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Abstract
This thesis aims to answer the question whether it is currently possible to autonomously
measure the speed of vehicles using a stereoscopic method with the average error within
± 1 km/h, the maximum error within ± 3 km/h, and the standard deviation within ± 1
km/h. The error ranges are based on the requirements of the OIML whose Recommen-
dations serve as templates for metrological legislations of many countries. To answer this
question, a hypothesis is formulated and tested. A method that utilizes a stereo camera
pair for vehicle speed measurement is proposed and experimentally evaluated. The exper-
iments show that the technique overcomes state-of-the-art results with the mean error of
approximately 0.05 km/h, the standard deviation of less than 0.20 km/h, and the maxi-
mum absolute error of less than 0.75 km/h. The results are within the required ranges, and
therefore the formulated hypothesis holds.

Abstrakt
Tato práce se snaží najít odpověď na otázku, zda je v současnosti možné autonomně
měřit rychlost vozidel pomocí stereoskopické měřící metody s průměrnou chybou v rozmezí
± 1 km/h, maximální chybou v rozmezí ± 3 km/h a směrodatnou odchylkou v rozmezí
± 1 km/h. Tyto rozsahy chyb jsou založené na požadavcích organizace OIML, jejichž
doporučení jsou základem metrologických legislativ mnoha zemí. Pro zodpovězení této
otázky je zformulována hypotéza, která je následně testována. Metoda, která využívá
stereo kameru pro měření rychlosti vozidel je navržena a experimentálně vyhodnocena.
Výsledky pokusů ukazují, že navržená metoda překonává výsledky dosavadních metod.
Průměrná chyba měření je přibližně 0.05 km/h, směrodatná odchylka chyby je menší než
0.20 km/h a maximální absolutní hodnota chyby je menší než 0.75 km/h. Tyto výsledky
jsou v požadovaném rozmezí a potvrzují tedy testovanou hypotézu.
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Chapter 1

Introduction

The speed of a moving vehicle directly influences both the risk of a crash and the severity
of its consequences. To minimize this risk and thus to increase the road traffic safety, the
law imposes speed limits that should ensure that in the event of a crash, impact energies
remain below the threshold likely to produce either death or serious injury.

The threshold value usually depends on the most probable crash scenario which varies
with road location. In residential and high pedestrian traffic areas, it is often around 30
km/h. In cities or areas with a higher probability of side impact of vehicles and with a
lower amount of pedestrian traffic, it is around 50 km/h. And for highways, where rear-end
collisions are prevalent it is around 130 km/h [35, 55, 74].

In order for the speed limits to be effective in increasing road safety, they need to be
enforced. The success of the enforcement depends on the ability of empowered authorities
to accurately measure the speed of passing vehicles. While various measurement devices
exist, only those that comply with metrological legislation implemented in a given country
can be used for the enforcement.

The metrological legislation of individual countries defines the requirements in terms of
working conditions, measurement range, precision, and accuracy which every speed mea-
surement device has to meet. Before the device is approved and certified, it typically
undergoes laboratory and field tests which verify that the device is able to provide reliable
measurements within given tolerances. For countries that base their metrological legislation
on recommendations of the International Organization of Legal Metrology, the maximum
allowable errors for laboratory tests are ±1 km/h for reference speeds up to 100 km/h and
±1 % for greater speeds. For field tests, the maximum allowable errors are ±3 km/h for ref-
erence speeds up to 100 km/h and ±3 % for greater speeds. Additionally, the average error
during the field test should be within ±1 km/h. If the device is to work autonomously, it has
to also meet the field test tolerances with 99.8 % probability. Therefore, if the distribution
is Normal, the standard deviation should not exceed 1 km/h.

The speed measurement devices are based on various physical principles that influence
their placement with respect to the road and their cost. Nowadays, the most attention is
given to the camera-based technologies because they provide a rich array of data that can
be quickly processed on contemporary hardware. Single-camera devices are very interesting
from an application perspective and a lot of work has been done to improve the methods they
use for calibration and speed estimation. But certification of these devices is problematic.
Stereo camera devices, on the other hand, are based on more transparent calibration and
speed estimation methods and their certification should be easier.
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The main scientific goal of this thesis is the answer to the question of whether it is cur-
rently possible to autonomously measure the speed of vehicles using a stereoscopic method
with the average error within ± 1 km/h, the maximum error within ± 3 km/h, and the
standard deviation within ± 1 km/h. The error ranges are based on the requirements of
the OIML whose Recommendations serve as templates for metrological legislations of many
countries. The devices that would use the measurement method whose error is within the
specified ranges could receive proper certification and be used for speed limits enforcement.
This question is answered using the newly proposed stereoscopic vehicle speed measure-
ment method that exploits novel stereo camera pair calibration approach and overcomes
the current state-of-the-art techniques.

The structure of the thesis is as follows. The first three chapters are dedicated to the
theoretical background. In Chapter 2, an overview of the image acquisition and processing
techniques is presented. The chapter emphasizes the camera calibration, object detection,
localization, and tracking methods as these form a basis on which the developed calibration
and measurement methods are built. Chapter 3 describes the devices that are currently
used for vehicle speed measurement and presents the requirements that are imposed on
them by the metrological legislation. The usability of stereoscopic speed measurement is
shown by comparison with the devices that are described in this chapter. State-of-the-
art stereoscopic measurement and calibration methods are introduced in Chapter 4. The
next chapters are dedicated to the main contribution of this thesis. Chapter 5 states the
hypothesis of this work and proposes measurement and calibration methods on which the
experiments are performed in order to test the presented hypothesis. The design and results
of the experiments are described in Chapter 6. Chapter 7 focuses on possible applications
and future work and Chapter 8 concludes this thesis.
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Chapter 2

Image acquisition and feature
detection

The representation of a digital image and its acquisition are described in the first three
sections of this chapter. The last section is dedicated to the selected object detection and
tracking techniques that are used in the proposed vehicle speed measurement method.

2.1 Digital image
An image may be defined as a two-dimensional continuous function, 𝑓(𝑥, 𝑦), where 𝑥 and 𝑦
are spatial coordinates, and the amplitude of 𝑓 at any pair of coordinates (𝑥, 𝑦) is called the
intensity of the image at that point. In order to be handled by computers, the image must
be digitized [32]. The digitization is a process that transforms the continuous image to its
digital form. The digitization involves two independent processes:sampling and quantiza-
tion. The spatial sampling digitizes the coordinate values and the quantization digitizes the
amplitude values. The resulting digital image has finite amount of picture elements, each
of which has an intensity value that is represented by a finite number of bits [22]. Although
digital images could be acquired in numerous ways, this work focuses on images that are
acquired by digital cameras.

2.2 Camera model
A camera is an optical instrument that provides a mapping between a 3D world and a 2D
image. This mapping is represented by a matrix that models the camera projection. In
this work, camera mapping is represented by a pinhole camera model [68].

Pinhole camera model

The pinhole camera model can be described using the camera calibration matrix

𝑃 = 𝐾[𝑅|𝑡], (2.1)

where 𝐾 is a 3x3 matrix of internal camera parameters and [𝑅|𝑡] is a 3x4 matrix of external
camera parameters which represents the position and orientation of the camera with respect
to the world coordinate system and consists of a 3x3 rotation matrix 𝑅 and a 3D translation
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Figure 2.1: Pinhole camera model with geometrical representation of internal and external
camera parameters and different coordinate systems.

vector 𝑡. The form of the matrix 𝐾 is

𝐾 =

⎡⎣𝑓 *𝑚𝑥 𝑠 𝑐𝑥
0 𝑓 *𝑚𝑦 𝑐𝑦
0 0 1

⎤⎦ , (2.2)

where 𝑓 is a focal length of a camera, 𝑚𝑥 and 𝑚𝑦 are the numbers of pixels per distance
unit in x and y direction, 𝑐𝑥 and 𝑐𝑦 are the image coordinates of a camera principal point,
and 𝑠 is a skew parameter. Overall the pinhole camera model has 11 degrees of freedom
which need to be estimated in order to have a camera calibrated.

The geometrical representation of the internal and external camera parameters is shown
in Fig. 2.1. The centre of projection is the origin of the camera coordinate system. It is
the focal point for all rays that hit the camera. An image plane is a plane where the
virtual image of the scene is formed. A distance between the centre of projection and
the image plane is the focal length. The optical axis is a line that passes through the
centre of projection and is orthogonal to the image plane. The point where the optical axis
intersects the image plane is called the principal point. The principal point is the origin of
the normalized image coordinate system, but his position is usually expressed in the image
coordinates. The matrix of external parameters represents a transformation between the
world coordinate system and the camera coordinate system.

The camera calibration process usually involves pointing the camera to a known cali-
bration object or a pattern [78]. At least six 2D points (𝑥) are selected in the captured
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(a) (b) (c)

Figure 2.2: Most commonly encountered radial distortions. (a) Original undistorted image.
(b) Barrel distortion. (c) Pincushion distortion.

image and related to their corresponding 3D points (𝑋) using the formula

𝑥𝑖 = 𝑃𝑋𝑖. (2.3)

An initial estimate of the matrix 𝑃 is obtained by a linear computation method and then
further refined by minimizing geometric error

𝑒 = 𝑑(𝑥𝑖, 𝑃𝑋𝑖) (2.4)

through a non-linear optimization.

Lens distortion

One important thing that is not covered by the pinhole camera model is a distortion intro-
duced by a camera lens. The most common distortion is a radial distortion that is caused
by an imperfect lens shape. The radial distortion distorts the ideal points radially from the
distortion centre. The most commonly encountered types of radial distortions are shown in
Fig. 2.2. Two widely used models for its description exist - Brown’s [6] and Fitzgibbon’s
[21] (also known as the division model). Brown’s model for the radial distortion is

𝑥𝑢 = 𝑥𝑑 + (𝑥𝑑 − 𝑥𝑐) * (𝐾1 * 𝑟2 + 𝐾2 * 𝑟4 + ...)

𝑦𝑢 = 𝑦𝑑 + (𝑦𝑑 − 𝑦𝑐) * (𝐾1 * 𝑟2 + 𝐾2 * 𝑟4 + ...)
, (2.5)

where (𝑥𝑢, 𝑦𝑢) are the undistorted point coordinates, (𝑥𝑑, 𝑦𝑑) are the distorted point co-
ordinates, (𝑥𝑐, 𝑦𝑐) are the coordinates of a centre of distortion, 𝐾𝑥 is the xth distortion
coefficient, and 𝑟 is a distance between the distorted point and the centre of distortion

𝑟 =
√︀

(𝑥𝑑 − 𝑥𝑐)2 + (𝑦𝑑 − 𝑦𝑐)2. (2.6)

For lenses that exhibit severe radial distortions, the division model might be preferred
as it is able to describe high distortions with fewer parameters [71]. The division model
formula is

𝑥𝑢 = 𝑥𝑐 +
𝑥𝑑 − 𝑥𝑐

1 + 𝐾1 * 𝑟2 + 𝐾2 * 𝑟4 + ...

𝑦𝑢 = 𝑦𝑐 +
𝑦𝑑 − 𝑦𝑐

1 + 𝐾1 * 𝑟2 + 𝐾2 * 𝑟4 + ...

. (2.7)
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To compensate for the radial distortion, one needs to find out the values of the distor-
tion coefficients and the distortion centre coordinates. These values can be computed, for
example, by minimizing a cost based on the deviation from linear mapping (e.g. by keeping
the images of straight scene lines straight) [24].

For the division model, a single parameter 𝐾 is usually sufficient for the description of
the radial distortion of most lenses [21]. Under this single-parameter division model, the
images of the straight lines form circular arcs after distortion. The centre of the distortion
and the single parameter 𝐾 can then be computed by fitting circles to at least three arcs
and solving a system of equations [7, 67].

Besides radial distortion, tangential and thin prism distortions exist, but their occur-
rence is less common [73]. It is likely that the distortion function is totally dominated by
the radial component (especially dominated by the first term) with the other distortion
components having a negligible effect [78].

2.3 Stereo camera pair
A stereo camera pair consists of two synchronized cameras with overlapping fields of view. If
we are able to identify two points, one in each camera image, that are the projections of the
same 3D object point, we can compute the position of the object point within a scene. Given
enough corresponding points, we can reconstruct the whole scene. The mutual position of
corresponding points is restrained by a relation between the two camera views that depend
only on cameras’ internal parameters and their relative pose and is independent of the scene
structure. An epipolar geometry describes this relation [24].

Epipolar geometry

An epipolar geometry describes the relationship and constraints between two views. The
relation between the two views of the calibrated cameras was described by Longuet-Higgins
[42] as

�̂�′𝑇𝐸�̂� = 0, (2.8)

where 𝐸 is a 3x3 essential matrix, �̂� and �̂�′ are two points 𝑥 and 𝑥′ from the first and the
second camera images respectively expressed in the normalized coordinates. The two points
𝑥 and 𝑥′ are the images of the same 3D point 𝑋, and therefore they correspond. Their
normalized coordinates were obtained by removing the influence of the internal camera
parameters

�̂� = 𝐾−1𝑥

�̂�′ = 𝐾 ′−1𝑥′
. (2.9)

The essential matrix constrains the position of one of the points given the position of the
other. For example, the position of point �̂�′ in the second camera image lies on a line 𝐸�̂�
and, vice versa, the position of the point �̂� in the first camera image is constrained by a line
𝐸𝑇 �̂�′. The constraining lines are called epipolar lines. All epipolar lines from one image
plane intersect at the epipole which is also a point of intersection of baseline (the line that
connects the two camera centres) with the image plane. The epipole also represents the
image of the other camera centre. The elements of epipolar geometry are shown in Fig.
2.3.
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Figure 2.3: An epipolar geometry of a stereo camera pair. Points 𝑥 and 𝑥′ are two projec-
tions of 3D point 𝑋. The position of point 𝑥′ in the second camera image is constrained
by the epipolar line 𝑞′ = 𝐹𝑥 and, vice versa, the position of point x is constrained by the
epipolar line 𝑞 = 𝐹 𝑇𝑥′. Points 𝑒 and 𝑒′ are the epipoles.

The concept of the essential matrix was later generalized for the uncalibrated cameras
by Faugeras [19] and Hartley et al. [27]. They simultaneously introduced the fundamental
matrix which does not require the normalization of point coordinates

𝑥′𝐹𝑥 = 0. (2.10)

The fundamental matrix can be computed from point correspondences alone. It has only
seven degrees of freedom; thus, a minimum of seven correspondences are required for its
computation. However, the use of only seven correspondences leads to a cubic polynomial
equation which has one or three real solutions [26]. The seven-point algorithm can, there-
fore, yield one or three fundamental matrices. A unique solution can be obtained using eight
or more correspondences. In order to achieve the best performance when using the eight-
point algorithm, simple data normalization is required [29]. The methods for computation
of fundamental matrices were reviewed by Zhang [79]. The same methods can be used
to compute the essential matrix using the point correspondences expressed in normalized
coordinates.

Scene reconstruction and triangulation

A position of a 3D point 𝑋 within a scene can be reconstructed from its projections 𝑥 and
𝑥′. The point 𝑋 projects as

𝑥 = 𝑃𝑋

𝑥′ = 𝑃 ′𝑋
. (2.11)

The reconstruction process is based on a triangulation which aims to find an intersection
point of two rays in space. The two rays that are triangulated can be easily recovered
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from the two projections and the camera calibration matrices. Although the task of rays
intersection in space is trivial, in the presence of noise, the two rays are not guaranteed to
intersect. In that case, the triangulation process seeks to find the best solution under an
assumed noise model.

Hartley and Sturm [28] presented the optimal triangulation method under the assump-
tion of Gaussian noise model. The method tries to correct the noisy correspondences which
do not, in general, satisfy the epipolar constraint 2.10 by replacing them with the clos-
est points 𝑢 and 𝑢′ that do satisfy the constraint. The closest points can be found by
minimizing the function

𝑑(𝑥, 𝑢)2 + 𝑑(𝑥′, 𝑢′)2. (2.12)

Once the points 𝑢 and 𝑢′ have been identified, the corresponding rays will meet precisely,
and their intersection can be found by any triangulation method.

Perhaps the most commonly used method for triangulation is the linear method which
combines the equations 2.11 into a form 𝐴𝑋 = 0 where

𝐴 =

⎡⎢⎢⎣
𝑥p3𝑇 − p1𝑇

𝑦p3𝑇 − p2𝑇

𝑥′p′3𝑇 − p′1𝑇

𝑦′p′3𝑇 − p′2𝑇

⎤⎥⎥⎦ (2.13)

and p𝑖𝑇 is the ith row of 𝑃 . This system of equations is linear in 𝑋 and can be solved by,
for example, singular value decomposition.

In order to perform triangulation and reconstruct the scene, we need to obtain the
camera matrices P and P’. Different types of scene reconstructions exist, and they vary by
the type of transformation (e. g. projective, affine, or similarity) that needs to be applied
to them to get a true reconstruction. To perform measurements within a reconstructed
scene, we need at least the similarity (also known as the metric) reconstruction. For this
type of reconstruction the required camera matrices P and P’ have forms

𝑃 = 𝐾[𝐼|0]

𝑃 ′ = 𝐾 ′[𝑅|𝑡]
, (2.14)

where 𝐾 and 𝐾 ′ are the internal parameters for the first and the second camera, 𝐼 is a
3x3 identity matrix and [𝑅|𝑡] is a 3x4 matrix which specifies a position and an orientation
of the second camera with respect to the first camera. Note that, for simplicity, the world
coordinate frame coincides with the first camera. The camera matrices that allow metric
reconstruction can be obtained, for example, by the progressive refinement of camera ma-
trices retrieved from the fundamental matrix using the stratified method [17, 25] or directly
by using five or more ground control points [24].

Correspondence problem

The correspondence problem is fundamental in computer vision. For the two views of a
stereo camera pair, the correspondence problem can be formulated as follows. Given a
projection of a 3D point in one view, find the corresponding projection of the same 3D
point in the other view, if possible. The correspondence search area can be limited to a line
if the essential or fundamental matrix is given. Two main classes of correspondence search
algorithms exist - the correlation-based and the feature-based.
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Inputs : A pair of images 𝐼1, 𝐼2, the width of the search window 2𝑊 + 1, and a
point 𝑝1 = (𝑥1, 𝑦1) ∈ 𝐼1.

Output: A point 𝑝2 = (𝑥2, 𝑦2) ∈ 𝐼2 that corresponds to the point 𝑝1.
𝑐𝑚𝑎𝑥 ← 0;
𝑠1 ←

√︁∑︀𝑊
𝑖=−𝑊

∑︀𝑊
𝑗=−𝑊 (𝐼1(𝑥1 + 𝑖, 𝑦1 + 𝑗)− 𝐼1(𝑥1, 𝑦1))2;

foreach pixel 𝑝 = (𝑥, 𝑦) in image 𝐼2 do

𝑠2 ←

⎯⎸⎸⎷ 𝑊∑︁
𝑖=−𝑊

𝑊∑︁
𝑗=−𝑊

(𝐼2(𝑥 + 𝑖, 𝑦 + 𝑗)− 𝐼2(𝑥, 𝑦))2;

𝑐←
∑︀𝑊

𝑖=−𝑊

∑︀𝑊
𝑗=−𝑊 (𝐼1(𝑥1 + 𝑖, 𝑦1 + 𝑗)− 𝐼1(𝑥1, 𝑦1))(𝐼2(𝑥 + 𝑖, 𝑦 + 𝑗)− 𝐼2(𝑥1, 𝑦1))

𝑠1𝑠2

if 𝑐 > 𝑐𝑚𝑎𝑥 then
𝑐𝑚𝑎𝑥 ← 𝑐;
𝑝2 ← 𝑝;

end
end

Note 𝐼𝑘(𝑥, 𝑦), 𝑘 = 1, 2 is the average of the image 𝑘 within the window of size
2𝑊 + 1 centred around point (𝑥, 𝑦).

Algorithm 1: Window-based correspondence search with zero-mean normalized
cross-correlation similarity measure.

The correlation-based methods establish the correspondences by matching image inten-
sities. These techniques can be broadly classified into two categories - the local and the
global [61]. The local algorithms match intensity values within a finite image window. For
each pixel in one image, a template window is constructed. The template window is then
slid across the other image, and for every displacement, the similarity measure between the
intensity values of the template window and the intensity values of the underlying area in
the other image is computed. The match is established for the displacement where the sim-
ilarity measure value is maximal. Widely used similarity measures are the sum of squared
differences, the sum of absolute differences, and the normalized cross-correlation [18]. The
Algorithm 1 shows a window-based search for a point 𝑝2 that corresponds to a point 𝑝1
with a zero-mean normalized cross-correlation similarity measure which is invariant to both
shift and scale photometric distortion.

Unlike local methods, the global algorithms work with the whole image. Their goal is
to estimate a displacement function that minimizes a global cost function that combines
data and smoothness terms. This minimization can be done in various ways, such as graph
cuts, simulated annealing, or probabilistic diffusion [61]. Both local and global methods
produce dense correspondences; that is, they are able to find a correspondence for every
image point.

Some methods that do not fit to the local and global categories exist. These methods
include, for example, approaches based on wavelet transforms [3], such as [30, 40], or spiral
search [49].
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The feature-based approach to correspondence search is based on detecting and ex-
tracting the regions of interest from both images and matching them together using their
descriptions. The image feature can be, for example, an edge, a corner, or a blob. Different
types of features require different detectors to be used. Canny [9], Sobel [13] or Prewitt
[60] detectors are the examples of the edge detectors. The corners can be detected using,
for example, Laplacian of Gaussian, Difference of Gaussians, or Harris detector [23]. Max-
imally Stable Extremal Regions [48] or Principal curvature-based region detector [11] are
the examples of the blob detectors.

Detected features are then submitted to a feature descriptor that attempts to describe
the feature with a vector that is constructed from the feature’s neighbourhood. The feature
description strives to be invariant to scale, rotation, and shift. The SIFT [43], SURF [2],
LBP [59], FREAK [1], and BRIEF [8] descriptors can be named as examples. Once the
features of both images have been described, they can be matched together based on their
distance in the feature space. The binary descriptors can be easily compared using the
Hamming distance. The non-binary descriptors are usually compared using the Euclidean
norm. Unlike the correlation-based approach, the feature-based methods produce only
sparse correspondences, that is, they are able to find the correspondences only for the
detected feature points and not for each image pixel.

2.4 Selected object detection and tracking methods
This section presents the selected object detection and tracking methods that are relevant
to this work and that are used in the implementation. Object detection algorithms aim to
locate the objects of interest within an image frame. The tracking algorithms estimate the
positions of the detected objects in the following frames and help maintain the context in
frames where the detector fails to locate the tracked object. Although many approaches
to object detection and tracking exist [77, 34, 39], this section focuses only on those that
are implemented as a part of the proposed vehicle speed measurement method, namely,
WaldBoost and Kalman filter.

WaldBoost

The WaldBoost is an algorithm for computer vision two-class classification problems with
near-optimal time and quality (error rate) trade-off. It was proposed by Šochman and Matas
[63] and it integrates the AdaBoost algorithm and Wald’s optimal sequential probability
ratio test [70]. Hardware implemetations exhibit excellent accuracy and performance at
very low power consumption [50].

A two-class classification is a task of classifying the object of a given set into two groups
which can be decided by a sequential decision strategy. The sequential decision strategy
𝑆 can be broken down into a series of steps. In each step 𝑡, a measurement 𝑥𝑡 on the
object 𝑥 is taken and a decision function 𝑆𝑡 decides whether the object belongs to the class
𝑦 ∈ {+1,−1} or whether the decision process should continue with the next step 𝑡+1. The
optimal strategy is the one that minimizes the time-to-decision and keeps the probabilities
for both kinds of errors under the specified thresholds. Wald [70] showed that the sequential
probability ratio test defined as

𝑆*
𝑡 =

⎧⎨⎩
+1, 𝑅𝑡 ≤ 𝐵
−1, 𝑅𝑡 ≥ 𝐴
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒, 𝐵 < 𝑅𝑡 < 𝐴

11



is the optimal sequential decision strategy. The 𝐴 and 𝐵 are the error thresholds and the
𝑅𝑡 is the likelihood ratio

𝑅𝑡 =
𝑝(𝑥1, ..., 𝑥𝑡|𝑦 = −1)

𝑝(𝑥1, ..., 𝑥𝑡|𝑦 = +1)
.

The optimal values for 𝐴 and 𝐵 are difficult to compute in practice and Wald suggests to
set them to their upper and lower bounds

𝐴′ =
1− 𝛽

𝛼
, 𝐵′ =

𝛽

1− 𝛼
, (2.15)

where 𝛼 is the probability of the error of the first kind and 𝛽 is the probability of the error
of the second kind.

To select and order the measurements and to estimate the joint probability density
function, Šochman and Matas suggested using the AdaBoost algorithm. The AdaBoost
algorithm produces a strong classifier of the form

𝐻𝑇 (𝑥) =
𝑇∑︁
𝑡=1

ℎ(𝑡)(𝑥),

where ℎ(𝑡) are selected simple weak classifiers and 𝑇 is the size of a labelled training set.
Using the trained classifier and desired error probabilities, the sequential probability

ratio test becomes

𝑆*
𝑡 =

⎧⎪⎨⎪⎩
+1, 𝐻𝑡 ≥ 𝜃

(𝑡)
𝐵

−1, 𝐻𝑡 ≤ 𝜃
(𝑡)
𝐴

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒, 𝜃
(𝑡)
𝐴 < 𝐻𝑡 < 𝜃

(𝑡)
𝐵

,

where 𝜃
(𝑡)
𝐴 and 𝜃

(𝑡)
𝐵 thresholds are set to the upper and lower bounds of 𝐴 and 𝐵 according

to the Eq. 2.15. The WaldBoost algorithm uses the modified sequential probability ratio
test for classification. In each step, the classifier output 𝐻𝑡 is compared to the thresholds
𝜃
(𝑡)
𝐴 and 𝜃

(𝑡)
𝐵 and either a decision is made, or the next weak classifier is taken. If all the

weak classifiers are executed, and a decision is not made, the 𝐻𝑇 value is compared to a
threshold of 𝛾. If the 𝐻𝑇 value is greater than the threshold, the object is classified as +1;
otherwise, it is classified as −1.

Kalman Filter

The Kalman Filter [36] is a recursive algorithm that predicts the state of a linear system
from past estimations and noisy measurements. Its applications are numerous, for exam-
ple, object tracking, navigation, control systems, or signal processing. A comprehensive
introduction to Kalman Filter can be found in [4, 72]. The algorithm utilizes five equations
that are used in two alternating steps. The prediction step where the current state and the
uncertainty of the current system state estimate are extrapolated and the update step in
which the projected estimates are corrected.

The algorithm is initialized by initial system state and uncertainty (covariance) of the
initial state. The initial values are passed to the prediction step as the current state �̂�𝑘
and current state uncertainty 𝑃𝑘 estimates where they are extrapolated to the next system
state �̂�−𝑘+1 and the next state uncertainty 𝑃−

𝑘+1 projections

�̂�−𝑘+1 = 𝐴𝑘�̂�𝑘 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘

𝑃−
𝑘+1 = 𝐴𝑘𝑃𝑘𝐴

𝑇
𝑘 + 𝑄𝑘

,
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Figure 2.4: Schematic description of the Kalman Filter algorithm. Adapted from [4].

where the 𝐴𝑘 is a state transition matrix, the 𝐵 is a matrix that maps the control input 𝑢𝑘
to a state, and the 𝑤𝑘 is a zero-mean Gaussian process noise with process noise covariance
𝑄𝑘.

Then a measurement is taken and the measured system state and measurement uncer-
tainty are obtained. The measured and predicted values are submitted to the update step
where the current system estimate �̂�𝑘 and the current state estimate uncertainty 𝑃𝑘 are
computed using equations

�̂�𝑘 = �̂�−𝑘 + 𝐾(𝑧𝑘 −𝐻𝑘�̂�
−
𝑘 )

𝑃𝑘 = (𝐼 −𝐾𝑘𝐻𝑘)𝑃−
𝑘

,

where �̂�−𝑘 represents the predicted state, 𝑃−
𝑘 is the predicted state uncertainty, 𝑧𝑘 is the

measured state, and 𝐼 is the identity matrix. The 𝐻𝑘 is a matrix that maps the true state
𝑥𝑘 to the measured state 𝑧𝑘

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘,

where 𝑣𝑘 is a measurement noise that is assumed to be zero-mean Gaussian with covariance
𝑅𝑘. The 𝐾 is the Kalman gain

𝐾 = 𝑃−
𝑘 𝐻𝑇

𝑘 (𝐻𝑘𝑃
−
𝑘 𝐻𝑇

𝑘 + 𝑅𝑘)−1,

The output of the filter are the results of the update steps, that is, the current state estimate
�̂�𝑘 and the current state uncertainty 𝑃𝑘. From these results, new predictions are made, and
the new iteration starts.
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Chapter 3

Vehicle speed measurement

The speed of a vehicle can be measured by various devices that can be divided into two
classes according to the intrusiveness of their installation. The devices that belong to the
first class have to be embedded into or placed onto the road, and because of that, they
are classified as intrusive. The devices that belong to the second class are placed above
or by the side of the road, and because of that, they are labelled as non-intrusive. The
properties of the devices that belong to both classes are described in the first two sections
of this chapter. The information about the devices described in these sections was taken
from [5, 37, 45, 47]. Only the devices that pass the tests specified by local metrological
legislation can be officially used for vehicle speed measurement. The test requirements that
are common for many metrological legislations are presented in the final section of this
chapter.

3.1 Intrusive technologies
Pneumatic tube detectors, inductive loops, magnetic and weigh-in-motion sensors belong
to the intrusive category. Although the devices are accurate, and by themselves low cost,
they need to be placed either on the road surface or embedded directly into it. Their
installation and maintenance are therefore problematic and expensive because they usually
require lane closure, which disrupts the traffic, and a pavement cut with a subsequent repair
or resurfacing of the road. The devices detect the presence of the vehicles; therefore, at
least two sensor pieces at a known distance apart are needed for the speed measurement.
They are also insensitive to the weather as they are located in close proximity to passing
vehicles.

Pneumatic tube detectors

Pneumatic tube detectors represent perhaps the oldest and the simplest of the vehicle
detectors. The pneumatic tubes are placed across the road, perpendicularly to the traffic
flow direction. As the vehicle’s tires pass over them, a burst of air pressure along a rubber
tube is sent. The air pressure pulse closes an air switch and sends an electric signal that
marks the passage of a vehicle. The pneumatic tube detectors are low-cost, quick to install,
portable, and power-efficient. They are able to measure speed on multi-lane and multi-
direction roads but usually only for a single lane at a single time. They are unsuitable for
high flow and high-speed roads because these conditions lower their detection accuracy and
shorten even more their already short service life [5, 37, 45, 47].
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Inductive loop detectors

Inductive loop detectors consist of three components: an oscillator, a lead-in cable, and
one or more turns of insulated loop wire. The loop is usually embedded in the pavement
or encased and placed on the road surface. The oscillator excites the loop with an electric
signal. When a vehicle stops on or passes over the loop, the inductance of the loop is
decreased, which increases the oscillation frequency. The change in frequency indicates the
presence of a vehicle. Single loop or dual loop setups can be used [5, 37, 45, 47].

Single loop setups provide basic traffic parameters such as volume, presence, occupancy,
classification, and gap. The speed can be measured under the assumption of known vehicle
length as

𝑠 =
𝑙𝑣 + 𝑙𝑑
𝑡𝑜

, (3.1)

where 𝑙𝑣 and 𝑙𝑑 are lengths of the vehicle and the detector, and 𝑡𝑜 represents the detector
occupancy time. Generally, the lengths of the individual vehicles are not known, and the
average vehicle length is used instead. The speed data computed in such a way serve mostly
for statistical purposes rather than for the speed limit enforcement.

The speed of individual vehicles can be measured using dual loop setups. These setups
consist of two single loops placed at a known distance apart. When the first loop detects
the vehicle, a timer is started and runs until the vehicle is detected by the second loop. The
vehicle speed can be then computed as

𝑠 =
𝑑

𝑡1 − 𝑡0
, (3.2)

where 𝑑 is a distance between the two loops and 𝑡0 and 𝑡1 are vehicle entry times at the
first and the second loop.

The advantages of inductive loop detectors include low-cost, high accuracy, and appli-
cability to a large variety of traffic surveillance tasks. On the other hand, the loops may fail
in detecting the vehicles with relatively low metal content or unusual chassis configurations.
One setup can provide measurements for one road lane only, so usually, multiple setups are
needed to instrument a location. Other disadvantages include the need for pavement cut
and line closure during the installation or the maintenance and vulnerability to damages
caused by street maintenance activities, improper installation, heavy traffic, or temperature
changes.

Magnetic sensors

Magnetic sensors detect the presence of a vehicle by monitoring the changes in the Earth’s
magnetic field created by the ferrous metal objects. Similarly to the induction loop de-
tectors, two sensors are needed for vehicle speed and length measurement. Two types of
magnetic field sensors exist.

Dual-axis flux-gate magnetometer consists of a primary and two secondary windings on a
coil with high permeability soft magnetic core. When a change in the magnetic field occurs,
the secondary windings generate a voltage that is compared to the sensitivity threshold. If
the threshold is exceeded, the vehicle presence is recorded.

The induction or search coil magnetometer contains a single coil winding around a
permeable magnetic rod. It is able to detect only vehicles in motion as it measures the
voltage induced by the variations of the magnetic flux. When the measured voltage exceeds
the sensitivity threshold, the vehicle is recorded.
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The properties of the magnetic sensors are similar to the properties of the induction loop
detectors. Unlike the induction loop detectors, their installation requires smaller pavement
cut as they usually need only a small hole in the road surface. Due to their low profile, they
are less susceptible to traffic stresses, but their detection zones are smaller [5, 37, 45, 47].

Weigh-in-Motion systems

Similarly to the pneumatic tube detectors, the weigh-in-motion sensors detect the vehicle
force on the pavement. Bending plates and piezoelectric sensors are examples of the weigh-
in-motion sensors. Two sensor pieces are required for vehicle speed measurement [5, 37, 45,
47].

The bending plate consists of a steel or a rubber plate with attached strain gauges. The
strain gauges measure the deflection of the plate under the vehicle tires. The piezoelectric
material is capable of converting the kinetic energy to electrical energy. When a sensor is
subjected to the change in force created by a passing vehicle, it generates a voltage that is
proportional to the weight of the vehicle.

Among the advantages of the weigh-in-motion systems are the low cost, low power
consumption, high accuracy, and broad speed measurement range. The drawbacks are
similar to the induction loop sensors. Their installation and maintenance require lane
closure and usually a pavement cut. Multiple devices are necessary to cover a location
fully, and they have a short service life.

3.2 Non-Intrusive technologies
Ultrasonic sensors, infrared sensors, laser detectors, radars, and camera-based technologies
belong to the non-intrusive category of technologies. The non-intrusive devices represent
an emergent field that expands rapidly with rising computational power and continuing
advances in signal processing. Their main advantage is that they are placed either above
the road or by its side, which makes their installation and maintenance easier and cheaper
in comparison with the intrusive technologies. The low costs of their installation and
maintenance at least partially offset the higher initial costs. The higher initial costs, weather
susceptibility, and lower accuracy are their main disadvantages when compared to the
intrusive devices.

Infrared sensors

The infrared sensors contain a light-sensitive element that converts the received light energy
into the electrical signals. The vehicle presence is detected by analyzing the signal. The
sensors are mounted either in the overhead or the side-looking configuration. The active
and passive infrared sensors exist [5, 37, 45, 47].

The active infrared sensors use pulsed or continuous LED or laser diodes that operate
in the near-infrared spectrum to illuminate the detection zones. The infrared light that is
reflected from the vehicles passing through the detection zone is captured by the sensor.
The infrared sensors measure the time for the reflected light to return. When the vehicle
is present, the reflection time is lower, and on this basis, the vehicle is detected. The speed
of a vehicle can be measured by splitting the transmitted light into two or more beams and
recording the times at which the vehicle enters the detection area of each beam.
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The passive sensors transmit no energy of their own. They detect the energy that is
emitted from or reflected by vehicles, road surfaces, and other objects. When the vehicle
enters the detection zone, its presence is registered by a change in the detected energy.
Multiple detection zones need to be used for vehicle speed measurement.

The advantages of the infrared sensors include quick installation, reliability, high accu-
racy, and ability to provide measurements for multiple lanes in the side-looking configura-
tion. On the other hand, their accuracy can be affected by poor weather conditions, and
in the overhead configuration, multiple devices are usually needed to cover all road lanes.

Ultrasonic sensors

The ultrasonic sensors transmit sound waves at frequencies that are beyond the human
audible range (above 20 kHz). The reflected acoustic waves are detected by the sensor and
analyzed for the presence of a vehicle. The sensors are installed either in the overhead
or the side-looking configuration. Side-looking configuration enables the measurement of
multiple road lanes but is affected by an occlusion. Overhead configuration is unaffected by
occlusion, but multiple devices are needed to cover multiple lanes. Pulsed and continuous
ultrasonic devices exist [5, 37, 45, 47].

The pulsed devices transmit a series of ultrasonic pulses and measure the time it takes
for the pulse to reflect and return to the sensor. Based on the measured time, the distance
to an object in front of the sensor is measured. The vehicle is detected when the measured
distance is shorter than the background distance. Two pulsed devices at a known distance
apart are needed to measure vehicle speed.

The continuous detectors transmit a continuous ultrasonic wave and detect the fre-
quency shift of returned waves. The moving vehicle is detected when the shift occurs. A
single continuous ultrasonic detector is needed to measure the vehicle speed as it can be
computed from the frequency shift using the Doppler principle (Eq. 3.3).

The advantages of ultrasonic sensors are quick and non-intrusive installation, high ac-
curacy, and reliability. The disadvantages are high initial cost and performance influenced
by the weather conditions.

Acoustic array sensors

Acoustic array sensors consist of a two-dimensional array of microphones that detect the
sound of the approaching vehicles. The array of microphones can distinguish whether the
detected sound is coming from the specified detection zones or not by monitoring the time
of sound arrival at individual microphones. The sounds that originate in the detection
zones are analyzed while the rest are attenuated. As the vehicle enters the detection zone,
the change in sound energy is registered, and the vehicle is detected. The speed of a vehicle
can be computed by tracking the incremental change in location at frequent intervals [38].
The acoustic array sensors are usually mounted on poles at the sides of the roads.

The advantages include quick and non-intrusive installation, passive operation, and
multiple lane operation. The disadvantages include degraded performance during weather
conditions that affect sound propagation and problematic detection of slow-moving or elec-
tric vehicles (i.e. vehicles that do not produce much noise) [5, 37, 45, 47].
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Figure 3.1: A frequency shift of a reflected signal for approaching and receding vehicles [33].

Microwave radar systems

The microwave radar emits electromagnetic signals with a frequency range of 1 GHz to 30
GHz. The reflected electromagnetic signals are detected by the device and analyzed for the
presence of a vehicle. The radars are usually installed overhead on the poles, sign bridges,
or overpasses. Side-looking configuration is also possible but less common. Continuous
wave and frequency modulated continuous wave radars exist [5, 37, 45, 47].

The continuous wave radar transmits a signal that is constant in frequency with respect
to time. When the signal reflects from a moving vehicle, its frequency changes due to the
Doppler effect (see Fig. 3.1). The frequency shift is extracted from the received signal, and
the presence of a vehicle is detected. If no vehicle is present, the frequency of the reflected
signal is unchanged, and so the continuous wave radar cannot detect stationary vehicles.
The speed of the vehicle can be computed directly from the shifted signal as

∆𝑓 =
2𝑣𝑓𝑠𝑐𝑜𝑠(𝜃)

𝑐
(3.3)

where ∆𝑓 is the Doppler shift, 𝑓𝑠 is the transmitted frequency, 𝜃 is the angle between the
direction of the transmitted signal and the direction of the vehicle passage, 𝑣 is the speed
of the vehicle, and 𝑐 is the speed of the radar signal propagation.

The frequency modulated continuous wave radar transmits a signal with a frequency
that is constantly changing with respect to time. In the reflected signal, the change in
frequency is delayed (see Fig. 3.2), and from this delay, a distance to the reflector can be
measured as

𝑑 =
𝑡𝑑𝑐

2
, (3.4)

where 𝑡𝑑 is the time delay, and 𝑐 is the speed of the radar signal propagation. The vehicle
is detected when the measured distance is smaller than the background distance. Because
the vehicles are detected based on the measured distance, the stationary vehicles can also
be detected. The speed of a vehicle is measured by dividing the radar field of view into
several range bins. The radar then records times at which the vehicle entered each bin.
From the recorded times and the known distance between bins, the speed can be computed.
The disadvantage of this approach is that the radar operation is limited to a single lane.

The advantages of microwave radars include ease and non-intrusiveness of installation,
high accuracy, long range of operation, ability to cover multiple lanes, and resistance to
changing weather and lighting conditions. To perform correct measurements, the radar
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Figure 3.2: Reflected signal of frequency modulated continuous wave radar has the change
in frequency delayed by 𝑡𝑑 [10].

beam should cover only the target vehicle. This is not always possible since the radar beam
widens as it gets further from the radar antenna. If there are more vehicles in the radar
beam, the measurement that is obtained cannot be assigned to the targeted vehicle with
certainty. Furthermore, the radar inclination angle with respect to the traffic flow has to
be measured in order to compensate for cosine error [75]. The need for precise installation
and careful aiming together with high initial cost belong among the disadvantages of the
microwave radar systems.

Video image detection

Video image detection systems typically consist of one or more cameras that record passing
vehicles. Recorded images are then analyzed using specialized software or on dedicated
hardware that can be a part of the camera itself. The cameras are usually installed on the
poles, sign bridges, or overpasses looking down at the upstream or downstream traffic. Three
types of video image detection systems exist: tripline, closed-loop, and data association
systems.

The tripline systems enable a user to define a number of detection zones in the field of
view of the camera. When a vehicle enters the detection zone, a timer is started. The timer
is stopped when the vehicle arrives at the end of the detection zone. The vehicle crossing
is detected from the intensity changes in the tripline area. Given a known length of the
detection zone, the vehicle speed can be computed. The speed measurement accuracy of the
tripline systems is quite low [46] because the speed is measured over a fairly short distance
(tens of meters) with a relatively high error of vehicle localization. Additionally, the length
of the detection zone that is used for speed computation is longer than the actual distance
that the vehicle travelled in the measured time (see Fig. 3.3). Therefore, even if the vehicle
was located precisely, the measured speeds are always higher than the actual speeds.
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Figure 3.3: The discrepancy between the length of the detection zone and the travelled
distance.

The closed-loop tracking systems detect and track passing vehicles continuously through-
out the field of view of the camera. From multiple detections, the vehicle trajectory can
be reconstructed and vehicle spot speed estimated. The state-of-the-art closed-loop track-
ing system measure vehicle speed by reprojecting the reconstructed trajectory to the road
plane, measuring the length of the reprojected trajectory in pixels, converting the pixel
length to metres by multiplying it by an appropriate scene scale factor, and dividing the
metre length by time. In order to do this, the camera calibration parameters and scene
scale factor need to be estimated.

Modern methods strive for the fully automatic estimation of the camera parameters from
the scene vanishing points [12] and automatic scene scale factor estimation by constructing
3D boxes around vehicles and relating the pixel dimensions to the real-world dimensions of
the recognized vehicle type [65, 66]. The fully automatic methods achieve a mean percentage
error of 1.4 %, mean absolute error of 1.1 km/h, and 99 % of measurements have an absolute
error below 3 km/h and percentage error below 4.1 %. The disadvantage of these methods is
that they rely on the detection of the whole vehicle, which could lead to worse performance
in, for example, low-light situations.

Alternatively, approaches that require manual input in the form of measured distances
between several points on the road plane for each lane exist [44]. The points and their
distances then provide a scene scale as well as a way to rectify the road plane through
homography. To mitigate the discrepancy between the measured and the actual distance,
the height of the tracked vehicle points above the road plane can be calculated [16] and used
for correction. The manual methods achieve the mean error of -0.5 km/h with a standard
deviation of 1.4 km/h and the worst errors of -4.7 km/h and 6 km/h. Although the speed
measurement error significantly decreased since the first closed-loop tracking prototypes [46]
thanks to the extensive research, the measurement error is still too high for these systems
to be used for speed limit enforcement.

The data association tracking systems identify and track passing vehicles across multiple
cameras. When a vehicle is detected in a camera view, a set of features that describe the
vehicle is extracted. The set of features can be then used for the vehicle re-identification
in other cameras’ views. The data association tracking systems are typically used for
section speed measurement as the cameras’ views are usually non-overlapping, and the
cameras are located at a greater distance from each other. However, approaches for spot
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speed measurement also exist [41] although their accuracy is notably lower (mean absolute
error of 1.44 km/h and the maximum error of 2.62 km/h). In the case of section speed
measurement, the start and the end of the section are usually marked directly on the road
surface to make the vehicle position estimation easier. Given the known distance between
the two markers and the times at which the vehicle was detected at each marker, the vehicle
speed can be computed. The greater the distance between the two cameras, the larger an
error in vehicle position estimation can be while still preserving the ability of the system
to measure the vehicle speed with the accuracy required for enforcement.

The video image detection systems provide a rich array of data that can be quickly
processed on contemporary hardware. They have the ability to monitor multiple road
lanes with multiple detection zones that are easy to set up and customize. Unlike other
technologies, the video image detection systems are able to provide photographic evidence
for enforcement of traffic law violations. Because the photographic evidence containing
the identification of the offender (e. g. a vehicle with its license plate) is required as the
proof of offence, the other systems are usually coupled with cameras when the enforcement
is required which increases their costs. Other advantages include quick and non-intrusive
installation, reliability and flexibility.

The performance of the system can be affected by low-visibility conditions, for example,
due to bad weather (e. g. snow, rain, or fog) or insufficient lighting (e. g. during the
night). Their performance can also be adversely affected by occlusion or camera motions
due to vibrations. Other disadvantages include high initial cost and the need for precise
calibration when used for speed or length measurement.

To better estimate the distance that vehicle travelled, the single cameras can be coupled
with other devices, for example, IR or TOF sensors to create RGBD cameras [52]. However,
more advantageous would be adding another camera in order to create a stereo camera pair.
The distance data can be then extracted from the stereo image pairs using the techniques
described in the previous chapter. Stereo-based camera devices are currently not utilized
for live traffic surveillance operations but are in the focus of recent research. They have all
the advantages of single-camera-based video detection systems and the potential to provide
more precise and accurate measurements while being less affected by adverse weather and
lighting conditions [31, 14, 76].

3.3 Metrological legislation
In order for the device to be recognized as a measurement device, it has to meet the
requirements of the metrological legislation and pass the specified tests. The metrological
legislations vary by country, and it is not possible to review them all within the scope of
this thesis. Therefore the thesis focus on the metrological legislations that are based on the
recommendations of the International Organization of Legal Metrology1.

OIML is a worldwide, intergovernmental organization created in 1955 whose primary
aim is to harmonize the regulations and metrological controls applied by the national metro-
logical services, or related organizations, of its Member States [58]. At the time of writing
this thesis, OIML has 61 Member States which participate in the work of OIML and that
have ratified the OIML Convention [56], and 62 Corresponding Members who are countries
that want to be informed of the OIML activities but do not want to actively participate in
the decision-making process.

1https://www.oiml.org/ (OIML)

21

https://www.oiml.org/


Table 3.1: Error requirements on the vehicle speed measuring devices according to the
OIML Recommendation [57].

Laboratory test Field test

Max. error range <= 100 km/h ± 1 km/h <= 3 km/h
> 100 km/h ± 1 % <= 3 %

Mean error range <= 100 km/h - ± 1 km/h
> 100 km/h - ± 1 %

Stdev (autonomous) <= 100 km/h - < 1 km/h
> 100 km/h - < 1 %

The OIML publish several types of documents. The model regulations for a number
of categories of measuring instruments are published as the Recommendations documents.
The Member States are morally obliged to implement the model regulations as far as pos-
sible. The Recommendation that describes the requirements of the vehicle speed measure-
ment devices is focused on the radar measuring equipment [57]. Nonetheless, the general
requirements and principles of this Recommendation are usually utilized for other types of
vehicle speed measuring equipment as well.

Apart from the construction and protection requirements, the documents describe the
process of pattern approval. The pattern approval process consists of several tests that
check the ability of the device to provide reliable measurements within an acceptable error
range under different conditions. The device under test shall provide the measurement
range that includes at least the range from 30 km/h to 150 km/h. The laboratory test is
performed in a controlled condition environment. The measurement error for the laboratory
test should be less than ± 1 km/h, or ± 1 % at speeds above 100 km/h. The tests of the
effects of influence factors and disturbances test the mechanical and climatic resistance and
the reliability of electronic and logical components.

The metrological field test is performed in actual traffic. During this test, 500 measure-
ments are made, of which none should give a positive error larger than + 3 km/h, or + 3 %
at speeds above 100 km/h. The average error of all results should be within ± 1 km/h. The
device does not need to provide measurement for every passing car. If the measurement
is recognized as faulty, it can be discarded. For the autonomous devices, the recognition
and the discarding of the faulty measurements have to be done automatically by the device
itself. For the manually operated devices, the decision can be made by the operators. Ad-
ditionally, the autonomously operated devices shall provide a high level of confidence that
the measurement error is within the permissible limits. That is, the autonomous devices
have to meet the field test error tolerances with 99.8 % probability. Therefore, under the
assumption of Normal distribution, the standard deviation of errors have to be less than
1 km/h. All measured speeds are compared to the ground truth measurements provided
by a device that has uncertainty better than one-third of the device under the test; 99.8
% of the reference device results should have errors that are within ± 1 km/h, or ± 1% at
speeds above 100 km/h. The laboratory and field test error requirements are summarized
in Table 3.1.

The document [80] is a part of the metrological legislation of the Czech Republic. It
can serve as an example of how the recommendations of the OIML might be incorporated
to metrological legislation of its Member States. Some requirements in this documents are
stricter, for example, the required measurement range is extended to at least 200 km/h and
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the maximum negative error during field test is also specified and should not be larger than
- 3 km/h, or - 3 % at speeds above 100 km/h. The scope of the document is also not limited
to radar equipment only, but it is extended to all speed measuring devices. Although the
metrological legislation of individual countries might be a bit stricter, the compliance with
the OIML’s recommendations is a good starting point for any vehicle speed measuring
device.
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Chapter 4

Stereoscopic measurement and
calibration methods

This chapter presents the most relevant state-of-the-art methods that exploit stereo camera
pairs for vehicle speed measurement and long-distance calibration.

4.1 Vehicle speed measurement methods
Stereovision-based methods for vehicle speed measurement usually assume synchronized
cameras previously calibrated using already established methods. Their most important
parts deal with feature point selection and correspondence search. Only three papers that
use a stereo camera pair for vehicle speed measurement exist to the extent of my knowledge.
All three works are from recent years which signifies a growing interest in this type of vehicle
spot speed measurement.

4.2 Vehicle Speed Estimation Using Cascade Classifier and
Sub-pixel Matching

Jalalat et al. [31] use a vertical stereo setup with 1.2 m baseline that was pre-calibrated using
a chessboard pattern [78]. The algorithm that processes the stereo images consists of six
steps: region of interest selection, background/foreground segmentation, vehicle detection,
vehicle tracking, distance measurement, and speed measurement.

In the first step, the region of interest is manually specified by the user, and its actual
dimensions are measured and stored for further processing. The region of interest delimits
an area on the road in which the vehicles are processed, and it has, due to the perspective,
a trapezoid shape. The bounding rectangle is constructed around the delimited area, and
only the area within the bounding box is processed in the following steps.

The second step separates the background and the foreground objects in the area of
interest. In order to fulfil real-time constraints, the background image is updated using a
moving average. From each new frame, a background image is subtracted, and the result
is thresholded. The threshold value is computed using an average background brightness
which increases the robustness of the algorithm with respect to the changes in illumination.

The foreground mask is used in the third step to reduce the amount of falsely detected
vehicles. The vehicles are detected in each frame using a Viola-Jones cascade classifier

24



Figure 4.1: Geometry of distance measurement for a vehicle in two successive frames [31].

which has been trained on an extensive dataset that contains almost all types of vehicles
on Iran highways.

The detected vehicles are tracked in the fourth step of the algorithm. Kalman filter that
assumes linear velocity and constant acceleration of vehicles is utilized for tracking. Each
tracked vehicle is assigned an identification number which is preserved until the vehicle
leaves the area of interest.

In the fifth step, the vehicle distance is estimated. First, the stereo images are undis-
torted and rectified. Then, the correspondence search is performed, and the disparity map
is computed. The disparity map is computed only for the detected vehicles and not for
the whole region of interest. The correspondence search area is further limited to only
the bottom third of the cascade detection bounding box. The area is then divided into
three parts that are matched separately. The correspondence search is performed along
the vertical epilines. The location of the corresponding point is initially estimated by
cross-correlation in two times the upsampled resolution and then subsequently refined by
exploiting the single-step DFT technique, which pinpoints the corresponding point location
with sub-pixel precision.

In the final step, the vehicle speed is computed. First, the vehicle distance from the
camera is triangulated using the disparity. Two distance in two successive frames are needed
to compute the travelled distance using the Pythagorean theorem as

𝑑 =
√︁

𝑟21 − 𝑍2 −
√︁

𝑟22 − 𝑍2, (4.1)

where 𝑟1 and 𝑟2 are the measured distances from the camera in two frames and 𝑍 is the
perpendicular distance from the camera to the direction of vehicle motion (see Fig. 4.1).
The vehicle speed is then easily calculated by dividing the travelled distance by the time
that passed between the two frames.

For the evaluation, they recorded five different video sequences that were used to com-
pute the speed measurement error of their method with respect to the ground truth values
provided by a laser speed measuring device. Overall the recorded dataset contains 441
vehicles for which the reference speeds are provided. They report the speed measurement
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error of their approach as an arithmetic mean of the absolute error percentages compared to
the reference measurements made by Fama Laser III (VHT-507/DVRM). The worst mean
percentage error is 3.3 %, and the best mean percentage error is 1.8 %. The absolute error
is not reported. Additionally, they report the percentages of measurements that are out of
the ± 6 % range. The out of range percentages range from 1.4 % to 2.5 %.

4.3 Vehicle Speed Estimation Using Extracted SURF Fea-
tures from Stereo Images

El Bouziady et al. [14] use a horizontal stereo setup pre-calibrated in a laboratory. The
baseline of the stereo camera pair is not stated. The resolution of the captured images is
1400 x 1024 pixels. The video streams are sent via an Ethernet connection at a rate of 32
stereo frames per second to an FPGA where they are preprocessed and then forwarded to
an industrial computer for further processing.

The FPGA performs background subtraction on the captured images. The foreground
mask is obtained by first, subtracting the static background image from the current frame;
then, the result is filtered and binarized using a fixed threshold. The binary mask is then
subjected to the morphological operations that transform the white areas of the image to
convex blobs. The blob contours are detected and their bounding rectangles constructed.
The bounding boxes contain the detected vehicles. No tracking algorithms or algorithms
that preserve the context between the two consecutive frames are described.

After the vehicle detection step, the sparse disparity map is constructed. The SURF
feature detector and descriptor is used for the correspondence search. The searched area
is limited to the feature-rich regions (e.g. license plate, manufacturer logo) within the
vehicle bounding box. From the corresponding points, the disparities are computed, and
the distances from the camera to the points on the vehicle surface are triangulated. Each
distance 𝑟 is then converted to the horizontal distance 𝑑 using camera inclination angle 𝛼
as

𝑑 = 𝑟𝑐𝑜𝑠(𝛼). (4.2)

The horizontal distances from two consecutive frames and the camera refresh rate are used
to compute the list of speeds from which the average speed is calculated.

For the evaluation, the dataset that consists of 12 passes of 6 vehicles in two different
speed sessions was recorded. The normal speed session recorded vehicles that travelled with
the speed in the range from 60 to 90 km/h. The high-speed session recorded vehicles that
travelled with the speed in the range from 90 to 120 km/h. The reference speed values
were measured using GPS. The mean squared error of 1.67 km/h is obtained for the normal
speed session. For the high-speed session, the mean squared error of 2.33 km/h is obtained.
The maximum absolute error was 2 km/h common for both sessions.

4.4 Vehicle Speed Measurement Based on Binocular Stere-
ovision System

Yang et al. [76] use a horizontal stereo setup calibrated using Zhang’s method [78]. Their
cameras are equipped with a CCD sensor with a maximum resolution of 1288 x 964 pixels
and connected to the computer through the USB 3.0 interface. The cameras captured ten
frames per second. The length of the baseline is not specified. The processing algorithm
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is divided into three steps: vehicle feature detection, vehicle tracking and stereo matching,
and speed and trajectory measurement.

The inputs to vehicle feature detection are video streams from the two views, and the
outputs are positions of detected license plates. The license plates are detected using an
optimized Single Shot Detector network. The network structure was optimized to reflect
the statistical distribution of the expected license plate sizes. The trained network achieves
97.8 % accuracy rate and is able to process 5.4 frames per second.

In the next step, the detected license plates are tracked, and the stereo matching is
performed. For both tasks, the SURF features extracted from the license plates are utilized.
As the features are invariant to changes in scale, they can be used to maintain the tracking
context in consecutive frames of the monocular videos. And because they are also invariant
to rotation and translation, they can be used for matching the license plates between both
views. The extracted corresponding point pairs are submitted to the final step.

In order to increase the speed measurement efficiency, the amount of corresponding
point pairs is reduced by filtering out the pairs whose both points do not lie in a circular
area positioned in the middle of their license plates. The remaining points are triangulated,
and their world position is obtained. Because the origin of the coordinate system coincides
with the coordinate system of one of the cameras, the distance between two 3D points
𝑝𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and 𝑝𝑗(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) can be easily computed as

𝑑𝑖𝑗 = |𝑝𝑗 − 𝑝𝑖|. (4.3)

For each point 𝑖, the distances to all other retained points are computed. The mean value
𝜇 and standard deviation 𝜎 of the distances are computed, and a Z-score for the point is
computed as

𝑍𝑖𝑗 =
𝑑𝑖𝑗 − 𝜇

𝜎
. (4.4)

The points with an absolute Z-score greater than one are eliminated, and from the remaining
points, the one that is closest to the centre of the license plate is selected as the exact spatial
location of the target car in the current stereo frame pair. Given the known frame rate
of the stereo camera pair, the speed of the vehicle can be then easily computed from its
location in two frames.

For the evaluation, a dataset that contains four vehicle passes with a speed range of
between 20 and 50 km/h was recorded. The reference speed values were obtained from a
P-Gear P-510 professional satellite speed meter. The mean speed measurement error is 0.02
km/h, the mean squared error is 0.42 km/h, the maximum negative error is -1.6 km/h, the
maximum positive error is 1.1 km/h, and the maximum percentage error of 3.8 %.

4.5 Long-distance calibration methods
In order to provide reliable measurements, the stereo camera pairs need to be calibrated.
The calibration process of traffic surveillance cameras has specific challenges and complica-
tions. The traditional approaches that involve calibration patterns (e.g. [78, 51]) cannot be
easily used after the cameras were installed because cameras are usually focused on a long
shot and mounted on hardly accessible locations. The calibration in laboratory conditions
prior to installation is also not suitable because the extrinsic parameters and focus are likely
to change during the transportation or the installation. This section presents two existing
methods for calibration of a stereo camera pair that is focused on a long distance.
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Figure 4.2: Two images captured by a camera in horizontal and vertical orientations con-
taining four calibration points located at the same height as the camera are needed for a
full calibration. [62]

4.6 A Camera Calibration Method for Large Field Optical
Measurement

Shang et al. [62] presented a method that deals with a task of calibrating the cameras that
are focused on a long distance with a large field of view. Their camera model consists of 15
parameters: 4 internal (position of the principal point (𝑐𝑥, 𝑐𝑦) and the focal lengths 𝑓𝑥 and
𝑓𝑦), 5 lens distortion, and 6 external (optical centre coordinates and rotation angles). The
calibration method consists of two steps. First, the initial values for the camera parameters
are obtained and then calculated precisely.

Initially, the principal point is assumed to be positioned in the centre of the image, and
the values of the lens distortion parameters are all zeros. For the calculation of the initial
values of focal lengths and rotation angles, the positions of at least four control points
that lie on the same plane as the optical centre and the camera principal point have to
be known. The positions of the control points, as well as the initial value for the position
of the camera optical centre, are measured using a total station. Using two of the control
points, the initial value for the focal length 𝑓𝑥 can be computed. The initial value for the
focal length 𝑓𝑦 is set equal to the 𝑓𝑥. All four control points are needed to compute the
initial values for the rotation angles.

The precise values of the camera parameters are calculated using bundle adjustment
optimization, which minimizes the reprojection error of the control points. To control all
parameters perfectly, two images have to be taken. One, when the camera is positioned
normally, and the second one with the camera rotated 90 degrees along the optical axis (see
Fig. 4.2). Alternatively, for the cameras with square pixels, negligible tangential distortion,
and known vertical position of the principal point, only a single image would suffice.

The accuracy of the calibration method was evaluated by comparing the computed
positions of six control points with the ground truth positions measured by a total station.
The points were at the distances between 50 and 70 m from the stereo camera pair whose
baseline was 30 m. The mean inter-point distance error was 0.008 m with a standard
deviation of 0.04 m.
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Figure 4.3: Simplified camera model requires a special positioning of the cameras where
the cameras’ epipolar planes are coincident (plane 𝑆) with the 𝑋𝑌 plane of the world
coordinate system [69].

4.7 A Camera Calibration Method for Large Field Vision
Metrology

Tian et al. [69] presented a two-step method with a similar approach as Shang et al. They
used a simplified camera model which requires special positioning of the two cameras. The
cameras have to be positioned in such a way that their epipolar planes are both coincident
with the world coordinate system (see Fig. 4.3). The special positioning simplifies the
triangulation process. The calibration process consists of two steps: camera adjustment
and estimation of the parameters.

First, the cameras need to be adjusted, so their position and orientation suit the simpli-
fied camera model. In order to do this, two points at the same height as the camera optical
centre are required. The orientation of the camera is then adjusted, so the projections of
the two points appear in the longitudinal centre of the CCD sensor. After the adjustment,
the extrinsic parameters are obtained using third-party tools.

For the estimation of the internal parameters, the third point is required. The additional
point should be positioned at the same height as the other two points and thus lie in the same
plane. From the geometrical relation between the projected points, the internal parameters
are calculated.

For evaluation, the task of measuring the position of a UAV (unmanned aerial vehicle)
was utilized. The world coordinates of the calibration points and the cameras were mea-
sured using a total station. The UAV flew at a distance of approximately 90 m from the
stereo camera pair whose baseline was 79.88 m. Its position was tracked by a DGPS with
a positional accuracy of 0.008 m. Eight reference positions were selected randomly and
compared to the measured values. The mean inter-point distance error was 0.0062 m with
the standard deviation of 0.0332 m.
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Chapter 5

Proposed method for vehicle speed
measurement

The current state-of-the-art vehicle speed measurement methods do not achieve the results
that are within the ranges required for the autonomous measurement devices by the OIML
Recommendation. This chapter presents a novel method for vehicle speed measurement
using a stereo camera pair that is used in the following chapter to experimentally test the
following hypothesis:

It is possible to measure the speed of vehicles using a stereoscopic method with the average
error within ± 1 km/h, the maximum error within ± 3 km/h, and the standard deviation

within ± 1 km/h.

The error ranges are based on the field test requirements of the OIML Recommendation
and on the assumption of the Normal error distribution. Because the proposed measure-
ment method requires a calibrated stereo camera pair and because the calibration of traffic
surveillance cameras is a challenging task, this chapter also describes a novel method for
stereo camera pair calibration that is suitable for traffic surveillance applications. Both
methods were submitted to peer-reviewed journals [54, 53].

5.1 Vehicle speed measurement proposal
The equipment setup suitable for the proposed method consists of a synchronized and cal-
ibrated pair of two identical cameras with the same focal length. The proposed method
exploits a stereo camera pair already calibrated with known calibration features (calibra-
tion error) and relies on existing algorithms of license plate detection. The performance of
the license plate detection algorithm affects only the fact whether the speed measurement
is performed at all, but does not affect its precision. First, the vehicles passing in front of
the stereo pair in the series of frames are localized using their license plate co-ordinates.
Consequently, the vehicle position is triangulated in the series of stereo images forming a
trajectory using the information known about the stereo setup and the calibration infor-
mation. Finally, once the trajectory and its individual points are known, the speed (and
also acceleration along the trajectory) is computed. An overview of the proposed method
is shown in Fig. 5.1.
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Figure 5.1: Overview of the proposed method. Vehicle trajectory is represented using a
set of license plate pairs that are extracted from input stereo images. Several points are
triangulated along the trajectory using known calibration parameters. Model of vehicle
motion is fitted to the triangulated points in order to measure the vehicle speed.

License plates detection and tracking

The proposed method assumes that each vehicle has a license plate that is firmly attached
to its body at a clearly visible place. This assumption reduces the task of vehicles detection
to the task of the license plates detection, which is considered to be much easier due to the
standardized appearance of the license plates of a given country. Although the appearances
of the license plates differ among countries, they are usually similar enough, so that a
detector trained on the license plates of one country is able to detect the license plates from
other countries. In the first step of the method, the license plates of moving vehicles are
detected and tracked.

The algorithm utilizes existing WaldBoost [63] detector with LBP features that was
trained to detect license plates with a size of approximately 90x24 pixels and without or
with very small rotation and perspective distortion. The detector works best for cameras
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placed on a gate or a bridge above the road looking directly against or with the direction
of traffic. Alternatively, the cameras can be placed on a pole on the side of the road, but
the angle between the view direction and traffic flow should be kept small. The output of
the detector is the top left coordinate and the size of a rectangle that contains the found
license plate. License plates in the left and the right images are detected separately.

The detector finds the license plates in both images. Each detected license plate in the
left camera image is assigned a corresponding license plate from the right camera image, if
possible. The matching algorithm asserts that the matching license plates are approximately
the same size, located at approximately the same position in both images and meet the
epipolar constraint. The corresponding license plates then form a license plate pair. For
the depiction of detected license plate pairs, see Fig. 5.2a.

For each license plate pair, the method needs to decide whether it belongs to a new
vehicle or to a vehicle that was seen before. This can be done in numerous ways, for
example, using license plate correlation, OCR, optical flow or Kalman filtering. In the
proposed method, the latter is used, that is, license plate tracking using the Kalman filter
based on the constant acceleration model. The constant acceleration model approximately
corresponds to the motion of the license plates in the images. This approach was chosen
because it provides a good trade-off between speed, accuracy, and complexity. The approx-
imate predictions supplied by the Kalman filter are enough to perform the license plate
re-identification based on its detected and predicted positions in the image and enough to
maintain the tracking context in frames where the detection has failed. The tracking is
implemented using re-detection and re-identification of license plates in each frame. The
tracking algorithm maintains a Kalman filter for each vehicle that is currently passing in
front of the cameras. Each license plate pair position is checked against all current Kalman
filters’ predictions. If its position is close enough to some predicted position, the algorithm
assigns the checked license plate pair to a set of license plate pairs of the tracked vehicle
and updates the filter accordingly. Otherwise, new vehicle tracking is initialized. When the
vehicle passes out of view, the algorithm stops the tracking and starts processing vehicle’s
set of license plate pairs. A vehicle with its set of license plate pairs is shown in Fig. 5.2c.

Point matching and triangulation

After vehicle localization, the method triangulates its passage throughout the scene. First,
from its set of license plate pairs, the matching algorithm selects the pair which contains
the largest license plate images. Then, the algorithm takes the left license plate image
of this pair and uniformly samples nine points on it. Around the sampled points, small
rectangular regions of interest are constructed (see Fig. 5.3a).

Next, the matching algorithm takes another license plate pair from the set and matches
the regions of interest to its left license plate image in order to obtain the points that
match the sampled points. To achieve sub-pixel accurate matches, the regions of interest,
as well as the template license plate image, are scaled and smoothed prior to template
matching. For regions of interest, a scale factor of ten is used. Since the template license
plate image is smaller than the sampled license plate image, the scale factor used to scale the
template image should be greater. Because the exact value of this scale factor is unknown,
the algorithm tries several scales within a reasonable range and chooses the one with the
highest similarity score. The normalized cross-correlation is used as a similarity metric.

The matched points and the sampled points are used to compute homography trans-
formation between the two left license plate images. This homography transformation is
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further refined using enhanced correlation coefficient maximization [15]. Finally, the sam-
pled points are transformed using the fine homography in order to obtain fine point matches.
These fine point matches represent the sub-pixel accurate left image positions of sampled
points in a different time. The algorithm repeats the matching process for the rest of the
left license plate images from the set and essentially tracks the sampled points along the
vehicle trajectory in left camera images with sub-pixel precision.

So far, the method extracted several points in left camera images and in order to perform
triangulation, it needs to identify their correspondences in right camera images. A similar
procedure as in the case of finding correspondences among left camera images is employed.
First, the algorithm takes a license plate pair from a set of vehicle license plate pairs and
selects the left license plate image. Then, it uniformly samples nine points in it, constructs
the regions of interest, matches them to the right license plate image template, computes
rough homography and refines it as it did before. Finally, the algorithm computes the fine
point matches using sampled points from the left license plate image and fine homography
transformation. The reference image and template images that are warped using the rough
and fine homographies are shown in Fig. 5.3b, 5.3c, and 5.3d. The process is repeated for the
rest of the license plate pairs from the set and, as a result, nine stereo point correspondences
for each license plate pair are obtained.

Given stereo point correspondences and known internal and external stereo camera pair
parameters, the method triangulates the 3D positions of points using existing algorithms.
It uses the well known Linear-LS method [28].

Speed computation

To compute the average speed of a passing vehicle, the method utilizes the triangulated
positions from the previous step and their timestamps. First, it corrects the triangulated
positions by projecting them onto a common plane obtained as a least-square fit through
the triangulated points with outliers removed using RANSAC [20]. The corrected points are
then subdivided into nine sets in such a way that the same license plate points with different
timestamps belong to the same set. These sets are processed separately. The points from
a single set, together with their timestamps, serve as an input to a model describing the
vehicle motion throughout the scene. The algorithm assumes that the vehicle is moving
with constant or zero acceleration. This type of motion can be described by the following
equation

𝑝𝑖 = 𝑝 + 𝑣 *∆𝑡𝑖 +
1

2
* 𝑎 *∆𝑡2𝑖 , (5.1)

where 𝑝𝑖 is a co-ordinate of the current position of a corrected triangulated license plate
point in time 𝑖; 𝑝 is a co-ordinate of initial license plate point position, 𝑣 is a vector of initial
speed, 𝑎 is a vector of acceleration, and ∆𝑡𝑖 is the time difference between the current and
initial positions. The positional (𝑝𝑖) and time (∆𝑡𝑖) data are inserted to the model and a
system of 𝑁*3 linear equations is constructed, where 𝑁 is a number of triangulated positions
available. This system is usually overdetermined (𝑁 > 3), and it can be formulated as

𝐴 * 𝑥 = 𝑏 (5.2)

where 𝐴 is a 𝑁 * 3 matrix
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𝐴 =

⎡⎢⎢⎣
1 ∆𝑡0

1
2 *∆𝑡20

1 ∆𝑡1
1
2 *∆𝑡21

...
1 ∆𝑡𝑁−1

1
2 *∆𝑡2𝑁−1

⎤⎥⎥⎦ ; (5.3)

𝑏 is a 𝑁 * 3 matrix of triangulated positions

𝑏 =

⎡⎢⎢⎣
𝑥0 𝑦0 𝑧0
𝑥1 𝑦1 𝑧1
...

𝑥𝑁−1 𝑦𝑁−1 𝑧𝑁−1

⎤⎥⎥⎦ ; (5.4)

and 𝑥 is a 3 * 3 matrix of unknown vectors 𝑝, 𝑣 and 𝑎

𝑥 =

⎡⎣𝑝𝑥 𝑝𝑦 𝑝𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧
𝑎𝑥 𝑎𝑦 𝑎𝑧

⎤⎦ . (5.5)

This system can be solved using various methods for solving linear least square systems
such as SVD decomposition. As a result, an initial point position, initial speed, and accel-
eration are obtained. From the obtained values, the average speed on the recorded track
can be computed as:

𝑣𝑎𝑣𝑔 =
||𝐴𝑁−1 * 𝑥− 𝑝||

∆𝑡𝑁−1
(5.6)

where 𝐴𝑁−1 is the last row of matrix 𝐴. In order to make the computation of the average
speed more robust to errors in position triangulation, the RANSAC [20] based approach
to remove triangulated positions outliers is employed. The algorithm repeats the average
speed computation process for each of the nine sets with triangulated license plate points
and, in the end, nine average speeds are obtained. Finally, the median of the computed
average speeds is selected as the average vehicle speed.

5.2 Stereo camera pair calibration proposal
The proposed method is suitable for the calibration of a synchronized stereo camera pair
device that will look over a road section with passing vehicles. In order to calibrate the
device, both camera matrices from Eq. 2.14 need to be estimated. The method splits the
sought parameters to two groups. The first group consists of the parameters that can be
estimated prior to the device installation. Their values are determined during an off-site
calibration. The second group contains parameters that have to be estimated after the
installation of the device. These are the external camera parameters and focal lengths.
Their values are determined during an on-site calibration. An overview of the proposed
calibration method is shown in Fig. 5.4.

Off-site calibration

The off-site calibration can be performed in a laboratory for each camera separately using
the already established methods such as Zhang’s [78]. Its goal is to find the values for
the parameters that do not depend on the relative position of the two cameras or on the
installation site. These parameters should stay the same for the whole time of installation
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and should not change due to the external influences such as vibrations or heat. The
parameters that are estimated during the off-site calibration include: the lens distortion
parameters (𝑥𝑐, 𝑦𝑐, 𝐾1, 𝐾2, ...), the position of the principal point (𝑐𝑥, 𝑐𝑦), the skew (𝑠),
and the numbers of pixels per a distance unit (𝑚𝑥, 𝑚𝑦). The precise values for 𝑚𝑥 and 𝑚𝑦

parameters can usually be found in a camera sensor datasheet if available.

On-site calibration

The on-site calibration can be performed after the cameras have been installed, and their
optics have been focused on the incoming vehicles. Its goal is to find the values for the
parameters that depend on the relative position of the two cameras or on the installation
site. The parameters that are estimated during the on-site calibration include the position
and the orientation of the second camera with respect to the first camera ([𝑅|𝑡]) and the
focal lengths of both cameras (𝑓 , 𝑓 ′). The focal lengths depend on the distance at which
the incoming traffic is recorded and should not change in time. The relative pose, on the
other hand, will change in time due to the external forces and therefore, the device needs
to be re-calibrated, or the change should be compensated in some way.

The on-site calibration requires two key conditions: the parameters estimated during the
off-site calibration and the calibration vehicles. The calibration vehicles are recorded as they
pass in front of the stereo camera pair and their initial speeds at the start of a measured road
section and average accelerations on the measured road section are captured and paired with
their record. In each record, the calibration vehicle is localized using existing algorithms of
license plate detection and tracking. After that, several points are extracted from the images
of the first camera along the trajectory of the localized vehicle, and their correspondences
are identified in the images of the second camera. Finally, the set of corresponding points
coupled with the speed and acceleration measurement for each calibration vehicle and the
off-site calibration parameters are used for the estimation of on-site calibration parameters.

The goals of the first two steps of the calibration method are to localize the calibration
vehicles and extract the corresponding points along their trajectories from their license
plates. These steps are the same as the license plate detection and tracking and point
matching steps from the vehicle speed measurement method described above. They are
handled by almost the same algorithms. They differ in one thing. Because the information
about the epipolar geometry is not yet known, its constraints cannot be exploited for
limiting the image areas for searching or matching. The following section describes the last
step of the on-site calibration process.

External parameters and focal lengths estimation

The external parameters and the focal lengths are estimated by minimization of error
expressed as a difference between the distances that the calibration vehicles travelled and
the distances that can be computed from their recordings. The error formula is

𝑒 =
𝑁∑︁
𝑗

𝑀−1∑︁
𝑖

𝑂∑︁
𝑘

(𝑤𝑗
𝑖𝑘

(𝑑𝑗𝑖,𝑖+1 − ‖𝑋
𝑗
𝑖𝑘+1 −𝑋𝑗

𝑖𝑘
‖))2, (5.7)

where 𝑗 iterates over the number of calibration vehicles, 𝑖 iterates over the number of license
plate pairs detected during the vehicle passage, 𝑘 iterates over the number of corresponding
point pairs that are extracted from each license plate pair (nine in this case), 𝑑𝑖,𝑖+1 is a
distance that a vehicle travelled between two subsequent detections 𝑖 and 𝑖 + 1, and 𝑋𝑖𝑘
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are triangulated corresponding point pairs. The 𝑤 is a weighting factor which helps us
maintain the epipolar geometry.

Note that the algorithm expects that the vehicle license plates in two subsequent de-
tections are close to parallel (i. e. the distances between the triangulated points on the
first license plate and their corresponding points on the second license plate are the same).
This expectation is reasonable because the measured road section is usually short, and the
vehicle trajectory straight.

The value of the weighting factor 𝑤 is based on the point distances to epilines. For a
point from the first camera license plate, an epiline in the second camera image is computed
using the Eq. 2.10. Then, a distance 𝑙𝑗𝑖𝑘 between its corresponding point and the epiline
is computed. The same is performed for the point in the second image (i. e. an epiline is
computed in the first image and then the distance 𝑙′𝑗𝑖𝑘 to its corresponding point in the first
image). The value of 𝑤 is then computed as

𝑤𝑗
𝑖𝑘

= 𝑚𝑎𝑥(1.0, 𝑙𝑗𝑖𝑘 , 𝑙
′𝑗
𝑖𝑘

). (5.8)

The weighting factor penalizes the estimates for which the distances to epipolar lines are
high but does not benefits those estimates for which the distances to epipolar lines are low.
That is, only the estimates that break epipolar geometry are penalized, and the quality of
those that keep the geometry is decided only by the accuracy of the scene reconstruction
that they provide.

The distance that the calibration vehicle travelled between two detections can be com-
puted from its recorded initial speed and average acceleration as

𝑑𝑖,𝑖+1 = 𝑣𝑖∆𝑡𝑖,𝑖+1 +
1

2
𝑎∆𝑡2𝑖,𝑖+1, (5.9)

where 𝑣𝑖 is the vehicle initial speed at the time 𝑡𝑖, 𝑎 is the average vehicle acceleration on
the measured road section, and ∆𝑡𝑖,𝑖+1 = 𝑡𝑖+1 − 𝑡𝑖 is the difference in times at which the
frames 𝑖 and 𝑖+1 were taken. The immediate speed 𝑣𝑖 can be easily computed from vehicle
initial speed 𝑣0 at the start of the measured road section as

𝑣𝑖 = 𝑣0 +
1

2
𝑎(𝑡𝑖 − 𝑡0). (5.10)

The points 𝑋𝑗
𝑖𝑘

and 𝑋𝑗
𝑖𝑘+1 are triangulated using the well known Linear-LS method [28]

that is based on Eq. 2.3. The minimization itself is done using the Levenberg-Marquardt
algorithm.

In order to achieve optimal results, the tracks of calibration vehicles should cover the
area of interest as uniformly as possible. For example, if the goal is to perform measurements
on vehicles in two lanes, the tracks of the calibration vehicles should also cover both lanes.
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(a)

(b)

(c)

Figure 5.2: License plates detection and tracking. (a) Detected license plates in the image
from the left camera and their matching counterparts in the right camera image forming
a license plate pairs. (b) The license plates search areas in both images were constrained
by foreground masks constructed using background subtraction. The right camera image
search area was further constrained using epipolar geometry. (c) A vehicle with its set of
all license plate pairs.
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(a)

(b)

(c)

(d)

Figure 5.3: Point matching and triangulation. (a) Template left image with uniformly
sampled points and regions of interests constructed around them. (b) Reference right
image. (c) Template image with sampled points warped using rough homography computed
from sampled points and their counterparts obtained by template matching the regions of
interest to the reference image. (d) Template image with sampled points warped using fine
homography computed using enhanced correlation coefficient maximization initialized with
rough homography.
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Figure 5.4: Overview of the proposed calibration method. Off-site calibration is performed
first. For the on-site calibration, the calibration vehicles with known speed and acceleration
are recorded. Their trajectories represented by a set of license plate pairs are extracted
from the input stereo image stream. Several corresponding points are identified along the
trajectories. The corresponding points, the known speed and acceleration of the calibration
vehicles and the off-site calibration results are used to complete the on-site calibration.
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Chapter 6

Experimental results of the
proposed method

This chapter describes experiments that evaluate the novel measurement method with ex-
ploitation of the newly proposed calibration approach. The experiments utilize prototype
hardware that is introduced in the first section of this chapter. Using the prototype hard-
ware, a dataset that contains passing vehicles is recorded. The dataset and the reference
data for the experiments are described in the second section.

The first experiment tests the presented hypothesis by evaluating the proposed method
for vehicle speed measurement. The design of the experiment is similar to the design of
the metrological field tests. In this experiment, the speed measurement error is computed
from the speeds that are measured by the proposed method and the reference speeds. The
results are compared to the existing stereo-based methods described in Chapter 4.1. The
hypothesis holds if the maximum error, the mean error, and the standard deviation of error
are within the ranges specified in Table 3.1.

The second experiment evaluates the proposed stereo camera pair calibration method.
In this test, the stereo camera pair is calibrated by the proposed method and utilized
for the measurement of distances that vehicles travelled between two consecutive frames.
The measured distances are compared to the reference distances from the dataset, and the
distance measurement error is reported. The results are compared to the existing stereo
camera pair calibration methods described in Chapter 4.5.

6.1 Prototype hardware
The prototype hardware (see Fig. 6.1) consists of two custom made cameras mounted
parallelly on a 1 m long aluminium profile placed on a sturdy tripod. The cameras are fitted
with PYTHON 1300 global shutter CMOS image sensors and 35mm fixed focal length lens,
which is positioned is a such a way that its principal axis is perpendicular to the sensor
plane and intersects it at a sensor centre. The image sensors have 0.0048 mm x 0.0048 mm
square pixels and provide monochrome 1280x1024 px images. Raw image data is streamed
at a rate of 20 frames per second through a gigabit ethernet switch to a computer where
the images are JPEG compressed and stored for further processing. The shutters of the
cameras are synchronized using an external trigger with one camera being the master who
sends the trigger signal to the second camera. The cameras and the switch are supplied
power from two 6400mAh LiPo batteries attached to the profile.
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Figure 6.1: The stereo camera pair setup. Two cameras, ethernet switch, and two batteries
mounted on an aluminium profile.

LIDAR 1

LIDAR 2Common section

Stereo camera 
pair

Stereo camera pair range

LIDAR range

Figure 6.2: Schematic drawing of the relative positions of the sensors, their ranges, and
their common area.

6.2 Dataset and reference data
For the purpose of evaluation, a dataset was recorded using the above-mentioned hardware.
The whole dataset was recorded during a single session lasting approximately 40 minutes.
During this session, 698 vehicle passes in two lanes were recorded. The left lane (from the
point of view of cameras) is visible in full on both cameras while the right lane is only
partially visible. The camera setup was placed on a footbridge across the road looking from
above towards the incoming vehicles. Out of the 698 recorded vehicle passes, 44 were used
for the on-site calibration of stereo camera pair and the remaining 654 were used for the
testing.

To obtain the reference data, the same approach as Sochor et al. [64] was employed.
Two LIDARs (LaserAce R○IM HR 300) were placed at the same height parallelly to each
other and perpendicularly to the street. The distance 𝐷 between the LIDARs was 28.05
metres, and they were synchronized by the GPS time (Leadtek LR9540D). The distance and
time data from both LIDARs were logged and processed separately. From the logged data,
the processing algorithm calculated for each vehicle its immediate speed when entering the
first and the second laser, its average speed on the distance 𝐷, its average acceleration, and
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Figure 6.3: Histogram of reference average speeds.

its length. For more detail about the measurement process, reference data calculation, and
the discussion of measurement error, see Sochor et al. [64].

Vehicle speed measurement

The reference data for the vehicle speed measurement experiment are the average speeds
obtained from LIDARs. The reference average speeds are compared to the average speeds
measured by the proposed method. However, these values are comparable if and only if
they were both measured over the same section of the road. As the section of the road
covered by the two LIDARs and the section of the road in the view of the stereo camera
pair do not fully overlap, the reference and the measured average speeds are not directly
comparable and need to be adjusted so that the road section, where the speed is measured,
is common for both setups. The common section starts at the point where the vehicle
enters the first LIDAR and ends at the point where the last vehicle license plate is recorded
by both cameras (see Fig. 6.2). Because the cameras and LIDARs are time-synchronized,
their timestamps can be utilized as a common ground for such an adjustment.

The adjusted reference average speed over the common section of the road is computed
as:

𝑣𝑟 = 𝑣 +
1

2
* 𝑎 * (𝑡1 − 𝑡0), (6.1)

where 𝑣 is the reference immediate speed when entering the first laser; 𝑎 is the reference
acceleration; 𝑡0 is the reference time when the vehicle entered the first laser; and 𝑡1 is the
time when the last license plate of the vehicle was recorded.
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The adjusted measured average speed over the common section of the road is computed
as:

𝑝0 = 𝑝 + 𝑣 * (𝑡0 − 𝑡) +
1

2
* 𝑎 * (𝑡0 − 𝑡)2

𝑝1 = 𝑝 + 𝑣 * (𝑡1 − 𝑡) +
1

2
* 𝑎 * (𝑡1 − 𝑡)2

𝑣𝑚 =
||𝑝1 − 𝑝0||
𝑡1 − 𝑡0

(6.2)

where 𝑝0 and 𝑝1 are co-ordinates of vehicle positions at times 𝑡0 and 𝑡1; 𝑡0 is the reference
time when the vehicle entered the first laser; 𝑡1 is the time when the last license plate of
the vehicle was recorded; 𝑝 is a co-ordinate of the initial vehicle position at time 𝑡; 𝑣 is
the co-ordinate of immediate vehicle speed at time 𝑡; and 𝑎 is the co-ordinate of vehicle
acceleration. The values of 𝑝, 𝑣, and 𝑎 are obtained from a vehicle motion model (Eq. 5.5).
The histogram of reference average speeds is shown in Fig. 6.3.

Stereo camera pair calibration

The reference data for the stereo camera pair experiment are the distances that vehicles
travelled between two consecutive frames. The reference distances were computed from
data provided by the two LIDARs using formulas:

𝑝𝑖 = 𝑣 * (𝑡𝑖 − 𝑡) +
1

2
* 𝑎 * (𝑡𝑖 − 𝑡)2

𝑝𝑖+1 = 𝑣 * (𝑡𝑖+1 − 𝑡) +
1

2
* 𝑎 * (𝑡𝑖+1 − 𝑡)2

𝑑𝑖,𝑖+1 = ||𝑝𝑖+1 − 𝑝𝑖||

(6.3)

where 𝑣 is the reference immediate speed when entering the first laser at time 𝑡, 𝑎 is the
reference acceleration, and 𝑡𝑖 and 𝑡𝑖+1 are times at which the frames 𝑖 and 𝑖+ 1 were taken.
The histogram of reference distances is shown in Fig. 6.4. The mean distance is 0.982 m
and the standard deviation is 0.108 m.The maximum distance is 1.783 m and the minimum
is 0.665 m.

Timestamp assignment latency

One more thing should be considered, and that is the delay between the end of camera
exposure and the timestamp assignment, which, in this case, takes place in the computer
that stores the frames. The cameras, as soon as the exposure ends, pack the read-out
lines into the UDP packets and send them to the computer where they are received by the
software. The timestamp is assigned immediately after receiving the first UDP packet of a
new frame, and it is the same for both images.

The timestamp assignment latency is measured by pointing the cameras on a series
of LEDs which encode the millisecond part of current time in a binary format (see Fig.
6.5). The recorded frames were examined and compared the time encoded in LEDs to the
millisecond portion of the frame timestamp. In this case, the timestamp assignment latency
has a mean value of 2.5 ms and a standard deviation of 1 ms. The measured values are
used to correct the recorded frame timestamps in Eq. 6.2 and Eq. 6.3.
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Figure 6.4: Histogram of reference distances measured by the two LIDARs.

6.3 Implementation
This section describes the implementations and execution times of both proposed methods.

Vehicle speed measurement

The proposed vehicle speed measurement method pipeline was broken into five smaller steps
that were implemented as separate programs. These programs correspond to License plate
detection and matching, License plate tracking, Point matching, Triangulation, and Speed
measurement steps. The pipeline was implemented in C++ with the help of OpenCV and
Boost libraries. The programs pass the data along the pipeline in JSON format through
standard streams.

The implementation is focused more on the precision and accuracy of the measurement
rather than on the optimality of the implementation or the speed of computation. Only a
few optimizations were performed. They were aimed mostly at reducing the detection time
of licence plates by constraining the image area in which the license plates are detected. To
limit the license plate detection area, a background subtraction for each image of the stereo
image pair is performed. The obtained foreground image masks are then morphologically
dilatated to close the holes. After that, the license plates are detected in the masked left
image. For each license plate found in the left image, an epipolar line in the right image is
computed using a detected rectangle top left corner and fundamental matrix. The computed
epipolar lines further limit the search area in the right image. The foreground masks are
shown in Fig. 5.2b. Finally, the license plates in the masked right image are detected.

The average times of execution for each implemented step were evaluated separately.
The evaluation took place on a Linux desktop computer with an Intel Core i5-6500 processor
running at 3.2 GHz with 24 GB RAM. The data for the steps that are common to both
methods, the Triangulation, and the Speed measurement steps is obtained using a sample
vehicle recording that consists of 20 frames in which the vehicle license plate is successfully
detected. The results are summarized in Table 6.1. The total processing time of the
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Figure 6.5: A camera image cutout that contains blinking LEDs. This image was assigned
a timestamp with millisecond portion of 729. The LEDs in the image encode millisecond
time just after the end of exposure which was 726 (whose binary image is 10110 10110 as
seen above). The latency of timestamp assignment, in this case, is therefore 3 ms.

Table 6.1: Average per frame execution times of the individual pipeline steps of the vehicle
speed measurement method.

Step Time [ms]
License plate detection and matching 168.1

License plate tracking 3.6
Point matching 203.3
Triangulation 4.5

Speed measurement 10.0

vehicle speed measurement currently exceeds the 50 ms time limit for real-time processing
of 20 frames per second supplied by the cameras. The most time-demanding steps are the
License plate detection and matching and the Point matching steps, which makes them
prime candidates for further optimization or implementation in hardware.

The total processing time per stereo frame with a single passing vehicle is approximately
0.4 seconds. The average number of stereo frames that were processed per vehicle in the
dataset was 13, which means that a single vehicle can be processed in less than 6 seconds.
If the average time distance between the two incoming vehicles is more than the processing
time, all of the vehicles could be processed in near real-time. The mean time distance
between the two incoming vehicles in the dataset acquired during ”peak times“ is approx-
imately 3 seconds. Processing the traffic of this volume in near real-time would require
cutting the processing time per vehicle to half or, for example, adding another computing
unit. However, the traffic volume changes during the day, and, given enough storage, the
low volume periods can be utilized to catch up with the processing of the stored frames.
Because the real-time processing is usually not a requirement for traffic enforcement sys-
tems, the method should be able to compute the speed for all the passing vehicles as long
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Table 6.2: Average per frame execution times of the individual pipeline steps of the stereo
camera pair method.

Step Time [ms]
License plate detection and matching 198.2

License plate tracking 3.7
Point matching 198.5

Calibration 85.0

as the traffic volume on a given location is less than approximately 14400 vehicles per day
(600 per hour).

Stereo camera pair calibration

The same implementation approach was used for the proposed stereo camera pair calibration
method. Its on-site calibration pipeline was divided into four smaller steps that were
implemented as separate programs. These programs correspond to License plate detection
and matching, License plate tracking, Point matching, and Calibration steps. Because the
first three programs are the same for both pipelines, their implementation can be reused
with just one small modification. The optimization that utilizes the epipolar geometry
cannot be used as the information about the epipolar geometry is not yet known. The
average execution times for each implemented step were obtained during the calibration
process. During this process, the total of 748 stereo frames was processed, and 813 license
plate pairs, which belonged to the 44 calibration vehicles, were detected. The evaluation
took place on the same computer that was used for the evaluation of the vehicle speed
measurement implementation. The results are summarized in Table 6.2.

The off-site calibration was performed in a laboratory using a chessboard pattern. After
that, the prototype hardware was transported to a nearby footbridge across the road where
it was properly set up and adjusted. The first 44 recorded vehicles, for which the ground
truths were provided, were used for the on-site calibration. The road area covered by the
calibration vehicles is shown in Fig. 6.6.

The estimation of external parameters and focal lengths is done by non-linear optimiza-
tion process whose quality of results depends heavily on good initial estimates and proper
limits. The initial estimates of focal lengths values and their upper and lower limits were
chosen according to the used optics. The cameras used 35 mm fixed focal length lenses
whose range of focus span from 0.25 m to infinity. The value of 35 mm was used as the
initial estimates, and upper and lower limits were computed using the formula:

1

𝑙
=

1

𝑓
+

1

𝑠
, (6.4)

where 𝑙 is a lens focal length (35 mm in this case), 𝑓 is a camera focal length, and 𝑠 is a
distance at which the fixed focal length lens is focused. Choosing 0.25 m and infinity for
𝑠 the two 𝑓 values that represent the upper and the lower limits for camera focal lengths
estimation can be computed.

The external parameter 𝑡 that describes the position of the second camera relative to
the first camera is represented, for the minimization purposes, using spherical coordinates.
This type of representation decouples vector magnitude from its direction, which enables
specification of initial estimates and limits for each vector property separately. The highly
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Figure 6.6: The area covered by the passes of the calibration vehicles through the measured
road section is shown. Nine tracks that correspond to the extracted license plate points are
drawn for each calibration vehicle.

accurate initial estimate of the vector magnitude can be easily provided by measuring
the stereo camera pair baseline using, for example, laser distance meter. The magnitude
limits, in this case, can be very narrow or the magnitude can be even excluded from the
optimization and keep fixed. The measured baseline of the setup is 0.955 m. The initial
estimates and limits for the spherical angles of the vector direction reflect the horizontal
configuration of the stereo camera pair.

The external parameter 𝑅 that describes the orientation of the second camera relative
to the first is expressed using an angle-axis representation with the direction of its unit axis
vector represented using spherical coordinates. The initial estimates and limits that were
chosen for the three angles reflected the horizontal configuration of the stereo camera pair.

6.4 Results
This section presents and discusses the results of both experiments.
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Figure 6.7: Histogram of speed measurement errors.

Vehicle speed measurement

The accuracy and precision of the speed measurement were evaluated using the above-
mentioned dataset. The speed is measured for 653 of a total of 654 recorded vehicles.
One measurement is missing because the license plate detector failed to detect the vehicle
license plate. Detailed results for all vehicles in the dataset can be accessed online1. From
the measured values, the measurement error was computed as:

𝑒 = 𝑣𝑚 − 𝑣𝑑, (6.5)

where 𝑣𝑚 is average speed measured using the proposed method and 𝑣𝑑 is reference average
speed from the dataset. For the histogram of the speed measurement errors, see Fig. 6.7.
Overall, the measured speed has a maximum negative error of -0.56 km/h and a maximum
positive error of 0.72 km/h. The mean error is -0.05 km/h with a standard deviation of
0.20 km/h. The mean absolute percentage error is 0.23 % and maximum percentage error
is 1.11 %. As all the error statistics are within the field test ranges recommended by the
OIML (Table 3.1) for the autonomous measurement device, the described method should
comply with the metrological legislations that are based on the OIML recommendations or
those that have less strict error requirements. The presented hypothesis therefore holds.

The speed measurement errors are compared with three other stereo-based vehicle speed
measurement methods mentioned in Chapter 4.1, namely, Jalalat et al.’s method [31], El
Bouziady et al.’s method [14], and Yang et al.’s method [76]. The error comparison is shown
in Table 6.4. For the datasets comparison see Table 6.3.

48



Table 6.3: Dataset comparison of stereo-based vehicle speed measurement methods.

Dataset Number of different
size vehicles

Jalalat et al. [31] 441 441
El Bouziady et al. [14] 12 6

Yang et al. [76] 56 2
Proposed method 653 653

Table 6.4: Error comparison of stereo-based vehicle speed measurement methods.

MSE STDEV Max abs. error Max perc. error
[km/h] [km/h] [km/h] [%]

Jalalat et al. [31] NA NA NA 3.3
El Bouziady et al. [14] 2.33 NA 2.00 NA

Yang et al. [76] 0.42 NA -1.60 3.80
Proposed method 0.04 0.19 0.72 1.11

Stereo camera pair calibration

The accuracy and precision of the presented calibration method were evaluated on a distance
measurement task using the above-mentioned dataset. The distances that vehicles travelled
between two consecutive frames are computed in several steps.

First, the License plate detection and matching and the License plate tracking steps
from the on-site calibration part are applied to a vehicle record in order to extract a set
of license plate pairs detected along the vehicle trajectory. Then, the algorithm transforms
the set of license plate pairs to a set of license plate pair couples where each license plate
pair couple represents a part of a vehicle trajectory whose length we want to compute.
This transformation is done by coupling each license plate pair from the set with a license
plate pair that was recorded in the consecutive frame, if possible. Next, the Point matching
step is applied to each license plate pair couple from the set in order to obtain the nine
corresponding point pairs for each license plate pair. Each of the nine point pairs from
the first license plate pair of the couple is assigned its corresponding point pair from the
second license plate pair of the couple. The point pair couples are then triangulated using
the calibration method results, and the distance between the triangulated points of the
couple is computed. This results in nine distances for each license plate pair couple, and
the method takes their median distance as a distance that vehicle travelled between the
two consecutive frames.

The distances are measured for 653 of a total of 654 recorded vehicles. Distances for
one vehicle are missing because the license plate detector failed to detect the vehicle license
plate. From the measured values, the measurement error is computed as:

𝑒 = 𝑑𝑚 − 𝑑𝑑, (6.6)

where 𝑑𝑚 is the distance measured using the proposed method and 𝑑𝑑 is reference distance
speed from the dataset. For the histogram of the distance measurement errors, see Fig. 6.8.
Overall, the 99 percentile absolute error is 0.05 m, and the mean error is -0.002 m with the
standard deviation of 0.017 m.

1http://www.stud.fit.vutbr.cz/~xnajma00/results.json
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Figure 6.8: Histogram of distance measurement errors.

Table 6.5: Comparison of datasets and baselines of the stereo camera pair calibration
methods.

Distance from cameras Dataset size Baseline
[m] [m]

Shang et al. [62] 50 - 70 15 30
Tian et al. [69] 49 - 85 28 79.88

Proposed method 36 - 64 5365 0.955

The distance measurement errors are compared with two other calibration methods
that deal with cameras focused on a long shot mentioned in the chapter 4.5, namely, Shang
et al.’s [62] method and Tian et al.’s [69] method. The comparison is shown in Table 6.6.
Dataset properties and baselines are compared in Table 6.5. The proposed method achieves
better results than the other methods in all compared statistics on a much bigger dataset
with a much smaller baseline.

The setup that was calibrated using the proposed approach outperformed the existing
methods that use the chessboard calibration (Jalalat et al.’s method [31], El Bouziady et
al.’s method [14], and Yang et al.’s method [76]) in the precision and the accuracy of the
vehicle speed measurement.

Table 6.6: Comparison of stereo camera pair calibration methods on a distance measurement
task.

MSE STDEV 99 percentile abs. error
[m] [m] [m]

Shang et al. [62] 0.0016 0.04 0.083
Tian et al. [69] 0.0011 0.033 0.063

Proposed method 0.0003 0.017 0.05
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Discussion

The newly proposed vehicle speed measurement method achieves better results than the
current state-of-the-art methods in all compared statistics on a much bigger and more
diverse dataset. The speed measurement error of the measurement method is Normally
distributed with the mean value of -0.05 km/h and the standard deviation of 0.20 km/h. The
maximum absolute error is 0.72 km/h and the maximum percentage error is 1.11 %. These
values were measured on a sample of 653 vehicles and are well within the ranges specified
by the presented hypothesis. The hypothesis of this work, therefore, holds. Additionally,
the proposed stereo camera pair calibration method also outperforms the current state-of-
the-art long-distance calibration methods.
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Chapter 7

Possible applications and future
work

The first section of this chapter describes various possible applications of the proposed
methods in the context of traffic surveillance. The ways in which the presented measurement
and calibration approaches could be improved are presented in the second section.

7.1 Possible applications
The vehicle speed measurement method was designed mainly for the speed limit enforcement
task. The devices that utilize this method can be permanently installed above the road
and work autonomously. The CAMEA company showed interest in this type of application.
The permanently installed devices could benefit from a wider baseline that allows for more
precise measurement and extended multi-lane coverage. On the other hand, the small
baseline can be exploited for portable setups that can be easily moved between locations
or mounted on vehicles.

The speed enforcement task is not the only application for the stereo camera pair based
devices in the area of traffic surveillance. The array of data that is provided by the two
cameras is very rich and contains a lot of information that can be extracted and that is
unique for this type of sensors. A simple modification of the presented method could be
done in order to obtain information about vehicle count, traffic volume, and density. These
are the basic traffic statistics that are often collected and used by civil engineers for further
infrastructure development.

Another information that can be extracted from the stereo image pair is the vehicle
class. The classification can be done in image space or by using a 3D reconstructed model
of the vehicle. Unlike other devices that can usually provide only coarse classification, the
stereo based devices could provide a very fine classification that could include vehicle man-
ufacturer, vehicle type or even identification of non-standard vehicle customizations. The
very fine classification could lead to easier vehicle re-identification using multiple setups on
different locations that would not depend on license plate recognition. The re-identification
can help to understand and monitor traffic flow patterns which are useful, for example, for
smart cities development or air pollution control and improvement.

The 3D reconstruction does not need to be limited only to vehicles but could be extended
to the whole scene. The reconstructed scene could enable better detection of dangerous
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and undesired situations that include, for example, detection of pedestrians and animals on
highways, incident detection, or traffic jams detection.

7.2 Future work
As of now, the presented system can be used only for short term monitoring. That is because
it lacks the ability to maintain the correct calibration in time. The calibration correction is
necessary for any long-term installed stereo-based device as the initial calibration is likely
to change due to the external influences such as temperature changes or tremors.

The correct calibration can be maintained, for example, by tracking features of static
objects in camera images and compensating for the changes in their positions. This ap-
proach would heavily rely on the precision of feature detection and tracking in both images
and the presence of a static object with distinctive features in the scene. Alternatively, the
use of the inertial measurement units (IMU) that would track the changes in the orienta-
tions of the cameras could be explored. This approach would not depend on the scene or
the precision of feature tracking but would be limited only to the compensation of rota-
tional changes because IMU cannot track the positional changes reliably due to the large
drift. Another option is to add another camera that would observe the stereo camera pair
and compute its external parameters. To make this task easier, the cameras of the stereo
camera pair could be fitted with suitable markers.

The on-site part of the initial calibration process where the calibration vehicles need to
be recorded, and their reference speed obtained is very time consuming and requires the
involvement of multiple people. The calibration vehicles are used for the estimation of the
external parameters and the focal lengths. If these values could be estimated with similar
accuracy in a different way, the tedious process of recording the calibration vehicles could be
removed. The re-calibration approaches mentioned above could help with the estimation of
the external parameters. The focus of the auto-focus camera lenses can usually be controlled
either manually or programmatically. The program can be utilized to estimate the current
focal lengths of the cameras using the lens focal length, the range of focus and the number
of focus steps taken.

The current implementation is not very efficient and can be optimized. Ideally, the total
per-frame processing time should be less than the refresh rate of the cameras, which, in this
case, is 50 ms. Reducing the processing time below that threshold would allow real-time
processing of passing vehicles. This can be achieved in several ways. One way could be,
for example, hardware acceleration of the most time-consuming parts of the pipeline which
are the License plate detection and matching and the Point matching steps. Another way
is to utilize multiple processing units and distribute the work among them.

Future work could also experiment with different license plate detection and point
matching methods. A comparison of different approaches could yield interesting results,
and it is probable that more suitable methods could be found for the given tasks.

The dataset that was used for the evaluation was recorded in the morning hours during
favourable weather and lighting conditions. Expanding the limited scope of situations that
are present in the dataset could also be the focus of future work. The situations that can
expand the dataset are severe weather conditions, including the presence of rain, snow, or
dust and otherwise varying weather and lighting conditions. The expanded dataset can
then be used to evaluate the robustness and reliability of the presented approach in adverse
conditions.
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Chapter 8

Conclusion

This thesis answered the question of whether it is currently possible to measure the speed of
vehicles using a stereoscopic method with the average error within ± 1 km/h, the maximum
error within ± 3 km/h, and the standard deviation within ± 1 km/h. The error ranges
were based on the requirements of the OIML whose Recommendations serve as templates
for metrological legislations of many countries. Based on this question, a hypothesis was
formulated and tested. A method that utilizes a stereo camera pair for vehicle speed
measurement was proposed and experimentally evaluated.

The experimental evaluation was designed according to the design of the field test from
the OIML Recommendation. Using the prototype hardware that consists of two synchro-
nized cameras, ethernet switch, and two batteries mounted on one-meter long aluminium
profile, a dataset was recorded. The dataset contains recordings of 698 vehicles for which
the reference data is provided by a pair of LIDARs. The first 44 vehicles were used for
stereo camera pair calibration. The remaining 654 vehicles were used for the evaluation.
The reference average speeds and the average speeds measured by the method were used to
compute the measurement errors. The results were compared to the existing stereo-based
methods and to the OIML requirements.

The newly proposed method measures the speed of the passing vehicles more precisely
than the other methods. The mean error, the standard deviation, and the maximum
absolute error are -0.05 km/h, 0.2 km/h, and 0.72 km/h, respectively. These values are
within the ranges specified in the hypothesis , which means that the presented hypothesis
holds. The proposed stereoscopic vehicle speed measurement method should, therefore,
comply with metrological legislations that are based on the OIML Recommendation.

Additionally, the stereo camera pair calibration method that is suitable for traffic surveil-
lance applications was proposed and experimentally evaluated. The evaluation of the cal-
ibration method was based on a distance measurement task and utilized the same dataset
as the vehicle speed measurement method. The results were compared to the results of the
existing methods that deal with the calibration of stereo camera pairs that are focused on a
long distance. The comparison showed that the newly proposed method is able to calibrate
the stereo camera pair more precisely than the other methods.

The main focus of the future work should be on maintaining the correct calibration
in time. Alternatively, one may also focus on decreasing the execution time, improving
the resistance to adverse weather conditions, or experimenting with different detection,
re-identification, or correspondence search methods.
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