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Abstract
This thesis proposes an improvement of the efficiency of testing concurrent software by

employing data mining techniques and genetic algorithms in the process of testing con-
current software. Concurrent, or multi-threaded, programming has become very popular
over the last few years. However, as the concurrent programming is far more demanding
the sequential programming, its increased use leads to a significant increase in the number
of errors that appear in commercial software due to errors in synchronization. Finding such
errors using traditional testing methods is difficult. Moreover, repeated test executions
of traditional testing that are performed in the same environment will typically examine
similar interleavings only. Hence, the noise-based injection approach is used for influencing
the scheduling by injecting various kinds of noise (delays, context switches, and so on)
into the common thread behaviour which stress the software and can to show some rare
behaviour. However, for the noise injection to be efficient, one has to choose suitable noise
injection heuristics from among the many existing ones as well as to suitably choose values
of their various parameters, which is not easy. In this work, there are used data mining
methods and genetic algorithms and their combinations to deal with the problem of choos-
ing such noise injection heuristics and values of their parameters. Besides setting up of
the goals of the thesis, this proposal also provides a brief summary of the state of the art in
application of data mining techniques and genetic algorithms to program testing problems.

Abstrakt
Tato práce navrhuje zlepšení výkonu testování programů použitím technik dolování z dat
a genetických algoritmů při testování paralelních programů. Paralelní programování se
v posledních letech stává velmi populárním i přesto, že toto programování je mnohem
náročnějsí než jednodušší sekvenční a proto jeho zvýšené používání vede k podstatně vyššímu
počtu chyb. Tyto chyby se vyskytují v důsledku chyb v synchronizaci jednotlivých pro-
cesů programu. Nalezení takových chyb tradičním způsobem je složité a navíc opakované
spouštění těchto testů ve stejném prostředí typicky vede pouze k prohledávání stejných
prokládání. V práci se využívá metody vstřikování šumu, která vystresuje program tak, že
se mohou objevit některá nová chování. Pro účinnost této metody je nutné zvolit vhodné
heuristiky a též i hodnoty jejich parametrů, což není snadné. V práci se využívá metod
dolování z dat, genetických algoritmů a jejich kombinace pro nalezení těchto heuristik a hod-
not parametrů. V práci je vedle výsledků výzkumu uveden stručný přehled dalších technik
testování paralelních programů.
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Chapter 1

Introduction

Since programming is demanding and programmers always make mistakes, it is important to
verify programs as carefully as possible. However, program verification is not easy, and some
errors are very difficult to find. On the other hand, when a program fails, the consequences
can be very expensive.

An example of such an expensive failure is the software failure that interrupted the New
York Mercantile Exchange and telephone service to several East Coast cities in February
1998. Overall, estimates of the economic costs of faulty software in the U.S. range in
tens of billions of dollars per year and they present approximately just under 1 percent of
the nation’s gross domestic product [96].

Hence, proper methods for finding errors in computer programs and/or for verifying
their correctness are highly needed, and a lot of research effort is invested into developing
new approaches for analysis, verification, and testing.

1.1 Analysis and Verification of Programs
There are various approaches how to analyze and verify programs and how to detect errors in
the programs. From a high-level point of view, these methods can be divided to (1) methods
of testing and dynamic analysis, and (2) methods of static analysis ranging from light-weight
approaches (error patterns) to heavier-weight approaches (such as model checking, abstract
interpretation, or theorem proving). Some of the latter approaches can be considered
as formal verification approaches that can prove correctness of a system with respect to
a specification (not just find errors).

An ideal verification tool would be a tool that has the following features: full automation
(no human help is needed), soundness (a program found correct is indeed correct, i.e., no
false negatives), completeness (reported errors are real; no false alarms), and termination
(meaning that verification always terminates). However, due to undecidability and state
explosion, the ideal is usually not achievable. Many verification methods do not guarantee
termination and/or can cause false alarms, are not fully automatic, or do not scale well. In
the following paragraphs, the basic types of analysis and verification methods are introduced
in some more detail.

Program Testing. In program testing, a programmer writes a test or the test is
generated from a high-level specification. An error in the program or in the test case is
detected if the expected output is not achieved or if the program fails before producing
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the output. Program testing checks the code along the execution trace of the test case only.
This method is the most common way of finding errors in programs nowadays.

Dynamic Analysis. This technique also detects errors along execution traces. How-
ever, instead of checking outputs of a test, dynamic analysis automatically gathers informa-
tion about the execution (the order of locking, the order of accessing shared memory loca-
tions, etc.) and analyses the gathered information with an intention to discover abnormal
execution conditions. Usually, some kind of instrumentation that injects some additional
code into the original code is used to gather the information. The information can be
analyzed on-the-fly, during the execution, or post-mortem, after the end of the execution.
Although the analysis gathers information concerning a single or several executions, some-
times, if some approximation is performed, it can discover even errors that are not directly
on the witnessed execution traces. In the best-case scenario, a dynamic analysis is sound
and complete with respect to the examined execution traces, but it is usually unsound with
respect to all possible execution traces.

Static Analysis. Static analysis is based on a compile-time analysis. Some static ana-
lyses require for the code to be compilable only, although some heavy-weight static analysis
approaches need the code to be runnable, too. These methods usually infer abstraction of
the program behaviour from the code and try to find errors in this abstraction. Due to
the over-approximation used, the methods often suffer from false positives. The code cover-
age may be total; sometimes static analysis even analyzes dead code that is never used along
any possible execution trace (this is also a source of incompleteness) [89]. Static analysis in-
cludes various techniques, such as model checking, which is an example of the heavy-weight
approaches that need a runnable code, theorem proving, a deductive verification method,
often similar to the traditional mathematical theorem proving beginning with axioms, or ab-
stract interpretation, a general approach that evaluates the program over suitable abstract
domains, ignoring some details of the concrete semantics.

1.2 Verification of Concurrent Software
Concurrent programs belong among those where there is a very high chance of programmers
making mistakes but which are also very difficult to verify. These programs have often very
large state space due to many possible interleavings of the threads, and errors often hide in
some rare, corner-case interleavings that involve some tricky interplay of the threads that
the programmers did not think of.

Heavier-weight formal methods of verification, such as model checking [19], aim at
precise program verification. Unfortunately, these precise approaches do not scale well for
complex concurrent software. This is one of the main reasons why heuristic approaches
such as light-weight static analysis, testing, and dynamic analysis are very popular in this
area. While light-weight static analysis may scale, it often produces many false alarms
(or it must be heavily fine-tuned for the given verification scenario — often for the price of
suppressing some real errors together with the false ones).

When dealing with concurrent programs, testing and dynamic analysis that rely on
executing the system under test (SUT) and evaluating the witnessed run are complicated
by having to deal with the non-deterministic scheduling of program threads. Due to this
problem, a single execution of a program is insufficient to find errors in the program even
for the particular input data used in the execution. Moreover, even if the program has
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been executed many times with the given input without spotting any failure, it is still
possible that its future execution with exactly the same input will produce an incorrect
result. A problem is that repeated testing in the same environment usually does not explore
schedules that are too different.

One approach that is commonly accepted as a way to significantly improve on the above
problem is the so-called noise injection (other common approaches are mentioned in Sec-
tion 2.1). The noise injection approach [40] is based on heuristically disturbing the schedul-
ing of program threads in hope of observing scheduling scenarios unseen so far. Although
this approach cannot prove correctness of a program even under some bounds on its be-
haviour, it was demonstrated in [40, 62, 22] that it can rapidly increase the probability
of spotting concurrency errors without introducing any false alarms. The noise injection
approach is described in more detail in Section 2.2.

1.3 Goals of Thesis
The thesis is focused on concurrent software testing based on noise injection. As we have
already sketched above and as we will discuss in more detail later on, this type of testing can
stress programs in such a way that there manifest uncommon behaviours and interleavings
of threads. This can be used to reveal rare errors that are otherwise extremely difficult to
find. On the other hand, noise injection has many parameters that need to be suitably set
(together with parameters of the programs under test themselves), and finding the right
setting is difficult.

The main goal of the thesis is hence to improve the efficiency of the current methods
of testing concurrent programs using noise injection by simplifying the process of finding
the right settings of noise and test parameters. In the work, various approaches for finding
suitable values of parameters of tests and noise are studied. In particular, those include data
mining techniques, genetic algorithms and their combination, as well as further heuristics,
such as exploitation of dependencies among testing under metrics of different cost.

1.4 Plan of Thesis and Overview of Achieved Results
The rest of the thesis is organized as described below. Chapter 2 introduces major under-
lying concepts and methods, on which the presented research builds, namely noise-based
testing, selected concurrency metrics, basics of mathematical methods including data min-
ing and basics of optimization approaches (such as genetic algorithms). This chapter also
presents related works that are not specific for the individual parts of the thesis, the tools
which we used for analyzing concurrent programs, and we also present the multi-threaded
benchmarks which are used in the experiments.

The other chapters present the contribution of the thesis and are organized chronologi-
cally wrt. our publication results.

Chapter 3 introduces our methods based on the multi-objective genetic algorithm (MO-
GA) that we proposed for setting test and noise parameters of noise-based injection. This
approach is compared with the older approach proposed for the same purpose, namely, set-
ting of test and noise parameters by means of a single-objective genetic algorithm (SOGA).
This approach was proposed within the VeriFIT research group before the beginning of
the work on this thesis. Our research focused on using MOGA for setting test and noise pa-
rameters, including its comparison with the SOGA approach, was published as a conference
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paper at the SSBSE’14 conference [44], and as the technical report [43] in cooperation with
the ORT Braude College in Karmiel, Israel within a Kontakt II project.

The main goal of Chapter 4 is to use data mining to resolve the test and noise configu-
ration problem. For this purpose, the AdaBoost approach, which is subsequently modified
for better results in the given area, is suggested for use. The second goal of the chapter
is a combination of the AdaBoost approach with genetic algorithms. This combination
shows that both methods have their advantages. The AdaBoost approach was presented as
the conference paper [6] at the MEMICS’14 conference. The modification of the AdaBoost
approach was presented as a student poster at the AERFAI/INIT 2015 Summer School on
Machine Learning in Benicassim and the results were also published as the journal paper [7]
in the journal of Concurrency and Computation: Practice and Experience. We were also in-
vited to the European Conference about Data Analysis (ECDA’18), where the combination
of the AdaBoost approach and genetic algorithms was presented.

Chapter 5 is focused on improving the time needed for noise-based testing. In parti-
cular, for measuring the results of the test, there exist some concurrency metrics. Testing
under some of them is more time-consuming but the metrics provide more information.
On the other hand, testing under some metrics is less time-consuming, but they give less
information. The different costs manifest, of course, during finding of the right parameters
of the SUT and of the noise generation too. Hence the main idea of our next result is to
try to identify dependencies between parameter settings suitable for testing under metrics
of different costs and then use testing under a cheaper metric to find settings suitable
for a more expensive metric. Alternatively, testing under several cheaper metrics can be
used for this purpose too. This idea was presented at the EUROCAST’17 conference and
published as the conference paper [64]. The next goal of this chapter is to find the optimal
number of cheaper metrics for prediction of the given metrics. For this purpose, three
approaches — using two, three, and four cheap metrics for the prediction — are compared.
In the chapter there is also discussed a combination of the prediction approach with genetic
algorithms.

Finally, Chapter 6 presents a summary of the results, concludes this PhD thesis, and
introduces possible future research directions. Some preliminary results obtained within
one of these directions were presented as a poster at the students’ poster session during
the conference MEMICS’17 (and unfortunately, not further developed due to a loss of
the collaborating MSc student).
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Chapter 2

Preliminaries

In this chapter, we introduce the basics of several areas which form the basis of the following
chapters—namely: Section 2.1 presents an overview of different approaches to testing and
analysis of concurrent programs. A more detailed introduction to noise based testing is
provided in Section 2.2. Section 2.3 presents different types of metrics that can be used to
measure coverage of behaviour of concurrent programs achieved during testing. An overview
of the mathematical methods used for analyzing and verification of the concurrent programs
is in Section 2.4, focusing on data mining and genetic algorithms that we later use. In
Section 2.5 there is presented the tool support used for our experiments. Finally, Section
2.6 introduces multi-threaded benchmarks used as our case studies.

2.1 Testing and Analysis of Multi-threaded Programs
In the following section, there are presented overview of different testing methods which
are used for testing and analyzing of the concurrent programs. Namely, there are presented
examples of using stress, noise injection, systematic testing, dynamic analysis, coverage-
driven testing and active testing.

Simple stress testing which is based on execution of a large number of threads competing
for shared resources has been shown to increase the possibility of spotting concurrency
errors only a little [83]. It has been also discussed many times that only small number
of threads (usually two) are sufficient to detect concurrency errors and that concurrency
errors manifest themselves only under specific interleaving scenario(s), e.g. [78, 107, 24].

The noise injection technique [24, 94] influences thread interleavings by inserting small
delays, called noise, into the execution of selected threads. If there is another enabled
thread, the noise cause switch of threads without much hurt to the performance of the app-
lication. The noise is inserted at random or based on specific parametrized heuristics which
targets specific classes of concurrency errors. Many different noise heuristics can be used for
this purpose [62]. The efficiency of the approach depends on the nature of the system under
test (SUT) and the testing environment, which includes the way noise is generated [62].
A proper choice of noise seeding heuristics (e.g. calling sleep or yield statements, halting
selected threads, etc.), noise placement heuristics (purely random, at selected statements,
etc.), as well as of the values of the many parameters of these heuristics (such as strength,
frequency, etc.) can rapidly increase the probability of detecting an error, but on the other
hand, improper noise injection can hide it [58]. A proper selection of the noise heuristics
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and their parameters is not easy, and it is often done by random [44]. More details about
noise heuristics and parameters is in Section 2.2.

Among the main alternatives to noise-based testing, we first mention the so-called sys-
tematic testing [41, 9, 104, 71, 46, 45, 107]. The main idea of systematic testing is to control
the scheduling of threads and systematically enumerates their different interleavings. Un-
like noise-based testing, systematic testing provides better guarantees that a concurrency-
related error will be found if present, and it can avoid re-execution of the same schedules.
On the other hand, despite many heuristic optimizations that have been proposed, due
to a need to systematically enumerate different schedules, systematic testing is still more
heavy-weight than noise-based testing. Moreover, systematic testing can have problems
with programs containing sources of non-determinism such as user input, external client
requests, etc.

The systematic testing approach can be also seen as execution-based model checking
which systematically tests as many thread interleaving scenarios as possible. The number
of possible interleavings is often huge and therefore these techniques works with abstract
and/or considerably bounded models of the SUT. The technique is therefore suitable mainly
for unit testing in which is the technique able to discover and test all possible interleavings
(with respect to the used abstraction and/or bounds). The technique is also suitable for
debugging because the same recorded interleaving scenario can be enforced in the next
execution of the test. Disadvantages of the technique include performance degradation due
to need for dynamic computing and storing of the considered SUT thread interleavings
model. The technique also suffer from problems with other sources of non-determinism in
SUT, for instance, non-determinism caused by i/o operations.

Testing of concurrent programs can be combined with dynamic analysis [26, 52] which
collects various pieces of information along the executed path and tries to detect errors
which are in the SUT but did not necessarily occur during the execution. Many problem-
specific dynamic analyses have been proposed for detecting special classes of errors, such
as data races [26], atomicity violations [72], or deadlocks [11]. Most of the analyses are
unsound and therefore can sometimes produce false alarms. Efficiency of dynamic analysis
can be increased when a different execution path is analyzed during each execution of
the test. A combination of noise injection or deterministic testing and dynamic analysis
can thus lead to a synergy effect [22].

Coverage-driven testing as proposed in [107] and implemented in the Maple tool at-
tempts to influence the scheduling such that the obtained coverage of several important
synchronization idioms (called iRoots) is maximized. These idioms capture several impor-
tant memory access patterns that are shown to be often related with error occurrences.
Maple uses several heuristics to likely increase the coverage of iRoots. The technique pro-
vides lower guarantees of finding an error than systematic testing, but it is more scalable.
The approach of Maple does not support some kinds of bugs (e.g. value-dependent bugs
or some forms of deadlocks). Interestingly, multiple of the heuristics it uses are based on
randomization. Maple can thus be viewed as being in between of systematic testing and
noise-based testing (note that some of our noise placement heuristics are based on maxi-
mizing coverage too). An interesting question for future work is thus whether an approach
for finding suitable values of noise parameters, such as the one we propose in this thesis,
could be combined with the heuristics used in Maple too.

Finally, various combinations of the above approaches have been studied in the litera-
ture. In active testing, which is considered, e.g. in [90, 82, 53], some bug detector based
on static analysis or extrapolating dynamic analysis is used to detect possible concurrency
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errors and then some form of noise-based testing, directed by information from the first
phase, is used to check whether the detected error is real. In [29], an approach combining
noise-based testing and extrapolating dynamic analysis in the first phase was combined
with bounded software model checking along the (partially) recorded trace from the first
phase and in its neighbourhood. Such a combined approach can benefit from the techniques
presented in this thesis too.

2.2 Noise Injection Techniques
As we have already said, noise injection disturbs the common scheduling of concurrently
executing threads in order to allow for testing less common (but legal) schedules. In figu-
re 2.1, we illustrate two of the possible effects that noise injection can have. Figure 2.1(a)
illustrates a scenario in that the usual order in which two threads execute some events is
swapped by noise injection (e.g. by an inserted delay). This can uncover a bug that happens
only if the events happen in the swapped order. Note that if the swapped order can happen
with noise injection, then the programmer did not exclude it using any synchronization
means, and it can happen even without noise injection. If there was some synchronization
in place, noise injection could not overcome it. This is, no new behaviour is introduced; just
without noise injection, the probability of the events happening in the swapped order may
be very low. Figure 2.1(b) then shows a situation where noise injection prolongs the time
spend by a thread in a critical section, which can lead to another thread executing its
critical section in parallel with the first one, possibly causing some concurrency error. As
before, if such an error happens, it is a real error since the programmer did not prevent
the situation by using any synchronization means, which noise injection would not be able
to overcome. Thus, the situation can happen even without noise injection, though perhaps
with a much lower probability.

Figure 2.1: Two examples of the effect of noise injection: (a) reordering of the common
order of two events in a concurrent program execution and (b) prolongation of the time
spent by a thread in a critical section, leading to an overlapped execution of two critical
sections.
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We now provide some more technical details on noise injection. A thorough discussion
of the technique can be found, e.g. in [30]. Noise injection heavily depends on two kinds
of heuristics—namely, noise seeding heuristics and noise placement heuristics. The noise
seeding heuristics determine the type and strength of the generated noise whereas the noi-
se placement heuristics determine at what instants of program executions the noise gets
injected.

2.2.1 Noise Seeding Heuristics

The basic noise seeding heuristics are: yield, sleep, wait, busyWait, synchYield, and mixed.
The yield and sleep heuristics inject calls of the yield() and sleep() methods, respectively.
In the case of the wait heuristic, the concerned threads must first obtain a special shared
monitor, then call the wait() method, and finally release the monitor. The synchYield
heuristic combines the yield heuristic with obtaining the monitor as in the case of the wait
heuristic. The busyWait heuristic inserts a busy-waiting loop that is executed for some
time. Finally, the mixed heuristic randomly chooses one of the five other basic heuristics
at each noise injection location.

The additional noise seeding heuristics are: haltOneThread and timeoutTamper. The halt-
OneThread technique occasionally stops one thread until any other thread cannot run.
The timeoutTamper heuristic randomly reduces the time-outs used when calling sleep()
in the tested program (to test that programmers do not try to synchronize their threads by
explicitly delaying some events).

All the above mentioned seeding techniques are parametrized by the so-called strength
of noise. In the case of the sleep and wait heuristics, the strength gives the time to wait.
In the case of the yield heuristic, the strength says how many times the yield() method
should be called.

2.2.2 Noise Placement Heuristics

The noise placement heuristics are: the random heuristic, the sharedVarNoise heuristic,
and the coverage-based heuristic. The random heuristic injects noise with some probability
before every concurrency-related event in the program execution. The sharedVarNoise
heuristic allows one to focus noise primarily at accesses to shared variables. There are two
versions of this heuristic: sharedVarNoise-all which targets all accesses to shared variables
and sharedVarNoise-one which targets accesses to a single randomly chosen shared variable
in each test execution. Moreover, for both of these heuristics, one can decide whether
the noise should be inserted solely when accessing shared variables or also at synchronisation
operations such as locking (the so-called nonVariableNoise heuristic).

The coverage-based heuristic is based on collecting information about pairs of subsequent
accesses to a shared variable from different threads and on inserting noise before further
executions of the program instruction by which the given variable was accessed first (or
before acquiring the shared lock that guards the given access provided there is such a lock).
This is motivated by trying to reverse the ordering in which threads access variables.

As we have mentioned already above, the noise placement heuristics inject noise at
the selected points of program executions with some probability. This probability is de-
termined by the noise frequency parameter. The values of this parameter range from
never inserting a noise to always inserting it. Additionally, the coverage-based heuristic
can be extended by another heuristic (denoted as the coverage-based-frequency heuristic)
that monitors the frequency with which a program location is visited during testing and
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injects noise at the given program location with a probability adjusted according to this
frequency—the more often a program location is executed the lower probability is used.

2.2.3 Test and Noise Configuration Search Problem

The test and noise configuration search problem (the TNCS problem) is formulated as
the problem of selecting test cases and their parameters together with types and parameters
of noise placement and noise seeding heuristics that are suitable for a certain test objective.
Formally, let 𝑇𝑦𝑝𝑒𝑃 be a set of available types of noise placement heuristics each of which
we assume to be parametrized by a vector of parameters. Let 𝑃𝑎𝑟𝑎𝑚𝑃 be a set of all
possible vectors of parameters. Further, let 𝑃 ⊆ 𝑇𝑦𝑝𝑒𝑃 × 𝑃𝑎𝑟𝑎𝑚𝑃 be a set of all allowed
combinations of types of noise placement heuristics and their parameters. Analogically, we
can introduce sets 𝑇𝑦𝑝𝑒𝑆 , 𝑃𝑎𝑟𝑎𝑚𝑆 , and 𝑆 for noise seeding heuristics. Next, let 𝐶 ⊆ 2𝑃×𝑆

contain all the sets of noise placement and noise seeding heuristics that have the property
that they can be used together within a single test run. We denote elements of 𝐶 as noise
configurations. Further, like for the noise placement and noise seeding heuristics, let 𝑇𝑦𝑝𝑒𝑇
be a set of test cases, 𝑃𝑎𝑟𝑎𝑚𝑇 a set of vectors of their parameters, and 𝑇 ⊆ 𝑇𝑦𝑝𝑒𝑇×𝑃𝑎𝑟𝑎𝑚𝑇

a set of all allowed combinations of test cases and their parameters. We let 𝑇𝐶 = 𝑇 × 𝐶
be the set of test configurations.

2.3 Measuring Quality of Testing Multi-threaded Programs
An important role in modern testing is played by the metrics which measure how well
the SUT has been tested. This functionality is often provided by coverage metrics which
measure how many of considered goals (based on selected coverage criteria) have been
targeted by the tests. Coverage metrics which handle thread interleavings precisely [73]
are hard to enumerate statically and effectively use due to potentially huge number of
possible interleavings. On the other side, coverage metrics which do not consider thread
interleavings at all, such as synchronization coverage [12], are insufficient because achieving
full coverage does not mean that the program cannot contain concurrency errors.

In [61], there are presented an alternative coverage metrics based on coverage criteria
which considers internal states to which a selected dynamic analysis algorithm can get.
Such metrics naturally abstract away all behaviour of the SUT which are not important
in order to detect (or cause) particular type of concurrency error. Still, coverage goals of
these metrics are hard to compute statically and therefore such metrics are suitable mainly
in saturation-based [91] and search-based testing which will be introduced next. In these
approaches, the coverage metrics are used mainly to compare different results or to observe
evolution of the testing process which do not require to know what is the full coverage.

The deterministic testing approaches discussed above benefit from model of SUT they
dynamically build and maintain. Usually the model has form of a graph and therefore graph
coverage metrics can be used to measure how well SUT has been tested. Since the model is
constructed dynamically and the approaches has no knowledge on how big the model could
potentially be, the problem with determination of full coverage remains for them as well.

In the paragraphs below, there are presented in detail the concurrency metrics which
are used in this thesis within the experiments. All descriptions are taken from the paper
[30].
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ConcurPairs. The ConcurPairs coverage is based on concurrently executing instructions.
It is a metric in which each coverage task is composed of a pair of program locations that
are assumed to be encountered consecutively in a run and a third item that is true or false.
Results false means that the two locations are visited by the same thread. On the ot-
her hand, the true means that there occurred a context switch between the two program
locations. This metric provides statement coverage information — using false mark – and
interleaving information when it is used true mark at once. A task of this metric is denoted
as a tuple (𝑝𝑙1, 𝑝𝑙2, 𝑠𝑤𝑖𝑡𝑐ℎ) below. Variables 𝑝𝑙1, 𝑝𝑙2 ∈ 𝑃 represent here the consecutive
program locations (only concurrency primitives and variable accesses are monitored), and
𝑠𝑤𝑖𝑡𝑐ℎ ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} indicates whether the context switch occurs in between of them.

DUPairs. It is a definition-use coverage which is based on the all-du-path coverage met-
ric from parallel programs. The metric considers coverage tasks in the form of triples
(𝑣𝑎𝑟, 𝑛𝑖

𝑢, 𝑛
𝑗
𝑣) where 𝑛𝑖

𝑢 is the 𝑢𝑡ℎ node in the thread 𝑇𝑖 where the value of program variable
𝑣𝑎𝑟 is defined while it is referenced in 𝑣𝑡ℎ node in the thread 𝑇𝑗 . A path in a Parallel Pro-
gram Flow Graph (PPFG) covers such coverage task if the value of variable 𝑣𝑎𝑟 is the first
defined by thread 𝑇𝑖 and then the same value is used in 𝑇𝑗 . This can be only guaranteed
if a synchronization among threads 𝑇𝑖 quite simple model of parallel computation, for in-
stance, it supports post and wait system of synchronization and thread-create operation for
creating new threads only, just the master thread is allowed to create worker threads, and
the number of created threads in a program need to be determined statically. Under this
limitation, it is possible to number the particular threads. When dealing with today real-life
applications, one cannot apply such restrictions. The original coverage metric was therefore
slightly modified. The modified metric is referenced to as DUPairs* below. The coverage
tasks of this metric has the form of tuples (𝑣𝑎𝑟, 𝑝𝑙1, 𝑝𝑙2, 𝑡1, 𝑡2) meaning that value of variable
𝑣𝑎𝑟 is defined at program location 𝑝𝑙1 in the thread 𝑡1 and then used at program location
𝑝𝑙2 in the thread 𝑡2. Instead of precise numbering of individual threads the metric uses
an abstract thread identification.

Synchronization Coverage (Synchro). The synchronization coverage focuses on the use
of synchronization primitives and does not directly consider thread interleavings. Coverage
tasks of the metric are defined based on various distinctive situations that can occur when
using each specific type of synchronization primitives. For instance, in the case of a syn-
chronized block (defined using the Java keyword synchronized), the obtained tasks are:
synchronization visited, synchronization blocking, and synchronization blocked. The syn-
chronization visited task is basically just a code coverage task. The other two are reported
when there is an actual contention between synchronized blocks—when a thread 𝑡1 reaches
a synchronized block 𝐴 and stops because another thread 𝑡2 is inside a block 𝐵 synchro-
nized on the same lock. In this case, 𝐴 is reported as blocked, and 𝐵 as blocking (both,
in addition, as visited). Tasks of this metric are denoted as tuples of the form (𝑝𝑙1,𝑚𝑜𝑑𝑒)
where 𝑝𝑙1 ∈ 𝑃 represents the program location of a synchronization primitive, and 𝑚𝑜𝑑𝑒
represents an element from the set of the distinctive situations relevant for the given type
of synchronization.

Coverage Metrics Based on Avio. The Avio algorithm detects atomicity violation
over one variable and does not require any additional information from the user about in-
structions that should be executed atomically. The algorithm considers any two consecutive
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accesses 𝑎1 and 𝑎2 from one thread to a shared variable 𝑣𝑎𝑟 to form an atomic block 𝐵. Se-
rializability is then defined based on an analysis of what can happen when 𝐵 is interleaved
with some read or write access 𝑎3 from another thread to the variable 𝑣𝑎𝑟. Out of the eight
total cases arising in this way, four (namely, r/w/r, w/w/r, w/r/w, r/w/w) are considered
to lead to an unserializable execution. Tracking of all accesses that occur concurrently to
a block 𝐵 can be very expensive. Therefore, a criterion to consider only the last interleaving
access to the concerned variable from a different thread is defined. The basic Avio metric
uses coverage tasks in the form of tuples (𝑝𝑙1, 𝑝𝑙2, 𝑝𝑙3, 𝑣𝑎𝑟) where the considered atomic
block 𝐵 spans between program locations 𝑝𝑙1 ∈ 𝑃 and 𝑝𝑙2 ∈ 𝑃 where the variable 𝑣𝑎𝑟 ∈ 𝑉
is accessed by a thread 𝑡1 ∈ 𝑇 while it interferes with the access from a different thread
𝑡2 ∈ 𝑇, 𝑡2 ̸= 𝑡1 at program location 𝑝𝑙3 ∈ 𝑃 . The extended metric Avio* incorporates into
coverage tasks also information about the threads from which the accesses have been made
resulting in tuples of the form (𝑝𝑙1, 𝑝𝑙2, 𝑝𝑙3, 𝑣𝑎𝑟, 𝑡1, 𝑡2). Single threaded programs cannot
generate any such coverage task because basic as well as extended version of Avio-based
coverage metric requires the variable 𝑣𝑎𝑟 to be accessed by two distinct threads.

Coverage Metrics Based on Eraser. The coverage metrics Eraser and Eraser* are
based on the Eraser algorithm. For each thread, the algorithm computes a set of locks
currently held by the thread, and for each variable access, the algorithm uses these sets to
derive the set of locks that were held by each thread that had so far accessed the variable.
These so-called locksets are maintained according to a state assigned to each variable which
represents how the variable has been operated so far (e.g. exclusively within one thread,
shared among threads, for reading only, etc.). Basic coverage tasks have the form of a tuple
(𝑝𝑙, 𝑣𝑎𝑟, 𝑠𝑡𝑎𝑡𝑒, 𝑙𝑜𝑐𝑘𝑠𝑒𝑡) where 𝑝𝑙 ∈ 𝑃 identifies the program location of an instruction access-
ing a shared variable 𝑣𝑎𝑟 ∈ 𝑉 , 𝑠𝑡𝑎𝑡𝑒 ∈ {𝑣𝑖𝑟𝑔𝑖𝑛, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒, 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒′, 𝑠ℎ𝑎𝑟𝑒𝑑,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑, 𝑟𝑎-
𝑐𝑒} indicates the state in which the Eraser’s finite control automaton is when the given
location is reached (the extended version of Eraser using the exclusive’ state is considered),
and 𝑙𝑜𝑐𝑘𝑠𝑒𝑡 ⊆ 𝐿 denotes a set of locks currently guarding the variable 𝑣𝑎𝑟. Eraser* extends
the basic Eraser metric by identification of a thread 𝑡 ∈ 𝑇 performing the access operation.
Extended coverage tasks thus have the form of (𝑝𝑙, 𝑣𝑎𝑟, 𝑠𝑡𝑎𝑡𝑒, 𝑙𝑜𝑐𝑘𝑠𝑒𝑡, 𝑡). Accessing a vari-
able 𝑣𝑎𝑟 at a certain program location 𝑝𝑙 is a code coverage task which is here enriched by
the information whether the variable has been already initialized (indicated by 𝑣𝑖𝑟𝑔𝑖𝑛 or
𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 state). Other possible values of the state cannot be reached in single threaded
applications.

Coverage Metrics Based on GoldiLocks. GoldiLocks is an advanced lockset-based
algorithm which combines the use of locksets with computing the happens-before relation
that says which events are guaranteed to happen before other events. In GoldiLocks, locksets
are allowed to contain not only locks (L) but also variables (O) and threads (T). If a thread
𝑡 appears in the lockset of a variable when the variable is accessed, it means that 𝑡 is
properly synchronized for using the given variable because all other accesses that might
cause a data race are guaranteed to happen before the current access. The algorithm
uses a limited number of elements placed in the lockset to represent an important part of
the synchronization history preceding an access to a shared variable. The basic GoldiLocks
algorithm is still relatively expensive but can be optimized by the so-called short circuit
checks (SC) which are three cheap checks that are sufficient for deciding race freedom
between the two last accesses to a variable. The original algorithm is then used only when
SC cannot prove race freedom. The basic GoldiLock metric is based on coverage tasks
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having the form of tuples (𝑝𝑙, 𝑣𝑎𝑟, 𝑔𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝑒𝑡) where 𝑝𝑙 ∈ 𝑃 gives the location of an in-
struction accessing a variable 𝑣𝑎𝑟 ∈ 𝑉 and 𝑔𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝑒𝑡 ⊆ 𝑂∪𝐿∪𝑇 represents the lockset
computed by GoldiLock. The tuple can be extended by a thread 𝑡 ∈ 𝑇 which accesses
the variable 𝑣𝑎𝑟 getting GoldiLock* coverage tasks of the form (𝑝𝑙, 𝑣𝑎𝑟, 𝑔𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝑒𝑡, 𝑡).
Program location 𝑝𝑙 at which the variable 𝑣𝑎𝑟 has been accessed represents a code coverage
task. For single threaded applications, one of the short circuit checks discovers that data
race cannot occur and the information about execution history captured in goldiLockSet
can thus only distinguish the first access to the variable from the others.

Coverage Metrics Based on GoodLock. GoodLock is a popular deadlock detection
algorithm that has several implementations’ the metric presented here builds on the imple-
mentation published by Bensalem and Havelund. The algorithm builds the so-called guarded
lock graph which is a labeled oriented graph where nodes represent locks, and edges repre-
sent nested locking within which a thread that already has some lock asks for another one.
Labels over edges provide additional information about the thread that creates the edge.
The algorithm searches for cycles in the graph wrt. the edge labels in order to detect dead-
locks. The metrics focus on occurrence of nested locking that is considered interesting by
GoodLock. Collection of the locksets of the threads which the original algorithm uses as
one element of the edge label is omitted because this information is used in the algorithm
to suppress certain false alarms only. The GoodLock metric is therefore based on coverage
tasks in the form of tuples (𝑝𝑙1, 𝑝𝑙2, 𝑙1, 𝑙2) meaning that some thread 𝑡 ∈ 𝑇 has first obtained
the lock 𝑙1 ∈ 𝐿 at the location 𝑝𝑙1 ∈ 𝑃 and later requested the lock 𝑙2 ∈ 𝐿 at the location
𝑝𝑙2 ∈ 𝑃 . The extended metric GoodLock* incorporates also identification of the thread 𝑡
forming the tuple (𝑝𝑙1, 𝑝𝑙2, 𝑙1, 𝑙2, 𝑡). Locks are usually used for synchronization of accesses
to shared resources among several threads, however, also a single threaded application can
request for locks and thus generate GoodLock-based coverage tasks.

Coverage Metrics Based on Happens-Before Pairs. These coverage metrics are mo-
tivated by observations obtained from the GoldiLocks algorithm and the vector-clock algo-
rithms, both of them depend on computation of the happens-before relation. In order to get
rid of the possibly huge number of coverage tasks produced by the vector-clock algorithms
and trying to decrease the computational complexity needed when the full GoldiLocks al-
gorithm is used, the metrics focus on pieces of information the algorithms use for creating
their representations of the analyzed program behaviours. All of these algorithms rely on
synchronization events observed along the execution path. Inspired by this, the metrics
capture successful synchronization events based on locks, volatile variables, wait-notify o-
perations, and thread start and join operations used in Java. A basic coverage task is
defined as a tuple (𝑝𝑙1, 𝑝𝑙2, 𝑠𝑦𝑛𝑐𝑂𝑏𝑗) where 𝑝𝑙1 ∈ 𝑃 is a program location in a thread 𝑡1 ∈ 𝑇
that was synchronized with the location 𝑝𝑙2 ∈ 𝑃 of the thread 𝑡2 ∈ 𝑇, 𝑡2 ̸= 𝑡1 using the syn-
chronization object syncObj. The extended metric HBPair* incorporates identification of
the synchronized threads forming the task as a tuple (𝑝𝑙1, 𝑝𝑙2, 𝑠𝑦𝑛𝑐𝑂𝑏𝑗, 𝑡1, 𝑡2). In the same
way as for the Avio-based metrics, no single threaded application can generate any HB-
Pair or HBPair* coverage task because it captures a synchronization between two distinct
threads only.

Datarace. The Datarace metric measures the number of warnings issued by the chosen
data race detector. In our case, we use the GoldiLock algorithm for this purpose. Thus,
metric says how many times the algorithm was successful and reported a possible error.
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2.4 Methods Used in Thesis
This section provides an introduction to the areas of the methods that were used in the app-
roaches proposed in the thesis and during the evaluation of the experiments. It covers main
statistical approaches, data mining, and genetic algorithms.

Statistical methods are mainly used in the evaluation of tests, e.g. to compare the results
of different approaches by the Student’s t-value (statistical hypothesis about whether two
approaches are significantly different or not) or standard numerical characteristics, such as
average, variation, median or standard deviation. These methods were used in the expe-
rimental parts of the thesis for an evaluation of the tests we performed.

Approaches used in this work are introduced in more detail in the following two sections
where basic data mining methods are presented and base of genetic algorithms.

2.4.1 Basic Data Mining Algorithms

Data mining allows us to answer a number of problems in different ways. There are four
basic methods in data mining: (1) classification, (2) regression, (3) association rules, and
(4) clustering [66]. Only two of them, namely, classification and regression, are introduced,
as those have been used in the methods proposed in this work.

Both of these methods are so-called methods with a supervisor. Supervised learning
uses predictive models that have a matrix X as their input and a vector 𝑦 as their output.
The input matrix represents features, i.e. attributes of the given data sets. The output
vector could be represented by categorical values (i.e. categories such as TRUE vs FALSE,
or A, B, C, D, E and F as the classification in school) which is the case of classification or
pattern recognition, or could be represented by real values, which is the case of regression.
In both cases, a data set is divided into the training and the validation sample. The pre-
diction model is created on the training sample and then it is tested on the validation
sample. The validation sample is used for evaluating accuracy of the created model.

Classification. As mentioned in the previous text, the classification task consists of
assigning variables from a given data set, described by a set of discrete- or continuous-
valued attributes, to a set of classes, which can be considered values of a selected discrete
target attribute. There are two main methods of classification: binary and multiclass.
Classification approaches include decision trees, boosted trees, Naïev Bayes, and K-Nearest
Neighbours.

For our purposes, the test and noise parameters are marked as variables and we want to
assign a specific combination of the variables to the one of the two possible classes depending
on the given goal of program testing. Here, the classes mean whether the given setting of
the test has a higher probability of meeting the given goal. In Chapter 4, an approach
based on boosted decision trees called AdaBoost is used for classifying of program testing.

Regression. The regression task consists of assignment of a numerical value to variables
from a given data set, described by a set of discrete- or continuous-valued attributes. This
assignment is supposed to approximate some target function, generally unknown, except
for a subset of the data set – training sample. This training sample can be used to create
the regression model that makes prediction of unknown target function values for any
possible variable from the same data set feasible. In practical applications, the target
function represents an interesting property of variables from the data set that either is
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difficult and costly to determine, or (more typically) becomes known later than is needed.
Among the regression approaches, there are linear regression or regression trees.

For our purposes, we have variables such as coverage metrics, where we count the num-
ber of tasks visible during the test execution of concurrent programs and our goal is to
increase the coverage. In Chapter 5, three different regression algorithms are compared
that could combine more metrics for prediction of the coverage of the metrics which are
more time-consuming to collect.

As mentioned above, the data set is divided on training and validation samples in the su-
pervised methods. The precision of the obtained classifier/model should be evaluated on
the validation set. Notions of accuracy and sensitivity, based on the following quantities
[57], can be used for that purpose:

∙ The number 𝑇𝑃 of true positives that is the number of correctly classified positive
examples, i.e. those objects 𝑥 where (𝑥, 1) ∈ 𝒱 and 𝐹 (𝑥) = 1.

∙ The number 𝐹𝑃 of false positives that is the number of wrongly classified negative
examples, i.e. those objects 𝑥 where (𝑥,−1) ∈ 𝒱 but 𝐹 (𝑥) = 1.

∙ The number 𝑇𝑁 of true negatives that is the number of correctly classified negative
examples, i.e. those objects 𝑥 where (𝑥,−1) ∈ 𝒱 and 𝐹 (𝑥) = −1.

∙ The number 𝐹𝑁 of false negatives that is the number of wrongly classified negative
examples, i.e. those objects 𝑥 where (𝑥, 1) ∈ 𝒱 but 𝐹 (𝑥) = −1.

Accuracy then gives the probability of a successful classification and can be computed as
the fraction of the number of correctly classified items and the total number of items:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
.

On the other hand, sensitivity (also called the true positive rate or TPR) expresses the frac-
tion of correctly classified positive results and can be computed as the number of the items
that were correctly classified positively divided by the sum of the correctly positively and
incorrectly negatively classified items (for example, see [103]):

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
.

2.4.2 Genetic Algorithms

In this section, we briefly introduce genetic and evolutionary algorithms. More detailed
information is presented in 3.2.1. These algorithms generally produce high-quality mo-
dels. On the downside, they are very time-consuming. The following paragraphs introduce
the basics of the genetic algorithms that will be used as an optimization method in the pro-
cess of noise-based testing and dynamic analysis of concurrent programs.

The evolutionary algorithm (EA) tries to find the best solution possible from a search
space of candidate solutions with respect to selected criteria. EA is suitable for problems
with a huge search space, for which finding the best solution by the brute force approach
is not feasible. In the context of EA, candidate solutions are called individuals and the set
of all candidates solution is referred to as individual space. The individual space is mapped
into the set of parameters associated with candidate solutions that is called decision space.
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The specific values of parameters from this decision space for particular individuals are
called decision vector. The decision vector corresponds to a genome in biology and a single
parameter from the vector corresponds to a gene. Individuals are evaluated by objective
functions resulting in an objective vector of specific values for particular objectives. Each
such objective is related to a criterion applied on a candidate solution. The evaluation of
the objective can be based on a single gene, however, it can be influenced by the whole
genome as well. To compare candidate solutions in order to determine which of them is
the best one, so-called fitness function combining the evaluation of all desired criteria into
a single number is needed [108]. On the other hand, there is also another possibility where
the fitness function focuses on evaluation of the given desired criteria separately — this type
of fitness function is discussed in detail in Chapter 3.

A rather successful meta-heuristic search technique for complex optimization problems
is the genetic algorithm (GA) [97], which is inspired by the process of natural selection. GA
tries to find the best solutions by biased sampling of the solution search space, starting with
an initial set (called a generation) of candidate solutions (also referred to as individuals).
Each individual in the current population is evaluated and assigned a value called fitness,
representing the suitability of the particular solution. The next generation of individuals is
obtained from the current generation, typically by using stochastic recombination (called
a crossover) of individuals selected according to their fitness and mutation of the new
individual’s attributes (called genes) in order for the search to not get stuck in the local
extreme.

Search Process of GA. A subset of an individual space with a constant size is called
a population. GA starts with an initial population and evaluates all its members (i.e.
candidate solutions) by a fitness function. Based on this evaluation, the fitting individuals
called parents are chosen by selection operators to generate new individuals called children.
New individuals are usually the result of a crossover of two parents followed by a mutation.
This process, called breeding, proceeds until a new child population is completed. New
generations are gradually created until a sufficiently good solution is found or the maximum
number of generations is created.

Selection Operators. Parents from the current population can be chosen for breeding
using different techniques. Fitness-Proportionate Selection selects individuals proportio-
nally to their fitness—individuals with higher fitness have higher probability to be selected
for breeding than individuals with lower fitness [75]. Tournament Selection is based on
a tournament. A specific number of individuals is randomly selected from the current
population and the one with the highest fitness is taken for breeding [75]. For multi-
objective optimization, Mating Scheme may be considered as a selection technique. Mating
Scheme is slightly more complicated as it works in two phases and selects both parents.
Within the first phase, a certain number of individuals is randomly selected for the first
parent (group A) and the same number of individuals for the second parent (group B). In
the second phase, the best individual from group A is selected for breeding while the indi-
vidual from group B that is most similar to the parent from group A is selected for breeding
[47].

Crossover. When two parents are selected for breeding, crossover takes place—two new
individuals are created by a recombination of genomes of the parents (i.e. by exchanging
parts of their decision vectors). The most common crossover techniques are One-Point,
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Two-Point, and Uniform Crossover [75]. When the One-Point crossover is applied, the cros-
sing occurs at one place only. The place of crossing 𝑐 is chosen between 1 and the length
of the genome 𝑙. New individuals are obtained by exchanging genes of parents from place 𝑐
to the end of their genomes. For the Two-Point crossover, two places of crossing 𝑐1 and 𝑐2
are chosen, both between 1 and 𝑙, and new individuals are obtained by exchanging genes of
the parents just between places 𝑐1 and 𝑐2. The Uniform Crossover technique goes through
the whole genomes and exchanges pairs of corresponding genes with the preset probability.

Mutation. Mutation is applied on a single individual—each gene from the individual’s
genome is with a preset probability replaced by any value permissible for this gene.

2.5 Tool Support Used in Thesis
This section provides a description of the tools that were used for our experiments with
testing of concurrent programs. The main tool is SearchBestie, which cooperates with IBM
ConTest, and ECJ Toolkit [68].

2.5.1 SearchBestie

SearchBestie is a generic tool designated for solving search or optimization problems in
the form of finding a combination of input parameters of a given system such that suits
the tested system as well as the predefined goals of the testing. SearchBestie is in par-
ticular fine-tuned for the case when the system of interest is a concurrent program to be
tested. The properties of interest can then be defined in two ways. The first approach
is finding an error or warning by a dynamic analyser. However, since findings errors (in
particular, rarely manifesting concurrency errors) is difficult, another target property can
be the achieved coverage under some concurrency metric [61].

The name SearchBestie is an acronym for Search-Based Testing Enviroment. The goal
of SearchBestie is not to execute the tests, but to resolve testing as a search problem.
Execution and instrumentation of the tested Java program1 is provided by external software
that integrates into SearchBestie as a plug-in. An example of such software is ConTest that
is introduced in the following subsection. The development of SearchBestie itself has been
carried out in cooperation with researchers from IBM Haifa.

The architecture of SearchBestie consists of four cooperating modules: Manager, State
space storage, Search and Executor. A general overview of the structure and functioning of
the SearchBestie architecture is provided in Figure 2.2. The manager reads a configuration
file and initializes other modules. Then the manager enters a loop common for all search
techniques. The manager asks the search engine to identify a state in the searched state
space, which may be viewed as a test and its parameters, to be explored in the next step.
The chosen state is then passed to the execution module that executes the appropriate test.
Results of the test are collected and an object encapsulating the results is passed back to
the search engine as a feedback and stored in the state space storage. Subsequently, a test
checking whether the pre-defined termination conditions have been fulfilled is performed.
If not, the next iteration starts, and the manager asks the search engine to provide a next
state of the search space to be explored. When the search is finished, the manager can
analyze the obtained results or export them.

1SearchBestie is only created to test the programs written in Java language.
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Figure 2.2: High-level architecture of SearchBestie [68].

The architecture is meant to be very generic and therefore all modules consist of two
parts: an interface that communicates with the rest of the infrastructure and plug-ins that
actually provide the functionality. Plug-ins can implement the functionality on their own
or can implement an interface to an external library or tools. Since plug-ins for the same
module share a common interface, they can be easily interchanged. This allows users to
easily experiment with several different testing approaches. The generality of the archi-
tecture is also supported by the idea of building blocks that allow for combining several
plug-ins into more complicated entities.

2.5.2 IBM ConTest

The IBM Concurrency Testing tool (ConTest) has been developed and supported by re-
searchers from the IBM Verification and Technologies group in Haifa, Israel. ConTest is
an advanced testing solution and its main use is to expose and eliminate concurrency-related
bugs in multi-threaded java applications2[23].

A typical scenario of the ConTest use is that it performs instrumentation of Java byte-
code before its execution first. When the instrumented code is executed, ConTest is ini-
tialized before executing the code of the test. During the initialization, ConTest reads its
configuration files that contain a parameter setting of ConTest, a list of enabled ConTest
plug-ins and parameters used by the plug-ins. ConTest also generates a unique identifier
for the current execution. Then the instrumented byte-code is executed. ConTest and its
plug-ins produce outputs (e.g. the coverage) into the ConTest output directory. The data
generated from the execution are available in sub-directories of the output directory after
execution. Each generated file contains the ConTest unique execution identifier in its name.
Finally, unnecessary data produced by ConTest or already processed data can be deleted.

2https://www.research.ibm.com/haifa/projects/verification/contest/
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The cooperation of SearchBestie with ConTest is implemented within executor module
plug-ins. The only activity required by the SearchBestie user is to enable testing with Con-
Test and properly set the parameters controlling its behaviour, the code to be executed,
and parameters of ConTest and its plug-ins. The main functionality is implemented in
the test engine that is responsible for generation of configuration files of ConTest and its
plug-ins, execution of the test within a separate process and import of generated data from
the ConTest output directory into the vector of results used by SearchBestie. The configu-
ration of the test engine can contain variables whose values are determined by SearchBestie
according to the state of the state space currently being evaluated. The engine also allows
for detection of exceptions occurrence by observing outputs of the executed test. Process-
ing the executed test outputs also allows for detection of situations when the running test
produces no output for a predefined time. This helps to detect deadlocks and some other
progress problems. In such case, the execution can be terminated by the test engine.

2.5.3 ECJ toolkit

ECJ is a Java-based evolutionary computation system that has been developed for more
than ten years. It supports a wide range of metaheuristic algorithms and approaches, in-
cluding genetic programming, genetic algorithms, evolutionary strategies, particle swarm
optimization, and differential evolution [102]. Its internal design allows one to easily inter-
connect SearchBestie with ECJ.

External tools like ECJ uses SearchBestie as a procedure for evaluation of candidate
solutions. The cooperation works as follows. ECJ is executed by the user and within
the ECJ initialization phase, SearchBestie is also initialized. ECJ then generates individuals
for evaluation and performs a search. Each time ECJ requires an individual to be evaluated,
SearchBestie is called. The evaluation consists of three steps: the individual is transformed
into the corresponding state in the state space used by SearchBestie. Then the manager
module evaluates the state as if it came from the search module. In the end the result
is stored in the state space storage module and the computed fitness is passed back to
ECJ. The search process can be stopped either by ECJ, e.g. when a predefined number of
generations is evaluated, or by SeachBestie.

2.6 Case Studies
We now present the multi-threaded programs that are used as test cases in the experiments
presented in the rest of the thesis.

Airlines. The size of the test case is 0.3 kLOC, 8 classes. It is a small test case containing
an atomicity violation error. It simulates an airline reservation system with three para-
meters 𝑋, 𝑌 , and 𝑍: The system creates a flight whose capacity is 𝑍 (number of available
seats). Then, 𝑋 seller threads are executed, and they are periodically trying to get a seat
on the flight. The parameter 𝑌 controls how many iterations of an idle loop are done (and
hence how much time is spent) between two successive attempts to book a ticket.

Animator. The size of the test case is 1.5 kLOC, 31 classes. It is a program containing
a data race and an atomicity violation. Animator is our short name for the XTANGO
animation program [94] which is a general-purpose system for algorithm animation that
allows programmers to create colourful, real-time, 2 & 1/2 dimensional, smooth animations
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of their algorithms and programs. The focus of the system is on ease of use—programmers
using this system need not be graphics experts to develop their own animations.

Crawler. The size of this test case is 1.2 kLOC, 19 classes. The test case includes
an atomicity violation. The program is taken from an IBM repository. It represents a skele-
ton of an IBM crawler product with a test environment simulating real usage of the system.
Namely, the system creates a given number of threads waiting for a connection. If a con-
nection is established, a worker thread serves it. Afterwards, when a given global time limit
occurs, a shutdown sequence is initiated. This means that the working threads are not
accepting new tasks, and, after finishing the current task, they die [59]. The bug present
in the program manifests itself during the shutdown sequence but very rarely (roughly 15
times per 10,000 runs).

Elevator. The size of this test case is 1.2 kLOC, 12 classes. The program contains
a data race and an atomicity violation. It implements a real-time discrete-event simulation.
The application is used as an example in a course on concurrent programming. Elevators
are modeled as individual threads that poll directives from a central control board. Com-
munication through the control board is synchronized through locks. The configuration
used for our experiments simulates four elevators [84]. This benchmark has one parameter
which controls the number of threads used.

Rover. The size of the test case is 5.4 kLOC, 82 classes. Rover contains an atomicity
violation and a deadlock. The K9 Rover from NASA Ames is an experimental platform for
autonomous wheeled vehicles for exploration of a planetary surface such as Mars. The ro-
ver executive software prototype monitors executions of actions and performs responses
and cleanup when the execution fails. In the configuration used in our experiments, eight
threads are launched in the system [81]. This benchmark has one parameter which selects
one of the available test scenarios.

Cache4j. The size of this test case is 1.7 kLOC, 66 classes. Cache4j does not contain
any known error. It is an LRU (Least Recently Used) lock-based cache implementation.
The implementation is based on two internal data structures, a tree and a hash-map.
The tree manages the LRU while the hash-map holds the data. The implementation is
based on a single global lock [54].

HEDC . The size of the test case is 12.7 kLOC, 747 classes. The program does not
contain any known error. It represents an application kernel that implements a meta-
crawler for searching multiple Internet archives in parallel. In our benchmark configuration,
four principal threads issue random queries to two archives each. The individual queries
are handled by a short random sleep interval of 0-200 ms; this ensures that the principal
threads work out of sync. The application employs a library for concurrent programming by
Doug Lea—in particular, the Pooled-Executor pattern. The workload and memory access
pattern of this application kernel are typical for Internet server applications and similar to
applications based on alternative mechanisms such as Java Servlets [84, 87].

Moldyn. The size of the test case is 0.8 kLOC, 14 classes. It does not contain any known
error. MolDyn is an N-body code modelling particles interacting under a Lennard-Jones
potential in a cubic spatial volume with periodic boundary conditions. Performance is
reported in interactions per second. The number of particles is given by N. The original
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Fortran 77 code was written by Dieter Heerman, Institut für Theoretische Physik, Germany
and converted to Java by Lorna Smith, EPCC.

MonteCarlo. The size of the test case is 1.4 kLOC, 22 classes. It does not contain any
known error. MonteCarlo is a financial simulation, using Monte Carlo techniques to price
products derived from the price of an underlying asset. The code generates multiple time
series with the same mean and fluctuation as a series of historical data. This benchmark
has one parameter which controls the number of threads used for the computation [92].

Raytracer. The size of the test case is 1.0 kLOC, 22 classes. It is without any known
error. This benchmark measures the performance of a 3D ray tracer. The rendered scene
contains 64 spheres, and it is rendered with a resolution of 𝑁×𝑁 pixels. The outermost loop
(over rows of pixels) has been parallelised using a cyclic distribution for load balancing. This
benchmark has one parameter controlling the number of threads used for the computation
[80, 92].

SOR. The size of the test case is 7.2 kLOC, 256 classes. The program does not contain
any known error. SOR (Successive Over-Relaxation over a 2D grid) synchronizes its threads
using a barrier rather than locks. It implements an iterative method for solving discretized
Laplace equations on a grid data structure. In particular, it performs multiple passes over
a rectangular grid until the values in the grid change less than a certain threshold, or a pre-
defined number of iterations has been reached. The new value of a grid point is computed
using a stencil operation, which depends only on the previous value of the point itself and
its four neighbours in the grid. The program has two parameters: the number of iterations
and the number of threads [80, 84].

TSP. The size of this test case is 0.4 kLOC, 8 classes. It is without any known error.
TSP (Travelling Salesman Problem) is a travelling salesman application which computes
the shortest path for a salesperson to visit all cities in a given set exactly once, starting in
one specific city. The program is parallelized by distributing the search space over different
processors. Because the algorithm performs pruning, the amount of computation needed for
each subspace is not known in advance and varies between different parts of the search space.
Therefore, dynamic load balancing between the processors is needed. This benchmark has
two parameters: the number of threads and a given input file with a TSP instance [80, 85].
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Chapter 3

Application of Genetic Algorithms
in Noise-based Testing

In this chapter, we propose an application of a multi-objective genetic algorithm to solve
the TNCS problem. Within the proposal, we also suggest ways improve handling of with
the inherent scheduling non-determinism in a genetic optimization process as well as of
the much higher costs of some coverage tasks. Our work is motivated by a previous ap-
plication of the single-objective genetic algorithm (SOGA) in the domain of noise-based
testing of concurrent programs [42]. The SOGA approach improved the process of noise-
based testing but came with significant problems on its own. As discussed in more details
below, these problems concern the construction of a suitable fitness function aggregating
all the objectives of interest in a way suitable for the highly non-deterministic environment
of noise-based testing of concurrent programs. In particular with constructing a suitable
fitness function aggregating all the objectives of interest.

In the following sections, we first discuss some specific related work and then provide
the multi-objective genetic algorithm (MOGA). Afterwards, as our first contribution, we
focus on selecting suitable objective functions that can be used within a multi-objective
fitness function when solving the TNCS problem. This is needed since according to our
experience, very significantly influence the quality of the search process. We particularly
focus on the number of distinct values that the objectives can have, their correlation, and
their tendency to suffer from the influence of non-determinism. Furthermore, we propose
a novel modification of the coverage-based objective functions based on the so-called penal-
ization of commonly achieved concurrency behaviour, which leads to quality improvement
of the objectives wrt. the number of distinct values they can get and which guides the search
process towards testing uncommon but legal behaviours.

Next, we compare the three commonly used multi-objective algorithms, namely, SPEA,
SPEA2, and NSGA-II, with respect to their suitability for solving the TNCS problem.
Subsequently, we study a suitable setting of parameters of the chosen algorithm to increase
the quality of solutions discovered by this algorithm in our setting. Next, we present
initial promising experiments demonstrating the ability of our MOGA approach to find
good solutions of the TNCS problem and to suppress problems of the previous GA-based
approach. Finally, we make a comparison of the previous GA-based approach with our new
multi-objective genetic algorithm.
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3.1 Related Work
This section provides an overview of works that apply metaheuristics and optimization
techniques to the testing of multi-threaded programs.

Majority of the existing works in the area of search-based testing of concurrent programs
focus on applying various metaheuristic techniques to control the state space exploration
within the guided (static) model checking approach [37]. The basic idea of this approach
is to explore areas of the state space that are more likely to contain concurrency errors
first. Various algorithms, such as simulated annealing [15], genetic algorithms [37, 3],
partial swarm optimisation (PSO) [15], ant colony optimisation (ACO) [2, 4], and estimation
distribution algorithm (EDA) [93], were applied here.

The fitness functions used in these approaches are based on detection of error states
(e.g. [93]), a distance to error manifestation (e.g. a high number of blocked threads can
indicate that we are close to a deadlock [37, 3]) or formula-based heuristics [2, 4] which
estimate the number of transitions required to get an objective node from the current one.
Most of the approaches also search for a minimal counterexample path, i.e. a number of
edges taken before the objective node is reached [93, 37, 3].

An advantage of this approach is that the underlying model checking offers a well-defined
state space and a high degree of determinism. The disadvantage originates in the use of
static model checkers, which do not scale well. Moreover, without exploring the entire state
space, absence of errors cannot be proven. Therefore, we can consider such approaches as
a heavy-weight deterministic testing.

Heuristic testing of multi-threaded programs using noise injection techniques is studied
in [16] and [42]. In [16], the cross entropy heuristics is used to navigate the deterministic
testing approach. Several fitness functions were proposed in this work for common non-
concurrency errors, such as buffer overflow (a portion of buffer being used), and concurrency
errors, such as a data race (a number of shared resources being accessed). In [42], a genetic
algorithm was used to find a solution to the TNCS problem: the weighted fitness function
combined detected errors, high concurrency related coverage and time.

Several other works focus on a slightly different problem of debugging multi-threaded
programs, which tries to maximize the probability that a known error manifests during
the test execution. In [28], genetic algorithms are applied to find a set of places in the pro-
gram, where a noise should be placed to increase probability of spotting an error. In this
case, the fitness function tries to minimize the number of places affected by the noise and
favours solutions that put a high amount of noise to very small set of places.

The problem of increasing the probability of an error manifestation within the debugging
process is targeted in [10, 99] as well. In [10], program locations are statically classified
according to their suitability for the noise injection. Then a probabilistic algorithm is used
to find a subset of program locations that increase the error manifestation ratio. In [99],
a machine learning feature selection algorithm is used to identify a subset of program
locations for noise injection. In this case, the test is executed many times. The program
locations, to which the noise was injected in each execution, are collected together with
information whether the error got manifested (or not).

A combination of the noise-based testing with GA appeared first in [42] (denoted as
SOGA). There, a way of using the GA for finding a suitable setting of noise injection
parameters was proposed and the following problems were identified. The combination
via a weighted fitness function showed to be sensitive to the setting of weights. Finding
weights that would be suitable in general turns out to be indeed very hard in the given
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context, since different metrics can have very different ranges, which can moreover change
from a test case to a test case. Apart from that, some of the metrics tend to correlate in
some test cases, but not in others.

Furthermore, it was discovered that candidate solutions highly rated during one eval-
uation did not provide such good results when reevaluated again. This was caused by
the thread scheduling non-determinism. It influenced the evaluation of candidate solutions
too much despite the use of the accumulated evaluation over several test runs. It was also
discovered that in some cases, the used genetic approach suffered from degradation, i.e.
a quick loss of diversity in the population. It was caused by an excessive selection pressure
on some objectives. Such a loss of diversity can unfortunately have a negative impact on
the ability of the approach to achieve coverage tasks that are more difficult to cover, since
they correspond to rare (and hence more likely to contain bugs unknown so far) program
behaviours.

The aforementioned areas are what we aim to improve in this work. We also further
improve the efficiency of solving the TNCS problem using the multi-objective optimization
algorithms and novel fitness functions introduced in Section 3.3.

3.2 Preliminaries
Chapter 2.4.2 already contains general information about GA. In this preliminary section,
we introduce more details about multi-objective optimizations, like the multi-objective eval-
uation of individuals. Then we introduce test cases and environment used for our experi-
ments.

3.2.1 Multi-objective Genetic Algorithms

As mentioned above, individuals are evaluated by a fitness function, which represents the ob-
jective criteria of a problem to be solved by GA. The comparison of the individuals is quite
easy if the evaluation is based on a single criterion only. Such a comparison is called
a Single-objective Optimization Problem (SOP). A more complicated situation occurs when
more objective criteria need to be followed simultaneously—such a case is called a Multi-
objective Optimization Problem (MOP) and is, actually, our case.

The Single-objective Optimization. In single-objective optimization, the set of can-
didate solutions needs to be completely (totally) ordered according to the fitness function
f , i.e. any two candidate solutions a,b ∈ X then either f(a) ≥ f(b) or f(a) ≤ f(b) is
true. The traditional approach to solve a multi-objective problem by the single-objective
optimization is to bundle all objectives into a single scalar fitness function using a weighted
sum of objectives

f(x) = 𝑤1 * 𝑓1(x) + 𝑤2 * 𝑓2(x) + · · ·+ 𝑤𝑘 * 𝑓𝑘(x).

Using the weighted sum as the fitness function has several drawbacks. The obvious issue
is how to set the weights 𝑤1, 𝑤2, . . . , 𝑤𝑘 for particular objectives. The weights may reflect
the importance of concrete objectives; however, they may also capture the balance between
the objectives. A wrong setting of the weights can lead to neglecting some objectives.
The other issue is non-linearity of objective values. Furthermore, it may not be possible to
identify a single best solution for several multi-objective problems, because the individuals
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are not totally ordered with respect to the given objectives—only a partial order can be
found among them. For example, we want to buy an aircraft and we have two criteria: range
(𝑓1) and maximum cruise speed (𝑓2). We want an aircraft with a high range and high cruise
speed within the given budget, but these objectives go against each other. Figure 3.1 shows
six different individuals. For instance, we can see that individual A has better cruise speed
(i.e. higher 𝑓2) than individual B, who has a better range (i.e. higher 𝑓1) than individual A
and thus, we cannot decide which aircraft is better. In such situations, it can be useful to
examine the Pareto dominance or Pareto non-dominance.

Figure 3.1: An example of Pareto ranks.

The Multi-objective Optimization. MOP in general consists of a set of n parameters
(i.e. decision variables), a set of k objective functions, and a set of m constraints on the de-
cision variables [108]. The optimization goal is to maximize the objective vector y:

y = f(x) = (𝑓1(x), 𝑓2(x), . . . , 𝑓𝑘(x))

with respect to the constraints e delimiting the set of candidate solutions:

e(x) = (𝑒1(x), 𝑒2(x), . . . , 𝑒𝑚(x)) ≤ 0

where x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ X is a decision vector from the decision space X.

Pareto Dominance. For any two decision vectors a and b from the decision space X,

a ≻ b (we say a dominates b) iff f(a) > f(b)

a ⪰ b (we say a weakly dominates b) iff f(a) ≥ f(b)

a ∼ b (we say a is indifferent to b) iff f(a) � f(b) ∧ f(b) � f(a)

In our example (Figure 3.1), there are four individuals (A, B, C, and D) that are not
dominated by any other individual.
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Pareto Optimality. A decision vector x ∈ X is said to be non-dominated regarding a set
A ⊆ X iff @a ∈ A : a ≻ x. The non-dominated decision vector x is called Pareto optimal
and the set of all non-dominated decision vectors is called the Pareto-optimal front.

In our example (Figure 3.1), the Pareto-optimal front or the Pareto Front Rank contains
four individuals, namely, A, B, C, and D. If we then remove these individuals from our set,
we can create the second Pareto front. It contains two individuals, namely, E and F, which
are dominated by some individuals from the Pareto front, but they are not dominated by
each other. The evaluation of one individual is not based on objective functions only, but
it is also influenced by other individuals.

There are several algorithms for the multi-objective optimization that use different eva-
luation of individuals. However, all of them exploit the non-dominated sorting. For our
purposes, we have analyzed the Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
and two versions of the Strength Pareto Evolutionary Algorithm (SPEA and SPEA2).

NSGA-II. The skeleton of the NSGA-II is as follows: (1) we start with initial popula-
tion 𝑃 , (2) we compute the Pareto ranks of all individuals, (3) the best n individuals are
held in an archive, (4) we breed new population 𝑄 from population 𝑃 , (5) we compute
the Pareto ranks of all individuals 𝑃 ∪𝑄 and decide, which individuals stay in the archive,
(6) new population 𝑄 becomes population 𝑃 , (7) the process continues with step (4) until
we obtain the required solution or create the maximum number of generations.

Sparsity. To achieve better diversity among individuals from the same Pareto front, we
can define sparsity. For instance, as the Manhattan distance over every objective between
an individual’s left and right neighbours [69]. The sparsity of outer individuals that have
only one neighbour is defined as infinite. We illustrate the sparsity on individuals B and C
from Figure 3.1. The sparsity of individual B (i.e. |𝐶1 − 𝐴1| + |𝐶2 − 𝐴2|) is higher than
the sparsity of individual C (i.e. |𝐷1 −𝐵1|+ |𝐷2 −𝐵2|).

SPEA and SPEA2. In SPEA, the value of fitness is not based directly on Pareto fronts,
but on the so-called strength. The Pareto-optimal solutions found so far are stored in
the archive, which is also referred to as an external set. The fitness of individuals from
population 𝑃 is calculated using the strengths of individuals in the external set. At first,
each individual 𝑖 from the external set 𝑖 ∈ ES with decision vector x𝑖 is assigned with
strength 𝑆(𝑖) (a real value from [0, 1)). The strength represents the ratio between the num-
ber of individuals 𝑗 with decision vector x𝑗 , which are weakly dominated by individual 𝑖
and the size 𝑁 of population 𝑃 plus one.

𝑆(𝑖) =
|{𝑗|𝑗 ∈ 𝑃 ∧ x𝑖 ⪰ x𝑗}|

𝑁 + 1

Fitness 𝐹 (𝑖) of individual 𝑖 from the external set is equal to its strength. That is
𝐹 (𝑖) = 𝑆(𝑖) while fitness 𝐹 (𝑗) of individual 𝑗 from population 𝑃 is equal to one plus the sum
of strengths of individuals from the external set, which weakly dominate individual 𝑗.

𝐹 (𝑗) = 1 +
∑︁

𝑖∈𝐸𝑆|x𝑖⪰x𝑗

𝑆(𝑖)

Note that the value of such a fitness needs to be minimized here. The main steps of
SPEA are the following, (1) initialization—initial population 𝑃 , (2) updating—create or
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update the external set, (3) fitness assignment—evaluation of individuals, (4) breeding—
selection of parents, recombination, mutation, (5) termination—terminate search or go to
step (2).

The weakness of the fitness evaluation within SPEA is the distribution of individuals in
the external set. If the external set does not contain enough different individuals, the di-
versity of the evaluation is weak. Moreover, the diversity of evaluation is weak as well if
the individuals in 𝑃 are close to each other, because such individuals are dominated by
the same individuals from the external set and thus they have the same fitness value.

These problems are addressed by SPEA2, which evaluates individuals not only using
the external set ES, but also using population 𝑃 itself. Strength 𝑆(𝑖) for each individual 𝑖
from ES ∪ 𝑃 represents the number of individuals that are dominated by 𝑖.

𝑆(𝑖) = |{𝑗|𝑗 ∈ 𝐸𝑆 ∪ 𝑃 ∧ x𝑖 ≻ x𝑗}|

The raw fitness of individual 𝑗 is then calculated as the sum of strengths of its dominating
individuals 𝑖. The fitness needs to be minimized here as well (actually, a zero value means
a Pareto-optimal solution).

𝑅(𝑗) =
∑︁

𝑖∈𝐸𝑆∪𝑃 |x𝑖≻x𝑗

𝑆(𝑖)

For example, individual 𝑗 is dominated by individuals 𝑖1 and 𝑖2, individual 𝑖1 dominates
two individuals (i.e. 𝑆(𝑖1) = 2) and 𝑖2 dominates three individuals (i.e. 𝑆(𝑖2) = 3). Then
the raw fitness of individual 𝑗 is 𝑅(𝑗) = 𝑆(𝑖1) + 𝑆(𝑖2) = 5.

Additional density information 𝐷(𝑖) ∈ (0, 1) is incorporated to discriminate between
individuals having the same raw fitness value. The SPEA2 uses k-th nearest neighbour
method and adds the density to the raw fitness 𝐹 (𝑖) = 𝑅(𝑖) +𝐷(𝑖).

The main loop of the SPEA2 algorithm is similar to SPEA: (1) initialization—initial po-
pulation 𝑃 , (2) fitness assignment—evaluation of all individuals from 𝑃 , (3) environmental
selection—fill the external set with 𝑁 best individuals from 𝐸𝑆 ∪ 𝑃 , (4) termination—if
some terminating criteria is satisfied, (5) breeding—selection of a parents, recombination,
mutation and continue with step (2).

SPEA2 has a fixed size of the external set—compared to SPEA, where the size of
external set depends on the size of the Pareto front rank (of course, if the number of Pareto-
optimal solutions exceeds a predefined limit, some members are removed by a clustering
technique to preserve the characteristics of the non-dominated front). SPEA2 fills the size
of the external set with dominated individuals [109, 110].

Quantitative Traits and Realized Heritability. As mentioned above, there are se-
veral similarities between the evaluation of individuals in genetic algorithms and in biology.
Here, we would like to discuss another notion from biology that can be useful for our pur-
pose. In biology, there are two main types of traits—qualitative and quantitative. The basic
difference is that a qualitative trait is typically influenced by a single gen, while a quantita-
tive trait is influenced by several gens and/or environment. This means that two genetically
identical individuals can have different evaluation of the same trait. In our case, two in-
dividuals with the same decision vector can have different objective vectors and thus, we
may use the evaluation inspired by quantitative traits.

Heritability indicates whether the variability of monitored traits is due to genetic fac-
tors, while realized heritability (ℎ2) is often used to quantify the degree to which a trait
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in a population can be pushed by selection [17, 51]. We exploit heritability and realized
heritability to confirm that our approach of using GA for the TNCS problem is useful. Re-
alized heritability can be either calculated using several formulas or estimated statistically
by linear regression. The regression coefficient reflects a relationship between the offspring
evaluation and the parent evaluation. A low values ℎ2 (less than 0.01) occurs when the off-
spring of the selected parents differ a little from the original population. On the other hand,
a high values of ℎ2 (more than 0.6) occurs when the offspring of the selected parents differ
from the original population almost as much as the selected parents do. We use the rea-
lized heritability estimated by the linear regression technique to confirm the inheritability
of selected objectives.

Linear regression is an approximation of given values by a line using a method of least
squares. This line can be described using the following function:

𝑦 = 𝛽0 + 𝛽1𝑥+ 𝜖

where 𝑦 is dependent variable—in our case, it represents values of offspring, 𝑥 is explanatory
variable—in our case, it represents values of parents, 𝛽0 and 𝛽1 are regression parameters,
and 𝜖 is noise. A vector of regression parameters 𝛽 can be estimated as follows:

̂︀𝛽 =
(︀
X𝑇X

)︀−1X𝑇Y

where X is a matrix with ones in the first column and the values of parents in the second
column, and where Y is a vector of the values of offspring. If parameter 𝛽1 (i.e. the slope
of the regression line) is equal to 0, then there is no dependency between offspring and
parents. The degree of the dependency, if indicated by the slope of the regression line, can
be determined using either the coefficient of determination 𝑟2 or correlation coefficient 𝑟.
The coefficient of determination can be calculated as:

𝑟2 = 1− 𝑆𝑒

𝑆𝑡

where 𝑆𝑒 is the residual sum of squares and 𝑆𝑡 is the total sum of squares. These sums can
be calculated as:

𝑆𝑒 =
(︁
Y − ̂︀Y)︁𝑇 (︁Y − ̂︀Y)︁

where ̂︀Y = ̂︀𝛽X and
𝑆𝑡 =

(︀
Y −Y

)︀𝑇 (︀
Y −Y

)︀
where Y is the arithmetic mean of Y components. Note that the coefficient of determination
is square of the correlation coefficient. In our experiments, we have used the correlation
coefficient for evaluation of dependency. It is from interval ⟨−1, 1⟩ and the value 0 means
that there is no correlation between the values, i.e. offspring is independent of parents.
Values of the correlation coefficient that are closer to −1 or 1 mean stronger dependency.
The correlation coefficient is calculated using covariance between parents and their offspring
divided by their standard deviations:

𝑟 =
𝐶 (X,Y)

𝑠X𝑠Y

where 𝐶 (X,Y) is covariance calculated as

𝐶 (X,Y) =
∑︁(︀

X− X
)︀ (︀

Y −Y
)︀
.
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3.2.2 Test Cases and Environment We Use

In the following sections, we present various results obtained in our infrastructure for test-
ing concurrent programs. This infrastructure is based on the SearchBestie [60] platform,
which uses the IBM Concurrency Testing Tool (ConTest) [40] to inject noise into execu-
tion of considered programs and its plug-ins [59, 61] for dynamic analysis and collection of
coverage metrics. The used meta-heuristic algorithms were implemented within the ECJ
library [102], which cooperates with our SearchBestie platform as well.

Our initial observations presented below are based on data collected from the three
multi-threaded Java programs, namely, Airlines, Animator, and Crawler. They were pre-
sented in Section 2.6 and each of them contains a concurrency error. Animator was executed
on the Intel i7-3770K processor using Oracle JDK 1.6. The other two test cases were exe-
cuted on a machine with two Intel X5355 processors using the same version of the Oracle
JDK.

3.3 Multi-objective Genetic Solution of TNCS Problem
This section describes our proposal of applying MOGA to the TNCS problem. It touches
upon several important aspects of setting MOGA for a successful application to the TNCS
problem. In particular, we introduce possible objectives in Section 3.3.1 first. These can
be used in construction of a successful fitness function, with emphasis on the selected pro-
perties that affect their suitability for our approach. Section 3.3.2 compares three popular
multi-objective genetic algorithms (SPEA, SPEA2 and NSGA-II) with respect to their suit-
ability for our approach. In Section 3.3.3, we discuss several aspects that influence selection
of particular objectives and construction of suitable fitness functions for our MOGA ap-
proach. Finally, the setting of parameters of the particular MOGA (such as the size of
population, mutation, and crossover operators) is discussed and experimentally evaluated
in Section 3.3.4.

3.3.1 Important Properties of Considered Objectives

Various metrics can be collected from the execution of the instrumented programs. Our
testing infrastructure is able to detect test failure, measure a duration of the test execution,
and collect various code and concurrency coverage metrics as well as warnings produced
by various attached dynamic analyzers, which are able to detect data races, atomicity
violations, and deadlocks. Collecting all these data introduces a considerable slowdown.
Moreover, some of the metrics are more suitable to be used as an objective and some are
less suitable for this purpose. In this section, we discuss key properties of metrics suitable
for the meta-heuristic approach, especially MOGA. We particularly focus on the number
of distinctive values produced by metrics, correlation among objectives, and their stability.
The stability here means the ability of the objective to provide similar values for the sa-
me decision vector in presence of the non-deterministic behaviour of tested multi-threaded
programs.

Number of Distinct Values Produced by Objectives. One of the important pro-
perties of the considered objectives is their ability to classify the considered solutions. In
general, many meta-heuristic algorithms provide worse results when the objectives with
a low number of distinct values in objectives are used [97]. In our case, we indeed do have
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metrics that suffer from the lack of distinct values. For instance, the error metrics provides
us with a boolean value whether the test fails or passes. The number of distinct values can
be slightly increased by multiple execution of the same test (this makes sense in presence
of a non-deterministic behaviour of the executed multi-threaded programs). However, 10
executions gives us a possibility to classify the considered solution only into 10 groups
according to the number of test executions that fail. A very small number of distinct values
is also provided by metrics based on warnings produced by the dynamic analyses.

In [61], we discuss and compare a few coverage metrics from several perspectives, includ-
ing the number of distinct values they provide. There are coverage metrics, such as HBPair,
that focus only on the synchronization done among two threads and provide only a few dis-
tinct values for small programs or programs with only little synchronization. The more
context information is included into the coverage metrics, the higher number of distinct va-
lues is usually obtained. For instance, the Avio metrics considers three subsequent accesses
to a single shared variable from two threads. The Avio* metrics adds an identification
determining from which two threads these accesses were performed and therefore again
increases the number of distinct values. The GoldiLockSC metrics, which provides very
good results in comparison, does not consider a direct identification of threads. Instead,
the higher number of distinct values is obtained by considering the contents of a lockset
produced by the GoldiLock algorithm [26] as context information.

High numbers of distinct values of an objective might be impractical in some cases.
For instance, the ConcurPair coverage metrics [61] considers all the subsequent tuples
of concurrency-related events. The concurrency aspect can be even emphasized by as-
signing different weights to the concurrency-related events executed by the same thread
and the concurrency-related events executed in different threads (referenced as WConcur-
Pair [42]). Handling and working with a huge number of coverage tasks of these metrics
produced by a big, heavily concurrent program might be slow. However, for the small
programs we use, the metrics provide fine-grained information about concurrency.

A very good candidate for a satisfactory objective from the point of view discussed
here is time, because the length of the test execution can be measured in small units (e.g.
milliseconds). However, time does not reflect concurrency and therefore is less attractive
for us. On the other hand, it might be interesting to use it later on when searching for
solutions that provide good results in a short time.

Correlation of Objectives. Another important property of the considered objectives
is their correlation. If two objectives correlate, they contribute to the search with the sa-
me information. Therefore, it is recommended to use non-correlating objectives in meta-
heuristic algorithms [97] so they do not need to bother with correlation themselves. As
most of the considered concurrency coverage metrics focus on the concurrency behaviour,
there is a high chance that some of them will correlate. Therefore, we analyzed all metrics
proposed in [61] and used in [42], whether they correlate on our test cases. In particular, we
performed 1000 executions of each of the considered test cases, namely, Animator, Airlines,
and Crawler, with randomly chosen configurations of noise. During each execution, we
collected all considered metrics and analyzed correlation among them.

Table 3.1 shows a fragment of our results focused only on metrics, which we mention
in this section. Data for the correlation table are taken from all considered test cases.
There is a high correlation (over 0.8) among the Avio*, GoldiLockSC*, Eraser and DUPair
objectives, which focus on the same behaviour of the considered programs (i.e. the way
how threads access shared variables). The LockSet metrics, which captures warnings pro-
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duced by the lockset-based Eraser algorithm [88], naturally correlates with metrics based
on locksets (i.e. GoldiLockSC* and Eraser).

Objectives with low correlation with other shown objectives are Time and Error, which
do not consider a concurrency-related behaviour at all. Rather small correlation with
other concurrency-related metrics is provided by the HBPair and WConcurPair objectives,
which focus on different behaviours. Specifically, HBPair considers synchronization among
threads only and WConcurPair captures thread context switches.

Table 3.1: Correlation of objectives in all three considered test cases.
Time Error WConcur. DUPair HBPair Avio* GoldiSC* Eraser LockSet

Time 1 0.140 0.343 0.506 0.164 0.344 0.481 0.507 -0.373
Error 0.140 1 -0.268 -0.209 -0.622 -0.187 -0.176 -0.258 0.346
WConcurPair 0.343 -0.268 1 0.746 0.658 0.900 0.743 0.765 -0.571
DUPair 0.506 -0.209 0.746 1 0.391 0.857 0.996 0.997 -0.868
HBPair 0.164 -0.622 0.658 0.391 1 0.557 0.342 0.459 -0.288
Avio* 0.344 -0.187 0.900 0.857 0.557 1 0.863 0.861 -0.650
GoldiLockSC* 0.481 -0.176 0.743 0.996 0.342 0.863 1 0.988 -0.866
Eraser 0.507 -0.258 0.765 0.997 0.459 0.861 0.988 1 -0.863
LockSet -0.373 0.346 -0.571 -0.868 -0.288 -0.650 -0.866 -0.863 1

When studying the correlation tables created for particular test cases, we found that
the correlation depends on the nature of the test case. For instance, in the Crawler test
case, most of the objectives highly correlated—including the HBPair coverage, which does
not correlate in the other considered test cases that much.

Overall, non-correlating objectives are Time and Error : they do correlate neither with
each other nor with the concurrency-related coverage metrics. The coverage metrics cor-
relation depends on the particular test case. In most cases, a lower correlation was de-
tected among the WConcurPair, HBPair and GoldiLockSC* metrics. As mentioned above,
the most contributing factor in this phenomenon is the behaviour that is measured by these
objectives.

Stability of Objectives. Another property of possible objectives, which we discuss here,
is the ability to provide stable values in presence of non-determinism in execution of concur-
rent programs. The work on using GA to solve the TNCS problem [42] recognized that one
of the major obstacles for applying GA in this domain is the non-deterministic behaviour
of concurrent programs, which gets reflected in non-deterministic objective values. Specifi-
cally, if we run a single test with a single configuration multiple times, each run can give us
different objective values. This can have a rather negative impact on our use of GA, since
the same individual can be considered to give great results at some point during the breed-
ing process and subsequently, it gives poor results only. Below, we briefly introduce several
possibilities to increase stability when still considering just one representative value. Then
we illustrate problems we faced and choose a suitable technique to reduce non-determinism.

The natural approach to reduce non-determinism is based on performing the experiment
multiple times and use a suitable value (or values) to characterize the result (and, in some
cases, a degree of non-determinism). In the work [42], the effects of non-determinism were
reduced by using cumulation over test runs repeated several times (five in our case) with
a single candidate solution (i.e. the configuration). However, this solution did not produce
truly satisfactory results with respect to stability. Therefore, we now look into the pos-
sibility of using average, median, or modus values instead.
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Figure 3.2: Illustration of three common distributions of values of a selected coverage met-
rics (WConcurPair) on Crawler test case. The first subgraph shows a normal distribution
with a small variation, the second subgraph shows a distribution that tends to the normal
one, but unfortunately with a high variation. The third subgraph shows a non-normal
distribution.

The well-known statistical measures mentioned above are commonly used to characterize
data sets. To choose between them, one has to understand what kind of data are to
be characterized. Graphs in Figure 3.2 illustrate common outcomes of the considered
objectives in a repeated execution of the same configuration. The figure shows three graphs
representing the distribution of values of a selected objective (WConcurPair in this case)
collected from 1100 independent executions (denoted 𝑁 in the figure) of three different test
and noise configurations of the Crawler test case. The graphs were chosen to illustrate
three main situations that represent common observations we got when analyzing different
objectives on multiple executions of different test cases.

The first graph demonstrates an ideal situation when the distribution of observed values
is normal with a few outliers. Moreover, the values in this case have a very small variation
coefficient (denoted 𝑣 in the figure). In such cases, average, modus, and median values rep-
resent the data set quite accurately. Even the cumulated values, which we used previously,
would characterize the observed data with a high stability in this case.

The second graph illustrates the most common situation when the distribution is not
normal with several outliers and a high variation coefficient. In such cases, the average and
the cumulation do not characterize the observed data accurately and therefore tend to be
unstable. The modus and the median characterize such data sets with a better accuracy.

Finally, the third graph shows the very unpleasant situation, which we sometimes en-
counter as well. The variation coefficient is again high and the distribution is not normal,
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but the number of outliers is very high too. In such cases, even the modus and the median
do not characterize the results well. But, they are still more stable approaches than based
on the average and cumulation values.

Below, we present extended comparison of the multiple benchmarks (eight concurrent
programs, namely Airlines, Animator, Crawler, Elevator, MolDyn, MonteCarlo, Raytracer,
and Rover—see Section 2.6) for three aforementioned approaches—median (med), mode
(mod)1, and the cumulative value (cum), which is computed as sum for time and as united
coverage for the considered coverage metrics. For each of our case studies, we randomly
selected 100 test configurations, executed each of them in 10 batches of 10 runs, and com-
puted the representative values in several different ways for each batch. Afterwards, we
compared stability of the representative values obtained across the batches. Table 3.2
shows the average values of variation coefficients of the representatives computed across
all the considered configurations for each case study and each approach to/option of com-
puting a representative value. It is clear that the best average stability was provided by
the median.

Table 3.2: Stability of representatives.

Case med mod cum
Airlines 0.033 0.054 0.051
Animator 0.012 0.027 0.092
Crawler 0.211 0.261 0.255
Elevator 0.145 0.227 0.107
MolDyn 0.020 0.025 0.024
MonteCarlo 0.015 0.019 0.022
Raytracer 0.022 0.020 0.016
Rover 0.059 0.100 0.141
Average 0.065 0.092 0.088

Based on these observations and information from literature [21], we decided to use
modus (denoted mod) and median (denoted med) computed from metrics collected from
multiple executions of the test and noise configuration. In particular, we decided to use
modus for metrics that provide a small number of distinct values (e.g. errors) and median
for the rest of metrics. In the future, we would like to use the variation coefficient in
evaluation of configurations as well.

3.3.2 Selection of Multi-objective Genetic Algorithm

Another step needed to apply multi-objective genetic optimization to solve the TNCS prob-
lem is to choose a suitable multi-objective genetic algorithm. Therefore, in this subsection,
we analyze the well-known multi-objective genetic algorithms SPEA, SPEA2, and NSGA-II
introduced in Section 3.2.1 from the point of view of their applicability for solving the TNCS
problem. We particularly concentrate on checking which of the evaluation functions 𝐹spea(𝑖),
𝐹spea2(𝑖), and 𝐹nsga-II(𝑖) implemented by these algorithms provides the best results in clas-
sifying our individuals 𝑖 into a reasonable (i.e. neither too small nor too big) number of
classes.

1Taking the biggest modus if there are several modus values.
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To demonstrate differences among the algorithms, we chose to show the results that we
obtained when experimenting with rather correlating objectives. In particular, we chose
the Crawler test case and highly (coef. 0.966) correlated metrics Avio* and GoldiLockSC*.
We chose 40 different individuals 𝑖 (i.e. test and noise configurations) and evaluated each
11 times. We therefore obtained 440 different values, which should ideally be classified
into 40 different fitness values by the considered algorithms. The correlation of objectives
is not desirable, but different test cases behave differently. We therefore cannot rule out
the correlated objectives completely. Our goal is to choose an algorithm that behaves well
even under such circumstances.

Table 3.3: Problematic pairs of objectives and their evaluation by multi-objective fitness
functions.

Pair of objectives SPEA SPEA2 NSGA-II
(Avio*, GoldiLockSC*) 4 366 106
(Time, GoldiLockSC*) 30 410 38
(Time, Error) 7 437 386
(Error, GoldiLockSC*) 8 240 199

SPEA. As mentioned in Section 3.2.1, evaluation of individuals by SPEA depends on
the number and the distribution of individuals in the external set (the Pareto front rank).
In our experiments, SPEA provided us with an insufficient number of different values of
𝐹spea(𝑖) for different individuals 𝑖. In the experiment described above, we got four different
fitness values only (the external set contains just two individuals in this case). SPEA does
not provide us with a sufficient ability of classifying different individuals in this case.

SPEA2. Compared with the SPEA algorithm, SPEA2 improves the evaluation of indi-
viduals by taking into account not only the dominating individuals, but also the dominated
ones. In our experiments, SPEA2 had no more problems with a small number of indi-
viduals in the external set. For correlating objectives in our experiment, SPEA2 achieved
a much bigger number of different fitness values. On the other hand, our use of SPEA2
led to another problem. Specifically, the number of the obtained fitness values got close to
the number of the evaluated individuals (366 in this experiment), which is way too much.

NSGA-II. The last algorithm that we tried was NSGA-II. This algorithm finally gave us
satisfactory results in that the number of the generated classes of individuals was neither
too small nor too big. As explained in Section 3.2.1, NSGA-II assigns individuals into
the so-called Pareto ranks that provide a basis for evaluation of individuals 𝑖 by 𝐹nsga-II(𝑖).
Subsequently, to achieve a better distribution of values along the Pareto front rank, the no-
tion of sparsity is used. However, since sparsity concerns a single Pareto rank, we ignored
it in the experiment presented here. NSGA-II produced 106 different fitness values in our
experiment, which is a reasonable number for the given case.

Table 3.3 shows a sample of our further experiments with the ability of the considered
algorithms to provide satisfactory results when tuples of problematic objectives are used. In
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Figure 3.3: Graphs showing how NSGA-II handles different pairs of objectives.

particular, we focus on the problems of correlation (Avio* and GoldiLockSC*) and distinc-
tive numbers of the objective (Error) that are too low. We chose the test duration (Time)
objective to represent a good objective that does not correlate with others and provides
a high number of distinctive values. The table shows the results for the same experiment
as considered above (i.e. 40 individuals, 440 evaluations of the Crawler test case). The first
row therefore summarizes the numbers discussed previously.

Table 3.3 also shows that SPEA produces too small numbers of fitness values, SPEA2
too large numbers of values, which are close to the number of evaluations, whereas NSGA-II
gives a reasonable value in between of the extremes (except the case of the Time and Error
pair of objectives).

Figure 3.3 shows key points demonstrating why NSGA-II achieved the numbers shown
in the table. The graphs show positions of the achieved values in the space (x-axis repre-
sents the first objective in a pair and y-axis represents the other objective) and different
ranks computed by the algorithm (depicted using colours). The first four graphs (3.3(a)
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to 3.3(d)) present situations considered in Table 3.3. Figures 3.3(e) and 3.3(f) show a si-
tuation when we chose good pairs of objectives. Specifically, we chose to present results for
the (WConcurPair, HBPair) and (WConcurPair, GoldiLockSC*) objectives, respectively.

All the major problems NSGA-II faces with our objectives are visible in the figures.
Graphs 3.3(a) and 3.3(e) demonstrate the problem of correlating objectives, which the al-
gorithm handles quite well. Graphs 3.3(c) and 3.3(d) emphasize the problem when one
(Graph 3.3(d)) or both (Graph 3.3(c)) objectives provide an insufficient number of distinct
values. Finally, Graphs 3.3(b) and 3.3(f) show an ideal situation when non-correlating
objectives with a sufficient number of distinct values are used.

In the rest of our test cases, NSGA-II provided us with similarly good results too.
Therefore, we consider NSGA-II to be the best algorithm out of the considered ones for
our purposes. In the further analyses, we concentrate on its use only.

3.3.3 Selection of Objectives

In this section, we discuss several aspects of choosing objectives for our MOGA approach.
First, we discuss the number of objectives considered by the chosen NSGA-II algorithm.
Then, we discuss the final selection of objectives for the fitness function. Additionally,
the way to emphasize achieving uncommon observations is presented. And finally, three
fitness functions, which we later compare in Section 3.4, are proposed.

Number of Considered Objectives. As mentioned above, there are various metrics
that can be used as objectives for our MOGA approach. The choice of the NSGA-II
algorithm makes an important limitation to the number of considered objectives. It has
been shown [48, 20] that the algorithm suffers from its ability to handle more than three
objectives adequately. Therefore, we decided to choose the maximum, i.e. three objectives.

Selection of Suitable Objectives. Suitable objectives for our approach are those that
have a high number of distinctive values and do not correlate. Moreover, the objectives
should provide stable values in our inherently non-deterministic testing environment. They
also need to reflect our goal: to achieve a high coverage of various concurrency behaviours
and/or success in finding concurrency errors.

Based on the results presented in [61] and study of properties of the considered ob-
jectives summarized above, we chose three concurrency coverage metrics as candidates for
good objectives: HBPair, GoldiLockSC*, and WConcurPair. To minimize impact of non-
determinism, we chose to consider as objective median of these coverage metrics, computed
from five test executions with the same configuration. Five executions were chosen as
a trade-off between a higher number of executions, which leads to a lower impact of non-
determinism, and time-constraints, because each execution of SUT requires a considerable
amount of time.

Since our goal is to find a concurrency error, we decided to also consider the Error and
LockSet metrics, which provide information whether a concurrency error occurred during
the execution and whether Eraser algorithm detected a problem in synchronization. We
decided to use them in our experiments although they often provide an insufficient number
of distinct values.

Emphasize Uncommon Observations. When analyzing the results of the tests, we
noticed that some behaviour was observed every time we executed the test. Another be-
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haviour was observed often (i.e. in more than 50% of executions) and some behaviour was
rare. The goal of the testing is to observe not only the easily achieved behaviour, but also
the behaviour that is hard to achieve. Therefore, we decided to penalize often (and there-
fore easily) achieved behaviours. The motivation behind this is to force the optimization
algorithm to search for candidate solutions that can achieve a high coverage of behaviours
that are not easily achievable. This should lead to a further improvement in the quality of
our solutions.

Table 3.4: Impact of penalization on the number of distinctive values of coverage metrics.
Test Coverage Penalization Normal
Airlines WConcurPairs 95 87

HBPair 1 1
GoldiLockSC* 31 20

Animator WConcurPairs 115 115
HBPair 41 20
GoldiLockSC* 115 110

Crawler WConcurPairs 89 88
HBPair 79 23
GoldiLockSC* 86 57

The technical solution of the penalization works as follows. We let the genetic algorithm
to evaluate the first generation (i.e. randomly chosen candidate solutions). Then we assign
a probability to each covered task. The probability is assigned according to the number of
executions it was observed in within the first generation. All the following test executions
are evaluated with respect to these probabilities. This means that all behaviours not ob-
served in the first generation add 1 to the considered value and the behaviours observed
are penalized using the computed probability (if probability is 0.1, value 0.1 is taken).

This approach has also a positive side effect, i.e., the increase of the number of distinctive
values our metrics can achieve. This observation is demonstrated in Table 3.4, which shows
the number of distinctive values we achieved with and without penalization. The data in
the table were collected from a randomly chosen MOGA experiment with the Crawler test
case, population size 20, 100 generations and penalization enabled. The penalization was
therefore computed from 20 candidate solutions of the initial population and applied to 1980
individuals from the following generations, from which the data are presented. The table
clearly shows the increase of the number of distinctive values in case when the penalization
is enabled.

Selected Fitness Functions. Considering the aforementioned findings, we identify the fol-
lowing fitness functions as potentially suitable for noise-based testing of concurrent software:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠1𝑎 = (WConcurPair𝑐𝑢𝑚(5),HBPair𝑐𝑢𝑚(5),GoldiLockcSC*
𝑐𝑢𝑚(5))

𝑓𝑖𝑡𝑛𝑒𝑠𝑠1𝑏 = (WConcurPair𝑚𝑒𝑑(5),HBPair𝑚𝑒𝑑(5),GoldiLockcSC*
𝑚𝑒𝑑(5))

𝑓𝑖𝑡𝑛𝑒𝑠𝑠2 = (Error𝑚𝑜𝑑(5),LockSet𝑚𝑜𝑑(5),GoldiLockcSC*
𝑚𝑒𝑑(5))

The fitness functions differ in ways to increase stability of objectives. The fitness1a
function uses cumulation, fitness1b and fitness2 use median and for objectives with a low
number of distinct values (i.e. LockSet and Error), modus is used. The fitness2 function
differs in considered objectives. It considers the number of concurrency errors (Error) and
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the number of warnings produced by the Eraser algorithm (LockSet) combined with a se-
lected concurrency coverage metrics (GoldiLockSC*). The efficiency of the fitness functions
is evaluated in Section 3.4.

3.3.4 Setting up Multi-objective Algorithm

Before the MOGA approach can be used effectively, a proper setting of its parameters is
needed. Setting of the parameters such as size of population, number of generations, and
selection, crossover, and mutation operators are presented here. Later, this step allows us
to get most of the MOGA optimization and also to learn what makes MOGA successful.
In this section, the previous experience obtained when solving the TNCS problem using
GA [42] was used to choose the initial sets of suitable parameters of MOGA that are worth
to experiment with.

In particular, we experiment with the population sizes and the number of generations
in the way that the number of individual evaluations in one experiment remains constant
(i.e. 2000 evaluations of individuals per experiment). Therefore, for populations of size 20,
40, and 100 we used sizes of 100, 50, and 20 generations, respectively. Furthermore, we
studied the influence of three different crossover operators available in the ECJ toolkit [102]
(called one, two, and any) and three different probabilities of mutation (0.01, 0.1, and 0.5).
In total, we experimented with 27 different settings of MOGA (3 sizes of population, 3
crossover operators, and 3 mutation probabilities). The results presented below are based
on the average values collected from multiple executions of each MOGA setting, which differ
only in the initial random seed values (i.e. only in the individuals generated in the first
generation).

The selection operator was the same in all the experiments. It was set to the Mating
Scheme [47] selection algorithm, which provides better results for the NSGA algorithm [47]
than the fitness-based tournament or the proportional selection algorithms that are com-
monly used in the single-objective GA. This algorithm combines fitness-based selection of
one parent selected for crossover and the similarity-based tournament selection for the se-
cond parent. This algorithm also provided the best results in our preliminary experiments.

Hence our individuals are represented using vectors of integers (as discussed in Sec-
tion 3.2), the crossover operators works as follows. The one crossover operator randomly
splits two selected individuals into two parts and generates their offspring by random choos-
ing between parents at each part of the vector. The two operator cuts the vector into three
pieces of a random length and the any operator cuts the vector into elements.

The mutation operator, which we used randomly, selects an element of the vector and
sets its value to a random value from the allowed range. All experiments were done only on
the Crawler and the Airlines test cases introduced in Section 2.6, which represent test cases
with reasonably short execution time (we used 324,000 executions of Crawler and 540,000
executions of the Airlines test case to collect data for the results presented here).

The MOGA approach was set to use only the fitness1a function, but the results were
compared using multiple criteria considering the quality of the resulting individuals as
well as the quality of the optimization process. Specifically, we computed (i) the varia-
tion of individuals in the last generation, (ii) the generation in which MOGA degenerated,
(iii) the average achieved coverage obtained by the individuals from the last generation
(we considered WConcurPair, HBPair, and GoldiLockSC* metrics, which are used in fit-
ness1a), and (iv) the accumulated number of detected errors in SUT during the experiment.
The variation was computed as the number of different individuals in the last generation
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divided by the population size. In our work, degeneration is considered a situation when
at least half of the individuals in the population are identical.

The best configuration of MOGA was selected as follows: for each test case, we sorted
the configurations according to each criterion described above and assigned numbers from
1 (the worst) to 27 (the best) to the individual configurations. Finally, we summed these
numbers for all four considered criteria and test cases. Then, we chose the best configuration
to be the one with the highest score achieved. Particularly, the best configuration consists
of: the population size 20 (100 generations), the crossover type two, and the mutation
probability 0.5 – and it is referred to as MOGAconf below. This configuration provides
the best values in the variation, degeneration, and HBPair coverage metrics in both of
the considered test cases and very good results in the other considered criteria.

Note that MOGAconf operates with a relatively high mutation probability (0.5), which
helps in exploration of the new promising solutions. This is combined with a relatively high
selection pressure. Our results show that this mixture helps MOGA to dramatically improve
possible solutions during the first generations, because the incorporation of the NSGA-II
archive helps to preserve the best solutions evaluated thus far in presence of such an agile
search process.

3.4 General Experiments with MOGA Approach
This section contains the first of our experimental evaluation of the MOGA approach (not
counting the preliminary experiments that we have presented in the previous section where
they were used for properly setting various parameters of our MOGA approach). In par-
ticular, in Section 3.4.1, we first present experiments proving that our MOGA approach can
indeed solve the TNCS optimization problem with a positive effect on the testing process
despite the involved non-determinism. In these experiments, heritability, regression, and
correlation introduced in Section 3.2 were used to show that the good individuals chosen by
the MOGA indeed produce good offspring regardless of non-determinism present in the eva-
luation of individuals and that the MOGA approach can be effective in beating the random
approach often used in the literature (or in practice). Subsequently, Section 3.4.2 contains
a comparison of the fitness functions introduced in Section 3.3. The fitness functions are
compared only in their ability to avoid degradation of the optimization process. In Sec-
tion 3.5, we then proceed with experiments comparing our MOGA approach with the SOGA
solution.

3.4.1 Ensuring that MOGA Works in Presence of Non-determinism

In this section, we present a set of experiments conducted to ensure the ability of our MOGA
approach to actually improve the considered objectives regardless of non-determinism in
evaluation of individuals. In these experiments, we applied MOGA with the MOGAconf
setting on a set of three different test cases, namely, Airlines, Animator, and Crawler
introduced in Section 2.6. We focus mainly on the fitness1a and fitness1b fitness functions
proposed in Section 3.3.

To study the effect of non-determinism, we computed heritability, regression, and cor-
relation to see whether there is a positive relation among parents and their offspring. In
other words, we check whether parents selected by the selection operator indeed represent
configurations that are able to steadily improve the testing performance with respect to
considered objectives in presence of non-determinism in evaluation of individuals. Below,
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Figure 3.4: Regression graphs demonstrating ability of MOGA to improve achieved results
in all three considered objectives.

we first show graphically on one test case the general tendency of MOGA to optimize so-
lutions in presence of non-determinism. Then, we present on a study of correlation and
heritability that the objectives (i.e. fitness function) must be carefully chosen to achieve
such positive results.

Graphs in Figure 3.4 illustrate a relation of particular objectives (namely, WConcur-
Pair, HBPair, and GoldiLockSC*) between parents (x axis) and their offspring (y axis) in
the Crawler test case. Each point in the graph represents an average value of a particular
objective (i.e. coverage) achieved by parents selected for breeding (x axis) and an average
value of a objective achieved by offspring generated from these parents (y axis). The num-
ber of points in the graph therefore corresponds to the number of breedings. Moreover,
the points are coloured to emphasizes the general tendency of MOGA to improve the avail-
able solutions. The dark blue points represent the first generations, the violet points are
the next generations and so on to the yellow points, which represents the last generations.

Graphs 3.4 (a), 3.4 (b), and 3.4 (c) depict fitness1a and graphs 3.4 (d), 3.4 (e), and 3.4 (f)
depict the same results when fitness1b was used. As described in Section 3.2, a positive
slope emphasizes a high correlation among parents and their offspring, showing that good
parents produce good offspring. Moreover, it is also clear that the initial populations
(dark blue) achieve much worse results than the last populations (yellow), meaning that
the optimization works well in these cases.

Boxplots in Figure 3.5 further emphasize the positive effect of the optimization. The da-
ta for boxplots were collected from six executions of the Crawler test case using the MOGA-
conf configuration and the fitness1a function. The boxplots show a comparison of results
achieved by the individuals from the initial population, which are generated randomly (de-
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(a) WConcurPair (b) HBPair

(c) GoldiLockSC*

Figure 3.5: Comparison of Random vs. the last generation from MOGA in the Crawler
test case using three considered objectives.

noted as Random in boxplots), and therefore represent values that can be achieved without
the MOGA approach, and the results achieved by the individuals from the final popula-
tion (denoted as MOGA). The bloxplots show data for the considered objective functions,
i.e. WConcurPair, HBPair, and GoldiLockSC*. The difference between the random and
the MOGA approach is evident in all boxplots.

Finally, Table 3.5 summarizes our study of correlation and heritability for all three
considered test cases (i.e. Airlines, Animator, and Crawler) and two fitness functions,
namely, fitness1a and fitness1b. Note that a high correlation coefficient represents high
heritability, which is good for MOGA. In general, the table shows very high correlation
coefficients (i.e. above 0.8), but there are several important exceptions.

In some cases, for instance in the Animator test case and the WConcurPair coverage,
the correlation coefficient for fitness1a is much higher (over 0.9) than for fitness1b (below
0.5). This is impact of difference between computation of cumulative value (fitness1a)
and median (fitness1b). WConcurPair is a very detailed coverage metrics and therefore
the non-determinism in its values is the highest from the considered metrics. In such cases,
the cumulative value represents a somewhat stable value that provides better results in
the end.

The situation with the HBPair coverage in the same test case is the opposite. In average,
better results were achieved when median was used. This is because HBPair represents
a coverage metrics with a high level of abstraction and hence a low level of diversity.
The high level of abstraction is emphasized in the Airlines test case, in which the NA value
is presented: the Airlines test case contains only a little synchronization; therefore, it was
easy to achieve full coverage in this case. There was no improvement in this case.

Overall, the presented results show clear evidence that despite presence of a certain
level of non-determinism in the evaluation of the individuals, the MOGA approach is able
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Table 3.5: Parents-offspring correlation coeficients.

Correlation coefficient
Coverage fitness1a fitness1b

Airlines WConcurPair 0.726 0.703
HBPair NA NA
GoldiLockSC* 0.812 0.458

Animator WConcurPair 0.914 0.578
HBPair 0.705 0.598
GoldiLockSC* 0.609 0.564

Crawler WConcurPair 0.873 0.906
HBPair 0.964 0.960
GoldiLockSC* 0.955 0.940

to search for better solutions. We therefore do not need to use other tools for reduction
of non-determinism. This is a very positive finding, because most of the non-determinism
reduction techniques require increase in the number of measurements (i.e. evaluations) [50].
Such solutions would lead to higher time requirements, as in our case, each evaluation is
realized by an execution of SUT.

3.4.2 Fitness Functions Comparison

In this section, we focus on the ability of our modifications of the search process to avoid
degradation of the search process implemented by our multi-objective genetic algorithms
when used with the fitness functions proposed in Section 3.3 (i.e. fitness1a, fitness1b, and
fitness2 ). Here, degradation refers to a situation when the population contains more than
one copy of the same individual which implies a loss of diversity in the population.

The same test cases as above (namely Airlines, Animator, and Crawler) were employed
for the purposes of this comparison. We used the same setting of MOGA as in the previous
experiment: the MOGAconf configuration. Moreover, we randomly selected six initial
populations and let MOGA start from these populations only. This allows us to compare
the considered fitness functions on the same initial data.

The graph in Figure 3.6 summarizes the results obtained in the comparison. The graph
shows how the average number of distinct individuals (y-axis) develops across generations
(x-axis). The average values are computed from all executions of all three considered test
cases.

The worst results from the newly proposed fitness functions were achieved by the fit-
ness1a function, which considers cumulated values of objectives. The sparsity computation
used by the NSGA-II algorithm described in Section 3.2 should avoid degeneration of
the search process. Therefore, we were curious why the degeneration is happening here.
The problem is caused by the non-deterministic evaluation of individuals. Further ana-
lysis shows that the same individual is evaluated quite differently and because sparsity
is computed from the achieved results (i.e. objective vector), NSGA-II considers such
an individual to be different form the already known ones. Moreover, such individuals are
quite successful and therefore preferred by the algorithm. Therefore, the algorithm keeps
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Figure 3.6: Degeneration of search process when using MOGA with proposed fitness func-
tions.

the newly evaluated individual in the archive, which contains such an individual already—
with a different evaluation.

Much better results were achieved by the fitness1b fitness function: this shows that
the use of median indeed suppresses the non-deterministic evaluation (as described in Sec-
tion 3.3). The graph clearly shows that this positively affects the quality of the search,
because in average, fitness1b suffers from degeneration much less. The best results from
the degeneration point of view were achieved by fitness2, which combines the success of
suppressing non-determinism and objectives introducing less non-determinism (Error, Lock-
Set).

3.5 Comparison with Single-Objectives Genetic Algorithm
An objective of this section is to show that our approach provides better results when
compared to the sooner proposed use of the single-objective genetic approach (SOGA),
which we already mentioned in Section 3.1.

The section presents results of four experiments comparing the proposed MOGA-based
approach with the SOGA-based approach and both approaches with the random approach.
First, we show difference between degeneration of the search process identified in the SOGA-
based approach in [42] and in our MOGA-based approach which does not suffer from de-
generation. Then, we show that the proposed penalization does indeed lead to a higher
coverage of uncommon behaviour. Finally, we focus on a comparison of the MOGA, SOGA,
and random approaches with respect to their efficiency and stability.
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The experiments presented below were conducted on a set of eight concurrent bench-
marks — Airlines, Animator, Crawler, Elevator, MolDyn, MonteCarlo, Raytracer, and Rover
(see Section 2.6).

In the experiments, we used the settings of the MOGA that was already presented in Sec-
tion 3.3.3 and Section 3.3.4, i.e., each candidate solution is evaluated 10 times, the achieved
coverage is penalized, and the median values for the selected metrics are computed. Size of
the population is 20, number of generations is 50, the crossover type is two, and the mu-
tation probability is 0.5. As the SOGA-based approach uses time as one of the objectives
in the fitness function, we added the execution time of tests variable to the MOGA fit-
ness function for optimization of tests with small resource requirements. The objectives
in the MOGA approach selected for following experiments are GoldiLockSC*, GoodLock*,
WConcurPairs, and Time.

In the experiments, we use the following parameters of the SOGA-based approach taken
from [42]: size of population 20, number of generations 50, two different selection operators
(tournament among four individuals and fitness proportional2), the any-point crossover
with probability 0.25, a low mutation probability (0.01), and two elites (that is 10 % of
the population). However, to make the comparison more fair, we built the fitness function
of the SOGA-based approach from the objectives selected above3:

𝑊𝐶𝑜𝑛𝑐𝑢𝑟𝑃𝑎𝑖𝑟𝑠

𝑊𝐶𝑜𝑛𝑐𝑢𝑟𝑃𝑎𝑖𝑟𝑠𝑚𝑎𝑥
+

𝐺𝑜𝑜𝑑𝐿𝑜𝑐𝑘*

𝐺𝑜𝑜𝑑𝐿𝑜𝑐𝑘*𝑚𝑎𝑥

+
𝐺𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝐶*

𝐺𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝐶*
𝑚𝑎𝑥

+
𝑡𝑖𝑚𝑒𝑚𝑎𝑥 − 𝑡𝑖𝑚𝑒

𝑡𝑖𝑚𝑒𝑚𝑎𝑥
.

The maximal values of objectives were estimated as 1.5 times the maximal accumulated
numbers we got in 10 executions of the particular test cases. As proposed in [42], the SOGA-
based approach uses cumulation of results obtained from multiple test runs without any
penalization of frequent behaviours.

All results presented in this section were tested by the statistical t-test with the signi-
ficance level 𝛼 = 0.05, which specifies whether the achieved results for Random, MOGA,
and SOGA are significantly different. In a vast majority of cases, the test confirmed a sta-
tistically significant difference among the approaches.

Degeneration of the Search Process. Degeneration, i.e. a lack of variability in po-
pulation, is a common problem of population-based search algorithms. Figure 3.7 shows
average variability of the MOGA-based and the SOGA-based approaches computed from
the search processes on eight considered test cases. The x-axis represents generations.
The y-axis shows numbers of distinct individuals in the generations (max. 20). The higher
value the search process achieves, the higher variability; therefore, low degeneration was
achieved. The Figure 3.7 clearly shows that our MOGA-based approach does not suffer
from the degeneration problem unlike the SOGA-based approach.

Degeneration of the SOGA-based approach and, subsequently, its tendency to get caught
in a local maximum (often optimizing strongly towards a highly positive value of a single
objective, e.g. minimum test time, but almost no coverage) can in theory be resolved by
increasing the amount of randomness in the approach. However, then it basically shifts
towards random testing. An interesting observation (probably leading to the good results
presented in [42]) is that even a degenerated population can provide a high coverage if

2Experiments presented in [42] showed that using these two selection operators is beneficial. Therefore,
we used them again. On the other hand, for MOGA, the mating schema provides better results.

3In the experiments performed in [42], the fitness function was sensitive on weight. Therefore, we removed
the weight from our new fitness function for SOGA.
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Figure 3.7: Degeneration of MOGA-based and SOGA-based search processes.

the repeatedly generated candidate solutions suffer from low stability, which allows them
to test different behaviours in different executions.

Table 3.6: Impact of penalization built into MOGA approach.
Test MOGA SOGA Random
Airlines 59.66 60.61 19.14
Animator 70.1 74.31 44.73
Crawler 70.73 66.32 61.19
Elevator 89.26 83.96 65.69
Moldyn 68.32 44.25 39.73
Montecarlo 40.13 54.52 28.25
Raytracer 73.08 60.49 54.68
Rover 53.87 41.45 30.62
Average 65.52 60.73 43.00

Effect of Penalization. The goal of the penalization scheme proposed above is to in-
crease the number of tested uncommon behaviours. An illustration of the fact that this goal
has indeed been achieved is provided in Table 3.6. The table particularly compares the re-
sults collected from 10 runs of the final generations of 20 individuals obtained through
the MOGA-based and the SOGA-based approaches with the results obtained from 200
randomly generated individuals. Each value in the table gives the average percentage of
uncommon behaviours spot by less than 50 % of candidate solutions, i.e. by less than 10
individuals. Number 60 therefore means that, on average, the collected coverage consists
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of 40 % of behaviours that occur often (i.e. in more than 50 % of the runs) while 60 % are
rare.

In most cases, if some approach achieved the highest percentage of uncommon be-
haviours under one of the coverage metrics, it achieved the highest numbers under the other
metrics as well. Table 3.6 shows that our MOGA-based approach is able to provide a higher
coverage of uncommon behaviours (where errors are more likely to be hidden) than the other
considered approaches.

Table 3.7: Efficiency of considered approaches.
Case Metrics MOGA SOGA Random
Airlines C/Time 0.06 0.06 0.04

S/Time 3.73 3.29 2.98
Animator C/Time 0.07 0.29 0.19

S/Time 0.33 1.01 0.65
Crawler C/Time 0.21 0.22 0.12

S/Time 4.15 3.84 2.05
Elevator C/Time 0.03 0.04 0.02

S/Time 2.69 3.64 1.28
Moldyn C/Time 0.01 0.01 0.01

S/Time 11.73 16.83 2.56
Montecarlo C/Time 0.01 0.01 0.01

S/Time 9.52 9.66 0.01
Raytracer C/Time 0.01 0.01 0.01

S/Time 7.16 5.13 0.69
Rover C/Time 0.11 0.10 0.08

S/Time 5.17 2.49 2.18
Avg. impr. 2.01 2.11

Efficiency of the Testing. Next, we focus on the efficiency of the generated test set-
tings, i.e. on their ability to provide a high coverage in a short time. We again consider
10 testing runs of the 20 individuals from the last generations of the MOGA-based and
the SOGA-based approaches and 200 test runs under random generated test and noise set-
tings. Table 3.7 compares the efficiency of these tests. To express the efficiency, we use
two metrics: namely, C/Time shows how many coverage tasks of the GoldiLockcSC* and
GoodLock* metrics got covered on average per a time unit (milisecond). S/Time indicates
how many coverage tasks of the general purpose WConcurPairs coverage metric got covered
on average per a time unit. Higher values in the table therefore represent higher average
efficiency of the testing runs under the test settings obtained in one of the considered ways.
The last row provides the average improvement (Avg. impr.) of the genetic approaches
against random testing. Both genetic approaches are significantly better than the random
approach. In some cases, the MOGA-based approach had a better evaluation, while the re-
sults were better for SOGA in some other cases. However, note that the MOGA-based
approach is more likely to cover rare tasks (as explained in the previous paragraph). So
even if it covers a comparable number of tasks with the SOGA-based approach, it is still
likely to have more advantages from the practical point of view.
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Stability of Testing. Finally, we show that candidate solutions found by the MOGA-
based approach provide more stable results than the SOGA-based and the random ap-
proaches. For the MOGA-based and the SOGA-based approaches, Table 3.8 provides the a-
verage values of variation coefficients of the coverage under each of the three considered
coverage criteria for each of the 20 candidate solutions from the last obtained generations
across 10 test runs. For the case of random testing, the variation coefficients were calculated
from 200 runs generated randomly. The last row of the table shows the average variation co-
efficient across all the case studies. The table clearly shows that our MOGA-based approach
provides more stable results when compared to the other approaches.

Table 3.8: Stability of testing.
Case MOGA SOGA Random
Airlines 0.06 0.17 0.29
Animator 0.02 0.11 0.12
Crawler 0.38 0.38 0.26
Elevator 0.50 0.48 0.58
Moldyn 0.11 0.20 0.70
Montecarlo 0.13 0.11 0.89
Raytracer 0.16 0.46 0.76
Rover 0.08 0.10 0.32
Average 0.18 0.25 0.49

3.5.1 Threats to Validity

Any attempt to compare different approaches faces a number of challenges, because it is
important to ensure that the comparison is as fair as possible. The first issue to address is
that of internal validity, i.e. whether there has been a bias in the experimental design or
stochastic behaviour of the meta-heuristic search algorithms that could affect the obtained
results. To attend to this issue, Section 3.3.2 provides a brief discussion and experimental
evidence that supports the choice of the NSGA-II MOGA algorithm out of the three con-
sidered algorithms. To address the problem of setting various parameters of meta-heuristic
algorithms, a number of experiments was conducted to choose configurations that would
provide good results in the given context. Similarly, our choice of suitable objectives was
done based on observations from the previous experimentation [61]. Care was taken to
ensure that all approaches are evaluated in the same environment.

Another issue to address is that of external validity, i.e. whether there has been a bias
caused by external entities, such as the selected case studies (that is, programs to be tested
in our case) used in the empirical study. The diverse nature of programs makes it impossible
to sample a sufficiently large set of programs. The chosen programs contain a variety of
synchronization constructs and concurrency-related errors that are common in practice, but
they represent a small set of real-life programs only. The studied execution traces conform
to real unit and/or integration tests. As with many other empirical experiments in software
engineering, further experiments are needed to confirm the results presented here.
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Chapter 4

Using Data Mining in Testing of
Concurrent Programs

As it has been already said, the problem with testing of concurrent programs is in the choo-
sing suitable noise injection heuristics and suitable values of their parameters (as weel as
suitable values of parameters of the programs being tested themselves). In this chapter,
we propose the solution of this problem. Here, by suitable, we mean such settings that
maximize chances of meeting a given testing goal (such as, e.g. maximizing coverage of rare
behaviours and thus maximizing chances to find rarely occurring concurrency-related bugs).
Our approach is, in particular, based on using data mining in the context of noise-based
testing. We use the approach both to get more insight about the importance of the different
heuristics in a particular testing context as well as to improve fully-automated noise-based
testing (in combination with both random as well as genetically optimized noise setting).

4.1 Introduction
In this chapter, our approach is, in particular, based on using data mining, applied on
a sample of test runs of a given concurrent program, to derive classifiers capable of dis-
tinguishing which test and noise settings are suitable and which unsuitable for the given
testing goal. To be more precise, we use decision trees and the AdaBoost machine learning
algorithm, which is a well-known technique for building high-quality classifiers.

We show how AdaBoost can be applied to gain new knowledge about efficient noise-
based testing of a given concurrent program with a given testing goal (or even more generally
for a class of programs and/or testing goals). Subsequently, we show how the results
obtained by data mining can be used to fully automatically improve testing based on
randomly set up noise injection. This is achieved by either filtering out unsuitable randomly
chosen settings or by narrowing down the random generation to suitable ranges of noise
and/or test case parameters. Moreover, we also show that the obtained results can be used
to guide and consequently speed up an automated search-based process of finding suitable
values of test and noise parameters. For that purpose, we combine the process of mining
of suitable settings of noise-based testing with a subsequent genetic optimization restricted
to the values considered as suitable by data mining.

In order to show that the proposed approach can indeed be useful, we apply it for
optimizing the process of noise-based testing for two particular testing goals on a set of
several benchmark programs. Namely, we consider the testing goals of reproducing known
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errors and covering rare interleavings which are likely to hide so far unknown bugs. Our
experimental results confirm that the proposed approach can discover useful knowledge
about the influence and suitable values of test and noise parameters, which we show in two
ways: (1) We manually analyze information hidden in the classifiers, compare it with our
long-term experience from the field, and use knowledge found as important across multiple
case studies to derive some new recommendations for noise-based testing. (2) We show that
the obtained classifiers can be used—in a fully automated way—to significantly improve
efficiency of noise-based testing using a random selection of test and noise parameters as well
as to be successfully combined with finding suitable noise settings by genetic optimization.

4.2 Related Work
Below, we discuss works where data mining is applied in testing. None of them, however,
is going in the same direction as the research presented in this thesis.

Most of the existing works on obtaining new knowledge from multiple test runs of
concurrent programs focus on gathering debugging information that helps to find the root
cause of a failure [25, 99]. In [99], a machine learning algorithm is used to infer points
in the execution such that the error manifestation probability is increased when noise is
injected into them. It is then shown that such places are often involved in the erroneous
behaviour of the program. Another approach [25] uses a technique similar to data mining,
more precisely, a feature selection algorithm, to infer a reduced call graph representation
of the system under test, which is then used to discover anomalies in the behaviour of
the system under test within erroneous executions.

None of the works above, and, to the best of our knowledge, no other existing work
has applied data mining for finding values of test and noise parameters suitable for noise-
based testing of concurrent programs. The only exception is our preliminary work [6], on
which this chapter is based. However, compared with [6], the present chapter provides (1)
a significantly improved presentation of the idea, (2) it proposes a new way of exploiting
the results from data mining for fully-automated noise-based testing, (3) a combination of
data mining with genetic approaches, and (4) it provides a significantly improved experi-
mental evaluation of the approach.

Naturally, there is much richer literature and tool support for data mining test results
without a particular emphasis on concurrent programs. The existing works study different
aspects of testing, including identification of test suite weaknesses [1], optimisation of the
test suite [106], or error localization [27]. Adler et al [1] show that a substring hole analysis
is used to identify sets of untested behaviours using coverage data obtained from testing
of large programs. Contrary to the analysis of what is missing in coverage data and what
should be covered by improving the test suite, other works focus on what is redundant.
Yoo et al [106] show that a clustering data mining technique is used to identify tests which
exercise similar behaviours of the program. The obtained results are then used to prioritise
the available tests. Erman et al [27] show that clustering of similar test case failures is used
to help the analyst to identify the underlying causes of the failures and thus to make it
easier to deal with huge numbers of test results obtained due to test automation.

Further, data mining techniques are, of course, used in many other areas of software
engineering than testing. An exhaustive list of such applications is beyond the scope of this
chapter, and so we mention just a few examples. For instance, in the recent result [105],
machine learning is used to extract design knowledge allowing one to improve assignment of
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responsibilities to classes, which is a vital task in object-oriented design. Cheung et al [14]
show that clustering is used to detect smells in spreadsheet cells, which are susceptible to
contain errors. Rubinič et al [86] show that machine learning is applied for software defect
prediction, using ensembles of genetic classifiers to deal with imbalanced data sets. Luo et
al [76], data mining is used for automatically identifying code changes that may potentially
be responsible for a performance regression. Next, Kreutzer et al [56] show that a clustering
algorithm is used in combination with two syntactical similarity metrics to automatically
detect groups of similar code changes. Liang et al [70] focus on improving the precision
of code mining with the aim of error detection by carefully preprocessing the source code.
Tantithamthavorn et al [95] show that an automated parameter optimization technique
has been applied to obtain prediction models in the form of classifiers trained to identify
defect-prone software modules. Wang et al [101] show that machine learning is used to
automatically learn a semantic representation of programs from their source code.

4.3 Preliminaries
In this section, we introduce the basics of the AdaBoost approach to machine learning for
a proper understanding of the rest of the chapter. AdaBoost is at the heart of our approach
to finding suitable values of noise parameters.

4.3.1 AdaBoost Machine Learning Algorithm

The core idea of our approach is to apply AdaBoost in noise-based testing to derive clas-
sifiers capable of distinguishing suitable and unsuitable settings of noise parameters as
well as parameters of the programs under test (and consequently to facilitate searching for
suitable test and noise settings). The AdaBoost algorithm, introduced in 1995 by Freund
and Schapire [32, 33, 34], is a widespread machine learning technique based on improving
(“boosting”) the strength of multiple weak classifiers. This is achieved by weighting outputs
of the weak classifiers and combining them into a single strong classifier. A weak classifier
is any classifier that behaves better than random guessing (i.e. its error degree is less than
0.5 in the binary classification case).

AdaBoost works in iterations. In each iteration, the method aims at producing a new
weak classifier in order to improve the precision of the so far constructed strong classifier.
To construct the new classifier, objects in the training set are assigned weights. Initially,
the weights are distributed uniformly. In each iteration, weights of wrongly classified ob-
jects are enlarged, which is then used in the next round to derive and add a new weak
classifier focusing on the hard examples in the training set, hence improving the precision
of the strong classifier.

In the binary classification case, the input of AdaBoost is a set 𝒳 = {(𝑥1, 𝑦1), . . . ,
(𝑥𝑛, 𝑦𝑛)} where each 𝑥𝑖 is an object from some space X of objects that we might want to
classify as having or not having some property of interest, and each label 𝑦𝑖 belongs to the set
Y = {1,−1}, which says whether 𝑥𝑖 does or does not have the property of interest. The in-
put set 𝒳 is then commonly split to two subsets—the training set 𝒯 and the validation set
𝒱. The training set is used to get a classifier while the validation set is used for evaluating
the precision of the obtained classifier. More information about computing the precision is
already presented in Section 2.4.1.

Moreover, in order to avoid over-fitting and to increase confidence in the obtained
results, the process of choosing the training and validation set and of learning and validating
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the classifier can be repeated several times, allowing one to judge the average values and
standard deviation of accuracy and sensitivity. If the obtained classifier is not validated
successfully, one can repeat the AdaBoost algorithm with more boosting iterations and/or
a larger input set 𝒳 .

The final strong classifier is obtained in the form

𝐹 (𝑥) = 𝑠𝑖𝑔𝑛

(︃
𝑇∑︁
𝑖=1

𝑤𝑖𝑟𝑖(𝑥)

)︃
where 𝑥 ∈ 𝒳 , 𝑇 is the number of boosting iterations, 𝑟𝑖 is the weak classifier produced at
the 𝑖-th iteration of the algorithm (producing decisions from the set Y), and 𝑤𝑖 is a non-
negative weight expressing confidence in the 𝑖-th weak classifier.

4.4 Classification-based Data Mining in Noise-based Testing
In this section, we describe our proposal of using a particular kind of AdaBoost classifiers
for discovering which test and noise parameters and which of their values are the most
influential for a given program under test and a given testing goal (or, even in general,
across different programs under test and/or testing goals). We first describe the concrete
kind of AdaBoost classifiers that we propose to be used in noise-based testing, and we
provide a generic approach for deriving such classifiers. We then concretise the method
for two concrete testing goals common in practice—namely, for finding rare behaviours in
which so far unknown bugs may reside and for reproducing known errors. Subsequently, we
discuss how the derived AdaBoost classifiers can be used to draw some conclusions about
which test and noise configurations are the most influential in the given setting. Finally,
we discuss three ways of using the derived classifiers in fully-automated testing.

4.4.1 Combining Data Mining Based on AdaBoost with Noise-based
Testing

For our application of data mining with the aim of finding suitable settings of noise-based
testing of concurrent programs, we propose using data mining based on binary classification.
Methods that have been used for binary classification in the literature include decision trees,
Bayesian networks, support vector machines, or neural networks [103]. In this work, we,
in particular, choose decision trees. This is motivated by the fact that one can easily
understand and further exploit information hidden in decision trees obtained by machine
learning, which we leverage in the following.

Decision trees, such as those shown in Fig. 4.1, can be viewed as hierarchically struc-
tured decision diagrams whose nodes are labelled by Boolean conditions on the items to
be classified and whose leaves represent classification results (in our case, +1 is used to
denote a positive result, while −1 denotes a negative result). The decision process starts
in the root node by evaluating the condition associated with the root on the item to be
classified. According to the evaluation of the condition, a corresponding branch is followed
into a child node. This descent, driven by the evaluation of the conditions assigned to
the encountered nodes, continues until reaching a leaf node, and hence a decision. Decision
trees are usually employed as a predictive model constructed via a decision tree learning
procedure, which uses a training set of classified items.

In order to reduce the natural tendency of decision trees to be unstable (meaning that
a minor data oscillation can lead to a large difference in the classification), we combine
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Figure 4.1: Examples of decision trees.

them with using the AdaBoost approach described in Section 4.3.1. Decision trees, with
the classification result being 1 or −1, are used as the weak classifiers. The resulting strong
classifier then consists of a set of weighted decision trees that are all applied on the item to be
classified, their classification results are weighted by the appropriate weights, summarized,
and the sign of the result provides the final decision.

In order to be able to apply AdaBoost in noise-based testing, one has to first define some
testing goal expressible as a binary test property that can be evaluated over test results such
that both positive and negative answers are obtained. The test property will typically be
based on some non-binary test quantity such as the number of discovered error occurrences,
number of covered tasks of some metric, testing time, or a (weighted) combination of such
quantities. The binary test property can then be obtained by taking the median value
of the test quantities obtained throughout the test runs and by classifying test and noise
settings to those that lead (or do not lead) to results above the median.

Example 4.4.1. So, a binary test property can, e.g. look like 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 > 𝐶 ∧ 𝑡𝑖𝑚𝑒 <
𝑇 where 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 measures coverage under the chosen coverage metric, 𝐶 is the median
coverage obtained in the so far performed test runs, 𝑡𝑒𝑠𝑡 measures the time of executing
a test, and 𝑇 is the median testing time in the so far performed runs.

The requirement of having both positive and negative results can be a problem in
some cases, notably in the case of discovering rare errors where getting positive results is—
naturally—very rare. In such a case, one has to use a property that approximates the target
test property (e.g. by replacing the discovery of rare errors by discovering any rare program
behaviours even when they do not contain an error) and provides both positive and negative
answers sufficiently often. Of course, once some testing goal is satisfied (e.g. once testing
aimed at rare behaviours manages to find some error), another testing goal can become
more urgent—e.g. that of repeatedly reproducing the same error for debugging purposes
or finding other similar errors. The training process is then to be repeated, possibly using
the newly available test results found by previously conducted test runs.

Further, note that, in the context of testing concurrent programs, the test property will
typically not be defined over results of particular test runs but rather on results of multiple
test runs performed under the same test and noise setting. The reason is the need of
minimizing the influence of scheduling non-determinism. The results obtained in several test
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runs can be summarised by taking, e.g. the median or cumulative value of the considered
test quantity.

Once the test property representing the chosen testing goal is defined, a number of
test and noise configurations is to be generated at random. Several test runs are to be
performed for each of these configurations, and the test property is to be evaluated on each
of the series of the test runs performed with the same test and noise configuration. For
each of the considered test and noise configurations, a couple (𝑥, 𝑦) is formed where 𝑥 is
a vector recording the test and noise configuration used and 𝑦 ∈ {1,−1} is the result of
evaluating the test property. This way, we obtain the set 𝒳 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} to be
used as the input of AdaBoost as described in Section 4.3.1.

Example 4.4.2. An example of a couple, which can appear in the set 𝒳 if we consider
three noise parameters, e.g. noise frequency, strength of noise, and type of noise, can be
((839, 28, 1),−1). It says that for the values 839, 28, and 1 of the noise frequency, strength
of noise, and type of noise, respectively, the test property evaluated negatively.

In Section 4.4.2, we illustrate and further concretise the above ideas by proposing con-
crete test properties and ways of evaluating them for two testing goals common in practice:
namely, finding rare behaviours and repeatedly reproducing known errors.

Once the set 𝒳 is obtained, the AdaBoost algorithm can be applied and the result
validated as described in Section 4.3.1. A successfully validated classifier can subsequently
be analyzed to get some insight which test and noise parameters are influential for testing
the given program and which of their values are promising for meeting the defined testing
goal. Such knowledge can then in turn be used by testers when thinking of how to optimize
the testing process. We propose a way how such an analysis can be done in Section 4.4.3,
and we experiment with it in Section 4.5.4. Moreover, the obtained classifier can also be
used to fully automatically improve performance of noise-based testing: we propose three
approaches how this can be done (two of these approaches based on filtering randomly
generated test and noise settings and one based on a combination with genetic optimization)
in Section 4.4.4. Experiments with these approaches are then described in Section 4.5.5.

4.4.2 Finding Rare Behaviours and Reproducing Known Errors

We now concentrate on two concrete testing goals: namely, (1) repeatedly finding known
errors, which is useful for debugging purposes, and (2) finding rare behaviours, which is
useful for finding bugs missed by common testing runs. For these two different goals, we
propose concrete test properties and a way of evaluating them that turned out as suitable in
our experiments for deriving input sets for AdaBoost such that AdaBoost in turn produces
appropriately trained classifiers for the given testing goals.

In the case of trying to repeatedly reproduce a known error, the test property of interest
is simply the error manifestation property that indicates whether an error manifested during
the performed test executions or not. When deriving the input set 𝒳 for AdaBoost that
should in turn produce a classifier suitable for reproducing the given error, we generate
a number of random test and noise configurations, perform several test runs with each
of the configurations1, and compute the number of test runs in which the error has been
found. Then, we compute the median value of the number of runs in which an occurrence
of the given error has been found for the different considered test and noise configurations.
Configurations that reached a number of error occurrences above the median are marked

1In our experiments, we, in particular, use five runs.
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as positive whereas the remaining ones are marked as negative. This will give us the set
𝒳 that will be split into a testing set and a validation set. The testing set will be used as
the input for AdaBoost, which will then produce an appropriately trained classifier for the
error manifestation property.

Example 4.4.3. For an example of getting an input set for AdaBoost according to the above
description, see Table 4.1. In particular, we consider five combinations of values of three
noise parameters, namely, noise frequency, strength of noise, and type of noise. Assume
that when we perform five testing runs with each of the settings, we get the number of
error manifestations shown in the fourth column of the table—with the median number
of error manifestations being 0. Then the classification results will be those given by
the fifth column of the table. This gives us the set 𝒳 = {((839, 28, 1), 1), ((114, 36, 5),−1),
((724, 48, 4),−1), ((895, 12, 0), 1), ((234, 8, 4),−1)} that will be split into a training and val-
idation set for AdaBoost.

Table 4.1: An example of constructing an input for AdaBoost for the error manifestation
property.

noise frequency strength of noise type of noise number of classification
error manifestations result

839 28 1 2 1
114 36 5 0 -1
724 48 4 0 -1
895 12 0 5 1
234 8 4 0 -1

Once a classifier is derived, its precision and stability are tested on the validation set.
In particular, we let the generated configurations be classified by the derived classifier as
suitable or unsuitable for reproduction of the known errors, and, subsequently, we check
correctness of the classification through repeated test runs under these configurations.
The concrete numbers of test runs considered to get the training and validation sets in
our experiments are provided in Sections 4.5.3 and 4.5.5.

Next, we consider the case of finding test and noise configurations suitable for testing
rare behaviours in which so far unknown bugs might reside. In order to achieve this goal, we
use classification according to a rare events property that indicates whether a test execution
covers at least one rare coverage task of a suitable coverage metric—in our experiments,
the GoldiLockSC* metric [26] is used for this purpose. To distinguish rare coverage tasks,
we collect the tasks that were covered in at least one of the performed test runs (i.e. both
from the training and validation sets), and, for each such coverage task, we count the fre-
quency of its occurrence in all of the considered runs. We define the rare tasks as those
that occurred in less than 20 % of the test executions.

Furthermore, when learning the classifier, we want to avoid the scenario where we find
some test and noise configurations that are capable of finding some behaviours that are
rare in normal test runs, but they lead to discovering the same behaviours in each noised
test run again and again. This is, we ideally want to keep finding different rare behaviours
in each test run. To stress this goal, we focus on the cumulative number of covered rare
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tasks, not only on coverage in individual executions. In our experiments, we, in particular,
use cumulation from five test runs. This is, we randomly generate a number of test and
noise configurations. With each of them, we execute five test runs, and we cumulate (i.e.
unite) the sets of covered rare tasks.

Subsequently, as we consider the time needed for testing to be also important, we take
the sizes of the cumulated sets of covered rare tasks and divide them by the time needed
to perform the considered five test executions. We take as positive the test and noise
configurations whose cumulated number of covered rare tasks divided by the needed test
time is above the median value of this combined test quantity. We then derive the AdaBoost
classifier and test its precision and stability. The concrete numbers of test runs considered to
get the training and validation sets in our experiments are again provided in Sections 4.5.3
and 4.5.5.
Example 4.4.4. Table 4.2 gives an example of obtaining an input set for AdaBoost for
the rare behaviours property according to the above description. Namely, we consider three
combinations of three noise parameters (noise frequency, strength of noise, and type of noise
as before). To shorten the example, we assume that three testing runs were performed with
each of these configurations only. Further, we assume that the rare tasks that were covered
in the testing runs are as shown in the fourth column. The fifth column gives the time we as-
sume to be consumed for the testing runs. The sixth column then gives the corresponding cu-
mulative coverage of rare tasks divided by the total consumed time. Finally, the last column
gives the appropriate classification result (due to the median coverage being 3/7). The value
from the last column is to be used together with the values in the first three columns to derive
the input set for AdaBoost: 𝒳 = {((83, 28, 1),−1), ((451, 44, 3), 1), ((729, 32, 3),−1)}.

Table 4.2: An example of constructing an input for AdaBoost for the rare behaviours
property.

noise noise noise covered rare testing cumulative classification
freq. strength type tasks time coverage per time result

83 28 1 run 1: {𝑎, 𝑐, 𝑑} 3 (|{𝑎, 𝑐, 𝑑}| = 3)/7 -1
run 2: {𝑎, 𝑑} 2
run 3: {𝑐, 𝑑} 2

451 44 3 run 1: {𝑎, 𝑑} 2 (|{𝑎, 𝑐, 𝑑, 𝑒}| = 4)/5 1
run 2: {𝑐, 𝑒} 2
run 3: {𝑑, 𝑒} 1

729 32 3 run 1: {𝑐, 𝑒} 3 (|{𝑐, 𝑒}| = 2)/8 -1
run 2: {𝑐} 2
run 3: {𝑒} 3

4.4.3 Analysing Information Hidden in Classifiers

In order to be able to easily analyze information hidden in the classifiers generated by Ada-
Boost, we have decided to restrict the height of the basic decision trees used as weak clas-
sifiers to one. Moreover, our experiments showed us that increasing the height of the weak
classifiers does not lead to significantly better classification results.
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A decision tree of height one consists of a root labelled by a condition concerning
the value of a single test or noise parameter and two leaves that correspond to the cases
when the condition is or is not satisfied and that are labelled as leading to either positive or
negative classification. AdaBoost provides us with a set of such trees, each with an assigned
weight. For better understanding which parameters are important for testing, we convert
this set of trees into a set of rules such that we get a single rule for each test or noise
parameter that appears in at least one decision tree. The rules consist of a condition and
a weight. In particular, the conditions have the form of a conjunction of interval constraints,
and the weights are real numbers from the range between zero and one.

Figure 4.2: An example of several decision trees with conditions over parameters
𝑥1, 𝑥3, 𝑥6, 𝑥7 and 𝑥10 created by the AdaBoost algorithm.

The rules are obtained as follows. First, decision trees with negative or zero weights
are omitted because they correspond to weak classifiers with the weighted error greater or
equals to 0.5. Next, the remaining decision trees are grouped according to the parameter
about whose value they speak. To illustrate the above, assume that AdaBoost gives us,
e.g. the ten decision trees with positive weights that are shown in Fig. 4.2. For each
obtained group of the trees, a single rule is produced by taking the disjunction of the interval
constraints associated with the grouped decision trees2. Intuitively, taking the disjunction
corresponds to the fact that each of the intervals was found to be relevant for the given
testing goal. The weight of the rule is computed by summarizing the weights of the trees
from the concerned group and normalising the result by dividing it by the sum of the weights
of all trees from all groups. This is, if all decision trees with positive weights created by
AdaBoost are 𝑤1, . . . , 𝑤𝑚, and the concerned group 𝐺 consists of 𝑛 ≤ 𝑚 trees with weights
𝑤𝑖1 , . . . , 𝑤𝑖𝑛 where ∀1 ≤ 𝑗 ≤ 𝑛 : 1 ≤ 𝑖𝑗 ≤ 𝑚, then the weight of the rule created from 𝐺

will be computed as the fraction
∑︀𝑛

𝑗=1 𝑤𝑖𝑗∑︀𝑚
𝑘=1 𝑤𝑘

.
In our example, we focus on the importance of the different parameters. We start with

parameter 𝑥1. For this parameter, when we take the disjunction of the interval constraints
associated with the trees corresponding to 𝑥1 (i.e. the first three trees in Fig. 4.2), we
obtain the condition 𝑥1 ≤ 239.5∨ 𝑥1 ≤ 131.5∨ 𝑥1 > 497.5, which can be simplified to 𝑥1 ≤
239.5∨𝑥1 > 497.5. The weight of this rule is given by the sum of the three concerned trees

2In particular, the interval constraint of the tree is taken as is when the true branch of the decision tree
leads to the +1 leaf. Otherwise, its complement must be taken.
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Figure 4.3: Division of values of parameter 𝑥1 to intervals associated with the decision trees
from Fig. 4.2.

divided by the sum of the weights of all the trees in the figure, which gives the (rounded)
weight 𝑤𝑥1 = 0.398. If we process the other parameters in the same way, we get the following
weights: 𝑤𝑥3 = 0.574, 𝑤𝑥6 = 0.017, 𝑤𝑥7 = 0.007, 𝑤𝑥10 = 0.004. Note that the weights of
the parameters satisfy the constraint

∑︀
𝑖𝑤𝑥𝑖 = 1. Clearly, parameters 𝑥3 and 𝑥1 appear

to have the highest importance in the given setting; parameters 𝑥6, 𝑥7, and 𝑥10 appear to
have at least some significance; while parameters such as 𝑥2 are of no importance (since
they did not even appear in any of the decision trees with positive weights).

From the rules obtained as described above, we can easily identify the parameters that
most affect testing of the given program with the given testing goal. For that, we can simply
take the parameters that are associated with the rules with the highest weights. In case we
want to derive more general results—spanning over multiple testing goals and/or multiple
tested programs, we can do that by looking for parameters (or values) that appear among
the most influential ones among all (or most) of the considered test cases. Alternatively,
one can also unite the training sets obtained for the different testing goals and/or programs
under test, and then apply AdaBoost to the combined training set. In our example, the pa-
rameter which most affects the testing process is the parameter 𝑥3 that has the highest
weight.

Moreover, we can also see which concrete values of the different parameters are the most
influential. In particular, assume that the condition of the rule derived for some parameter
was created from a set ℐ = {𝐼1, ..., 𝐼𝑛} of interval constraints where the decision trees
that were associated with these intervals had weights 𝑤1, ..., 𝑤𝑛. We identify all maximum
subsets 𝒥 = {𝐼𝑖1 , ..., 𝐼𝑖𝑚} ⊆ ℐ of intervals with non-empty intersections (i.e. such that
∩𝑗∈{1,...,𝑚}𝐼𝑖𝑗 ̸= ∅) and assign each such set a weight 𝑤𝒥 given by the sum of the weights
of its elements, i.e. 𝑤𝒥 =

∑︀
𝑗∈{1,...,𝑚}𝑤𝑖𝑗 . Intuitively, the weights of all the decision

trees whose interval constraints overlap contribute to the weight of their overlapping part.
The most influential values of the given parameter are then given by the sets 𝒥 with
the highest weights—namely, by the union ∪𝒥 ∩𝐼∈𝒥 𝐼 of the intersections of the intervals 𝐼
belonging to the subsets 𝒥 with the highest weights 𝑤𝒥 .

Thus, in the example, we have a look at the most influential values of some of the pa-
rameters from Fig. 4.2. In particular, we concentrate on parameter 𝑥1. The parameter is as-
sociated with three decision trees and hence three interval constraints, which are illustrated
in Fig. 4.3. From the illustration, we see that there are two maximum subsets of the in-
terval constraints with non-empty intersections, namely, 𝒥1 = {𝑥1 ≤ 239.5, 𝑥1 ≤ 131.5}
and 𝒥2 = {𝑥1 > 497.5}. The corresponding intersections are 𝑥1 ≤ 131.5 and 𝑥1 > 497.5
with the (rounded) weights 𝑤𝒥1 = 0.441 and 𝑤𝒥2 = 0.005. Clearly, values of 𝑥1 less than
or equal to 131.5 are the most influential. In case one would like to have a finer look at
the influence of the different values, one can take all subsets of the set of intervals associa-
ted with the given parameter, compute the corresponding intersections of the constraints
and their weights (as in the case of the maximum subsets), and obtain a histogram of
the weights—such as the one shown in Fig. 4.4 for the parameter 𝑥1.
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Figure 4.4: Histogram of weights of values of parameter 𝑥1 derived from the decision trees
in Fig. 4.2.

4.4.4 Using AdaBoost in Fully-Automated Testing

We now present several approaches of using AdaBoost for fully-automated noise-based
testing. First, we describe two ways of combining AdaBoost with random generation of test
and noise parameters. Second, we show how it can be combined with genetic algorithms
for finding the most suitable values of test and noise parameters.

AdaBoost-Improved Random Testing

In practice, noise-based testing is often used with randomly generated test and noise confi-
gurations. The simplest way of using AdaBoost to improve on this practice is the following.
When performing repeated test runs of a given program to meet a given testing goal, one can
run the program with randomly generated test and noise configurations, but use only those
randomly generated configurations that get classified as suitable by an AdaBoost classifier
derived for the given program and testing goal as described in Subsection 4.4.2. This idea,
considered already in our preliminary work [6], is rather simple, but it can provide quite
nice results as we illustrate through our experiments presented in Subsection 4.5.5.

While the above approach can provide useful results, we now propose yet another way of
combining AdaBoost with random generation of test and noise configurations, which was not
considered in [6]. This approach is motivated by our observation that, in many of the case
studies that we conducted and which we report later on, some test and noise parameters
were significantly more important than others, even though the latter parameters were
still influential. In such cases, however, the above proposed use of AdaBoost can include
among useful test and noise configurations even some of those configurations where the less
important parameters are set in a rather unsuitable way, which is tolerated due to the much
higher weight of the more important parameters.

To improve on the above situation, we propose to build on the method for determining
the most suitable values of each parameter, which is described at the end of Section 4.4.3.
We then derive the test and noise configurations to be used by independently choosing
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the value of each of the parameters at random but from the most suitable range of its
values only. For instance, assume that we have test and noise parameters 𝑥1, 𝑥2, and 𝑥3,
and the approach of Section 4.4.3 tells us that their most influential values are from intervals
𝐼1, 𝐼2, and 𝐼3, respectively. Then, every time we need a test and noise configuration for
a repeated test run, we generate it as a three-tuple whose first item is randomly chosen from
the interval 𝐼1, the second item is randomly chosen from 𝐼2, and the third one is randomly
chosen from 𝐼3. Our experiments presented in Section 4.5.5 show that this approach can
indeed provide significantly better results than the first mentioned approach.

Combination of Genetic Algorithms and AdaBoost

Finally, we also propose a combination of using AdaBoost and the genetic algorithms that
we considered for finding suitable test and noise configurations in chapter 3 (MOGA and
SOGA approaches). This approach is motivated as follows. Chapter 3 showed that genetic
algorithms can achieve very good results in finding suitable test and noise configurations,
especially when trying to increase the achieved concurrency coverage, but they need to
execute a huge number of test runs to get these configurations. The reason of this is that
the genetic algorithms start with random initial configurations in the first generations and
slowly create configurations with better results in the next generations. Our idea is to
accelerate this process by restricting the range of possible values of the different test and
noise parameters in which the genetic algorithms will search. In particular, we restrict
the range of the parameters to the most influential values found through AdaBoost and
the approach described at the end of Section 4.4.3. Thus, essentially, we use AdaBoost to
get coarse knowledge on the suitable values of the test and noise parameters, and then we
refine this knowledge using genetic algorithms. Our experiments presented below confirm
that this approach can often significantly outperform all the other mentioned approaches.

4.5 Experimental Evaluation
In this section, we describe the experiments that we conducted to evaluate the approaches
proposed above. We first provide a brief description of the benchmark programs that
we used in our experiments. Next, we briefly characterize the accuracy and sensitivity
of the AdaBoost classifiers that we were able to obtain for our case studies and testing
goals. Subsequently, we analyze the knowledge hidden in the classifiers that we obtained,
compare it with our experience obtained in other ways, and derive several new insights
about the importance of the different test and noise parameters. Finally, we proceed to
experiments illustrating that AdaBoost combined with genetic algorithms can also be quite
successfully used in fully-automated noise-based testing.

4.5.1 Case Studies

For our experimental evaluation, we used the multi-threaded programs presented in Sec-
tion 2.6. The first five of them contain known concurrency-related errors, and so they are
suitable for experiments with reproduction of known bugs for debugging purposes. The re-
maining programs do not contain any known errors, and so they are added to the first five
case studies within our experiments targeted at increasing coverage of rare behaviours3.

3The case studies we present in this chapter do not include large programs due to we need to perform
a rather large number of experiments with different test and noise settings: Already with the use cases we
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4.5.2 Considered Test and Noise Parameters

In Section 4.4.1, we said that our input set 𝒳 for AdaBoost will consist of couples (𝑥, 𝑦)
where 𝑥 is a vector recording the test and noise configuration used and 𝑦 ∈ {1,−1} is the re-
sult of evaluating the considered test property. In our experiments, we—in particular—
consider vectors 𝑥 of test and noise parameters consisting of 12 entries, i.e. 𝑥 = (𝑥1, 𝑥2,
. . . , 𝑥12).

In our vectors of test and noise parameters, the parameter 𝑥1 ∈ {0, . . . , 1000} represents
the noise frequency, the parameter 𝑥2 ∈ {0, . . . , 100} is the strength of noise, the parameter
𝑥3 ∈ {0, . . . , 5} selects one of the six available basic noise seeding heuristics. The parameters
𝑥4, 𝑥5 ∈ {0, 1} disable or enable the additional noise seeding heuristics haltOneThread and
timeoutTamper, respectively.

The parameter 𝑥6 ∈ {0, 1, 2} controls the way how the sharedVarNoise noise placement
heuristic behaves—namely, whether it is disabled (𝑥6 = 0), it applies the sharedVarNoise-
one strategy injecting the noise at accesses to one randomly selected shared variable (𝑥6 =
1), or it applies the sharedVarNoise-all strategy inserting the noise at accesses to all shared
variables (𝑥6 = 2). The parameter 𝑥7 ∈ {0, 1} disables or enables the nonVariableNoise
heuristic. The parameters 𝑥8, 𝑥9 ∈ {0, 1} disable or enable the coverage-based noise place-
ment heuristic and the related coverage-based-frequency heuristic, respectively.

Finally, we summarize the parameters used by the above test cases (on top of the pa-
rameters of the noise injection technology itself) and explain in more detail their encoding
in our experiments. These parameters are encoded as the parameters 𝑥10 ∈ {1, . . . , 10}
and 𝑥11, 𝑥12 ∈ {1, . . . , 100} in the experiments. In particular, Animator, Cache4j, HEDC,
and Crawler are not parametrized, and hence 𝑥10, 𝑥11, 𝑥12 are not used with them. In
the Airlines, Elevator, Montecarlo, and Raytracer test cases, the 𝑥10 parameter controls
the number of the threads used. In the Rover test case, the 𝑥10 ∈ {1, . . . , 7} parameter
selects one of the available test scenarios. The Sor and TSP test cases have two test
parameters. The 𝑥10 parameter is the number of iterations for Sor while it selects one of
the available test scenarios for TSP. The 𝑥11 parameter controls the number of the threads
used for both of these test cases. The Airlines test case uses the 𝑥11 and 𝑥12 parameters
where the 𝑥11 controls how many cycles the test does and the 𝑥12 parameter indicates
the flight capacity.

The total number of noise configurations that one can obtain from the above can be com-
puted by multiplying 1001 values of noise frequency, by 101 possible values of noise strength,
the number of the basic noise seeding heuristics, which is six, by two to reflect whether hal-
tOneThread is or is not used, two to reflect whether timeoutTamper is used, two to reflect
whether the nonVariableNoise heuristic is used, two to reflect whether the coverage-based
noise placement is used, two to reflect whether the covergage-based-frequency heuristic is
used, and three to reflect the possible use case scenarios of the sharedVarNoise heuristic.
This gives a rough estimate of about 58.2 million combinations of noise settings when we
simplify the situation by ignoring the fact that some of the settings do not make sense
when used together (for instance, enabling coverage-based-frequency heuristic has no effect
when coverage-based heuristic is disabled). Of course, the state space of the test and noise
settings then further grows with the possible values of parameters of the test cases and
the testing environment [44].

consider, the experiments presented below took approximately 5,592 core hours, i.e. 233 core days. However,
works such as [22] show that noise-based testing can be successfully used even on programs with millions of
lines of code and can find previously unknown errors in complex industrial code.
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4.5.3 Accuracy and Sensitivity of Classifiers

We now present data about the accuracy and sensitivity of the AdaBoost classifiers that we
derived for the above test cases. For the first five of them that contain known concurrency
errors, we have considered both the testing goal of reproducing a known error as well as
the goal of increasing coverage of rare behaviours. For the remaining test cases, we have
considered the latter goal only.

In our experiments, we used the implementation of AdaBoost available in the GML
AdaBoost Matlab Toolbox4. We set it to use decision trees of height restricted to one
and to use 10 boosting phases. When deriving the classifiers, we proceeded as described
in Section 4.4.2. When deriving classifiers for the error manifestation property, we used
2000 random test and noise configurations. For the rare events property, due to a higher
time-consumption of the experiments, we used 200 random test and noise configurations.
To obtain data allowing us to derive the accuracy and sensitivity of the derived classifiers,
100 different random divisions of the randomly generated configurations to training and
validation sets were considered.

Table 4.3: The average and standard deviation of the accuracy and sensitivity of the Ada-
Boost classifiers derived for the test cases containing known errors.

Error reproduction Rare behaviours
Accurancy Sensitivity Accurancy Sensitivity

CaseStudies Mean Std Mean Std Mean Std Mean Std
Airlines 0.7488 0.0163 0.8917 0.0250 0.6601 0.0508 0.6880 0.0900
Animator 0.8353 0.0154 0.9489 0.0195 0.8503 0.0489 0.9006 0.0549
Crawler 0.9916 0.0026 0.9948 0.0018 0.7453 0.0437 0.7549 0.0740
Elevator 0.9568 0.0056 0.9965 0.0034 0.7161 0.0439 0.7327 0.0797
Rover 0.8859 0.0142 0.9611 0.0088 0.6108 0.0406 0.6330 0.0950
Average 0.8837 0.0108 0.9586 0.0117 0.7165 0.0456 0.7418 0.0787

Table 4.4: The average and standard deviation of the accuracy and sensitivity of the Ada-
Boost classifiers derived for the test cases without known errors.

Rare behaviours
Accurancy Sensitivity

CaseStudies Mean Std Mean Std
Cache4j 0.8454 0.0671 0.8963 0.0907
HEDC 0.7819 0.0443 0.7797 0.0758
Montecarlo 0.6692 0.0607 0.6702 0.1230
Raytracer 0.6298 0.0713 0.6380 0.1114
Sor 0.7807 0.0457 0.8203 0.0797
TSP 0.6420 0.0674 0.6587 0.1179
Average 0.7248 0.0594 0.7439 0.0998

Tables 4.3 and 4.4 summarise the average accuracy and sensitivity of the derived Ada-
Boost classifiers and their standard deviations. One can clearly see that both the average

4 http://graphics.cs.msu.ru/en/science/research/machinelearning/AdaBoosttoolbox
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accuracy and sensitivity are quite high for the error reproduction test goal—with the ave-
rage values being 0.8837 and 0.9586, respectively. For the testing goal of finding rare
behaviours, both of the statistics have smaller values. However, the experiments presented
in Section 4.5.5 show that the method works nicely even in their case. Moreover, the stan-
dard deviation is very low in all cases, which indicates that we always obtained results that
provide meaningful information about our test runs.

4.5.4 Analysis of Knowledge Hidden in Obtained Classifiers

We now employ the approach described in Section 4.4.3 to interpret the knowledge hidden in
the classifiers that we inferred for our test cases. From these classifiers, using the approach of
Section 4.4.3, we derived the rules shown in Tables 4.5 and 4.6 for the error manifestation
property and the rare behaviours property, respectively. For each test case, the tables
contain a row whose upper part contains the condition of the rule (in the form of an in-
terval constraint), and the lower part contains the appropriate weight from the interval
(0, 1).

In order to interpret the obtained rules, we first focus on rules with the highest weights
(corresponding to parameters with the biggest influence). Then we look at the parameters
which are present in rules across the test cases (and hence seem to be important in general)
and parameters that are specific for particular test cases only. Next, we pinpoint parameters
that do not appear in any of the rules and therefore seem to be of a low relevance in general.

Table 4.5: Inferred rules for the error manifestation property with the most influential
intervals marked out.

Airlines
Rules 𝑥1 ≤ 275 x3 ≤ 0.5 or 3.5 < 𝑥3 𝑥6 ≤ 1.5 2.5 < 𝑥10 73.5 < 𝑥12

Weights 0.16 0.50 0.04 0.18 0.12
Animator

Rules 705 < 𝑥1 2.5 < 𝑥3 ≤ 3.5 𝑥6 ≤ 0.5
Weights 0.19 0.55 0.26

Crawler
Rules 𝑥1 ≤ 215 15 < 𝑥2 1.5 < 𝑥3 ≤ 3.5 0.5 < 𝑥4 𝑥5 ≤ 0.5 𝑥6 ≤ 1.5

or 4.5 < x3

Weights 0.32 0.1 0.38 0.05 0.08 0.07
Elevator

Rules 𝑥1 ≤ 5 x3 ≤ 0.5 or 3.5 < 𝑥3 ≤ 4.5 𝑥7 ≤ 0.5 8.5 < 𝑥10

Weights 0.93 0.04 0.01 0.02
Rover

Rules 515 < 𝑥1 2.5 < 𝑥3 ≤ 3.5 0.5 < 𝑥4 𝑥6 ≤ 0.5
Weights 0.21 0.48 0.08 0.23

As for the error manifestation property (i.e. Table 4.5), the most influential parameters
are 𝑥3 in four of the test cases and 𝑥1 in the Crawler test case. This indicates that the se-
lection of a suitable noise type (𝑥3) or noise frequency (𝑥1) is the most important decision
to be done when testing these programs with the aim of reproducing the errors present
in them. Another important parameter is 𝑥6 controlling the use of the sharedVarNoise
heuristic. Moreover, the parameters 𝑥1, 𝑥3, and 𝑥6 are considered important in all of
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the rules, which suggests that, for reproducing the considered kind of errors, they are of
a general importance.

In two cases, namely, Crawler and Rover, the haltOneThread heuristic (𝑥4) turns out
to be relevant. In these test cases, the haltOneThread heuristic should be enabled in order
to detect an error. This behaviour fits into our previous results [62] in which we show
that, in some cases, this unique heuristic (the only heuristic which allows one to exercise
thread interleavings which are normally far away from each other) considerably contributes
to the detection of an error. Finally, the presence of the 𝑥10 and 𝑥12 parameters in the rules
derived for the Airlines test case indicates that the number of threads (𝑥10) and the number
of cycles executed during the test (𝑥12) pays an important role in the noise-based testing
of this particular test case. The 𝑥10 parameter (i.e. the number of threads) turns out to be
important for the Elevator test case too, indicating that the number of threads is of a more
general importance.

Finally, we can see that the 𝑥8, 𝑥9, and 𝑥11 parameters are not present in any of the de-
rived rules. This indicates that the coverage-based noise placement heuristics are of a low
importance in general, and the 𝑥11 parameter specific for Airlines is not really important
for finding errors in this test case.

Next, for the case of classifying according to the rare behaviours property, the obtained
rules are shown in Table 4.6. The highest weights can again be found in rules based on
the 𝑥3 parameter (Animator, Crawler, Rover, Cache4j, HEDC, Montecarlo, Sor, TSP) and
on the 𝑥1 parameter (Airlines). However, in the case of Elevator and Raytracer, the most
contributing parameter is now the number of threads used by the test (𝑥10). Moreover,
the 𝑥10 parameter is also important in the Montecarlo, Sor, and TSP test cases. This
suggests that choosing the right number of threads is quite important to maximize the chan-
ces to spot rare behaviours, and that it is not necessarily the case that the higher number
of threads is used the better. Further, the generated sets of rules often contain the 𝑥3
parameter controlling the type of noise (all test cases except for Airlines and Raytracer)
and the 𝑥6 parameter which controls the sharedVarNoise heuristic. These parameters thus
appear to be of a general importance for the rare behaviours property.

The parameter 𝑥12, i.e. the number of test cycles, does again turn out to be important
in the Airlines test case. Finally, the 𝑥8 parameter is shown only in one test case (TSP),
𝑥9 shows up in the rules generated for two test cases (Cache4j and TSP), and the 𝑥11
parameter does not show up in any of the rules, and hence seem to be of a low importance
in general for finding rare behaviours (which is the same as for reproduction of known
errors).

Overall, the obtained results confirmed some of the facts we discovered during our
previous experimentation such as that different goals and different test cases may require
a different setting of noise heuristics [62, 44, 42] and that the haltOneThread noise injection
heuristics (𝑥4) provides in some cases a dramatic increase in the probability of spotting
an error [62]. More importantly, the analysis revealed (in an automated way) some new
knowledge as well. Mainly, the type of noise (𝑥3) and the setting of the sharedVarNoise
heuristic (𝑥6) as well as the frequency of noise (𝑥1) are often the most important parameters
(although the importance of 𝑥1 seems to be a bit lower). Further, it appears to be important
to suitably adjust the number of threads (𝑥10) whenever that is possible.
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Table 4.6: Rules inferred for the rare behaviours property.

Airlines
Rules x1 ≤ 295 or 745 < 𝑥1 ≤ 925 𝑥2 ≤ 35 0.5 < 𝑥5 61.5 < 𝑥12 ≤ 91.5

Weights 0.52 0.06 0.1 0.32
Animator

Rules 0.5 < x3 ≤ 3.5 or 4.5 < 𝑥3 0.5 < 𝑥6 ≤ 1.5
Weights 0.80 0.20

Crawler
Rules 0.5 < x3 ≤ 3.5 or 4.5 < 𝑥3 0.5 < 𝑥4 0.5 < 𝑥5 0.5 < 𝑥6 ≤ 1.5

Weights 0.46 0.08 0.20 0.26
Elevator

Rules 0.5 < 𝑥3 ≤ 3.5 0.5 < 𝑥4 0.5 < 𝑥5 1.5 < 𝑥6 1.5 < x10 ≤ 4.5
or 4.5 < x3 or 7.5 < 𝑥10

Weights 0.22 0.05 0.20 0.06 0.47
Rover

Rules 2.5 < x3 ≤ 3.5 or 4.5 < 𝑥3 𝑥4 ≤ 0.5 𝑥6 ≤ 0.5 0.5 < 𝑥7

Weights 0.46 0.26 0.16 0.12
Cache4j

Rules x3 ≤ 0.5 or 3.5 < 𝑥3 ≤ 4.5 𝑥5 ≤ 0.5 1.5 < 𝑥6 𝑥9 ≤ 0.5
Weights 0.92 0.02 0.05 0.01

HEDC
Rules 𝑥1 ≤ 279 49.5 < 𝑥2 x3 ≤ 0.5 or 3.5 < 𝑥3 ≤ 4.5 1.5 < 𝑥6

Weights 0.03 0.02 0.89 0.06
Montecarlo

Rules 𝑥1 ≤ 548.5 x3 ≤ 0.5 𝑥5 ≤ 0.5 0.5 < 𝑥6 𝑥9 ≤ 0.5 3.5 < 𝑥10 ≤ 5.5
or 3.5 < 𝑥3

Weights 0.09 0.30 0.05 0.18 0.09 0.29
Raytracer

Rules 20.5 < 𝑥2 ≤ 53.5 0.5 < 𝑥5 𝑥6 ≤ 0.5 0.5 < 𝑥7 𝑥10 ≤ 1.5
or 75.5 < x2 or 4.5 < x10

Weights 0.29 0.09 0.15 0.06 0.41
Sor

Rules 𝑥1 ≤ 144.5 𝑥3 ≤ 1.5 or 3.5 < x3 0.5 < 𝑥6 𝑥7 ≤ 0.5 𝑥10 < 13
Weights 0.26 0.32 0.07 0.07 0.28

TSP – part1
Rules 𝑥1 ≤ 691 𝑥2 ≤ 26 x3 ≤ 0.5 or 3.5 < 𝑥3 ≤ 4.5 𝑥5 ≤ 0.5

Weights 0.07 0.11 0.48 0.06
TSP – part2

Rules 0.5 < 𝑥6 0.5 < 𝑥8 𝑥9 ≤ 0.5 𝑥10 ≤ 18.5
Weights 0.06 0.06 0.07 0.09

4.5.5 Fully-Automated Noise-based Testing with AdaBoost

We now present experimental results showing usefulness of the ways of applying AdaBoost
in fully-automated noise-based testing that we proposed in Section 4.4.4. We consider both
the combination of AdaBoost and random noise injection as well as the combination of
AdaBoost and genetic algorithms. We start by considering the case of repeated reproduction
of a known concurrency error and then proceed to the case of coverage of rare tasks.
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Repeated Error Manifestation

Within our experiments aimed at repeated reproduction of known concurrency-related er-
rors, we compare noise-based testing under test and noise configurations generated in the fol-
lowing ways:

∙ Purely random generation (referred to as Random below).

∙ Generation based on single-objective and multiple-objective genetic algorithms pro-
posed in our earlier work and briefly described in chapter 3 (denoted as SOGA and
MOGA below).

∙ Random generation filtered through the classic AdaBoost approach as described in
the first part of Section 4.4.4 (referred to as AdaBoost in what follows).

∙ Random generation restricted to the AdaBoost-recognised most influential values of
parameters described in the second half of Section 4.4.4 (denoted as AdaBoost2 be-
low).

∙ Generation based on the single-objective and multiple-objective genetic algorithms re-
stricted to the AdaBoost-recognised most influential values of parameters as proposed
in Section 4.4.4 (referred to as SOGA2 and MOGA2 below).

We run 5000 executions in the learning phase of those approaches that need some trai-
ning. To compare capabilities of the obtained test and noise configurations in repeatadly
finding the known errors, we then run 20 executions for 20 best configurations obtained
through each of the approaches (apart from the random approach where we simply run 400
executions).

For experiments with the genetic algorithms, one has to choose the fitness function to
be used. In particular, for the SOGA and SOGA2 experiments, based on the experience
we gained in our previous work, we have chosen the following fitness function:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝐸𝑟𝑟𝑜𝑟

𝐸𝑟𝑟𝑜𝑟𝑚𝑎𝑥
* 10 + 𝑊𝑎𝑟𝑛𝑖𝑛𝑔

𝑊𝑎𝑟𝑛𝑖𝑛𝑔𝑚𝑎𝑥
+

𝐺𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝐶*

𝐺𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝐶*
𝑚𝑎𝑥

+
𝑡𝑖𝑚𝑒𝑚𝑎𝑥 − 𝑡𝑖𝑚𝑒

𝑡𝑖𝑚𝑒𝑚𝑎𝑥

Here, the GoldiLockSC * coverage metric is used since it has good properties for measuring
general coverage of concurrency behaviour. The value 𝐺𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝐶* used in the fitness
function gives the cumulative number of tasks covered in a series of five test runs performed
with the given test and noise parameter values while 𝐺𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝐶*

𝑚𝑎𝑥 gives the maximal
cumulative number of covered tasks across all so far performed series of test runs. However,
since we want the fitness function to steer the search towards error discovery, we add to
the fitness function information about the number of detected errors and error warnings.
In particular, 𝐸𝑟𝑟𝑜𝑟 gives the number of error manifestations detected in the given series of
five runs by looking for unhandled exceptions, and 𝐸𝑟𝑟𝑜𝑟𝑚𝑎𝑥 gives the maximal number of
error manifestations so far seen in some series of five test runs. 𝑊𝑎𝑟𝑛𝑖𝑛𝑔 gives the number
of warnings detected in the given series of five test runs through the 𝐴𝑣𝑖𝑜 checker [61]
which detects atomicity violations over one variable. This metric has been chosen because
atomicity violations are present in all the case studies considered in this experiment. Again,
𝑊𝑎𝑟𝑛𝑖𝑛𝑔𝑚𝑎𝑥 gives the maximum 𝐴𝑣𝑖𝑜 coverage obtained in the so far performed series of
test runs. Finally, as we want to reflect the time needed for the test runs, we add it into
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the fitness function in such a way that lower amounts of time needed for the test runs are
preferred5.

For the MOGA and MOGA2 experiments, we have let the multi-objective genetic al-
gorithm work with the same objectives as those summarized in the fitness function of
the SOGA and SOGA2 approaches, i.e. the number of detected error manifestations,
the 𝐴𝑣𝑖𝑜 coverage, the GoldiLockSC * coverage, and the needed testing time. In all our
experiments with the genetic algorithms, we used the following settings: the probability
of mutation was set to 0.5, the number of individuals in one population was 20, and each
individual was evaluated by using the cumulative value from five executions of one confi-
guration. We used the two-point crossover and the tournament selection operator (which
provided us with the best results in our previous work in chapter 3). For each case study,
we repeat each experiment ten times.

Table 4.7 compares results obtained using the above described approaches. In particular,
the table presents numbers and percentages of the executions that managed to find an error
in those of our benchmark programs that contain a known error. As we can see, the single-
objective genetic algorithm restricted to the AdaBoost-selected most influential parameter
values (i.e. SOGA2 ) has achieved the best results on average. However, random generation
of test and noise parameter values restricted to the AdaBoost-selected most influential
parameter values (AdaBoost2 ) and the combination of the multi-objective genetic algorithm
and AdaBoost (MOGA2 ) have also achieved very good results.

Table 4.7: An experimental comparison of various fully-automated approaches to noise-
based testing in the context of reproducing a known error. The best results are highlighted
in bold.

Random SOGA MOGA AdaBoost
CaseStudies error/ % error / % error/ % error/ %
Airlines 132.93/33.23 313.25/78.31 272.25/68.06 323.50/80.88
Animator 106.75/26.69 220.20/55.05 131.00/32.75 144.80/36.20
Crawler 0.00/0.00 0.50/0.13 0.50/0.13 0.80/0.20
Elevator 59.25/14.81 133.25/33.31 116.75/29.19 80.40/20.10
Rover 17.00/4.25 143.00/35.75 88.25/22.06 57.40/14.35
Average /15.80 /40.51 /30.44 /19.11
ASD /6.01 /5.50 /7.91 /7.44

AdaBoost2 SOGA2 MOGA2
CaseStudies error/ % error/ % error/ %
Airlines 351.80/87.95 371.80/92.95 332.7/83.13
Animator 252.40/63.10 350.30/87.58 241.25/60.31
Crawler 1.00/0.25 2.40/0.60 0.80/0.20
Elevator 36.60/9.15 105.00/26.25 86.80/21.70
Rover 48.4/12.65 324.80/81.20 203.30/50.83
Average /34.62 /57.72 /43.24
ASD /4.91 /4.89 /2.58

5Here, one could be tempted to divide the fitness values by the time needed. We do not use this approach
since our previous experience presented in Chapter 3 showed that this often leads to significant degeneration
of the search (producing configurations that produce very low coverage in extremely short time).
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It must be noted that 14 generations were used for the SOGA and MOGA experiments,
and 7 generations were used for the SOGA2 and MOGA2 experiments, which are very small
numbers only. The reason for using such small numbers of generations is that we wanted to
compare the different approaches while giving them the same time for the learning phase.
The MOGA2 approach had the lowest standard deviation on average. This means that
the MOGA2 approach gives good results with a high probability.

Coverage of Rare Concurrent Behaviours

Table 4.8: A comparison of average cumulative numbers of rare tasks over the time needed
to cover them.

Rand. SOGA MOGA AdaBoost
CaseStudies rareTasks/ % rareTasks/ % rareTasks/ % rareTasks/ %
Airlines 0.6566/ 41.4 1.2950/ 81.6 1.5462/ 97.4 0.4768/ 30.0
Animator 7.0193/ 4.6 145.8694/ 95.3 153.0821/ 100.0 87.3576/ 57.1
Cache4j 0.0165/ 38.9 0.0167/ 39.4 0.0413/ 97.4 0.0292/ 68.9
Crawler 3.0415/ 51.1 4.7546/ 79.9 3.1230/ 52.5 3.6581/ 61.5
Elevator 9.0015/ 48.1 13.5446/ 72.4 16.9801/ 90.8 17.4073/ 93.1
HEDC 0.3605/ 22.1 0.9909/ 60.7 0.7595/ 46.5 0.9754/ 59.7
Montecarlo 0.1469/ 59.9 0.2158/ 88.0 0.2453/ 100.0 0.1482/ 60.4
Raytracer 0.0009/ 7.7 0.0003/ 2.6 0.0003/ 2.6 0.0006/ 5.1
Rover 1.1532/ 42.1 1.7713/ 64.6 1.5623/ 57.0 1.4008/ 51.1
Sor 0.0497/ 25.4 0.0742/ 37.9 0.0860/ 44.0 0.1088/ 55.6
TSP 0.0381/ 36.9 0.0659/ 63.9 0.0971/ 94.1 0.0520/ 50.4
Average / 34.4 / 62.4 / 71.1 / 55.6
ASD / 17.6 / 26.9 / 32.5 / 20.7

AdaBoost2 SOGA2 MOGA2
CaseStudies rareTasks/ % rareTasks/ % rareTasks/ %
Airlines 0.9298/ 58.6 1.5876/ 100.0 1.1216/ 70.6
Animator 136.5519/ 89.2 114.9578/ 75.1 110.4470/ 72.1
Cache4j 0.0194/ 45.8 0.0389/ 91.7 0.0424/ 100.0
Crawler 5.8669/ 98.6 4.1439/ 69.6 5.9502/ 100.0
Elevator 18.7019/ 100.0 14.9516/ 79.9 17.1540/ 91.7
HEDC 1.1568/ 70.8 1.3836/ 84.7 1.6334/ 100.0
Montecarlo 0.1780/ 72.5 0.1664/ 67.8 0.1823/ 74.3
Raytracer 0.0052/ 44.4 0.0117/ 100.0 0.0104/ 88.9
Rover 1.3018/ 47.5 1.9877/ 72.5 2.7411/ 100.0
Sor 0.1154/ 59.0 0.1855/ 94.8 0.1956/ 100.0
TSP 0.0642/ 62.2 0.0867/ 84.0 0.1032/ 100.0
Average / 67.7 / 83.6 / 90.7
ASD / 20.5 / 11.8 / 12.4

In the second part of our experiments, we concentrate on increasing coverage of rare
concurrent behaviours. Compared with the experiments of the previous section, we consider
all of our benchmark programs since we do not need them to contain an error. For the SOGA
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and SOGA2 approaches, we use the following simplified fitness function:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝐺𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝐶*

𝐺𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝐶*
𝑚𝑎𝑥

+
𝑡𝑖𝑚𝑒𝑚𝑎𝑥 − 𝑡𝑖𝑚𝑒

𝑡𝑖𝑚𝑒𝑚𝑎𝑥
.

From the fitness function, we have left out information about errors and warnings since we
now do not focus on occurrences of any known errors. The MOGA and MOGA2 approaches
are based on the same objectives as SOGA and SOGA2, i.e. 𝑡𝑖𝑚𝑒 and 𝐺𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝐶*. As in
the experiments of the previous section, the probability of mutation was set to 0.5, and each
individual was evaluated using cumulative coverage obtained in five runs. Each generation
had 20 individuals.

For the random approach, we executed 1000 test runs with randomly generated test
and noise configurations. For the other approaches, we used the same number of test runs,
which we divided into 500 runs to train the approaches and the remaining 500 runs to
execute the test cases with the configurations obtained from the training phase. When
training the AdaBoost-based approaches, we took as positive (i.e. suitable for testing) 50
configurations with the highest results of cumulative coverage obtained from five runs and
the other configurations as negative. For the approaches based purely on genetic algorithms,
i.e. SOGA and MOGA, we used five generations in the training phase. For the combination
of AdaBoost and genetic algorithms, i.e. SOGA2 and MOGA2, we used 250 runs for training
AdaBoost and three generations for the subsequent training of the genetic algorithms. For
each case study, we repeated each experiment ten times.

In Table 4.8, we present results of the above experiments (which took in total ap-
proximately 6,939 core hours, i.e. 289 core days). In particular, the entries of the table
contain—for the different programs and different approaches—the obtained coverage of
rare tasks over the time needed to obtain the coverage. We divide the obtained coverage by
the needed time in order to better see which of the approaches is better to quickly obtain
a high coverage of rare tasks. Moreover, the obtained coverage over the testing time is
followed by its interpretation in per cent. Namely, the approach with one hundred per cent
is the winning one, and, for the others, the percentage shows how far they are from the win-
ning approach in terms of the achieved coverage over time. As we can see, the combinations
of AdaBoost with the genetic approaches (i.e. MOGA2 and SOGA2 ) have the best results
on average, and they are also more stable than the other methods.

4.6 Conclusions and Future Work
In this chapter, we have proposed a novel application of data mining in the context of noise-
based testing of concurrent programs. In particular, we have employed data mining based
on binary classification, decision trees, and the AdaBoost machine learning algorithm. We
have shown how to use these technologies for finding a suitable set up of noise injection,
i.e. selecting suitable noise injection heuristics out of the many known ones and finding
suitable values of their various parameters, with the aim of maximizing chances of meeting
a given testing goal. We have illustrated our approach on two concrete testing goals in
the context of concurrent programs, namely, reproduction of known errors for debugging
purposes and covering rare behaviours, which are more likely to contain so far unknown
bugs than common behaviours. We have shown how data mining can be used to gain more
insight into the suitability of the different noise heuristics and their parameters, allowing
testers to choose the right ones for the given context, as well as how to use data mining
to improve fully automated noise-based testing. For the latter case, we have combined
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our approach both with noise-based testing on a random basis as well as with genetically
optimized noise-based testing. For all the proposed approaches, we have illustrated on
a number of case studies that they can indeed improve the process of noise-based testing
of concurrent programs.

In the future, we would like to apply in the context of testing of concurrent programs
other approaches to data mining than AdaBoost and binary classification that we conside-
red in this chapter. This could include approaches such as outliers detection, clustering, or
association rules mining. We would also like to look for other applications of data mining
than setting up noise injection in a suitable way. For example, many of the concurrency
coverage metrics based on dynamic detectors contain a lot of information on the behaviour
of the tested programs, and when mined, this information could be used for debugging pur-
poses. One could also think of generalising the various existing works devoted to detection
of untested behaviour or to eliminating tests of similar behaviour of sequential programs
(cf. Section 4.2) for the case of concurrent programs.
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Chapter 5

Prediction Coverage of Expensive
Metrics from Cheaper Ones

We already know from previous chapters that analysing of concurrent programs is very
difficult due to scheduling non-determinism. To find suitable values of test and noise pa-
rameters, when one uses noise-based testing or analysis. For maximizing coverage under
some metrics, one may need a large number of test executions, which is time-consuming.
To minimize this problem, we show that there are correlations between metrics of different
cost and that one can find a suitable test and noise setting to maximize coverage under
costly metrics by experiments with cheaper metrics.

5.1 Introduction
To maximize coverage under a chosen concurrency coverage metric (or a combinations
of such metrics), the space of possible thread schedules has to be properly examined. If
the TNCS problem is not solved properly, the usage of noise can even decrease the obtained
coverage [30]. However, solving the TNCS problem is not an easy task. Sometimes, its
solution is not even attempted, and purely random noise generation is used. Alternatively,
one can use genetic algorithms or data mining [42, 44, 6]. These approaches can outperform
the purely random approach, but finding suitable test and noise settings this way can be
quite costly. The aim of this chapter is to make the cost of this process cheaper.

The approach which we propose builds on the facts that (1) maximizing coverage under
different metrics may have different costs, and that (2) one can find correlations between
test and noise settings that are suitable for maximizing coverage under different metrics.
Moreover, such correlations may link even metrics for which the process of maximizing
coverage is expensive but which are highly informative for steering the testing process and
metrics for which the process of maximizing coverage is cheaper but which are less efficient
when used for steering the testing process. We confirm all these facts through a set of
our experiments. In particular, we identify the correlations by building a predictive model
between several expensive metrics (under which one may want to simultaneously maximize
coverage) and several cheap metrics.

Using the above facts, we suggest to optimize the testing process in the following way.
Given some expensive but informative metrics, one may find suitable values of test and noise
parameters for maximizing coverage under these metrics by experimenting with coverage
under some cheap metric (or a combination of such metrics) and then use this setting for
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testing with the expensive metrics. We show on a set of experiments that this approach
can indeed increase the efficiency of noise-based testing.

Our contribution is thus threefold: (1) An experimental categorisation of various con-
currency-related metrics to cheap and expensive ones according to the price of maximizing
coverage under these metrics. (2) The observation and experimental confirmation of corre-
lations between test and noise settings suitable for testing under metrics of different cost.
(3) The idea of exploiting the above facts for more efficient noise-based testing of concurrent
programs and its experimental evaluation.

5.2 Related Work
In previous chapters, we focused on solving the test and noise problem via genetic algorithms
and data mining. Here, we propose an orthogonal optimisation based on solving the TNCS
problem for expensive concurrency metrics by using cheaper ones, which is justified by
existence of a predictive model between the expensive and cheap metrics. Prediction is
used in various other areas of software testing, e.g. to predict bug severity [65] or to link
concurrency-related code revisions with the corresponding issues and characterize bugs [18].
None of these works, however, builds on prediction in a similar way as our work in this
chapter.

5.3 Preliminaries
In this section, we briefly introduce regression methods, as well as the benchmark programs
and experimental setting used in the rest of the chapter.

5.3.1 Regression Models

In the following part of the chapter, we briefly introduce three algorithms which are mostly
used to create regression models. These three algorithms are stepwise regression, ridge
regression, and the LASSO algorithm. We discuss their usage in the context below and
conclude that the LASSO algorithm suits as the best.

Our motivation for using some regression algorithm is to find a combination of cheap
metrics whose coverage could predict some expensive metrics. For our purpose, we also need
to select the ideal number of cheap metrics which is necessary for creation of the prediction
model.

For the regression models, suppose that we have data (x𝑖, 𝑦𝑖), 𝑖 = 1, 2, . . . , 𝑁 where
x𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝)

𝑇 are the predictor variables (cheap metrics) and 𝑦𝑖 are the responses
(expensive metrics). As is usual in regression, we assume either that the observations are
independent or that the 𝑦𝑖s are conditionally independent given the 𝑥𝑖𝑗s.

Stepwise Regression

Stepwise regression is a classical statistical method which calculates the F-value for in-
cremental inclusion of each variable in the regression. The F-value is an equivalent to
the square root of the Student’s t-value, expressing how different two samples are from
each other. The t-value is calculated as
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𝑡 =
𝑋 − 𝜇√︁

𝑠2

𝑛

,

which represents the difference between a sample mean (i.e. average) 𝑋 and the population
mean 𝜇 divided by the standard deviation of the sample 𝑠, and so

𝐹 =
√
𝑡-value.

The F-value is sensitive to the number of variables used for its calculation. Stepwise regres-
sion calculates the F-value both with and without using a particular variable and compares
it with a critical F-value either to include the variable (forward stepwise selection) or to
eliminate the variable from the regression (backward stepwise selection) [39]. This algorithm
can be used to select the variables which are in our case cheap metrics.

Ridge Regression

The most popular form of regularized regression is ridge regression, which places a con-
straint on the sum of squares of the coefficient’s weights. Formally, ridge regression perfects
the residual (Error) sum of squares (RSS) subject to a constraint on P — in our case, this
means the number of cheap metrics used for prediction. Ridge regression is motivated by
a constrained minimization problem, which can be formulated as follows:

𝛽𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽∈R𝑝

𝑛∑︁
𝑖=1

(𝑌𝑖 −𝑋𝑇
𝑖 𝛽)

2 subject to
𝑝∑︁

𝑗=1

𝛽2
𝑗 ≤ 𝑡

for 𝑡 ≥ 0 which is a so-called tuning parameter. Moreover, the coefficient 𝛽0 is excluded
from the penalty term [39, 36].

The LASSO Algorithm

The LASSO (least absolute shrinkage and selection operator) algorithm, by contrast to
ridge regression, tries to produce a sparse solution, in the sense that several of the slope pa-
rameters will be set to zero. One may therefore refer to ridge regression as soft thresholding,
whereas the LASSO algorithm is soft/hard, and the subset selection is a hard thresholding;
since, in the latter, only a subset of the variables is included in the final model.

As in ridge regression, the LASSO algorithm can be expressed as a constrained mini-
mization problem by the following equation:

𝛽𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽∈R𝑝

𝑛∑︁
𝑖=1

(𝑌𝑖 −𝑋𝑇
𝑖 𝛽)

2 subject to
𝑝∑︁

𝑗=1

|𝛽𝑗 | ≤ 𝑡

where 𝑡 ≥ 0 is a tuning parameter.
Generally, computing the LASSO algorithm solution is a quadratic programming prob-

lem. A small enough 𝑡 will set some coefficients exactly equal to 0. Thus, the LASSO
algorithm does a kind of continuous subset selection. Like the subset size in variable subset
selection, or the penalty parameter in ridge regression [39], 𝑡 should be adaptively chosen
to minimize the estimated prediction error.
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Comparison of the Regression Methods

Statistical methods which are introduced in the previous paragraphs are used mostly in
other scientific disciplines than information technology and testing of concurrent programs.
Such disciplines are, for example, biology, meteorology, etc. This is the reason why this
subsection presents papers from other disciplines.

In [77], they compare stepwise algorithms with some alternative approaches such as
the LASSO algorithm. The paper says that although the stepwise algorithms remain the do-
minant method in some part of science, the automatic stepwise subset selection methods
often perform poorly, both in terms of variable selection and estimation of coefficients
and standard errors, especially when the number of independent variables is large and
multicollinearity is present. The use of stepwise methods were outperformed by alternative
methods.

Moreover, paper [100] describes the procedure of stepwise regression and uses expe-
riments and Venn diagrams to illustrate the three main problems of stepwise regression:
a wrong degree of freedom, capitalization on sampling, and the 𝑅2 error not optimized.

In [35], they use a different downscaling statistical methods for prediction where between
them is also LASSO regression. The LASSO algorithm was tested and validated against
three other downscaling methods, namely, the local intensity method, quantile-mapping,
and stepwise regression. Compared to these three downscaling methods, LASSO algorithm
shows the best performances. Furthermore, LASSO algorithm could reduce the error for
certain sites, where no improvement could be seen when other methods were used. The stu-
dy proves that LASSO is a reasonable alternative to other statistical methods with respect
to the downscaling of precipitation data.

In [8] the authors compared linear regression with the regularized regressions such as
ridge and LASSO regressions because multicollinearity is one of the major problems in
regression analysis, and it could be reduced by using regularized regressions. They find
that, in every considered data set, LASSO and ridge models have smaller RSS1 value, and
they conclude that regularized models are best fitting models in regression analysis when
one found noise exists in the usual models.

A conclusion of the comparison of these three regression methods is that ridge and
LASSO algorithms are better than stepwise regression. Moreover for our purposes, we
need a method with the variable selection, which is the LASSO algorithm. Thus, we chose
the LASSO algorithm in our approach for prediction of expensive metrics from cheaper
ones.

5.3.2 Benchmarks and Experimental Setting

The experimental results presented below are based on the following 10 multithreaded
benchmark programs written in Java: Airlines (0.3 kLOC), Cache4j (1.7 kLOC), Animator
(1.5 kLOC), Crawler (1.2 kLOC), Elevator (0.5 kLOC), HEDC (12.7 kLOC), Montecarlo
(1.4 kLOC), Rover (5.4 kLOC), Sor (7.2 kLOC) and TSP (0.4 kLOC). More details about
these benchmarks can be found in Section 2.6. All our experiments were performed using
the IBM ConTest tool [23] on a machine with Intel Xeon E3-1240 v3 processors at 3.40GHz,
32GiB RAM, running Linux Debian 3.16.36, and using OpenJDK version 1.8.0_111.

1The RSS value means the residual sum of squares.
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5.4 Increasing Coverage of Expensive Metrics by Prediction
In the following section, we introduce an approach how to predict coverage of multiple
expensive metrics using a prediction model based on cheap metrics. First, we focus on
a classification of the metrics cost. Then, we create the prediction model based on the cheap
metrics, and, finally, we execute and evaluate experiments with the model.

5.4.1 Distinguishing Cheap and Expensive Metrics

We now explain our way of distinguishing cheap and expensive metrics, i.e. metrics for
which collecting coverage is cheaper or more expensive, respectively.

For the classification of the cost of the metrics, we first ran a series of 1000 test runs
of each of our benchmark programs without collecting any coverage. These tests were,
however, run already in the ConTest environment, using its random noise setting, which
already slows the programs down. This way, we obtained the so-called bottom case. The run-
ning time of the tests in the bottom case was around 93 seconds for one execution when
averaging over all our case studies.

Second, for each metric, we performed 100 test runs while collecting coverage under
the given metric, again using ConTest with random noise injection. We then compared
the time needed for the bottom case with the times of the experiments with each single
metric. We classify metrics into three groups: cheap metrics, expensive metrics, and others
(i.e. metrics with medium slowdown). In particular, we mark metrics with the slowdown
between 10 % and 30 % as cheap metrics and those with the slowdown 50 % and more as
expensive metrics.

5.4.2 Discovering Correlations between Cheap and Expensive Metrics

Next, we aim at automatically finding correlations between metrics that will allow us to
find suitable test and noise settings for testing under expensive metrics by experimenting
with cheaper ones. Due to multiple metrics are often used in testing of concurrent programs
(each of them stressing somewhat different aspects of the behaviour), we, in fact, aim at
correlations between sets of expensive metrics and sets of cheap metrics.

For the above, one can use multi-variable regression on the cumulative coverage of
the different metrics obtained from multiple test runs (i.e. coverage based on a union of
the sets of coverage tasks covered in the different runs). However, we, instead, decided
to use one from the regression method presented in the preliminaries section. For our
goals, we chose the regression methods which include selection of variables because from
the set of cheap metrics we need to choose a subset of metrics for prediction. Based of
the comparison of the three common regression methods presented in 5.3.1, we use for
our experiments the LASSO algorithm [49, 39] to build a predictive model between cheap
and expensive metrics. The algorithm selects suitable cheap metrics and constructs their
linear combination capable of predicting a given expensive metric, hence showing correlation
among the metrics. In our experience, this approach gives more stable results than normal
correlation.

In more detail, we use the LASSO algorithm to search for a combination of cheap metrics
which has a high partial correlation coefficient with a chosen expensive metric. The algo-
rithm iteratively increases the partial correlation and selects a subset of cheap metrics with
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the highest partial correlation. The obtained predictive model then looks as follows:

𝑒𝑥𝑝𝑀𝑒𝑡𝑟𝑖𝑐 = 𝛽0 + 𝛽1 * 𝑐ℎ𝑒𝑎𝑝𝑀𝑒𝑡𝑟𝑖𝑐1 + · · ·+ 𝛽𝑛 * 𝑐ℎ𝑒𝑎𝑝𝑀𝑒𝑡𝑟𝑖𝑐𝑛.

Note that the above model predicts a single expensive metric based on several cheap
ones. However, we aim at maximizing the coverage under several expensive metrics based
on the settings suitable for several cheap metrics. To handle this, we propose to replace
the role of the single expensive metric in the above model by using a fitness function
representing a weighted combination of the chosen expensive metrics (as often done in
genetic algorithms).

Such a combination can have the following form:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑒𝑥𝑝𝑀𝑒𝑡𝑟𝑖𝑐1

𝑒𝑥𝑝𝑀𝑒𝑡𝑟𝑖𝑐1𝑚𝑎𝑥

+ · · ·+ 𝑒𝑥𝑝𝑀𝑒𝑡𝑟𝑖𝑐𝑛

𝑒𝑥𝑝𝑀𝑒𝑡𝑟𝑖𝑐𝑛𝑚𝑎𝑥

.

Here, 𝑒𝑥𝑝𝑀𝑒𝑡𝑟𝑖𝑐𝑖 is the cumulative coverage under the 𝑖-th metric obtained in the given
series of test runs with the same test and noise setting, while 𝑒𝑥𝑝𝑀𝑒𝑡𝑟𝑖𝑐𝑖𝑚𝑎𝑥 is the maximum
of all cumulative coverage values under the given metric in all experiments performed so far,
even with different test and noise settings. This way way of approximating the maximum
is used, since there is no exact way of computing it.

5.5 Experimental Results
In this section, we present the individual results of our the experiments in the following
order: classification of the metrics according to their the slowdown incurred when collecting
coverage under these metrics; the regression model for prediction of the expensive metrics
using the cheap ones; and the approach to the testing of concurrent programs and increasing
the coverage of the expensive metrics.

5.5.1 Results of Metric Costs Classification

We divide the metrics into three classes. The cheapest metrics have the slowdown between
10 % and 30 %, the most expensive metrics have the slowdown of 50 % and more. The rest
are metrics with a medium slowdown. As mentioned in Section 5.4.1, the slowdown was
obtained by comparing the time needed to perform 100 test runs while collecting coverage
under the different metrics against the time needed to run the test runs under ConTest but
without collecting coverage. The obtained classification is shown in Table 5.1 and used in
the further experiments.

5.5.2 Regression Model for Prediction

We decided to experiment with finding suitable test and noise settings by simultaneously
maximizing the coverage under all the three identified expensive metrics: 𝐺𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝐶*,
𝑊𝐸𝑟𝑎𝑠𝑒𝑟*, and 𝐷𝑎𝑡𝑎𝑟𝑎𝑐𝑒. The first step was to construct a fitness function combining
these three metrics for using the LASSO algorithm. For this purpose, we generated 100
random test and noise settings, ran five tests with each configuration, cumulating the co-
verage obtained in these runs. Then, we took the maximum values of the cumulated
coverage from the 100 experiments. We obtained the following fitness function:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝐺𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝐶*

1443
+

𝑊𝐸𝑟𝑎𝑠𝑒𝑟*

3862
+

𝐷𝑎𝑡𝑎𝑟𝑎𝑐𝑒

267
.
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Table 5.1: Cheap and expensive metrics.
Slowdown in % Metrics

Cheap metrics 10% ≤ 𝑥 < 30% Avio, Avio*,
Concurpairs, HBPair,
GoodLock, ShvarPair*,
Synchro, WSynchro

Medium slowdown metrics 30% ≤ 𝑥 < 50% Deadlock, SharedVar,
GoodLock*, ShvarPair,
WConcurpairs, Eraser,
Eraser*, Dupair,
Dupair*, Atomviolat,
LockSet, HBPair*

Expensive metrics 50% ≤ 𝑥 Datarace, WEraser*,
GoldiLockSC*, GoldiLock,
GoldiLock*

Secondly, we used the LASSO algorithm with forward regression as implemented in
the glmnet() function from the glmnet package [49] of the R-project tool to obtain the pre-
dictive model. We created the predictive model from a cumulation of results from the five
runs on all the considered case studies.

In the forward LASSO algorithm, it is possible to choose the number of cheap metrics
for the prediction. This is because the algorithm starts with an empty model and in each
step, it adds one cheap metric to the previously built prediction model. Thus, we can see
which cheap metrics form the model in each iteration. For our case, we chose to predict
three expensive metrics by only two cheap metrics. In the second part of this chapter,
we focus on the comparison of the prediction using two, three, or four cheap metrics. We
assume that using more cheap metrics for the prediction could be more precise, but also
more time-consuming.

Using the above approach, we obtained the following predictive model:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 2.9𝑒− 01 + 2.2𝑒− 06 * 𝐶𝑜𝑛𝑐𝑢𝑟𝑃𝑎𝑖𝑟𝑠+ 1.8𝑒− 03 *𝐴𝑣𝑖𝑜*.

This predictive model and also the aforementioned fitness function are used in all further
experiments described in the next sections.

5.5.3 Using Correlations of Metrics to Optimize Noise-based Testing

Once the predictive model is created and we know which set of cheaper metrics can be used
to predict the coverage under a given (set of) expensive metrics, this knowledge can be used
to optimize the noise-based testing process. In particular, we can try to find suitable test
and noise settings for the given expensive metrics by experimenting with the cheap ones.
The experiments can be controlled using a genetic algorithm [42, 44] or by data mining on
the test results [6], all the time evaluating the performed experiments via the chosen cheap
metrics or, more precisely, through the predictive model built. In the simplest case, only
a number of random experiments with different test and noise settings can be performed.
Then the settings that performed the best in these experiments wrt. the predictive model
are chosen. This is the approach we follow below to show that our approach can indeed
improve the noise-based testing process.
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We randomly generated 100 test and noise configurations and executed five test runs
with each of them for each one of our case studies, while collecting the coverage under
the selected cheap metrics (this led to 500 executions for each case study). We cumulated
the results within the five executions of one configuration and then worked with the ob-
tained cumulative value. We chose 20 configurations with the best results wrt. the derived
predictive model. These 20 configurations were used for further test runs under the three
considered expensive metrics. Each of the chosen 20 configurations was executed 200 times,
leading to 4000 test executions under the three expensive metrics for each case study.
Finally, to compare the efficiency of this approach with the purely random one, we also
performed 4500 test runs with random test and noise settings while directly collecting
the coverage under the expensive metrics for each one of the case studies. Hence, both of
the approaches were given the same number of test runs.

Table 5.2: A comparison of random and prediction-optimized noise-based testing.
GoldiLockSC* WEraser* Datarace

CaseStudies Random Predict Random Predict Random Predict
Airlines 9.46 22.42 74.92 182.59 0.28 0.72
Animator 817.82 1451.35 233.20 291.42 0.35 0.46
Cache4j 0.93 2.62 4.14 10.98 0.03 0.10
Crawler 54.93 88.69 351.85 547.41 1.90 2.86
Elevator 297.09 286.30 756.72 733.91 2.31 2.23
HEDC 27.50 19.93 67.37 48.73 0.50 0.36
Montecarlo 4.24 5.19 9.03 11.35 0.02 0.03
Rover 37.62 62.89 174.14 292.18 0.08 0.08
Sor 3.19 7.16 4.93 12.69 0.00 0.00
TSP 1.86 1.40 15.36 11.74 1.14 0.86

Average Impr. 1.62 1.59 1.46

In Table 5.2, we compare the random approach with our prediction-based approach. In
particular, we aim at checking whether the proposed approach can help to increase the ob-
tained coverage of the expensive metrics when weighted by the consumed testing time. We
can see in the table that this is indeed the case: the coverage over time increased in most of
the cases. The average improvement of the obtained cumulative coverage over the testing
time across all our case studies ranges from 46 % to 62 %.

Figure 5.1 (right) compares how the obtained cumulative coverage, averaged over all of
our case studies, grows when increasing the number of performed test runs under the purely
random noise-based approach and under our optimized approach. Our approach has better
results, despite having an initial penalty because of the use of a number of test runs to
find suitable test and noise parameters via cheap metrics. The left part of the figure then
compares the average time needed by the two approaches over all the case studies. Again,
the optimized approach shows better results.

5.6 Discovering Ideal Number of Cheap Metrics to Increase
Performance

In the next experiments, we want to predict any three given metrics: not only the expensive
one, but possibly the cheap ones as well. We present three experiments, in which we try to
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Figure 5.1: Testing time (left) and cumulative coverage (right) for an increasing number of
test runs.

predict the given fitness function by two, three, and four cheap metrics, and we compare
the results. Such experiments show us the ideal number of cheap metrics to predict some
other metrics (at least for the cases considered so far). The process of experiments is
the same as in the previous part of this chapter.

5.6.1 Results of Creation Predictive Models

We decided to experiment with finding suitable test and noise settings by simultaneously
maximizing the coverage under the three given metrics (GoldiLockSC*, WConcurPairs, and
HBPair*) and by minimizing the running time (i.e. we have four metrics). The first step
was to construct a fitness function combining these four metrics by the LASSO algorithm.
for this purpose, we followed the same procedure as in the previous experiments: the same
setting of the number of runs, finding the maximal coverage, etc. This way, we obtained
the following fitness function:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝐺𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝐶*

1443
+

𝑊𝐶𝑜𝑛𝑐𝑢𝑟𝑃𝑎𝑖𝑟𝑠

2811899
+

𝐻𝐵𝑃𝑎𝑖𝑟*

120
+

3504127− 𝑡𝑖𝑚𝑒

3504127
.

As in the previous experiment with three expensive metrics, we used the LASSO al-
gorithm with forward regression to obtain the predictive model. In particular, we aimed
at predicting the four given metrics by two, three, and four cheap metrics. We assumed
that using more cheap metrics for the prediction could be more precise, but also more
time-consuming.

Using the above approach, we obtained the following predictive models. For two cheap
metrics:

𝑚𝑜𝑑𝑒𝑙1 = 1.039 + 0.012 * 𝑆𝑌 𝑁𝐶𝐻𝑅𝑂 + 0.00076 * 𝑆𝐻𝑉 𝐴𝑅𝑃𝐴𝐼𝑅𝑇 ;

for three cheap metrics:

𝑚𝑜𝑑𝑒𝑙2 = 1.0345 + 0.0118 * 𝑆𝑌 𝑁𝐶𝐻𝑅𝑂 + 0.0011 * 𝑆𝐻𝑉 𝐴𝑅𝑃𝐴𝐼𝑅𝑇

−0.00035 *𝐴𝑉 𝐼𝑂𝑇𝑅𝐼𝑃𝑇 ;

and for four cheap metrics:

𝑚𝑜𝑑𝑒𝑙3 = 1.02 + 0.016 * 𝑆𝑌 𝑁𝐶𝐻𝑅𝑂 + 0.00165 * 𝑆𝐻𝑉 𝐴𝑅𝑃𝐴𝐼𝑅𝑇
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−0.00087 *𝐴𝑉 𝐼𝑂𝑇𝑅𝐼𝑃𝑇 − 7.27𝑒−06 *𝑊𝑆𝑌𝑁𝐶𝐻𝑅𝑂.

These predictive models and also the aforementioned fitness function are used in all further
experiments described below.

The correlations of the fitness function and the combinations of cheap metrics are as
follows: for two cheap metrics, the correlation is 0.8470027; for three cheap metrics, it is
0.8510919; and for four cheap metrics, it is 0.8559141. The correlation of the given fitness
function and the combination of cheap metrics is very high for each considered types of
prediction. The correlations are also very close to each other, which may indicate that
there is no big difference between them.

5.6.2 Results of Models Comparison

Table 5.3: A comparison of random noise based tests and three prediction-optimized settings
of noise-based testing.

GoldiLockSC*

CaseStudies Rand. model1 model2 model3
Airlines 0.36 1.01 0.60 0.59
Cache4j 0.43 0.95 0.62 0.65
Crawler 32.15 73.52 76.94 75.59
Elevator 31.65 36.59 36.44 35.63
HEDC 55.65 38.00 53.77 58.68
Rover 35.61 61.24 48.24 47.51

Average Impr. 1.74 1.48 1.48

WConcurPairs
CaseStudies Rand. model1 model2 model3

Airlines 0.0010 0.0020 0.0012 0.0012
Cache4j 0.0000 0.0001 0.0000 0.0000
Crawler 0.0130 0.0265 0.0281 0.0272
Elevator 0.0101 0.0102 0.0100 0.0100
HEDC 0.0006 0.0004 0.0006 0.0007
Rover 0.0021 0.0036 0.0028 0.0029

Average Impr. 1.54 1.37 1.39

HBPair*
CaseStudies Rand. model1 model2 model3

Airlines 0.0038 0.0078 0.0044 0.0049
Cache4j 0.0003 0.0006 0.0004 0.0004
Crawler 0.0726 0.1683 0.1757 0.1731
Elevator 0.1004 0.0937 0.0906 0.0901
HEDC 0.0130 0.0095 0.0131 0.0141
Rover 0.0272 0.0371 0.0306 0.0325

Average Impr. 1.55 1.35 1.38
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As in the case of the three expensive metrics, we randomly generated 100 test and noise
configurations and executed five test runs with each of them for each one of our case studies,
while collecting the coverage under the selected cheap metrics (leading to 500 executions for
each case study). We cumulated the results within the five executions of one configuration
and then worked with the obtained cumulative value. We chose 20 configurations with
the best results wrt. the derived predictive model. These 20 configurations were used for
further test runs under the four considered metrics. Each of the chosen 20 configurations
was executed 200 times, leading to 4000 test executions under the four given metrics for
each case study. Finally, to compare the efficiency of this approach with the purely random
one, we also performed 4500 test runs with random test and noise settings, while directly
collecting the coverage under the four given metrics for each one of the case studies. Hence,
both of the approaches were given the same number of test runs.

In Table 5.3, we compared the random approach with three prediction-based approaches.
From the previous experiment with three expensive metrics, we know that the prediction
optimization works relatively well. Now, we wanted to find how many cheap metrics must
be used for prediction for the best results. In the table, we can see that the results between
model1, model2 and model3 are not very different, but the improvement is the highest in
the prediction with two cheap metrics. The average improvement of the obtained cumulative
coverage over the testing time across all our case studies is more than 50 % in the case of
model1.

Figure 5.2: Testing time (left) and cumulative coverage (right) for an increasing number of
test runs.

Figure 5.2 (right) compares how the obtained cumulative coverage, averaged over all of
our case studies, raises when increasing the number of performed test runs under the purely
random noise-based approach and under our optimized approaches. All our approaches have
better cumulative results despite having an initial penalty because of the use of a number
of test runs to find suitable test and noise parameters via cheap metrics. The left part of
the figure compares the average time needed by the four approaches over all case studies.
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We can see that the optimized approach using only two cheap metrics has the best results
(green line).

5.7 Combination of Genetic Algorithms and Prediction of
Given Metrics

In the following section, we want to use the previous results in the genetic algorithms,
whose usage in noise-based testing we discussed previously. Our goal is to increase the per-
formance of the GAs which are commonly very time-consuming. The idea is that we first
apply the GA with a fitness function based on the cheap metrics and we run a number
of generations. Then we use the results from the first application of the GA as the input
generation of another application of the GA, but this time with a fitness function based on
the expensive metrics and we run next generations.

We compare this approach with the classic execution of GA, i.e. the case where the GA
algorithm executes all generations with only one fitness function based on the given expen-
sive metrics. We assume that the experiments will show acceleration of the optimization
process used by the genetic algorithms.

5.7.1 Results of Experiments with Predicted Coverage and Genetic Al-
gorithms

For the experiments, we use the Airlines, Crawler, Elevator, HEDC, and Rover case studies
only because of their fast executions. We have two types of fitness functions. The first is
a fitness function based on cheap metrics:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐ℎ𝑒𝑎𝑝 = 1.039 + 0.012 * 𝑆𝑌 𝑁𝐶𝐻𝑅𝑂 + 0.00076 * 𝑆𝐻𝑉 𝐴𝑅𝑃𝐴𝐼𝑅𝑇,

the second one is a classic fitness function with the given, more expensive metrics and time:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑐 =
𝐺𝑜𝑙𝑑𝑖𝐿𝑜𝑐𝑘𝑆𝐶*

1443
+

𝑊𝐶𝑜𝑛𝑐𝑢𝑟𝑃𝑎𝑖𝑟𝑠

2811899
+

𝐻𝐵𝑃𝑎𝑖𝑟*

120
+

3504127− 𝑡𝑖𝑚𝑒

3504127
.

In the experiments, we used 50 generations of the populations for the classic GA with
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑐. We divided this number of generations into two sub-generations, combining
the GAs with the predicted coverage, where the first set of generations uses 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐ℎ𝑒𝑎𝑝
and the next generations use 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑐. In our case, we tried to use an extreme divi-
sion: 49 generations were generated with 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐ℎ𝑒𝑎𝑝 and the last one was executed with
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑐.

Table 5.4 shows the results of the experiments with the coverage of the expensive metrics
weighted by the total consumed testing time.

An average improvement of the cumulative metric coverage over time in the new ap-
proach is more than 50 % for two of the considered metrics. Only in the case WConcurPairs
metric, the result of the coverage decreased a little on average.

To sum up the results, the time needed for the experiments was on average about 15 %
worse when using GA combined with the predicted coverage than in the classic setting of
GA over all the benchmarks. On the other hand, the sum of the coverage for the individual
metrics over all the benchmarks was increased. The improvement is between 3 % and 21 %.
An interesting question for the future is how to improve the results by finding the ideal
ratio between the number of generations executed under the fitness function with cheap
metrics and the number of generations with the fitness function based on the expensive
metrics.
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Table 5.4: A comparison of GA for coverage metrics over the total testing time.

GoldiLockSC* WConcurPairs
CaseStudies classic GA predict GA classic GA predict GA

Airlines 0.0094 0.0060 1.2045 0.8229
Crawler 0.0409 0.0511 12.1012 11.1557
Elevator 0.0305 0.0391 9.0522 10.1673
HEDC 0.0209 0.01496 23.3262 15.7001
Rover 0.2469 1.0443 24.6319 34.3079
Average Impr. 1.6234 0.9588

HBPair*
CaseStudies classic GA predict GA

Airlines 0.0028 0.0020
Crawler 0.0172 0.0197
Elevator 0.0047 0.0055
HEDC 0.0012 0.0008
Rover 0.0239 0.0952
Average Impr. 1.5412

5.8 Conclusion and Future Work
We have proposed an approach that uses correlations between cheap and expensive concur-
rency metrics to optimize the noise-based testing under expensive metrics by finding suitable
values of test and noise parameters for such testing through experiments with cheap metrics.
Our experiments have shown that such an approach can improve the noise-based testing.
In the future, it would be interesting to generalize the idea of finding suitable noise settings
maximizing the coverage under an expensive metric via experiments with a cheap one to
a context of dealing with other kinds of cheap and expensive analyses some parameters of
which may also be correlated.
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Chapter 6

Conclusion

The goal of this PhD thesis was to propose new approaches to analyze and verify real-life
multi-threaded programs, i.e., programs that can be large and that can use many different
features, focusing especially on rarely manifesting synchronization errors. It is very difficult
to find such errors due to their appearance in very specific interleavings of the threads only.

There exist various ways how to increase the chance of finding such errors during test-
ing. In particular, we used the noise-injection technique for this purpose. This technique
can ”stress“ running programs so that during their execution, less common thread inter-
leavings are executed. Noise-injection based testing is quite light-weight compared with
other approaches, and so it scales well and can cope with many different programs features.
However, it comes with some problems too. One of the problems is a large number of
combinations how to set up the test and noise parameters for analyzing programs among
which it is difficult to find the right ones. This problem is the one that we worked on this
thesis.

Previously, genetic algorithms were proposed as a way of finding the best solution of
setting the test and noise parameters (instead of choosing them randomly, which is also
often used). In particular, the single-objective genetic algorithm (SOGA) was used in
the previous work. In this work, we proposed usage of the multi-objective genetic algorithm
(MOGA) instead and shown how it can be used in the given domain. We have then shown
that MOGA can indeed deliver better results than both the random approach and the sin-
gle-objective genetic algorithm. One of the major reasons for that is that, in the MOGA
case, the individuals do not degenerate during the generation process, i.e., the generation
of individuals do not lose diversity. Such a loss of diversity can have a negative impact
on the ability of the approach to test different program behaviour because the evolution
could get stuck in the local extreme. For the SOGA, it is difficult to combine the different
objectives that are typically present in the TNCS problem and whose wrong setting can
lead to degeneration. Moreover, we have also proposed a penalization scheme to increase
the number of tested uncommon behaviours. Apart from that the experiments showed that
MOGA has more stable results than SOGA and random approaches.

Next, for the same goal, we proposed a use of data mining, in particular, the Ad-
aBoost algorithm. Using this data mining method enabled us to find which parameters
and their specific values the most affect testing of parallel programs using noise injection
for a particular testing goal. On the other hand, it gives us also information about which
setting of parameters has not any effect on the testing. We also tried to combine both
approaches—AdaBoost and genetic algorithms. In our comparisons of random, AdaBoost,
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genetic algorithms, and a combination of the approaches, the best solution was produced
by the AdaBoost and its combination with genetic algorithms.

In the further part of the thesis, our work focused on the time needed for finding
suitable test and noise settings by experiments with different coverage metrics which are
focused on synchronization in concurrent programs. We found that some metrics used
for controlling the testing process need a large number of experiments to find right test
and noise parameter setting for maximizing coverage under them while other metrics are
cheaper. We found some correlation between these expensive and cheap metrics and we
proposed a way of how these correlations can be used. In particular, we showed that one
can an avoid costly experiments with testing under expensive metrics to find suitable test
settings by performing the experiments with cheaper metrics and then using the discovered
settings for final testing under the expensive metrics. We used the same principle for
the case of testing under multiple metrics at the same time. We realized that the ideal
number of cheap metrics which predict a given combination of more expensive metrics is
two. The discovered knowledge has been useful also when using genetic algorithms to find
the right noise settings.

Future research directions. One of the most promising directions of the future research
would be an as efficient as possible combination of static and dynamic analyzes. Following
this direction which is still in progress, we implemented new heuristics which could be more
precise in injecting noise into program execution. In particular, they allow one to choose
concrete points in the program or concrete types of points (such as usage of some concrete
variables, classes, etc.) where to put noise. Such places could be identified via static analysis
as the first step of program verification. The second step would then be dynamic analysis
focusing the noise on concrete places, classes, or variables which are identified by the static
analysis.

In the process of implementation of the new heuristics, we also tried to replace the IBM
ConTest tool by some other technology in the testing process supported by SearchBestie.
The reason is that the development of the IBM ConTest tool was stopped some time ago,
and the tool is not even maintained any more. For this purpose, we chose RoadRunner
which is an open source tool, and it is still being developed.

RoadRunner is a tool which was developed at University of California at Santa Cruz
and Williams College as an efficient solution for concurrent program testing. As it was
written in [31], the goal of RoadRunner is to provide a robust and flexible framework
that substantially reduces the overhead of implementing dynamic analyses. RoadRunner
manages the messy, low-level details of dynamic analysis and provides a clean API for
communicating an event stream to back-end analysis tools. Each event describes some
operation of interest performed by the target program, such as accessing memory, acquiring
a lock, forking a new thread, etc. This separation of concerns allows the developer to
focus on the essential algorithmic issues of a particular analysis, rather than on orthogonal
infrastructure complexities.

The cooperation of the RoadRunner and SearchBestie was described in the bachelor’s
thesis written by David Kozák [55], where the author of this thesis helped with supervision
and follow-up research. Unfortunately, this research is not further developed due to a loss
of the collaborating MSc student.
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