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Abstract
This dissertation thesis deals with the design of a novel hardware acceleration, software

controlled (defined) concept for high-speed computer networks. The main goal is to propose
general, flexible and easy to use acceleration platform for various network security and
monitoring applications suitable for deployment in real 100 Gbps and faster networks. The
thesis starts with the survey of the current state of the art in network monitoring, security
and accelerated high-speed traffic processing. Based on the survey, a brand-new concept
called Software Defined Monitoring (SDM) is formulated and proposed. A key feature
of the concept lies in hardware accelerated, application specific (controlled), flow based,
informed reduction and distribution of captured network traffic. This brings high-speed
hardware processing coupled with flexible software control, which together leads to an easy
creation of various complex high-performance network applications. Further optimizations
and enhancements of the main SDM concept and its selected components are also explored
resulting in creation of unique and novel designs of generally usable FPGA architecture of
modular packet header parser and cuckoo hash based high-throughput packet classification
engine. Finally, high-speed SDM prototype using FPGA acceleration network interface card
is created and thoroughly evaluated under real network conditions. Achievable performance
improvements in several chosen monitoring and security use case scenarios are measured
and shown. The SDM prototype is also deployed in production monitoring of real backbone
network by Cesnet association and has been commercialized by Netcope Technologies.
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Abstrakt
Tato disertační práce se zabývá návrhem nového způsobu softwarově řízené (definované)

hardwarové akcelerace pro moderní vysokorychlostní počítačové sítě. Hlavním cílem práce
je formulace obecného, flexibilního a jednoduše použitelného konceptu akcelerace použitel-
ného pro různé bezpečnostní a monitorovací aplikace, který by umožnil jejich reálné nasazení
ve 100 Gb/s a rychlejších sítích. Disertační práce začíná rozborem aktuálního stavu poznání
v oborech síťového monitorování, bezpečnosti a způsobů akcelerace zpracování vysoko-
rychlostních síťových dat. Na základě tohoto rozboru je formulován a navržen zcela nový
koncept s názvem Softwarově definované monitorování (SDM). Klíčová funkcionalita uve-
deného konceptu je postavená na hardwarově akcelerované, aplikačně specifické (řízené),
na tocích založené, informované redukci a distribuci zachycených síťových dat. Toto je
zajištěno spojením vysokorychlostního hardwarového zpracování s flexibilním softwarovým
řízením, které tak společně umožňují jednoduchou tvorbu různých komplexních a vysoce
výkonných síťových aplikací. Pokročilé optimalizace a vylepšení základního SDM konceptu
a jeho vybraných komponent jsou v práci též zkoumány, což vede k návrhu zcela unikátní
a obecně použitelné FPGA architektury modulárního analyzátoru hlaviček paketů a vysoce
výkonného klasifikátoru paketů založeného na kukaččím hashovaní. Nakonec je vytvořen
vysokorychlostní SDM prototyp postavený nad FPGA akcelerační síťovou kartou, který
je podrobně ověřen v podmínkách nasazení do reálných sítí. Jsou změřeny a diskutovány
dosažitelné zlepšení výkonností v několika vybraných monitorovacích a bezpečnostních pří-
padech užití. Vytvořený SDM prototyp je rovněž nasazen v produkčním monitorování reálné
páteřní sítě sdružení Cesnet a byl komercializován společností Netcope Technologies.
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FPGA, hardwarová akcelerace, SDN, softwarově definované zpracování síťového provozu,
monitorování, bezpečnost, vysokorychlostní sítě
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Chapter 1

Introduction

The most characteristic feature of the modern age is a constant progression in all branches of
human endeavors. One of the fastest advancing fields is information (computation) technol-
ogy, especially network communications. Currently, computer networks have shifted from
being just a cheap and fast way of communication to become a platform for provisioning of
a wide variety of other services (trade, advertisement, games, social media, multimedia . . . ).

Even though computer networks currently have a huge impact on everyday life, their
influence keeps on rising implacably. A constant growth is apparent in the number of
networking capable devices, the number of provided services, the number of active users
and time they spend online every day. Apart from increasing user base size, the sheer
amount of transferred data during each communication is also rising. These trends lead to
clearly visible exponential growth in network traffic volume. In the last 5 years the volume
of network traffic has grown 12 times [18] and a similar rate of growth is even expected to
persist in years to come. The main consequence of the described growth is a need for more
powerful and faster network infrastructure. Therefore, a shift from throughputs of 1 Gbps
and 10 Gbps towards 40 Gbps and 100 Gbps is currently apparent in high-speed networks.
Demands and preparations of even faster networking protocol standards are common (e.g.
400 Gbps Ethernet standardization [19] or terabit solutions requests by data centers).

Network infrastructure is composed of not only the basic functional devices that perform
data transfers and traffic routing, but it should also contain special devices ensuring the
security of the network itself and monitoring of its state. Furthermore, their performance
cannot fall behind the rest of the network infrastructure. So, throughputs of monitoring and
security devices (applications) must be rising at the similar rate as networks are speeding
up. Therefore, the main goal of this thesis is to design a suitable platform that enables the
creation of various network monitoring and security applications with sufficient performance
for practical deployment in high-speed networks operating at 100 Gbps and more.

A common approach to the already described need for faster devices lies in the uti-
lization of hardware accelerated techniques. The main advantage of hardware acceleration
(compared to purely software approach) is in the specialization of the hardware architec-
ture based on the specific needs of the task at hand. This enables for tailored utilization of
various parallel and pipelined data processing approaches that can lead to notable increases
in overall performance of designed devices.

On the other hand, hardware acceleration utilization can also bring several problems.
Mainly, high specialization of hardware usually means a significant loss in its flexibility,
what can be very troublesome in the ever-changing environment of networking protocols.
Another significant issue is that many security and monitoring tasks (applications) are
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too complex for practical hardware realization. For these kinds of tasks, an integration of
software and hardware elements into a single system is more suitable. Such system can
then have higher performance enabled by hardware acceleration of time-critical parts and
can be also more flexible and easier to realize because of a software implementation of
more complex parts. In computer networks, intelligent hardware and software integration
is well utilized by Software-Defined Networking (SDN) [35]. The key idea defined by SDN
is the division of the network functionality into intelligent software applications controlling
relatively simple but powerful hardware devices.

The SDN ideas can be also useful for the area of network monitoring and security. Using
current common approaches, it is very difficult to create practical high-speed realizations of
anomaly and threat detection or deep packet inspection at the level of application protocols.
Because these systems are relatively complex, their hardware realizations are unbearably
complicated and require a lot of resources and development time. Software solutions, on
the other hand, are much simpler, but their performance without traffic sampling is usually
barely sufficient even for 10 Gbps networks and certainly not enough for 100 Gbps [48]. But,
it should be possible to notably increase the poor throughput of software solutions by cre-
ation and utilization of an appropriate hardware acceleration platform. The performance
could be significantly improved by software controlled hardware accelerated preprocess-
ing of network packets that enable applications to directly select the level of information
details retained by hardware and to distribute the software workload. So, the hardware
platform would implement means for various kinds of network traffic preprocessing and
division (routing) of captured packets into multiple CPU cores, which could be controlled
on-the-fly from the software according to needs of running applications. Therefore, software
applications would gain the ability to massively reduce the volume of traffic that they need
to process and consequently achieve much higher throughputs.

1.1 Research Area and Objectives
As already indicated in the motivation, the main area of research presented in this the-
sis is design, realization and effectivity assessment of a novel software controlled hardware
acceleration concept specialized for simple creation of network monitoring and security ap-
plications with throughputs sufficient for high-speed networks (100 Gbps and more). All the
research steps are performed with emphasis on achievable performance improvements of var-
ious applications when deployed with the designed acceleration concept in the real networks.
To achieve the desired performance improvements, this research aims at the utilization of
various forms of controlled accelerated reduction of incoming traffic volume coupled with an
intelligent division of application workload between multiple cores of modern CPUs. This
way, applications should be able to effectively reduce the amount of processed uninteresting
bulk traffic, what in turn increases their performance or leave them more CPU time for
further (deeper) analysis of the most important parts of the data.

Based on the mentioned research ambitions in the area of network monitoring and
security acceleration, the following working hypothesis is formulated for this thesis:

Utilization of appropriate concept of software (application) controlled hardware
accelerated reduction and distribution (between processor’s cores) of real network
traffic will, compared to existing concepts, lead to considerable increases in total
performance of selected network monitoring and security applications and/or
better achievable quality (accuracy and detail) of information obtained by these
applications.
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The main research objective is to design and consequently assess a suitable acceleration
concept that is flexible enough to enable acceleration of not just one specific application,
but many different ones.

The main objective of this thesis can be divided into several consecutive sub-goals:

1. Proposal of an appropriate concept of software controlled hardware acceleration of
network monitoring and security applications.

2. Assessment of designed concept feasibility based on observed characteristics of traffic
from real high-speed networks.

3. Design and creation of hardware architecture, that implements the proposed concept
on the FPGA acceleration network interface cards with performance sufficient for
100 Gbps networks or faster.

4. Experimental evaluation of achievable performance and speed-up of selected network
monitoring and security applications when utilizing the proposed acceleration concept
in the real high-speed networks.

5. Analysis, design, and implementation of extensions to the main concept that would
enhance achievable application speed-up and/or enlarge the set of accelerable tasks.

6. Detailed analysis of general approaches utilized in selected subcomponents of the
designed hardware architecture with the aim to propose more effective FPGA imple-
mentations.

1.2 Thesis Outline
This thesis is written as a collection of papers. Research contribution is, therefore, presented
by several selected peer-reviewed research papers and a journal article, all in their original
format. These texts are provided at the end of the thesis as appendix A. The following text
of the thesis itself is organized into three chapters. Chapter 2 provides a brief summary of
the relevant state of the art. It includes basic principles of network monitoring and security,
an introduction to Software-Defined Networking (SDN), currently used approaches of traffic
processing acceleration in high-speed networks and discussion of relevant related works.
Chapter 3 describes the conducted research and its contribution, the chapter also contains
an overview of included research papers from appendix A. Finally, chapter 4 summarizes
and discusses the conclusions of the thesis, it also proposes possible directions of future
research on the topic.
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Chapter 2

Current State of the Art

2.1 Network Monitoring
Rapid growth of computer networks utilization leads to major rising of network infrastruc-
ture complexity. Furthermore, a huge diversity of currently used network services results
in a substantial number of different protocols and policies that must be supported. The
overall complexity of networks is also negatively influenced by the dynamic character of
their topology (e. g. one mobile device can connect from different points). To effectively
manage such complicated systems, it is vital for administrators to be able to acquire precise
information about actual state and traffic in controlled networks. Appropriate approaches
how to acquire such information belong to the fields of network monitoring (alternatively
called network measurement) and network traffic analysis. Description of basic principles
of these fields presented in the following text of this section is based on information from
[4, 45, 46, 28, 9].

Network monitoring and traffic analysis is, in general, based on periodic probing of
devices states and/or collecting of data about ongoing communications. The main goal is to
precisely identify what is happening on the network at any given time. Such information can
be subsequently used by administrators to optimize network functionality and performance.
Two basic types of data can be acquired from network monitoring. The first group consists
of real-time network parameters like characteristics of ongoing communications or current
volumes of traffic processed by individual devices. These parameters can be used to detect
various network anomalies, for example, device failures or targeted attacks. The second
group of information represents long-term statistics acquired by storing and aggregation of
periodically measured parameters. These statistics show trends in network usage and are
useful for proper planning of future infrastructure upgrades.

The research scope of this thesis is focused on monitoring of ongoing network commu-
nications that can be performed in several ways. Monitoring of communication parameters
can be realized directly on devices that are already part of the main network infrastructure
or by additional dedicated monitoring devices. Usage of dedicated devices usually enables
a collection of more precise monitoring data and does not endanger the overall performance
of the network by the introduction of additional tasks for infrastructure devices. Another
division of network monitoring techniques is defined by measurement activeness. In other
words, if they need to actively inject packets into the network or rely only on a passive
measurement of already existing network traffic. Large scale usage of active approaches is
not generally preferred, as they can introduce negative influences on the measured behavior
of the monitored network.
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By passive monitoring techniques various information about ongoing network communi-
cations are acquired, for example, transferred data volume, pairs of communicating entities
(devices), commonly used protocols and services. The most basic and common tools of pas-
sive monitoring are packet capturing programs like wireshark and tcpdump. Also, many
networking devices by various vendors implement support of MIB database and SNMP [3].
Figure 2.1 shows an example of possible passive monitoring deployment. Monitoring probe
(sometimes called metering or measurement point) is looking at communications between
two networks (illustrated as clouds). It analyzes transferred packets and extracts some
statistical information from them.

Network 1 Network 2

Monitoring 
Probe

                              
Link parameters:

Traffic volumes
Communication details

Figure 2.1: Passive network monitoring example.

One of the main challenges for passive monitoring is the sheer amount of data that needs
to be processed. In high-speed networks, each link usually transfers millions of packets
containing gigabits of data per second. Capturing and storing whole data or even basic
information about all individual packets is unbearably storage intensive. To significantly
reduce the volume of stored data, some information aggregation over groups of packets
must be used. Most often, packets are grouped into network flows and only statistical
information about these flows (called flow records) are stored.

Network flow [42] is defined as a sequence of packets that have same key features and
are transferred through observed point in the network during a given time interval. The
key features are usually selected fields from protocol headers and therefore, values of these
fields uniquely identify a single flow for each packet. In current computer networks, which
are mostly based on TCP/IP stack [6], flows are identified by fields from common protocol
headers of network (IPv4 [40] or IPv6 [12]) and transport (UDP [39] or TCP [41]) layers.
Specifically, five-tuple composed of source and destination IP address, source and destina-
tion port number and transport layer protocol number is often used. So, each network flow
represents one direction of communication between two specific devices using given service.
In flow-based monitoring, each flow record, apart from values of identifying key features,
also stores additional statistical information aggregated from all corresponding packets.
Stored values usually include at least characteristics of flow size (numbers of packets and
bytes) and timing (start and end timestamp, or duration). Recently, mentioned basic char-
acteristics are very often supplemented by various additional information obtained from
application layer protocols or by deep packet inspection (e. g. pattern matching).

Passive flow-based monitoring of network is commonly realized using an architecture
similar to one illustrated in figure 2.2. Probes (also called flow exporters) are placed in
several places in the network in order to capture packets, extract and aggregate interesting
information from them into flow records. Using specialized communication protocol (red
arrows), flow records are exported from probes to a centralized collector. The collector
receives and stores flow data from all probes, building a database for further analysis.
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Monitored
Network

Probe ProbeProbe

CollectorAnalyserUsers

IPFIXNetFlow NetFlow

Figure 2.2: Architecture of flow based monitoring system.

Finally, the analyser presents collected data to users (network administrators) and can also
perform automatic or semi-automatic advanced analyses to discover anomalies and other
interesting features. From the point of view of this thesis, probes and communication
between probes and collector are the most interesting parts.

Monitoring probes are usually realized as dedicated hardware devices or commodity
servers with specialized acceleration network interface cards. Hardware resources must
provide sufficient performance to capture and process as much network traffic as possible,
ideally without any packet loss. Processing of each packet starts with analysis and extrac-
tion of flow identifying and other interesting values. Then, corresponding flow record is
found and updated in (or added into) a table of active flows (called flow cache) managed by
the probe. To correctly aggregate information in flow records, packets of a single flow must
be, most of the time, processed in order of arrival. This requirement constraints division
of incoming packets processing between multiple independet CPU cores. Apart from flow
records updates and creation by processed packets, the probe must also manage periodic
removal and export of finalized records from its flow cache. A flow is considered as finalized
in the following four cases [8]: (1) implicit detection of the last packet, e. g. set SYN or
RST flag in TCP header [41]; (2) expiration of active timeout, i. e. the flow is lasting too
long (usually in the order of minutes); (3) expiration of inactive timeout, i. e. no packets of
the flow have been captured recently (usually in the order of seconds); (4) forced artificial
finalization when flow cache becomes full. Flow records can be stored for a while after
finalization to be exported from the probe in bulk.

The most common protocol used for flow record export is currently NetFlow in ver-
sions 5 or newly 9 [8]. NetFlow is a proprietary protocol developed by Cisco, but it is
considered an industry standard because of its wide adoption. It defines rather fixed flow
record format and furthermore, in version 5 supports only IPv4 combined with TCP or
UDP (no IPv6, IPX nor VLAN). To solve the shortcomings of NetFlow, IPFIX (IP Flow
Information Export) [7] protocol was defined and slowly employed. IPFIX is developed
by IETF as vendor independent standard. It basically extends NetFlow version 9 towards
the support of considerably more flexible flow record structure by enabling definitions of
custom information and data models for exported data. Furthermore, IPFIX standard also
defines requirements for monitoring architecture (similar to Figure 2.2) and functionality
implemented by each probe.
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The currently ongoing trend is towards creation of richer flow records, often by inclusion
of values from the application layer protocol headers, such as HTTP, DNS etc. It seems, that
the ability to analyze application layer is crucial for improvement of the quality of network
monitoring, because more and more of the network functionality is being shifted up in the
protocol stack. While introduction of IPFIX solves the task of exporting/transmitting the
additional application layer data in flow records, there remains the issue of obtaining them.
This process inevitably requires additional computational resources. Implementation of
the application level flow monitoring with a commodity CPU is certainly possible, yet its
throughput is limited mainly by the performance of the processor cores [17]. On the other
hand, many proposed ASICs and FPGAs approaches offer much better possibilities in terms
of throughput. However, a fixed solely hardware implementations face the flexibility issues,
since the evolving nature of networks implies the need for fast changes of the monitoring
process, quickly making fixed hardware devices obsolete.

2.2 Network Security
Text of this section is mainly based on information from [33, 24, 5, 23, 11]. Connecting
a device or a network to the internet creates a physical link towards thousands of other
unknown networks and millions of users. On one side, this connection provides easy access
to all kinds of useful services and information. But on the other hand, it also creates an
access possibility in the opposite direction – from other users. Furthermore, some of the
connected devices usually contain data and services that should not be accessible to every-
one. Therefore, the existence of reliable techniques for assurance of access limitation and
information security is necessary for networking. Precisely these techniques and challenges
from these areas are studied by the field of network security.

Network security is more and more important as the significance of computer networks
is raising. It is also common that administrators spent more time securing networks than
configuring and managing their core operations. The main objective of network security
is two-fold. First, it is information security, where confidential data must be protected
from unauthorized access and modification. This protection needs to be ensured on devices
inside the network as well as in legitimate traffic leaving the network (e. g. by encryption).
Second, it is a protection of network, its infrastructure and devices from malicious attacks
or misuse by unauthorized users. The ability of early detection of potential threats and
ongoing attacks plays a crucial role.

For adequate detection of potential threats, common network attack methods and their
signatures must be recognized. As network protection tools are getting better, malicious
programs are also advancing and new increasingly sophisticated attack vectors are used.
Individual types of attacks can differ from each other in purpose, complexity, and hazardous-
ness for various devices. Common types of malicious activity used by attackers include: (1)
scanning of active devices in the network to pinpoint potential targets for and forms of
subsequent main attack; (2) denial of service for legitimate users by overloading the host-
ing device (or network infrastructure itself) with massive amounts of artificially generated
communications; (3) malware programs designed to automatically spread between network
devices using known vulnerabilities and perform various malicious activities on them (e.
g. information theft, a base for further attacks); (4) determined penetration of network
defenses to gain unauthorized access to various systems and databases. A substantial num-
ber of network attacks of mentioned types are well known and therefore, can be recognized
by their characteristic communications patterns. On the other hand, there are always new
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attacks with so far unknown behavior. These must be usually uncovered based only on
observed statistical anomalies and deviations in general network traffic parameters. Both
types of signs, specific communication patterns, and statistical anomalies, can be for some
groups of attacks detected from network monitoring data.

Detection of malicious activity is usually only the first step towards robust network
security. A key part of this robustness lies in a separation of the inner network (often
rather trusted) from unknown or uncontrolled surroundings – i. e. establishing of a network
perimeter. Well-made defenses of the perimeter can consist of multiple layers using diverse
types of security methods like traffic monitoring, threat detection, user authentication or
access limitation. These kinds of perimeter defenses notably reduce the risk of successful
external attacks but do not provide any protection against internal threats (e. g. attacker
with physical access). Therefore, it is also advised to somehow secure inner parts of the net-
work, what is usually achieved by hierarchical division of the network into smaller separated
subnets and by securing individual devices by antivirus programs and frequent updates.

Network infrastructure devices of various vendors directly provide some limited means
to aid network security. But usually, specific dedicated devices and applications must be
added to ensure sufficient defense of a network. The most common ones are firewalls,
intrusion detection systems (IDS) and intrusion prevention systems (IPS). Firewall is a
device or application guarding the access to the network by filtering entering or leaving
communications (packets) based on a set of rules. There are several kinds of firewalls
providing different types of filtering (e. g. static, stateful, proxy). Next, the main job of
IDS is a detection of unwanted, potentially malicious events in network traffic and informing
administrators about them. Generally, IDS directly process captured packets and try to
identify predefined patterns (signatures) or statistical anomalies (sometimes separated as
Anomaly Detection Systems, ADS) in them. Each signature is usually valid only for a
specific type of traffic, therefore, not all signatures need to be searched in all captured
packets. Finally, IPS extends detection of threats by an automatic response to them and
can be sometimes viewed as a coupling of IDS with firewall functionality.

2.3 Software-Defined Networking
The content of this section is based on information acquired from [35]. Software Defined
Networking (SDN) is a novel concept of the architecture of computer networks, which
is currently gaining popularity. It has been created and is also further developed as a
common effort of multiple commercial subjects joined under Open Networking Foundation
(ONF). The ONF is a non-profit industrial consortium dedicated mainly to development
and standardization of key elements of SDN architecture. One of the first achievements of
ONF is the creation of OpenFlow [37] protocol standard as the first unified communication
interface for SDN-enabled devices.

The key motivation behind the creation of SDN is the need for a new networking
paradigm that is fueled by an apparent shift in nature of computer network utilization
towards more dynamic patterns. Conventional network architecture models are mainly
static and optimized to effectively support the client-server type of communications. On
the other hand, more and more network services do not employ this type of communication.
Some of the key computing trends driving this shift in nature of network communication
include changes in usage (traffic) patterns, the spread of mobile devices, and the rise of data
volumes (Big Data). Furthermore, traditional architectures of network infrastructure more
often lead to problems severely limiting the effective utilization of today’s networks. The
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main limitations are for example network complexity leading to its stasis, inconsistency in
sets of policies, poor scaling opportunities, and strong vendor dependence. The mentioned
problems are taken into consideration when defining individual SDN components.

The main idea behind network infrastructure design in SDN concept lies in a strict de-
coupling of network intelligence (control plane) from functional elements performing traffic
forwarding itself (data plane). Furthermore, the network control plane is logically central-
ized and directly programmable. Described idea of decoupling in SDN can be compared
to the architecture of current personal computers, where CPU cores (data plane) per-
forms instructions defined by executed programs (intelligence). Decoupling of control and
data planes enables definition of multiple abstraction layers over the functional network
infrastructure. Thanks to such abstractions, configuration, and automatization of various
network operations are much easier to achieve, what in turn notably simplify the creation
of more scalable and flexible network infrastructures.

 Infrastructure Layer

 Control Layer

 Application Layer

SDN 
Control 
Software

Unified Interface
(e.g. OpenFlow)

Network Services

Aplikácie

  API   API   API

Applications

Figure 2.3: Basic overview of Software-Defined Networking architecture.

From a logical point of view, the architecture of SDN is divided into a few layers illus-
trated by Figure 2.3. On top of actual physical devices of network infrastructure (bottom
part of the figure), there is an abstract control layer. In the control layer, network intelli-
gence is logically centralized in software-based SDN controllers that maintain and update
the global view of managed network. As a result of such centralized control layer, ap-
plications (in application layer) can view the whole network as one large switch. SDN
thus enables management of the whole network from a single logical point in a vendor
(device) independent manner. Described shielding from vendor-specific characteristics of
infrastructure devices leads to considerably simpler design and management of networks.
On the other hand, the definition of unified control interface in SDN enables simplifica-
tion of infrastructure devices as well – their sole purpose now is just to receive and execute
instructions from SDN controllers.

Apart from abstraction towards physical network devices, SDN architecture defines a
set of application interfaces (APIs). These APIs make it possible to implement common
network services like routing, multicast, access control, quality of service, security and all

15



types of policy management, based on the specific requirements imposed. Furthermore,
thanks to centralization, the deployment, and management of these services in a consistent
manner throughout the whole network is considerably simplified. Also, unified APIs be-
tween SDN controllers and user applications enable utilization of network resources without
being tied to specific details of their implementation. SDN, therefore, views the networks
as systems providing various capabilities that can be utilized in a customized (optimized)
way for individual applications.

ONF activities around SDN have, till this day, lead to creation and improvement of
OpenFlow protocol. OpenFlow [37] represents the first standardized communication in-
terface between control and infrastructure layers of SDN architecture. It defines basic
primitives for remote control and configuration of routing performed by physical network
devices. To identify and control network traffic, OpenFlow uses an approach based on net-
work flows that are described in the previous text (section 2.1). The approach utilizes a
set of pre-defined static and dynamic matching rules specifying processing (forwarding) of
individual flows or their groups. These rules are configured by SDN control software and
can be based on various network parameters. Programmability on per-flow basis provides
extremely granular control of network behavior, enabling precise response of the network
to real-time changes at application, user or session levels.

2.4 High-Speed Network Traffic Processing
Network monitoring and security applications are all based on some kind of captured traffic
(packets) processing that extracts interesting information of various kinds for further use.
But, with the already mentioned rapid increase of network speeds, this traffic processing
becomes a critical performance bottleneck for these applications. Performance requirements
of traffic processing in the worst-case for different network speeds are illustrated in table 2.1.
As one can see, at speeds of 10 Gbps and more, tens or even hundreds of millions of packets
must be captured and processed every second. So, only a few nanoseconds can be spent on
each packet and that is precisely why the performance of exactly this operation is very often
hardware accelerated. In current high-speed networks operating at 10 and 40 Gbps, two
main models of traffic processing acceleration are prevalent – software application aided by
hardware acceleration network interface cards or specific fully hardware accelerated device.

Link speed Packets per second Time to process a packet
1 Gbps 1 488 095 672.00 ns
10 Gbps 14 880 950 67.20 ns
40 Gbps 59 523 800 16.80 ns
100 Gbps 148 809 500 6.72 ns
400 Gbps 595 238 000 1.68 ns

Table 2.1: Network traffic performance requirements at different speeds.

Hardware accelerated network interface cards (NICs) are usually connected to a host
computer (server) over PCI Express bus and accelerate only traffic capturing, its very basic
preprocessing (L1 decapsulation, FCS control, timestamping . . . ) and transfer to the host
main memory. All main packet processing is then performed by monitoring and security
applications fully running in CPUs of the host computer. The main advantage of such
approach is its huge flexibility as hardware accelerated is only the most general part of
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data processing. All application specific tasks are left for software, which can be changed
and modified considerably easier compared to hardware. The main disadvantage, here, is
generally worse performance as the whole volume of captured traffic must be delivered to
and processed by software. For 100 Gbps and faster networks, this approach hits two major
bottlenecks: insufficient performance of CPUs and limited throughput of PCI Express bus.

Many hardware accelerated interface cards has been introduced in recent years, for
example: Hanic platform on cards from COMBO family [44, 27], NetFPGA SUME accel-
erated NIC [52], Endace DAG data capture cards [14] or various Napatech NACs products
[31]. These platforms support wire-speed capture and processing of network traffic from
connected high-speed links and transfers of the captured data over PCI Express using direct
memory access (DMA). One of the primary available features is the ability to intelligently
distribute transferred data into multiple software channels in a round robin or flow-aware
manner. This division enables somehow independent processing of data on each channel by
dedicated CPU core with limited need of their synchronization, thus rather effective divi-
sion of workload is achieved. Other features supported by some include sampling (random
or flow based), packet cropping, precise timestamping and basic filtering (classification).
Therefore, most of the application specific traffic processing is left to be performed by
software applications.

The second acceleration model is fully hardware accelerated system, which is based on
utilization of hardware device (architecture) dedicated for acceleration of a single specialized
task. The main advantage of highly specialized hardware is rather high performance as
most of the network traffic processing is accelerated. But, such narrow specialization of
hardware dramatically reduces its flexibility and increases development cost, as different
tasks require different hardware devices or introduce considerable changes into hardware
architecture. Furthermore, more complex tasks, e. g. analysis of application protocols
or threat signatures detection can be too demanding or even impractical for hardware
realization. Because generally, design and implementation of some task in hardware are
severalfold more difficult than in software.

To represent fully accelerated approach, FlowMon probe [13] can be selected as an
example of monitoring system. FlowMon probe utilizes NetCOPE development platform
[26] on COMBO cards or NetFPGA cards [30]. It is a completely hardware accelerated
NetFlow probe for 1 and 10 Gbps networks, where implementation of all packet processing
and flow cache management operations is realized directly in FPGA firmware. As examples
of security systems, fully accelerated regular expression (string matching) platforms like
[29, 21] can be selected. These two are hardware intrusion detection systems (IDS) based
on fixed subsets of Snort [43] rules, where the whole pattern (rule) matching process is
realized directly in FPGA firmware.

Apart from the two abovementioned processing acceleration models, another approach
commonly used in high-speed network monitoring is based on sampling of incoming data
[20]. Here, the performance limitations of software applications are bypassed by processing
of only a small fraction (a sample) of captured network traffic. Selection of sample to process
can be totally random (e. g. every tenth packet) or conditioned by some easily obtainable
packet features (e. g. a hash of selected header fields). A huge disadvantage of this approach
lies in notably reduced precision or quality of obtained information because substantial
chunks of data are just blindly dropped. For an application, this means uncontrolled loss of
potentially interesting information that can lead to highly distorted measurements or even
complete miss of a crucial event (e. g. network attack or anomaly).
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All described models of hardware acceleration have significant shortcomings (in perfor-
mance, flexibility or precision) preventing their effective utilization for 100 Gbps and faster
networks. That is why a new acceleration approach needs to be designed – one that over-
comes flexibility issues of fully hardware processing together with the inferior performance
of purely software processing. Additionally, it should enable obtaining of high quality,
unsampled, monitoring and security information.

2.5 Related Work
Apart from basic approaches to network monitoring and security in high-speed networks
presented in the previous section, there are many sophisticated published works dealing
with challenges of monitoring and security of high-speed networks. Therefore, several of
these approaches that may to some extent resemble research area and objectives of this
thesis are discussed. However, it is shown that those works have significant differences and
shortcomings compared to this thesis.

Snort [43] is an open source software based network intrusion prevention and detection
system. It relies only on regular expression matching, while this thesis does not want to
enforce nor assume any particular type of software processing. Many papers dealing with
hardware acceleration of Snort have been published, but they typically also restrict their
focus to regular expression matching only. However, the area of network security moni-
toring is much richer than just that and this kind of limitation to only one specific kind
of problems makes those systems insufficient for robust practical deployment. Similarly to
Snort, L7-filter [10] also relies entirely on regular expressions. It is a Linux based packet
classification software aiming at application layer protocol identification. A software library
for application layer traffic processing called nDPI [34] provides an excellent example show-
ing that regular expression matching alone is not sufficient. While this open source library
is probably too complex to be fully hardware accelerated, it can certainly take advantage of
some form of hardware acceleration provided by a kind of concept researched in this thesis.

The OpenSketch architecture [51] employs a configurable pipeline of hashing, classifica-
tion and counting stages. These stages can be set to perform the computation of various
network traffic statistics. OpenSketch is tailored to compute what its authors call sketches –
probabilistic structures allowing measurement (estimation) and detection of various aspects
of the network communication with a defined error rate. It is certainly not intended for
complete flow-based monitoring, nor for precise and exact, error-free measurements. Also,
OpenSketch does not define means to allow for application level protocol parsing nor other
more sophisticated types of processing.

FlowContext system [22] provides a flexible way to implement stateful network traffic
processing in an FPGA. Flow-based (specifically NetFlow) monitoring is among the exam-
ples of its use. However, it does not provide sufficient means for acceleration of general
software applications. Therefore, FlowContext is not flexible enough to be effectively used
for tasks exceeding the capabilities of a single FPGA.

There have been several efforts to accelerate NetFlow traffic monitoring in FPGAs,
recently even as an open source project [16] for the NetFPGA platform [30]. This work
is however aimed only at standard NetFlow and does not describe means for any kind of
extended software processing nor further acceleration possibilities. On the other hand, the
aim of this thesis is more towards flexible acceleration of wider range of application specific
software processing.
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The Shunt system [47] is a hardware accelerator that supports diversion of suspicious/in-
teresting traffic to software for further analysis. To this end it partially resembles research
objective of this thesis, however, Shunt accelerates only packet forwarding/filtering and
does not include any possibilities of processing acceleration. Therefore, it is not very useful
for the majority of network monitoring applications as they need some information about
every packet.

Xilinx has recently announced SDNet environment [49] for software defined, hardware
accelerated networking. The system relies upon high-level language to describe a network
application, which is then compiled to a form of a hardware accelerator for a Xilinx FPGA.
From the limited information, available at the time of writing, it seems that SDNet is not
aiming at the definition of specific acceleration concept like this thesis, but rather can be
used to describe custom hardware modules a bit easier. Another promising activity in
this area is the definition of open P4 language standard [2], which is a high-level language
specifically designed for the description of network traffic processing and forwarding. It
enables protocol, vendor and target independent definitions thus can be also used for more
comfortable programming of custom processing modules. But similar to SDNet, P4 does
not define any particular acceleration architecture concept.

FlowSense [50] is a lightweight system aiming at estimating the network performance
such as link utilization. It uses the built-in counters of OpenFlow switches to estimate the
network parameters. While this approach brings virtually no overhead, its possibilities are
limited by the OpenFlow protocol messages content and no other measurement can be done
using this technique. There is no support for application level processing nor deeper packet
inspection in FlowSense. Furthermore, it can be deployed only in SDN-based networks,
whereas this thesis aims to more generally utilizable concept.

To summarize, none of the known state of the art approaches possess all the qualities
required by the posed objective of this thesis research. Therefore, there is a valid need for the
design of a novel acceleration concept for application layer analysis with high throughput,
flexibility of use and ease of deployment for high-speed networks that enables obtaining of
rich, unsampled monitoring and security information.
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Chapter 3

Research Summary

3.1 Core Ideas
The design of the novel hardware acceleration concept for network monitoring applications
leads off from the current state of the art ideas presented in the previous chapter. Also,
typical characteristics of network traffic and information about how network monitoring
and security applications usually process captured packets are considered. The designed
acceleration concept must offer sufficient speed-up of applications for their deployment
in high-speed networks. Also, it must be simply applicable and flexible enough to be
able to support different kinds of applications. All of these parameters can be achieved
using appropriate hardware software co-design approach inspired by key SDN features,
as SDN achieves something similar in the area of network traffic routing by coupling of
powerful hardware data processing with flexible software control (intelligence). Therefore,
the designed concept resulting from this thesis research can be viewed as a natural extension
of SDN ideas into the area of network monitoring and security.

Following the main idea of SDN, the hardware part of the designed acceleration con-
cept realizes various types of network data preprocessing (functional base), but it leaves the
management of this preprocessing utilization together with more advanced functionalities to
the software part (intelligence). The management of the hardware preprocessing is central-
ized by a software controller, which mediate it through simple API directly to the running
applications. Similar to OpenFlow, the controller is able to manage the preprocessing of
network traffic at a flow level, enabling applications to precisely control behavior of the
preprocessing according to the situation on the network and current needs. Utilization of
various types of hardware traffic preprocessing relieves the software processing, and there-
fore, increases total throughput of the system. Furthermore, leaving all management and
advanced processing to the software leads to high flexibility of the system. As the consid-
ered coupling of hardware and software functionality is very tight, an appropriate platform
to implement the designed concept can be a hardware accelerated network interface card
with FPGA plugged into a powerful commodity computer.

The achievable efficiency of the described acceleration approach closely depends on iden-
tification and selection of the appropriate traffic preprocessing methods for the hardware.
The selection must be based on general data needs characteristics of standard network mon-
itoring and security applications. Basic (flow based) network monitoring requires to have
some information about each packet. This information is usually extracted from headers
of the packets and payloads data are not interesting. Hardware can, therefore, extract and
aggregate interesting information from packets and send only these data into the software in
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unified form (like in [44] or [13]) instead of forwarding whole packets. Transfers of only se-
lected information results in reduced PCI Express throughput requirements and host CPU
load. On the other hand, network security and advanced monitoring applications (e. g.
application layer analysis) usually perform a deeper inspection (DPI) of interesting packets
that requires packet payload. To satisfy the needs of such applications, whole packets of
the selected (potentially interesting) flows must be sent to the software, but the rest can be
dropped. For example, detection of attacks on SSH service or monitoring of information in
HTTP headers needs only a few initial packets of each flow.

Granular (per flow) utilization management of the described forms of hardware prepro-
cessing enables for an interestingness based division of network traffic processing. Whole
packets of the most interesting traffic groups are thoroughly analyzed in the software, less
important packets are preprocessed and potentially aggregated in the hardware retaining
only key parameters and uninteresting parts of traffic are directly dropped. This leads to
controlled hardware accelerated reduction of network traffic via controlled loss of unim-
portant information. Also, it can be viewed as a form of informed data sampling that
retains the full informational value of incoming traffic. Thus, software applications process
smaller data volumes with higher information density and, therefore, the effectiveness of
CPU utilization and PCI Express bandwidth allocation is raised. On the current multicore
platforms, the CPU utilization effectiveness can be further increased by hardware division
of software bound data into multiple independent communication (DMA) channels (similar
to [44]). This division should be also managed on a per flow basis by the controller based
on applications needs.
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Figure 3.1: Cummulative distribution functions of flow sizes.

Another parameter that closely influences the achievable efficiency of the proposed accel-
eration approach are characteristics of high-speed network traffic. As software applications
manage the preprocessing of packets at a flow level, benefits achievable from each offload
rule are directly proportional to size/weight of (number of packets in) that flow. Basic infor-
mation from flow sizes measurement can be seen in figure 3.1. Each line of the graph shows
the percentage of flows that consists of fewer packets than a given number on the x-axis. On
average (red thick line) only a tenth of all network flows have more than 10 packets. Also,
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Figure 3.2: Portions of packets carried by the percentage of the heaviest flows.

virtually all flows of selected services (such as DNS and SIP) consist of a single packet. But,
figure 3.1 does not clearly say anything about the percentage of all packets carried by flows
of different sizes. It is known that high-speed network traffic has a heavy-tailed character of
flow size distribution [15, 25]. The heavy-tailed character of flow size distribution derived
from the measured values is shown in figure 3.2. The graph shows the portions of all packets
carried by the specified percentage of the heaviest flows on the network. It can be seen that
on average (red thick line) 0.1 % of the heaviest flows carry around 60 % of all packets and
1 % carry even around 85 %. An exception to the heavy-tailed distribution of flow sizes is
the DNS service. This observed heavy-tailed character of network flows has the following
potentially positive consequence for an achievable efficiency of researched approach: even
if applications select only a small percentage of flows for offload, processing of majority of
packets is still accelerated.

To summarize, the research presented in this thesis is centered around design, features,
and feasibility of a novel acceleration concept based on key ideas presented in this section
so far. Therefore, a concept of hardware accelerated flow based division and informed
reduction of network traffic manageable on-the-fly according to needs of various software
based monitoring and security applications without the reduction in their accuracy. This
researched concept has been labeled as Software Defined Monitoring – SDM.

3.2 Research Process
Initial research process that gradually transformed the SDM concept from the already de-
scribed set of functional ideas into a fully specified design of acceleration platform concept
is in steps described by publications [p2, p5, Paper1]. The most complete and detailed
description of main SDM design is provided in [Paper1], making it the cornerstone of this
thesis research. Apart from SDM description, the paper also elaborates the concept feasi-
bility by identifying its potential weak spots and their effects on the achievable performance
based on detailed analysis of various real network traffic characteristics. Furthermore, some
preliminary performance measurements are presented.

22



To further extend the deployment flexibility and acceleration potential of the designed
SDM, possibilities of High-Level Synthesis (HLS) utilization to enhance capabilities of hard-
ware are evaluated in [Paper2]. Using this approach, SDM concept can be easily extended to
accelerate even applications with specific (uncommon) network traffic preprocessing require-
ments. An example of such extension creation is described in [Paper3], where specialization
of SDM system for change-point anomaly detection method NP-CUSUM is described.

Another researched area of SDM improvements concerns approaches used in subcompo-
nents of its FPGA architecture. Generally utilizable subcomponents were preferred here,
as their optimizations do not aid only SDM implementation itself, but a broader spectrum
of accelerated networking designs can be enhanced by them. More precisely, novel architec-
tures for analysis (parsing) of packet headers [p1, Paper4] and packet classification (filtering)
[Paper5] were designed and created. Unique modular FPGA architecture of packet headers
parser is proposed in [p1]. A more detailed description, with some additional enhancements,
is provided in [Paper4]. The key idea of designed parser’s functionality is also patented by
American patent no. US 8,923,300 B2. Packet classification approach designed for needs of
SDM is based on cuckoo hashing principle [38]. Description of unique FPGA architecture
implementing the cuckoo hashing principle including its reconfiguration procedures is part
of [Paper5]. As various kinds of hash tables are commonly used in many classification and
filtering engines, effective hash functions realizations for FPGAs were also explored. CRC
functions can be applicable here, because their implementations in FPGA can utilize, in
networking architectures usually unused, DSP blocks as shown by [p3, p4].

A bit specific area of research conducted on behalf of SDM creation and assessment
revolved around the need for an FPGA card for 100 Gbps Ethernet, which was nonexistent
at the time. As part of my involvement in research of Cesnet association, I helped in
the creation of such a card and also demonstrated its working prototype to the scientific
community at FPL 2014 conference in Munich (together with already mentioned [Paper2]).
Some details about the card can be found in the paper [p6]. Mentioned Cesnet’s card was
the first working FPGA accelerated network interface card in the world, that was capable of
100 Gbps Ethernet wire-speed packet capture. Furthermore, a prototype implementation of
SDM concept, created to enable real network experiments, utilizes this FPGA card. Details
about and showcasing of the prototype make up the content of publication [p7].

Finally, a more detailed summary of the whole research around SDM is composed into
[Paper6], making it the pinnacle of this thesis. Apart from information from previous pa-
pers, it also proposes some additional SDM enhancement like auto-adaptive heavy network
flows detection heuristic and provides results of additional real network experiments.

3.3 Papers
This section contains brief descriptions and abstracts of all included papers. The description
of each paper starts with its motivation and ends with highlighted summary of its main
contributions toward the research presented in this thesis. Full texts of all the included
papers in their original formatting can be found in appendix A.
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Paper 1

Software Defined Monitoring of Application Protocols

(Appendix section A.1) The task of network traffic monitoring is one of the key concepts in
modern network engineering and security. But, currently used monitoring methods usually
provide only a very limited view of the network. Therefore, the ability to improve the
quality and flexibility of network monitoring by deeper packet inspection is very important.
This creates an issue of obtaining the additional data without significant degradation of
performance while operating with limited computational resources. Pure software and
hardware approaches to this problem have each their respective shortcomings. That is
why this paper proposes the idea of a hardware accelerator tightly coupled to a software
controller with monitoring applications as software plugins (core SDM concept). The focus
is the process of obtaining the high-quality, unsampled flow measurement data augmented
by application layer information.
The key contribution of this work is a design of the main SDM concept – a new extensible
high-speed network monitoring concept, that includes a design of a new application-specific
processor for the stateful flow measurement. Other results include assessment of the SDM
system feasibility based on the analysis of network traffic characteristics and evaluation of
the SDM prototype implementation in several use case scenarios.

Abstract

Current high-speed network monitoring systems focus more and more on the data from the
application layers. Flow data is usually enriched by the information from HTTP, DNS and
other protocols. The increasing speed of the network links, together with the time consum-
ing application protocol parsing, require a new way of hardware acceleration. Therefore
we propose a new concept of hardware acceleration for flexible flow-based application level
monitoring which we call Software Defined Monitoring (SDM). The concept relies on smart
monitoring tasks implemented in the software in conjunction with a configurable hardware
accelerator. The hardware accelerator is an application-specific processor tailored to state-
ful flow processing. The monitoring tasks reside in the software and can easily control
the level of detail retained by the hardware for each flow. This way the measurement of
bulk/uninteresting traffic is offloaded to the hardware while the advanced monitoring over
the interesting traffic is performed in the software. The proposed concept allows one to
create flexible monitoring systems capable of deep packet inspection at high throughput.
Our pilot implementation in FPGA is able to perform a 100 Gb/s flow traffic measurement
augmented by a selected application-level protocol parsing.

Paper 2

Trade-offs and Progressive Adoption of FPGA Acceleration in Network Traffic
Monitoring

(Appendix section A.2) The main motivation for the research described in this paper is
to enhance application acceleration capabilities of SDM concept proposed by the previous
paper. The aim is to strike a balance between the system throughput and its flexibili-
ty/programmability, to offer a configurable trade-off to the above, but mainly to endorse
a progressive adoption of network monitoring subtasks to the hardware accelerator, driven
solely by the needs of the networking community. With key requirements being the possi-
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bility of rapid development and deployment of new monitoring applications and simplicity
of their further speed-up by the relocation of specific processing routines directly into the
hardware accelerator.
The contributions of this work are SDM concept extensions. Firstly, by the software plugins
that enable adjustment of SDM functionality as a reaction to future network threats. And
more importantly, by the possibility of a custom preprocessing instructions definitions in
the hardware accelerator, which can redefine the nature of the acceleration itself and can be
easily implemented using HLS.

Abstract

Current hardware acceleration cores for network traffic processing are often well optimized
for one particular task and therefore provide high level of hardware acceleration. But for
many applications, such as network traffic monitoring and security, it is also necessary to
achieve rapid development cycle to provide fast response to security threats. While high
level synthesis tools allow to directly generate hardware architecture from C description,
the required level of hardware expertise is still above that of a typical network security
expert. Therefore we propose and evaluate a new concept of hardware acceleration for
flexible flow-based network traffic monitoring with support of application protocol analysis.
We leverage the existing hardware architectures for packet header parsing, classification etc.
to create a complete system which allows easy dealing with the whole family of problems in
the network traffic monitoring. The concept is called Software Defined Monitoring (SDM)
and it relies on a configurable hardware accelerator implemented in FPGA, coupled with
smart monitoring tasks running as software on general CPU. The monitoring tasks in the
software control the level of detail and type of information retained during the hardware
processing. This arrangement allows rapid application prototyping in the software, followed
by possible further shifting of the timing critical parts of the processing to the hardware
accelerator. The concept is proposed with the scalability in mind, therefore it is suitable
for different FPGA based platforms ranging from embedded single-chip solutions (such as
Zynq or Cyclone V) to high-speed backbone network monitoring boxes. Our pilot high-
speed implementation using FPGA acceleration board in a commodity server is able to
perform a 100 Gb/s flow traffic measurement augmented by a selected application-level
protocol analysis.

Paper 3

FPGA Accelerated Change-Point Detection Method for 100 Gb/s Networks

(Appendix section A.3) As computer networks are getting faster, there is a need to analyze
larger volumes of data for detection of network attacks and traffic anomalies. Therefore,
to realize real-time detection of attacks on high-speed computer networks, the detection
methods must be directly deployed in and accelerated by hardware monitoring probe. SDM
concept seems as a promising architecture for such monitoring probe, as it enables detection
methods to achieve analysis of unsampled high-speed network traffic without packet loss
thanks to the possibility of processing routines relocation directly into SDM hardware.
The main contribution of this work is hardware accelerated realization of anomaly detection
method (NP-CUSUM) for high-speed networks as hardware plugin for SDM. The key result
for this thesis is the provision of experimental results supporting the feasibility of HLS and
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SDM combination for effective acceleration of even very specific traffic analysis and anomaly
detection methods.

Abstract

The aim of this paper is a hardware realization of a statistical anomaly detection method
as a part of high-speed monitoring probe for computer networks. The sequential Non-
Parametric Cumulative Sum (NP-CUSUM) procedure is the detection method of our choice
and we use an FPGA based accelerator card as the target platform. For rapid detection
algorithm development, a high-level synthesis (HLS) approach is applied. Furthermore,
we combine HLS with the usage of Software Defined Monitoring (SDM) framework on the
monitoring probe, which enables easy deployment of various hardware-accelerated monitor-
ing applications into high-speed networks. Our implementation of NP-CUSUM algorithm
serves as hardware plugin for SDM and realizes the detection of network attacks and anoma-
lies directly in FPGA. Additionally, the parallel nature of the FPGA technology allows us
to realize multiple different detections simultaneously without any losses in throughput.
Our experimental results show the feasibility of HLS and SDM combination for effective
realization of traffic analysis and anomaly detection in networks with speeds up to 100 Gb/s.

Paper 4

Design Methodology of Configurable High Performance Packet Parser for FPGA

(Appendix section A.4) Since computer networks evolve both in terms of speed and com-
plexity, there is still a need for packet parsing modules at all points of the infrastructure.
Also, there are very different expectations on packet parsers in terms of latency, throughput
and area tradeoffs. With the recent rise of SDN, new protocols appear at an even faster
rate as before. This trend favors flexible parser architectures with a configurable set of
supported protocols, what is often solved only partially.
The main contribution of this work is the introduction of a highly configurable modular
packet parser design for FPGAs, which achieves throughputs sufficient for high-speed net-
works (hundreds of Gbps) and is usable in a wide variety of FPGA architectures including
SDM accelerator.

Abstract

Packet parsing is among basic operations that are performed at all points of a network
infrastructure. Modern networks impose challenging requirements on the performance and
configurability of packet parsing modules. However, high-speed parsers often use a signifi-
cant amount of hardware resources. We propose a novel architecture of a pipelined packet
parser for FPGA, which offers low latency in addition to high throughput (over 100 Gb/s).
Moreover, the latency, throughput and chip area can be finely tuned to fit the needs of a
particular application. The parser is hand-optimized thanks to a direct implementation in
VHDL, yet the structure is uniform and easily extensible for new protocols.
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Paper 5

Fast Lookup for Dynamic Packet Filtering in FPGA

(Appendix section A.5) The speed and complexity of networks are growing rapidly, creating
a demand for new approaches to a high-speed packet processing. One major trend is to keep
hardware simple by offloading the complexity of a control path into the software (e.g. SDN
or SDM). The offload requires the hardware to look up a piece of data (e.g. action, state)
associated with a flow key (e.g. IP address or tuple of addresses, ports, and protocol) per
each arriving packet. This is also essential for a wide variety of other existing applications
(e.g. NATs, firewalls, probes). Various approaches to fast lookup have been proposed
with commonly occurring drawbacks of poor memory utilization or slow lookup requiring
multiple memory accesses. Also, the capability of rapid on-the-fly updates of active lookup
rules is usually not addressed at all. This paper proposes a novel hardware lookup concept
designed to solve the aforementioned issues.
The main contribution of this work is the proposal of a fast lookup concept for FPGA-
oriented platforms, that provides efficient utilization of memory and logic resources. The
lookup concept has some unique features favorizing its usage in SDM – possible utilization
of external memory to store even large sets of rules and FPGA implementation of rule
reconfiguration logic enabling frequent on-the-fly updates of the active rule set.

Abstract

Rapidly growing speed and complexity of computer networks impose new requirements on
fast lookup structures which are utilized in many networking applications (SDN, firewalls,
NATs, etc.). We propose a novel lookup concept based on the well-known cuckoo hash-
ing, which can achieve good memory utilization, supplemented by a binary search tree
for offloading the colliding keys and supporting LPM lookup. We also propose a hard-
ware architecture implementing this lookup concept in the FPGA. Our solution is suitable
for lookup of the variable-length keys in 100+ Gbps networks. Memory utilization of the
proposed concept is thoroughly evaluated and it is shown that the concept is scalable to
external memory components.

Paper 6

Software Defined Monitoring of Application Protocols

(Appendix section A.6) As already mention, modern network engineering and security heav-
ily rely on the network traffic monitoring. Therefore, monitoring information of the highest
quality are required, but they can be obtained only by processing of unsampled network
traffic. While many researchers focus on harvesting knowledge from statistical flow-based
monitoring data, this paper argues that the ability to analyze application layer in the mon-
itoring process is also crucial for the improvement of the quality and flexibility of network
monitoring. Enrichment of monitoring data with added information from the applica-
tion layer (or other sources) is crucial for better detections of various network threats (e.g.
Heartbleed). Required deeper packet inspection realized with a commodity CPU has limited
performance and using solely hardware architecture leads to flexibility issues. Therefore, a
proposal of appropriate software hardware co-design concept is required. Furthermore, to
achieve practically deployable system, the concept must not neglect flexibility, ease of use
and speed of response to newly emerged problems.
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This work best summarizes the conducted research of this thesis in all its final depth. Main
contributions include interconnection of all proposed features into a single more robust SDM
concept description, detailed synthesis results about FPGA resources utilization, evaluation
of additional network security use case scenarios, extended evaluation of SDM prototype
deployment in real networks and better positioning of our research in the field thanks to
extensive related work analysis.

Abstract

With the ongoing shift of network services to the application layer also the monitoring
systems focus more on the data from the application layer. The increasing speed of the
network links, together with the increased complexity of application protocol processing,
require a new way of hardware acceleration. We propose a new concept of hardware ac-
celeration for flexible flow-based application level traffic monitoring which we call Software
Defined Monitoring. Application layer processing is performed by monitoring tasks im-
plemented in the software in conjunction with a configurable hardware accelerator. The
accelerator is a high-speed application-specific processor tailored to stateful flow processing.
The software monitoring tasks control the level of detail retained by the hardware for each
flow in such a way that the usable information is always retained, while the remaining data
is processed by simpler methods. Flexibility of the concept is provided by a plugin-based
design of both hardware and software, which ensures adaptability in the evolving world of
network monitoring. Our high-speed implementation using FPGA acceleration board in a
commodity server is able to perform a 100 Gb/s flow traffic measurement augmented by a
selected application-level protocol analysis.
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Chapter 4

Discussion and Conclusions

This chapter provides a discussion of the research presented in this thesis. It also summa-
rizes the achieved results, draws their conclusions and finally, presents possible directions
for future research.

This thesis is focused around design and evaluation of a novel concept of Software
Defined Monitoring – a software controlled (defined) hardware accelerated network traffic
processing for network monitoring and security applications. First, a study of current trends
in network monitoring, security and software defined networking, together with, an analy-
sis of existing scientific or commercially available traffic processing acceleration techniques
has been performed. Obtained information are summarized at the beginning of this thesis
(chapter 2) and have been used as an inspiration in the design of the proposed approach.
Another valuable information for the design process has been provided by performed study
of network traffic’s main characteristics. In order to obtain these characteristics and also
for later evaluation of the proposed acceleration concept, a direct access to real high-speed
network data must have been obtained. Therefore, a collaboration with Cesnet associa-
tion was established and all of the measurements presented in this thesis were conducted
in high-speed CESNET2 backbone network. CESNET2 is Czech National Research and
Educational Network (NREN) which has optical links operating at speeds up to 100 Gbps
and routes mainly IP traffic. It connects 27 institutions to the Internet and serves around
200,000 users. Finally, all specific research steps conducted to design, optimize and extend
the proposed SDM acceleration concept are presented in descriptions of selected published
papers provided in the previous chapter of this thesis.

4.1 Results
In order to evaluate the proposed SDM concept, its prototype has been implemented. The
hardware part of the prototype is realized on an accelerator network interface card from
COMBO family with a powerful Virtex-7 H580T FPGA. The FPGA firmware realizes the
main SDM acceleration functionality, such as packet header parsing and NetFlow statistics
aggregation, but also 100 Gbps Ethernet packet capture, PCI-Express and QDR external
memory interface controllers. The software is realized as an extensible flow exporter with
application specific behaviors realized as a set of plugins. This arrangement allows modifi-
cation of its functionality to the extent required by the SDM concept.
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Acceleration Evaluation

The SDM concept has been evaluated in various realistic use case scenarios in order to
measure achievable acceleration. These include the following cases:

∙ Basic NetFlow measurement. All packets from a network line must be taken into
account. Packet headers only are sent to the software by default and the software
applications adds dynamic rules to offload whole NetFlow measurement of selected
flow into the hardware accelerator.

∙ Port scan detection. This use case demonstrates a measurement that is flow-
based, yet not directly NetFlow-like. The software application observes headers of
the first several packets of each flow and installs drop rules for the subsequent packets
of selected flows. This information is typically enough to detect port scan attacks
through various methods.

∙ Heartbleed detection clearly demonstrates the need for application layer process-
ing in the network security monitoring. The software application first instructs the
accelerator to drop all non-SSL packets. Then further rules to drop packets of heavy
SSL flows are installed in the runtime because the Heartbleed attack can be detected
by observing the first few packets of each flow.

∙ HTTP header analysis. Another application layer protocol example – parsing of
HTTP headers and extraction of some interesting information (e.g. URL, host, user-
agent). HTTP traffic is dominant in current networks, therefore, acceleration of its
analysis is of high importance. Only the packets with a source or destination port 80
are sent to the software by default, others are dropped in the hardware. Furthermore,
the application adds dynamic rules to drop the packets of HTTP flows in which it
already detected and parsed the HTTP header.

∙ NetFlow measurement enriched by HTTP analysis. This case combines two
of the previous use cases. Both NetFlow exporter and HTTP parser are active at the
same time and their traffic preprocessing requirements are automatically combined
by the SDM controller.

Tables 4.1 shows the results of the SDM system testing in the described use cases.
The table shows portions of all captured packets preprocessed in the hardware by each
preprocessing method. These utilizations of hardware preprocessing lead to a reduction
of software application load displayed in table 4.2. The table shows portions of incoming
packets and bytes that are processed by software applications in each use case relative to
the state without the SDM accelerator. It also shows a percentage of flows for which a rule
was created in the hardware.

Basic NetFlow measurement is significantly accelerated by the hardware flow cache.
This way, the software application load is reduced to only a fifth of all packets. Further
acceleration rises from the fact that only header and flow records are sent to the software,
instead of complete packets. Similarly, in the Port scan scenario headers are sufficient and
the unnecessary packets are dynamically dropped (not even aggregated). Therefore, the
software does not parse packets anymore in both cases and the PCI Express bus load is
reduced to less than one percent.

Dropping the packets based on static and dynamic rules is the preferred method of
acceleration in both application layer parsing scenarios – Heartbleed detection, and HTTP
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Preprocessing method
[% of packets]

Use case None Header NetFlow Drop
NetFlow – 20.55 79.45 –
Port scan – 17.54 – 82.46
Heartbleed 4.91 – – 95.09
HTTP 22.82 – – 77.18
HTTP+NetFlow 23.34 10.56 66.10 –

Table 4.1: Usage of hardware preprocessing.

SW load [%] Flows covered
Use case None Bytes by rules [%]
NetFlow 20.66 0.98 6.37
Port scan 17.54 0.86 6.53
Heartbleed 4.91 3.77 0.95
HTTP 22.82 27.82 1.98
HTTP+NetFlow 34.02 29.00 6.04

Table 4.2: Software load using SDM, relative to the state without the SDM acceleration.

analysis. This leads to the HTTP parser load being reduced to only about a quarter of all
packets and bytes and even more significant reduction in the Heartbleed detection. When
standard NetFlow measurement is added to application protocol parsing, the load of the
software slightly rises.

Graphs in figure 4.1 show results of SDM prototype testing in the NetFlow use case in
more details. In the graphs, we can see courses of packets preprocessing ability of SDM
system during an entire day of NetFlow measurement. The majority of all received packets
(black line) are processed in the firmware flow cache (red line), leaving only a small portion
for software processing (blue line). Offloaded percentage of packets is always in the range
from 70 to 85 % of total traffic and is shown in gray shade bar at the bottom of the grid.

In figure 4.2 the trade-off in CPU load is examined, since the management of rules in
SDM controller represents an additional load on the CPU. The effect of SDM acceleration
on CPU utilization savings is shown in the most difficult of tested use cases – NetFlow
measurement coupled with HTTP analysis. The left half of the graph shows measured
CPU load with enabled SDM (after initial stabilization), right half shows CPU load after
SDM disabling (i. e. all processing is done on CPU). According to table 4.2, the software
load in this use case is up to one-third of received packets and bytes when using SDM.
This perfectly corresponds to the observed increase in CPU load for packet processing
(red line) from 20 % to 60 % after SDM disabling. However, the SDM controller brings
some additional overhead (blue line) from configuration of the hardware accelerator and
aggregation of the applications requests (rules). In the end, total CPU load is 2-times lower
when using SDM (black line). This graph also suggests that SDM is best suited for highly
advanced software tasks which consume significant amount of CPU resources.
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Figure 4.1: 24 hours NetFlow measurement with SDM.
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Figure 4.2: CPU load in HTTP and NetFlow use case with and without SDM support.

FPGA Resources

Implemented high-speed SDM firmware runs at 200 MHz and occupies less than half of the
available Virtex-7 H580T resources. A closer look at the FPGA resources requirements is
presented in table 4.3. Using the same SDM core with a data width of 512 bits and through-
put of 100 Gbps, 3 different FPGA architectures for cards with 3 different arrangements of
Ethernet ports have been created: one 100 GbE port, two 40 GbE ports and eight 10 GbE
ports. In addition to the high-performance 100 Gbps architecture, an analysis of the SDM
core with narrower data width is also provided. These versions can be used in applications
with lower throughput requirements, e.g. in embedded 1 or 10 Gbps probes. Note that
the results for data widths other than 512 bits were obtained by simple downscaling of the
SDM core and further optimizations are certainly possible in these cases.
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Firmware/Module Regs LUTs Throughput
Complete SDM 197 758 249 214 1×100 Gbps

134 172 178 984 2×40 Gbps
184 084 222 745 8×10 Gbps

SDM core 512 b 30 497 51 333 100 Gbps
256 b 25 866 42 793 50 Gbps
128 b 23 534 39 006 25 Gbps
64 b 22 384 37 233 12.5 Gbps
32 b 21 908 36 803 6.25 Gbps

Virtex-7 H580T FPGA 725 600 362 800

Table 4.3: Resources of the SDM firmware

Instruction Regs LUTs
NetFlow (handmade VHDL) 1754 325
NetFlow 1846 824
NetFlow Extended 2070 1113
TCP Flag Counters 0 1046
Timestamp Diff 5199 2556
Change-Point Detection 5296 3919

Table 4.4: Resources of the instruction blocks

The feasibility of the SDM acceleration extensibility by application specific preprocess-
ing instructions implemented using HLS is demonstrated by table 4.4. It shows the resource
utilization of several selected instructions:

∙ NetFlow instruction is used for standard NetFlow aggregation. Its execution in-
creases flow packet and byte counters, updates flow end timestamp and computes
logical OR of the observed TCP flags.

∙ NetFlow Extended instruction has the same basic functionality as NetFlow. In
addition, it stores TCP flags of the first five packets, what may become useful for
analysis of TCP handshake or for detection of DoS attacks.

∙ TCP Flag Counters instruction performs increment of counters of individual ob-
served TCP flags. Information from this aggregate can be used for various advanced
flow analyses.

∙ Timestamp Diff instruction maintains records of inter-arrival times of the first
eleven packets of the flow. These times can be used as network discriminators for
flow-based classification or for identification of application protocol.

∙ CPD instruction (Change-Point Detection) shows implementation of more complex
operation. CPD is a specific algorithm designed to detect network anomalies.

Extra resources required by these additional instructions are relatively small, compared to
the whole firmware. Furthermore, a comparison between high-level synthesis and handmade
implementation can be seen from the first two rows of the table. Handmade implementation
occupies less than a half of LUTs and a bit fewer registers compared to HLS result. On
the other hand, the creation of C implementation of the instruction and its subsequent
automatic synthesis to HDL is much faster and simpler than HDL implementation.
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4.2 Conclusions
From the results presented in the previous section, it can be concluded that the thesis
confirmed the initial research hypothesis formulated in 1.1. Utilization of the designed SDM
acceleration concept, indeed, shows a considerable increase in performance and information
quality of various monitoring and security applications. Also, all defined research sub-goals
has been successfully completed.

The main contribution of this thesis is the design of a brand-new concept of software
controlled hardware acceleration of various monitoring and security applications called Soft-
ware Defined Monitoring (SDM) that:

1. considerably increase achievable total performance or obtained level of details;

2. is flexible enough to aid wide range of tasks and applications;

3. can be easily utilizable without the need for application specific hardware changes,
but also provides means for their usage to further increase performance;

4. is deployable in the fastest of the current high-speed networks.

Apart from the main contribution, a few additional general contributions can be derived
from the proposed SDM concept and related research. They include:

∙ Detailed analysis of various characteristics of real high-speed network traffic.

∙ Design of a brand-new resource effective FPGA parser of packet headers with unique
easily extensible modular architecture useful not only in SDM.

∙ Design of a novel high-throughput FPGA packet classification (filtering) architec-
ture of the cuckoo hashing principle including unique on-chip realizations of its rule
reconfiguration procedures.

∙ Exploration of effective CRC (XOR trees) based hash functions implementation pos-
sibilities using FPGA DSP blocks.

4.3 Deployment and Usage
As already mentioned, SDM concept has been tested in cooperation with Cesnet associa-
tion using data from their backbone network. Promising acceleration results achieved by
implemented SDM prototype (section 4.1) have sparked Cesnet’s interest in potential de-
ployment of the system. Cesnet’s activities include protection of their network perimeter
based on flow monitoring of traffic using accelerated probes on all peripheral high-speed
links of their network. SDM can help to enhance the level of details retained in collected
flow records by enabling execution of additional packet analyses on those probes (e. g.
application layer processing or deep packet inspection). The process of deployment of SDM
into Cesnet’s productional network monitoring infrastructure is currently ongoing.

Through technology transfer agreement, Netcope Technologies have also shown interest
in commercial applications of SDM. Netcope Technologies specializes in providing hardware
accelerated high-speed and low latency network solutions. Their portfolio includes various
network monitoring as well as hardware accelerated products. SDM is used as a basis for
their commercially available Netcope Session Filter (NSF) [32]. NSF is a session-oriented
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packet capture solution that uses hardware acceleration of per-packet processing and flow-
based stateful filtering. It enables software applications to leverage hardware preprocessing
of network flows and to identify flows of interest for further software processing.

Finally, various research activities and projects take advantage of SDM concept. In
research project Modern Tools for Detection and Mitigation of Cyber Criminality on the New
Generation Internet (VG20102015022) by Ministry of the Interior of the Czech Republic,
first brief exploration of SDM utilization potential for lawful interception (LI) probes was
performed and proven beneficial. Subsequently, research project Smart Application Aware
Embedded Probes (VI20152019001) by Ministry of the Interior of the Czech Republic has
been started. Its main goal is to create advanced embedded LI probes for 1 and 10 Gbps
networks based on SDM acceleration of application layer processing.

4.4 Future Work
As speeds of computer networks are constantly raising, there is always a need for further
speed-ups of SDM firmware. Standard of 400 Gbps Ethernet is expected within a year, with
1 Tbps Ethernet following shortly after. To accommodate such speeds, new interesting
challenges arise in FPGA designs. One of the main being the widening of internal data
path buses to such extent that threat of serious performance degradation from aliasing and
alignment of the shortest frames seems unavoidable. To tackle this challenge, we propose
a novel design method for the description of very wide buses which enable processing of
multiple transactions on a bus per clock cycle (data word) [p8]. This method can be further
refined and subsequently used to create SDM firmware (and its FPGA components) for even
faster networks. Exploration of SDM potential in 400 Gbps networks should be a part of
research project VI20172020064 by Ministry of the Interior of the Czech Republic.

An opposite approach can prove to be also interesting for further research – exploration
of SDM usage potential in slower networks. This seems promising because various system
on chip (SoC) architectures combining FPGA with CPU cores on a single chip are more
and more common. Such SoCs are perfectly suited for creation of small embedded network
devices based on SDM concept with SDM firmware and software parts tightly integrated into
a single chip. Thanks to SDM acceleration, the performance of these embedded devices can
prove to be sufficient for 1, 10 or even 40 Gbps networks. Thus, they would provide cheaper
alternatives to conventionally used servers with network interface cards. Exploration of this
research direction has already started as part of mentioned research project VI20152019001
by Ministry of the Interior of the Czech Republic.

Apart from retargeting to different network speeds, further possibilities of SDM deploy-
ment flexibility can be also explored. For example, the feasibility of SDM utilization in
additional new use case scenarios can be evaluated. One of the main promising areas is
acceleration of more complex IDS like Snort or Suricata [36] as a whole, not only specific
threat detection methods. Another interesting example is a transformation of the whole
SDM firmware description into some higher-level language. This would enable even easier
adjustments of SDM firmware for various application-specific accelerations, thus enabling
further speed-ups in many cases. P4 language [2] is becoming more and more promising in
this area, especially after direct FPGA firmware generation from P4 has been introduced
in [1]. Exploration of P4 description feasibility for SDM firmware has already started as
part of research project TH02010214 by Technology Agency of the Czech Republic.

36



Bibliography

[1] Pavel Benáček. Generation of High-Speed Network Device from High-Level
Description. PhD thesis, Faculty of Information Technology, Czech Technical
University in Prague, Czech Republic, 2017. URL:
https://www.fit.cvut.cz/sites/default/files/PhDThesis-Benacek.pdf.

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker.
P4: Programming protocol-independent packet processors. SIGCOMM Computer
Communication Review, 44(3):87–95, July 2014. ISSN: 0146-4833.

[3] J.D. Case, M. Fedor, M.L. Schoffstall, and J. Davin. Simple network management
protocol (SNMP). Request for Comments (RFC) 1157, Internet Engineering Task
Force, May 1990. URL: http://www.ietf.org/rfc/rfc1157.txt.

[4] Alisha Cecil. A summary of network traffic monitoring and analysis techniques.
Supervisor: Prof. Raj Jain, CSE WU in St. Louis, St. Louis, USA, 2006. URL:
http://www1.cse.wustl.edu/~jain/cse567-06/net_monitoring.htm.

[5] Cisco DocWiki. Internetworking technology handbook: Security technologies. Cisco,
October 2012. URL: http://docwiki.cisco.com/wiki/Security_Technologies.

[6] Cisco Networking Academy. CCNA Exploration Course Booklet: Network
Fundamentals, Version 4.0. Course Booklets. Cisco Press, Indianapolis, USA,
September 2009. ISBN: 978-1-58713-243-8.

[7] B. Claise. Specification of the IP flow information export (IPFIX) protocol for the
exchange of IP traffic flow information. Request for Comments (RFC) 5101, Internet
Engineering Task Force, January 2008. URL: http://www.ietf.org/rfc/rfc5101.txt.

[8] B. Claise. Cisco systems NetFlow services export version 9. Request for Comments
(RFC) 3954, Internet Engineering Task Force, October 2004. URL:
http://www.ietf.org/rfc/rfc3954.txt.

[9] Benoit Claise and Ralf Wolter. Network Management: Accounting and Performance
Strategies. Cisco Press, 2006. ISBN: 1-587-05198-2.

[10] ClearFoundation. l7-filter. Online, October 2013. URL:
http://l7-filter.clearos.com/.

[11] Frederic J. Cooper, Chris Goggans, John K. Halvey, Larry Hughes, Lisa Morgan,
Karanjit Siyan, William Stallings, and Peter Stephenson. Implementing Internet
Security. New Riders Publishing, Indianapolis, USA, June 1995. ISBN: 1-562-05471-6.

37

https://www.fit.cvut.cz/sites/default/files/PhDThesis-Benacek.pdf
http://www.ietf.org/rfc/rfc1157.txt
http://www1.cse.wustl.edu/~jain/cse567-06/net_monitoring.htm
http://docwiki.cisco.com/wiki/Security_Technologies
http://www.ietf.org/rfc/rfc5101.txt
http://www.ietf.org/rfc/rfc3954.txt
http://l7-filter.clearos.com/


[12] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) specification. Request
for Comments (RFC) 2460, Internet Engineering Task Force, December 1998. URL:
http://www.ietf.org/rfc/rfc2460.txt.

[13] Pavel Čeleda, Milan Kováčik, Tomáš Koníř, Vojtěch Krmíček, Petr Špringl, and
Martin Žádník. FlowMon probe. Technical Report 31/2006, CESNET, Prague,
December 2006.

[14] Endace Technology Limited. DAG packet capture cards for packet monitoring tools,
packet sniffers. Online, 2016. URL:
https://www.endace.com/endace-dag-high-speed-packet-capture-cards.html.

[15] Cristian Estan and George Varghese. New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice. ACM Transactions on
Computer Systems, 21(3):270–313, August 2003. ISSN: 0734-2071.

[16] M. Forconesi, G. Sutter, S. Lopez-Buedo, and J. Aracil. Accurate and flexible
flow-based monitoring for high-speed networks. In 23rd International Conference on
Field Programmable Logic and Applications, pages 1–4. IEEE, September 2013. ISBN:
978-1-4799-0004-6.

[17] Francesco Fusco and Luca Deri. High speed network traffic analysis with commodity
multi-core systems. In Proceedings of the 10th ACM SIGCOMM Conference on
Internet Measurement, IMC ’10, pages 218–224, New York, NY, USA, 2010. ACM.
ISBN: 978-1-4503-0483-2.

[18] IEEE 802.3 Ethernet Working Group. IEEE 802.3 industry connections ethernet
bandwidth assessment. Technical report, IEEE, San Diego, CA, USA, 2012. URL:
http://www.ieee802.org/3/ad_hoc/bwa/BWA_Report.pdf.

[19] IEEE 802.3 Ethernet Working Group. IEEE P802.3bs: 200 Gb/s and 400 Gb/s
ethernet task force. IEEE, May 2016. URL: http://www.ieee802.org/3/bs/.

[20] Ryszard Erazm Jurga and Miłosz Marian Hulbój. Packet sampling for network
monitoring. Technical Report CH-1211, CERN – HP Procurve openlab project,
Geneva, Switzerland, December 2007.

[21] Toshihiro Katashita, Yoshinori Yamaguchi, Atusi Maeda, and Kenji Toda.
FPGA-based intrusion detection system for 10 gigabit ethernet. IEICE Transactions
on Information and Systems, E90-D(12):1923–1931, 2007. ISSN: 1745-1361.

[22] Martin Košek and Jan Kořenek. Flowcontext: Flexible platform for multigigabit
stateful packet processing. In International Conference on Field Programmable Logic
and Applications, pages 804–807. IEEE, 2007. ISBN: 978-1-4244-1059-0.

[23] Jan Kořenek. Fast Regular Expression Matching Using FPGA. PhD thesis, Faculty of
Information Technology, Brno University of Technology, Czech Republic, 2010. URL:
http://www.fit.vutbr.cz/study/DP/PD.php?id=162.

[24] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach
Featuring the Internet. Addison Wesley, Boston, USA, first edition, July 2000. ISBN:
0-201-47711-4.

38

http://www.ietf.org/rfc/rfc2460.txt
https://www.endace.com/endace-dag-high-speed-packet-capture-cards.html
http://www.ieee802.org/3/ad_hoc/bwa/BWA_Report.pdf
http://www.ieee802.org/3/bs/
http://www.fit.vutbr.cz/study/DP/PD.php?id=162


[25] Kun-chan Lan and John Heidemann. A measurement study of correlations of internet
flow characteristics. Computer Networks, 50(1):46–62, January 2006. ISSN: 1389-1286.

[26] Liberouter / Cesnet TMC Group. NetCOPE. Online, January 2014. URL:
https://www.liberouter.org/technologies/netcope/.

[27] Liberouter / Cesnet TMC Group. Hanic. Online, July 2012. URL:
https://www.liberouter.org/technologies/hanic/.

[28] Petr Matoušek. Síťové aplikace a správa sítí: Měření provozu na síti pomocí NetFlow.
FIT VUT v Brně, Brno, 2012.

[29] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. Compiling PCRE to FPGAfor
accelerating SNORT IDS. In Proceedings of the 3rd ACM/IEEE Symposium on
Architecture for Networking and Communications Systems, ANCS ’07, pages 127–136,
New York, NY, USA, 2007. ACM. ISBN: 978-1-59593-945-6.

[30] J. Naous, G. Gibb, S. Bolouki, and N. McKeown. NetFPGA: Reusable router
architecture for experimental research. In Proceedings of the ACM Workshop on
Programmable Routers for Extensible Services of Tomorrow, pages 1–7. ACM, 2008.
ISBN: 978-1-60558-181-1.

[31] Napatech A/S. The Napatech NAC - designed to accelerate your PCAP solution.
Online, 2016. URL: https://www.napatech.com/products/napatech-nac/.

[32] Netcope Technologies. NSF-100G2: Netcope technologies session filter. Product brief,
Netcope Technologies, a. s., Brno, January 2017.

[33] Stephen Northcutt, Lenny Zeltser, Scott Winters, Karen Kent, and Ronald W.
Ritchey. Inside Network Perimeter Security. Sams Publishing, Indianapolis, USA,
second edition, March 2005. ISBN: 0-672-32737-6.

[34] ntop. nDPI. Online, 2014. URL: http://www.ntop.org/products/ndpi/.

[35] ONF Market Education Committee. Software-defined networking: The new norm for
networks. ONF white paper, Open Networking Foundation, Palo Alto, California,
USA, 2012. URL: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/white-papers/wp-sdn-newnorm.pdf.

[36] Open Information Security Foundation. Suricata: Open source IDS / IPS / NSM
engine. Online, 2016. URL: https://suricata-ids.org/.

[37] Open Networking Foundation. OpenFlow switch specification: Version 1.3.0. ONF
OpenFlow spec, ONF, Palo Alto, California, USA, June 2012.

[38] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Algorithms – ESA
2001, volume 2161 of Lecture Notes in Computer Science, pages 121–133, Aarhus,
Denmark, 2001. Springer. ISBN: 3-540-42493-8.

[39] J. Postel. User datagram protocol. Request for Comments (RFC) 768, Internet
Engineering Task Force, August 1980. URL: http://www.ietf.org/rfc/rfc768.txt.

[40] J. Postel. Internet protocol. Request for Comments (RFC) 791, Internet Engineering
Task Force, September 1981. URL: http://www.ietf.org/rfc/rfc791.txt.

39

https://www.liberouter.org/technologies/netcope/
https://www.liberouter.org/technologies/hanic/
https://www.napatech.com/products/napatech-nac/
http://www.ntop.org/products/ndpi/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://suricata-ids.org/
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc791.txt


[41] J. Postel. Transmission control protocol. Request for Comments (RFC) 793, Internet
Engineering Task Force, September 1981. URL:
http://www.ietf.org/rfc/rfc793.txt.

[42] J. Quittek, T. Zseby, B. Claise, and S. Zander. Requirements for IP flow information
export (IPFIX). Request for Comments (RFC) 3917, Internet Engineering Task Force,
October 2004. URL: http://www.ietf.org/rfc/rfc3917.txt.

[43] Snort Team. Snort – network intrusion detection & prevention system. Online, Cisco
and/or its affiliates, 2014. URL: http://www.snort.org/.

[44] The Liberouter Project Team. Hashing network interface card handbook.
Version 3.0.3, September 2014. URL: http://www.liberouter.org/
package_releases/hanic-current/hanic-combov2-handbook.html.

[45] Michiel Uithol and Vincent van Kooten. Network monitoring based on flow
measurement techniques. SURFnet research on networking, University of Twente,
Enschede, The Netherlands, 2005.

[46] Ladislav Varga. Flexible network flow measurement. Master’s thesis, Faculty of
Information Technology, Brno University of Technology, Czech Republic, 2010. URL:
http://www.fit.vutbr.cz/study/DP/DP.php.en?id=9407.

[47] Nicholas Weaver, Vern Paxson, and Jose M. Gonzalez. The shunt: An FPGA-based
accelerator for network intrusion prevention. In Proceedings of the 15th international
symposium on Field programmable gate arrays, pages 199–206, New York, NY, USA,
2007. ACM. ISBN: 978-1-59593-600-4.

[48] Nigel Williams, Sebastian Zander, and Grenville Armitage. A preliminary
performance comparison of five machine learning algorithms for practical IP traffic
flow classification. SIGCOMM Computer Communication Review, 36(5):5–16, October
2006. ISSN: 0146-4833.

[49] Xilinx Inc. SDNet Development Environment: Expanding Programmability from the
Control to the Data Plane. Online, 2014. URL:
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html.

[50] Curtis Yu, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang, and
Harsha V. Madhyastha. Flowsense: Monitoring network utilization with zero
measurement cost. In Proceedings of the 14th international conference on Passive and
Active Measurement, pages 31–41, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg. ISBN: 978-3-642-36515-7.

[51] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement with
OpenSketch. In Proceedings of the 10th USENIX conference on Networked Systems
Design and Implementation, pages 29–42. ACM, April 2013. ISBN: 978-1-931971-00-3.

[52] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore. NetFPGA SUME:
Toward 100 gbps as research commodity. IEEE Micro, 34(5):32–41, Sept 2014. ISSN:
0272-1732.

40

http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc3917.txt
http://www.snort.org/
http://www.liberouter.org/package_releases/hanic-current/hanic-combov2-handbook.html
http://www.liberouter.org/package_releases/hanic-current/hanic-combov2-handbook.html
http://www.fit.vutbr.cz/study/DP/DP.php.en?id=9407
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html


Appendix A

Included Papers

41



A.1 Paper 1
Software Defined Monitoring of Application Protocols

42



Software Defined Monitoring of Application
Protocols
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Abstract—Current high-speed network monitoring systems
focus more and more on the data from the application layers.
Flow data is usually enriched by the information from HTTP,
DNS and other protocols. The increasing speed of the network
links, together with the time consuming application protocol pars-
ing, require a new way of hardware acceleration. Therefore we
propose a new concept of hardware acceleration for flexible flow-
based application level monitoring which we call Software Defined
Monitoring (SDM). The concept relies on smart monitoring tasks
implemented in the software in conjunction with a configurable
hardware accelerator. The hardware accelerator is an application-
specific processor tailored to stateful flow processing. The mon-
itoring tasks reside in the software and can easily control the
level of detail retained by the hardware for each flow. This way
the measurement of bulk/uninteresting traffic is offloaded to the
hardware while the advanced monitoring over the interesting
traffic is performed in the software. The proposed concept allows
one to create flexible monitoring systems capable of deep packet
inspection at high throughput. Our pilot implementation in FPGA
is able to perform a 100 Gb/s flow traffic measurement augmented
by a selected application-level protocol parsing.

I. INTRODUCTION

The task of network traffic monitoring is one of the
key concepts in modern network engineering and security.
A golden standard in the network monitoring is the basic
NetFlow measurement. In NetFlow, the monitoring device
collects basic statistics about the IP flows and reports them to
a central storage collector in the Cisco NetFlow v5 protocol.
NetFlow measurement is a stateful process, because for each
packet the flow state record is updated in the device (e.g.
counters are incremented), and only the resulting numbers are
exported. This also implies that some information is lost in the
monitoring process and that the flow collector (where further
data processing is usually done) has a limited view on the
network. The ability to analyze the application layer in the
monitoring process is, therefore, very important in order to
improve the quality and flexibility of network monitoring.

The evolution of the NetFlow protocol led to the IPFIX
protocol [1]. IPFIX allows for the extension of the exported
flow record for any other additional information. While IPFIX
solves the task of transmitting the additional data, there re-
mains the issue of obtaining the additional data. This process
inevitably requires additional computational resources.

Pure software implementation of the application level flow

monitoring is certainly possible, yet its throughput is limited
mainly by the performance of commodity processors. It should
be noted that every new packet is inevitably a cache miss in
the CPU. Pure hardware implementation, on the other hand,
has poor flexibility because the complex protocol parsers are
very hard to implement in Hardware Description Languages.
Moreover, the evolving nature of network threats and security
issues implies the need for a fast change of the monitoring
process, which is much more difficult for the hardware. These
thoughts lead us to the idea of a hardware accelerator tightly
coupled to a software controller with monitoring applications
as software plugins.

We focus on the process of obtaining the high-quality,
unsampled flow measurement data augmented by application-
layer information. Our key idea is that even the advanced
application-layer processing usually needs to observe only
some flows containing only a small fraction of traffic (such
as DNS, with typically no more than 1 % of all packets), or
even only a small amount of packets within each of these flows
(such as HTTP, typically carrying the HTTP header in the first
few packets after the TCP handshake).

We employ a hardware accelerator to perform the offload
of the flow measurement for the bulk traffic that is not (or no
longer) interesting to the application-layer processing tasks.
Also, the hardware accelerator partially has the role of the
basic NIC - network interface card. Therefore, it passes a small
fraction of the packets intact to the monitoring software and
performs flow measurement of the rest.

The use of measurement offload can be easily controlled on
a per flow basis by the monitoring software and adjusted to
its current needs. Offload control is realized through unified
interface by dynamically specifying a set of rules. These
rules are then installed into the hardware accelerator to deter-
mine interestingness of individual network flows for advanced
software processing. Thanks to this unified control interface
the proposed system is very flexible and can be used for a
wide range of different network monitoring applications. The
whole system is designed to be easily extensible by monitoring
plugins at the software side. Each monitoring application (in
the form of SDM plugin) has three conceptual interfaces: input
packets, output measured values, and the control interface to
express interest and disinterest in particular fractions of the
network traffic. We demonstrate the SDM system on four dif-
ferent monitoring applications: NetFlow measurement, HTTP
parsing, a combination of both and DNS protocol parsing.978-1-4799-3360-0/14/$31.00 c©2014 IEEE
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The contribution of our work is three-fold:

• Design of a new concept of extensible high speed net-
work monitoring system. This includes a design of a
new application-specific processor for the stateful flow
measurement and its controller software. (Chapter II)

• Analysis of network traffic to show the possibilities for
the hardware acceleration. Assessment of the system
feasibility is based on the analysis. (Chapter III)

• Implementation and evaluation of the system in several
use cases. (Chapter IV)

II. SYSTEM DESIGN

A standard model of the flow measurement widely used
in 10 Gbps networks relies on a hardware network card per-
forming a packet capture, sometimes enhanced by a packet
distribution among several CPU cores. The captured traffic is
then sent over the host bus to the memory, where packets are
processed by the CPU cores. This model cannot be applied to
100 Gbps networks due to two major performance bottlenecks.
First, the throughput of today’s PCI Express busses is insuf-
ficient. The second bottleneck lies in limited computational
power which is insufficient for advanced monitoring tasks. We
propose a new acceleration model which overcomes the above-
mentioned bottlenecks by a well-defined hardware/software co-
design. The main idea is to give the hardware the ability to
handle basic traffic processing. Only a granular control of the
HW and some more advanced tasks are left for the software.

The basic idea of acceleration by the SDM system is
based on a finely controlled data loss and data distribution
realized by hardware preprocessing of the network traffic. The
preprocessing is fully controlled by the software applications.
Therefore, the first few packets of a new flow are sent to the
software, which decides which type of hardware preprocessing
will be used for the following packets of the flow. There are
two basic options for the hardware acceleration:

• It is possible to extract the interesting data from
packets in the hardware and send them only to the
software in a predefined format, which we call a
Unified Header (UH). Then only a few bytes for each
packet are transferred through the PCI Express bus
and the CPU has a lower load too because the packet
parsing is done in the hardware.

• Furthermore, packets can be aggregated to NetFlow
records directly in the HW which brings even higher
performance savings.

Some advanced monitoring applications perform deep packet
inspection on interesting fragments of traffic and, therefore,
have to analyze the whole packets. For example, extraction
of information from HTTP headers needs several first packets
for each HTTP flow. Therefore, the proposed system provides
a control over the hardware packet preprocessing at the flow
level granularity.

The top-level conceptual scheme of the proposed SDM
system is shown in Fig. 1. Data paths are represented by black
arrows and control paths by red arrows. The system is com-
posed of two main parts (firmware and software) connected

together through the PCI Express bus. The processing of all
incoming packets starts with the header parsing and extraction
of interesting metadata (Header Field Extractor - HFE block).
Extracted metadata are then used to classify the packet based
on a software defined set of rules (Classifier block). Each
rule identifies one specific flow and defines a method of
hardware preprocessing of its packets. More precisely, each
rule specifies the type of packet preprocessing and the target
software channel. Packets can be processed in a hardware flow
cache, dropped, trimmed or sent to the software unchanged or
in the form of a Unified Header (UH Generator block). Flow
records in the hardware flow cache are periodically exported
to the software. Sending the data to the software is realized
by the direct memory accesses (DMA) over the PCI Express
bus. There are multiple independent logical DMA channels
with the corresponding DMA buffers in the host RAM to aid
parallel processing by a multicore CPU.

The data can be stored in DMA buffers in the form of
whole packets, Unified Headers or flow records. This data can
be monitored by the set of user specific software applications
such as the flow exporter which analyzes the received data
and exports the flow records to the collector. User applications
can read the data from the selected DMA channels and can
also specify which types of traffic they want to inspect and
which flows can be preprocessed in hardware. For example,
an HTTP header parser needs to inspect every packet in the
HTTP flow until it acquires the required information (e.g.
the URL). Definitions of interesting and uninteresting bulk
traffic from all applications are passed to the SDM controller.
The SDM controller aggregates the definitions into rules and
configures the firmware behavior in order to achieve the
maximal possible reduction of the traffic resulting in maximal
hardware acceleration.
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Fig. 1. Conceptual top-level scheme of SDM system

A different view of the proposed SDM system is shown as a
layered scheme in Fig. 2. The SDM system is designed to work
on a hardware accelerated network board with an FPGA chip.
Our implementation uses a custom made board with 100 Gb/s
Ethernet interface and Virtex-7 FPGA with the NetCOPE
platform [2] realizing the basic network traffic capture and
communication with the software (DMA). The core of the
FPGA firmware is realized by the firmware part of the SDM
system described earlier, which is able to process the incoming
traffic at full speed of the network link. The software layer of
the SDM includes means for the basic configuration of the
firmware, network data transfer (black Data Path) and control
of SDM firmware (red Control Path). Data can be received
from the firmware in the standard PCAP or the proprietary SZE
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format. On the top of the SDM system, there are individual
user specific software applications.

 Hardware Layer
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 Software Defined Monitoring
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PCAP SDM
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Fig. 2. Layered model of SDM acceleration system

Fig. 3 shows a top level implementation scheme of the
SDM firmware. The main firmware functionality is realized
by the processing pipeline of four modules: Header Field
Extractor (HFE), Search, Update and Export. This pipeline
processes the incoming network traffic and creates an out-
going data flow for the software. Incoming frames do not
flow directly through the processing pipeline, but are rather
stored in a parallel FIFO. The processing pipeline uses only
metainformation extracted from frames headers (UH). Whole
software control of the processing pipeline is managed by the
SW Access module which configures preprocessing rules used
in the Search unit. In order to achieve sufficient capacity for
rules and flow records, the firmware stores them in external
memory (Table1 and Table2). Access to the external memory
is managed by Memory Arbiter.
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Fig. 3. Detailed firmware scheme

As already described, the SDM firmware functionality is
realized by 6 main modules:

• Header Field Extractor analyzes headers of incom-
ing frames and extracts interesting information from
them, especially fields that clearly identify network
flows. In order to identify flows we use the classical

5-tuple: source and destination IP addresses, source
and destination TCP/UDP port numbers and a protocol
number. We use our own flexible low latency modular
implementation of the header parser [3].

• Search assigns an action to every processed frame
based on its flow identifier. An action assignment is
realized using a set of software defined rules in the
form of a flow identifier paired with action (Table1
in external memory). Management of the rule set is
possible through a control interface capable of an
atomic add, remove or update of the rules. A frame
classification by the Search unit works in 2 steps.
Firstly, the frames are assigned with an action based
on a small set of relatively static rules on flow groups
(e.g. flows with source port 80). Secondly, the action
from the first step can be further particularized by a
set of dynamic rules for individual flows. Standardly,
user applications set up rules of the first type during
startup and then they manage the set of second type
rules during traffic processing.

• Update manages the records for flows in Table2. It
mainly actualizes their values based on input UH and
its action. The action for every UH has the address
of the record and a specification of the operation
(aggregation type). Update of the record is realized
by two memory operations: read actual values of
the record fields and write back the updated values.
Another operation is the export of the record values,
possibly followed by the reset of the record values
in the memory. Records can be exported not only at
the flow end but also in a periodical manner, so that
the software applications can have actual information
about hardware monitored flows. Control of memory
allocation for records and their periodical export is
realized by SDM control software.
In the first version of SDM we implement only the
simple NetFlow aggregation as the record update op-
eration – increase packets/bytes counters, update flow
start/end timestamp and logical or of TCP flags. It is
however possible to support more types of records and
operations in the future.

• Export pairs together corresponding UH transaction
with frame data from FIFO memory. Then it chooses
the DMA channel and format for the data based on
action assigned by the Search module.

• SW Access is the main access point into the SDM
firmware from the software. Its primary function is
to manage the rules and to initiate the export of the
flow records based on software commands. Besides, it
contains all state and control registers. It also enables
direct software access into external memory (still used
only for debug).

• Memory Arbiter provides and manages access to the
external memory. Its main responsibilities are proper
interleaving of memory accesses and routing of read
data between units. It also ensures atomicity and
deterministic succession of all memory operations.

The network traffic preprocessing by firmware is controlled
from the software. The core of the controlling software are the
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monitoring applications. Each monitoring application has the
form of an SDM plugin. The main input to the plugin is the
data path carrying the packets, UHs or flow records. The plugin
output is the data that the plugin has parsed/detected/measured.
This output data is then added to the exported IPFIX flow
record. The third interface of the monitoring application is the
interface to the SDM Controller.

From the application view, the SDM controller accepts the
preprocessing requests from multiple applications, aggregates
them and administers them into the firmware. In order to
achieve that, the controller performs the following operations:

• On the fly management of the set of applications
currently controlling the firmware preprocessing.

• Preprocessing requests reception from applications.

• Storing and aggregation of the received preprocessing
rules (requests).

• Timed expiration of application rules.

The aggregation of preprocessing rules is based on different
degrees of data reduction. Ordered from the lowest degree
of data reduction the preprocessing types are: none (whole
packets), partial (UH), complete (flow record) and elimination
(packet drops). Therefore, aggregation of rules in the SDM
controller is done simply by the selection of the lowest
preprocessing degree (highest data preservation) for particular
flows which satisfy the information level requirements of all
applications.

When configuring the firmware, the SDM controller com-
municates directly with the SW Access module. In order
to maintain a proper functionality of SDM firmware, the
controller must carry out the following operations:

• Management of rules activated in the firmware (rule
add/delete/update) based on the application demands.

• Cyclic export of active flow records computed in the
firmware flow cache.

• Allocation of records in the firmware flow cache.

III. PROOF OF CONCEPT

This chapter analyzes the proposed concept. It is divided
into three sections. The first section proposes several possibly
weak points of the SDM concept. The second section presents
an analysis of network traffic. The aim of the analysis is to
show whether the SDM concept is a sound idea. The third
section draws conclusions about the presented analysis and
addresses all of the proposed weak points.

A. Potential Weak Points

From the presented SDM concept one can infer several
potential weak spots in the system design. Their existence
can (in bad circumstances) lead to lower effectiveness of
hardware preprocessing usage and therefore to a low degree of
achieved application acceleration. Major recognized potential
weaknesses of the SDM design are the following:

• Long duration of the feedback loop. In order to
maintain a throughput of 100 Gbps and more, the hard-
ware processing of packets cannot wait for software

decisions – the packets must be processed on the fly.
Therefore, the action chosen for the flow does not
affect a certain amount of leading packets from this
flow. If a high portion of flows on the monitored link
have an extremely short duration, the acceleration ratio
achievable from the usage of SDM declines.

• Limited firmware capacity. Because of the fine gran-
ularity of preprocessing control, the firmware must
store some information about each known flow. The
capacity of table with search rules or flow records
in the firmware (Table1 or Table2 in Fig. 3) can be
restrictive. An extremely high number of concurrent
flows on the network can restrict the preprocessing
usage to only a small portion of the flows. Negative
effects of this restriction can be significantly reduced
by an adequate selection of preprocessed flows. Suit-
ability of the flow is given by the achievable reduction
of its data during preprocessing. It is generally desir-
able to prefer the preprocessing of large (heavy) flows.

• Insufficient data reduction. Hardware preprocessing
reduces the data quantity from the network by convert-
ing the packets into Unified Headers, aggregating them
into flow records or by dropping them completely. The
amount of data reduction is directly proportional to the
size of processed packets and flows. Therefore, in the
case of extremely short flows with very short packets
the effectiveness of data reduction of the SDM can be
relatively small.

• Overly granular control. The choice of the acceler-
ation control basic unit affects the number of required
rules in the Search module and the rate of their cre-
ation. The benefit from a preprocessing rule covering
a small portion of the incoming traffic is small. In the
extreme case, the overhead of rule creation can even
outweigh the SDM benefits. Also, rule generation in
case of extremely small units of control can exceed the
achievable throughput of the configuration interface.

B. Network Traffic Analysis

The magnitude of possible negative impacts of the de-
scribed weak spots is closely related to the character of
processed data. Therefore, we have analyzed the properties
of the network traffic in a real high-speed backbone network.
Based on the measured characteristics we have proven that the
proposed SDM system can perform very well when deployed
in real networks.

All of the measurements in this paper were conducted
in the high-speed CESNET2 backbone network. CESNET2
is Czech NREN which has optical links operating at speeds
up to 100 Gbps and routes mainly IP traffic. We conducted
all of our measurements during the standard working hours
of the workweek. We measured mean size of packets in
bytes, mean size of flows in packets and mean time duration
of flows. Because we aim for the application protocols, we
measured the mentioned characteristics, not only for the whole
network traffic on the link, but also for the selected application
protocols. We selected a set of interesting protocols: HTTP,
HTTPS, DNS, SMTP, SSH and SIP. Furthermore, we measured
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the percentage of these protocols in the captured traffic in the
matter of flows, packets and bytes.

The results of the basic network traffic analysis are shown
in Table I. The table shows that the statistics vary depending
on the application protocol. Dominant is the HTTP protocol
with more than a quarter of all flows and more than a half of
all packets and bytes. Moreover, HTTP flows and packets are
generally larger (heavier) and longer. A considerable amount
of traffic belongs to HTTPS, which has generally smaller and
longer flows than HTTP. A high amount of flows also belong
to the DNS protocol (one fifth), but this number is highly
disproportional to the DNS total packet and bytes percentage.
DNS flows are generally very small (light). A majority of them
consists of only one small packet.

Flows Packets Bytes Flow Flow Packet

[%] [%] [%] [packets] [s] [Bytes]

HTTP 25.45 54.36 58.68 63.1 7.167 963.2
HTTPS 14.28 6.92 4.75 14.3 8.493 611.7
DNS 18.89 0.72 0.17 1.1 0.179 207.2
SMTP 0.38 0.22 0.14 17.2 2.934 573.8
SSH 0.04 0.01 0.00 11.6 17.433 233.0
SIP 0.00 0.00 0.00 4.9 24.701 420.9
others 40.96 37.76 36.26 27.3 7.735 856.7

all 29.6 6.257 892.2

TABLE I. BASIC STATISTICAL CHARACTERISTICS OF NETWORK DATA

GROUPED BY THE APPLICATION PROTOCOL

Another interesting characteristic of the network is the
distribution of packet lengths. The majority of packets are
either very long (over 1300 B: 57 %) or very short (under
100 B: 35 %). Especially dominant are both extremes from
the range of lengths supported by the Ethernet standard – 42
and 1500 B. Medium sized packets are not very common.

There is already information about mean flow durations
for the selected application protocols in Table I. Further
information about the flow time durations can be seen in Fig.
4. Each line in the graph shows the percentage of flows that
last shorter than the given duration. Generally (red thicker line)
over 2

3 of all flows are shorter than 100 ms and only a tenth
of them exceed a duration of 10 s. Also majority of DNS and
SIP flows have a duration under 10 ms.

Fig. 4 shows further information about flow duration, but
does not say anything about time distribution of packets inside
the flows. Weights of individual flows are also not considered.
A better look at packet timing inside the flows can be shown by
measuring the relative arrival times of packets from the start of
the flow. Thus, the first packet of each flow has the zero relative
arrival time and its absolute arrival time marks the starting time
of that flow. Then, each consequent packet has a relative arrival
time equal to the difference of its absolute arrival time and
the marked start of the flow. Results of this measurement are
shown in Fig. 5. The graph shows that generally (red thicker
line) only a small portion of all packets arrive right after the
start of the flow – only a fifth of all packets arrive during the
first second of flow. This fact leads to the conclusion that
flows with short duration carry only a very few packets. The
conclusion is further strengthened by the fact that the majority
of flows have a very short duration. There are exceptions such
as DNS and SIP though.

There is already information about mean flow sizes for
selected application protocols in Table I. Further information
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Fig. 4. Cumulative distribution functions of flow durations
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Fig. 6. Cumulative distribution functions of flow sizes

about flow sizes can be seen in Fig. 6. Each line of the graph
shows the percentage of flows that consists of less packets than
a given number. Generally (red thicker line) only a tenth of all
network flows have more than 10 packets. Also, virtually all
DNS and SIP flows consist of a single packet.

Fig. 6 shows further information about flow sizes, but
does not clearly say anything about the percentage of all
packets carried by flows of different sizes. It is known that
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high-speed network traffic has a heavy-tailed character of
flow size distribution. The heavy-tailed character of flow size
distribution derived from the measured values is shown in Fig.
7. The graph shows the portions of all packets carried by
the specified percentage of the heaviest flows on the network.
It can be seen that generally (red thicker line) 0.1 % of the
heaviest flows carries around 60 % of all packets and 1 %
carries even around 85 %. An exception to the heavy-tailed
distribution of flow sizes is the DNS protocol. On the other
hand, SIP and SSH protocols have a heavier tail than average.
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Fig. 7. Portions of packets carried by the percentage of the heaviest flows

A consequence of the heavy-tailed character of the network
traffic is that even by selecting a small percentage of the
heaviest flows, we can cover the majority of packets. The
problem then lies in the effective prediction of which flows are
among the heaviest. More accurately, it lies in the capability to
recognize the heaviest flows only from the properties of their
first few packets. The simplest method of this recognition is
based on the rule that every flow is considered heavy after the
arrival of its first k packets for some selected decision threshold
k. The main advantage of this method is its simplicity – no
packet analysis nor advanced stateful information for the flows
is needed.

The measured accuracy of the heaviest flow selection by the
described simple method is shown in Fig. 8 and Fig. 9. These
graphs show the relations between the value of threshold k to
the portion of heavy marked flows (first graph) and packets
covered by them (second graph). By a combination of values
from both graphs we can see that with the rising decision
threshold the portion of flows marked heavy dramatically
decreases, but the percentage of covered packets decreases
rather slowly. For example, decision threshold k = 20 leads
to only 5 % of heavy marked flows covering around 85 % of
all packets. Exceptions are the DNS and to some extent also
HTTPS and SMTP protocols, where the percentage of covered
packets decreases quickly.

A different view of the simple heavy flow prediction
method effectiveness can be seen in Fig. 10. It shows the
mean number of packets covered by one heavy marked flow
for different values of the decision threshold k. Values shown
in the graph rise with the decision threshold to a considerably
higher number than the mean sizes of the flows from Table
I – hundreds or even thousands of packets instead of only tens
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Fig. 8. Heavy flow detection using the simple method – portions of selected
flows
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Fig. 9. Heavy flow detection using the simple method – portions of captured
packets
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Fig. 10. Mean number of captured packets per flow in flows selected using
the simple method

of them. This clearly proves that even a simple heavy flow
prediction method effectively predicts the heaviest flows.

C. Proof of Concept Conclusion

Based on the analysis results presented in this section
we can now draw conclusions about the negative effects of
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possible weak spots of the SDM design. The conclusions are:

• Long duration of feedback loop. The expected SDM
feedback loop delay is in the area of tens to hundreds
of milliseconds. Fig. 4 shows that the majority of flows
has a duration too short for this requirement (over 2

3
shorter than 100 ms). But in spite of that, the majority
of packets is carried by longer flows and arrives later
from the flow start (only a tenth of packets during the
first 100 ms according to Fig. 5). These results lead to
a small negative effect of feedback loop duration on
the system performance.

• Limited firmware capacity. Fig. 7 shows a heavy-tail
character of network traffic. Moreover, figures 8 and
9 show that even a very simple heavy flow prediction
method can give very good results. In conclusion,
even with a relatively small number of flow rules it is
possible to cover the majority of packets.

• Insufficient data reduction. Unified Headers and
Flow Records have sizes of tens of bytes. Table I
shows that rather large packets are mostly used – the
mean size is nearly 900 B. Therefore, a reduction of
network traffic bytes is sufficient.

• Overly granular control. Fig. 10 shows that with an
appropriate selection of flows it is possible to achieve
a high effectiveness of rules. Each rule can specify a
preprocessing offload into HW of hundreds or even
thousands of packets on average.

From these conclusions it is clear that possible weak spots
of the SDM design will not have a large negative impact on
system performance in real networks. Exceptions are protocols
like DNS with a very high percentage of single packet flows.
Fortunately, these protocols cover only a small portion of
network traffic (e.g. DNS with less than 1 %).

IV. RESULTS

In order to verify the proposed system further, we have
implemented the whole SDM system prototype. The hardware
part of the system is realized by the accelerator board with the
powerful Virtex-7 H580T FPGA. The whole FPGA firmware
occupies less than half of the available FPGA resources. That
includes not only the SDM functionality, such as packet header
parsing and NetFlow statistics updating, but also 100 Gbps
Ethernet, PCI-Express and QDR external memory interface
controllers. The software is realized as a set of plugins for
the Invea-Tech’s Flowmon exporter software [4]. This exporter
allows us to modify its functionality to the extent required by
the SDM system.

The designed SDM system brings acceleration of monitor-
ing applications based mainly on software defined hardware
acceleration of network traffic preprocessing. Control of the
preprocessing is mainly realized by the monitoring applications
through on the fly defined dynamic rules for particular flows.
These rules are generated as a reaction to the first few packets
of the flow. Therefore, there is some delay between the flow
start and rule application. The duration of this delay influences
the portion of packets affected by the rules. The basic view
of achievable SDM system effectiveness can be gained from

an examination of an achievable portion of packets whose
preprocessing was influenced by the dynamic flow rules.

In order to test the described ability of the SDM system
we created a simple use case. In this use case, only a specified
number of the first packets from each flow is interesting to
the software. All packets from unknown (new) flows are,
therefore, by default forwarded into the software application.
SDM controller software counts the number of packets in
each flow. Right after the reception of the specified number
of packets for a flow, the application creates a rule for the
firmware to drop all the following packets from this flow. This
decision method is absolutely the same as the simple heavy
flow detection method defined in the previous section.

In the described test case we have measured the portion
of packets dropped by the SDM firmware. The results are
projected into the graph in Fig. 11. The graph shows the
percentage of dropped (influenced) packets (solid lines) and
the percentage of flows for which the rule was created (dashed
lines). For comparison, analytical results from graphs 8 and 9
in the previous section are also shown (red). The result is that
the SDM system can influence preprocessing of up to 85 % of
all packets from real network traffic by dynamic flow rules. A
visible difference of about 10 % of influenced packets between
analytical and real results is caused by neglecting the duration
of rule creation and activation process in the analytical result.
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Fig. 11. Portions of offloadable packets and flows using the simple heavy
flow detection method
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The graph in Fig. 11 also shows a similar character
of packets and flows portions as described in the previous
section – considerably faster decline in the percentage of flows
than in the percentage of packets. A better view is provided
in Fig. 12. There, the relation of the mean number of packets
influenced by one created rule over the decision threshold value
is shown (blue). The red line is analytical result of simple
heavy flow detection method effectiveness taken from Fig.
10. The graph shows that real measured effectiveness of this
method is slightly worse than the analysis suggests. But it is
still very effective and suitable for real usage.

Apart from this artificial use case, we also tested SDM
acceleration abilities in more realistic use cases. We tested the
performance of the system in the following four cases:

• Standard NetFlow measurement. In this use case,
all packets from the link are taken into account. By
default, they are sent to the software in the form of
UH. The software adds dynamic rules to offload the
NetFlow measurement of heavy flows (predicted by
the simple method) into the hardware accelerator.

• HTTP header analysis. We choose HTTP because
HTTP traffic is dominant in the networks. Therefore,
the acceleration of its analysis is of high importance.
In this use case we tested the application that parses
HTTP headers and extracts some interesting informa-
tion (e.g. URL, host, user-agent) from them. Extracted
information can then be used to augment the flow
records. Because the application works with the data
of HTTP packets, only the packets with a source
or destination port 80 are sent into the software by
default. Others are dropped in the hardware. Further-
more, the application adds dynamic rules to drop the
packets of HTTP flows in which it already detected
and parsed the HTTP header.

• Standard NetFlow enriched by HTTP analysis. This
case combines the two previous ones. Both applica-
tions are active at the same time without the need of
any changes in them. Their traffic requirements are
automatically combined by the SDM controller.

• DNS security analysis. We choose DNS because it
is a bit different from the other protocols. Its flows
are extremely short. Therefore, the dynamic flow rules
have virtually no effect on DNS preprocessing. But
the DNS traffic takes up less than a hundredth of
all network traffic. So, even with the use of default
rules only (no dynamic rules), SDM should be able to
massively accelerate the analysis.

The results of the SDM system testing in the described use
cases are shown in Figures 13 and 14. The figures show the
portions of all incoming packets and bytes preprocessed in the
hardware by a particular method. These hardware preprocess-
ing utilizations lead to a reduction of software application load
displayed in Table II. The table shows portions of incoming
packets and bytes that are processed by software applications
in particular use cases relative to the state without the SDM
accelerator. It also shows the percentage of flows for which
the rule is created in the hardware.
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SW load [%] Rules in HW

Packets Bytes [% of flows]

NetFlow 17.55 0.86 12.16
HTTP 22.32 26.85 3.60
HTTP+NetFlow 32.42 27.30 11.84
DNS 0.73 0.16 0.00

TABLE II. SOFTWARE APPLICATIONS LOAD USING SDM IN TESTED

USE CASES, RELATIVE TO THE STATE WITHOUT THE SDM ACCELERATOR

Standard NetFlow measurement is mostly accelerated by
the hardware flow cache. In this way, the software application
load is reduced to less than a fifth of all packets (in the form
of UH or flow record). Further acceleration rises from the fact
that only UHs and flow records are sent to the software, instead
of complete packets. The software, therefore, does not parse
packets anymore and the PCI Express load is reduced to less
than one percent.

SDM accelerates the analysis of application protocols by
packet dropping based on static and dynamic rules. This leads
to the HTTP parser load being reduced to only about a fifth
of all packets and bytes and to the DNS parser load reduced
to less than a hundredth.

When the standard NetFlow measurement and the appli-
cation protocol parsing are used simultaneously, the load of
the application protocol parser is the same as when used
alone thanks to the DMA channel traffic splitting supported
by the SDM. The HTTP parser software still receives only
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the packets on the TCP port 80. The load of the software
NetFlow measurement slightly rises compared to the NetFlow
only measurement, because of the packets that are sent to the
software for the HTTP analysis (NetFlow measurement sees
also the HTTP packets).

V. RELATED WORK

We discussed several recent works that may to some extent
resemble the SDM concept. We, however, have shown that our
work has significant differences with those papers.

The proposed arrangement of our system resembles Open-
Flow [5]: Packets of an unknown flow are passed from the data
path to the controlling software, which in turn may choose to
install processing rules into the data path. Similar to plugins
for the OpenFlow controller, SDM is also designed to support
various software plugins. The main difference with OpenFlow
is that our system is aimed solely at monitoring, with the ability
to achieve a great amount of flexibility by using software
monitoring plugins. For the sake of performance, the SDM
controller is very tightly coupled with the hardware accelerator.
There is also an outlook to further improve the system in terms
of types of measurements that are performed by the hardware
accelerator (besides NetFlow). Therefore, our system is an
instance of Software Defined Networking in a broader sense,
yet it is completely different from OpenFlow.

FlowSense [6] is a lightweight system aiming at estimating
the network performance such as link utilization. It uses the
built-in counters of OpenFlow switches to estimate the network
parameters. While this approach brings virtually no overhead,
its possibilities are limited by the OpenFlow protocol messages
content and no other measurement can be done using this
technique. There is no support for application level processing
in FlowSense.

The OpenSketch architecture [7] defines a configurable
pipeline of hashing, classification and counting stages. These
stages can be configured to perform the computation of various
statistics. OpenSketch is tailored to compute sketches – a prob-
abilistic structure allowing us to measure and detect various
aspects of the network communication with a defined error
rate. It is not intended for hard NetFlow-like monitoring, nor
for exact, error-free measurements. Also, OpenSketch does not
allow for application level protocol parsing.

The Shunt system [8] is a hardware accelerator with
the support to divert a suspicious/interesting traffic to the
software for further analysis. To this end it resembles our
work, however, Shunt accelerates only packet forwarding and
does not include any possibilities to offload/accelerate the
flow measurement tasks. Our work is also more complete by
defining the software architecture with the plugin support.

VI. CONCLUSION

We have designed a new concept of application level flow
monitoring acceleration called Software Defined Monitoring.
The concept is able to support application level monitoring
and high-speed flow measurements at speeds over 100 Gbps
at the same time. Our system focuses on high speed and high
quality flow based measurement with the support of a hardware
accelerator. The accelerator is fully controlled by the software

feedback loop and offloads the simple monitoring tasks of bulk,
uninteresting traffic. The software, on the other hand, decides
about the traffic processing on a per-flow basis and performs
the advanced monitoring tasks such as application protocol
parsing. The software works with monitoring plugins, there-
fore, SDM is by design ready for extensions by new high-speed
monitoring tasks without the need to modify its hardware. It is
also anticipated that the hardware accelerator will be improved
to support additional types of offload in addition to current
packet parsing and NetFlow statistics counting.

We have performed a detailed analysis of the backbone
network traffic parameters so as to assess the feasibility of the
concept. We have also implemented the whole SDM system
using the Virtex-7 FPGA accelerator board. The system is
ready to handle 100 Gbps traffic. Using the SDM prototype,
we have evaluated several use cases for SDM. It is clear from
the obtained results that SDM is able to offload a significant
part of the network traffic to the hardware accelerator and
therefore to support a much higher throughput than a pure
software solution. The results show a major speed-up in all
test cases.
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Abstract—Current hardware acceleration cores for network
traffic processing are often well optimized for one particular task
and therefore provide high level of hardware acceleration. But
for many applications, such as network traffic monitoring and
security, it is also necessary to achieve rapid development cycle to
provide fast response to security threats. We propose and evaluate
a new concept of hardware acceleration for flexible flow-based
network traffic monitoring with support of application protocol
analysis. The concept is called Software Defined Monitoring
(SDM) and it relies on a configurable hardware accelerator
implemented in FPGA, coupled with smart monitoring tasks
running as software on general CPU. The monitoring tasks in
the software control the level of detail and type of information
retained during the hardware processing. This arrangement
allows rapid application prototyping in the software, followed
by further shifting of the timing critical parts of the processing
to the hardware accelerator. The concept is proposed with the
scalability in mind, therefore it is suitable for different FPGA
based platforms ranging from embedded single-chip solutions
(such as Zynq or Cyclone V) to high-speed backbone network
monitoring boxes. Our pilot high-speed implementation using
FPGA acceleration board in a commodity server performs a
100 Gb/s flow traffic measurement augmented by a selected
application protocol analysis.

I. I NTRODUCTION

The task of network traffic monitoring is one of the key
concepts in modern network engineering and security. A
golden standard in the area of network monitoring is a flow
measurement. A monitoring device collects basic statistics
about the network flows and reports them to a central storage
collector using a handover protocol such as NetFlow [1] or
IPFIX[2]. Flow measurement is a stateful process, because
for each packet the flow state record is updated in the device
(e.g. packet counters are incremented), and only the resulting
numbers are exported. The ongoing trend in this field is
towards creating richer flow records [3], [4], [5], carryingsome
extra information in addition to the basic flow size and timing
statistics. The added information often include values from the
application level protocol headers, such as HTTP, DNS etc.

Implementations of the application level flow monitoring
solely in software are certainly possible, yet their throughput is
limited mainly by the performance of commodity processors.
FPGAs offer much better possibilities in terms of throughput.
However, a fixed solely hardware implementation may face the
flexibility issues, since the evolving nature of network threats

implies the need for fast changes of the monitoring process,
quickly making fixed hardware devices obsolete.

The aim of this paper is to (1) strike a balance between the
system throughput and flexibility/programmability and to (2)
offer a configurable trade-off to the above, but mainly to (3)
endorse a progressive adoption of network monitoring subtasks
to the hardware accelerator, driven solely by the needs of the
networking community.

We employ a hardware accelerator to perform the reduction
of traffic for software applications by partial offloading ofthe
packet parsing and flow aggregation into hardware. Therefore,
the accelerator passes some of the packets (as requested) intact
to the software while performing the flow measurement (or
other aggregation) of the bulk traffic that is not interesting to
the application-layer processing software tasks.

The use of packet processing offload can be controlled on a
per flow basis by the monitoring software and adjusted on the
fly according to its actual needs. Offload control is realized
through unified interface by a dynamically specified set of
flow rules. These rules are installed into the accelerator to
determine the type of packet preprocessing acceleration used
for individual network flows. The preprocessing method that
best aids the performance and does not violate the precision
requirement of advanced software processing is selected.

The whole system is designed to be easily extensible at
two main levels. At the software side, monitoring plugins can
be added to the system. This brings the possibility of rapid
development and deployment of new monitoring applications,
for example as a reaction to a new network security threat.
Once the functionality of software task is verified and stable
enough, the second level of the system extensibility can
be employed to further speed-up the task. Various packet
processing and data aggregation routines can be relocated
directly into the hardware accelerator. Furthermore, the system
is designed to scale well from small embedded devices up to
the 100 Gbps backbone network monitoring boxes.

II. A NALYSIS

We start the paper with the analysis of the properties of
the network traffic in a real high-speed backbone network.
All of our measurements were conducted in the high-speed
CESNET2 backbone network. This research and educational



network has optical links operating at speeds up to 100 Gbps
and routes mainly IP traffic.

The key question for the analysis to answer is how big
reduction of data can we achieve by a system based on
the following basic concepts: (1) the core of network traffic
processing is realized entirely in the software, (2) acceleration
is achieved by a software controlled offload of the flow
processing to the hardware, based on the few leading packets,
(3) target family of applications (monitoring and security) usu-
ally does not require most of the network traffic – aggregated
information or only a specific fractions of traffic are sufficient.

Very important characteristic of network traffic is the flow
size distribution. According to graph derived from the mea-
sured values, shown in Fig. 1, the flow size distribution has
heavy-tailed character. The graph shows the portions of all
packets carried by the specified percentage of the heaviest
flows (i.e. flows with the most packets) in the network. It
can be seen that generally (black thicker line) 0.1 % of the
heaviest flows carry around 60 % of all packets and 1 %
carries even around 85 %. A consequence of this observation
for the proposed system concept is that even by offloading
a small portion of the heaviest flows, we can accelerate the
preprocessing of the majority of packets.
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Fig. 1. Portions of packets carried by the percentage of the heaviest flows

The problem then lies in the capability to predict the
heaviest flows only from the observed properties of their first
few packets. From a wide variety of heavy flow detection
methods we choose one that is very simple: For a selected
thresholdk, a flow is considered heavy after the arrival of
its first k packets. The main advantage of this method is its
straightforward implementation – no deep packet analysis nor
advanced stateful information for the flows is needed.

The measured accuracy of the heaviest flow selection by
this method is shown in Fig. 2. The graph shows the relation
between the value of thresholdk and the portion of heavy
marked flows (dashed line) and packets (solid line) covered
by them. By a combination of values we can see that with the
rising decision threshold the portion of heavy marked flows
dramatically decreases, but the percentage of covered packets
decreases rather slowly.

III. A RCHITECTURE

The basic idea behind the acceleration by the proposed
SDM system is based on a finely controlled load reduction

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

Decision threshold [packets]

P
ac

ke
ts

/F
lo

w
s 

[%
]

 

 

Flows
Packets

Fig. 2. Heavy flow detection using the simple method – portions of offloaded
flows and packets

and distribution achieved by the accelerated preprocessing of
the network traffic. Although the preprocessing is done by
the firmware in FPGA, it is fully controlled by the software
applications. Therefore, the earliest few packets of each new
flow are sent to the software, which selects a type of hardware
preprocessing used for the subsequent packets of the said flow.

The suitable types of hardware preprocessing for the area
of network monitoring can be divided into three basic groups:

• Extraction of the interesting data from packets and
sending only those data to the software in a fixed format,
which we call Unified Header (UH).

• Aggregation of packets into flow records directly in the
hardware. This aggregation does not need to be only basic
flow statistics, but different forms of aggregation can be
specified according to the needs of particular applications.

• Filtration of unnecessary packets and forwarding only
the interesting ones into the software. This can aid
advanced monitoring applications, which perform various
analyses and detections oriented only to some specific
subgroup of network traffic.

The top-level conceptual scheme of the proposed SDM
system is shown in Fig. 3. The processing of an incoming
packet in the FPGA firmware starts with the header parsing
and extraction of packet metadata (Parser). Extracted metadata
is then used to classify the packet based on a software defined
set of rules (Rule Lookup). Each rule identifies one concrete
flow and specifies the type of packet preprocessing and the
target software channel for packets of that flow. Packets can
be processed in a firmware flow cache (i.e. aggregated to
selected type of flow record), dropped or sent to the software
unchanged or in the form of Unified Header.

The data from the firmware is sent over the bus to the
software using multiple independent channels. Data for each
channel is stored in a software buffer in the form of whole
packets, Unified Headers or flow records.

This data is processed by the set of user specific software
applications such as the flow exporter [1] which analyzes the
received data and exports the flow records to the collector.
User applications read the data from the selected channels.
They also specify which types of traffic they want to inspect
and which flows can be preprocessed in hardware. Definitions
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of (un)interesting traffic are passed from all applicationsto the
software SDM Controller. The SDM controller aggregates the
definitions (requests) into rules and configures the firmware
preprocessing in order to achieve the maximal possible re-
duction of the traffic while preserving the required level of
information. The network traffic preprocessing in the firmware
is entirely controlled from the software and the core of the
controlling software are the monitoring applications. Each
monitoring application has the form of an SDM plugin. The
main input to the plugin is the data path carrying the packets,
extracted UHs or aggregated flow records. The plugin output is
whichever data that the plugin has parsed/detected/measured.
This output data can be added to the exported IPFIX flow
record, so that it isenriched by the information from the
plugin. The third interface of the monitoring application
is the flow (dis)interest information interface to the SDM
Controller. SDM controller accepts the preprocessing requests
from multiple applications and aggregates them into rules for
the firmware. This mechanism realizes the feedback control
loop, which is an important concept in our work.
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Fig. 4. Detailed firmware scheme

Fig. 4 shows a top level implementation scheme of the
SDM accelerator firmware for FPGA. The main firmware
functionality is realized by the processing pipeline which
processes the incoming network traffic and creates an outgoing
data flow for the software. The SDM firmware is realized by
five main modules:

Parser extracts interesting information from headers of
packets, especially fields that clearly identify network flows.
To identify the flows, we use the 5-tuple: IP addresses,
TCP/UDP ports and protocol. Furthermore, our implemen-
tation is modular and enables easy extensions of default

packet parsing process by additional application-specificparser
modules (P1..Pn).

Flow Search assigns an action (processing instruction) to
every packet based on its flow identifier and a set software
defined rules. Management of the rule set is done through a
control interface capable of an atomic on the fly add, remove
or update of the rules.

Execution Unit manages the stateful flow records in Flow
Record Table. It mainly actualizes their values by execution
of instructions from flow associated actions. Every action
specifies an instruction to be executed and the address of the
flow record to work with. Furthermore, the instruction has
access to data extracted from packet (UH). The Execution
Unit supports multiple user-defined instruction sub-modules
(I1..In), more details about the execution and implementation
of instructions are in Sec. III-A.

Export pairs together corresponding UH transaction with
frame data from FIFO buffer. Then it chooses the required
channel and format for the data based on action assigned by
the Flow Search module.

SW Accessis the main access point into the SDM firmware
from the software side. Its primary function is to manage the
rules and to initiate the export of the flow records based on
controller commands.

A. Execution Unit functionality

Execution Unit realizes the main stateful behavior of the
hardware by execution of flow record updating instructions.To
improve the overall flexibility of the system, we use modular
architecture that allows to implement custom read-modify-
write aggregation operations (instructions). Thanks to these
custom instructions, the nature of the flow records maintained
by the hardware in Flow Record Table can be customized
according to the target application. We use high-level synthesis
(HLS) tools to generate custom hardware modules from the
description in C or C++. Thanks to that, SDM hardware can
be customized faster and even without the knowledge of HDL
programming (e.g. by network security experts).

We implement and evaluate five different Execution Unit
instructions to test the feasibility of the described concept:

• NetFlow instruction is used for standard NetFlow aggre-
gation. Its execution increases flow packet and byte coun-
ters, updates flow end timestamp and computes logical
OR of the observed TCP flags.

• NetFlow Extended instruction has the same basic func-
tionality as NetFlow. In addition, it stores the TCP flags
of the first five packets.

• TCP Flag Counters instruction performs increment of
counters of individual observed TCP flags. For example,
one can see the number of ACK flags transmitted during
the whole TCP connection.

• Timestamp Diff instruction maintains records of inter-
arrival times of the first eleven packets of the flow.

• CPD instruction represents the Change-Point Detection
algorithm [6], [7] designed to detect an anomaly in the
processed network flow.



IV. RESULTS

We implement and evaluate a high-speed version of SDM
system. We realize the hardware part by the PCI Express
accelerator board with the Virtex-7 H580T FPGA.

A. Achieved performance

As we describe earlier, the designed SDM system acceler-
ates the monitoring applications by the software defined hard-
ware acceleration of network traffic preprocessing. The pre-
processing control is realized by the monitoring applications
through on the fly defined dynamic rules for particular flows.
There is some delay between the flow start and rule application
in the FPGA firmware. The duration of this feedback loop
delay can influence the portion of packets affected by the rules
(i.e. offloaded by the hardware accelerator).

Therefore, we measure the portion of packets that were
processed by the SDM firmware according to selected flow
rules. The results are shown in Fig. 5. The graph shows that,
the measured effectiveness of the system (red) is only slightly
worse than the analysis (black from Fig. 2) suggests. The gap
is only from 5 to 10 % of all packets for our implementation.
The width of the gap between the theoretical and practical
results can be further reduced by utilization of a platform with
shorter latency than that of PCI Express (e.g. CPU core(s) and
FPGA logic within the same chip).
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Fig. 5. Portions of offloadable packets and flows using the simple heavy flow
detection method

B. FPGA implementation results

Our high-speed SDM FPGA firmware runs at 200 MHz and
includes not only the SDM core functionality, as described
in Sec. III, but also Ethernet, PCI-Express and QDR exter-
nal memory interface controllers. Closer look at the FPGA
resources of the firmware is shown in Tab. I. Using the same
SDM core with the data width of 512 bits and throughput of
100 Gbps, we create 3 different FPGA architectures for boards
with 3 different arrangements of Ethernet ports: one 100 GbE
port, two 40 GbE ports and eight 10 GbE ports.

Table II shows the resource utilization of the individual
instruction sub-modules for the Execution Unit. It can be seen
that the additional instruction sub-modules are relatively small,
compared to the whole firmware, and therefore adding new
instruction should not involve any major refinements of the
FPGA firmware.

TABLE I
RESOURCES OF THESDM FIRMWARE

Throughput Regs LUTs
1×100 Gbps 197 758 249 214
2×40 Gbps 134 172 178 984
8×10 Gbps 184 084 222 745

TABLE II
RESOURCES OF THE INSTRUCTION BLOCKS

Instruction Regs LUTs
NetFlow 1846 824
NetFlow Extended 2070 1113
TCP Flag Counters 0 1046
Timestamp Diff 5199 2556
Change-Point Detection 5296 3919

V. CONCLUSION

Our work shows the design and implementation of a flexible
100 Gb/s network flow monitoring system working at the
application layer using a commodity PC and a hardware
accelerator. The behavior of the system is fully controlledby
the software, which makes us use the term Software Defined
Monitoring. The concept is by design extensible by the soft-
ware plugins to adjust its functionality to actual needs andto
react to future network threats. Next level of extensibility is
provided by custom instructions of the hardware accelerator,
which can redefine the nature of the acceleration itself.
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Abstract. The aim of this paper is a hardware realization of a statisti-
cal anomaly detection method as a part of high-speed monitoring probe
for computer networks. The sequential Non-Parametric Cumulative Sum
(NP-CUSUM) procedure is the detection method of our choice and we
use an FPGA based accelerator card as the target platform. For rapid
detection algorithm development, a high-level synthesis (HLS) approach
is applied. Furthermore, we combine HLS with the usage of Software
Defined Monitoring (SDM) framework on the monitoring probe, which
enables easy deployment of various hardware-accelerated monitoring ap-
plications into high-speed networks. Our implementation of NP-CUSUM
algorithm serves as hardware plug-in for SDM and realizes the detection
of network attacks and anomalies directly in FPGA. Additionally, the
parallel nature of the FPGA technology allows us to realize multiple dif-
ferent detections simultaneously without any losses in throughput. Our
experimental results show the feasibility of HLS and SDM combination
for effective realization of traffic analysis and anomaly detection in net-
works with speeds up to 100Gb/s.

1 Introduction

Computer networks are getting larger and faster, and hence the volume of data
captured by network monitoring systems increases. Therefore, there is a need to
analyze more data for detection of network attacks and traffic anomalies. This
paper deals with real-time detection of attacks suitable for high-speed computer
networks thanks to the direct deployment of detection methods in hardware
monitoring probe.

Today, monitoring systems usually consist of several probes that capture and
preprocess huge amounts of network traffic at wire speed, and one or more collec-
tor servers that collect and store network traffic information from these probes.
Analysis of network data is traditionally also realized at the collectors. In this



paper, we propose a different approach, where anomaly detection is shifted di-
rectly into the monitoring probes. The aim of this approach is to enable real-time
analysis even in very large networks with speeds up to 100Gb/s per Ethernet
port and to reduce the latency of anomaly detections.

It is virtually impossible to process all network data from the 100Gb/s link in
software using only commodity hardware. The main limitations lay in insufficient
bandwidth of communication paths between the network interface card and the
software components [1] and in limited performance of the processors. Therefore,
hardware acceleration must be used for high-speed networks in order to avoid
transferring and processing of all the data in the software.

In this paper, we utilize a special network interface card mounted with FPGA
chip for hardware acceleration of network traffic processing as a basis for our
high-speed probe. The FPGA on the card allows us to realize more advanced
data processing features (e.g. anomaly detection methods that use packet level
statistics) directly on the card, thus reducing the data load for the software. To
demonstrate this approach, we concentrate on a real-time sequential Change-
Point Detection (CPD) method that is designed to minimize the average detec-
tion delay (ADD) for a prescribed false alarm rate (FAR) [2,3].

As the basis for the FPGA firmware, we use Software Defined Monitoring
(SDM). SDM is a novel monitoring approach proposed in [4], that can be used
as a framework for hardware acceleration of various monitoring methods. SDM
combines hardware and software modules into a tightly bound co-design that is
able to address challenges of monitoring from data link to application layer of the
ISO/OSI model in modern network environments at the speeds up to 100Gb/s.

The main contribution of this paper is the evaluation of a statistical real-
time detection methods implemented in hardware. The detection methods are
extensions of a hardware accelerated monitoring probe designed for 40Gb/s and
100Gb/s Ethernet lines. The resulting device is able to analyze unsampled high-
speed network traffic without loss.

The rest of this paper is organized in the following way. Introduction to
the implemented sequential non-parametric change-point detection method (NP-
CUSUM) can be found in Sec. 2. The used SDM concept is briefly described in
Sec. 3. Sec. 4 describes created hardware implementation of detection method.
Evaluation of the developed system and the achieved results are presented in
Sec. 5. Related work and main differences between existing projects and our
implementation are presented in Sec. 6. Sec. 7 summarizes the results presented
in this paper and outlines our future work.

2 Change-Point Detection

Network attacks, intrusions, or anomalies appear usually at unpredictable points
in time. The start of an attack is mostly observable as a change of some sta-
tistical properties of the network traffic or its specific part. Therefore, methods
based on sequential Change-Point Detection theory are suitable for intrusion
detection. CPD methods detect the point in time where the distribution of some



perpetually observed variables changes. In network security settings, these vari-
ables correspond to some relevant, directly observed or calculated network traffic
characteristics. The main problem of such approach is the lack of precise knowl-
edge about the statistical distributions of these traffic characteristics. Ideally,
the distributions should be known both, before and after the distribution change
that corresponds to the anomaly or attack. Therefore, we use a non-parametric
CPD method NP-CUSUM that was developed in [2,3] and that does not require
precise knowledge about these statistical distributions.

NP-CUSUM is inspired by Page’s CUSUM algorithm that is proven to be
optimal for detection of a change in the mean (expectation) when the distribu-
tions of the observed random variables are known before and after the change
[5]. The typical optimality criterion in CPD is to minimize the average detec-
tion delay (ADD) among all algorithms whose average false alert rate (FAR)
is below a prescribed low level. Page’s CUSUM procedure, which is based on
the log-likelihood ratio, can for i.i.d. (independent and identically distributed)
random variables Xn be rewritten [5] as:

Un = max

{
0, Un−1 + log

p1(Xn)

p0(Xn)

}
, U0 = 0, (1)

Where p0 and p1 are the densities of Xn before and after the change, respectively.
The formulation in (1) is the inspiration for the NP-CUSUM method proce-

dure [2,3]. The procedure is applicable to non–i.i.d. data with unknown distribu-
tions (i.e. the method is non-parametric). First, the Page’s CUSUM procedure
was generalized as Sn = max{0, Sn−1 + f(Xn)} with some function f . Changes
in the mean value of Xn can be detected using sequential statistic:

Sn = max{0, Sn−1 +Xn − µ̂− εθ̂}, S0 = 0, (2)

Where µ̂ is an estimate of the mean of Xn before the attack, θ̂ is an estimate of
the mean after the attack started, and ε is a tuning parameter for optimization.
It has been shown in [3] that with optimal value of ε the NP-CUSUM procedure
(2) is asymptotically optimal as FAR decreases. That is, for small prescribed
rate of false alarms, other procedures will have longer detection delays. In fact,
the delays can theoretically be exponentially worse [3].

As the input of the NP-CUSUM algorithm, we can use various features Xn of
the observed network traffic. To basically evaluate our hardware implementation
of the method, we have chosen for Xn the ratio of SYN and FIN packets of
the Transmission Control Protocol (TCP) in a short time window [6]. During
“normal” operation of the network, each connection is opened using two SYN
packets, and closed using two FIN packets (one in each direction). Therefore,
we expect the ratio of SYN and FIN packets to be on average close to 1 or at
least constant. Sudden and consistent change of the ratio is suspicious and can
be caused by some sort of attacks (e.g. SYN or FIN packet flood) [6].

To demonstrate the scalability and power of our hardware implementation
using SDM, we raise the number of observed statistics and add some more NP-
CUSUM blocks in parallel. The added statistics utilize information about ICMP



and RST TCP packets. All measured values are used in form of ratios in order
to avoid the dependency on trends and traffic volumes that could increase the
number of false alerts. Finally, thanks to parallelism, observation of multiple
statistics simultaneously does not negatively affect the processing throughput.

3 Software Defined Monitoring System

Software Defined Monitoring (presented in [4,7]) forms a basis for our hardware
implementation of detection methods in a monitoring probe. In this section we
briefly describe the main architecture of the SDM system and the changes needed
to accommodate the implementation of NP-CUSUM monitoring system.

An SDM system consists of two main parts: firmware for the FPGA on hard-
ware accelerator and software for general processors. The hardware and software
components are connected via a PCI-Express bus. Both parts are tightly coupled
together to allow precise software control of hardware processing. The software
part of the SDM system consists of monitoring applications and a controller. The
monitoring applications can perform advanced monitoring tasks (such as analysis
of application protocols) or also export information (alerts) to the collector. The
controller manages the hardware module by dynamically removing and inserting
processing rules into its memory (see Fig. 1). The instructions contained in the
rules tell the hardware what actions to perform for each input packet with some
characteristics. These rules are defined by the monitoring Applications, which
inserts them to the Hardware via the Controller.

Due to aforementioned facts, the monitoring application can not only use
data coming from the hardware, but it can also manage the details of hardware
processing of network traffic as well. The offloading of traffic processing into
the hardware saves both, the bandwidth of communication interface (PCIe) and
the CPU processing time. The hardware module can pass information to the
software in the form packet metadata from a single packet, or as aggregated
records computed from multiple subsequent packets with common features (such
as NetFlow [8] aggregation). Whole received packets or their parts can be also
sent to the software for further (deeper) analysis. Graphical representation of
the SDM concept is shown in Fig. 1.

Processing of an incoming network packet in the SDM hardware starts with
the extraction of its protocol headers. The extracted data are used to search ade-
quate rule in memory that specifies the desired processing possibly supplemented
by address of a record. The selected rule and metadata for each given packet are
then passed to the SDM Update block, which is the heart of the SDM concept
making that idea strong. This block contains a routing table that is used to
forward the incoming processing request to the appropriate update (instruction)
blocks, for execution. Each of these instruction blocks can perform a specific
update operation (realize a specific aggregation type) on the record. Each up-
date operation is delimited by two memory operations: reading the stored record
values, and writing back the updated values. Also, new types of updates (ag-
gregations) can be specified, simply by implementing the new instruction block
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Fig. 1. Software Defined Monitoring (SDM) abstract architecture

and plugging it into the existing Update block infrastructure. A special type of
processing action is an export into the software of the processed packet data,
metadata, or stored values from a selected record, optionally followed by clearing
of that record. Records can be exported when some special condition is met or
in periodical manner.

4 Implementation

4.1 The CPD hardware block

Our hardware implementation of CPD method is realized as hardware plug-in
for the SDM system. More precisely, it is available as a new instruction block
for the SDM Update module that is described in the previous section. The SDM
design supports access to arbitrary data records stored in memory for instruction
blocks. Although, the available data size of a record is limited due to memory
block size that can be read or written on each clock cycle – the block size is
equal to 288 b. Usage of bigger data records than 288 b would cause unwanted
latency increase and lower throughput of the whole monitoring hardware.

One CPD instruction block uses available space in memory to store: previous
historical value, 2 parameters of the NP-CUSUM algorithm, and 1 threshold
value that is used for alerting purposes. Memory should also contain counters
with observed features such as the number of SYN or FIN packets, and the
packet counter that starts the ratio and NP-CUSUM computation. The data
stored in memory is accessible from software and therefore all of the thresholds
and parameters can be changed on the fly.

The source code of the instruction block allows us to specify the data type size
of all values stored in memory. The choice of data type sizes implies the number
of hardware blocks that can work in parallel in the same clock cycle with the
same memory block. However, the decrease of data type size lowers the value
precision and data ranges. The NP-CUSUM parameters, the previous historical
value and the threshold are represented as 16 b decimal numbers. The counters
are set to 8 b. For one block that analyzes SYN/FIN ratio, the implementation



works with 88 b of memory for one record in total. Configuration with 4 NP-
CUSUM blocks uses 5 counters (SYN, FIN, RST, ICMP, packet counter) and
4 sets of fixed-point values. In total, 4 NP-CUSUM blocks would use 296b of
memory. Therefore the size of decimal number data type was shortened to 15 b
and the total used memory size was decreased to available 280b.

We use a high-level synthesis (HLS) approach [9], to implement the CPD
method from Sec. 2 for the FPGA as an instruction block inside the SDM sys-
tem. The structure of the implemented block is shown at Fig. 2. The main
advantage of using HLS approach is faster implementation of new hardware ac-
celerated monitoring and detection methods with minimal loss of efficiency in
comparison to traditional coding of FPGA firmware using Hardware Description
Languages (HDL) such as VHDL or Verilog. Following the requirements for the
SDM instruction block interfaces and general behavior, we have developed the
CPD hardware block in the C++ language.

Implementation of the CPD hardware block brings a several issues to solve.
The most important one is the choice of decimal numbers representation. We
try two of the standard approaches: fixed-point and floating-point representation.
The main advantage of the floating-point approach is the ability to represent a
greater range of values. But on the other hand, hardware realization of floating-
point arithmetic is very complicated and considerably slower. Therefore, the
usage of fixed-point arithmetic can be favored by better performance and lower
resource usage of the instruction block.

From the HLS point of view, the most important parameter for our design
goals is the achievable Initiation Interval (II). This parameter represents the
number of clock cycles needed for initialization of a new request in the instruction
block. Ideally, we require the II to be equal to one so that a new request can
be accepted in each clock cycle and the instruction block is able to achieve
full throughput. During our experiments, we have discovered that the effect of
decimal numbers representation on the II is following: floating-point version of
the instruction block has II of 11 clock cycles whereas the fixed-point version
has II of 1.

Another very important performance-related parameter of our implementa-
tion is latency. It is required to be as small as possible because high latency can
lead to delays between repeated processing of the same instruction caused by
the fact that records in the memory need to be locked in order to achieve atomic
processing. In the end, our experimental timing and performance results indicate
that the created implementation is able to handle network traffic at 100Gb/s
Ethernet line. More detailed results regarding our synthesis and FPGA require-
ments are discussed in Sec. 5.

Apart from CPD instruction block creation, another important part of the
implementation is connection of the new instruction block to the existing SDM
Update block. Thanks to the by design extensibility of SDM Update block, this
task is simple and straightforward. All that needs to be done is to wrap the
translated HLS implementation of the new block in a VHDL envelope that is
responsible for adapting the behavior of all predefined interface signals. The
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Fig. 2. Implementation of the CPD Instruction

wrapping process is depicted in Fig. 2. The gray blocks are parts of the SDM
designated for connecting of a new instruction blocks. The SDM can thus be
viewed as some kind of a framework that brings the possibility to create new
hardware modules for rapid network monitoring acceleration.

To finish the implementation of the Change-Point Detection method in the
SDM system, a software monitoring application needs to be created. The appli-
cation communicates with an SDM Controller daemon to manage the detection
details in hardware module (see Fig. 1) and also receives detected alerts. The
main task of the monitoring application is to control the detection process and
present its results to human operators.

5 Evaluation

Correct functionality of the created implementation of the CPD block was veri-
fied using referential software application. The referential application is written
in the plain C language and is not meant to be highly optimized for the HLS. Its
main purpose is only to validate the functionality of the hardware implementa-
tion. In addition, the software application is extended and serves as the base for
the measuring and detection application [10] that can be used in slower networks
or for estimation of configurable parameters for the CPD block.

We have implemented the hardware-based prototype of the NP-CUSUM de-
tection method as an instruction block for the SDM Update block in an SDM
monitoring probe. The prototype is developed for the network interface card
with a 100Gb/s Ethernet port and a Virtex-7 H580T FPGA, which is the main
core for the implemented detection functionality.

A detailed list of all FPGA resources needed for the implementation of one
CPD instruction block, which observes one feature, is shown in Tab. 1. In the



table there are also results for other constellations of the CPD blocks that contain
more computational blocks with 1, 2, or 4 instances of the NP-CUSUM algorithm
and observe more features in parallel. The total number of available resources
on used chip is 725 600 Flip-Flops (FF) and 362 800 Look-up tables (LUT). The
number of utilized LUTs and FFs for CPD instruction block itself, therefore,
accounts only for less than 1% of the available FPGA resources.

Table 1. FPGA resources used for the CPD instruction block in different configura-
tions.

Name 1 block 2 blocks 4 blocks
FF LUTs FF LUTs FF LUTs

Expression 0 458 0 496 0 479
Instance 280 252 560 504 560 504

Multiplexer - 1842 - 1868 - 2130
Register 2253 - 2377 - 2593 -

ShiftMemory 0 806 0 816 0 814

Total 2533 3358 2937 3684 3178 3982

Performance results for the CPD instruction blocks are shown in Tab. 2 and
Tab. 3, whereas Tab. 3 shows detailed information about the fixed-point im-
plementation. An Initiation Interval is required to be equal to one in order to
support processing of 100Gb/s network traffic at full wire-speed (see Sec 3). This
requirement is not satisfied only by the floating-point implementation. Vivado
HLS version 2013.2 was used for high-level C to VHDL synthesis. Xilinx ISE
version 14.7 with enabled synthesis optimization was used for VHDL to FPGA
netlist synthesis. Enabling the optimization such as register duplication leads
to a higher clock frequency achieved for the final implementation and also to
a higher resources consumption. The tables illustrate that after the optimiza-
tion all performance requirements from Sec. 3 have been met by the fixed-point
implementation.

Table 2. Comparison of timing results for the synthesized CPD instruction blocks.

Parameter Reached Reached Required
Fixed-point Floating-point

Clock period 4.08 ns 16.48 ns 5 ns
Frequency 245MHz 60.679MHz 200MHz
Latency 12 11 -
Initiation Interval 1 12 1

Bus Width 512 b 512 b 512 b
Achieved Throughput 125Gb/s 2.5Gb/s 100Gb/s



Table 3. Performance results for the CPD instruction blocks in different configurations.

Parameter Reached Reached Reached Required
1 block 2 blocks 4 blocks

Clock period 4.08 ns 4.20 ns 4.20 ns 5 ns
Frequency 245MHz 238MHz 238MHz 200MHz
Latency 12 12 12 -
Initiation Interval 1 1 1 1

Bus Width 512 b 512 b 512 b 512 b
Achieved Throughput 125Gb/s 121Gb/s 121Gb/s 100Gb/s

Finally, Tab. 4 shows the total number of FPGA resources required for the
whole synthesized SDM system with one CPD hardware plug-in. The table shows
that about 87% of the Virtex-7 H580T resources are still available. Therefore,
it is feasible to include several CPD hardware plug-ins in the SDM system for
parallel detection of various anomalies without significant latency increase nor
throughput loss.

Table 4. FPGA resources of the SDM system with one CPD hardware plug-in ( FPGA
xc7vh580thcg1155-2).

Resource Name Used Resources [-] Utilization Percentage

LUTs 47731 13%
Registers 21089 2%
BRAMS 107 11%

6 Related Work

We present a brief overview of related work with regard to the differences of
our work. This section can be divided into two main domains. The first domain
is related to the hardware accelerated detectors and the second domain is re-
lated to the detection methods. From the hardware point of view, there are two
interesting projects somehow similar to our – Gorilla and Snabb Switch.

The Gorilla project [11] is the closest comparable solutions that we found.
Gorilla is a methodology for generating FPGA-based solutions especially well-
suited for data parallel applications. The main goal of Gorilla is the same as
our goal in SDM Update – to make the hardware design process easier and
faster. Our solution is however specially designed for the stateful processing of
network packet data. Furthermore, SDM is able to work with L2–L7 layers of
ISO/OSI model. In addition, the resource consumption of Gorilla is higher than
our solution.

The Snabb Switch project [12] shows different approach of network packets
processing. This approach uses modified drivers for faster transfer of network



packets from the network interface card to computer’s memory. Transferred data
are then processed by network applications. There is also available a Snabb
Lab with an accessible platform for measuring. This platform consists of the
Supermicro motherboard with dual Xeon-E5 and 20x10GbE (Intel 82599ES)
network cards. This configuration allows to process network traffic at speed of
200Gb/s. Massive usage of this platform is complicated due to large number
of network cards. Our solution is able to process network traffic at speed of
100Gb/s on one Ethernet line (2 ports allows to achieve 200Gb/s). Our work
is focused on full hardware acceleration of network traffic processing using the
only one 100Gb/s Ethernet port.

From the detection method point of view, there are various existing ap-
proaches of anomaly detection from many authors. Detection of SYN flood at-
tacks have been studied and well described in many papers. However, this issue
is currently still relevant because of increase of network traffic volumes. Detec-
tion based on NP-CUSUM is used in [13] by Wang et al., where the authors
present their observation about SYN-FIN pairs in network traffic under normal
condition: (1) there is a strong positive correlation between the SYN and RST
packets; (2) the difference between the number of SYN and FIN packets is close
to the number of RST packets. The authors bring experimental evaluation of
flood detection using NP-CUSUM, however they mention a possible disadvan-
tage of aggregated counting of packets that can be spoofed by emission of mixed
packet types by attacker.

Siris et al. in [14] compare a straightforward adaptive threshold algorithm,
which can bring satisfactory performance for attacks with high intensity, and al-
gorithm base on cumulative sum (CUSUM). Adaptive threshold algorithm uses
a difference from moving average value computed e.g. by EWMA algorithm. An
alarm is signalized when measured value is higher then moving average in last k
consecutive intervals. The CUSUM variant of detection algorithm is influenced
by seasonality and trends of network traffic (weekly and daily variations, trends
and time correlations). The authors propose to use some prediction method to re-
move non-stationary behavior before applying the CUSUM algorithm. However,
because of time-consuming calculations with minor gains compared to simpler
approaches, the authors used simpler approach based on application of CUSUM
on difference between measured value and result of Exponential Weighted Mov-
ing Average (EWMA) [15] algorithm.

Smoothing of the data signal is important for minimizing the number of false
alarms that can be caused by high peaks in data. Therefore, the data are usually
preprocessed to avoid short-time deviations to detect long-time anomalies. There
are various approaches to smooth the signal and the possible way is to exploit
some prediction method such as Moving average, EWMA, Holt-Winters [16],
or Box-Jenkins (ARIMA) [17] methods. However, dependency of an algorithm
on historical and current measured values can be dangerous and can lead to
overlooking of an attack. The issue of self-learning and self-adaptive approach is
being studied in our current and future work, however, it is out of the scope of
this paper.



Salem et al. presented the currently used methods of the network anomaly
detection in [18]. The paper evaluates the usage of extended NP-CUSUM called
Multi-chart NP-CUSUM, proposed by Tartakovsky et al. in [19], in combination
with Count Min Sketch and Multi-Layer Reversible Sketch (sketching method is
proposed eg. in [20]) for data aggregation and anomaly detection.

This paper is focused on the hardware implementation of the detection
method, whereas other authors usually more or less rely on software processing
of aggregated data. Our solution allows the detection method to be real-time
and independent on overloaded software part of system.

7 Conclusions

In this paper we present implementation and evaluation of the CPD algorithm
(NP-CUSUM) as hardware plug-in for the Software Defined Monitoring system.
We achieve easy and rapid development of detection hardware blocks for the
FPGA thanks to the usage of high-level synthesis. Also, creation of monitoring
probe utilizing newly implemented detection method is very simple and straight
forward thanks to the utilization of SDM as the platform for high-speed packet
processing. Moreover, we show frequency and FPGA resource evaluation of the
hardware implementation for the Virtex-7 H580T FPGA, which is large enough
and fast enough to accommodate complex network processing.

Results presented in this paper show that our implementation of NP-CUSUM
is capable of processing network traffic at the speed up to 100Gb/s. The firmware
of the whole monitoring probe consumes only 13% of the available resources of
the target FPGA and thus leaves space for several additional CPD (NP-CUSUM)
hardware plug-ins that can be used for parallel detection of multiple kinds of
network anomalies concurrently. In addition, other existing detection methods
can potentially be easily implemented in the similar way – as hardware SDM
plug-ins for detection of abrupt changes of network traffic characteristics. The
limiting factor for deploying detection hardware plug-ins into a monitoring probe
is the consumption of FPGA resources. Generally, detection methods with low
data storage requirements can be fully implemented as a hardware plug-ins.
Moreover, SDM allows creation of hardware-software co-design where only the
most critical parts of the more complex detection algorithm can be accelerated.
This partially hardware-accelerated approach can reduce the FPGA resource
requirements of advanced detection methods with moderate performance loss.
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detection of intrusions in computer networks via adaptive sequential and batch-
sequential change-point detection methods. IEEE TRANSACTIONS ON SIGNAL
PROCESSING 54(9) (2006) 3372–3382

4. Kekely, L., Puš, V., Kořenek, J.: Software defined monitoring of application pro-
tocols. In: INFOCOM 2014. The 33rd Annual IEEE International Conference on
Computer Communications. (2014) 1725–1733

5. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2) (1954) 100–115
6. Wang, H., Zhang, D., Shin, K.: Detecting syn flooding attacks. In: INFOCOM

2002. Twenty-First Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Proceedings. IEEE. Volume 3. (2002) 1530–1539
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Abstract—Packet parsing is among basic operations that are
performed at all points of a network infrastructure. Modern net-
works impose challenging requirements on the performance and
configurability of packet parsing modules. However, high-speed
parsers often use a significant amount of hardware resources.
We propose a novel architecture of a pipelined packet parser for
FPGA, which offers low latency in addition to high throughput
(over 100 Gb/s). Moreover, the latency, throughput and chip area
can be finely tuned to fit the needs of a particular application.
The parser is hand-optimized thanks to a direct implementation
in VHDL, yet the structure is uniform and easily extensible for
new protocols.

Keywords—Packet Parsing; Latency; FPGA

I. INTRODUCTION

Since computer networks evolve both in terms of speed and
diversity of protocols, there is still a need for packet parsing
modules at all points of the infrastructure. This is true not
only in the public Internet, but also in closed, application-
specific networks. There are very different expectations on
packet parsers. For example, consider a multi-million dollar
business of low-latency algorithmic trading. In this area, the
latency, which has long been rather neglected parameter,
suddenly becomes more important than the raw throughput.
Small embedded devices, on the other hand, often require a
parser to be very small (in terms of the memory and chip
area), yet still to support a rather extensive set of protocols.

With a rising interest in the Software Defined Networking,
it is expected that the ”ossification” of networks will be on
decline, and new protocols will appear at even faster rate than
before. This expectation handicaps fixed ASIC parsers and
favours programmable solutions: CPUs, NPUs and FPGAs.
Our work focuses on FPGAs, because of their great potential
in high-speed networks.

Current high-speed FPGA-based parsers can achieve a
raw throughput of over 400 Gb/s at the cost of the extreme
pipelining, which increases both the latency and the chip area
(FPGA resources) significantly [1]. Also, the configurability
issue is solved only partially. Configuring a set of supported
protocols is often addressed by a higher-level protocol de-
scription followed by an automatic code generation, but the
configuration of the implementation details is left unnoticed.

This paper not only presents a novel packet parser design,
but also motivates engineers to create a parametrized solutions,
demonstrates the need for a thorough exploration of the space
of the solutions and suggests several capabilities that a High-
Level Synthesis system should possess to succeed in this area.

The paper is organized as follows: Section II introduces
several prior published works in this area, Section III describes
our implementation of a modular parser design, Section IV lists
all the necessary steps to create own parser in our methodology,
Section V presents obtained results and Section VI concludes
the work.

II. RELATED WORK

Rather outdated work by Braun et al. [2] uses the onion-like
structure of hand-written protocol wrappers to parse packets.
However, due to the 32-bits-wide data path and an old FPGA,
the parser achieves a throughput of only 2.6 Gb/s. There is
no extensive concept of a common interface for module reuse,
and it is unclear how the parser scales for a wider data path.

Kobierský et al. [3] describe the packet headers in XML
and generate finite state machines, which parse the described
protocol stack. However, the number of states in FSMs rises
rapidly with the width of the data bus. Also, the crossbar used
in the field extraction unit does not scale well.

While not directly related to our work, there has been an
extensive research of general High-Level Synthesis systems,
usually translating pure or modified imperative languages (such
as C, C++, Java) into the hardware. Most of this research aims
to find a potential parallelism hidden in the program loops and
to make use of it by unrolling the loops and pipelining the
computation. However, the for or while cycle is far from a
convenient description of a packet parser, whose most natural
model of computation is perhaps a directed graph of mutually
dependent memory accesses. That may be the reason why we
do not see many results of a general HLS in this area.

There is a general HLS result that was given by Dedek et
al. in [4]. Handel-C language is used to describe the design, but
the details are not disclosed. The reported speed of 1 454 Mb/s
implies that a rather narrow data bus (probably 16 bit) was
used. Therefore, the concern is about the scalability in terms
of both an effective description in Handel-C and an effective
compilation to hardware for much wider data words. This work
also demonstrates that using processors for the packet parsing978-1-4799-4558-0/14/$31.00 c©2014 IEEE
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gives poor results. Compared to the Handel-C implementation,
a custom RISC processor designed specifically for the packet
parsing yields roughly the same chip area, but achieves only
a half of the throughput. Using the MicroBlaze [5] processor
(which is not optimized for the packet parsing) requires double
resources and brings only 5.7 % throughput compared to the
Handel-C solution.

A good example of a domain-specific HLS was given by
Attig and Brebner in [1]. They utilize their own Packet Parsing
(PP) language to describe (with the syntactic sugar of an object
orientation) the structure of packet headers and the methods
which define parsing rules. The description is then compiled
from PP to the pipeline stages implementation. However, the
results indicate that the price for a convenient design entry
is the chip area and the latency – most parsers with 1024-
bit datapath use over 10 % of the resource-abundant Xilinx
Virtex-7 870HT FPGA [6] and the latency varies from 292 to
540 ns.

The Kangaroo system [7] uses RAM to store the packets
and employs the on-chip CAM to perform a lookahead. Looka-
head is the process of loading several fields from the packet
memory at once, allowing to parse several packet headers in a
single cycle. The dynamic programming algorithm is used to
precompute data structures, so that the parsing of the longest
paths in a parse tree is the most accelerated by the lookahead,
as it is impractical to perform the lookahead for all the possible
protocol combinations. This approach has the architectural
limitation of storing the packets in the memory and accessing
them afterwards. The memory soon becomes a bottleneck. Our
approach, however, parses packets ”on the fly”, which means
that the only packet data storage are the pipeline registers.

III. MODULAR PARSER DESIGN

A. Input Packet Interface

We start with the design of an input packet interface,
which conveys packets into (and through) the parser. While the
interface design may seem trivial, it becomes very important
for high bandwidth applications. This is due to the fact that
FPGAs achieve rather low frequency, roughly between 100-
400 MHz. To support the bandwidth over 100 Gb/s, we must
use a very wide data bus (up to 2048 bits). Since the shortest
Ethernet frame is 64 Bytes (512 bits), packet aliasing and
aligning become an issue. Therefore, the achievable effective
bandwidth is considerably smaller than the theoretical raw
bandwidth.

We propose and our packet convey protocol uses two
techniques to utilize the raw bandwidth more effectively than
the standard approach:

• Partially aligned start. The first packet byte may
appear at any position aligned to eight bytes. This
corresponds to the 40 and 100 Gb/s Ethernet standard.
For a data bus wider than 64 bits (8 bytes), this
technique allows the packet to start at other positions
than the first byte of a data bus word.

• Shared words. One data word may contain the last
bytes of the packet x and the first bytes of the packet
x + 1. The packets may not overlap within the word

and the partially aligned start condition may not be
violated.

Examples of both aforementioned techniques are shown
in the Fig. 1. Using these techniques we bring the effective
throughput for the usual packet length distribution much closer
to the theoretical limit.

Fig. 1. The example of possible packet positions when using the proposed
techniques for the better raw bandwidth utilization.

B. Parser Submodules

Since we realize that the development of VHDL modules is
rather low-level and often very time-consuming, we continue
with the design of Generic Protocol Parser Interface (GPPI).
This interface provides the input information necessary to
parse a single protocol header: (1) current packet data being
transferred at the data bus, (2) current offset of the packet data
and (3) offset of the protocol header. GPPI output information
includes (4) extracted packet header field values and the
information needed to parse the next protocol header: (5) offset
and (6) type of the next protocol header. Fig. 2 shows how the
modules are connected. By manually adhering to GPPI, we
achieve a hint of object orientation in VHDL – all protocol
header parsers use the same interface (except for the extracted
header fields) and therefore can easily be interchanged if
needed. This improves the code maintainability and enables
the easy extensibility of the parser: any new protocol header
parser is connected just in the same way as the others. This
feature also allows an automatic connection of protocol header
parsers from the high-level structure description.

Fig. 2. Example of one pipeline stage.

The inner implementation of each protocol header parser is
protocol-specific, but the basic parser block getbyte remains
the same. This block performs waiting for a specific header
field to appear at the data bus, i.e. po + fo ∈ 〈do; do + dw〉,
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where po is the protocol header offset (module input), fo is the
field offset (from the protocol specification), do is the data bus
offset (module input), and dw is the data bus width. Once the
header field is observed at the data bus, it is stored and can be
used to compute the length of the current header, decode the
type of the next header, or any other operation. Fig. 3 shows
the structure of an IPv4 parser as an example.

getbyte getbyte getbyte getbyte

DATA

DATA_OFFSET

HEADER

_OFFSET

0 6,7 9 12-19

*4 =4

+

0..34..7

decode decode

MALFORMED FRAGMENTED SRC_DST_IP

NEXT_HDR

_TYPE

NEXT_HDR

_OFFSET

Fig. 3. Example of IPv4 protocol parser.

C. Parser Top Level

Our parser can output the information about types and
offsets of protocol headers. This information is more general
than just having the parsed header field values. Obtaining the
header field values can be done later, externally to the parser.
Our parser offers an option to skip the actual multiplexing
of header field values from the data stream. This may save
considerable amount of logic resources and is particularly
useful for applications that read only a small number of header
fields, or when packets are modified in a write-only manner.

Similarly to [1], our parser also uses pipelining to achieve
high throughput. However, every pipeline step in our design
is optional. If many pipelines are enabled, then the frequency
(and the throughput) rises, but also the latency and used logic
resources increase. By tuning the use of pipelines, designer
can find the optimal parameters for the particular use case.

Each protocol parser contains an inner bypass for situations
when its protocol is not present in a packet (not shown in
Fig. 3). Thanks to this bypass, the protocol parser submodules
can be arranged in a simple pipeline with a constant latency.
This property also makes adding a support for new protocols
into the parser stack very easy, without the requirement for
any changes in the existing protocol parsers. Fig. 4 shows the
example top level structure of the parser. Note that the inner
bypasses allow to skip certain protocol headers (e.g. VLAN,
MPLS), if these are not present in the packet.

The data width required for high throughput (over 100
Gb/s) may be 1024 or even more bits. This implies that there
may be more packets in one data word. Our parser is able
to handle such situation, provided that no two packet headers
of the same type from different packets are present in one
data word. For example, if the data word contains the IPv4
header (and the following bytes) of the packet A, and a part
of the packet B that includes the IPv4 header, then the packet
B is delayed by one cycle in our parser. This situation may
only occur only for wide data buses (512 bits and more), and
short packets (close to minimal length of 64 bytes) with very

Eth VLAN MPLS
IPv6

Ext

TCP

UDP

IPv4

IPv6

Output Logic

Fig. 4. Example of the parser top level structure.

short inter-packet gap. Our measurements of the real high-
speed networks show that it is very rare situation.

IV. CREATING THE PARSER ACCORDING TO THE

APPLICATION REQUIREMENTS

With the description of the parser design, it is rather
straightforward to create own, customized parser. We identify
three basic steps:

• Parser submodules implementation

• Parser top level connection

• Parser state space search

Parser submodules implementation comprises manual
writing of the VHDL code for each supported protocol.
However, GPPI enables easy reuse of the submodules – once
written, the protocol parser submodule can always be reused.
Also, many generic building blocks of the submodules are
already available, for example the getbyte module, which
extracts a single byte at a certain offset from the packet.
In general, the parser submodules for the common protocols
are very similar and follow the same informal code template.
For many today’s protocols the parser submodule is only the
getbyte modules with correctly configured offsets and some
protocol-specific logic to compute the information about the
next protocol from the extracted fields. Therefore, one can
easily create a parser submodule implementation from the
protocol structure specification.

There is also a space here for manual optimizations. For
example, extracting a byte from the data bus using the getbyte
normally requires a full multiplexer, which is able to extract
a byte from any byte position in the data word (Fig. 5a).
The multiplexer is controlled by the current data bus offset,
the offset of a header within the packet, and the offset of
the desired field within the header (which is often constant).
However, given the fact that a packet may start only at certain
positions in the data word, the current data offset may contain
only the values with the corresponding resolution. Also, we
can often derive all the possible offsets of the packet header
from the analysis of all the possible orderings and sizes
of the protocol headers appearing in the packet before the
current protocol header. Combining the three values (data
offset resolution, possible header offsets, constant field offset)
together, we can use simpler multiplexers, which do not allow
to extract fields from impossible positions. The use of simpler
multiplexers in getbyte, together with the fact that getbyte
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modules form the main core of the protocol analyzing and
data extracting, result in significant chip area savings. For
example in a classical TCP/IP protocol stack, header lengths
are multiples of 4. Therefore, the size of multiplexers can be
reduced 4 times and the size of the whole parsing logic by
nearly the same amount. This is illustrated in the Fig. 5.

Fig. 5. Example of 64b getbyte multiplexer: full (a) and optimized (b).

Parser top level connection once again requires the
designer to write VHDL. In this case, the protocol submodules
are connected via GPPI pipelines to the structure correspond-
ing to the expected order of the protocol headers in packets.
Extracted header field values can be stored in output FIFOs.

Parser state space search is the final step. It takes into
account other parser requirements than a set of supported
protocols. The state space is created by the selective bypassing
of pipelines and by setting the data width of the packet convey
protocol (all easily set by generic parameters).

For example, there is often a requirement on the through-
put. In that case, we are looking for a parser with throughput
equal or higher than the requirement. By synthetizing a parser
with all the possible settings and ruling out those which do
not satisfy the throughput requirement, we obtain a set of
satisfying solutions. However, the solutions will differ in the
size of chip area and in latency. From this set we select a Pareto
set, which contains only the dominating solutions (those for
which there is no better solution in both chip area and latency).
If the Pareto set has more than one member solution, we have
to decide which parameter (area or latency) is more important
for our application.

Generally, each candidate solution creates one point in the
3-D space with dimensions throughput, area and latency. Each
pipeline step and each data width option double this space,
possibly ending in a situation when the exhaustive search is
no longer possible, taking into account that a single synthesis
run takes time in the order of minutes. In that case we suppose
that some global optimization algorithm, such as simulated
annealing or a genetic algorithm can be used. Good heuristic
helping these algorithms could be to rule out some of the
pipeline positions, more precisely to place the pipelines evenly
in the parser to create evenly long critical paths.

A. Implications for High Level Synthesis

After identifying the steps needed to be performed manu-
ally, we can now provide a list of features desirable for a good
HLS, general or platform specific:

• Way to describe parser interface and protocols.

• Way to specify header formats and their dependency.

• Automatic inference of logical constraints (for multi-
plexer simplification etc.).

• Generator of parametrized code.

• Way to describe the design goals (area, latency etc.).

• The best fitting solution finder (exhaustive/heuristic).

Note that these requirements do not imply any particular
type of a parser. Such HLS may generate pipelined parsers
similar to ours, or the parsers based on a completely different
paradigm (e.g. FSM or processor+code).

V. RESULTS

We have implemented a parser supporting the following
protocol stack: Ethernet, up to two VLAN headers, up to
two MPLS headers, IPv4 or IPv6 (with up to two extension
headers), TCP or UDP. (see Fig. 6). The parser is able to extract
the classical quintuple: IP addresses, protocol, port numbers.
Apart from that, it can also provide the information about
present protocol headers and their offsets including the payload
offset.

We have tested properties of the designed parser with 3
different protocol stacks:

• full – Ethernet, 2×VLAN, 2×MPLS, IPv4/IPv6 (with
2× extension headers), TCP/UDP

• IPv4 only – Ethernet, 2×VLAN, 2×MPLS, IPv4,
TCP/UDP

• simple L2 – Ethernet, IPv4/IPv6 (with 2×extension
headers), TCP/UDP

For each mentioned protocol stack, one test case is done for
the parser with the logic to extract the classical quintuple and
one for the same parser without the extraction logic (providing
only the offsets).

Eth. VLAN

IPv4

IPv6

UDP

TCP
MPLS

IPv6_Ext

VLAN MPLS

IPv6_Ext

Fig. 6. Structure of supported protocols (full protocol stack).

We provide the results after a synthesis for the Xilinx
Virtex-7 870HT FPGA, with different settings of the data width
and the number of pipeline stages. These settings, together with
the resulting frequency, latency and resource usage, generate a
large space of solutions, in which the Pareto set can be found
and used to pick the best-fitting solution for an application. In
each test case, we use 5 different data widths: numbers from
128 to 2 048 bits that are powers of 2. For each data width,
every possible placement of pipelines for the tested protocol
stack is shown as a point in the graph and the Pareto set is
highlighted. Points representing results for each data width are
shown in different shapes and colors.

For each test case we provide 2 graphs: the first one
shows the relation between throughput and FPGA resources
with the Pareto set highlighted, without any regard to latency.
The second graph shows the relation between throughput and
latency with the Pareto set highlighted, without any regard
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to FPGA resources. In the graph with the relation between
throughput and FPGA resources, the second Pareto set (the
lower, dashed curve) is also shown. This Pareto set shows the
best achievable solutions for our parser without the quintuple
extraction logic. Similar Pareto set is not shown in the graph
with the relation between throughput and latency, because the
usage of the quintuple extraction logic affects the latency of
the parser only slightly (the critical paths are mostly in the
next header computation logic).

Fig. 7 shows the throughput and the FPGA resources and
Fig. 8 shows the throughput and the latency for the full
protocol stack. There are 9 configurable pipeline positions in
the parser implementing the full protocol stack. This leads to
512 different possible placements of pipelines in this parser
for each data width. Mentioned graphs therefore show results
for 2 560 different solutions with the Pareto sets highlighted.

For a comparison of the achieved Pareto set results for dif-
ferent protocol stacks, we provide graphs in Fig. 9 (throughput
and FPGA resources) and the Fig. 10 (throughput and latency).
From these figures one can clearly see that the supported
protocol stack can rapidly change the parameters of the parser
in terms of chip area and latency. Therefore, a careful protocol
support selection is very important for the optimal result. For
example, just by turning off the IPv6 support we can bring
down the resource utilization by almost 50 %. Latency, on the
other hand, is sensitive to the depth of the protocol stack, (see
Fig. 6) therefore turning off the support for the VLAN and
MPLS headers lowers the latency significantly.

A closer look at the Pareto set optimized for latency and
throughput (without regard to FPGA resources) from Fig. 8 is
presented in Tab. I. The last line of the table is the estimation of
the parser from [1] with similar configuration of the supported
protocols (TcpIP4andIP6). It is obvious that our parser can
achieve much better parameters than the parser from [1].

Data Pipes Throughput Latency LUT-FF

Width [Gb/s] [ns] pairs

256 0 14.5 17.1 3 238

512 0 28.4 18.0 4 053

2 048 0 96.9 21.1 17 685

2 048 1 158.5 25.9 18 547

2 048 2 212.8 28.9 18 317

2 048 4 333.0 30.8 21 775

2 048 5 352.0 34.9 22 373

2 048 7 453.0 36.2 26 728

2 048 8 478.1 38.6 29 301

1 024 ? 325 309 67 902

TABLE I. PARETO SET FOR THE BEST THROUGHPUT AND LATENCY OF

THE FULL PROTOCOL STACK PARSER

Next, we provide the data for the example from the
Section IV: Given a set of supported protocols and the target
throughput, find all solutions in the Pareto set. We use three
sets of supported protocols mentioned earlier and the target
throughputs of 40, 100 and 400 Gb/s. All nine Pareto sets are
shown in the Fig. 11. Note that while there are several solutions
with the throughput over 400 Gb/s, there is only one 400 Gb/s
Pareto solution for each protocol set, which means that the
other solutions are not better in terms of FPGA resources
nor latency. For the other target throughputs, the designer
can choose the appropriate solution according to application
priorities.
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Fig. 7. The FPGA resource utilization for different settings of the full parser.
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Fig. 11. Pareto sets for three given protocol sets and three target throughputs.

A careful design space exploration is very important for
our parser. For example, the parser of the full protocol stack
optimized for the latency uses 17 685 LUT-FlipFlop pairs to
achieve near 100 Gb/s throughput with the latency of only
21.1 ns (see Tab. I), while the parser optimized for resources
uses only 6 536 LUT-FlipFlop pairs to achieve the throughput
just over 100 Gb/s, but with the latency of 35.8 ns (see Fig. 11).

Finally, Fig. 12 illustrates the complete Pareto set of
solutions in the (latency, throughput, area) space for the full
protocol stack. To create the 3D surface in the figure, the
bottom (latency, throughput) plane was divided into rectangles
of sizes (1 ns × 10 Gb/s) and the smallest solution that
satisfies the required latency and throughput was found for
each rectangle. Therefore, each horizontal level of the surface
represents one solution from the Pareto set. Finer-grained
division of the (latency, throughput) plane would result in more
solutions, but also in less readable image.
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Fig. 12. 3D surface plot of the Pareto set

VI. CONCLUSION

This paper introduces a highly configurable packet parser
for FPGA, which achieves throughput in the range of tens to
hundreds of Gb/s and is usable in a variety of applications.
The key concept is a selective pipelining, which allows to
find the best fitting solution with regards to the requirements.
The parser uses only 1.19 % of the Virtex-7 870HT FPGA
resources to achieve a throughput over 100 Gb/s and 4.88 %
for a throughput over 400 Gb/s, which leaves most of the
FPGA resources free for implementing other functions of
target applications.

This work also presents the methodology of a modular
parser design and demonstrates the need for a thorough ex-
ploration of the solution space. Moreover, it suggests several
capabilities that a High-Level Synthesis system should possess
to succeed in area of packet parsers creation.
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Abstract—Rapidly growing speed and complexity of computer
networks impose new requirements on fast lookup structures
which are utilized in many networking applications (SDN, fire-
walls, NATs, etc.). We propose a novel lookup concept based on
the well-known cuckoo hashing, which can achieve good memory
utilization, supplemented by a binary search tree for offloading
the colliding keys and supporting LPM lookup. We also propose
a hardware architecture implementing this lookup concept in the
FPGA. Our solution is suitable for lookup of the variable-length
keys in 100+Gbps networks. Memory utilization of the proposed
concept is thoroughly evaluated and it is shown that the concept
is scalable to external memory components.

Keywords—Cuckoo hash; binary search; packet filtering; FPGA

I. INTRODUCTION

Field Programmable Gate Arrays (FPGA) are popular plat-
forms utilized in networking applications targeting high-speed
packet processing (e.g. [1]). We propose a fast lookup concept
designed specifically for FPGA-oriented platforms. The con-
cept combines two well-known memory-oriented lookup al-
gorithms – cuckoo hashing [2] and binary search tree (adapted
for best/longest prefix matching [3]). Each algorithm efficiently
complements the other in area where the other fails. The con-
cept achieves almost 100% memory utilization with efficient
utilization of the memory and logic resources in comparison to
the TCAM or Hash-CAM concepts [4]. At the same time, our
concept allows fast lookups (200 mil. lookups/s designed for
100+ Gbps solutions). Our contributions also include: (a) the
possibility to utilize external memory when the number of rules
cannot fit in the internal FPGA memory, (b) increasing the
lookup functionality with the longest prefix match, (c) efficient
implementation of the whole scheme in FPGA including the
update logic enabling on-the-fly updates and (d) evaluation of
the concept in terms of achievable resources utilization.

II. RELATED WORK

The goal of cuckoo hashing [2] is to reduce the number
of memory accesses during a lookup and thus speeding-up
a lookup operation. Standard cuckoo hashing utilizes two
hash tables with two different hash functions but it can be
generalized for a higher number of hash tables/functions. There
has been an implementation of cuckoo hashing in FPGA for
the purpose of pattern matching [4]. This architecture contains
dedicated matching blocks for all patterns of the same length
(up to the length of 16 characters). Each matching block
consists of two cuckoo hash tables for storing addresses to
the database of patterns. The architecture also contains mul-
tiplexers and a control logic which together allow performing

either a pattern matching operation or a pattern database
update (pattern insertion or deletion). The approach offers only
medium memory utilization since it does not utilize any type
of overflow memory and also cannot scale well to external
memory since it is tailored to the internal FPGA memory.

The advanced lookup procedures also include prefix match-
ing (PM, i.e. there is a single prefix for a given key in the set
but it is not known apriori) and longest prefix match (LPM,
i.e. selecting the longest matching prefix from the set for a
given key). Although the LPM itself is out of the primary
scope in this paper, the unique combination of cuckoo hash and
binary search tree renders it possible for our implementation
to support LPM lookup.

III. DESIGN AND ARCHITECTURE

The core functionality of our lookup schema is based on
cuckoo hashing principle due to a very fast lookup with only
a few memory accesses needed for each search. This feature
favors the usage of cuckoo hashing even on architectures with
limited memory interface throughput (e.g. external memory).
On the other hand, cuckoo hashing can suffer from a low
achievable utilization of the memory caused by hash conflicts.
To address this problem, our design augments basic cuckoo
hashing principle by the usage of a stash for offloading the
conflicting keys. The proposed design of cuckoo hashing with
the stash is not entirely new. It has been already described
in [5], where the authors proposed and evaluated the usage of
only a very small stash (capacity under 5 keys implemented
in TCAM) to improve the worst case memory utilization of
cuckoo hashing.

In our design we propose and evaluate the usage of a
significantly larger stash – a stash with the capacity comparable
to the capacity of the used cuckoo hash tables to improve
not only the worst case but also to improve average memory
utilization. Furthermore, our stash also supports LPM lookups,
thus augmenting the lookup functionality of the basic cuckoo
hashing. The lookup support of not only the whole keys
but also key prefixes can be very useful in many different
areas (e.g. packet filtering). Instead of TCAM, we propose
an FPGA implementation of a well-known binary search
algorithm adapted for the LPM lookup (described in [3]) as
an effective approach to implement the larger stash.

The binary search offers basically the opposite features in
comparison with the cuckoo hashing – the key lookup requires
relatively large number of subsequent memory accesses, but
the achievable memory utilization is always 100%. Because
of the large number of memory accesses, binary search based
lookup should be implemented only in the internal FPGA
memory. In order to achieve high lookup throughput, the978-1-4799-4558-0/14/$31.00 c©2014 IEEE
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implementation of the binary search must not be sequential but
rather divided into pipelined stages. This can be achieved by
establishing a tree structure in the searched array (binary search
tree –BST) and slicing it by the tree levels (each tree level
forms a pipeline stage). Finally, the functionality of update
operations in the described BST can be easily implemented in
the hardware with support of on-the-fly updates.

A. Lookup engine interface and functionality

We start the description by the general design of an
interface and functionality of a virtual lookup engine (either
cuckoo or BST). Both engines implement the same interface
independently on the details of their lookup procedure. The
signals can be divided into 3 basic groups: input, output and
configuration. The only input of a lookup engine is the value
of a key to search. The lookup implementation should be able
to process new input key every clock cycle. For each input
key, the engine produces one result on the output based on
performed lookup. The lookup result consists of arbitrary data
(e.g. routing decision, matched key identification) associated
with the searched key and one bit information about the key
lookup success (Found). When the input key is not found, the
value of data on the output is unspecified (invalid).

The lookup engine (and its interface) is configurable by
these three basic generic parameters: key width (maximum
width of key representation in bits), data width (width of
data representation in bits), maximum capacity (theoretical
size limit for the set of keys, representation may differ).

B. Cuckoo hash lookup engine

Fig. 1 depicts a basic schema of cuckoo hash engine im-
plementation. The lookup process starts by parallel computing
of key hash values (outputs of hash blocks). As the basis
for the hash blocks we utilize CRC implementation generated
for commonly used polynomials. The lookup continues with
hash values being used as addresses for reading records from
hash tables in memory. Each record forms a pair composed
of a key and data associated with the key. A record can also
be stored in a register outside the tables (the purpose of the
register is explained in the next paragraph). Subsequently, the
input key is compared with the keys from the memory (and
the register) records for equality. At most one comparison
may be successful, because each unique key appears only in
a single place at a time. Therefore, aggregation of result is
very simple – if none of the compared keys is equal to the
searched key, the found flag is not set, otherwise it is set and
data associated with the matching key are provided.

Update of an active key set is entirely managed by the
reconfiguration controller based on requests received from
the configuration interface. When inserting a new key, the
controller can take advantage of the reconfiguration register
included in the lookup path. Using this register the controller
can evict records from hash tables on-the-fly preserving the set
of active keys. More precisely, the insertion of a new key x
starts with storing x in the register. Then all possible locations
for x in the hash tables are checked sequentially. If one of them
is empty, x is inserted into the table and the reconfiguration
ends. Otherwise a victim y is selected and evicted from the
table, leaving free space for x. The evicted record y is actually

Memory

dd

Fig. 1. Conceptual schema of cuckoo hash based lookup engine.

n
-1

Binary Search Tree

Fig. 2. Conceptual schema of binary search tree based lookup engine.

swapped with x and the insertion continues with y except x
cannot be selected as the next victim. The reconfiguration cycle
can repeat itself multiple times, until the register is freed or
can even repeat itself infinite times when a chain of collisions
occurs. Until the register is freed the cuckoo hash engine is
considered full. Deletion of a key is possible even during active
insertion reconfiguration. Deletion of x starts by pausing the
reconfiguration process and continues with sequential checking
of all possible locations for x (i.e. the register and a single
position in each table). If a key identical to x is found in one
of those positions, it is invalidated. After the deletion ends, the
reconfiguration process is resumed.

The maximum capacity of the cuckoo hash engine can be
configured by two values: d – the number of used hash tables
(hash functions) and t – the size of individual table. Theoretical
capacity limit is defined by formula Ccuckoo = d× t+1. The
plus one accounts for the additional reconfiguration register.

C. Binary search tree lookup engine

Fig. 2 depicts a basic schema of our BST lookup engine.
The engine starts the lookup by a pipelined and sequential
search of an input key (red arrows) through the levels of the
tree. Each tree level forms a pipeline stage with its dedicated
piece of memory and a key comparator. The output of a stage
is an address of a node where to continue binary search in the
next tree level and the searched key. The address from the last
tree level is used to address the data array containing associated
data to the key. The lookup result must be corrected according
to a record in the reconfiguration register due to atomicity of
operations.

Update of an active key set is entirely managed by the
reconfiguration controller based on requests received from the
configuration interface. The controller can take advantage of



Poster Session 1

221

the single reconfiguration register included in the lookup path
during the update. More precisely, the update (deletion or
insertion of x) starts with storing the record x in the register.
Subsequently, the update process consists of three sequential
steps. (1) The key x is searched in the tree sequentially.
The search must fail when inserting x. The search must
succeed when deleting x. (2) The record x is activated in
the register to correct the lookup process in the last stage.
(3) Sequential reconfiguration is performed to merge x into
the nodes and the data array. Finally, the update process ends
and the reconfiguration register is freed. Deletion and insertion
share resources and cannot be active together as in cuckoo
hash engine. The engine can become full only after successful
insertion and can become empty again only after successful
deletion.

The capacity of the BST based engine can be configured
by the number of BST levels l. The capacity is then defined
by formula Cbst = 2l − 1 when adaptation for LPM is not
used or Cbst = 2l−1− 1 when LPM lookup is supported. Our
implementation supports the adaptation for LPM, but if LPM
is not needed, it can be easily modified (simplified) to support
only precise key lookup gaining two times higher capacity.

D. Top-level lookup engine

Top-level engine instantiates both Cuckoo and BST engine
in parallel. The lookup of an input key is also performed
in parallel in both engines. The results are then stored in
FIFOs, because the two engines do not have same processing
delays. Result aggregation then selects data from engine with
successful lookup. When both engines successfully find a key,
the result from cuckoo hash is preferred, because in that case
the result from BST is only for a matching prefix, but the result
from cuckoo hash is for the whole matching key.

Reconfiguration of the key sets in both engines is managed
by the top level reconfiguration controller. All updates for
prefixes are directly forwarded into the BST stash. Deletions
of the whole keys are implemented in both engines in parallel.
Insertions of the whole keys are forwarded into the cuckoo
hash. If cuckoo hash is full (its reconfiguration register is
occupied) and new key insertion is requested, then the key that
is currently in cuckoo hash reconfiguration register is moved
into the stash and the new key is inserted into cuckoo hash.
The top-level engine is full when both the cuckoo hash and
the BST stash are full. Furthermore, in our implementation
the configuration interface of the top-level lookup engine is
connected to the block with address decoder and registers
for key, data, requests and status flags. This block is then
accessible from the software using standard memory interface.
This way the management of the active key set can be easily
controlled from the software.

The maximum capacity of the cuckoo hash with stash
lookup engine can be defined by three parameters: parameters
d and t of the cuckoo hash and the stash size s. Theoretical
capacity limit is then defined by formula Ctotal = d×t+1+s.

IV. EVALUATION AND RESULTS

The proposed architecture was implemented in VHDL
and synthesized into FPGA. We conducted experiments to
evaluate achievable memory utilization and FPGA resources

consumption in different configurations of the architecture. The
results of these evaluations are summed up in this section.

We start the evaluation by experiments on achievable
memory utilization of our concept. The achieved utilization can
be computed in two basic ways: Ucuckoo = (n−m)/Ccuckoo,
Utotal = n/Ctotal, where n is the total number of success-
fully inserted keys before the memory became full and m is
the number of keys that resides in the stash. Because, our
implementation uses stash which can be always filled up to
100% of its capacity, we can always put m = s. The values
of n must be acquired from the test runs.

In the first series of tests we have evaluated the relation
between achievable memory utilization of cuckoo hash and
the used sizes of stash for different parameters. The results
of these evaluations are shown in the graphs in Fig. 3 and 4.
We have tested three different values of d parameter (2, 3
and 4 not depicted in the figures), three different values of
t parameter (128, 1 024 and 8 192) and multiple values of s
(from 0 to t). We have also tested different key sizes (32 b,
64 b and 128 b), but the achieved results have been very similar,
therefore we do not show different graphs for each key size.
The memory utilization plotted in the graphs is Ucuckoo and
the size of the stash (s) is plotted as a portion of t. The graphs
show mean (thick darker lines) and minimal resp. maximal
(thin lighter lines) achieved utilizations from 10 000 tests with
random generated keys for each combination of values of d, t
and s. From data plotted in the graphs it is clear that the mean
achieved memory utilization of cuckoo hash is independent
on the values of t. Parameter t only influences the difference
between minimal and maximal achieved utilization, when the
span is higher for smaller values of t.

Moreover, Fig. 3 shows that the influence of stash size on
the achievable memory utilization is significant for two cuckoo
hash tables – the mean utilization raises from 50% in the case
without the stash to 75% with s = t/10 or even around
90% for s > t/2. Also the differences between minimal and
maximal achieved utilizations are reduced with the raising size
of stash. Fig. 4 shows that the importance of stash in case
of more than two cuckoo hash tables is not that high as for
two tables. But it contributes in achieving nearly 100% mean
memory utilization of cuckoo hash tables.

The second series of memory utilization tests is oriented on
a thorough examination of achievable memory utilizations for
a few selected sizes of stash. The results of these evaluations
are shown in the graphs in Fig. 5 and 6. Here we have also
tested three different values of d parameter (2, 3 and 4 not
depicted), but only a single value of t = 1024 and only a
few values of s (0, t/64, t/16, t/4, t/2 and t). The graphs
show histograms of probability (percentage of all conducted
tests) that achieved precisely the specified utilization (Ucuckoo

used) with highlighted mean (dashed line) and minimal resp.
maximal utilizations (points). The area under each histogram
line is exactly 100% even though the individual values are
rather small. The results are from 1 000 000 tests with random
generated keys for each combination of values of d and s.
From data plotted in the graphs it is clear that the dispersion
of achieved utilizations is lower for the rising stash size. Also
the effect of stashes with size s < t/16 for the cuckoo hash
with d > 2 is negligible.
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Fig. 3. Achievable memory utilization for cuckoo hash with two tables
(d = 2) for different sizes of stash.
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Fig. 4. Achievable memory utilization for cuckoo hash with three tables
(d = 3) for different sizes of stash.
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Fig. 5. Probability distribution of achievable memory utilization for cuckoo
hash with two tables (d = 2, t = 1024).
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Fig. 6. Probability distribution of achievable memory utilization for cuckoo
hash with three tables (d = 3, t = 1024).

The dispersion reduction is noticeable especially for the
cuckoo hash with two tables (Fig. 5). For two tables without
a stash there is a very real chance of achieving memory
utilization that is significantly lower than the mean utilization
(marked by red arrows). The solution to this problem is even a
relatively small stash (s = t/64 or s = t/16). This particular
situation is very important when cuckoo hash is implemented
using large external memory to store cuckoo hash tables. The

TABLE I. FPGA RESOURCES REQUIREMENTS AND MEMORY

UTILIZATIONS OF OUR LOOKUP ENGINE IMPLEMENTATION.

Key FPGA Resources Frequency Mean Mean

Width d t s LUTs FFs BRAMs [MHz] Utilization Capacity

32 2 8 192 2 047 3 721 2 111 45 264.116 83.5% 15 388

32 3 8 192 4 095 4 138 2 221 71 265.437 96.7% 27 711

128 2 1 024 255 8 336 4 059 15 257.631 83.5% 1 923

128 3 1 024 511 9 564 4 304 23 263.704 96.7% 3 463

bottleneck in such an implementation lays in the throughput of
external memory interface, which limits the number of usable
cuckoo hash tables usually to only 2. These results suggests
that stash of size s = t/64 or s = t/16 can significantly
improve the achievable memory utilizations in exactly this
case. So for example, the implementation of cuckoo hash with
d = 2 and t = 220 in external memory require stash with size
only s = 220/16 = 65 536 to achieve mean external memory
utilization of 70% (mean capacity over 1.5 million keys) with
very low chance to achieve utilization under 65%.

Finally, we present the FPGA resources requirements of
our top-level lookup engine in selected configurations. The
requirements in terms of LUTs, registers and BlockRAMs are
given in Tab. I together with the achievable clock frequencies.
Values in tables are acquired from the synthesis by XST tool
for the XilinxVirtex-7 870HT FPGA and data width of 32 bits.
Variable key widths (32 and 128 bits as lengths of IPv4 and
IPv6 addresses were selected) and capacity parameters d, t, s
are given in the table. Tab. I also presents mean achievable
memory utilization (Utotal) and capacity based on test results
presented earlier in this section. The achieved frequencies over
200MHz and the fact that each lookup implementation is
capable of one lookup on each clock cycle suggest, that our
architecture is capable of over 200million lookups per second,
which is sufficient for packet filtering on 100+Gbps networks.

V. CONCLUSION

The paper proposed a viable concept for fast packet
filtering for FPGA. The proposed architecture leverages the
combination of the cuckoo hash engine with BST engine with
a focus on parallel implementation in FPGA. The results of
evaluation show that the concept allows not only fast lookups
for every arriving packet on the 100+Gbps links but also
effective utilization of FPGA resources.
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Abstract—With the ongoing shift of network services to the application layer also the monitoring systems focus more on the data from

the application layer. The increasing speed of the network links, together with the increased complexity of application protocol

processing, require a new way of hardware acceleration. We propose a new concept of hardware acceleration for flexible flow-based

application level traffic monitoring which we call Software Defined Monitoring. Application layer processing is performed by monitoring

tasks implemented in the software in conjunction with a configurable hardware accelerator. The accelerator is a high-speed application-

specific processor tailored to stateful flow processing. The software monitoring tasks control the level of detail retained by the hardware

for each flow in such a way that the usable information is always retained, while the remaining data is processed by simpler methods.

Flexibility of the concept is provided by a plugin-based design of both hardware and software, which ensures adaptability in the evolving

world of network monitoring. Our high-speed implementation using FPGA acceleration board in a commodity server is able to perform a

100 Gb/s flow traffic measurement augmented by a selected application-level protocol analysis.

Index Terms—Network monitoring, acceleration, security, FPGA, L7

Ç

1 INTRODUCTION

MODERN network engineering and security heavily rely
on the network traffic monitoring. The requirements

imposed on the quality of network security monitoring
information often lead to the requirement to process
unsampled network traffic. That ability is crucial in order to
detect even single-packet attacks. A golden standard in the
area of network monitoring is a flow measurement. A moni-
toring device collects basic statistics about the network
flows at the Internet and Transport layers and reports them
to a central storage collector using a handover protocol such
as NetFlow [1] or IPFIX [2]. Flow measurement is a stateful
process, because for each packet the flow state record is
updated in the device (e.g. packet counters are incre-
mented), and only the resulting numbers are exported. This
also implies that some information is lost in the monitoring
process and that the flow collector (where further data proc-
essing is usually done) has a limited view on the network.
While a number of researchers focus on harvesting knowl-
edge from the existing flow data, we argue that the ability
to analyze application layer in the monitoring process is cru-
cial for improvement of the quality and flexibility of net-
work monitoring. This is illustrated by the recent infamous
Heartbleed bug in the SSL implementation. While it is

impractical (if not impossible at all) to detect the Heartbleed
attack by analyzing the transport layer flow data, its detec-
tion at the application layer is trivial.

The ongoing trend in the field of application layer moni-
toring is towards creation of richer flow records [3], [4], [5],
carrying some extra information in addition to the basic
flow size and timing statistics. The added information often
include values from the application layer protocol headers,
such as HTTP, DNS etc. It seems that the ability to analyze
application layer in the monitoring process is crucial for
improvement of the quality of network threat detection,
because more and more of the network functionality is
being shifted up in the protocol stack.

Implementation of the application level flow monitoring
with a commodity CPU is certainly possible, yet its through-
put is limited mainly by the performance of the processors
[6]. It should be noted that every newly arrived packet is
inevitably a cache miss in the CPU. On the other hand,
ASICs and FPGAs offer much better possibilities in terms of
throughput. However, a fixed solely hardware implementa-
tion may face the flexibility issues, since the evolving nature
of network threats implies the need for fast changes of the
monitoring process, quickly making fixed hardware devices
obsolete. Many papers proposing high-speed hardware
architectures for the most timing-critical operations neces-
sary in flow monitoring were published. Those operations
include packet header parsing, packet classification, coun-
ters management and pattern matching. However, most of
the proposed architectures have never been practically
deployed. We conceive that this is because the effort is usu-
ally spent only on the improvement of the performance fea-
tures, but flexibility, ease of use and speed of response to
newly emerged problems are neglected.

The aim of this paper is to (1) strike a balance between
the system throughput and flexibility/programmability
and to (2) offer a configurable trade-off to the above, but
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mainly to (3) endorse a progressive adoption of network
monitoring subtasks to the hardware accelerator, motivated
solely by the real needs of the networking community.

Our key idea is that even the advanced application-layer
processing task usually need to observe only some network
flows, representing only a small fraction of traffic. An exam-
ple can be a DNS analyzer, since DNS traffic typically repre-
sents no more than 1 percent of all network packets. Other
applications may utilize even better offload, since they need
to observe only a small amount of packets within each flow
for their full functionality. Let a HTTP header analyzer be
an example, since the HTTP header is typically located in
the first few packets of the network flow. Please note that
our method never discards packets that are relevant for the
particular monitoring application.

We only offload the processing of bulk traffic that is not
(or no longer) interesting for the application-layer processing
tasks into the hardware accelerator. The offload of measure-
ment is controlled on a per flow basis by the monitoring soft-
ware and adjusted in real time to its current needs. Offload
control is realized through unified interface by dynamically
specifying a set of rules. These rules are installed into the
accelerator to determine the type of packet offload (=prepro-
cessing acceleration) used for individual network flows. The
preprocessing method that best aids the performance and
does not decrease the required precision of advanced soft-
ware processing is selected. Due to the unified control inter-
face the proposed system is very flexible and can be used for
a wide range of networkmonitoring applications.

Furthermore, the whole system is designed to be easily
extensible at two different levels. At the software side, moni-
toring plugins can be easily added to the system. This brings
the possibility of rapid development and deployment of new
monitoring applications, for example as a reaction to a new
network security threat. Once the functionality of software
task is verified and stable enough, the second level of system
extensibility can be employed to further speed-up the task.
Various packet processing and data aggregation routines
can be relocated directly into the hardware accelerator.

The paper is structured as follows: The following section
provides analysis of real-life network traffic from the appli-
cation monitoring point of view. In Section 3 we make use
of the analysis outcomes to design the concept of hardware
accelerator tightly coupled to monitoring software applica-
tions. Section 4 provides experimental results of our work.
Section 5 presents notable related work and Section 6 con-
cludes our paper.

2 ANALYSIS

We start the paper with an analysis of traffic properties in a
real high-speed backbone network. Based on the measured
characteristics we then optimize the design of our SDM sys-
tem to achieve optimal performance when deployed in real
networks. All of the measurements in this paper were con-
ducted in the high-speed CESNET backbone network. CES-
NET is Czech National Research and Educational Network
which has optical links operating at speeds up to 100 Gbps
and routes mainly IP traffic. It serves around 200,000 users.
We conduct all of our measurements during the standard
working hours. To get a basic view of the network traffic

character, we measure mean size of packets in bytes, mean
size of flows in packets and mean time duration of flows.
Because we aim for the application protocols, we measure
these characteristics not only for the whole network traffic
on the link, but also for the selected applications. We select
some of the most commonly used application protocols and
services such as HTTP, HTTPS, DNS, email (SMTP, POP3
and IMAP), SSH, RTMP, FTP and others. Furthermore, we
measure the percentage of these protocols in the captured
traffic in terms of flows, packets and bytes.

Table 1 shows the results of the basic network traffic
analysis. The table shows that the observed statistics dif-
fer greatly depending on the specific service. The largest
portion of network traffic is conveyed by the HTTP pro-
tocol which accounts for more than a quarter of all flows
and around half of all packets and bytes. Moreover we
can see that HTTP flows and packets are generally larger
(heavier) in number of packets and bytes and longer in
time than average. Another large amount of total traffic
belongs to HTTPS, which has very similar observed char-
acteristics as HTTP. These two protocols (HTTP and
HTTPS) together cover majority of all network traffic—
nearly a half of all flows and around four fifths of the
data. Therefore, the possibility of their further analysis is
certainly desirable. A large amount of flows also belong
to the DNS protocol (nearly one quarter), but this number
is highly disproportional to the DNS total packet and
bytes percentage. DNS flows are generally very small
(light) with majority of them consisting of only one small
packet. Also ICMP, which covers majority of non-TCP/
non-UDP flows on the network, has similar character of
flows as DNS with very small and short flows. The oppo-
site type of disproportional flows and packets percen-
tages as DNS and ICMP has RTMP protocol (Flash
multimedia streaming), which covers only a tiny portion
of flows, but they are all extremely heavy and long.

The distribution of packet lengths is another interesting
characteristic of the network. The majority of packets are
either very long (over 1.300 B: 57 percent) or very short
(under 100 B: 35 percent). Especially dominant are both
extremes from the range of lengths supported by the

TABLE 1
Basic Statistical Characteristics of Network Data Grouped by

the Service

Traffic portion in Average

flows
[%]

packets
[%]

bytes
[%]

flow size
[packets]

flow
time [s]

pckt size
[Bytes]

H
̰
TTP 26.62 48.33 51.81 59.2 7.137 983.0

HTTPS 18.18 31.12 29.75 51.3 8.591 816.7
SSH 2.66 1.42 1.09 11.7 17.167 241.2
RTMP 0.02 1.01 1.24 2,066.8 57.432 1,001.2
DNS 24.10 0.79 0.19 1.1 0.153 205.9
Email 1.00 0.72 0.56 16.8 2.957 581.6
ICMP 1.91 0.60 0.50 1.9 3.206 91.3
RDP 3.37 0.53 0.31 4.7 2.731 468.4
NTP 1.53 0.41 0.21 8.8 4.142 359.5
FTP 0.38 0.01 0.01 2.3 1.234 75.8
SIP 0.00 0.00 0.00 5.0 23.611 421.1
others 20.23 15.06 14.33 27.2 7.536 839.6

a
̰
ll 32.0 6.432 872.2
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Ethernet standard—42 and 1,500 B. Medium sized packets
are not very common.

In Table 1 we have already shown basic information
about mean flow durations. Further information about the
flow time durations for the selected application protocols
can be seen in Fig. 1. Each line in the graph shows the per-
centage of flows that last shorter than the given duration.
Generally (red thick line) over 2

3 of all flows are shorter than
100 ms and only a tenth of them exceed 10 s. Also majority
of DNS and SIP flows have a duration under 10 ms.

While Fig. 1 shows further information about flow dura-
tion, it does not say anything about time distribution of
packets inside the flows. Weights of individual flows are
also not considered. A better look at packet timing inside
the flows can be shown by measuring the relative arrival
times of packets from the start of the flow. Thus, the first
packet of each flow has the zero relative arrival time and its
absolute arrival time marks the starting time of that flow.
Then, each subsequent packet has a relative arrival time
equal to the difference of its absolute arrival time and the
marked start of the flow. Results of this measurement are
shown in Fig. 2. The graph shows that on average (red thick
line) only a small portion of all packets arrive right after the
start of the flow—;only a fifth of all packets arrive during
the first second of the flow. This fact leads to the conclusion
that flows with short duration carry only a very few packets.
The conclusion is further strengthened by the fact that the
majority of flows have a very short duration.

Table 1 contains the information about mean flow sizes
for selected application protocols and services. Further
information about flow sizes can be seen in Fig. 3. Each line
of the graph shows the percentage of flows that consists of
fewer packets than a given number. On average (red thick
line) only a tenth of all network flows have more than
10 packets. Also, virtually all DNS and SIP flows consist of a
single packet.

Fig. 3 does not clearly say anything about the percentage
of all packets carried by flows of different sizes. It is known
that high-speed network traffic has a heavy-tailed character
of flow size distribution [7], [8]. The heavy-tailed character
of flow size distribution derived from the measured values
is shown in Fig. 4. The graph shows the portions of all
packets carried by the specified percentage of the heaviest
flows on the network. It can be seen that on average (red
thick line) 0.1 percent of the heaviest flows carry around
60 percent of all packets and 1 percent carry even around
85 percent. An exception to the heavy-tailed distribution of
flow sizes is the DNS protocol. On the other hand, SIP and
SSH protocols have a heavier tail than average.

Our work relies on the following consequence of the
heavy-tailed character of network traffic: by selecting a small
percentage of the heaviest flows, we can cover the majority
of packets. The problem then lies in an effective prediction
of which flows are the heaviest. More accurately, it lies in a
capability to recognize the heaviest flows only from the
properties of their first few packets. The simplest method of

Fig. 1. Cummulative distribution functions of flow durations.

Fig. 2. Cummulative distribution functions of packet arrival times.

Fig. 3. Cummulative distribution functions of flow sizes.

Fig. 4. Portions of packets carried by the percentage of the heaviest
flows.
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this recognition is based on a rule that every flow is consid-
ered heavy after arrival of its first k packets for some selected
decision threshold k. The main advantage of this method is
just its simplicity—no additional packet analysis nor
advanced stateful information for the flows is needed.

Figs. 5 and 6 show the measured accuracy of the heaviest
flow selection by the described simple method. These
graphs show the relations between the value of threshold k
to the portion of heavy marked flows (first graph) and pack-
ets covered by them (second graph). By a combination of
values from both graphs we can see that with the rising
decision threshold the portion of flows marked heavy dra-
matically decreases, but the percentage of covered packets
decreases rather slowly. For example, decision threshold
k ¼ 20 leads to only 5 percent of heavy marked flows while
covering around 85 percent of all packets on average.
Exceptions are DNS and to some extent also HTTPS and
SMTP protocols, where the percentage of covered packets
decreases quickly.

Fig. 7 shows a different view on the simple heavy flow
prediction method effectiveness. It shows the average num-
ber of packets covered by one heavy marked flow for differ-
ent values of the decision threshold k. Values shown in the
graph rise with the decision threshold to a considerably
higher number than the average sizes of the flows from
Table 1. For example the average size of flow with more
than k ¼ 20 packets is over 500 packets, while Table 1

reports overall average of 32.0 packets per flow. This clearly
proves that even our simple heavy flow prediction method
effectively predicts the heaviest flows. Certainly there are
many more advanced methods of heavy flow prediction,
but these are out of scope of this paper.

3 SYSTEM DESIGN

Many 10 Gbps flow measurement systems have adopted a
common scheme. A hardware network interface card per-
forms packet capture, sometimes enhanced by packet distri-
bution among several CPU cores. The captured traffic is
then sent over the host bus to the memory, where packets
are processed by the software applications running at the
CPU cores [6]. This model cannot be applied to 100 Gbps
networks due to major performance bottlenecks. The main
bottleneck lies in limited computational power of CPU
which is insufficient for advanced monitoring tasks.

We propose a new acceleration model that overcomes the
above-mentioned bottlenecks by a well-designed hard-
ware/software system. The main idea is to give the hard-
ware the ability to handle basic traffic processing. Only the
control of the HW and advanced processing of a fraction of
the traffic are left for the software. Although the preprocess-
ing is done by the firmware in FPGA, it is fully controlled
by the software applications. Therefore, the first few packets
of each new flow are sent to the software, which selects a
type of hardware preprocessing used for the subsequent
packets of that flow. Complete software control of the moni-
toring process is also the reason why we called the pro-
posed model Software Defined Monitoring (SDM).

The types of data preprocessing in the SDM hardware
suitable for the area of network monitoring can be divided
into three basic groups:

� Extraction of the interesting data from packets and
sending only those data to the software in a prede-
fined format, which we call a Unified Header (UH).
Then only a few bytes for each packet are transferred
from hardware to software, thus reducing the PCIe
utilization. Also the CPU has lower load, because the
packet parsing is done in the hardware.

� Aggregation of packets into flow records directly in the
hardware, which brings even higher performance
savings for the CPU. This aggregation may range

Fig. 5. Heavy flow detection using the simple method—portions of
selected flows.

Fig. 6. Heavy flow detection using the simple method—portions of cap-
tured packets.

Fig. 7. Mean number of captured packets per flow in flows selected using
the simple method.
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from basic flow statistics to very specific actions
according to the needs of particular applications.

� Filtration of unnecessary packets and forwarding
only the interesting ones to the software. This can
aid advanced monitoring applications, which per-
form various analyses and detections oriented only
to some specific subgroup of network traffic (e.g.
DNS threat detector or HTTP header analyzer).

Top-level conceptual scheme of the proposed SDM
model is shown in Fig. 8. Forward path is represented by
solid arrows and an offload control feedback path by
dashed arrows. The system is composed of two main parts
(FPGA firmware and software on general CPU) connected
together through a data bus. The bus can be PCI Express in
case of using commodity PC with a hardware accelerator,
or any other interface (e.g. ATCA backplane or internal bus
of a single die CPU+FPGA chip).

The processing of all incoming packets starts with pars-
ing a header and extracting packet’s metadata (Parser).
Extracted metadata is then used to classify the packet based
on a software defined set of rules (Rule Lookup). Each rule
identifies one concrete flow and specifies the type of packet
preprocessing and the target software channel for packets
of that flow. Packets can be processed in a firmware flow
cache (i.e., aggregated to the selected type of flow record),
dropped, trimmed or sent to the software unchanged or in
the form of a Unified Header. Flow records residing in the
firmware flow cache are periodically exported to the soft-
ware. The periodic checking is not shown in Fig. 8 for clar-
ity. The data from the firmware is sent over the bus to the
software using multiple independent channels. Data for
each channel is stored in a software buffer in the form of
whole packets, Unified Headers or flow records.

This data is processed by the set of user specific software
applications such as the flow exporter [1] which analyzes the
received data and exports the flow records to a collector. User
applications read the data from the selected channels. They
also specify which types of traffic they want to inspect and
which flows can be preprocessed in hardware. Definitions of
uninteresting traffic from all applications are passed to a soft-
ware SDM controller daemon. The SDM controller aggregates
the definitions (requests) into rules and configures the firm-
ware preprocessing in order to achieve the maximal possible
reduction of traffic while preserving the required level of

information so that not a single piece of application interest-
ing information is lost. This mechanism realizes the feedback
control loop, which is the important concept in ourwork.

Network traffic preprocessing in the firmware is entirely
controlled from the software and the core of the controlling
software consists of the monitoring applications (App 1..N).
Each monitoring application has the form of a software
plugin. The main input to the plugin is the data path carry-
ing the packets, extracted UHs or aggregated flow records.
The plugin output is whichever data that the plugin has
parsed/detected/measured. This output data is added to
the exported IPFIX flow record, so it is enriched by the infor-
mation from the plugin. Each monitoring application also
has the interface to the SDM controller.

3.1 SDM Controller

SDM controller accepts the preprocessing requests from
multiple applications and aggregates them into rules for the
firmware. It also manages timed expiration of application
requests and periodical export of aggregated flow records
from hardware. The aggregation of preprocessing rules is
based on different degrees of data reduction. Ordered from
the lowest degree of data reduction the preprocessing types
are: none (whole packets), trim (shortened packets), partial
(UH), complete (flow record) and elimination (packet
drops). Therefore, aggregation of rules in the SDM control-
ler is done simply by the selection of the lowest preprocess-
ing degree (highest data preservation) for particular flows
which satisfy the information level requirements of all mon-
itoring applications. In order to maintain a proper function-
ality of the SDM firmware, the controller must carry out the
following operations:

� Management of rules activated in the firmware
(rule add/delete/update) based on the application
demands.

� Decision about offloading particular flows based on
the estimated flow size and the free space in the firm-
ware flow cache.

� Cyclic export of active flow records computed in the
firmware flow cache.

� Allocation of records in the firmware flow cache.
In the previous section we have presented the method of

heavy flow estimation based on the simple packet count
threshold. In the design for practical implementation, we
further extend this idea by using adaptive threshold that auto-
matically reacts to the changing characteristics of network
traffic in time. The adaptation is based on current load of
the firmware flow cache, which has a limited size. For the
best offload ratio, it is advantageous to keep the flow cache
nearly full at all times. That way, there is still some space
left for the new flows, while the amount of offloaded traffic
is maximized. Therefore, SDM controller periodically
checks the flow cache state, decreases the heavy flow deci-
sion threshold when the flow cache utilization drops below
a specified point, and increases the threshold when the flow
cache utilization rises.

3.2 SDM Firmware

Top level implementation scheme of the SDM accelerator
firmware for FPGA is shown in Fig. 9. The main firmware

Fig. 8. Conceptual top-level scheme of SDM system.
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functionality is realized by a processing pipeline that pro-
cesses incoming network traffic and creates an outgoing
data flow for the software. Packets do not flow directly
through the processing pipeline, but are rather stored in a
parallel FIFO buffer. The processing pipeline uses only
meta-information (UH) extracted from packet headers by
Parser. Whole software control of the processing pipeline is
realized through SW Access module which conveys the pre-
processing rules to be used in Flow Search unit.

The SDM firmware is realized by five main modules:
Parser extracts interesting information from headers of

packets, especially fields that clearly identify network flows.
To identify the flows, we use the five-tuple: IP addresses,
TCP/UDP ports and protocol. Furthermore, our implemen-
tation is modular and enables easy extensions of default
packet parsing process by additional application-specific
parser modules (P1..Pn). This way, the information
extracted from each packet can be enhanced when required.
Further information about this parser can be found in [9].

Rule Lookup assigns an action (processing instruction) to
every packet based on its flow identifier and a set of soft-
ware defined rules. Management of the rule set is done
through a control interface capable of atomic on the fly add,
remove and update of the rules.

Execution Unit manages stateful flow records in Flow
Cache. It mainly actualizes their values by execution of
instructions from flow associated actions. Every action
specifies an instruction that should be executed and the
address of the flow record to work with. Furthermore, the
instruction has access to data extracted from packet (UH).
Special type of instruction is an export of the record values,
possibly followed by a reset of the record. Records can be
exported not only at the flow end but also in a periodical
manner, so that the software applications can have actual
information about flows in the firmware. Control of mem-
ory allocation for records and their periodical export is left
to the SDM controller. The Execution Unit supports multi-
ple user-defined instruction sub-modules (I1..In). More
details about the execution and implementation of instruc-
tions are in Section 3.3.

Export pairs together corresponding UH transaction with
frame data from FIFO buffer. Then it chooses the required
channel and format for the data based on action assigned by
Rule Lookup module.

SW Access is the main configuration access point into the
SDM firmware from the software side. Its primary function
is to manage the rules and to initiate export of the flow

records based on controller commands. Besides, it contains
all configuration and control registers.

3.3 Execution Unit Functionality

As already mentioned, Execution Unit realizes the main
stateful behavior of the hardware by execution of flow record
updating instructions. To improve the overall flexibility of
the system, we use modular architecture within the Execu-
tion Unit that allows us to implement custom read-modify-
write aggregation operations (instructions). Thanks to these
custom instructions, the nature of the flow records main-
tained by the hardware in Flow Cache can be customized
according to a target application. Furthermore, we use high-
level synthesis (HLS) tools to generate custom hardware
modules from an instruction description in C or C++. Thanks
to that, SDM hardware functionality can be customized
faster and even without the knowledge of HDL program-
ming (e.g. by network security experts). Also an incremental,
performance driven design of new hardware accelerated
applications is much easier. The process starts with a soft-
ware implementation of the application, accelerated only by
the default SDM instructions. Then the performance bottle-
neck is identified and the critical piece of code is moved into
the FPGA as a new instructionwithminimal extra effort.

We have already implemented and evaluated five differ-
ent Execution Unit instructions to test the feasibility of the
described concept with HLS usage:

� NetFlow instruction is used for standard NetFlow
aggregation. Its execution increases flow packet and
byte counters, updates flow end timestamp and com-
putes logical OR of the observed TCP flags.

� NetFlow Extended instruction has the same basic func-
tionality as NetFlow. In addition, it stores TCP flags
of the first five packets. This additional information
may become very useful for analysis of TCP hand-
shake or for detection of network attacks like DoS
(Denial of Service).

� TCP Flag Counters instruction performs increment of
counters of individual observed TCP flags. For
example, one can see the number of ACK flags trans-
mitted during the whole TCP connection. Informa-
tion from this aggregate can be used to support
advanced flow analysis [10].

� Timestamp Diff instruction maintains records of inter-
arrival times of the first 11 packets of the flow. These
times have nanosecond precision and can be used as
network discriminators for flow-based classification
[10] or for identification of application protocol [11].

� CPD instruction (Change-Point Detection) shows
implementation of more complex operation. CPD is
an algorithm designed to detect an anomaly in the
processed network flow. Description of this method
is out of scope of this paper, more details can be
found in [12], [13].

4 RESULTS

We have implemented the whole SDM prototype in order to
verify the proposed concept. The hardware part of the pro-
totype is realized on an accelerator board with a powerful
Virtex-7 H580T FPGA (Fig. 10). The FPGA firmware realizes

Fig. 9. Detailed firmware scheme.
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the SDM functionality, such as packet header parsing and
NetFlow statistics updating, but also 100 Gbps Ethernet,
PCI-Express and QDR external memory interface control-
lers. The software is realized as a set of plugins for the
Invea-Tech’s Flowmon exporter software [14]. This exporter
allows us to modify its functionality to the extent required
by the SDM concept.

We follow by measurement of the real effectivity of the
heavy flow detection. Control of the hardware preprocess-
ing is mainly realized by the monitoring applications
through on the fly defined dynamic rules for particular
flows. These rules are generated as a reaction to the first few
packets of the flow. Therefore, there is some delay between
the flow start and offload rule application. The duration of
this delay influences a portion of packets affected by the
rules. The basic view of achievable SDM effectiveness can
be gained from an examination of an achievable portion of
packets whose preprocessing was influenced by the
dynamic flow rules.

We have created a simple use case in order to test the
described ability of the SDM concept. In this use case, only
a specified number of the first packets from each flow are
interesting to the software. All packets from unknown
(new) flows are, therefore, forwarded into the software
application by default. SDM controller software counts the
number of packets in each flow. Right after the reception of
the specified number of packets for a flow, the application
creates a rule for the firmware to drop all the following
packets from this flow. This decision method is absolutely
the same as the simple heavy flow detection method defined
in the previous section, but the adaptive threshold is not
employed in this use case.

We have measured the portion of packets dropped by the
SDM firmware in the described test case. The results are
projected into the graph in Fig. 11. The graph shows the per-
centage of dropped (influenced) packets (solid lines) and
the percentage of flows for which the rule was created
(dashed lines). For comparison, analytical results from
graphs 5 and 6 in the previous section are also shown (red).
The result is that the SDM can influence preprocessing of

up to 85 percent of all packets from real network traffic by
dynamic flow rules. A visible difference of about 10 percent
of influenced packets between analytical and real results is
caused by neglecting the duration of rule creation and acti-
vation process in the analytical result.

The portions of offloaded packets and flows are similar to
the analysis in Section 2—there is a considerably faster
decline in the percentage of flows than in the percentage of
packets. A different view is provided in Fig. 12. There, a
relation of the mean number of packets influenced by one
created rule over the decision threshold value is shown
(blue). The red line is analytical result of simple heavy flow
detection method effectiveness taken from Fig. 7. The graph
shows that real measured effectiveness of this method is
slightly worse than the analysis suggests, but still suitable
for real usage.

We also provide a test of SDM acceleration abilities in
more realistic use cases. We test the performance of the con-
cept prototype in the following four cases:

� Standard NetFlow measurement. In this use case, all
packets from a network line are taken into account.
Since NetFlow measurement is based on counting
statistics of packet headers only, the packets are sent
to the software in the form of UH by default. The
software then adds dynamic rules to offload the Net-
Flow measurement of heavy flows (predicted by our
simple method) into the hardware accelerator.

Fig. 10. COMBO-100 G accelerator used for our prototype
implementation.

Fig. 11. Portions of offloadable packets and flows using the simple heavy
flow detection method.

Fig. 12. Mean number of offloadable packets per flow in flows selected
using the simple heavy flow detection method.
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� Port scan detection. This use case demonstrates a mea-
surement that is flow-based, yet not directly Net-
Flow. The software plugin observes UHs of first
several packets of each flow and installs drop rules
for the subsequent packets of heavy flows. This
information is typically enough to detect port scan
attacks through various methods.

� Heartbleed detection. clearly demonstrates the need for
application-layer processing in the network security
monitoring. The software application first instructs
the accelerator to drop all non-SSL packets (i.e., other
than TCP port 443). Then further rules to drop pack-
ets of heavy SSL flows are installed in the runtime,
because the Heartbleed attack can be detected by
observing first few packets of each flow.

� HTTP header analysis. From application layer proto-
cols we choose HTTP because our network analysis
in Section 2 shows that HTTP traffic is dominant in
current networks. Therefore, acceleration of its anal-
ysis is of high importance. In this use case we test an
application that parses HTTP headers and extracts
some interesting information (e.g. URL, host, user-
agent) from them. Because the application works
with the data of HTTP packets, only the packets with
a source or destination port 80 are sent into the soft-
ware by default. Others are dropped in the hard-
ware. Furthermore, the application adds dynamic
rules to drop the packets of HTTP flows in which it
already detected and parsed the HTTP header.

� Standard NetFlow enriched by HTTP analysis. This case
combines two of the previous use cases. Both Net-
Flow exporter and HTTP parser are active at the
same time without the need of any changes in them.
Their traffic preprocessing requirements are auto-
matically combined by the SDM controller.

Tables 2 and 3 show the results of the SDM system test-
ing in the described use cases. The tables show portions of

all incoming packets and bytes preprocessed in the hard-
ware by each preprocessing method. These hardware pre-
processing utilizations lead to a reduction of software
application load displayed in Table 4. The table shows por-
tions of incoming packets and bytes that are processed by
software applications in each use case relative to the state
without the SDM accelerator. It also shows a percentage of
flows for which a rule was created in the hardware.

Standard NetFlow measurement is significantly acceler-
ated by the hardware flow cache. In this way, the software
application load is reduced to one fifth of all packets (in the
form of UH or flow record). Further acceleration rises from
the fact that only UHs and flow records are sent to the soft-
ware, instead of complete packets. The software, therefore,
does not parse packets anymore and the PCI Express bus
load is reduced to less than one percent.

The unnecessary packets are dynamically dropped in the
Port scan scenario. Furthermore, the detector do not require
whole packets—UHs are sufficient. This constellation leads to
considerable savings of both bus bandwidth andCPU load.

Dropping the packets based on static and dynamic rules
is also the preferred method of acceleration in both Heart-
bleed detection and HTTP protocol analysis scenarios. This
leads to the HTTP parser load being reduced to only about
a quarter of all packets and bytes and even more significant
reduction in the Heartbleed detection. Due to the fact that
both static and dynamic rules are used, the percentage of
dropped packets is split in two parts. In the HTTP use case
51.84 percent of all packets were dropped by a static TCP
port 80 check, and 21.34 percent of packets belonged to
heavy TCP port 80 flows for which the dynamic rule has
been installed by the SDM controller.

In the standard NetFlow measurement together with the
application protocol parsing scenario, the load of the appli-
cation protocol parser is the same as when used alone
thanks to the DMA channel traffic splitting supported by
SDM. The HTTP parser software still receives only the pack-
ets on the TCP port 80. The load of the software NetFlow
measurement slightly rises compared to the NetFlow only
measurement, because of the packets that are sent to the
software for the HTTP analysis (NetFlow measurement sees
also the HTTP packets).

Graphs in Figs. 13, 14, and 15 show results of SDM proto-
type testing in the NetFlow use case in more details. In the
graphs we can see courses of various parameters of SDM
system during whole day of NetFlow measurement. Packets
preprocessing ability of the accelerator is presented in the
first graph. During the whole day, the majority of all

TABLE 2
Usage of Hardware Preprocessing

Preprocessing method
[% of packets]

Use case Packet Header NetFlow Drop

N
̰
etFlow – 20.55 79.45 –

Port scan – 17.54 – 82.46
Heartbleed 4.91 – – 95.09
HTTP 22.82 – – 77.18
HTTP+NetFlow 23.34 10.56 66.10 –

TABLE 3
Usage of Hardware Preprocessing

Preprocessing method
[% of bytes]

Use case Packet Header NetFlow Drop

N
̰
etFlow – 12.03 87.97 –

Port scan – 10.35 – 89.65
Heartbleed 3.77 – – 96.23
HTTP 27.82 – – 72.18
HTTP+NetFlow 28.50 3.63 68.87 –

TABLE 4
Software Applications Load Using SDM in Tested

Use Cases, Relative to the State without
the SDM Accelerator

SW load [%] Flows covered
by rules [%]Use case Packets Bytes

N
̰
etFlow 20.66 0.98 6.37

Port scan 17.54 0.86 6.53
Heartbleed 4.91 3.77 0.95
HTTP 22.82 27.82 1.98
HTTP+NetFlow 34.02 29.00 6.04

622 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 2, FEBRUARY 2016



received packets (black line) are processed in the firmware
flow cache (red line), leaving only a small portion for soft-
ware processing (blue line). Offloaded percentage of pack-
ets is always in the range from 70 to 85 percent of total
traffic and is shown in gray shade bar at the bottom of the
grid. The second graph shows the number of active rules
maintained in the SDM firmware compared to the number
of active flows in the network. Black dashed lines demarcate
a desired flow cache load maintained by the adaptation of
heavy flow decision threshold. There is a significant spike
in the total number of flows in the network at around 10:55
pm. After further analysis, we have found that the spike
was caused by a mid-sized DoS attack with randomly gen-
erated port numbers. Each attacking packet represented a
separate flow and was therefore not offloaded to the acceler-
ator. That is a desired behavior, since we want to retain as
much information about the attack as possible.

The adaptation of the threshold value during the mea-
surement is illustrated in the third graph. During heavy net-
work load, the threshold value raises to keep the number of
offloaded flows within the given range. When the load starts
to decline at around 3 pm, the threshold value follows until it
reaches a chosen reasonableminimal value (five packets).

For the NetFlow use case, we have also measured a SDM
performance curve after system startup in heavy network
traffic. The results are depicted in Fig. 16. At the start of the
test, the SDM functionality is disabled and all packets are
sent for processing into CPU (0 % offload). When SDM is

enabled (time 0), we immediately see quick increase in the
percentage of offloaded packets as the accelerator is swiftly
learning the active heavy flows from the software controller.
Around one minute mark, the rise starts to slow down, but
still steadily continues for 4 more minutes. After that, the
SDM performance is stabilized. Described trend of SDM
startup performance curve is very similar also in other
tested use cases.

Finally, in Fig. 17 we examine the trade-off in CPU load,
since the management of rules in SDM controller represents
an additional load to the CPU. We show the effect of SDM
acceleration on CPU utilization savings. For this purpose
we use the most difficult of our use cases—Netflow mea-
surement together with HTTP analysis. Left half of the
graph in Fig. 17 shows measured CPU load with enabled
SDM in a stabilized state, right half shows CPU load after
SDM was disabled (all processing starts to be done on
CPU). According to Table 4, the software load in HTTP
+NetFlow use case is up to one third of received packets
and bytes when using SDM. This perfectly corresponds to
the observed increase in CPU load for packet processing
(red line) from 20 to 60 percent after SDM disabling. How-
ever, when SDM functionality is enabled, the SDM control-
ler brings some additional overhead (blue line) for
configuring the accelerator and aggregating the applications
requests. In the end then, total CPU load is two-times lower
when using SDM in HTTP+NetFlow use case (black line).
This graph also suggests that SDM is best suited for highly

Fig. 13. 24 hours NetFlow measurement with SDM—processed packets.

Fig. 14. 24 hours NetFlow measurement with SDM—active rules.

Fig. 15. 24 hours NetFlow measurement with SDM—decision threshold.

Fig. 16. SDM performance after heavy duty startup.
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advanced software tasks which consume significant CPU
resources. Due to the fact that SDM controller CPU load
(blue line) is independent on the application, its share in the
total CPU load decreases with the complexity of the applica-
tion (red line).

4.1 FPGA Implementation Results

Our high-speed SDM FPGA firmware runs at 200 MHz and
occupies less than half of the available FPGA (Virtex-7
H580T) resources. Closer look at the FPGA resources of the
firmware is shown in Table 5. Using the same SDM core
with a data width of 512 bits and throughput of 100 Gbps,
we have created three different FPGA architectures for
boards with three different arrangements of Ethernet ports:
one 100 GbE port, two 40 GbE ports and eight 10 GbE ports.

In addition to the high-performance 100 Gbps solution,
we also provide an analysis of the SDM core with narrower
data width. These solutions can be used in applications
with lower throughput requirements, e.g. in embedded 1 or
10 Gbps probes. Note that the results for data widths other
than 512 bits were obtained by simple downscaling of the
SDM core. Further optimizations are certainly possible to
achieve significantly lower FPGA resource utilization for
lower throughputs.

Table 6 shows the resource utilization of the individual
instruction sub-modules for the Execution Unit. It can be
seen that the additional instruction sub-modules are rela-
tively small, compared to the whole firmware, and therefore
adding new instruction should not involve any major
refinements of the FPGA firmware. Furthermore, a

comparison between high-level synthesis and handmade
implementation can be seen from the first two rows of the
table. Handmade implementation occupies less than a half
of LUTs and a bit less registers compared to HLS result. On
the other hand, the creation of C implementation of the
instruction and its subsequent automatic synthesis to HDL
is much faster and simpler than HDL implementation.

5 RELATED WORK

We discuss several approaches that may to some extent
resemble the SDM concept. However, we show that our
work has significant differences to those works.

Snort [15] is an open source software network intrusion
prevention and detection system. It relies heavily on regular
expression matching, while our work does not enforce nor
assume any particular type of software processing. While
many papers dealing with hardware acceleration of Snort
have been published, they typically restrict their focus to
regular expression matching only. We argue that network
security monitoring is much more complex task than that
and the limitation to RE matching makes those systems
unfeasible for practical use. L7-filter [16] is a Linux packet
classifier software aiming at protocol identification. It
resembles Snort as it also relies on regular expressions.

A good example of a complex software library for applica-
tion layer traffic processing (showing that REmatching is not
sufficient) is nDPI [17].While this open source library is prob-
ably too complex to be hardware accelerated, we envision
that similar software can be used as a basis of a SDMplugin.

The OpenSketch architecture [18] defines a configurable
pipeline of hashing, classification and counting stages.
These stages can be configured to perform the computation
of various statistics. OpenSketch is tailored to compute
sketches—probabilistic structures allowing to measure and
detect various aspects of the network communication with
a defined error rate. It is not intended for complete Net-
Flow-like monitoring, nor for exact, error-free measure-
ments. Also, OpenSketch does not allow for application
level protocol parsing.

FlowContext system [19] provides a flexible way to imple-
ment stateful network traffic processing in an FPGA.
NetFlow monitoring is among the examples of its use. How-
ever, it does not provide tight control feedback loop to a soft-
ware application, and therefore cannot be effectively used
for problems exceeding the capabilities of a single FPGA.

There have been efforts to implement NetFlow traffic
monitoring in FPGAs, most recently even as an open source
project [20] for the NetFPGA platform. Our work is however
more flexible by allowing application protocol processing in

Fig. 17. CPU load in HTTP+NetFlow use case with and without SDM
support.

TABLE 5
Resources of the SDM Firmware

Firmware/Module Regs LUTs Throughput

C
̰
omplete SDM 197,758 249,214 1 � 100 Gbps

134,172 178,984 2 � 40 Gbps
184,084 222,745 8 � 10 Gbps

S
̰
DM core 512 b 30,497 51,333 100 Gbps

256 b 25,866 42,793 50 Gbps
128 b 23,534 39,006 25 Gbps
64 b 22,384 37,233 12.5 Gbps
32 b 21,908 36,803 6.25 Gbps

V
̰
irtex-7 H580T

FPGA
725,600 362,800

TABLE 6
Resources of the Instruction Blocks

Instruction Regs LUTs

N
̰
etFlow (handmade VHDL) 1,754 325

NetFlow 1,846 824
NetFlow Extended 2,070 1,113
TCP Flag Counters 0 1,046
Timestamp Diff 5,199 2,556
Change-Point Detection 5,296 3,919
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the software and further acceleration through extensions of
the Execution Unit.

The Shunt system [21] is a hardware accelerator with sup-
port to divert a suspicious/interesting traffic to a software
for further analysis. To this end it resembles our work, how-
ever, Shunt accelerates only packet forwarding and does not
include any possibilities to offload/accelerate the flow mea-
surement tasks. Our work is also more complete by defining
the software architecture with the plugin support.

Xilinx has recently announced SDNet [22] environment
for software defined, hardware accelerated networking. The
system uses high level language(s) to describe a network
application, which is then compiled to a form of hardware
accelerator for a Xilinx FPGA. From the limited information
available at the time of writing, we envision that SDNet
could be used to improve SDM by custom application pars-
ers or instruction modules.

The proposed arrangement of SDM resembles OpenFlow
[23]: Packets of an unknown flow are passed from a data
path to a control software, which in turn may choose to
install processing rules into the data path. Similar to plugins
for an OpenFlow controller, SDM is also designed to sup-
port various software plugins. In addition to that, newer
versions of OpenFlow standard define monitoring primi-
tives for the data path. The main difference with OpenFlow
is that, for the sake of performance, our system is not dis-
tributed, but our controller is rather very tightly coupled
with the hardware accelerator—within the same box, or
even at the same chip. That allows implementing applica-
tions which would be impractical when built as a distrib-
uted system. We also propose user-defined modifications to
the data plane through the modular Execution Unit—a con-
cept that is unparalleled in OpenFlow. Our system is an
instance of Software Defined Networking in a broader
sense, yet it is different from OpenFlow.

6 CONCLUSION

We propose a new concept of application level flowmonitor-
ing acceleration called Software Defined Monitoring. The
concept is able to support application level monitoring and
high-speed flow measurements at speeds over 100 Gbps at
the same time. Our system focuses on a high speed and high
quality flow based measurement with the support of a hard-
ware accelerator. The accelerator is fully controlled by the
software feedback loop and offloads the simple monitoring
tasks of bulk, uninteresting traffic. The software, on the other
hand, decides about the traffic processing on a per-flow basis
and performs the advanced monitoring tasks such as appli-
cation protocol parsing. The softwareworkswithmonitoring
plugins, therefore, SDM is by design ready for extensions by
new high-speed monitoring tasks without the need to mod-
ify its hardware. Moreover, the FPGA accelerator itself can
also be improved to support new types of offload.

Our detailed analysis of the backbone network traffic
parameters demonstrates the feasibility of the concept. We
have also implemented thewhole SDM system using the Vir-
tex-7 FPGA accelerator board, including some extensions to
the firmware offload engine. The system is ready to handle
100 Gbps traffic. Using the SDM prototype, we have evalu-
ated several use cases for SDM. It is clear from the obtained

results that SDM is able to offload a significant part of net-
work traffic to the hardware accelerator and therefore to sup-
port a much higher throughput than a pure software
solution. The results show amajor speed-up in all test cases.
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