicity, shadow volume rendering
was not accounted in the resulting time.

We compiled a set of 26 test scenes consisting of several popular test models (Bunny,
Šibenik, Conference, Sponza, Gallery, Buddha) [79] as well as two types of synthetic test
scenes. The first type were scenes consisting of increasing amount of spheres, arranged in
a uniform grid. These scenes had 33 750 to 1 574 640 edges. The second type of synthetic

83

Figure 7.8: Average extraction times for compilation of 26 scenes (sorted by the number
of edges). Red line represents brute force compute shader method, blue line represents our
new proposed method. The area around the lines represents (±) mean absolute deviation.

Table 7.4: Comparison between compression levels on Sponza scene. Average octree traver-
sal time calculated from 1000 different light positions in the scene and maximum absolute
deviation from the average. Row “basic” accounts for propagating edges inly in all siblings.

scenes had randomly positioned spheres, having 124 200 to 933 120 edges. The method was
evaluated on octree depths of 3 and 5, posing and the best and worst case scenario, and
AABB scales of 1, 2, 4, 8 and 16. In a single test run, we moved the light source throughout
the octree volume in a 10× 10 grid, both for the hierarchical and brute-force method. For
each light source location, we evaluated the extraction time 5-times, resulting in a total of
75 000 measurements in each scene – 50 000 for our approach and 25 000 for the brute force
method. The hierarchical method was evaluated for 2 octree depths, that’s the reason for
having twice as much evaluations as the brute force method.

We computed average value and mean absolute deviation from each scene, the results
are shown in the Figure 7.8. It can be observed that the proposed method reduced the
sensitivity of silhouette extraction to the number of edges, compared to the brute force
approach. The octree-based method performs better on scenes having more than 200 000
edges. Its average absolute variance is almost half of the brute force approach.

Performance of non-compression and 64-bit schemes were evaluated as well, results can
be seen in the Table 7.4 which shows an average silhouette extraction time. It can be seen
that 64-bit bitmask scheme is about 30 % slower than the other methods; algorithm using 8-
bit bitmask seems as the most viable option as it greatly reduces the memory consumption
at minimal performance cost of around 3 %.

We can estimate the extraction time for brute force approach as 𝑡𝑏 = 𝐸 · 𝐾 where 𝐸
is the number of edges and 𝐾 the extraction complexity. The designed octree-traversal
algorithm yields 𝑡𝑡 = 𝑃 · 𝐸 · 𝐾 + 𝑇 where 𝑇 is the traversal cost and 𝑃 is the ratio of

84

potentially silhouette edges, which can be seen in the second last column of Tables 7.1 –
7.3. Based on the build test results, we estimated the 𝑃 to be 0.2, 0.1 and 0.05 for octree
levels 3, 4 and 5. 𝑇 was measured to be 0.075 ms in average.

7.7 Improvements
I further improved the method after being published. The initial version was focused on
two compression schemes – using 8 and 64-bit bitmasks that were propagated only between
two levels of the octree. I tried to implement the method more according to the original
design – to have a bitmask (8-bit) on all levels of the octree and to make the traversal much
faster.

7.7.1 Octree Build

The build process now constructs the octree in a top-bottom fashion in two passes. The
idea is that when an edge traverses octree, it is initially marked as PE until the spatial
voxelization is fine enough that the edge is tested to be silhouette at certain level or the
lowest level is reached. During the first pass, at level 𝑖 and current voxel in the traversal
path 𝑉𝑖, an edge is tested against the children 𝑉𝑖+1,𝑥, (𝑥 ∈ 1, 8) of 𝑉𝑖 in the level 𝑖+1 where
each of the children reports the test status as being PE or SE with multiplicity 𝑀 , each
identified with a bitmask indicating the children that share the same test result. When a
child is tested as PE, that voxel 𝑉𝑖+1,𝑥 is placed on the stack for further processing if level
𝑖 is less than 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙 − 1 or stored to either 𝑉𝑖 if the bitmask has more than one bit set
or stored to a child 𝑉𝑖+1,𝑥 under its full bitmask. All sets of children that are SE and have
the same multiplicity 𝑀 for the tested edge are processed an stored based on the bitmask
result, similarly to PE. When the first pass is complete, all SE are processed and stored in
the respective voxels, PE are stored in the lowest two levels.

The second pass propagates PE up the hierarchy from 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙−1 upwards. First, on
every level, each voxel’s edge IDs are sorted. Then, a set of all edges from all 8 siblings is
constructed and edges from this set are tested against the edges of the sibling voxels. Based
on the test result, the tested edge is stored either to the sibling’s parent or to a particular
sibling (if only a single sibling tested the edge positively).

OpenMP parallelization was utilized in order to speed up the build process. The first
pass runs with one edge per thread, but a thread-safe set insertion had to be implemented
to prevent data inconsistency. The second pass runs one thread per 8 siblings in a level
and no mutual exclusion is required this time as groups of siblings are independent within
a level.

I have observed that the build process produces a lot of bitmasks whose number of
containing edges is rather small. The optional third pass would move the edges from
bitmasks having less than a user-defined threshold of edges from parent to its children.
This reduces the amount of bitmasks during the traversal process, but the performance
benefit was 2–5 %.

7.7.2 Traversal

The most effort was put to optimize the traversal, which now requires only two kernels in
total. The first kernel prepares a so-called edge ranges buffer which stores a starting offset
to the edge buffer that stores all voxel edges linearly and the number of edges to be read

85

from that particular position, e.g. the number of edges stored under a particular bitmask
that starts at a certain offset in a large buffer. A flag stating if the edge range information
regards to PE or SE is encoded to the number of edges. In order to distribute work more
efficiently, the amount of edges under a single bitmask is divided into several ranges based
on the workgroup size of the second kernel that processes the edges.

The edge ranges are processed in the second kernel. Each workgroup processes a single
edge range; if a workgroup processes silhouette edge range, each thread reads its respective
encoded edge and writes it to the output buffer. When a range of PE is processed, the
thread reads the edge vertex data, computes the multiplicity of the edge. If the multiplicity
is non-zero, the multiplicity and the edge ID is encoded into a single unsigned integer and
stored. The storage index is obtained by using a combination of local and global atomic
operations – each subgroup of threads first increments a counter in its shared memory and
then only a single thread increments the global counter, reducing global memory access.
The value obtained from the global counter is the distributed using shuffle intrinsics.

This new approach writes considerably less data between the kernels compared to the
original version of the algorithm, instead of writing all the edge IDs and multiplicities, only
the edge ranges are written. There is also no need for computing the prefix scan from the
edge sizes. These optimizations increased the performance of the method, as shown below.

7.7.3 Measurements

The new implementation was similarly evaluated in terms of octree size and traversal speed.
The results of the octree size test are presented in the Table 7.5. The same models as in
the Tables 7.1 – 7.3 were used. As can be seen, the size of the octree reduced by 21.14 %
in average compared to the original implementation, peaking at 24.74 % for the smallest
scene. The efficiency slightly increases with octree depth but differs only slightly with the
changing scale of the octree volume.

The main focus was put to improve traversal. I compared the the method again against
a brute force compute shader method. It used the same output format from the compute
stage (linear array of encoded edge ID and multiplicity in one 32-bit integer) as the proposed
implementation. The brute force algorithm consists from a single compute shader that
goes through an array of extracted edges and tests each of them for silhouettness. This
algorithm too underwent optimizations – first of all, the multiplicity computation changed
slightly – instead of computing the triangle plane in the shader (see Algorithm 10), we
precompute these triangle planes and store them instead of the opposite vertices, saving on
the amount of instructions during the multiplicity testing. The same optimization was used
in the hierarchical implementation. We chose popular test scenes similar to the previous
evaluation – Šibenik, Villa, Conference, Sponza, Epic Citadel and Buddha. The amount
of triangles and edges of these test scene can be seen in the Table 7.6. The traversal test
results can be seen in the Figure 7.9. All scenes were tested with octree maximum depth
of 5 (depth of 0 is the top level).

It can be observed that both methods benefit from the optimizations. Compared to
the graph in the Figure 7.8, new approach is now able to outperform brute-force method
even on smaller scenes. The brute-force approach improved its performance by about 17 %
compared to the previous evaluation. Hierarchical approach gained around 20 % on the
Buddha scene. Considering the opposite side of spectrum, the scenes having the least
amount of edges (Šibenik and Villa), both methods reduced the silhouette extraction time
by approximately 70 %.

86

Šibenik Conference Sponza
Octree
Depth Scale Old New Diff

(%) Old New Diff
(%) Old New Diff

(%)
1 16 13 18.75 25 20 20.00 60 49 18.33
2 18 14 22.22 29 24 17.24 63 52 17.46
4 18 14 22.22 30 24 20.00 65 53 18.46
8 18 14 22.22 31 25 19.35 65 53 18.46

3

16 18 14 22.22 31 25 19.35 66 53 19.70
1 77 59 23.38 121 98 19.01 289 231 20.07
2 84 65 22.62 139 112 19.42 302 241 20.20
4 86 66 23.26 144 115 20.14 306 244 20.26
8 86 66 23.26 145 116 20.00 306 245 19.93

4

16 86 66 23.26 146 116 20.55 307 246 19.87
1 341 258 24.34 581 457 21.34 1359 1059 22.08
2 376 284 24.47 668 525 21.41 1425 1110 22.11
4 385 290 24.68 687 541 21.25 1438 1119 22.18
8 388 292 24.74 694 545 21.47 1441 1123 22.07

5

16 388 292 24.74 694 546 21.33 1443 1124 22.11

Table 7.5: Comparison of the original and improved implementation in terms of memory
consumption on 3 testing scenes. The “Old” column refers to the previous 8-bit compression
scheme, “New” refers to the improved implementation. The “Diff” column shows the size
difference between the two implementations with the original approach being 100 %. The
average size decrease in size is 21.14 %.

Nof
Triangles

Nof
Edges

Šibenik 75 283 117 342
Villa 88 870 136 663

Conference 124 619 195 019
Sponza 279 163 431 246

Epic Citadel 613 567 921 555
Buddha 1 087 476 1 630 522

Table 7.6: Parameters of the test scenes used during traversal evaluation.

87

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
edge count (106)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

m
s

cssv
hssv

Figure 7.9: Average silhouette extraction times and mean absolute deviations for a set of
popular test scenes (Šibenik, Villa, Conference, Sponza, Epic Citadel and Buddha) with
up to 1.6 million edges. CSSV is the brute-force extraction method, HSSV new optimized
hierarchical implementation.

7.8 Evaluation
At first, the hierarchical method was implemented having two compression schemes using
8-bit or 64-bit bitmasks, but worked only between two levels of the octree. Although the
64-bit scheme produced smaller octrees, the traversal was costlier as the method produced
a lot more bitmasks – tens of thousands compared to theoretical maximum of 247 for 8-bit
scheme (256 minus zero and all 1-bit numbers). The resulting algorithm is less sensitive to
the number of edges and its absolute deviation is less than the brute-force compute shader
method.

The improved implementation of the hierarchical method compresses all levels of the
octree using 8-bit bitmasks. The traversal was greatly optimized by removing the prefix
scan and greatly reducing the amount of memory written and read during the process.
The amount of kernels was reduced to just two. Both hierarchical and brute-force methods
were optimized by precomputing triangle planes and storing them instead of the opposite
vertices and using encoded multiplicity with edge ID to reduce the amount of data written
in the output.

The method, however, carries several disadvantages as well. The biggest one is memory
consumption as the size of the octree can go to gigabytes, especially when the octree depth is
4 or 5, depending on the tested scene. Although the improved implementation reduced the
amount of memory by about 21 %, its size still exceeds practical expectations. Besides, the
method cannot handle elastic or deforming geometry as this would require the acceleration
structure to recompute, which cannot be achieved in real time.

88

Figure 7.10: Instead of using one hierarchical structure, the algorithm would use two — one
for the close vicinity of the model and one for all the other space around. The green part
shows the hierarchical structure as presented, the orange part is the second hierarchical
structure that uses spatial angles instead of voxels.

Future research could also evaluate usage of homogeneous coordinates, which may create
hierarchy with unlimited spatial span based on spatial angles, see Figure 7.10. This would
remove the limitation on the space where a light can be positioned. Directional lights could
be used with this hierarchy as well - the cells on the bottom level would represent specific
spatial angle of possible incoming light direction.

89

Chapter 8

Comparison of Omnidirectional
Precise Shadow Methods

Several interesting shadowing techniques rendering shadows from omni-directional light
sources have emerged recently. We categorized these methods into 4 categories – stencil
shadow volumes, methods using traversal of an acceleration structure from view samples
or scene geometry, methods based on Irregular Z-Buffer and ray tracing. Recent develop-
ment of graphics hardware has brought hardware support for ray tracing into consumer
graphics hardware, at the time of writing by nVidia as its RTX API available to DirectX
12 and Vulkan as extensions. We further optimized some of the tested methods in terms of
robustness and performance. All methods are evaluated on several popular test scenes and
in different resolutions. The whole testing framework, including source codes of the tested
algorithms, have been made publicly available.

These findings have been recently accepted to the Computer Graphics Forum. I am
the author of the text, implemented Omnidirectional Frustum-Traced Shadows, Deep Par-
titioned Shadow Volumes and coordinated the testing process.

8.1 Selected Methods
We categorized the omnidirectional shadowing techniques into several categories – sten-
cil shadows, methods using acceleration structures built from view samples, acceleration
structures built from scene geometry, methods using irregular Z-buffer (IZB) [53] and ray
tracing. We tested and evaluated several methods representing each category.

Stencil shadows are represented by an implementation in the compute shader (CSSV)
based on the algorithm proposed by Milet [81].

The second category, acceleration structures built from the view samples, will be rep-
resented by the Per-Triangle Shadow Volumes (PTSV [99]) and Clustered PTSV (CPTSV
[98]).

We chose Deep Partitioned Shadow Volumes from the category of methods building
acceleration structures from scene geometry as its shader sources are publicly available and
the scale of the evaluated models should suit the method.

Although IZB-based methods are not explicitly omnidirectional, we have implemented
the Frustum-Traced Shadows[113] using omnidirectional parameterization, similar to om-
nidirectional shadow mapping (Omnidirectional Frustum-Traced Shadows, OFTS).

90

As we used a single point light source in our test scenes, we implemented a hardware-
accelerated ray tracer casting one shadow ray per fragment using NVIDIA RTX. The source
codes for both testing programs are freely available on GitHub 1 as a reference for other
researchers and as a public benchmark.

All methods except for the ray tracing were implemented in a multi-platform framework
using OpenGL 4.5 core. Ray tracing was implemented in Vulkan using VK_NV_ray_tracing
extension. Both test programs use the same mechanics – we utilized a deferred pipeline
to first render the G-buffer (position, depth, normal, color, triangle ID) which serves as
the input for the shadowing method. As all these methods use different ways of applying
shadows to the scene (stencil mask, acceleration structure traversal, shadow map), we
decided to unify the tested algorithms in terms of output. Each method is supposed to fill
a shadow mask texture that is then used in the final rendering pass to apply shadows to
the view samples.

The following subsections describe our implementations for all these methods in more
detail.

8.2 Implementation and Optimizations
We based our stencil shadow volumes on z-fail using techniques from [81] and [62], as it ad-
dresses the robustness issues of shadow volumes. The connectivity information is extracted
on the CPU and without loss of generality, we set the maximum possible multiplicity to 2 in
our tests – edges having more than 2 adjacent triangles were split into several instances. The
compute shader then tests every edge for silhouetteness. In order to minimize the amount
of data written to the global memory, the compute shader only outputs one encoded integer
per silhouette edge consisting of edge ID and its multiplicity. Then, the geometry shader
receives this encoded information as a vertex attribute and casts the edge side as many
times as its multiplicity with correct triangle winding based on the multiplicity sign. To
speed up the computation process even more, we replace storing opposite vertices with the
edges with pre-computed triangle planes that would otherwise have to be calculated every
time in the silhouette testing shader from the edge vertices and from the opposite vertex.
The shadow volume caps are rendered similarly using the geometry shader, we compute
multiplicity from the triangle and the light source, the sign of the multiplicity determining
the winding of the triangle.

8.2.1 PTSV and CPTSV

Both PTSV and CPTSV aim to reduce the shadow volume rasterization times as it is
the most demanding step. They do not use traditional rasterization of shadow volumes
as the stencil methods, instead they hierarchically rasterize the shadow volumes into an
acceleration structure. PTSV uses a hierarchical depth buffer and a shadow mask buffer.
CPTSV uses a 3D tree of view sample clusters, as seen in Figure 8.1. All hierarchical
structures have a branching factor equal to 32 (SIMD size) in the original design. Threads
in each warp cooperate in rasterization of one shadow frustum.

We re-implemented both methods in OpenGL according to the original papers and avail-
able source codes. The authors provided us with the implementation of PTSV in CUDA. We
modified the implementation to run on different hardware (AMD) and to support different

1https://github.com/dormon/Shadows, https://github.com/neithy/NeiGinPublic

91

Figure 8.1: The image shows view-samples (colored triangles) and clusters (green boxes)
on one level of the CPTSV’s hierarchy.

resolutions and fixed some visual artifacts. We tested different memory storage types (tex-
tures and buffers) for intermediate results. In the end, we chose textures as they performed
slightly better.

CPTSV was implemented from scratch with all the extensions mentioned in the original
paper, except for load balancing. We implemented the traversal shader using a small stack
since template recursion is not possible in OpenGL.

We further optimized the construction of upper parts of the 3D cluster tree by storing
the IDs of active nodes of the previous level and launching only the appropriate number of
threads. We also tried to minimize the number of operations required to compute Morton
codes for 𝑥, 𝑦, and 𝑧 components with different bit lengths. Furthermore, we optimized the
traversal step of the algorithm by reducing the number of registers required for the stack
using local memory.

According to our measurements, we are convinced that our implementation is on a par
with, or faster, than the original implementation.

8.2.2 Deep Partitioned Shadow Volumes

The shaders for DPSV [83] have been made publicly available by the authors; we provided all
the necessary inputs and outputs for the method. We implemented a deterministic shadow
plane construction based on [81], which helped with blinking artifacts we encountered with
this method. After testing all 3 variants of the method’s TOP tree traversal (stack, stackless,
hybrid), we opted for the hybrid variant, combining both approaches, as it was the fastest
of all 3 versions.

92

8.2.3 Omnidirectional Frustum-Traced Shadows

This method was implemented using all optimizations mentioned in the original paper[113]
(tight-fitting projection, discarding back-facing view samples, removal of already shadowed
view samples, depth buffer initialization) including the reprojection of areas with very long
lists using off-center projection [103]. Our implementation works similarly to omnidirec-
tional shadow mapping, utilizing 6 light frusta to cover all directions. We cull those frusta
in two stages – first on the CPU by computing collisions of light frusta with camera frus-
tum and producing a bit mask, which speeds up the heat map construction. The second
frustum culling occurs when computing new projection matrices, as some of the visible
light frusta may not contain any view samples. The whole method runs in a single pass
using compute shaders to compute the heat map (list lengths per light-space texel), new
projection matrices and IZB; the depth buffer optimization and the IZB traversal utilize
geometry shader and layered rendering to draw to several textures simultaneously. The
IZB traversal pass requires conservative rasterization; we use NVIDIA’s OpenGL extension
GL_CONSERVATIVE_RASTERIZATION_NV.

8.2.4 Ray Tracing

Shadow rendering by ray tracing was implemented separately in a Vulkan test program using
NVIDIA’s VK_NV_ray_tracing extension. Similarly to other implemented methods, it used
geometry information provided by the G-buffer to create a per-fragment shadow mask. A
simple ray generation shader casts a ray from the fragment position towards the light and
the corresponding miss shader marks the fragment as lit. As a precise triangle intersection
is not required, we enabled an optimization in the form of TerminateOnFirstHit flag, i.e.,
terminating BVH traversal upon hitting any triangle towards the light source.

To use the ray tracing extension, a two-level bounding volume hierarchy is required.
The bottom level consists of elements of the geometry, and the top level is built from
bounding volumes of object instances. In the case of static geometry, the acceleration
structure is created once and never updated. For a scene with moving objects, only the
top level needs to be updated with transformations. The bottom level structure needs to
be updated only when the geometry changes (elastic simulation, skinning, etc.). In order
to simulate several possible scenarios, we included measurements without BVH updates as
the best-case scenario and a full per-frame BVH rebuild as the worst case. Building is done
on the GPU; therefore, all memory needs to be allocated in advance. The API provides an
upper estimate of the required memory amount based on the provided geometry, but the
final size of the BVH is usually around 50 % of the estimate.

8.3 Measurements
The measurements were carried out on a set of popular scenes; details can be seen in
Table 8.1. Although “Villa” is a small scene compared to modern standards, it was used
in [98], and we will demonstrate that this method was designed specifically for scenes of
this type - high depth complexity and falls behind on other scene types. Even “Hairball”,
with its 2.8 million triangles, poses a challenge for the tested algorithms. All scenes were
tested with a single point light source. The “Buddha” and “Hairball” scenes were slightly
modified – we positioned both models on a plane, acting as a shadow receiver. Each scene
was tested using a camera flythrough that took 1 000 frames. Every frame was rendered 5

93

Table 8.1: Test scenes used for method evaluation.

Scene Triangle Count Edge Count
Villa 88 870 136 663
Conference 124 619 195 019
Sponza 279 163 431 246
Closed Citadel 613 567 921 555
Buddha 1 087 476 1 630 522
Hairball 2 880 002 4 290 005

Table 8.2: Memory consumption of all tested algorithms on all scenes. The sizes for the ray
tracer are only for the BVH structure. As we only cast one secondary ray per fragment,
they should fit into the GPU registers. The memory footprint of Sintorn’s methods (PTSV,
CPTSV) depends on the resolution and other factors, so the table only shows the size of
shadow frusta buffers. All sizes are in MB.

Scene RTX CSSV DPSV PTSV CPTSV
Villa 5.63 7.82 10.85 8.13 9.49
Conference 7.88 11.16 15.21 17.85 20.83
Sponza 17.50 24.68 34.08 39.48 46.06
Citadel 38.56 52.73 74.90 84.37 98.43
Buddha 68.40 93.30 132.75 149.27 174.16
Hairball 181.02 245.48 351.56 392.76 458.22

times and the average time of the shadow mask creation was written to a .csv log file. The
tests are focused on resolutions of 1920× 1080 and 3840× 2160, but we have also tested on
other resolutions, from 1𝐾 × 1𝐾 to 4𝐾 × 4𝐾, when evaluating the resolution dependency.
The memory consumption of all methods is analyzed as well.

All tests were carried out on an AMD ThreadRipper 1920X system with 32 GB of RAM
and a GeForce RTX 2080 Ti graphics card with hardware ray tracing support. Some of
the test were run on a GeForce GTX 1080Ti that supports RTX API in fallback mode
using compute shaders. The system runs on Windows 10, and both test applications were
compiled using Visual Studio 2019.

8.3.1 Memory Consumption

We measured the amount of memory each method requires for its acceleration structures;
the results can be seen in Table 8.2. The memory footprint of OFTS is not affected by the
scene geometry, as it depends only on the method parameters and the screen resolution.
We used two sets of parameters based on profiling – lower resolutions (up to 1920× 1080)
used 1024 by 1024 for one slice of the IZB’s head texture, and higher resolutions used
2048 × 2048. The reason for this was to cope with the performance drops caused by
insufficient reprojection of the densest areas of the heat map. The heat map had a resolution
of 512×512 for all screen resolutions. This resulted in memory consumption of up to 98 MB
for lower resolutions (up to 1920×1080), and up to 403 MB at the resolution of 4000×4000.
The reason for such a high amount of memory at the higher resolutions is that the IZB’s

94

Table 8.3: Average shadow mask creation times across all the test scenes at 1920×1080. The
bold values represent the fastest algorithm (except ray tracing). “RTX_AVG” represents
an average of “RTX” and “RTX rebuild”. The “AVG” column contains the average shadow
mask creation time across all frames on all scenes. All values are in milliseconds.

Villa Conf. Sponza Citad. Buddha Hairb. AVG
CPTSV 1.30 8.51 3.08 4.93 7.04 33.55 9.74
CSSV 2.23 0.68 1.57 4.15 2.24 29.90 6.80
DPSV 1.87 3.11 2.91 5.16 8.47 120.88 23.74
OFTS 2.05 2.05 3.70 3.30 5.22 14.32 5.08
PTSV 12.73 12.73 10.25 10.66 352.64 97.90 81.42

RTX rebuild 1.18 1.47 2.33 4.33 7.23 16.50 5.50
RTX 0.24 0.28 0.37 0.26 0.08 0.54 0.29

RTX AVG 0.71 0.88 1.35 2.30 3.66 8.52 2.90

head texture has 12 layers (6 sides with reprojection), the same for the depth texture for
the z-buffer optimization pass. At lower resolutions, the benefit of being independent on
the scene geometry prevails on larger models; however, at higher resolutions (3840 × 2160
and more), the method is the second most demanding, even at the “Hairball” scene.

From the rest of the tested methods, of which the memory footprint is dependent on the
amount of scene geometry, ray tracing reports the lowest amount of video RAM (based on
the upper estimate reported by the RTX API), followed by CSSV. The stencil method only
needs one buffer to store the edge information and another to write the resulting encoded
multiplicity and the edge ID. DPSV stores the TOP tree nodes in a single linear buffer and
its memory consumption is around 40 % higher than CSSV.

The memory requirements of PTSV and CPTSV depend on two factors: the number of
triangles and the resolution. Both algorithms need to allocate a shadow frusta buffer, the
size of which can be seen in Table 8.2.

Apart from the shadow frusta buffer, PTSV uses two acceleration structures – one
hierarchically stores the depth ranges per tile, the other contains the actual shadowed/lit
information. The depth range is represented by two float values; the number of tiles on
every level can be expressed by Equation (8.1), where 𝑇 is the number of tiles, 𝑅 the
resolution, 𝑁 the number of levels, 𝐵 the branching factor (workgroup size) and 𝑖 the index
of the level. The size of these hierarchical structures is 5 MB at 4K resolution.

𝑇 =
𝑅

𝑏𝑁−𝑖
(8.1)

The memory footprint of CPTSV’s hierarchical structures is much larger than PTSV.
The actual size of the structures depends greatly on resolution, branching factor, and z’ bits
in the cluster key; the amount of memory can go up to 6 GB at 4𝐾×4𝐾 (buffer containing
the AABBs of the clusters). We have also implemented the memory reduction scheme as
mentioned in the original paper, reducing the amount of memory approximately 6.5-times
at a cost of about 5 % of the performance.

8.3.2 Evaluation at 1920×1080

The results of all methods and scenes at 1920 × 1080 can be seen in Figure 8.2 and the
average shadow mask creation times in Table 8.3. PTSV was removed from the “Buddha”
graph (Figure 8.2e) for clarity, as its average performance was 352 ms.

95

0 200 400 600 800 1000
frame

0

2

4

6

8
m

s

villa
cptsv
cssv
dpsv
ofts
ptsv
rtxBvhRebuild
rtxNoRebuild

(a)

0 200 400 600 800 1000
frame

0

5

10

15

20

25

m
s

conference
cptsv
cssv
dpsv
ofts
ptsv
rtxBvhRebuild
rtxNoRebuild

(b)

0 200 400 600 800 1000
frame

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

m
s

sponza
cptsv
cssv
dpsv
ofts
ptsv
rtxBvhRebuild
rtxNoRebuild

(c)

0 200 400 600 800 1000
frame

0

2

4

6

8

10

12

14

16

m
s

citadel
cptsv
cssv
dpsv
ofts
ptsv
rtxBvhRebuild
rtxNoRebuild

(d)

0 200 400 600 800 1000
frame

0

2

4

6

8

10

12

14

m
s

buddha
cptsv
cssv
dpsv
ofts
rtxBvhRebuild
rtxNoRebuild

(e)

0 200 400 600 800 1000
frame

0

50

100

150

200

m
s

hairball
cptsv
cssv
dpsv
ofts
ptsv
rtxBvhRebuild
rtxNoRebuild

(f)

Figure 8.2: Comparison of all the methods using flythroughs on various test scenes, reso-
lution 1920 × 1080, sorted by the amount of triangles. Each graph represents one tested
scene with results from methods tested. Ray tracing is measured twice – without any mod-
ification to the BVH (as “rtxNoRebuild”) being the best possible scenario and with full
BVH rebuilt every frame (“rtxBvhRebuild”) for the worst case. The “Buddha” scene does
not include the PTSV method, as its average performance was 352 ms and was removed for
clarity.

96

Although RTX without BVH rebuild is the fastest method of all, it is also an ideal
condition that would probably not be achieved in a real scenario. “RTX AVG” as an
average is probably closer to a practical case, but even then it was the fastest in the most
cases. Ray tracing was also the most stable method tested.

CSSV’s average time was spoiled by the “Hairball” scene, where the silhouette is not
simple – the model is comprised chiefly of thin geometry, producing a complex silhouette
that generates a lot of shadow volumes requiring rasterization. Otherwise, this method
would be second to ray tracing in this scenario, even surpassing the “RTX AVG” time
twice. Compared to OFTS, stencil shadow volumes perform better on enclosed scenes
(“Conference”, “Sponza”) and scenes with a relatively simple silhouette (“Buddha”, as well
as “Conference”, has a relatively simple silhouette). Tree branches on “Villa” cast shadows
that cause a high fill rate, which leads to lower performance of the stencil method compared
to other techniques.

PTSV is the slowest method on most of the scenes. The “Buddha” scene seems to pose
a non-trivial problem for PTSV as the model contains a high number of small triangles
positioned mostly in the middle of the viewport. This triangle distribution causes an
imbalanced GPU load when traversing the acceleration structure of the view samples, as
only a handful of the view samples are affected by the vast majority of the scene geometry,
causing the method to perform very poorly in this test case.

CPTSV excels on the “Villa”, as the scene was specifically designed for this method.Both
PTSV and CPTSV perform unusually on the “Conference” scene, where the average time
is slower than on “Buddha”, despite having just 11 % of its geometry. This is probably
caused by missing load-balancing optimization, as there are larger triangles in the scene
(table, floor, etc.). A single triangle is processed by one warp, which causes improper load
balancing when the triangle covers a large portion of the screen, as a lot of nodes need to
be processed. Apart from these two cases, the method can be considered an average one –
not the fastest, not the slowest.

DPSV randomly builds its TOP tree every frame, meaning that the quality of the
acceleration structure differs from frame to frame. It can be observed as fluctuations mostly
on the “Hairball” scene. The complex and concentrated geometry in this scene poses a
challenge for the build phase of the algorithm, resulting in huge variation of the frame
times. The method was faster than CPTSV up to “Sponza”, but does not scale as well as
other methods with the increasing amount of geometry.

OFTS had to be tuned for smaller (up to 1920×1080) and larger resolutions separately,
as the parameters greatly affected sudden performance drops caused by the reprojection
area being too large and the most exposed lists did not get properly redistributed. This
happens most often when the camera is very close to the geometry or when the reprojection
itself cannot benefit from the shape of the reprojection area (e.g., when the longest lists
are in opposite corners of the heat map). Such spikes can be seen on the “Villa” scene. Its
performance also depends on the number of active light frusta, which can be seen e.g. on
the “Sponza” scene where the light is positioned in a way so that all 6 frusta are facing some
of the scene’s geometry, thus there are always multiple frusta active during the flythrough;
compared to e.g. “Buddha”, where most of the scene geometry will be concentrated in
a single frustum. OFTS can handle complex geometry, like “Hairball”, better than other
conventional methods. This method suffers from the same problem as omnidirectional
shadow mapping – seams between the cubemap faces, exhibiting as an occasional line of lit
fragments.

97

Table 8.4: Average shadow mask creation times across all the test scenes at 3840 × 2160.
The table description is identical to Table 8.3.

Villa Conf. Sponza Citad. Buddha Hairb. AVG
CPTSV 2.16 18.51 7.52 12.61 5.96 29.95 12.79
CSSV 5.42 1.74 4.27 9.68 3.97 64.29 14.90
DPSV 4.95 8.52 7.01 10.62 10.61 129.97 28.61
OFTS 4.25 4.78 8.18 4.43 6.21 17.52 7.57
PTSV 5.40 41.62 23.52 13.19 316.87 91.77 82.06

RTX rebuild 1.85 2.23 3.36 5.0 7.31 17.66 6.24
RTX 0.90 1.06 1.40 0.99 0.25 1.93 1.09

RTX AVG 1.38 1.65 2.38 3.0 3.78 9.80 3.67

8.3.3 Evaluation at 3840×2160

The results of the 4𝐾 flythroughs are presented in Figure 8.3 and Table 8.4; the results
of the “Buddha” scene in Figure 8.3e are again missing the PTSV graph, as the method
performed very slowly – 316 ms on average. We were surprised by the results of the stencil
method on the 4𝐾 resolution, as we estimated that the rasterization of the shadow volumes
geometry would cause CSSV to perform as one of the slowest, but the results seem to follow
a similar trend as at 1920×1080. In terms of the average across all scenes, OFTS was again
second-fastest to ray tracing, followed by CSSV (mainly because of poor performance on the
“Hairball” scene) and CPTSV . Interestingly, the PTSV was able to outperform CPTSV
on the “Hairball” scene compared to the full-HD test; the reasons will be disclosed below.
OFTS had to be tuned for higher resolution, as we often experienced spikes in frame times;
for example, there were 270 ms spikes on both “Sponza” and “Hairball”. We had to adjust
the resolution and reprojection threshold to cope with them, but they are still visible. Ray
tracing is again the fastest solution.

8.3.4 Frame Time Decomposition

The timings of the particular components of each method can be seen in Figure 8.4, mea-
sured on the “Sponza” scene at 1920 × 1080 resolution. Sponza was chosen because the
omni directional light source can demonstrated be very well in its enclosed atrium.

CSSV can be broken down into two parts – silhouette computation and shadow volume
rasterization. We used the z-fail, thus we rendered both the front and back caps for each
shadow volume. The silhouette extraction takes only around 0.05 ms (“compute”). The
extruded sides take the longest to render, as they consume a lot of fillrate. Drawing caps
takes on average 9.5 % of the total shadow computation time (0.15 ms in average).

The time to build the hierarchical tree from the view samples in CPTSV is significantly
faster than in PTSV, 0.44 vs 3.17 ms on average. Wedge optimizations for faster tile culling
sped up the rasterization of the shadow volumes against the hierarchical tree structure.

All stages of OFTS except traversal take about 1 ms combined. The traversal itself
takes 2.72 ms on average on this scene, about 73 % of the shadow compute time. “Sponza”
as an enclosed scene provides a good example, as the number of active frusta frequently
changes in the course of the test as well as projected area in each frustum. Sudden spikes
are caused by IZB lists being long.

98

0 200 400 600 800 1000
frame

0

5

10

15

20

m
s

villa
cptsv
cssv
dpsv
ofts
ptsv
rtxBvhRebuild
rtxNoRebuild

(a)

0 200 400 600 800 1000
frame

0

10

20

30

40

50

60

70

80

m
s

conference
cptsv
cssv
dpsv
ofts
ptsv
rtxBvhRebuild
rtxNoRebuild

(b)

0 200 400 600 800 1000
frame

0

10

20

30

40

50

m
s

sponza
cptsv
cssv
dpsv
ofts
ptsv
rtxBvhRebuild
rtxNoRebuild

(c)

0 200 400 600 800 1000
frame

0

5

10

15

20

25

30

m
s

citadel
cptsv
cssv
dpsv
ofts
ptsv
rtxBvhRebuild
rtxNoRebuild

(d)

0 200 400 600 800 1000
frame

0

5

10

15

20

25

m
s

buddha
cptsv
cssv
dpsv
ofts
rtxBvhRebuild
rtxNoRebuild

(e)

0 200 400 600 800 1000
frame

0

50

100

150

200

250

300

m
s

hairball
cptsv
cssv
dpsv
ofts
ptsv
rtxBvhRebuild
rtxNoRebuild

(f)

Figure 8.3: Comparison of all the methods using flythroughs on various test scenes, resolu-
tion 3840× 2160. The methods are labeled the same way as in Figure 8.2. The test on the
“Buddha” scene again does not include the PTSV method, as its average performance was
316 ms.

99

0 200 400 600 800 1000
frame

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
s

cssv
compute
convertStencilBufferToShadowMask
drawCaps
drawSides

(a)

0 200 400 600 800 1000
frame

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

m
s

ptsv
computeHDT
computeShadowFrusta
merge
rasterize

(b)

0 200 400 600 800 1000
frame

0

2

4

6

8

10

12

m
s

cptsv
buildHierarchy
computeShadowFrusta
merge
rasterize

(c)

0 200 400 600 800 1000
frame

0

1

2

3

4

5
m

s

dpsv
build
traverse

(d)

0 200 400 600 800 1000
frame

0.0

0.5

1.0

1.5

2.0

2.5

m
s

rtxBvhRebuild

BVH
shadowMask

(e)

0 200 400 600 800 1000
frame

0

2

4

6

8

10

m
s

ofts
heatMap
izb
matrices
traversal
zbuffer

(f)

Figure 8.4: Frame time decomposition of all methods on the Sponza scene at 1920× 1080.
Ray tracing is represented by its worst-case scenario (full BVH rebuild every frame).

100

Table 8.5: Average shadow mask creation times across all the test scenes at 1920 × 1080
running on GeForce GTX 1080Ti. The table description is identical to Table 8.3.

Villa Conf. Sponza Citad. Buddha Hairb. AVG
CPTSV 2.14 10.30 4.36 7.05 11.22 49.48 14.09
CSSV 2.31 0.74 1.79 4.51 2.90 32.01 7.38
DPSV 2.93 4.63 4.19 6.87 9.86 137.08 27.59
OFTS 1.87 2.22 3.97 3.66 5.94 16.39 5.67

RTX rebuild 3.62 3.22 5.12 7.26 8.53 26.28 9.01
RTX 2.39 1.65 2.74 2.45 0.42 7.66 2.89

RTX AVG 3.01 2.44 3.93 4.86 4.47 16.97 5.95

The ray tracer spent most of the frame time building the BVH structure; the tracing
itself is only around 20 % of the total time. We have also found out that the initial BVH
build takes up 10 ms more than all subsequent rebuilds, probably due to memory allocation.
The traversal part is very fast, also because all the rays are coherent and converge to a single
point.

8.3.5 Evaluation on GeForce GTX 1080Ti

We repeated the measurements using GeForce GTX 1080Ti, which supports the RTX API
in fallback mode, representing a well-optimized software ray tracing solution. The results
can be seen in Figure 8.5 and Table 8.5. As PTSV was the slowest method of all, we
excluded it from this measurement.

Ray tracing, on average, performs 2.1-times slower than on the RTX 2080Ti; rebuild 1.6-
times and the traversal-only scenario 10-times. The acceleration structure traversal benefits
mostly from the hardware acceleration. Compared to other methods on this platform, ray
tracing without rebuild is not the fastest method until the Citadel scene. Although a
combined average time of ray tracing was second to pure traversal on the 2080Ti, it was
surpassed by OFTS on the 1080Ti. CSSV is also faster than RTX with rebuild on the
legacy platform. Conventional methods were, on average, 15.5 % (8-30 %) slower than on
the 2080Ti.

8.3.6 Dependency on Triangle Count

Figure 8.6 shows performance dependency on triangle count across all of the tested scenes
and methods at 1920× 1080. It was calculated as the average and mean absolute deviation
from all the frame times of the flythrough on a particular scene. Due to PTSV’s behavior
on the “Buddha” scene (described above), the method was excluded from the graph. It
also has the highest dependency on the triangle configuration of all the tested methods; its
mean absolute deviation at 4000× 4000 was 30 ms. It can be seen that ray tracing without
rebuild does not put a lot of stress on the RT cores of the GPU; we are tracing 2 megarays
at 1920 × 1080 shadow rays per frame, where the hardware is, in theory, capable of 8
gigarays per second. OFTS shares similar triangle dependency with ray tracing with full
rebuild, having the lowest average and mean absolute deviation of the conventional methods.
CSSV is something of a surprise, as the method needs to rasterize a lot of infinite shadow
volume geometry. Although having lower triangle dependency than CPTSV in the tested
scenarios, the tide would change for larger scenes as the average curves of both methods

101

0 200 400 600 800 1000
frame

0

1

2

3

4

5

6

7

8

m
s

villa
cptsv
cssv
dpsv
ofts
rtxBvhRebuild
rtxNoRebuild

(a)

0 200 400 600 800 1000
frame

0

5

10

15

20

m
s

conference
cptsv
cssv
dpsv
ofts
rtxBvhRebuild
rtxNoRebuild

(b)

0 200 400 600 800 1000
frame

0

2

4

6

8

10

12

14

m
s

sponza
cptsv
cssv
dpsv
ofts
rtxBvhRebuild
rtxNoRebuild

(c)

0 200 400 600 800 1000
frame

0

2

4

6

8

10

12
m

s

citadel
cptsv
cssv
dpsv
ofts
rtxBvhRebuild
rtxNoRebuild

(d)

0 200 400 600 800 1000
frame

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

m
s

buddha
cptsv
cssv
dpsv
ofts
rtxBvhRebuild
rtxNoRebuild

(e)

0 200 400 600 800 1000
frame

0

50

100

150

200

250

m
s

hairball
cptsv
cssv
dpsv
ofts
rtxBvhRebuild
rtxNoRebuild

(f)

Figure 8.5: Evaluation at 1920 × 1080 using GeForce GTX 1080Ti, having only software
support for ray-tracing. The methods are labeled the same way as in Figure 8.2. PTSV
was excluded from the measurements for clarity.

102

0 500000 1000000 1500000 2000000 2500000 3000000
triangle count

0

20

40

60

80

100

120

140

m
s

cptsv
cssv
dpsv
ofts
rtxBvhRebuild
rtxNoRebuild

Figure 8.6: Dependency on the triangle count across all tested scenes at 1920×1080. PTSV
was excluded for clarity.

converge. With the increasing number of triangles, DPSV was gradually outperformed by
other methods, and its curve steep final segment is the result of the “Hairball” scene.

8.3.7 Dependency on Screen Resolution

We produced a graph in a similar fashion for dependency on the resolution as well; see 8.7.
CPTSV’s average shadow computation time increased 7.5-times at 4096×4096 compared

to 4𝐾 resolution despite the fact the acceleration structures have the same size in both cases.
This occurred on every test scene. We found out that it is caused by incorrect view sample
depth clustering. The majority of the view samples in all screen tiles fell into the same
cluster even if their depth was different. The reason is the exponential division of the view
frustum’s depth. The amount of bits allocated for encoding depth using the Morton code
depends, apart from other factors, on the vertical screen resolution and on the distance of
the near clipping plane. To encode the depth at 4096 × 4096, the bit count would exceed
the allocated 10 bits, causing the z-part of the Morton key to overflow and thus storing
all view samples into the same furthest cluster. This resulted in a very long AABB of the
cluster (along the 𝑧 axis) which causes very slow traversal, as most of the clusters have to be
visited by the majority of the shadow frusta. One of the possible fixes would be to allocate
more bits (13 or more) for the depth, but in that case, a 32-bit integer would be insufficient
and an arbitrary bit array would slow down the method. Using 64-bit keys would double
the already high memory consumption. Another possibility would be to divide the frustum
using a different scheme.

Provided CPTSV would not be affected by the problem mentioned above, we extrapo-
lated a hypothetical average frame time between 3.8 – 5.1 ms (using quadratic regression
and power curve) for 4𝐾 × 4𝐾 resolution. In such a case, the method would have had one
of the lowest resolution dependencies of all the tested methods.

Although PTSV and CPTSV have a lower resolution dependency thanks to the hierarchy
they build, they have larger initial overhead and don’t scale well with the increasing amount

103

1048576 2073600 8294400 16000000
pixels

0

5

10

15

20

25

30

m
s

cptsv
cssv
dpsv
ofts
ptsv
rtxBvhRebuild
rtxNoRebuild

Figure 8.7: Computational times as they depend on the screen resolution on the “Villa”
scene.

of triangles. As expected, CSSV is more sensitive to resolution than other methods; its curve
is similar to OFTS but absolute deviation is the widest (except for 4𝑘× 4𝑘). DPSV follows
CSSV in this scenario, but ends up slightly above. Hardware-accelerated ray tracing has
the lowest sensitivity on all the test scenes.

8.4 Time Complexity
Although the authors of the original papers do not state the complexity of their algorithms,
we tried to estimate the average time complexity based on increasing scene complexity,
screen resolution and multiple light sources for every major part of the tested algorithms.
These findings can be seen in Table 8.6. In terms of resolution, most of the algorithms scale
linearly with the increasing amount of pixels except for CPTSV. When multiple lights are
used, ray tracing seems again to be the best possible method as it does not require a BVH
rebuild, unlike all the other evaluated methods.

8.5 Discussion and Conclusion
We were able to compare several modern omni directional shadowing methods with precise
hard shadows. These methods were tested on several popular test scenes under multiple
resolutions.

Hardware-accelerated ray tracing is the clear winner in terms of speed, implementation
difficulty and even memory consumption in the most cases. It is clear that having dedicated
hardware units can reduce the BVH traversal time by a factor of 10. Ray tracing (traversal
only) on legacy hardware was able to outperform all the methods on scenes having more
than 600 000 triangles. Ray tracing also has the lowest triangle and resolution dependency
in our tests. Unlike all other tested algorithms, support for multiple light sources does not

104

Table 8.6: Time and memory complexities of the tested algorithms, broken down into
stages. An empty cell means the stage of a particular algorithm is not dependent on the
number of triangles or screen pixels.

Method Resolution Geometry Multiple
lights

CSSV (adjacency) O(1) O(N log(N)) O(1)
CSSV (silhouette) O(1) O(N) O(N)
CSSV (rasterize) O(N) O(N) O(N)
PTSV (shadow frusta) O(1) O(N) O(N)
PTSV (depth stencil) O(N) O(1) O(N)
PTSV (traversal) O(N) O(N) O(N)
CPTSV (shadow frusta) O(1) O(N) O(N)
CPTSV (view cluster hierarchy) O(N) O(1) O(1)
CPTSV (traversal) O(log(N)) O(N) O(N)
OFTS (shadow frusta) O(1) O(N) O(N)
OFTS (IZB build) O(N) O(1) O(N)
OFTS (traversal) O(N) O(N) O(N)
RTX (build) O(1) O(N log(N)) O(1)
RTX (trace) O(N) O(log(N)) O(N)
DPSV (build) O(1) O(N log(N)) O(N)
DPSV (traverse) O(N) O(log(N)) O(N)

require a BVH rebuild, as the structure can be reused, since it is independent on the light
position. Transparent casters and sub-pixel precision are also supported.

Although the authors of Frustum-Traced Shadows did not design the method primarily
for omnidirectional parametrization, the method works very well with this configuration.
It has one of the lowest triangle dependencies, a predictable memory footprint and was
able to handle the “Hairball” scene second best to ray tracing. Its implementation is
straightforward and does not require any preprocessing. The downsides are higher memory
consumption on higher resolutions, and performance drops due to long lists, which need
to be addressed using parameters which are scene-dependent. We noticed a light-leaking
artifact on the seams between the frusta, probably caused by different projections. Although
CSSV was faster on the enclosed test scenes, OFTS has better geometry dependency and,
in most cases, better resolution dependency. It was the only method to outperform the
average of combined RTX time on the 1080Ti.

The CSSV algorithm was a surprise, as almost all previous papers presented stencil-
based shadow volumes as being too slow for larger resolutions. Our implementation was
able to compute an object’s silhouette in 0.03 to 0.1 ms across the test scenes, thus the
majority of the method’s time was spent on the rasterization of shadow volumes. Although
based on z-fail, CSSV was the fastest conventional method on “Buddha”, “Conference”,
and “Sponza” in both 1920× 1080 and 3840× 2560. These scenes have relatively a simple
silhouette, mostly observable on “Buddha”, where the method is on average 48 % faster
than OFTS behind it. As no bias was used during any of its stages, the method has the
most accurate shadows of the tested algorithms. We think the advance in the graphics
hardware and increased rasterization performance can also be credited for the performance
of the stencil shadow volumes. The method’s implementation is among the easier ones;

105

its memory consumption is second to ray tracing. The downsides are edge extraction as a
preprocess step and unpredictable performance due to shadow volume rasterization. If not
for the “Hairball” scene, which was the worst-case for this method, we would declare CSSV
to be the second-fastest algorithm.

DPSV was improved by deterministic shadow plane calculations, which helped with
robustness of the method but we still experienced blinking triangles in the “Buddha” scene,
as the model consists of very small triangles. The randomness of the TOP tree build quality
between consecutive frames caused the method to perform less stably locally, most notably
on the “Hairball” scene. Our measurements have shown that this method is more suitable
for scenes with up to 1 million triangles. The method is easy to implement, as source codes
for both its shaders are already available and requires no geometry preprocessing. The
memory consumption was average compared to other methods. Overall, the method ends
up 4th in our comparison, as it did not excel in any of the observed parameters.

We succeeded in porting PTSV and CPTSV algorithms from CUDA to OpenGL, making
them available to other hardware platforms. These methods, particularly CPTSV, are
difficult to implement and their memory consumption is the highest of all tested methods,
as it depends not only on the geometry, but also on the screen resolution. CPTSV’s
acceleration structure, containing AABBs for view sample clusters, can take up to 6 GB at
4096 × 4096 if the memory optimization is not used, but can still take around 1 GB when
optimized. The method also suffers from an incorrect acceleration structure build when the
screen resolution is very high, which negatively affects its performance. If not for this issue,
this method would have had one of the lowest sensitivities to screen resolution. PTSV was
the slowest algorithm in the test. In general, we don’t recommend either of these methods
for practical use, as there are faster and easier-to-implement methods that also consume
less memory.

Except for ray tracing, there is no universal method that would be suitable for all
scenarios; all methods have their best and worst cases. If ray tracing is not available,
OFTS is suitable for more opened scenes, whereas CSSV handles closed or scenes with
simple silhouette. Our tests also conclude that more complex code does not necessarily
yield faster frame times.

In the future, the ray tracing implementation could be optimized for other hardware
platforms, including the current generation of game consoles. It would be interesting to
see even bigger scenes, although “Hairball” was already challenging for the most of the
algorithms as the fastest time behind ray tracing was 14ms at 1920× 1080. Multiple light
sources is also an issue that is not frequently evaluated on these methods.

106

Chapter 9

Conclusion

The goal of this thesis was to improve rendering of precise shadows from omnidirectional
light sources. I did not present a major breakthrough in the field of shadow rendering,
instead a series of incremental performance and robustness improvements to stencil shadow
volumes as well as silhouette extraction. Although many researches consider stencil shadow
volumes to be a dead algorithm, the measurements in this thesis, notably in Chapter 8,
show that with a proper implementation of silhouette extraction and utilization of modern
features of the graphics hardware, this algorithm still keeps up with modern methods or
even outperforms them.

First, I was a part of the team that designed a robust algorithm for silhouette extrac-
tion to deal with triangles almost parallel to the light direction. This completely eliminated
shadow artifacts and allowed the usage of arbitrary triangle soup as input for the method.
The determinism is based on assumption that the whole triangle may not have equal amount
of front an back facing opposite vertices with respect to the light plane constructed from
each triangle edge and the light source. I optimized the CPU implementation of the algo-
rithm utilizing AVX instruction set which has proven beneficial, mostly on modern CPU
architectures.

I then utilized tessellation to compute shadow volumes. At first, the approach was per-
triangle and required two passes, thus rather slow. But we were able to first optimize the
approach to a single pass utilizing geometry collapsing and later use the collapsible geometry
approach to design a fully silhouette approach. The created method has been proven to be
faster on certain platforms than methods using the geometry shader. Moreover, we have
simplified the robust multiplicity calculation which no longer has to be evaluated for all
3 triangle edges. Instead, a new approach using a so-called reference edge was designed
that sorted triangle vertices (formed from the edge and one opposite vertex) and instead
of computing the multiplicity from a plane constructed from an edge and the light source,
the plane was constructed from the triangle itself and light source was tested to be lying in
front or behind the triangle plane. This allowed the algorithm to break the edge-triangle
dependency and sped up the computation.

Then, silhouette extraction acceleration was proposed. Instead of calculating the silhou-
ette in a brute-force manner, an octree is constructed with precomputed sets of potentially
silhouette edges that need further testing and edges guaranteed to be silhouette for a par-
ticular volume of space where a light can be located. To conserve memory, a bitmask-based
compression scheme was utilized that propagated edges up the octree even in case when
not all siblings shared the edge. The method reduced the difficulty of the edge computa-
tion, but at the cost of relatively high memory consumption. The light source also had

107

to be restricted to a certain area of the scene in order to use the accelerated silhouette
extraction. The problem with space restriction could be solved by using a spatial angle
subdivision. Although not by much (up to around 5 %), this method is the fastest stencil
shadow algorithm to date, although it has its limitations.

The first survey paper focused on shadow-mapping-based omnidirectional shadow tech-
niques, comparing cube mapping and parabolic projection (dual-paraboloid shadow map-
ping). Although the dual-paraboloid approach was faster on smaller scenes, cube mapping
technique handled more complex scenes better. The parabolic projection also suffers from
visual artifacts when the scene tessellation is low.

We gathered several modern methods rendering omnidirectional shadows from point
light sources and tested them on a set of popular scenes and several resolutions. These
methods, along with stencil shadows, were put against new hardware-accelerated ray tracer
using RTX API in Vulkan. Although the ray tracer was the fastest method of the test,
stencil shadows performed very well compared to other more modern methods, competing
with omnidirectional frustum-traced shadows. The source codes of the testing software
have been made publicly available, which can be easily extended by other researchers with
their shadow techniques.

108

Bibliography

[1] Definition of shadow in English. June 2019.
Retrieved from: https://www.lexico.com/en/definition/shadow

[2] Aila, T.; Akenine-Möller, T.: A Hierarchical Shadow Volume Algorithm. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware. HWWS ’04. New York, NY, USA: Association for Computing Machinery.
2004. ISBN 3905673150. page 15–23.
Retrieved from: https://doi.org/10.1145/1058129.1058132

[3] Aila, T.; Laine, S.: Alias-free Shadow Maps. In Proceedings of the Fifteenth
Eurographics Conference on Rendering Techniques. EGSR’04. Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association. 2004. ISBN 3-905673-12-6. pp.
161–166.
Retrieved from: http://dx.doi.org/10.2312/EGWR/EGSR04/161-166

[4] Airey, J. M.; Rohlf, J. H.; Brooks, F. P.: Towards Image Realism with Interactive
Update Rates in Complex Virtual Building Environments. SIGGRAPH Comput.
Graph.. vol. 24, no. 2. February 1990: page 41–50. ISSN 0097-8930.
Retrieved from: https://doi.org/10.1145/91394.91416

[5] Akenine-Möller, T.; Assarsson, U.: Approximate Soft Shadows on Arbitrary
Surfaces Using Penumbra Wedges. In Proceedings of the 13th Eurographics
Workshop on Rendering. EGRW ’02. Goslar, DEU: Eurographics Association. 2002.
ISBN 1581135343. page 297–306.

[6] Akenine-Möller, T.; Assarsson, U.: On the Degree of Vertices in a Shadow Volume
Silhouette. Journal of Graphics Tools. vol. 8, no. 4. 2003: pp. 21–24.
Retrieved from: https://doi.org/10.1080/10867651.2003.10487591

[7] Akenine-Möller, T.; Haines, E.; Hoffman, N.: Real-Time Rendering, Fourth Edition.
Natick, MA, USA: A. K. Peters, Ltd.. fourth edition. 2018. ISBN 0134997832,
9781138627000.

[8] Aldridge, G.; Woods, E.: Robust, Geometry-independent Shadow Volumes. In
Proceedings of the 2Nd International Conference on Computer Graphics and
Interactive Techniques in Australasia and South East Asia. GRAPHITE ’04. New
York, NY, USA: ACM. 2004. ISBN 1-58113-883-0. pp. 250–253.
Retrieved from: http://doi.acm.org/10.1145/988834.988877

[9] Appel, A.: Some Techniques for Shading Machine Renderings of Solids. In
Proceedings of the April 30–May 2, 1968, Spring Joint Computer Conference.

109

https://www.lexico.com/en/definition/shadow
https://doi.org/10.1145/1058129.1058132
http://dx.doi.org/10.2312/EGWR/EGSR04/161-166
https://doi.org/10.1145/91394.91416
https://doi.org/10.1080/10867651.2003.10487591
http://doi.acm.org/10.1145/988834.988877

AFIPS ’68 (Spring). New York, NY, USA: ACM. 1968. pp. 37–45.
Retrieved from: http://doi.acm.org/10.1145/1468075.1468082

[10] Assarsson, U.; Akenine-Möller, T.: A Geometry-Based Soft Shadow Volume
Algorithm Using Graphics Hardware. ACM Trans. Graph.. vol. 22, no. 3. July 2003:
page 511–520. ISSN 0730-0301.
Retrieved from: https://doi.org/10.1145/882262.882300

[11] Batagelo, H. C.; Júnior, I. C.: Real-Time Shadow Generation Using BSP Trees and
Stencil Buffers. In Proceedings of the XII Brazilian Symposium on Computer
Graphics and Image Processing. SIBGRAPI ’99. USA: IEEE Computer Society.
1999. ISBN 0769504817. page 93.

[12] Bergeron, P.: A General Version of Crow’s Shadow Volumes. IEEE Computer
Graphics and Applications. vol. 6, no. 9. September 1986: pp. 17–28.
doi:10.1109/MCG.1986.276543.

[13] Bilodeau, W.; Songy, M.: Real Time Shadows. Creativity ’99 Creative Labs Inc.
sponsored game conference. 1999.

[14] Blinn, J.: Me and My (Fake) Shadow. IEEE Computer Graphics and Applications.
vol. 8, no. 01. jan 1988: pp. 82–86. ISSN 1558-1756. doi:10.1109/MCG.1988.10001.

[15] Boksanský, J.; Wimmer, M.; Bittner, J.: Ray Traced Shadows: Maintaining
Real-Time Frame Rates. In Ray Tracing Gems: High-Quality and Real-Time
Rendering with DXR and Other APIs, edited by E. Haines; T. Akenine-Möller.
Berkeley, CA: Apress. 2019. ISBN 978-1-4842-4427-2. pp. 159–182.
doi:10.1007/978-1-4842-4427-2_13.
Retrieved from: https://doi.org/10.1007/978-1-4842-4427-2_13

[16] Boudier, P.; Sellers, G.: GL_AMD_depth_clamp_separate. online. 15th September
2010. openGL extensions manual.
Retrieved from: https://www.khronos.org/registry/OpenGL/extensions/AMD/
AMD_depth_clamp_separate.txt

[17] Brabec, S.; Annen, T.; Seidel, H.-P.; et al.: Shadow Mapping for Hemispherical and
Omnidirectional Light Sources. Advances in Modelling, Animation and Rendering
(Proceedings Computer Graphics International 2002), Springer, 397-408 (2002).
June 2002: pp. 397–408. doi:10.1007/978-1-4471-0103-1_25.

[18] Brabec, S.; Seidel, H.-P.: Shadow Volumes on Programmable Graphics Hardware.
Computer Graphics Forum. vol. 22. 09 2003: pp. 433–440.
doi:10.1111/1467-8659.00691.

[19] Carmack, J.: Email communication with Mark Kilgard. online. 26th May 2000.
Retrieved from: https:
//fabiensanglard.net/doom3_documentation/CarmackOnShadowVolumes.txt

[20] Chin, N.; Feiner, S.: Near Real-time Shadow Generation Using BSP Trees. In
Proceedings of the 16th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’89. New York, NY, USA: ACM. 1989. ISBN
0-89791-312-4. pp. 99–106.
Retrieved from: http://doi.acm.org/10.1145/74333.74343

110

http://doi.acm.org/10.1145/1468075.1468082
https://doi.org/10.1145/882262.882300
https://doi.org/10.1007/978-1-4842-4427-2_13
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_depth_clamp_separate.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_depth_clamp_separate.txt
https://fabiensanglard.net/doom3_documentation/CarmackOnShadowVolumes.txt
https://fabiensanglard.net/doom3_documentation/CarmackOnShadowVolumes.txt
http://doi.acm.org/10.1145/74333.74343

[21] Contreras, M. S.; Valadez, A. J. R.; Martínez, A. J.: Dual Sphere-Unfolding Method
for Single Pass Omni-Directional Shadow Mapping. In ACM SIGGRAPH 2011
Posters. SIGGRAPH ’11. New York, NY, USA: Association for Computing
Machinery. 2011. ISBN 9781450309714.
Retrieved from: https://doi.org/10.1145/2037715.2037793

[22] Cook, R. L.; Porter, T.; Carpenter, L.: Distributed Ray Tracing. SIGGRAPH
Comput. Graph.. vol. 18, no. 3. January 1984: page 137–145. ISSN 0097-8930.
Retrieved from: https://doi.org/10.1145/964965.808590

[23] Cozzi, P.; Riccio, C.: OpenGL Insights. CRC Press. July 2012. ISBN
978-1439893760.

[24] Crow, F. C.: Shadow Algorithms for Computer Graphics. SIGGRAPH Comput.
Graph.. vol. 11, no. 2. July 1977: pp. 242–248. ISSN 0097-8930.
Retrieved from: http://doi.acm.org/10.1145/965141.563901

[25] Deves, F.; Mora, F.; Aveneau, L.; et al.: Scalable Real-time Shadows Using
Clustering and Metric Trees. In Proceedings of the Eurographics Symposium on
Rendering: Experimental Ideas & Implementations. SR ’18. Goslar Germany,
Germany: Eurographics Association. 2018. pp. 83–93.
Retrieved from: https://doi.org/10.2312/sre.20181175

[26] Diefenbach, P. J.: Pipeline Rendering: Interaction and Realism Through
Hardware-based Multi-pass Rendering. PhD. Thesis. Philadelphia, PA, USA. 1996.

[27] Doghramachi, H.: Tile-based Omnidirectional Shadows. In GPU Pro 360: Guide to
Shadows, edited by W. Engel. chapter 14. Natick, MA, USA: A. K. Peters, Ltd..
first edition. 2018. ISBN 0815382472, 9780815382478. pp. 193–217.

[28] Dou, H.; Yan, Y.; Kerzner, E.; et al.: Adaptive Depth Bias for Shadow Maps. In
Proceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games. I3D ’14. New York, NY, USA: ACM. 2014. ISBN
978-1-4503-2717-6. pp. 97–102.
Retrieved from: http://doi.acm.org/10.1145/2556700.2556706

[29] Eisemann, E.; Assarsson, U.; Schwarz, M.; et al.: Shadow Algorithms for Real-time
Rendering. In Eurographics. 2010.

[30] Eisemann, E.; Schwarz, M.; Assarsson, U.; et al.: Real-Time Shadows. Natick, MA,
USA: A. K. Peters, Ltd.. first edition. 2011. ISBN 1568814380, 9781568814384.

[31] Engel, W.: Cascaded Shadow Maps. In Shader X5: Advanced Rendering Techniques,
edited by W. Engel. chapter 10. Rockland, MA, USA: Charles River Media Inc..
2006. ISBN 1584504994. pp. 197–206.

[32] Espenak, F.: Glossary of Solar Eclipse Terms. September 2019.
Retrieved from: https://eclipse.gsfc.nasa.gov/SEhelp/SEglossary.html

[33] Everitt, C.; Kilgard, M. J.: Practical and Robust Stenciled Shadow Volumes for
Hardware-Accelerated Rendering. Technical report. nVidia Corporation. 2002.

111

https://doi.org/10.1145/2037715.2037793
https://doi.org/10.1145/964965.808590
http://doi.acm.org/10.1145/965141.563901
https://doi.org/10.2312/sre.20181175
http://doi.acm.org/10.1145/2556700.2556706
https://eclipse.gsfc.nasa.gov/SEhelp/SEglossary.html

[34] Fuchs, H.; Goldfeather, J.; Hultquist, J. P.; et al.: Fast Spheres, Shadows, Textures,
Transparencies, and Image Enhancements in Pixel-Planes. In Advances in Computer
Graphics I, edited by G. Enderle; M. Grave; F. Lillehagen. Berlin, Heidelberg:
Springer Berlin Heidelberg. 1986. ISBN 978-3-642-46514-7. pp. 169–187.

[35] Garanzha, K.; Loop, C.: Fast Ray Sorting and Breadth-First Packet Traversal for
GPU Ray Tracing. Comput. Graph. Forum. vol. 29. 05 2010: pp. 289–298.
doi:10.1111/j.1467-8659.2009.01598.x.

[36] Gerasimov, P.: Omnidirectional Shadow Mapping. In GPU Gems: Programming
Techniques, Tips and Tricks for Real-Time Graphics, edited by F. Randima.
chapter 12. Addison-Wesley Professional. 2004. ISBN 0321228324. pp. 193–203.

[37] Gerhards, J.; Mora, F.; Aveneau, L.; et al.: Partitioned Shadow Volumes. Comput.
Graph. Forum. vol. 34, no. 2. May 2015: pp. 549–559. ISSN 0167-7055.
Retrieved from: https://doi.org/10.1111/cgf.12583

[38] Gooch, B.; Sloan, P.-P. J.; Gooch, A.; et al.: Interactive Technical Illustration. In
Proceedings of the 1999 Symposium on Interactive 3D Graphics. I3D ’99. New York,
NY, USA: ACM. 1999. ISBN 1-58113-082-1. pp. 31–38.
Retrieved from: http://doi.acm.org/10.1145/300523.300526

[39] Haines, E.: Soft Planar Shadows Using Plateaus. J. Graph. Tools. vol. 6, no. 1.
January 2002: pp. 19–27. ISSN 1086-7651.
Retrieved from: http://dx.doi.org/10.1080/10867651.2001.10487534

[40] Harris, M.; Sengupta, S.; Owens, J. D.: Parallel Prefix Sum (Scan) with CUDA. In
GPU Gems 3, edited by H. Nguyen. chapter 39. Addison-Wesley Professional. first
edition. 2007. ISBN 9780321545428.

[41] Hasenfratz, J.-M.; Lapierre, M.; Holzschuch, N.; et al.: A survey of Real-Time Soft
Shadows Algorithms. Computer Graphics Forum. vol. 22, no. 4. December 2003: pp.
753–774.
Retrieved from: http://maverick.inria.fr/Publications/2003/HLHS03a

[42] Heckbert, P.; Herf, M.: Simulating Soft Shadows with Graphics Hardware. Tech.
rep. May 1997.

[43] Heckbert, P. S.: Ten Unsolved Problems in Rendering. In Workshop on Rendering
Algorithms and Systems, Graphics Interface ’87. April 1987.

[44] Heidmann, T.: Real shadows real time. IRIS Universe. vol. 18. November 1991: pp.
28–31.

[45] Herf, M.; Heckbert, P. S.: Fast Soft Shadows. In Visual Proceedings, SIGGRAPH
’96. 1996. page 145.

[46] Ho, T.-Y.; Wan, L.; Leung, C.-S.; et al.: Unicube for Dynamic Environment
Mapping. IEEE Transactions on Visualization and Computer Graphics. vol. 17,
no. 1. January 2011: page 51–63. ISSN 1077-2626.
Retrieved from: https://doi.org/10.1109/TVCG.2009.205

112

https://doi.org/10.1111/cgf.12583
http://doi.acm.org/10.1145/300523.300526
http://dx.doi.org/10.1080/10867651.2001.10487534
http://maverick.inria.fr/Publications/2003/HLHS03a
https://doi.org/10.1109/TVCG.2009.205

[47] Hornus, S.; Hoberock, J.; Lefebvre, S.; et al.: ZP+: Correct Z-pass Stencil Shadows.
In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games. I3D
’05. New York, NY, USA: ACM. 2005. ISBN 1-59593-013-2. pp. 195–202.
Retrieved from: http://doi.acm.org/10.1145/1053427.1053459

[48] Imagination Technologies Limited: Dual Paraboloid Environment Mapping
Whitepaper. Technical report. 17th April 2017.

[49] Immel, D. S.; Cohen, M. F.; Greenberg, D. P.: A Radiosity Method for Non-diffuse
Environments. SIGGRAPH Comput. Graph.. vol. 20, no. 4. August 1986: pp.
133–142. ISSN 0097-8930.
Retrieved from: http://doi.acm.org/10.1145/15886.15901

[50] Imura, T.; Yamaguchi, M. K.; Kanazawa, S.; et al.: Perception of motion trajectory
of object from the moving cast shadow in infants. Vision Research. vol. 46, no. 5.
2006: pp. 652 – 657. ISSN 0042-6989.
doi:https://doi.org/10.1016/j.visres.2005.07.028.

[51] Isenberg, T.; Freudenberg, B.; Halper, N.; et al.: A Developer’s Guide to Silhouette
Algorithms for Polygonal Models. IEEE Comput. Graph. Appl.. vol. 23, no. 4. July
2003: pp. 28–37. ISSN 0272-1716.
Retrieved from: https://doi.org/10.1109/MCG.2003.1210862

[52] Johnson, D. E.; Cohen, E.: Spatialized Normal Come Hierarchies. In Proceedings of
the 2001 Symposium on Interactive 3D Graphics. I3D ’01. New York, NY, USA:
ACM. 2001. ISBN 1-58113-292-1. pp. 129–134.
Retrieved from: http://doi.acm.org/10.1145/364338.364380

[53] Johnson, G. S.; Lee, J.; Burns, C. A.; et al.: The Irregular Z-Buffer: Hardware
Acceleration for Irregular Data Structures. ACM Trans. Graph.. vol. 24, no. 4.
October 2005: page 1462–1482. ISSN 0730-0301. doi:10.1145/1095878.1095889.

[54] Kajiya, J. T.: The Rendering Equation. In Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’86.
New York, NY, USA: ACM. 1986. ISBN 0-89791-196-2. pp. 143–150.
Retrieved from: http://doi.acm.org/10.1145/15922.15902

[55] Karras, T.; Aila, T.: Fast Parallel Construction of High-Quality Bounding Volume
Hierarchies. In Proceedings of the 5th High-Performance Graphics Conference. HPG
’13. New York, NY, USA: Association for Computing Machinery. 2013. ISBN
9781450321358. page 89–99.
Retrieved from: https://doi.org/10.1145/2492045.2492055

[56] Kawabe, T.: Spatially Augmented Depth and Transparency in Paper Materials. In
SIGGRAPH Asia 2018 Emerging Technologies. SA ’18. New York, NY, USA: ACM.
2018. ISBN 978-1-4503-6027-2. pp. 12:1–12:2.
Retrieved from: http://doi.acm.org/10.1145/3275476.3275482

[57] Kersten, D.; Knill, D. C.; Mamassian, P.; et al.: Illusory motion from shadows.
Nature. vol. 379. 1996: page 31.

113

http://doi.acm.org/10.1145/1053427.1053459
http://doi.acm.org/10.1145/15886.15901
https://doi.org/10.1109/MCG.2003.1210862
http://doi.acm.org/10.1145/364338.364380
http://doi.acm.org/10.1145/15922.15902
https://doi.org/10.1145/2492045.2492055
http://doi.acm.org/10.1145/3275476.3275482

[58] Kersten, D.; Mamassian, P.: Cast Shadow Illusions. In The Oxford Compendium of
Visual Illusions, edited by G. Shapiro; D. Todorović. chapter 20. Oxford University
Press. 2017. pp. 214–220.

[59] Kersten, D.; Mamassian, P.; C Knill, D.: Moving cast shadows induce apparent
motion in depth. Perception. vol. 26. 02 1997: pp. 171–92. doi:10.1068/p260171.

[60] Kilgard, M.: GL_EXT_stencil_two_side. online. 15th September 2005. openGL
extension manual.
Retrieved from: https://www.khronos.org/registry/OpenGL/extensions/EXT/
EXT_stencil_two_side.txt

[61] Kilgard, M. J.: Robust Stencil Shadow Volumes. CEDEC 2001 presentation. 2001.
Retrieved from: http://developer.download.nvidia.com/assets/gamedev/docs/
StencilShadows_CEDEC_E.pdf

[62] Kim, B.; Kim, K.; Turk, G.: A Shadow-Volume Algorithm for Opaque and
Transparent Nonmanifold Casters. Journal of Graphics, GPU and Game Tools.
vol. 13. 2008: pp. 1–14.

[63] King, G.; Newhall, W.: Efficient omni-directional shadow maps. In ShaderX3:
Advanced Rendering with DirectX and OpenGL, edited by W. Engel. Hing-ham,
MA, USA: Charles River Media Inc.. 2005. ISBN 1584503572. pp. 435–448.

[64] Kluczek, K.: Quality Metric for Shadow Rendering. In 2016 Federated Conference
on Computer Science and Information Systems (FedCSIS). 2016. pp. 791–796.

[65] Kobrtek, J.; Milet, T.; Herout, A.: Silhouette Extraction for Shadow Volumes Using
Potentially Visible Sets. In International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision (WSCG). Union Agency.
2019. ISBN 978-80-86943-37-4. pp. 9–16.
Retrieved from: https://www.fit.vut.cz/research/publication/11975

[66] Laine, S.: Split-plane Shadow Volumes. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware. HWWS ’05.
New York, NY, USA: ACM. 2005. ISBN 1-59593-086-8. pp. 23–32.
Retrieved from: http://doi.acm.org/10.1145/1071866.1071870

[67] Laine, S.; Aila, T.; Assarsson, U.; et al.: Soft Shadow Volumes for Ray Tracing.
ACM Trans. Graph.. vol. 24, no. 3. July 2005: page 1156–1165. ISSN 0730-0301.
Retrieved from: https://doi.org/10.1145/1073204.1073327

[68] Lauritzen, A.; Salvi, M.; Lefohn, A.: Sample Distribution Shadow Maps. In
Symposium on Interactive 3D Graphics and Games. I3D ’11. New York, NY, USA:
ACM. 2011. ISBN 978-1-4503-0565-5. pp. 97–102.
Retrieved from: http://doi.acm.org/10.1145/1944745.1944761

[69] Lehtinen, J.; Laine, S.; Aila, T.: An Improved Physically-Based Soft Shadow
Volume Algorithm. Comput. Graph. Forum. vol. 25. 09 2006: pp. 303–312.

[70] Lengyel, E.: Advanced Stencil Shadow Advanced Stencil Shadow and Penumbral
Wedge Rendering Penumbral Wedge Rendering. Game Developers Conference.

114

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_stencil_two_side.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_stencil_two_side.txt
http://developer.download.nvidia.com/assets/gamedev/docs/StencilShadows_CEDEC_E.pdf
http://developer.download.nvidia.com/assets/gamedev/docs/StencilShadows_CEDEC_E.pdf
https://www.fit.vut.cz/research/publication/11975
http://doi.acm.org/10.1145/1071866.1071870
https://doi.org/10.1145/1073204.1073327
http://doi.acm.org/10.1145/1944745.1944761

March 2005.
Retrieved from: http://www.terathon.com/gdc05_lengyel.pdf

[71] Liao, H.-C.: Shadow Mapping for Omnidirectional Light Using Tetrahedron
Mapping. In GPU Pro: Advanced Rendering Techniques, edited by W. Engel.
chapter 3. Natick, MA, USA: A. K. Peters, Ltd.. first edition. 2010. ISBN
1568814720. pp. 455–475.

[72] Lloyd, D. B.; Wendt, J.; Govindaraju, N. K.; et al.: CC Shadow Volumes. In
Proceedings of the Fifteenth Eurographics Conference on Rendering Techniques.
EGSR’04. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association. 2004.
ISBN 3-905673-12-6. pp. 197–205.
Retrieved from: http://dx.doi.org/10.2312/EGWR/EGSR04/197-205

[73] Madison, C.; Thompson, W.; Kersten, D.; et al.: Use of interreflection and shadow
for surface contact. Perception & Psychophysics. vol. 63, no. 2. Feb 2001: pp.
187–194. ISSN 1532-5962. doi:10.3758/BF03194461.
Retrieved from: https://doi.org/10.3758/BF03194461

[74] Marsh, D.; Marshall, D. L.: Applied Geometry for Computer Graphics. Berlin,
Heidelberg: Springer-Verlag. first edition. 1999. ISBN 1852330805.

[75] McCool, M. D.: Shadow Volume Reconstruction from Depth Maps. ACM Trans.
Graph.. vol. 19, no. 1. January 2000: pp. 1–26. ISSN 0730-0301.
Retrieved from: http://doi.acm.org/10.1145/343002.343006

[76] McGuire, M.: Efficient Shadow Volume Rendering. In GPU Gems: Programming
Techniques, Tips and Tricks for Real-Time Graphics, edited by F. Randima.
chapter 9. Addison-Wesley Professional. 2004. ISBN 0321228324. pp. 137–166.

[77] McGuire, M.: Observations on Silhouette Sizes. Journal of Graphics Tools. vol. 9,
no. 1. 2004: pp. 1–12. jgt.
Retrieved from:
https://casual-effects.com/research/McGuire2004Silhouette/index.html

[78] McGuire, M.: Single-pass Shadow Volumes for Arbitrary Meshes. In ACM
SIGGRAPH 2007 Posters. SIGGRAPH ’07. New York, NY, USA: ACM. 2007.
ISBN 978-1-4503-1828-0.
Retrieved from: http://doi.acm.org/10.1145/1280720.1280912

[79] McGuire, M.: Computer Graphics Archive. July 2017.
Retrieved from: https://casual-effects.com/data

[80] McGuire, M.; Hughes, J. F.; Egan, K.; et al.: Fast, Practical and Robust Shadows.
Technical report. NVIDIA Corporation. Austin, TX. Nov 2003.
Retrieved from:
http://developer.nvidia.com/object/fast_shadow_volumes.html

[81] Milet, T.; Kobrtek, J.; Zemčík, P.; et al.: Fast and Robust Tessellation-Based
Silhouette Shadows. In WSCG 2014 - Poster papers proceedings. University of West
Bohemia in Pilsen. 2014. ISBN 978-80-86943-72-5. pp. 33–38.
Retrieved from: https://www.fit.vut.cz/research/publication/10587

115

http://www.terathon.com/gdc05_lengyel.pdf
http://dx.doi.org/10.2312/EGWR/EGSR04/197-205
https://doi.org/10.3758/BF03194461
http://doi.acm.org/10.1145/343002.343006
https://casual-effects.com/research/McGuire2004Silhouette/index.html
http://doi.acm.org/10.1145/1280720.1280912
https://casual-effects.com/data
http://developer.nvidia.com/object/fast_shadow_volumes.html
https://www.fit.vut.cz/research/publication/10587

[82] Milet, T.; Navrátil, J.; Zemčík, P.: An Improved Non-Orthogonal Texture Warping
for Better Shadow Rendering. In WSCG 2015 - Full Papers Proceedings. Union
Agency. 2015. ISBN 978-80-86943-65-7. pp. 99–107.
Retrieved from: https://www.fit.vut.cz/research/publication/10889

[83] Mora, F.; Gerhards, J.; Aveneau, L.; et al.: Deep Partitioned Shadow Volumes Using
Stackless and Hybrid Traversals. In Proceedings of the Eurographics Symposium on
Rendering: Experimental Ideas & Implementations. EGSR ’16. Goslar, Germany:
Eurographics Association. 2016. ISBN 978-3-03868-019-2. pp. 73–83.
Retrieved from: https://doi.org/10.2312/sre.20161212

[84] Nagy, G.: Real-Time Shadows on Complex Objects. In Game Programming Gems,
edited by M. DeLoura. Charles River Media. 2000. pp. 567–580.

[85] Navrátil, J.; Kobrtek, J.; Zemčík, P.: A Survey on Methods for Omnidirectional
Shadow Rendering. Journal of WSCG. vol. 20, no. 2. 2012: pp. 89–96. ISSN
1213-6972.
Retrieved from: https://www.fit.vut.cz/research/publication/9936

[86] Nguyen, H.: Casting Shadows on Volumes. Game Developer. vol. 6. March 1999: pp.
44–53.

[87] Ni, R.; Braunstein, M.; J Andersen, G.: Perception of scene layout from optical
contact, shadows, and motion. Perception. vol. 33. 02 2004: pp. 1305–18.
doi:10.1068/p5288.

[88] Olson, M.; Zhang, H.: Silhouette Extraction in Hough Space. Computer Graphics
Forum. vol. 25. 09 2006: pp. 273–282. doi:10.1111/j.1467-8659.2006.00946.x.

[89] Osman, B.; Bukowski, M.; McEvoy, C.: Practical Implementation of Dual
Paraboloid Shadow Maps. In Proceedings of the 2006 ACM SIGGRAPH Symposium
on Videogames. Sandbox ’06. New York, NY, USA: Association for Computing
Machinery. 2006. ISBN 1595933867. page 103–106.
Retrieved from: https://doi.org/10.1145/1183316.1183331

[90] Pečiva, J.; Starka, T.; Milet, T.; et al.: Robust Silhouette Shadow Volumes on
Contemporary Hardware. In Conference Proceedings of GraphiCon’2013. GraphiCon
Scientific Society. 2013. ISBN 978-5-8044-1402-4. pp. 56–59.
Retrieved from: https://www.fit.vut.cz/research/publication/10408

[91] Pharr, M.; Jakob, W.; Humphreys, G.: Physically Based Rendering: From Theory
to Implementation. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc..
third edition. 2016. ISBN 0128006455, 9780128006450.

[92] Planinšič, G.; Viennot, L.: Shadows: stories of light. Physics Education Division of
the European Physical Society. 2010.
Retrieved from: https://cdn.ymaws.com/www.eps.org/resource/collection/
016775D4-8888-474D-887F-3E33AEA5E6D0/EPSPED_MUSE_SHWS_sl.pdf

[93] Pop, M.; Duncan, C.; Barequet, G.; et al.: Efficient Perspective-accurate Silhouette
Computation and Applications. In Proceedings of the Seventeenth Annual
Symposium on Computational Geometry. SCG ’01. New York, NY, USA: ACM.

116

https://www.fit.vut.cz/research/publication/10889
https://doi.org/10.2312/sre.20161212
https://www.fit.vut.cz/research/publication/9936
https://doi.org/10.1145/1183316.1183331
https://www.fit.vut.cz/research/publication/10408
https://cdn.ymaws.com/www.eps.org/resource/collection/016775D4-8888-474D-887F-3E33AEA5E6D0/EPSPED_MUSE_SHWS_sl.pdf
https://cdn.ymaws.com/www.eps.org/resource/collection/016775D4-8888-474D-887F-3E33AEA5E6D0/EPSPED_MUSE_SHWS_sl.pdf

2001. ISBN 1-58113-357-X. pp. 60–68.
Retrieved from: http://doi.acm.org/10.1145/378583.378618

[94] Reshetov, A.; Soupikov, A.; Hurley, J.: Multi-Level Ray Tracing Algorithm. In
ACM SIGGRAPH 2005 Papers. SIGGRAPH ’05. New York, NY, USA: Association
for Computing Machinery. 2005. ISBN 9781450378253. page 1176–1185.
Retrieved from: https://doi.org/10.1145/1186822.1073329

[95] Röttger, S.; Irion, A.; Ertl, T.: Shadow Volumes Revisited. UNION Agency. 01
2002. pp. 373–380.

[96] Sellers, G.: GL_AMD_stencil_operation_extended. online. 11th January 2012.
openGL extension manual.
Retrieved from: https://www.khronos.org/registry/OpenGL/extensions/AMD/
AMD_stencil_operation_extended.txt

[97] Sintorn, E.; Eisemann, E.; Assarsson, U.: Sample Based Visibility for Soft Shadows
Using Alias-free Shadow Maps. In Proceedings of the Nineteenth Eurographics
Conference on Rendering. EGSR ’08. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association. 2008. pp. 1285–1292.
Retrieved from: http://dx.doi.org/10.1111/j.1467-8659.2008.01267.x

[98] Sintorn, E.; Kämpe, V.; Olsson, O.; et al.: Per-triangle Shadow Volumes Using a
View-sample Cluster Hierarchy. In Proceedings of the 18th Meeting of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games. I3D ’14. New
York, NY, USA: ACM. 2014. ISBN 978-1-4503-2717-6. pp. 111–118.
Retrieved from: http://doi.acm.org/10.1145/2556700.2556716

[99] Sintorn, E.; Olsson, O.; Assarsson, U.: An Efficient Alias-free Shadow Algorithm for
Opaque and Transparent Objects Using Per-triangle Shadow Volumes. In
Proceedings of the 2011 SIGGRAPH Asia Conference. SA ’11. New York, NY, USA:
ACM. 2011. ISBN 978-1-4503-0807-6. pp. 153:1–153:10.
Retrieved from: http://doi.acm.org/10.1145/2024156.2024187

[100] Sintorn, E.; Olsson, O.; Assarsson, U.: An Efficient Alias-Free Shadow Algorithm
for Opaque and Transparent Objects Using per-Triangle Shadow Volumes. ACM
Trans. Graph.. vol. 30, no. 6. December 2011: page 1–10. ISSN 0730-0301.
Retrieved from: https://doi.org/10.1145/2070781.2024187

[101] Stitch, M.; Wächter, C.; Keller, A.: Efficient and Robust Shadow Volumes Using
Hierarchical Occlusion Culling and Geometry Shaders. In GPU Gems 3, edited by
H. Nguyen. chapter 11. Addison-Wesley Professional. first edition. 2007. ISBN
9780321545428. pp. 239–256.

[102] Story, J.: Hybrid Ray-Traced Shadows. Game Developers Conference. March 2015.

[103] Story, J.: Advanced Geometrically Correct Shadows for Modern Game Engines.
Game Developers Conference. March 2016.
Retrieved from: http:
//developer.download.nvidia.com/gameworks/events/GDC2016/jstory_hfts.pdf

117

http://doi.acm.org/10.1145/378583.378618
https://doi.org/10.1145/1186822.1073329
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_stencil_operation_extended.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_stencil_operation_extended.txt
http://dx.doi.org/10.1111/j.1467-8659.2008.01267.x
http://doi.acm.org/10.1145/2556700.2556716
http://doi.acm.org/10.1145/2024156.2024187
https://doi.org/10.1145/2070781.2024187
http://developer.download.nvidia.com/gameworks/events/GDC2016/jstory_hfts.pdf
http://developer.download.nvidia.com/gameworks/events/GDC2016/jstory_hfts.pdf

[104] Taya, S.; Miura, K.: Cast shadow can modulate the judged final position of a
moving target. Attention, perception psychophysics. vol. 72. 10 2010: pp. 1930–7.
doi:10.3758/APP.72.7.1930.

[105] Uhlmann, J. K.: Satisfying general proximity / similarity queries with metric trees.
Information Processing Letters. vol. 40, no. 4. 1991: pp. 175 – 179. ISSN 0020-0190.
Retrieved from:
http://www.sciencedirect.com/science/article/pii/002001909190074R

[106] Veras, D.; Breedt, E.: Eclipse, transit and occultation geometry of planetary
systems at exo-syzygy. Monthly Notices of the Royal Astronomical Society. vol. 468,
no. 3. 03 2017: pp. 2672–2683. ISSN 0035-8711. http:
//oup.prod.sis.lan/mnras/article-pdf/468/3/2672/13146452/stx614.pdf.
Retrieved from: https://doi.org/10.1093/mnras/stx614

[107] Vlachos, A.; Card, D.: Computing Optimized Shadow Volumes for Complex Data
Sets. In Game Programming Gems 3, edited by D. Treglia. Charles River Media.
2002. pp. 367–371.

[108] Wanger, L.: The Effect of Shadow Quality on the Perception of Spatial
Relationships in Computer Generated Imagery. In Proceedings of the 1992
Symposium on Interactive 3D Graphics. I3D ’92. New York, NY, USA: ACM. 1992.
ISBN 0-89791-467-8. pp. 39–42.
Retrieved from: http://doi.acm.org/10.1145/147156.147161

[109] van Waveren, J. M. P.: Shadow Volume Construction. online. 8th April 2005.
Retrieved from:
http://fabiensanglard.net/doom3_documentation/37730-293752.pdf

[110] Whitted, T.: An Improved Illumination Model for Shaded Display. In Proceedings of
the 6th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’79. New York, NY, USA: Association for Computing Machinery. 1979.
ISBN 0897910044. page 14.
Retrieved from: https://doi.org/10.1145/800249.807419

[111] Williams, L.: Casting Curved Shadows on Curved Surfaces. In Proceedings of the
5th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’78. New York, NY, USA: ACM. 1978. pp. 270–274.
Retrieved from: http://doi.acm.org/10.1145/800248.807402

[112] Woo, A.: Shadow Algorithms Data Miner. Hoboken, NJ: CRC Press. 2012. ISBN
9781439880234.

[113] Wyman, C.; Hoetzlein, R.; Lefohn, A.: Frustum-traced Raster Shadows: Revisiting
Irregular Z-buffers. In Proceedings of the 19th Symposium on Interactive 3D
Graphics and Games. i3D ’15. New York, NY, USA: ACM. 2015. ISBN
978-1-4503-3392-4. pp. 15–23.

[114] Zhang, F.; Sun, H.; Xu, L.; et al.: Parallel-split Shadow Maps for Large-scale
Virtual Environments. In Proceedings of the 2006 ACM International Conference on
Virtual Reality Continuum and Its Applications. VRCIA ’06. New York, NY, USA:

118

http://www.sciencedirect.com/science/article/pii/002001909190074R
http://oup.prod.sis.lan/mnras/article-pdf/468/3/2672/13146452/stx614.pdf
http://oup.prod.sis.lan/mnras/article-pdf/468/3/2672/13146452/stx614.pdf
https://doi.org/10.1093/mnras/stx614
http://doi.acm.org/10.1145/147156.147161
http://fabiensanglard.net/doom3_documentation/37730-293752.pdf
https://doi.org/10.1145/800249.807419
http://doi.acm.org/10.1145/800248.807402

ACM. 2006. ISBN 1-59593-324-7. pp. 311–318. doi:10.1145/1128923.1128975.
Retrieved from: http://doi.acm.org/10.1145/1128923.1128975

[115] Žára, J.; Beneš, B.; Sochor, J.; et al.: Moderní počítačová grafika. Praha: Computer
Press. second edition. 2005. ISBN 80-251-0454-0.

119

http://doi.acm.org/10.1145/1128923.1128975

Appendix A

List of Publications

[1] Navrátil, J.; Kobrtek, J.; Zemčík, P.: A Survey on Methods for Omnidirectional
Shadow Rendering. In Journal of WSCG. vol. 20, no. 2. 2012. pp. 89-96. ISSN
1213-6972.

[2] Pečiva, J.; Starka, T.; Milet, T.; Kobrtek, J.; et al.: Robust Silhouette Shadow
Volumes on Contemporary Hardware. In Conference Proceedings of GraphiCon’2013.
Vladivostok: GraphiCon Scientific Society. 2013. pp. 56-59. ISBN 978-5-8044-1402-
4.

[3] Klampár, M.; Spohner, M,; Škarvada P.; Sobola, D.; Kobrtek, J.; et al.: Dielectric
Properties of Epoxy Resins with Oxide Nanofillers and Their Accelerated Ageing. In
IEEE Catalog Number CFP13EEI-USB. Ottawa, Ontario, CA. 2013. pp. 159-164.
ISBN 978-1-4673-4738-9.

[4] Milet, T.; Kobrtek, J.; Zemčík P.: Fast and Robust Tessellation-Based Silhouette
Shadows. In WSCG 2014 - Poster papers proceedings. Plzeň: University of West
Bohemia in Pilsen. 2014. pp. 33-38. ISBN 978-80-86943-72-5.

[5] Milet, T.; Tóth, M.; Pečiva, J.; Starka, T.; Kobrtek, J.; et al.: Fast robust and precise
shadow algorithm for WebGL 1.0 platform. In ICAT-EGVE 2015 - International
Conference on Artificial Reality and Telexistence and Eurographics Symposium on
Virtual Environments. Kyoto: Eurographics Association. 2015. pp. 85-92. ISBN
978-3-905674-84-2.

[6] Kobrtek, J.; Milet, T.; Herout, A.: Silhouette Extraction for Shadow Volumes Using
Potentially Visible Sets. In International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision (WSCG). Plzeň: Union Agency. 2019.
pp. 9-16. ISBN 978-80-86943-37-4.

120

	Introduction
	Background of Shadow Rendering
	Definition of a Shadow
	Importance of Shadows as Visual Clues
	Shadows in the Rendering Equation
	Overview of Basic Shadowing Methods

	Existing Precise Shadows from Non-Extended Light Sources
	Stencil Shadow Volumes in Depth
	Algorithms Using Acceleration Structures
	Ray Tracing Methods

	Comparison of Omnidirectional Shadow Mapping Methods
	Cube Mapping and Optimizations
	Dual-Paraboloid Shadow Maps
	Implementation
	Test Results
	Evaluation
	Extended Quality Comparison

	Robust Silhouette Extraction Improvements for Shadow Volumes
	Robustness Problems of Shadow Volumes
	GPU Implementations
	Implementation Using AVX Intrinsics and OpenMP
	Measurements
	Evaluation

	Shadow Volumes Using Tessellation Shaders
	Per-Triangle Tessellation-Based Shadow Volumes
	Silhouette-Based Approach
	Implementation
	Measurements
	Evaluation
	Comparison on Modern Hardware

	Silhouette Extraction Using Precomputed Potentially Visible Set
	Precomputed Silhouette Extraction Overview
	Octree Setup
	Octree Build
	Octree Traversal
	Implementation
	Measurements
	Improvements
	Evaluation

	Comparison of Omnidirectional Precise Shadow Methods
	Selected Methods
	Implementation and Optimizations
	Measurements
	Time Complexity
	Discussion and Conclusion

	Conclusion
	Bibliography
	List of Publications

