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A B S T R A C T

This work presents a human-carried mapping backpack based on a pair of Velodyne
LiDAR scanners. The system is a universal solution for both large scale outdoor and
smaller indoor environments. It benefits from a combination of two LiDAR scanners,
which makes the odometry estimation more precise. The scanners are mounted under
different angles, thus a larger space around the backpack is scanned. By fusion with
GNSS/INS sub-system, the mapping of featureless environments and the georeferenc-
ing of resulting point cloud is possible. By deploying SoA methods for registration
and the loop closure optimization, it provides sufficient precision for many applica-
tions in BIM (Building Information Modeling), inventory check, construction plan-
ning, etc. In our indoor experiments, we evaluated our proposed backpack against
ZEB-1 solution, using FARO terrestrial scanner as the reference, yielding similar re-
sults in terms of precision, while our system provides higher data density, laser inten-
sity readings, and scalability for large environments.

(a) (b) (c)

Figure 0.1: The motivation and the results of our work. The reconstruction of indoor environ-
ments (a) is beneficial for inspection, inventory checking and automatic floor plans
generation. 3D maps of forest environments (b) is useful for quick and precise esti-
mation of the biomass (timber) amount. The other example of 3D LiDAR mapping
deployment is preserving cultural heritages or providing models of historical build-
ing, e.g., the roof in (c).
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1I N T R O D U C T I O N

In recent years, the LiDAR (Light Detection And Ranging) technology has become
very popular in the field of geodesy and related fields, where the availability of 3D
models of outdoor or indoor environments can be beneficial: e.g., forestry, architec-
ture, preserving cultural heritage, construction monitoring, etc. The examples of re-
constructions from similar practical applications can be found in Fig. 0.1. Using 3D
mapping can also be beneficial for time and cost reduction. The same model can be
shared among different professionals in different fields of expertise without the need
for personal inspection and measuring at a given place individually.

This demand causes a huge interest in developing solutions that would be able to
capture the reality and provide reliable 3D reconstructions out of the box. However,
there are also other requirements for such a system.

The data acquisition process has to be quick and the planning of fieldwork should
be minimized. This requirement discriminates solutions based on static terrestrial
lasers (e.g., Leica and Riegl of FARO companies), requiring detailed planning of the
data acquisition and manual system set up on a tripod within multiple convenient
viewpoints across the scene.

The solution has to be mobile and easy to handle. This naturally leads to the prefer-
ence of human carried (backpack or handheld) solutions instead of terrestrial or vehi-
cle based solutions, such as NavVis 1, which, for example, does not support traversing
tilted surfaces such as ramps.

However, the necessity for reliability in terms of resulting model precision is in
contradiction with these two requirements. Stationary terrestrial LiDAR solutions re-
quire time demanding scanning process while providing a great accuracy (in order of
millimeters) because of fewer degrees of freedom. Although, for many applications
listed above, there is no need for such precision, our goal is the difference between
the reality and the resulting 3D model below 5 cm. This value was requested by the
experts in the field of geodesy with whom we consulted.

In the practical applications, completeness of the final map should also be guar-
anteed because it might be difficult to repeat the scanning. The operator has to be
aware of the fact that all necessary data of the whole environment were acquired. We
fulfilled this requirement by providing a live preview of the collected data.

The resulting model has to be dense enough, so that all important objects such as
furniture and other inventory can be recognized and distinguished. This is the typ-
ical issue of existing solutions such as ZEB-1, where no LiDAR intensity readings
are available. Therefore, our solution relies on Velodyne LiDARs, which provide a
huge amount of data and the resulting models are dense (see examples in Fig. 1.1).
It also provides the laser intensity readings, which do not depend on the lighting
conditions, contrary to camera-aided solutions. Moreover, we propose laser intensity
normalization, which increases the recognizability of the objects since the laser inten-

1 https://www.navvis.com
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(a) (b)

Figure 1.1: The example of resulting models of indoor mapping. The office environment (a) and
the staircase (b) were captured by a human carrying our 4RECON backpack. The data
acquisition process took 3 and 2 min, respectively.

sity readings cannot be considered as the “color” of the object as it depends on the
range of measurement, the angle of incidence, and the emitted energy.

Some of the existing solutions are not comfortable enough to use. According to
practical experience of the operators, handheld solutions such as ZEB are physically
difficult to operate for a longer period of time since the mapping head weighs approx-
imately 0.4–1 kg, and it has to be carried or swept by hand.

The final requirement is an affordable price. We use Velodyne VLP-16 scanners,
which are relatively cheap in comparison to the other LiDAR solutions, and a uni-
versal IMU (Inertial Measurement Unit) solution, which can be upgraded by a dual
antenna and therefore reused in the outdoor environment where GNSS (Global Navi-
gation Satellite System) is available.

The contributions of this work can be summarized as the proposal of a LiDAR
mapping solution with the following characteristics:

• It is capable of both small indoor and large open outdoor environments map-
ping, georeferencing and sufficient precision in the order of centimeters. These
abilities are evaluated using multiple datasets.

• It benefits from a synchronized and calibrated dual LiDAR scanner, which sig-
nificantly increases field of view. Both scanners are used for both odometry
estimation and 3D model reconstruction, which enables scanning of small envi-
ronments, narrow corridors, staircases, etc.

• It provides the ability to recognize objects in the map due to sufficient point
density and our novel intensity normalization for the measurements from an
arbitrary range.

We also performed a precise evaluation and comparison of our previously proposed
point cloud registration method CLS (Collar Line Segments) with state-of-the-art ap-
proach LOAM (LiDAR Odometry and Mapping), which has not yet been published.
Moreover, we upgraded our CLS method with automatic overlap estimation for better
registration flexibility.



2D E S I G N O F T H E L A S E R M A P P I N G B A C K PA C K

This section consists of two main parts: First, the hardware design concepts are intro-
duced. Then, the software solutions dealing with calibration, precise odometry esti-
mation, alignment and intensity normalization are presented.

The design of the solution follows the requirements elaborated in Sec. 1. They have
been carefully formulated and discussed with experts in the field of geodesy and
geospatial data processing. Besides the essential goal of reliable 3D reconstruction per-
formed automatically, which is demonstrated in the following section, the proposed
solution does the following:

• It fulfils the requirements for precision of the model up to 5 cm. Thanks to the
robust loop closure, ambiguities (e.g., “double wall” effects) are avoided.

• The system is comfortable to use and it is as mobile as possible. The backpack
weighs 9 kg (plus 1.4 kg for the optional dual antenna extension), and it is
easy to carry around various environments including stairs, narrow corridors,
rugged terrain, etc.

• The pair of synchronized and calibrated Velodyne LiDARS increases the field of
view (FOV) and enables mapping of small rooms, narrow corridors, staircases,
etc. (see Fig. 2.1) without the need for special guidelines for scanning process.

• The data acquisition process is fast with verification of data completeness. There
are no special guidelines for the scanning process (comparing to the require-
ments of ZEB) and the operator is required only to visit all places to be captured
in a normal pace. Moreover, captured data are visualized online at the mobile
device (smartphone, tablet) for operator to see whether everything is captured
correctly.

• Since we are using long range Velodyne LiDAR (compared to simple 2D
rangefinders such as Hokuyko or Sick) and optional GNSS support, we pro-
vide a universal economically convenient solution for both indoor and out-
door use. For such scenarios, where GNSS is available, final reconstruction is
georeferenced—the 3D position in the global geographical frame is assigned to
every 3D point in the model.

• The final 3D model is dense and colored by the laser intensity, which is further
normalized. This helps distinguishing important objects, inventory, larger texts,
signs, and some surface texture properties.

2.1 hardware description

The core of our backpack, in Fig. 2.2, is the pair of Velodyne LiDAR 1 scanners VLP-16
(Pucks). Each of them contains 16 laser transmitter–receiver pairs, which are reflected
into the environment by a rotating mirror with 10Hz frequency. This frequency can be
decreased or increased up to 20 Hz. However, frequency higher than 10 Hz causes se-

1 https://velodynelidar.com/
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(a) (b) (c) (d)

(e) (f)

Figure 2.1: Various configurations of LiDAR scanners in worst case scenarios we have encoun-
tered in the experiments: narrow corridor (a),(c) and staircase (b). The field of view
(30◦ for Velodyne Puck) is displayed in color. When only single LiDAR (a) was
used, the scans did not contain 3D information of the floor or the ceiling (red cross).
The situation was not improved when the scanner is tilted because of failing in,
e.g., staircases (b). When we added a second LiDAR, tiled asymmetrical configura-
tion (d) provides better top–bottom and left–right observation than the symmetrical
one (c). Moreover, when the LiDARs are aligned in direction of movement (e), there
is no overlap between current (violet) and future (yellow) frame, leading to lower
accuracy. In the solution (f), the LiDARs are aligned perpendicularly to the walking
direction solving all mentioned issues..

rious undesirable vibration of the sensor, which makes precise odometry estimation
impossible. The rotation gives the sensor 360◦ horizontal FOV with 0.2◦ horizontal
resolution. Vertically, the laser beams are evenly distributed with 2◦ resolution cov-
ering 30◦ vertical FOV. Each of the scanners weighs 830 g and is considered to be a
hybrid solid state LiDAR, since there are no outer moving parts. This type of scan-
ner is able to reach 100 m range with precision around 2 cm. As mentioned above,
Velodyne scanners provide also values of intensity readings, which corresponds to the
surface reflectivity.
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(a) (b) (c)

Figure 2.2: The initial (a) and improved (b),(c) prototype of our backpack mapping solution for
both indoor (b) and outdoor (c) use. The removable dual GNSS antenna provides
precise heading information, aiding for outdoor odometry estimation and also geo-
referencing of the resulting 3D point cloud model. It should be noted that the position
of LiDAR scanners is different in the initial and the later solution. This is elaborated
on in the next section.

As the aiding sensor, the GNSS/INS (Inertial Navigation System) Advanced Navi-
gation SpatialDual2 is deployed. It integrates multiple sensors such as accelerometers,
gyroscopes, magnetometer, pressure sensor, and most importantly—the dual-antenna
GNSS subsystem providing reliable heading information. With RTK (Real Time Kine-
matics) or PPK (Post-Processed Kinematics) corrections, the system should provide
8 mm horizontal and 15 mm vertical positional accuracy, and 0.03◦ and 0.06◦ orienta-
tion precision in terms of roll/pitch and heading angle, respectively. Precise heading
information is provided by a dual antenna solution and therefore it is only available
outdoors. This limitation also holds for positional data. For indoor scenarios, only roll
and pitch angles are reliable and they are relevant for horizontal alignment. The unit
weighs 285 g and besides the 6 DoF (six Degrees of Freedom including 3D position
and rotation) pose estimation it also provides 1PPS (Pulse Per Second) and NMEA
messages for precise synchronization of both Velodyne LiDAR scanners. The details
regarding wiring the components can be found in Fig. 2.3.

The rest of the hardware is responsible for controlling the data acquisition and
storing the data (Intel NUC Mini PC), and powering all the components with small
Li-Ion battery with capacity 10,400 mAh lasting approximately 2 h.

2 https://www.advancednavigation.com/product/spatial-dual
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PC NUC

Velodyne pair Dual GNSS antennas

Fuse

Battery

SwitchVelodyne
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SpatialDual
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Figure 2.3: Components of the system and the connections. Each Velodyne scanner is connected
via a custom wiring “box” requiring power supply (red wires), 1PPS and NMEA
synchronization (green) and Fast Ethernet (blue) connection with computer (PC NUC
in our case).

2.2 dual lidar system

During the experiments, we discovered that the limited (30◦) horizontal field of view
is not an issue for large open spaces. However, when the space is getting smaller
and the environment shrinks (e.g., corridors narrower than 2 m), such a field of view
causes serious problems, leading to poor accuracy or even total failures of the SLAM
system. The worst cases and our solutions are displayed in Fig. 2.1. We experimentally
discovered that we need at least two synchronized Velodyne Puck scanners to provide
a robust solution that covers both the floor/ceiling and the walls, even in small or
narrow rooms.

To achieve good accuracy and to cover the environment, the scanners are mounted
perpendicular to the direction of the operator movement—one in horizontal and sec-
ond in vertical orientation, as displayed in Figures 2.2b,c and 2.1f. All other config-
urations (e.g., Configuration e.) in our initial prototype in Fig. 2.2a were not able to
capture both horizontal and vertical properties of the environment, or did not provide
a large coverage necessary for precise pose estimation.

2.3 calibration of the sensors

To leverage the full potential of using two Velodyne LiDARs, these scanners have to
be properly synchronized and calibrated. As mentioned above, the sensors are syn-
chronized via NMEA messages (GPS communication protocol) and 1PPS (Pulse Per
Second) signal provided by SpatialDual inertial navigation system. Sufficient intrinsic
calibration parameters of LiDAR scanners themselves (corrections) are provided by
Velodyne company and processed by the driver (in ROS Velodyne package).

Therefore, the task to solve is the estimation of extrinsic calibration parameters in
terms of relative 6DoF pose estimation for both laser scanners CV1,CV2 and INS sen-
sor CI in Fig. 2.4. First, the transformation between the scanners is computed. To do
so, two 3D maps of a large indoor space (a large lecture hall in our case) were built by
the scanners separately using our previously published method [16]. These two 3D
maps are ICP aligned. The resulting 3D geometrical transformation represents mutual
position of the sensors C−1

V1 ∗CV2 and also the alignment of laser data they provide
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as presented in Fig. 2.5. Since we are interested only in relative transformations be-
tween the sensors, the origin can be arbitrarily defined, e.g., as the position of the first
Velodyne and CV1 = I. A single frame point cloud consists of multiple (two in our
case) synchronized LiDAR frames and therefore it will be denoted as the multiframe.

To be able to use data provided by the INS system, an extrinsic calibration CI be-
tween the laser scanners and the INS sensor needs to be estimated. All sensors are
fixed on the custom made aluminum mount and therefore the translation parameters
can be found in the blueprints of the mount or can be measured with millimeter pre-
cision. However, mutual rotation has to be estimated more precisely, because just a
fraction of degree misalignment would cause serious errors for long range laser mea-
surements.

We found that the rotation parameters as the transformation between the floor nor-
mal vector ~ni in the point cloud data and the gravity vector ~gi provided by the INS
sensor, since these vectors should be aligned. Points of the floor are selected manually
and the normal of the best fitting plane is computed. This can be performed in arbi-
trary software for visualization and processing of the point clouds—CloudCompare3

in our case. We performed multiple measurements for different inclines of the back-
pack in the indoor corridor with a perfectly straight floor. The final rotation RCI

between the Velodynes and INS sensor was estimated by SVD (Singular value De-
composition) [11] (Equation (2.2)) of covariance matrix A of these 3D vector pairs
(Equation (2.1)) (floor normal and the gravity). Multiplication with matrix E (Equa-
tion (2.5)) solves the ambiguity between right/left hand rotation—we always compute
right-hand representation. Equations (2.1)–(2.5) are based on the work [11].

A =
∑

i

~ni
T · ~gi (2.1)

UΣV∗ = A (2.2)

e =




1, if |VUT | > 0

−1, otherwise
(2.3)

E =



1 0 0

0 1 0

0 0 e


 (2.4)

RCI
= VEU (2.5)

2.4 point cloud registration

The core element of the software part is the alignment of the point cloud data into a
3D map of the environment. There are multiple state-of-the-art approaches for point
cloud registration and odometry estimation, including our previously published ap-
proach Collar Line Segments [16]. We compared our approach with LOAM [17] al-
gorithm, using the implementation available. The results of this experiment are pre-

3 https://www.danielgm.net/cc/
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Velodyne pair

GNSS antennaGNSS antenna

SpatialDual
GNSS/INS

oA1 oA2
CI

CV1 CV2

Figure 2.4: Extrinsic calibration required in our system. The mutual positions between the Velo-
dyne scanners and the GNSS/INS unit are computed. The offsets ~oA1, ~oA2 of the
antennas are tape measured.

Figure 2.5: Two Velodyne LiDAR frames aligned into the single multiframe. This data association
requires time synchronization and precise extrinsic calibration of laser scanners.

sented in Table 3.1, which shows the superior accuracy of our method, thus CLS was
a natural choice for our mapping backpack solution.

The basic idea of the CLS method is to overcome the data sparsity of 3D LiDAR
scanner (e.g., Velodyne) by sampling the data by line segments. The points captured
by individual laser beams form so called “ring” structures displayed in Fig. 2.6a. There
is a large empty space between these rings and while moving, same places of the
scene are not repeatedly scanned, valid matches are missing and the closest point
approaches (e.g., ICP) are not applicable. By using CLS, the space between the rings
is also covered and correct matching of structures in the LiDAR frames is enabled.

The environment in the field of view is represented by the set of CLS line seg-
ments. They are randomly generated between the neighboring ring points within the
azimuthal bin as described in Fig. 2.6a. Since we are using two LiDAR scanners, col-
lar line segments are generated for the scans of each sensor individually. Using the
transformation established by extrinsic calibration described in Sec. 2.3, line segments
are transformed and joined into the single set for each multiframe.

After the sampling is done, matching of the closest line segments is performed.
The line segments are extended into the infinite lines, and the closest points between
matching lines are used for direct estimation of translation. SVD [11] is used again for



2.5 overlap estimation 10

estimation of rotation parameters in the same manner, as described in Sec. 2.3. This
description is only a brief introduction to the CLS method and more information can
be found in our previous publication [16].

φ

x

z

(a)

(b) (c)

(d) (e)

Figure 2.6: The sampling of Velodyne point cloud by the Collar Line Segments (CLS) (a). The seg-
ments (purple) are randomly generated within the polar bin (blue polygon) of az-
imuthal resolution φ. The registration process (b–e) transforms the line segments
of the target point cloud (red lines) to fit the lines of the source cloud (blue). First,
the lines are matched by Euclidean distance of midpoints (c); then, the segments are
extended into infinite lines and the vectors between closest points are found (d); and,
finally, they are used to estimate the transformation that fits the matching lines into
common planes (green in (e)).

2.5 overlap estimation

This work provides a novel solution for automatic estimation of the core parameter
of the CLS approach. Before the transformation is estimated, invalid matches must
be discarded. In our previous work, this was done by a simple distance thresholding,
or by keeping a certain portion of matches (e.g., 50%). However, using a constant
threshold or portion value is not flexible enough. It can cause significant registration
misalignments, when invalid matches are used, or insufficient convergence when the
valid matches are ignored.

Assuming that an initial coarse alignment is known, we are able to estimate the
overlap between these frames and use this value as the portion of matches to keep (e.g.,
for 30% overlap, 30% of best matches are kept). This solution adapts to the specific
situation of each pair of LiDAR frames to be registered and leads to a significantly
better precision.
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Figure 2.7: The overlap (a) between the source (blue) and the target (purple) LiDAR frame. In this
case, approximately 30% of source points are within the view volume of target frame.
The view volume can be effectively represented by spherical z-buffer (b) where range
information (minimum in this case) or the information regarding empty space within
the spherical grid is stored.

er et

~tg(er)
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p

Figure 2.8: The error of measurement (Euclidean distance between points p and pe) can be split
into rotation er and translation et part. The impact of rotation error 2 · tg(er/2) can
be simplified to tg(er) due to near linear properties of tangent function for small an-
gles.

The overlap value (Fig. 2.7a) is effectively estimated by spherical z-buffer struc-
ture [15] in Fig. 2.7b. First, the target cloud is transformed into the source cloud
coordinate frame and the [x,y, z] coordinates of all the points are transformed to
spherical coordinates φ, θ, r (polar angle, elevation angle, and range). Each spherical
bin of the z-buffer is assigned with minimal range value from the source point cloud.
The minimal value is chosen since unwanted reflections sometimes cause invalid long
range measurements and therefore there is the best chance that the minimum range
measurement is valid. Then, all the points of target point cloud (also transformed
to spherical coordinates) with range below the value in z-buffer (including certain
tolerance) are considered to be overlapping points and the ratio to all the points is
considered to be the overlap value. More formally, if the point p with range pr within
the spherical bin i fulfills the requirement

pr < r
i
min · tr + ta, (2.6)

it is considered to be a part of the overlap. Value rmini denotes the minimal range
value stored within the spherical bin. Absolute ta and relative tr tolerance values
represent the acceptable translation and rotation error. Especially the error of rota-
tion causes larger displacements for larger ranges. Equation (2.6) follows our error
model, where the error e is the distance between precise point coordinates p (which
are unknown) and known erroneous coordinates pe which can be approximately esti-
mated as:

e = |p− pe| = per · tg(er) + et, (2.7)
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where er represents rotation, et is the translation error, and per is the range of the
erroneous point (see also Fig. 2.8). In our experiments, we used the tolerance values
tr = 0.1 and ta = 0.3 for the overlap estimation. This allows rotation error er approx-
imately 5◦ and translation error 30 cm for the initial coarse transformation between
the scans.

2.6 rolling shutter corrections

As mentioned in the description of Velodyne sensor, spinning frequency is approxi-
mately 10 Hz which leads to 100 ms duration of a single LiDAR scan acquisition. This
is a relatively long time when significant movement is assumed. Large translation in
the case of fast vehicles or possible fast rotations in case of human carrier can cause
distortions in LiDAR frame displayed in Fig. 2.9. We denote this effect as rolling shutter
because it resembles rolling shutter distortion of optical sensors.

This means that the LiDAR data cannot only be rigidly transformed, but a continu-
ous transformation needs to be applied or at least approximated. The single Velodyne
Puck frame consists of approximately 75 packets, each carrying a slice of the frame.
Slices are evenly distributed in both time and space. Thus, for each ith frame, we
compute the relative transformation T i→j that occurred during the acquisition of the
current frame using the global position Pi of the current frame and the pose Pi+1 of
the next one as:

T i→j = P−1i ·Pi+1. (2.8)

The correction for each slice is estimated by interpolation of this transformation.
The translation parts are interpolated linearly and, for the rotations, Spherical Linear
Interpolation (SLERP) [13] over quaternion representation is used. For the first slice,
zero transformation is estimated and the last one is transformed by T i→j.

Figure 2.9: Example of a LiDAR frame distorted by the rolling shutter effect when the operator
with mapping backpack was turning around (green) and the corrected frame (purple).
This is the top view and the distortion is mostly visible on the “bent” green wall at
the bottom of this picture.

2.7 pose graph construction and optimization

The proposed CLS method for point cloud alignment can only provide consecutive
frame-to-frame registration. However, since each registration is burdened by a small
error, after some time, the accumulated error (drift) is no longer acceptable. To reduce
this drift and also to close loops of revisited places, we propose an iterative process
of progressive pose graph construction and optimization. The key idea of this algorithm
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is progressive refinement of odometry estimation from local precision within small
time window to global precision across the whole model. This iterative method is
described in Fig. 2.10 and more formally in Algorithm 1.

p0
p1

p2 p3 p4
p5

p6

p7

p8

p9p10

p11

p12

p13

p14

p15

(a)

p0

p1

p3 p4
p5

p6

p7

p8

p9

p11

p12

p13

p14

p15

p10

p2

O

(b)

Figure 2.10: Pose graph as the output of point cloud registration and the input of SLAM opti-
mization. The goal is to estimate 6DoF poses P1,P2, . . . ,PN of graph nodes (ver-
tices) p1,p2, . . . ,p15 in the trajectory. The edges represent the transformations be-
tween LiDAR frames for given nodes estimated by point cloud registration. Black
edges represent transformations between consequent frames, blue edges are for
transformations within a certain neighborhood (maximum distance of three frames
in this example) and the green edges (in (a)) represent visual loops of revisited places
detected by a significant overlap between the given frames. When GNSS subsystem
is available (b), additional visual loops are introduced as transformations from the
origin O of some local geodetic (orthogonal NED) coordinate frame.

First, only consecutive frames (within neighborhood of size 1) are registered,
and then the neighborhood is gradually enlarged (size d in Algorithm 1, step 1) until
it covers all N frames. CLS registration is performed for each pair (ith and jth frame)
within the current neighborhood where a significant overlap is found and then effi-
cient pose graph optimization using SLAM++ framework [4] is performed. Modulo
operator in Step 3 reflects the fact that we assume a circular trajectory. This assump-
tion of beginning and ending the data acquisition process at the same place is com-
mon also for other similar solutions (ZEB-1, ZEB-REVO, etc.) [3]. It helps the system
to identify at least one visual loop that guarantees reasonable results from the global
SLAM-based optimization.

Before a pair of frames is registered, the presence of overlap larger than to is verified
(Line 5 in Algorithm 1) in order to preserve the registration stability. We used minimal
0.5 overlap in our experiments. This also plays the role of visual loop detection every
time a place is revisited.

Moreover, after the CLS registration is performed, we verify the result of registration
(Line 8) using the error model described in Equation (2.7). As the reference range
value, we take the median range of the source point cloud. In our experiments, we
used tolerance values tr = 0.01 and ta = 0.05 representing tolerance of approximately
0.5◦ in rotation and 5 cm in positional error.

For outdoor mapping, the absolute position and orientation are provided by the
GNSS/INS subsystem with PPK (Post Processed Kinematics) corrections. While the
global error of these poses is small, relative frame-to-frame error is much larger when
compared to the accuracy of pure SLAM solution. Therefore, we combine our SLAM
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Algorithm 2.1: Progressive refinement of 6DoF poses {Pi}
N
i=1 for sequence of frames {fi}

N
i=1 by

optimizing pose graph G.

1: for d = 2 to N
2 do

2: for i = 1 to N do
3: j := (i+ d) mod N
4: T i→j := P−1j ·Pi
5: oij := overlap(fi, fj, T i→j)
6: if oij > to then
7: T i→j, e := clsRegistration(fi, fj, T i→j,oij)
8: if e 6 medianRange(fi) · tr + ta then
9: G := G∪ {edge(i, j, T i→j)}

10: end if
11: end if
12: end for
13: P1,P2, . . . ,PN = optimize(G)
14: end for
15: return P1,P2, . . . ,PN

(in the same way as described above) with additional edges in the pose graph repre-
senting the global position in some geodetic frame, as shown in Fig. 2.10b.

2.8 pose graph verification

After the registration is performed, a new edge is added into the pose graph only if
the registration error is below a certain threshold modeled by Equation (2.7) (Line 8 of
Algorithm 1). However, this simple rejection is not robust enough—some registrations
are falsely rejected or accepted. After all overlapping frames are registered, additional
verification is performed for all edges.

Expected transformation Teij is computed (Equation (2.9)) using alternative path
T1, T2, . . . TK−1, TK, as described in Fig. 2.11. The L2 norm of positional difference
between expected transformation Teij and the transformation T ij found by registration
(Equations (2.10)–(2.12)) is considered as the error value related to this edge. Note that
the positional difference is also affected by the difference in rotation and therefore it
is included in this error.

Teij = T1 · T2 · . . . · TK−1 · TK (2.9)

∆ij = T
−1
ij · Teij (2.10)

∆ij =
[
Rij|tij

]
(2.11)

eij =
∥∥tij

∥∥
2

(2.12)

For each edge, all alternative paths up to a certain length are found and their errors
are estimated. We use paths of length up to 3 as a tradeoff between the time com-
plexity and robustness. An edge is rejected when the median of these error values is
below accepted threshold (10 cm in our experiments). This cannot be considered as
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target error of our reconstruction since the pose graph optimization process further
decreases the cumulative error. The whole process is repeated until there is no edge
to reject.

pi pj

TijT1

T2 TK-1

TK

Figure 2.11: Verification of edge (pi,pj) representing transformation T ij is performed by com-
parison with transformation T1 · T2 . . .TK of alternative path (blue) between ith
and jth node.

2.9 horizontal alignment of the indoor map

While, for outdoor environment, the model is georeferenced and aligned with NED
geodetic coordinate frame (north, east, and down), there is no such possibility when
mapping indoors since the GNSS signal is not available. However, practical indoor
applications of our 3D mapping solution require at least horizontal alignment—the
alignment of gravity vector with Z-axis and the alignment of straight floors/ceilings
with XY-plane in resulting 3D model as Fig. 2.12 shows.

This alignment is possible, since roll and pitch angles are provided by IMU (using
measurements by accelerometers and gyroscopes) and extrinsic calibration of Velo-
dyne sensors to the IMU frame CI estimated as described in Sec. 2.3. The simplest
solution would be to use these roll and pitch angles directly to align the LiDAR
scans individually and deploy the SLAM only to estimate the remaining parameters
(heading and translation). Unfortunately, this is not possible because the accuracy of
roll and pitch angles is not sufficient—error in order of degrees happens during the
motion. Since our goal is to reduce the cost of our solution, we did not want to use ad-
ditional expensive hardware. We rather propose an alternative approach to estimate
horizontal alignment from these noisy measurements.

We can leverage the fact that there are multiple (thousands) of roll/pitch measure-
ments and only a single transformation for horizontal alignment needs to be com-
puted. First, we are able to split each transformation (for each LiDAR frame) estimated
by SLAM into the rotation and the translation

PSLAM = [RSLAM|tSLAM] . (2.13)

Our partial goal is to estimate horizontal alignment Ah fulfilling Equation (2.14).
The transformation of point cloud data X by SLAM rotations RSLAM and horizontal
alignment Ah is the same, as the transformations of these data by IMU measured
rotation RIMU (including the calibration CI). In addition, each rotation (SLAM or
IMU provided) can be split into roll RR, pitch RP and heading RH (Equation (2.15)).
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(a) (b)

Figure 2.12: The reconstruction built by our SLAM solution before (a) and after (b) the alignment
of horizontal planes (floor, ceiling, etc.) with XY plane (blue circle).

Since the IMU sensor is not able to provide accurate heading information indoors, we
supplement the heading RHSLAM estimated by SLAM.

RIMU ·CI ·X = Ah ·RSLAM ·X (2.14)

RHSLAM ·RPIMU ·RRIMU ·CI = Ah ·RSLAM (2.15)

Ah = RHSLAM ·RPIMU ·RRIMU ·CI ·R−1
SLAM (2.16)

Using Equation (2.16), we are able to estimate the (noisy and inaccurate) horizontal
alignment Ah for each pair of SLAM and IMU provided rotations of the same times-
tamp. During the mapping, there are usually thousands of these pairs (10 pairs per
second) which are synchronized. The precise horizontal alignment is then computed
by averaging the quaternions [9] representing noisy partial alignments Ah.

2.10 intensities normalization

Another quality we would like to introduce into the 3D model is the approximate
surface “color” information to improve the ability of visual recognition of various
objects (inventory, signs, etc.). To avoid additional HW, and preserve invariance to
illumination conditions, we use the laser return intensity. However, these intensity
values cannot be directly considered as surface reflectivity, since they are affected by
various additional factors such as angle of incidence, range of the measurement or
gain of the particular laser beam. These factors were reported by previous works [5,
7, 6] and also confirmed by our experiments in Fig. 2.13.

Previously published works propose various closed-form solutions of intensity nor-
malization for long range measurements (over 10 m) [5, 7, 6]. However, this is not
applicable for smaller indoor environments and therefore we propose an alterna-
tive solution. If the normalized intensity represents only the surface reflectivity, there
should be no dependency on other factors and probability distribution of the intensi-
ties should be the same for different laser beams, angles of incidence, or ranges.

Therefore, we discretize the space of ranges and angles with some small resolution
(e.g., 20 cm and 1◦, respectively) and we distribute all the points of the point cloud
model into a 3D grid based on the source beam ID (already discrete), the angle of
incidence and the range. Our goal is to achieve that the intensity probability distribu-
tion will be the same for each bin of points. Assuming normal distribution of surface
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Figure 2.13: The dependency of laser return intensity on: the source beam (a); range of the mea-
surement (b); and the angle of incidence (c). We are using 2 LiDAR scanners with
16 laser beams per each scanner, 32 beams in total.

reflectivities (“colors”), the same target distribution N(µ, σ2) will be achieved within
each bin by a simple transformation:

N(µ, σ2) = N(µi, σ2i ) ·
σ

σi
+ (µ− µi), (2.17)

where N(µi, σ2i ) is the original distribution of laser intensities within ith bin.
There are no ground truth data to perform any objective evaluation of our proposed

method for intensity normalization. We are only able to compare the results of 3D
reconstruction with and without the normalization. Examples of results can be found
in Fig. 2.14.
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(a) (b)

(c)

(d)

(e) (f) (g) (h)

(i) (j)

Figure 2.14: Results of 3D reconstruction without (a), (c), (e), (g), (i) and with (b), (d), (f), (h), (j)
the normalization of laser intensities. One can observe more consistent intensities
for solid color ceiling (b) reducing the artifacts of trajectory, while preserving the
contrast with ceiling lights. Besides the consistency, normalization of intensities re-
duces the noise (d). The most significant improvement is the visibility of important
objects e.g., markers at the electrical towers (f), (h) or emergency exit doors (j) at the
highway wall. All these objects cant be found in the original point clouds (e), (g), (i).
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This section presents mapping results of our system in various scenes and scenarios—
outdoor environments where GNSS is available, indoor scenes with GNSS denied,
small rooms, staircases, and a narrow corridor. A usable and precise solution must
avoid so called “double walls”, which are a typical issue in 3D reconstructions caus-
ing ambiguity. Unfortunately, evaluation of such duplicities cannot be performed au-
tomatically, thus the operator (a certified geodesist) verified the reconstructions for us
by inspecting multiple slices across the model. Moreover, the data density and point
coloring by the intensity readings are required for better visual recognition of vari-
ous objects in the environment. All the raw data collected by our backpack solution,
and also the 3D reconstructions used in this evaluation, are publicly available1.

Regarding the precision, our goal is to achieve 5 cm relative precision (e.g., distance
of the point from ground truth) denoted as er. For outdoor environments, there are
also constraints for absolute error ea in global geodetic frame. The average of this
absolute error is required to be below 14 cm for position in horizontal plane and
12 cm for height estimation. However, the constraints for maximal error are set to
double of these values—up to 28 cm for horizontal and 24 cm vertical error. These
values were obtained through consultation with experts in the field of geodesy and
follow the requirements for creating the building models, outdoor vector maps, in-
ventory check, etc. Global error constraints are applicable only outdoors, where some
global positioning system is available. To sum up, in this section, we show that our
solution provides:

• sufficient relative precision er under 5 cm;
• global absolute error ea within the limits described above;
• data density and coloring by normalized intensities for visual inspection; and
• data consistency without ambiguity (no dual walls effects).

3.1 comparison of point cloud registration methods

We compared our previously published CLS method [16] with different modes (online
and offline) of state-of-the-art method LOAM [17] using the data of KITTI Odometry
Suite [1] providing both the Velodyne LiDAR data and ground truth poses. The er-
ror metrics used in this evaluation are defined by the KITTI dataset itself. The data
sequences are split into subsequences of 100, 200, . . . , 800 frames (of 10, 20, . . . , 80 s
duration). The error es of each subsequence is computed as:

es =
‖Es −Cs‖2

ls
, (3.1)

(provided by [1]) where Es is the expected position (from the ground truth) and Cs

is the estimated position of the LiDAR where the last frame of subsequence was

1 http://www.fit.vutbr.cz/~ivelas/files/4RECON-dataset.zip

19
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Error es (3.1)

Sequence Length LOAM
Online

LOAM
Offline

CLS
Single

CLS
Multi-
Frame

0 4540 0.052 0.022 0.022 0.018
1 1100 0.038 0.040 0.042 0.029
2 4660 0.055 0.046 0.024 0.022
3 800 0.029 0.019 0.018 0.015
4 270 0.015 0.015 0.017 0.017
5 2760 0.025 0.018 0.017 0.012
6 1100 0.033 0.016 0.009 0.008
7 1100 0.038 0.019 0.011 0.007
8 4070 0.035 0.024 0.020 0.015
9 1590 0.043 0.032 0.020 0.018

Weighted
average 2108 0.043 0.029 0.022 0.017

Table 3.1: Comparison of visual odometry error for SoA method LOAM and our CLS method.
The experiments were performed on KITTI Odometry dataset [1]. For CLS, frame to
frame (single) or frame to multiple (10) neighboring frames (multi-frame) registrations
without any loop closures were performed. In LOAM experiments, both the original
online version (providing real time performance) and offline version (with full pro-
cedure for each frame omitting approximations) was used. In all data sequences, ex-
cept the short sequence No. 4 where the car drives only forward without any turns,
our multi frame approach outperformed the LOAM solution.

taken with respect to the initial position (within given subsequence). The difference is
divided by the length ls of the followed trajectory. The final error value is the average
of errors es across all the subsequences of all the lengths.

The experiment is summarized in Table 3.1 and it leads to the conclusion that our
CLS approach outperforms LOAM with approximately 1 cm lower drift per 1 m of
trajectory elapsed. For clarification, LOAM can run in two different modes. In the
online mode (10 fps), mapping is skipped for a certain number of frames, which are
only roughly aligned. In the offline mode, which is approximately 3× slower, every
frame undergoes the full mapping procedure.

The precision of our method was estimated for frame-to-frame approach, where
only consequent frames were registered, and also for the scenario, where each frame is
registered with all other frames within a small neighborhood (10 neighboring frames
used in this experiment). In this experimental multi-frame approach, the final pose is
estimated by simple averaging.

In our previous publication [16], the superior performance of CLS over GICP
method (Generalized ICP) [12] was presented, too. All these evaluations led to the
choice of CLS for the LiDAR frames registration in our 4RECON backpack solution.

3.2 indoor experiments

For indoor evaluation of our system, we chose two different environments—the of-
fice and staircase in Fig. 3.1—where our partner company has already performed 3D
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(a) (b)

Figure 3.1: Experimental environments Office (a) and Staircase (b), and the highlighted slices
that were used for precision evaluation.
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Figure 3.2: Error er distribution (the amount of the points within certain error) for our system
4RECON and ZEB-1 product. The experiments were performed for all test slices in
Fig. 3.1 on Office (a) and Staircase (b) dataset. Note that the model built by ZEB-1
was not available and therefore the evaluation is missing.

mapping using different laser scanners and generously provided the accurate output
models to us. The reconstructions from static FARO scanner achieving very high ac-
curacy (in order of millimeters) were used as the ground truth. The same strategy has
been already used for evaluation of other mapping systems [10, 14, 8]. For the office
environment only, also the 3D reconstruction created by ZEB-1 solution was provided
to us. This allowed us to compare our solution in terms of accuracy, data density,
model usability and completeness.

To evaluate the relative error, all the models of the same environment provided by
different scanners (FARO, ZEB-1, and our solution 4RECON) were aligned using ICP.
As displayed in Fig. 3.1, several reference slices (8 slices per model, 16 slices in total)
were created for the evaluation of precision. Within each slice, the average error (in
Table 3.2) was estimated as the average distance of the 3D points to the ground truth
model created by the FARO scanner. Our solution achieved approximately 1.5 cm
relative error on average, which is only slightly worse result than 1.1 cm error for ZEB-
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Dataset Slice # 4RECON-10 4RECON-
Overlap

4RECON-
Verification ZEB-1

Office 1 2.50 1.71 1.49 1.44
2 1.97 1.47 1.31 1.06
3 1.70 1.75 1.55 1.22
4 1.82 1.54 1.31 1.22
5 1.93 1.63 1.53 1.44
6 2.13 1.49 1.47 1.29
7 2.09 1.68 1.37 0.97
8 2.07 1.36 1.37 1.31

Average er (cm) 2.01 1.62 1.41 1.14

Staircase 1 3.23 2.11 1.81 -
2 3.99 1.87 1.60 -
3 2.63 1.65 1.61 -
4 2.74 1.71 1.53 -
5 2.42 1.68 1.50 -
6 2.98 2.67 1.67 -
7 1.76 1.75 1.29 -
8 1.82 1.67 1.56 -

Average er (cm) 2.74 1.82 1.57 -

Table 3.2: Relative error er of our method and ZEB-1 product within selected slices visualized
in Fig. 3.1. Presented values are average displacements (cm) of the points comparing
with the ground truth point cloud obtained by FARO static scanner. The results are
missing for ZEB-1 and Staircase dataset since there was no reconstruction using this
scanner available.

1 that is burdened by the multiple limitations listed below in this section. Moreover,
we provide information about the distribution of displacement relative error in Fig. 3.2.
The error was estimated for ZEB-1 and different modes of our system:

• in 4RECON-10, the registrations were performed only within small neighbor-
hood of 10 nearest frames (1 s time window) and reflects the impact of accumu-
lation error;

• for 4RECON-overlap, the registrations were performed for all overlapping frames
as described in Sec. 2.7 reducing the accumulation error by loop closures at
every possible location; and

• pose graph verification (see Sec. 2.8) was deployed in 4RECON-verification, yield-
ing the best results with good precision and no ambiguities.

Both ZEB-1 and our solution including pose graph verification achieved sufficient
accuracy below 5 cm. Moreover, the precision of 2 cm was fulfilled for more than 70%
of data. Slightly better precision of ZEB-1 solution was achieved thanks to the Hokuyo
sensor with 4× higher scanning frequency while preserving much lower vibrations
compared with Velodyne LiDAR.
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 3.3: Color coded errors within the horizontal reference slice of the Office dataset (a)–
(d) and vertical slice in Staircase dataset (e)–(g). Blue color represents zero error,
red color stands for 10 cm error and higher. The ground truth FARO data are dis-
played in green. The results are provided for 4RECON-10 (a,e), 4RECON-overlap
(b,f), 4RECON-verification (c,g), and ZEB-1 (d). For Office dataset, there are no am-
biguities (double walls) even without visual loop detection while both loop closure
and pose graph verification is necessary for more challenging Staircase dataset to dis-
card such errors. Moreover, one can observe that ZEB-1 solution yields lower noise
reconstruction thanks to the less noisy Hokuyo LiDAR.
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Fig. 3.3 also shows the precision within representative slices—horizontal slice for
Office dataset and vertical slice across model of Staircase. These slices demonstrate
the noise within data coming from different sensors—Hokuyo LiDAR for ZEB-1 so-
lution and Velodyne for our 4RECON system—and also the precision for different
modes of operation. For Staircase dataset, the necessity of pose graph optimization is
also demonstrated.

Our evaluations show that the precision of our 4RECON backpack is comparable
to the solution ZEB-1 while fulfilling basic requirement for relative error below 5 cm.
Note that the error values are also comparable (and in some cases better) to the pre-
cisions of other available solutions. In our solution, higher noise can be observed
comparing with ZEB-1. This corresponds with higher error values and it is the main
reason for little lower accuracies.

However, it is important to point out two most significant advantages of our so-
lution comparing with ZEB solutions. First, our solution is usable in vast open spaces
with fewer and more distant featuring objects, as is demonstrated in the next sections.
In indoor environments featuring objects at distances significantly larger than 15–20
m [2], ZEB solutions based on the Hokuyo sensor fail.

(a) (b)

(c) (d)

Figure 3.4: The comparison of data density provided by ZEB-1 (a,c) and our (b,d) solution. Since
the ZEB-1 solution is based on the Hokuyo scanner, the laser intensity readings are
missing and data density is much lower compared with our solution. Multiple objects
which can be distinguished in our reconstruction (lamps on the ceiling in the top, fur-
niture and other equipment in the bottom image) are not visible in the ZEB-1 model.

Second, our Velodyne-based solution is able to provide much higher data density,
map completeness and visibility of objects in the scene. We chose two large surfaces (the
ceiling and the side wall in Fig. 3.4) with 230m2 in total area. Models of these sur-
faces created by ZEB-1 solution achieved average data density 0.9 points per cm2
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(2.2 million points in total). Models created by our 4RECON backpack consist of more
than 23 million points, achieving much higher data density—10.1 points per cm2. Bet-
ter visibility of objects in Fig. 3.4 is achieved thanks to the laser intensity readings
provided by Velodyne sensor and employing our normalization process as described
in the Sec. 2.10. This might appear to be only a “cosmetic” property, but the visibil-
ity of the construction elements, equipment, furniture, etc. in the scene is important
for usability in real applications—e.g., an operator needs to distinguish between the
window and the blackboard.

3.3 outdoor experiments

Our system is a universal solution—both for indoor scenes, where the usability was
proven by the previous section, and for outdoor scenes, including vast open ones. We
tested and evaluated our system during a real task—high voltage lines mapping and
measurement. The area of interest, including the details of some important objects,
is visualized in Fig. 3.5. The main goal of this mission was position estimation of
electric pylons (including footprint of the base, total height and the positions of the
wire grips) and the heights and the hangings of the wires. Fig. 3.5 shows that these
details can be recognized in the 3D model. The usability of our 3D reconstructions
was also confirmed by the geodetic company we asked for manual data inspection
and evaluation.

In the same way as during the indoor mapping, the ambiguities in multiple in-
stances of objects disqualifies the reconstructions to be used in practical geodetic mea-
surements. Such error in comparison with the desired result of the reconstruction is
shown in Fig. 3.6. Multiple instances of the same object, blurred and noisy results
were successfully avoided by our solution (see Figures 3.5 and 3.6).

Since our solution integrates precise GNSS/INS module for outdoor scenarios,
the model is georeferenced—the coordinates of all the points are bound in some global
geodetic frame.

To verify the absolute positional accuracy of our model, we performed precise mea-
surements on so-called survey markers. This is commonly used technique to verify the
precision of resulting maps (including 3D maps). Precise positions of the survey mark-
ers are estimated using specialized geodetic GNSS system, which is placed statically
on the survey point for several seconds, until the position converged. The precision
up to 2 cm is achieved using RTK (Real Time Kinematics) which are received online
via internet connection.

Survey markers (Fig. 3.7a) are highlighted using high-reflective sprays. Thanks to
the coloring of point cloud by laser intensities, these markers are also visible in the
reconstructions as can be seen in Fig. 3.7b.

The evaluation in Table 3.3 shows that our 3D mapping for 0.5 km test track fulfills
the requirements for absolute error, as described at the beginning of this section—
average error below 14 cm for position in horizontal plane and 12 cm for height
estimation and maximal error up to 28 cm and 24 cm, respectively (double values of
expected average error).

Thanks to the ability of point cloud coloring by laser intensities, it is possible to
also run such evaluation for the validation of each 3D model, which should be used
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(a)

(b) (c) (d) (e)

Figure 3.5: The example of 3D reconstruction of open field with high voltage electrical lines
(a). The model is height-colored for better visibility. The estimation of positions
and height of the lines (b), towers (e), etc. was the main goal of this mapping task.
The other elements (c,d) in the scene are shown for demonstration of the reconstruc-
tion quality.

in real application. This is also an important quality, since there are requirements for
double measurements in geodesy to ensure that the accuracy is sufficient.

Table 3.3: Errors measured (cm) on geodetic survey marker points at the beginning and at the
end of survey track. The distance between the control points is 523 m.

Ref. Point dX dY Horizontal Error dZ (Vertical) Total Error ea
1 −5.9 −1.2 6.0 −15.2 16.3
2 −5.6 0.5 5.6 −4.7 7.3

3.4 comparison of single and dual velodyne solution

Finally, we compared the robustness of our dual LiDAR solution over the system with
single LiDAR only. We computed reconstructions of the Office environment using our
solution with two synchronized and calibrated LiDARs (one aligned vertically and
second horizontally) in Figure 3.8a,b and also using only single LiDAR—horizontally
( Figure 3.8c,d) or vertically aligned ( Figure 3.8e,f).
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(a) (b)

Figure 3.6: Example of ambiguities caused by reconstruction errors (a), which disqualifies the
model to be used for practical measurements. We obtained such results when we used
only poses provided by GNSS/INS subsystem without any refinements by SLAM or
point cloud registration. Our solution (including SLAM) provides valid reconstruc-
tions (b), where both towers and wires (in this case) can be distinguished.

(a) (b)

Figure 3.7: Geodetic survey markers painted on the road (a) is also visible in the point cloud (b)
thanks to the coloring by laser intensities.

Our evaluation shows that the dual LiDAR solution provides a valid reconstruction.
However, the solution with horizontal LiDAR only is not able to provide vertically
correct alignment (Figure 3.8d), and vice versa, the solution with vertical LiDAR is
horizontally misaligned (Figure 3.8e).

3.5 discussion

When we look on the 4RECON mapping backpack in the context of the other available
solutions, we can summarize its advantages and disadvantages.

Comparing to the ZEB products, our backpack achieves much higher data density,
better visibility of the objects in the resulting model, higher comfort of data acqui-
sition, and, most importantly, usability also in the outdoor featureless open spaces,
including the option of georeferencing the reconstructed point map. However, we
must admit that ZEB scanners achieve better accuracy and lower noise in the models
of indoor environments.

In terms of universality of the usage, our solution also outperforms Robin and
Akhka backpacks, which require GNSS readings and therefore indoor scanning is not
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Comparison of reconstructions provided by dual LiDAR system—floor plan top view
(a) and side view of the corridor (b)—with the reconstruction built using only single
horizontally (c,d) or vertically (e,f) positioned Velodyne LiDAR. The reconstructions
are red colored with ground truth displayed in blue.

possible. For outdoor tasks, Robin achieves better precision than our 4RECON back-
pack, but it is also important to point out the very high price of the Robin solution.

Laser mapping backpacks Pegasus, Viametris bMS3D and LiBackpack can be con-
sidered as the most similar solutions to our work. All these systems claim precision up
to 5 cm, which is also the accuracy of 4RECON (according to the evaluation in Fig. 3.1).
The advantages of these solutions are more professional design and the presence of
additional RGB cameras (for Pegasus and Viametris backpacks). The integration of
panoramic RGB camera into our backpack is the plan for future work. Our solution
on the other side provides open SLAM method in comparison with the proprietary
solutions deployed in these backpacks, and also potentially much lower price.



4C O N C L U S I O N S

This work presents a dual LiDAR system for mobile mapping. Our solution can be
easily carried as a backpack together with a reliable dual antenna GNSS/INS system.
This leads to the universality of its usage. In small or narrow indoor environments
with many obstacles, two LiDAR sensors increase the field of view. On the other side,
in open outdoor spaces with lack of features, the reliable positional subsystem keeps
the result accurate.

Thanks to the type of LiDARs used, our solution also brings multiple other ben-
eficial properties: data density, map completeness and coloring by laser intensities
normalized by our novel algorithm. The intensities enables better visual recognition
of the elements in the scene as well as the visibility of geodetic survey markers for
checking the model validation.

The proposed solution was evaluated in both indoor and outdoor scenarios. Dur-
ing the mapping of the office or staircase environment, our solution fulfilled the
requirement of error below 5 cm and achieved a similar precision as solution ZEB-
1. The average error in terms of the points displacements is approximately 1.5 cm.
For outdoor experiments, our reconstruction met the requirements for absolute preci-
sion with 11.8 cm average error in the global geodetic frame. This proves higher uni-
versality of our mapping backpack compared to the previous ZEB-1 solution. In all our
experiments, data consistency was preserved and unambiguous models were built.
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