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Abstract
Although a 2D discrete wavelet transform has been widely studied during the last two
decades, some directions were not examined from all points of view. One of these directions
is a technique for calculating such transform that has various balanced barriers, arithmetic
operations, and memory usage focused on various architectures. This thesis shows several
new methods of calculation of such transform with variously balanced operations. These
methods are widely described and their behaviour is evaluated on several graphics adapters
using GPGPU, graphics pipeline, and multicore CPU architectures using OpenMP.

Abstrakt
I přesto, že byla 2D diskrétní vlnková transformace předmětem řady rozsáhlých studií, něk-
teré aspekty této problematiky byly doposud opomíjeny. Mezi takové aspekty lze zařadit
techniky pro výpočet této transformace se zaměřením na vyvažování synchronizací, aritmet-
ických instrukcí a využití paměti pro různé architektury. Tato práce ukazuje několik nových
metod výpočtu této transformace s různě nastaveným vybalancováním těchto operací. Tyto
metody jsou detailně popsány a jejich chování je vyhodnoceno na několika grafických adap-
térech za použití GPGPU, zpracování pomocí grafické pipeliny a vícejádrových procesorů
pomocí OpenMP.

Keywords
Discrete wavelet transform, seamless transform, 2D scheme, GPU, GPGPU, CPU, paral-
lelization, optimization

Klíčová slova
Diskrétní vlnková transformace, bezešvá transformace, 2D schémata, GPU, GPGPU, CPU,
paralelizace, optimalizace

Reference
KULA, Michal. Acceleration of 2D Wavelet transform on parallel architectures. Brno, 2021.
PhD thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
prof. Dr. Ing. Pavel Zemčík



Acceleration of 2D Wavelet transform on parallel
architectures

Declaration
I hereby declare that this thesis was prepared as an original work by the author under
the supervision of prof. Dr. Ing. Pavel Zemčík. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. . . . . . . . . . . . . . . . . . . . . . .
Michal Kula

October 24, 2021

Acknowledgements
Firstly, I would like to thank my supervisor Pavel Zemčík for valuable advices during my
studies, my collegues David Bařina, Michal Matýšek, Pavel Najman, Petr Klepárník, and
Michal Kučiš for cooperation on papers, other colleagues, namely Petr Musil, Martin Musil,
Tomáš Milet, Josef Kobrtek, Tomáš Chlubna and Tomáš Starka for valuable criticism of
my ideas and their good company and my girlfriend Marcela for being support for me even
in tough times.



Contents

1 Introduction 3

2 GPU Processing 5
2.1 Recent GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 GPU Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Platform Targeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Discrete Wavelet Transform 18
3.1 Wavelet Transform Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Schemes to Platform Mapping Strategies . . . . . . . . . . . . . . . . . . . . 23
3.3 Work-group to Image Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Goals of the Thesis 26

5 Wavelet Transform Framework 28
5.1 Framework Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Kernel Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Mapping Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Kernel Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 Local Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6 Warp Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.7 Framework usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Article: 2-D Discrete Wavelet Transform Using GPU 38
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Article: Block-based Approach to 2-D Wavelet Transform on GPUs 50
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3 Block-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8 Article: Parallel Wavelet Schemes for Images 60

1



8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.3 Proposed Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.4 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9 Article: Accelerating Discrete Wavelet Transforms on Parallel Architec-
tures 89
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.4 Proposed Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.5 Optimization Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

10 Article: The Parallel Algorithm for the 2-D Discrete Wavelet Transform104
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.3 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11 Summary, Applications and Future Work 112
11.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.2 Schemes List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.3 Possible Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

12 Conclusion 121

Bibliography 122

2



Chapter 1

Introduction

Over the last two decades, complex performance demanding algorithms in computer graph-
ics and multimedia areas became mainstream. Whether it is photorealistic rendering, image
filtering, or compression algorithms, many of these algorithms require real-time or offline
massive data processing. Additionally, many of them are built on top of a 2D DWT (two-
dimensional discrete wavelet transform). Consequently, these algorithms can potentially
benefit from an acceleration of an underlying discrete wavelet transform. The acceleration
of such a transform is the main domain of this thesis.

The current trend of technologies and architectures shows several ways to accelerate
such algorithms.

The first of them is the acceleration of sequential algorithms by algorithmic changes.
One direction for these changes is optimal balancing between arithmetic operations and
memory usage. However, for highly arithmetic demanding algorithms by their nature, this
way appears to be insufficient.

The evolution of processors over the last decades showed that increasing the frequency
and instruction throughput of processors is not power efficient, and as a solution, multi-
core processors became mainstream. These processors opened a new way for accelerating
algorithms using threads and processes. As a result, effective utilization of such processors
brings new challenges that include synchronizations of threads, communication between
threads, data hazards and many others.

Another direction in parallel processing starts to be GPUs. The GPUs became increas-
ingly powerful in terms of memory and arithmetics throughput during the last two decades.
Initially, the limiting factor for their general purpose usage was the requirement to use a
graphics pipeline processing paradigm that uses specialized vertex and fragment proces-
sors with many restrictions. Several authors tried to accelerate general-purpose algorithms
using these GPUs, and several of them succeeded.

The real breakthrough in the GPU processing area started with the invention of unified
architecture. That unveiled the new path for accelerating algorithms using GPUs. In
this architecture, the main change was a unification of computation units (vertex/fragment
cores) used to calculate programable parts of the pipeline and corresponding scheduler
changes. Many architectures based on unified architectures appeared during last decades.
Even the most low-power processors used by modern smartphones and tablets integrate
GPUs based on unified architecture (e.g. ARM Mali, Qualcomm Adreno). However, the
exceptions still exist on the market and they should not be omitted.

Availability, high performance, and relatively low price of GPUs make them one of the
best options for accelerating the time-consuming algorithms with CPUs retained free for
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other tasks. Moreover, the GPU is integrated into many processors sold these days. This
integration can be beneficial, especially when CPU and GPU processings are interleaved
due to using the same memory so copying the data through a relatively slow PCI-E bus
is not necessary unlike in the dedicated GPUs. Over the last few years, the importance of
these GPUs in the GPGPU field has grown, and all indicate that it will also rise over the
time.

The scope of this thesis includes all three acceleration directions: multicore CPUs,
nonunified GPUs and modern GPUs with unified architectures. The main focus of interest
is aimed at GPUs with unified architectures.

The thesis consists of the following chapters. The first of them, GPU Processing, de-
scribes GPU architectures and challenges related to its efficient usage. The next chapter,
Discrete Wavelet Transform, is focused on DWT basics and state-of-the-art methods for
its calculation. The formulations of the thesis goals and a list of published papers are
parts of the chapter Goals of the Thesis. The framework used for evaluating 2D DWT
calculation methods is presented in the chapter Wavelet Transform Framework. The pub-
lished papers with proposed methods for acceleration of 2D DWT on various platforms
are presented in the following chapters: Article: 2-D Discrete Wavelet Transform Using
GPU, Article: Block-based Approach to 2-D Wavelet Transform on GPUs, Article: Par-
allel Wavelet Schemes for Images, Article: Accelerating Discrete Wavelet Transforms on
Parallel Architectures and Article: The Parallel Algorithm for the 2-D Discrete Wavelet
Transform. The chapter Summary, Applications and Future Work presents proof of the
hypothesis, schemes overview, possible application and future research topics. The final
chapter, Conclusion, contains the formulation of the conclusion of the thesis.
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Chapter 2

GPU Processing

This chapter is focused on explanation of common concepts used in modern GPUs (the
section 2.2), functions of their components (the section 2.3), descriptions of various types
of memories and their applications (the section 2.4), disclose synchronization techniques
(the section 2.5), and reveals various performance considerations (the section 2.6).

2.1 Recent GPUs
At the time of writing this thesis, the most recent GPUs consist of up to 10752 unified
processors1, and their memory can transfer up to 1.2 TB/s2. Such GPUs provide the power
of 39TFlops using single precision data type, or even more on less precision data types
using special execution units called tensor cores. Additionally, these GPUs are capable of
processing more than 100 thousand threads on the fly.

The utilization of such powerful devices brings several challenges that are described
later in this chapter.

2.2 Execution Model
Programs capable of executing on GPU are called kernels (GPGPU frameworks notation) or
shaders (Graphics pipeline frameworks notation). It is desirable to execute kernel instances
containing lots of threads for sufficient utilization of commonly used GPUs with a high
amount of cores. For intuitive mapping of those threads to algorithms, the kernel instance
can issue a block of threads with up to 3-dimensional shape, so-called thread grid. Threads
in this grid are combined into equally-sized blocks of threads, so-called work-groups. The
size of these work-groups is user-defined, and their maximum size is limited by platform
resources (more information in the section 2.6.5). Grid size has to be aligned to multiple
work-group size in each of its dimensions (more information in the section 2.6.1).

These work-groups are divided into warps that commonly correspond to HW-locked
blocks of threads that are issued by multiprocessors schedulers3. When the work-group size
is not aligned to multiply of warp size, the rest of the threads from the last subgroup is

1specification of RTX A6000 card, only half of processors are capable of processing integer data types
[11]

2specification of AMD Instinct MI100 [8], accelerators without rendering support has up to 2TB/s (Nvidia
A100 80GB SMX) [10]

3HW-locked block of threads is denoted as warp on Nvidia GPUs and as wavefront on AMD GPUs
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Figure 2.1: Partitioning of thread grid. Thread is denoted as WORK-ITEM. Warp is
denoted as Wavefront. [2]

masked-out from processing. It leads to thread divergence that is described in the section
2.6.2. Partitioning of the grid is visualized in Figure 2.1.

2.3 GPU Components
An example of GPU structure is visualized in Figure 2.2. The typical unified GPU ar-
chitecture consists of the main scheduler, multiprocessors, global memory controllers and
L2 cache. Multiprocessors can be further subdivided into warp schedulers, dispatch units,
execution blocks, local memory, L1 cache, constant cache and possibly other caches (such
as Nvidia Kepler read-only cache [1]).

Global memory is an off-chip memory with high latency and relatively slow throughput.
Dedicated global memory is commonly placed on the GPU board in GDDR5/6/6X
form or on the silicon imposter in the HBM memory form. The section 2.4 provides
more information on global memory.

L2 cache is used for caching data origins in global memory (global memory, textures, data
for specialized read-only caches).

Main scheduler 4 distributes work-groups from kernel instances among multiprocessors
as long as they have enough resources (registers, local memory, etc.). The rest of
the work-groups wait in a queue until sufficient resources of some multiprocessors are

4Nvidia denotes Main scheduler as GigaThread scheduler, AMD as Command processor
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Figure 2.2: Block diagram of Maxwell GM204 GPU platform which can be found in Nvidia
GeForce GTX 980 GPU. The GPU consists of: Main scheduler denoted as GigaThread
Engine, four Memory Controllers located on the sides of block diagram each connected to
a GDDR5 global memory chip by 64bit bus, 2MB of L2 cache for caching global mem-
ory load/store operations, and 16 Multiprocessors denoted as SMM (Streaming Maxwell
Multiprocessor) grouped into 4 GPC (Graphics Processing Clusters) [3].
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available. The resources of each work-group are allocated to the multiprocessor unless
all threads within the work-group finish their executions.

Multiprocessors (Figure 2.3), in the next step, decompose these work-groups into fixed-
size bunch of threads, so-called warps (or wavefront on AMD). The size of these warps
depends on either a platform or on a combination of platform and kernel properties
(Intel GPUs [5]). These warps are allocated statically into warp schedulers, that are
reponsible for issuing all of their instructions.

Warp schedulers choose warp from their pool of statically assigned warps that have
prepared operands of the next instruction and pass it to dispatch unit. Note that
the ratio between the number of warp schedulers and dispatch units is not always
1 : 1. On platforms with ratio 𝑁 : 1 where 𝑁 > 1, the utilization of all dispatch
units is possible only when ILP5 is used. This operation can be performed by
creating a block of 𝑁 independent instructions (see the section 2.6.3 for more
information).

Dispatch units execute instructions on execution blocks that are owned by/at-
tributed to/belong to underlying warp schedulers. Some of these blocks are
shared with other warp schedulers across the multiprocessor (e.g.texture units
blocks on almost all architectures, all blocks on Nvidia Kepler architecture [1]
etc.).

Execution blocks can be categorized into three common classes: arithmetics blocks,
load/store blocks, and texture units blocks.
Arithmetics blocks are either blocks of Core (streaming processor) ALUs that

are suitable for calculating standard arithmetic instructions on 4B operands
(except for transcendental instructions), blocks of SFU5 ALUs for calculat-
ing transcendental instructions (sin cos, etc.), blocks of DP blocks suitable
for execution with double precision instructions (typically not presented on
consumer GPUs) or other platform-specific arithmetics blocks (like Ray-
Tracer cores, Tensor cores, Scalar units, VLIW6 units, etc.). The availability
of arithmetics blocks can vary between platforms. For instance, AMD GPUs,
since GCN architecture, have additional scalar unit used for calculation in-
structions with similar operands across the warp (like calculation of indices,
operations on constants, branch masks operations, etc.). VLIW architec-
tures have a block of VLIW processors containing 4 or 5 ALUs (e.g. AMD
VLIW 4, AMD VLIW 5 or ARM Mali Midgard). On these architectures,
the independent common instructions are packed into VLIW instructions in
a maximum ratio of 𝑁 : 1 where 𝑁 is the number of ALUs in VLIW cores.
The section 2.6.4 provides more information on instruction dependency and
its impact on performance.

Load/store units block are responsible for loading and storing data to global
or local memory. Properties of these memories are discussed later in the
section 2.4.

Texture units blocks are responsible for loading data from global memory
represented as nD textures. The section 2.4 gives detailed information on
texture memory.

5ILP - Instruction level parallelism
6VLIW - Very long instruction word

8



Figure 2.3: Block diagram of Maxwell GM204 GPU platform multiprocessor denoted as
SMM (Streaming Maxwell Multiprocessor). The multiprocessor consists of: PolyMorph en-
gine for scheduling threads during graphics pipeline stages, 4 independent Compute blocks,
96kB of local memory denoted as Shared Memory, 24kB of combined Texture/L1 cache,
and 8 texture units denoted as Tex. Each Compute block can be further divided into: 16k
of 4B registers, 1 Warp Scheduler connected to 2 Dispatch Units capable of executing 2
independent instructions from the same warp on 2 blocks of units, block of 32 Core units,
block of 8 LD/ST (Load/Store) units, and block of 8 SFU (Special Function Units) [3].
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Figure 2.4: Memory hierarchy on Nvidia Kepler architecture. [1]

Local memory is programmable memory allocated for a particular work-group and
existing only within the lifetime of the work-group. Its typical size per multipro-
cessor is 64-128kB on modern architectures. The section 2.4 provides detailed
information on local memory.

Registers are the fastest memory available in GPU. They are allocated per thread.
The most modern architectures have 56-64k of 4B registers. More information
on registers can be found in the section 2.4.

L1 cache differs in use according to the platform. Commonly, it is used for caching
textures data that originates in global memory. On some architectures, the
global memory is cached as well. On some other architectures, the behavior can
be set by load instruction qualifier (like .ca qualifier of ld instruction on Nvidia
architectures [12]) or by kernel configuration.

2.4 Memory Model
Memory can be categorized into two classes: on-chip memory and off-chip memory. Almost
all memories used in kernels, such as global memory, constant memory and texture mem-
ory, belong to the off-chip memory. The difference between these memories lies in caching
behaviour. In contrast to the off-chip memory, the on-chip memories lie directly on the
GPU chip. The common memories of the on-chip type are local memories that exist only
in the scope of work-group lifetime and registers. The caches like L1, L2, constant cache,
instruction cache, and other caches on some platforms, such as read-only cache on Kepler
platform [1], eDRAM cache on Intel Iris platform [4], Infinity cache on AMD RDNA2 plat-
form, etc., are also classified as the on-chip memories. The memory hierarchy is visualized
in Figure 2.4. Memory properties are denoted in Table 2.1.
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type location cache size size per allocation Host
available

GPU
readable

GPU
writeable

global off-chip L2** 1-80GB GPU CPU yes yes yes
texture off-chip L2/L1 1-80GB GPU CPU yes yes yes
constant off-chip Constant 64kB buffer CPU yes yes no
local on-chip* None 64-128kB multiproc. group no group group
register on-chip None 224-256kB multiproc. thread no thread thread

Table 2.1: Memory types. *On some plaforms emulated by global memory (ARM Mali
architectures). **On some platform cached in L1 as well.

2.4.1 Texture Memory

Textures provide the ability to:

∙ read out-of-range data with several mods (mirror-repeat, repeat, clamp, etc.),

∙ filter the data using various filtering methods (bilinear, nearest-neighbour, trilinear),

∙ enable normalized coordinates (stretch an image to range 0-1 in both axes regardless
of its original size).

Reading of such textures is typically cached to multiprocessors’ L1 cache with the optimized
spatial caching pattern. The texture units located in multiprocessors are used for reading
these textures. The main advantage of these textures is that the previously described oper-
ations are processed without the assistance of arithmetic Cores that retain these Cores free
for other tasks. The disadvantage of texture usage lies in limited throughput in comparison
with L1 cache/local memory.

In 2D DWT or similar algorithms, the textures can be used for branchless reading of
out-of-range data with mirror-repeat out-of-range mode.

2.4.2 Global Memory

Global memory is common memory lying outside of chip, fillable and readable from host
and kernels. In most cases, the memory is located in dedicated GPU memory (DDRx or
HBM memory) or system RAM when the GPU is integrated. However, when the GPU
memory is full, the system can allocate part of global memory to the system RAM, causing
significant degradation of performance.

Even the global memory is cached to L2 cache during loading of data on modern ar-
chitectures, it is desirable to reduce the usage of this memory to avoid overloading of the
cache or in worse case reloading the data from global memory when the size of L2 cache is
not sufficient for on-the-fly data.

When a global memory load instruction is executed by warp, data needed by threads is
loaded firstly from global memory to L2 cache in the form of cache lines (when it is not lying
in L2 already). Afterwards, the cache lines are loaded to multiprocessors registers (these
cache lines are also loaded to L1 cache on some architectures). The size of cache lines is
platform-dependent, and their typical size is 32-128B. This fact implies that reading from
various locations by warp threads instruction (uncoalesced access) leads to loading multiple
cache lines from global memory. As a consequence, the latency of such load instruction rises
and L2 cache are overused. The worst case of uncoalesced access is loading of small values
from random locations. In contrast to random access is coalesced access where adjacent
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threads in warps load adjacent locations in memory. Completely coalesced access is aligned
to the size of the memory block that is loaded by the warp. Loading values from the same
location to all or several threads in the warp is on current platforms without any penalization
because current platforms support broadcast and multicast loading (in contrast to old
Nvidia Tesla architecture where nonserialized access is conditioned by complete coalesced
access). Supported data size loadable by single thread is one of the sizes of 1B, 2B, 4B, 8B
or 16B assuming that data start is aligned to that data size. In other words, the maximum
loadable size per warp is 512B when warp size is 32. Note that loadable/storable data size
in global memory differs from local memory, which is limited to 4B. Loading/storing larger
blocks from/to local memory leads to splitting memory operation to separate 4B operations
with bank conflicts.

2.4.3 Constant Memory

Constant memory data is lying in global memory and global memory data but it is marked as
read-only and it is cached often by special small constant caches that lie in multiprocessors.
The maximum size of the constant memory buffer is often limited to 64kB, and the cache
size in the multiprocessor is typically much smaller (8kB). Constant memory is primarily
optimized for broadcasting values to the whole warp. As a result, load instruction issued
by warp (where the location of threads is variable) possibly leads to serialization of reading
and performance degradation (depending on the specific architecture implementation).

2.4.4 Local Memory

Local memory7 is a user-controlled fast memory cache, typically located in multiprocessor
(all AMD [6] and Nvidia GPUs [1, 3], Intel GPUs since 11th generation [5]). An exception
is an architecture where local memory is emulated and the data lies physically in global
memory (ARM Mali architectures) or lied in L2 cache that causes lower throughput (Intel
architectures preceding 11th generation of Intel CPUs [4]). Local memory is allocated to a
particular work-group and exists only within its lifetime. It is not prefillable from a host
or any other work-group. Usually, the memory consists of banks where each bank can
load data from one location within warp load/store instruction. The number of banks is
platform-dependent but the common size is 32 or 16 banks. Those banks are interleaved
across local memory by 4B segments (some architectures like Nvidia Kepler can be config-
ured to 8B segments [1]). Load/store instruction that loads/stores data from N different
locations lying in the same bank causes N-way bank conflict. N-way bank conflict is serial-
ized to N separated loads/stores, leading to overuse of load/store units and lowering their
effective bandwidth to 1/N. For this reason, bank conflicts should be avoided wherever it
is possible. The issue with bank conflict can also happen when 8B or 16B data type val-
ues are loaded by coalesced access from global memory followed by storing them to local
memory. For instance, when the 16B data type values are loaded by warp, its store is split
into four separate 4B store instructions where each of them stores data with the stride of
4. Consequently, every 4th bank is used four times in one store instruction that causes a
4-way bank conflict. Note that bank conflict free access to local memory is not conditioned
by coalesced access. Strided access by prime number higher than 2 (3, 5, 7, etc.) leads to
bank conflict-free access. Additional information on local memory and coalescing can be
found in Cuda C Programming Guide [7].

7Nvidia denotes local memory as shared memory

12



2.4.5 Registers

Registers are the fastest memory available in GPU. Common variables and arrays in kernels
are interpreted as registers. While compiling kernel where too many registers are needed,
the compiler can decide to spill some registers to global memory. As a consequence, it
possibly degrades the throughput of the kernel. Information about register spilling can
be obtained from the compilation log. On some architectures, registers can be exchanged
between threads within the same warp. For more information on exchanging registers, see
next section 2.5.

2.5 Synchronization
Three mechanisms exist for communication between threads in the kernel: memory syn-
chronizations, atomic operations and in-warp communications.

Barriers ensure that all work-group threads load/store operations on desired memory
preceding barrier are finished before starting any following memory operations of the
same work-group threads. The impact of barriers on thread calculation is described
in the section 2.6.

Atomic instructions are one-way communication instruments between threads in the
whole kernel. It provides a way to load data from a particular place from global/lo-
cal memory, calculate one of the predefined operations, and store the result back to
memory without interfering with other threads. The supported operations for inte-
ger numbers are: bitwise operations, addition and subtraction operations, exchange
value operation and compare value, and exchange operations. Modern platforms are
capable of processing float add atomic operations as well, but the support is limited
to languages that enable these operations within their extensions.

In-warp instructions can be used for data exchanges between threads in warp. They
take advantage of the fact that the instruction for the whole warp is performed atom-
ically8. The most common instructions from this class are shuffle instructions. The
shuffle instructions can exchange register values between threads within the warp
with: higher or lower thread IDs (shuffle_up, shuffle_down), threads IDs changed
by mask (shuffle_xor), exact IDs of threads within the warp (shuffle). These
instructions are platform-dependent because the warp size varies between platforms;
therefore, they are not a core part of platform-independent parallel languages. Im-
plementation of these instructions varies between platforms as well. Not all variants
are operating on whole warps in cases of some platforms (like AMD data-parallel
primitives operating either on blocks of 16 threads using shuffle_up, shuffle_down
modifier or on a block of 4 threads using shuffle modifier). On the contrary, shuffles
are not supported on some other platforms (Nvidia Fermi and older Nvidia platforms,
ARM Mali platforms, AMD VLIW platforms). Shuffle instructions are optionally used
in the Wavelet transform framework, described in the chapter 5. Note that the shuffle
operation, presented in OpenCL library [13], shuffles the registers within the same
thread in contrast to warp shuffle operations presented in this section.

8exception is Nvidia Volta and newer architectures where synchronization between threads in warp is not
implicit and has to be forced.
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2.6 Platform Targeting
Available GPU platforms have various types of caches, execution units, amount of resources
and other properties that should be considered while targeting algorithms on a specified
or wide range of platforms. One of those properties are instruction latencies. On GPUs,
the processing of instructions is pipelined that results in such latencies. These latencies
can be hidden either by processing independent instruction (see the section 2.6.4 for more
information) or multithreading (see the section 2.6.5 for detailed information).

2.6.1 Grid Alignment

Grid size has to be aligned to multiple work-group size in each of its dimensions. Common
strategies for meeting this rule are to align the grid size and exclude overflowing threads
by a condition or to align the grid size and underlying data and execute all threads even if
some of them are processed out of valid data range.

The first strategy encompasses the execution of conditional branch by all threads that
implies splitting the code into separate code blocks (before the branch, after the branch
and after the jump). Thus, the number of instructions that the compiler can shuffle to
avoid instructions dependencies possibly declines (more information on this phenomenon is
presented in the section 2.6.4).

The second strategy requires resizing input and/or output buffers or remapping threads
pointing to out-of-range data to the valid data areas. For instance, the correct calcula-
tion of 2D DWT described in the chapter 3 requires a symmetric extension of borders.
The symmetrically extended borders can be loaded by remapping load positions of out-
of-range pointing threads to their symmetric counterparts. This technique is used in the
implementation on the Wavelet transform framework described in the chapter 5.

2.6.2 Thread Divergence

Thread divergence is a state when all threads within a work-group are not going through
the same execution path. It is caused by conditional jumps or the execution of work-groups
not aligned to multiple warp sizes. Thread divergence can be categorized into in-warp
divergence and divergence of whole warps.

In-warp divergence is caused by conditional jumps, where some of the threads within a
warp follow another path than others. In that case, the execution of both paths is serialized,
and inactive threads within the path are masked-out from processing. Moreover, warp
instructions are processed in lock-step form, so instruction issuance time is not dependent
on thread mask. Consequently, it leads to a reduction of GPU utilization. Thus, it is highly
recommended to avoid in-warp divergence as much as possible.

In contrast to the in-warp thread divergence, thread divergence of whole warps does
not necessarily lead to lower utilization of GPU, but the performance impact depends on
a balance of various instruction types across warps in work-group, number of work-groups
allocated to multiprocessor in parallel and warp scheduling strategy.

For instance, a platform with 32 threads-sized warps, four warp schedulers per multi-
processor (such as Maxwell architecture - see Figure 2.2) and strategy of assigning warps by
modulo arithmetics is used for simple Gaussian filtering of size 3×3 by 32×8 threads-sized
work-groups. Faster access to repeatedly loaded data is provided by caching the data to the
local memory. Synchronization between work-groups during their calculations is either not
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possible or it is costly9 so that work-group threads can be mapped either onto input regions
or onto output regions of an image. In this case, each work-group is mapped onto the input
region of 32 × 8 pixels. Borders of Gaussian filter cause that output region produced by
work-group will be 30×6. Firstly, the data from the input region is copied into local memory
by all threads. The rest of the calculation is proceeded only by 30 from 32 threads in a row,
so the rest two threads can be possibly masked out. Moreover, the first and the last warp
representing the first and the last row can be masked out, which seems beneficial. However,
in this particular algorithm and strategy of mapping warps to the schedulers, where the
warp schedulers are mapped to the warps: 0:{0,4};1:{1,5},2:{2,6};3:{3,7} for all given work-
groups, the warps 0 and 7 are inactive during the calculation that leads to an imbalanced
number of instructions issued by warp schedulers 0,3 and 1,2. Consequently, that can lead
to up to 25% performance loss regardless of masking out these warps (in a case where global
memory throughput is not the limiting factor). Moreover, the branch condition used for
masking the inactive threads causes splitting the code into separate blocks that can cause
performance degradation (see the section 2.6.4 for more information). Implementation of
2D DWT in Wavelet transform framework (described in the chapter 5) deals with border
effect using branch-less calculation without masking-out the threads except for final storing
operations.

Barrier commands have to be issued by either none or all of the threads within work-
group. Consequently, all threads within a work-group have to converge to the same path
before they issue any barrier command.

2.6.3 Balancing Operations

The maximum ratio between various instruction types for preserving maximum arithmetics
throughput is related to the number of execution units across different execution blocks.
Such a number can be found in platform-specific datasheets or programming guides. A good
source of this information focused on Nvidia platforms can be found in [7].

In Nvidia Maxwell platform multiprocessor (visualized in Figure 2.3), 4 warp schedulers
are present, each of them with 32 Cores usable for common 32bit float/int instructions, 8
load/store units usable for global/local memory load/store instructions and 8 SFU units
capable of transcendental instructions. Additionally, 2 dispatch units are present with a
capability to issue 2 independent instructions from the same warp. Consequently, for full
cores utilization, the ratio of transcendental instructions to the common instructions can
be 1:4 at maximum. Besides, the ratio of load/store operations to the common instructions
is the same. However, only 2 dispatch units per warp scheduler are available, so it is
not possible to issue the common instruction, transcendental instruction and load/store
instruction simultaneously but only two of them at a time. Moreover, the instructions of
various types must be interleaved, and at least one instruction from each pair of independent
instructions must be the common one.

But not all platforms have two dispatch units; therefore, not all of them can issue
load/store or transcendental instruction in parallel with common instructions for free, even
if the instructions are interleaved accordingly. For instance, in the Nvidia Fermi platform,
the multiprocessor has 2 warp schedulers, 2 dispatch units, 2 blocks of 16 Cores, 1 block of
16 load/store units, and 4 SFU units. Using SFU or load/store units in that architecture
automatically leads to stalling the block of cores.

9Cuda framework provides this ability for global synchronization but it is highly performance demanding
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Another example is the newest Nvidia Ampere platform [11] (at the time of writing
the thesis) with 4 warp schedulers each connected to 1 dispatch unit, that can dispatch
instruction to the whole warp despite that the block of cores is half-warp sized. Thus,
it behaves similarly to the Maxwell platform [3]. Additionally, 2 blocks of 16 Cores, 8
load/store units and 4 SFU units are available. In that architecture, every issue of load/store
or transcendental instruction results in a stall of one of the cores blocks.

On most AMD GCN/RDNA/CDNA platforms, the Load/Store instructions can be
issued for free with a ratio of 1:2 to common instructions without the need for any ILP.
Additionally, there are scalar units capable of calculation scalar instructions (usable for
calculation of thread masks, work-group indices, etc.). The scalar instructions can be
issued free and simultaneously with load/store instructions in a ratio of 1:1 to common
instructions.

In other words, the best-chosen ratio between various instructions types for one platform
does not necessarily mean that the ratio is best for the rest of them.

2.6.4 Instruction Dependency

A compiler is responsible for shuffling instructions to reduce dependence between adjacent
instructions and providing a balance of instructions for various execution blocks. These
features are especially essential on platforms, where ILP is needed to utilize the whole
multiprocessor or VLIW architectures that pack independent instructions into VLIW in-
structions. Changes in algorithms could lead to the extension or reduction of the shuffleable
instruction pools. For instance, complete or partial unrolling of the loops, increasing the
number of inputs processed by a thread, and similar techniques typically extend that pool.
Consequently, these techniques extending the number of registers allocated to the threads
that can possibly cause a reduction of the number of work-groups allocable to multiproces-
sors and, as a consequence, lower the occupancy (see the section 2.6.5 for more information).
Unwilling reduction of shuffleable instruction pool is often caused by issuing of instructions
that lock ordering of other instructions:

∙ Branching instruction splits shuffleable instructions pool into 3 instruction pools sep-
arated by jump condition and jump location.

∙ Barrier instruction forces to issue load/store instructions before barrier before load/-
store instructions after barrier.

∙ Memory labeled as volatile forces to order all of its load/store operations and forces
to load data even if it is loaded repeatedly.

Avoiding those instructions could lead to better utilization of the platform and, conse-
quently, better algorithm performance. Especially beneficial is to remove the branches
focused on mask-out threads that only lead to in-warp thread divergence (for more infor-
mation, see the section 2.6.2).

2.6.5 Multithreading

The degree of multithreading can be expressed as a number of warps that are allocated
to one warp-scheduler in a multiprocessor. The destination platform caps the maximum
degree of multithreading, and the degree is commonly expressed in % of maximum degree
supported by the platform as GPU occupancy in literature. The occupancy is dependent
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on resources available in multiprocessor and resources needed for execution of kernel by
work-group.

The resources that limit the occupancy with commonly available amounts of the re-
sources on platform multiprocessors in braces are:

∙ number of work-groups (8-32),

∙ number of threads (1536-2560),

∙ size of local memory (64-128kB),

∙ number of registers (56-64k of 4B registers).

The resources are typically allocated for whole work-groups so lowering the work-group
size can lead to a better granularity of resource allocation and higher occupancy (unless local
memory consumption is not bound to the number of threads in a work-group). The degree
of multithreading for preserving maximum arithmetics throughput varies by platform and
by kernel properties. Specifically, it depends on the instruction latency, the ratio between
execution units in execution blocks (e.g. block of Cores, SFUs, Load/Store units, etc.),
warp size, and the number of independent instructions in the kernel. For instance, Maxwell
architecture [3] has 32 threads-sized warp, 4 warp schedulers, each warp scheduler paired
with the block of 32 Cores, maximally 2048 threads per multiprocessors and 6 cycles arith-
metics latency for common instructions. The following parameters can be calculated based
on the mentioned information: the number of warps per multiprocessor as 2048/32 = 64,
the maximum number of warps per warp scheduler as 64/4 = 16 and latency in instructions
as 6 · 32/32 = 6. Two ways of preserving the maximum arithmetic throughput can occur:
either every instruction has to precede 5 instructions that are independent of it, or there
are at least 6 warps allocated to each warp scheduler. Additionally, 6 warps per scheduler
result in occupancy 6/16 = 37.5%. Note that the occupancy calculated this way does not
always lead to 100% utilization of Cores. Other circumstances like global data load latency,
an unbalanced number of various instruction types (see more in the section 2.6.3), thread
divergence (see more in the section 2.6.2), and barriers (see more in the section 2.6.6) can
lower the utilization of Cores as well. The occupancy of Nvidia GPUs can be calculated
using Cuda Occupancy Calculator [9].

2.6.6 Barriers

Barriers ensure that all load/store operations within the work-group that precede the barrier
are finished before any following memory operations are started. When warps from a work-
group reach the barrier command, they are inactivated until the rest of the warps within the
same work-group reach the barrier command as well. Consequently, a reduction of active
warps in warp-schedulers occurs that possibly lowers the ability to overcome instruction
latencies by multithreading. In addition, the barriers lead to splitting the execution of
the work-group instructions into two parts: the part before and after issuing the barrier.
Consequently, the unbalanced instructions for various execution blocks can lead to stalling
of these blocks (see more in the section 2.6.3). This can be overcome by parallel processing
of work-groups on the same multiprocessor.
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Chapter 3

Discrete Wavelet Transform

Discrete wavelet transform (DWT) [56] is an integral transform capable of decomposing a
signal to frequency and time/space. It is successfully used in many areas, such as encoding
standards (JPEG2000 [73], Dirac codec), DjVu PDF reader, light field compression, signal
filtering, noise reduction algorithms [63], as a part of convolutional networks [68, 54], and
many other applications. Many types of wavelet are used in such applications but the
most commonly used wavelets are Cohen–Daubechies–Feauveau 5/3 and 9/7 wavelets [30]
used for lossless and lossy JPEG2000 compression algorithm. Recursive application of 2D
DWT on low-frequency outputs ensures decomposing signal to multiple frequencies for such
algorithms. Visualization of decomposition of 2D DWT using CDF97 wavelet is shown in
Figure 3.1. During last two decades the acceleration of DWT have been widely studied
using:

∙ pixel shaders in graphics pipeline paradigm [78, 74, 75, 76],

∙ blending in graphics pipeline paradigm [41, 42],

∙ GPGPU paradigm by separable row-column approach [36, 37, 15, 39, 40, 77, 62, 63,
67, 70],

∙ GPGPU paradigm by separable row-column approach for 3D decomposition [25, 38],

∙ GPGPU paradigm by separable pipeline approach [52, 53, 44],

∙ GPGPU paradigm by block-based tile approach [57, 15],

∙ GPGPU paradigm by block-based seamless approach [14, 34, 69, 60, 61],

∙ parallel CPU approach [21, 29, 37, 38],

∙ SIMD single-thread CPU approach [66, 20, 24, 28, 27, 51, 26, 58],

∙ and FPGA1 [23, 79, 65, 32, 33].

The rest of the chapter provides information on: most commonly used schemes for
2D DWT calculation (in the section 3.1), the approaches for mapping these schemes to
the platforms (in the section 3.3), and the variants for mapping the work-groups in these
approaches using GPGPU paradigm onto the image regions (in the section 3.2).

1FPGA - Field Programmable Gate Array
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(a) Original image (b) 1𝑠𝑡 level of decomposition (c) 6𝑡ℎ level of decomposition

Figure 3.1: 2D DWT visualization

3.1 Wavelet Transform Schemes
One decomposition step of 2D DWT can be calculated using a separable application of 1D
DWT in horizontal and vertical axis by Convolution Scheme or Lifting Scheme or spatial
2D schemes such as Implosion Scheme. In the rest of this chapter, the DWT schemes are
represented using dataflow diagrams. The section 8.2 provides information on the schemes
of matrix and block diagrams.

3.1.1 Convolution Scheme

The most common way to calculate the DWT is using sets of convolution filters. For
each wavelet type, two mirror filters are applied interleaved, a low-pass and a high-pass
one (Figure 3.4(a)). The 2D DWT can be calculated using a non-separable convolution
scheme formed by fusion of vertical and horizontal high-pass and low-pass filters (Figure 3.3)
or by separable convolution scheme that applies 1D convolution filters sequentially on a
horizontal and vertical axis (Figure 3.2). In the separable convolution scheme, the low-
pass and high-pass filters are applied in the horizontal axis, forming horizontal low-pass
(𝐿) and horizontal high-pass (𝐻) outputs. The outputs are further processed by vertical
low-pass and high-pass filters that form 2 × 2 shaped quadruple of spatially interleaved
outputs: a low-low (𝐿𝐿), a low-high (𝐿𝐻), a high-low (𝐻𝐿) and a high-high one (𝐻𝐻).
In the convolution scheme, the calculation of each element is independent of others. As a
consequence, thread communication or synchronization is not required during calculation.
However, the calculation consists of many operations (especially in a fused 2D version),
and in-place calculation of DWT requires caching of a part of an image. The section 11.2
presents a list of the schemes and their properties.

3.1.2 Lifting Scheme

In contrast to the convolution scheme, the lifting scheme introduced by W. Sweldens [72]
significantly reduces the number of operations for DWT calculation. W. Sweldens formed a
method for factorizing DWT convolution filters to a sequence of 𝐾 pairs of predict-update
steps. Later in 1998 I. Daubechies [31] factorized her CDF 9/7 wavelet to a sequence of 2
pairs of predict-update steps (𝛼, 𝛽, 𝛾, 𝛿). In contrast to the convolution scheme, the lifting
scheme reduces the number of operations on CDF9/7 by 50% and makes in-place DWT
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(a) horizontal step (b) vertical step

LL HLLHHH

Figure 3.2: 2D dataflow diagram representing calculation of separable convolution scheme
from the view of single thread. The thread is mapped onto quadruple of pixel elements
(dots in solid box). The arrows indicate operations issued by the thread. The straight
arrows indicate fused multiply-add operations, and the self-directed circle arrows indicate
multiplication operations.

(a) LL (b) HL (c) LH (d) HH

LL HLLHHH

Figure 3.3: 2D dataflow diagram representing calculation of non-separable convolution
scheme from the view of a single thread. The thread is mapped onto a quadruple of pixel
elements (dots in solid box). The arrows indicate operations issued by the thread. The
straight arrows indicate fused multiply-add operations, and the self-directed circle arrows
indicate multiplication operations.
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(a) convolution
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(b) lifting scheme

Figure 3.4: Comparison of 1D DWT convolution scheme (a) and lifting scheme (b) on CDF
9/7 wavelet (𝐾 = 2). The dataflow diagram represents the calculation of 1D DWT from
the view of a single thread. The thread is mapped onto the pair of pixel elements and
calculates L (green dot) and H (purple dot) outputs. Green and purple arrows indicate
fused multiply-add operations issued by the thread. The horizontal black lines are memory
synchronization points, and the horizontal gray line is implicit memory synchronization
used in cases where inputs are copied to temporary memory.

without caching of image possible. However, such factorizing introduces data dependency
between each pair of these 2𝐾 steps (Figure 3.4(b)). Consequently, synchronization with
adjacent threads is required after each step when the threads are mapped onto the part
of an image. Moreover, the communication between work-groups (presented in the section
2.5) is either impossible or costly, so the work-groups have to correctly calculate borders
themselves. As a consequence, the lifting scheme is not well-performing on platforms or
paradigms with costly barriers. Calculation of 2D DWT using lifting scheme is formed
either as a separable lifting+ scheme by interleaving predict and update lifting steps for each
direction (Figure 3.5) or as a separable lifting scheme by calculation all of the horizontal
lifting steps followed by the vertical ones (Figure 3.6). The section 8.2.5 provides more
information on the separable lifting+ scheme whereas the lifting one is further described in
the section 7.3.1. Note that the alternative notation of the separable lifting+ scheme used
in the section 8.2.5 is Sweldens. The separable lifting scheme is implemented by Tenllado
et al. [75], Laan et al. [53], and Wang et al. [77]. Moreover, comparison of separable lifting
scheme and separable convolution scheme is examined by Tellando et al. [75] and Laan et
al. [53].

3.1.3 Implosion Scheme

Iwahashi et al. [46, 45, 47] formed a new spatial scheme denoted as the implosion scheme.
In contrast to the separable lifting scheme variants, the implosion scheme reduced the
number of calculation steps by 25% and increased the number of arithmetical operations
by 50%. The scheme consists of 3 spatial steps (Figure 3.7). The first of them calculates HH
output by predict filter, the second one calculates HL and LH outputs by the combination
of predict and update filters. Finally, the last one calculates LL output by update filters.
The section 8.2.6 presents detailed information on the implosion scheme. Note that the
alternative notation used in the section 8.2.6 is Iwahashi.
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(a) 1st step (b) 2nd step (c) 3rd step (d) 4th step

LL HLLHHH

Figure 3.5: 2D dataflow diagram representing calculation of separable lifting+ scheme from
the view of a single thread. The thread is mapped onto a quadruple of pixel elements (dots
in solid box). The arrows indicate fused multiply-add operations issued by the thread.

(a) 1st step (b) 2nd step (c) 3rd step (d) 4th step

LL HLLHHH

Figure 3.6: 2D dataflow diagram representing calculation of separable lifting scheme from
the view of a single thread. The thread is mapped onto a quadruple of pixel elements (dots
in solid box). The arrows indicate fused multiply-add operations issued by the thread.

(a) 1st step (b) 2nd step (c) 3rd step

LL HLLHHH

Figure 3.7: 2D dataflow diagram representing calculation of implosion 2D DWT scheme
from the view of a single thread. The thread is mapped onto a quadruple of pixel elements
(dots in solid box). The arrows indicate fused multiply-add operations issued by the thread.
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3.2 Schemes to Platform Mapping Strategies
Two known strategies are known for the calculation of 2D discrete wavelet transform. The
first of them, the Separable strategy, calculates such transform by horizontal and vertical
passes. In contrast to the Separable strategy is the Block-based strategy that processes the
2D DWT by a single pass.

3.2.1 Separable

Separable strategy can be further subdivided into a pipelined variant incorporating a sliding-
window approach and a row-column variant that splits an image into tiles.

Pipeline variant

The work-groups are mapped onto horizontal/vertical strips in horizontal/vertical trans-
form pass in the pipeline variant. The algorithm of the sliding window ensures seamless
transform. The sliding window approach combined with separable lifting scheme is used by
Laan et al. [52, 53].

Row-column variant

In the row-column variant, the image is decomposed into tiles. Each work-group is mapped
onto one of the tiles and calculates horizontal or vertical transform on that tile. These tiles
have to be overlapped in the transform axis to ensure a seamless transform. When using a
graphics pipeline, the communication between threads during kernel runtime is impossible,
and local memory is unavailable. In that case, each thread is mapped onto the output region
and processed independently to other ones. Additionally, multiple steps can be processed
by multiple kernel calls. The row-column variant was widely studied using graphics pipeline
paradigm [74, 75, 78, 76] and using GPGPU paradigm [36, 37, 15, 39, 40, 77, 62, 63].

3.2.2 Block-based

The 2D DWT is calculated using a single kernel that incorporates a sequence of 1D filters or
2D filters in a Block-based strategy. Additionally, two possible 2D DWT outputs variants
exist: a tiled one and a seamless one.

Tiled output

An image is split into non-overlapping regions, so-called tiles, in the tiled variant. These
tiles are processed separately, each one of them by one work-group. The advantage of the
tiled version is that the region needed for the tile calculation has the same size as the
tile, so it leads to coalesced access to global memory with the possibility of alignment of
these accesses to cache lines (see the section 2.4.2 for more information on global memory).
Aligned memory load and store operations lower the L2 cache usage and potentially lead
to better performance. Especially, it is beneficial on platforms without support for global
memory load/store operations caching (such as Nvidia Tesla architecture). Consequently,
the tile-based algorithms have to deal with replacing pixel elements from adjacent tiles that
are missing. Commonly, the symmetric extension of tile is used as a replacement. Creating
such extension can be calculated either by extending the tiles in local memory by the

23



necessary size for correct calculation and writing the symmetric extension on extended areas
or by remapping the pointers to out-of-range pixel elements to their symmetric counterparts.

The extending variant requires an extension of the work-group local memory over the
tile by: 2𝐾 on the top and left side of the tile, 2𝐾 − 1 on the bottom and right side of the
tile where 𝐾 is a number of predict-update pairs. Such extension is filled by symmetrically
mirrored pixels from the tile block.

The remapping variant requires a calculation of offsets to the adjacent positions during
kernel calculation instead of using constant offsets that are usable by the extended local
memory variant. Moreover, the horizontal offsets differ on border threads within warps so
at least the horizontal part of offsets cannot be calculated using scalar units on AMD GPUs.
However, on some platforms, integer units block and float units block can be used in parallel
using ILP (e.g. Nvidia Turing platform) by the same warp scheduler (see the section 2.6.3
for more information). For such platforms, the remapping variant should be beneficial. The
advantage of the remapping variant lies in the direct mapping of work-groups to tiles and
calculation without the need for thread divergence (further described in the section 2.6.2).

Although the symmetric extension is used, the tile output variant introduces block
artefacts on the borders of tiles.

The tile output variant of block-based strategy combined with separable lifting scheme
is used by Matela et al. [57] and Blazewicz et al. [15].

Seamless output

In contrast to the tiled output approach, the seamless one ensures the absence of such block
artefacts. The image is split into non-overlapped regions similarly to the tiled version.
Similarly, each work-group calculates the output of its given tile. In contrast to the tiled
version, the seamless one forces the work-groups to load tiles enlarged to the same size as
the local memory size in the extended local memory variant of the tiled output variant.
After the load stage, the rest of the calculation is the same as in the extended local memory
variant of the tiled output version.

Seamless output variant combined with separable lifting scheme is implemented by
Arguello et al. [14], Song et al. [69], Enfedaque et al. [34], and Quan et al. [60, 61].

3.3 Work-group to Image Mapping
Two possible work-group mapping variants can occur using a seamless output or an extended
local memory variant of the tiled output version: mapping to local memory and mapping
to output tile.

Region Mapping

The mapping of the work-group to the local memory is similar to the example presented in
the section 2.6.2. In that variant, the threads load the data to the local memory, and the
symmetric extension is created either only on the image borders on the seamless version
or on every tile border in the tiled version. Global memory of modern GPUs is capable
of multicast and broadcast of values; thus, the symmetric extension can be created by
loading mirrored pixels directly from global memory and storing them to local memory on
thread position. Loading of quadruple of pixels per thread can be processed by 4 separate
loads where each of the loaded pixels is saved to a separate block in local memory (used
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for ensuring bank conflict free load and store operations described in the section 2.4.4).
After that, the calculation of scheme steps of 2D DWT starts. During the calculation of
the steps, some of the border threads can be masked-out because they no longer produce
valid intermediate results/outputs. All threads mapped onto the extended area can be
masked-out for the last step of the scheme calculation. Note that masking-out the threads
brings conditional jumps to the algorithm that possibly leads to performance degradation
(for more information, see the section 2.6.2). The mapping combined with switching the
threads IDs from row-major to column-major order is used by Song et al. [69], Enfedaque
et al. [34], and Quan et al. [61]. Additionally, the mapping without switching the thread
IDs is used by Wavelet transform framework presented in the chapter 5.

Tile Mapping

In contrast to the mapping of work-groups to the local memory is the mapping to the output
tiles. The tiles mapped to work-groups are smaller than the local memory regions so some of
the threads need to be reused for a load to local memory purposes. Additionally, calculation
of all scheme steps except for the last one requires the threads to be reused for intermediate
results processing. Reusing some of the threads requires issuing additional instructions
for the calculation of their secondary positions. Moreover, it can lead to an unbalanced
number of processed elements by work-group warps and possibly to an unbalanced number
of issued instructions by warps schedulers as well (depending on scheme, warp scheduler
strategy and a number of work-groups per multiprocessors). Consequences of unbalanced
number of processed elements by work-group warps are described in the section 2.6.2. The
mapping is used by Matela et al. [57] and Blazewicz et al. [15].
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Chapter 4

Goals of the Thesis

The scientific goal of the thesis was to prove the hypothesis: “It is possible to achieve
speedup of 2D DWT comparing to the state-of-the-art using well balancing of arithmetic
operations, barriers, and local memory usage on various parallel computing architectures.”

The proof of the hypothesis is experimental. The experiments executed in order to
prove the hypothesis are pesented in papers located in the chapters 6, 7, 8, 9 and 10. A
summary of the results of these experiments is presented in the section 11.1.

For the purpose of evaluation, testing, visualization, and transforming the video, another
suplementary goal was set to create a Wavelet transform framework capable of evaluating
various approaches for 2D DWT calculation that can be used with various wavelets as well.
Such Wavelet transform framework was successfully created and described in the chapter 5.

Core Papers and Contributions
The core papers contain experimental proofs of the above defined hypothesis and their
contents are presented in the thesis as follows:

Kucis, M., Barina, D., Kula, M. and Zemcik, P. 2-D Discrete Wavelet Transform
Using GPU. In: International Symposium on Computer Architecture and High Performance
Computing Workshop. IEEE, October 2014, p. 1–6. DOI: 10.1109/SBAC-PADW.2014.13.
ISBN 978-1-4799-7014-8
Contribution: 30% Reformated paper: in the chapter 6 Original paper: [48]

Kula, M., Bařina, D. and Zemčík, P. Block-based Approach to 2-D Wavelet Transform
on GPUs. In: Information Technology: New Generations. Springer International Publish-
ing, 2016, vol. 448, p. 643–653. Advances in Intelligent Systems and Computing. DOI:
10.1007/978-3-319-32467-8_56. ISBN 978-3-319-32467-8
Contribution: 50% Reformated paper: in the chapter 7 Original paper: [50]

Bařina, D., Kula, M. and Zemčík, P. Parallel wavelet schemes for images: How to
make the wavelet transform friendly to parallel architectures. Journal of Real-Time Image
Processing. Springer Science and Business Media LLC. 2019, vol. 16, no. 5, p. 1365–1381.
DOI: 10.1007/s11554-016-0646-3. ISSN 1861-8200
Contribution: 40% Reformated paper: in the chapter 8 Original paper: [22]
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Barina, D., Kula, M., Matysek, M. and Zemcik, P. Accelerating Discrete Wavelet
Transforms on Parallel Architectures. Journal of WSCG. Union Agency. 2017, vol. 25,
no. 2, p. 77–85. ISSN 1213-6972
Contribution: 25% Reformated paper: in the chapter 9 Original paper: [17]

Barina, D., Najman, P., Kleparnik, P., Kula, M. and Zemcik, P. The Parallel Al-
gorithm for the 2D Discrete Wavelet Transform. In: Ninth International Conference on
Graphic and Image Processing (ICGIP 2017). SPIE - the international society for optics
and photonics, 2017, vol. 10615, no. 4, p. 1–6. DOI: 10.1117/12.2302881. ISBN 978-1-5106-
1741-4
Contribution: 20% Reformated paper: in the chapter 10 Original paper: [19]

Additional Papers and Contributions
The additional papers are related to DWT similarly to the core papers but they do not
directly contribute to proving of the hypothesis, or their contributions are contained in the
above core papers as well.

Kula, M., Barina, D. and Zemcik, P. New Non-Separable Lifting Scheme for Images.
In: IEEE International Conference on Signal and Image Processing. IEEE, 2016, p. 292–
295. DOI: 10.1109/SIPROCESS.2016.7888270. ISBN 978-1-5090-2375-2
Contribution: 50% Original paper: [49]

Barina, D., Kula, M. and Zemcik, P. Simple Signal Extension Method for Discrete
Wavelet Transform. In: Proceedings of 2016 IEEE International Conference on Signal and
Image Processing. IEEE, 2016, p. 534–538. DOI: 10.1109/SIPROCESS.2016.7888319. ISBN
978-1-5090-2375-2
Contribution: 10% Original paper: [18]

Barina, D., Kula, M., Matysek, M. and Zemcik, P. Accelerating Discrete Wavelet
Transforms on GPUs. In: International Conference on Image Processing (ICIP). IEEE
Signal Processing Society, 2017, p. 2707–2710. DOI: 10.1109/ICIP.2017.8296774. ISBN
978-1-5090-2175-8
Contribution: 20% Original paper: [16]
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Chapter 5

Wavelet Transform Framework

Wavelet transform framework is designed for execution and evaluation of various approaches
for seamless 2D DWT calculation. The framework is capable of evaluation of various
schemes:

∙ separable lifting, lifting+, separable convolution, and implosion schemes described in
the section 3.1,

∙ explosion and non-separable lifting schemes introduced in the chapter 8,

∙ non-separable polyconvolution and non-separable convolution schemes introduced in
the chapter 9,

∙ separable polyconvolution described in the chapter 9,

∙ and separable polyconvolutionX and polyconvolitionY schemes introduced in the
chapter 11.4.

The complete list of the implemented schemes is presented in the section 11.2. The
framework is not limited to wavelets evaluated in the following papers (CDF 5/3, CDF
9/7, and DD 13/7 wavelets). It is useful for wavelets of any degree and any number of
predict-update steps as well. Moreover, it supports texture and global memory utilization,
several in-warp optimization techniques, various regions to thread mapping, single or double
buffering and the optimization approach introduced in the section 8.4. The framework was
used for the evaluation of 2D DWT calculation methods using OpenCL framework [13] in
the chapters 7,8, and 9 and in the papers [49] and [16].

The rest of the chapter encompasses: description of the framework structure (in the sec-
tion 5.1), explanation of the properties of the framework‘s kernel generator module (in the
section 5.2), supported variants of DWT on the platforms and work-group to image region
mappings (in the section 5.3) that are described in the previous chapter 3, visualization
and description of the structure of the kernel generated by the kernel generator module (in
the section 5.4), partitioning of the local memory in the kernel (in section 5.5), and the
supported warp optimization techniques (in the section 5.6).
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5.1 Framework Structure
Wavelet transform framework structure is visualised in Figure 5.1. The framework is struc-
tured into two separate parts that correspond to two processing phases: the resources
preparation phase and the image processing loop phase.

The preparation phase of the framework is capable of creating of objects that are re-
quired for wavelet framework to run based on user-defined command line arguments. Such
objects are:

∙ Video Reader that is capable of read video frames in a loop. Video Reader can be
configured for either software decoding using OpenCV/FFMpeg or HW decoding of
video using FFMpeg. The reader is enabled only when the input device memory type
is set to texture or global memory (memory-less computation is disabled).

∙ Video Writer that is capable of writing the 2D DWT output frames to output video
file. Video Writer uses OpenCV as underlying library. Writing of video frames can
be enabled by command line argument only when using of texture or global memory
is enabled.

∙ Output Renderer that is capable of rendering the 2D DWT output video frames onto
the SDL/OpenCV GUI window configured by user. Rendering such frames can be
enabled by command line argument only when using of texture or global memory is
enabled.

∙ OpenCL DWT library that is capable of multiscale decomposition of image by 2D
DWT transform using user-defined parameters. The most important part of the
library is Kernel generator that is usable for generation of OpenCL C kernel body
[13] by user-defined parameters. The kernel generator is described in the next section.

5.2 Kernel Generator
Kernel generator module generates arithmetic part of block-based 2D DWT GPU kernel.
It takes wavelet properties (like lifting step coefficients) and desired scheme as inputs.
An output of the generator is the whole kernel body except for loading and storing data
from/to input/output memory. Flowchart diagram of output generated by kernel generator
is visualised in Figure 5.2.

The generator was dramatically evolving during past years. The first version that was
used in the paper introduced in the chapter 7 is implemented directly by OpenCL C lan-
guage macros [13]. Nevertheless, this version was difficult to maintain and hardly extensible
to other schemes. Some of the language macros had to be hand-written (like non-separable
convolution scheme, non-separable polyconvolution scheme, etc.), and a compilation of com-
plex schemes never ended on some architectures (AMD VLIW architectures). To cope with
these issues, we came up with the idea of rewriting the generator as a library in C++ used
further in papers introduced in the chapters 8 and 9. The current version is not limited
only to CDF 5/7, CDF 9/7 and DD 13/7 (used in the papers presented in the chapters 8
and 9), but it can also be applied on wavelets with any degree and any number of predict-
update pairs. The current version takes wavelet definition (wavelet coefficients, number of
predict-update pairs, degree of wavelet), thread mapping definition (number of quads in
both axes per thread, work-group size), scheme selection (desired scheme from Table 11.1,
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Figure 5.1: Flowchart diagram representing structure of wavelet transform framework.
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Figure 5.2: Flowchart diagram representing structure of 2D DWT GPU kernel. In one
iteration of wavelet scheme calculation are calculated either all steps in separable/non-
separable convolution schemes or one predict-update lifting step (𝐾) in all other schemes.
All decisions described in the kernel generator output part of the diagram is evaluated in
kernel generation process.
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optimization approach introduced in the section 8.4, warp optimizations), and warp size
of used device as inputs and it generates OpenCL kernel body that consists of multiplica-
tion/fused multiply-add instructions, local memory load/store instructions, in-warp shuffles
instructions and barriers.

5.3 Mapping Threads
The framework is capable of the calculation of seamless 2D DWT. The implementation
uses the block-based strategy with seamless output and Region Mapping with all advan-
tages and disadvantages that configuration entails (see the sections 3.2.2 and 3.3 for more
information).

Work-group Mapping Properties

According to information from the section 3.3, work-groups are mapped onto overlapped
image regions that need to be loaded to local memory for the correct calculation of given
tiles. Threads in work-groups of size (𝐺𝑥, 𝐺𝑦) are mapped onto thread regions that contain
a user-defined number of quads of desired shape (𝑄𝑥, 𝑄𝑦). The size of the thread region
(𝑅𝑥, 𝑅𝑦) can be calculated as follows:

(𝑅𝑡
𝑥, 𝑅

𝑡
𝑦) = (2𝑄𝑥, 2𝑄𝑦) (5.1)

and, similarly, the work-group region (𝑅𝑔
𝑥, 𝑅

𝑔
𝑦) as:

(𝑅𝑔
𝑥, 𝑅

𝑔
𝑦) = (𝐺𝑥𝑅

𝑡
𝑥, 𝐺𝑦𝑅

𝑡
𝑦). (5.2)

Note that the required size of the work-group region is narrower by 1 pixel on the right and
the bottom part but omitting that reading leads to additional branching. Moreover, the
framework uses a branch-less calculation of the whole 2D DWT. The only branch is used to
mask-out out-of-tile threads while writing outputs to the global memory (see the sections
2.6.2 and 2.6.2 for more information on branching consequences). Experiments conducted
during research show that the described configuration is the best performing one in most
combinations of wavelet and schemes.

Size of the tile given to the work-group (𝑇𝑥, 𝑇𝑦) that is mapped onto the region (𝑅𝑔
𝑥, 𝑅

𝑔
𝑦)

depends on a number of predict-update steps (𝐾) and wavelet degree (𝐷) and can be
calculated as:

(𝑇𝑥, 𝑇𝑦) = (𝑅𝑔
𝑥 − 4𝐷𝐾,𝑅𝑔

𝑦 − 4𝐷𝐾). (5.3)

Extending work-group size (𝐺𝑥, 𝐺𝑦) and a number of quadruples per thread (𝑄𝑥, 𝑄𝑦)
lead to lower work-group to region mapping overhead 𝑁 that can be expressed as:

𝑁 = 100(1− 𝑇𝑥𝑇𝑦

𝑅𝑔
𝑥𝑅

𝑔
𝑦
). (5.4)

The overhead of the region to work-group mapping for a various combinations of work-
group sizes, number of quadruples per thread and wavelets types is presented in Table 5.1.
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work-group quadrup.
per

thread

CDF
5/3

CDF
9/7

DD
13/7

local
memory

threads
per

group

pixels
per

thread

pixels
per

group
32× 32 1× 1 13.78% 30.61% 51.48% 4kB 1024 4 4096
32× 16 1× 1 21.90% 52.38% 96.92% 2kB 512 4 2048
32× 8 1× 1 42.22% 128.57% 392.31% 1kB 256 4 1024
16× 16 1× 1 30.61% 77.78% 156.00% 1kB 256 4 1024
16× 8 1× 1 52.38% 166.67% 540.00% 0.5kB 128 4 512
32× 32 1× 2 10.11% 21.90% 35.81% 8kB 1024 8 8192
32× 16 1× 2 13.78% 30.61% 51.48% 4kB 512 8 4096
32× 8 1× 2 21.90% 52.38% 96.92% 2kB 256 8 2048
16× 16 1× 2 21.90% 52.38% 96.92% 2kB 256 8 2048
16× 8 1× 2 30.61% 77.78% 156.00% 1kB 128 8 1024
32× 32 1× 4 8.36% 17.97% 29.13% 16kB 1024 16 16384
32× 16 1× 4 10.11% 21.90% 35.81% 8kB 512 16 8192
32× 8 1× 4 13.78% 30.61% 51.48% 4kB 256 16 4096
16× 16 1× 4 17.97% 42.22% 76.55% 4kB 256 16 4096
16× 8 1× 4 21.90% 52.38% 96.92% 2kB 128 16 2048
32× 32 2× 2 6.56% 13.78% 21.76% 16kB 1024 16 16384
32× 16 2× 2 10.11% 21.90% 35.81% 8kB 512 16 8192
32× 8 2× 2 17.97% 42.22% 76.55% 4kB 256 16 4096
16× 16 2× 2 13.78% 30.61% 51.48% 4kB 256 16 4096
16× 8 2× 2 21.90% 52.38% 96.92% 2kB 128 16 2048

Table 5.1: Overhead of the work-group to region mapping approach (𝑁) used by the frame-
work on CDF 5/3, CDF 9/7, and DD 13/7 wavelets. Local memory size is presented per
one location (subband). A number of memory locations needed for various schemes are
presented in Table 11.1. A number of pixels per work-group is connected to a minimal
number of registers needed to store the region mapped to the work-group. The real number
of registers depends on scheme, platform and configuration and typically is around twice
as much. In most cases, the factor limiting the occupancy is the local memory size.
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Best Performing Settings

Experiments show that the best performing work-group size for modern platforms is typ-
ically 32 × 16. However, some platforms (like Intel GPUs or ARM Mali GPUs) cannot
create a work-group with more than 256 threads. The performing size of 32× 8 threads is
optimal on such platforms, even if it is less efficient than 16× 16. Note that extending the
work-group size can lead to lower occupancy of the GPU (more information in the section
2.6.5) and worse handling of barriers (see the section 2.6.6 for details).

Calculation of more quadruples per thread is more efficient but consumes more local
memory and registers per thread that lower the occupancy of GPU (for more information
on occupancy, see the section 2.6.5). Experiments show that on most platforms, the best
performing amount of quadruples per thread lies between 2 or 4 (exception is ARM Mali
Midgard architecture that is best performing using 1 quadruple per thread). The peak
location depends on the GPU occupancy that depends on the number of local memory
locations per quadruple (the comparison is in Table 11.1). However, the schemes behave
similarly to the ones with 1 quadruple per thread until the peak for the schemes is reached.
Note that published researches presented in the next chapters use only 1 quadruple per
thread.

5.4 Kernel Structure
The kernel instance execution process is visualized in Figure 5.3. The flowchart diagram
of the process is presented in Figure 5.2. Firstly, the assigned regions (𝑅𝑡

𝑥, 𝑅
𝑡
𝑦) for threads

are copied into thread registers. Then, the core of the 2D DWT calculation, generated by
the Kernel Generator, starts to execute. When the optimization approach (introduced in
the section 8.4) is enabled, the registers are updated using the horizontal and the vertical
predict in-quadruple operations. After that, the data needed by other threads in the next
step is saved to local memory. Then the calculation of wavelet scheme step is started
consisting of:

∙ loading necessary data produced by adjacent threads using warp shuffle instruction
when possible if enabled;

∙ loading rest of necessary data from local memory;

∙ moving data loaded from local memory to temporary variable when it is used mul-
tiple times (for prevention of multiple issuing of load instruction when using volatile
memory);

∙ moving register data to temporary registers if needed (used when some registers are
updated and used in the same step);

∙ update threads registers by calculation steps.

If the step was the last one in the scheme and the optimization approach is enabled,
the in-quadruple update steps are calculated; otherwise, the updated data, needed by other
threads in the following steps, is saved to local memory. If the single buffering is enabled,
the barrier is placed before and after such saving; otherwise, this barrier is placed after the
saving procedure. Then processing of the next step begins.
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Registers

Local
memory

Input
global
memory

Output
global
memory

Figure 5.3: Kernel processing diagram representing calculation of separable lifting+ scheme
from the view of a single thread. The work-group size is set to 8×8. The thread is mapped
onto a quadruple of pixel elements (register). The arrows in the register boxes represent
the fused multiply-add operations. The vertical lines represent barriers. The local memory
blocks are depicted in the bottom part of the image.
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When the last step and optionally final optimization approach is calculated (the part
generated by Kernel generator), the data of the tile (𝑇𝑥, 𝑇𝑦) is saved to global/texture
memory.

5.5 Local Memory Usage
In the wavelet transform kernel, the local memory is partitioned into a preface, local mem-
ory blocks, and postface. Preface and postface are not filled with any values, but they
are needed when the threads on the border of the work-group try to load out-of-region
values. This happens because of the usage of Region Mapping (see more in the section
3.3) combined with branch-less execution that does not mask-out any thread during the
calculation. Each local memory block is the same sized as an appropriate work-group. Each
thread within the appropriate work-group stores one value to that local memory block and
this value is one subband from one of the given quadruples. Only subbands, loaded in the
following calculation by other threads within the work-group, are stored. Local memory
block structure combined with using 4B float point datatype leads to bank conflict free
access to local memory (see the section 2.4 for more information on bank conflicts). The
minimum number of possible used local memory blocks for double buffering can be defined
as a number of positions read from the region threads of any adjacent threads summed with
a number of regions that need to be written. Similarly, the minimum used local memory
blocks for single buffering can be defined as a maximum from those two parameters. To
further minimize the writes number, the values from thread region positions that are not
updated stay in the same local memory blocks until they are recalculated or are not needed
anymore. This behaviour leads to rotating the thread region positions in memory during
the calculations steps. Additionally, the preface and postface parts of local memory are
minimized as well.

5.6 Warp Optimizations
Warp optimization techniques enable barrier-less data exchanges between threads in the
warp. This functionality is platform-dependent (see the section 2.5 for information about
warp optimization). Warp optimization types supported by Kernel generator are:

Local optimization - When threads between calculation step change data on in-warp
basis, barriers are removed. A volatile keyword is needed for ensuring load/store
operations from the same memory location, even if a barrier is not presented. This
leads to a lock of memory load/store ordering. A generator loads values to a temporary
register when the data is used more than once to prevent unnecessary loads.

Shuffle optimization - Barriers are removed in the same way as within the local opti-
mization approach but data is exchanged using shuffle instructions. No volatile
keyword is needed, so load/store operations can be twisted freely by a compiler. Sup-
ported platforms are: Intel GPUs using OpenCL extension, AMD GCN GPUs using
intrinsics that are exposed by ROCm Linux driver compiler, and Nvidia GPUs since
Kepler architecture using inline assembler [7]. A warp optimization approach for all
schemes and their properties has not been published yet.
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5.7 Framework usage
The framework was primarily created for evaluation and testing purposes of the specific
wavelets and the schemes. Over the time, it was evolved in a universal tool that is: able
to generate GPU kernel implementations of user-defined wavelets without fixation to pre-
defined number of predict-update steps (𝐾) nor degree of wavelet (𝐷), capable of use of
global/texture memory for real data processing or enable of constant memory for obtaining
raw throughput of DWT by memory-less processing, and capable of multiscale decompo-
sition using interleaved or non-interleaved data mapping. Additionally, the framework is
able to adapt the schemes to warp optimization techniques described in the section 5.6, op-
timization technique introduced in the section 8.4 and user-defined number of quadruples
per thread. Moreover, the framework is capable of processing the video frames decoded by
FFMpeg or OpenCV using SW or HW acceleration decoder, render the outputs by SDL or
OpenCV frameworks, and writing the DWT output to video file.
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Chapter 6

Article: 2-D Discrete Wavelet
Transform Using GPU

This paper proposes a novel approach for the calculation of the vertical pass of the separable
pipeline method (more information about separable pipeline method can be found in the
section 3.2.1). It examines the impact of balance between barriers, arithmetic operations
and local memory usage for such passes. Such a vertical pass approach overcame the
throughput of the previous state-of-the-art one by 30%.

The approach reduces the barriers on two pairs of predict-update wavelet CDF 9/7 to
the implicit one used for synchronization after global to local memory transfer for each shift
of sliding window. Consequently, output for pixel element pairs given to GPU thread 𝑝𝑝
needed to be calculated without sharing intermediate results from lifting steps with adjacent
threads, leading to redundant calculations 𝑊𝑟 around borders. Quadratic dependency of
redundant operations 𝑊𝑟 to predict-update pairs of the used wavelet 𝐾 arises from

𝑊𝑟 = 2𝐾(2𝐾 − 1). (6.1)

Non-redundant operations 𝑊𝑛𝑟 can be calculated as

𝑊𝑛𝑟 = 4𝐾𝑝𝑝 (6.2)

and number of operations per pixel element pair 𝑊𝑝 as

𝑊𝑝 =
𝑊𝑟

𝑝𝑝
+ 4𝐾 (6.3)

which shows that increase of number of pairs per thread lowers the impact of redundant
operations.

For the given work-group size (𝐺𝑥, 𝐺𝑦) and number of predict-update pairs of wavelet
𝐾 the amount of local memory per work-group 𝐿𝑔 can be calculated as

𝐿𝑔 = 𝐺𝑥(2𝑝𝑝𝐺𝑦 + 2𝐾 − 1), (6.4)

similarly the amount of local memory per thread 𝐿𝑡 can be calculated as

𝐿𝑡 = 2𝑝𝑝 +
2𝐾 − 1

𝐺𝑦
(6.5)

which clearly shows that amount of local memory per thread depends linearly on the number
of pairs per thread given to the thread. Thus, with an increasing number of such pairs,
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algorithm pairs per
thread

operations
per pair

local
memory

barriers occupancy time/pixel
580GTX

time/pixel
4200M

Proposed 1 20 2944B 1 100% 114ps 1154ps
Proposed 2 14 4992B 1 100% 79ps 743ps
Proposed 4 11 9088B 1 83% 63ps 735ps
Proposed 8 9.5 17280B 1 33% 66ps 753ps
lifting 1 8 2560B 4 100% 101ps 949ps
Blazewicz 1 11 9088B 1 33% 167ps 2165ps

Table 6.1: Comparison of vertical pass algorithms. Time/pixel is measured in picoseconds.

the occupancy of multiprocessor linearly declines. The experiments performed on wavelet
CDF 9/7 (𝐾 = 2) show that a combination of work-group size (𝐺𝑥,𝐺𝑦) = (32, 8) and 4
pixel elements pairs per thread is the best performing combination on the tested platforms
for vertical pipeline approach. Comparison of several algorithms combined with various
number of the pixel pairs is presented in Table 6.1.

39
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Kucis, M., Barina, D., Kula, M. and Zemcik, P. 2-D Discrete Wavelet Transform
Using GPU. In: International Symposium on Computer Architecture and High Performance
Computing Workshop. IEEE, October 2014, p. 1–6. DOI: 10.1109/SBAC-PADW.2014.13.
ISBN 978-1-4799-7014-8

Author contribution: 30%

Abstract
With the wide spread of the discrete wavelet transform, the need for its efficient imple-
mentation becomes increasingly important. This work presents an improved version of an
algorithm suitable to compute the 2-D discrete wavelet transform on GPU. Depending on
the GPU platform, it is suitable to split the 2-D transform computation into separated
horizontal and vertical passes. Considering the horizontal passes, we have examined and
chosen the best performing method among the already known ones. Furthermore, we have
adapted this method for an existing algorithm computing the vertical transform pass. This
step helps to reduce several synchronizations and arithmetic operations in the utilized com-
putation scheme. For large data, the proposed vertical method achieves speed-up about
30 % compared to the current state of the art methods. In contrast to previously published
works, the presented approach is built on the OpenCL parallel programming framework.

6.1 Introduction
The discrete wavelet transform (DWT) is a mathematical tool which is suitable to decom-
pose discrete signal into several frequency components. It is frequently used as a basis of
sophisticated compression algorithms. This paper focuses on the CDF 9/7 wavelet which
is often used for image compression (e.g., JPEG 2000 standard). Responses of this wavelet
can be computed by a convolution with two FIR filters, one with 7 and the other with 9
taps. In case of two-dimensional transform, the transform can be realized using a separa-
ble decomposition scheme. In this paper, we present several algorithms for 2-D transform
computation suitable for modern GPUs.

In present personal computers, programmable graphics cards are almost always found.
OpenCL is a framework for programming of heterogeneous computer systems, e.g. modern
graphics processing units (GPU) found in personal computers, servers or mobile devices.
When compared to CUDA framework, CUDA is limited to Nvidia hardware while OpenCL
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is not platform dependent. The performance analysis [35] remarks that OpenCL offers
similar performance to CUDA in general when compared fairly.

Several algorithms for the 2-D DWT computation using GPU have been published in the
last decade. Some of them used the pixel shader through the Cg programming language.
These were able to take advantage of SIMD operations offered by shader units. Other
algorithms were built over the CUDA framework. We are not aware of any approach that
use the OpenCL framework.

In this paper, we present several algorithms for 2-D DWT computation focusing on the
parallel capabilities of programmable GPUs. Our implementation is based on the OpenCL
framework. All the methods presented in this paper are evaluated using Nvidia GeForce
GTX 580 graphics card equipped with 3072 MiB RAM and 512 streaming processors and
Nvidia Quadro NVS 4200M graphics card equipped with 1024 MiB RAM and 48 streaming
processors. Only the forward transform is evaluated since the inverse one has a symmetric
nature and performs almost identically. We have also evaluated only one level of the DWT
decomposition as the others again perform almost identically. In the chosen memory layout,
the sub-bands are interlaced.

The rest of the paper is organised as follows. Related Work section summarizes the
state of the art, especially existing GPU implementations. Proposed Approach section re-
views significant algorithms and presents the proposed method. Finally, Conclusion section
summarizes the paper and outlines the future work.

6.2 Related Work
The discrete wavelet transform [56] (DWT) is a mathematical tool suitable to decompose
a signal into low-pass and high-pass frequency components. Such a decomposition can be
performed at several scales resulting in a multi-scale signal representation. It is often used
as a basis for sophisticated compression algorithms. A basis of such a transform consists
of dilated and shifted wavelets. The Cohen-Daubechies-Feauveau [30] (CDF) 9/7 wavelet
is a popular one as used, e.g., in JPEG 2000 image compression standard. One level of the
discrete wavelet transform can be computed using the convolution with two mirror filters (a
high-pass and a low-pass one). According to the total number of arithmetic operations, the
more efficient computational scheme – the lifting – introduced by W. Sweldens in [72] exists.
Using this scheme, the whole signal can be transformed in-place. In [31], I. Daubechies and
W. Sweldens factored CDF 9/7 wavelet into four successive lifting steps employing short
symmetric two-taps FIR filters.

For understanding of the following text, it may be important to understand the lifting
scheme in more detail. Any discrete wavelet transform with finite filters can be factored
into a finite sequence of 𝑁 pairs of predict and update convolution operators 𝑃𝑛 and 𝑈𝑛.
Each predict operator 𝑃𝑛 corresponds to a filter 𝑝

(𝑛)
𝑖 and each update operator 𝑈𝑛 to a

filter 𝑢
(𝑛)
𝑖 . These operators alternately modify even and odd signal coefficients.

𝑃𝑛(𝑧) =

𝑔𝑛∑︁
𝑖=−𝑙𝑛

𝑝
(𝑛)
𝑖 𝑧−𝑖 (6.6)

𝑈𝑛(𝑧) =

𝑓𝑛∑︁
𝑖=−𝑚𝑛

𝑢
(𝑛)
𝑖 𝑧−𝑖 (6.7)
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The discrete wavelet transform was also extended [55] to two (and more) dimensions.
Specifically, the classical 2-D DWT is separable to series of 1-D transforms performed succes-
sively on rows and columns (or vice versa). For various requirements, different strategies of
2-D DWT implementation were developed. For example, the simplest row-column methods
transform the whole image at once. Furthermore, the block-based methods transform the
image using smaller blocks utilizing the row-column method inside. Finally, the pipelined
methods such as [26] transform the image using column strips while employing the sliding
window on them. Inside this window, the row and column transforms are combined to-
gether in a way that a vertical transform is interleaved on multiple columns. This concept
was also extended to whole image resulting into the single-loop approach [51].

Implementation of 2-D DWT was also studied on modern programmable graphics cards.
In this scenario, the input image have to be initially transferred from main memory into
memory on the graphics card. Similarly, the resulting coefficients have to be transferred
back.

OpenCL is a framework for general-purpose parallel programming across multiple device
types (like GPUs, CPUs, etc.) and platforms. In this framework, a platform independent
executable program is called the kernel. The kernel is executed on required number of
threads (work-items) that identify their data and control flow by their N-dimensional in-
dices. These threads are organized into work-groups with identical user-defined number of
threads. The threads in such a group can cooperate with each other through local memory
and barriers. Threads executing a kernel have access to: global memory – device memory
that is accessible to all threads (like main GPU memory); local memory – small memory
region that is shared by threads in work-group; constant memory – small memory that
remains constant during the kernel execution; private memory – the private thread mem-
ory. Optionally, a device can support additional functionalities like textures, double type
operations, etc.

In recent GPU architectures, the GPU contains the thread scheduler, multiprocessors,
L2 cache and a memory controller. The thread scheduler allocates as much work-groups to
multiprocessors as their resources allow. Thus, the resources like local memory size should
be minimized. The multiprocessor contains blocks of processors, warp schedulers, local
memory, load store units, etc. The allocated work-groups created by OpenCL framework
is then divided into warps (hardware blocks with 32 threads). Execution instructions of
these warps on blocks of processors are provided using warp schedulers dynamically. Due to
fact that each instruction is executed on whole warp (half-warp on some architectures) at
once, recommendations for ensuring good performance of memory operations exist. Global
memory indices in warp should be coalesced. Otherwise, addition memory operations are
executed. The local memory is organized into banks. Access to same banks from warp
causes serialization. The serialization of local memory operations and uncoalesced global
memory access can cause a performance degradation.

In [74] and [75], Ch. Tenllado et al. adapted the discrete wavelet transform on pixel
(fragment) shaders of GPU. They used the Cg programming language and mapped the
input image into textures. The authors compared convolution-based and lifting scheme
implementations of CDF 9/7 discrete wavelet transform. The pixel processors support
SIMD operations (4-element wide in this case). Using the convolution, the authors used
a rearrangement step in order to allow to filter two image rows/columns in parallel. The
results of this comparison speaks slightly in favor of convolution scheme. Moreover, the
authors compared these results with corresponding CPU implementation using the CDF 9/7
wavelet. Ignoring CPU-GPU data transfer times, the GPU version significantly outperforms
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the CPU counterpart. Finally, the authors state that the data transfers between the CPU
and the GPU are the major bottleneck. However, these works are now obsolete as an
instruction set of the modern GPUs does not contain the real SIMD instructions.

The other authors attempted to take advantage of the GPU using the CUDA program-
ming model in [36], [57] or [15]. In [36], the convolution scheme is applied on each row.
Then, the image matrix is transposed and the convolutions are applied on each column.
Finally, the image is transposed back. The authors point out that important reductions of
execution time are obtained for the CUDA version even when they take into account the
time needed to copy data and results to and from the GPU memory. However, their CPU
implementation seems to be naive compared to the state of the art methods, e.g. [51]. The
latter two papers are focused on CDF wavelets and the lifting scheme. Their implemen-
tations splits the image into small tiles and performs several independent transforms on
each of them. Moreover, in [15], another implementation performs the horizontal transform
on the whole image. The horizontal transform is followed by transposition and by vertical
filtering. The authors proposed omission of mutual thread synchronization at the cost of
loading of more input pixels per each thread. Furthermore, the author of [57] consider the
coalesced memory accesses to be crucial for a transform performance.

In [39] and [40], V. Galiano et al. compared several CUDA implementations of DWT.
They used the CDF 9/7 wavelet and convolution-based algorithm on entire rows/columns.
Their fastest implementation uses the coalesced memory access.

In [52], W. J. Laan et al. accelerated the Dirac video codec using the CUDA platform.
Their DWT implementation is based on the lifting scheme. The authors highlight the
coalesced memory access. In the vertical filtering, they divided the image into vertical
strips and used a sliding window technique within each strip. However, this paper does not
discuss the implementation of DWT in detail. In [53], W. J. Laan et al. provided a detailed
analysis of the DWT implementation using the lifting scheme on the CUDA platform. They
focused on several wavelets (including CDF 9/7) and used a sliding window approach within
strips. Their design is a hybrid method between the row-column and block-based methods.
Moreover, they implemented the methods for 2-D and 3-D data and compared to optimized
CPU counterparts. Also here, the authors point out the importance of coalesced memory
accesses.

As it can be seen, the problem of efficient 2-D discrete wavelet transform implementation
on GPU was widely studied. Despite this fact, we see a gap in existing implementations.
In the section below, we propose several improvements that lead to additional speedups.

6.3 Proposed Approach
In this section, several existing algorithms for the discrete wavelet transform computation
are analysed. Initially, algorithms for horizontal pass of the transform are presented. For
further experiments, the best performing algorithm for this pass is adopted. Furthermore,
a vertical pass of the transform is discussed. Here, we have proposed several improvements
over the state-of-the-art algorithm yielding to an additional speed-up.

In all of the algorithms below, two separated passes needed to compute the 2-D trans-
form are considered. These are referred here to as a horizontal and a vertical pass. In
general, both of these passes can share intermediate results between threads that access
adjacent data. However, this sharing introduces some requirements for their mutual syn-
chronization. Another approach might be to not share the intermediate results at all for
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Figure 6.1: Lifting scheme of CDF 9/7
wavelet showing the calculation performed
by a single thread (dotted and dashed).
No intermediate results are shared between
threads. No synchronization is required.
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Figure 6.2: Lifting scheme of CDF 9/7
wavelet showing the calculation performed
by a single thread (dotted and dashed). In-
termediate results are shared between neigh-
bouring threads. Synchronization is re-
quired.

the price that some calculations become redundant. In all cases, the coalesced memory
access was used wherever it was possible.

6.3.1 Horizontal Pass

At the beginning, we have focused on an algorithm for computation of the horizontal pass.
We have implemented and compared plenty of existing algorithms. The most prominent
of these algorithms are presented below. All of the implemented algorithms use up to 256
threads for each work group.

Considering the horizontal pass, it can generally consist of the following steps. Firstly,
transfer a data row from the global memory to the local memory. Secondly, perform the
horizontal transform using data in the shared memory. Thirdly, transfer the computed row
of result from the shared memory to the global one. Note that the local memory is shared
for the group of threads. An access to this local memory is much faster, but it is limited
by relatively small size and it is shared just along one single work group.

Considering the first relevant algorithm, each thread in the work group computes a pair
of the output coefficients by the convolution scheme. Each thread loads nine coefficients
from the local memory and computes a corresponding pair of resulting coefficients (re-
sponses to the FIR filters). The implementation was earlier described in detail in [39, 40].
We refer to as Horiz-Galiano2011 in this paper.

The second algorithm uses lifting scheme instead of convolution. In this case, every
thread loads nine coefficients from local memory and computes all the required computation
by itself. No intermediate results are shared between threads. This implementation was
described in [15]. We will further denote it as Horiz-Blazewicz2012-1. The data-flow graph
for a single thread is shown in Fig. 6.1.

The other algorithm computes 4 pairs of the output coefficients instead of one by each
thread. This algorithm employs the lifting scheme which was described in [15]. It is
further denoted as Horiz-Blazewicz2012-4. The algorithm does not share the intermediate
results between threads and does not require synchronization barriers. The implementation
requires to load 15 coefficients from the local memory. A group of threads loads and process
a single row of the input image.

44



10.0ps

100.0ps

1.0ns

10.0k 100.0k 1.0M 10.0M 100.0M

ti
m

e
 /

 p
ix

e
l

pixels

Horiz-Galiano2011
Horiz-Laan2009

Horiz-Blazewicz2012-1
Horiz-Blazewicz2012-4

Figure 6.3: GeForce GTX 580. Horizontal
pass algorithms.
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Figure 6.4: NVS 4200M. Horizontal pass al-
gorithms.

algorithm 1 Mpel 10 Mpel
Horiz-Galiano2011 87.1 81.9
Horiz-Laan2009 103.0 80.6
Horiz-Blazewicz2012-1 95.4 89.3
Horiz-Blazewicz2012-4 56.0 56.7

Table 6.2: GTX 580. Horizontal pass. Pi-
coseconds per pixel.

algorithm 1 Mpel 10 Mpel
Horiz-Galiano2011 1173.8 1020.2
Horiz-Laan2009 1389.9 1142.2
Horiz-Blazewicz2012-1 1212.2 1108.4
Horiz-Blazewicz2012-4 700.7 800.8

Table 6.3: NVS 4200M. Horiz. pass. Pi-
coseconds per pixel.

The last of the implemented algorithms uses the lifting scheme. The algorithm was
described in [52, 53] and it is referred to as Horiz-Laan2009 here. There is no redundant
computation considering different threads. However, this implementation requires addi-
tional synchronizations in the lifting steps. The algorithm works in the following way.
Each of the threads loads three input coefficients from the local memory and performs ele-
mentary lifting step. Then, neighbouring threads exchange the intermediate results. These
two steps are repeated further. The data-flow graph for a single thread is shown in Fig. 6.2.

The previously described algorithms are limited to a certain resolution of the input
image. One can compute the transform of the input image up to 512 pixels wide if the
maximum number of threads in the work group is 256 and if two output coefficients are
computed by a single thread. To overcome this limitation, the algorithms are extended in
the following way. A group of threads processes the left-most coefficients in a row from
the global memory, computes horizontal transform and then saves results into the global
memory. The same group processes a following block of coefficients, where previously loaded
and processed coefficients are reused. This approach reduces a global memory access and
some of the redundancy.

We have implemented and evaluated all of the algorithms described above. The results
of the comparison are plotted in Fig. 6.3 and 6.4. Several measurements are listed in the
Table 6.2 and 6.3. The Blazewicz2012-4 algorithm proved to be the fastest one across
a whole range of image sizes. This result is caused mainly by maximizing a number of
arithmetic operations by using each thread as pointed in [15].

6.3.2 Vertical Pass

In this part, we focus on the vertical pass of the transform. The simplest approach is to
use same algorithms that are used in the horizontal pass but transform columns instead of
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rows. However, such an approach does not consider coalescent access to the global memory
that consequently causes a performance degradation. W. J. Laan et al. [53] states that this
approach is 10× slower than more complex solution, that will be described later.

A more complex approach was presented in [15]. Initially, this approach transposes
input data. After that, the unchanged horizontal pass algorithm is performed. Finally, the
resulting data are transposed again. We have implemented this algorithm in the following
way. The horizontal pass Blazewicz2012-4 algorithm is used in the heart of the algorithm.
We refer this approach to as Vert-Blazewicz2012. This process uses fast coalescent access
to the global memory and creates lot of working groups that help to utilize computing
resources. On the other hand, every transposition requires a separate kernel run. This
causes access to global memory for 6−3× for reading and 3× for writing per every element
of the data.

Furthermore, we have adopted a vertical transform algorithm presented in [52]. This
original algorithm is denoted as Vert-Laan2009. The algorithm divides the input image to
multiple vertical strips. A width of the strip is based on the size of the successive bytes
defined by coalescent memory access. We use width of the strip of 32 coefficients. Every
strip is processed by a single work-group of threads. Inside of such a strip, a sliding window
approach is used. The width of the sliding window is same as the width of the strip (32
coefficients), the height of the window is 20 coefficients. The algorithm works as follows:

1. The window is placed on the top of the strip, 17 rows are copied from the global
memory to the local one. The rows in the window are processed by lifting scheme,
where result values are in first 13 rows and 4 rows contain intermediate results. The
result values are copied into the global memory, intermediate results stay in the local
one.

2. The sliding window is moved by 16 rows down. Missing rows (not in the local memory)
are loaded from the global memory.

3. In the window, the lifting scheme is performed .

4. The results are moved to the global memory, the rows with intermediate results are
still in the local memory.

5. This process is repeated until the window reach the border of the strip. The last
remaining section is processed by a similar process like previous one.

The above described approach performs the lifting computation using barriers after each
lifting step. This algorithm is similar to the horizontal pass Horiz-Laan2009 described
before. On the plus side, this approach reduces access to the global memory just for
one read and one write per each element. On the negative side, the algorithm creates a
small count of work-groups, which can be problematic at the modern GPU with many of
multiprocessors.

Furthermore, we have experimented with a different adaptation of this algorithm. As
a result, we have created a faster adaptation. The core of our proposed approach is the
same as the previously described algorithm presented in [52]. As in the previous case, we
have used the sliding window method to process entire tile by a single work-group. The
Horiz-Blazewicz2012-4 algorithm proved to be the fastest one considering the horizontal
pass. Therefore, we have adapted this approach to perform the lifting scheme in the vertical
direction. This approach requires extension of the sliding window height to process 8 coef-
ficients by a single thread in one particular window position. Consequently, the approach

46



10.0ps

100.0ps

1.0ns

10.0ns

10.0k 100.0k 1.0M 10.0M 100.0M

ti
m

e
 /

 p
ix

e
l

pixels

Vert-Laan2009
Vert-Blazewicz2012

Vert-Proposed

Figure 6.5: GeForce GTX 580. Vertical pass
algorithms.

100.0ps

1.0ns

10.0ns

10.0k 100.0k 1.0M 10.0M 100.0M

ti
m

e
 /

 p
ix

e
l

pixels

Vert-Laan2009
Vert-Blazewicz2012

Vert-Proposed

Figure 6.6: NVS 4200M. Vertical pass algo-
rithms.

algorithm 1 Mpel 10 Mpel
Vert-Laan2009 119.3 79.6
Vert-Blazewicz2012 167.0 186.5
Vert-Proposed 69.6 63.5

Table 6.4: GTX 580. Vertical pass. Picosec-
onds per pixel.

algorithm 1 Mpel 10 Mpel
Vert-Laan2009 965.3 930.2
Vert-Blazewicz2012 2139.0 2231.7
Vert-Proposed 739.4 737.9

Table 6.5: NVS 4200M. Vert. pass. Picosec-
onds per pixel.

requires the sliding window of 71 rows height. No intermediate results are passed between
lifting steps nor different window positions. In the first window position (on the top of
strip), 64 rows are computed. These values are computed by the same scheme as the one
used in Horiz-Blazewicz2012-4. It is required to load 67 rows from global memory to the
local one (the window). After processing and moving the results to the global memory,
the window is moved by 64 rows down to process additional 64 rows. It is required to
have 71 rows in the window to perform the transform correctly. The most bottom part of
the strip is processed by separate algorithm to process borders correctly. This approach
eliminates part of the synchronisations at the cost of adding some redundant arithmetic
operations and increasing the local memory consumption. We refer this adaptation such as
Vert-Proposed.

Finally, we have evaluated all of the vertical pass algorithms described in this section.
The results are plotted in Fig. 6.5 and 6.6. Several measurements are listed in the Table 6.4
and 6.5. In all cases, medians of ten measurements are used. The proposed Vert-Proposed
algorithm has proved to be the fastest one. This algorithm achieved an average speed-up at
least 30 % compared to the Vert-Laan2009 algorithm which is considered to be the state-
of-the-art method. The average speedup of Vert-Proposed relative to the Vert-Laan2009
implementation are shown in Table 6.6.

graphics card avg. speed-up
GeForce GTX 580 50 %

NVS 4200M 31 %

Table 6.6: Vertical pass. Average percentage speedups.
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Figure 6.7: GeForce GTX 580. Entire trans-
form.
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Figure 6.8: NVS 4200M. Entire transform.
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Figure 6.9: GeForce GTX 580. Entire trans-
form compared to CPU.
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Figure 6.10: NVS 4200M. Entire transform
compared to CPU.

6.3.3 Entire Transform

Finally, we decided to evaluate the full transform computation. It may generally consists of
the two memory transfers (on-board memory ↔ video memory) and two transform passes
(the horizontal and the vertical one). It would not be entirely fair to include the memory
transfers in the final comparison. For this reason, the cumulative flow diagram is shown
here separating the memory transfers and the two transform passes. The final comparison
is plotted in Fig. 6.7 and 6.8.

It would be interesting to compare the GPU implementations described in this section
with a tuned CPU counterpart. For this purpose, the state of the art CPU implementation
[20] with fused vertical and horizontal passes was used. This implementation utilizes SIMD
instructions and have 4 threads running simultaneously. The implementation was evaluated
using mainstream PC with Intel x86 CPU. Specifically, Intel Core2 Quad Q9000 running
at 2.0 GHz was used. This CPU has 32 kiB of level 1 data cache and 3 MiB of level 2 shared
cache (two cores share one cache unit). The comparison is summarized in Fig. 6.9 and 6.10.

Note that both GPUs are equipped with an older version (2.0) of PCI-Express ×16 bus.
Due to this fact newer GPUs with current version (3.0) of PCI-Express ×16 bus may have
2× faster VRAM to RAM and RAM to VRAM transfers.
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6.4 Conclusion
We have presented a novel approach to 2-D wavelet transform using GPU reaching an aver-
age speedup at least 30 % on tested graphics cards. This approach is focused on utilization
of parallel capabilities of modern GPUs. All the methods compared in this paper were
evaluated using GeForce GTX 580 and NVS 4200M cards. In addition, we have compared
these methods with state of the art implementation on CPU.

In more detail, the computation of single level of the transform is split into horizontal
and vertical passes. Initially, we have adapted an existing algorithm to perform the horizon-
tal pass without synchronizations. Furthermore, we have incorporated this algorithm into
other existing technique performing the vertical pass using the sliding window. Addition-
ally, we have extended this sliding window height to process 8 coefficients by a single thread
in one particular window position. This step helps to reduce the computing redundancy.
Finally, we have evaluated the performance of the entire transform and also compared it
with transform performed using CPU.

Further work could focus on multi-level decompositions, improvement of the proposed
vertical algorithms in order to utilize more work-groups or an exploration of fusion of the
horizontal and vertical passes into a single one.
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Chapter 7

Article: Block-based Approach to
2-D Wavelet Transform on GPUs

In contrast to the previous paper, which focuses on the separable strategy for 2D DWT
calculation, this one deals with the block-based strategy (see the section 3.2.2 for more
information) and incorporates Region Mapping (see the section 3.3 for more information).
This approach maps work-group threads to image regions where each thread is mapped
onto a single 2 × 2 shaped pixel quadruple. For correct calculation of seamless 2D DWT,
the regions mapped to work-groups have to have overlapping areas, causing redundant
calculations as well as in the previous paper. The number of such calculations depends on
the shape and size of the work-group, the number of predict-update lifting pairs (𝐾) and
the degree of calculated wavelet (𝐷). Detailed information regarding the work-group to
image region mapping is described in the section 5.3.

For the calculation of the seamless 2D DWT using the block-based strategy, the two
schemes are proposed. One of them is the separable lifting scheme. The second one is a
novel non-separable 2D scheme denoted as Kula2016 that reduces the number of barriers,
including implicit one to 2𝐾 from 4𝐾 used on separable lifting scheme. As a consequence,
the number of arithmetic operations increased from 16 to 20. All schemes are denoted in
Table 11.1. Note that Table 11.1 incorporates only evolved versions of the non-separable
scheme with the reduced number of operations from 20 to 18 so-called non-separable lifting*
scheme. The evolved scheme is introduced in the following chapter 8.

Finally, the proposed schemes using block-based strategy are compared to each other
and to the best performing separable strategy approach based on the pipeline approach that
is introduced in the section 6.3. A comparison of the implemented seamless 2D DWT ap-
proach based on block-based strategy to the state-of-the-art one based on separable strategy
clearly shows that approaches based on block-based strategy outperform the throughput of
separable strategy approaches by 60-100% on the tested platforms. Additionally, the novel
non-separable scheme outperforms the throughput of the separable lifting one on reasonable
resolutions by 5% on average on the tested platforms. On resolutions > 15MPix, a global
memory throughput on the tested AMD GCN architecture became the limitation of the
speed of 2D DWT that leads to the same performance of the separable lifting scheme.

The approaches are implemented using the Wavelet transform framework presented in
the chapter 5 and use the macro-based version of the kernel generator described in the
section 5.2.
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Abstract
This paper introduces a new approach to computation of 2-D discrete wavelet transform
on modern GPUs. The proposed approach involves block-based processing enabling one
seamless transform even for high resolution input data. Inside the blocks, two distinct
methods can be used – either separable or non-separable 2-D lifting scheme. Furthermore,
the paper presents a comparison of the proposed approach under different conditions to the
best existing methods, whereas our approach consistently outperforms the other ones. Our
methods are implemented using the OpenCL framework and tested on a wide range GPUs.

7.1 Introduction
The 2-D discrete wavelet transform (DWT) is the signal-processing transform suitable for
decomposition of the analysed 2-D signal into several scales. On each scale, three directional
subbands are formed. These are usually referred to as HL, LH, and HH subbands. The
2-D transform is defined as separable product of 1-D transforms performed sequentially
on rows and columns (or vice versa). Each of these one-dimensional transforms can be
computed through either the convolution or the lifting scheme. Different strategies of 2-D
DWT implementation were developed for various computational platforms.

In this paper, we focus on implementation of DWT using modern graphics cards (GPU)
capable of a general-purpose computing. In these architectures, the GPU contains thou-
sands of stream processors that are clustered into blocks. All processors in each block
execute the same instruction with different operands at one time. The blocks are grouped
into multiprocessors which form the basic functional units of the GPUs. The thread sched-
uler allocates as many work groups to multiprocessors as their resources allow. The work
groups are defined as a group of threads that can interoperate with each other using the
local memory and memory barriers. Thus, the resources, such as the local memory size,
should be minimized. The allocated work groups created by OpenCL framework is then di-

51



vided into warps (hardware blocks with 32 threads). Execution instructions of these warps
on blocks of processors are provided using warp schedulers dynamically. Global memory ac-
cesses in warp should be coalesced. Otherwise, additional memory operations are executed.
The local memory is organized into banks. Access to the same banks from warp causes
serialization. This issue is referred to as a bank conflict. The serialization of local memory
operations and uncoalesced global memory access can cause a performance degradation.

This paper is further focused on the OpenCL framework.1 OpenCL is a framework for
general-purpose parallel programming across multiple device types. In this framework, a
platform independent executable program is called the kernel. The kernel is executed on
required number of threads that identify their data and control flow by their N-dimensional
indices. These threads are organized into work groups with identical user-defined number of
threads. The threads in such a group can cooperate with each other through local memory
and barriers.

Several methods for the 2-D DWT computation using GPU have been published in the
last decade. For example, the simplest row–column methods transform the whole image
at once. Usually, the transposition is needed between the horizontal and vertical part.
Furthermore, the block-based methods transform the image using smaller blocks utilizing
the row-column method inside. Unfortunately, such a method results in several independent
transforms instead a single seamless one. Finally, the pipelined methods transform the
image using column strips while employing the sliding window on them.

In this paper, we propose two novel block-based methods computing the seamless 2-D
transform. The first of them employs the separable (row–column) lifting scheme inside
the overlapping blocks. The second uses a non-separable lifting scheme recently proposed.
Both of the proposed methods consistently outperform the existing methods.

The rest of the paper is organized as follows. The Related Work section summarizes
the state of the art, especially existing GPU implementations. The heart of our work is
presented in Block-Based Approach section. First, we propose the separable transform.
Further in the text, the non-separable method is discussed. Finally, Conclusions section
summarizes the paper and outlines the future work.

7.2 Related Work
This section takes a closer look at the discrete wavelet transform and revises the state of
the art of its implementation on contemporary graphics cards.

The DWT can be understood as a transform suitable for decomposition of a signal into
low-pass and high-pass frequency components. Usually, such a decomposition is performed
at several scales resulting in a multi-scale signal representation. At this point, we are
considering one-dimensional signals. The transform of 2-D signals is computed through the
tensor product of these 1-D transforms. For various requirements, different strategies of
2-D transform computation emerged. Going back to 1-D transform, as the discrete wavelet
transform is a linear one, the decomposition into the low-pass and high-pass components
can be performed through a convolution scheme with two filters. However, the more efficient
computational scheme according to the number of arithmetic operations exists. This scheme
is referred to as the lifting scheme. Additionally, using this scheme, the whole signal can
be transformed in-place. Specifically, any discrete wavelet transform can be factored into a
finite sequence of lifting steps. These steps alternately update odd and even intermediate

1http://www.fit.vutbr.cz/research/prod/index.php?id=434.
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results using short FIR (finite impulse response) filters. When evaluating this scheme,
intermediate results can be appropriately shared between neighbouring coefficients.

The discrete wavelet transform is often used as a basis for sophisticated compression al-
gorithms. This paper focuses on a popular CDF (Cohen-Daubechies-Feauveau) 9/7 wavelet.
This wavelet is used, e.g., in JPEG 2000 image compression standard. In [31], Daubechies
and Sweldens factored CDF 9/7 wavelet into four successive lifting steps, employing short
symmetric two-taps FIR filters. A data-flow diagram of the factorization (without scaling)
is depicted in Fig. 7.1, where, the 𝛼, 𝛽, 𝛾, 𝛿 are real constants specific to CDF 9/7 transform.
Formally, the forward transform in Fig. 7.1 can be expressed by the dual polyphase matrix

𝑃 (𝑧) =

[︂
1 𝛼

(︀
1 + 𝑧−1

)︀
0 1

]︂ [︂
1 0

𝛽 (1 + 𝑧) 1

]︂ [︂
1 𝛾

(︀
1 + 𝑧−1

)︀
0 1

]︂ [︂
1 0

𝛿 (1 + 𝑧) 1

]︂
. (7.1)

In this paper, we consider the lifting scheme only, as it is usually a better alternative. A
detailed comparison of the convolution and lifting schemes on GPUs was addressed, e.g.,
in [74] and [75].

The implementation of this transform was comprehensively studied on various platforms
including the modern GPUs. Considering this scenario, the input image has to be initially
transferred from main memory into memory on the graphics card. Similarly, the resulting
coefficients could be transferred back. Having the input 2-D image in the GPU global
memory, different strategies of 2-D DWT implementation can be used. These strategies
can be divided into three groups – row–column, block-based, and pipelined methods.

The row–column method applied on the entire 2-D image was used for instance in [74],
[75], [36], [15], [39], [40]. In [36] and [15], data transposition was performed in between the
horizontal and vertical series of 1-D transforms. In [74] and [75], Tenllado et al. adapted
the discrete wavelet transform on GPU fragment shaders. As this paper is focused on
the OpenCL framework, we will not discuss their paper in more details. The other cited
papers are focused on the CUDA architecture. In [36], the convolution scheme is applied
on each row. Then, the image matrix is transposed and the convolutions are applied on
each column. Finally, the image is transposed back. In [39] and [40], V. Galiano et al.
compared several CUDA implementations of DWT. They used the CDF 9/7 wavelet and
convolution-based algorithm on entire rows/columns. Their fastest implementation uses
the coalesced memory access.

In [15], the authors calculate the wavelet transform through 4 kernels. The first kernel
performs an image transposition using work groups of size 16×16 threads, where the thread
processes one image element. To ensure coalesced global memory access, the transposition in
the shared memory is used rather than directly in the global memory. In the second kernel,
the vertical wavelet transform is performed as follows. Each thread loads its elements from
the global memory and stores them into the shared memory. Then, the adjacent elements,
that are required for the computation of the output coefficient, are loaded from the shared
memory into registers. The threads compute their output coefficients using 4 steps of
the wavelet scheme independently to each other (with no synchronization). When the
computation is finished, the output coefficients are written back to the global memory. The
third and the fourth kernels calculate the image transposition and the horizontal wavelet
transform in the same way as the first two kernels. The calculations that are performed by
a single thread using the approach described can be seen in Fig. 7.1(b) and Fig. 7.1(c).

The pipelined approach was used in [52] and [53]. In [52], Laan et al. accelerated
the Dirac video codec using the CUDA platform. In [53], the authors provided a detailed
analysis of the DWT implementation using the lifting scheme on the CUDA platform. They
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(a) Laan et al. (b) Blazewicz et al.

(c) Blazewicz et al.

necessary computations redundant computations

thread synchronization exchanged

Figure 7.1: A portion of the data-flow graph attributable to individual threads. The method
of (a) Laan and two methods used by Blazewicz – with (b) one, and (c) four pairs.

focused on 2-D and 3-D methods of DWT implementation using several wavelets including
CDF 9/7. In the horizontal part of their transform, each work group is mapped to a single
image row. Each thread computes one coefficient per a single step and shares it with
other threads. Because of non-atomic instructions issued in whole group, memory barrier
is needed in between each two steps. See Fig. 7.1(a). The vertical part of their transform
maps each work group to multiple vertical strips with a width that ensures coalesced global
memory accesses and bank-conflict-free shared memory transfers.

Another row-column approach was used in [48]. The horizontal transform is computed
in the same way as Blazewicz et al. did. The vertical transform is computed using 32 coef-
ficients wide strips per work group like in Laan’s implementation. The difference between
the Laan’s and Kucis’s vertical methods lies in processing assigned to a single thread. Kucis
et al. used rotated Blazewicz’s approach with 2 pairs per thread mapping. Moreover, Kucis
et al. also demonstrated that their approach outperforms Laan’s and Blazewicz’s ones. The
approach of Kucis is used as a reference approach and labeled as Kucis2014.

The approaches in [57] as well as [15] are focused on the lifting scheme. Their imple-
mentations split the image into small tiles and perform several independent transforms on
each of them. Thus, they performed several independent transforms (introducing a block
effect) which is different and much easier task comparing to what we are dealing with in
this paper.
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(a) 1st horizontal (b) 2nd horizontal (c) 1st vertical (d) 2nd vertical

(e) 1st step (f) 2nd step (g) 3rd step (h) 4th step

LL HL,HL′ LH,LH′ HH

Figure 7.2: The separable (top) and non-separable block-based approach (bottom).

As it can be seen, the problem of the efficient 2-D discrete wavelet transform imple-
mentation on conventional GPUs was fairly well studied. However, we see several gaps
which can allow for additional speedups. Specifically, only the separable 2-D schemes were
examined so far. These schemes require to pass the results through the global memory,
while causing unnecessary memory traffic.

7.3 Block-Based Approach
The heart of our work is presented in this section. At the beginning, we propose the
separable block-based method. Afterwards, we discuss the block-based method utilizing
non-separable lifting scheme recently proposed. The performance comparison of the pro-
posed methods is shown in Fig. 7.4. As it can be seen, the block-based methods perform
consistently faster compared to the best of the existing methods. Our implementation is
based on the OpenCL framework. All of the algorithms are evaluated using AMD R9 290X
and NVIDIA TitanX graphics cards. The main benefit of the block-based methods is the
reduction of memory access count as the data is read as well as written only once.

7.3.1 Separable Method

Except for the sliding window, our separable block-based approach uses the same scheme
as the Laan’s method. The threads in each work group are responsible for processing of
2×2 input coefficients. At the beginning, the thread loads their coefficients from the global
memory and stores them into separate shared memory locations. The computation is briefly
illustrated in Fig. 7.2. In the first step of the horizontal pass, each of the threads computes
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the LH coefficient using two LL coefficients of the thread itself and the thread on the right.
Additionally, the HH coefficient is computed using HL coefficients of the current thread and
the thread on the right. In the second step, the computation of LL and HL coefficients is
performed in the same way as the computation of the LH and HH coefficients. After that,
these two steps are repeated with a substitution of 𝛼 and 𝛽 with 𝛾 and 𝛿 coefficients.

The vertical steps are performed in the same way as the horizontal steps except for a
rotation of the scheme by 90 degrees. Unlike the horizontal pass, synchronization using the
memory barrier is required between the steps. Horizontal steps are synchronization-free
thanks to the atomicity of hardware instructions. Fig. 7.2 shows individual steps of the
underlying data-flow graph.

7.3.2 Non-Separable Method

In [47], the authors derived a non-separable 2-D lifting scheme for CDF 5/3 and subse-
quently CDF 9/7 transforms. As initial step of CDF 5/3 transform, the input signal is
split into quadruples (LL,HL,LH,HH). Then, lifting steps leading to the calculation HH
coefficients are performed. This is followed by parallel computation of the HL and LH
coefficients. In the third step, the LL coefficient is updated. Finally, the coefficients can be
scaled. The scheme for CDF 9/7 comprises two these connected transforms.

Motivated by the work of Iwahashi et al. [47], we have reorganized the elementary lifting
FIR filters in order to obtain a highly parallelizable scheme suitable for the modern GPUs.
The main purpose of this modification is to minimize the number of memory barriers that
slow down the calculation. As a result, we get several non-separable two-dimensional FIR
filters. For their description, we employ the well known z-transform notation. The transfer
function of the two-dimensional FIR filter 𝑥(𝑘𝑚, 𝑘𝑛) is defined as

𝑋(𝑧𝑚, 𝑧𝑛) =
∞∑︁

𝑘𝑚=−∞

∞∑︁
𝑘𝑛=−∞

𝑥(𝑘𝑚, 𝑘𝑛) 𝑧
−𝑘𝑚
𝑚 𝑧−𝑘𝑛

𝑛 , (7.2)

where 𝑚 refers to the horizontal axis and 𝑛 to the vertical one. Moreover, to keep consis-
tency with [47], the 𝐻*(𝑧𝑚, 𝑧𝑛) = 𝐻(𝑧𝑛, 𝑧𝑚) denotes a filter transposed to the 𝐻(𝑧𝑚, 𝑧𝑛).
Furthermore, the 𝐻(𝑧𝑚, 𝑧𝑛) = 𝐻(𝑧−1

𝑛 , 𝑧−1
𝑚 ) denotes a filter reversed along the 𝑚- as well as

𝑛-axis. Coupled together, the 𝐻
*
(𝑧𝑚, 𝑧𝑛) denotes a transposed and reversed filter to the

original 𝐻(𝑧𝑚, 𝑧𝑛). The scheme we formed is composed of three elementary filters 𝐹,𝐺,𝐻
given by ⎡⎣Fa

Ga

Ha

⎤⎦ =

⎡⎣𝐹𝑎(𝑧𝑚, 𝑧𝑛)
𝐺𝑎(𝑧𝑚, 𝑧𝑛)
𝐻𝑎(𝑧𝑚, 𝑧𝑛)

⎤⎦ = 𝑎

⎡⎣ 1
𝑧𝑛

1 + 𝑧𝑚

⎤⎦ , (7.3)

where 𝑎 denotes a filter parameter. The filters above are assembled into more complex
operations. Our scheme consists of two halves between which a memory barrier is placed.
The first half of the scheme uses the following filters. Similarly, the second half uses these
filters in the reverse orientation. Due to the limited place, we have made a small abuse of
notation. Instead of the full notation 𝐻(𝑧𝑚, 𝑧𝑛), we only use a shortened labeling, such as
H.
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⎡⎢⎢⎢⎢⎣
Fa

Ga

Ha

H*
a

GaHa

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑎

𝑎 𝑧𝑛
𝑎 (1 + 𝑧𝑚)
𝑎 (1 + 𝑧𝑛)

𝑎2 (𝑧𝑛 + 𝑧𝑚𝑧𝑛)

⎤⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎣
Fa

Ga

Ha

H
*
a

GaHa

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑎

𝑎 𝑧−1
𝑛

𝑎 (1 + 𝑧−1
𝑚 )

𝑎 (1 + 𝑧−1
𝑛 )

𝑎2 (𝑧−1
𝑛 + 𝑧−1

𝑚 𝑧−1
𝑛 )

⎤⎥⎥⎥⎥⎦ (7.4)

Finally, our scheme is composed of four steps referred to as 𝑆1 to 𝑆4. Between the
second 𝑆2 and the third 𝑆3 step, the memory barrier must be inserted in order to properly
exchange intermediate results. Additionally, our scheme requires the induction of two aux-
iliary variables per each quadruple of coefficients LL, HL, LH, and HH. These are denoted
as HL′,LH′. This is valid regardless of their initial as well as final values. The scheme

y = 𝑆4
𝛽𝑆

3
𝛽𝑆

2
𝛼𝑆

1
𝛼x (7.5)

describes the relation between input x and output y vectors[︀
LL HL LH HH HL′ LH′ ]︀𝑇 . (7.6)

Each single thread of the work group is responsible of one such a vector.
Regarding this notation, the individual steps are defined as follows. For better un-

derstanding, the signal-processing block diagram of this scheme is shown in Fig. 7.3. In
addition, the operations are graphically illustrated in Fig. 7.2.

𝑆1
𝛼 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
H𝛼 1 0 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (7.7)

𝑆2
𝛼 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

G𝛼H𝛼 G𝛼 H𝛼 1 F𝛼 0
0 0 0 0 1 0
H*

𝛼 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (7.8)

𝑆3
𝛽 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0

0 0 0 H𝛽 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (7.9)

𝑆4
𝛽 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 F𝛽 G𝛽H𝛽 H𝛽 G𝛽

0 0 0 H
*
𝛽 1 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (7.10)

57



SPLIT

H GH

G

H

F

H*

H

F

GH

H

G

H
*

X LL

HL

LH

HH

+

+ + +

+

+

+ + + +

+

HL′

LH′

Figure 7.3: Block diagram of the proposed non-separable scheme.
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Figure 7.4: Throughput performance. Kucis2014 is the reference state-of-the-art method.

Compared to [47], the total number of arithmetic operations has been reduced form 24
to 20. The calculation of CDF 9/7 transform comprises two of these connected transforms
(the first one with 𝛼, 𝛽, the second with 𝛾, 𝛿) between them another barrier is placed. In
total, the calculation contains 3 memory barriers.

7.4 Conclusions
We have presented two novel block-based approaches to 2-D wavelet transform using modern
GPUs. These approaches can handle high resolution images while producing the seamless
transform. Both of the proposed methods consistently outperform the existing methods
with all tested GPUs.

The first presented approach utilizes classical separable 2-D lifting scheme. Whereas
the second approach employs a novel 2-D non-separable scheme. Considering the second
one, we have minimized the number of memory barriers. Moreover, as compared to the
existing non-separable scheme, the total number of arithmetic operations has been reduced
form 24 to 20.
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The future work includes behavior of the proposed methods under a multi-scale decom-
position. Another direction of our research may include a connection with some practical
application (e.g., JPEG 2000 scheme).
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Chapter 8

Article: Parallel Wavelet Schemes
for Images

This paper extends the research from paper [49] that further improved the novel non-
separable scheme (denoted as Kula2016) from the paper presented the previous chapter
7 by reducing the number of operations from 20 to 18 and compares it with the existing
scheme invented by Iwahashi [47] (labeled in the thesis as implosion). In the current paper,
this scheme is further changed by separating in-quadruple operations using optimization
approach and is denoted as Monolithic* (later labeled as non-separable lifting* scheme) and
compared with implosion scheme as well. For the sake of shortness, that paper is skipped.

This paper introduces a novel non-separable scheme called explosion (labeled in the
paper as Explosive) that has the same number of barriers and operations as the implosion
scheme. Its advantage lies in the reduction of local memory store operations from 6𝐾 to 4𝐾
and reduction of local memory consumption by 33% while using single buffering approach
or 25% using double buffering approach (for more information about Region Mapping and
buffering see the section 5.5). Mapping of the work-group and threads to tiles remains the
same as in the previous paper.

Also a novel approach that separates in-quadruple predict/update operations before the
first barrier/after the last step is introduced. This approach can be applied on all separable
or non-separable schemes and can significantly reduce the number of operations (with the
exception of the separable lifting+ scheme that has the minimum number of operations
already).

Finally, all existing schemes and their improved variants are compared and tested on
CDF 5/3 (𝐾 = 1, 𝐷 = 1), CDF 9/7 (𝐾 = 2, 𝐷 = 1) and DD 13/7 (𝐾 = 1, 𝐷 = 3) wavelets
on various GPUs. All of the tested schemes and their properties are described in Table 11.1.
The evaluation shows that the optimization approach increases the wavelet throughput by
80% on non-separable polyconvolution and by 5-20% on the rest of the schemes, except for
the separable lifting+ one, where it is not beneficial on the tested platforms. The novel
non-separable lifting scheme, combined with the optimization approach, outperforms state-
of-the-art schemes used by other authors (implosion and separable lifting+) by 30% on the
tested platforms. Our later experiments show that another novel scheme, the explosion
scheme, combined with the optimization approach, is the best performing scheme for most
Intel GPUs.

The implementation uses Wavelet Transform Framework and second version of kernel
generator described in the section 5.2.
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Abstract
In this paper, we introduce several new schemes for calculation of discrete wavelet trans-

forms of images. These schemes reduce the number of steps and, as a consequence, allow
to reduce the number of synchronizations on parallel architectures. As an additional useful
property, the proposed schemes can reduce also the number of arithmetic operations. The
schemes are primarily demonstrated on CDF 5/3 and CDF 9/7 wavelets employed in JPEG
2000 image compression standard. However, the presented method is general, and it can
be applied on any wavelet transform. As a result, our scheme requires only two memory
barriers for 2-D CDF 5/3 transform compared to four barriers in the original separable
form or three barriers in the non-separable scheme recently published. Our reasoning is
supported by exhaustive experiments on high-end graphics cards.

8.1 Introduction
The two-dimensional discrete wavelet transform (DWT) is a signal-processing transform
suitable as a basis for sophisticated compression algorithms. For example, JPEG 2000, an
image coding system, is based on such compression technique. This paper focuses on the
Cohen–Daubechies–Feauveau (CDF) 5/3 and 9/7 wavelets [30], which are often used for
image compression. However, the methods are general, and they are not limited to any
specific type of transform. Of course, plenty of other applications are built over the discrete
wavelet transform.

The one-dimensional discrete wavelet transform has undergone a gradual development
in the last few decades. Probably, the most important advance is the discovery of a fac-
toring algorithm [31] referred to as the lifting scheme. In this context, the discrete wavelet
transform or two-band subband filtering can be represented by a polyphase matrix. The
lifting scheme algorithm decomposes any wavelet transform with finite filters into a finite
sequence of lifting steps, while reducing the number of arithmetic operations. The de-
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composition corresponds to a factorization of the polyphase matrix filters into elementary
matrices. The resulting coefficients of 1-D transform are formed in two subbands. The
subbands correspond to low-pass (L) and high-pass (H) filtered subsampled variants of the
original signal.

In case of two-dimensional transform [55], one level of the transform can be realized
using a separable decomposition scheme. In this scheme, the coefficients are evaluated by
successive horizontal and vertical 1-D filtering, resulting in four disjoint groups (LL, HL,
LH, and HH subbands). A naive algorithm of 2-D transform computation directly follows
the horizontal and vertical filtering loops. As a consequence, the number of elementary
polyphase matrices is doubled.

Unfortunately, this separable computation does not reflect the requirements of the par-
allel architectures where the scheme will need twice as many synchronizations. Such syn-
chronizations often form a bottleneck of the overall calculation. State-of-the-art algorithms
fuse the horizontal and vertical loops into a single one, which results in the single-loop ap-
proach. However, the number of the elementary polyphase matrices and thus the number
of memory barriers remain unaffected.

To solve the outlined issue, we propose several novel spatial lifting structures computing
the 2-D discrete wavelet transform with reduced number of memory barriers. These lifting
structures are presented in the order in which they were gradually derived. The presented
work is accompanied by exhaustive performance experiments.

A typical representative of parallel architectures is the graphics processing unit (GPU)
capable of executing a general-purpose program. Actually, this is the architecture used to
evaluate the performance of algorithms presented in this paper. We have employed OpenCL
language for writing underlying implementations. These implementations were then subject
of performance measurements on significant graphics cards of two biggest vendors.

In order to avoid misunderstandings, it should be noted that the schemes presented in
this paper do not affect an image compression ratio nor quality. The schemes only affect
the speed in which the compression is completed. Since practical applications require a
multi-level discrete wavelet decomposition, the question of how to compute this multi-scale
pyramid may arise. In this case, the schemes discussed in this paper can simply be applied
in a sequence exchanging intermediate results through a off-chip memory (a global memory
in the case of GPU). Another possibility is to apply this sequence on blocks exchanging the
results using a fast on-chip memory (a local memory on GPU). The latter possibility was
used, e.g., in [57, 14] employing the naive algorithm of 2-D transform computation.

The rest of the paper is organized as follows. Section Related Work presents the theory
in the necessary level of detail. This theory includes the lifting scheme basics and the spatial
lifting structures recently proposed. Subsequent Section Proposed Schemes derives the
new spatial lifting structures. Additionally, Section Improvements presents a simple trick
proposed in order to reduce the number of arithmetic operations. Section Evaluation and
Section Performance offer a thorough performance evaluation. Finally, Section Conclusions
summarizes the paper.
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8.2 Related Work
In this paper, the well-known 𝑧-transform notation is employed for the description of FIR
filters. The transfer function of the FIR filter ℎ𝑘 is a Laurent polynomial defined as

𝐻(𝑧) =

𝑘1−1∑︁
𝑘=𝑘0

ℎ𝑘 𝑧
−𝑘, (8.1)

where 𝑘0 denotes the smallest and 𝑘1 − 1 denotes the largest integer number 𝑘 for which
ℎ𝑘 is non-zero. The degree of a Laurent polynomial 𝐻(𝑧) is defined as |𝐻(𝑧)| = 𝑘1 − 𝑘0 −
1. Similarly, the transfer function of the two-dimensional FIR filter ℎ𝑘𝑚,𝑘𝑛 is a bivariate
Laurent polynomial defined as

𝐻(𝑧𝑚, 𝑧𝑛) =

𝑘1,𝑚−1∑︁
𝑘𝑚=𝑘0,𝑚

𝑘1,𝑛−1∑︁
𝑘𝑛=𝑘0,𝑛

ℎ𝑘𝑚,𝑘𝑛 𝑧
−𝑘𝑚
𝑚 𝑧−𝑘𝑛

𝑛 , (8.2)

where 𝑚 refers to the horizontal axis and 𝑛 to the vertical one. Moreover, to keep con-
sistency with other papers, the 𝐻*(𝑧𝑚, 𝑧𝑛) = 𝐻(𝑧𝑛, 𝑧𝑚) denotes a filter transposed to the
𝐻(𝑧𝑚, 𝑧𝑛). For simplicity, we have made a small abuse of notation. Instead of the full no-
tation 𝐻(𝑧𝑚, 𝑧𝑛), we only use a shortened labeling, such as H. Finally, we work with 2× 2
and 4× 4 matrices of Laurent polynomials. These are usually referred to as the polyphase
matrices. The 2× 2 matrices refers to the 1-D systems, whereas the 4× 4 to the 2-D ones.
For simplicity, a shortened labeling is used for matrices as well. The superscript 𝑇 denotes
the vector or matrix transposition.

8.2.1 Discrete Wavelet Transform

The discrete wavelet transform has undergone a gradual development [56] in the last few
decades. First, S. Mallat [55] demonstrated the multi-scale wavelet decomposition computed
with a pyramidal algorithm based on convolutions with quadrature mirror filters. In detail,
the discrete wavelet transform splits the input signal 𝑥𝑘 into two components L and H, each
subsampled by a factor of 2. Both of these components can be computed by the discrete
convolution with two FIR filters 𝐺0(𝑧) and 𝐺1(𝑧) followed by the subsampling. However,
such computation is usually not the fastest one. The transform can also be represented by
the polyphase matrix [71]. Using this representation, the input signal is initially split into
the L, H components. No calculation is performed so far. After such splitting, the DWT

y = Mx. (8.3)

is described by the 2× 2 matrix M mapping the initial components

x =
[︀

L H
]︀𝑇 (8.4)

onto the resulting ones

y =
[︀

L H
]︀𝑇

. (8.5)

The polyphase matrix is initially assembled as a polynomial matrix

M =

[︂
G1,𝑜 G1,𝑒

G0,𝑜 G0,𝑒

]︂
, (8.6)

where subscript 𝑒 refers to the even coefficients, whereas 𝑜 refers to the odd coefficients.
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8.2.2 Lifting Scheme

As a next step, W. Sweldens [72, 31] showed how any discrete wavelet transform can be
decomposed into a sequence of simple filtering steps. These steps are referred to as the
lifting steps, and the scheme is known as the lifting scheme. The lifting scheme reduces the
number of arithmetic operations by up to 50 %. The lifting steps occur in 𝐾 pairs. The
first step is referred to as the predict and the second one to as the update. It may happen
that the very first step of the lifting scheme is missing and the sequence of steps starts with
the update step. Usually, the very last step has a different form compared to all the others.
This one is then called the scaling step.

M =

[︂
𝜁 0
0 1/𝜁

]︂ 0∏︁
𝑘=𝐾−1

[︂
1 U(𝑘)

0 1

]︂ [︂
1 0

P(𝑘) 1

]︂
, (8.7)

where 𝜁 is a non-zero scaling factor, P(𝑘) is the 𝑘th predict convolution operator, and U(𝑘)

is the 𝑘th update convolution operator. In this paper, we focus on a single pair of lifting
steps. We thus omit the (𝑘) superscript. We also omit the scaling step, as the application
of this step is trivial.

In parallel environments [64], the processing of a single or several adjacent signal samples
is mapped to independent processing units, commonly referred to as the threads. To avoid
race conditions (the behavior where the output is dependent on the sequence or timing of
other threads), the threads must use some type of synchronization method. In this paper,
we will consider the use of memory barriers. When we return to the lifting scheme, these
barriers are usually required before each of the individual lifting steps. However, certain
form of the steps guarantees correctness of the calculation even without using the memory
barrier between them. In this paper, the barriers are indicated by the

⃒⃒
symbol placed in

between the steps. For example, M2

⃒⃒
M1 denotes a sequence of two steps – the initial M1

and the subsequent M2 – separated by the barrier.
The schemes presented above can be extended into two dimensions. The most widely

used 2-D extension is Mallat’s [55] 2-D decomposition. The transform is defined as the ten-
sor product of 1-D transforms. At each scale of such decomposition, we obtain a quadruple
of wavelet coefficients (LL, HL, LH, HH).

8.2.3 Convolution and Polyphase Schemes

Similarly to the 1-D case, the transform can be computed using the convolution scheme.
Considering this case, one needs to convolve the input signal with four 2-D FIR filters. This
operation is followed by the subsampling in both dimensions. However, in practical imple-
mentations, the subsamplings are built into the convolutions in order to save arithmetic
operations. This scheme will further be labeled as Convolution. In this scheme, no barrier
is required at all.

Moreover, the 2-D transform can be described by the polyphase matrix as well. Using
the polyphase representation, the input signal is initially split into the four polyphase
components. No calculation is performed so far. Further, the 2-D DWT is described by
the 4× 4 matrix M mapping the input components

x =
[︀

LL HL LH HH
]︀𝑇 (8.8)

onto the final ones

y =
[︀

LL HL LH HH
]︀𝑇

. (8.9)
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Figure 8.1: Different visual representations of the same polyphase matrix.

Similarly to the 1-D case, this can be written as

y = NP,U

⃒⃒
x, (8.10)

where P,U are 1-D predict and update convolution operators. Please notice the included
initial barrier. This scheme will further be called as Polyphase.

To define the 2-D polyphase matrices, the predict and update operators must first be
migrated into two dimensions. Coupled together with filter transposition defined above,
the two-dimensional counterparts of the operators are defined like follows.⎡⎢⎢⎣

P
U
P*

U*

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑃 (𝑧𝑚, 𝑧𝑛)
𝑈(𝑧𝑚, 𝑧𝑛)
𝑃 *(𝑧𝑚, 𝑧𝑛)
𝑈*(𝑧𝑚, 𝑧𝑛)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑃 (𝑧𝑚)
𝑈(𝑧𝑚)
𝑃 (𝑧𝑛)
𝑈(𝑧𝑛)

⎤⎥⎥⎦ (8.11)

Roughly speaking, the P and U denote the filters oriented along the horizontal axes, whereas
the P* and U* denote the filters oriented along the vertical one.

8.2.4 Notation

For readers not familiar with signal-processing notations, a relationship of the block and
data-flow diagrams is explained in this section. In this paper, we work with 4× 4 matrices
of Laurent polynomials, usually referred to as the polyphase matrices, for example, this
one

T𝐻
P =

⎡⎢⎢⎣
1 0 0 0
P 1 0 0
0 0 1 0
0 0 P 1

⎤⎥⎥⎦ . (8.12)

Since these matrices define a linear mapping from vectors of form
[︀
LL HL LH HH

]︀𝑇
to vectors of the same form, we can simply illustrate this mapping by the block diagram in
Fig. 8.1(a).
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Figure 8.2: Block diagram of the Sweldens scheme. The dashed vertical lines indicate
barriers. The left half corresponds to the spatial predict operator, whereas the right half
to the update one.

Moreover, the matrices are composed of elementary lifting operators like

𝑃 (𝑧) = −1/2(1 + 𝑧−1). (8.13)

If we substitute such particular polynomials into the matrix, the mapping gets a specific
shape, as illustrated by the dataflow diagram in Fig. 8.1(b). The solid arrows correspond
to multiplication by −1/2 along with subsequent summation. The dotted arrows similarly
correspond to multiplication by factor of 1, since the matrix T𝐻

P contains ones on the main
diagonal.

For reader’s convenience, we use two-dimensional diagrams to illustrate the schemes
with CDF 5/3 wavelets. For the example above, such a diagram is shown in Fig. 8.1(c),
whereas the elementary quadruples of coefficients are highlighted by solid and dotted boxes.

8.2.5 Sweldens Scheme

Following the Mallat’s scheme, the predict and update lifting steps are applied in both
directions sequentially. This can be classified as a separable scheme. As the convolution is
the linear operator, horizontal and vertical steps can be arbitrary interleaved. The baseline
formulation of this scheme will be considered as follows. The predict steps are always
preceding the update ones. Such separable scheme can be formally described by

y = S𝑉U
⃒⃒
S𝐻U

⃒⃒
T𝑉
P

⃒⃒
T𝐻
P

⃒⃒
x, (8.14)

where the individual matrices are defined as follows. Let us mention a short comment on the
matrix notation used. For example, the matrix T𝐻

P is parameterized by the P polynomial.
Further in the text, the same matrix appears parameterized by different polynomials, which
is completely valid. As it can be expected, the matrix T𝐻 definition is not repeated for
such case. For better understanding, the corresponding signal-processing block diagram is
shown in Fig. 8.2. For the CDF 5/3 wavelet, these steps are also graphically illustrated in
Fig. 8.3.

T𝐻
P =

⎡⎢⎢⎣
1 0 0 0
P 1 0 0
0 0 1 0
0 0 P 1

⎤⎥⎥⎦ (8.15)
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(a) T𝐻
P (b) T𝑉

P (c) S𝐻
U (d) S𝑉

U

LL HLLHHH

Figure 8.3: 2-D dataflow diagram, CDF 5/3 wavelet, Sweldens lifting scheme. The displayed
part of the calculation results in the coefficients inside of the solid box. The dotted boxes
refer to the surrounding threads.

T𝑉
P =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
P* 0 1 0
0 P* 0 1

⎤⎥⎥⎦ (8.16)

S𝐻U =

⎡⎢⎢⎣
1 U 0 0
0 1 0 0
0 0 1 U
0 0 0 1

⎤⎥⎥⎦ (8.17)

S𝑉U =

⎡⎢⎢⎣
1 0 U* 0
0 1 0 U*

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (8.18)

Please note the barriers in between each of the lifting steps. In total, four barriers are
required for each pair of the original 1-D lifting steps. This scheme will further be labeled
as Sweldens.

Contemporary approaches on parallel architectures most commonly reflect this separable
Sweldens scheme. Exceptionally, the Convolution scheme is employed. Considering the
independent horizontal and vertical filtering steps, several different strategies of 2-D DWT
implementation can be used. These strategies can be divided into three groups – row–
column, block-based, and pipelined methods. The row–column methods process all of the
horizontal filtering steps prior to the vertical ones. The row–column method applied on the
entire 2-D image was used for instance in [37, 74, 75, 36, 15, 39, 40]. In some papers, the
transition between the horizontal and vertical stage is accompanied with data transposition.
The pipelined methods was used, e.g., in [52] and [53]. These methods uses moving window
for the vertical part of the transform. However, the horizontal and vertical parts remain
separated. The block-based methods were used, e.g., in [57, 15, 14, 69]. The transform
is tiled into blocks, in which the horizontal and vertical processing still remain separated.
However, between these parts, the data remain loaded in the local memory (making them
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Figure 8.4: Block diagram of the Polyphase scheme. The dashed vertical lines indicate
implicit barrier.
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Figure 8.5: 2-D dataflow diagram, CDF 5/3 wavelet, Polyphase scheme. The solid box in
the middle corresponds to the output coefficients.
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faster accessible). For the sake of completeness, some of the works compute an entire [57]
or partial [14] multi-scale transform inside the blocks.

Going back to the Polyphase scheme, the polyphase matrix

NP,U =

⎡⎢⎢⎣
V*V V*U U*V U*U
V*P V* U*P U*

P*V P*U V U
P*P P* P 1

⎤⎥⎥⎦ (8.19)

can expressed using the auxiliary polynomial V = PU + 1. The matrix can be obtained
as the product of individual matrices of the Sweldens scheme. In this scheme, it is no
longer possible to distinguish the vertical and horizontal filtering. Only an initial barrier is
required for this scheme. Unfortunately, the number of arithmetic operations has grown in
proportion to the square of filter sizes. The corresponding generic signal-processing diagram
is shown in Fig. 8.4. For the CDF 5/3 wavelet, these operations are illustrated in Fig. 8.5.

8.2.6 Iwahashi Scheme

Recently, Iwahashi et al. [46, 45, 47] presented the non-separable lifting scheme, consisting
of three spatial lifting steps. As in the previous case, it is not possible to distinguish the
vertical and horizontal filtering. The three steps can be described as follows. Initially,
a 2-D lifting step leading to the computation of the HH coefficient is performed. This
step corresponds to a spatial predict convolution operator. This is followed by parallel
computation of the HL and LH coefficients, using the original 1-D predict and update
filters. In the third step, the LL coefficient is computed using another 2-D filter. The last
step can be understood as a spatial update operator. In the matrix notation, the scheme
can be defined as

y = S𝐼U
⃒⃒
R𝐼

P,U

⃒⃒
T𝐼
P

⃒⃒
x, (8.20)

where the individual matrices are defined as follows. The signal-processing diagram is
shown in Fig. 8.6. For the CDF 5/3 wavelet, the individual steps are illustrated in Fig. 8.7.

T𝐼
P =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0

PP* P* P 1

⎤⎥⎥⎦ (8.21)

R𝐼
P,U =

⎡⎢⎢⎣
1 0 0 0
P 1 0 U*

P* 0 1 U
0 0 0 1

⎤⎥⎥⎦ (8.22)

S𝐼U =

⎡⎢⎢⎣
1 U U* −UU*

0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (8.23)
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Figure 8.7: 2-D dataflow diagram, CDF 5/3 wavelet, Iwahashi lifting scheme. The solid
box corresponds to the output coefficients.
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Three barriers are required in between these steps. As for the Polyphase scheme, the
number of arithmetic operations increased proportionally to the square of filter sizes. How-
ever, the total number of operations is significantly lower. This scheme will further be
labeled as Iwahashi.

When we compare the separable Sweldens and non-separable Iwahashi schemes, some
findings becomes obvious at first glance. The number of operations tends to be considerably
smaller for the separable case. On the other hand, the number of memory barriers in the
non-separable scheme was reduced to 75 % (from four to three barriers). The Polyphase
scheme stands apart from these two schemes. It needs only an initial memory barrier.
Unfortunately, the number of arithmetic operations is unreasonably large. This is caused
by the number of non-zero elements in the corresponding polyphase matrix as well as by
the degree of the longest filter 𝑉 . For clarification, the product of a Laurent polynomial of
degree |𝑃 (𝑧)| and a Laurent polynomial of degree |𝑈(𝑧)| is a Laurent polynomial of degree
|𝑃 (𝑧)|+ |𝑈(𝑧)|. Finally, the Convolution scheme employing four 2-D filters is even worse in
terms of the operations. Anyway, only an initial memory is required here as well. Detailed
quantitative comparison is provided in Section Evaluation.

When we consider the linearity of the convolution and the dependencies between the
individual lifting steps, several gaps can be inferred in the schemes described above. Re-
combining the operations into a new form could lead to the removal of unnecessary barriers.
Actually, exactly this idea is investigated in the following section, in which several novel
2-D schemes are proposed.

Since this work is based on our previous work in [50], it should be explained what
the difference between this work and [50] is. In [50], we presented a block-based method
employing a scheme foregoing the schemes proposed in this paper. Unlike [50], the schemes
presented in this paper are defined by general predict and update operators.

8.3 Proposed Schemes
In this section, the polyphase matrices, known so far, are reassembled in order to obtain the
schemes suitable for parallel architectures. All of the schemes discussed here are general,
and they can be used for any discrete wavelet transform. Please note that the contribution
of this paper is presented in this section and the following one.

8.3.1 Explosive Scheme

When we take a detailed look at the original 1-D lifting scheme, a certain pattern can be
identified in the predict and update steps. Particularly, the predicts transmit data from L
into H samples, whereas the updates transmit data from H into L. The transmission can
be viewed from two perspectives – the data flow out from a source component (similarly
to an explosion); or the data flow in into a destination component (an implosion). As it
can be expected, the Sweldens scheme exactly follows this pattern, since this scheme is a
mere extension of 1-D lifting into two dimensions. Roles of source and destination samples
properly turn during four lifting steps (horizontal and vertical, predict and update). This
procedure can be also seen as a data transmission in direction from LL into HH component
(using 1-D predicts), and a transmission from HH into LL one (using updates). The HL
and LH components are not relevant in this view. The situation is clearly visible in Fig. 8.2.
In contrast to this scheme, the Iwahashi scheme has a different structure. The leading step
transmits data into HH component (using predicts), while the trailing one transmits them
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Figure 8.8: Block diagram of the Explosive scheme. The dashed vertical lines indicate
barriers.

(a) T𝐸
P (b) R𝐸

P,U (c) S𝐸
U

Figure 8.9: 2-D dataflow diagram, CDF 5/3 wavelet, Explosive lifting scheme. The solid
box corresponds to the output coefficients.

into LL one (updates). However, no exclusive source components can be identified in this
case. The remaining step in the middle is not relevant. See the block diagram in Fig. 8.6.
Regarding to the perspectives outlined above, the Iwahashi scheme can be classified as an
implosive one. However, this is not the only three-step version (two-step scheme is discussed
below in the text). Similar scheme can be formulated using data explosions instead of the
implosions. Particularly, the LL component spreads the data into its neighborhood during
the predict step, whereas the data flow out from the HH component in the update step.
No exclusive destination components can be identified here as well. Again, the step in the
middle is not relevant. For further purposes, this newly proposed scheme will be labeled as
Explosive. The block diagram is shown in Fig. 8.8. The steps for the CDF 5/3 wavelet are
also illustrated in Fig. 8.9. Formally, the scheme can be defined as

y = S𝐸U
⃒⃒
R𝐸

P,U

⃒⃒
T𝐸
P

⃒⃒
x, (8.24)

where the individual matrices follows. Three barriers are required, as in the case of the
Iwahashi scheme.

T𝐸
P =

⎡⎢⎢⎣
1 0 0 0
P 1 0 0
P* 0 1 0

−PP* 0 0 1

⎤⎥⎥⎦ (8.25)
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Figure 8.10: Block diagram of the Monolithic scheme. The dashed vertical lines indicate
barriers. The left half corresponds to the predict operator, whereas the right half to the
update.

R𝐸
P,U =

⎡⎢⎢⎣
1 U U* 0
0 1 0 0
0 0 1 0
0 P* P 1

⎤⎥⎥⎦ (8.26)

S𝐸U =

⎡⎢⎢⎣
1 0 0 UU*

0 1 0 U*

0 0 1 U
0 0 0 1

⎤⎥⎥⎦ (8.27)

8.3.2 Monolithic Scheme

Motivated by the work of Iwahashi et al. [47], we have reorganized the elementary lifting
filters in order to remove the middle lifting step. This action consequently reduces the
number of memory barriers. As a result, we receive a new two-step non-separable scheme.
The first step corresponds to a spatial predict operator. This one is completely responsible
for the HH coefficient. In addition, the HL and LH coefficients are partially computed here
as well. The second step corresponds to a spatial update. It is responsible for the LL
coefficient and completion of the HL and LH ones. Formally, the scheme is defined as

y = SU
⃒⃒
TP

⃒⃒
x, (8.28)

where the SU and TP are defined as follows. Moreover, the hypotetical signal-processing
diagram is shown in Fig. 8.10. For the CDF 5/3 wavelet, the scheme is graphically illustrated
in Fig. 8.11.

TP =

⎡⎢⎢⎣
1 0 0 0
P 1 0 0
P* 0 1 0
PP* P* P 1

⎤⎥⎥⎦ (8.29)
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(a) TP (b) SU

Figure 8.11: 2-D dataflow diagram, CDF 5/3 wavelet, Monolithic scheme. The solid box
corresponds to the output coefficients.

step Sweldens Monolithic Iwahashi Explosive

predict

middle

update

Table 8.1: CDF 5/3 wavelet. Shapes of spatial lifting steps for selected schemes. The
step in the middle raised from the combination of the original predict and update steps.
Illustrative purpose only.
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(a) T𝐻
P0

(b) T𝑉
P0

(c) S𝐻
U0

(d) S𝑉
U0

Figure 8.12: 2-D dataflow diagram, CDF 5/3 wavelet, common steps for all improved
schemes.

SU =

⎡⎢⎢⎣
1 U U* UU*

0 1 0 U*

0 0 1 U
0 0 0 1

⎤⎥⎥⎦ (8.30)

The total number of operations remained the same as for the Iwahashi scheme. However, the
number of the explicit barriers has been reduced to only two. This is a crucial contribution
of our work. Further in the paper, this scheme will be labeled as Monolithic. One can
easily verify the correctness of the proposed scheme by comparing the product SUTP to the
matrix NP,U of the Polyphase scheme.

A comparison of the shapes for selected schemes can be found in Table 8.1. Regarding
the Polyphase scheme, no spatial predict nor update step can be identified in its calculation.

In practical implementations, the formed intermediate coefficients cannot take the same
place as the input ones. Otherwise, the race condition occurs. This implies a higher
memory consumption compared to the previous schemes. A particular numbers are listed
in Table 8.3.

Two simple observations can be made from the scheme presented so far. The Sweldens
scheme requires the lowest number of operations. In contrast to this approach, the non-
separable scheme proposed above requires the lowest number of memory barriers. Com-
bining these two observations together, new schemes can be formed. This possibility is
investigated below.

8.4 Improvements
Additionally, we have made another observation. The operation composed as a product of
monomials with the exponent of 𝑧𝑛 and 𝑧𝑛 being equal to zero (i.e., scalars) never touch
the coefficients belonging to the surrounding threads. As the convolution is the linear
operation, this monomial can be detached from the original operator and subsequently
calculated using the Sweldens scheme. This scheme has a minimal number of arithmetic
operations. The rest of the original polynomial shall be computed using different scheme,
according to suitability for a particular platform.

In more detail, the original filters were split into two halves as P = P0 + P1, and
U = U0 + U1, where P0 and U0 are scalars. This is a fundamental step for the following
constructions. Now, the scalars P0,U0 can be utilized in the separable Sweldens scheme.
This part will never touch the extraneous threads. For a better understanding, see the
dataflow diagram in Fig. 8.12. Conversely, the P1,U1 shall be employed in the Explosive,
Iwahashi, Monolithic, or Polyphase scheme in order to minimize the number of required
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(a) T𝐼
P1

(b) R𝐼
P1,U1

(c) S𝐼
U1

Figure 8.13: 2-D dataflow diagram, CDF 5/3 wavelet, Iwahashi* scheme. The solid box
corresponds to the output coefficients.

(a) T𝐸
P1

(b) R𝐸
P1,U1

(c) S𝐸
U1

Figure 8.14: 2-D dataflow diagram, CDF 5/3 wavelet, Explosive* scheme. The solid box
corresponds to the output coefficients.

memory barriers. Note that these two schemes can be combined into joint lifting steps.
However, such optimization is a simple matter of a specific implementation.

Initially, we have employed the idea described in previous paragraphs in conjunction
with the Iwahashi scheme. The resulting scheme is defined as

y = S𝑉U0
S𝐻U0

S𝐼U1

⃒⃒
R𝐼

P1,U1

⃒⃒
T𝐼
P1

⃒⃒
T𝑉
P0

T𝐻
P0
x, (8.31)

where the individual matrices are defined above in the paper. The number of barriers
remains the same as for the original Iwahashi scheme. The operations represented by the
matrices defined for the Sweldens scheme do not need to be preceded by a barrier. The
scheme will be further referred to as Iwahashi*. For the CDF 5/3 wavelet, this scheme is
graphically illustrated in Fig. 8.13.

Similarly, we have employed the same trick in conjunction with the Explosive scheme.
This time, the scheme is defined as

y = S𝑉U0
S𝐻U0

S𝐸U1

⃒⃒
R𝐸

P1,U1

⃒⃒
T𝐸
P1

⃒⃒
T𝑉
P0

T𝐻
P0

x. (8.32)

Also in this case, the number of barriers remains the same as for the original scheme.
Analogously to the previous case, this scheme will be referred to as Explosive*. The dataflow
diagram for the CDF 5/3 wavelet is shown in Fig. 8.14.

As a next step, consider a new construction based on the Monolithic scheme. The same
trick can be utilized here as well. In the matrix notation, the newly composed scheme is
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(a) TP1
(b) SU1

Figure 8.15: 2-D dataflow diagram, CDF 5/3 wavelet, Monolithic* scheme. The solid box
corresponds to the output coefficients.

(a) NP1,U1

Figure 8.16: 2-D dataflow diagram, CDF 5/3 wavelet, Polyphase* scheme. The solid box
corresponds to the output.

defined as

y = S𝑉U0
S𝐻U0

SU1

⃒⃒
T𝑉
P0

T𝐻
P0

TP1
x, (8.33)

where the individual matrices are defined above in the text. For the CDF 5/3 wavelet, this
scheme is graphically illustrated in Fig. 8.15. We will label this scheme as Monolithic*.

The schemes described above are formed such a way that the first lifting step (comprising
P1,U1) after the barrier access coefficients of the surrounding threads. The subsequent or
preceding steps (comprising P0,U0) read only the local coefficients, which are not accessed
by the other threads. Then, the whole sequence can be repeated. Of course, the calculation
of transforms consisting of several pairs of lifting steps comprises several such connected
schemes.

Finally, we have decided to remove the last explicit barrier, leaving only the initial one
in place. The trick lies in the appropriate combination of the Sweldens and Polyphase
schemes. This time, the non-separable parts are merged into a joint step NP1,U1 . This step
is inherently preceded by a barrier. In case of an initial pair of lifting steps, the barrier at
the beginning of the computation is used for this purpose. In more detail, after the input
data have been read by each computation unit, the calculations T𝑉

P0
T𝐻
P0

are immediately
performed. At this point, the intermediate results can be appropriately shared. This is
followed by the initial barrier. Regarding the transforms consisting of several such schemes,
the barrier between the connecting schemes is gratefully exploited. In any case, the scheme
is thus composed as

y = S𝑉U0
S𝐻U0

NP1,U1

⃒⃒
T𝑉
P0

T𝐻
P0

x (8.34)
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including the discussed barrier. For the CDF 5/3 wavelet, the steps are illustrated in
Fig. 8.16. We will label this scheme as Polyphase*.

For the sake of clarity, the proposed schemes will now be summarized. By reversing the
direction of filtering steps in the Iwahashi scheme, the new Explosive scheme was formed.
As a next step, the polynomials of the original polyphase matrix were reassembled into a
new two-step form. In between the steps, a memory barrier has to be placed. This scheme
is denoted as Monolithic. Moreover, the number of arithmetic operations was reduced by
splitting the polynomial into two parts. These newly formed polynomials are then employed
in appropriate schemes. In this manner, the number of barriers remains unaffected, while
the number of operations has been reduced. This simple trick has resulted in the Iwahashi*,
Explosive*, Monolithic*, and Polyphase* schemes. Once again, we would like to emphasize
that the schemes presented in this paper are general and they are not limited to any specific
type of transform.

8.5 Evaluation
This section analyzes in detail various attributes of the schemes described in the previous
sections. Namely, synchronization and memory demands for different wavelets are exam-
ined. We realize that such properties do not provide sufficient information on a performance
in real environments. For this reason, we are interested in comparing the performance of
the discussed schemes on real graphics cards in terms of memory bandwidth in the next
section.

The evaluation is presented using the following three wavelets. The first wavelet we
have employed is the CDF [30] 5/3 wavelet. This one is used for a lossless compression in
the JPEG 2000 compression standard. The lifting scheme is defined by[︂

𝑃 (𝑧)
𝑈(𝑧)

]︂
=

[︂
−1/2(1 + 𝑧−1)
1/4(1 + 𝑧 )

]︂
, (8.35)

and the scaling factor 𝜁 =
√
2.

As the second wavelet, we have chosen the CDF 9/7 wavelet. In the JPEG 2000 stan-
dard, this wavelet is used as a basis for a lossy compression. The underlying scheme is
given by ⎡⎢⎢⎣

𝑃 (0)(𝑧)

𝑈 (0)(𝑧)

𝑃 (1)(𝑧)

𝑈 (1)(𝑧)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝛼(1 + 𝑧−1)
𝛽(1 + 𝑧 )
𝛾(1 + 𝑧−1)
𝛿(1 + 𝑧 )

⎤⎥⎥⎦ , (8.36)

where the 𝛼, 𝛽, 𝛾, 𝛿, and the 𝜁 are defined in [31]. Both the CDF wavelets have predict and
update convolution operators of degree 1 (two-tap symmetric filters).

The last wavelet included in the comparison is (4, 4) interpolating transform built from
the interpolating Deslauriers–Dubuc [72], defined by[︂

𝑃 (𝑧)
𝑈(𝑧)

]︂
=

[︂
1/16(𝑧 + 𝑧−2)− 9/16(1 + 𝑧−1)
9/32(1 + 𝑧)− 1/32(𝑧−1 + 𝑧2)

]︂
. (8.37)

This wavelet is used in Dirac video compression standard. For simplicity, we refer this one
to as DD 13/7. The underlying lifting scheme differs from the two previous in employed
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predict and update convolution operators. These operators now have a degree of 3 instead of
1. Consequently, this difference has resulted in a significantly higher number of arithmetic
operations in the case of non-separable filtering steps.

The first examined parameters include the number of arithmetic operations (the scaling
steps were omitted) and the number of memory barriers. The schemes presented in this
paper can be directly applied on the CDF 5/3 and DD 13/7 transforms, as these comprises
only a single pair of lifting steps. The CDF 9/7 transform is computed by two such con-
nected schemes. The comparison is shown in Table 8.2. Several expectations can be made
from the table. On architectures based on serial computation, the schemes should perform
accordingly to the number of arithmetic operations. However, on the parallel architectures,
the number of employed memory barriers is expected to play an important role. Some of
the schemes could benefit from this property.

As can be seen from the referenced table, the Sweldens scheme always leads to the
smallest number of operations coupled with the highest number of barriers. The recently
proposed Iwahashi scheme reduces the number of barriers by one per one pair of original
1-D lifting steps. Unfortunately, the number of operations is increased at the same time.
This increase is particularly noticeable on longer lifting filters, as in the case of DD 13/7
wavelet. The Monolithic scheme further reduces the number of barriers by one per one pair
of original steps while keeping the number of operations untouched. In addition to this,
the Monolithic* scheme reduces the number of operations. This reduction is most evident
on short lifting filters. For instance, in the case of CDF wavelets, the number of operations
is reduced to 75 %, whereas in the case of DD 13/7 wavelet, the number of operations is
only reduced to 78 %. The number of barriers per one pair of original lifting steps can be
even further reduced to a single one by combining all operations into a single step. Such
case corresponds to the Polyphase scheme. Unfortunately, the number of operations was
increased enormously. For shorter lifting filters, this number can be noticeably reduced
using the Polyphase* scheme, in which the number of barriers remains the same. Finally,
for lifting factorizations consisting of several pairs of steps, it makes sense to reduce the
number of barriers to a single one by using the Convolution scheme. In such case, the
number of operations is sadly the highest of all of the schemes.

Other examined parameters included the memory footprint, and number of memory
loads/stores. These parameters can be determined from Table 8.3 and Table 8.4. All of the
numbers are given with respect to the quadruple of coefficients, which usually correspond to
a single thread. The number of load (read) operations depends on the length of the lifting
operators. For example, the CDF 5/3 and CDF 9/7 factorizations consist of degree-1
convolutional filters. On the contrary, the DD 13/7 consists of degree-3 filters. The number
of store (write) operations is independent of the underlying scheme. It may happen that
the local memory footprint for the connecting schemes (𝐾 > 1) differs from the footprint
for a single predict/update pair (𝐾 = 1). These numbers are indicated in the parentheses
in Table 8.3. For clarity, the number of memory barriers is not affected by the improvement
proposed in Section Improvements.

8.6 Performance
To evaluate the considered schemes, we have decided to use high-performance GPUs pro-
grammed using the OpenCL framework. In terms of the OpenCL, the schemes are computed
using parallel tasks referred to as the kernels. One item from a collection of parallel execu-
tions of a kernel is referred to as the work-item or thread. The threads that execute on a
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wavelet scheme barriers operations

CDF 5/3

Sweldens 4 16
Iwahashi 3 24
Iwahashi* 3 18
Explosive 3 24
Explosive* 3 18
Monolithic 2 24
Monolithic* 2 18
Polyphase 1 63
Polyphase* 1 23
Convolution 1 64

CDF 9/7

Sweldens 8 32
Iwahashi 6 48
Iwahashi* 6 36
Explosive 6 48
Explosive* 6 36
Monolithic 4 48
Monolithic* 4 36
Polyphase 2 126
Polyphase* 2 46
Convolution 1 256

DD 13/7

Sweldens 4 32
Iwahashi 3 64
Iwahashi* 3 50
Explosive 3 64
Explosive* 3 50
Monolithic 2 64
Monolithic* 2 50
Polyphase 1 255
Polyphase* 1 203
Convolution 1 256

Table 8.2: Number of operations and memory barriers examined for various wavelets.
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scheme barriers single double

Sweldens 4 2 3
Iwahashi 3 3 4
Iwahashi* 3 3 (6) 4
Explosive 3 2 3
Explosive* 3 2 3
Monolithic 2 3 6
Monolithic* 2 3 6
Polyphase 1 4 (8) 4
Polyphase* 1 4 (8) 4

Table 8.3: Number of memory barriers and local memory cells per quadruple required by
the schemes discussed in this paper. Memory cells are given for a single buffering (two
barriers) as well as a double buffering (only a single barrier). The numbers in parentheses
are valid in the case of connecting schemes. Best features in bold.

scheme write read degree-1 read degree-3

Sweldens 1 + 4𝐾 8𝐾 24𝐾
Iwahashi 2 + 4𝐾 10𝐾 42𝐾
Iwahashi* 6𝐾 10𝐾 42𝐾
Explosive 4𝐾 10𝐾 42𝐾
Explosive* 4𝐾 10𝐾 42𝐾
Monolithic 6𝐾 10𝐾 42𝐾
Monolithic* 6𝐾 10𝐾 42𝐾
Polyphase 4𝐾 21𝐾 117𝐾
Polyphase* 4𝐾 12𝐾 117𝐾

Table 8.4: Number of local memory reads and writes for all schemes and wavelets under
examination. The 𝐾 denotes the number of predict/update pairs. The degree-1 polynomials
correspond to factorizations of CDF wavelets, whereas degree-3 to DD 13/7.
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Figure 8.17: The baseline schemes on AMD 6970. Evaluation with the degree-1 and degree-3
lifting schemes. Only the performance of a transform code without the memory throughput
was measured.

single compute unit are grouped into so-called work-groups. The threads in the group exe-
cute the same kernel and share local memory. Each work-group can synchronize the threads
via memory barriers. Work-groups cannot synchronize with each other. Considering the
processing of images, we map overlapping (in order to properly compute the coefficients
near tile boundaries) image tiles onto the work-groups. Moreover, each thread is responsible
for a single quadruple of transform coefficients (LL, HL, LH, and HH). At the beginning
of the computation, the input image is placed in the global memory. The tiles are then
transferred into the local memory. After the scheme computation, the resulting coefficients
are copied back into the global memory. Such strategy fulfills the definition of a single-loop
data processing (therefore without unnecessary data transfers).

One needs to recall that the row–column, block-based, and pipelined methods denote an
order in which an entire input image is processed. The row–column approach indicates that
all image rows are transformed prior to a transformation of all image columns (or vice versa).
Between these two parts, intermediate results are stored in the global memory. However, all
of the schemes presented in our paper are implemented as the block-based approaches. This
means that the entire input image is split into blocks (the tiles), which are then transformed
at once using the local memory for storing the intermediate results. Inside the blocks, some
sort of separable scheme can be employed, which essentially corresponds to the row–column
approach on a different scale. The block-based approaches in various forms were also used
in, e.g., [15, 14, 69, 50]. Since the block-based approaches overcome the row–column ones
(as shown in [50], or analyzed in [69]), we do not include the classical row–column methods
in our performance comparison. Instead, we only compared different schemes employed
under the block-based approach. In this context, we would like to make a comment on data
transfers between a device and host. Due to the fact that the data are transferred in the
same way for all schemes, we measured only a throughput based on a timing of a OpenCL
kernels which calculate transforms. Therefore, the transfer times between device and host
are not our concern.

The evaluation was performed primarily on two high-end GPUs – AMD Radeon HD
6970 and AMD Radeon HD 5870. Their technical parameters are summarized in Table 8.5.
On both of the cards, variable length VLIW instructions are executed using blocks of 64
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AMD 6970 AMD 5870
vendor AMD AMD
model Radeon HD 6970 Radeon HD 5870

VLIW length 4 5
multiprocessors 24 20
VLIW processors 384 320
total processors 1 536 1 600
processor clock 880 MHz 850 MHz
performance 2 703 GFLOPS 2 720 GFLOPS

memory 1 GiB GDDR5 1 GiB GDDR5
memory clock 1 375 MHz 1 200 MHz
bandwidth 176 GB/s 154 GB/s
bus width 256-bit 256-bit
local memory 32 KiB 32 KiB

Table 8.5: Description of the GPUs used for the evaluation.

threads. In more detail, VLIW instructions can be categorized into several groups (load/s-
tore instructions, barrier instructions, control flow instructions and ALU instructions). To
utilize whole processing capability, the VLIW instructions should be of maximal length. In
other words, as much as possible blocks of independent instructions should be presented in
a kernel.

Several possibilities raised during the implementations of the presented schemes. All
of the schemes require several memory cells to interchange the intermediate coefficients.
Considering the GPUs, these coefficients can be efficiently stored in the local memory. Un-
fortunately, it is not possible to rewrite these coefficients using a single memory barrier. As
a consequence, two possibilities occur – double buffering using a single memory barrier, and
single buffering using two of them. The double buffering increases the memory requirements
while maintaining the number of synchronizations. Conversely, the single buffering intro-
duces an addition barrier – separating reading and rewriting of the coefficients. For details,
see Table 8.3. In other words, one can choose whether intermediate results are overwritten
in their place using two memory barriers or whether these are written to another location
by making use of a single barrier. Moreover, another possibility lies in the method of input
and output data delivery. For evaluation purposes, it is possible to completely omit the
input and output of data. The transform is not limited by memory bandwidth in this case.
For real scenarios, the data can be delivered using the global or texture memory. In our
experiments, we chose the latter option.

In the following paragraphs, three fundamental experiments on the described GPUs are
presented. The first experiment studies the performance of the baseline schemes mentioned
in this paper. The second experiment examines the influence of the improvement proposed
in Section Improvements. Finally, the third experiment measures the real performance with
CDF 9/7 wavelet and texture memory.

In the first experiment, the performance of the baseline schemes (without improvements
proposed in Section Improvements) was examined. The measurements were conducted
on the AMD 6970 card with two different lifting scheme shapes (degree-1 and degree-
3 operators). Only the transform performance was measured, without the influence of
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Figure 8.18: The schemes on AMD 6970 and AMD 5870. Evaluation with the degree-1
schemes. Only the performance of a transform code without the memory throughput was
measured.
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Figure 8.19: The improved schemes on AMD 6970 and AMD 5870. Evaluation with the
CDF 9/7 wavelet and texture memory was performed.

memory throughput. The presented results are the average of ten measurements. The
results are shown in Fig. 8.17. One can easily observe a different behavior for short and
long lifting operators. For the short operators, the reduction in the number of lifting
steps clearly improves the performance. The situation actually corresponds directly to the
number of memory barriers. Conversely, in the case of the long operators, the situation is
tilted in favor of the number of arithmetic operations. Note that the horizontal axes are in
a logarithmic scale. The vertical axes express the transform throughput in GB/s (gigabytes
per second).

In the second experiment, the contribution of the improvements proposed in Section
Improvements was examined. The measurements were performed on both of the cards
under the evaluation. This time we have focused on the degree-1 schemes only. As in
the previous case, only the transform performance was measured using the average of ten
measurements. The results are shown in Fig. 8.18. As expected, the improvements slightly
increase the transform performance. However, the order of the schemes still corresponds
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scheme throughput AMD 6970 throughput AMD 5870

Monolithic* 117.426 121.579
Monolithic 109.865 105.407
Explosive* 97.214 105.344
Explosive 95.263 97.877
Iwahashi* 89.748 92.288
Sweldens 82.336 88.924
Iwahashi 80.284 80.283
Polyphase* 51.776 43.619
Polyphase 32.593 27.462

Table 8.6: The degree-1 schemes on AMD 6970 and AMD 5870. The performance of a
transform code without the memory throughput is listed. Values given in GB/s at the end
of plots in Fig. 8.18.

AMD 5870 AMD 6970
scheme CDF 5/3 CDF 9/7 DD 13/7 CDF 5/3 CDF 9/7 DD 13/7

Sweldens 32.59 32.69 40.00 40.53 40.25 48.50
Iwahashi 34.88 35.90 50.12 41.33 42.33 61.80
Iwahashi* 32.00 34.29 45.83 42.11 40.75 57.00
Explosive 36.88 39.32 49.57 45.14 46.64 60.47
Explosive* 33.79 33.33 55.56 42.42 42.21 65.42
Monolithic 38.18 39.67 51.59 48.57 47.76 64.44
Monolithic* 38.62 37.36 55.79 48.39 44.58 69.49
Polyphase 43.44 43.49 37.76 52.57 54.30 47.21
Polyphase* 31.50 32.43 33.38 41.88 40.58 41.91
Convolution — 73.79 — — 83.95 —

Table 8.7: ALU packing percentage for AMD 6970 and AMD 5870.

to the number of memory barriers. Several schemes perform even worse than the original
separable Sweldens scheme – namely, the original Iwahashi and both Polyphase schemes. It
is not surprising for the original Polyphase scheme, as this one exhibits quite a high number
of operations and load instructions (see Table 8.4 and Table 8.2). In case of Polyphase*
scheme, the decisive factor was the number of load instructions coupled with a high local
memory footprint (see Table 8.3). A little surprising is the situation regarding the original
Iwahashi scheme. In this case, the scheme contains a relatively high number of operations,
wherein there is no additional advantage. For convenience, the values at the end of plots
in Fig. 8.18 are listed in Table 8.6.

In the last experiment, we were interested in a real performance. This experiment was
performed on both of the cards with CDF 9/7 wavelet. The input as well as output raster
were supplied by the texture memory. This time, we show only the improved schemes as
these always outperform the original ones. The results are shown in Fig. 8.19. The hori-
zontal axes are in a logarithmic scale, and the vertical ones express the total throughput
(limited by the memory). The Convolution and Polyphase schemes exhibit a significantly
worse performance, according to the number of operations. In contrast to this, the other
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AMD 5870 AMD 6970
scheme CDF 5/3 CDF 9/7 DD 13/7 CDF 5/3 CDF 9/7 DD 13/7

Sweldens 100.00 100.00 100.00 95.24 95.24 95.24
Iwahashi 100.00 100.00 100.00 95.24 95.24 95.24
Iwahashi* 100.00 * 83.33 100.00 95.24 95.24 95.24
Explosive 100.00 100.00 100.00 95.24 95.24 95.24
Explosive* 100.00 100.00 100.00 95.24 95.24 95.24
Monolithic * 83.33 * 83.33 * 83.33 95.24 95.24 95.24
Monolithic* * 83.33 * 83.33 * 83.33 95.24 95.24 95.24
Polyphase ** 83.33 * 50.00 100.00 95.24 * 57.14 95.24
Polyphase* 100.00 * 50.00 100.00 95.24 * 57.14 95.24
Convolution — 100.00 — — 95.24 —

Table 8.8: GPU occupancy measurement for AMD 6970 and AMD 5870. The numbers
indicate a percentage. Explanation: * is limited by a local memory (LDS), ** by registers
(VGPR).

schemes perform better as compared to the original separable implementation. More specif-
ically, the Monolithic and Explosive schemes have the very best performance. This fact
corresponds to the reduction of the number of steps (and thus the memory barriers).

The schemes presented in this paper were also subject of examination at other graphics
cards under various scenarios. Note that a link to the results is below. Specifically, we
tackled these additional cards – NVIDIA Titan X, AMD Fury X, NVIDIA 580, and AMD
290X. Obviously, the proposed non-separable schemes presented in this paper do not exhibit
the best performance in all cases. This is especially true for a lifting factorizations employing
a longer convolution operators, as is the case of the DD 13/7 wavelet. On the other hand,
the proposed schemes seems to be the proven choice for VLIW architectures combined with
a short lifting operators, e.g., the CDF 5/3 and CDF 9/7 wavelets.

This point needs to be explained in detail. In general, the number of memory ac-
cesses, instruction dependencies, as well as barriers, decreases the ALU utilization, which
then degrades the performance. Unlike other architectures, AMD VLIW architectures pack
multiple independent instructions into VLIW bundles. Thus, amount and dependencies of
instructions between each two neighboring barriers play a significant role in terms of per-
formance. In other words, the number of barriers in VLIW architectures plays a stronger
role than in other architectures. Indeed, on the AMD VLIW architectures, code profiling
showed that memory barriers limit an average length of VLIW instructions (ALU packing
percentage in Table 8.7), which degrades the performance. The ALU packing percentage
refers to the percent of cores in the VLIW processor that are being utilized. On the other
(non-VLIW) architectures, the number of local memory accesses (see Table 8.4) and the
number of arithmetic instructions (see Table 8.2) play a major role. On such architectures,
the ALU packing is not measurable due to an absence of the VLIW bundles. For compara-
tive purposes, the ALU packing percentage can be understood as 100 % for all schemes on
these architectures.

It should also be interesting to show another measure provided by an OpenCL profiler.
In the first instance, consider AMD 5870 card. Such implementations, in which threads
need to store less than 5 coefficients (20 bytes) into a local memory, exhibit an occupancy
100 %, as can be seen in Table 8.8. In detail, 256 threads in work group × 6 work groups
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result in occupancy 1536 of 1536 threads. This is valid for all these implementations with
the exception of Polyphase scheme, in which the occupancy is limited by the number of
vector registers, due to an optimizing compiler. For AMD 6970, due to the use of 256
threads in work-groups and due to maximal number 1344 of threads in multiprocesors,
implementations exhibit only an occupancy 95.24 % (256 threads in work group × 5 work
groups = 1280 of 1344). On the other hand, considering implementations in which threads
need to store less than 7 coefficients (28 bytes) into a local memory, the occupancy is not
limited by a size of a local memory.

In summary, we can conclude that the reduction in lifting steps can improve perfor-
mance, at least on some platforms. This is documented by measurements in Figs. 8.17,
8.18, and 8.19. It turned out, however, that such optimization makes sense only for a short
lifting operators (exemplary, degree-1 lifting filters).

For the sake of completeness, it should be noted that the improvement proposed in Sec-
tion Improvements can be also applied on the Convolution. Doing so, the scheme achieves
a slightly better performance. However, we understand the Convolution scheme as the
reference method. For this reason, we leave it unimproved. Eventually, the proposed im-
provement makes no sense in conjunction with the Sweldens scheme.

All the source codes used in this article together with all the results are available in a
repository on the website of the authors’ affiliation.1

8.7 Conclusions
In this paper, we have proposed several non-separable lifting schemes for the calculation
of the discrete wavelet transform. The proposed schemes produce exactly the same results
as the commonly used separable lifting scheme. Using our schemes, the transform can be
computed in a smaller number of steps. On parallel architectures, this property has resulted
in a smaller number of synchronizations.

Namely, we have proposed two-step 2-D lifting scheme compatible to the commonly
used four-step separable one. Unlike the separable scheme, the proposed scheme consists
of spatial predict and update operators. Since the number of the lifting steps was halved,
our scheme reduces also the number of memory barriers, which form a major bottleneck on
parallel architectures. In addition, we have proposed the three-step scheme reducing the
memory access overhead. For a moment, let 𝐾 denote the number of predict-update pairs.
In absolute numbers, the original separable scheme requires to write 1 + 4𝐾 coefficients
per predict/update pair, whereas our three-step scheme requires 4𝐾 coefficients only. Ad-
ditionally, the proposed two-step scheme requires three memory cells per thread, whereas
the proposed three-step scheme requires two cells only (same as the separable scheme).
Finally, we have proposed an improvement usable for all non-separable scheme, including
the already known ones. This improvement significantly reduces the number of arithmetic
operations. More specifically, the original non-separable schemes require 24 arithmetic op-
erations for CDF 5/3 wavelet, whereas the improved variants require 18 operations only for
the same case. Even greater savings are achieved in the case of a non-factorized polyphase
matrix (same as the convolution for the CDF 5/3 wavelet). In this case, the proposed
improvement reduces the number of operations from 63 to 23. All of the proposed schemes
are general and can be used in conjunction with any discrete wavelet transform.

1http://www.fit.vutbr.cz/research/prod/?id=483
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The proposed schemes were subject to performance measurements. In experiments on
the two selected high-end GPUs (AMD Radeon HD 6970 and 5870), the proposed schemes
outperform all the others for short lifting filters. This includes the well-known CDF 5/3
and CDF 9/7 wavelets, employed, e.g., in JPEG 2000 compression standard.

Future work, we would like to do, consists of extensions to multi-dimensional systems,
and extensions to another subband transforms.
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Chapter 9

Article: Accelerating Discrete
Wavelet Transforms on Parallel
Architectures

This paper follows the previous one [16] that introduces the separable convolution scheme
improved by the optimization approach introduced in the section 8.3.2. This separable
convolution scheme is compared to the non-separable lifting and separable lifting+ scheme.

Moreover, that paper is focused on implementation using pixel pipeline, which is suit-
able for GPU architectures without unified architecture or systems/programs that are not
capable of using GPGPU language for some reason. The pixel shader implementation, using
multiple passes through the graphics pipeline for calculating 2D DWT, is created for that
case. The disadvantage of this approach lies in the absence of user-defined local memory
and communication between threads during shader calculation. This leads to mapping of
every step of the calculation to the separate pass through the pipeline with loading/storing
of intermediate results from/to global memory. In that case, the barrier is much more
costly, so the schemes with a low number of barriers become more desirable. As a conse-
quence, no implicit barrier for syncing data after transfer from global to local memory is
applied, so predict part of the optimization approach cannot be applied before the first step
of the calculation. This fact leads to creating new variants of schemes that are suitable for
graphics pipeline processing. Such schemes are compared in Table 11.2.

Paper [16] is omitted because all schemes evaluated in that paper are presented in paper
included in this chapter as well.

The paper presented in this chapter extends the previously mentioned one by intro-
ducing the improved variant of non-separable polyconvolution sceme and improved variant
of separable convolution scheme for both paradigms, the GPGPU one using OpenCL and
graphics pipeline one using the Pixel shader. All tested schemes and their properties are
described in Table 11.1.

Finally, all improved variant of the mentioned schemes are compared and tested on
CDF 5/3 (𝐾 = 1, 𝐷 = 1), CDF 9/7 (𝐾 = 2, 𝐷 = 1) and DD 13/7 (𝐾 = 1, 𝐷 = 3) wavelets
on various GPUs. All tested schemes and their properties are described in Table 11.1.

The evaluation shows that the non-separable polyconvolution scheme (partially fused
separable lifting scheme) combined with the optimization approach outperforms the previ-
ously leading optimized non-separable lifting scheme further by 25% for 1-degreed wavelets,
but optimized non-separable lifting scheme still performs better on 3-degreed wavelet on
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the tested platforms using GPGPU paradigm. Due to the high impact of barriers, us-
ing the optimized non-separable convolution scheme in the graphical pipeline paradigm for
1-degreed wavelets is beneficial in most cases. Optimized separable convolution scheme
performs slightly better only for resolution < 2MPix. For 3-degreed wavelets, the opti-
mized separable convolution is about 10% better than the second-best one, the optimized
non-separable lifting scheme.

The GPGPU paradigm approach uses our Wavelet Transform Framework and second
version of kernel generator described in the section 5.2.
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Abstract
The 2-D discrete wavelet transform (DWT) can be found in the heart of many image-
processing algorithms. Until recently, several studies have compared the performance of
such transform on various shared-memory parallel architectures, especially on graphics
processing units (GPUs). All these studies, however, considered only separable calculation
schemes. We show that corresponding separable parts can be merged into non-separable
units, which halves the number of steps. In addition, we introduce an optional optimization
approach leading to a reduction in the number of arithmetic operations. The discussed
schemes were adapted on the OpenCL framework and pixel shaders, and then evaluated
using GPUs of two biggest vendors. We demonstrate the performance of the proposed
non-separable methods by comparison with existing separable schemes. The non-separable
schemes outperform their separable counterparts on numerous setups, especially considering
the pixel shaders.

9.1 Introduction
The discrete wavelet transform became a very popular image processing tool in last decades.
A widespread use of this transform has resulted in a development of fast algorithms on all
sorts of computer systems, including shared-memory parallel architectures. At present,
the GPU is considered as a typical representative of such parallel architectures. In this
regard, several studies have compared the performance of various 2-D DWT computational
approaches on GPUs. All of these studies are based on separable schemes, whose operations
are oriented either horizontally or vertically. These schemes comprise the convolution and
lifting. The lifting requires fewer arithmetic operations as compared with the convolution,
at the cost of introducing some data dependencies. The number of operations should be
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proportional to a transform performance. However, also the data dependencies may form
a bottleneck, especially on shared-memory parallel architectures.

In this paper, we show that the fastest scheme for a given architecture can be obtained
by fusing the corresponding parts of the separable schemes into new structures. Several new
non-separable schemes are obtained in this way. More precisely, the underlying operations
of these schemes can be associated with neither horizontal nor vertical axes. In addition,
we present an approach where each scheme can be adapted to a particular platform in order
to reduce the number of operations. This possibility was completely omitted in existing
studies. Our reasoning is supported by extensive experiments on GPUs using OpenCL
and pixel shaders (fragment shaders in OpenGL terminology). The presented schemes are
general, and they are not limited to any specific type of DWT. To clarify the situation,
they all compute the same values.

The rest of this paper is organized as follows. Section Background formally intro-
duces the problem definition. Section Related Work briefly presents the existing separable
approaches. Section Proposed Schemes presents the proposed non-separable schemes. Sec-
tion Optimization Approach discusses the optimization approach that reduces the number
of operations. Section Evaluation evaluates the performance on GPUs in the pixel shaders
and OpenCL framework. Eventually, Section Conclusions closes the paper. This section is
followed by Section Appendix for readers not familiar with signal-processing notations.

9.2 Background
Since the separable schemes are built on the one-dimensional transform, a widely-used 𝑧-
transform is used for the description of underlying FIR filters. The transfer function of the
filter (𝑔𝑘) is the polynomial

𝐺(𝑧) =
∑︁
𝑘

𝑔𝑘 𝑧
−𝑘,

where the 𝑘 refers to the time axis. Below in the text, the one-dimensional transforms are
used in conjunction with two-dimensional signals. For this case, the transfer function of
the filter (𝑔𝑘𝑚,𝑘𝑛) is defined as the bivariate polynomial

𝐺(𝑧𝑚, 𝑧𝑛) =
∑︁
𝑘𝑚

∑︁
𝑘𝑛

𝑔𝑘𝑚,𝑘𝑛 𝑧
−𝑘𝑚
𝑚 𝑧−𝑘𝑛

𝑛 ,

where the subscript 𝑚 refers to the horizontal axis and 𝑛 to the vertical one. The 𝐺*(𝑧𝑚, 𝑧𝑛) =
𝐺(𝑧𝑛, 𝑧𝑚) is a polynomial transposed to a polynomial 𝐺(𝑧𝑚, 𝑧𝑛). A shortened notation G
is only written in order to keep the notation readable.

A discrete wavelet transform is a signal-processing tool which is suitable for the de-
composition of a signal into low-pass and high-pass components. In detail, the single-scale
transform splits the input signal into two components, according to a parity of its samples.
Therefore, the DWT is described by 2×2 matrices. As shown by Mallat [55], the transform
can be computed by a pair of filters followed by subsampling by a factor of 2. The filters
are referred to as G0,G1. The transform can also be represented by the polyphase matrix[︂

G1
(𝑜) G1

(𝑒)

G0
(𝑜) G0

(𝑒)

]︂
, (9.1)
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where the polynomials G(𝑒) and G(𝑜) refer to the even and odd terms of G. This polyphase
matrix defines the convolution scheme. To avoid misunderstandings, it is necessary to
say that, in this paper, column vectors are transformed to become another columns. For
example, y = Mx and y = M2M1x are transforms represented by one and two matrices,
respectively. Following the algorithm by Sweldens [72, 31], the convolution scheme in (9.1)
can be factored into a sequence ∏︁

𝑘

[︂
1 U(𝑘)

0 1

]︂ [︂
1 0

P(𝑘) 1

]︂
(9.2)

of 𝐾 pairs of short filterings, known as the lifting scheme. The filters employed in (9.2) are
referred to as the lifting steps. Usually, the first step P(𝑘) in the 𝑘th pair is referred to as
the predict and the second one U(𝑘) as the update. The lifting scheme reduces the number
of operations by up to half. Since this paper is mostly focused on a single pair of steps,
the superscript (𝑘) is omitted in the text below. Note that the number of operations is
calculated as the number of distinct (in a column) terms of all polynomials in all matrices,
excluding units on diagonals.

Considering the shared-memory parallel architectures, the processing of single or several
samples is mapped to independent processing units. In order to avoid race conditions during
data exchange, the units must use some synchronization method (barrier). In the lifting
scheme, the barriers are required before the lifting steps. In the convolution scheme, the
barrier is only required before starting the calculation. In this paper, the barriers are
indicated by the | symbol. For example, M2|M1 are two adjacent lifting steps separated by
the barrier. For simplicity, the number of barriers is also called the number of steps in the
text below.

The 2-D transform is defined as a tensor product of 1-D transforms. Consequently, the
transform splits the signal into a quadruple of wavelet coefficients. Therefore, the 2-D DWT
is described by 4× 4 matrices. See Section Appendix for details. Following the pioneering
paper of Mallat [55], the 1-D transforms are applied in both directions sequentially. By its
nature, this scheme can be referred to as the separable convolution. The calculations in a
single direction are performed in a single step. This means two steps for the two dimensions.
The scheme can formally be described as

N𝑉
⃒⃒
N𝐻

⃒⃒
,

where N𝐻 and N𝑉 are 1-D transforms in horizontal and in vertical direction. For the well-
known Cohen-Daubechies-Feauveau (CDF) wavelet with 9/7 samples, such as used in the
JPEG 2000 standard, these matrices are graphically illustrated in Figure 9.1. Here, only
the horizontal part is shown. Particularly, the filters in the figure are of sizes 9 and 7 taps.
The , , , and circles represent the quadruple of wavelet coefficients. Figures shown are
for illustration purpose only.

Another scheme used for 2-D transform is the separable lifting. Similarly to the previous
case, the predict and update lifting steps can be applied in both directions sequentially.
Moreover, horizontal and vertical steps can be arbitrarily interleaved thanks to the linear
nature of the filters. Therefore, the scheme is defined as

S𝑉U
⃒⃒
S𝐻U

⃒⃒
T𝑉
P

⃒⃒
T𝐻
P

⃒⃒
,

wherein the predict steps T always precede the update steps S. The above mapping corre-
sponds to a single P and U pair of lifting steps. For multiple pairs, the scheme is separately
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Figure 9.1: Horizontal part of the separable convolution scheme for the CDF 9/7 wavelet.
Two appropriately chosen pairs of matrix rows are depicted in separate subfigures. The
arrows are pointing to the destination operand and denote a multiply–accumulate operation,
with multiplication by a real constant. The arrows in the same row overlap.

applied to each such pair. In order to describe 2-D matrices, the lifting steps must be
extended into two dimensions as[︂

G
G*

]︂
=

[︂
𝐺 (𝑧𝑚, 𝑧𝑛)
𝐺*(𝑧𝑚, 𝑧𝑛)

]︂
=

[︂
𝐺(𝑧𝑚)
𝐺(𝑧𝑛)

]︂
.

Then, the individual steps are defined as

T𝐻
P =

⎡⎢⎢⎣
1 0 0 0
P 1 0 0
0 0 1 0
0 0 P 1

⎤⎥⎥⎦ ,

T𝑉
P =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
P* 0 1 0
0 P* 0 1

⎤⎥⎥⎦ ,

S𝐻U =

⎡⎢⎢⎣
1 U 0 0
0 1 0 0
0 0 1 U
0 0 0 1

⎤⎥⎥⎦ ,

S𝑉U =

⎡⎢⎢⎣
1 0 U* 0
0 1 0 U*

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .

For the CDF wavelets, the matrices are also illustrated in Figure 9.2, again showing the
horizontal part only.

(a) T𝐻
P (b) S𝐻

U

Figure 9.2: The horizontal part of the separable lifting scheme for the CDF wavelets.
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9.3 Related Work
This section briefly reviews papers that motivated our research. So far, several papers have
compared the performance of the separable lifting and separable convolution schemes on
GPUs. Especially, Tenllado et al. [75] compared these schemes on GPUs using pixel shaders.
The authors mapped data to 2-D textures, constituted by four floating-point elements. They
concluded that the separable convolution is more efficient than the separable lifting scheme
in most cases. They further noted that fusing several consecutive kernels might significantly
speed up the execution, even if the complexity of the resulting fused pixel program is higher.

Kucis et al. [48] compared the performance of several recently published schedules
for computing the 2-D DWT using the OpenCL framework. All of these schedules use
separable schemes, either the convolution or lifting. In more detail, the work compares a
convolution-based algorithm proposed in [39] against several lifting-based methods [15, 53]
in the horizontal part of the transform. The authors concluded that the lifting-based
algorithm of Blazewicz et al. [15] is the fastest method. Furthermore, Laan et al. [53]
compared the performance of their separable lifting-based method against a convolution-
based method. They concluded that the lifting is the fastest method. The authors also
compared the performance of implementations in CUDA and pixel shaders, based on the
work of Tenllado [75]. The CUDA implementation proved to be the faster choice. In this
regard, the authors noted that a speedup in CUDA occurs because the CUDA effectively
makes use of on-chip memory. This use is not possible in pixel shaders, which exchange
the data using off-chip memory. Other important separable approaches can be found in
[57, 40, 69, 61].

This paper is based on the previous works in [22, 49]. In those works, we introduced
several non-separable schemes for calculation of 2-D DWT. However, we have not considered
important structures, such as polyconvolutions. We contribute this consideration with this
paper. Moreover, differences and similarities between the separable schemes and their
non-separable counterparts are homogeneously discussed here. All these schemes are also
thoroughly analyzed and evaluated.

Considering the present papers, we see that a possible fusion of separable parts into
new non-separable structures is not considered. Therefore, we investigate on this promising
technique in the following sections.

9.4 Proposed Schemes
As stated above, the existing approaches did not study the possibility of a partial fusion of
lifting polyphase matrices. This section presents three alternative non-separable schemes
for the calculation of the 2-D transform. The contribution of this paper starts with this
section. To avoid confusion, please note that the proposed schemes compute the same
values as the original ones.

The non-separable convolution scheme is a counterpart to the separable convolution.
Unlike the separable scheme, all horizontal and vertical calculations are performed in a
single step

N
⃒⃒
,

where N = N𝑉 N𝐻 is a product of 1-D transforms in horizonal and vertical directions. The
drawback of this scheme is that it requires the highest number of arithmetic operations.
For the CDF 9/7 wavelet, the matrix is graphically illustrated in Figure 9.3. Here, the
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Figure 9.3: Non-separable convolution scheme for the CDF 9/7 wavelet. The individual
rows of N are depicted in separate subfigures. The sizes are from top to bottom and left to
right: 9× 9, 7× 9, 9× 7, 7× 7.

2-D filters are of sizes 9 × 9, 7 × 9, 9 × 7, and 7 × 7. These sizes make the calculation
computationally demanding. Aside from the GPUs, this approach was earlier discussed in
Hsia et al. [43].

In order to reduce computational complexity, it would be a good idea to construct some
smaller non-separable steps. Indeed, the non-separable convolution can be broken into
smaller units, referred here to as the non-separable polyconvolutions. For a single pair of
lifting steps, the scheme follows from the mapping

NP,U

⃒⃒
,

where

NP,U =

⎡⎢⎢⎣
V*V V*U U*V U*U
V*P V* U*P U*

P*V P*U V U
P*P P* P 1

⎤⎥⎥⎦
and V = PU+1. For the CDF wavelets, the scheme is graphically illustrated in Figure 9.4.
In this case, the employed filters are of sizes 5× 5, 3× 5, 5× 3, and 3× 3. Note that only
half of the operations are required specifically for the CDF 9/7 wavelet, compared to the
non-separable convolution. For the sake of completeness, it should be pointed out that it is
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Figure 9.4: Non-separable polyconvolution scheme for the CDF wavelets. The individual
rows of N are depicted in separate subfigures.

also possible to formulate the separable polyconvolution scheme. In our experiments, this
one was however not proven to be useful concerning the performance.

By combining the corresponding horizontal and vertical steps of the separable lifting
scheme, the non-separable lifting scheme is formed. The number of operations has slightly
been increased. The scheme consists of a spatial predict and spatial update step, thus two
steps in total for each pair of the original lifting steps. Formally, for each pair of P and U,
the scheme follows from

SU
⃒⃒
TP

⃒⃒
,

where

TP =

⎡⎢⎢⎣
1 0 0 0
P 1 0 0
P* 0 1 0
PP* P* P 1

⎤⎥⎥⎦ ,

SU =

⎡⎢⎢⎣
1 U U* UU*

0 1 0 U*

0 0 1 U
0 0 0 1

⎤⎥⎥⎦ .

Note that the spatial filters in PP* and UU* may be computationally demanding, depending
on their sizes. However, the situation is always better than in the previous two cases. For
the CDF wavelets, the scheme is graphically illustrated in Figure 9.5.

(a) TP (b) TP (c) SU (d) SU

Figure 9.5: Non-separable lifting scheme for the CDF wavelets.
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9.5 Optimization Approach
This section presents an optimization approach that reduces the number of operations,
while the number of steps remains unaffected. Such an approach was not covered in existing
studies.

Regardless of the underlying platform, an important observation can be made. A very
special form of the operations guarantees that the processing units never access the results
belonging to their neighbors. These operations comprise only constants. Since the convo-
lution is a linear operation, the polynomials can be pulled out of the original matrices, and
calculated in a different step. Formally, the original polynomials are split as P = P0 + P1

and U = U0 +U1. The P0 and U0 are constant. As a next step, the P0 and U0 are substi-
tuted into the separable lifting scheme. The separable lifting scheme was chosen because it
has the lowest number of operations. This part is illustrated in Figure 9.6. In contrast, the
P1 and U1 are kept in original schemes. These two steps are then computed without any
barrier. The observation is further exploited to adapt schemes for a particular platform.

(a) T𝐻
P0

(b) T𝑉
P0

(c) S𝐻
U0

(d) S𝑉
U0

Figure 9.6: Separable lifting scheme with the polynomials P0 and U0.

Now, the improved schemes for the shaders and OpenCL are briefly described. These
schemes exploit the above-described observation with the polynomials P0 and U0. On recent
GPUs, OpenCL schemes also omit memory barriers due to the SIMD-32 architecture. Note
that the non-separable polyconvolution scheme makes sense only when 𝐾 > 1, which is
the case of the CDF 9/7 wavelet. Implementations in the pixel shaders map input and
output data to 2-D textures. There is no possibility to retain some results in registers, and
the results are exchanged through textures in off-chip memory. Considering the OpenCL
implementations, a data format is not constrained. The image is divided into overlapping
blocks and on-chip memory shared by all threads in a block is utilized to exchange the
results. Additionally, some results are passed in registers.

This paper explores the performance for three frequently used wavelets, namely, CDF 5/3,
CDF 9/7 [30], and DD 13/7 [72]. Their fundamental properties are listed in Table 9.1: num-
ber of steps and arithmetic operations. Note that the number of operations is commonly
proportional to a transform performance. Additionally, the number of steps correspond to
the number of synchronizations on parallel architectures, which also form a performance
bottleneck.
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Table 9.1: The total number of steps and arithmetic operations for the optimized schemes.

(a) CDF 5/3

scheme steps operations
OpenCL shaders

separable convolution 2 20 22
separable lifting 4 16 16

non-separable convolution 1 23 39
non-separable lifting 2 18 18

(b) CDF 9/7

scheme steps operations
OpenCL shaders

separable convolution 2 56 58
separable polyconv. 4 40 56
separable lifting 8 32 32

non-separable convolution 1 152 200
non-separable polyconv. 2 46 62
non-separable lifting 4 36 36

(c) DD 13/7

scheme steps operations
OpenCL shaders

separable convolution 2 60 60
separable lifting 4 32 32

non-separable convolution 1 203 228
non-separable lifting 2 50 50
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9.6 Evaluation
The experiments in this paper were performed on GPUs of the two biggest vendors NVIDIA
and AMD using the OpenCL and pixel shaders. In these experiments, only a transform
performance was measured, usually in gigabytes per second (GB/s). The host system does
not help in the calculation, i.e. with respect to padding or pre/post-processing. Results
for only two GPUs are shown for the sake of brevity: AMD Radeon HD 6970 and NVIDIA
Titan X. Their technical parameters are summarized in Table 9.2.

Table 9.2: Specifications of the evaluated GPUs.

label AMD 6970 NVIDIA Titan X

model Radeon HD 6970 Titan X (Pascal)

multiprocessors 24 28
total processors 1 536 3 584
processor clock 880 MHz 1 417 MHz
performance 2 703 GFLOPS 10 157 GFLOPS

memory clock 1 375 MHz 2 500 MHz
bandwidth 176 GB/s 480 GB/s
on-chip memory 32 KiB 96 KiB

The implementations were created using the DirectX HLSL and OpenCL. The HLSL
implementation is used on the NVIDIA Titan X, whereas the OpenCL implementation on
the AMD 6970. The results of the performance comparison are shown in Figures 9.7, 9.8,
and 9.9. The value on the x-axis is the image resolution in kilo/megapixels (kpel or Mpel).
Except for the convolutions for the DD 13/7 wavelet, the non-separable schemes always
outperform their separable counterparts. For CDF wavelets, having short lifting filters, the
non-separable (poly)convolutions have a better performance than the non-separable lifting
scheme. Unfortunately, for the DD 13/7 wavelet, which is characterized by a high number of
operations in lifting filters, the results are not conclusive. Considering the implementation
in pixel shaders, similar results were also achieved on other GPUs, including NVIDIA unified
architectures and AMD GPUs based on Graphics Core Next (GCN) architecture. Whereas
for the OpenCL implementation, the non-separable schemes are only proved to be useful
for very long instruction word (VLIW) architectures.

Looking at the experiments with the pixel-shader implementations, some transients can
be seen at the beginning of the plots (in lower 2Mpel region). We concluded that these
transients are caused by a suboptimal use of cache system, or alternatively by some over-
head made by the graphics API. It should be interesting to show some measures provided
by an OpenCL profiler. Our profiling revealed that the implementations exhibit only an
occupancy 95.24 %. This occupancy is caused by making use of 256 threads in OpenCL
work groups and due to maximal number 1344 of threads in multiprocessors (256 times 5
work groups is 1280 out of 1344).
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Figure 9.7: Performance for the CDF 5/3 wavelet.

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100kpel 1Mpel 10Mpel 100Mpel

G
B

/s

(a) OpenCL

0 

5 

10 

15 

20 

25 

30 

35 

100kpel 1Mpel 10Mpel 100Mpel

G
B

/s

(b) pixel shader

separable lifting
separable polyconvolution
separable convolution

non-separable lifting
non-separable polyconvolution
non-separable convolution

Figure 9.8: Performance for the CDF 9/7 wavelet.
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Figure 9.9: Performance for the DD 13/7 wavelet.
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9.7 Conclusions
This paper presented and discussed several non-separable schemes for the computation
of the 2-D discrete wavelet transform on parallel architectures, exemplarily on modern
GPUs. As an option, an optimization approach leading to a reduction in the number of
operations was presented. Using this approach, the schemes were adapted on the OpenCL
framework and pixel shaders. The implementations were then evaluated using GPUs of the
two biggest vendors. Considering OpenCL, the schemes exploit features of recent GPUs,
such as warping. For CDF wavelets, the non-separable schemes exhibit a better performance
than their separable counterparts on both the OpenCL and pixel shaders.

In the evaluation, we reached the following conclusions. Fusing several consecutive
steps of the schemes might significantly speed up the execution, irrespective of their higher
complexity. The non-separable schemes outperform their separable counterparts on numer-
ous setups, especially considering the pixel shaders. All of the schemes are general and
they can be used on any discrete wavelet transform. In future work, we plan to focus on
general-purpose processors and multi-scale transforms.
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Appendix
For readers who are not familiar with signal-processing notations, a relationship between
polyphase matrices and data-flow diagrams is explained here. The 2-D discrete wavelet
transform divides the image into four polyphase components. Therefore, the 4×4 matrices
of Laurent polynomials are used to describe the 2-D discrete wavelet transform. These
matrices are commonly referred to as the polyphase matrices. The Laurent polynomials
correspond to 2-D FIR filters, that define the transform. In most cases, the transform is
described using a sequence of such matrices. One particular matrix thus defines a step of
calculation in this case.

For example, the matrix

T𝐻
P =

⎡⎢⎢⎣
1 0 0 0
P 1 0 0
0 0 1 0
0 0 P 1

⎤⎥⎥⎦
maps four polyphase components to another four components, while using two 2-D FIR
filters represented by the polynomials P. Moreover, when we substitute a particular poly-
nomial, say 𝑃 (𝑧) = −1/2(1 + 𝑧−1), into the matrix, the mapping gets a specific shape.
Such a substitution illustrated by the data-flow diagram in Figure 9.10. The solid arrows
correspond to multiplication by −1/2 along with subsequent summation.

(a) T𝐻
P

Figure 9.10: Visual representation of the polyphase matrix. The four polyphase components
are represented by color circles.
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Chapter 10

Article: The Parallel Algorithm for
the 2-D Discrete Wavelet
Transform

In contrast with previously mentioned papers focused on acceleration on GPU architec-
tures, this one is focused on acceleration on multicore CPUs. In this paper, the separable
lifting+ and non-separable lifting schemes presented in the section 8.3.2 are adopted to
CPU multicore platforms using the OpenMP paradigm.

Finally, the schemes are evaluated on CDF 5/3 (𝐾 = 1, 𝐷 = 1) wavelet using multicore
Xeon CPU and Xeon Phi accelerator on various tile sizes, image sizes, and thread counts.
The evaluation shows that the novel spatial 2D scheme for the calculation of 2D DWT
presented in [49] improves throughput compared to the separable lifting+ scheme variant
by 10%. Note that implementation is not using any SIMD extensions in any of those
schemes.

This version is based on the hand-written implementation of these schemes and is not
using our generator from the section 5.2.
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Abstract
The discrete wavelet transform can be found at the heart of many image-processing algo-
rithms. Until now, the transform on general-purpose processors (CPUs) was mostly com-
puted using a separable lifting scheme. As the lifting scheme consists of a small number
of operations, it is preferred for processing using single-core CPUs. However, consider-
ing a parallel processing using multi-core processors, this scheme is inappropriate due to
a large number of steps. On such architectures, the number of steps corresponds to the
number of points that represent the exchange of data. Consequently, these points often
form a performance bottleneck. Our approach appropriately rearranges calculations inside
the transform, and thereby reduces the number of steps. In other words, we propose a new
scheme that is friendly to parallel environments. When evaluating on multi-core CPUs, we
consistently overcome the original lifting scheme. The evaluation was performed on 61-core
Intel Xeon Phi and 8-core Intel Xeon processors.

10.1 Introduction
The two-dimensional discrete wavelet transform (DWT) is a very versatile image processing
instrument. It is employed in several image-compression standards (e.g., JPEG 2000). As a
consequence, many works deal with its fast implementation on all sorts of computer systems,
including parallel architectures. As it might be expected, many developers have adapted
this transform on massively-parallel architectures, especially on GPUs. However, all of these
adaptations are based on the most popular separable schemes – the convolution and lifting
schemes. The separable convolution scheme can be computed in just two calculation steps,
however, using a large number of arithmetic operations. Whereas, the separable lifting
scheme exhibits the smallest number of operations, and, on the contrary, the largest number
of steps. It is natural to expect that the number of operations should be proportional to
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a transform performance. This is especially true on single-core CPUs. However, it is
essential that also the number of steps forms a bottleneck. This is mainly meant in relation
to multi-core processors.

In this paper, we show that the optimal scheme for multi-core CPUs lies aside the
separable convolution and lifting schemes. To the best of our knowledge, this problem has
not been addressed in the literature yet. The newly introduced scheme does not retain
the separable property, as its operations cannot be associated with a horizontal or vertical
direction. In order to evaluate the proposed scheme, we performed several experiments
on high-end server CPUs. The evaluation is performed with CDF 5/3 wavelet, employed,
e.g., in JPEG 2000 standard. However, the presented schemes are general and they are not
limited to any particular wavelet.

The rest of this paper is organized as follows. Section 2 discusses a related work and
introduces a mathematical notation used in the rest of the paper. Section 3 presents the
proposed non-separable scheme and its adaptation to a particular platform. Section 4
evaluates the discussed schemes on multi-core CPUs. Eventually, Section 5 summarizes
and closes the paper.

10.2 Background and Related Work
This section introduces some notations and definitions to be used in the paper, and then it
reviews conventional methods for computation of the 2-D transform.

The widely-used 𝑧-transform is used for the description of wavelet filters. Such filters
are represented by polynomials in 𝑧 like 𝐺(𝑧). Since this paper is focused on 2-D transform,
it is necessary to extend this notation into two dimensions. So, two-dimensional filters look
like 𝐺(𝑧𝑚, 𝑧𝑛), where the subscript 𝑚 refers to the horizontal axis and 𝑛 to the vertical
axis. The 𝐺* indicates a polynomial transposed to the original 𝐺.

The DWT splits the input signal into two components, according to a parity of its
samples. The components are often referred to as L and H. The transform can be computed
by a pair of quadrature mirror filters, referred to as G, followed by subsampling by a factor
of 2. Formally, this can be represented by the polyphase matrix[︃

𝐺
(𝑜)
1 𝐺

(𝑒)
1

𝐺
(𝑜)
0 𝐺

(𝑒)
0

]︃
, (10.1)

where operators (𝑒) and (𝑜) denote the even and odd terms of 𝐺. This equation defines
one-dimensional convolution scheme. Further, Sweldens showed [31] how the convolution
scheme can be decomposed into a sequence of simple steps. These filters are referred to as
the lifting steps and the scheme as the lifting scheme. The following paragraph discusses
the lifting scheme in detail.

The initial polyphase matrix (10.1) is factored into several pairs of lifting steps. In
each pair, the first step is called the predict step and the second one as the update step.
Formally, this can be represented by the product of polyphase matrices∏︁

𝑘

[︂
1 𝑈 (𝑘)

0 1

]︂ [︂
1 0

𝑃 (𝑘) 1

]︂
, (10.2)

where 2𝐾 is the number of the lifting steps, and 𝑃 (𝑘) and 𝑈 (𝑘) represent the 𝑘th predict
and update filter. For simplicity, the superscript (𝑘) is omitted in the following text.
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Figure 10.1: Shapes of steps in separable lifting scheme for the CDF 5/3 wavelet. The
colored boxes correspond to LL, HL, LH, and HH quadruple. The arrows denote a multi-
ply–accumulate operation.

On multi-core CPUs, the processing of single or several adjacent signal samples is
mapped to independent cores. Due to the data exchange, the cores must use some synchro-
nization method to avoid race conditions. In the lifting scheme, these synchronizations can
be required before the lifting steps. In this paper, the synchronizations are indicated by
the | symbol placed before a polyphase matrix. For example, 𝑀2|𝑀1 refers to a sequence
of two lifting steps separated by some synchronization method.

Usually, the 2-D transform [55] is defined as the tensor product of 1-D transforms.
Unlike the 1-D case, the 2-D transform splits the input signal into a quadruple of wavelet
coefficients (LL, HL, LH, and HH). To describe 2-D matrices, the predict and update
operators must be extended into two dimensions. Considering the separable lifting scheme,
the predict and update lifting steps can be applied in both directions sequentially. It should
be noted that the horizontal and vertical steps can be arbitrarily interleaved. The 2-D lifting
then follow from a sequence⎡⎢⎢⎣

1 0 𝑈* 0
0 1 0 𝑈*

0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
⎡⎢⎢⎣
1 𝑈 0 0
0 1 0 0
0 0 1 𝑈
0 0 0 1

⎤⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
𝑃 * 0 1 0
0 𝑃 * 0 1

⎤⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
⎡⎢⎢⎣
1 0 0 0
𝑃 1 0 0
0 0 1 0
0 0 𝑃 1

⎤⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒ . (10.3)

Note the synchronization | before the matrices. As the sequence can be hard to imagine,
the individual matrices are illustrated in Figure 10.1 for the CDF 5/3 wavelet [30]. For
multiple lifting pairs, the scheme is separately applied to each such pair. Recall that the
separable lifting scheme has the smallest possible number of arithmetic operations and the
highest number of steps.

Another scheme used for 2-D transform is the separable convolution. In this case, all
calculations in a single direction are performed in a single step. The drawback of this is
the highest number of operations. The scheme can formally be described as

N𝑉
⃒⃒
N𝐻

⃒⃒
, (10.4)

where N𝐻 is a product of all steps in the horizontal direction and N𝑉 is in the vertical one.
The convolution is followed by the subsampling.

So far, several studies have compared the performance of the separable lifting and
convolution schemes on parallel architectures. In an exemplary manner, the authors of [75]
compared these schemes on GPUs. Although the results of their comparison are ambiguous,
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they concluded that the separable convolution is more efficient than the separable lifting
counterpart in most cases. They also claimed that fusing several consecutive steps might
significantly speed up the execution, even if the complexity of the resulting fused step is
higher. In this regard, the authors failed to consider the possibility of a partial fusion, where
the number of steps is reduced but it remains greater than a single step. Other notable
works can be found in [53, 40, 69].

This work is based on our previous work in [22, 17]. In these papers, we introduced sev-
eral non-separable schemes for calculation of 2-D DWT suitable for graphics cards (GPUs).
We also presented a trick leading to a reduction of arithmetic operations. The trick is also
exploited in this paper. In this paper, we extend previously presented schemes to multi-core
CPU platform. This is the point investigated in the following section.

10.3 Proposed Scheme
This section presents non-separable schemes suitable for multi-core CPUs. A contribution
of the paper starts with this section.

The above-described approaches did not exploit the possibility of a fusion of polyphase
matrices. Having this in mind, all horizontal and vertical calculations of the corresponding
pair of matrices can be performed in a single step. The drawback of this approach is a
higher number of operations and memory accesses. Since CPUs are very sensitive to the
total number of arithmetics operations, the fusion will be appropriate to apply to the lifting
scheme. In this way, non-separable lifting scheme is formed. The scheme has the same
number of steps as its separable counterpart. On the other hand, the number of operations
has been increased. The scheme consists of a spatial predict and spatial update steps. For
curiosity, The predict step is completely responsible for the HH coefficient, whereas the
update step for the LL one. Formally, the scheme is defined by⎡⎢⎢⎣

1 𝑈 𝑈* 𝑈𝑈*

0 1 0 𝑈*

0 0 1 𝑈
0 0 0 1

⎤⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒
⎡⎢⎢⎣

1 0 0 0
𝑃 1 0 0
𝑃 * 0 1 0
𝑃𝑃 * 𝑃 * 𝑃 1

⎤⎥⎥⎦
⃒⃒⃒⃒
⃒⃒⃒⃒ . (10.5)

The 𝑃𝑃 * and 𝑈𝑈* are the spatial filters (tensor products of 1-D filters). For CDF 5/3
wavelet, it is illustrated in Figure 10.2.

Figure 10.2: Non-separable lifting scheme for the CDF 5/3 wavelet. The predict step on
the left, update on the right.
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Figure 10.3: The platform-adapted non-separable scheme for the CDF 5/3 wavelet. The
predict on the left, the update on the right.

As mentioned above, an optimization approach can adapt the schemes to a particu-
lar platform. The number of operations or memory accesses can be reduced, while the
number of computational steps remains unaffected. Regardless the underlying platform,
an important observation can be made. A special form of the operations guarantees that
the CPU cores never access the results belonging to extraneous cores. These operations
comprise constants (monomials with the zero exponents). As the convolution is the linear
operation, these polynomials can be detached from the original operations, and calculated
using the separable scheme (due to the lowest number of operations). Such schemes are
referred to as adapted schemes. Formally, the original polynomials are split as 𝑃 = 𝑃0+𝑃1

and 𝑈 = 𝑈0 + 𝑈1, where 𝑃0 and 𝑈0 are the desired constants. The 𝑃1 and 𝑈1 are kept in
the original non-separable scheme. For a better understanding, the adapted non-separable
scheme is illustrated in Figure 10.3.

10.4 Evaluation
Since the above-listed properties do not provide sufficient information on performance in
real environments, the performance on real multi-core CPUs is compared in this section.

In order to evaluate the considered schemes, high-performance server CPUs were used,
along with the code written using the C language and OpenMP interface. The evaluation
was performed primarily on Intel Xeon and Intel Xeon Phi server processors. Their technical
parameters are summarized in Table 10.1. In the following paragraphs, several experiments
on these CPUs are presented.

In the first experiment shown in Figure 10.4, the optimal number of threads was exam-
ined. The measurements were conducted with separable and non-separable schemes and
CDF 5/3 wavelet. The transform performance was measured with tiles of 1024× 1024 size,
comprising single-precision floating-point values. The presented results are a median of
100 measurements. The time is given in nanoseconds per pixel (ns/pel). It is clear from
the figure that the curves roughly approximate the 1/𝑥 function, where 𝑥 is the number
of threads. Therefore, the measurements made show that the optimal number of threads
roughly corresponds to the maximum number of threads available. Note the phenomenon
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Table 10.1: Description of the CPUs used for the evaluation.

Intel Xeon Intel Xeon Phi (MIC)
model Xeon E5-2620 v4 Intel Xeon Phi 7120P
cores 8 61
concurrent threads 16 244
clock (turbo) 2.1 GHz (3.0 GHz) 1.238 GHz (1.333 GHz)
on-chip memory 20 MB (L3 cache) 30.5 MB (L2 cache)
off-chip memory DDR4 (2.133 GHz) GDDR5 (2.75 GHz)
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Figure 10.4: Examination of the optimal number of threads. The Xeon on the left, Xeon
Phi on the right. The performance scales almost linearly.

that occurs when the number of threads exceeds the number of CPU cores (i.e. 8 for the
Xeon, 61 for the Xeon Phi).

In the second experiment in Figure 10.5, the optimal transform tile size was examined.
The number of threads that was found optimal in the previous experiment was used. For
the Xeon CPU, the optimal power-of-two tile size was chosen as 1024× 1024. For the Xeon
Phi, the size 2048 × 2048 was chosen. Note that the tile size does not necessarily have to
be a power of two, but this is a suitable choice, for example, due to JPEG 2000.

In the last experiment in Figure 10.6, we were interested in a real performance. The
𝑥-axis shows the size of the image edge. The input and output images were supplied by
the main memory. Note that the image sizes exceed CPU cache size after a while. The
experiment confirms that the non-separable scheme consistently overcomes the original
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Figure 10.5: Examination of the optimal transform tile size. The Xeon on the left, Xeon
Phi on the right.
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Figure 10.6: Performance on large images. The Xeon on the left, Xeon Phi on the right.

separable lifting scheme. For example, for 8192× 8192 image, the speedup factor is about
10% on the Xeon and 25% on the Xeon Phi processor.

In summary, we can conclude that the reduction in transform steps can improve perfor-
mance, at least on some platforms. All the source codes used in this article together with
all the results are available in a repository [59] on the website of the authors’ affiliation.

10.5 Summary
This paper introduces and discusses the non-separable lifting scheme for computation of
the two-dimensional discrete wavelet transform on multi-core CPUs. We found that the
non-separable scheme outperforms its separable counterpart in most cases. We can confirm
that fusing consecutive steps of the original lifting scheme might speed up the execution,
irrespective of its higher complexity in terms of arithmetics operations. The presented
scheme is general and it can be used in conjunction with any wavelet transform.

For future work, we plan to extend our approach to other wavelets and possibly other
non-separable schemes. The implementation can also further be improved using appropriate
SIMD extensions. Finally, we look for other multi-core platforms such as multi-core ARM
processors.
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Chapter 11

Summary, Applications and Future
Work

The proof of the hypothesis, introduced in the chapter 4, is summarized in this chapter in
the section 11.1. Additionally, the list of novel schemes, used for proving the hypothesis,
and comparisons of these schemes against the existing ones are described in the section 11.2.
Possible applications of novel approaches are presented in the section 11.3. And finally, the
potential possible future work is summarized in the section 11.4.

11.1 Summary
The papers presented in the chapters 6, 7, 8, 9 and 10 contain experimental proof of the
hyphotesis formed in the chapter 4 or, more preciselly said, its individual parts.

Summary of these experimental proof parts is as follows:

1. The paper presented in the chapter 6 proposed a novel approach for calculating the
vertical pass of the pipeline method. It examined the impact of balance between
barriers, arithmetic operations and local memory usage for such pass. The evaluation
of the approach, presented in the section 6.3.2, proves the hypothesis for vertical pass
of the pipeline method by overcoming throughput of state-of-the-art method one by
30%.

2. The paper presented in the chapter 7 introduced seamless block-based 2D DWT
approach. The evaluation of the approach, presented in the section 7.3, proves the
hypothesis for seamless 2D DWT by outperforming the best performing separable
approach by 60-100% on the tested platforms.

3. The paper presented in the chapter 7 also proposed the novel non-separable scheme
denoted as Kula2016. The evaluation of the scheme, presented in the section 7.3,
proves the hypothesis for block-based strategy by outperforming throughput of sepa-
rable lifting scheme on reasonable resolutions by 5% on the tested platforms.

4. The optimization approach, introduced in the paper within the chapter 8, is focused on
reducing the number of arithmetics operations of various schemes by separating intra-
thread calculations at the end of calculation steps and before implicit synchronization
only when local memory is used. The evaluation of the approach, presented in the
section 8.5, proves the hypothesis on the tested platforms by increasing the 2D DWT
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throughput by 80% on non-separable polyconvolution and 5-20% on the rest of the
schemes except for separable lifting+ one where its usage is not beneficial.

5. The paper presented in the chapter 7 also introduces the novel non-separable lift-
ing scheme, denoted in the section 8.3.2 as Monolithic, focused on lowering memory
barriers and arithmetics operations. The evaluation of the scheme, presented in the
section 8.5, proves the hypothesis by outperforming the state-of-the-art schemes used
by other authors (implosion described in the section 8.2.6 as Iwahashi and separable
lifting+ described in the section 8.2.5 as Sweldens) by 30% on the tested platforms.

6. The paper presented in the chapter 9 examines the fusion of 1D schemes in 2D
DWT. The evaluation of the schemes created by such fusion, presented in the sec-
tion 9.6, proves the hypothesis for 1-degree schemes (CDF 5/3 and CDF 9/7) on
the selected platforms by showing that partially fused non-separable polyconvolution
scheme combined with optimization approach outperforms optimized non-separable
lifting scheme by more than 25% using GPGPU paradigm and by 50% using graphics
pipeline paradigm.

7. The paper presented in the chapter 10 adapts non-separable lifting scheme, presented
in the section 8.3.2 as Monolithic, for CPU/Xeon-Phi platforms. The evaluation of
the scheme, presented in the section 10.4, proves the hypothesis by improving the 2D
DWT throughput by 10% compared to the separable lifting+ scheme on the tested
CPU and Xeon-Phi platforms.

The presented experimental results of the introduced approaches prove the hypothesis
for selected platforms, wavelets, and paradigms. It can also be pressumed that the hyphoth-
esis, formed in the chapter 4, is more most probably valid in much wider circumstances.

However, other techniques leading to improving of the throughput of the algorithms
exist (e.g. use of SSE/AVX/AVX512 SIMD extensions on CPU platforms, use of warp-
shuffle instructions on supported GPU platforms, etc.); nevertheless, these techniques can
be used parallelly with the proposed ones and they should be orthogonal to them.

Moreover, evaluation on the last generations of Nvidia and AMD GPU architectures
shows a memory bandwidth as the main bottleneck of 2D DWT calculation when using
GPGPU paradigm. In those architectures, the performance is the same regardless of the
underlying scheme (except for the slow ones like non-separable convolution without opti-
mization approach). The possible beneficial usage of the approaches on such platforms lies
in the fusion of 2D DWT with its application on denoising or additional step of JPEG 2000
encoding/decoding.

11.2 Schemes List
This section contains comprehensive summary descriptions and visualizations of the existing
schemes, described in the sections 3.1.1, 3.1.2 and 3.1.3, and the novel ones introduced in
the sections 8.3, 8.4, 9.4 and 11.4.

Dataflow diagrams of Non-separable schemes and separable lifting+ scheme without the
optimization approach, presented in the section 8.4, are visualized in Figure 11.1. The
diagrams of Non-separable schemes with the optimization technique are visualized on the
right side of Figure 11.2 along with optimization steps on the left side. Finally, the separable
and non-separable variants of schemes formed by fusion of lifting steps, with and without
optimization techniques, are presented in Figure 11.3.
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The computation parameters of the schemes suitable for paradigms and implementa-
tions that use implicit synchronization before the first step of calculation are shown in
Table 11.1 (e.g. synchronization after copying the inputs to the local memory on GPGPU
paradigm, memory re-organization before the first step of scheme on CPU platforms, etc.).
In contrast to Table 11.1, Table 11.2 contains parameters of schemes suitable for paradigms
and implementations that do not use such synchronization (e.g. graphics pipeline paradigm,
direct calculation of 2D DWT without re-organizing memory before the first step of the
scheme on CPU platforms, etc.).

Comparison of computation parameters from the tables clearly shows that reducing one
computation parameter results in increasing of another one. Generally, 3 types of schemes
exist:

∙ Schemes focused on lowering the number of barriers are suitable for platforms and
paradigms with costly barriers (like graphics pipeline paradigm that forces to write
data to global memory after each step). In such parameter, non-separable convolu-
tion and polyconvolution schemes are dominating followed by separable convolution,
polyconvolution and non-separable lifting schemes.

∙ Schemes focused on lowering the number of operations are preferred especially on
platforms with low cost barriers. Schemes oriented to lowering the number of opera-
tions are separable lifting scheme variants followed by non-separable lifting, explosion,
and implosion schemes. Note that non-separable lifting scheme seems to have well
balanced barriers and number of operations, however, it is not suitable for platforms
that suffer from high memory usage.

∙ Schemes focused on lowering the memory usage are suitable for platforms with high
latency or low throughput of local memory. The schemes with relativelly low number
of operations and memory usage are non-separable explosion scheme and separable
interleave lifting+ scheme.

11.3 Possible Applications
The evaluation on the last generations of Nvidia and AMD platform GPUs shows that global
memory bandwidth is the main bottleneck of calculation, especially in combination with
simple wavelets like CDF 5/7. In that case, the performance is the same regardless of the
underlying scheme (except for the slow ones like non-separable convolution/polyconvolution
without optimization approach). The possible beneficial usage of schemes lies in the fusion
of 2D DWT with applications such as denoising or additional step of JPEG 2000 encoding.
Another beneficial usage can be in transforming wavelets with more predict-updated steps
or more degreed wavelets.

One of the ways how to continue the work can be the use of 2D DWT implementation
as a part of the JPEG 2000 compression/decompression algorithm. Our previous research
showed that well-implemented 2D DWT, which uses the best performing scheme for under-
going platform, often has its bottleneck in global memory throughput. Test of the presented
algorithms with global memory surpassed by reading of constant memory and writing out-
put based on unfulfillable condition shows that modern platforms can process wavelets up
to 10 times faster1 compared to tests that used global memory for storing and loading data.

1speedup is dependent on used wavelet
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step Lifting Non-sep lifting Implosion Explosion

predict

middle

update

Basic variant

Figure 11.1: 2D dataflow diagram representing calculation of 2D DWT schemes without
optimization approach from view of single thread. The thread is mapped onto quadruple
of pixel elements (dots in solid box). The arrows indicate fused multiply-add operations
issued by the thread. Each vertical block represents calculation of single scheme.

step Common steps for impr. schemes Non-sep lifting Implosion Explosion

predict

middle

update

Improved variant

Figure 11.2: 2D dataflow diagram representing calculation of 2D DWT schemes with op-
timization approach from view of single thread. The thread is mapped onto quadruple of
pixel elements (dots in solid box). The arrows indicate fused multiply-add operations issued
by the thread. Each vertical block represents calculation of single scheme. The calcula-
tion of the schemes is preceded by the predict common steps and followed by the update
common steps.
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step Polyconvolution Sep. polyconvolution

combined

Polyconvolution Sep. polyconv.

Improved variantBasic variant

Figure 11.3: 2D dataflow diagram representing calculation of 2D DWT polyconvolution
scheme variants from view of single thread. The thread is mapped onto quadruple of
pixel elements (dots in solid box). The arrows indicate operations issued by the thread.
The straight arrows indicate fused multiply-add operations, and the self-directed circle
arrows indicate multiplication operations. Each vertical block represents calculation of
single scheme. Vertical lines represent synchronizations. Note that non-improved variants
precede implicit barrier as well.
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read memory operations
scheme write degree-1 degree-3 barriers single double degree-1 degree-3

convolution𝐾=2 8 28 2 4 8 64
convolution*𝐾=2 8 24 2 4 8 56
polyconvolution 8𝐾 12𝐾 36𝐾 2𝐾 4 8 28𝐾 60𝐾
polyconvolution* 8𝐾 8K 36𝐾 2𝐾 4 8 20𝐾 60𝐾
polyconvolutionX 8𝐾 10𝐾 30𝐾 3𝐾 4 8 22𝐾 46𝐾
polyconvolutionX* 8𝐾 8K 30𝐾 3𝐾 4 8 18𝐾 46𝐾
polyconvolutionY 8𝐾 10𝐾 30𝐾 3𝐾 4 8 22𝐾 46𝐾
polyconvolutionY* 8𝐾 8K 30𝐾 3𝐾 4 8 18𝐾 46𝐾
lifting 1+6𝐾 8K 24K 4𝐾 2 4 16K 32K
lifting+ 1+4𝐾 8K 24K 4𝐾 2 3 16K 32K

implosion 2+4𝐾 10𝐾 42𝐾 3𝐾 3 4 24𝐾 64𝐾
implosion* 6𝐾 10𝐾 42𝐾 3𝐾 3 (6) 4 18𝐾 50𝐾
explosion 4K 10𝐾 42𝐾 3𝐾 2 3 24𝐾 64𝐾
explosion* 4K 10𝐾 42𝐾 3𝐾 2 3 18𝐾 50𝐾
lifting 6𝐾 10𝐾 42𝐾 2𝐾 3 6 24𝐾 64𝐾
lifting* 6𝐾 10𝐾 42𝐾 2𝐾 3 6 18𝐾 50𝐾
polyconvolution 4K 21𝐾 117𝐾 1K 4 (8) 4 63𝐾 255𝐾
polyconvolution* 4K 12𝐾 117𝐾 1K 4 (8) 4 23𝐾 203𝐾
convolution𝐾=2 4 77 1 4 4 256
convolution*𝐾=2 4 60 1 4 4 152

Table 11.1: Comparison of schemes properties for graphics pipeline processing. Table
consists of local memory reads/writes, barriers, local memory elements per quadruple in
single and double buffering and operations for non-separable schemes. The 𝐾 denotes
the number of predict/update pairs. Schemes marked by symbol * use the optimization
approach. The degree-1 wavelets correspond to CDF wavelets, whereas degree-3 to DD
13/7. Schemes above horizontal line are separable and contain only separable steps, whereas
schemes below the line are non-separable and contain spatial steps as well. Separable and
non-separable convolution schemes with 1 predict-update pair (𝐾 = 1) and their improved
counterparts are in fact polyconvolution with 𝐾 = 1.
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read operations
scheme write degree-1 degree-3 steps memory degree-1 degree-3

convolution𝐾=2 8 36 2 8 64

convolution#𝐾=2 8 34 2 8 58
polyconvolution 8𝐾 20𝐾 44𝐾 2𝐾 8 28𝐾 60𝐾

polyconvolution# 8𝐾 2+16K 44𝐾 2𝐾 8 2+20𝐾 60𝐾
polyconvolutionX 8𝐾 22𝐾 42𝐾 3𝐾 8 22𝐾 46𝐾

polyconvolutionX# 8𝐾 2+20𝐾 42𝐾 3𝐾 8 2+18𝐾 46𝐾
polyconvolutionY 8𝐾 22𝐾 42𝐾 3𝐾 8 22𝐾 46𝐾

polyconvolutionY# 8𝐾 20𝐾 42𝐾 3𝐾 8 18𝐾 46𝐾
lifting 8𝐾 24𝐾 40K 4𝐾 4 16K 32K
lifting+ 8𝐾 24𝐾 40K 4𝐾 4 16K 32K

implosion 4K 22𝐾 54𝐾 3𝐾 4 24𝐾 64𝐾

implosion# -1+7𝐾 4+17𝐾 1+53𝐾 3𝐾 (7)6 3+18𝐾 7+50𝐾
explosion 8𝐾 22𝐾 54𝐾 3𝐾 4 24𝐾 64𝐾

explosion# -1+9𝐾 3+19𝐾 1+53𝐾 3𝐾 (5)4 1+18𝐾 1+50𝐾
lifting 6𝐾 18K 50𝐾 2𝐾 6 24𝐾 64𝐾
lifting# 6𝐾 1+17K 1+49𝐾 2𝐾 (7)6 18𝐾 50𝐾
polyconvolution 4K 25𝐾 121𝐾 1K 8 63𝐾 255𝐾
polyconvolution# 4K 25𝐾 121𝐾 1K 8 16+23𝐾 25+203𝐾
convolution𝐾=2 4 81 1 4 256

convolution#𝐾=2 4 81 1 4 200

Table 11.2: Comparison of schemes properties for graphics pipeline processing. Table
consists of global memory reads/writes, number of scheme steps and operations for non-
separable schemes. The 𝐾 denotes the number of predict/update pairs. Schemes marked by
# symbol use graphics pipeline version of the optimization approach. The degree-1 wavelets
correspond to CDF wavelets, whereas degree-3 to DD 13/7. Schemes above horizontal
line are separable and contain only separable steps, whereas schemes below the line are
non-separable and contain spatial steps as well. Separable and non-separable convolution
schemes with 1 predict-update pair (𝐾 = 1) and their improved counterparts are in fact
polyconvolution with 𝐾 = 1.
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When merging the 2D DWT with applications like denoising or subsequent parts of JPEGs
2000 coding (quantization and code block arithmetic coding), it would reverse the ratio
between global memory reads and the calculation itself.

For JPEG 2000, the limiting factors for these merged kernels are the amount of registers
and local memory that can be allocated to the work-group. Due to limitations based on
resources rather than thread counts, the higher number of threads per work-group would
result in a better occupancy. Modern AMD and Nvidia GPUs allow creating the work-
groups with up to 1024 threads in OpenCL/Cuda frameworks. Modern GPU architectures
seem to have their limitations in 128x128 pixel elements block size. If program state,
intermediate and index registers are not considered, storing pixel elements uses 16k registers
from 64k currently provided by modern platforms (Nvidia). Another issue can arise with
the amount of local memory mappable to work-group where a platform is: capable of using
only half of the available local memory per work-group2, configurable only by platform-
specific framework3. Thus, modern GPU architectures can use only 32kB - 64kB of local
memory, allowing storing only 2 - 4 shared elements per quadruple. That greatly reduces
the number of schemes usable for this application (memory requirements are presented in
Table 11.1 and Table tbl:schemes-pipeline). Additionally, the exact sizing4 is required (in
Wavelet transform framework presented in the section 5.5 is the exact sizing available only
on the schemes where it is possible) for storing number of the shared elements per quadruple
corresponding to maximum amount of local memory.

11.4 Future Work
Although many schemes, wavelets, and optimizations are proposed and evaluated in the
previous chapters, extensions that are not explored yet still exist. Such extensions can be
integrated in Wavelet transform framework presented in the chapter 5. The extensions are
presented in this chapter.

Additional Schemes

As described in the chapter 9, the fusion of lifting steps combined with the optimization ap-
proach (introduced in the section 8.4) leads to several new schemes. In some cases, it should
be beneficial to fuse steps only in one axis, which leads to forming of new schemes denoted
as polyconvolutionX for horizontal polyconvolution and vertical lifting steps, polyconvolu-
tionY for horizontal lifting and vertical polyconvolution steps and polyconvolutionX* and
polyconvolutionY* as their improved variants in Table 11.1.

N-Dimensional Wavelet Transform

Novel schemes and optimization approach introduced in the sections 6.3.2, 8.3, 8.4 and
9.4 can be further extended to N-Dimensional form. Every thread can be mapped onto
an N-Dimensional cube with 2𝑁 elements in a single N-Dimensional DWT kernel solution.
Separable schemes, including those proposed in the chapter 9, can be used as-is with the
same steps rotated to every dimension. Additional schemes, presented in the previous
section, can be extended for various combinations of lifting, polyconvolution and convolution

232kB/64kB on AMD GCN 64lk/128kB on ADM RDNA
3configuration of ratio between local memory size and L1 cache can be set by Nvidia Cuda Runtime API
4Exact sizing requires zero sized preface and postface local memory parts.
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separable schemes form for each axis. N-Dimensional non-separable lifting scheme can be
formed as a 2-step scheme that consists of 1 predict step formed by fusion of N predict
lifting steps each rotated to N axis and 1 update step formed similarly using N update
lifting steps. The optimization approach, introduced in the section 8.4, contains separable
operators in the x following y-axis; thus, it can be extended to N-Dimension in the same
matter as well.

Shuffles, Multiple Quadruples per Thread

Many schemes and improvements are proposed in the sections 8.3, 8.4 and 9.4 and evaluated
in the sections 8.5 and 9.6. Still, none of them is transformed using warp-optimization tech-
niques (described in the section 5.6) and tested on work-group sizes and shapes combined
with various sizes and shapes of quadruples per thread. For such purpose, the Wavelet
transform framework described in the chapter 5 is already capable of evaluation of such
extensions. The evaluation is currently work-in-progress.

CPU Acceleration

The evaluation, presented in the section 10.4, shows that the non-separable lifting scheme
(introduced in the section 8.3.2) is usable for multicore CPUs and GPUs. But not all
schemes nor SIMD instructions sets like AVX512/AVX2/SSE are examined. For such pur-
pose the CPU SIMD extension for Wavelet generator used in Wavelet transform framework
is currently in implementation phase. After finalization, the framework will be capable of
evaluation of any scheme presented in the section 11.2 combined with mentioned SIMD
extensions. Additionally, the better memory layout is part of the new approach.
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Chapter 12

Conclusion

Despite a 2D DWT being an object of many studies during the last two decades, some
aspects have not been studied yet. One of these aspects is the calculation of 2D DWT with
variously balanced barriers, arithmetic operations and memory usage focused on various
architectures. This thesis shows several new methods of computation of such transform
with variously balanced operations. The hypothesis of the thesis, which is focused on
acceleration of 2D DWT calculation, is formed in the chapter 4, experimentally proved in
the chapters 6, 7, 8, 9 and 10, and these proofs are summarized in the beginning of the
chapter 11.

The Wavelet transform framework was created for evaluation purposes. The framework
is responsible for generating and evaluating wavelet implementation for the combination of
desired scheme, destination platform and wavelet type. Generation itself is not limited to a
list of supported wavelet types; nevertheless, it is useful for generating an implementation
of wavelets of any number of predicted-update steps and any degree. The recent version is
also capable of generating CPU implementations of schemes with various SIMD extensions.

During the 2D DWT researches, several novel methods are proposed: new method for
vertical pass of pipelined processing; the optimization approach that is capable of sepa-
ration of some operations outside the calculations that leads to lowering the number of
arithmetic instructions on almost all available schemes; non-separable lifting scheme fo-
cused on lowering the number of barriers with reasonable amount of operations in various
variants including those preserving the number of operations even when the implicit barrier
is not used (graphics pipeline processing, CPU processing); non-separable explosion scheme
focused on lowering the local memory usage; non-separable polyconvolution scheme focused
on reduction of barriers while preserving reasonable amount of operations. The methods
were evaluated on various GPU and CPU platforms and paradigms. The details regarding
the schemes and possible applications is presented in the chapter 11.

Although many novel methods for 2D DWT calculation are proposed and evaluated
in the thesis, some aspects remain unexplored and can be a subject of the future work.
Examples of such aspects include: extension of proposed schemes to N-Dimension form
for N-Dimensional DWT calculation; a combination of the proposed methods with other
optimization techniques like usage of GPU shuffles or SSE/AVX2/AVX512 extensions on
CPUs; formation and evaluation schemes formed by fusion of separable lifting scheme steps
unequally on a various axis; fuse the 2D DWT with its application like JPEG 2000 or
denoising algorithm. More details regarding the future work are described in the chapter 11.
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