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Abstract
Machine Vision methods benefit from improving models, tuning trained
parameters, or labeling representative data. In a series of experiments,
this work validates the hypothesis that Active Learning improves the
accuracy of these models. By extending the pseudolabel framework
to Active Learning, this work includes a One-shot-learning approach
to learn novel image categories by utilising an algorithmic recom-
mender, an online Graphical User Interface to optimise the online
Exploration/Exploitation tradeoff for tagging, and a two-step offline
binary Active Learning framework to improve the quality of data used
for Font Capture. By demonstrating the benefit of Active Learning in
these approaches, this work contributes to the hypothesis, as well as
concrete Machine Vision applications.

Abstrakt
Metody strojového vidění se zdokonalují zlepšením modelů, laděním
trénovaných parametrů nebo anotací reprezentativních dat. Tato
práce řadou experimentů potvrzuje hypotézu že aktivní učení zvyšuje
přesnost těchto modelů. Rozšířením přistupu pseudolabelů o ak-
tivní učení přispívá tato práce přístupem „one-shot-learning“ k učení
nových kategorií obrazů s použitím algoritmických doporučení, dále
online grafickým uživatelským rozhraním pro optimalizaci dilema Ex-
ploration/Exploitation pro online tagování, a dvoukrokovým offline
binárním přístupem aktivního učení pro zlepšení kvality dat použí-
vaných pro snímání fontů. Tím, že demonstruje přínos aktivního učení
v těchto přístupech, přispívá tato práce k hypotéze i konkrétním ap-
likacím strojového vidění.
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Zemčík



Computer Vision with
Active Learning

Declaration
I declare that this dissertation thesis is my original work and that I
have written it under the supervision of prof. Dr. Ing. Pavel Zemčík.
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CHAPTER 1

Introduction

Machine Learning in general and Computer Vision in particular are
highly sensitive to the amount and quality of data presented. Repro-
ducible improvements in results and abilities of created models can be
wholly attributed to the following factors: a model’s prior and ability
to fit, a model’s actual fit to data, and representativity of training data.

With the vast majority of research focused on the first factor, and
the vast majority of engineering work focusing on the second, the third
factor receives far less attention. As quality data for various critical
tasks is known to be costly to create, this work focuses on how this
can be done most effectively. The optimisation of expert labelling and
assessment of the resulting benefits is achieved via Active Learning.

A hypothesis regarding the benefit of Active Learning in Machine
Vision is experimentally validated under these scenarios: when the
labelling oracle is a human expert, and when the oracle is a pre-trained
algorithm for another task. A large dataset, such as personal photos or
hundreds of thousands of fonts, is most effectively labelled by using
a human-in-the-loop approach. Facilitated by per-sample certainty



analysis during training, the expert labelling effort achieves higher
label quality with significantly fewer annotations. The second case,
where existing models can preprocess useful information, requires
systematic labelling and confidence tracking, or practical mappings. I
have successfully used these approaches in my own published work,
as presented in this thesis.

The hypothesis is experimentally validated in several contempo-
rary scenarios, such as fully automated labelling (section 3.2) to create
a dataset with combined information not available elsewhere, but with
models trained on several other datasets. My work demonstrates that
filtering data by retraining a model to select valuable examples only is
shown to be usable to minimise human effort in creating new, useful
datasets, and models.

In addition to four cases validating the hypothesis that Active
Learning benefits contemporary Computer Vision, at the core of this
work lies another practical contribution: an improvement to the accu-
racy to work ratio achieved through a new pseudolabels Active Learn-
ing framework to integrate labelling by existing models, human experts,
and a trained agent.



CHAPTER 2

Hypothesis & Contribution

Generative and discriminative algorithms in Computer Vision are de-
signed and trained to maximize their ability to generalize. This is
tested on unseen data, and maximized by improving the model prior,
improving the quality of the labelled and unlabeled data used, and by
hyperparameter tuning. A tangential approach, compatible with im-
proving the model and hyperparameters, is Active Learning, by which
the gathered data is improved during training-time by effectively man-
aging the labelling and selection effort of an expert.

2.1 Hypothesis

As it is desirable to optimally transfer knowledge and existing models
to new tasks where data is limited, the following hypothesis is put
forward:



Human and algorithmic expert annotation using Active
Learning improves the accuracy of contemporary Computer
Vision methods.

The hypothesis is put forward with the expected result of achiev-
ing a significant margin, thus being both useful and demonstrably
achievable. The term contemporary is taken to mean algorithms per-
forming state-of-the-art accuracy in the case of discriminative models,
or output quality for generative models, but not expecting to produce
comparable results to next-generation models. The hypothesis refers
to human and algorithmic experts because Active Learning is expected
to be applicable both in the context of green-field datasets and ap-
plications and in Transfer Learning applications where one or more
useful weak learners already exist. The concepts of accuracy, quality,
and labor time are context-specific, referring to a context-dependent
relevant applicable metric of generalization, and to the time and effort
taken to achieve said results.

2.2 Method

The hypothesis is tested by comparing the achieved accuracy of this
approach, as opposed to hyperparameter tuning, model tuning, and
extended training time. These alternative approaches are known to
hold the potential to improve accuracy and reduce labour time for
Machine Vision tasks, and they are widely studied elsewhere [15, 35,
32, 14, 5, 27, 26, 20, 17]. The experimental proofs presented further
are divided by approach and refer to my own relevant published work.
These are experiments to demonstrate the benefit of Active Learning
via sample selection, via human and algorithmic labelling, via feature
selection and adaptive visualization, and pseudolabels.

The standard supervised, unsupervised, or semi-supervised setting
can be formulated as training a model M with parameters ρ on two
sets of data:



ρ = argmin
ρ

M(XK ∪XU ) (2.1)

Where XK are datapoints with known labels, and XU datapoints
with unknown labels. The Active Learning approach has the additional
XC ,i subset of XU , which contains the datapoints chosen to be labeled:

XC ,i = Si (M ,ρi , XK ,i , XU ,i )

ρi = argmin
ρ

M(XK ,i ∪XU ,i ∪XC ,i ) (2.2)

And the hypothesis is therefore simply that there exists a selection
mechanism S such that

∀i ∃S | L(M(XK ∪XU )) < L(M(XK ,i ∪XU ,i ∪XC ,i )) (2.3)

Where L is an appropriately chosen loss function for the given
model.

The results of the demonstration of the hypothesis have a wide
array of applications, such as Association-rule Learning used by com-
paring the quality of texture synthesis algorithms over inputs with
selected properties [KDC17, KCD15].

In the following chapter, I will test the hypothesis in various sce-
narios. These tests correspond to various perspectives under which
Active Learning can be utilised, namely online training with an op-
timized graphical interface [HKL+12] in section 3.3, iterative dataset
optimisation [KHZ20] in section 3.1, and active transfer learning with
an algorithmic expert [KHZ16] in section 3.4.

2.3 Contribution and Proof Outline

The theoretical contribution is that these results irrevocably demon-
strate that the systematic application of Active Learning improves the
accuracy of contemporary Computer Vision models. A practical con-
tribution is also made, in the form of an algorithmic process usable



for Zero-shot Learning and One-shot Learning for image classification,
given that a weak retrieval system is available from a large set, such as
online image search indexing the Web.

Furthermore, applied contributions are made in the fields where
the hypothesis has been tested: an improved dataset and algorithm
for Font Capture and a GUI for image tagging with Active Learning.

Specifically, the existence claim of equation 2.3 is demonstrated by
finding S for various scenarios of (L, M , X ). For each, the contemporary
Machine Vision approach is considered in comparison with the Active
Learning alternative. These two options are then compared, with the
desired objective of showing

∃S | (L, M , X ) (2.4)

under the conditions of equation 2.3. By demonstrating this for
four important problems of current research, the hypothesis is vali-
dated in a limited context. In order to validate the hypothesis with
respect to all problems of Computer Vision, the argument by analogy
is made that every Computer Vision problem can be aided by applying
these Active Learning principles.

The cases under consideration are:

1. Tagging of closed-domain information by optimizing an Active
Learning Graphical User Interface

2. One-shot learning with pseudolabels and a weak algorithmic
expert

3. Active Learning for human experts to create data for Generative
Adversarial Neural networks

4. Transfer Learning of algorithmic experts for Generative Adver-
sarial Neural networks

These four cases correspond to sections of the following chapter,
where they are treated in more detail. An overview of the intercon-
nections of these sections and how they jointly support the thesis is



as follows: Active Learning benefits the model and users directly by
allowing them to more efficiently label data with general classes, as
well as domain-specific information (1. - published in 2012). Moreover,
sufficiently well-preprocessed image data allows high-quality training
of classes without any human expert, by using an online image search
algorithm and pseudolabels to train a Convolutional Neural Network
(2. - published 2016). The filtering of existing datasets by humans
(3. - under review), as well as the labelling of unsupervised datasets
by algorithms (4.) can be performed with Active Learning, enabling
improved generative quality as well as entirely new applications.

Therefore, these four problems present a holistic approach to the
application of Active Learning in contemporary Computer Vision. Be-
yond the contribution made to the hypothesis, these have also served
to further the fields of research they have been applied in, as detailed
in the following chapter.



CHAPTER 3

Active Learning for Machine Vision

The cases in which Active Learning has been tested to support the hy-
pothesis are described in this chapter. The presented work is divided
into four sections, loosely corresponding to my own published work.
By using a combination of Uncertainty Sampling and Diversity Sam-
pling, the sections below focus on creating improved data and models
by sampling from all datapoints while optimizing labelling. Each of
the following four cases is an experiment to test the hypothesis, and
thus to serve as a quantitative proof.

In the context of labelled image datasets, image-wise tagging is
not limited to pre-training annotation. In fact, the required expert
input can be reduced by judicious initialization with an external sys-
tem [KHZ16], by asking the annotator to verify rather than label [15],
and by in-the-loop training to identify samples with low certainty [HKL+12].

This chapter describes my own work, in which the first approach
has been tested and published, as detailed in section 3.4, the second
approach has been tested in the context of generating fonts 3.1, and
the last approach has been experimentally validated through imple-



mentation and user experiments 3.3. Similarly to the first approach,
work in section 3.2 also shows that beneficial results can be achieved
with pure Transfer Learning, where a set of labels is created from spe-
cialized pre-trained models, serving new tasks not possible before.
Section 3.2 presents work made public as a freely available dataset at
https://github.com/DCGM/ffhq-features-dataset.

These three of sections correspond to peer-reviewed work, as fol-
lows: Section 3.1 contains work currently under review at The Visual
Computer as Font Capture in the Wild [KHZ20], section 3.3 was pub-
lished as Annotating images with suggestions—user study of a tagging
system [HKL+12], and section 3.4 describes the method published as
Deep learning on small datasets using online image search [KHZ16].

Finally, section 3.5 summarizes how these individual contributions
support the hypothesis of the thesis, and integrates the findings into a
cohesive methodical validation.

3.1 Improvements via Dataset Size and Quality

Font Capture is a task in Computer Vision and Computer Graphics, in
which text present in an image is replaced with new text in the same
font. Worldwide, 750 million people are native speakers of a language
written in a Latin-derived alphabet with diacritics such as accents,
subscripts, and superscripts [4]. However, out of an estimated 100
thousand digital fonts widely available, only a few hundred include
these non-English characters.

Font extraction on characters of the Latin alphabet has been at-
tempted before, either with limited applications to classical fonts [11],
or with blurry or noisy results [9, 33], and always by using individual
characters as input. Thanks to an improved dataset and method for
generating training samples, this work creates sharp fonts extracted
directly from a line of text, suitable for use in photo editing as well
as vectorization. This approach makes it possible to take an existing
TrueType font, render new characters, convert them to vector graphics,
and incorporate them in the original, thus effectively closing the loop.



Active Learning has been used to create a large high accuracy dataset
of fonts, thus improving the quality of the method.

Generating fonts cannot be replaced by font search over a large
enough dataset, as shown. Although fonts are widely shared on the
internet, and font search engines are freely available, few fonts can be
acquired to perfectly match the desired input. Finding a font given an
image is a challenging task, undertaken by domain experts or auto-
mated processes. Identification methods range from pixel differences
on detected aligned characters [2] to matching manually entered de-
tailed features [3] based on standard font classification techniques [13],
or automatically extracted attributes [23]. If these methods fail, fonts
can be identified by a community of experts, such as Fontid.co. How-
ever, exotic fonts may be unknown to experts, unavailable to iden-
tification systems, or non-digitized. For example, Figure 3.1 shows
a query text, along with nearest retrieved fonts by existing methods.
This demonstrates that pixel difference and others are not a sufficient
metric in font style matching.

These limits of finding existing fonts sparked an interest in extrap-
olating the entire style of a font from a single example. Font extrapo-
lation with warp mappings dates to the nineties [30], inspired by the
effect on the shape of charge on ink particles. A manifold over fonts
has allowed smooth traversal of the font space [11] and was applied
to classical typefaces to interpolate fonts. Extrapolation of numerals
on the MNIST and SVHN datasets was made possible by deep gen-
erative models, creating a latent space which allows traversal across
glyphs [18].

More recently, a fully connected deep net has been used to cre-
ate an embedding of 50 thousand fonts [10]. A feed-forward neural
network has been used to generate the entire font from four charac-
ters [9], with poor quality results. In addition to limited quality, this
technique suffers from requiring specific characters, which may not
occur in the sample text. Variational Autoencoders have been used
to generate fonts from a single example glyph [33], but with a small
dataset of 1’839 fonts and a fully connected network, the results are



(a) Query text from image - hand-drawn

(b) Nearest match by pixel difference - JollyGood Sans Condensed

(c) Nearest match by property matching - Keynote (caron unavailable)

(d) Nearest match by expert community - Krinkes

Figure 3.1: Comparison of font retrieval methods

still blurry. The 50k fonts dataset [10] has been used to train a VAE
and a GAN [1], using the principles outlined in [26]. Fonts are extrapo-
lated from varying characters with a Multi-Content GAN [7], in colour.
However, existing methods require segmented characters rather than
analyzing text directly. Most crucially, results of all existing methods
are blurry or noisy for all but the most standard fonts.

While the existing methods train various architectures of neural
networks with millions of parameters, I anticipate that increased qual-
ity may be reached through the application of Active Learning to create
a larger, more representative dataset on which similar methods may
be trained. The dataset was made by assembling a large pool of .ttf
font files, iteratively training and annotating data for a binary classi-
fier of usability, and thresholding the ensuing classifier to produce a



dataset of usable quality fonts. This procedure utilizes a combination
of Uncertainty Sampling and Diversity sampling, by focusing the an-
notator’s attention on cases with high certainty, as well as cases of very
low certainty.

The dataset is filtered through a shallow Convolutional Neural
Network over three iterations. At each iteration, four representative
characters of every font in the unlabeled dataset are rendered, classi-
fied, some are annotated, and the process repeats. The representative
characters are

”
a“,

”
l“,

”
1“, and

”
?“.

The initialization proceeds as follows: The representative charac-
ters are rendered for all fonts and placed into a single image named
with the unique font ID. If any of the characters

”
a-z“,

”
A-Z“, and

”
0-9“

is blank or undefined (rendered as in figure 3.2), the font is discarded
immediately. Similarly, if any two characters are equal pixel-for-pixel,
the font is discarded. All remaining fonts are viewed in a directory,
allowing quick preview and easy group selection.

Figure 3.2: Undefined characters render as Unicode error codes

The fonts which do not contain readable Latin characters are man-
ually selected and labelled as negative. This is performed for 0.5% of
the data, or 1 300 fonts, which requires about two hours of annotation
time. The other seen examples are marked as positive. This annotated
data is then used to train a shallow Convolutional Neural Network. The
network, used to classify usable fonts on four characters of fixed size,
has two convolutional layers of 8 and 2 channels, and a last dense layer
with a sigmoid activation function. This simple network is trained
on the annotated data. Negatively annotated fonts include non-Latin
fonts, dingbats, emojis, and highly ornamental typefaces, which may
produce unexpected characters for standard glyphs.

Then, the network is used to make predictions on the unlabeled
data. The 99.5% of unlabelled data receives ratings from 0 to 1, for
which two tasks are semi-manually performed: the establishment of



a threshold τ1 where positive examples outweigh the negative, and
manual labelling of unlabeled fonts near this threshold (uncertainty
sampling), and near the 0 and 1 ratings (diversity sampling).

This for of uncertainty sampling is very effective, producing a high
percentage of samples to be re-labelled. On the other hand, this sim-
plified form of diversity sampling does not produce many examples to
be re-labelled. This can be interpreted in two ways:

1. The classifier is very effective and has few high-certainty incor-
rect cases

2. This diversity sampling method is not effective at finding new
types of cases needing re-labeling

After three iterations, the re-labelled fonts are once again thresh-
olded with τ3, and the effectivity of the combination of the sampling
methods is evaluated as follows. A random sample of positive fonts
is taken and manually evaluated until a false-positive is present (an
incorrect font selected as correct). Using this method, the first false
positive in random data was found at position 349, giving an expected
accuracy of over 99.3%.

The dataset is then processed further, to create a specialized sec-
tion of fonts with diacritical marks. This process is performed as in the
initialization stage of the full unlabeled dataset, but over a different set
of representative characters:

”
á“,

”
č“,

”
Ď“,

”
ç“,

”
Å“,

”
å“,

”
è“, and

”
Í“. If

any of these characters were blank, undefined, or initialized with an
error Unicode as in figure 3.2, the font was not selected. Upon manual
assessment of the quality of this data, it was judged that no further
Active Learning was necessary to improve the quality of this portion of
the dataset with diacriticals.

In summary, fonts used in this method have been acquired online,
with 222 462 used out of 272 849 unique fonts, including 7 089 fonts
with selected diacritical marks (an acute accent ´, circle ˚, or caronˇ
on eight characters). The fonts have been downloaded from various
sources, such as multiple unofficial datasets, Open Source libraries of



fonts and font families, and official repositories of font-sharing web-
sites. A font family is typically a group of related fonts which vary only
in weight, orientation, width, etc., so in order to create a highly repre-
sentative dataset, it is desirable to include fonts with similar variations.
Downloaded fonts have been filtered with the deep net described ear-
lier.

A Generative Adversarial Network was trained on this dataset to
render any of the characters with and without diacriticals. While ren-
dering data for training, the input was rendered as ordinary text with
correct kerning and English letter statistics, by sampling phrases from
a Harry Potter book. The GAN was simultaneously trained to generate
diacritics, by using non-diacritics at the input with fonts containing
diacritics, and a random accented character at the output. An outline
of the trained GAN can be seen in figure 3.3, and further details on this
standard process can be seen in the original publication [KHZ20].
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Figure 3.3: GAN structure, with sample inputs and outputs

3.1.1 User Study

A user study with 17 participants compared generated characters from
state-of-the-art methods: VAE [18], ADV-VAE [33], and this work. The
study was performed with three triplets of characters, as shown in



Figure 3.4. Each participant received 72 rows of triplets, printed on
four sheets, and was asked to identify the different triplet. If the user
fails to identify the generated triplet, the output of the method can
be considered indistinguishable from the original font. Correct and
incorrect user classifications are summed for each method, and results
are presented in Table 3.1. The proposed method recreates fonts con-
vincingly in 51% of cases, compared to 3% and 9% for the previous
methods. According to the randomization permutation test, these
results are highly significant (p<0.0001). Furthermore, tests show that
VAE outperforms ADV-VAE with p-value 0.059.

Figure 3.4: User Study Setup. Each row contains three triplets, two
of which are ground truth, and one is generated by one of the three
methods. Their order is randomized, except for the middle triplet,
which is always the ground truth.

Using this approach, fonts may be extended to other alphabets and
non-alphabetic languages for the benefit of billions of people whose
native languages are not written in Latin alphabets. Unicode defines
136 900 characters [31], all of which can be generated in any font using



Method success rate adjusted success rate

VAE [18] 4.7% 9.4%
ADV-VAE [33] 1.6% 3.1%
Ours 25.6% 51%

Table 3.1: User Study Results. If the method produces indistinguishable
outputs with respect to the ground truth, the user performs a random
binary choice. This corresponds to a 100% method success rate for an
ideal output, versus 50% measured in the experiment. The adjusted
success rate is doubled accordingly.

this approach. Office suites such as Microsoft Office & Google Docs
can benefit from incorporating such tools in the future.

A limitation of this work is the lack of kerning information. Cur-
rently, kerning is being done manually, so automated letter spacing is
only possible for monospaced fonts, but this can be incorporated as
an additional specialized task.

The hypothesis has been tested by comparing similar generative
neural networks under similar conditions, but the network shown
here has been trained with an improved larger and higher quality
datasets thanks to the application of Active Learning. The method
trained on the dataset produced via Active Learning has demonstrably
outperformed the other, as shown in table 3.1.

3.2 Unsupervised Active Learning

Another practical application of Active Learning principles is Transfer
Learning, enabling effective algorithmic annotation of unlabeled data.
The Flick Faces HQ (FFHQ) dataset [16] has been successfully used
in generating faces by training GANs, but the images lack annotation,
which would provide useful information in guiding face generation
via features. Due to this limitation, faces can only be generated by



randomly sampling the latent space, or by selecting latent space points
corresponding to known faces. However, it has been previously impos-
sible to generate random faces with specific attributes.

The FFHQ dataset contains 70 000 unlabeled unique faces in high
resolution, making it well suited for applications in graphics. See
figure 3.5 for a random sample of these images. These images, even
when annotated, would be impractical for training other tasks, such as
gender recognition or orientation, because of the unnecessarily high
definition and low sample count.

However, by combining state-of-the-art feature extractors with the
high-resolution dataset, it is possible to create a dataset of labelled
faces with useful information for guided generation of faces with spe-
cific features.

3.2.1 Transferring features

The dataset was created by running these pre-trained models to ex-
tract features: VGG-Face [25], Facenet [28], OpenFace [8], and Deep-
Face [29]. These pre-trained models detect faces and then produce
features. These are geometrical features (landmarks and orientation),
and well as categorical features (facial hair, emotion, eye colour, etc.).
The 70 000 faces in were processed by these four models, and all but
528 very detected and annotated. The remaining faces are excluded
from additional training in order to maintain the system’s full auton-
omy. Transfer learning from pre-trained experts enables the creation
of data labels by applying other algorithms, without human labels or
supervision.

See figure 3.6 for a random annotated face. The resulting dataset,
FFHQ-features, is available online1.

3.2.2 Generative Faces with Features

The dataset was used to train a conditional Generative Adversarial
Network. Unlike traditional GANs, which randomly sample the latent

1https://github.com/DCGM/ffhq-features-dataset



Figure 3.5: A sample from the Flickr Faces HQ dataset (FFHQ)[16]

Figure 3.6: A random face from FFHQ dataset, with some extracted
annotations in .json format

space to generate samples indistinguishable from training data with-



Figure 3.7: ProGAN-generated faces with age and gender restrictions.
Rows alternate genders, columns hold incremental age groups [34]

out control over the features, conditional GANs are trained with an
additional control vector, allowing them to set the desired properties
of the output, given that this information was known during training.

Several architectures of cGANs were trained, with a number of
different tunings, loss functions, and hyperparameters [34]. The fea-
tures used were only age and gender, but the process can be applied to
any categorical and continuous features present in the FFHQ-features
dataset. Figure 3.7 shows randomly generated faces with gender and
age control.

Instead of randomly sampling the latent space, and thus generating
new faces, the network can also be used to generate the same face with
different control features. In figure 3.8, the same random vector in
latent space is rendered with different ages, resulting in the generated
ageing process for a random, non-existent person.

By extending the use of Active Learning methods to fully algorith-
mic solutions via labelling with pre-trained networks, new results have
been achieved. It was previously impossible to generate faces with spe-



Figure 3.8: ProGAN-generated faces, with varying age parameters [34]

cific features due to the lack of such quality data, and by applying these
techniques, the contemporary Machine Vision problem of generating
faces has been quantitatively furthered.

3.3 Optimising user annotations

In this typical case of Adaptive Learning, a tagging system is presented
such that it optimizes the annotation process with respect to two crite-
ria: optimal adaptive recommendations based on prior actions, and an
efficient interface for large-scale annotation. However, unlike Collabo-
rative Filtering, this Active Learning use-case focuses on user-specific
information, as opposed to preferences on globally known objects.

Most generally, users are presented with the option of creating
arbitrary tags and aligning them to their own images. As these can be
user-specific, language-specific, or location-specific, the information
is not necessarily known for other users and other objects, and every
tag has to be predicted online based on current tags.



By using Restricted Boltzmann Machines to provide labelling rec-
ommendations in a web-based user interface, the annotation of images
via Active Learning has been experimentally tested in a user study. The
objective of the tag suggestion methods is to allow Image-wise tagging
(assign tags to an image) rather than Class-domain-wise tagging (as-
sign images to a tag). These results demonstrate that large datasets
with semantic labels (such as in TRECVID Semantic Indexing) can be
annotated much more efficiently with the proposed approach than
with current class-domain-wise methods, and produce higher quality
data.

3.3.1 Local Tag Suggestion

A Restricted Boltzmann Machine is used to predict labels, by the en-
coding of the labels of surrounding tags and extracted features. Aside
from the RBM suggestion method, tags are also suggested if they are
positively annotated in nearby images in the gallery. A gallery is viewed
as a chronological sequence, with images {Ii }N

i=1. When generating
suggestions for a given image Ii , each tag is given a weight ω, given by

ω=
N�

i=1

1

log (|p − i |+1)
∗has_t ag (Ii ), (3.1)

where

has_t ag (Ii ) =




1 if the tag is positively annotated on Ii

−1 if the tag is negatively annotated on Ii

0 if the tag is not annotated on Ii

The 1
log (|p−i |+1) term ensures that closer annotations have more weight

onω, and the has_t ag (Ii ) term ensures that positive annotations have
positive weight, negative annotations negative weight, and all others
are ignored. Tags are then ordered by their ω from highest to lowest.
Any tags with ω> 0 are then suggested, in this order.



Figure 3.9: Typical view of the ITS web interface. Annotation option
parts are outlined in red.

3.3.2 Integration of Suggestion and User Interface

When suggesting n tags, �n/2� are from the RBM model, �n/2� from
local tag suggestion, and if n is odd, the remaining one is chosen with
either method with equal probability. That ensures that when only one
tag is being added, neither method is favoured.



When an image is loaded, 15 tags are chosen, and three annotating
options are available to the user. As seen in Figure (picture of the Web),
they are as follows:

1. Each of the 15 suggested tags is presented with a
”
check“ and a

”
cross“. When clicking check, the tag is added as positive anno-

tation, and the cross adds negative annotation. When clicking
either, the tag disappears from the suggestion list, and a new one
is added at the end of the list.

2. The user can use an auto-completing text field, where any typed
word or part of a word is matched with all occurrences in ex-
isting tags as a substring. For example, when typing

”
person“,

the user is presented with
”
person“,

”
male person“,

”
female

person“, and others. This ensures that when no information is
given yet, the user can easily add information that’s compatible
with the current collection of tags in the database. When any
of these is clicked, it gets added to the current suggestion, and
the suggested tags are refreshed accordingly. Users are allowed
to enter new tags which are not yet in the database; however,
such tags are not immediately considered by the RBM model. It
is more appropriate to add new tags to the RBM model when
the number of positive annotations of such tags increases over
a certain threshold in order to prevent saturating the model by
rare or otherwise irrelevant tags.

3. Given the chronological sequence of images, three preceding
and three succeeding images are shown on the right. When any
of these is clicked, the positive tags that have been annotated
on that image are copied over to the current image, and the
suggested tags are refreshed accordingly.

The suggestion operation takes on average 0.1 seconds, making
the system responsive and allowing quick interaction with the user. In
case of sequential video frames, this interface allows users to seam-
lessly copy tags from previous images to the current one, either by



copying tags from the three preceding and three succeeding images or
by selecting the suggested local tags.

Another use scenario is the annotation of holiday photos with
recurring themes, people, and elements. In the case of unusual images
and tags that are not a priory likely, the RBM suggestions may not be
accurate very useful at first; however, by providing one or several tags
relevant to the image (e.g. by using the auto-completing text field) will
make co-occurring tags likely to be suggested.

3.3.3 Experiments and Results

In order to identify the usability and usefulness of this system, two
experiments with users were performed: testing with untrained indi-
viduals with minimal support, and testing with expert annotators for
an extended period of time. In order to make the test replicable, only
images and tags2 from the TRECVID 2011 Semantic Indexing task3

were used, and the feature to add new tags was disabled.
Besides the reproducibility of the experiments by others, there

are several other advantages of using the TRECVID data. A part of
the data is already annotated and can be used to learn the RBM tag-
dependency model. Further, the dataset was annotated manually [5],
which provides a baseline for comparison.

In addition to the user study, the ability of RBM to model dependen-
cies among tags and the ability to estimate marginal tag probabilities
by Gibbs sampling was tested on the TRECVID data. This experiment
gives the objective information from the RBM suggestion system alone.

2Examples of the classes are Actor, Airplane Flying, Bicycling, Canoe, Doorway,
Ground Vehicles, Stadium, Tennis, Armed Person, Door Opening, George Bush, Mili-
tary Buildings, Researcher, Synthetic Images, Underwater and Violent Action.

3http://www-nlpir.nist.gov/projects/tv2011/tv2011.html



Testing by Untrained Users

Ten randomly selected technical university students were asked to use
four different tag suggestion methods using this system, with as little
training as possible. The four methods are:

1. none — no suggestion method

2. RBM — only Restricted Boltzmann Machine suggestion

3. local — only local tag suggestion (Section 3.3.1)

4. RBM+local — the combination of Restricted Bolzmann Machine
and local tag suggestion, as presented in section 3.3.2

The methods were ordered randomly, and the user was not told which
is which. After using each method, the user was asked to answer a
questionnaire with questions regarding the rating and usability of the
method, and data regarding the number of annotations created was
stored.

According to the results (Figure 3.11), RBM and RBM+local sug-
gestion methods allow significantly4 faster annotation. There were
no significant differences between RBM and RBM+local, nor between
none and local. According to the questionnaire, method none is found
by the users to be significantly5 inferior to all the other methods in
almost all aspects. No other significant differences were found, ex-
cept that RBM and RBM+local received better marks in the ability to
facilitate annotating more tags per image compared to local.

Testing by Expert Users

Three expert users were asked to use the combined tag suggestion
method (Section 3.3.2). The users previously took part in TRECVID

4Using the paired t-test at the 10% significance level.
5Using the Mann-Whitney U test at the 10% significance level.



Figure 3.10: Black squares represent a significantly better outcome in
the user evaluation, according to the questionnaire. The questions
allowed a 1−5 rating on effectiveness, pleasantness, amount of images,
amount of tags per image, perceived method intelligence, and whether
the method saved time.

2011 collaborative annotations [6] and had at least two hours expe-
rience with ITS. The users spent a total of three hours annotating
randomly selected videos from the TRECVID dataset.

In this setting, the number of positive and negative annotations as-
signed per hour was 448 and 3085, respectively, averaging 13.1 positive
annotations per image. The annotating speed compares very favor-
ably to Class-domain-wise tagging annotation for which the authors
of [6] expect 2 seconds per annotation; moreover, only 2.5% of the
annotations in the TRECVID 2011 SIN [24] dataset are positive. When
compared to the original distribution of tags obtained by the Active
Learning method [6], the ITS tags have a heavier tail distribution for
both positive (kurtosis 8.35 in TRECVID and 4.18 by ITS), and negative
annotations (kurtosis 2.18 in TRECVID and 1.98 by ITS).

It has been shown that the presented method produces higher
quality annotations in less time than comparable methods. Therefore,
these results support the claim that Active Learning presents an im-
provement over approaches without it and that the creation of labelled
datasets will benefit from the approach presented here.



Figure 3.11: The top graphs show the mean number of tags assigned
per hour with confidence intervals at 90% significance level. The bot-
tom graphs show black squares where the column methods annotate
significantly more tags per hour than the row methods.

3.4 Deep Learning on Small Datasets using Online
Image Search

Learning image tags and object detectors is a core task of Computer
Vision, and the large amount of data required to train every visual
class is prohibitive. Therefore, by reformulating the problem in a
Weakly Supervised PU learning setting, image categories can instead
be trained from algorithmically preprocessed noisy online data. The
following approach, the core contribution of this thesis, was presented
at SCCG 2016 [KHZ16].

The proposed algorithm utilizes Google Image Search in a Hybrid
Action Learning, where active learning with a weak algorithmic expert
is used after an unsupervised initialization. Thousands of images are
retrieved for any search string. The resulting set of images is weakly an-
notated, in the sense that numerous examples may be wrong or noisy.
The data is stored statically for each given class, so this is not presented
as a Online Learning problem but as an Incremental Learning problem.



Figure 3.12: Pseudolabel selects useful additional images from an
unreliable source, to help train a Deep Learning classifier

The proposed algorithm (Algorithm 1) is composed of an initial
pre-training, a selection process, and a repeated weighted training
step.

This section describes the data, the method, and the implementa-
tion.

In the original paper [21], pseudolabels are labels assigned during
each epoch to any unlabeled images based on classifier responses. In
the current setting, pseudolabels are weighted labels of the class used
to query each image in online image search.



Data: labeled images, queried images for each class
Result: trained classifier
initial training of CNN with labeled images only;
while CNN not converged do

for each queried image I do
select whether to use I for training

end
train CNN with labelled and selected images

end
Algorithm 1: Proposed pseudolabel algorithm

Throughout this section, the following conventions are adopted: X
is a set of images {X1, X2, X3, . . . }, y is a set of labels {y1, y2, y3, . . . } where
yn ∈ {1,2, . . .C }. C denotes the number of categories. Training examples
have the form (X,y). Every i model update iterations is referred to as
one epoch, and a set of images and labels during the duration of epoch
e is denoted (Xe ,ye ).

labeled images are divided into a training set and testing set: (Xtrain,ytrain), (Xtest,y
In addition to the train and test sets, query images are retrieved

from an online image search engine separately for each category. The
queried images are denoted (Xquery,yquery).

3.4.1 Training CNN

CNNs are trained by Stochastic Gradient Descent, where training im-
ages are propagated forward through the network in batches to pro-
duce outputs, for which error gradients are calculated. To complete an
iteration, these are backpropagated to calculate loss gradients, which
are used to update network weights. This process is repeated until
convergence.

3.4.2 Pseudolabels with Query Images

The method described here relies on a different pseudolabel selection
mechanism and a different pseudolabel weighting to the original ap-



proach [21]. When training with pseudolabel data, the CNN is trained
as described in section 3.4.1. However, Xquery images are repeatedly
evaluated with the current network, and some are selected with pseu-
dolabels Xpl, for training.

At the beginning of training, Xpl
0 is empty.

Xpl
0 =� (3.2)

For the first i iterations (during epoch 0), the CNN is trained only with
(Xtrain,ytrain). Then, Xquery

0 is propagated forward through the CNN, to
produce a set of vectors of beliefs for all labels b0 for every query image.
These beliefs correspond to the normalized outputs of the last fully
connected layer, before applying the last softmax layer.

Then, a randomized selection process chooses which predicted la-
bels yquery will be trusted. Pseudolabel examples Xpl

e from the previous
epoch are excluded.

(Xpl
e+1,ypl

e+1) = sel ected(Xquery \ Xpl
e ,yquery,be ) (3.3)

The selection method proposed here is explained in section 3.4.3.
The rest of Xquery \ Xpl

e is unused in this epoch.
This is the end of epoch 0. In each following epoch e, the CNN is

trained with {(Xpl
e ,ypl

e ), (Xtrain,ytrain)}. Section 3.4.4 discusses how ypl
e

can be weighted against ytrain for better convergence stability.

3.4.3 Pseudolabel Selection

Each example image is chosen with probability:

(1−λc )∗be

2
(3.4)

Where the accuracy λc for each class c on unlabeled data is the
ratio of images classified as class c to the number of queried images in
class c. By making the weak assumption that queried class accuracies
across queried data are similar, class accuracies λc for the classifier are
an indicator of training data and class complexity for each category.



The classifier belief be is the activation of the image for the queried
class, as predicted by the network. By using the normalized belief
in the yquery class, the selection favours images the classifier is more
confident about, thus removing incorrect query images. This belief is
normalized across network responses.

Classes with higher accuracy on the query dataset are given lower
pseudolabel priority. This is accomplished with the (1−λc ) factor.

A number of factors affect the quantitative benefit of using pseu-
dolabeled images: dataset belief, the accuracy of the selection method,
the difference between datasets, selection variability over epochs, and
randomization. This selection method balances these by selecting
images in a randomized order, which depends on class accuracies and
classifier belief for the correct class.

The last step is randomization. A portion of query images is ran-
domly removed during selection. In these experiments, 50% were
removed, and this was found to be beneficial. This is justified by a
need to regularize across data when the CNN is trained.

3.4.4 Pseudolabel Weighting

Pseudolabels are likely to affect the classifier adversely when it hasn’t
yet reached a sufficient accuracy, just as the classifier would fail to
train on raw query data. Self-training is prone to quickly converge to
suboptimal solutions because the classifier assigns high confidence to
wrong examples. How this is mitigated in this approach is explained
below.

In the original pseudolabel paper [21], images from the training set
have constant weights, and the pseudolabel losses are weighted by α,
where α increases with time according to two hyperparameters.

Our experiments showed that this method is not more effective
than setting α = 0 until the network reaches near-top accuracy and
then setting α= 1. This method crucially relies on the network’s ability
to create a weak classifier from the training data alone, and it was found
that this is the case with the previously published α tuning method



Figure 3.13: Example images of the viaduct class

as well. All shown results are achieved with this step function, thus
demonstrating its usefulness.

This weighting method, albeit crude, simplifies hyperparameter
tuning, and at the cost of a few epochs, achieves the same accuracy.

3.4.5 Dataset Belief

For an automatically retrieved set of images, a crucial piece of informa-
tion for deciding whether to train using pseudolabels is the accuracy
of the queried data. The unknown proportion of images which belong
to the queried category is B , or dataset belief.



Figure 3.14: Train and test accuracies with varying correct query im-
ages, and varying train set sizes for each class

Query images can be wrong, misleading, and/or contain correctly
and incorrectly labelled images from the training dataset, see Fig-
ure 3.13.

An imperfect selection must vary over epochs, in order to mitigate
convergence to a non-median representation of the category.

3.4.6 Difference Between Datasets

If the training dataset and the images queried from online image search
are the same, the method will not be of benefit. It is important that
they are complementary, albeit with an overlap, and that they disagree
to a degree. The disagreement creates jitter in the hyperspace between
images where the classifier should not be divisive, and it supports
convergence to a decision boundary elsewhere.

We found that selecting (X quer y , y quer y ) which fully agrees with
the current classifier does not boost classifier accuracy over not using
pseudolabels at all. This is because despite bringing new information,
the data doesn’t create disagreement, and therefore no novelty. In these
experiments, it was found that a certain degree of wrong and randomly
labelled images helped the classifier to converge to higher accuracy
over the test set. Adding this form of noise achieves regularisation.



3.4.7 Implementation

All images Xtrain,Xtest,Xquery were resized so that the smaller dimension
is 227 pixels, and a central crop of 227×227 pixels is extracted. This
has been shown to work better than other cropping methods [12], and
the value 227 was chosen because this is the input size of the AlexNet
network [19]. Preprocessing details are discussed and evaluated in [12].

The AlexNet [19] architecture was used and initialized with weights
trained on the ImageNet dataset. The network was retrained by keep-
ing all but the last fully connected layer locked, and by updating
weights on the last layer.

The network was trained over 100 epochs of 500 iterations each
with each combination of parameters. In a GPU-accelerated environ-
ment, such a network on the full SUN dataset with all query images
converged in 2 to 5 hours.

The ratio of testing data to queried data accuracies is an indicator of
the queried datasets accuracy or similarity. Assuming no constructive
errors, such as those CNNs have been demonstrated to fall to when
synthesizing examples [22], the number of correctly classified images
is a lower bound on how many really belong into the category. A large
difference between this number and the actual number (B), directly
indicates how much further benefit the new data can have for training.

As shown in the right table 3.14, over test data, it can be seen
that when the number of labelled images is small, the Active Learning
approach using pseudolabels and a weak classified image retrieval
system is of significant benefit. The accuracy can increase by as much
as 25%, thus demonstrating that Active Learning benefits the critical
Computer Vision task of learning image classifiers. In fact, the broad
spectrum of classes and the small amount of data shows that this
general approach can benefit many further tasks, well beyond the
scope of this experiment.



3.5 Validating the Hypothesis

This chapter lists several experiments in which Active Learning has
benefited contemporary Computer Vision, complementing existing
algorithms via the judicious application of human labelling effort, or
the use of pre-trained models for other, similar tasks.

Specifically, Active Learning has been shown to increase the qual-
ity of Generative Adversarial Networks for Font Capture by allowing
the preparation of a larger and more representative dataset, it has en-
hanced the applicability of conditional GANs for generating faces by
allowing the control of features, it has reduced the necessary time to
manually annotate varied tags on images, and it has been shown to
enable weak supervision to vastly improve the classification accuracy
of image classifiers.

In terms of the symbolic formulation of the hypothesis, the method
has shown that for various problems M and their associated loss func-
tions L, there exists an Active Learning approach S which takes data X
to produce parameters for the model which increase its accuracy over
L. In practice, S can often benefit M even without the need for signifi-
cant additional manual annotation, but by efficiently using Transfer
Learning of existing algorithms as annotation experts.

The hypothesis, as stated in chapter 2, states that Human and algo-
rithmic expert annotation using Active Learning improves the accuracy
of contemporary Computer Vision methods. The work presented in this
demonstrates this repeatedly for the human expert case, as well as for
an algorithmic expert.

Therefore, this work validates the hypothesis formulated in the
last chapter, with improvements by a significant margin to several
contemporary Computer Vision problems.



CHAPTER 4

Conclusion

Machine Vision model quality is dependent on the versatility of the
prior of the models used, on hyperparameters and parameter tuning,
and the range and accuracy of data see during training. This work
focuses on improving the accuracy of models by increasing data quality
and quantity through Active Learning, validates the posed hypothesis,
and demonstrates its benefits in a number of scenarios.

These main scientific contribution is the validation of the hypoth-
esis, which stipulates that Active Learning benefits Computer Vision.
This hypothesis is validated in two sets of differing scenarios: increas-
ing the efficiency of manual labour for annotation, and utilizing Trans-
fer Learning principles by applying pre-trained models to benefit a
task. The applied contribution of this work is a series of experimen-
tal demonstrations of the hypothesis, and minor contributions are
application-specific model improvements in Font Capture, One-shot-
learning for image classification, and a tagging GUI to simplify annota-
tion.



A system for human-assisted Image-wise tagging with suggestions
was created, so that it could be used to obtain large semantically la-
belled datasets. The suggestion methods, as well as the annotating
system itself, could be applied in the context of public media databases.
The obtained annotations contain a higher percentage of positive ex-
amples of infrequent classes.

In another application, font capture benefited from Active Learn-
ing. Fonts are present in all forms of visual media, but working with
them remains possible only for those with access to the type defini-
tions. This work widens the possibilities for tools such as Photoshop
and Google image translate, where recreating text in a given font is key.
Automatically expanding the diacritical sets for existing fonts brings
all fonts to a wider audience of hundreds of millions of users whose
language includes diacritics.

Generative Adversarial Networks for generating faces have also
seen an improvement thanks to Active Learning, by which new faces
can be rendered with explicitly set features, such as gender and age.
This benefit has come thanks to applying knowledge from other pre-
trained models on existing data, showing that Active Learning is also
beneficial in the case of algorithmic experts, rather than only with
human annotators.

Similarly, an algorithmic expert in image retrieval was integrated
into an extended pseudolabel training framework for CNN classifiers,
demonstrating that Active Learning will push forward challenging
tasks like image classification. This new method also does not require
human supervision or annotation, bringing forth the possibility of
extended applications by which Active Learning is applied seamlessly
in Transfer Learning and Life-long learning tasks.

These specific tasks are some examples where my work has shown
the benefit of Active Learning in increasing the quality of contemporary
Computer Vision methods. While this validation is not a theoretical so-
lution answering the hypothesis, this work will have demonstrated the
general applicability of these principles and will enable a theoretical



as well as a practical methodology to increase the quality of Computer
Vision models at little cost.

In future work, it may be interesting to explore the question in a
fashion systematic enough to allow automatic application, thus allow-
ing the creation of an algorithm which searches for trainable models
and existing datasets, and semi-automatically improves them using
other known data and models. It will be particularly interesting to
apply these principles to the other unsolved tasks where a large knowl-
edge base can be drawn upon, such as theorem-proving, Computer
Vision in video, and hyperspectral.



Glossary

Active Learning Process of selecting which data needs to get an
expert label, either by a human or by another algorithm. 3–8, 12,
18, 23, 28, 38

Adaptive Learning Parameters are adjusted at runtime. 22

Association-rule Learning Discovering information about
relationships. 7

Class-domain-wise tagging Assigning images to a tag. 23, 28

Collaborative Filtering Predicting preferences of users for objects
given sparse preferences by other users. 22

Hybrid Action Learning Active Learning with unsupervised
initialisation. 29

Image-wise tagging Assigning tags to an image. 23, 39

Incremental Learning Test-time input is used to improve the model.
29



One-shot Learning One or few examples while training. 8

Online Learning Training data is not statically available. 29

PU learning Positive and unlabeled data only. 29

Transfer Learning Adapting a pre-trained model. 6, 11, 18, 39

Weakly Supervised Learning on data with noisy, limited, or
imprecise labels. 29

Zero-shot Learning Classifying to classes not seen during training. 8
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[23] Peter O’Donovan, Jānis Lı̄beks, Aseem Agarwala, and Aaron
Hertzmann. Exploratory font selection using crowdsourced
attributes. ACM Transactions on Graphics (TOG), 33(4):92, 2014.

[24] Paul Over, George Awad, Martial Michel, Jonathan Fiscus, Wessel
Kraaij, Alan F. Smeaton, and Georges Quéenot. TRECVID 2011 –
An Overview of the Goals, Tasks, Data, Evaluation Mechanisms
and Metrics. In Proceedings of TRECVID 2011. NIST, USA, 2011.

[25] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep
face recognition. In Xianghua Xie, Mark W. Jones, and Gary K. L.
Tam, editors, Proceedings of the British Machine Vision
Conference 2015, BMVC 2015, Swansea, UK, September 7-10, 2015,
pages 41.1–41.12. BMVA Press, 2015.

[26] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised
representation learning with deep convolutional generative
adversarial networks. Proceedings of the International Conference
on Learning Representations (ICLR), 2016.

[27] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung,
Alec Radford, and Xi Chen. Improved techniques for training
gans. In Advances in neural information processing systems,
pages 2234–2242, 2016.

[28] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
FaceNet: A unified embedding for face recognition and
clustering. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 815–823. IEEE, Jun 2015.

[29] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf.
Deepface: Closing the gap to human-level performance in face
verification. In CVPR, pages 1701–1708. IEEE, 2014.

[30] Joshua B Tenenbaum and William T Freeman. Separating style
and content. In Advances in neural information processing
systems, pages 662–668, 1997.



[31] The Unicode Consortium. The Unicode Standard. Technical
Report Version 10.0.0, Unicode Consortium, 2011.

[32] Antonio Torralba, Rob Fergus, and William T Freeman. 80 Million
Tiny Images: a Large Data Set for Nonparametric Object and
Scene Recognition. IEEE transactions on pattern analysis and
machine intelligence, 30(11):1958–70, November 2008.

[33] Paul Upchurch, Noah Snavely, and Kavita Bala. From a to z:
Supervised transfer of style and content using deep neural
network generators. arXiv, pages arXiv–1603, 2016.

[34] Tomáš Venkrbec. Generating faces with conditional generative
adversarial networks. VUT FIT Bachelor Thesis, 2020.

[35] Jenny Yuen, Bryan Russell, Ce Liu, and Antonio Torralba.
LabelMe video : Building a Video Database with Human
Annotations. Event (London), pages 1–8.


