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Abstract
This thesis proposes an algorithm for multi-exposure ghost-free HDR video acquisition for
embedded devices. The Ghost-free HDR acquisition was evaluated on the state-of-the-art
FPGA architecture and achieved more than real-time performance of 96FPS on FullHD
resolution. The proposed Ghost-free algorithm produces output visually comparable to the
state-of-the-art algorithms which are considerably more demanding or not implementable
on embedded devices at all.

Abstrakt
Tato práce navrhuje algoritmus pro pořizování ghost-free HDR videa ze sekvence expozic,
který je určený pro implementaci ve vestavěných zařízeních. Vlastnosti algoritmu byly
ověřeny implementací ve state-of-the-art architektuře HDR kamery, kde je schopen zpra-
covávat HDR video s potlačením tzv. ghosting efektu rychlostí až 96 snímků za sekundu na
FullHD rozlišení, což více než dostačuje pro zpracování v reálném čase. Navrhovaný ghost-
free algoritmus produkuje výstup vizuálně srovnatelný s nejmodernějšími algoritmy, které
jsou výpočetně řádově složitější a často je nelze na embedded zařízeních ani implementovat.
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Chapter 1

Introduction

In the real world, our human vision is capable of seeing and recognising objects in various
light conditions, even when they mix in one scene, such as a view from dark room outside
to the sunny street. In the contemporary digital world, we are also trying to get this real-
looking images into digital form as photography, video etc. One of the current problem
in digital image acquisition is very limited dynamic contrast that can be captured from
the scene, because the current camera sensors have only limited and linear response to the
light, unlike the human eye. This often leads to photos with some white (overexposed) and
black (underexposed) sections.

An effort still exists to remove this bottleneck and capture a high dynamic range image
(HDR). The first possible way is to assemble a chip with a non-linear response to lightning.
They are currently available, but they are still in the early age of development and suffers
from some bugs, they have small resolutions, etc. Currently, most spread way how to obtain
an HDR image is by merging a sequence of low dynamic range images (LDR) captured by
the ordinary camera into one HDR.

The algorithms that merge LDRs into HDR image are known for a quite long time, but
they produce a good visual result only with static scenes. In case of any motion, either
in the scene or by the camera itself, the ghosting artefacts occur in resulting HDR image.
Quite many papers about deghosting techniques were proposed; however, it is still a chal-
lenge and a quite open problem, no universal method with reference ”deghosted“ result
exists.

This dissertation is motivated by a need of many surveillance, security, traffic monitor-
ing systems, and industrial applications that can benefit from HDR video capture. These
applications are typically cost-sensitive and so multi-exposure HDR acquisition is often the
only feasible option. In these use-cases, the motion in the scene is inevitable and ”ghosting“
in such systems, caused by the nature of image acquisition, troubles the applications. There-
fore, I decided to develop a method of fast de-ghosting for such applications.

Applications in surveillance, security and industry require high performance in general
– we cannot afford slow and demanding offline processing that the best state-of-the-art
algorithms require. The essential goal is to capture HDR image fast, to be able to react to
a certain situation very fast and or in a given time frame.

Image acquisition systems of this type are still being built on PC based systems; however,
this approach is on the decline, since the PCs are expensive, they have large dimensions, and
they consume a lot of power. Nowadays, the interest is turning towards compact embedded
systems, which are breaking such limits. They often contain low power CPUs accompa-
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nied by powerful, task tailored accelerators which require a fraction of power consumption
comparing to CPU based systems, while they can deliver even much more performance.

The most efficient circuits are generally considered to be ASICs, which means Application-
Specific Integrated Circuits. It is a collective name for single-purpose circuits/accelerators,
tailored to provide specific functionality only. However, the manufacturing cost of such
circuits is enormous; its manufacturing pays off only with high volumes of chips. The de-
velopment processes of ASICs are taking place on large FPGAs (Field-programmable Gate
Array), which are a completely customisable array of logic gates and registers, which can be
interconnected in any desired way; therefore, they offer quite the same flexibility in design
as ASICs, but with diametrically lower cost. Nowadays, FPGAs are very popular even
in consumer electronics for their computing power, reliability, reprogrammability, low cost,
and also low power consumption. These benefits are outweighed by designing time, which is
still quite high. Also, not every task is implementable or convenient to accelerate on FPGA.

Some class of image processing algorithms are quite suitable for FPGA acceleration, at
least when they uniformly process the image by pixels or blocks. For example, the HDR
acquisition, as it was proposed by Debevec and Malik[5] is a typical example of a suitable
algorithm. Unfortunately, this algorithm requires static images to produce a good-looking
visual output. In case of motion in the scene, the ghost effects appear. As it is summarised
later in this dissertation work, deghosting algorithms producing good visual output are very
computationally demanding and quite often not even implementable on FPGA. The simpler
algorithms are, on the other way, not very successful in deghosting and therefore, they are
not suitable for applications in security, traffic monitoring, or industrial applications.

These circumstances led me to set the scientific contribution of this thesis to prove that
a multi-exposure ghost-free HDR acquisition algorithm comparable to the state-of-the-art
algorithms in quality can be designed for an embedded hardware device and achieves a
real-time performance at high resolution.

The dissertation thesis begins with Chapter 2, which contains an overview of state-
of-the-art algorithms related to the HDR acquisition and tonemapping. Chapter 2 further
contains an overview of state-of-the-art deghosting algorithms, followed by selected deghost-
ing algorithms feasible to be implemented in embedded devices. The thesis continues with
Chapter 3 that contains an overview of hardware platforms suitable for implementation
of deghosting algorithms, including an overview of embedded system-on-chip solutions.
Chapter 3 is further focused on embedded platforms of for HDR acquisition, followed by
an overview of existing embedded HDR deghosting solutions.

The proposal of ghost-free merging algorithm, which I developed to fulfil the goal stated
in this thesis, is located in Chapter 4, which also contains algorithm evaluation, comparison
to related algorithms, and also to the state-of-the-art. The chapter contains an evaluation
of performance and power consumption, which demonstrates the engineering contributions
of the proposed solution. The chapter ends with an evaluation of scientific contribution
and by a summary of possible applications of the proposed algorithm.
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Chapter 2

HDR acquisition and deghosting

This chapter contains an overview of state-of-the-art algorithms related to HDR acquisition
and tonemapping. The chapter further contains an overview of state-of-the-art deghosting
algorithms and also an overview of selected deghosting algorithms feasible to be imple-
mented in embedded devices.

2.1 HDR acquisition
Standard video cameras are unable to capture the dynamic range of visual information the
human eye is capable of. The dynamic range is the variation of luminance within a given
scene and the obvious goal of image and video acquisition is to capture the whole luminance
range of the scene into the captured image. The contemporary sensors are very limited and
capable of capturing variations within two or three orders of luminance magnitude, while
some scenes contain variations over the five orders. The video cameras are able to select
which part of dynamic range is captured and which is lost as under/overexposed, e.g. by a
selection of the aperture and shutter speed.

Two main approaches to HDR (High Dynamic Range) image capture exist. First of
them is to build special cameras with HDR sensor. Some commercial products start to be
available, such as SpheroCam HDR1, or Panoscan MK32 In the academic world, Sakakibara
et al. [49] introduced a High-Sensitivity CMOS sensor with gain adaptive column ampli-
fiers and 14 bit analogue-digital converters. Zhao et al. [73] capture HDR using the modulo
camera. All the above approaches require the availability of special HDR sensors or gener-
ally expensive and technologically demanding equipment. Regarding the HDR sensors, it
is questionable whether some physical limit in a dynamic range will eventually be reached
and what it will be.

The second and more frequently used approach is based on standard sensors/cameras
which captures the high luminance range in the scene sequentially, by the acquisition of
multiple images typically with varying exposure times [5, 37, 48, 34]; such sequence is then
merged into one HDR image. The individual images can be captured simultaneously, e.g.
using a beam splitter with several CCD/CMOS sensors [58], or, more often are gathered
sequentially using a single image sensor which causes ghost effects by a motion of objects
during the sequence acquisition. This approach is technologically less demanding and results
in cheaper systems.

1https://www.spheron.com/
2http://www.panoscan.com/
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HDR acquisition algorithms

Two main approaches how to merge differently exposed standard images into an HDR
image exist, the first and more efficient approach involves a combination of pixels in the
image domain (direct merging of pixels). As an example, a method presented by Mertens et
al. [34] combines multiple exposures directly without any knowledge of the camera response
function(CRF). In this approach, only the best parts of frames from each exposure are
exploited. A resulting HDR image is obtained as a weighted average of pixel values across
the exposures:

𝐼𝐶 =

𝑁∑︁
𝑘=1

𝑤 (𝑍𝑘)𝑍𝑘 (2.1)

where 𝐼𝐶 is a composite image, 𝑍𝑘 is a pixel value and 𝑤 (𝑍𝑘) is a weight of a pixel.
This approach produces the HDR images which can be directly displayed on LDR (Low
Dynamic Range) monitors.

The second approach is based on merging in the radiance domain, in the meaning of
real illumination in the given scene. Algorithms using this approach are attempting to cal-
culate the exact value of luminance in the scene. These methods require knowledge of the
camera response function [5, 48, 37], which is the response function of the camera sensor to
the incident light (see Section 2.1). The inverse function of CRF is then applied to obtain
an image with approximately linear response to light. The CCD and CMOS technology
generally do have a linear response function, but the image results are often affected by
postprocessing algorithms, for example, by gamma-correction or by white balance. In gen-
eral, RAW images are preferable for HDR composition because they contain data obtained
directly from CCD/CMOS sensors without any postprocessing, and therefore it can be as-
sumed that they have a linear response function. Unlike the merging in the image domain,
this class of algorithms produces an image with higher bit-depth, which is not directly
displayable on standard LDR devices. The HDR images have to be post-processed by al-
gorithms commonly called tone mapping operators. The operators reduce the bit-depth of
the HDR image while they preserve all important image details.

The first and most straightforward approach is to select the pixels from the longest
but still unsaturated exposure. The resulting pixel value in the HDR image is calculated
according to equation:

𝐿𝑝 =
𝑍𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝑝

𝑡𝑙𝑜𝑛𝑔𝑒𝑠𝑡
(2.2)

where 𝐿𝑝 is the resulting pixel value 𝑝 from HDR image, the pixel value 𝑍𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝑝 is the
value of the pixel from image with longest exposure time where pixel is not saturated and
𝑡𝑙𝑜𝑛𝑔𝑒𝑠𝑡 is the exposition time of this image.

Debevec and Malik [5] proposed an algorithm which can fuse multiple photographs into
a high dynamic range radiance map whose pixel values are proportional to the true radiance
values in the scene. The contribution of each pixel is determined from the weight function
shown in Figure 2.1. Resulting pixel value 𝑝 in HDR image is calculated as a weighted
average of each pixel exposures:

𝐿𝑝 =

∑︀𝑁
𝑖=0𝑤(𝑍𝑖𝑝)

𝑍𝑖𝑝

𝑡𝑖∑︀𝑁
𝑖=0𝑤(𝑍𝑖𝑝)

(2.3)

where 𝐿𝑝 is the resulting pixel value 𝑝 in HDR image, 𝑁 is the number of input images,
𝑍𝑖𝑝 is the value of a pixel 𝑝 in image number 𝑖, 𝑡𝑖 is the the exposure time of image 𝑖.
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Figure 2.1: Pixel weighting functions proposed by Debevec [5], Robertson [48] and plateau
weighting function (from Luminance HDR software3).

This algorithm can use various weighting functions. The weight function by Robertson
(shown in Figure 2.1) is a Gaussian-like weight function. In the HDR processing applications
(e.g. Luminance HDR3) the “plateau” function is often used (Figure 2.1) which it is defined
as follows:

𝑤𝑧 = 1 − (2𝑧 − 1)12 (2.4)

where 𝑧 is a pixel value. In case of image captured with linear sensor, there is no need
of assigning variable weights to pixels in the linear range, except the extreme pixel values,
where the pixel value could be distorted.

Obtaining camera response function

The camera response curve important information for HDR image creation. CRF is a
curve which indicates the conversion relationship between the brightness of the scene and
the resulting values of the recorded image. This response is most influenced by the image
post-processing in the camera. It’s important to work around this process since composing
of HDR images require the values with a linear transfer characteristic between the light in
the scene and the values in the image.

Analog data from the CCD/CMOS sensor are converted to digital using A/D converters
and then further processed in the camera. Range of adjustments varies by camera and its
settings. Common modifications include remapping of pixel values (change of contrast and
brightness, gamma mapping curve, etc.), colour correction (e.g. increased colour satura-
tion), noise reduction, sharpening, and more. Some of the newer consumer cameras, for
example, also carry out the reduction of the optical lens distortion. It is possible to get
around these corrections by using the RAW format, supported by some cameras, where the
data from the sensor are stored unchanged. RAW output is almost linear, only with a few
exceptions:

∙ The level of black - Because of the chip design, charge amplifiers, A/D converters
and their noise, the level of black can be shifted from zero upwards. This means that
black has a higher value than zero. To eliminate this effect, we have to determine this
value and subtract it from the image data.

∙ Quantization - Error in quantization arises during the conversion from analogue to
digital values. The converter with a higher number of bits (10, 12, ...) can reduce
the absolute error value. Quantization also causes higher inaccuracies in the dark

3http://qtpfsgui.sourceforge.net/
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values of the image (during the short exposures, the higher range is mapped into a
few values near to zero).

∙ Saturation - Photodiodes on camera sensor have only limited charge capacity, which
determines the level of saturation. Above the level of saturation, the camera gives
the same numerical response for all values of the input luminance. These values are
not applicable for HDR image composing and therefore have to be suppressed, e.g.
by using a weighting function.

Figure 2.2: Response curve of the Canon EOS 350D (retrieved from http://cybertron.cg.tu-
berlin.de/eitz/hdr/).

Several algorithms for calculation/estimation of response function exist if we don’t have
an opportunity to obtain the picture with a linear response to incident light. The basic
method is using a standardized table composed of several fields in grayscale which are
photographed and then compared with the camera output. The response function is created
from the differences. However, the measurement is complicated because the table must be
uniformly illuminated and shall not shine.

Algorithm by Debevec

This algorithm is described in the paper Recovering High Dynamic Range Radiance Maps
from Photographs [5]. The initial assumption is that the scene is static and the shots are
taken so quickly that we can ignore changes in scene illumination. Under these circum-
stances, we can assume that the intensity of illumination 𝐸𝑖 is constant for each pixel. The
values of each pixel will be marked 𝑍𝑖𝑗 where 𝑖 = 1, ..., 𝑁 is a one-dimensional index speci-
fying the position of the pixel in the image and 𝑗 = 1, ..., 𝑃 is the index across the different
exposure times ∆𝑡𝑗 . The relationship that exists between the 𝐸𝑖 and 𝑍𝑖𝑗 is defined as:

𝑍𝑖𝑗 = 𝑓(𝐸𝑖 * ∆𝑡𝑗) (2.5)

where 𝑓 is an unknown camera response function which we assume to be monotonous.
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Lets define a function 𝑔 as the natural logarithm inverse to the function: 𝑔 = 𝑙𝑛𝑓−1.
We get an equation in the form:

𝑔(𝑍𝑖𝑗) = 𝑙𝑛𝐸𝑖 + ∆𝑡𝑗 (2.6)

The values of 𝑍𝑖𝑗 and ∆𝑡𝑗 are known, lighting 𝐸𝑖 and function 𝑔 are unknown. The
advantage is that searching the function 𝑔 implies the searching of finite number of values
of 𝑔(𝑧), where 𝑧 =< 𝑧𝑚𝑖𝑛; 𝑧𝑚𝑎𝑥 > is a finite set of values that pixels can take. The problem
is then reduced to a search of finite number of values of 𝑔(𝑧) and 𝑁 values of 𝑙𝑛𝐸𝑖, which
are minimizing the value of the following quadratic optimization function:

Other algorithms

The method presented by Robertson [48] does not put any restrictions on the shape of
the resulting response function. This method assumes a Gaussian weight function. Using
the Gauss-Siedel iteration, the authors seek the solutions of the objective function which
they defined. The method presented by Mitsunaga [37] approximates the camera response
function by a polynomial of N-th degree. The authors are looking for coefficients of the
polynomial by minimizing the error function, which they defined. The advantages of the
method include the ability to determine the exact ratios of exposures. Also, many other
methods exist, such as the histogram-based method or a method attempting to derive the
response from a single image.

2.2 HDR tone mapping
HDR acquisition algorithms produce images which are not directly displayable by current
display technologies. The dynamic range of the HDR image has to be compressed to be able
to display such an image. Such a process is commonly called tone-mapping. Application
of tone-mapping should compress only the range of values; however, the visual information
should be preserved – this ability strongly depends on individual algorithms and their
properties. This dissertation addresses tone-mapping only marginally; still, a short overview
is convenient for the coherence of the topic.

Displaying the HDR content is still a challenging topic, as standard displaying devices
are able to represent only a limited dynamic range, typically 8 or 10 bits per channel. To
display an image with higher bit-depth, the HDR images have to be post-processed by
algorithms commonly called Tone Mapping Operator (TMO) which reduce the bit-depth
of HDR image so it can be displayed using standard devices while preserving all important
details.

In general, two main approaches to displaying HDR content exist. The first approach
is to use specialized HDR monitors that directly render the HDR content; such displays
still have some limitations, they are expensive, and they often should be used in a very
controlled environment. Thew second approach is based on the application of dynamic
range scaling with an effort to reduce the dynamic range but to preserve local contrast in
the scene details. This process, as mentioned above, is called Tonemapping (or applying
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Tonemapping operators). Many operators exist [9, 47, 11, 6, 31, 7] and they are divided
into two main categories - global and local operators.

Global operators use the same mapping function for all pixels of the image. Parametriza-
tion of the function depends on global image characteristics, such as average, minimum,
and maximum values of luminance.

HDR

Pre-processing
(transform luminance

 to log domain)

Edge-preserving
filtering

(bilateral filter)

Tone-curve

(exponential, sigmoid)

Post-processing

(restore colors, gamma)

LDR- +

Base layer Detail layerIntensity layer

Figure 2.3: Illustration and principled scheme of local tone mapping algorithms (Image
retrieved from dataset by Froehlich et al. [13]).

Local operators generally preserve more details than the global ones as they use informa-
tion from neighbouring pixels to estimate local illumination and thus adapt compression to
local luminance conditions. The most frequently used approach is separation of HDR image
into base and detail layers (see Figure 2.3). The base layer contains large scale variations
of luminance and the detail layer contains local differences, which holds the details of the
scene. The base layer can be obtained from luminance in the logarithmic domain by using
low-pass edge-aware filtering, e.g. by Bilateral filter (BF), as proposed by Durand [9], Edge-
avoiding wavelets [10], or by estimation from gradient domain (Gaussian pyramids [11]).
The base layer, which is responsible for high dynamic range, can be compressed because
fine details are preserved in detail layer.

2.2.1 HDR compression

High Dynamic Range (HDR) imaging technologies can provide high levels of immersion
through a dynamic range that meets and even exceeds the instantaneous range of the Hu-
man Visual System (HVS). This increase in the level of immersion comes at the cost of
significantly higher bit-rate requirements compared to those associated with conventional
imaging technologies. As a result, efficient HDR-relevant coding solutions have to be de-
veloped.

Backwards-compatible HDR compression methods are designed so that legacy decoders,
which can manage only Low Dynamic Range (LDR) images, are still able to decode and dis-
play a tone-mapped version of the HDR image/video. HDR-capable decoders, if available,
would be able to decode the full stream and deliver the HDR image experience.

Figure 2.4 shows a block diagram of backward-compatible HDR image and video en-
coders. The base layer encodes a tone-mapped 8-bit LDR representation of the HDR input
using a fully compatible legacy encoder and decoder. The enhancement layer contains the
difference (residual) between the inverse tone-mapped base layer and the original HDR
input, which is used for reconstructing of HDR content in the HDR devices.
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Figure 2.4: General structure of backward-compatible HDR image and video encoders
(retrieved from [72]).

Backward compatible image compression

At the first place, several methods for encoding HDR images were proposed. In 2004,
Ward and Simmons[65] proposed a backwards-compatible HDR extension for JPEG,

whereby the HDR image is tonemapped to an 8-bit LDR image which is then encoded by
a legacy JPEG encoder. The ratio image between the original HDR image and the tone-
mapped version is down-sampled and stored as a tag in the header file. This ratio image can
be used by HDR-capable decoders to reconstruct the HDR content, while all other legacy
devices would simply ignore the tag and directly display the tone-mapped LDR image.

Spaulding et al. [53] proposed layered coding for JPEG gamut extension. In the base
layer, an image with a clipped colour gamut is encoded. In the enhancement layer, a residual
image is formed in a sub-band. This residual image is defined as the arithmetic difference
between an input ERIMM RGB colour space image and the encoded sRGB foreground
image (limited to 8 bits). The main advantage of the approach proposed in [53] is that the
format is backwards-compatible with existing JPEG image codecs.

Backward compatible video compression

Mantiuk et al. [32] were the first to propose layered coding for backwards-compatible HDR
video compression. Their method was designed as an extension to the MPEG-4 compression
standard. The authors introduce a colour space transformation that facilitates comparisons
between LDR and HDR pixels. A reconstruction function is then proposed which predicts
the value of an HDR pixel based on the value of the corresponding LDR pixel. A non-linear
function is used for encoding the HDR residual information. This is then added as side
information to the bitstream and can be used by HDR-capable decoders to obtain the full
range of visible luminance values. In order to facilitate a smooth transition from LDR to
HDR in the decoder, tone-mapping and residual video stream calculation are performed
as a preprocessing step before encoding. The novelty of this method is that it employs an
advanced Human Visual System (HVS) model to achieve better compression performance.
The HVS model selectively pre-filters the residual stream in order to remove imperceptible
high spatial frequency information, thus reducing its bit-rate requirements after MPEG-
encoding.
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Mai et al. [74] proposed a backwards-compatible method that aims to find an optimal
tone-curve for mapping the input HDR image/video to a backwards-compatible 8-bit LDR
image/video, which can then be compressed by a conventional video codec such as H.264.
The reconstructed image/video can then be displayed on a conventional LDR display or
can be inverse-tone mapped and augmented by an optional enhancement layer containing
an HDR residual signal (also compressed by the codec) for display on an HDR display. The
tone-curve optimization aims to minimize the quality loss due to tone-mapping, encoding,
decoding and inverse tone-mapping of the original image/video.

2.3 HDR deghosting
The HDR merging algorithms [5, 37, 48, 34] summarized in Section 2.1 are suitable for static
scenes only. Motion of objects during the image sequence capture causes adverse effects
called ghosting. To reduce such effects, various methods to detect and remove ghosting
from HDR images have been developed.

Figure 2.5: Image on the left includes ghosting artifacts, that has to be removed or recon-
structed (right). Retrieved from http://www.flickr.com/photos/nuwomb/.

The problem of removing motion artefacts for sequential HDR imaging has been the
subject of extensive research and has led to two major type of approaches. The first type
assumes that the images are mostly static and that only a small part of the scene contains
motion. These de-ghosting algorithms use the input frames to determine whether a given
pixel is static or has motion and then apply different merging algorithms in each case. For
static pixels, the traditional HDR merge can be used. For motion pixels, many algorithms
use only a subset of exposures (in many cases only one) to produce a deghosted HDR. The
fundamental problem with these techniques is that they cannot handle scenes with large
motion if the moving parts of the scene contain HDR content.
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The second type of approaches attempts to align the input sources to a reference expo-
sure before merging them into an HDR image. The most successful algorithms use optical
flow to register the images, but even these methods are still brittle in cases of large motion
or complex occlusion/dis-occlusion. Since the aligned images produced by these algorithms
often do not align to the reference very well, the resulting HDR still contain the ghost-
ing artefacts. For this purpose, the alignment algorithms for HDR often introduce special
merging functions that reject the information from aligned exposures in locations where
they do not match the reference. In such a case, the HDR content in these regions are not
fully reconstructed.

According to the goal of this dissertation, I focused on algorithms feasible of capturing
ghost-free HDR images in real-time. Thus I further reviewed mostly simple, computation-
ally unpretentious methods, that could claim the real-time performance. I reviewed mostly
the methods categorised by Tursun [59], Srikantha [54] and other authors as ”motion ob-
ject selection“ methods. Anyway, a short introduction into the demanding optical flow and
patch-based algorithms is presented.

2.4 Motion object selection methods
This dissertation work focuses on embedded systems and real-time processing; therefore,
only simple, computationally unpretentious methods, categorised by Tursun [59], Srikan-
tha [54] and other authors as ”motion object selection“ methods are reviewed in this sub-
section. The optical flow-based and patch-based algorithms are, due to their high com-
putational demands, reviewed only for the coherence of the topic. Also, the global image
registration is not addressed, as we assume only static cameras.

In the work of Sidibe et al. [51], the ghosting regions are detected based on the obser-
vation that the order relation is given by Equation 2.7 is satisfied for pixels which remain
static between two images, and can be broke down for motion pixels. Therefore, they detect
possible ghosting regions by checking the order relation between k consecutive images, and
by marking pixels for which the relation breaks down at least once.

𝑖𝑓∆𝑡𝑖 > ∆𝑡𝑗 , 𝑡ℎ𝑒𝑛 𝐿𝑖 > 𝐿𝑗 . (2.7)

Where ∆𝑡𝑖 and ∆𝑡𝑗 are exposure time of images 𝐿𝑖 and 𝐿𝑗 . This method does not verify
the real increment of a pixel value which causes the ghost detection to fail relatively often.
The order relation only works if the pixel is not under- or over-exposed. For instance,
a white pixel in a shorter exposure will remain white in a longer exposure, and a black
pixel in a longer exposure remains black in a shorter one. Therefore, the authors discard
under and over-exposed pixels when checking the order relation between consecutive images.
Concretely, they exclude pixels which are outside the range [20,. . . , 240] (for 8-bit pixel
values). [51]

Once ghost regions are detected, artefacts-free HDR can be created. For all pixels
outside a ghosting region, HDR generation proceeds in a conventional manner, i.e. the
pixel value in the HDR is a weighted average of the corresponding pixels in the differently
exposed images, as proposed Debevec and Malik [5]. For a pixel inside a detected ghosting
region, a common approach is to substitute the pixel value by the corresponding value in
the best exposure image for that region. For each region, the best exposure is chosen as
the one with the lowest number of under-or over-exposed pixels. Sidibe’s method gives
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goods results in some cases, it, unfortunately, reduces the dynamic range of the HDR by
considering only one exposure. [51]

Sidibe et al [51] claimed that according to experiments on various sequences, the order
relation-based method and the predicted colour method give more precise results than the
variance-based method. However, the measure of variance works well only if the colour of
the moving object is clearly distinguishable from the background.

Kao et al.[22] processes two images with ±1𝐸𝑉 difference in exposition times. Since
they know exposition time, the following relation between pixel values is expected:

𝐿2(𝑝)/𝐿1(𝑝) = 2,∆𝑡2 = 2 * ∆𝑡1 (2.8)

If this relation is not fulfilled, the pixel is marked as a ghost and is omitted from the merg-
ing algorithm. The saturated pixels, which are under or over a fixed threshold, are omitted
from the ghost detection process too. Kao et al. uses the motion estimation for aligning
the source images, which works over macroblocks of 16 × 16 pixels.

Gallo et al. [14] assumes a linear dependency between couples of pixels when they ”see“
the same radiance levels, based on knowledge of exposure times. The following relation
between the images is expected:

𝐿𝑖 = 𝐿𝑗 ·
𝑡𝑖
𝑡𝑗

(2.9)

Any image spot violating this linear relation is considered as containing a motion. All
images are registered to the reference image 𝐿𝑟𝑒𝑓 ; to suggest a good reference frame, they
find the saturated pixels in each image of the stack, then they remove small saturated
regions with morphological operators (erosion followed by dilation) because such area’s
neighbourhood usually contains enough information to avoid artefacts. Finally, they pick
the exposure with the fewest remaining saturated pixels. [14]

The reciprocity assumption states that if the radiance of the scene does not change, the
exposure time and the irradiance are linearly related through the exposure time ∆t:

𝑋 = 𝐸 · ∆𝑡 (2.10)

Aside from over and under-saturated pixels, Equation 2.10 should only be violated when
the scene changes. Therefore, the equation could be used to decide if the irradiance at a
given pixel in the reference frame can be combined with the corresponding pixel in another
image in the stack. In practice, however, a small misalignment or imprecise estimation of
the camera response function can produce large deviations from this behaviour . [14] To in-
crease a robustness and prevent rising of such artifacts, the algorithm operates on relatively
large rectangular patches (e.g. 40x40 pixels) rather than individual pixels. Patches with a
large number of not corresponding pixels are omitted from merging, causing visible artefacts
to occur at their boundaries; Gallo et al. [14] suggest their suppression by Poisson blending.

Raman et al. [46] extended the work of Gallo et al. [14] so that it does not require any
knowledge of the CRF or exposure settings. They introduced an intensity mapping function
(IMF) obtained from the static part of the scene – they assume that upper 5-10 image lines
are usually static. The authors assume the motion is mostly confined to the ground plane
of the scene. This assumption may be very limiting, and it can work only for certain scene
compositions.
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Grosch [15] proposed a simple method based on the estimation of pixel value from the
known exposure time and CRF. In opposite to the most of the algorithms that require a
static scene and direct correspondence of pixels to obtain a CRF, Grosch uses the algorithm
presented by Grossberg and Nayar [16] to recover a CRF from a non-aligned sequence
with object motion. This algorithm calculates the response function based on cumulative
histograms and is mostly unaffected by camera or object motion. [15]

With a known camera response function, they can predict the pixel colour from one
image to another. For each pair of consecutive images, they test if the real colour in the
second image is well approximated with the predicted colour from the first one. If the
pixels at the certain position do not fit the estimation, the corresponding region is marked
as ghosted into the error map. [15] To increase the robustness and eliminate the influence of
the noise in the source images, the author uses a user-defined threshold for the pixel colour
comparison.

Wu et al. [66] algorithm estimate the CRF from regions where RGB vectors remain
fixed with respect to the changes of exposure. The algorithm refines motion detection by a
combination of pixel order relation from Sidibe et al. [51] and pixel value estimation from
Grosch [15].

Wang et al. [63] proposed the motion region detection method, that is motivated by
the inter-frame difference method for video sequence that does subtraction to compute the
difference between adjacent frames on the intensity domain. To enable it, the algorithm
normalises all images 𝐿𝑖 according to the reference image 𝐿𝑟𝑒𝑓 . For each pixel, if the
corresponding difference value is bigger than a certain threshold, then the pixel is considered
to be in a motion region. This method is commonly used on motion detection of video
stream. [63]

The threshold value is determined from median pixel value in each image and is adaptive
to avoid certain artefacts – the threshold for the under and over-exposed areas is increasing,
because the brightness changes only little in spite of adjusting the exposure levels because
it has reached saturation. The bitmaps with detected motion are further strongly refined
using morphological operations. The tolerance ratio should also be adjusted by the user to
provide the best visual result. [63]

The algorithm of Jacobs et al. [18] is calculating pixel variance over the exposures to
detect the presence of motion. The Variance Image is created, storing pixel’s variance over
the exposures in a matrix with the same resolution as input images. Further, they ignore
under and over-saturated pixels in Variance Image. The Variance Image is transformed into
binary map (equivalent of ghostmap, see on Figure 2.6)), with movement clusters, which
are formed by comparing the Variance Image with fixed threshold. The Variance Image is
supplied by Uncertainty Image, which is calculated using the local variance, obtained from
a histogram of a small 2D window; 5x5 pixels in size [18].

For each movement cluster, they substitute the irradiance values with the irradiance
values from only one image. Substituting an entire region with irradiance values from
one image introduces artefacts at that region’s borders. To reduce these artefacts, they
substitute pixel values with Variance and Uncertainty Image entry above a certain threshold
(higher than the threshold used at the movement clusters) with a weighted average of the
reference image and the irradiance value from in the selected image. [18]

Pece et al. [44] algorithm extracts median threshold bitmap (MTB [64], see Figure 2.7)
from each of the input images. Any difference between the threshold maps of input im-
ages and the reference image, presented typically by the mid-exposure one, is marked as
a motion-region. To remove the effects of the noise, the motion map is refined using mor-
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Figure 2.6: The Figure shows the results of variance based deghosting method by Jacobs et
al. [18]. The variance map (bottom left) is obtained from the image sequence (upper row)
and used to generate the HDR image (bottom right). Figure obtained from [18].

phological operations such as erosion and dilation. The pixels in the motion-regions are
assigned smaller weights during the HDR construction. This method is strongly dependent
on scene composition since its reliability is strongly dependent on the median image value.
Additionally, the pixels with a value close to the threshold may be falsely detected as ghosts.

Min et al. [35] improved method of Pece et al. [44] and introduced multi-level threshold
map, where thresholds are selected to divide the image into multiple regions according to
the pixel intensity, each region having the same number of pixels (see Figure 2.8). Any
difference between the threshold maps of input images and the reference image, presented
typically by the mid-exposure one, is marked as a motion-region. Introduction of multiple
histogram regions, in opposite to Pece et al. [44], allows for the incorporation of a tolerance
in which shifts of pixels within neighbouring regions are not evaluated as motion. The
algorithm suffers from dependence on scene composition and image histogram layout. Min
et al. [35] further improved the algorithm in a follow-up article [36] by employing a noise
reduction phase, which incorporates an additional set of rules for spatially neighbouring
pixels. Unfortunately, the algorithm needs to use a large, performance and memory de-
manding, spatio-temporal smoothing filter. The above methods by Pece et al. [44] and Min
et al. [35, 36] are using coarse morphological operators, such as erosion and dilatation, to
suppress false detection rising on edges or by noise.

An et al. [1] proposed a method for multi-exposure fusion without the ghosting effect.
The method evaluates the photometric relation of images from sequence to the reference
image, producing binary ghostmaps. This ghostmaps are refined using the ZNCC (Zero
Mean Normalized Cross-Correlation), which evaluates the similarity of the ghostmap pat-
terns. By default, they use an 11 × 11 patch for photo-metric relation test and a 33 × 33
patch for ZNCC calculation.

Moon et al. [38] published a short article where they proposed HDR fusion method with
ghost-free effect. The author claims that the method is intended for embedded devices and
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Figure 2.7: The Figure shows the two images and corresponding Median Threshold Bitmaps
(MTB), proposed by Pece et al. [44]. Figure obtained from [44].

Figure 2.8: The figure presents the intermediate step of deghosting algorithm by Min et
al. [35]. The source sequence is on the top, the bottom images shows the multi-level
threshold maps for corresponding images on the top. Figure obtained from [35].

fast processing, since it does not require the demanding morphological operations, required
by many other algorithms [44, 35, 1] for ghostmaps refinement. They introduced a simpler
non-ghostness probability, which is combined with a conventional fusion weight [34] to
yield a ghost-free fusion weight. All of the images are photometrically calibrated toward
the reference image by an image transform from the result of histogram matching between
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the reference image and their individual exposure images. Unlike in their previous work [1],
they use ”soft“ assigned weights instead of binary ghostmaps.

Srikantha et al. [54] propose a method which works on input images with linear CRF.
Their work is based on the assumption that if the pixels from different exposures capture
a static region of the scene, they must be linearly dependent since they are equal to the
multiplication of sensor irradiance and exposure time. The pixels which do not follow the
linearity and potentially cause ghosting are found using singular value decomposition (SVD)
of a matrix containing pixel intensities from all exposures. This matrix is reconstructed
using only the largest singular values, forcing the linearity between the corresponding pixel
intensities of different exposures. The reconstructed pixel intensities are used to produce a
ghost-free HDR image. [59]

Bouderbane et al. [3] implemented simple ghost removing algorithm on FPGA based
platform. They were inspired by the work of Sidibe et al. [51] and presented the algorithm
based on the modification of Debevec [5] weighting function. The idea of the methods is
to adjust pixel weights based on the deviation from the reference image [51]. The function
gives a higher weight for pixels whose value are closed to the reference value and low weight
for pixels whose value diverges considerably from a reference value. Consequently, they
achieved the same performance as the Debevec and Malik [5] standard algorithm with a
ghost removing in a radiance domain, right before HDR data generation. [3]

2.5 Motion object registration methods
The following algorithms are not suitable for real-time processing; however, I reviewed them
for the coherence of the HDR deghosting topic and also because they are part of the state-
of-the-art in terms of deghosting quality. Achieving good visual results comparing to such
algorithms is also one of my side-goals.

Patch-based algorithms

These approaches attempt to align the different LDR exposures before merging them into
the final HDR image. Although the alignment of images has long been studied in image
processing and vision communities (e.g. Zitová and Flusser [76]), its application to HDR
imaging has special considerations. Here, the input images are not of equal exposure, so
the colour constancy assumption of many algorithms is violated. Even if we map images
to the same radiance space using the camera response curve (Debevec [5], Mitsunaga [37]),
they will have regions that are too dark/light and therefore invalid during the alignment.
This makes standard image registration techniques unsuitable for this application. [50]

The quality of the HDR images produced by these techniques is fundamentally limited
by the accuracy of the alignment. Even the state-of-the-art optical flow algorithms are
brittle in cases with complex motion and occlusions, which is why many use special HDR
merging steps to reject misaligned images (as in deghosting) and cannot use standard merg-
ing techniques. Furthermore, optical flow cannot typically synthesise new content and thus
cannot handle disoccluded content that could be made visible when aligning one image to
another. [50]

The algorithm proposed by Sen et al. [50] is a patch-based energy minimisation formula.
The algorithm produces an HDR image from a set of LDR images captured with different
exposures which is aligned to the reference image 𝐿𝑟𝑒𝑓 and which is also an LDR image that
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contains the best-exposed pixels. The resulting HDR image contains as much information
as possible from the well-exposed pixels from the 𝐿𝑟𝑒𝑓 image (see Figure 2.9). In places
where 𝐿𝑟𝑒𝑓 is not well exposed, every patch in the image 𝐻 at a given exposure should have
a similar patch in one of the LDR images after exposure adjustment (coherence). Also,
every exposure adjusted patch in all 𝐿𝑘 images should be contained in 𝐻 at exposure 𝑘
(completeness). The iterative approach performs joint optimisation of image alignment and
HDR merge process until all the exposures are correctly aligned to the reference exposure,
and a good quality HDR result is produced.

Figure 2.9: The figure shows the source sequence, images reconstructed by patch-based
algorithm by Sen et al. [50] and the resulting HDR image. Image obtained from [50].

Orozco et al. [43] presents a method which consists of both ghost detection and image
registration steps. In the ghost detection step, the detection algorithms of Pece [44], Jacobs
et al. [18], Sidibe et al. [51] and Grossberg et al. [16] are compared, and it was found that
the IMF based ghost detection of Grossberg et al. is the most accurate. In the image
registration phase, an intensity-based method without feature detection is employed. The
image with the best exposure is selected as the reference image. A bounding box is fitted
around the previously detected motion regions. Next, the region in each bounding box is
registered by translation and rotation to the reference image. The Sum of Squared Distances
(SSD), Normalized CrossCorrelation (NCC), Mutual Information (MI) and MedianBitmap
Difference (MBD) are compared as a similarity measure for the registration. The authors
state that NCC has the best computational cost and performance. In order to speed up the
process, the registration is performed using the pyramid structure of the images, from coarse
to fine resolution. However, since the registration applies only translational and rotational
transformations, more complex motions caused by objects with deformable bodies are not
handled. [59]

Hu et al.’s more recent work [17] proposes a PatchMatch[2] based HDR reconstruction
algorithm with energy minimization (see Figure 2.10). Among the input LDR images, the
one with the largest number of well-exposed pixels is selected as 𝐿𝑟𝑒𝑓 . In the next step, for
each input LDR image 𝐿𝑖 a latent image 𝑇𝑖 is synthesised. Latent images are similar to
𝐿𝑟𝑒𝑓 where it is well-exposed. In under- or over-exposed regions, a matching patch is found
using the PatchMatch algorithm in other input images. Using the matching patches and
the intensity mapping function obtained with the histogram-based method of Grossberg
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Figure 2.10: The figure shows the source sequence (left column), images reconstructed by
algorithm by Hu et al. [17] (middle column) and the resulting HDR image (right). Image
obtained from [17].

and Nayar[16], the latent images are obtained by minimising the following energy function:

𝜀(𝑇, 𝜏, 𝑢) = 𝐶𝑟(𝑇, 𝐿𝑟𝑒𝑓 , 𝜏) + 𝐶𝑡(𝐿, 𝑇, 𝑢) (2.11)

where L, T and u are the sets of input images, latent images and coordinate mappings
to matching patches, respectively. The 𝐶𝑟 and 𝐶𝑡 terms measure the radiometric and the
texture consistencies between the reference image and the input images, respectively. As
opposed to Sen et al. [50], Hu et al. [17] does not require the CRFs of the input images
to be linear. In certain comparison studies, it is observed that Hu et al. [17] was more
successful at producing noise-free outputs whereas Sen et al. [50] was better at preserving
texture details. [59]

Optical flow-based algorithms

The approaches in this group are mostly based on optical-flow estimation, which is a well-
studied problem, especially in stereo vision applications. In the HDR domain, optical-flow
estimation must also take the exposure differences between the input images into account.
The accuracy of the estimation is very critical for the quality of the outputs since any
mismatch results in undesirable artefacts. In addition, the use of optical-flow presents other
challenges such as handling the occlusion, noise, or large displacements in the scene. [59]

Zimmer et al. [75] use state-of-the-art optical flow approach to register LDR expo-
sures before the merging process. They minimise their proposed energy function that uses
a data term and smoothness term to reconstruct saturated and occluded areas. After
alignment, the displacement fields obtained with subpixel precision are used to produce
a super-resolved HDR image. The main advantage of the proposed strategy is that the
resulting dense displacement fields can describe arbitrary complex motion patterns, which
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is indispensable when dealing with complex camera motions or motion objects in the scene.
Another attractive aspect is that they do not require knowledge of the camera response
curve or the exposure times. Concerning efficiency, they were able to achieve reasonable
run times on sequential CPU architectures, whereas parallel GPU implementations reduce
the computation times to a few seconds.

Ferradans et al. [12] find dense correspondence of input images in the radiance domain
with respect to the reference image. In order to detect the mismatches in the estimated flow
fields, the input images are warped using the estimated fields, and the absolute difference
map of each pixel is calculated. Instead of applying a fixed threshold to the difference map,
its histogram is modelled as a mixture of Gaussians. The pixel intensities corresponding to
the flow vectors causing the mismatch are assigned zero weight in HDR reconstruction. The
information from the remaining pixels in each input image is fused in the gradient domain.
Jinno and Okuda [19] use a novel weighting function which has significantly smaller over-
lap between the contribution of input LDR images to the radiance domain. The proposed
method assumes that the global alignment is already performed. Displacement, occlusion,
and saturation regions are modelled as Markov Random Fields. The optimal parameters
are found by minimising the energy function (see [19]). [59]

CNN based algorithms

The latest published algorithms are based on popular Convolution Neural Networks (CNN).
Kalantari et al. [20] based their approach on optical flow from Liu et al. [28] and merges
images into HDR using CNN. At first step, the source images are normalised to the same
level of luminance as the reference (middle) image – similarly to Wang et al. [63] and many
others. Then, the optical flow algorithm of Liu et al. [28] is used to align the images.
Such aligned set is merged using CNN network trained on their dataset containing ground
truth sequences. The CNN is responsible for removing the ghosting artefacts appearing on
the edges of motion regions. Yan et al. [69] proposed a similar approach; however, their
proposed CNN uses not only surrounding information of a pixel as Kalantari et al. [20], but
also considers the information from other frames.

Figure 2.11: The figure presents the results achieved by Kalantari et al. [20]. From the left –
the source sequence, images aligned by optical flow by Liu et al [28], resulting tonemapped
images and the details of marked region merged by ”simple“ merging (probably by Debevec
and Malik [5]) and by proposed CNN based method by Kalantari et al. [20].
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Chapter 3

Embedded HDR acquisition and
deghosting

This chapter contains an overview of the state-of-the-art embedded HDR acquisition so-
lutions. The chapter begins with an overview of existing hardware platforms, which are
commonly used for the implementation of HDR acquisition, deghosting and tonemapping
tasks, further followed with an overview of specialized hardware accelerators and embedded
systems, aimed for high-performance processing. The chapter’s last section is devoted to
the description of state-of-the-art implementations of HDR acquisition and deghosting on
embedded devices and description of theirs, mostly custom based embedded platforms.

3.1 Embedded platforms and accelerators
This section describes selected hardware platforms that are currently available and are
related to the algorithms described in the Chapter 2. The HDR processing algorithms can
be implemented and even hardware-accelerated on these platforms. Individual platforms
are presented and their benefits and disadvantages for such tasks are summarized. The
section begins with a definition of metrics used to enumerate the computing power of
individual platforms. Subsequently, the platforms based on CPU, GPU and DSP processors
are presented, followed by a description of FPGA circuits. To date, very popular are SoC
platforms (System on Chip), where the CPU is located on one chip with the accelerator in
the form of GPU (nVidia Tegra), FPGA (Xilinx Zynq) or DSP unit (Google PVC).

Performance metrics

Typical performance metrics of computing systems include:

∙ Computing power
∙ Memory capacity
∙ Memory access time
∙ Power consumption
∙ Peripheral device support
∙ Cost

Very important parameters also include development time and overall cost. They are
related to the selected platform and its available development, debugging or simulation
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tools, the possibility of running an operating system and finally, availability of function
libraries.

Large memory and computing requirements are typical for image processing and com-
puter vision tasks. The algorithms are often performing several operations over each pixel.
This could be an issue for real-time video processing.

Mainly used metrics are MIPS and MFLOPS, both representing millions of executed
instruction per seconds, MIPS is for fixed-point and MFLOPS for floating-point arithmetic
instructions.

Algorithms of image processing are often using only simple mathematical operations,
such as addition or multiplication. They often do not need a high precision number rep-
resentation. An 8-bit fixed point or 32-bit floating-point numbers are frequently used for
pixel representation. Image processing algorithms are quite well parallelizable in general
because the same operations are applied for each pixel/block of the image. This feature
allows easy and efficient utilization of parallel computing platforms. It leads to easy com-
puting performance scaling and also to the reduction of cost and power consumption. Then
one of the performance metrics could be a number of processor cores or number of parallel
operations executed per clock cycle.

Amount of available memory space is often not critical. In most of the cases, one
version of the currently processing image have to be held in memory. Some algorithms are
requiring more memory space for partition structures and tables storing. Memory capacity
metric is a number of bits/bytes, that can be stored in memory. Some image processing
algorithms can take advantage of block memory accesses, but on the other hand, some
of them need random memory access (mostly algorithms using some partition structures).
They have different demands on memory throughput and latency too. Memory throughput
is measured on Gb/s. Memory latency shows the time between the start of a memory access
request and its finishing. Latency is affected by memory cells speed and mostly by memory
system hierarchy. Average memory latency is indicated in nanoseconds (ns).

From the perspective of real system deployment, the overall device cost is one of the most
important parameters. This is given by component price, production complexity, develop-
ment cost and appropriate licence fees. Price is normally expressed in dollars ($). Price is
often related to other parameters, such as computing performance (MIPS/$, MFLOPS/$)
or memory capacity (Gb/$) due to different platforms comparison.

To compare with different platforms often price applies to other parameters such as
computational performance (MFLOPS per dollar) or memory capacity (GB per dollar).

Development price is affected by the available development, debugging and simulation
tools and by existing function libraries. It also depends on targeted technology and on
knowledge and experiences among developers.

Power consumption becomes an important metric today, specifying how long can device
run on battery, the cost of annual traffic etc. Power consumption is primarily affected
by integrated circuits parameters, such as manufacturing technology, the size on the chip,
clock frequency and supply voltage. Many platforms have power-saving technology like a
dynamic clock frequency/voltage scaling and clock-gating. Power consumption is measured
in watts (W). Relative units are also used, such as computing power per watt (MIPS/W).

Another important parameter is the support of peripheral interfaces. Each image pro-
cessing device requires at minimum an input interface, which is used for retrieving image for
processing, and output interface for the representation of the results. Additional interfaces
are needed, for example, for communication with other devices. Data throughput is the
critical parameter for the input interface, especially in real-time systems. Currently, there
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are several commonly used and well-supported interfaces as a PCI Express, Thunderbolt,
USB, Firewire and custom high-speed serial link/busses.

A separate issue is a possibility of adapting the computing platform for a specific ap-
plication. One of the possible options is to use external processing units (e.g. for video
decompressing). Another option is to use a self-designed computer system. A typical ex-
ample is application-specific integrated circuits (ASIC) or programmable gate arrays (PLD,
FPGA). This technology allows creating an application-specific computing system to the
specific application. Such systems have the best parameters relative to consumption, per-
formance and chip dimensions. Their main disadvantage is the very high development cost.
System metrics vary depending on the technology used. Unit of equivalent gates was ap-
plied for comparison purposes, indicating the amount of AND and OR gates that we can
replace with a specific chip.

CPU based platforms

CPUs platforms are designed for general computing. The universal processor allows use
in a wide range of applications. CPUs are used as computational units in PCs, servers
or some embedded systems. Its main advantage is versatility but counterbalanced with
resource requirements (time, power consumption, chip area) comparing to the specialized
computing systems. The processor is a complex sequential engine executing algorithms
expressed by machine code. The basic part of the processor is the arithmetic logic unit
(ALU), cache memory, control unit and IO controller.

Architecture specifics ALU performs operations on the data such as addition, multi-
plication, division and some logical functions, logical AND, OR and many others. ALU
is also driving the program execution, performing a conditional or branching code. ALU
is designed to compute with fixed-point numbers only. Floating-point unit (FPU) have to
be used for decimal number processing; it is located outside the ALU. Today, in order to
reach maximum performance, processors have more ALU units and the FPU is designed
for parallel data processing. Processor frequency is today clocked over 4GHz and they can
reach the 300,000 MIPS with eight cores and 95W TDP (AMD Ryzen7 1800X). Special
server processors have up to 32 cores.

The processor has a fast registry set, where the intermediate results are stored. They
operate on ALU frequency and their quantity is limited. On the other side, main memory
has huge capacity today, up to 512GB, but it operates on much lower frequencies and with
thousand-times bigger latency. This problem is solved by a complex memory hierarchy,
where cache memory is embedded to the processor in order to preload and store frequently
used memory locations and thus improve memory access latency. The cache is divided to
several levels, from L1, which is fastest (latency about 1-3 processor clock cycles) but has
the smallest capacity, around 768kB, for L3 with capacity around 8MB (32MB in high-end
processors), but with significantly slower access.

Processor’s controller unit manages the interaction of individual parts of a processor.
Nowadays, it’s a very complex and circuit which includes sophisticated algorithms to accel-
erate processors computing performance by out of order instruction executions, branching
code prediction and more.

Currently, there exist two main processor categories applicable to image processing.
PC processor architecture is represented mostly by x86 standard compatible processors.
Increasingly popular are the ARM-based processors located mostly in embedded systems,
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such as mobile phones, tablets etc. The other architectures have a low computing power
(embedded systems), minority presence in the market or are not advisable for image pro-
cessing (server processors).

x86 architecture X86 processors are used primarily in personal computers, notebooks,
special embedded systems and servers. They are called CISC processors since they have
a lot of very complex instructions in its instruction set. They are based on Intel x86
instruction set, which was first used in the Intel 386 processor and they are fully backwards
compatible with this model. The instruction set originally supports only 32-bit operations,
but today’s processors take advantage of extended AMD64 instruction set with the support
of 64-bit operations.

Advantage of these processors is their backward compatibility as the basic instruction
set is standardized. This brings an advantage for precompiled software, which is able to run
on the newest hardware. On the other hand, backward compatibility is a great bottleneck
not only for maximum performance but even to other parameters, like power consumption
and even chip size. Overall, they are not quite effective. That’s the main reason why there
aren’t suitable for small and efficiency embedded systems.

ARM architecture ARM processors (Figure 3.1) becomes popular in small embedded
systems. Unlike the x86 compatible processors, their instruction set is RISC and without
backward compatibility. RISC means that only basic instructions are supported, which
leads to small processor complexity. The ARM instruction set is variable, so only certain
instructions could be supported. This leads to a small, effective processor with much lower
power requirements compared to x86 processors. That’s why their popularity is rising,
especially in the embedded and mobile segment. ARM processors are sold by ARM holding
as a design file, not as a physical chip. It’s quite similar to IP cores for FPGAs(described
below). Hence the manufacturer can build his own chip with custom peripherals based on
the ARM processor core.

Figure 3.1: Scheme of Quad-core ARM processor A57. Image retrieved from
https://www.androidauthority.com/
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Development software The CPU processors are long supported and widely used so that
there exist a huge number of effective development tools in the form of operating systems
and their APIs, compilers and libraries, development studios etc. CPU programming is
then quite simple and fast, but this applies to one, not to multiple CPU programming.
There can be a lot of work with CPU’s synchronization. The Windows operating system is
primarily designed for x86 processors. On the other hand, Unix based systems are adapted
to run on both x86 and ARM architecture.

Applications CPUs are quite suitable for most sequential image processing algorithms.
It can effectively handle random memory access, needed by tree or list search algorithms,
as well as block memory access. Although the CPU is quite effective in this way, overall
computing power should be insufficient. Nowadays, the CPUs are equipped by more than
sixteen cores in order to reach high computing performance.

General purpose GPU

GPGPU, i.e. General-purpose Computing on Graphics Processing Unit is the way of us-
ing graphic cards GPU’s for general-purpose computing instead of their original purpose,
performing graphics operations. GPGPU is supported since 2006 by GPU manufacturers.

GPU’s have a big computing potential. It is composed of several SMP (Streaming
Multiprocessor), each containing a large number of CUDA cores, currently up to 64 per
SMP, each running up to 1,5GHz (architecture Nvidia Pascal). Each core can provide
basic FX arithmetics and memory access operations. Cores within SMP have access to
shared memory, registry set and FP(Floating Point) computing units. Computing cores
are simplest as possible, so they don’t have their own controlling logic. Cores within SMP
are divided into several warps, each with own program controller. Whole warp is then
executing one source code, so SMP behaves like the multithreaded processor.

Figure 3.2: Schematics of SMP from nVidia Pascal GPU. Image retrieved from
https://wccftech.com/nvidia-pascal-specs/.

The graphic card usually contains a large amount of memory on board, currently up
to 11GB. To provide as most data bandwidth as possible, multiple cache levels and tech-
niques are applied. All SMP processors share global memory and up to 4096kB L2 data
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cache(Pascal). Every SMP have its L1 cache (up to 64kB) shared between all Cuda cores.
They also contain a small texture cache that can be used for some special operations.

Architecture specifics In general, GPU has extreme computing power but extreme
power consumption too. They can reach up to 10,6 TFLOP, currently with 300W TDP,
but could be a serious problem to reach such a performance in a real application. Cores
within SMP are further divided to warps which are driven by the common controller, so
every core in warp is typically executing the same instruction. If a program contains some
branching instructions, as ”if-else“ or ”case“ statements, the controller has to selectively
enable or stop some threads to allow executing of the relevant part of code statement for
each core. GPU is capable of running a lot of threads in parallel, so it can process a huge
amount of data. The memory subsystem is designed for a high load, but the programmer
has to take care of a proper global memory access attitude. Ideally, threads have to gather
memory accesses, memory cells required by individual threads should be adjacent. Access
with inappropriate stride can rapidly decrease memory throughput. For better performance,
access to global memory should be aligned to 128B memory segment.

Shared memory is divided into multiple banks to increase throughput. The proper
attitude is to access memory cells by stride 1 or by the stride of the prime number. This
results in 1:1 assignment within banks and threads of the warp. Different stride leads to
worse ratio and in the worst case to serialize memory requests. In case of reading one
memory cell by all threads, exists a built-in memory broadcast mode.

Figure 3.3: Shared memory bank access. On the left is the example of Linear addressing,
causing no bank conflict. Two-way conflict is on the right, leads to two memory accesses
instead of one in linear addressing.

Development software Currently, there are two programming platforms for GPGPU,
Nvidia CUDA and OpenCL. CUDA is developed and supported by Nvidia company, one
of the graphic card manufacturers, therefore is available only for Nvidia Graphic cards.
CUDA SDK contains large libraries for easier application development. OpenCL is a more
general platform and supports GPU of any manufacturer. Moreover, OpenCL can utilize
not only GPUs but even CPU for computation. Both platforms are based on C language
with additional extensions.

Applications Types of algorithms suitable for running on GPUs are clear from its specific
architecture. High performance can be reached on per pixel or local image operations, such
as image filters. On the other hand, it can be a problem to write effectively a tree search
algorithms, algorithms with random memory access, algorithms with if-else statements etc.
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DSP processors

DSP is a shortcut for Digital Signal Processor. It is primarily designed for real-time signal
processing. Currently, DSP processors are used for example, at mobile phones (GSM signal
coding/decoding), DVD drives, cameras etc.

DSP is based on Harvard architecture and thus has a separated instruction and data
memory. This leads to better throughput because every memory has its own bus. To
maximize computing power, DSP has several parallel processing units, so in every clock
cycle can be executed more than one instruction. Typically, there are more ALUs, MAC
Multipliers and data load/store units. DSP also has two or more DAG (Data Address
Generator) and a lot of DMA units. DAG unit is capable of advanced memory addressing,
such as a round buffer addressing, reverse addressing, stride memory access etc. There are
two basic types of DSP, divided by used arithmetics. DSP’s are either calculating with
fixed or a mix of fixed/floating-point arithmetics. Fixed points performance of one DSP
core is currently up to 8 MACS(multiple and accumulate) per clock cycle. Floating-point
DSPs have approximately half of this performance, up to 4 FLOPS/clock cycle. L2 cache
memory is currently about 4MB per core. TDP of one core is highly dependent on desired
performance, from less than 0.1W up to 7W. Nowadays DSP processors can have up to 4
cores and run above 1.2GHz frequency.

Architecture specifics Real-time signal processing is the main utilization of DSP pro-
cessors, so their architecture is adapted to meet such criteria. One of the great advantages is
the presence of multiple computation units capable of parallel processing, which allows easy
hardware loop unrolling. DSP is using a long instruction word (VLIW). One instruction
is composed of several instructions, each for one processing unit. If a source code contains
data-independent instructions, they can be executed simultaneously. This is solved by the
compiler, which has to take into account the number of processing units, length of instruc-
tion execution and possible data dependencies. This implies that a compiled code is not
compatible with different DSP processors. Not all of the processing units can be busy at
the time, so the DSP long instruction can contain some NOP instructions. This can have
a bad impact on DSP’s performance.

The bottleneck of DSP processors is conditional code executing, for example, if-else or
case statement. It is solved by preliminary selection of branch code and incidental execution
of recovery code. In this case, code cannot be effectively parallelized.

Applications Primary DSP orientation is on real-time signal processing, it’s design is
quite customized for this purpose. Applications based on FFT, signal coding/decoding,
signal compression tasks are very effective on DSP. Algorithms effective on DSP are com-
monly based on block or stream processing, loops etc. There can be easily achieved parallel
execution, loop unrolling and DAG unit utilization. On the other hand, significantly ineffec-
tive could be algorithms based on random memory access and if-else and case statements,
for example, tree searching algorithms.

Development tools Typically, DSP BIOS is running on DSP chips. It is a kind of real-
time operating system (RTOS), which cares about low-level system events, task priorities
and provides a simple API for a custom application. C or C++ compilers are available for
DSP programming.
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3.2 System-on-chip platforms
SoC architectures, sometimes also known as an application services platform (ASP), are a
combination of existing architectures described above. Typical hybrid systems are composed
of several interconnected chips. Nowaday the CPU + GPU, CPU + FPGA and DSP +
FPGA cooperation for signal processing is quite common. A Brand new way is to embed
more computing architectures into one chip. Xilinx Zynq SoC and Nvidia Tegra are a typical
example of a useful combination of the multi-core ARM processor and FPGA, respectively
GPU.

SoC FPGA - Xilinx Zynq

Architecture specifics Xilinx Zynq is a combination of dual-core ARM processor core
(and other peripherals, such as memory controllers etc.) with a standard FPGA chip. Both
parts can run on different frequencies, so ARM can run on 677MHz and is not decelerated
by the slow FPGA clock frequency. Both parts are interconnected through standard AXI
bus and share RAM memory. Moreover, the FPGA can be directly connected even to the
ARM cache memory. The ARM processor has a 64kB L1 and 512kB L2 cache memory
shared between cores. The standard way to communicate between ARM and FPGA is
to make a memory-mapped device connected directly to the AXI bus. This device is then
configured from the ARM processor and serves as a coprocessor or independent system with
access to system memory, like a graphic card on PC. Zynq is an excellent combination of two
totally different architectures. ARM CPU is quite suitable for any sequential algorithm. On
the other hand, FPGA has a great parallel computing potential but executing of standard
sequential code is almost impossible and have to be solved by IP cores processors.

Development tools A big advantage of the Zynq platform is the capability of running
a Linux operating system. So there exists a lot of development studios, standalone code
compilers and development libraries just like for Linux desktop operating system. Xilinx
Company provides support for FPGA part, including IP cores for easy AXI bus connection.
They also developed a basic Linux distribution with several examples of interconnecting
both parts of a chip.

Applications Several ways how to utilize this platform for some image processing exists.
ARM processor can run a complex algorithm using an FPGA part just only to accelerate
some computing or graphic operations. This mode is suitable for algorithms, that needs
some global information over image or needs random access to the image memory. Another
way is to perform the whole algorithm inside the FPGA part. ARM processor can only serve
as a driver of some peripheral interfaces, such as Ethernet or USB, whose implementation
would be difficult to program in FPGA. An application constraint results from the FPGA
subsection above.

SoC GPU - Nvidia Tegra

Nvidia Tegra integrates an ARM CPU, graphics processing unit (GPU), northbridge, south-
bridge, and memory controller onto one package. The most recent Tegra SoC, Xavier,
contains eight custom ARMv8 cores, a Volta GPU with 512 CUDA cores, an open-sourced
TPU (Tensor Processing Unit) called DLA (Deep Learning Accelerator). The GPU is ca-
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Figure 3.4: A generic example of an SoC FPGA, sometimes also known as an applica-
tion services platform (ASP), shows a dual-core hard processor system with its comple-
ment of hard peripherals on the same die with an FPGA fabric. Image retrieved from
http://archive.rtcmagazine.com/.

Figure 3.5: Module M_ZX equipped with SoC Xilinx Zynq Z-7020.

pable of encoding and decoding 8K Ultra HD video (7680 × 4320). Users can configure
operating modes at 10W, 15W, and 30W TDP as needed.

Development tools NVIDIA devices are supported by the Jetson NVIDIA software
stack, enabling to develop once and deploy everywhere. JetPack SDK includes the latest
Linux Driver Package (L4T) with Linux operating system and CUDA-X accelerated libraries
and APIs for AI Edge application development. It also includes samples, documentation,
and developer tools for both host computer and developer kit, and supports higher-level
SDKs such as DeepStream for streaming video analytics and Isaac for robotics.

NVIDIA JetPack SDK is the most comprehensive solution for building AI applications.
It bundles Jetson platform software including TensorRT, cuDNN, CUDA Toolkit, Vision-
Works, GStreamer, and OpenCV, all built on top of L4T with LTS Linux kernel.

NVIDIA L4T provides the Linux kernel, bootloader, NVIDIA drivers, flashing utilities,
sample filesystem, and more for the Jetson platform. It is possible to customize L4T
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Figure 3.6: Module Nvidia Tegra TX2. Image obtained from nvidia.com.

software to fit the needs of the project. By following the platform adaptation and bring-up
guide, it is possible to optimize the use of the complete Jetson product feature set.

Applications Tegra GPU supports the applications written in Nvidia Cuda, so many
of algorithm written for Nvidia GPUs (e.g. for desktop PCs) are feasible to run on it.
Specifically, the Tegra modules are optimized to run deep neural networks. The devices
based on the Tegra modules can create powerful edge nodes in the edge-computing scheme.
At just 7.5 watts, the Xavier SoC claim to deliver 25× more energy efficiency than a state-
of-the-art desktop-class CPU. This makes it ideal for real-time processing in applications
where bandwidth and latency can be an issue. These include factory robots, commercial
drones, enterprise collaboration devices, intelligent cameras for smart cities.

After consideration, the features of target platforms from Section 3.1, the FPGA was
selected as a target platform, namely the SoC Xilinx Zynq, which is a powerful combination
of FPGA and dual-core ARM processor on the same chip. This SoC allows the application
of hardware-software codesign technique. It brings together the performance benefits of
FPGA with the possibility of sequential execution of code - e.g. for driving the FPGA
processing or to perform complex calculations, which acceleration in FPGA would be very
demanding or not reasonable. Several reasonable arguments for selection of FPGA follows:

∙ Power consumption - FPGAs have very low power in general, and it depends mostly
on the amount of programmable resources used.

∙ Performance - Despite its quite low clocking frequency (max. 200MHz), FPGA
benefits from parallel processing and achieves very high computational performance.
The well parallelizable algorithms, which, e.g. applies the same fixed operations on
each pixel/block of the image, are quite often parallelizable to the one result per
clock. Thus it is possible to achieve processing speed up to 200MPix/s; of course,
the whole pipeline could be extended/multiplied, providing multiplied performance.
The increase of complexity usually increases the demands on FPGA resources, not
the overall processing speed.

∙ ASIC ready - FPGA implementation is one of the necessary steps during ASIC
development. One of the main tasks was an implementation of an HDR compres-
sion algorithm (published within the same book[70]), where the ”possibility of ASIC
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implementation“ is necessary for successful standardization process, required for widespread
commercial usage.

∙ Low embedding effort - it is closely related to the ASIC implementability and also
the fact that many, predominantly industrial cameras are already based on FPGA,
since then the firmware could be easily extended and/or modified. In this case, the
HDR acquisition component could fit into existing FPGA located in camera or bigger,
quite often with the compatible layout. The implemented FPGA component could
also extend the custom ASIC design as a standalone block.

Nowadays, the platforms with powerful embedded GPU, such as Nvidia Tegra, are starting
to be concurrent at certain parameters. On the other hand, DSP platforms are slowly
getting to the margins of interest.

3.3 State-of-the-art hardware solutions overview
Many research publications were published regarding the acquisition of HDR images; how-
ever, only a few of them are oriented on embedded devices. HDR merging itself is not a
complex algorithm, but for real-time acquisition, it requires a high memory throughput and
external memory buffer, which is not available on many embedded platforms.

FPGA based platforms are more than suitable for such type of applications. Several
papers focused on FPGA acceleration and related to our work were published [25, 27, 61,
62, 30, 45, 68, 56]. This section provides its overview and presents achieved properties.

Realtime HDR video for eyetap wearable computer by Mann et al.

Mann et al. [30] developed an FPGA based wearable HDR seeing aid designed for the electric
arc welding (see Figure 3.7). The prototype consists of an EyeTap (electric glasses) welding
helmet, with a wearable computer upon which are implemented a set of image processing
algorithms that implement real-time HDR image processing together with applications such
as mediated and augmented reality. The HDR video system runs in real-time and processes
120 frames per second, in groups of three or four frames. The processing method, for imple-
mentation on FPGAs (Field Programmable Gate Arrays), achieves real-time performance
for creating HDR video using the novel compositing methods, and runs on a miniature self-
contained battery-operated head-worn circuit board, without the need for a host computer.
The result is an essentially self-contained miniaturize hardware HDR camera system that
could be built into smaller eyeglass frames. [30]

Mann’s proposed method is adapted specifically for direct hardware implementation,
as opposed to assuming the availability of a multi-core CPU or GPU. Additionally, they
present how this method can be extended to three or more images in extreme dynamic
range cases using simple binary operators. Mann proposed a novel computational method
using LUTs (lookup tables) to compute the HDR (high dynamic range) video in real-time.
For the case of compositing two images with 8-bit colour depth per channel, a simple size
256× 256× 3 LUT can be derived for each camera. The LUT need only be computed once
each time a new camera is plugged in for the first time.

The HDR output values are precomputed for a full range of input pixel combinations
and stored in lookup tables in BRAMs (see Figure 3.8). Even after certain optimizations of
memory consumption, the BRAM demands are very high, especially when more than two
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Figure 3.7: The “MannVis welding helmet” implements the EyeTap principle which causes
each eye to, in effect, function as if the eye itself were both a camera and display. Image
obtained from [30].

LDR images are used. The system is implemented on Spartan-6 LX45 FPGA and produces
720p video at 60 FPS while fusing two images.

Mann’s prototype have the camera configured to capture images that are four stops
part (i.e., one image has an exposure time that is 24 = 16 times longer or shorter than the
other). Once they estimated from the image set, we perform dynamic range compression
(tone mapping) for LDR display.

For the case of constructing HDR images from 3 or more images, they can compute
an intermediate estimation of the photographic quantities, since the images only differ in
exposures (i.e., four stops in proposed solution), the same LUT which precomputed quan-
tities can be applied to the image pairs at no additional computational cost. [30]

Figure 3.8: The figure illustrate the direct lookup method used by Mann et al [30]. The
pixel values from the same pixel in the image addresses the precomputed resulting HDR
values in the table (in the middle). Image obtained from [30].

In order for real-time HDR processing to be practical, a 45nm low-power Spartan-6
LX45 FPGA device was selected for its low power consumption and portability. The board
contains two input HDMI ports used to receiving the baseband HD video (720p@60 FPS)
and two output HDMI ports used for transmitting the processed HDR video frames. It also
contains 128MB of DDR2 SDRAM, used for storing video frames. It runs at 625MHz in
order to meet the real-time processing requirements. Additionally, BlockRam (BRAM) is
used as line buffers and to store the LUT. However, it is limited to a capacity of 2.1Mbits
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(116 x 18,432). Due to its resource limitations, a focus on reducing complexity guided Mann
et al. [30] to invent novel approaches to HDR video. Much of the processing is precalculated
and stored in a lookup table to reduce complexity using the methods discussed in the Mann’s
Article [30] each pixel sample contains an 8-bit RGB colour component totalling 24-bits per
pixel. Each lookup is addressed by a colour channel of two differently exposed frames. A
total of 16-bits is used for addressing into the LUT totalling 65536-entries. For 8-bit wide
sample output, BRAM can be configured as 8-bits wide × 2048-deep, which resulted in 32
BRAMs utilized per colour channel for a total of 96 (out of 116) BRAMs utilized. Efficient
on-chip memory utilization is the key to LUT implementation technique, as it directly
limits scalability beyond two frames. The number of BRAMs required can be reduced by
utilizing the fact that only half of the data in one square LUT is valid since each pair of
frames has one’s pixels always greater than the others. This technique is used in 3-frame
implementation. [30]

Realtime HDR Video Imaging on FPGA by Tao et al.

Tao et al. [57] extended the work of Mann [30] by introducing a lookup table compressed
using quadtree structure, which saves the amount of BlockRAM resources. Tao replaced
the weighted sum approach with the new quadtree-based compositing for high-quality HDR
video production. The proposed compositing circuits are generated by the software, with
parameters given by the user. It compresses and implements a 2D Lookup Table (LUT)
on an FPGA, by bounding the error and space of quadtree representation of the original
LUT according to the expected usage, so that the LUT is compressed to fit within the
total amount of the block RAM resource available in a mid-sized FPGA. They also add the
support for 1080p video at 60 FPS. [57]

HDR-like imaging using industrial digital cameras by Popadic et al.

Popadic et al. [45] proposed a low complexity method for capturing high dynamic range
scenes using standard industrial digital cameras. The goal of the proposed method is to
improve the performance of the standard industrial digital cameras, without modifying
the central processor unit (CPU) software. The most effective way from their point is to
avoid depending on the camera software manufacturer (that do not allow changes in the
software) is to use the FPGA to perform operations that extend the dynamic range of the
images and output them in a format compatible the CPU. The FPGA unit is designed as
independent and intended to be connected transparently between CPU and CMOS chip of
camera. To keep the compatibility, the FPGA unit produces an HDR-like image instead
of HDR. As opposed to HDR image format, which uses 32-bit floating-point precision for
each colour channel, HDR-like image is stored in standard 8-bit RGB format. Overall, the
performance of the system is much enhanced, while more details in the resulting image
are shown. Moreover, the standard HDR image cannot be shown on standard displays or
printed using standard printers; HDR has to be post-processed by tone-mapping operators.
Such produced HDR-like image has not these shortcomings and may be processed in the
existing image processing pipelines. [45]

In the proposed architecture, sensor and FPGA together form a ”smart sensor“, which
receives configuration data from the CPU. In order to provide an HDR-like image, three
images are combined into one. In order to combine them in a suitable way, one has to
determine weight coefficients. Communication between CPU and FPGA is realized by the
same interface as the sensor does. CPU initially calculates auto-exposure time as part of its
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Figure 3.9: Method for HDR-like imaging proposed by Popadic et al. [45], implemented on
FPGA. Image obtained from [45].

auto-exposure algorithm. Structure of the method implemented is presented in Figure 3.9.
The method is implemented on the FPGA embedded onboard, which represents a bridge
between CPU and sensor. Image acquisition is triggered after setting the configuration
parameters that are prepared for a certain image. HDR-like image, the output from the
FPGA will be automatically accepted by CPU. It is represented in the same format (Bayer
matrix format) as a RAW image from the image sensor. Image fusion pipeline implemented
in the FPGA will be presented later. Since standard digital cameras are equipped with an
auto-exposure function, the first step of the proposed method is to estimate the quality
of a single image. When the camera process captures the auto-exposed image, image
quality should be checked. If a single image quality is not acceptable according to the
proposed criterion, auto-exposure time is not optimal. In order to improve image quality,
the process continues to the HDR-like image generation by taking another two images. The
second step of the proposed method is an algorithm which calculates exposure times of two
additional images that will participate in the final image. The third step of the method is an
algorithm which performs a fusion of three obtained images. Proposed algorithm for HDR-
like scene-mapped imaging performs calculations on the global image level. Smoothing is
not necessary. This approach makes the algorithm simple and fast. [45]
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HD WDR video surveillance system based on FPGA by Xie and Wang

Xie and Wang [68] developed a high definition wide dynamic video (WDR) surveillance
system, based on HDR camera kit accompanied by Lattice FPGA and sensor Panasonic
MN34229. The WDR surveillance video is displayed through the HDMI port. They use
the algorithm of exposure fusion, which introduced Mertens et al. [34] and fuses two images
into a wide range image only. The whole WDR module can be divided into four parts:
luminance value statistics, weight calculation, mean filter and pixel fusion, as shown in
Figure 3.10.

Figure 3.10: System block diagram of the method for WDR imaging proposed by Xie et
al. [68]. Image obtained from [68].

The video image data is collected line by line. To ensure the real-time performance of
the system, they calculate the fusion weight of the current frame for the multiple exposure
image synthesis of the next frame. First, when the data of the nth frame arrives, it is
divided into a number of image blocks in 32 × 32 size, and the brightness values are count
from each image block. The sum of all the pixels’ luminance values in each image block
of long and short exposure image is stored in RAM. In this way, They can get each image
block’s sum of the luminance values in the nth frame at the end of the image. Further, they
can calculate the fusion weights through the existing mathematical model, and the results
are stored in the shift registers in turn to complete the mean filter operation. The function
of a mean filter is to reduce the block effect. After the mean filter is completed, the final
fusion weights are stored in RAM waiting for the pixel fusion. It’s worth mentioning that
weights calculation and mean filter is completed during the time between the nth frame to
the next frame. When the data of the next frame arrives, the fusion weights we just got
are used for pixel fusion and the WDR data is obtained. The system produces video of
1920 × 1080 pixels at 30 FPS. [68]

HDR-ARtiSt: an adaptive real-time HDR smart camera by Lapray et al.

Lapray et al. [25, 26, 27] developed a complete FPGA-based smart camera architecture
named HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera). This smart
camera is able to provide a real-time HDR live video from multiple exposures captur-
ing to display through radiance maps and tone mapping. The main contribution of their
work is the generation of a new FPGA embedded architecture producing an uncompressed
Black&White 1280× 1024-pixel HDR live video at 60 FPS. An embedded DVI controller is
also provided to display this HDR live video on a standard LCD monitor. The HDR-ARtiSt
camera could obviously embed some complex image processing applications onto the FPGA
or could be connected to a more standard PC managing the video stream. [27]
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Figure 3.11: Xilinx Virtex-5 ML507 FPGA board equipped with 1.3MPix CMOS, where
Lapray et al. [25, 26, 27] implemented the HDR image acquisition and tone mapping. Image
retrieved from [27].

To compute real-time HDR algorithms, a dedicated FPGA-based smart camera architec-
ture was designed to address the computation capacity and memory bandwidth requirement
(see Figure 3.13). This architecture does not put any restriction on the number of frames
used for HDR creating. They shortly call each architecture derived from the generic one as
an HDR-P, where P is the number of frames. [27]

According to the detailed description of these methodologies and the comparison of
their real-time software implementations, they decided to use the Debevec’s method [5] for
HDR merging. The main advantage of this approach is that there is very little constraint
about the response function (other than its invertibility). Moreover, the proposed algorithm
proved to be quite robust and easy to use due to the simplicity of Debevec’s equation (see
Equation 2.3). The HDR creating pipeline for HDR-2 video is shown on Figure 3.12. [27]

Regarding the tonemapping operators, Lapray et al. [25, 26, 27] implemented two the
global tonemapping operators by Duan [8] and Reinhard [47]. Their implementations were
published and described thorough their articles [25, 26, 27].

The HDR-ARtiSt platform [27] is a smart camera built around a Xilinx ML507 board,
equipped with a Xilinx Virtex-5 XC5VFX70T FPGA (see Figure 3.11). The motherboard
includes a 256 MB DDR2 SDRAM memory used to buffer the multiple frames captured by
the sensor. Several industry-standard peripheral interfaces are also provided to connect the
system to the external world. Among these interfaces, the vision system implements a DVI
controller to display the HDR video on an LCD monitor. It also implements an Ethernet
controller to store frames on a host computer. [27]

A custom-made PCB extension board has been designed and plugged into the FPGA
board to support the Ev76c560 image sensor, a 1280 × 1024 pixel CMOS sensor from e2v
company. It offers a 10-bit digital read-out speed at 60 FPS in full resolution. It also
embeds some basic image processing functions such as image histograms, evaluation of the
number of low and high saturated pixels. Each frame can be delivered with results of these
functions encoded in the video data stream header. [27]
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Figure 3.12: HDR creating pipeline using LUTs tree for merging two input images, imple-
menting the Debevec’s algorithm [5]. Image retrieved from [27].

Multi-streaming memory management unit the MMU-P can capture and store the
current stream of pixels from the sensor and delivers simultaneous 𝑃 − 1 pixel streams
previously stored to the HDR creating process. With such memory management, they
avoid waiting for the capturing of new P frames before computing any new HDR data.
Once the initialization is done, the system is synchronized with the sensor frame rate (i.e.,
60 fps) and can produce a new HDR frame for each new capture. Moreover, in terms of
memory, the MMU-P requires to store only 𝑃 − 1 frames, because the oldest captured
frame is read and overwritten by the current frame acquired by the sensor. For reasons of
efficiency, the MMU-P reads and stores lines of pixels.

3.3.1 Real-time HDR video compression using an FPGA by Zemcik et
al.

The architecture of the HDR camera proposed by Zemcik et al. [70] can capture 30 FPS
FullHD with each frame formed from two exposures, or 20 fps FullHD video formed from
three exposures. With sharing the expositions, the output can eventually reach up to
60FPS; however, the whole pipeline is limited by the capability of H.264 encoders, support-
ing 30FPS only. The main architecture highlight is the encoding of HDR video using two
standard video codecs.
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Figure 3.13: overview of the HDR-P video architecture, designed by Lapray et al. [27].
Image retrieved from [27].

This architecture uses standalone 2K Flare1 camera (see Figure 3.14) connected over
3G-SDI interface2 (commonly used in TV studios). This camera is producing high quality
FullHD RAW image at up to 60FPS.

Architecture by Zemcik et al. uses two or three images for HDR merging, depending on
configuration, so there is implemented the equivalent number of framebuffers. The double
buffering technique is used to avoid rising of image artefacts, which doubles the memory
requirements but prevents rising of image artefacts.

All three framebuffers are read synchronously by multiple DMA channels; here, the HDR
merging takes place. The read-out is performed once the three images are captured, the
output then has 1/3 of the input FPS. Unlike the Lapray [27], which is merging HDR from
three last images and thus have the equal input and output framerate, the architectures
presented in Zemcik’s article [70] took advantage of the speed of the attached camera
(capable of 60 FPS) and capture three images as fast as possible, trying to reduce the ghost
artefact to the minimum.

1http://www.ioindustries.com/
2https://www.smpte.org/standards
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Figure 3.14: Flare SDI Camera, image retrieved from http://www.ioindustries.com

Figure 3.15: Scheme of HDR merging algorithm based on unsaturated pixel selection [70].

The primary demand for the HDR merging algorithm was the capturing of the as-high-
as-possible dynamic range, showing the benefits of HDR acquisition. Regarding that the
architecture Zemcik et al. [70] use only a simple pixel selection algorithm (see Figure 3.15)
because the exposition times are set so far from each other (by multiples of eight), that
the particular pixel is exposed well only in one exposition. The others are often under on
overexposed; thus their contribution to computed HDR value would be marginal.
The image acquisition is typically made in a colour format where the intensity component
is easy to process in HDR chain while the colour is preserved independently. In this case,
the YCbCr model is used.
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HDR compression The standard dynamic range image and video are easy to compress
and reduce their size dramatically, however many standard algorithms (JPEG, MPEG,
H.246, ...) are designed only for 8-10bit images. The straightforward solution they pro-
posed is to compress the image or video right after tonemapping, where the HDR image
information is compressed to lower bit-width, keeping all important visual image details.
Unfortunately, the tonemapping process necessarily means a loss of HDR information.

Figure 3.16: HDR image compression scheme [70]. The bilateral filtering in logarithmic
domain is performed on luminance channel of HDR image. The output of filtering (base
layer) is formed into first image stream and the second stream is created as difference
between filtered image and original HDR(detail layer).

Compression of tonemapped image attempts to keep the important image details; how-
ever, compression necessarily means a loss of part of HDR information. Zemcik’s proposed
architecture for HDR compression [70] uses the bilateral filter (BF) for base and detail layer
separation (which is also first step of Durand operator [9]). The bilateral filter is a very
demanding operation with the quadratic dependency of computing operations on filter ker-
nel size. The original algorithm from book [70] requires kernel at least of 19x19 pixel size.
This size of BF would be very demanding on FPGA resources, and then the kernel size
was selected based on the demands to provide the highest filtering quality as possible while
keeping reasonable computational complexity and also reasonable FPGA resource demands.
The best choice for the desired implementation seemed to be the BF kernel size of 11x11
pixels. Furthermore, the multiplication of pixels with coefficients was converted into simple
addition of shifted operands, saving the resource of DSP blocks of FPGA. Moreover, the
experiments proved, that number of additions can be limited, favouring the most significant
bits, with marginal impact onto numerical precision, which is summarized in an article by
Nosko et al. [42].

HDR camera demonstrator The HDR camera designed by Zemcik et al. [70] is shown
in Figure 3.17. The block diagram in Figure 3.18 shows the main building blocks of the
camera hardware, which heavily relies on programmable hardware, specifically the Xilinx
Zynq architecture that combines the FPGA technology with a couple of ARM CPUs (see
Section 3.2). This system core is accompanied with the H.264 video compression chips that
accomplish the standard task of 8-bit video compression that is a part of the proposed
compression scheme3. The complete HDR camera is completed with several electrical in-

3http://www.fujitsu.com/us/products/devices/semiconductor/H.264/mb86m01-2-3.html
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terfaces, such as SDI, and while it can run from battery power, it is also accompanied by
a battery power supply and charging blocks.

The SDI and also many other high-speed video interfaces are based on high-frequency
serial buses, which requires high-speed transceivers on the FPGA side. Even though its
relatively high price, we chose the Xilinx ZC706 board, equipped by SoC Zynq XC7Z0454 to
build this HDR camera prototype. In the time of development, it was the only reasonable
choice within the boards with high-speed GTX transceivers.

Figure 3.17: A photography of the HDR camera prototype. Note, please, the FPGA
development board, the compression modules, and also the Flare camera connected by SDI
interface. Image retrieved from Zemcik et al. [70].

Figure 3.18: Overall scheme of HDR Acquisition architecture published in [70].

3.4 Ghost avoiding/removing solutions
The following section summarises the state-of-the-art HDR acquisition solutions, which
either suppress and remove ghosting effect or prevent its occurrence.

HDR camera based on dual-gain CMOS by Tang et al.

Tang et al. [56] developed an HDR camera based on Altera FPGA and equipped with dual-
channel CMOS GSENSE400BSI, which is able to apply different analogue gain to the same
captured data (see the prototype on Figure [56]). The HDR camera can capture the wide
dynamic range image of the nature scene without ghosting phenomenon, by combining the
two images with different gain to an HDR frame up to 95 dB. Additionally, the frames
are captured at the same moment by two channels with different gain, which reduces the

4https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
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interference between successive frames. However, the CMOS sensor has a rolling shutter,
and the disruptive effects can still occur. [56]

The dual-gain CMOS sensor uses two parallel gain amplifiers followed by ADCs to
convert the input pixel into digital information (see Figure 3.20). In the HG (High gain)
image, it clearly records the details of the dark region of the target scene but loses the
details of the bright region. On the contrary, the details of the bright region of the target
scene are recorded clearly, but the details of the dark region are lost in the LG (Low gain)
image. To obtain more useful information of HG images and LG images at the same time,
we can take advantage of the complementary relationship between HG images and LG
images, especially when there is a large gap between the target brightness and background
brightness in some scenes. [56]

In such way of HDR acquisition avoids rising of ghosting effect caused by sequential
image acquisition; however, the CMOS sensor has a rolling shutter, and then another kind
of image artefacts still occurs. The maximum frame rate of the camera is 60 FPS at a
resolution of 1920 × 1080. The camera uses a global tone mapping operator by Duan et
al. [8].

Figure 3.19: The hardware platform of the camera by Tang et al. [56]. Image retrieved
from [56].

Figure 3.20: The system block diagram of the camera by Tang et al. [56]. PGA – Pro-
grammable Gain Amplifier. Image retrieved from [56].
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Real-time ghost-free HDR video using weight adaptation by Bouderbane et al.

Bouderbane et al. [4] implemented a deghosting algorithm on the same platform as Lapray
et al. [27]. Their method repose on the modulation of weights of the Debevec [5] algorithm,
where they adjust pixel weights based on their deviation from pixels of the reference image
using the weighting function given [3] (see Figure 3.21) which parameters are taken from
Sidibe et al. [51].

To calculate final weighs (Figure 3.21 right) to be used in the high dynamic range
reconstruction, they multiply the standard weights from Debevec [5] by the modulation
factor (Figure 3.21 left).

Figure 3.21: The weight modulation factor (left) and the final weight function(right) used
in ghost removal HDR merging. Red curve is the factor for the closest radiance value of
LDR images to the reference radiance value, the blue curve is the farthest value from the
reference value and the green curve is for middle values. Image retrieved from [4].

The implemented FPGA design (including the pipeline of Lapray et al. [27]) uses 29%
of the Xilinx Virtex-6 (xc6vlx240t) FPGA and the maximal clocking frequency is 114MHz.

Figure 3.22: Results of deghosting method proposed and implemented by Bouderbane et
al. [4]. Image retrieved from [4].

The camera is based on a Xilinx ML605 platform board. With FPGA Xilinx Virtex-6
(xc6vlx240t). The ML605 board integrates a 512 MB SDRAM used to buffer the sequence of
three images, which are managed by the memory management unit of Lapray et al. [25, 26,
27]. The attached PCB module integrates an E2V CMOS with a resolution of 1280× 1024
pixels. The Ethernet interface is used to stream the HDR images to a host computer with
two modes, 32 bits images at 15 FPS (limited by 1Gbit Ethernet) or 8 bits tone mapped
images at 60 FPS (limited by a sensor), both modes in full resolution. The DVI output
interface is used to display tonemapped HDR frames on a monitor.
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Figure 3.23: Xilinx Virtex-6 FPGA development board equipped with colour CMOS, where
Bouderbane et al. [4] implemented the HDR image acquisition and deghosting algorithms.
Image retrieved from [4].

True HDR camera with bilateral filter based tone mapping by Nosko et al.

Nosko et al. [41] published the HDR architecture implemented on a custom camera platform
based on SoC Xilinx Zynq XC7Z020 (see Figure 3.24). The platform is equipped by a low
noise global shutter CMOS sensor Python2000 from ON Semiconductor, connected directly
to FPGA through high-speed LVDS (Low Voltage Differential Lines) interface. The CMOS
has a resolution of 1920 × 1280 pixels. The camera provides up to 30 FPS of grayscale
HDR video with fixed f-stop range. However, the architecture itself is capable of processing
up to 96 FPS. The architecture implements a high quality local tonemapping operator by
Durand [9] based on the bilateral filter of 9 × 9 pixels. Resulting tonemapped image is
streamed over the network in the form of MPEG2-TS stream.

The HDR camera architecture published by Nosko et al. [41] is based on the method by
Debevec [5]. The exposition weights for individual images are calculated as follows: Given
the image with shortest exposition 𝑡1 time weight equal to one, the other images will be
given the weights of 𝑡𝑖

𝑡1
, where 𝑡𝑖 is exposition time of 𝑖th image in sequence. The HDR

pixel value is computed as follows:

𝐻 =

∑︀𝑛
𝑖=1 𝐿𝑖 · 𝑤(𝐿𝑖) · 𝑡𝑖

𝑡1∑︀𝑛
𝑖=1𝑤(𝐿𝑖)

(3.1)

where is the HDR pixel value, 𝐿𝑥 is the x-th image in the sequence, 𝑡𝑖 exposition time
of i-th image and 𝑤 the weighting function 2.1).

Unlike the algorithm by Debevec [5] they chose a plateau weighing function (see Fig-
ure 2.1) as the one leading to the best visual experience; however, it can be easily cus-
tomized.

The exposition time of the middle image in the sequence is configurable, however, the
mutual intervals between exposures are fixed to multiples of two, which leads to shift
operations instead of multiplication. Only a middle exposition value is configurable [41].

The resulting HDR pixel is obtained by dividing the sum of pixels by sum of weights.
The division is a time and resource-demanding operation, so Nosko et al. [41] decided to
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Figure 3.24: Prototype of HDR camera by Nosko et al. [41, 42]

convert it into multiplication by a tabulated fractional value. The sum of weights, according
to bit-widths of intermediate results, needs to be represented by 11 bits (sum of three 9 bit
values fits into 11 bits), so the fraction value is tabulated on 2048 entries. The resulting
HDR pixel is in 10.8 fixed-point representation.

HDR camera prototype

The HDR camera developed by Nosko et al. [41, 42] (Figure 3.24) is based on Xilinx
Zynq architecture that combines the FPGA technology with a couple of ARM CPUs (see
Section 3.2). The camera is accompanied with the H.264 video compression chip5 that
accomplish the encoding of the video output in the form of HDR tonemapped video.

The sensor is attached directly to the FPGA through high-speed multi-line LVDS in-
terface, which does not require the presence of high-speed serial GTX transmitters on the
chip and therefore allows the use of low-cost Zynq XC7Z020. This FPGA has quite limited
resources, but the experiments revealed that the resources are sufficient, even for imple-
mentation of advanced local HDR tonemapping.

colour HDR video processing architecture for the smart camera by Nosko et
al.

This architecture further improves the architecture by Nosko et al. [41]. The architecture
provides up to 30 FPS of colour HDR video with fully adjustable f-stops. However, the
architecture itself is capable of processing up to 96 FPS. The architecture implements
particularly a ghost removal algorithm and a high quality local tonemapping operator by
Durand [9] based on the bilateral filter of 11 × 11 pixels.

The architecture is further enhanced by a colour support. They process individual
pixels of colour Filter Array (CFA), in this case, a Bayer mask, in the same manner as
the grayscale pixels [55]. The colourization of the HDR image is done later, during the
tonemapping process.

HDR merging with ghost-free extension The ghost-free HDR merging is based on
the prediction of the pixel value. It is based on similar principles as the solutions of
Grosch [15], Wu [66] and Wang [63].

5http://www.fujitsu.com/us/products/devices/semiconductor/H.264/mb86m01-2-3.html
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Since the exposure time of each image is known, individual pixel values in image 𝑖 can
be predicted using values from 𝑗.

𝐿𝑖 ≈ 𝐿𝑗 ·
𝑡𝑖
𝑡𝑗

(3.2)

where 𝑡𝑥 and 𝑡𝑦 are exposition times of images. This relation holds only for non-saturated
patches, over/under-exposed patches must be handled differently. The ghost detection is
performed before the HDR merging phase, resulting in ghost pixel mask (further called as
ghostmap), where the marked positions are treated differently from the non-marked ones
during the HDR merging.

The function Ω tests the two images whether their pixels follows the prediction:

Ω(𝐿𝑖, 𝐿𝑗) =

⎧⎪⎨⎪⎩
0 𝐿𝑖 · 𝑡𝑗

𝑡𝑖
/𝛼 > 𝐿𝑗

0 𝐿𝑖 · 𝑡𝑗
𝑡𝑖
· 𝛼 < 𝐿𝑖

1 else
(3.3)

where 𝛼 represents the tolerance, which must be taken into account, since the sensor noise,
quantization errors and CRF precision may influence the predicted value and thus cause
the false ghost detections. According to the experiments, they use the tolerance 𝛼 = 1.2 as
default, but this value can be adjusted based on the sensor features. In general, decreasing
tolerance leads to more strict ghost detection, where more pixels are marked as ghosts,
which eventually leads to worse dynamic range recovery. Increasing the ratio, on the other
hand, decreases the chance of successful ghost detection. The ghostmap is defined as follows:

𝐺 =

𝑁−1∏︁
𝑖=1

Ω(𝐿𝑖, 𝐿𝑖+1) (3.4)

where non-zero value of 𝐺 marks ghost pixels. The algorithm description is simplified
by pixel range control - all of the under/over-exposed pixels are omitted from the value
prediction; Still, they are tested for extreme luminance changes (dark to bright and vice
versa). The algorithm works per-pixel and uses simple arithmetic operations, and thus it is
suitable for implementation on FPGA. The follow-up HDR merging algorithm is modified
and in the areas, where ghostmap indicates motion, incorporates the pixels from only one
image, called reference image, which is generally the best exposed or middle exposed image
in the sequence.

Nosko et al. [42] implemented the HDR merging algorithm from Debevec [5] with mod-
ification for Ghost removal. Every pixel is assigned with the weight 𝑤, calculated using the
triangle weight function by Debevec [5]. The function was modified for the shortest and the
longest exposure since in the original algorithm, the saturated pixels are assigned a value
darker than pixels not completely saturated.

The HDR image 𝐻 is a weighted sum of corresponding pixels in sequence of L:

𝐻 =
1
𝑡1

∑︀𝑛
𝑖=1 𝜃(𝑖) · 𝑤(𝐿𝑖) · 𝐿𝑖 · 𝑡𝑖∑︀𝑛

𝑖=1 𝜃(𝑖) · 𝑤(𝐿𝑖)
(3.5)

where 𝑛 is number of images in the sequence, sorted by ascending time. The time 𝑡1 is used
to shift pixel values to the common time base. The function 𝜃 incorporates the results of
ghost detection, where 𝜃 = 1 for reference image and 𝜃 = 1 −𝐺 otherwise.
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Chapter 4

Proposal of ghost-free HDR
algorithm

This chapter contains the proposal of a novel ghost-free HDR merging algorithm, which
is the core of my work during the pursuing of my Ph.D. The core of this chapter was
published in Journal of Real-Time image processing as the article ”De-Ghosted HDR Video
Acquisition for Embedded Systems“ [39].

The scientific contribution of this thesis is the proof that:

A multi-exposure ghost-free HDR acquisition algorithm comparable to the state-of-the-
art algorithms in quality can be designed for an embedded hardware device and achieves a
real-time performance at high resolution.

The embedded hardware device should be based on FPGA technology with FullHD
CMOS sensor onboard, at the same time be small in size and with low power demands to
fit into the energy-efficient or battery-powered systems.

In this chapter, a novel architecture implementing the above idea in FPGA is proposed
and its functionality and quality of output are experimentally proved. The chapter consists
of the quality comparison to the related implementations and even state-of-the-art methods,
that are too computationally demanding and even not feasible to implement and/or accel-
erate on FPGA. The aim is to show that proposed solution is simple, yet very powerful and
providing good visual results at the same time. The performance and power consumption
of algorithm implemented on various platforms is summarized at the end of this chapter.

The proposed novel ghost-free HDR acquisition method for stationary cameras is well
implementable even in embedded systems in real-time with low resource requirements.
While de-ghosting is being researched for a long time, the state-of-the-art methods that
have good results are very computationally demanding and so they are not possible to
implement in smart cameras and/or embedded systems attached to cameras. The novel
HDR de-ghosting method proposed in this dissertation was designed with respect to real-
time processing in embedded hardware and the low demands reflects positively even to
performance of CPU implementation. [39].
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Figure 4.1: Figure obtained from real application of proposed ghost-free algorithm - traffic
monitoring system with licence plate detection, which demonstrates the contribution of
proposed method. Top left - stripes of original images with a significant car motion. Top
middle and top right - Images representing coefficients used for the HDR merging (certainty
maps, see Section 4.1). Bottom left - ghosted HDR image. Bottom right - HDR image
merged using proposed method.

4.1 Ghost-free merging algorithm
This section describes the proposal of a novel HDR merging method that produces ghost-
free results. This approach is based on pixel value matching, the idea being similar to the
solutions proposed by Grosch [15], Wu [66], and Wang [63] but with quite different and
improved processing. The exposure time of each image is known; therefore, it is possible
to estimate and match pixel values in the adjacent images, except for the over or under-
exposed patches where the pixel values will obviously not match. Such estimation is not very
precise, the captured image data is affected by factors such as noise, sensor quantization
errors, CRF, etc. The reviewed methods generally use fixed or user-guided thresholds which
must be employed in order to introduce user-defined tolerance to these factors. These fixed
or user-defined thresholds often cause adverse effects in the final HDR images, such as
visible transitions between static and motion areas etc. I propose a method to overcome
such problems. [39]

4.1.1 Certainty map

In this approach, every image 𝐿𝑖 is assigned a Certainty map 𝐶𝑖 related to the reference
image 𝐿𝑟𝑒𝑓 , which is generally considered to be the middle (exposure) image in the sequence.
The Certainty map 𝐶 contains values representing the estimated level of certainty that the
individual pixels contain the same patch of the scene as the reference pixel, but obtained
under a different exposure. Unlike ghostmaps, Certainty maps hold not only the patches
containing motion, but rather all patches inappropriate for merging - such as under and
over-exposed pixels. [39].
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The probability distribution of low level value pixels is Poisson [29] due to the discrete
nature of the incoming photons. With higher intensities, the distribution transforms into
Normal (Gaussian). Therefore, I use the Gaussian function to derive the certainty (esti-
mated probability) that the two luminance levels, estimated and measured, match. The
Certainty map 𝐶𝑖 (see Figure 4.2) replaces the binary ghostmap with soft assigned values,
obtained using the information from the reference image 𝐿𝑟𝑒𝑓 , the estimated image 𝐿𝑖,
the exposure times 𝑡𝑖 and 𝑡𝑟𝑒𝑓 , as well as the CRF. Note, please, that in this paper the
inverse CRF was implicitly applied to all images 𝐿𝑖. Image 𝐿𝑖 is estimated by the following
equation:

𝐿𝑖 = 𝐿𝑟𝑒𝑓 ·
(︂

𝑡𝑖
𝑡𝑟𝑒𝑓

)︂
(4.1)

Consequently, the estimated value for image 𝑖 is processed along with the actual value
of 𝐿𝑖 to get the probability based Certainty map 𝐶𝑖 as:

𝐶𝑖 = 𝑒−
(𝐿𝑖−𝐿𝑖)

2

2𝜎2 (4.2)

where 𝜎 reflects the standard deviation of the pixel measurement (affecting the ”softness“
weight). The lower 𝜎 is, the sharper or more strict the Certainty maps are, which results
mainly in the dynamic range reduction. On the other hand, a high 𝜎 causes ”softer“
Certainty maps, which may start to be ghosted. Ghost detection generally, and indeed
inherently, cannot work well for the over and under-exposed spots of an image; thus the
Certainty map algorithm contains a boundary condition: If the estimated value lies beyond
the point of saturation, the Certainty is assigned at maximum value. [39].

Figure 4.2: Two Certainty maps (bottom) obtained from the sequence on the top. The
Certainty map on the left was obtained from top left and top middle (reference) image, the
Certainty map on the right was obtained from top middle (reference) and top right image.

4.1.2 Multi-exposure merging algorithm

Proposed modification of Debevec’s [5] merging algorithm incorporates the weights from
the Certainty map, obtained through Equation 4.2. The HDR image 𝐻 is calculated as the
weighted sum of pixels from 𝑛 images using the following equation:

𝐻 =
𝐶𝑖 · 𝑤(𝐿𝑖) · 𝐿𝑖 · 𝑡𝑖

𝑡𝑚𝑖𝑛∑︀𝑛
𝑖=1(𝐶𝑖 · 𝑤(𝐿𝑖))

(4.3)

The 𝐶𝑖 for reference image certainty is considered to be 1.
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Figure 4.3: A scheme illustrating the proposed ghost-free merging of according to Equa-
tion 4.3 on a sequence of three images.

The 𝑤(𝐿𝑟𝑒𝑓 ) is considered to be 1, as the reference image is a ”pattern“ with the desired
object layout; it is not desirable to weight out the pixels, even if poorly exposed. A scheme
illustrating the Equation 4.2 is shown in Figure 4.3. [39].

4.2 Implementation in HDR pipeline
This section describe how the proposed algorithm was implemented, with goal to incorpo-
rate it into processing pipeline of architecture by Nosko et al. [42].

The proposed algorithm was designed, in line with the previous assessment, with respect
to real-time processing using embedded hardware – we are considering mainly FPGA based
platforms and SoC equipped with GPU (e.g. NVIDIA Tegra). The standard desktop CPU
implementation is included mainly for comparison.

The ghost-free merging unit consists of two components, Certainty map creation (Sec-
tion 4.1.1) and HDR merging (Section 4.1.2). The Certainty map is obtained by predicting
and matching the luminance levels, thus it is necessary to provide luminance images. The
RAW data from sensors, e.g. in embedded devices/cameras, should, therefore, to be con-
verted to luminance because if the individual RGB channels are processed separately, their
saturation, which is independent for each channel, may lead to results of Certainty different
for individual color channels and thus to adverse color shifts during HDR merging.

The value of 𝜎 should be adjusted based on the image sensor noise, including the
quantisation noise, and the Exposure Value (EV) step (exposure time ratio) between the
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individual images in the HDR sequence. In our reference implementation, we achieved the
best results with 𝜎 = 5 for the exposure step of 1EV and 𝜎 = 11 for 2EV.

The proposed merging algorithm (Section 4.1.2) is applicable on grayscale, RGB and
also RAW image data. The RAW data can be merged in the original form before debayering
and debayered afterwards, as proposed by Tamburrino et al. [55]; thus, this implementation
can save approximately 2/3 of the operations comparing to merging in RGB space.

The proposed ghost-free merging is applicable to an arbitrary number of images in the
sequence of exposures. However, the following implementation and performance compar-
isons are related to merging of three images, unless stated otherwise. [39].

Figure 4.4: Ghosted HDRs (top line) and HDRs merged using proposed ghost-free method
(bottom line) on sequences ”Fast cars“ [59] (left), ”105“ [60] (middle) and ”117“ [60] (right).
Datasets contains 9 LDR (Low Dynamic Range) images.

The proposed algorithm was implemented as a part of FPGA based HDR video acquisi-
tion pipeline[42]. The pipeline was implemented on platform equipped by SoC Xilinx Zynq
XC7Z020 (see Figure 3.24).

Computational optimizations

The proposed algorithm performs per-pixel processing and requires a relatively small num-
ber of per-pixel operations. Some of its functionality is computationally demanding (e.g.
division and Gauss function calculation), however, it can be optimised and/or tabulated.
Inverse CRF and triangle weight functions can be tabulated thanks to the limited number
of possible LDR (Low Dynamic Range) pixel values. The ratio between exposures 𝑡𝑖 and
𝑡𝑟𝑒𝑓 in Equation 4.1 can be calculated once for each setting of LDR exposure times. The
Gaussian function (Equation 4.2) can be convenient because the pixel values are discrete
and only a finite combination of pixel values is possible, especially when considering only
the differences between the captured and predicted values. The number of the Gaussian
function results with relevant certainty, e.g. > 1% is limited, especially for a higher 𝜎. The
evaluation in Section 4.3 is performed with 𝜎 = 11.0, which leads only to 35 various results.

The functions represented in the tables are pre-calculated using the processors present in
the embedded acceleration platforms. If needed, they can be updated while the accelerator
executes the main algorithm.
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Figure 4.5: Output of the proposed ghost-free merging method on the sequence of Gallo [14]
(top). Previews of the various algorithm results are shown at the bottom: Gallo et
al. [14] (A), Jacobs et al. [18] (B), Pece et al. [44] (C), Zhang et al. [71] (D) and proposed
algorithm (E). The previews A to D are published online at http://www.vsislab.com/
projects/IPM/HDR/project.html.

Evaluation of precision

The CPU and GPU reference implementations are written in C++ and CUDA, using
standard 32-bit floating point data type. The whole FPGA design is implemented using
only fixed point data representation and arithmetic, which is natural and also efficient
for FPGA hardware. The ranges of numerical values in the individual pipeline stages are
known; therefore, it is feasible to adapt the bit width of the individual parts of the pipeline
to achieve a sufficient range (and precision) without using the floating point representation,
whose resource requirements are generally much higher. The FPGA implementation is fixed
for merging three LDR images with up to 10 bit depth. The input of the ghost detection
block consists in three corresponding pixels in 10.8 fixed point representation (10 bits for
integer and 8 bits for decimal part). The fractional part can be used for the data after the
linearisation process (application of CRF – Camera Response Function [5, 48, 37]). The
resulting Certainty maps are in the 1.10 format and all further mathematical operations
during the HDR merging are performed using 10.12 precision. The accuracy of fixed point
arithmetic comparing to the software float implementation is evaluated using PSNR and
MSSIM metrics. The ghost detection and merging achieved PSNR of 51.1 and 58, MSSIM
is over 99% for both algorithms, using the above mentioned 12bit fractional bits.

The Table 4.1 presents an FPGA resource consumption of proposed design. The abbre-
viations in the table describes the FPGA primitives: LUT – Look-up Table; FF – registers;
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Table 4.1: FPGA Resource utilisation for merging 3 LDR images of 1920 × 1080 pixels.
Design is routed for Xilinx Zynq Z-7020.

LUT LUTRAM FF BRAM DSP
Certainty maps 3532 – 3339 4 4
HDR merging 893 – 2570 10 16
Total (HLS) 4425 – 5909 14 20
Total (Routing) 1057 252 2052 2 16
available 53200 17400 106400 280 220
utilisation [%] 1.99 1.45 1.93 0.72 7.27

BRAM – Block RAM (36kbit block of distributed memory); DSP – Digital Signal Process-
ing block (used as a multiplier); LUTRAM – LUT-based small distributed memory.

A line ”Total (HLS)“ indicates the amount of resources estimated by Xilinx High Level
Synthesis (HLS) design tool1. Such resources are quite often overrated and the Place and
Route process optimises out an unnecessary logic (see line ”Total (Routing)“) for the target
FPGA. The Table 4.1 shows e.g. most of BRAM resources were conveniently converted into
LUTRAM, probably due to only a few Gauss coefficients needed to store, as explained in
Subsection 4.2.

Table 4.2: Resource utilization of complete camera solution of Nosko et al. [42] enhanced
by the proposed ghost-free merging block, comparing to Bouderbane [3].

LUT LUTRAM FF BRAM DSP
Prop. pipeline 39145 3137 53592 51 58
Bouderbane [3] 49193 – 50399 35 20

The proposed algorithm was implemented into FPGA based HDR video acquisition
pipeline proposed by Nosko et al.[42]. The proposed algorithm was designed to replace the
original and very simple ”Deghosting & merging“ block (please refer to Nosko et al. [42]).
The Table 4.2 compares the resources consumed by such pipeline with pipeline from Boud-
erbane et al. [3]; unfortunately, they do not provide more detailed statistics. For detailed
description regarding pipeline, please refer to the article by Nosko et al. [42]. Please note
that proposed design is built on Xilinx Zynq and Bouderbane camera on Virtex-6 and also
that in Nosko’s pipeline, more than 1/3 of LUT and Register resources and most of BRAM
and DSPs are occupied by local tone-mapping operator [42].

4.3 State-of-the-art ghost removal evaluation
This section is focused on evaluation of proposed ghost-free HDR merging and provides the
comparison to the state-of-the-art algorithms.

The proposed algorithm is evaluated on HDR datasets focused on evaluation of HDR
deghosting methods [60, 59, 23], on the image sets retrieved from related articles [14, 50,
21] and also on the image sets captured by camera prototype by Nosko et al. [42] (see
Section 3.4).

1www.xilinx.com
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Figure 4.6: Sample outputs of related deghosting algorithms by Pece et al. [44] (left) and
Min et al. [35] (right) on the scene from Figure 4.1. Our experiments revealed that listed
algorithms should be successful only on images with convenient histogram distribution.

The results of the proposed ghost-free merging are presented in Figures 4.1, 4.4, 4.5,
4.9, 4.8, 4.10 and 4.12. Our method is suitable for almost any application with stationary
cameras. Besides the evaluation of various generic datasets, the ghost removing capability
was evaluated on a traffic monitoring task, where the main goal was to preserve the greatest
possible level of detail so that the images can serve as evidence, with the readability of the
licence plates of the vehicles in motion playing the most important part. Figure 4.1 contains
a car approaching camera at approximately 50km/h. Still, six exposures (∼ 66ms at 90FPS)
were intentionally omitted between the images to show the capability of the ghost removing
for e.g. faster moving objects.

According to presented results, the visual outputs are comparable to the state-of-the-art;
however, the proposed algorithm is capable of running in real-time, while state-of-the-art
algorithms require long offline processing in terms of seconds or even minutes per image.

The experiments with the related and state-of-the-art algorithms discovered that most
of the de-ghosting methods related to our approach are very dependent on scene composi-
tion, luminance distribution, or other assumptions. Proposed approach does not have such
limitations, it is more robust, and does not require user-guided tuning of parameters, unlike
algorithms with similar complexity.

Probably only related work, which implements any ghost-free merging on embedded
device, in this case on FPGA, was proposed by Bouderbane et al. [4]. They use method
by Debevec and Malik [5], where they combined weighting function from Debevec with
weight function proposed in their previous paper [3]; their method was inspired by the
work of Sidibe et al. [51]. However, the ghost detection is based only on weak assump-
tion, as Bouderbane use the weight function, which gives a higher factor for pixels whose
recovered radiance value are closed to the recovered radiance of reference values and low
factor for pixels whose radiance values diverge considerably from pixels radiance value of
the reference image. The evaluation of deghosting quality is rather limited, as source code
of their reference solution is not available and they did not evaluate their algorithm on any
third-party dataset. On the image data supplied within the article, the method suppress
ghosting quite well(see Figure 4.7) but the slight ghosting effect is still present (see results
in the article [3]), also the dynamic range is quite reduced, even in parts with static back-
ground.
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Figure 4.7: Figure shows the ghost-free HDR outputs of Bouderbane [4] (left) and proposed
method (right), both tonemapped by Duan [8] operator. Bouderbane result and source im-
ages are retrieved from [4]. Please mind the color shift in very bright patches of Bouderbane
result.

Algorithm by Gallo et al. [14] operates on relatively large rectangular patches (e.g.
40x40 pixels [14]) instead of individual pixels. If the patch contains large number of pixels
not corresponding to patch from the reference image, the patch is omitted from merging. As
the patches used in the algorithm are quite large, visible artifacts occur at their boundaries;
the authors suggest their suppression by Poisson blending.

The methods based on histograms [44, 35] have a common issue, the scene has to be
balanced from the point of histogram equalization. The method presented by Pece et
al. [44] is marking pixels as ghosts based on decision, whether the pixel changes its relative
position in histograms over all of the expositions. The position in histogram is acquired
by comparison with median pixel value. If median is very low/high, for example if the
scene has large large number of under/overexposed patches, the change of pixel position
in histogram cannot be reliably detected. In the method proposed by Min et al. [35], one
median threshold is replaced by eight percentiles and whole histogram is divided into nine
segments with equal number of pixels, but it only mitigates the same issue. The example
outputs of the Pece et al. [44] and Min et al. [35] algorithms on data obtained by Nosko’s
camera [42] are shown on Figure 4.6.

In general, the existing methods are more or less using fixed or user-adjusted thresholds
and binary ghost maps, which either includes the pixel into the merging process or omits
it completely. Such approach negatively affects the merging process and appearance of
the resulting HDR image, causes higher noise on the affected patches around the moving
objects, and also on wrongly detected patches.

4.3.1 Dataset evaluation and comparison

I performed the evaluation on datasets [23, 59, 60], containing sequences of images of various
scenes and different types of motion. The results provide a comparison of the proposed
method with generally more precise and computationally demanding methods, commonly
based on optical flow, which were not even included into the related work due to their
complexity and high computational demands.
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Figure 4.8: The source sequence (top left) is merged with (bottom) and without (top right)
proposed ghost-free merging algorithm. Source images retrieved from Sing Bing Kang [21].

Figure 4.9: Output of the proposed HDR ghost-free merging method for Complex Scene
1 of dataset [23] (left). Ghosted HDR image is shown on the right. Previews of various
algorithm results are shown at the bottom. No de-ghosting (A), Silk et al. [52] (B), Sen et
al. [50] (C), Photoshop (D), Photomatix (E) and proposed algorithm (F). The previews A
to E are published as a part of a Karaduzovic dataset [23].

One of the datasets [23] contains multiple scenes with artificial objects movements. Its
advantage consists in the existence of the ground truth image, which allows a comparison to
the results as well as to many results of various published methods [17, 50, 52]. Figures 4.5
and 4.9 show the capabilities of the proposed method, showing that it provides results
visually comparable to optical flow based methods.

Tursun et al. [59, 60] published two datasets and proposed metrics for evaluation of HDR
de-ghosting quality. The evaluated samples from the datasets are shown in Figure 4.4 and
the HDR quality metric [59] is evaluated in Table 4.3. The metric evaluates the dynamic
range achieved inside the motion regions, considering also the correctness of the de-ghosting.
The image sets, in which we got worse results than other algorithms, were successfully de-
ghosted anyway; however, the worse results were probably caused by losses in the dynamic
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Table 4.3: Results of the ”Dynamic Region Dynamic Range“ metric proposed by Tursun [59]
and evaluated on their dataset. The metric evaluates the resulting dynamic range within
regions containing movement; the higher the value, the better.

Metric ”DR“ [15] [50] [52] none This work
Cafe 2.63 2.61 2.60 2.47 2.42
FastCars 1.12 1.18 1.10 1.10 1.38
Flag 1.40 1.50 1.49 1.45 1.59
Gallery1 1.59 1.59 1.56 1.55 1.70
Gallery2 2.41 2.56 2.14 2.29 2.05
LibrarySide 1.78 1.93 1.60 1.76 3.20
Shop1 2.20 2.39 2.00 2.10 2.42
Shop2 2.68 2.72 2.89 2.55 2.42
WalkingP. 1.94 2.07 1.83 2.05 1.58

Table 4.4: Evaluation of the HDR-VDP2 [33] metric on a ”complex“ scene from Karadu-
zovic’s [23] dataset.

scene1 scene2 scene3 scene 4
Q 73.24 76.20 82.83 71.58

range. Evaluation of the proposed method on these datasets also proves that the proposed
method is generally usable for sequences larger than two/three images, commonly used
in cameras. In all the referenced datasets [23, 59, 60], the proposed algorithms achieved
results visually comparable or even better than more complex algorithms (see Figure 4.10).
However, the proposed method and also many HDR de-ghosting methods may yield artifacts
in regions where the moving objects in the reference image are poorly-exposed, as Tursun
et al. concluded [59].

Another metric that have been found useful is HDR-VDP2 by Mantiuk et al. [33].
The metric evaluates the visibility and quality differences in image pairs and represents a
probability that an average observer will notice a difference in the images in the pair (see
Figure 4.11). The essential problem for the metric evaluation is the absence of ground truth
images. Applying this metric on image sets without ground truth reference seems useless,
as even the state-of-the-art algorithms may fail in ghost detection and/or changes in the
image quality e.g. by bluring of motion regions (see top of Figure 4.10). As a result, the
metric output obtained on such data does not have any meaningful value.

Karaduzovic’s [23] dataset contains ground truth images, because it contains scenes
with artificial object motion. The metric was evaluated on ”complex“ scenes and used the
HDR merged from the ground truth sequence as a reference. The ground truth sequence
is processed also by our algorithm (with de-ghosting disabled) to eliminate the effect of
unrelated image enhancements and enables the direct comparison of the resulting HDR
images. Table 4.4 contains an overall ”quality“ metric of the produced ghost-free HDR
output according to HDR-VDP2 [33] metric. Figure 4.11 shows ”scene 1“ with highlighted
differences between ground truth HDR and ghost-free HDR.
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Figure 4.10: Figure shows scene ”Cafe“ from Tursun’s [59] dataset processed with
Sen [50](top) and the proposed ghost-free algorithm(bottom). Sen [50] produce a heav-
ily blured image, which precludes the HDR-VDP metric [33]; moreover, the de-ghosting
method fails (see marked areas, where objects are shadowed and blured).

4.4 Performance summary
The performance of the algorithm on the relevant platforms is summarised in Table 4.5.
Only the core parts, the certainty map creation and HDR merging were benchmarked,
without including any data preprocessing time – please assume that at least in the FPGA
and GPU implementations, the images are transferred into the memory using DMA in the
background, without any performance losses. With the proposed optimisations, the algo-
rithm is single-pass only. Table 4.5 compares the performance of the proposed Ghost-free
merging of three LDR images on FPGA, SoC GPU and CPU platforms. In the case of
FPGA, the design achieves target frequency of 200MHz and is fully pipelined; therefore, it
allows the production of result pixels every clock cycle. Unlike in the sequential CPU and
GPU processing, increasing the amount of work that the FPGA pipeline performs leads to
consumption of more resources and prolonging the processing pipeline, which has a negative
influence on latency; however, the data throughput remains the same (see Table 4.5).

Table 4.5: The table compares the performance of the proposed ghost-free merging of 3
LDR images (Figure 4.2) with a resolution of 1920 × 1080 on following platforms: FPGA
Xilinx Zynq, embedded CPU and GPU Nvidia Tegra TX2 and CPU Intel Core i7-3770
(single core).

FPGA TX2 GPU TX2 CPU CPU
Certainty map [ms] 10.3 1.59 45.9 16.6
Merging [ms] 10.3 4.58 112.3 23.0
Total [ms] 10.3 6.17 158.2 39.6
Overall FPS 96.45 162.07 6.32 25.25

58



Figure 4.11: Figure shows ”scene 1“ from Karaduzovic’s [23] dataset processed by the
HDR-VDP2 [33] metric. The colour bar reflects the probability that an average observer
will notice a difference between ghost-free HDR and ground truth HDR. De-ghosted HDR
visual quality, according to HDR-VDP2 metric [33] is 73.24 (see Table 4.4).

I chose the HDR camera prototype by Nosko et al. [42] for the integration of the proposed
ghost-free method. I chose this camera prototype due to its compact size, presence of
a FullHD resolution CMOS (and optionally with even higher resolution) and presence of
Xilinx Zynq SoC. Moreover, I participated on the development of Nosko’s prototype as well.
The proposed method and its implementation into architecture Nosko et al. [42] have not
been published yet; however, the performance parameters are already known. Moreover,
I have designed the new ghost-free merging block as a 1 to 1 replacement of previously
published HDR merging with ghost removal[42], then the overall design shares all other
features, such as advanced local tonemapping.

The proposed algorithm should also be easily integrated into existing solutions of HDR
acquisition devices by Popadic et al. [45], Lapray [27], Nosko [41] and probably others which
are all based on pixel weighting, similar to Debevec and Malik [5].

The implementation on Nosko’s platform allowed direct comparison with other archi-
tectures, however, probably only related work, which implements multi-exposure ghost-free
HDR acquisition on an embedded device, in this case on FPGA, was proposed by Bouder-
bane et al. [4]. The Table 4.6 provides an overall comparison to Bouderbane solution.

As can be seen on Table 4.6, the design outperforms the Bouderbane architecture in
all parameters. The design is fully pipelined, producing HDR pixel in every clock cycle.
Target clocking frequency is 200MHz, which enables the acquisition of FullHD HDR im-
ages at up to 96FPS. The fixed point arithmetic has a positive contribution to clocking
frequency, low resource requirement and low power consumption. At the same time, the
calculations are still performed in high accuracy, which was summarized in Section 4.2. The
platforms are both implemented in different FPGA family, where Zynq is part of 7th and
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Figure 4.12: A car passing by the camera – ghosted HDR (left) and result of the proposed
ghost-free merging algorithm (right).

Table 4.6: Comparison of main parameters of proposed solution to Bouderbane et al. [4].

Proposed pipeline on [42] Bouderbane
Platform Zynq 7020 Virtex 6
Resolution 1920 × 1080 1280 × 1024
TMO Durand (Local) Duan (Global)
Arithmetic Fixed point Floating point
Maximum speed 200𝑀ℎ𝑧 114.2𝑀ℎ𝑧
Throughput 200𝑀𝑝𝑖𝑥/𝑠 114.2𝑀𝑝𝑖𝑥/𝑠
Framerate 96𝐹𝑃𝑆 60𝐹𝑃𝑆

Virtex part of 6th series from Xilinx. However, Virtex is a High end, while Zynq(Artix)
only mid or low-end FPGA. The Table 4.2 shows the overall FPGA resource consumption
for both complete camera solutions; Bouderbane does not provide separately the resources
consumed by deghosting and HDR merging circuits. Please notice that local tonemapping
operator with bilateral filter (on Nosko’s platform) require more than 1/3 of overall LUT
and Register resources and consumes most of BRAM and DSP resources.

The following part of the evaluation aims to compare proposed algorithm performance to
related state-of-the-art implementations. The essential problem is those relevant algorithms
are not generally available in the form of code or executable; therefore the performance
comparison is rather limited to algorithms, where I managed to get source codes to run or
where I get required information from relevant articles.

The comparison from Table 4.7 confirms that deghosting algorithms do not generally
achieve real-time performance. Depending on the algorithm and desired deghosting quality
(if available), the process can take from tens of seconds to more than ten minutes. Certain
algorithms, such as Grosh [15] which have similar computation complexity as the proposed
algorithm, do achieve relatively low processing time, however, the output is not deghosted
very well, as shown in evaluation by Tursun et al. [59]. The Table 4.7 shows, that proposed
algorithm is running much faster than any compared algorithm and is even twice faster
than the algorithm by Grosch [15]. Please note, that average times from Table 4.7 are valid
for sets of nine images with 4MPix resolution.
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Table 4.7: Table results obtained from Tursun et al. [59]. The table shows the average
processing time of deghosting algorithms on Tursun dataset [59]. Source image sets contain
9 images with 4MPix resolution (Sen and Khan merges three images with 1024×683 only).
Tursun achieved these results on CPU Intel i7-3770; however, it is not specified whether
the algorithms utilized all CPU cores or not. Proposed method result is benchmarked as
single-core.

Proposed Grosch[15] Khan[24] Sen[50] Silk[52] Hu[17] Tursun[59]
Avg. time[s] 0.48 1.04 616.45 209.78 14.33 230.36 7.09

The Table 4.8 compares the performance of proposed algorithm and algorithms by Pece
et al. [44] and Min et al. [35]. I chose these algorithms to compare due to its possible easy
implementation on FPGA; the author claims that the algorithm does not use the multi-
plication, division, and floating-point operations for object motion detection. Moreover,
all operations, including the histogram calculation, are relatively easily implementable on
FPGA. Also, the deghosting ability presented in the paper seemed to be very promising.

Table 4.8: Table compares the performance of the proposed algorithm with algorithms by
Pece et al. [44] and Min et al. [35]. Algorithms were benchmarked on CPU Intel i7-3770
(single thread) on a scene from Figure 4.1. Source image set contains three images with
FullHD resolution (1920 × 1080).

Proposed Pece et al. [44] Min et al. [35]
Avg. time [ms] 39.6 193 206

I implemented the proposed algorithm and algorithms by Pece et al. [44] and Min et
al. [35] in C++, so the performance presented in Table 4.8 should be comparable. As could
be observed, the proposed algorithm is almost five-times faster. Moreover, the deghosting
results are also better, as can be observed in Figure 4.6. The explanation of why these
methods do not achieve good deghosting results is in the Subsection 4.3.

The Table 4.9 presents the performance results obtained by Yan et al. [69] and presented
in their article. They compared a number of algorithms and benchmarked them on CPU
Intel i7 and GPU NVIDIA GeForce GTX 1080Ti. As can be observed, the proposed
algorithm achieved better performance on CPU architecture (single-core) than others on
even high-end GPUs. Yan’s [69] and Wu’s [67] CNN-based merging are relatively fast;
however, they run on high-end GPU, which consumes much more energy than CPU (up to
280W).

Table 4.9: Table results obtained from Yan et al. [69]. Table shows average processing time
of deghosting algorithms on three images with resolution 1000 × 1500. CPU used is Intel
i7 (not further specified by Yan), GPU used is NVIDIA GeForce GTX 1080Ti.

Algorithm Proposed Yan [69] Wu [67] Kalantari [20] Sen [50] Wu [66]
Platform CPU GPU GPU CPU+GPU CPU CPU
Time [s] 0.022 0.31 0.24 29.14 61.81 79.77
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4.4.1 Power consumption summary

This subsection provides a brief comparison of the power consumption of selected algo-
rithms. The overall energy in Joules per one frame is estimated from processing time and
TDP of a processor; alternatively, FPGA consumption is estimated by the design tools
based on the amount of logic used. The Table 4.10 and Table 4.11 contains the energy
requirements converted from performance summary in Table 4.7 and Table 4.8.

Table 4.10 presents that the proposed algorithm has the lowest power consumption
among all of the measured algorithms. The results were achieved on the dataset published
by Tursun[59], which contains sequences of nine images with 4MPix resolution. It is not
specified by Tursun [59] whether the algorithms utilize single or multiple cores; therefore, I
assume only single-core implementation as a lower estimate of the possible power consump-
tion. Proposed method result is benchmarked as single-core.

Table 4.10: Table of energy consumption per HDR frame, derived from Table 4.7. The table
shows average energy consumption for processing one HDR frame of deghosting algorithms
on Tursun dataset [59].

Proposed Grosch[15] Khan[24] Sen[50] Silk[52] Hu[17] Tursun[59]
Avg.

energy [J] 12 26 15411 5244 358 5759 177

Table 4.11: Table compares the energy consumption for processing one HDR frame by
proposed algorithm with algorithms by Pece et al. [44] and Min et al. [35]. Algorithms were
benchmarked on CPU Intel i7-3770 (single thread) on scene from Figure 4.1. Source image
set contains three images with FullHD resolution (1920 × 1080).

Proposed Pece et al. [44] Min et al. [35]
Avg. energy [J] 0.99 4.82 5.15

The average consumption is 12J per one HDR frame, which is 46% of the second least
demanding algorithm by Grosh [15]. Moreover, proposed algorithm demands are measured
for single-core processing only, whether the data provided by Tursun [59] are not specified
whether were achieved on single-core only; however, the results in Table 4.7 and Table 4.10
assumes they are.

Table 4.12: The table compares the power consumption of the proposed algorithm on the
CPU and FPGA platform and shows the estimated energy required for the ghost-free merge
of the sequence of three FullHD images. Please note that consumption of Camera Nosko [42]
includes camera as a whole.

Consumption [W] Energy per frame [J] comp. to CPU[%]
CPU Intel i7-3770 25W (single core) 0.99 —

Camera Nosko [42] (30FPS) ∼8W 0.266 26.9
Camera Nosko [42] (96 FPS) ∼8W 0.083 8.3

Tegra TX2 - GPU only 15W 0.093 9.3
Proposed - FPGA only 1,1W 0.0115 1.16
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Table 4.13: The table compares performance of proposed Ghost-free merging of three LDR
images (Figure 4.2) of resolution 1920 × 1080 on FPGA and CPU platforms. Data are
selected from Table 4.5.

FPGA Xilinx Zynq CPU Intel Core i7-3770
Ghost det. [ms] 10.3 16.6

Merging [ms] 10.3 23.0
Total [ms] 10.3 39.6

Overall FPS 96.45 25.25

The HDR camera by Zemcik et al. [70] achieved overall power consumption of 12W and
the HDR cameras by Nosko et al. [41, 42] even less, total 8W. Based on the performance
summarized in Table 4.5 and assuming the maximum speed of 96.4FPS, the camera Nosko
et al. [42] with proposed algorithm consumes 0, 083𝐽 per frame. The power consumption
of CPU Intel Core i7-3770 was measured in single-core load (running proposed algorithm)
and achieved 25W. CPU achieved framerate of 25.25 FPS, which results in consumption
approximately 0.99𝐽 per frame; note, please, that the difference between standby and the
full load was power consumption measured, which shows only the desired dynamic part of
power consumption.

In summary, the HDR camera by Nosko et al [42] with proposed algorithm consumes
only 8.4% comparing to the CPU implementation. Moreover, most of the power consump-
tion of HDR camera is spent on camera hardware, including CMOS chip and H.264 encoder,
while the consumption of the FPGA itself consumes approx. 1, 1𝑊 only (estimation by Xil-
inx Vivado tool). This result is much more favourable for FPGA, but the comparison is
fairer because it compares only the ”computing“ elements. The energy spent on one frame
drops to approx. 0.011𝐽 , which is little above 1% of the energy consumed by CPU.

4.5 Validation and scientific contribution
at the beginning of this Chapter 4 it was stated that the scientific contribution of this thesis
should be the proof of the following hypothesis: A multi-exposure ghost-free HDR acquisi-
tion algorithm comparable to the state-of-the-art algorithms in quality can be designed for
an embedded hardware device and achieves a real-time performance at high resolution.

In Section 4.1, I proposed a Ghost-free HDR acquisition algorithm implementable
on FPGA. This method was implemented and its description is included in Section 4.2.
The proposed Ghost-free algorithm produces a visual output comparable to the State-
of-the-art as evaluated in Section 4.3. Finally, the proposed design achieves more than
real-time performance of 96FPS on fullHD resolution as summarized in Section 4.4.
Therefore, I consider the hypotheses validated.

In more detail, the proposed novel ghost-free HDR merging algorithm is suitable for
real-time implementation in embedded devices. The algorithm is well suitable for imple-
mentation on many platforms, including the CPU and GPU based platforms. However,
the aim of contribution was a successful implementation of such an algorithm into FPGA,
which was experimentally proved in Section 4.2. Also, the target performance, which is
real-time processing on FullHD resolution, was fulfilled, since the proposed solution is able
to run on up to 96 FPS (Table 4.5). At the same time, the proposed solution outperforms
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the FPGA solution of only state-of-the-art FPGA implementation of Bouderbane et al. [4],
which achieved only 60 FPS on HD resolution (1280 × 1024).

The performance comparison with most of the state-of-the-art algorithms requires a
CPU reference implementation. The performance evaluation in Section 4.4 shows that the
algorithm performs well even on CPU; single-core implementation achieves up to 25.25FPS,
as shown in Table 4.5, which is the best result. The second least demanding state-of-the-art
algorithm, according to Table 4.7 is from Grosh [15]. Under the same conditions and on
the same dataset[59], the proposed algorithm is faster by approx. 54%. Table 4.9 further
compares the proposed algorithm with the latest and GPU accelerated state-of-the-art al-
gorithms. Finally, Table 4.11 compares the CPU performance of related algorithms which
I reviewed to be suitable for FPGA implementation. The proposed algorithm achieved the
best result and is 4.8 times faster than the fastest FPGA implementable algorithm.

Table 4.7 and Table 4.11 compares the CPU power consumption to state-of-the-art
algorithms and, linearly with performance, requires only 46% of power comparing to the
second least demanding algorithm by Grosh [15].

The CPU implementation itself is so fast that almost accomplished the real-time require-
ment; however, the real benefits of the method stand out along with FPGA acceleration,
which fundamentally affects the performance and power consumption. The Table 4.12 and
Table 4.13 shows the effectiveness and benefits of FPGA acceleration of proposed algorithm.
While the FPGA implementation offers almost 4-times higher performance comparing to
CPU (25.25 FPS) and reaches the 96FPS, the energy consumption drops by 98,86% per
frame. These parameters should be even much better in case of ASIC chip production
(or integration into an existing chip, e.g. as an accelerator block), for which the FPGA
reference implementation is necessary. However, I did not have such funding and contacts
to ASIC manufacturing facility.

The comparison to the state-of-the-art algorithms (Section 4.3) and evaluation of HDR
datasets (Section 4.3.1) shows, that proposed algorithm is performing ghost-free HDR merg-
ing well and the ghost effect is removed, at the same time have better results and is much
more robust than related algorithms. The results are even comparable to the state-of-the-
art optical flow-based algorithm, which belongs to the class of performance demanding,
offline processing algorithms.

4.6 Applications and future work
The usability of proposed work is relatively broad and involves almost every scenario,
where some camera is used and where it may appear difficult lightning conditions. From
the possible applications, I focused mainly on surveillance, security and traffic monitoring
systems where the HDR video capture significantly improves the reliability of systems
under bad weather or light conditions. Here I present several applications, where the
proposed algorithm and architecture for ghost-free HDR acquisition can take place and
should improve the system utility value.
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Figure 4.13: A HDR scene captured by HDR camera prototype by Nosko et al. [42].

Road and traffic monitoring

During the day, the outdoor lighting conditions change a lot, and the traditional LDR
cameras cannot capture the scene very well. Such bad conditions include shadows, flares,
direct sunshine or night, etc. During the day, from the sunset to sunrise, the angle of
sunshine changes and quite often disables the ability of the camera to expose a good looking
image. During the night, the reflexive elements often over-expose a certain part of the scene,
which is then unreadable.

Another, however similar situation happens when we try to observe a scene, where the
large luminance differences already are, for example, insight into/from tunnels, subways,
building’s entry and many other. The auto-exposure algorithm can adjust exposition time
to improve the result; however, it is often driven by image statistics such as image histogram,
which does not always take into account the desired/monitored part or objects in the scene.

The proposed algorithm should help to capture, in the best case, all range of luminance
in the scene and therefore provide much more image details for further processing or ev-
idence purposes. Figure 4.14 shows the output of the overview camera, where the HDR
mode allowed to capture details, which would be lost with the standard camera (vertical
road signs, the interior of the trucks etc).

Section speed enforcement

The section speed enforcement composes from two portals with road traffic cameras. The
system monitors vehicles going through spots on the road and matches the records using
license plate reading (ANPR/ALPR) software. This enables to determine the average speed
in the entire road section measuring from hundreds of meters to tens of kilometres. Such
systems are often deployed on the spot, where the lighting conditions are not ideal for
standard cameras, e.g. at the entrance and the end of tunnels, on direct sunlight etc.

65



Figure 4.14: A Graphic output of HDR camera prototype from Nosko et al. [42]. The image
is tonemapped by Reinhard et al. [47] operator. The source image sequence is shown in the
right column.

Figure 4.15: A scheme of section speed enforcement. Image obtained from www.camea.cz.
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Figure 4.16: A real photos taken from section speed cameras (without HDR mode). The
actual position of the sun makes the licence plate unreadable. Images obtained from Camea
spol. s r.o. (www.camea.cz).

A critical part of the system is a successful license plate detection on both portals and
also capturing of evidence photo, where the essential is to capture visible license plate, a
whole car with details and ideally even the driver. Typically, there are large differences in
luminance, since the driver’s face is often hidden in the shadow and license place is white,
provided with a reflective layer. Also the actual lightning and weather condition may affect
the license plate detection – Figure 4.16 shows the real photos from section speed cameras
(see Figure 4.15). The actual position of the sun creates a shadow which disables the
successful license plate reading. HDR mode with a proposed ghost-free extension would
significantly improve the licence plate detection rate (as the cars are captured in motion).

Inexpensive units for surveillance

Proposed ghost-free HDR merging is embeddable into smart FPGA-based devices and there-
fore, can take place in small, embedded devices focused on surveillance. It can also extend
existing devices, if they are based on FPGAs, due to its small resource requirements. More-
over, from FPGA implementation is only a small step to deploy HDR core into a specialized
custom chip or as an accelerator into ARM processors. Figure 4.17 and Figure 4.18 illus-
trates the benefits of ghost-free HDR acquisition on car onboard cameras, which, besides
the surveillance purposes, can play a significant role in autonomous vehicles. Moreover,
with the HDR image compression published in Zemcik et al. [70] it is possible to record the
HDR video using standard H.264 encoder.
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Figure 4.17: Illustrative comparison of non-HDR mode (left) and HDR (right) on an au-
tomotive application. Image was taken by Hyperyon camera and obtained from https:
//www.e-consystems.com.

Surveillance systems and crowd analysis

The surveillance systems can also profit from ghost-free HDR merging. Depending on the
place of monitoring, the demands for such systems vary a lot. When monitoring outdoors,
we can face the same weather problems as in road traffic monitoring task. The Figure 4.19
contains an example situation in surveillance applications – the background is well-exposed;
however, objects of interest are poorly visible. This is caused by a large difference of
luminance in the background and of the people/objects. Standard LDR camera is able to
capture background or the people, not both. The proposed ghost-free HDR merging is able
to capture all details in the scene, even with object motion compensation.

Figure 4.19: An example situation in surveillance applications using LDR cameras. Only
the background is well-exposed and the objects of the interest are poorly visible. Left –
LDR image, right – HDR image.

Moreover, with the HDR image compression published in Zemcik et al. [70], it is possible
to record, display or broadcast the HDR video in real-time, using standard H.264 encoding.

Ghost-free merging in research projects

During the pursuit of my Ph.D., I participated in a number of research projects funded
by the Czech Technological Agency (shortly TAČR projects) and the European Union.
The TAČR funded projects include V3C, CEPTIS and AITIV projects, where the focus
was put on embedded computing platforms for optical inspection in the industry, road
traffic surveillance and, in general, to expand the possibilities of video systems for traffic
monitoring and traffic detection.
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Figure 4.18: Comparison of car camera output with and without HDR mode enabled.
Image obtained from www.ovt.com.

Figure 4.20: A real traffic situation captured by camera prototype by Nosko et al. [42] with
embedded licence plate detector [40] (working on LDR images only); Image is obtained
from presentation for projects EMC2 and Almarvi. The dash type of rectangle marks, in
which source exposition the licence plate was found.
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The EU funded projects I participated include CRAFTERS, Almarvi, EMC2 and FitOp-
tiVis projects, which had quite a wide area of focus. The proposed ghost-free acquisition al-
gorithm has been applied within projects Almarvi and FitOptiVis in the applications aimed
at surveillance, road traffic monitoring, intelligent cameras and in Industry 4.0. Within this
projects, we focused on embedding ”intelligence“ into embedded camera systems; it also
involved implementation of FPGA object detector [40] into HDR camera(see Figure 4.20),
where the ”standard“ or ghost-free HDR acquisition significantly improved the ability to
detect and detection accuracy comparing to standard LDR mode.

Future work

In the future work, I would like to also continue in this topic and work on the applicability
of the proposed solution in practice and in the commercial field, which already started
within research projects mentioned in this section. I want to experiment with the current
algorithm version and further improve it, for example, extend it for use in non-stationary
cameras. It may improve usability, e.g. in surveillance applications, such as automotive
and small and inexpensive car cameras.

A different way of development may involve the integration with tone-mapping oper-
ators. The information of motion in the form of Certainty maps may help to improve
tonemapping quality, as the proposed algorithm should identify the motion regions and
allow to handle the motion area differently than static part of images. The ghosted areas
in the image may produce the adverse effects dependent on the motion of the objects, for
example, they may influence the minimum/maximum pixel values or the image histogram
and therefore cause flickering within individual tonemapped frames of HDR video.
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Chapter 5

Conclusion

In this dissertation work, I focused on the HDR acquisition on embedded devices. The
main goal of this thesis was the proof that a multi-exposure ghost-free HDR acquisition
algorithm comparable to the state-of-the-art algorithms in quality can be designed for an
embedded hardware device and achieves a real-time performance at high resolution. This
hypothesis I considered as validated, which was stated in Section 4.5.

I experimentally proved the hypothesis by the successful implementation of proposed
ghost-free HDR merging algorithm (Section 4.1) on FPGA based embedded design (Sec-
tion 4.2). The proposed implementation achieved the expected parameters and is capable of
running faster than real-time, up to 96FPS at FullHD resolution (Section 4.4). At the same
time, the algorithm produces visual results comparable to the state-of-the-art, as evaluated
in the Section 4.3.

The performance evaluation in Section 4.4 shows, that the algorithm performs well
even on CPU; single core implementation achieves up to 25.25FPS, which is very fast
and multicore CPU could achieve real-time performance as well. Achieved results shows,
that even CPU implementation outperformed all the related algorithms.However, essential
benefit of this method stand out along with FPGA implementation, which fundamentally
affects the power consumption, which is only approx. 1,1% of power comparing to the CPU,
as summarized in Section 4.4.1.

The comparison to the state-of-the-art algorithms (Section 4.3) and evaluation of HDR
datasets (Section 4.3.1) shows, that proposed algorithm is performing ghost-free HDR merg-
ing well and the ghost effect is removed, at the same time have better results and is much
more robust than related algorithms. The results are even comparable to the state-of-the-
art optical flow-based algorithm, which belongs to the class of performance demanding,
offline processing algorithms.

In the future, I would like to continue in this topic and work on the applicability of
the proposed solution in practice and in the commercial field, which already started within
research projects mentioned in Section 4.6.
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