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Abstract

This thesis proposes an algorithm for multi-exposure ghost-free HDR video acquisition for
embedded devices. The Ghost-free HDR acquisition was evaluated on the state-of-the-art
FPGA architecture and achieved more than real-time performance of 96FPS on FullHD
resolution. The proposed Ghost-free algorithm produces output visually comparable to the
state-of-the-art algorithms which are considerably more demanding or not implementable
on embedded devices at all.

Abstrakt

Tato prace navrhuje algoritmus pro porizovani ghost-free HDR videa ze sekvence expozic,
ktery je urceny pro implementaci ve vestavénych zafizenich. Vlastnosti algoritmu byly
ovéfeny implementaci ve state-of-the-art architekture HDR kamery, kde je schopen zpra-
covavat HDR video s potlacenim tzv. ghosting efektu rychlosti az 96 snimku za sekundu na
FullHD rozliseni, coz vice nez dostacuje pro zpracovani v redlném case. Navrhovany ghost-
free algoritmus produkuje vystup vizudlné srovnatelny s nejmodernéjsimi algoritmy, které
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Chapter 1

Introduction

In the real world, our human vision is capable of seeing and recognising objects in various
light conditions, even when they mix in one scene, such as a view from dark room outside
to the sunny street. In the contemporary digital world, we are also trying to get this real-
looking images into digital form as photography, video etc. One of the current problem
in digital image acquisition is very limited dynamic contrast that can be captured from
the scene, because the current camera sensors have only limited and linear response to the
light, unlike the human eye. This often leads to photos with some white (overexposed) and
black (underexposed) sections.

An effort still exists to remove this bottleneck and capture a high dynamic range image
(HDR). The first possible way is to assemble a chip with a non-linear response to lightning.
They are currently available, but they are still in the early age of development and suffers
from some bugs, they have small resolutions, etc. Currently, most spread way how to obtain
an HDR image is by merging a sequence of low dynamic range images (LDR) captured by
the ordinary camera into one HDR.

The algorithms that merge LDRs into HDR image are known for a quite long time, but
they produce a good visual result only with static scenes. In case of any motion, either
in the scene or by the camera itself, the ghosting artefacts occur in resulting HDR image.
Quite many papers about deghosting techniques were proposed; however, it is still a chal-
lenge and a quite open problem, no universal method with reference ,deghosted” result
exists.

This dissertation is motivated by a need of many surveillance, security, traffic monitor-
ing systems, and industrial applications that can benefit from HDR video capture. These
applications are typically cost-sensitive and so multi-exposure HDR acquisition is often the
only feasible option. In these use-cases, the motion in the scene is inevitable and ,,ghosting*
in such systems, caused by the nature of image acquisition, troubles the applications. There-
fore, I decided to develop a method of fast de-ghosting for such applications.

Applications in surveillance, security and industry require high performance in general
— we cannot afford slow and demanding offline processing that the best state-of-the-art
algorithms require. The essential goal is to capture HDR image fast, to be able to react to
a certain situation very fast and or in a given time frame.

Image acquisition systems of this type are still being built on PC based systems; however,
this approach is on the decline, since the PCs are expensive, they have large dimensions, and
they consume a lot of power. Nowadays, the interest is turning towards compact embedded
systems, which are breaking such limits. They often contain low power CPUs accompa-



nied by powerful, task tailored accelerators which require a fraction of power consumption
comparing to CPU based systems, while they can deliver even much more performance.
The most efficient circuits are generally considered to be ASICs, which means Application-

Specific Integrated Circuits. It is a collective name for single-purpose circuits/accelerators,
tailored to provide specific functionality only. However, the manufacturing cost of such
circuits is enormous; its manufacturing pays off only with high volumes of chips. The de-
velopment processes of ASICs are taking place on large FPGAs (Field-programmable Gate
Array), which are a completely customisable array of logic gates and registers, which can be
interconnected in any desired way; therefore, they offer quite the same flexibility in design
as ASICs, but with diametrically lower cost. Nowadays, FPGAs are very popular even
in consumer electronics for their computing power, reliability, reprogrammability, low cost,
and also low power consumption. These benefits are outweighed by designing time, which is
still quite high. Also, not every task is implementable or convenient to accelerate on FPGA.

Some class of image processing algorithms are quite suitable for FPGA acceleration, at
least when they uniformly process the image by pixels or blocks. For example, the HDR
acquisition, as it was proposed by Debevec and Malik[4] is a typical example of a suitable
algorithm. Unfortunately, this algorithm requires static images to produce a good-looking
visual output. In case of motion in the scene, the ghost effects appear. As it is summarised
later in this dissertation work, deghosting algorithms producing good visual output are very
computationally demanding and quite often not even implementable on FPGA. The simpler
algorithms are, on the other way, not very successful in deghosting and therefore, they are
not suitable for applications in security, traffic monitoring, or industrial applications.

These circumstances led me to set the scientific contribution of this thesis to prove that
a multi-exposure ghost-free HDR acquisition algorithm comparable to the state-of-the-art
algorithms in quality can be designed for an embedded hardware device and achieves a
real-time performance at high resolution.

The dissertation thesis begins with Chapter 2, which contains an overview of state-
of-the-art algorithms related to the HDR acquisition and tonemapping. Chapter 2 further
contains an overview of state-of-the-art deghosting algorithms, followed by selected deghost-
ing algorithms feasible to be implemented in embedded devices. The thesis continues with
Chapter 3 that contains an overview of hardware platforms suitable for implementation
of deghosting algorithms, including an overview of embedded system-on-chip solutions.
Chapter 3 is further focused on embedded platforms of for HDR, acquisition, followed by
an overview of existing embedded HDR deghosting solutions.

The proposal of ghost-free merging algorithm, which I developed to fulfil the goal stated
in this thesis, is located in Chapter 4, which also contains algorithm evaluation, comparison
to related algorithms, and also to the state-of-the-art. The chapter contains an evaluation
of performance and power consumption, which demonstrates the engineering contributions
of the proposed solution. The chapter ends with an evaluation of scientific contribution
and by a summary of possible applications of the proposed algorithm.



Chapter 2

HDR acquisition and deghosting

This chapter contains an overview of state-of-the-art algorithms related to HDR acquisition
and tonemapping. The chapter further contains an overview of state-of-the-art deghosting
algorithms and also an overview of selected deghosting algorithms feasible to be imple-
mented in embedded devices.

2.1 HDR acquisition

Two main approaches to HDR (High Dynamic Range) image capture exist. First of them is
to build special cameras with HDR sensor. Some commercial products start to be available,
such as SpheroCam HDR', or Panoscan MK3” In the academic world, Sakakibara et al. [37]
introduced a High-Sensitivity CMOS sensor with gain adaptive column amplifiers and 14
bit analogue-digital converters. Zhao et al. [57] capture HDR using the modulo camera. All
the above approaches require the availability of special HDR sensors or generally expensive
and technologically demanding equipment. Regarding the HDR sensors, it is questionable
whether some physical limit in a dynamic range will eventually be reached and what it will
be.

The second and more frequently used approach is based on standard sensors/cameras
which captures the high luminance range in the scene sequentially, by the acquisition of
multiple images typically with varying exposure times [4, 28, 36, 25]; such sequence is then
merged into one HDR image. The individual images can be captured simultaneously, e.g.
using a beam splitter with several CCD/CMOS sensors [45], or, more often are gathered
sequentially using a single image sensor which causes ghost effects by a motion of objects
during the sequence acquisition. This approach is technologically less demanding and results
in cheaper systems.

HDR acquisition algorithms

Two main approaches how to merge differently exposed standard images into an HDR
image exist, the first and more efficient approach involves a combination of pixels in the
image domain (direct merging of pixels). As an example, a method presented by Mertens et
al. [25] combines multiple exposures directly without any knowledge of the camera response
function(CRF). In this approach, only the best parts of frames from each exposure are
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exploited. A resulting HDR image is obtained as a weighted average of pixel values across
the exposures:

N
Ic = Zw (Zk) Zk (2.1)
k=1

where I is a composite image, Z is a pixel value and w (Z) is a weight of a pixel.
This approach produces the HDR images which can be directly displayed on LDR (Low
Dynamic Range) monitors.

The second approach is based on merging in the radiance domain, in the meaning of
real illumination in the given scene. Algorithms using this approach are attempting to
calculate the exact value of luminance in the scene. These methods require knowledge
of the camera response function [4, 36, 28], which is the response function of the camera
sensor to the incident light. The inverse function of CRF is then applied to obtain an image
with approximately linear response to light. The CCD and CMOS technology generally do
have a linear response function, but the image results are often affected by postprocessing
algorithms, for example, by gamma-correction or by white balance. In general, RAW
images are preferable for HDR composition because they contain data obtained directly
from CCD/CMOS sensors without any postprocessing, and therefore it can be assumed that
they have a linear response function. Unlike the merging in the image domain, this class
of algorithms produces an image with higher bit-depth, which is not directly displayable
on standard LDR devices. The HDR images have to be post-processed by algorithms
commonly called tone mapping operators. The operators reduce the bit-depth of the HDR
image while they preserve all important image details.

Debevec and Malik [4] proposed an algorithm which can fuse multiple photographs
into a high dynamic range radiance map whose pixel values are proportional to the true
radiance values in the scene. The contribution of each pixel is determined from the weight
function [4]. Resulting pixel value p in HDR image is calculated as a weighted average of
each pixel exposures:

N Zi
_ D im0 w(Zip) FF
p— N
> im0 w(Zip)
where L, is the resulting pixel value p in HDR image, N is the number of input images,

Z;p is the value of a pixel p in image number ¢, ¢; is the the exposure time of image 1.
This algorithm could also be applied with different weighting functions [36, 28].

(2.2)

2.2 HDR deghosting

The HDR merging algorithms [4, 28, 36, 25] summarized in Section 2.1 are suitable for static
scenes only. Motion of objects during the image sequence capture causes adverse effects
called ghosting. To reduce such effects, various methods to detect and remove ghosting
from HDR images have been developed.

The problem of removing motion artefacts for sequential HDR imaging has been the
subject of extensive research and has led to two major type of approaches. The first type
assumes that the images are mostly static and that only a small part of the scene contains
motion. These de-ghosting algorithms use the input frames to determine whether a given
pixel is static or has motion and then apply different merging algorithms in each case. For
static pixels, the traditional HDR merge can be used. For motion pixels, many algorithms
use only a subset of exposures (in many cases only one) to produce a deghosted HDR. The



fundamental problem with these techniques is that they cannot handle scenes with large
motion if the moving parts of the scene contain HDR content.

The second type of approaches attempts to align the input sources to a reference expo-
sure before merging them into an HDR image. The most successful algorithms use optical
flow to register the images, but even these methods are still brittle in cases of large motion
or complex occlusion/dis-occlusion.

According to the goal of this dissertation, I focused on algorithms feasible of capturing
ghost-free HDR images in real-time. Anyway, a short introduction into the demanding
optical flow and patch-based algorithms is presented.

2.3 Motion object selection methods

This dissertation work focuses on embedded systems and real-time processing; therefore,
only simple, computationally unpretentious methods, categorised by Tursun [46], Srikan-
tha [41] and other authors as ,motion object selection* methods are reviewed in this sub-
section. The optical flow-based and patch-based algorithms are, due to their high com-
putational demands, reviewed only for the coherence of the topic. Also, the global image
registration is not addressed, as we assume only static cameras.

Gallo et al. [8] assumes a linear dependency between couples of pixels when they ,see*
the same radiance levels, based on knowledge of exposure times. The following relation
between the images is expected:

Li=1L;- (2.3)

~
S

Any image spot violating this linear relation is considered as containing a motion. All
images are registered to the reference image L,.y; to suggest a good reference frame, they
find the saturated pixels in each image of the stack, then they remove small saturated
regions with morphological operators (erosion followed by dilation) because such area’s
neighbourhood usually contains enough information to avoid artefacts. Finally, they pick
the exposure with the fewest remaining saturated pixels. [§]

The reciprocity assumption states that if the radiance of the scene does not change, the
exposure time and the irradiance are linearly related through the exposure time At:

X=E-At (2.4)

To increase a robustness and prevent rising of such artifacts, the algorithm operates on rel-
atively large rectangular patches (e.g. 40x40 pixels) rather than individual pixels. Patches
with a large number of not corresponding pixels are omitted from merging, causing visible
artefacts to occur at their boundaries; Gallo et al. [8] suggest their suppression by Poisson
blending.

Raman et al. [34] extended the work of Gallo et al. [8] so that it does not require any
knowledge of the CRF or exposure settings. They introduced an intensity mapping function
(IMF) obtained from the static part of the scene — they assume that upper 5-10 image lines
are usually static. The authors assume the motion is mostly confined to the ground plane
of the scene. This assumption may be very limiting, and it can work only for certain scene
compositions.

Grosch [9] proposed a simple method based on the estimation of pixel value from the
known exposure time and CRF. In opposite to the most of the algorithms that require a



static scene and direct correspondence of pixels to obtain a CRF, Grosch uses the algorithm
presented by Grossberg and Nayar [10] to recover a CRF from a non-aligned sequence
with object motion. This algorithm calculates the response function based on cumulative
histograms and is mostly unaffected by camera or object motion. [9]

With a known camera response function, they can predict the pixel colour from one
image to another. For each pair of consecutive images, they test if the real colour in the
second image is well approximated with the predicted colour from the first one. If the
pixels at the certain position do not fit the estimation, the corresponding region is marked
as ghosted into the error map. [9] To increase the robustness and eliminate the influence of
the noise in the source images, the author uses a user-defined threshold for the pixel colour
comparison.

Wu et al. [51] algorithm estimate the CRF from regions where RGB vectors remain
fixed with respect to the changes of exposure. The algorithm refines motion detection by a
combination of pixel order relation from Sidibe et al. [39] and pixel value estimation from
Grosch [9].

Wang et al. [50] proposed the motion region detection method, that is motivated by
the inter-frame difference method for video sequence that does subtraction to compute the
difference between adjacent frames on the intensity domain. To enable it, the algorithm
normalises all images L; according to the reference image L,.r. For each pixel, if the
corresponding difference value is bigger than a certain threshold, then the pixel is considered
to be in a motion region. This method is commonly used on motion detection of video
stream. [50]

Figure 2.1: The Figure shows the results of variance based deghosting method by Jacobs et
al. [12]. The variance map (bottom left) is obtained from the image sequence (upper row)
and used to generate the HDR image (bottom right). Figure obtained from [12].

The algorithm of Jacobs et al. [12] is calculating pixel variance over the exposures to
detect the presence of motion. The Variance Image is created, storing pixel’s variance over
the exposures in a matrix with the same resolution as input images. Further, they ignore
under and over-saturated pixels in Variance Image. The Variance Image is transformed into



binary map (equivalent of ghostmap, see on Figure 2.1)), with movement clusters, which
are formed by comparing the Variance Image with fixed threshold. The Variance Image is
supplied by Uncertainty Image, which is calculated using the local variance, obtained from
a histogram of a small 2D window; 5x5 pixels in size [12].

Min et al. [26] improved method of Pece et al. [32] and introduced multi-level threshold
map, where thresholds are selected to divide the image into multiple regions according to
the pixel intensity, each region having the same number of pixels (see Figure 2.2). Any
difference between the threshold maps of input images and the reference image, presented
typically by the mid-exposure one, is marked as a motion-region. Introduction of multiple
histogram regions, in opposite to Pece et al. [32], allows for the incorporation of a tolerance
in which shifts of pixels within neighbouring regions are not evaluated as motion. The
algorithm suffers from dependence on scene composition and image histogram layout. The
above methods by Pece et al. [32] and Min et al. [26, 27] are using coarse morphological
operators, such as erosion and dilatation, to suppress false detection rising on edges or by
noise.
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Figure 2.2: The figure presents the intermediate step of deghosting algorithm by Min et
al. [26]. The source sequence is on the top, the bottom images shows the multi-level
threshold maps for corresponding images on the top. Figure obtained from [26].

Bouderbane et al. [2] implemented simple ghost removing algorithm on FPGA based
platform. They were inspired by the work of Sidibe et al. [39] and presented the algorithm
based on the modification of Debevec [4] weighting function. The idea of the methods is
to adjust pixel weights based on the deviation from the reference image [39]. The function
gives a higher weight for pixels whose value are closed to the reference value and low weight
for pixels whose value diverges considerably from a reference value. Consequently, they
achieved the same performance as the Debevec and Malik [4] standard algorithm with a
ghost removing in a radiance domain, right before HDR data generation. [2]



2.4 Motion object registration methods

The following algorithms are not suitable for real-time processing; however, I reviewed them
for the coherence of the HDR deghosting topic and also because they are part of the state-
of-the-art in terms of deghosting quality. Achieving good visual results comparing to such
algorithms is also one of my side-goals.

Patch-based and Optical flow based algorithms

These approaches attempt to align the different LDR exposures before merging them into
the final HDR image. Although the alignment of images has long been studied in image
processing and vision communities (e.g. Zitova and Flusser [58]), its application to HDR
imaging has special considerations. The quality of the HDR images produced by these
techniques is fundamentally limited by the accuracy of the alignment. Furthermore, optical
flow cannot typically synthesise new content and thus cannot handle disoccluded content
that could be made visible when aligning one image to another. [38]

The algorithm proposed by Sen et al. [38] is a patch-based energy minimisation formula.
The algorithm produces an HDR image from a set of LDR images captured with different
exposures which is aligned to the reference image L,y and which is also an LDR image that
contains the best-exposed pixels. The resulting HDR image contains as much information
as possible from the well-exposed pixels from the L,.; image (see Figure 2.3). In places
where L, is not well exposed, every patch in the image H at a given exposure should have
a similar patch in one of the LDR images after exposure adjustment (coherence). Also,
every exposure adjusted patch in all Ly images should be contained in H at exposure k
(completeness). The iterative approach performs joint optimisation of image alignment and
HDR merge process until all the exposures are correctly aligned to the reference exposure,
and a good quality HDR result is produced.

Input LDR sources Reconstructed LDR images Final tonemapped HDR result

Figure 2.3: The figure shows the source sequence, images reconstructed by patch-based
algorithm by Sen et al. [38] and the resulting HDR image. Image obtained from [38].

Ferradans et al. [7] find dense correspondence of input images in the radiance domain
with respect to the reference image. In order to detect the mismatches in the estimated flow
fields, the input images are warped using the estimated fields, and the absolute difference



map of each pixel is calculated. Instead of applying a fixed threshold to the difference map,
its histogram is modelled as a mixture of Gaussians. The pixel intensities corresponding to
the flow vectors causing the mismatch are assigned zero weight in HDR reconstruction. The
information from the remaining pixels in each input image is fused in the gradient domain.
Jinno and Okuda [13] use a novel weighting function which has significantly smaller over-
lap between the contribution of input LDR, images to the radiance domain. The proposed
method assumes that the global alignment is already performed. Displacement, occlusion,
and saturation regions are modelled as Markov Random Fields. The optimal parameters
are found by minimising the energy function (see [13]). [46]

CNN based algorithms

The latest published algorithms are based on popular Convolution Neural Networks (CNN).
Kalantari et al. [14] based their approach on optical flow from Liu et al. [21] and merges
images into HDR using CNN. At first step, the source images are normalised to the same
level of luminance as the reference (middle) image — similarly to Wang et al. [50] and many
others. Then, the optical flow algorithm of Liu et al. [21] is used to align the images.
Such aligned set is merged using CNN network trained on their dataset containing ground
truth sequences. The CNN is responsible for removing the ghosting artefacts appearing on
the edges of motion regions. Yan et al. [54] proposed a similar approach; however, their
proposed CNN uses not only surrounding information of a pixel as Kalantari et al. [14], but
also considers the information from other frames.

Input LDR Aligned LDR . Tonemapped HDR Image Simple Mergiﬁg Proposed ]

Figure 2.4: The figure presents the results achieved by Kalantari et al. [14]. From the left —
the source sequence, images aligned by optical flow by Liu et al [21], resulting tonemapped
images and the details of marked region merged by ,simple“ merging (probably by Debevec
and Malik [4]) and by proposed CNN based method by Kalantari et al. [14].

10



Chapter 3

Embedded HDR acquisition and
deghosting

This chapter is devoted to a description of state-of-the-art implementations of HDR acqui-
sition and deghosting on embedded devices and description of theirs, mostly custom based
embedded platforms.

After consideration the features of target platforms, the FPGA was selected as a target
platform, namely the SoC Xilinx Zynq, which is a powerful combination of FPGA and
dual-core ARM processor on the same chip. This SoC allows the application of hardware-
software codesign technique. It brings together the performance benefits of FPGA with
the possibility of sequential execution of code - e.g. for driving the FPGA processing or to
perform complex calculations, which acceleration in FPGA would be very demanding or not
reasonable. Nowadays, the platforms with powerful embedded GPU, such as Nvidia Tegra,
are starting to be concurrent at certain parameters. On the other hand, DSP platforms are
slowly getting to the margins of interest.

3.1 State-of-the-art hardware solutions overview

Many research publications were published regarding the acquisition of HDR images; how-
ever, only a few of them are oriented on embedded devices. HDR merging itself is not a
complex algorithm, but for real-time acquisition, it requires a high memory throughput and
external memory buffer, which is not available on many embedded platforms.

FPGA based platforms are more than suitable for such type of applications. Several
papers focused on FPGA acceleration and related to our work were published [18, 20, 48,
49, 23, 33, 53, 43]. This section provides its overview and presents achieved properties.

Realtime HDR video for eyetap wearable computer by Mann et al.

Mann et al. [23] developed an FPGA based wearable HDR seeing aid designed for the electric
arc welding (see Figure 3.1). The prototype consists of an EyeTap (electric glasses) welding
helmet, with a wearable computer upon which are implemented a set of image processing
algorithms that implement real-time HDR image processing together with applications such
as mediated and augmented reality. The HDR video system runs in real-time and processes
120 frames per second, in groups of three or four frames. The processing method, for imple-
mentation on FPGAs (Field Programmable Gate Arrays), achieves real-time performance
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for creating HDR video using the novel compositing methods, and runs on a miniature self-
contained battery-operated head-worn circuit board, without the need for a host computer.
The result is an essentially self-contained miniaturize hardware HDR camera system that
could be built into smaller eyeglass frames. [23]

Figure 3.1: The “MannVis welding helmet” implements the EyeTap principle which causes
each eye to, in effect, function as if the eye itself were both a camera and display. Image
obtained from [23].

The HDR output values are precomputed for a full range of input pixel combinations
and stored in lookup tables in BRAMs. Even after certain optimizations of memory con-
sumption, the BRAM demands are very high, especially when more than two LDR images
are used. The system is implemented on Spartan-6 LX45 FPGA and produces 720p video
at 60 FPS while fusing two images.

Real-Time HDR Video Imaging on FPGA by Tao et al.

Tao et al. [44] extended the work of Mann [23] by introducing a lookup table compressed
using quadtree structure, which saves the amount of BlockRAM resources. Tao replaced
the weighted sum approach with the new quadtree-based compositing for high-quality HDR
video production. The proposed compositing circuits are generated by the software, with
parameters given by the user. It compresses and implements a 2D Lookup Table (LUT)
on an FPGA, by bounding the error and space of quadtree representation of the original
LUT according to the expected usage, so that the LUT is compressed to fit within the
total amount of the block RAM resource available in a mid-sized FPGA. They also add the
support for 1080p video at 60 FPS. [44]

HDR-ARLtiSt: an adaptive real-time HDR smart camera by Lapray et al.

Lapray et al. [18, 19, 20] developed a complete FPGA-based smart camera architecture
named HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera). This smart
camera is able to provide a real-time HDR live video from multiple exposures captur-
ing to display through radiance maps and tone mapping. The main contribution of their
work is the generation of a new FPGA embedded architecture producing an uncompressed
Black&White 1280 x 1024-pixel HDR live video at 60 FPS. [20]

According to the detailed description of these methodologies and the comparison of
their real-time software implementations, they decided to use the Debevec’s method [4] for
HDR merging. The main advantage of this approach is that there is very little constraint

12



Figure 3.2: Xilinx Virtex-5 ML507 FPGA board equipped with 1.3MPix CMOS, where
Lapray et al. [18, 19, 20] implemented the HDR image acquisition and tone mapping.
Image retrieved from [20].

about the response function (other than its invertibility). Moreover, the proposed algorithm
proved to be quite robust and easy to use due to the simplicity of Debevec’s equation (see
Equation 2.2). [20]

Regarding the tonemapping operators, Lapray et al. [18, 19, 20] implemented two the
global tonemapping operators by Duan [5] and Reinhard [35]. Their implementations were
published and described thorough their articles [18, 19, 20].

The HDR-ARtiSt platform [20] is a smart camera built around a Xilinx ML507 board,
equipped with a Xilinx Virtex-5 XC5VFX70T FPGA (see Figure 3.2). The motherboard
includes a 256 MB DDR2 SDRAM memory used to buffer the multiple frames captured by
the sensor.

3.1.1 Real-time HDR video compression using an FPGA by Zemcik et
al.

The architecture of the HDR camera proposed by Zemcik et al. [55] can capture 30 FPS
FullHD with each frame formed from two exposures, or 20 fps FullHD video formed from
three exposures. With sharing the expositions, the output can eventually reach up to
60FPS; however, the whole pipeline is limited by the capability of H.264 encoders, sup-
porting 30FPS only. The main architecture highlight is the encoding of HDR video using
two standard video codecs. The HDR camera designed by Zemcik et al. [55] is shown in
Figure 3.3.

This architecture uses standalone 2K Flare' camera connected over 3G-SDI interface”
(commonly used in TV studios). This camera is producing high quality FullHD RAW image
at up to 60FPS.

"http://www.ioindustries.com/
Zhttps:/ /www.smpte.org/standards
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Figure 3.3: A photography of the HDR camera prototype. Note, please, the FPGA de-
velopment board, the compression modules, and also the Flare camera connected by SDI
interface. Image retrieved from Zemcik et al. [55].

Architecture by Zemcik et al. uses two or three images for HDR merging, depending on
configuration, so there is implemented the equivalent number of framebuffers. The double
buffering technique is used to avoid rising of image artefacts, which doubles the memory
requirements but prevents rising of image artefacts.

The primary demand for the HDR merging algorithm was the capturing of the as-high-
as-possible dynamic range, showing the benefits of HDR acquisition. Regarding that the
architecture Zemcik et al. [55] use only a simple pixel selection algorithm, because the ex-
position times are set so far from each other (by multiples of eight), that the particular
pixel is exposed well only in one exposition. The others are often under on overexposed;
thus their contribution to computed HDR value would be marginal.

3.2 Ghost avoiding/removing solutions

The following section summarises the state-of-the-art HDR, acquisition solutions, which
either suppress and remove ghosting effect or prevent its occurrence.

HDR camera based on dual-gain CMOS by Tang et al.

Tang et al. [43] developed an HDR camera based on Altera FPGA and equipped with dual-
channel CMOS GSENSE400BSI, which is able to apply different analogue gain to the same
captured data (see the prototype on Figure [43]). The HDR camera can capture the wide
dynamic range image of the nature scene without ghosting phenomenon, by combining the
two images with different gain to an HDR frame up to 95 dB. Additionally, the frames
are captured at the same moment by two channels with different gain, which reduces the
interference between successive frames. However, the CMOS sensor has a rolling shutter,
and the disruptive effects can still occur. [43]

In such way of HDR acquisition avoids rising of ghosting effect caused by sequential
image acquisition; however, the CMOS sensor has a rolling shutter, and then another kind
of image artefacts still occurs. The maximum frame rate of the camera is 60 FPS at a
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resolution of 1920 x 1080. The camera uses a global tone mapping operator by Duan et
al. [5].

Real-time ghost free HDR video using weight adaptation method by Bouder-
bane et al.

Bouderbane et al. [3] implemented a deghosting algorithm on the same platform as Lapray
et al. [20]. Their method repose on the modulation of weights of the Debevec [4] algorithm,
where they adjust pixel weights based on their deviation from pixels of the reference image
using the weighting function given [2] (see Figure 3.4) which parameters are taken from
Sidibe et al. [39].

To calculate final weighs (Figure 3.4 right) to be used in the high dynamic range recon-
struction, they multiply the standard weights from Debevec [4] by the modulation factor
(Figure 3.4 left).

Firal weighi valoe

Figure 3.4: The weight modulation factor (left) and the final weight function(right) used
in ghost removal HDR merging. Red curve is the factor for the closest radiance value of
LDR images to the reference radiance value, the blue curve is the farthest value from the
reference value and the green curve is for middle values. Image retrieved from [3].

True HDR camera with bilateral filter based tone mapping by Nosko et al. [30]

Nosko et al. [30] published the HDR architecture implemented on a custom camera platform
based on SoC Xilinx Zynq XC7Z020 (see Figure 3.5). The platform is equipped by a low
noise global shutter CMOS sensor Python2000 from ON Semiconductor with resolution of
1920 x 1280 pixels. The camera provides up to 30 FPS of grayscale HDR video with fixed
f-stop range. However, the architecture itself is capable of processing up to 96 FPS. The
architecture implements a high quality local tonemapping operator by Durand [6] based
on the bilateral filter of 9 x 9 pixels. Resulting tonemapped image is streamed over the
network in the form of MPEG2-TS stream.

The HDR camera architecture published by Nosko et al. [30] is based on the method by
Debevec [4]. The exposition weights for individual images are calculated as follows: Given
the image with shortest exposition ¢; time weight equal to one, the other images will be
given the weights of %’, where t; is exposition time of ¢th image in sequence. The HDR
pixel value is computed as follows:

B > iy Li - w(Li) - %
> i w(L)
where is the HDR pixel value, L, is the x-th image in the sequence, t; exposition time
of i-th image and w the ,plateau weighting function [1]).
Unlike the algorithm by Debevec [4] they chose a plateau weighing function [1] as the
one leading to the best visual experience; however, it can be easily customized.

H

(3.1)
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Figure 3.5: Prototype of HDR camera by Nosko et al. [30, 31]

The exposition time of the middle image in the sequence is configurable, however, the
mutual intervals between exposures are fixed to multiples of two, which leads to shift
operations instead of multiplication. Only a middle exposition value is configurable [30].

The resulting HDR pixel is obtained by dividing the sum of pixels by sum of weights.
The division is a time and resource-demanding operation, so Nosko et al. [30] decided to
convert it into multiplication by a tabulated fractional value. The sum of weights, according
to bit-widths of intermediate results, needs to be represented by 11 bits (sum of three 9 bit
values fits into 11 bits), so the fraction value is tabulated on 2048 entries. The resulting
HDR pixel is in 10.8 fixed-point representation.

Color HDR video processing architecture for smart camera by Nosko et al. [31]

This architecture further improves the architecture by Nosko et al. [30]. The architecture
provides up to 30 FPS of colour HDR video with fully adjustable f-stops. However, the
architecture itself is capable of processing up to 96 FPS. The architecture implements
particularly a ghost removal algorithm and a high quality local tonemapping operator by
Durand [6] based on the bilateral filter of 11 x 11 pixels.

The architecture is further enhanced by a colour support. They process individual
pixels of colour Filter Array (CFA), in this case, a Bayer mask, in the same manner as
the grayscale pixels [42]. The colourization of the HDR image is done later, during the
tonemapping process.

HDR merging with ghost-free extension Nosko et al. [31] implemented the HDR
merging algorithm from Debevec [4] with modification for Ghost removal. The proposed
ghost-free HDR merging is based on a prediction of the pixel value. It is based on similar
principles as the solutions of Grosch [9], Wu [51] and Wang [50].

Since the exposure time of each image is known, individual pixel values in image ¢ can
be predicted from reference image using values from j.

~
SH| S

where ¢, and ¢, are exposition times of images. If the pixel do not match predicted value, it
is omitted from merging process. Certain tolerance is taken into account, since the sensor
noise, quantization errors and CRF precision may influence the predicted value and thus
cause the false ghost detections.
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Chapter 4

Proposal of ghost-free HDR
technique

This chapter contains the proposal of a novel ghost-free HDR merging algorithm, which
is the core of my work during the pursuing of my Ph.D. The core of this chapter was
published in Journal of Real-Time image processing as the article ,,De-Ghosted HDR Video
Acquisition for Embedded Systems® [29].

The scientific contribution of this thesis is the proof that:

A multi-exposure ghost-free HDR acquisition algorithm comparable to the state-of-the-
art algorithms in quality can be designed for an embedded hardware device and achieves a
real-time performance at high resolution.

The embedded hardware device should be based on FPGA technology with FullHD
CMOS sensor onboard, at the same time be small in size and with low power demands to
fit into the energy-efficient or battery-powered systems.

In this chapter, a novel architecture implementing the above idea in FPGA is proposed
and its functionality and quality of output are experimentally proved. The chapter consists
of the quality comparison to the related implementations and even state-of-the-art methods,
that are too computationally demanding and even not feasible to implement and/or accel-
erate on FPGA. The aim is to show that proposed solution is simple, yet very powerful and
providing good visual results at the same time. The performance and power consumption
of algorithm implemented on various platforms is summarized at the end of this chapter.

4.1 Ghost-free merging algorithm

The proposed approach is based on pixel value matching, the idea being similar to the
solutions proposed by Grosch [9], Wu [51], and Wang [50] but with quite different and
improved processing. The exposure time of each image is known; therefore, it is possible
to estimate and match pixel values in the adjacent images, except for the over or under-
exposed patches where the pixel values will obviously not match. Such estimation is not very
precise, the captured image data is affected by factors such as noise, sensor quantization
errors, CRF, etc. The reviewed methods generally use fixed or user-guided thresholds which
must be employed in order to introduce user-defined tolerance to these factors. These fixed

17



Figure 4.1: Figure obtained from real application of proposed ghost-free algorithm - traffic
monitoring system with licence plate detection, which demonstrates the contribution of
proposed method. Top left - stripes of original images with a significant car motion. Top
middle and top right - Images representing coefficients used for the HDR merging (certainty
maps, see Section 4.1). Bottom left - ghosted HDR image. Bottom right - HDR image
merged using proposed method.

or user-defined thresholds often cause adverse effects in the final HDR images, such as
visible transitions between static and motion areas etc. I propose a method to overcome
such problems. [29]

4.1.1 Certainty map

In this approach, every image L; is assigned a Certainty map C; related to the reference
image L.y, which is generally considered to be the middle (exposure) image in the sequence.
The Certainty map C' contains values representing the estimated level of certainty that the
individual pixels contain the same patch of the scene as the reference pixel, but obtained
under a different exposure. Unlike ghostmaps, Certainty maps hold not only the patches
containing motion, but rather all patches inappropriate for merging - such as under and
over-exposed pixels. [29].

The probability distribution of low level value pixels is Poisson [22] due to the discrete
nature of the incoming photons. With higher intensities, the distribution transforms into
Normal (Gaussian). Therefore, I use the Gaussian function to derive the certainty (esti-
mated probability) that the two luminance levels, estimated and measured, match. The
Certainty map C; (see Figure 4.2) replaces the binary ghostmap with soft assigned values,
obtained using the information from the reference image L,.f, the estimated image L,
the exposure times ?; and t,.r, as well as the CRF. Note, please, that in this paper the
inverse CRF was implicitly applied to all images L;. Image L; is estimated by the following

equation:
_ t:
L;= Lref : ( : ) (41)
tref
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Consequently, the estimated value for image i is processed along with the actual value
of L; to get the probability based Certainty map C; as:

CZ' =e A202 (42)

where o reflects the standard deviation of the pixel measurement (affecting the ,softness“
weight). The lower o is, the sharper or more strict the Certainty maps are, which results
mainly in the dynamic range reduction. On the other hand, a high o causes ,softer”
Certainty maps, which may start to be ghosted. Ghost detection generally, and indeed
inherently, cannot work well for the over and under-exposed spots of an image; thus the
Certainty map algorithm contains a boundary condition: If the estimated value lies beyond
the point of saturation, the Certainty is assigned at maximum value. [29].

Figure 4.2: Two Certainty maps (bottom) obtained from the sequence on the top. The
Certainty map on the left was obtained from top left and top middle (reference) image, the
Certainty map on the right was obtained from top middle (reference) and top right image.

4.1.2 Multi-exposure merging algorithm

Proposed modification of Debevec’s [4] merging algorithm incorporates the weights from
the Certainty map, obtained through Equation 4.2. The HDR image H is calculated as the
weighted sum of pixels from n images using the following equation:

_ Cirw(Ly) - L g (43)
>2im1 (Ci - w(Ly)) '
The Cj for reference image certainty is considered to be 1.
The w(Lyey) is considered to be 1, as the reference image is a ,pattern with the desired
object layout; it is not desirable to weight out the pixels, even if poorly exposed. A scheme
illustrating the Equation 4.2 is shown in Figure 4.3. [29].
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Figure 4.3: A scheme illustrating the proposed ghost-free merging of according to Equa-
tion 4.3 on a sequence of three images.

4.2 Implementation in HDR pipeline

We implemented the proposed algorithm into FPGA based HDR video acquisition pipeline
proposed by Nosko et al.[31]. The proposed algorithm was designed to replace the original
and very simple ,Deghosting & merging” block (please refer to Nosko et al. [31]). The
Table 4.2 compares the resources consumed by such pipeline with pipeline from Bouder-
bane et al. [2]; unfortunately, they do not provide more detailed statistics. For detailed
description regarding pipeline, please refer to the article by Nosko et al. [31]. Please note
that proposed design is built on Xilinx Zynq and Bouderbane camera on Virtex-6 and also
that in Nosko’s pipeline, more than 1/3 of LUT and Register resources and most of BRAM
and DSPs are occupied by local tone-mapping operator [31].

Table 4.1: FPGA Resource utilisation for merging 3 LDR images of 1920 x 1080 pixels.
Design is routed for Xilinx Zynq Z-7020.

LUT LUTRAM FF BRAM DSP
Certainty maps | 3532 — 3339 4 4
HDR merging 893 - 2570 10 16
Total (HLS) 4425 - 5909 14 20
Total (Routing) | 1057 252 2052 2 16
available 53200 17400 106400 280 220
utilisation [%)] 1.99 1.45 1.93 0.72 7.27
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Figure 4.4: Ghosted HDRs (top line) and HDRs merged using proposed ghost-free method
(bottom line) on sequences ,Fast cars® [46] (left), ,105“ [47] (middle) and ,117¢ [47] (right).
Datasets contains 9 LDR (Low Dynamic Range) images.

Figure 4.5: Output of proposed ghost-free merging method on the sequence of Gallo [8]
(top). Previews of the various algorithm results are shown at the bottom: Gallo et
al. [8] (A), Jacobs et al. [12] (B), Pece et al. [32] (C), Zhang et al. [56] (D) and proposed
algorithm (E). The previews A to D are published online at http://www.vsislab.com/
projects/IPM/HDR/project.html.

The proposed algorithm was implemented into FPGA based HDR video acquisition
pipeline proposed by Nosko et al.[31]. The proposed algorithm was designed to replace the
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original and very simple ,Deghosting & merging“ block (please refer to Nosko et al. [31]).
The Table 4.2 compares the resources consumed by such pipeline with pipeline from Boud-
erbane et al. [2]; unfortunately, they do not provide more detailed statistics. For detailed
description regarding pipeline, please refer to the article by Nosko et al. [31]. Please note
that proposed design is built on Xilinx Zynq and Bouderbane camera on Virtex-6 and also
that in Nosko’s pipeline, more than 1/3 of LUT and Register resources and most of BRAM
and DSPs are occupied by local tone-mapping operator [31].

Table 4.2: Resource utilization of complete camera solution of Nosko et al. [31] enhanced
by the proposed ghost-free merging block, comparing to Bouderbane [2].

| LUT | LUTRAM | FF | BRAM | DSP
Prop. pipeline | 39145 3137 53592 51 58
Bouderbane [2] | 49193 50399 35 20

4.3 State-of-the-art ghost removal evaluation

This section is focused on evaluation of proposed ghost-free HDR merging and provides the
comparison to the state-of-the-art algorithms.

Figure 4.6: Sample outputs of related deghosting algorithms by Pece et al. [32] (left) and
Min et al. [26] (right) on the scene from Figure 4.1. Our experiments revealed that listed
algorithms should be successful only on images with convenient histogram distribution.

The proposed algorithm is evaluated on HDR datasets focused on evaluation of HDR
deghosting methods [47, 46, 16], on the image sets retrieved from related articles [8, 38,
15] and also on the image sets captured by camera prototype by Nosko et al. [31] (see
Section 3.2).

The results of the proposed ghost-free merging are presented in Figures 4.1, 4.4, 4.5,
4.9, 4.8, 4.10 and 4.12. Our method is suitable for almost any application with stationary
cameras. Besides the evaluation of various generic datasets, the ghost removing capability
was evaluated on a traffic monitoring task, where the main goal was to preserve the greatest
possible level of detail so that the images can serve as evidence, with the readability of the
licence plates of the vehicles in motion playing the most important part. Figure 4.1 contains
a car approaching camera at approximately 50km /h. Still, six exposures (~ 66ms at 90FPS)
were intentionally omitted between the images to show the capability of the ghost removing
for e.g. faster moving objects.
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Figure 4.7: Figure shows the ghost-free HDR outputs of Bouderbane [3] (left) and proposed
method (right), both tonemapped by Duan [5] operator. Bouderbane result and source im-
ages are retrieved from [3]. Please mind the color shift in very bright patches of Bouderbane
result.

According to presented results, the visual outputs are comparable to the state-of-the-art;
however, the proposed algorithm is capable of running in real-time, while state-of-the-art
algorithms require long offline processing in terms of seconds or even minutes per image.

Probably only related work, which implements any ghost-free merging on embedded
device, in this case on FPGA, was proposed by Bouderbane et al. [3]. They use method by
Debevec and Malik [4], where they combined weighting function from Debevec with weight
function proposed in their previous paper [2]; their method was inspired by the work of
Sidibe et al. [39]. However, the ghost detection is based only on weak assumption, as
Bouderbane use the weight function, which gives a higher factor for pixels whose recovered
radiance value are closed to the recovered radiance of reference values and low factor for
pixels whose radiance values diverge considerably from pixels radiance value of the refer-
ence image. On the image data supplied within the article, the method suppress ghosting
quite well(see Figure 4.7) but the slight ghosting effect is still present (see results in the
article [2]), also the dynamic range is quite reduced, even in parts with static background.

Algorithm by Gallo et al. [8] operates on relatively large rectangular patches (e.g. 40x40
pixels [8]) instead of individual pixels. If the patch contains large number of pixels not
corresponding to patch from the reference image, the patch is omitted from merging. As
the patches used in the algorithm are quite large, visible artifacts occur at their boundaries;
the authors suggest their suppression by Poisson blending.

The methods based on histograms [32, 26] have a common issue, the scene has to be
balanced from the point of histogram equalization. The method presented by Pece et
al. [32] is marking pixels as ghosts based on decision, whether the pixel changes its relative
position in histograms over all of the expositions. The position in histogram is acquired
by comparison with median pixel value. If median is very low/high, for example if the
scene has large large number of under/overexposed patches, the change of pixel position
in histogram cannot be reliably detected. In the method proposed by Min et al. [26], one
median threshold is replaced by eight percentiles and whole histogram is divided into nine
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segments with equal number of pixels, but it only mitigates the same issue. The example
outputs of the Pece et al. [32] and Min et al. [26] algorithms on data obtained by Nosko’s
camera [31] are shown on Figure 4.6.

In general, the existing methods are more or less using fixed or user-adjusted thresholds
and binary ghost maps, which either includes the pixel into the merging process or omits
it completely. Such approach negatively affects the merging process and appearance of
the resulting HDR image, causes higher noise on the affected patches around the moving
objects, and also on wrongly detected patches. Proposed approach does not have such
limitations, it is more robust, and does not require user-guided tuning of parameters.

Figure 4.8: The source sequence (top left) is merged with (bottom) and without (top right)
proposed ghost-free merging algorithm. Source images retrieved from Sing Bing Kang [15].

Figure 4.9: Output of the proposed HDR ghost-free merging method for Complex Scene
1 of dataset [16] (left). Ghosted HDR image is shown on the right. Previews of various
algorithm results are shown at the bottom. No de-ghosting (A), Silk et al. [40] (B), Sen et
al. [38] (C), Photoshop (D), Photomatix (E) and proposed algorithm (F). The previews A
to E are published as a part of a Karaduzovic dataset [16].
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4.3.1 Dataset evaluation and comparison

I performed the evaluation on datasets [16, 46, 47|, containing sequences of images of various
scenes and different types of motion. The results provide a comparison of the proposed
method with generally more precise and computationally demanding methods, commonly
based on optical flow, which were not even included into the related work due to their
complexity and high computational demands.

One of the datasets [16] contains multiple scenes with artificial objects movements. Its
advantage consists in the existence of the ground truth image, which allows a comparison to
the results as well as to many results of various published methods [11, 38, 40]. Figures 4.5
and 4.9 show the capabilities of the proposed method, showing that it provides results
visually comparable to optical flow based methods.

Table 4.3: Results of the ,Dynamic Region Dynamic Range* metric proposed by Tursun [46]
and evaluated on their dataset. The metric evaluates the resulting dynamic range within
regions containing movement; the higher the value, the better.

Metric ,DR* | [9] [38]  [40]  none | This work
Cafe 2.63 2.61 2.60 247 | 242
FastCars 112 1.18 1.10 1.10 | 1.38
Flag 140 150 149 145 | 1.59
Galleryl 1.59 159 1.56 1.55 | 1.70
Gallery2 241 2.56 2.14 229 | 2.05
LibrarySide | 1.78 1.93 1.60 1.76 | 3.20
Shopl 220 239 200 2.10 | 2.42
Shop2 2.68 2.72 2.89 255 | 242
WalkingP. 194 2.07 1.83 2.05 | 1.58

Tursun et al. [46, 47] published two datasets and proposed metrics for evaluation of HDR
de-ghosting quality. The evaluated samples from the datasets are shown in Figure 4.4 and
the HDR quality metric [46] is evaluated in Table 4.3. The metric evaluates the dynamic
range achieved inside the motion regions, considering also the correctness of the de-ghosting.
The image sets, in which we got worse results than other algorithms, were successfully de-
ghosted anyway; however, the worse results were probably caused by losses in the dynamic
range. Evaluation of the proposed method on these datasets also proves that the proposed
method is generally usable for sequences larger than two/three images, commonly used
in cameras. In all the referenced datasets [16, 46, 47], the proposed algorithms achieved
results visually comparable or even better than more complex algorithms (see Figure 4.10).
However, the proposed method and also many HDR de-ghosting methods may yield artifacts
in regions where the moving objects in the reference image are poorly-exposed, as Tursun
et al. concluded [46].

Another metric that have been found useful is HDR-VDP2 by Mantiuk et al. [24].
The metric evaluates the visibility and quality differences in image pairs and represents a
probability that an average observer will notice a difference in the images in the pair (see
Figure 4.11). The essential problem for the metric evaluation is the absence of ground truth
images. Applying this metric on image sets without ground truth reference seems useless,
as even the state-of-the-art algorithms may fail in ghost detection and/or changes in the
image quality e.g. by bluring of motion regions (see top of Figure 4.10). As a result, the
metric output obtained on such data does not have any meaningful value.
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Table 4.4: Evaluation of the HDR-VDP2 [24] metric on a ,complex® scene from Karadu-
zovic’s [16] dataset.

scenel | scene?2 | scene3 | scene 4
Q| 7324 76.20 82.83 71.58

Karaduzovic’s [16] dataset contains ground truth images, because it contains scenes
with artificial object motion. The metric was evaluated on ,,complex“ scenes and used the
HDR merged from the ground truth sequence as a reference. The ground truth sequence
is processed also by our algorithm (with de-ghosting disabled) to eliminate the effect of
unrelated image enhancements and enables the direct comparison of the resulting HDR
images. Table 4.4 contains an overall ,quality“ metric of the produced ghost-free HDR
output according to HDR-VDP2 [24] metric. Figure 4.11 shows ,scene 1“ with highlighted
differences between ground truth HDR and ghost-free HDR.

Figure 4.10: Figure shows scene ,Cafe* from Tursun’s [46] dataset processed with
Sen [38](top) and the proposed ghost-free algorithm(bottom). Sen [38] produce a heav-
ily blured image, which precludes the HDR-VDP metric [24]; moreover, the de-ghosting
method fails (see marked areas, where objects are shadowed and blured).

4.4 Performance evaluation

The performance of the algorithm on the relevant platforms is summarised in Table 4.5.
Only the core parts, the certainty map creation and HDR merging were benchmarked,
without including any data preprocessing time — please assume that at least in the FPGA
and GPU implementations, the images are transferred into the memory using DMA in the
background, without any performance losses. With the proposed optimisations, the algo-
rithm is single-pass only. Table 4.5 compares the performance of the proposed Ghost-free
merging of three LDR images on FPGA, SoC GPU and CPU platforms. In the case of
FPGA, the design achieves target frequency of 200MHz and is fully pipelined; therefore, it
allows the production of result pixels every clock cycle. Unlike in the sequential CPU and
GPU processing, increasing the amount of work that the FPGA pipeline performs leads to
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Figure 4.11: Figure shows ,scene 1 from Karaduzovic’s [16] dataset processed by the
HDR-VDP2 [24] metric. The colour bar reflects the probability that an average observer
will notice a difference between ghost-free HDR and ground truth HDR. De-ghosted HDR
visual quality, according to HDR-VDP2 metric [24] is 73.24 (see Table 4.4).

consumption of more resources and prolonging the processing pipeline, which has a negative
influence on latency; however, the data throughput remains the same (see Table 4.5).

Table 4.5: The table compares the performance of the proposed ghost-free merging of 3
LDR images (Figure 4.2) with a resolution of 1920 x 1080 on following platforms: FPGA
Xilinx Zynq, embedded CPU and GPU Nvidia Tegra TX2 and CPU Intel Core i7-3770
(single core).

FPGA TX2 GPU TX2 CPU CPU
Certainty map [ms] | 10.3 1.59 45.9 16.6
Merging [ms] 103 4.58 112.3 23.0
Total [ms] 10.3 6.17 158.2 39.6
Overall FPS 96.45 162.07 6.32 25.25

I chose the HDR camera prototype by Nosko et al. [31] for the integration of the proposed
ghost-free method. 1 chose this camera prototype due to its compact size, presence of
a FullHD resolution CMOS (and optionally with even higher resolution) and presence of
Xilinx Zyng SoC. Moreover, I participated on the development of Nosko’s prototype as well.
The proposed method and its implementation into architecture Nosko et al. [31] have not
been published yet; however, the performance parameters are already known. Moreover,
I have designed the new ghost-free merging block as a 1 to 1 replacement of previously
published HDR merging with ghost removal[31], then the overall design shares all other
features, such as advanced local tonemapping.
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Figure 4.12: A car passing by the camera — ghosted HDR (left) and result of the proposed
ghost-free merging algorithm (right).

The proposed algorithm should also be easily integrated into existing solutions of HDR
acquisition devices by Popadic et al. [33], Lapray [20], Nosko [30] and probably others which
are all based on pixel weighting, similar to Debevec and Malik [4].

The implementation on Nosko’s platform allowed direct comparison with other archi-
tectures, however, probably only related work, which implements multi-exposure ghost-free
HDR acquisition on an embedded device, in this case on FPGA, was proposed by Bouder-
bane et al. [3]. The Table 4.6 provides an overall comparison to Bouderbane solution.

Table 4.6: Comparison of main parameters of proposed solution to Bouderbane et al. [3].

Proposed pipeline on [31] | Bouderbane
Platform Zynq 7020 Virtex 6
Resolution 1920 x 1080 1280 x 1024
T™O Durand (Local) Duan (Global)
Arithmetic Fixed point Floating point
Maximum speed | 200M hz 114.2Mhz
Throughput 200Mpiz/s 114.2Mpizx/s
Framerate 96FPS 60FPS

As can be seen on Table 4.6, the design outperforms the Bouderbane architecture in
all parameters. The design is fully pipelined, producing HDR pixel in every clock cycle.
Target clocking frequency is 200MHz, which enables the acquisition of FullHD HDR im-
ages at up to 96FPS. The fixed point arithmetic has a positive contribution to clocking
frequency, low resource requirement and low power consumption. At the same time, the
calculations are still performed in high accuracy, which was summarized in Section 4.2. The
platforms are both implemented in different FPGA family, where Zynq is part of 7th and
Virtex part of 6th series from Xilinx. However, Virtex is a High end, while Zynq(Artix)
only mid or low-end FPGA. The Table 4.2 shows the overall FPGA resource consumption
for both complete camera solutions; Bouderbane does not provide separately the resources
consumed by deghosting and HDR merging circuits. Please notice that local tonemapping
operator with bilateral filter (on Nosko’s platform) require more than 1/3 of overall LUT
and Register resources and consumes most of BRAM and DSP resources.
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The following part of the evaluation aims to compare proposed algorithm performance to
related state-of-the-art implementations. The essential problem is those relevant algorithms
are not generally available in the form of code or executable; therefore the performance
comparison is rather limited to algorithms, where I managed to get source codes to run or
where I get required information from relevant articles.

The comparison from Table 4.7 confirms that deghosting algorithms do not generally
achieve real-time performance. Depending on the algorithm and desired deghosting quality
(if available), the process can take from tens of seconds to more than ten minutes. Certain
algorithms, such as Grosh [9] which have similar computation complexity as the proposed
algorithm, do achieve relatively low processing time, however, the output is not deghosted
very well, as shown in evaluation by Tursun et al. [46]. The Table 4.7 shows, that proposed
algorithm is running much faster than any compared algorithm and is even twice faster
than the algorithm by Grosch [9]. Please note, that average times from Table 4.7 are valid
for sets of nine images with 4MPix resolution.

Table 4.7: Table results obtained from Tursun et al. [46]. The table shows the average
processing time of deghosting algorithms on Tursun dataset [46]. Source image sets contain
9 images with 4MPix resolution (Sen and Khan merges three images with 1024 x 683 only).
Tursun achieved these results on CPU Intel i7-3770; however, it is not specified whether
the algorithms utilized all CPU cores or not. Proposed method result is benchmarked as
single-core.

| Proposed | Grosch[9] | Khan[17] | Sen[38] | Silk[40] | Hu[11] | Tursun[46]

Avg. time[s] | 048 | 1.04 | 616.45 | 209.78 | 14.33 | 230.36 |  7.09

The Table 4.8 compares the performance of proposed algorithm and algorithms by Pece
et al. [32] and Min et al. [26]. I chose these algorithms to compare due to its possible easy
implementation on FPGA; the author claims that the algorithm does not use the multi-
plication, division, and floating-point operations for object motion detection. Moreover,
all operations, including the histogram calculation, are relatively easily implementable on
FPGA. Also, the deghosting ability presented in the paper seemed to be very promising.

Table 4.8: Table compares the performance of the proposed algorithm with algorithms by
Pece et al. [32] and Min et al. [26]. Algorithms were benchmarked on CPU Intel i7-3770
(single thread) on a scene from Figure 4.1. Source image set contains three images with
FullHD resolution (1920 x 1080).
‘ Proposed ‘ Pece et al. [32] ‘ Min et al. [26]
Avg. time [ms] | 39.6 | 193 | 206

I implemented the proposed algorithm and algorithms by Pece et al. [32] and Min et
al. [26] in C++, so the performance presented in Table 4.8 should be comparable. As could
be observed, the proposed algorithm is almost five-times faster. Moreover, the deghosting
results are also better, as can be observed in Figure 4.6. The explanation of why these
methods do not achieve good deghosting results is in the Subsection 4.3.

The Table 4.9 presents the performance results obtained by Yan et al. [54] and presented
in their article. They compared a number of algorithms and benchmarked them on CPU
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Intel i7 and GPU NVIDIA GeForce GTX 1080Ti. As can be observed, the proposed
algorithm achieved better performance on CPU architecture (single-core) than others on
even high-end GPUs. Yan’s [54] and Wu’s [52] CNN-based merging are relatively fast;

however, they run on high-end GPU, which consumes much more energy than CPU (up to
280W).

Table 4.9: Table results obtained from Yan et al. [54]. Table shows average processing time
of deghosting algorithms on three images with resolution 1000 x 1500. CPU used is Intel
i7 (not further specified by Yan), GPU used is NVIDIA GeForce GTX 1080Ti.

Algorithm | Proposed | Yan [54] | Wu [52] | Kalantari [14] | Sen [38] | Wu [51]
Platform CPU GPU GPU CPU+GPU CPU CPU
Time [s] 0.022 0.31 0.24 29.14 61.81 79.77

4.4.1 Power consumption summary

This subsection provides a brief comparison of the power consumption of selected algo-
rithms. The overall energy in Joules per one frame is estimated from processing time and
TDP of a processor; alternatively, FPGA consumption is estimated by the design tools
based on the amount of logic used. The Table 4.10 and Table 4.11 contains the energy
requirements converted from performance summary in Table 4.7 and Table 4.8.

Table 4.10 presents that the proposed algorithm has the lowest power consumption
among all of the measured algorithms. The results were achieved on the dataset published
by Tursun[46], which contains sequences of nine images with 4dMPix resolution. It is not
specified by Tursun [46] whether the algorithms utilize single or multiple cores; therefore, I
assume only single-core implementation as a lower estimate of the possible power consump-
tion. Proposed method result is benchmarked as single-core.

Table 4.10: Table of energy consumption per HDR frame, derived from Table 4.7. The table
shows average energy consumption for processing one HDR frame of deghosting algorithms

on Tursun dataset [46].
‘ Proposed ‘ Grosch|9] ‘ Khan[17] ‘ Sen|[38] ‘ Silk[40] ‘ Hu[11] ‘ Tursun|[46]

12 26 15411 5244 358 5759 177

Avg.
energy [J]

Table 4.11: Table compares the energy consumption for processing one HDR frame by
proposed algorithm with algorithms by Pece et al. [32] and Min et al. [26]. Algorithms were
benchmarked on CPU Intel i7-3770 (single thread) on scene from Figure 4.1. Source image
set contains three images with FullHD resolution (1920 x 1080).
‘ Proposed ‘ Pece et al. [32] ‘ Min et al. [26]
Avg. energy [J] ‘ 0.99 ‘ 4.82 ‘ 5.15

The average consumption is 12J per one HDR frame, which is 46% of the second least
demanding algorithm by Grosh [9]. Moreover, proposed algorithm demands are measured
for single-core processing only, whether the data provided by Tursun [46] are not specified
whether were achieved on single-core only; however, the results in Table 4.7 and Table 4.10
assumes they are.
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Table 4.12: The table compares the power consumption of the proposed algorithm on the
CPU and FPGA platform and shows the estimated energy required for the ghost-free merge
of the sequence of three FullHD images. Please note that consumption of Camera Nosko [31]
includes camera as a whole.

Consumption [W] Energy per frame [J] comp. to CPU[%]
CPU Intel i7-3770 25W (single core) 0.99 —
Camera Nosko [31] (30FPS) ~8W 0.266 26.9
Camera Nosko [31] (96 FPS) ~8W 0.083 8.3
Tegra TX2 - GPU only 15W 0.093 9.3
Proposed - FPGA only 1,1W 0.0115 1.16

Table 4.13: The table compares performance of proposed Ghost-free merging of three LDR
images (Figure 4.2) of resolution 1920 x 1080 on FPGA and CPU platforms. Data are
selected from Table 4.5.

FPGA Xilinx Zynq CPU Intel Core i7-3770
Ghost det. [ms] 10.3 16.6
Merging [ms] 10.3 23.0
Total [ms] 10.3 39.6
Overall FPS 96.45 25.25

The HDR camera by Zemcik et al. [55] achieved overall power consumption of 12W and
the HDR cameras by Nosko et al. [30, 31] even less, total 8W. Based on the performance
summarized in Table 4.5 and assuming the maximum speed of 96.4FPS, the camera Nosko
et al. [31] with proposed algorithm consumes 0,083.J per frame. The power consumption
of CPU Intel Core i7-3770 was measured in single-core load (running proposed algorithm)
and achieved 256W. CPU achieved framerate of 25.25 FPS, which results in consumption
approximately 0.99J per frame; note, please, that the difference between standby and the
full load was power consumption measured, which shows only the desired dynamic part of
power consumption.

In summary, the HDR camera by Nosko et al [31] with proposed algorithm consumes
only 8.4% comparing to the CPU implementation. Moreover, most of the power consump-
tion of HDR camera is spent on camera hardware, including CMOS chip and H.264 encoder,
while the consumption of the FPGA itself consumes approx. 1,1W only (estimation by Xil-
inx Vivado tool). This result is much more favourable for FPGA, but the comparison is
fairer because it compares only the ,,computing“ elements. The energy spent on one frame
drops to approx. 0.011.J, which is little above 1% of the energy consumed by CPU.

4.5 Validation and scientific contribu