
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS

ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

AUTOMATED DESIGN METHODOLOGY FOR

APPROXIMATE LOW POWER CIRCUITS

METODOLOGIE PRO AUTOMATICKÝ NÁVRH NÍZKOPŘÍKONOVÝCH APROXIMATIVNÍCH

OBVODŮ

PHD THESIS

DISERTAČNÍ PRÁCE

AUTHOR Ing. VOJTĚCH MRÁZEK

AUTOR PRÁCE

SUPERVISOR prof. Ing. LUKÁŠ SEKANINA, Ph.D.

ŠKOLITEL

BRNO 2018

Abstract
The rapid expansion of modern embedded and battery-powered systems has brought new
challenges for design methods oriented to low power circuits and systems. Although these
methods systematically apply various power optimization techniques, the overall power
requirements are still growing because of the increased complexity of integrated circuits.
It has been shown that many applications are inherently error resilient and this property
can be exploited for further power consumption reduction. This principle is systematically
investigated in the nascent field of approximate computing. This thesis deals with efficient
design methods for approximate circuits. The proposed methods are based on evolutionary
algorithms (EAs). Although EAs have been applied in logic synthesis and optimization
of common as well as approximate circuits, their scalability is limited in these areas. The
goal of this dissertation is to show that approximate logic synthesis based on evolutionary
algorithms (particularly on genetic programming) can provide excellent tradeoffs between
the error and power consumption of complex digital circuits. We analyzed four different
applications that use digital circuits described at three different levels of abstraction. By
means of Cartesian genetic programming we reduced power consumption of small transistor-
level circuits that are typically used in a technology library. We combined evolutionary
approximation with formal verification techniques in order to evolve high quality gate-level
approximate circuits such as adders and multipliers and provide formal guarantees on the
approximation error. These circuits were employed to reduce power consumption in neural
image classifiers and discrete cosine transform blocks of the HEVC encoder. We proposed a
new data-independent error metric -– the distance error -– and used it in the evolutionary
approximation of complex median circuits that are suitable for low power signal processing.
This doctoral thesis presents a coherent methodology for the design of approximate circuits
at different levels of description which is also capable of providing formal guarantees on the
approximation error.

Keywords
Evolutionary algorithms, Cartesian Genetic Programming, low-power circuits, logic synt-
hesis, approximate computing, median filters, neural network, technology library, relaxed
equivalence.

Reference
MRÁZEK, Vojtěch. Automated Design Methodology for Approximate Low Power Circuits.
Brno, 2018. PhD thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor prof. Ing. Lukáš Sekanina, Ph.D.

Abstrakt
Rozšiřování moderních vestavěných a mobilních systémů napájených bateriemi zvyšuje
požadavky na návrh těchto systémů s ohledem na příkon. Přestože moderní návrhové
techniky optimalizují příkon, elektrická spotřeba těchto obvodů stále roste díky jejich složi-
tosti. Nicméně existuje celá řada aplikací, kde nepotřebujeme získat úplně přesný výstup.
Díky tomu se objevuje technika zvaná aproximativní (přibližné) počítání, která umožňuje
za cenu zanesení malé chyby do výpočtu významně redukovat příkon obvodů. V práci se
zaměřujeme na použití evolučních algoritmů v této oblasti. Ačkoliv již tyto algoritmy byly
úspěšně použity v syntéze přesných i aproximativních obvodů, objevují se problémy škálo-
vatelnosti — schopnosti aproximovat složité obvody. Cílem této disertační práce je ukázat,
že aproximační logická syntéza založená na genetickém programování umožňuje dosáhnout
vynikajícího kompromisu mezi spotřebou a chybou. Byla provedena analýza čtyř různých
aplikacích na třech úrovních popisu. Pomocí kartézského genetického programování s mo-
difikovanou reprezentací jsme snížili spotřebu malých obvodů popsaných na úrovni tranzis-
torů použitelných například v technologické knihovně. Dále jsme zavedli novou metodu pro
aproximaci aritmetických obvodů, jako jsou sčítačky a násobičky, popsaných na úrovni hra-
del. S využitím metod formální verifikace navíc celý návrhový proces umožňuje garantovat
stanovenou chybu aproximace. Tyto obvody byly využity pro významné snížení příkonu
v neuronových sítích pro rozpoznávání obrázků a v diskrétní kosinově transformaci v HEVC
kodéru. Pomocí nové chybové metriky nezávislé na rozložení vstupních dat jsme navrhli
komplexní aproximativní mediánové filtry vhodné pro zpracování signálů. Disertační práce
reprezentuje ucelenou metodiku pro návrh aproximativních obvodů na různých úrovních
popisu, která navíc garantuje nepřekročení zadané chyby aproximace.

Klíčová slova
Evoluční algoritmy, kartézské genetické programování, obvody s nízkým příkonem, logická
syntéza, aproximační počítání, mediánové filtry, neuronová síť, technologická knihovna,
přibližná ekvivalence.

Citace
MRÁZEK, Vojtěch. Automated Design Methodology for Approximate Low Power Circuits.
Brno, 2018. Disertační práce. Vysoké učení technické v Brně, Fakulta informačních techno-
logií. Školitel prof. Ing. Lukáš Sekanina, Ph.D.

Rozšířený abstrakt
Rozšiřování moderních vestavěných a mobilních systémů napájených bateriemi zvyšuje
požadavky na návrh těchto systémů s ohledem na příkon. Přestože moderní návrhové
techniky příkon optimalizují, elektrická spotřeba těchto obvodů stále roste díky jejich složi-
tosti. Nicméně existuje celá řada aplikací, kde nepotřebujeme získat úplně přesný výstup.
Díky tomu se objevuje technika zvaná aproximativní (přibližné) počítání, která umožňuje
za cenu zanesení malé chyby do výpočtu významně redukovat příkon obvodů.

V práci se zaměřujeme na použití evolučních algoritmů pro návrh těchto obvodů. Ač-
koliv již tyto algoritmy byly úspěšně použity v syntéze přesných i aproximativních obvodů,
objevují se problémy škálovatelnosti reprezentace i evaluace evolučního návrhu. Cílem
této disertace je ukázat, že aproximativní logická syntéza založená na evoluci umožňuje
dosáhnout významné úspory elektrické energie a vynikajícího kompromisu mezi spotřebou
a chybou pro obvody, které jsou použitelné v reálných aplikacích. Proto byly zavedeny
nové techniky vyhodnocování jak kvality navrhovaných obvodů, tak i rychlého odhadu
elektrických parametrů, jako je spotřeba či plocha na čipu.

Práce je koncipovaná jako komentovaný soubor sedmi nejvýznamnějších prací autora.
Cílem výzkumu bylo upravit syntézu přesných logických obvodů s využitím kartézského
genetického programování (CGP) a vytvořit nástroj umožňující syntézu aproximativních
obvodů tak, aby mohla (i) pracovat na různých úrovních popisu, (ii) zpracovat rozumně
velké obvody popsané na různých úrovních popisu a (iii) optimalizovat parametry, které
odpovídají výsledné obvodové implementaci. Navržená metoda je použita pro aproximaci
kombinačních obvodů popsaných na třech různých úrovních popisu — na úrovni tranzistorů,
hradel a funkčních bloků.

Popis na úrovni tranzistorů je vhodný pro návrh a optimalizaci malých obvodů použitel-
ných například v technologických knihovnách podporující aproximativní počítání. V článku
I jsme představili modifikovanou verzi reprezentace pro CGP, která je vhodná pro rychlou
diskrétní simulaci obvodů. Později jsme do algoritmu zavedli přesnější simulaci pomoci
SPICE simulátoru a rychlou metodu odhadu dynamického příkonu obvodů. S tímto přístu-
pem se nám podařilo snížit spotřebu aproximačních aritmetických obvodů, jako jsou čtyř-
bitové násobičky.

S využitím vyšší, hradlové, úrovně popisu jsme vytvořili velkou knihovnu osmibitových
aproximativních aritmetických obvodů (článek II). S využitím vícekriteriální implementace
CGP byly nalezeny stovky aproximativních násobiček a sčítaček, jejichž softwarové a har-
dwarové modely jsou dispozici ke stažení na internetu. Pomocí navržených obvodů jsme
vypozorovali, že při aproximaci násobení v neuronové síti klasifikující obrázky, je vhodné
zachovat přesné násobení nulou. Toto omezení jsme zahrnuli do aproximační syntézy za-
ložené na CGP, která vygenerovala aproximativní 8- a 12-bitové násobičky. Tyto obvody
jsme aplikovali ve dvou různých architekturách neuronových sítí. Výsledné neuronové sítě
výborný kompromis mezi spotřebou násobení a celkovou klasifikační přesností (článek III).

Abychom mohli optimalizovat i větší obvody, kde je zjištění chyby obvodu pomocí si-
mulace výpočetně nezvládnutelné, byly vytvořeny nové verifikační techniky vhodné pro
aproximativní obvody. V článku IV jsme použili vyhodnocování chyby obvodu s použitím
SAT-solveru. Díky zavedení časového omezení verifikace do fitness funkce se podařilo snížit
časovou náročnost evaluace. To přispělo k nalezení velmi kvalitních obvodů s garantovanou
chybou. V další práci jsme použili reprezentaci obvodů založenou na binárních rozhodo-
vacích diagramech (BDD). Analýza BDD umožňuje vypočítat jak průměrnou a maximální
aritmetickou chybu, tak i přepínací aktivitu hradel, která byla následně použita pro od-

had spotřeby obvodu. S využitím této analýzy v evaluaci obvodů jsme navrhli sčítačky a
odčítačky použitelné v diskrétní kosinově transformaci v HEVC kodéru (článek V).

V článku VI byl zkoumán vliv množiny funkcí použitelných v CGP na rychlost kon-
vergence evolučního algoritmu. Ukázalo se, že pro aproximaci násobiček je vhodné kromě
běžných hradel zahrnout do této množiny i složitější obvody, jako jsou úplné a poloviční
sčítačky. Evoluce konvergovala rychleji a následná syntéza produkovala kvalitnější výsledky
než při použití jednoduchých dvouvstupých hradel.

V posledním článku VII jsme ukázali schopnost evolučního algoritmu aproximovat kom-
plexní obvody využívající speciální stavební bloky. Zaměřili jsme se na aproximativní me-
diánové filtry. Pro jejich evaluaci jsme navrhli novou chybovou metriku, která je nezávislá
na rozložení vstupních dat a umožňuje přesně a rychle určovat aproximační chybu obvodů.
Za pomoci této chybové metriky a navržené reprezentace v CGP byla evolučně získána
sada mediánových filtrů, která byla použita při filtraci obrazových dat i údajů získaných ze
senzoru vestavěného systému.

Tato práce ukazuje, že evoluční algoritmy mohou být použity pro optimalizaci příkonu
digitálních obvodů popsaných na různých úrovních — od nejnižšího propojení tranzistorů,
přes zapojení hradel až po využití specializovaných stavebních bloků. Na čtyřech reálných
aplikacích jsme ukázali, že řešení navržené evolučními algoritmy jsou kvalitnější než řešení
získaná konvenčními přístupy.

Automated Design Methodology for Approximate
Low Power Circuits

Declaration
Hereby I declare that this PhD thesis was prepared as an original author’s work under
the supervision of prof. Ing. Lukáš Sekanina, Ph.D. The supplementary information was
provided by co-supervisor doc. Ing. Zdeněk Vašíček, Ph.D. All the relevant information
sources, which were used during preparation of this thesis, are properly cited and included
in the list of references.

. .
Vojtěch Mrázek

June 15, 2018

Acknowledgements
I would like to thank my dissertation and research advisor professor Lukáš Sekanina for
his invaluable suggestions and advices during this research. I am most grateful to my co-
supervisor associate professor Zdeněk Vašíček for sharing his expertise and intuition not
only when I was working on the thesis. This project would not be nearly as good without
their help.

I would especially like to thank my family. The encouragement and support from my
beloved wife Milana is a powerful source of inspiration and energy. Special thanks are
devoted to my parents for their never-ending support.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Open problems . 4
1.3 Research objectives . 5
1.4 Thesis outline . 5

2 Survey of the state of the art 6
2.1 Power consumption of digital circuits . 6

2.1.1 The technology impact . 7
2.1.2 Transistor-level digital circuits 7
2.1.3 Gate-level digital circuits . 8

2.2 Approximate arithmetic circuits . 10
2.2.1 Approximation methods for arithmetic circuits 11
2.2.2 Manual approximation methods 11
2.2.3 Automated approximation methods 12
2.2.4 Quality of approximate circuits 14
2.2.5 Quality evaluation . 16

2.3 Cartesian Genetic Programming . 18
2.3.1 Circuit representation . 18
2.3.2 Search algorithm . 19
2.3.3 Circuit approximation using CGP 20

3 Research summary 23
3.1 Overview . 23
3.2 Papers included in the thesis . 24

3.2.1 Paper I . 24
3.2.2 Paper II . 26
3.2.3 Paper III . 27
3.2.4 Paper IV . 28
3.2.5 Paper V . 29
3.2.6 Paper VI . 30
3.2.7 Paper VII . 31
3.2.8 Author’s contributions to selected papers 33

3.3 List of other publications . 33
3.4 Research projects and grants . 36
3.5 Awards . 36

4 Conclusions 37
4.1 Challenges and Methodology . 37

1

4.2 Contributions . 38
4.3 Developed libraries available online . 40
4.4 Future research directions . 41

Bibliography 42

Related papers 49

I Evolutionary Design of Transistor Level Digital Circuits using Dis-
crete Simulation 50

II EvoApprox8b: Library of Approximate Adders and Multipliers for
Circuit Design and Benchmarking of Approximation Methods 63

III Design of Power-Efficient Approximate Multipliers for Approximate
Artificial Neural Networks 68

IV Approximating Complex Arithmetic Circuits with Formal Error Gua-
rantees: 32-bit Multipliers Accomplished 76

V Towards Low Power Approximate DCT Architecture for HEVC Stan-
dard 85

VI The Role of Circuit Representation in Evolutionary Design of Energy-
Efficient Approximate Circuits 92

VII Trading between Quality and Non-functional Properties of Median
Filter in Embedded Systems 104

2

Chapter 1

Introduction

This chapter starts with a brief motivation for the research conducted as a part of my
doctoral study at the Faculty of Information Technology, Brno University of Technology in
2014-2018. In this chapter, the open problems are identified, and the research objectives
are formulated. Finally, the thesis outline is introduced.

1.1 Motivation
Despite the rapid developments in the very-large-scale integration (VLSI) circuit technolo-
gies and in modern circuit design techniques, the overall energy consumption of integrated
circuits is rapidly growing mainly due to their increasing complexity needed in current com-
puting systems. At the same time, many computationally intensive applications, e.g. image
recognition, signal processing and data mining, are widely implemented in these systems.
Moreover, the expansion of modern battery-powered and smart devices such as mobile sy-
stems, IoT nodes and wearable electronics emphasizes the low-power requirements put on
the computer-based systems.

It is essential to improve the energy efficiency of these systems implemented. Fortuna-
tely, many of the computationally intensive applications feature an intrinsic error-resilience
property [5]. Since they process noisy or redundant data and users are willing to accept
certain errors in some cases, an emerging paradigm, the so-called approximate computing,
can be used for design of energy-efficient applications. At the circuit level, approximations
(circuit simplifications) are intentionally introduced to find a good tradeoff between power
consumption and error.

The approximations can be introduced to the circuit in various steps of the standard
circuit design flow. In this thesis, we primarily focus on the technology independent logic
synthesis step because it has one important advantage — the approximate circuit can be
used in arbitrary ASIC as well as FPGA technology, because we can assume the technology
dependent synthesis is performed by means of some well-optimized open source or commer-
cial tool after the approximation is conducted. The common logic synthesis typically starts
with a circuit description given at the register-transfer-logic (RTL) level, in the form of a
source code written in hardware description language (HDL). The goal of the logic synthesis
is to transform a typically suboptimal solution into a close to optimal implementation with
respect to given synthesis goals. For example, if a gate-level netlist is the starting point,
we speak about logic optimization, because the circuit is described at the gate level which
directly represents logic expressions specifying its behavior. The ultimate goal of the logic

3

optimization is thus to transform this netlist into an optimal gate-level implementation
with respect to given synthesis goals.

The performance (delay) and area parameters are usually considered as the key design
objectives in the traditional design flow. Since the power consumption becomes more and
more important, the power consumption objective was included to the goals in modern
circuit design. In the emerging approximate circuit design flow, the error (accuracy) is a
new design objective (Fig. 1.1) [58].

Figure 1.1: Design parameters considered in (a) traditional, (b) low-power and (c) approx-
imate design flows [58]

Recently, a new approach to the synthesis of digital circuits has been proposed. It
exploits evolutionary algorithms (EA) — a promising class of optimization algorithms in-
spired in evolutionary biology. The evolutionary logic synthesis is a method utilizing EAs
to design and optimize logic circuits. Many papers showing the merits of the EA in this
domain have already been published in the literature [57, 63]. The thesis deals with the
use of EA for approximate logic synthesis.

1.2 Open problems
Although the EAs have already been successfully applied to the optimization of complex
logic circuits, some open problems still exist. The main issue of the traditional (accurate)
logic synthesis based on EA is the limited scalability. It means that EA typically produces
a high-quality solution for low complex problem instances, but an insufficient (or even
none) solution is provided for complex problem instances. There are two main types of the
scalability problem: (i) the scalability of representation — the search-space grows rapidly
with the representation size, and (ii) the scalability of evaluation — the increasing number of
inputs and circuit components causes longer evaluation time. These problems contribute to
a very limited acceptance of the method by the community of hardware designers. Another
issue is that the optimization criteria, typically the number of active nodes, do not usually
correspond with the hardware parameters such as power consumption or area, and hence,
the resulting circuits are not acceptable in real-world applications. Open problems of the
EA-based logic synthesis are how to: (i) effectively represent the circuits for the EA, (ii)
quickly evaluate the functionality of the circuit, and (iii) perform fast estimation of hardware
parameters (delay, power consumption etc.).

Regarding approximate circuits, some of the open problems are how to determine the
error of an approximate circuit and which error metric is suitable for a given application.
It is also unclear how to perform desired approximations.

4

1.3 Research objectives
The main objective of the research presented in this thesis is to show that

it is possible to reduce power dissipation of digital combinational circuits described on
various levels of abstraction using EA-based circuit approximation algorithms.

First of all, it is important to select representative applications to demonstrate the pro-
posed approximation methods. The next stage is to develop the EA-based circuit approxi-
mation method for these applications. As indicated in Section 1.2, such an approximation
method has to meet several requirements. It has to be able to design circuits of a sufficient
complexity that can be employed in the real-world application. Therefore, the evaluation
of candidate circuits has to be effective. To optimize the power dissipation, some power
estimation method has to be included in the EA.

The main objective of the thesis can be divided to the following partial goals:

1. To identify real-world applications suitable for approximation.

2. To create fast and efficient power estimation methods for the selected levels of circuit
description.

3. To implement an evolutionary algorithm for efficient approximation of digital circuits.

4. To tune and accelerate the evolutionary algorithm in order to speed up the circuit
approximation process.

5. To experimentally evaluate the proposed method using the selected real-world appli-
cation.

6. To compare obtained results with the state-of-the-art solutions.

1.4 Thesis outline
This thesis is composed as a collection of selected author’s papers with an accompanying
introductory part. The seven peer-reviewed papers encapsulate the contribution of this
dissertation. All papers are attached in their original publication format.

The thesis is organized as follows. The first chapter provides the introduction to the
research area and research objectives. Chapter 2 surveys the state-of-the-art already pu-
blished in the literature. Chapter 3 summarizes the research contribution and introduces
the selected papers. Chapter 4 summarizes the obtained results and proposes directions for
the future research.

5

Chapter 2

Survey of the state of the art

This chapter introduces the background utilized in the presented work. It primarily addres-
ses the power consumption of digital circuits and its estimation, approximate computing
techniques and evolutionary methods for the digital circuit design.

2.1 Power consumption of digital circuits
Today it is widely accepted that power efficiency is a key goal of digital circuit design.
Minimizing power consumption calls for conscious effort at each abstraction level and at
each phase of the design process.

There are three sources of power dissipation in the standard complementary metal-
oxide-semiconductor (CMOS) digital combinational circuits. The first one is the existence
of logic transitions. As the “wires” switch between two logic (and so electrical) values, the
parasitic capacitances are charged and discharged. This component of power dissipation,
the so-called switching power 𝑃𝑠𝑤𝑖𝑡𝑐ℎ is proportional to supply voltage 𝑉 , wire voltage
swing 𝑉𝑠𝑤𝑖𝑛𝑔, switching activity coefficient 𝛼 and switched capacitance 𝐶𝐿𝑂𝐴𝐷. As the
voltage swing is usually equal to the supply voltage, the dissipation varies with the square
of the supply voltage. Short-circuit currents that directly flow from supply to ground when
both complementary subnetworks conduct simultaneously are the second source of power
dissipation. When inputs of the gate are stable, only one subnetwork is conducting, and
no short circuit current can flow. When the output of the gate is changing its value in
response to the changes in inputs, both subnetworks conduct simultaneously for a short
interval. This power dissipation 𝑃𝑠ℎ𝑜𝑟𝑡 varies with the average short-circuit current 𝐼𝑆𝐶
and supply voltage 𝑉 . Both the above-mentioned sources of power dissipation in CMOS
circuits are related to the transitions at gate outputs. They are collectively referred to as
dynamic power. In contrast, the last source of power dissipation is leakage current 𝐼𝑙𝑒𝑎𝑘
originating mainly from subthreshold MOS conduction. Nowadays, this leakage power
dissipation becomes more important because transistors are smaller and smaller [48].

𝑃𝐶𝑀𝑂𝑆 = 𝑃𝑠𝑤𝑖𝑡𝑐ℎ + 𝑃𝑠ℎ𝑜𝑟𝑡 + 𝑃𝑙𝑒𝑎𝑘𝑎𝑔𝑒 (2.1)

𝑃𝐶𝑀𝑂𝑆 =
1

2
· 𝐶𝐿𝑂𝐴𝐷 · 𝛼 · 𝑓 · 𝑉 2 + 𝐼𝑆𝐶 · 𝑉 + 𝐼𝑙𝑒𝑎𝑘 · 𝑉 (2.2)

This section gives a brief introduction to the main factors having a crucial impact on the
power dissipation of digital circuits. In the first section, the impact of selected fabrication
technology is discussed. Digital circuits can be described at various levels of abstraction.

6

In the next sections, two different levels are presented — the transistor level netlist and
the gate level netlist. For the both levels the power estimation methods and power saving
techniques are presented.

2.1.1 The technology impact

The overall power consumption strictly depends on the selected fabrication technology. The
technology is usually specified using the so-called layout design rules. Since migration from
one process to a more complex one is difficult, these rules were simplified using scalable rules.
Mead and Conway [28] popularized the scalable design rules based on a single parameter 𝜆
that characterizes the process resolution. This parameter is generally half of the minimum
drawn transistor channel length.

The decreasing transistor sizes lead to a reduction in capacitance of the gates. In
addition to that, the supply voltage is decreasing too. For example, the 500 nm technology
needs 5 V supply, 180 nm needs 1.8 V and 45 nm technology uses 1.0 V supply only. As
the consequence of that, threshold voltages 𝑉𝑡𝑛 (for n-mos transistors) and 𝑉𝑡𝑝 (for p-mos
transistors) grow up relatively to the supply voltage. The threshold voltages influence
the leakage. Hence, the leakage power dissipation becomes more significant for recent
technology as we can see in Figure 2.1.

Figure 2.1: Dynamic and static power dissipation depending on technology design rules [18].

The target fabrication technology is usually chosen with respect to price and availability.
For the automated design, it is important to consider that there is a trade-off between
power consumption and performance (speed). In order to address this, technology libraries
typically provide two or more versions of each cell, e.g. one fast, but dissipating, and one
slow, but low-power. The designer can then select which implementation fits his/her needs.

2.1.2 Transistor-level digital circuits

As the circuit performance and power dissipation heavily depend on the chosen design
style, the low-level description of digital circuits enables to choose different design styles.
For example, fully complementary logic (CMOS), NMOS, differential cascade voltage switch
or pass-transistor logic design style can be used [48]. The design styles differ in the power
dissipation, performance and scalability of circuits that can be obtained. The transistor-

7

level circuits are usually described using a netlist consisting of transistors and additional
devices such as capacitors or resistors.

One of the most accurate and straightforward method for power estimation of the cir-
cuits described at the level of transistors is to perform a circuit simulation by means of some
SPICE-like1 simulator. This family of simulators utilizes various numeric models of transis-
tors. The most frequently used model in circuit simulation is the Berkeley Short-Channel
IGFET1 Model (BSIM) [11].

Figure 2.2: Evolution of BSIM family of Compact MOSFET Models [3].

There are several versions of BSIM models reflecting the evolution of fabrication pro-
cess (see Fig 2.2). As the BSIM models are very complicated, it is impractical to derive
closed-form equations for propagation delay, switching threshold and other parameters [71].
However, it is not difficult to find these circuit properties through circuit simulation.

It was shown that simulation results of the circuits utilizing these models are usually
strongly pattern-dependent [20]. Hence, all the possible input transitions should be simula-
ted in order to obtain trustworthy results. This can become computationally very expensive,
especially for complex circuits, because the number of transitions grows exponentially.

2.1.3 Gate-level digital circuits

A gate level circuit is defined as a set of cells (gates) and their connections. To simulate
circuits with millions of gates, the simulation model must be simple enough to handle this
complexity, yet accurate enough to give trustworthy results.

The designers cannot change the design style in the same way as it was possible at the
low-level (transistor) description, because the elementary gates are defined in the techno-
logical library. A typical technological library is developed and optimized for a certain
fabrication process and contains various implementations and models of elementary gates
and other basic components such as one-bit adders, and-or-invert structures, multiplexers
etc. Corresponding to equation 2.2, four basic possibilities how to reduce power dissipation
can be identified. The following list gives basic power optimization techniques applicable
at the gate level:

1Simulation Program with Integrated Circuit Emphasis

8

∙ reduction of the switching activity 𝛼,

∙ reduction of load capacitance of gates 𝐶𝐿𝑂𝐴𝐷,

∙ frequency modification 𝑓 ,

∙ optimizing power domains 𝑉 .

The load capacitance comes from the wires and transistors involved in a circuit. Good
floorplaning and placement can minimize the wire capacitance. The load capacitance of
gates can be reduced by choosing fewer stages of logic and smaller transistors. A common
technique is to intentionally increase delay (up to a delay constraint) by choosing a slower,
but more energy efficient, version of the gate from the technological library. Available
implementations of the same gate (e.g. AND) differ in the channel sizes and threshold
voltages.

One of the most powerful power optimization techniques is called clock gating. This
approach masks (using AND gate) a clock signal with an enable signal to turn off the clock
input of idle blocks. It is effective because the clock signal has a high activity factor. There
is no clock signal in the combinational digital circuits, but we can select an arbitrary input
with high switching activity (Fig. 2.3a).

Dynamic power is proportional to the frequency. Hence, a chip should not obviously
run faster than it is necessary. Reducing the frequency also allows downsizing transistors as
mentioned above. The performance can be recouped through parallelism, especially if the
area is not as important as the power. The circuit may employ multiple frequency domains
so that certain portions of the chip can run more slowly than others. However, the wires
connecting the frequency domains must be synchronized.

Supply voltage has a quadratic effect on the dynamic power. Therefore, choosing a
lower power supply significantly reduces power consumption. But 𝑉𝑐𝑐 value varies the per-
formance of the circuit and the minimal value is typically specified by fabrication technology.
However, the chip may be divided into multiple voltage domains affecting the performance
of the circuits. In addition to that, the voltage domains can be turned off entirely to eli-
minate leakage power the during sleep mode. This technique is called power gating. Fig.
2.3b shows that the block is active, when the header switch transistors are connecting the
supply voltage to the block. The outputs of the block may take on voltage levels in the
forbidden zone. Hence, the output isolation gates must be used. This technique is required
for leakage reduction of inactive parts of circuits [49].

Figure 2.3: Two common low-power design techniques: (a) clock / signal gating, and (b)
power gating [71].

9

It is infeasible to use an accurate SPICE simulator to determine power consumption of
complex gate-level circuits. To address this problem, the power consumption of gate-level
circuits is typically estimated using some suitable models. There are several models for the
analysis of gate-level circuits that are much faster than numeric simulations. For each gate
in the cell library the models (of physical behavior) are stored in a lib file satisfying Liberty
standard2. These models used to be based on k-factor lookup tables, which gave the gate
delays and the output signal transition times based on the gate input signal transition times
and the gate capacitive load [17]. However, these lookup-table delay models did not contain
enough information to characterize the parameters of multi-voltage circuits implemented
in modern fabrication technologies. These limitations have motivated the development of
the current source models. The current source models define the output DC current as a
nonlinear function of the input and output voltages of the cell. Two different representations
— Composite Current Source Model and Effective Current Source Model — were developed.
These two representations are equivalent and can be transformed into a true current source
model [6].

When the circuit parameters are determined using a suitable model, the switching acti-
vity factor 𝛼 is estimated. This estimation is a non-trivial task, complicated by the fact that
the switching activity depends not only on the circuit structure and functionality, but also
on the applied input patterns. Two approaches have been proposed to address this problem
– dynamic methods employing a variant of circuit simulator and static methods based on
probabilistic techniques analyzed how the switching activity is propagated from inputs to
outputs [44]. From the viewpoint of scalability, the probabilistic methods seem to be the
preferred ones nowadays. Several variants of binary decision diagrams accompanied with
partitioning have been proposed to determine the switching activity [26]. Some assumptions
are usually introduced to reduce the computational complexity. When we neglect glitching,
for example, we can use a zero-delay model to compute the switching activity [7].

2.2 Approximate arithmetic circuits
Despite of the development of design techniques for energy efficient circuits, the overall
energy consumption of computer systems is still rapidly growing. As many important
applications are inherently error resilient, precision of the involved computations can be
traded for improved energy efficiency, performance, and/or chip area. Various approaches
exploiting this fact have been developed in recent years and presented under the umbrella
of the so-called approximate computing [5, 32].

In many scenarios, the use of approximate computing is unacceptable, while in others,
the approximate computing paradigm can be proactively used to reduce power consumption.
The motivations for introducing approximate computing can be: (i) satisfying the requi-
rement for low power dissipations, (ii) some applications are error resilient and a strictly
accurate output is not needed, or (iii) eliminating expensive fault-tolerant mechanisms that
are needed to ensure reliability of circuits implemented with recent fabrication technology.
According to [13, 53], applications suitable for approximate computing can be broadly
classified to four classes:

1. Applications with analog inputs which operate on noisy real-world data.

2. Applications with analog output intended for human perception.
2http://opensourceliberty.org

10

3. Applications with no unique answer such as web search and machine learning.

4. Iterative and convergent applications that iteratively process large amounts of data
and the equality of results depends on the number of iterations.

These approximations can be conducted at different system levels with circuit approxi-
mation being one of the most popular. Circuit approximation techniques can be classified
into two main groups. (1) Frequency/voltage over-scaling, where timing-induced errors can
appear as the circuit is operated on lower voltage than the nominal value [56]. (2) Functi-
onal approximation, where the original circuit is replaced by a less complex one which
exhibits some output errors but improves non-functional circuit parameters such as power
consumption or area on the chip.

In this work, we focus on functional approximation only. The principle of this approach
is to implement a different function (circuit) with respect to the original one provided that
the non-functional parameters such as power dissipation or area are improved, and the error
is acceptable. Typically, the goal is to find a design showing a minimum area (or power
consumption) and satisfying a given error constraint [72].

2.2.1 Approximation methods for arithmetic circuits

We focus on approximate arithmetic circuits because they are frequently used in the key ap-
plications relevant for approximate computing. The methods for functional approximations
can be divided into two categories: (1) manual, and (2) automated.

The manual (ad-hoc) methods are developed for a specific circuit component. In this
work, examples of manual approximation of two key arithmetic circuits — adders and
multipliers — are described. These circuits are widely approximated because they realize
key operations in applications requiring low power processing. However, other circuits such
as dividers and multiply-and-accumulate (MAC) circuits were manually approximated too,
but they are not widely employed. Hence, these circuits are not discussed in this chapter.
On the other hand, the automated methods use some general-purpose circuit resynthesis and
approximation techniques and enable us to approximate arbitrary circuits. These methods
starts with an original (exact) circuit and, typically iteratively, modifies its structure.

2.2.2 Manual approximation methods

Adders

An adder performs the addition of two binary numbers. Two basic implementations are:
(1) ripple-carry adder (RCA), where the carry of each full-adder is propagated to the next
full-adder, and (2) carry lookahead adder (CLA), where several units working in parallel
generate three signals (‘sum’, ‘propagate’ and ‘generate’) that are employed to quickly
generate the carry-in signals. The CLA has significantly shorter delay than RCA. However,
the area and power dissipation of CLA is larger than RCA. Many approximation principles
for the adders implemented using one of these two schemes have been proposed in the
literature [16]. The approximations can be classified into the following classes.

∙ Speculative adders were proposed by Lu [25]. In this architecture, CLA structure is
approximated using prediction of the carry for each sum bit.

∙ Segmented adders, where the addition is divided to 𝑛 smaller subadders operating in
parallel. These subadders have a fixed carry and their delay is 𝑛-times shorter [33].

11

An advanced version divides the addition to the carry generation and sum generation,
where each summarization utilizes the information from the previous carry generation
[73].

∙ Approximate Carry Select Adders consist of several subadders. Each subadder is made
of two speculative adders — one with carry-in “0” and another with carry-in “1”. The
carry-out of the first adder is connected to a multiplexor in the next block selecting
the output of one from two speculative adders [9].

∙ Approximate Full Adders are implemented in LSBs of the adder. For example, the
simple use of OR gates instead of full-adders and ignoring of carries in the LSB part
can provide us enormous power and time savings [27].

Multipliers

Related to the addition, the multiplication is a more complex operation. Generally, it con-
sists of stages of the partial product generation, accumulation and final addition. There are
several accurate multiplier architectures. The manually approximated 𝑛-bit multipliers are
usually derived from the in the one of the following schemes: (1) an array multiplier, where
the sum and carry signals are generated by 𝑛-bit adders in each of 𝑛 rows and they are pas-
sed to the adders in the next row, and (2) Wallace (or Dadda) tree multipliers dividing the
multiplication into layers, where the adders work in parallel without any carry propagation
within the layer. The array multiplier is smaller than the tree multiplier, but slower. The
approximations can be implemented in the following parts of the multipliers [16]:

∙ Approximation in generating partial products modifies the submultipliers, which the
multiplier is composed of. For example, Kulkarni et al. proposed an approximate
2×2-bit multiplier where only one single entry is altered (3×3 = 7 and the remaining
ones are correct) [19]. Larger multipliers are designed using this 2-bit multiplier as a
building block.

∙ Approximation in the partial product tree modifies the structure of the multiplies.
This approach is utilized in the broken-array multiplier [27]. This multiplier omits
some rows and columns in the array multiplier. A straightforward truncation of LSBs
in operands (e.g. the usage of accurate 6-bit multiplier instead of the 8-bit one) also
modifies the partial product tree by omitting some partial product cells. The omitting
approach can be done in an adaptive way. In the multiplier proposed by Kyaw et
al. [21], the LSB cells function is controlled by the MSBs of operands.

∙ Approximation in counters or compressors in the partial product tree utilizes the tree
structure of the multiplier. The key operations in each level are compressions, where
3 bits or 4 bits are compressed to 2 bits (3:2 or 4:2 compressors). These circuits can be
approximated, for example, by a substitution of full-adders by approximate ones [34].

2.2.3 Automated approximation methods

SALSA

The Systematic methodology for Automatic Logic Synthesis of Approximate circuits (SALSA)
is an automated approach that turns the approximation synthesis to the standard synthesis

12

task. A virtual circuit containing an accurate solution, a candidate circuit and decision cir-
cuit (with one output) is constructed. The output is active when the error bound constraint
is violated. The don’t care states are iteratively applied to the approximate solution. These
states are accepted if the output of the virtual circuit remains zero for all input combina-
tions. Thereafter, a traditional don’t care based optimization technique is applied [69].

SASIMI

Another systematic approach, Substitute-And-SIMplIfy (SASIMI), tries to identify signal
pairs in the circuit that show the same value with high probability, and substitutes one for
the other. These substitutions are resulting in some logic to be eliminated from the circuit.
In addition to that, the downsizing of gates on critical paths (simplification) may be ena-
bled. Moreover, the connection of the signal pairs using a configurable substitution circuit
provides a kind of quality configurable circuit that can dynamically operate at different
accuracy levels depending on the application requirements [68].

ABACUS

In contrast with previous automated methods, Automated Behavioral Approximate Ci-
rcUit Synthesis operates on HDL level. It automatically generates approximate circuits
directly from the behavioral-level of description. In order to perform desired approximati-
ons, the method modifies the Abstract Synthesis Tree (AST) using the following operators:
(1) simplification of datatypes, (2) substitution of arithmetic operations by approximate
operations, (3) transformation of arithmetic expressions, (4) substitution of variables with
constants, and (5) loop transformations. In each iteration of the algorithm, the operati-
ons are randomly applied to the accurate circuits while the error bound is checked after
the application [46]. The search algorithm is based on a simple hill-climbing algorithm or
multi-objective NSGA-II algorithm [45].

AIG-Rewriting

Another automatic synthesis approach uses And-Inverter Graphs (AIGs) based rewriting.
The AIG is a widely employed representation in the logic synthesis. The algorithm identifies
the longest paths in the circuit. Then so-called cuts are selected by performing the cut
enumeration on the selected paths. In a logic circuit represented by an acyclic graph, a cut
of node 𝑛 is a set of nodes of the network, called leaves, such that each path from primary
inputs to 𝑛 passes through at least one leaf [31]. Each cut is replaced by an approximate
cut (typically by zero constant) to generate a new candidate circuit. If the candidate meets
the error constraints, it is accepted to the next iteration [2].

Evolutionary algorithm based methods

In the seminal paper on evolutionary design of approximate circuits [54], the problem of
automated design of small approximate circuits consisting of elementary gates is addres-
sed. This approach was extended with heuristic seeding to improve the scalability of the
evolutionary method [64].

Except the group at Brno University of Technology, the evolutionary approach has
been adopted only in few cases. For example, the evolutionary approximation was used in
the context of FPGAs. GRATER tool [24] employs a genetic algorithm to determine the

13

precision of variables within an OpenCL kernel. By selectively reducing the precision, the
number of parallel approximate kernels that can be mapped in the fixed area budget of an
FPGA can be increased with respect to the original kernel implementations

A multi-objective evolutionary algorithm was employed to solve the so-called binding
problem of High-Level Synthesis (HLS), in which suitable approximate components are
assigned to nodes of the data flow graph describing a complex digital circuit [66].

ASLAN

Automatic methodology for Sequential Logic ApproximatioN (ASLAN) targets the task of
the synthesis of approximate sequential circuits. The algorithm tries to identify combina-
tional blocks in a sequential circuit that are amenable to approximations. Then, existing
combinational approximation techniques are utilized to obtain a series of approximate ver-
sions having different quality levels. A gradient/descent approach is used to iteratively
approximate the entire sequential circuit while the overall error bound is checked using a
formal verification approach [47].

Summary of automated approximations

Typical arithmetic circuits that have been approximated with automated methods are 8- or
16-bit adders and 8-bit multipliers. As implementations of these methods are not available,
it is hard to perform their fair comparison. An obvious question is whether these methods
are suitable to approximate complex circuits such as 32-bit multipliers.

2.2.4 Quality of approximate circuits

The quality of approximate combinational circuits is typically expressed using one or several
error metrics. In addition to the error rate, the average-case as well as the worst-case
situation can be analyzed. Among others, the mean absolute error (MAE) and the mean
relative error (MRE) are the most useful metrics that are based on the average-case analysis.
Selection of the right metrics is a key step of the whole design. When an arithmetic circuit is
approximated, for example, it is necessary to base the error quantification on an arithmetic
error metric. For general logic circuits, where no additional knowledge is available and
where there is not a well-accepted error model, Hamming distance or error rate is typically
employed.

The following paragraphs summarize the error metrics that have been employed in
literature to quantify the deviation between the outputs produced by a functionally correct
design and an approximate design. These metrics are divided to two categories. The
category of arithmetic errors consists of metrics that compare integer values of the circuit
outputs. The Boolean error metrics are classified as general errors.

Arithmetic error metrics

Let 𝑓 : B𝑛 → B𝑚 be an 𝑛-input 𝑚-output Boolean function that describes the correct
functionality (the accurate function) and 𝑓 ′ : B𝑛 → B𝑚 be an approximation of it, both
implemented by two circuits, namely 𝐹 and 𝐹 ′.

The worst-case arithmetic error, sometimes denoted as error magnitude or error signi-
ficance [1], is defined as

𝑒𝑤𝑐𝑒(𝑓, 𝑓
′) = max

∀𝑥∈B𝑛
|𝑖𝑛𝑡(𝑓(𝑥))− 𝑖𝑛𝑡(𝑓 ′(𝑥))|, (2.3)

14

where 𝑖𝑛𝑡(𝑥) represents a function 𝑖𝑛𝑡 : B𝑚 → Z returning an integer value of the 𝑚-bit
binary vector 𝑥. Typically, a natural unsigned binary representation is considered, i.e.
𝑖𝑛𝑡(𝑥) =

∑︀𝑚
𝑖=1 2𝑖 · 𝑥𝑖. The worst-case error represents the fundamental metric that is useful

to guarantee that the approximate output differs from the correct output by at most error
bound 𝑒.

In the literature, the relative worst-case error

𝑒𝑤𝑐𝑟𝑒(𝑓, 𝑓
′) = max

∀𝑥∈B𝑛

|𝑖𝑛𝑡(𝑓(𝑥))− 𝑖𝑛𝑡(𝑓 ′(𝑥))|
𝑖𝑛𝑡(𝑓 ′(𝑥))

(2.4)

is frequently employed to constrain the approximate circuit to differ from the correct one
by at most a certain margin. Note that a special care must be devoted to the cases for
which the output value of the original circuit is equal to zero, i.e. the cases when the
denominator approaches zero. This issue can be addressed by either omitting test cases
when 𝑖𝑛𝑡(𝑓(𝑥)) = 0, or biasing the denominator by 1. The first approach is usually employed
in the manual approximation methods where the zero results are accurate [16].

The average-case arithmetic error (also known as mean absolute error) is defined as
the sum of absolute differences in magnitude between the original and approximate circuit,
averaged over all inputs:

𝑒𝑚𝑎𝑒(𝑓, 𝑓
′) = 2−𝑛

∑︁

∀𝑥∈B𝑛

|𝑖𝑛𝑡(𝑓(𝑥))− 𝑖𝑛𝑡(𝑓 ′(𝑥))|. (2.5)

If we replace the expression in the sum by the equation for relative error distance, we
can calculate the mean relative error :

𝑒𝑚𝑟𝑒(𝑓, 𝑓
′) = 2−𝑛

∑︁

∀𝑥∈B𝑛

|𝑖𝑛𝑡(𝑓(𝑥))− 𝑖𝑛𝑡(𝑓 ′(𝑥))|
𝑖𝑛𝑡(𝑓 ′(𝑥))

. (2.6)

Note that the values produced by absolute error metrics 𝑒𝑚𝑎𝑒 and 𝑒𝑤𝑐𝑒 can be very large.
Hence, these values can be expressed as a part of the output range using multiplication by
2−𝑚. For example, the worst-case arithmetic error 64 for an 8-bit output circuit is equal to
25% error.

General error metrics

In addition to the arithmetic error metrics, there are metrics that are not related to the
magnitude of the output of the correct or approximate circuit.

The error rate, referred to as the error probability, represents the basic measure that is
defined as the ratio of inputs vectors for which the output value differs from the original
one:

𝑒𝑝𝑟𝑜𝑏(𝑓, 𝑓
′) = 2−𝑛

∑︁

∀𝑥∈B𝑛:𝑓(𝑥)̸=𝑓 ′(𝑥)

1. (2.7)

In many cases, it is also worth to consider the Hamming distance between 𝑓(𝑥) and
𝑓 ′(𝑥). The worst-case Hamming distance, denoted also as bit-flip error [4], is defined as

𝑒𝑏𝑓 (𝑓, 𝑓 ′) = max
∀𝑥∈B𝑛

𝑚∑︁

𝑖=1

(𝑓(𝑥)⊕ 𝑓 ′(𝑥))𝑖, (2.8)

15

and gives the maximum number of output bits that simultaneously output a wrong value.
The average number of changed output bits, denoted as the average Hamming distance,
can be expressed as follows:

𝑒𝑚ℎ𝑑(𝑓, 𝑓 ′) = 2−𝑛
∑︁

∀𝑥∈B𝑛

𝑚∑︁

𝑖=0

(𝑓(𝑥)⊕ 𝑓 ′(𝑥))𝑖. (2.9)

2.2.5 Quality evaluation

In the error metric formulas, the enumeration of all possible input vectors is employed. For
larger number of inputs 𝑛, it is not feasible to enumerate B𝑛. We can deal with this issue by
(a) enumerating a subset of B𝑛, or (b) obtaining the exact value using a formal verification
approach. Therefore, the evaluation methods can be divided to the following classes.

∙ Exact (formal) evaluation where the error is calculated using formal verification met-
hods or obtained by a simulation tool performing the exhaustive simulation.

∙ Inexact evaluation using just a subset of B𝑛 or a probabilistic error analysis.

This section introduces several approaches for the evaluation of the quality of approxima-
tion.

Simulation

This method can be used in the exact evaluation scenario. A circuit simulator that cal-
culates responses for all input vectors is employed to provide the exact error metric. The
simulation method is capable of determining all error metrics introduced in the previous
section. In order to maximize the efficiency of the implementation, the simulator usually
uses parallel acceleration techniques such as vectorization enabling bit-level parallel simu-
lation. The idea is to utilize bitwise operators operating on multiple bits to perform more
than one evaluation of a gate in a single step. This approach benefits from the fact that
modern processors are equipped with specialized SIMD instructions. For example, widely
available Advanced Vector Extension (AVX) instruction set allows us to operate with 256-
bit operands. It means that every circuit with eight inputs can completely be simulated
in one pass by applying a single 256-bit test vector at each input. Therefore, the obtained
speedup is 256 against the sequential simulation [15]. As shown in [65], the performance of
the simulator can be substantially improved if the interpreter is avoided and replaced by a
native machine code that directly calculates the responses.

Simulation can be also accelerated using special hardware such as FPGAs. The concept
of Virtual Reconfigurable Circuit (VRC) [52] or Dynamic Partial Reconfiguration (DPR)
technique [50] can be used to quickly establish a circuit in the FPGA.

Since it is unfeasible to perform the exhaustive enumeration for a larger number of
inputs due to the exponential complexity, the simulation frequently utilizes a subset of
input vectors, typically selected by Monte-Carlo method [16]. To determine the required
subset size, statistical models can be used [23].

BDD-based formal verification

To overcome time limitations of the simulation, various formal approaches can be employed
for exact error evaluation [59]. In the classical logic synthesis, determining whether two

16

Boolean functions are functionally equivalent represents a fundamental problem solved using
formal verification techniques. These widely explored techniques can be extended for the
error metrics calculation, in the so-called relaxed equivalence checking scenario.

One of the state-of-the-art verification methodologies is based on Reduced Ordered
Binary Decision Diagrams (ROBDD). ROBDD is a canonical rooted acyclic graph-based
representation of Boolean function, where each node represents either an input variable
or terminal node, and the edges represent the value assignment. ROBDDs have been
traditionally used to solve the equivalence checking problem due to their canonical property.
The ROBDD tools can exactly answer two questions: (1) whether a variable (signal) in the
circuit is satisfiable, i.e. whether some input vector exists which generates true value of
the signal; and (2) the probability that a selected variable is true. In the literature [55],
algorithms determining the worst-case error and the average error of an approximate circuit
were published.

Most formal verification approaches developed for testing exact equivalence are not
directly extendable for relaxed equivalence checking. A common approach to the error
analysis is to construct an auxiliary circuit referred to as an approximation miter. The
structures of various approximation miters is shown in Figure 2.4. For arithmetic error
metrics, a two’s complement subtractor followed by a circuit which determines the absolute
value is employed. Such a circuit can be used for formal evaluation of the mean and
the worst-case arithmetic errors. For Hamming distance and the error rate, incorporating
exclusive-or gates connecting the corresponding outputs is sufficient.

Figure 2.4: Approximation miter for the formal error analysis. Implementation of the error
computation block for (a) arithmetic error, (b) Hamming distance and (c) error rate.

SAT-based formal verification

ROBDD based verification is inefficient in representing certain classes of functions. It is
a well-known fact that the size of BDD is sensitive to the chosen variable ordering. In
addition to that, there are functions, e.g. multipliers, for which the BDD size is always
exponential, independent of variable ordering [59].

The advanced relaxed equivalence checking approach transforms the error computation
to a satisfiability (SAT) problem which is solved by means of a SAT solver. Modern SAT
solving algorithms are extremely effective at coping with large problem instances and large
search spaces. The basic principle is to translate the problem of functional equivalence of
two combinational circuits to the problem of deciding whether a Boolean formula given
in conjunctive normal form (CNF) is satisfiable or not. This formula is constructed using
miters shown in Figure 2.4. With respect to the BDD-based verification, SAT solving can
effectively process large circuits, but the satisfiability (e.g. proving, that some signal can
or cannot be set) is answered only. The worst-case upper-bound obtained by the miter and

17

a threshold circuit checking that difference 𝑒 is below threshold 𝜏 (formally 𝑒 ≤ 𝜏) was
usually determined [59].

Estimation

The errors of approximate circuits described on e.g. Abstract Syntax Tree or RTL levels
can be determined using statistical analysis [22]. This approach is suitable when the circuit
consists of approximate arithmetic modules (such as adders or multipliers) with known error
distributions. For example, if the error of the module can be described using a Gaussian
model, then mean 𝜇 and variance 𝜈 represent the error. At the circuit level, these error
characteristics coming from the modules are combined to the resulting error.

2.3 Cartesian Genetic Programming
Cartesian genetic programming (CGP) grew from a method of evolving digital circuits
developed by Miller et al. in 1998 [30]. CGP especially differs from other genetic program-
ming branches in (i) the solution representation and (ii) the search mechanism. The key
ingredients of CGP are briefly introduced in the following paragraphs. Then, the use of
CGP in the synthesis of approximate circuits is discussed. Detailed description of CGP in
the digital circuit design is available in [29].

2.3.1 Circuit representation

The key part of CGP is a representation of candidate circuits. A candidate circuit is
represented as a special integer netlist describing the constant number of components (𝑁).
These components (nodes) are organized in a two-dimensional grid of 𝑛𝑐 columns and 𝑛𝑟
rows (𝑁 = 𝑛𝑐 · 𝑛𝑟). The number of primary inputs and outputs of the circuit is denoted as
𝑛𝑖 and 𝑛𝑜. The function of the nodes depends on the level of abstraction used in modeling,
where logic gates and more complex components from the technology library are naturally
supported. Every component has up to 𝑛𝑎 inputs and 𝑛𝑏 outputs. For example, if standard
logic gates are used as components, 𝑛𝑎 = 2 and 𝑛𝑏 = 1.

A unique address is assigned to all primary inputs and to the outputs of all components
to define an addressing system enabling circuit topologies to be specified. The primary
inputs are labeled 0, 1, . . . , 𝑛𝑖−1 and the components’ outputs are labeled 𝑛𝑖, 𝑛𝑖+1, . . . , 𝑛𝑖+
𝑛𝑏 · 𝑛𝑐 · 𝑛𝑟 − 1. As no feedback connections are allowed in the basic version of CGP, only
acyclic graphs can be encoded. Because of that, only combinational circuits can be created.

The main feature of this encoding is that while the size of the chromosome is constant
(for given 𝑛𝑎, 𝑛𝑏, 𝑛𝑜, 𝑛𝑟 and 𝑛𝑐), the size of circuits represented by this chromosome is
variable (from 0 to 𝑛𝑐 ·𝑛𝑟−1 components can be involved) as some components can remain
disconnected (see Fig. 2.5). This redundancy has been identified as a crucial property of
the efficient search in the space of digital circuits [29].

Figure 2.5 shows a gate level, four-input (𝑎0, 𝑎1, 𝑏0, 𝑏1) and four-output (𝑜0, 𝑜1, 𝑜2, 𝑜3),
circuit consisting of eight gates implementing the two-bit multiplication. This circuit is
represented in the CGP grid with 𝑛𝑐 = 𝑛𝑟 = 3 and the outputs of the components are
labeled 4, 5, . . . , 12. One component (the exclusive-or gate with the output labeled 10) is
inactive, i.e. no path from the output of the component to the primary output of the circuit
exists.

18

Figure 2.5: A two-bit multiplier represented in CGP with parameters: 𝑛𝑖 = 𝑛𝑜 = 4, 𝑛𝑐 =
𝑛𝑟 = 3, 𝑛𝑎 = 2, 𝑛𝑏 = 1,Γ = {0𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦, 1𝑛𝑜𝑡, 2𝑎𝑛𝑑, 3𝑜𝑟, 4𝑥𝑜𝑟, 5𝑛𝑎𝑛𝑑, 6𝑛𝑜𝑟, 7𝑥𝑛𝑜𝑟, 8𝑐𝑜𝑛𝑡0, 9𝑐𝑜𝑛𝑠𝑡1}.

In the integer netlist, each component is represented using 𝑛𝑎 + 1 integers, where 𝑛𝑎
integers specify destination addresses for its inputs and one integer refers to the set Γ
containing all supported functions of the nodes. A component placed in the 𝑗-th column
can obtain its input values 𝑣 either from the primary inputs or from the components placed
in previous columns, formally 𝑣 ≤ 𝑛𝑖 + (𝑗 − 1) · 𝑛𝑟 · 𝑛𝑏.

The last part of the chromosome contains 𝑛𝑜 integers specifying the connection of each
primary output. The output can be connected either with the output of some node or with
the primary input.

The whole circuit is then represented using the so-called chromosome (i.e. simplified
integer netlist) whose size is

𝑁𝑔 = 𝑛𝑐 · 𝑛𝑟 · (𝑛𝑎 + 1) + 𝑛𝑜 (integers). (2.10)

2.3.2 Search algorithm

Every candidate circuit represents one design point in the design space. In CGP, new
designs are created by introducing small random modifications to the chromosome. This
operation is called the mutation and it typically modifies ℎ integers of the chromosome.
Note that all modifications must lead to valid circuits, i.e. only valid function codes and
connections can be created.

Algorithm 1 presents the search method based on (1 + 𝜆) evolutionary strategy usually
used for a single-objective circuit approximation by means of CGP [29]. The search algo-
rithm can start either with a randomly generated initial population or with existing designs.
The population size is 1 +𝜆. After evaluating the initial population (i.e. scoring the circuit
functionality and the cost while better circuits obtain higher scores), the following steps are
repeated until the termination condition is not satisfied: (i) a new parent is selected; (ii) 𝜆
offspring circuits are created from the parent by means of mutation; (iii) the population is
evaluated.

One mutation can affect either the component function, the component input con-
nection, or the primary output connection. A mutation is called neutral if it does not affect
the circuit’s fitness. Neutral mutations are very important for the evolutionary design and
optimization [29].

The fitness function is typically application-specific. If the initial population is initia-
lized with circuits satisfying the functional requirements, the objective of the evolutionary

19

Algorithm 1: CGP optimization
Input: CGP parameters, fitness function, intial population 𝑃
Output: The highest scored individual and its fitness

1 EvaluatePopulation(𝑃);
2 while ⟨terminating condition not satisfied⟩ do
3 𝛼← SelectHighest-scored-individual(𝑃);
4 if fitness(𝛼) ≥ fitness(𝑝) then
5 𝑝← 𝛼;
6 𝑃 ← {𝑝} ∪ {𝜆 offspring of 𝑝 created by mutation};
7 EvaluatePopulation(𝑃);
8 return 𝑝, fitness(𝑝);

synthesis formulated in the fitness function is to improve non-functional parameters and
keep the functionality unchanged.

2.3.3 Circuit approximation using CGP

In the context of approximate computing, three evolutionary approximation strategies
(shown in Fig. 2.6) were developed.

Figure 2.6: Evolutionary approximation strategies (a simplified situation for the area-error
optimization): (a) resource-oriented, (b) error-oriented and (c) multi-objective. The white
points denote the initial (accurate) circuit, the blue are the desired approximate circuits
and the crosses denote the valid candidate solutions (design points).

Resources-oriented method

CGP is used to minimize the error criterion under the assumption that only 𝑚𝑖 components
(gates) are available and 𝑚𝑖 is lower than the minimal number of components (gates) needed
to implement the accurate function [64].

The strategy is divided to two stages. In the first stage, the accurate initial solution is
reduced to contain less than 𝑚𝑖 components. It can be done using a random component
elimination algorithm or a suitable heuristic. In the second stage, the goal of CGP is
to optimize the error while the number of components is kept lower than 𝑚𝑖. The main

20

advantage is that the user can control the used area (and power consumption) precisely by
means of 𝑚𝑖.

Error-oriented method

In the error-oriented method, the target error (e.g. the worst-case error) range, determined
by 𝑒𝑚𝑖𝑛 and 𝑒𝑚𝑎𝑥, is specified by the user. The goal is to optimize the number of components
(or area or power consumption) while the error of the circuits is kept between target errors
𝑒𝑚𝑖𝑛 and 𝑒𝑚𝑎𝑥 [62]. This strategy is divided to two stages as well. In the first stage, the
design objective (area in Fig. 2.6b) is minimized since the error is lower than 𝑒𝑚𝑎𝑥. We can
assume that the increasing error typically leads to smaller area. In the second stage, the
algorithm optimizes the design objective while the error of circuits kept in the target error
range. If various tradeoffs between the error and the number of components are requested,
CGP is executed several times with 𝑒𝑚𝑎𝑥 as the parameter.

Multi-objective CGP

Compared to previous methods that employ a single-objective optimization (one fitness
function with constraints), the multi-objective method allows to optimize the error and
other key circuit parameters (area, delay and power consumption) together in one CGP
run [14]. We are primarily interested in approximate circuits belonging to the Pareto set
which contains the so-called nondominated solutions. For example, consider two circuits
C1 and C2. Circuit C1 dominates another circuit C2 if: (1) C1 is no worse than C2 in all
objectives, and (2) C1 is strictly better than C2 in at least one objective.

The multi-objective CGP represents candidate circuits using the standard CGP enco-
ding. The search algorithm uses a modified variant of a multi-objective genetic algorithm,
such as Non-dominated Sorting Genetic Algorithm (NSGA-II) [8].

Figure 2.7: Creating of a new population in NSGA-II algorithm [8].

NSGA-II (Fig. 2.7) generates a set of offspring 𝑄𝑡 from the current population 𝑃𝑡.
The individuals 𝑃𝑡 ∪𝑄𝑡 are sorted according to the dominance relation into multiple fronts
𝐹𝑖. The first front 𝐹1 contains all non-dominated solutions along the Pareto front. Each
subsequent front (𝐹2, 𝐹3, . . .) is constructed by removing all the preceding fronts from the

21

population and finding a new Pareto front. The first fronts (𝐹1 and 𝐹2 in Fig. 2.7) are
copied to the next population 𝑃𝑡+1. If any front must be split (𝐹3 in Fig. 2.7), a crowding
distance is used for the selection of individuals to 𝑃𝑡+1.

The advantage of multi-objective CGP is that it re-constructs the Pareto front in each
CGP generation and tries to cover all possible compromise solutions. Several accurate
implementations can be used as a seed. A set of non-dominated circuits is the output of
the multi-objective algorithm.

22

Chapter 3

Research summary

This chapter summarizes the research conducted in the thesis. In the Section 3.1, overall
view on the research is given. Section 3.2 describes motivations and contributions of seven
selected papers where the most important results of the research were published. Section 3.3
lists the remaining papers of the author related to the research topic that are not included
in this thesis. Sections 3.4 and 3.5 give additional information related to the work such as
the list of research projects and awards.

3.1 Overview
The goal of the research conducted in this doctoral thesis is to improve the evolutionary
circuit design methodology based on Cartesian genetic programming (CGP) in order to
obtain an advanced method for the approximate circuit design. The method should pro-
duce approximate circuits that: (i) show excellent tradeoffs between quality and power-
consumption, (ii) have reasonable complexity, (iii) can be defined at various levels of des-
cription, and (iv) are applicable in the real-world applications.

In order to demonstrate the capabilities of the proposed methods, the following repre-
sentative real-world applications described on three basic levels of description were selected:

∙ The optimization and approximation of elementary digital circuits available in the
technology library (the transistor level)

∙ Image classification conducted by a neural network (the gate level)

∙ Discrete cosine transformation (DCT) used in HEVC encoder (the gate level)

∙ Median filtering for image and signal filters (the RTL modules level)

In Paper I we presented an advanced simulation technique and a novel modification of
CGP representation which is suitable for fast evaluation of transistor-level circuits. The
proposed method was utilized in the evolutionary design and optimization of circuits at the
transistor-level.

Due to the limited scalability of the transistor-level approach, the gate-level represen-
tation was used in CGP approximation of larger circuits. At the gate level, multi-objective
CGP was employed for construction of a library of 8-bit approximate arithmetic circuits.
This library contains hundreds of adders and multipliers, that are available online for do-
wnload (Paper II). The approximate multipliers from the library helped us to investigate

23

the properties of approximation in neural image classifiers and introduce a new constraint
for the forward path approximation in neural networks. This constraint was implemented
to the CGP approximation method which was utilized to evolve approximate multipliers for
neural networks. The neural networks employing the proposed approximate multipliers sho-
wed a good tradeoff between the power consumption and the overall classification accuracy
(Paper III).

In the aforementioned papers, circuit simulators evaluating the exact approximation
error were utilized. However, the exact circuit simulation is not feasible for complex cir-
cuits. To deal with this issue, formal verification techniques were adapted in the next work.
We included several optimization approaches to the verification methodology in order to
approximate complex arithmetic circuits (Paper IV). In particular, we utilized SAT solvers
for analysis of the worst-case arithmetic error. An advanced BDD-based analysis was im-
plemented in order to obtain the mean arithmetic error for complex adders. This algorithm
was used in CGP to design approximate adders and subtractors that were later applied in
discrete cosine transformation blocks of HEVC encoder (Paper V).

We investigated not only the possibilities on how to improve the scalability of the evo-
lutionary approach, but also how to improve quality of the results. In the evolutionary
approximation of multipliers, it was shown that the function set Γ covering all important
components of the technology library (such as full adders and multiplexors) led to better
results. As a side effect, the CGP with the function set including the more complex com-
ponents led to better convergence compared to the CGP with the function set containing
just one- and two-input logic gates (Paper VI).

The last presented work (Paper VII) shows that the evolutionary approximate synthesis
conducted at RTL-level is capable of creating complex circuits. In particular, we evolved
approximate median filters suitable for image and signal processing. In order to perform
a data-independent and fast evaluation of candidate median filters, a new error metric
was proposed. A significant improvement was obtained in terms of circuit complexity and
quality with respect to CGP guided by the fitness function based on random simulation.

All results enabled us to deeper understand the relations among the error metrics,
the level of circuit description and the search algorithm in the context of evolutionary
approximations. We showed that evolutionary algorithms can be used for power-aware
optimization of digital circuits described on various levels — from the lowest transistor
netlist to the gate level description and the circuits utilizing complex building blocks.

3.2 Papers included in the thesis
This section presents details on the motivation and contributions for each paper together
with the paper abstract.

3.2.1 Paper I

MRÁZEK Vojtěch and VAŠÍČEK Zdeněk. Evolutionary Design of Transistor Level
Digital Circuits using Discrete Simulation. In: Genetic Programming, 18th European
Conference, EuroGP 2015. Berlin: Springer, 2015, pp. 66-77. ISBN 978-3-319-16500-4.

Author participation: 50 %
Conference ranking: B (CORE1) / B1 (Qualis2)

1http://www.core.edu.au/conference-portal
2http://www.conferenceranks.com/

24

http://www.core.edu.au/conference-portal
http://www.conferenceranks.com/

Motivation and contributions

The transistor level description is useful for the design and optimization of small circuits
suitable for e.g. technology libraries specialized for approximate computing. In this paper,
we presented a fundamental modification of the CGP representation of circuits described
on the transistor level. Instead of single-output and typically two-input nodes supporting
single-directional data flow, into this representation, we included nmos and pmos transistors
and junctions. The junctions are necessary for the description of transistor-level circuits,
but their usage can lead to cyclic connections that are unwanted in combinational circuits.

The evaluation of candidate circuits was performed by means of the proposed discrete
even-driven simulator. Six different discrete values are supported: “strong” as well as
“degraded” zeros and ones, a high-impedance state and a forbidden state. The simulation
engine stimulated candidate circuits with all possible input vectors and checked, whether
the output values were identical with the specification, and no short-circuit connections or
values oscillations (caused by cyclic connections) occurred during the simulation.

The proposed approach was employed in the automated design of accurate circuits that
could be used as components of the technology library. In some cases, it allowed us to find
the same solutions as those published in the literature. For example, an implementation
of full-adder employing 14 transistors was rediscovered. In the contrast with genetic pro-
gramming literature [70], where only small circuits (up to 10 transistors) were evolved, the
proposed evolutionary design was able to handle circuits with up to 30 transistors due to
the fast evaluation of candidate circuits.

Later, the work was extended with power consumption estimation of candidate circuits
[38]. The numeric simulation models of transistors, typically used in power consumption
calculation, are very complex and computationally expensive. Hence, we proposed an esti-
mation algorithm that utilized precalculated power dissipations of pmos and nmos transis-
tors for each input transition obtained by means of the SPICE simulator. In the candidate
circuit evaluation process, all possible combinations of inputs were simulated using the pro-
posed simulator. During the simulation, probabilities of transitions of all transistors were
acquired. These probabilities and the precalculated table of power dissipations were used
to estimate the total power consumption.

Since the discrete simulation ignores some facts (e.g. it does not care about a po-
tential timing issues, especially for large circuits containing hundreds of transistors), the
accurate SPICE simulator was used time to time to validate the functionality of candidate
circuits [38]. If the validation did not pass, the evolutionary algorithm rolled back to the
last valid solution.

In order to design approximate arithmetic circuits, we proposed to employ a two-stage
design process [38]. In the first stage, the circuit was approximated on the gate level. Then,
the resulting approximate circuit was optimized directly on the transistor level. Using this
approach, we evolved optimized four-bit approximate multipliers that outperformed the
gate-level approximations in terms of power consumption.

In this paper, a new approach suitable for the evolutionary design of digital circuits
conducted directly on the transistor level was introduced. The novelty lies in a new circuit
representation and a new simulation engine. The approach can be utilized to design or
optimize low-power modules of technology libraries specialized for approximate computing.

25

Abstract

The objective of the paper is to introduce a new approach to the evolutionary design of di-
gital circuits conducted directly at transistor level. In order to improve the time-consuming
evaluation of candidate solutions, a discrete event-driven simulator was introduced. The
proposed simulator operates on multiple logic levels to achieve reasonable trade-off between
performance and precision. A suitable level of abstraction reflecting the behavior of real
MOSFET transistors is utilized to minimize the production of incorrectly working circuits.
The proposed approach is evaluated in the evolution of basic logic circuits having more
than 20 transistors. The goal of the evolutionary algorithm is to design a circuit having
the minimal number of transistors and exhibiting the minimal delay. In addition to that,
various parameter settings are investigated to increase the success rate of the evolutionary
design.

3.2.2 Paper II

MRÁZEK Vojtěch, HRBÁČEK Radek, VAŠÍČEK Zdeněk and SEKANINA Lukáš. Evo-
Approx8b: Library of Approximate Adders and Multipliers for Circuit Design
and Benchmarking of Approximation Methods. In: Proc. of the 2017 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). Lausanne: European Design
and Automation Association, 2017, oo. 258-261. ISBN 978-3-9815370-9-3.

Author participation: 25 %
Conference ranking: B (CORE) / A1 (Qualis)

Motivation and contributions

Due to the limited scalability of transistor-level approach, CGP at the gate-level repre-
sentation was employed for construction of larger circuits. In this paper, a large library
of 8-bit approximate arithmetic circuits was introduced. The approximate circuits were
evolved using a multi-objective implementation of CGP based on NSGA-II algorithm pro-
posed in [14]. It considered power consumption, area and mean absolute error as the design
objectives. An exhaustive simulation utilizing 256-bit AVX instructions was employed in
the candidate circuit evaluation. The simulator calculated the mean absolute error of the
candidate circuit and the probability of being in logic zero and one for each CGP node out-
put. These probabilities combined with parameters of logic functions from the technology
library were used to estimate the power consumption.

The evolved circuits outperformed the circuits published in the literature. Hence, we
constructed hardware as well as software models of the circuits and made them online. This
library contains hundreds of approximate adders and multipliers that are available. The
library was well accepted by the community, for example, 47 unique users from 13 countries
visited the library websites in April 2018.

This paper presented the first large library of approximate arithmetic circuits that are
available online and thus everyone can download them and apply in various applications.
In addition to that, researchers designing new approximate circuits can use these models
for comparison and benchmarking.

Abstract

Approximate circuits and approximate circuit design methodologies attracted a significant
attention of researchers as well as industry in recent years. In order to accelerate the

26

approximate circuit and system design process and to support a fair benchmarking of circuit
approximation methods, we propose a library of approximate adders and multipliers called
EvoApprox8b. This library contains 430 nondominated 8-bit approximate adders created
from 13 conventional adders and 471 non-dominated 8-bit approximate multipliers created
from 6 conventional multipliers. These implementations were evolved by a multi-objective
Cartesian genetic programming. The EvoApprox8b library provides Verilog, Matlab and
C models of all approximate circuits. In addition to standard circuit parameters, the
error is given for seven different error metrics. The EvoApprox8b library is available at:
www.fit.vutbr.cz/research/groups/ehw/approxlib.

3.2.3 Paper III

MRÁZEK Vojtěch, SARWAR Syed Shakib, SEKANINA Lukáš, VAŠÍČEK Zdeněk and
ROY Kaushik. Design of Power-Efficient Approximate Multipliers for Approxi-
mate Artificial Neural Networks. In: Proceedings of the 35th IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). Austin, TX: Association for Computing
Machinery, 2016, pp. 811-817. ISBN 978-1-4503-4466-1.

Author participation: 55 %
Conference ranking: A (CORE) / A1 (Qualis)

Motivation and contributions

The image classification using neural networks (NN) is currently a very popular topic.
Since the recognition task has been identified as error-resilient, the implementations of
neural classifiers are after approximated [67, 51, 10].

This research started with applying approximate multipliers from the EvoApprox8b
benchmark to the neural classifier in order to reduce its power consumption. We observed
that the NN with approximate multipliers exhibits significantly worse classification accu-
racy than the original NN. We analyzed this problem and recognized that almost 80% of
multiplications in NN should produce zero. We hypothesized that multiplication by zero
must be accurate, but multiplication of non-zero operands can be approximated. We in-
troduced this “accurate zero-multiplication” constraint into the error oriented evolutionary
approximation and evolved 7-bit and 11-bit approximate unsigned multipliers. Finally, the
evolved multipliers were extended using one-complement to 8- and 12-bit signed ones.

The evolved multipliers were applied in two NNs (a multilayer perceptron and convolu-
tional LeNet-5 network) performing two different benchmark tasks — handwritten number
recognition (MNIST dataset) and Street-View House Number classification (SVHN data-
set). We recognized that (despite the NNs were trained) a re-training process is able to
adapt the pre-trained NN to the inaccurate multipliers, and thus improve the classification
accuracy of approximate NNs up to tens of percent. The resulting NNs employing ap-
proximate multipliers exhibited significant power consumption reduction and classification
accuracy comparable with solutions presented in the literature.

In this application, a specific constraint related to approximate multiplication in NNs was
discovered. This paper showed that the proposed methodology of evolutionary approximation
can easily handle very specific constraints. Multipliers satisfying this constraint were evolved
and applied in the neural networks. The resulting neural networks show a good tradeoff
between the power consumption and the overall classification accuracy.

27

www.fit.vutbr.cz/research/groups/ehw/approxlib

Abstract

Artificial neural networks (NN) have shown a significant promise in difficult tasks like image
classification or speech recognition. Even well-optimized hardware implementations of di-
gital NNs show significant power consumption. It is mainly due to non-uniform pipeline
structures and inherent redundancy of numerous arithmetic operations that have to be
performed to produce each single output vector. This paper provides a methodology for
the design of well-optimized power-efficient NNs with a uniform structure suitable for har-
dware implementation. An error resilience analysis was performed in order to determine
key constraints for the design of approximate multipliers that are employed in the resulting
structure of NN. By means of a search-based approximation method, approximate multi-
pliers showing desired tradeoffs between the accuracy and implementation cost were created.
Resulting approximate NNs, containing the approximate multipliers, were evaluated using
standard benchmarks (MNIST dataset) and a real-world classification problem of Street-
View House Numbers. Significant improvement in power efficiency was obtained in both
cases with respect to regular NNs. In some cases, 91% power reduction of multiplication
led to classification accuracy degradation of less than 2.80%. Moreover, the paper showed
the capability of the back-propagation learning algorithm to adapt with NNs containing
the approximate multipliers.

3.2.4 Paper IV

ČEŠKA Milan, MATYÁŠ Jiří, MRÁZEK Vojtěch, SEKANINA Lukáš, VAŠÍČEK Zdeněk
and VOJNAR Tomáš. Approximating Complex Arithmetic Circuits with For-
mal Error Guarantees: 32-bit Multipliers Accomplished. In: Proceedings of 36th
IEEE/ACM International Conference On Computer Aided Design (ICCAD). Irvine, CA:
Institute of Electrical and Electronics Engineers, 2017, pp. 416-423. ISBN 978-1-5386-
3093-8.

Author participation: 17 %
Conference ranking: A (CORE) / A1 (Qualis)

Motivation and contributions

In Paper II and Paper III, the evolutionary approximation of arithmetic circuits such as
multipliers and adders was presented. The error was determined exactly in both cases to
give the potential users a guarantee regarding the worst-case error. Hence, we used a highly
optimized parallel (vectorized) circuit simulator to evaluate the quality of candidate circuits.
However, this method is not feasible for exact evaluating of complex circuits because the
number of input combinations grow exponentially with increasing the number of inputs. In
order to address this issue and approximate larger circuits, we proposed to employ a SAT
solver in the fitness function.

We proposed two novel approaches to accelerate the relaxed equivalence checking. One
of the key components of the method is the miter circuit that verifies, whether the difference
𝑑 between the approximate output and the accurate output is below a threshold 𝜏 (formally
|𝑑| ≤ 𝜏). We developed an advanced miter construction that replaced the standard absolute
value calculation. The proposed formula (𝑑 ≥ 0 ∧ 𝑑 ≤ 𝜏) ∨ (𝑑 < 0 ∧ 𝑑 ≥ −𝜏) reduced the
number of SAT clauses and thus the evaluation time. Another crucial improvement lies in
the proposed verifiability-driven search strategy. The trick is to control the time which the

28

SAT solver has to decide whether a candidate multiplier satisfies a given error bound or
not. This solution allowed us to skip candidate multipliers that are not easily verifiable.

These approaches enabled to significantly improve the scalability limits of the evolu-
tionary circuit approximation. We constructed a large dataset of approximate multipliers
(with up to 32-bit inputs) and approximate adders (with up to 128-bit inputs).

In this paper, formal relaxed equivalence checking was employed in the approximation of
complex arithmetic circuits. Since the checking can be very complicated and time-consuming
for specific circuits, we included several optimization techniques to the verification metho-
dology. In particular, we utilized CGP with SAT solvers to approximate large arithmetic
circuits. By means of this approach, we significantly improved the scalability of the evolu-
tionary approximation process.

Abstract

We present a novel method allowing one to approximate complex arithmetic circuits with
formal guarantees on the approximation error. The method integrates in a unique way
formal techniques for approximate equivalence checking into a search-based circuit optimi-
zation algorithm. The key idea of our approach is to employ a novel search strategy that
drives the search towards promptly verifiable approximate circuits. The method was im-
plemented within the ABC tool and extensively evaluated on functional approximation of
multipliers (with up to 32-bit operands) and adders (with up to 128-bit operands). Within a
few hours, we constructed a high-quality Pareto set of 32-bit multipliers providing trade-offs
between the circuit error and size. This is for the first time when such complex approximate
circuits with formal error guarantees have been derived, which demonstrates an outstan-
ding performance and scalability of our approach compared with existing methods that
have either been applied to the approximation of multipliers limited to 8-bit operands or
statistical testing has been used only. Our approach thus significantly improves capabi-
lities of the existing methods and paves a way towards an automated design process of
provably-correct circuit approximations.

3.2.5 Paper V

VAŠÍČEK Zdeněk, MRÁZEK Vojtěch and SEKANINA Lukáš. Towards Low Power
Approximate DCT Architecture for HEVC Standard. In: Proc. of the 2017 Design,
Automation & Test in Europe Conference & Exhibition (DATE). Lausanne: European
Design and Automation Association, 2017, pp. 1576-1581. ISBN 978-3-9815370-9-3.

Author participation: 40 %
Conference ranking: B (CORE) / A1 (Qualis)

Motivation and contributions

Discrete cosine transformation (DCT) is a very important part of widely employed HEVC
(H.265) encoders as well as decoders. The goal of this work was to reduce the power
consumption of DCT blocks in HEVC coders and encoders while keeping reasonable PSNR
of the video processing.

The transformation can be implemented as a multiplication of inputs by a constant ma-
trix. The most effective approach is to utilize multiplier-less constant multipliers (MCMs).
Since adders and subtractors are the key components of MCMs, these arithmetic circuits
were approximated by means of the proposed CGP approximation algorithm. Three approx-

29

imate MCM blocks were proposed. Due to the increasing bitwidth of adders/subtractors
in MCMs, 16 different instances of adders and subtractors were approximated.

In this work, formal relaxed-equivalence checking was employed in CGP. In contrast
with the SAT-based solution, we were interested not only in the worst-case analysis but
also in the average-case error. Unfortunately, the SAT-based approach cannot be used
to determine the average error. Hence an advanced BDD-based analysis algorithm was
developed and implemented in order to obtain the mean and the worst-case arithmetic errors
for candidate circuits. The proposed BDD-based analysis was used in the error evaluation
in the error-oriented CGP approximation algorithm. Apart from the error analysis, the
BDDs were used to determine the switching activity of each gate because they provided the
information about the probability that a gate output is in logic one. The switching activity
and the information from technology library (liberty file) were used in power consumption
estimation of candidate circuits. The resulting HEVC implementations with approximate
circuits in DCT blocks showed better quality/power tradeoffs than relevant implementations
available in the literature.

In this paper, we proposed advanced algorithms for the mean and the worst-case error
analysis with BDDs. We implemented a fast power-consumption estimation based on BDDs
which was employed in CGP. By means of the proposed approach, new designs of complex
approximate adders and subtractors applicable in an innovative application were developed.

Abstract

Video processing performed directly on IoT nodes is one of the most performance as well
as energy demanding applications for current IoT technology. In order to support real-
time high-definition video, energy-reduction optimizations have to be introduced at all
levels of the video processing chain. This paper deals with an efficient implementation of
Discrete Cosine Transform (DCT) blocks employed in video compression based on the High
Efficiency Video Coding (HEVC) standard. The proposed multiplier-less 4-input DCT
implementations contain approximate adders and subtractors that were obtained using
genetic programming. In order to manage the complexity of evolutionary approximation
and provide formal guarantees in terms of errors of key circuit components, the worst
and average errors were determined exactly by means of Binary decision diagrams. Under
conditions of our experiments, approximate 4- input DCTs show better quality/power trade-
offs than relevant implementations available in the literature. For example, 25% power
reduction for the same error was obtained in comparison with a recent highly optimized
implementation.

3.2.6 Paper VI

MRÁZEK Vojtěch, VAŠÍČEK Zdeněk and HRBÁČEK Radek. The Role of Circuit Repre-
sentation in Evolutionary Design of Energy-Efficient Approximate Circuits. IET Compu-
ters & Digital Techniques. Stevenage: The Institution of Engineering and Technology, (to
appear), p. 11. ISSN 1751-8601.

Author participation: 40 %
Impact factor: 0.515 (Q3)

30

Motivation and contributions

The fitness function is not the only component that determines the quality of the obtained
results. The representation of circuits, especially the set of possible node functions (Γ)
has a great impact not only on the scalability but also on the quality of obtained approx-
imate circuits and the convergence of the evolutionary design process (i.e. the number of
generations needed to find an acceptable solution).

In this paper, we investigate the role of the function set Γ and thereby the number of
inputs 𝑛𝑎 and outputs 𝑛𝑏 of CGP nodes. Two settings were compared: (i) CGP nodes
that can act as standard 1- or 2-input gates (gate-based representation) and (ii) CGP nodes
that have 3 inputs and 2 outputs and can act as standard gates as well as more complex
blocks such as full-adders (cell-based representation). The circuits were approximated by
the error-oriented CGP guided by estimated power consumption.

The evolved circuits were subsequently synthetized (technology mapped) by means of a
commercial tool. Then, the quality of the synthetized circuits (power, area and delay) was
evaluated. The circuits showed better quality for the same target error when we employed
cell-based representation in the CGP. In addition to that, the convergence speed of the
approximate EA-based logic synthesis was analyzed. Although the cell-based representation
led to a larger search-space, in the case of approximate multipliers, better results were
obtained with respect to the gate-based representation.

In the evolutionary approximation of multipliers, it was shown that the cell-based repre-
sentation including the efficient implementations of various components such as full adders
and multiplexors leads to better results than the representation employing the function set
containing just one- and two-input logic gates only. This work illustrated the importance of
choosing the right circuit representation in the approximate multiplier synthesis task.

Abstract

Circuit approximation has been introduced in recent years as a viable method for con-
structing energy efficient electronic systems. An open problem is how to effectively obtain
approximate circuits showing good compromises between key circuit parameters – the er-
ror, power consumption, area and delay. The use of evolutionary algorithms in the task
of circuit approximation has led to promising results. Unfortunately, only relatively small
circuit instances have been tackled because of the scalability problems of the evolutionary
design method. This paper demonstrates how to push the limits of the evolutionary design
by choosing a more suitable representation on the one hand and a more efficient fitness
function on the other hand. In particular, we show that employing full adders as building
blocks leads to more efficient approximate circuits. We focused on the approximation of
key arithmetic circuits such as adders and multipliers. While the evolutionary design of
adders represents a rather easy benchmark problem, the design of multipliers is known to be
one of the hardest problems. We evolved a comprehensive library of energy-efficient 12-bit
multipliers with a guaranteed worst-case error. The library consists of 65 Pareto dominant
solutions considering power, delay, area and error as design objectives.

3.2.7 Paper VII

VAŠÍČEK Zdeněk and MRÁZEK Vojtěch. Trading between Quality and Non-func-
tional Properties of Median Filter in Embedded Systems. Genetic Programming
and Evolvable Machines. Berlin: Springer, 2017, vol. 18, no. 1, pp. 45-82. ISSN 1389-2576.

31

Author participation: 50 %
Impact factor: 1.514 (Q2)

Motivation and contributions

The last paper is devoted to the approximation of circuits represented using a high-level
representation. In particular, we approximated median filters implemented as median net-
works described at the level of so-called compare-and-swap components. The approximate
median filters were already investigated in the literature [64], but the approximation error
was calculated using a randomly generated set of input data. However, the calculated er-
ror depends on the input dataset. We proposed a new approach enabling to evaluate the
quality of median networks. Firstly, we proposed an error metric that is data independent.
Secondly, we introduced a formal method how to determine the error. The proposed metric,
the so-called distance error, is calculated using the permutation principle introduced in this
paper.

This new metric enabled to evaluate approximate median filters in 𝑛! steps, where 𝑛 is
the number of inputs. The proposed distance error metric was employed in the resource-
oriented CGP. The goal of the algorithm was to optimize the average distance error while
keeping the number of active CGP nodes below a certain value. In contrast with the gate-
level approximations, all operations were conducted with 𝑘-bit components. The function
set Γ covered all functions that are important in the filtering: 𝑘-bit minimum, 𝑘-bit maxi-
mum and a junction connecting one of the inputs directly to the output of the node.

The evolved filters were applied in two tasks — image filtering of salt-and-pepper noise
and processing of the data generated by an accelerator sensor. In addition to that, propo-
sed approximated median structures were transferred to the C-code and implemented as
approximate software for microcontrollers.

This paper demonstrated how to approaximate circuit described on a higher level of
abstraction. Since the evolved filters were evaluated on microcontrollers, the paper also
showed that the proposed approach is applicable for software approximations as well.

Abstract

Genetic improvement has been used to improve functional and non-functional properties of
software. In this paper, we propose a new approach that applies a genetic programming
(GP)-based genetic improvement to trade between functional and non-functional properties
of existing software. The paper investigates possibilities and opportunities for improving
non-functional parameters such as execution time, code size, or power consumption of me-
dian functions implemented using comparator networks. In general, it is impossible to
improve non-functional parameters of the median function without accepting occasional
errors in results because optimal implementations are available. In order to address this
issue, we proposed a method providing suitable compromises between accuracy, execution
time and power consumption. Traditionally, a randomly generated set of test vectors is
employed so as to assess the quality of GP individuals. We demonstrated that such an
approach may produce biased solutions if the test vectors are generated inappropriately.
In order to measure the accuracy of determining a median value and avoid such a bias,
we propose and formally analyze new quality metrics which are based on the positional
error calculated using the permutation principle introduced in this paper. It is shown that
the proposed method enables the discovery of solutions which show a significant impro-
vement in execution time, power consumption, or size with respect to the accurate median

32

function while keeping errors at a moderate level. Non-functional properties of the dis-
covered solutions are estimated using data sets and validated by physical measurements
on physical microcontrollers. The benefits of the evolved implementations are demon-
strated on two real-world problems—sensor data processing and image processing. It is
concluded that data processing software modules offer a great opportunity for genetic im-
provement. The results revealed that it is not even necessary to determine the median value
exactly in many cases which helps to reduce power consumption or increase performance.
The discovered implementations of accurate, as well as approximate median functions,
are available as C functions for download and can be employed in a custom application
(http://www.fit.vutbr.cz/research/groups/ehw/median).

3.2.8 Author’s contributions to selected papers

The papers presented in this thesis were created in collaboration with the Evolvable Har-
dware Group led by my supervisor prof. Sekanina. Preliminary results of Paper III were
investigated during my visit to Purdue University, IN, USA. Although all co-authors con-
tributed to the papers, this section explicitly summarizes author’s contribution to selected
papers.

∙ Paper I — development of discrete simulator, novel circuit representation, imple-
mentation of the evolutionary algorithm and experimental evaluation.

∙ Paper II — development of power estimation method, software models of circuits
and the library front-end.

∙ Paper III — discovering the zero multiplication constraint, implementation of the
evolutionary algorithm and experimental evaluation.

∙ Paper IV — development of the error-oriented method, miter simplification and
experimental evaluation.

∙ Paper V — development of BDD-based error evaluation, power-estimation method
and implementation of evolutionary algorithm.

∙ Paper VI — development of power estimation functions and experimental evaluation.

∙ Paper VII — proposing the error metric, implementation of the evolutionary algo-
rithm and experimental evaluation.

3.3 List of other publications
2018

∙ ČEŠKA Milan, MATYÁŠ Jiří, MRÁZEK Vojtěch, SEKANINA Lukáš, VAŠÍČEK
Zdeněk a VOJNAR Tomáš. ADAC: Automated Design of Approximate Circuits.
In: Proceedings of 30th International Conference on Computer Aided Verification
(CAV’18).

Author participation: 17 %
Conference ranking: A* (CORE) / A1 (Qualis)

33

http://www.fit.vutbr.cz/research/groups/ehw/median

∙ MRÁZEK Vojtěch and VAŠÍČEK Zdeněk. Evolutionary Design of Large Approximate Ad-
ders Optimized for Various Error Criteria. In: GECCO Companion ’18 Proceedings of the
Companion Publication of the 2018 on Genetic and Evolutionary Computation Conference.
Kyoto: Association for Computing Machinery, 2018, p. 2. ISBN 978-1-4503-5764-7.

Author participation: 50 %

∙ MRÁZEK Vojtěch, SÝS Marek, VAŠÍČEK Zdeněk, SEKANINA Lukáš and MATYÁŠ Vá-
clav. Evolving Boolean Functions for Fast and Efficient Randomness Testing. In: GECCO
’18 Proceedings of the 2018 on Genetic and Evolutionary Computation Conference. Kyoto:
Association for Computing Machinery, 2018, p. 8. ISBN 978-1-4503-5618-3.

Author participation: 40 %
Conference ranking: A (CORE) / A1 (Qualis)

2017

∙ MRÁZEK Vojtěch and VAŠÍČEK Zdeněk. Parallel Optimization of Transistor Le-
vel Circuits using Cartesian Genetic Programming. In: GECCO Companion ’17
Proceedings of the Companion Publication of the 2017 on Genetic and Evolutionary
Computation Conference. Berlin: Association for Computing Machinery, 2017, pp.
1849-1856. ISBN 978-1-4503-4939-0.

Author participation: 90 %

∙ SEKANINA Lukáš, VAŠÍČEK Zdeněk and MRÁZEK Vojtěch. Approximate Circuits in Low-
Power Image and Video Processing: The Approximate Median Filter.Radioengineering. 2017,
vol. 26, no. 3, pp. 623-632. ISSN 1210-2512.

Author participation: 30 %
Impact factor: 0.945 (Q3)

∙ SHAFIQUE Muhammad, HAFIZ Rehan, JAVED Muhammad Usama, ABBAS Sarmad, SE-
KANINA Lukáš, VAŠÍČEK Zdeněk and MRÁZEK Vojtěch. Adaptive and Energy-Efficient
Architectures for Machine Learning: Challenges, Opportunities, and Research Roadmap. In:
2017 IEEE Computer Society Annual Symposium on VLSI. Los Alamitos: IEEE Computer
Society Press, 2017, pp. 627-632. ISBN 978-1-5090-6762-6.

Author participation: 14 %
Conference ranking: B1 (Qualis)

2016

∙ HRBÁČEK Radek, MRÁZEK Vojtěch and VAŠÍČEK Zdeněk. Automatic Design
of Approximate Circuits by Means of Multi-Objective Evolutionary Algorithms. In:
Proceedings of the 11th International Conference on Design & Technology of Integrated
Systems in Nanoscale Era. Istanbul: Istanbul Sehir University, 2016, pp. 239-244.
ISBN 978-1-5090-0335-8.

Author participation: 25 %

∙ MRÁZEK Vojtěch and VAŠÍČEK Zdeněk. Automatic Design of Arbitrary-Size Approximate
Sorting Networks with Error Guarantee. In: Power and Timing Modeling, Optimization and
Simulation (PATMOS), 2016 26rd International Workshop on. Bremen: Institute of Electrical
and Electronics Engineers, 2016, pp. 221-228. ISBN 978-1-5090-0733-2.

Author participation: 50 %
Conference ranking: B2 (Qualis)

34

∙ MRÁZEK Vojtěch. Evoluční snižování příkonu: Od obvodů na úrovni tranzistorů po neuro-
nové sítě na čipu. In: Počítačové architektury a diagnostika PAD 2016. Bořetice: Faculty of
Information Technology BUT, 2016, pp. 61-64. ISBN 978-80-214-5376-0.

Author participation: 100 %

∙ NEVORAL Jan, RŮŽIČKA Richard and MRÁZEK Vojtěch. Evolutionary Design of Poly-
morphic Gates Using Ambipolar Transistors. In: 2016 IEEE Symposium Series on Computa-
tional Intelligence. Athens: Institute of Electrical and Electronics Engineers, 2016, pp. 1-8.
ISBN 978-1-5090-4240-1.

Author participation: 20 %
Conference ranking: B5 (Qualis)

∙ VAŠÍČEK Zdeněk, MRÁZEK Vojtěch and SEKANINA Lukáš. Evolutionary Functional Ap-
proximation of Circuits Implemented into FPGAs. In: 2016 IEEE Symposium Series on
Computational Intelligence. Athens: Institute of Electrical and Electronics Engineers, 2016,
pp. 1-8. ISBN 978-1-5090-4240-1.

Author participation: 20 %
Conference ranking: B5 (Qualis)

2015

∙ MRÁZEK Vojtěch and VAŠÍČEK Zdeněk. Automatic Design of Low-Power VLSI
Circuits: Accurate and Approximate Multipliers. In: Proceedings of 13th IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing. Porto: Institute
of Electrical and Electronics Engineers, 2015, pp. 106-113. ISBN 978-1-4673-8299-1.

Author participation: 50 %
Conference ranking: C (CORE) / B2 (Qualis)

∙ MRÁZEK Vojtěch, VAŠÍČEK Zdeněk and SEKANINA Lukáš. Evolutionary Approximation
of Software for Embedded Systems: Median Function. In: GECCO Companion ’15 Procee-
dings of the Companion Publication of the 2015 on Genetic and Evolutionary Computation
Conference. New York: Association for Computing Machinery, 2015, pp. 795-801. ISBN
978-1-4503-3488-4.

Author participation: 40 %

∙ MRÁZEK Vojtěch. Evoluční návrh nízkopříkonových obvodů. In: Počítačové architektury a
diagnostika PAD 2015. Zlín: Faculty of Applied Informatics, Tomas Bata University in Zlín,
2015, pp. 1-6. ISBN 978-80-7454-522-1.

Author participation: 100 %

2014

∙ MRÁZEK Vojtěch and VAŠÍČEK Zdeněk. Acceleration of Transistor-Level Evolution
using Xilinx Zynq Platform. In: 2014 IEEE International Conference on Evolvable
Systems Proceedings. Piscataway: Institute of Electrical and Electronics Engineers,
2014, pp. 9-16. ISBN 978-1-4799-4480-4.

Author participation: 20 %
Conference ranking: B5 (Qualis)

35

∙ MRÁZEK Vojtěch. Akcelerace evolučního návrhu digitálních obvodů na úrovni tranzistorů
s využitím platformy Zynq. In: Proceedings of the 20th Student Conference, EEICT 2014.
Brno: Brno University of Technology, 2014, pp. 229-231. ISBN 978-80-214-4923-7.

Author participation: 100 %

3.4 Research projects and grants
∙ FIT-S-17-3994 — Advanced parallel and embedded computer systems, Brno Univesity

of Technology. Team member.

∙ FIT/FSI-J-17-4294 — Enhancement of genetic optimization methods for computer
engineering, Brno Univesity of Technology. Investigator.

∙ GA16-08565S — Advancing cryptanalytic methods through evolutionary computing,
Czech Science Foundation. Team member.

∙ LQ1602 — IT4Innovations excellence in science, Ministry of Education, Youth and
Sports of Czech Republic. Team member.

∙ GA16-17538S — Relaxed equivalence checking for approximate computing, Czech Science
Foundation. Team member.

∙ GA14-04197S — Advanced Methods for Evolutionary Design of Complex Digital Cir-
cuits, Czech Science Foundation. Team member.

∙ FIT-S-14-2297 — Architecture of parallel and embedded computer systems, Brno Uni-
vesity of Technology. Team member.

3.5 Awards
∙ The Best IP Award at the Design, Automation and Test in Europe (DATE) conference

2017.

∙ Prof. Ing. Jan Hlavička, DrSc. award for the excellent results in the PhD study at
Computer Architectures & Diagnostics workshop for PhD students 2015.

∙ 1st prize in the Student EEICT 2014 competition awarded for the paper Acceleration
of Transistor-Level Evolutionary Design of Digital Circuits Using Zynq.

∙ 3rd prize in the Student EEICT 2012 competition awarded for the paper Intelligent
energy measurement device.

36

Chapter 4

Conclusions

This chapter summarizes the challenges and the contributions of the thesis. Then the
outcomes for the research community are discussed. Finally, directions of the future research
are proposed.

4.1 Challenges and Methodology
The biggest challenge of the work was to combine two, clearly independent, topics: the
design of VLSI circuits and the evolutionary design. Although the evolutionary design
has been successfully employed in the digital circuit design, only a few papers had been
published on leading hardware conferences. During this work, the gap between hardware
design and evolutionary optimization seems to get narrowed, because some of our papers
have been accepted on the top conferences such as ICCAD or DATE. Two main approaches
helped us in this direction. The first was the considering of real hardware parameters such
as area and power consumption in the design process. The second was that we focused on
approximate circuits and their applications.

In addition to that, we had to deal with the scalability of evolutionary design, mostly
with the scalability of evaluation. We performed several crucial optimizations that led to
the fast circuit parameters determination. There were two contradictory requirements in
the evaluation of the circuits — the speed and the accuracy. Although various accurate
approaches for the power and area estimation had been implemented in synthesis tools, we
had to propose and implement own algorithms showing good tradeoffs between the accuracy
and the computational intensity. Similarly, the standard equivalence checking algorithms
are not sufficient for approximate computing and relaxed equivalence checking algorithms
had to be implemented and optimized.

In this work, an automated approximation methodology was proposed for digital ci-
rcuits. This methodology can work on various level of description and outperforms the
manual and systematic approaches. This work brought new ideas for the hardware as well
as the evolutionary community. The main contribution for the hardware community is
that search-based algorithms can provide better results than the state-of-the-art methods
for approximation of digital circuits and various application-specific error metrics or con-
straints can easily be considered in the design. The new contributions for the evolutionary
computing community are: (i) the advanced fitness evaluation can significantly improve the
scalability of evolutionary circuit design, and (ii) considering the state-of-the-art solutions

37

as starting points allows to optimize more complex circuits than the evolutionary design
from scratch.

4.2 Contributions
This section summarizes the contributions of my research to automated approximate synt-
hesis on the selected levels of circuit description.

Contributions to the automated synthesis of transistor-level circuits We impro-
ved the CGP representation to easily handle the circuits described on the transistor-level.
For circuit evaluation, a fast multi-valued discrete simulation was developed, implemented
and evaluated. This approach allowed us to design a human-competitive one-bit full-adder
and other competitive digital primitives [39]. The discrete simulator was also accelerated
on an FPGA [37]. Since the proposed discrete simulator does not capture all relevant phy-
sical phenomena, timing issues occurred during the simulation of large circuits. A novel
combination of the less accurate, but fast discrete simulation with the accurate, but slow
numeric SPICE simulation was introduced [38]. Finally, a two-stage algorithm combining
gate-level approximation and transistor-level optimization was introduced [38, 41].

Contributions to the automated synthesis of gate-level circuits In the synthesis
of circuits described on the gate-level, we focused on approximation of arithmetic circuits.
The objective was to provide circuits showing better tradeoffs between power consumption
and error than existing methodologies. We adopted the error-oriented CGP and evolved
complex approximate adders and multipliers. These circuits were applied in two real-world
applications. We showed, that image classification using neural networks [36] as well as
DCT transformation in HEVC encoder [61] can be implemented with significantly reduced
power consumption while the error is only slightly worsened.

As a part of these case studies, we utilized and improved three main approaches for
the error evaluation — parallel simulation (vectorization) [35, 14, 36], BDD-based formal
verification [61, 42] and SAT-based formal verification [12]. We compared the performance
of these approaches in the approximate adders synthesis task (Tab. 4.1).

Table 4.1: The worst recorded time needed to perform the error analysis of candidate
unsigned adders. The average time is reported from 5 · 106 evaluation of candidate circuits

16-bit adder 20-bit adder 32-bit adder
approach 𝑒𝑝𝑟𝑜𝑏 𝑒𝑤𝑐𝑒 𝑒𝑚𝑎𝑒 𝑒𝑝𝑟𝑜𝑏 𝑒𝑤𝑐𝑒 𝑒𝑚𝑎𝑒 𝑒𝑝𝑟𝑜𝑏 𝑒𝑤𝑐𝑒 𝑒𝑚𝑎𝑒

vectorization 40 s 41 s 42 s 386 s 390 s 392 s n/a n/a n/a
BDD 1 us 1 ms 1 ms 17 us 7 ms 9 ms 0.2 ms 9 ms 18 ms
SAT n/a 2 ms n/a n/a 4 ms n/a n/a 7 ms n/a

The parallel simulation represents a universal method which can calculate virtually
every error metric, but its bad scalability is the main limiting factor. The BDD-based
error analysis is a very efficient approach which scales very well on some cases of circuits,
but it cannot be applied to multipliers or dividers (and other structurally similar circuits).
It is not applicable to calculate some error metrics, e.g. the relative error which requires

38

division. The SAT-based method also scales very well but it is applicable to the worst-case
error analysis only.

In order to obtain the worst-case error of a complex arithmetic circuit, the problem
can be formulated as a satisfiability problem and solved with a SAT solver. However, this
approach does not scale for multipliers. Hence, we introduced a verifiability driven CGP
in which the SAT solver can use only a very short time to prove or disprove the submitted
formula representing a candidate solution. Our method enables to generate and evaluate
more candidate designs in a single evolutionary run than if there is no time limit for SAT
solver [12].

Contributions to the automated synthesis of RTL circuits We selected the design
of approximate median filters as an example of the approximate synthesis of circuits descri-
bed using complex RTL modules. We introduced a new error metric called distance error
whose main property is that it is a deterministic, input-data independent metric [60]. This
metric can be utilized in the approximate sorting-networks characterization [40].

Moreover, it was possible to transform the evolved median filters described on the RTL
level to a program for embedded systems (by transformation of RTL modules to software
functions). We thus proposed fast (and therefore power-efficient) approximate median
filters for microprocessors. We also showed that the EA-based approximations define a new
direction in the promising topic called genetic improvement of software [43].

Summary of contributions In Chapter 1, we defined the hypothesis, that it is possible
to reduce power dissipation of digital combinational circuits described on various levels of
abstraction using EA-based circuit approximation algorithms. We selected four different
real-world applications described on three levels of abstraction. For each target application,
the following steps were taken. At first, an effective power consumption estimation method
was developed. This method was employed in the EA-based search algorithm. In order to
speed up the circuit synthesis, the evaluation of candidate circuits was accelerated. Table
4.2 summarizes the power-estimation method, the modification of EA-based algorithm and
the acceleration technique used in selected applications.

Table 4.2: Overview of approaches taken for selected real-world applications
Target Circuit Power Search Fitness
application representation estimation algorithm acceleration

Tech. library transistors switching activity CGP (two stages) discrete simulation
Neural networks gates area-correlation error-oriented CGP vectorization
DCT for HEVC gates dynamic power error-oriented CGP BDD verification
Median filters RTL modules area-correlation resources-oriented CGP permutation principle

Finally, the obtained results were compared with conventional solutions. We found the
transistor-level circuits realizing approximate multiplication more effectively than circuits
obtained using a simple CMOS gate substitution. The neural network image classifiers
employing the proposed approximate multipliers traded the power consumption for the
overall classification accuracy better than a manual approximation. DCT blocks as well as
median filter approximations had lower power dissipation, but acceptable approximation
error in comparison with the approximate multiplier-less multipliers. Approximate median
filters showed significant power savings with respect to the optimal accurate solutions.

39

Hereby, based on these results, we can confirm, that EA-based approximation algorithms
can create circuits with lower power consumption than conventional approaches.

4.3 Developed libraries available online
As a part of the research, we have developed the EvoApprox8B library. This library contains
approximate hardware (HDL) and software (C/C++) models of arithmetic circuits1. Fig.
4.1 shows the user interface which provides all important parameters. The EvoApprox8B
library currently contains hundreds of approximate 8-bit adders and 8-, 12-, 16- and 32-bit
multipliers. These circuits can be used either for benchmarking of circuit approximation
tools or directly in user applications such as image filters, neural network accelerators or
special big-data processing systems.

Figure 4.1: Screenshot of the EvoApprox8B website

We also made online the SPICE netlists of twelve 4-bit approximate multipliers that
were obtained using CGP operating on the transistor level description2. The software
implementations realizing evolved approximate median filters were also published online3.

1https://www.fit.vutbr.cz/research/groups/ehw/approxlib
2http://www.fit.vutbr.cz/~imrazek/euc2015/
3http://www.fit.vutbr.cz/~imrazek/median2015/

40

https://www.fit.vutbr.cz/research/groups/ehw/approxlib
 http://www.fit.vutbr.cz/~imrazek/euc2015/
http://www.fit.vutbr.cz/~imrazek/median2015/

4.4 Future research directions
This thesis dealt with application-oriented approximation of digital circuits. There are
many different ways presented in the following list how to further develop the research
results.

∙ The evolutionary optimization of transistor-level circuits could be used for non-con-
ventional technologies such as ambipolar transistors.

∙ A comprehensive library of arithmetic circuits has been developed. These circuits
could be employed in other real-world applications and enable to determine the most
significant functional criteria influencing the accuracy of the target application.

∙ The SAT-based verification with termination conditions for SAT solver was very
successful for evolutionary approximation of arithmetic circuits. Additional impro-
vement could be obtained by introducing an adaptive termination strategy.

∙ Error-calculation algorithms employing BDD structures could be further improved by
an advanced miter construction without absolute values calculators.

∙ New applications of approximate sorting networks and median filters such as statistic
indicators in big-data datasets could be proposed and evaluated.

41

Bibliography

[1] Chan, W. T. J.; Kahng, A. B.; Kang, S.; et al.: Statistical analysis and modeling for
error composition in approximate computation circuits. In 2013 IEEE 31st
International Conference on Computer Design (ICCD). Oct 2013. ISSN 1063-6404.
pp. 47–53.

[2] Chandrasekharan, A.; Soeken, M.; Große, D.; et al.: Approximation-aware Rewriting
of AIGs for Error Tolerant Applications. In Proceedings of the 35th International
Conference on Computer-Aided Design. ICCAD ’16. New York, NY, USA: ACM.
2016. ISBN 978-1-4503-4466-1. pp. 83:1–83:8.

[3] Chauhan, Y. S.; Venugopalan, S.; Karim, M. A.; et al.: BSIM — Industry standard
compact MOSFET models. In 2012 Proceedings of the European Solid-State Device
Research Conference (ESSDERC). Sept 2012. ISSN 1930-8876. pp. 46–49.

[4] Chen, T.-H.; Alaghi, A.; Hayes, J. P.: Behavior of stochastic circuits under severe
error conditions. it - Information Technology. vol. 56, no. 4. jan 2014.

[5] Chippa, V. K.; Chakradhar, S. T.; Roy, K.; et al.: Analysis and characterization of
inherent application resilience for approximate computing. In The 50th Annual
Design Automation Conference 2013, DAC’13. ACM. 2013. pp. 1–9.

[6] Chopra, K.; Kashyap, C.; Su, H.; et al.: Current source driver model synthesis and
worst-case alignment for accurate timing and noise analysis. In ACM/IEEE
International Workshop on Timing Issues in the Specification and Synthesis of
Digital Systems. 2006. pp. 45–50.

[7] Coudert, O.: Gate sizing for constrained delay/power/area optimization. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems. vol. 5, no. 4. Dec
1997: pp. 465–472. ISSN 1063-8210.

[8] Deb, K.; Pratap, A.; Agarwal, S.; et al.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. vol. 6, no. 2.
Apr 2002: pp. 182–197. ISSN 1089-778X.

[9] Du, K.; Varman, P.; Mohanram, K.: High Performance Reliable Variable Latency
Carry Select Addition. In Proceedings of the Conference on Design, Automation and
Test in Europe. DATE ’12. San Jose, CA, USA: EDA Consortium. 2012. ISBN
978-3-9810801-8-6. pp. 1257–1262.

[10] Du, Z.; Palem, K.; Lingamneni, A.; et al.: Leveraging the error resilience of
machine-learning applications for designing highly energy efficient accelerators. In

42

2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC). Jan
2014. ISSN 2153-6961. pp. 201–206. doi:10.1109/ASPDAC.2014.6742890.

[11] Dunga, M. V.; Yang, W.; Xi, X.; et al.: BSIM 4.6.1 MOSFET Model User’s Manual.
Department of Electrical Engineering and Computer Sciences, UC Berkeley. 2007.

[12] Češka, M.; Matyaš, J.; Mrazek, V.; et al.: Approximating complex arithmetic circuits
with formal error guarantees: 32-bit multipliers accomplished. In 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). Nov 2017. pp.
416–423.

[13] Esmaeilzadeh, H.; Sampson, A.; Ceze, L.; et al.: Neural Acceleration for
General-Purpose Approximate Programs. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture. MICRO-45. Washington,
DC, USA: IEEE Computer Society. 2012. ISBN 978-0-7695-4924-8. pp. 449–460.

[14] Hrbacek, R.; Mrazek, V.; Vasicek, Z.: Automatic design of approximate circuits by
means of multi-objective evolutionary algorithms. In 2016 International Conference
on Design and Technology of Integrated Systems in Nanoscale Era (DTIS). April
2016. pp. 1–6.

[15] Hrbacek, R.; Sekanina, L.: Towards Highly Optimized Cartesian Genetic
Programming: From Sequential via SIMD and Thread to Massive Parallel
Implementation. In Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation. GECCO ’14. New York, NY, USA: ACM. 2014. ISBN
978-1-4503-2662-9. pp. 1015–1022.

[16] Jiang, H.; Liu, C.; Liu, L.; et al.: A Review, Classification, and Comparative
Evaluation of Approximate Arithmetic Circuits. J. Emerg. Technol. Comput. Syst..
vol. 13, no. 4. August 2017: pp. 60:1–60:34. ISSN 1550-4832.

[17] Kahng, A. B.; Liu, B.; Xu, X.: Constructing Current-Based Gate Models Based on
Existing Timing Library. In Proceedings of the 7th International Symposium on
Quality Electronic Design. ISQED ’06. Washington, DC, USA: IEEE Computer
Society. 2006. ISBN 0-7695-2523-7. pp. 37–42.

[18] Kim, N. S.; Austin, T.; Baauw, D.; et al.: Leakage current: Moore’s law meets static
power. Computer. vol. 36, no. 12. Dec 2003: pp. 68–75. ISSN 0018-9162.

[19] Kulkarni, P.; Gupta, P.; Ercegovac, M.: Trading Accuracy for Power with an
Underdesigned Multiplier Architecture. In 2011 24th Internatioal Conference on
VLSI Design. Jan 2011. ISSN 1063-9667. pp. 346–351.

[20] Kumar, R.; Liu, Z.; Kursun, V.: TECHNIQUE FOR ACCURATE POWER AND
ENERGY MEASUREMENT WITH THE COMPUTER-AIDED DESIGN TOOLS.
Journal of Circuits, Systems and Computers. vol. 17, no. 03. 2008: pp. 399–421.

[21] Kyaw, K. Y.; Goh, W. L.; Yeo, K. S.: Low-power high-speed multiplier for
error-tolerant application. In 2010 IEEE International Conference of Electron
Devices and Solid-State Circuits (EDSSC). Dec 2010. pp. 1–4.

43

[22] Li, C.; Luo, W.; Sapatnekar, S. S.; et al.: Joint Precision Optimization and High
Level Synthesis for Approximate Computing. In Proceedings of the 52Nd Annual
Design Automation Conference. DAC ’15. New York, NY, USA: ACM. 2015. ISBN
978-1-4503-3520-1. pp. 104:1–104:6.

[23] Liu, G.; Zhang, Z.: Statistically certified approximate logic synthesis. In 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Nov
2017. pp. 344–351.

[24] Lotfi, A.; Rahimi, A.; Yazdanbakhsh, A.; et al.: Grater: An approximation workflow
for exploiting data-level parallelism in FPGA acceleration. In 2016 Design,
Automation Test in Europe Conference Exhibition (DATE). March 2016. pp.
1279–1284.

[25] Lu, S.-L.: Speeding up processing with approximation circuits. Computer. vol. 37,
no. 3. Mar 2004: pp. 67–73. ISSN 0018-9162.

[26] Machado, F.; Riesgo, T.; Torroja, Y.: A Method for Switching Activity Analysis of
VHDL-RTL Combinatorial Circuits. In Proceedings of the 16th International
Conference on Integrated Circuit and System Design: Power and Timing Modeling,
Optimization and Simulation. PATMOS’06. Berlin, Heidelberg: Springer-Verlag.
2006. ISBN 3-540-39094-4, 978-3-540-39094-7. pp. 645–657.

[27] Mahdiani, H. R.; Ahmadi, A.; Fakhraie, S. M.; et al.: Bio-Inspired Imprecise
Computational Blocks for Efficient VLSI Implementation of Soft-Computing
Applications. IEEE Transactions on Circuits and Systems I: Regular Papers. vol. 57,
no. 4. April 2010: pp. 850–862. ISSN 1549-8328.

[28] Mead, C.; Conway, L.: Introduction to VLSI Systems. Philiphines: Addison-Wesley.
1980. ISBN 978-0201043587.

[29] Miller, J. F.: Cartesian Genetic Programming. Springer-Verlag. 2011.

[30] Miller, J. F.; Thomson, P.; Fogarty, T.: Designing Electronic Circuits Using
Evolutionary Algorithms. Arithmetic Circuits: A Case Study. Wiley. 1998. pp.
105–131.

[31] Mishchenko, A.; Chatterjee, S.; Brayton, R.: DAG-aware AIG rewriting: a fresh look
at combinational logic synthesis. In 2006 43rd ACM/IEEE Design Automation
Conference. July 2006. ISSN 0738-100X. pp. 532–535.

[32] Mittal, S.: A Survey of Techniques for Approximate Computing. ACM Comput.
Surv.. vol. 48, no. 4. March 2016: pp. 62:1–62:33. ISSN 0360-0300.

[33] Mohapatra, D.; Chippa, V. K.; Raghunathan, A.; et al.: Design of voltage-scalable
meta-functions for approximate computing. In 2011 Design, Automation Test in
Europe. March 2011. ISSN 1530-1591. pp. 1–6.

[34] Momeni, A.; Han, J.; Montuschi, P.; et al.: Design and Analysis of Approximate
Compressors for Multiplication. IEEE Transactions on Computers. vol. 64, no. 4.
April 2015: pp. 984–994. ISSN 0018-9340.

44

[35] Mrazek, V.; Hrbacek, R.; Vasicek, Z.; et al.: EvoApprox8b: Library of Approximate
Adders and Multipliers for Circuit Design and Benchmarking of Approximation
Methods. In Design, Automation Test in Europe Conference Exhibition (DATE),
2017. March 2017. pp. 258–261.

[36] Mrazek, V.; Sarwar, S. S.; Sekanina, L.; et al.: Design of Power-efficient Approximate
Multipliers for Approximate Artificial Neural Networks. In Proceedings of the 35th
International Conference on Computer-Aided Design. ICCAD ’16. New York, NY,
USA: ACM. 2016. ISBN 978-1-4503-4466-1. pp. 81:1–81:7.

[37] Mrazek, V.; Vasicek, Z.: Acceleration of transistor-level evolution using Xilinx Zynq
Platform. In 2014 IEEE International Conference on Evolvable Systems. Dec 2014.
pp. 9–16.

[38] Mrazek, V.; Vasicek, Z.: Automatic Design of Low-Power VLSI Circuits: Accurate
and Approximate Multipliers. In 2015 IEEE 13th International Conference on
Embedded and Ubiquitous Computing. Oct 2015. pp. 106–113.

[39] Mrazek, V.; Vasicek, Z.: Evolutionary Design of Transistor Level Digital Circuits
Using Discrete Simulation. In Genetic Programming, edited by P. Machado; M. I.
Heywood; J. McDermott; M. Castelli; P. García-Sánchez; P. Burelli; S. Risi; K. Sim.
Cham: Springer International Publishing. 2015. ISBN 978-3-319-16501-1. pp. 66–77.

[40] Mrazek, V.; Vasicek, Z.: Automatic design of arbitrary-size approximate sorting
networks with error guarantee. In 2016 26th International Workshop on Power and
Timing Modeling, Optimization and Simulation (PATMOS). Sept 2016. pp. 221–228.

[41] Mrazek, V.; Vasicek, Z.: Parallel Optimization of Transistor Level Circuits Using
Cartesian Genetic Programming. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion. GECCO ’17. New York, NY, USA: ACM.
2017. ISBN 978-1-4503-4939-0. pp. 1849–1856.

[42] Mrazek, V.; Vasicek, Z.: Evolutionary Design of Large Approximate Adders
Optimized for Various Error Criteria. In GECCO Companion ’18 Proceedings of the
Companion Publication of the 2018 on Genetic and Evolutionary Computation
Conference. Association for Computing Machinery. 2018. ISBN 978-1-4503-5764-7.
pp. 1–2.

[43] Mrazek, V.; Vasicek, Z.; Sekanina, L.: Evolutionary Approximation of Software for
Embedded Systems: Median Function. In Proceedings of the Companion Publication
of the 2015 Annual Conference on Genetic and Evolutionary Computation. GECCO
Companion ’15. New York, NY, USA: ACM. 2015. ISBN 978-1-4503-3488-4. pp.
795–801.

[44] Najm, F. N.: A survey of power estimation techniques in VLSI circuits. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems. vol. 2, no. 4. Dec
1994: pp. 446–455. ISSN 1063-8210.

[45] Nepal, K.; Hashemi, S.; Tann, H.; et al.: Automated High-Level Generation of
Low-Power Approximate Computing Circuits. IEEE Transactions on Emerging
Topics in Computing. 2017: pp. 1–1. ISSN 2168-6750.

45

[46] Nepal, K.; Li, Y.; Bahar, R. I.; et al.: ABACUS: A technique for automated
behavioral synthesis of approximate computing circuits. In 2014 Design, Automation
Test in Europe Conference Exhibition (DATE). March 2014. ISSN 1530-1591. pp. 1–6.

[47] Ranjan, A.; Raha, A.; Venkataramani, S.; et al.: ASLAN: Synthesis of approximate
sequential circuits. In 2014 Design, Automation Test in Europe Conference Exhibition
(DATE). March 2014. ISSN 1530-1591. pp. 1–6.

[48] Roy, K.; Prasad, S. C.: Low-power CMOS VLSI circuit design. New York: Wiley.
2000. ISBN 0-471-11488-x.

[49] Rusu, S.; Tam, S.; Muljono, H.; et al.: A 45 nm 8-Core Enterprise Xeon Processor.
IEEE Journal of Solid-State Circuits. vol. 45, no. 1. Jan 2010: pp. 7–14. ISSN
0018-9200.

[50] Salvador, R.; Otero, A.; Mora, J.; et al.: Implementation techniques for evolvable
HW systems: virtual VS. dynamic reconfiguration. In 22nd International Conference
on Field Programmable Logic and Applications (FPL). Aug 2012. ISSN 1946-147X.
pp. 547–550.

[51] Sarwar, S. S.; Venkataramani, S.; Raghunathan, A.; et al.: Multiplier-less Artificial
Neurons exploiting error resiliency for energy-efficient neural computing. In 2016
Design, Automation Test in Europe Conference Exhibition (DATE). March 2016. pp.
145–150.

[52] Sekanina, L.: Evolvable Components - From Theory to Hardware Implementations.
Springer Berlin Heidelberg. 2003. ISBN 3-540-40377-9. 194 pp.

[53] Sekanina, L.: Introduction to Approximate Computing: Embedded Tutorial. In 19th
IEEE International Symposium on Design and Diagnostics of Electronic Circuits and
Systems. Institute of Electrical and Electronics Engineers. 2016. ISBN
978-1-5090-2467-4. pp. 90–95.

[54] Sekanina, L.; Vašíček, Z.: Approximate Circuit Design by Means of Evolvable
Hardware. In 2013 IEEE International Conference on Evolvable Systems (ICES).
Proceedings of the 2013 IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE Computer Society. 2013. ISBN 978-1-4673-5847-7. pp. 21–28.

[55] Soeken, M.; Große, D.; Chandrasekharan, A.; et al.: BDD minimization for
approximate computing. In 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC). Jan 2016. pp. 474–479.

[56] Srinivasan, G.; Wijesinghe, P.; Sarwar, S. S.; et al.: Significance driven hybrid 8T-6T
SRAM for energy-efficient synaptic storage in artificial neural networks. In 2016
Design, Automation Test in Europe Conference Exhibition (DATE). March 2016. pp.
151–156.

[57] Vasicek, Z.: Cartesian GP in Optimization of Combinational Circuits with Hundreds
of Inputs and Thousands of Gates. In Genetic Programming. Cham: Springer
International Publishing. 2015. ISBN 978-3-319-16501-1. pp. 139–150.

46

[58] Vasicek, Z.: New Methods for Synthesis and Approximation of Logic Circuits.
Habilitation thesis. Faculty of Information Technology, Brno University of
Technology. 2017.

[59] Vasicek, Z.: Relaxed equivalence checking: a new challenge in logic synthesis. In 2017
IEEE 20th International Symposium on Design and Diagnostics of Electronic
Circuits Systems (DDECS). April 2017. pp. 1–6.

[60] Vasicek, Z.; Mrazek, V.: Trading between quality and non-functional properties of
median filter in embedded systems. Genetic Programming and Evolvable Machines.
vol. 18, no. 1. Mar 2017: pp. 45–82. ISSN 1573-7632.

[61] Vasicek, Z.; Mrazek, V.; Sekanina, L.: Towards low power approximate DCT
architecture for HEVC standard. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2017. March 2017. pp. 1576–1581.

[62] Vasicek, Z.; Sekanina, L.: Evolutionary design of approximate multipliers under
different error metrics. In 17th International Symposium on Design and Diagnostics
of Electronic Circuits Systems. April 2014. pp. 135–140.

[63] Vasicek, Z.; Sekanina, L.: How to evolve complex combinational circuits from
scratch? In 2014 IEEE International Conference on Evolvable Systems. Dec 2014. pp.
133–140.

[64] Vasicek, Z.; Sekanina, L.: Evolutionary Approach to Approximate Digital Circuits
Design. IEEE Transactions on Evolutionary Computation. vol. 19, no. 3. June 2015:
pp. 432–444. ISSN 1089-778X.

[65] Vašíček, Z.; Slaný, K.: Efficient Phenotype Evaluation in Cartesian Genetic
Programming. In Genetic Programming. Berlin, Heidelberg: Springer Berlin
Heidelberg. 2012. ISBN 978-3-642-29139-5. pp. 266–278.

[66] Vaverka, F.; Hrbacek, R.; Sekanina, L.: Evolving component library for approximate
high level synthesis. In 2016 IEEE Symposium Series on Computational Intelligence
(SSCI). Dec 2016. pp. 1–8.

[67] Venkataramani, S.; Ranjan, A.; Roy, K.; et al.: AxNN: Energy-efficient neuromorphic
systems using approximate computing. In 2014 IEEE/ACM International Symposium
on Low Power Electronics and Design (ISLPED). Aug 2014. pp. 27–32.

[68] Venkataramani, S.; Roy, K.; Raghunathan, A.: Substitute-and-simplify: A unified
design paradigm for approximate and quality configurable circuits. In 2013 Design,
Automation Test in Europe Conference Exhibition (DATE). March 2013. ISSN
1530-1591. pp. 1367–1372.

[69] Venkataramani, S.; Sabne, A.; Kozhikkottu, V.; et al.: SALSA: Systematic logic
synthesis of approximate circuits. In DAC Design Automation Conference 2012. June
2012. ISSN 0738-100X. pp. 796–801.

[70] Walker, J. A.; Hilder, J. A.; Tyrrell, A. M.: Evolving Variability-Tolerant CMOS
Designs. In Evolvable Systems: From Biology to Hardware. Berlin, Heidelberg:
Springer Berlin Heidelberg. 2008. ISBN 978-3-540-85857-7. pp. 308–319.

47

[71] Weste, N.; Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective.
USA: Addison-Wesley Publishing Company. fourth edition. 2010. ISBN 0321547748,
9780321547743.

[72] Xu, Q.; Mytkowicz, T.; Kim, N. S.: Approximate Computing: A Survey. IEEE
Design Test. vol. 33, no. 1. Feb 2016: pp. 8–22. ISSN 2168-2356.

[73] Zhu, N.; Goh, W. L.; Yeo, K. S.: An enhanced low-power high-speed Adder For
Error-Tolerant application. In Proceedings of the 2009 12th International Symposium
on Integrated Circuits. Dec 2009. ISSN 2325-0631. pp. 69–72.

48

Related papers

49

Paper I

Evolutionary Design of Transistor
Level Digital Circuits using
Discrete Simulation

MRÁZEK Vojtěch and VAŠÍČEK Zdeněk

In: Genetic Programming, 18th European Conference, EuroGP 2015. Berlin: Springer
International Publishing, 2015, pp. 66-77. ISBN 978-3-319-16500-4.

50

Evolutionary Design of Transistor Level Digital
Circuits using Discrete Simulation

Vojtech Mrazek and Zdenek Vasicek

Brno University of Technology, Faculty of Information Technology,
Božetěchova 2, 612 66 Brno, Czech Republic

{imrazek,vasicek}@fit.vutbr.cz

Abstract. The objective of the paper is to introduce a new approach to
the evolutionary design of digital circuits conducted directly at transistor
level. In order to improve the time consuming evaluation of candidate so-
lutions, a discrete event-driven simulator was introduced. The proposed
simulator operates on multiple logic levels to achieve reasonable trade-off
between performance and precision. A suitable level of abstraction re-
flecting the behavior of real MOSFET transistors is utilized to minimize
the production of incorrectly working circuits. The proposed approach is
evaluated in evolution of basic logic circuits having more than 20 transis-
tors. The goal of an evolutionary algorithm is to design a circuit having
the minimal number of transistors and exhibiting the minimal delay. In
addition to that, various parameter settings are investigated to increase
the success rate of the evolutionary design.

1 Introduction

In recent years, a lot of papers showing the merits of evolutionary design tech-
niques in the field of digital circuits design have been published. Implementation
of various combinational circuits competitive to the circuits designed using con-
ventional approaches have been obtained by using cartesian genetic program-
ming (CGP) which is considered to be the most efficient technique to perform
the gate-level evolutionary design [2–4, 7].

However, while the gate-level evolutionary design represents an intensively
studied research area, the synthesis of transistor-level digital circuits remains, in
contrast with design of transistor-level analog circuits, on a peripheral concern of
the researchers despite the fact that even some basic logic expressions can be im-
plemented much effectively at transistor level. Only few papers were devoted to
evolution of digital circuits directly at transistor level. Zaloudek et al. published
an approach based on a simple simulator which was designed to quickly evaluate
the candidate solutions [11]. Unfortunately, a rough approximation of transistor
behavior caused that this approach produced many incorrectly working circuits.
Trefzer used another technique to evolve some basic logic gates [6]. Instead of
using a time consuming analog circuit simulator, a reconfigurable analog tran-
sistor array was employed. However, it was shown that many of the discovered
solutions relied on some properties of the utilized reconfigurable array. About

Paper I

51

2 Vojtech Mrazek and Zdenek Vasicek

50% of the evolved circuits failed in the analog simulation. Walker et al. used
a different technique to evolve transistor-level circuits [8]. In order to speed up
the time consuming evaluation of candidate solutions, a cluster of SPICE-based
simulators was utilized. Even if it was possible to evolve correct solutions, only
small problem instances could be investigated due to the overhead of SPICE
simulators.

A new approach to the evolutionary design of digital circuits is introduced in
this paper. In this work, the evolutionary approach operates directly at transistor
level. Since the evolutionary-based approach requires generating a large number
of candidate solutions, it is necessary to minimize the time needed to evaluate
the candidate circuits in order to obtain a satisfactory success rate. However,
a reasonable level of abstraction must be applied to avoid production of incor-
rectly working circuits. In order to address this issue, a discrete simulator which
operates on multiple logic levels is proposed. It is expected that this approach
enables to achieve reasonable trade-off between performance and precision.

The paper is organized as follows. Section 2 discusses behavior of real unipolar
transistors. Section 3 introduces the proposed method. Section 4 summarizes and
analyses the obtained results. The analysis of the discovered circuits is performed
using a SPICE simulator. Finally, concluding remarks are given in Section 5.

2 Behavior of MOSFET transistors

Behavior of the MOSFET transistors can be described at various levels of ab-
straction.

At the most accurate level, transistor circuits are modeled using a complex
system of equations having tens of parameters that are derived from the under-
lying device physics. In order to accurately simulate the transistor level circuits,
SPICE-based simulators are usually used. Apart from the commercial simulators
such as HSPICE or PSPICE, there exist also academic tools such as ngSPICE.
Even if the SPICE-based simulators provide a wide variety of MOS transistor
models with various trade-offs between complexity and accuracy, the runtime
grows rapidly with the increasing size of the simulated circuits. To reduce the
time of simulation, a multithreaded version of SPICE simulator or an FPGA-
based hardware acceleration can be utilized [1].

On the other hand, so-called switch-level model can be used [10]. A switch-
level simulator models MOS circuits using a network of transistors acting as
switches. Each transistor can be in one of three discrete states – open, closed or
unknown. Compared to the SPICE-based simulators, the speed of the simulation
is improved in orders of a magnitude. This model can acquire aspects that cannot
be expressed at gate model, however, the accuracy is naturally lower compared
to the approach mentioned in the previous paragraph. For example, the value
of threshold voltage influencing state of the transistors is completely ignored.
Moreover, the accuracy of simulation decreases as the transistors shrinks.

Paper I

52

Evolutionary Design of Transistor Level Digital Circuits 3

2.1 Discrete model suitable for evolutionary design

As it was discussed in the Section 1, a fast simulator is needed to enable the
evolutionary design to sufficiently explore the search space. Simultaneously, rea-
sonable accuracy is required to evolve the correct circuits that will work in real
environment. In order to meet these requirements, we propose to utilize a dis-
crete simulator which exhibits speed of the switch-level simulators and accuracy
of the SPICE-based simulators. We propose to use a model (abstracted from dy-
namic parameters such as power consumption or delay) based on the switch-level
transistor model extended to a threshold drop degradation effect.

Threshold voltage, commonly abbreviated as Vtp (Vtn), is the minimum gate-
to-source voltage differential that is needed to create a conducting path between
the source and drain terminals. As a consequence of the threshold voltage, de-
graded voltage values can be presented in MOS circuits. An open n-MOS tran-
sistor is known to pass logic 0 (i.e. Vss) well but logic 1 (i.e. Vdd) poorly. This
loss is known as threshold drop. An attempt to pass logic 1 never gives value
above Vdd − Vtn. Similarly, p-MOS transistor is known to pass logic 0 poorly.
The reduction in voltage swing can be beneficial to the power consumption. The
designer has to be careful, however, because the degraded output may cause
circuit malfunction.

As a target technology, TSMC with feature size equal to 0.25 µm is chosen.
The following parameters of p-MOS and n-MOS transistors will be utilized in
MOS circuits. The length of the n-MOS transistor is LN = 0.25 µm, width is
WN = 0.5 µm. p-MOS transistors have LP = 0.25 µm and WP = 2WN = 1 µm.
According to the simulation, Vtn = 0.987 V and Vtp = 0.717 V . In order to

0

0.5

1

1.5

2

2.5

0

L
Z

H

1

V
so
ur
ce

0

0.5

1

1.5

2

2.5

0

L
Z

H

1

V
ga
te

0

0.5

1

1.5

2

2.5

0

L

Z

H

1

V
nm
os

0

0.5

1

1.5

2

2.5

0 ns 20 ns 40 ns 60 ns 80 ns 100 ns 120 ns 140 ns 160 ns

0

L
Z

H

1

V
pm
os

Fig. 1. Output waveforms for p-MOS and n-MOS transistors for various voltage applied
to the source and gate terminals. The waveform was obtained using an analog SPICE
simulator, a TSMC 0.25 µm technology and 2.5V power supply. The corresponding
discrete values are shown on the right side.

Paper I

53

4 Vojtech Mrazek and Zdenek Vasicek

Table 1. Behavior of n-MOS and p-MOS transistors modeled using six discrete values.

n-MOS p-MOS

gate
source

gate
source

1 H L 0 Z X 1 H L 0 Z X

1 H X L 0 Z X 1 Z Z Z Z Z X

H X X L 0 Z X H Z Z Z Z Z X

L Z Z Z Z Z X L 1 H X X Z X

0 Z Z Z Z Z X 0 1 H X L Z X

Z Z Z Z Z Z X Z Z Z Z Z Z X

X X X X X X X X X X X X X X

support various implementations of digital circuits, we will distinguish among
six voltage levels: logic 0 (denoted as ‘0‘), logic 1 (‘1‘), degraded 0 (Vtp, ‘L‘),
degraded 1 (Vdd − Vtn, ‘H‘), high impedance (‘Z‘) and undefined value (‘X‘).
A SPICE-based simulator was used to derive the discrete model. The results
of simulation are given in Figure 1. The fourth terminal of p-MOS (n-MOS)
is connected to Vdd (Vss). In order to detect high impedance state, outputs of
p-MOS and n-MOS transistors are connected to a voltage divider.

Let us discuss behavior of n-MOS transistor (p-MOS works analogically).
If logic 0 is applied to the gate, the transistor is closed and its output is in a
high impedance state. The similar situation occurs if ‘L‘ is used. However, if
Vgate = ‘L‘ and Vsource = ‘0‘, the transistor is not completely closed. As we do
not want to model strength of the signal values, we need to suppose that the
output is in a high impedance state. This little inaccuracy does not constitute
any serious problem due to the presence of stronger values within a circuit. If
logic 1 or ‘H‘ is applied to the gate, the transistor is open. Logic 0 as well as
‘L‘ connected to the source are fully transferred to output, but logic 1 and ‘H‘
are degraded. As we can see, the double degraded value can not be recognized
from high impedance state. Hence, we have to avoid the double degradations
that may cause malfunctions.

The behaviour of n-MOS and p-MOS transistors which follows the results
obtained from the SPICE-based simulation valid for the chosen technology and
power supply is summarized in Table 1.

3 The proposed method

3.1 Circuit representation

In order to evolve complex digital circuits at the transistor level a suitable repre-
sentation enabling to encode bidirectional graph structures containing junctions
is needed. To address this problem, we proposed an encoding inspired by CGP[2].

Each digital circuit having ni primary inputs and no primary outputs (i.e.
a candidate solution) is represented using an array of nodes arranged in nc
columns and nr rows. Each node consists of two source terminals and one output

Paper I

54

Evolutionary Design of Transistor Level Digital Circuits 5

terminal. Each node can act as p-MOS transistor, n-MOS transistor, or junction.
The utilized nodes are shown in Figure 2. Source terminals of each node can
independently be connected to the output terminal of a node placed in previous
l columns. In addition to that, source terminals of any transistor node can be
connected to one of the primary circuit inputs.

G
S

D

G
S

D

(a) (b) (c)

Fig. 2. Basic building blocks of transistor-level circuits: (a) p-MOS transistor, (b) n-
MOS transistor, and (c) junction that combines two signals together. If a proper voltage
is applied on the gate electrode denoted as G (Vss for p-mos, Vdd for n-mos), transistor
connects its source electrode (denoted as S) with drain (D). Possible directions of signal
flow which have to be considered during the evaluation are shown.

Presence of the junction node represents the main feature of the proposed
technique. This node is able to combine two input signals and one output signal
together. As a consequence of that, loops and multiple connections are natively
supported.

The following encoding scheme is utilized. The primary inputs and node
outputs are labeled from 0 to ni +nc ·nr−1. A candidate solution is represented
in the chromosome by nc · nr triplets (x1, x2, f) determining for each node its
function f , and label of nodes x1 and x2 connected to the source terminals.

in.0

in.1

in.1

in.0
in.0

VDD

in.1

out.0

P1

P2

N3

J4

N5

P6

J7

N8

J9

4

5

6

7

8

9

10

11

12

in.1

in.0

in.1

P1

P2

N3

N5

(a) (b)

in.0

in.0

in.1

in.1

in.0

out.0

Fig. 3. Example of a candidate circuit implementing function XNOR using
eight transistors (four transistors are used to implement inverted variables
in.0 and in.1). Parameters are as follows: ni=4 (0,Vdd,in.0,in.1), no=1 (out.0),
nc=3, nr=3, l=2. Chromosome: (2,-3,pmos)(-2,3,pmos)(3,2,nmos)(4,5,junction)(-3,-
2,nmos)(1,2,pmos)(4,8,junction)(9,3,nmos)(5,6,junction)(12).

Paper I

55

6 Vojtech Mrazek and Zdenek Vasicek

Apart from that, negative indices −2− ni < xi ≤ −2 are allowed in case of xi.
The negative value indicates that the inverted primary variable labeled as |xi|
is required. The last part of the chromosome contains no integers specifying the
labels of nodes where the no primary outputs are connected to. The first two
primary inputs are reserved for power supply rails.

Figure 3 demonstrates the principle of utilized encoding on a XNOR circuit
implemented using pass-transistor logic. The shown chromosome encodes a can-
didate circuit using eight nodes, however, only some of them contribute to the
phenotype and are active.

3.2 Evaluation of the candidate solutions

Evaluation of the candidate solutions encoded using the proposed representation
consists of two steps.

Firstly, set of active nodes is determined. Only the active nodes are considered
during the evaluation. The inactive nodes are ignored. Potentially unwanted
nodes causing short-circuits can be removed in this step. A node is active if
either (a) its output is connected to any of the primary outputs, or (b) it is a
transistor node and its output is connected to the source of an active node, or
(c) it is a junction node whose source terminal is connected to an active node.
The detection of active nodes can be performed in linear time complexity.

Then, multi-level discrete event-driven simulator is utilized to determine re-
sponse for each input combination. The advantage of this approach is that only
necessary nodes are updated if there is a change of a value. The following steps
are used to determine output value of for a given input combination. Firstly,
outputs of all nodes are initialized to the value ‘Z‘. Then, value 0 and 1 are
assigned to the first two primary inputs. This change triggers re-evaluation of
all the nodes connected directly to the power supply rails. Each node determines
its new output value and propagates it to all related nodes. As an open tran-
sistor connect source with drain, bidirectional data-flow have to be utilized. It
means that the new value must be propagated to the nodes connected not only
to the drain but also to source terminal. Similarly, junctions have to propagate
the new value to all terminals. The new value of a junction node is calculated as
the strongest value presented on all the terminals. The new value of a transistor
node is determined according to the value connected to the source as well as
drain. During the evaluation of a new output value of a transistor node, the new
calculated value is compared with current value at drain terminal. If the val-
ues are not compatible, short circuit exception is raised. Otherwise, the stronger
value is propagated to all related nodes. The relation between the discrete values
is as follows: ‘Z‘ ≺ ‘L‘ ≺ ‘0‘ ≺ ‘X‘; ‘Z‘ ≺ ‘H‘ ≺ ‘1‘ ≺ ‘X‘. It means that if at least
one of the values is equal to ‘X‘, ‘X‘ is propagated to all related nodes.

Each transistor has associated a state which determines whether the transis-
tor is in direct or reverse mode. The current flows from drain to source in reverse
mode. It happens when ‘Z‘ is assigned to source terminal and a value different
from ‘Z‘ is connected to the drain. This state helps to avoid situation in which
a double degradation could happen.

Paper I

56

Evolutionary Design of Transistor Level Digital Circuits 7

In order to avoid malfunction circuits, final test is performed at the end of
the simulation. If there is at least a single transistor with ‘Z‘ state assigned to
its gate terminal, short circuit exception is raised.

The principle of discrete simulation will be demonstrated for in0=1 and
in1=0 using the candidate circuit shown in Figure 3. The primary inputs are
successively initialized to the following values: Vdd (i.e., the primary input with
index 0)← ‘1‘, Vss(1)← ‘0‘, in0(2)← ‘1‘, in1(3)← ‘0‘. Then the inverted values
are assigned in0(-2) ←‘0‘, in1(-3)←‘1‘ As no power rail is used in the example,
the first two assignments do not trigger any reevaluation. However, assignment
of value ‘1‘ to in0 causes that P1 and N3 are evaluated. Nor P1 nor N3 have
fully specified inputs, thus these changes do not generate any new event. In the
next step, in1 connected to P2 and N3 is assigned. Now, the node N3 has fully
specified inputs and the new calculated value ‘0‘ is propagated through drain to
the node J9. Then, the value of in0 is changed to ‘0‘. As a consequence of that,
P2 is evaluated to ‘L‘ and propagated through J4 to J9. In addition to that, N5
is refreshed. Because there is a stronger value, ‘0‘, assigned to the other pin of J9,
the ‘0‘ is propagated back to the output terminal of transistor P2 and junction
J4. The, in1 becomes to be logical ’1’. Transistor P1 is closed, so the drain is in
high impedance state. This value is propagated to J4, however ’0’ presented at
the second terminal is stronger and it is propagated back to P1 and then to J7.
The last transistor which has to be evaluated is the closed transistor N5 with ‘Z‘
at its output. High impedance state is delivered to J7, but J7 already contains a
stronger value ‘0‘. Primary output is connected to the node J9 which has value
‘0‘ on its output. This value corresponds with the XNOR specification, so the
circuit produces a valid output for the used input vector.

3.3 Search strategy

As a search algorithm, (1 + λ) evolutionary strategy is utilized [2]. The initial
population is randomly generated. Every new population consists of the best
individual and λ offspring created using a point mutation operator which mod-
ifies h randomly selected genes. In the case when two or more individuals have
received the same fitness score in the previous population, the individual which
did not serve as a parent in the previous population will be selected as a new
parent. This strategy is used to ensure the diversity of population. The evolu-
tion is terminated when a predefined number of generations is exhausted or a
required solution is found.

The search is guided by the fitness function which determines how good the
current candidate circuit is. For evolution of logic circuits, all possible input
combinations have to be applied at the candidate circuit inputs. The output
values are collected and the goal is to minimize the difference between obtained
responses and required Truth table. In order to smooth the search space, the
fitness value is constructed as follows. If an obtained output value equals to the
expected one, 5 points are added to the fitness value. If the calculated value
exhibits the same polarity but represents degraded voltage, 2 points are used.

Paper I

57

8 Vojtech Mrazek and Zdenek Vasicek

Otherwise, no point is added because the response is invalid. Additional penal-
ties may be applied. If there is a short-circuit exception asserted during the
simulation, the simulation is terminated and penalty is applied to the total fit-
ness value. Similarly, if the simulator exceeds the predefined number of steps (i.e.
node outputs are not in stable state), the simulation is terminated and the fitness
value is penalized. As soon as a fully working solution is found, the number of
utilized transistors is reduced. Two points are added for each unused node and
one point for node which acts as junction. Note that the transistors required to
implement inverted input of the utilized variables are considered.

4 Experimental results

The proposed method was evaluated in the evolution of basic logic circuits as
well as some benchmark circuits whose conventional solutions consist of up to
30 transistors. In particular, we tried to evolve XOR and XNOR gate, 3 bit
majority, 1 bit full adder and benchmark circuits b1, c17, newtag, mc, daio and
lion from LGSynth benchmarks. The goal of the experiments was to evolve fully
functional implementations exhibiting full voltage swing on the outputs.

In order to investigate the effect of array size, three arrangements are used
for each benchmark circuit. The first two configurations utilize a single row of
nodes, while the third uses an array consisting of two rows. The total number of
nodes was chosen according to the number of transistors required to implement
a given function using a conventional design approach.

In addition to that, the impact of various connection possibilities was investi-
gated. Firstly, the presence of inverted input variables introduced in Section 3.1
and its impact on the success-rate was studied. Then, additional restriction to
the connection of source terminal of p-MOS and drain terminal of n-MOS was
applied. We prevent to connect this electrode directly to the primary inputs.
As a consequence of that, implementations with higher operating frequency can
be evolved. This setup is denoted as ‘S/D←N‘, while the unrestricted setup is
denoted as ‘S/D←I+N‘.

The results were obtained from 20 independent runs using the following ex-
perimental setup: λ = 4, l = nc, h = 5. The evolution is terminated after 8 hours
or when no improvement was achieved within the last hour. All the successfully
evolved solutions were validated using a SPICE simulator.

The results were compared with a reference implementation described at
gate-level and implemented using standard cells.

The impact of the introduced restriction and the presence of implicit invert-
ers is evaluated by means of a success proportion [9]. Success proportion is the
cumulative probability of success calculated by the number of runs that have
found a solution at or before generation i divided by the total number of runs
in the experiment. A successful run is such a run in which a fully working solu-
tion was discovered. The results for two chosen benchmark circuits are given in
Figure 4. As it can be seen, the usage of implicit inverters significantly increased
the performance of the evolutionary design. On the other hand, the restriction

Paper I

58

Evolutionary Design of Transistor Level Digital Circuits 9

0 0 ·106 1 ·106 1 ·106 2 ·106 2 ·106 3 ·106 3 ·106
0 %

20 %

40 %

60 %

80 %

100 %

su
cc

es
s

ra
te

majority
S/D←I+N

use invertors no invertors

0 0 ·106 1 ·106 1 ·106 2 ·106 2 ·106 3 ·106 3 ·106
0 %

20 %

40 %

60 %

80 %

100 %
majority
S/D←N

use invertors no invertors

0 2 ·106 4 ·106 6 ·106 8 ·106 10 ·106 12 ·106 14 ·106

generations

0 %

20 %

40 %

60 %

80 %

100 %

su
cc

es
s

ra
te

b1
S/D←I+N

use invertors no invertors

0 2 ·106 4 ·106 6 ·106 8 ·106 10 ·106 12 ·106 14 ·106

generations

0 %

20 %

40 %

60 %

80 %

100 %
b1

S/D←N

use invertors no invertors

Fig. 4. Success proportion of the evolutionary design of ‘majority‘ and ‘b1‘ benchmark
circuits. The array consisting of a single row and 30 columns for ‘majority‘ and 60
columns for ‘b1‘ are used.

applied to the source (drain) terminals of p-MOS (n-MOS) nodes reduce the
performance of the evolution. Substantially higher number of generations are
needed to achieve the same success rate.

The success rate of the evolutionary design for the chosen digital circuits is
summarized in Table 2. In addition to that, we analyzed the evolved solutions
and determined the number of utilized transistors (see the last two columns).
Similarly to the previous findings, the usage of implicit inverters as well as the
unrestricted possibilities of S/D terminal connections improved the performance
of the evolutionary approach in all cases. Another parameter which can have a
great impact on the success rate is the size of array. Too small array on the one
hand and too large array on the other hand have a negative impact on the success
rate. While the small array may prevent to find a valid solution because there is
not a space to represent a target circuit, large array increases substantially the
search space. Fortunately, it seems that increasing of the number of available
nodes does not increase the size of the evolved circuit.

The discovered circuits were verified and characterized using a SPICE simula-
tor with an accurate transistor model. Except of a single evolved implementation
of ‘b1‘ circuit, all the circuits were valid and operated correctly. Thus we can
conclude that the proposed discrete abstraction is successful.

Table 3 summarizes the basic parameters of the evolved solutions and the
conventional implementations. Apart from the number of utilized transistors,
delay and maximum operating frequency is given. If we compare the maximum
operating frequency of the evolved circuits with the conventional circuits, we can
see a significant improvement in all cases except the circuit ‘c17‘. This result is

Paper I

59

10 Vojtech Mrazek and Zdenek Vasicek

Table 2. Success rate for the benchmark circuits for various array sizes, connection
possibilities and availability of inverted primary inputs.

nr × nc
S/D←N+I S/D←N # transistors

with inv. w/o inv. with inv. w/o inv. min max

1× 10 100% 65% 0% 0% 6 8

xnor 1× 15 100% 100% 100% 5% 6 12

2× 15 100% 100% 100% 45% 6 12

1× 10 100% 75% 0% 0% 6 8

xor 1× 15 100% 100% 100% 5% 6 12

2× 20 100% 100% 100% 5% 6 12

1× 20 100% 25% 0% 5% 10 14

majority 1× 30 100% 30% 45% 10% 10 16

2× 30 80% 35% 60% 15% 10 17

1× 30 30 % 5% 0% 0% 14 20

adder-1 1× 40 65% 0% 0% 0% 18 20

2× 40 50% 0% 5% 0% 18 25

1× 40 100% 15% 40% 0% 12 19

b1 1× 60 100% 20% 60% 0% 12 20

2× 60 75% 5% 25% 0% 12 23

1× 40 5% 0% 0% 0% 22 24

c17 1× 60 5% 0% 0% 0% 25 26

2× 60 0% 0% 5% 0% 25 28

very encouraging, because the delay was not optimized explicitly. We analyzed
the circuits and determined that this improvement was achieved by replacing
traditional gates implemented as CMOS logic with much effective implementa-
tion which utilized so-called transmission-gates. The usage of transmission-gates
increases the speed but simultaneously reduces the number of utilized transistor.

A lot of different implementations were discovered. Example of an evolved
circuit of one bit adder is shown in Figure 5. The discovered circuit is similar
to low-power full adder consisting of 14 transistors which was introduced in
[5]. The evolution was able to discover an implementation which belongs to the
family of pass-transistor logic. The evolved solution utilizes three transmission
gates to provide fast and compact solution and exhibits approx. 27% reduction
in power consumption compared to the common CMOS implementation. Carry
is represented by output labeled as out0 and sum is available at out1. Input in2
corresponds to the input carry.

5 Conclusion

A new approach suitable to the evolutionary design of digital circuits conducted
directly at transistor level was introduced in this paper. A discrete event-driven

Paper I

60

Evolutionary Design of Transistor Level Digital Circuits 11

Table 3. Parameters of the conventional as well as evolved digital circuits. The first
part of the table contains the number of inputs, number of outputs and time and num-
ber of generations required to evolve the solution. Then, the parameters of conventional
implementation are given. (a) Contains parameters of the fastest discovered solution,
while (b) contains parameters of the most compact evolved solution.

xor xnor majority adder-1 b1 c17

Inputs 2 2 3 3 3 5

Outputs 1 1 1 2 2 2

Time of evolution (min) 10 10 10 120 60 480

Max. # generations 14 · 106 14 · 106 5 · 106 45 · 106 30 · 106 80 · 106

Delay (ps) 208.3 180.9 335.2 422.7 360.1 324.0

Frequency (GHz) 4.80 5.53 2.98 2.37 2.78 3.09

Transistors 8 8 22 48 30 28

Delay (ps) 87.5 87.8 271.4 291.4 173.2 355.4

(a) Frequency (GHz) 11.43 11.39 3.68 3.43 5.77 2.81

Transistors 6 8 16 14 16 24

Delay (ps) 87.5 142.4 599.3 291.4 401.5 573.8

(b) Frequency (GHz) 11.43 7.02 1.67 3.43 2.49 1.74

Transistors 6 6 10 14 12 22

simulator operating on multiple logic levels was utilized to achieve reasonable
trade-off between performance and precision. The proposed method was evalu-
ated on a set of benchmark circuits.In order to improve the success rate, implicit
inverters were introduced to the encoding.

0

2.5

V
in

.0

0

2.5

V
in

.1

0

2.5

V
in

.2

0

0.5

1

1.5

2

2.5

V
ca

rr
y

0

0.5

1

1.5

2

2.5

0 ns 5 ns 10 ns 15 ns 20 ns 25 ns 30 ns 35 ns 40 ns

V
ou

t

out.0
in.0

in.1

in.2
out.1

2.5V

(a) (b)

Fig. 5. (a) The most compact and simultaneously the fastest circuit consisting of 14
transistors implementing one-bit full adder. (b) Output waveform obtained using a
SPICE simulator.

Paper I

61

12 Vojtech Mrazek and Zdenek Vasicek

It was demonstrated that the proposed method is able to produce valid so-
lutions despite the fact that a relative simple discrete model of MOS transistors
(compared to the complex models used in SPICE-based simulators) was utilized.
According to the analysis of the obtained results, we can confirm, that the evo-
lution was able to discover solutions that are based not only on complementary
logic but also on pass-transistor logic.

However, future work has to be conducted to improve the scalability of the
proposed method. One of the possible directions is to introduce more complex
building blocks such as transmission gate.

Acknowlegement This work was supported by the Czech science foundation
project 14-04197S.

References

1. Kapre, N., DeHon, A.: Accelerating spice model-evaluation using fpgas. In: Field
Programmable Custom Computing Machines, 2009. FCCM ’09. 17th IEEE Sym-
posium on. pp. 37–44 (April 2009)

2. Miller, J.F. (ed.): Cartesian genetic programming. Natural Computing Series,
Springer, Berlin, 22. edn. (2011)

3. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the Evolutionary Design of Dig-
ital Circuits – Part I. Genetic Programming and Evolvable Machines 1(1), 8–35
(2000)

4. Miller, J.F., Job, D., Vassilev, V.K.: Principles in the Evolutionary Design of Digi-
tal Circuits – Part II. Genetic Programming and Evolvable Machines 1(3), 259–288
(2000)

5. Shams, A., Bayoumi, M.: A novel high-performance cmos 1-bit full-adder cell.
Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions
on 47(5), 478–481 (May 2000)

6. Trefzer, M.: Evolution of Transistor Circuits. Ph.D. thesis, Ruprecht-Karls-
Universitt Heidelberg (2006)

7. Vassilev, V., Job, D., Miller, J.: Towards the Automatic Design of More Efficient
Digital Circuits. In: Proc. of the 2nd NASA/DoD Workshop on Evolvable Hard-
ware. pp. 151–160. IEEE Computer Society, Los Alamitos, CA, USA (2000)

8. Walker, J., Hilder, J., Tyrrell, A.: Evolving variability-tolerant cmos designs. In:
Hornby, G., Sekanina, L., Haddow, P. (eds.) Evolvable Systems: From Biology to
Hardware. LNCS, vol. 5216, pp. 308–319. Springer Berlin Heidelberg (2008)

9. Walker, M., Edwards, H., Messom, C.H.: Success effort and other statistics for per-
formance comparisons in genetic programming. In: IEEE Congress on Evolutionary
Computation. pp. 4631–4638 (2007)

10. Weste, N.H., Harris, D.: CMOS VLSI design: a circuits and systemes perspective.
Addison-Wesley, Boston, USA, 3. edn. (2005)

11. Zaloudek, L., Sekanina, L.: Transistor-level evolution of digital circuits using a
special circuit simulator. In: Evolvable Systems: From Biology to Hardware. LNCS,
vol. 5216, pp. 320–331. Springer Verlag (2008)

Paper I

62

Paper II

EvoApprox8b: Library of
Approximate Adders and
Multipliers for Circuit Design and
Benchmarking of Approximation
Methods

MRÁZEK Vojtěch, HRBÁČEK Radek, VAŠÍČEK Zdeněk and SEKA-
NINA Lukáš

In: Proc. of the 2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE). Lausanne: European Design and Automation Association, 2017, pp. 258-261.
ISBN 978-3-9815370-9-3.

63

EvoApprox8b: Library of Approximate Adders and
Multipliers for Circuit Design and Benchmarking of

Approximation Methods
Vojtech Mrazek, Radek Hrbacek, Zdenek Vasicek and Lukas Sekanina

Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence
Brno, Czech Republic

Email: {imrazek, ihrbacek, vasicek, sekanina}@fit.vutbr.cz

Abstract—Approximate circuits and approximate circuit design
methodologies attracted a significant attention of researchers
as well as industry in recent years. In order to accelerate
the approximate circuit and system design process and to
support a fair benchmarking of circuit approximation meth-
ods, we propose a library of approximate adders and mul-
tipliers called EvoApprox8b. This library contains 430 non-
dominated 8-bit approximate adders created from 13 conven-
tional adders and 471 non-dominated 8-bit approximate mul-
tipliers created from 6 conventional multipliers. These imple-
mentations were evolved by a multi-objective Cartesian ge-
netic programming. The EvoApprox8b library provides Verilog,
Matlab and C models of all approximate circuits. In addition
to standard circuit parameters, the error is given for seven
different error metrics. The EvoApprox8b library is available
at: www.fit.vutbr.cz/research/groups/ehw/approxlib

I. INTRODUCTION

Approximate circuits are becoming a viable alternative to
conventional accurately operating circuits if energy efficiency
is crucial and target application is error resilient [1]. This is the
case of many, for example, image and video processing circuits
that are predominantly composed of adders and multipliers. In
order to approximate circuits such as adders and multipliers
for a particular application, a designer can either perform a
single purpose (ad hoc) approximation or apply some of the
circuit approximation methods available in the literature. We
will only deal with functional approximation in which logic
function implemented by the original circuits is simplified.
Other approximation techniques enabling power reduction
such as voltage over scaling are not considered in this paper.

Unfortunately, almost all papers dealing with circuit ap-
proximation show some of the following features that are
undesirable from a practical point of view: (1) The approx-
imation method is described, but a corresponding software
implementation is not available. (2) An implementation of
the original (accurate) circuit is not available. (3) The quality
of approximation and other parameters of approximate cir-
cuits are expressed relatively to parameters of the original
circuit. If the original circuit is not available, it is hard or
even impossible to obtain real parameters of the approximate
circuits and reproduce the results. (4) Implementations of the
resulting approximate circuits are not available. (5) Only a
few approximate versions created from the original circuit are

reported, forming thus a sparsely occupied Pareto front. (6) It
is unclear if a given number of test vectors used to evaluate
approximate circuits is sufficient for obtaining a trustworthy
error quantification if the error is determined using simulation.
(7) A given approximation method is only rarely compared
against competitive approximation methods.

To the best of our knowledge, paper [2] and related software
is the only one which does not suffer from the aforementioned
problems. However, the paper is solely devoted to 16 bit adders
and still only a few approximate adders can be downloaded.

The undesirable properties (1) – (7) are resulting in a situ-
ation in which the user does not know which approximation
method is the most suitable one for his/her problem because
the quality of available approximation methods cannot fairly
be compared. If the user does not want to apply any of the
approximation methods, its intention could be to use just a
resulting approximate circuit showing desired parameter val-
ues. However, the chance of direct downloading a circuit with
desired parameters is very low, because only a few approxi-
mate versions of the original circuit exist in the corresponding
repository. On the other hand, it has to be emphasized that
a fair comparison of approximation methods is difficult as
they should be compared under the same conditions (under
the same error metrics, fabrication technology, synthesis tools,
available run-time etc.) and start with the same original circuit,
which is difficult to ensure in the progressively developing
field of approximate computing.

In order to address at least some of the aforementioned
challenges, the objective of this paper is to introduce a rich
and well-focused library of approximate components (called
EvoApprox8b) that can be downloaded and immediately used
in various applications or for benchmarking of circuit ap-
proximation methods. The library consists of approximate 8-
bit adders and 8-bit multipliers that are crucial components
of, for example, approximate image and video processing
applications. In addition to circuit parameters (error, area,
delay, power etc.), the library contains Matlab, C and Verilog
implementations for all components which allows the user
not only to immediately use the components, but also to
calculate the error for a new target error metric or obtain
desired parameters by performing a synthesis for a fabrication
technology different to the reported one. In addition to that

Paper II

64

these circuits can be utilized as building blocks of more
complex approximate arithmetic circuits (as shown e.g. in [3]).

There are 430 different approximate 8-bit adders and 471
different approximate 8-bit multipliers forming a Pareto front
in a three-dimensional space defined using the error, delay,
and power metrics. These implementations were obtained
by a multi-objective Cartesian genetic programming (CGP)
according to [4]. As a starting point for the CGP-based
approximation process, 13 different adder and 6 different
multiplier accurately-operating architectures were employed.
The adders include Ripple-Carry Adder (RCA), Carry-Select
Adder (CSA), Carry-Look-ahead Adder (CLA), multiple Tree
Adder (TA) and Higher Valency Tree Adder (HVTA) archi-
tectures. The multipliers include Ripple-Carry Array, multiple
Carry-Save Array and Wallace Tree architectures. These ac-
curate implementations are also included in the library.

CGP has been adopted as our design method because
papers [5], [6], [7] revealed that it can provide much better
implementations of accurate as well as approximate circuits
than common circuit design and optimization tools. The
EvoApprox8b library is provided as an open source project,
see the EvoApprox8b web site [8].

The rest of the paper is organized as follows. Section II sur-
veys the methods developed for approximation of adders and
multipliers. Section III describes the approximation method
used to create the EvoApprox8b library. The library is pre-
sented in Section IV. Conclusions are given in Section V.

II. APPROXIMATE ADDERS AND MULTIPLIERS

Software-oriented benchmark sets such as AxBench [9]
were developed for evaluation of approximate software and
corresponding approximation methods. Regarding circuit ap-
proximation, several approximate circuits can be downloaded
from KIT CES web site, including Generic Accuracy Config-
urable Adders (GeAR) [2]. The remaining papers dealing with
circuit approximation methods suffer from problems discussed
in Section I and, hence, performing a fair comparison of
approximation methods or resulting approximate circuits is
difficult. In this section, we will briefly survey approaches
developed for adders and multipliers approximation.

Adders and multipliers are approximated by either general-
purpose approximation methods or problem-specific methods.
In the case of general-purpose methods (e.g. SALSA [10]
and SASIMI [11]), adders and multipliers serve as one of
many circuit classes that can be approximated. Problem-
specific methods exploit the structure of conventional adders
and multipliers. Another class of circuits are quality config-
urable circuits (e.g. GeAR adders) which allow for a dynamic
approximation according the expected quality of result [2].

Four types of approximate adders are considered in [12]: (1)
Speculative adders in which it is presumed that the probability
that the carry propagation chain is longer than k bits (k << n)
is very low for n-bit adders. Hence, according to k bits the
carry is speculated for each sum bit. (2) Segmented adders,
where an n-bit adder is divided into k-bit sub-adders and
the carry is then generated by using different methods. (3)

Carry-select adders in which multiple sub-modules are used
to compute the sum for different carry values, and the result
is determined according to the carry of a sub-module. (4)
Approximate full adders where the full adder (an elementary
adder’s component) is approximated.

Approximate multipliers are based on the following prin-
ciples [13]: (1) Approximation in generating partial products
utilizing a simpler structure to generate partial products [3].
(2) Approximation in the partial product tree by ignoring
some partial products or dividing partial products into several
modules and applying approximation in the less significant
modules. (3) Using approximate counters or compressors in
the partial product tree. (4) Using approximate Booth mul-
tipliers. (5) Composing complex approximate multipliers by
means of simple approximate multipliers as shown in [3].

Recently, an evolutionary approach was applied in the
task of approximate circuits design with respect to multiple
objectives [6], [7], [4]. Conventional circuits were used as
an initial population. The circuit approximation problem is
formulated as a multi-objective search problem and solved
using the state-of-the art CGP method [14] combined with the
NSGA-II algorithm [15]. In many cases, CGP-based approach
is capable of optimizing accurate circuits in such a way that
they remain accurate, but they show better parameters (e.g.
area) than approximate circuits [4].

There are many error metrics developed to evaluate the
quality of approximate arithmetic circuits [16]. While most
methods apply test vectors to estimate the error (e.g. 108

test vectors were used to evaluate 16 bit adders in [12]), the
exact error calculation based on formal models such as binary
decision diagrams is rarely used. The accuracy of simulation-
based error calculation (which depends on the number and
quality of test vectors) can significantly influence the whole
approximation process.

III. CIRCUIT APPROXIMATION METHOD

The method used to obtain the library follows the method-
ology introduced in [4]. It is a general-purpose approximation
method for combinational circuits based on a multi-objective
CGP. It represents candidate circuits as directed acyclic graphs
and tries to simultaneously minimize delay, power consump-
tion and error to discover a set of approximate circuits along a
Pareto front. Moreover, various constraints can be formulated
to reduce the search space.

A. Circuit representation

In CGP, candidate solutions are represented in a two-
dimensional array of programmable nodes [14]. An ni-input
and no-output combinational circuit is modelled using an array
of nc · nr programmable nodes forming a Cartesian grid. A
set of available na-input/nb-output node functions is denoted
Γ. The primary inputs and programmable node outputs are
uniquely numbered. For each node the chromosome contains
(na+1) values that represent the node function and na ad-
dresses specifying the input connections. The chromosome
also contains no values specifying the gates (node outputs)

Paper II

65

connected to the primary outputs. The chromosome size is
ncnr(na + 1) + no integers.

In our case, Γ contains functions implemented by standard
components (such as gates and adders) of technology library.
We used a subset of componets from a TSMC 180 nm
technology library. A complete list of technology components
including their area and leakage power can be found in [4].
There are multiple implementations of the same component
differing in the implementation cost. During the circuit approx-
imation, a proper size was selected for each gate depending
on the output load of the gate.

B. Search method

New candidate circuits are created by means of a point
mutation operator which modifies a given number of integers
of the chromosome. The multi-objective search is conducted
by the NSGA-II algorithm which is based on the idea of Pareto
dominance relation. The individuals in each generation are
sorted according to the dominance relation into multiple fronts.
The solutions within the individual fronts are sorted according
to the crowding distance metric, which helps to preserve
a reasonable diversity along the fronts [15]. The crowding
distance is the average distance of two solutions on either side
along each of the objectives. A new population is then created
by exploiting appropriate Pareto fronts as defined in [17]. The
result of a single evolutionary run is not just one solution, but
a set of non-dominated solutions occupying the Pareto front.
The search method is implemented as a parallel evolutionary
algorithm operating with multiple populations distributed on
several islands and the best individuals are allowed to migrate
among the islands.

C. Fitness functions

A selection of the error metric significantly influences ob-
tained results [6]. As the error metric is usually an application-
specific function there is no reason to prefer one over another
in our library. We decided to optimize according to the mean
relative error, but we also quantified the errors according to
other commonly used error metrics for all evolved circuits
(Section IV). The mean relative error is calculated accurately,
i.e. for all possible 2ni input vectors, as:

fMRE :=

∑
∀i

∣∣∣O(i)
orig−O(i)

approx

∣∣∣
max(1,O

(i)
orig)

2ni
, (1)

where O(i)
orig is the decimal representation of the i-th circuit

correct output, O(i)
approx is the individual’s i-th output, and ni is

the number of primary inputs (i.e. the operand’s width is ni/2
bits). In addition to that, we constrained the worst absolute
and relative errors to reduce the search space.

The circuit area is a sum of the areas of components used
in the circuit. Power consumption is estimated according to
the algorithm given in [4]. The delay of a candidate circuit is
calculated using the parameters defined in the liberty timing
file available for the utilized semiconductor technology. The
delay td of a cell ci is modeled as a function of its input

0 2 4 6 8 10 12 14 16
mean relative error [%]

0

50

100

150

200

250

300

350

400

450

po
w

er
 [%

]

Error-power projection
CGP

accurate

KIT

20

30

40

50

60

70

80

90

100

110

d
e
la

y
 [

%
]

Fig. 1. Pareto fronts with parameters of evolved approximate 8-bit adders,
conventional accurate adders and approximate adders according to KIT’s
paper [2].

0 2 4 6 8 10 12
mean relative error [%]

20

40

60

80

100

120

140

po
w

er
 [%

]

Error-power projection

40

50

60

70

80

90

100

110

120

d
e
la

y
 [

%
]

Fig. 2. Pareto fronts with parameters of evolved approximate 8-bit multipliers.

transition time ts and capacitive load Cl on the output of the
cell, i.e. td(ci) = f(tcis , C

ci
l). The delay of the circuit C is

determined as the delay along the longest path.

D. Parameters setting

The CGP/NSGA-II parameters were set as follows: 500
individuals in the population, 100,000 generations, 10 islands,
mutation rate 5 %, number of rows nr = 1. The number
of columns was nc = 200 in the case of the adders and
nc = 1000 in the case of the multipliers.

The circuits were designed with respect to three objectives
– the mean relative error (MRE), power consumption and
delay. The MRE was constrained to be at most 10 %, the
worst case error was constrained to be at most 5 % of the
output range and the worst case relative error was limited to
1000 %. All candidate solutions violating these requirements
were discarded.

IV. EVOAPPROX8B LIBRARY

The EvoApprox8b library contains 430 non-dominated 8-bit
approximate adders evolved from the initial population of 13
conventional adders and 471 non-dominated 8-bit approximate
multipliers that were evolved from 6 conventional implemen-
tations. In addition to the conventional implementations, the

Paper II

66

library also contains 43 exact adders and 28 exact multipliers
that were obtained by CGP and that are not dominated by
any accurate implementation. All Pareto fronts are shown in
Figure 1 and 2. All parameters are related to the Ripple-
Carry Adder and Ripple-Carry Array Multiplier architectures
(considered as 100% in the figures). Figure 1 also provides
parameters of 8-bit approximate adders created according
to [2]. Evolved adders show quite competitive properties under
the metrics used in the figure.

All approximate circuits and their various parameters can
be found at the EvoApprox8b web site [8]. It contains circuit
models for Verilog, Matlab and C. This enables the user to
integrate the circuits to hardware as well as software projects
and design tools. All circuits can thus be simulated in order to
obtain their other parameters that are not listed on the web site
(e.g. errors under different error metrics or power consumption
for another fabrication technology). The circuits can be sorted
according to a chosen parameter which is useful when the user
is looking for a circuit satisfying particular constraints.

The following list gives parameters that are provided for all
circuits in the library: Area, delay, power (all estimated accord-
ing to [4] which was validated against Cadence Encounter RTL
Compiler and TSMC 180 nm library), nodes (the number of
nodes, where a gate, a half adder and a full adder are counted
as one node), HD (Hamming distance), EP (error probability),
MAE (mean absolute error), MSE (mean squared error), MRE
(mean relative error), WCE (worst case error), and WCRE
(worst case relative error). Note that as ni is the number of
primary inputs, the operand’s width is ni/2 bits.

HD =
∑

∀i
OnesCount(O(i)

approx ⊕O(i)
orig), (2)

EP =

∑
∀i:O(i)

approx 6=O
(i)
orig

1

2ni
, (3)

MAE =

∑
∀i

∣∣∣O(i)
approx −O(i)

orig

∣∣∣
2ni

, (4)

MSE =

∑
∀i

∣∣∣O(i)
approx −O(i)

orig

∣∣∣
2

2ni
, (5)

MRE =

∑
∀i

∣∣∣O(i)
approx−O

(i)
orig

∣∣∣
max(1,O

(i)
orig)

2ni
, (6)

WCE = max
∀i

∣∣∣O(i)
approx −O(i)

orig

∣∣∣ , (7)

WCRE = max
∀i

∣∣∣O(i)
approx −O(i)

orig

∣∣∣
max(1, O

(i)
orig)

. (8)

V. CONCLUSIONS

In this paper we presented a rich library of approximate
8 bit adders and multipliers which is primarily intended for
creating approximate blocks of image and video processing

circuits. The Matlab, C and Verilog models that are available
from [8] can allow software as well as hardware developers
to integrate the approximate adders and multipliers to their
designs. As we are aware of, this is the first open-source library
containing hundreds of approximate components that allows
for reproducible comparisons across various layers of design
abstraction. These components can be utilized as building
blocks of more complex approximate adders and multipliers
as demonstrated for multipliers in [3].

ACKNOWLEDGMENTS

This work was supported by Czech science foundation
project GA16-17538S and the Ministry of Education, Youth
and Sports of the Czech Republic from the National Pro-
gramme of Sustainability (NPU II) project IT4Innovations
excellence in science – LQ1602.

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, p. 62:162:33, 2016.

[2] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic
accuracy configurable adder,” in Proceedings of the 52nd Annual Design
Automation Conference. ACM, 2015, pp. 86:1–86:6.

[3] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for power
in a multiplier architecture,” J. Low Power Electronics, vol. 7, no. 4, pp.
490–501, 2011.

[4] R. Hrbacek, V. Mrazek, and Z. Vasicek, “Automatic design of approx-
imate circuits by means of multi-objective evolutionary algorithms,” in
Proc.of the 11th Int. Conf. on Design and Technology of Integrated
Systems in Nanoscale Era. IEEE, 2016, pp. 239–244.

[5] Z. Vasicek and L. Sekanina, “A global postsynthesis optimization
method for combinational circuits,” in Proc. of the Design, Automation
and Test in Europe, DATE. EDA Consortium, 2011, pp. 1525–1528.

[6] ——, “Evolutionary design of approximate multipliers under different
error metrics,” in IEEE International Symposium on Design and Diag-
nostics of Electronic Circuits and Systems. IEEE, 2014, pp. 135–140.

[7] ——, “Evolutionary approach to approximate digital circuits design,”
IEEE Transactions on Evolutionary Computation, vol. 19, no. 3, pp.
432–444, 2015.

[8] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina. (2016)
Approximate 8-bit Adders and Multipliers. [Online]. Available:
www.fit.vutbr.cz/research/groups/ehw/approxlib

[9] A. Yazdanbakhsh, D. Mahajan, P. Lotfi-Kamran, and H. Esmaeilzadeh,
“Axbench: A multi-platform benchmark suite for approximate comput-
ing,” IEEE Design and Test, 2016.

[10] S. Venkataramani, A. Sabne, V. J. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “SALSA: systematic logic synthesis of approximate circuits,” in
The 49th Annual Design Automation Conference 2012, DAC’12. ACM,
2012, pp. 796–801.

[11] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: a unified design paradigm for approximate and quality config-
urable circuits,” in Design, Automation and Test in Europe, DATE’13.
EDA Consortium, 2013, pp. 1367–1372.

[12] H. Jiang, J. Han, and F. Lombardi, “A comparative review and evaluation
of approximate adders,” in Proceedings of the 25th Edition on Great
Lakes Symposium on VLSI. ACM, 2015, pp. 343–348.

[13] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han, “A compara-
tive evaluation of approximate multipliers,” in IEEE/ACM International
Symposium on Nanoscale Architectures. IEEE, 2016, pp. 191–196.

[14] J. F. Miller, Cartesian Genetic Programming. Springer-Verlag, 2011.
[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[16] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of
approximate and probabilistic adders,” IEEE Trans. Computers, vol. 62,
no. 9, pp. 1760–1771, 2013.

[17] R. Hrbacek, “Parallel multi-objective evolutionary design of approximate
circuits,” in GECCO ’15 Proceedings of the 2015 conference on Genetic
and evolutionary computation. ACM, 2015, pp. 687–694.

Paper II

67

Paper III

Design of Power-Efficient
Approximate Multipliers for
Approximate Artificial Neural
Networks

MRÁZEK Vojtěch, SARWAR Syed Shakib, SEKANINA Lukáš, VAŠÍČEK
Zdeněk and ROY Kaushik

In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design.
Austin, TX: Association for Computing Machinery, 2016, pp. 811-817. ISBN 978-1-4503-
4466-1.

68

Design of Power-Efficient Approximate Multipliers for
Approximate Artificial Neural Networks

Vojtech Mrazek1

imrazek@fit.vutbr.cz
Syed Shakib Sarwar2
sarwar@purdue.edu

Lukas Sekanina1

sekanina@fit.vutbr.cz

Zdenek Vasicek1

vasicek@fit.vutbr.cz
Kaushik Roy2

kaushik@purdue.edu
1Faculty of Information Technology, Centre of Excellence IT4Innovations

Brno University of Technology
Brno, Czech Republic

2School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN, USA

ABSTRACT
Artificial neural networks (NN) have shown a significant
promise in difficult tasks like image classification or speech
recognition. Even well-optimized hardware implementations
of digital NNs show significant power consumption. It is
mainly due to non-uniform pipeline structures and inherent
redundancy of numerous arithmetic operations that have to
be performed to produce each single output vector. This pa-
per provides a methodology for the design of well-optimized
power-efficient NNs with a uniform structure suitable for
hardware implementation. An error resilience analysis was
performed in order to determine key constraints for the de-
sign of approximate multipliers that are employed in the
resulting structure of NN. By means of a search based ap-
proximation method, approximate multipliers showing de-
sired tradeoffs between the accuracy and implementation
cost were created. Resulting approximate NNs, containing
the approximate multipliers, were evaluated using standard
benchmarks (MNIST dataset) and a real-world classifica-
tion problem of Street-View House Numbers. Significant
improvement in power efficiency was obtained in both cases
with respect to regular NNs. In some cases, 91% power re-
duction of multiplication led to classification accuracy degra-
dation of less than 2.80%. Moreover, the paper showed
the capability of the back propagation learning algorithm
to adapt with NNs containing the approximate multipliers.

Categories and Subject Descriptors
B.6.3 [Hardware]: Logic Design—Automatic synthesis; I.2.6
[Computing Methodologies]: Artificial Intelligence

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD ’16, November 07-10, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4466-1/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2966986.2967021

1. INTRODUCTION
Recent advances in artificial intelligence methods and a

huge amount of computing resources available on a single
chip have led to a renewed interest in efficient implemen-
tations of complex neuromorphic systems based on artifi-
cial neural networks (NNs). Implementing complex NNs in
low power embedded systems requires careful optimization
strategies at various levels including neurons, interconnects,
learning algorithms, data storage and memory access. This
work is focused on reducing power consumption of computa-
tions performed in neurons, which is of the same importance
as optimizing the data storage and memory access [7].

Inexact or approximate computing has been adopted in
recent years as a viable approach to reduce power consump-
tion and improve the overall efficiency of computers. In
approximate computing, circuits are not implemented ex-
actly according to the specification, but they are simplified
in order to reduce power consumption or increase operation
frequency. It is assumed that the errors occurring in simpli-
fied circuits are acceptable, which is typical for error resilient
application domains such as multimedia, classification and
data mining. Applications based on NNs have proven to be
highly error resilient [2].

This paper provides a methodology for the design of well-
optimized power-efficient NNs that have a uniform structure
(i.e. all nodes are identical in all layers) which is thus suit-
able for hardware implementation. An error resilience anal-
ysis is performed in order to determine key constraints for
the design of approximate multipliers that are employed in
the resulting structure of NN. In order to avoid a manual
approximation of accurate multipliers, systematic methods
capable of performing approximations have been introduced
recently [21, 20, 14]. These methods typically start with
a gate-level description of the accurate circuit and an er-
ror constraint that specifies the type of error that can be
accepted. The approximation algorithm is typically con-
structed as a design space exploration algorithm directly
approximating some parts of the circuit [11] or the whole
circuit [18]. The search is guided by an error metric such as
the average error magnitude or maximum arithmetic error.

In addition to developing highly-optimized power efficient

Paper III

69

NNs, an automated design space exploration method is pro-
posed. The method is capable to design approximate multi-
pliers in such a way that the resulting multipliers satisfy not
only a given error, but also a set of other application-specific
constraints.

2. ARTIFICIAL NEURAL NETWORKS
In machine learning, artificial neural networks are a family

of models inspired by biological neural networks. A typical
artificial neural network consists of an input layer of neu-
rons, several hidden layers of neurons and an output layer
of neurons.

2.1 Artificial Neuron
A typical structure of neuron is as follows [4, 22]. The

output hi of neuron i is defined as hi = σ(
∑N

j=1 wijxj − θ),
where σ(·) is an activation function, N is the number of in-
puts of the neuron, wij is weight of the link, xj is the j-th
input and θ is a threshold or bias. The purpose of the ac-
tivation function is (in addition to introducing non-linearity
into NN) to map the resulting values into the interval (−1, 1)
or (0, 1). The activation can be a threshold function, semi-
linear or non-linear function. A common example of the
non-linear function, which is used in this work, is sigmoid

function σ(x) = (1 + e−x)
−1

.

2.2 Architecture and learning
The NNs are classified into feed-forward neural networks

(FNNs), recurrent neural networks (RNN) and their combi-
nation. In RNNs, there is at least one feedback connection.
The earliest and the simplest architecture is the perception
model which utilizes just one layer of output neurons that
are connected with all the inputs. The extended version, the
multilayer perception model (MLP), uses one or more layers
(a.k.a. hidden layers) of neurons between the input and out-
put layers. In the hidden layer, each neuron is directly linked
to the outputs of the previous layer. An important contribu-
tion to the state of the art in NNs has been the development
of large-scale NNs such as the convolutional NNs introduced
by LeCun [9], where more types of layers (e.g. convolutional
layers) are employed. Another type of layers is the average
pooling layer which is used for weighted subsampling. Nowa-
days there are many different application-specific layers in-
tended for, e.g., image classification [8], segmentation [1],
speech processing [6] etc.

Learning is the most important capability of neural net-
works. It is performed by an algorithm that iteratively up-
dates the synapses (weights) and other parameters of neural
network. Determining the most suitable parameters and
weights of NN can be viewed as a complex nonlinear op-
timization problem. Learning methods are usually divided
into supervised, unsupervised, reinforcement, and evolution-
ary methods [4]. The most popular algorithms for super-
vised learning, which we will employ, are the least mean
squares method and back propagation algorithm [4].

2.3 Approximations in NNs
As neural networks are inherently error-resilient, various

approaches have been proposed to approximate them [13].
Venkataramani et al. [19] proposed a methodology of iden-

tifying error-resilient neurons based on the backpropagation

gradients. For the error-resilient neurons, an approxima-
tion using precision modification and piecewise-linear ap-
proximation of activation function was applied to create an
approximate neural network. Since training is by itself an
error-healing process, after creating the approximate ver-
sion, the NN is retrained. They also proposed a neuro-
morphic processing engine platform to determine the best
tradeoff between the precision and energy.

Zhang et al. [24] used a different approach for critical neu-
ron identification. A neuron is considered as critical, if small
jitters on the neuron’s computation introduce large output
quality degradation; otherwise, the neuron is resilient. They
presented a theoretical approach for finding the critical neu-
rons. The least critical neurons are candidates for approxi-
mation. Due to the tight interconnection between the neu-
rons, the ranking of candidate neurons is updated after ap-
proximation of each neuron. Hence, an iterative algorithm
for the criticality ranking and approximation was developed.
Three approximation strategies were used – precision scal-
ing, memory access skipping and approximating the multi-
plier circuits.

Du et al. [5] proposed an inexact Neural Network accel-
erator showing that it is possible to use inexact multipliers
in NNs. The multipliers were designed using an inexact
logic minimization algorithm [11]. For small fully connected
neural networks, their strategies were able to find good con-
figurations. They exploited the fact that the output layer
has a small number of neurons and since there is no synap-
tic weight after these neurons, lowering the errors through
retraining is difficult [13].

Judd et al. [7] showed that computations and memory ac-
cesses significantly contribute to power consumption. Hence
they used bit-precise weights reduction in standard multipli-
cation and reduced memory accesses of standard memories
in their implementation for GPUs and ASIC.

Power consumption of the synaptic weight memory was
optimized by Srinivasan et al. [17] who applied a conven-
tional 6T SRAM that is known to be susceptible to bit-cell
failures due to voltage over-scaling. A significance driven hy-
brid 8T-6T SRAM was proposed wherein the sensitive MSBs
are stored in robust 8T bit-cells. The memory access power
reduction was exchanged for a small loss in the classification
accuracy.

Sarwar et al. [16] introduced approximate multipliers
based on alphabet-set multiplication. The weights were di-
vided into parts having 4 bits. Multiplication by each 4-
bit part of the weight was implemented by shifting a pre-
computed input value and followed by summation. Authors
showed that reducing the set of precomputed values has a
significant impact on power consumption and a small impact
on the total accuracy of neural network. This architecture
is suitable for an efficient hardware implementation because
the resulting NN shows a uniform structure and each neuron
has the same architecture.

In summary, the first four approaches presented in this
section have shown that it is possible to approximate some
neurons. The resulting NNs can be characterized as non-
uniform NNs. However, for an efficient VLSI implementa-
tion and for implementing a general-purpose NN (not an
application specific one), all (or almost all) neurons have to
be uniform. Moreover, the selected components were ap-
proximated manually and independently of a target NN. It
was also shown that not only multiplication but also the

Paper III

70

memory access has a significant impact on the total power
consumption.

2.4 Approximate multipliers in NNs
Since NN contains hundreds of thousands multiplications,

it seems to be useful to introduce approximate multipliers
to reduce power consumption. In order to determine the
impact of inexact multiplication on NNs’ accuracy, the fol-
lowing sensitivity analysis has been carried out.

A non-trivial MLP network (1 hidden layer, 100 hidden
neurons) trained for recognizing handwritten numbers of
MNIST dataset (described in Section 4.2.1) was chosen as
our benchmark problem and evaluated using DeepLearn-
Toolbox.1. Its accurate implementation shows the classifi-
cation accuracy 94.16% when precise 8-bit multipliers are
used.

To emulate imprecise multiplication, a jitter function ∆ :
N × N → N is introduced. Let the output of inexact multi-
plier m be defined as m(a, b) = a ·b+∆(a, b). To ensure that
the relative worst-case error of 8-bit multiplier m is 5.2%,
the range of the jitter function ∆ is bounded by ±852, calcu-
lated as 5.2% · 22·7. Note that this worst-case error was cho-
sen according to approximate multipliers proposed in [18].

When function m is used instead of accurate multiplica-
tion and no retraining is applied, the classification accuracy
of the network decreased to 10.77%. A detailed analysis re-
vealed that there are more than 80% cases where one of the
input operands of multiplication is zero. The random jitter
then provides a non-zero output value and this error is ac-
cumulated. Hence we hypothesized that the multiplication
must be accurate if at least one of the operands is zero.

To investigate this hypothesis, we re-defined the approxi-
mate multiplier m to m′, where:

m′(a, b) =

{
m(a, b) if a · b 6= 0

0 otherwise
(1)

Now the original NN which employs approximate multipliers
m′ exhibits the classification accuracy of 94.20%. Although
the impact of approximate multipliers on the accuracy is
application-specific, this benchmark showed that it is nec-
essary to have the accurate multiplication by 0. Figure 1
shows the absolute difference between outputs of the same
neurons in the case that approximate multipliers provide (a)
inexact and (b) exact multiplication by 0.

3. PROPOSED DESIGN METHOD
The proposed method is based on uniform NNs that utilize

approximate multipliers. In this section, we will define fea-
sible approximate multipliers, describe a design space explo-
ration search method for obtaining the feasible multipliers,
and introduce the overall methodology for NN approxima-
tion.

3.1 Constraints and cost function
A digital combinational circuit with n inputs and m out-

puts computes a completely-specified Boolean function F :
Bn → Bm, B = {0, 1}, that maps n-input Boolean vec-
tor x = 〈x1, x2, . . . xn〉 to an m-output Boolean vector y =
〈y1, y2, . . . ym〉 with associated hardware cost. Let n-bit ac-
curate multiplier be represented by a function M : Bn ×
1https://github.com/rasmusbergpalm/DeepLearnToolbox

20

40

60

80

100

120

140

160

180

200
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Neuron

Sa
m

p
le

Neuron

Output error of neurons in the hidden layer

00

0

(a) (b)

0

0.2

0.4

0.6

0.8

1

A
b

so
lu

te
 e

rr
o

r

Figure 1: The error of the output neurons in the approxi-
mate NN in comparison with the original NN. The approx-
imate NN utilizes approximate multipliers showing a 5.2%
error and (a) inaccurate and (b) accurate multiplication by
zero

Bn → Bn+n and let δ : Bm → N assign a natural number
to an m-bit Boolean vector.

The error metric is defined as maximal relative error ε, i.e.
it is requested that the maximal arithmetic error of multi-
plication for each combination of operands is lower than ε
on the whole output range (which is 0 . . . (22n − 1)). This
error ε will be one of the input parameters of the algorithm
designing approximate multiplies.

A candidate approximate multiplierM′ is a feasible solu-
tion is two conditions hold. (i) The error is acceptable:

∀(a,b)∈Bn×Bn : |δ(M(a, b))−δ(M′(a, b))|≤ ε ·(22n−1). (2)

and (ii) multiplication by 0 is accurate:

∀a∈Bn : M(a, {0}n) =M′(a, {0}n) ∧
M({0}n, a) =M′({0}n, a). (3)

In the approximation process, the implementation cost
of multiplier SM′ will be estimated as the number of used
gates. The number of two-input gates is a sufficient metric
because the circuits are relatively simple (as it will be seen
in Section 5). The number of used gates SM′ is determined
recursively as follows: (1) the gate is used if its output is
connected to output of the circuit; (2) the gate is connected
if its output is connected to an input of any used gate.

The cost function for the approximation process is defined
as

CM′ =

{
SM′ if constraints (2) and (3) are met

∞ otherwise
. (4)

3.2 Approximate multiplier design
In order to approximate an accurate multiplier, various

approaches have been proposed. In this work, we employ
Cartesian Genetic Programming (CGP) [12] because it can
easily handle constraints given on candidate circuits, the
method is naturally multi-objective and high-quality ap-
proximate circuits have already been obtained with it [18].

The standard CGP is a branch of genetic programming
which represents candidate designs using directed acyclic
graphs [12]. A candidate circuit is modeled using a 2D array
of programmable nodes with nc columns and nr rows. In our
case, the nodes will be 2-input Boolean functions, where Γ is
the set of available functions. The circuit utilizes ni primary

Paper III

71

inputs and no primary outputs. Feedback connections are
not enabled.

The primary inputs and the outputs of the nodes are la-
beled 0, 1 . . . nc ·nr+ni−1 and considered as addresses which
the node inputs can be connected to. A candidate solution
is represented in the so-called chromosome (which is, in fact,
a netlist) by nr · nc triplets (x1, x2, ψ) determining for each
node its function ψ (ψ ∈ Γ) and input connections. The last
part of the chromosome contains no integers specifying the
nodes where the primary outputs are connected to. While
the chromosome size s is constant s = ncnr(na + 1) + no,
the circuit size is variable and measured as the number of
active (i.e. used) nodes. See an example in Fig. 2. The set
of valid chromosomes (netlists) represents the whole search
space.

OR

3

0

1
6

2

3
XOR

4

3

2
AND

5

1

2
OR

x0

x1

x2

y0 (4)

y1 (5)

Figure 2: Example of a circuit in CGP with parameters:
ni = 3, no = 2, nc = 4, nr = 1, Γ = {0and, 1or, 2xor}.
Chromosome: 0, 1, 1; 3, 2, 2; 1, 2, 0; 2, 3, 1; 4, 5. Gate 6 is
not used. Logic behavior of the circuit is:

y0 = ((x0 or x1) xor x2); y1 = x1 and x2.

CGP employs a simple search method . In our case, the
initial population P of CGP contains one of various imple-
mentations of accurate multipliers and a few circuits gen-
erated using mutation of the accurate multiplier. Creating
the accurate multiplier in the initial population is trivial as
there is a one-to-one mapping between multiplier netlists
and CGP chromosomes. The next step consists in the eval-
uation of candidate circuits using the fitness function. Each
member of P then receives the so-called fitness score and
the highest-scored individual becomes a new parent of the
next population. From this parent, λ candidate solutions
are generated using mutation. The termination criterion is
given by the number of iterations.

Despite many attempts to propose a suitable crossover
operator to CGP, the mutation is still used as the crucial
genetic operator. The mutation operator modifies up to h
randomly chosen genes (integers) of the chromosome. Their
new values are generated randomly, but it is checked whether
the new values are valid. One mutation can affect either
the gate function, gate input connection, or primary output
connection.

In order to approximate multipliers, the fitness is defined
as fitness(M′) = −CM′ and Γ = {NAND, NOR, XNOR,
AND,OR, XOR, NOT, identity}.

3.3 Evaluation platform
This section describes the evaluation platform used for

simulations of the proposed approximate NNs. The software
framework is based on C++ project tiny-cnn2. We have im-
plemented two new types of layers to NNs: the approximate
fully connected layer and approximate convolution layer. In
the software simulation, the approximate multiplication was
realized using a lookup table. The framework uses weights
and inputs with double floating point precision. We rounded
them to the fixed point representation in the range 〈−1, 1〉.
All numbers are unsigned, the sign is determined after the
computation.
2https://github.com/nyanp/tiny-cnn

We have also synthetised multipliers for neural network.
The multipliers were implemented at the Register-Transfer
Level (RTL) in Verilog and mapped to the IBM 45nm tech-
nology using Synopsys Design Compiler Ultra. The hard-
ware multiplication unit utilizes a combinational approxi-
mate unsigned multiplier circuit and logic for the sign ex-
tension. We have utilized the one’s complement method
which is easy to calculate (4n XOR gates), but provides
lower accuracy w.r.t. the two’s complement method (extra
three one-subtractors) used in standard applications. The
framework can estimate energy consumption and area under
iso-speed conditions. The clock frequency for 8 bit neurons
is 3 GHz and 2.5 GHz for 12 bit neurons.

There are equal count of multiplications and additions and
one activation function in the neuron computational model.
Since the count of operations is big (tens or hundreds) and
the multiplication consumes significantly more energy than
addition, the multiplication is the most consuming part and
power reduction of this part significantly contributes to the
overall power consumption reduction.

3.4 Overall design methodology
Finally, the overall methodology for design of approxi-

mate multipliers that will be used in approximate NNs is
presented in Figure 3. The inputs to the methodology are
the accurate neural network (with accuracy J), training and
testing data, quality constraint Q, accurate multiplier and
initial error ε. The whole procedure is as follows. The CGP
algorithm is utilized for creating a set of approximate mul-
tipliers from the accurate one. The approximate multipliers
are used in the pretrained network. In order to achieve the
best quality results, the network is retrained. The NN im-
plementation showing the best accuracy K is selected. The
accuracy K is checked if it meets the quality constraint Q
w.r.t. accurate neural network with accuracy J . If the con-

NN

Train data

Pretrained
NN

init

ε

Test data

Test

Test

Test

Test

B
e
st

 s
e
le

ct
io

n

Retrain

Retrain

Retrain

Train

CGP

CGP

CGP

X

AxMultiplier NN Accuracy

Quality Constraint Q

Accuracy J

K ≥ J x Q

Decrease maximal error ε

K yes

no

Trained NN... ...

Figure 3: Overview of approximate multiplier design for ap-
proximate NNs

straint is not met, the relative maximal approximation error
ε is decreased and next iteration is performed. Due to non-
deterministic generation of approximate multipliers by CGP,
it is necessary to generate several approximate multipliers
and then re-evaluate the accuracy of NN.

4. EXPERIMENTAL SETUP
The goal of the experiments is to investigate the impact of

proposed approximation methods on the accuracy and power

Paper III

72

consumption of NNs. This section provides the experimental
setup and benchmark problems description.

4.1 CGP configuration
CGP will be used to design 7 bit and 11 bit unsigned

multipliers. The sign extension, i.e. 8 bit and 12 bit-width
multipliers, will be designed manually using the one’s com-
plement method. The maximum target arithmetic error ε
of approximate multipliers is taken from the set {0.5%, 1%,
2%, 5%, 10%, 15%, 20%}. We did not employ arithmetic
error beyond 20% for approximate multipliers since the clas-
sification accuracy drops significantly. The approximation
process starts with accurate multipliers (Ripple Carry Ar-
ray, Carry Save Array with RCA and CSA adders, Wallace
Tree with RCA, CSA and CLA adders [23]) which constitute
the so-called initial population. Considering two bit widths,
7 target errors and 6 types of initial multiplier architectures,
there are 84 initial configurations in total.

4.2 NN Accuracy analysis
The accurate multipliers are replaced with candidate ap-

proximate multipliers in the NN which is then retrained in
the supervised learning scenario. Two types of NN and two
classification datasets are utilized for the accuracy analysis.

4.2.1 Handwritten numbers
The first dataset is MNIST (Mixed National Institute of

Standards and Technology) database of handwritten num-
bers [10] which consists of two sets of data. The first one
is the training data set containing 60,000 28 × 28 images
and their labels. The second one contains 10,000 test pairs.
The digits are normalized and centered in fixed-sized images.
The dataset is very popular for quantifying the accuracy of
classification methods. It was shown that neural networks
are able to provide the error rate as low as 0.27% using con-
volutional networks [3]. In this case, we used a MLP network
with 28× 28 input neurons, 300 neurons in the hidden layer
and 10 output neurons whose outputs are interpreted as the
probability of each of 10 target classes (0 – 9).

4.2.2 House numbers
The second dataset is SVHN (Street View House Num-

bers) which is obtained from house numbers in Google Street
View images [15]. The images come from a significantly
harder, unsolved, real-world environment. The dataset con-
tains 73,257 digits for training and 26,032 digits for testing.
Each digit is represented as a pair of 32 × 32 RGB image
and label. While MLP does not provide good accuracy in
this case, LeNet-6 (a 6 layer NN in Figure 4 [9]) is able to
classify the images with a very small error. The network con-
sumes a 32× 32 grayscale image as an input. In order to re-
duce the complexity, we transformed original RGB images to
grayscale using an equation Y = 0.299R+ 0.587G+ 0.114B.

Input image
32x32

6@28x28 6@14x14 16@10x10 16@5x5 120@1x1 10 values

L1 – Convolutional
117,600 mult.

L2 – Subsampling
4,704 mult.

L3 – Convolutional
150,000 mult.

L4 – Subsampling
1,600 mult.

L5 – Convolutional
3,000 mult.

L6 – Fully connected
1,200 mult.

Figure 4: LeNet structure, where L1, L3, L5 and L6 contain
approximate multipliers, i.e. 98 % of multiplications are
approximated.

Layers L1, L3 and L5 perform the convolution. The L3 em-
ploys a special table that indicates which feature map from
6 previous maps is used for generating each of 16 output fea-
ture maps. Last layer (L6) connects all 120 values with each
neuron of the output layer. Convolutional and fully con-
nected layers represent 98 % of all multiplications performed
in the network. Hence, the approximation was applied only
for this layers. Layers L2 and L4 perform a subsampling
by weighted average, but this process was not approximated
because it has a small impact on power consumption.

5. RESULTS
The first part of this section is devoted to the results of

the proposed CGP-based approximation of multipliers. The
second part deals with approximate NNs. We also report
detailed parameters of approximate multipliers.

5.1 Multiplier approximation with CGP
CGP is used with settings given in Section 3.2. Five cir-

cuits (λ = 5) are evaluated in each iteration and new cir-
cuits are created by modifying just 1 integer in the chro-
mosome (h = 1) of the parent circuit. CGP operates with
nc×nr = 900 and nc×nr = 300 (respectively) nodes for 11-
bit and 7-bit multiplier (respectively). The evaluation of a
candidate 11 bit approximate multiplier requires evaluation
of 256x more test vectors than for the 7 bit multiplier (222

vs. 214). Hence, the maximal time for CGP was set to 120
minutes for 11 bit multipliers and 30 minutes for 7 bit mul-
tipliers. CGP performed 1,343 (and 122,773) iterations on
average for 11 (and 7) bit multiplier. The setting of CGP
corresponds with typical values used in the literature [12,
18].

0.0% 0.5% 1.0% 2.0% 5.0% 10.0% 15.0% 20.0%
Approximation ε

0

50

100

150

200

250

300

#
 g

a
te

s

Size of unsigned multipliers (w = 7)

0.0% 0.5% 1.0% 2.0% 5.0% 10.0% 15.0% 20.0%
Approximation ε

100

200

300

400

500

600

700

800

900

#
 g

a
te

s

Size of unsigned multipliers (w = 11)

Figure 5: The number of gates in approximate multipliers

Figure 5 gives the number of gates in approximate multi-
pliers as boxplots showing the results from 60 independent
runs for a given error ε. If the error is zero only 6 values
are presented which corresponds with gate counts in our ac-
curate multipliers. In addition to obtaining many different
tradeoffs between the error and the number of gates, the pro-
posed method guarantees the exact multiplication by zero
in all approximate multipliers. The spread in obtained gate
counts is high especially for the 11-bit multipliers. Please

Paper III

73

note that the approximate multipliers do not prolong delay
of the original accurate multipliers.

5.2 Approximate NNs
For constructing the approximate NNs, each of designed

approximate multipliers was utilized. In total, we thus ob-
tained 2×852 NNs (LeNet6 and MLP with (28×28)-100-10
layers) using 852 approximate multipliers which were sub-
sequently extended to signed versions using the one’s com-
plement. The accuracy of approximate NNs is presented in
Figure 6 for a pretrained network (column initial) and then
for 5 and 10 retrains, respectively, using the backpropaga-
tion algorithm. Each boxplot represents 60 multipliers, e.g.
in MNIST w = 8, ε = 15%, there is one multiplier lead-
ing to the accuracy 20% and another to 97% in the initial
placement in pretrained neural network.

Because it is infeasible to estimate power consumption of
each of 852 circuits, we did a precise power analysis in the
following way. We have selected circuits for each error ε and
bit-width w that have one of top three best accuracies for
SVHN. Then we selected a circuits from the top three sets
that provide the best tradeoff between MNIST accuracy and
the number of used gates. The accuracy of NNs utilizing the
selected approximate multipliers is shown in Figure 7. The
accuracy is normalized w.r.t. a circuit with the same bit-
width and ε = 0%. We have followed the alphabet-reduced

initial 1 2 3 4 5
Retraining

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy

MNIST w=8 ε=15 %

initial 1 2 3 4 5
Retraining

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy

MNIST w=12 ε=15 %

initial 1 2 3 4 5 6 7 8 9 10
Retraining

20%

30%

40%

50%

60%

70%

80%

90%

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy

SVHN w=8 ε=15 %

initial 1 2 3 4 5 6 7 8 9 10
Retraining

55%

60%

65%

70%

75%

80%

85%

90%

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy

SVHN w=12 ε=15 %

Figure 6: Accuracy of NNs for several configurations during
the retraining process. The data shows statistical informa-
tion for all designed multipliers with selected w and ε.

0% 0.5% 1% 2% 5% 10% 15% 20% {1,3,5,7}{1,3} {1}
Approximation "

94%

96%

98%

100%

102%

N
o
rm

a
liz

e
d
 a

cc
u
ra

cy

Alphabet [16]

MNIST w = 8 MNIST w = 12 SVHN w = 8 SVHN w = 12

Figure 7: Normalized accuracy of NNs utilizing the best
approximate multipliers developed by the proposed method
for a given ε and its comparison with [16]. For each con-
figuration, the accuracy is normalized w.r.t. NN employing
accurate multipliers (ε = 0).

approach proposed in [16] and perform the simulation. The
reduced alphabet {1} enables to employ just 40 out of 256
weights for w = 8 and 200 out of 4, 096 weights for w = 12.
It can be seen that results from [16] are very similar for the
proposed approach when ε = 5%.

Error Power Area Accuracy Accuracy
ε µW µm SVHN MNIST

0 % 250.0 440.0 87.00 97.67
0.5 % 201.0 367.7 87.15 97.66
1 % 175.0 316.6 87.08 97.68
2 % 107.0 218.3 87.07 97.65
5 % 58.6 129.9 86.54 97.58
10 % 45.2 109.5 85.11 97.31
15 % 22.3 63.2 84.20 97.42
20 % 22.9 65.8 82.52 97.22

(a)

Error Power Area Accuracy Accuracy
ε µW µm SVHN MNIST

0 % 831.0 1175.0 87.04 97.70
0.5 % 417.0 664.9 87.15 97.69
1 % 475.0 720.8 87.22 97.71
2 % 284.0 523.8 87.06 97.71
5 % 247.0 483.0 86.68 97.61
10 % 125.0 285.0 85.81 97.48
15 % 115.0 262.4 84.95 97.38
20 % 111.0 252.5 83.06 96.18

(b)

Table 1: Power consumption and area of (a) 8-bit and (b) 12-
bit sign-extended approximate multipliers and the absolute
accuracy of NNs utilizing these multipliers.

Table 1 gives power consumption of selected approximate
multipliers (in IBM 45nm process) and the accuracy of NNs
that are utilizing these multipliers in two classification tasks.
In comparison with the original NNs (which utilize the accu-
rate multiplication), one can observe that approximate NN
(w = 8, ε = 10%) provides 81.9% power reduction of multi-
plication process while its accuracy decreases by 1.89% for
SVHN and 0.36% for MNIST. If the error of multiplication
remains below 20% the accuracy is only slightly decreased
(in some cases it is even improved, but the improvement
is negligible) for the MNIST problem. The NN trained for
the SVHN dataset is more sensitive to approximations. The
reason is that SVHN is a significantly harder classification
problem than MNIST, because SVHN contains natural scene
images with a high variability. However, the accuracy degra-
dation of NN is around 1% if ε ≤ 5%. And finally, for ex-
ample, 91% multiplier power reduction (w = 8, ε = 15%)
corresponds with the accuracy degradation of NN less than
2.80%.

Paper III

74

To summarise the results, it was shown in Section 3.3 that
the multiplication has a significant impact on total power
consumption of calculation. When the calculation of LeNet
consumes approximately 44% [7], 91% reduction of multipli-
cation power leads to a significant total power consumption
reduction of the NN.

6. CONCLUSION
This paper provided a methodology for the design of power-

efficient NNs with approximate multipliers. An analysis
of error resiliency of neural networks showed the feasibil-
ity of using the proposed multipliers to achieve trade-off
between classification accuracy versus energy consumption.
By means of CGP, approximate multipliers were designed to
achieve the desired tradeoffs between the accuracy and im-
plementation cost. Resulting approximate NNs, containing
the approximate multipliers, were evaluated using standard
benchmarks (MNIST dataset) and a real-world classification
problem of Street-View House Numbers (SVHN). A signif-
icant improvement in power efficiency was obtained com-
pared to the exact (or original) NNs. In some cases, 91%
power reduction of multiplication was obtained with clas-
sification accuracy degradation less than 2.80% for SVHN
dataset.

7. ACKNOWLEDGMENTS
This work was supported by the Czech science founda-

tion project 14-04197S and by The Ministry of Education,
Youth and Sports of the Czech Republic from the National
Programme of Sustainability (NPU II); project IT4Innov-
ations excellence in science - LQ1602. Syed Shakib Sarwar
and Kaushik Roy’s research were funded in part by National
Science Foundation.

8. REFERENCES
[1] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep
convolutional nets and fully connected CRFs. CoRR,
abs/1412.7062, 2014.

[2] V. K. Chippa, S. T. Chakradhar, K. Roy, and
A. Raghunathan. Analysis and characterization of
inherent application resilience for approximate
computing. In DAC ’13, pages 113:1–113:9, 2013.

[3] D. C. Ciresan, U. Meier, L. M. Gambardella, and
J. Schmidhuber. Convolutional neural network
committees for handwritten character classification. In
ICDAR, 2011.

[4] K.-L. Du and M. Swamy. Neural Networks in a
Softcomputing Framework. Springer London, 2006.

[5] Z. Du, K. Palem, A. Lingamneni, O. Temam,
Y. Chen, and C. Wu. Leveraging the error resilience of
machine-learning applications for designing highly
energy efficient accelerators. In ASP-DAC ’14, 2014.

[6] G. Hinton, L. Deng, D. Yu, et al. Deep neural
networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Signal
Processing Magazine, 29(6):82–97, Nov 2012.

[7] P. Judd, J. Albericio, T. H. Hetherington, T. M.
Aamodt, N. D. E. Jerger, R. Urtasun, and
A. Moshovos. Reduced-precision strategies for
bounded memory in deep neural nets. In HiPEAC
WAPCO ’16, 2016.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. the IEEE, 86(11):2278–2324, Nov 1998.

[10] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST
database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.

[11] A. Lingamneni, A. Basu, C. Enz, K. V. Palem, and
C. Piguet. Improving energy gains of inexact dsp
hardware through reciprocative error compensation. In
DAC ’13, 2013.

[12] J. F. Miller. Cartesian Genetic Programming.
Springer-Verlag, 2011.

[13] S. Mittal. A survey of techniques for approximate
computing. ACM Comput. Surv., 48(4), Mar. 2016.

[14] K. Nepal, Y. Li, R. I. Bahar, and S. Reda. Abacus: A
technique for automated behavioral synthesis of
approximate computing circuits. In DATE ’14, 2014.

[15] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu,
and A. Y. Ng. Reading digits in natural images with
unsupervised feature learning. In NIPS Workshop
2011, 2011.

[16] S. S. Sarwar, S. Venkataramani, A. Raghunathan, and
K. Roy. Multiplier-less artificial neurons exploiting
error resiliency for energy-efficient neural computing.
In DATE ’16, pages 145–150, 2016.

[17] G. Srinivasan, P. Wijesinghe, S. S. Sarwar, A. Jaiswal,
and K. Roy. Significance driven hybrid 8T-6T SRAM
for energy-efficient synaptic storage in artificial neural
networks. In DATE ’16, pages 151–156, 2016.

[18] Z. Vasicek and L. Sekanina. Evolutionary approach to
approximate digital circuits design. IEEE Tr. on
Evolutionary Computation, 19(3):432–444, 2015.

[19] S. Venkataramani, A. Ranjan, K. Roy, and
A. Raghunathan. Axnn: Energy-efficient
neuromorphic systems using approximate computing.
In ISLPED ’15, 2014.

[20] S. Venkataramani, K. Roy, and A. Raghunathan.
Substitute-and-simplify: a unified design paradigm for
approximate and quality configurable circuits. In
DATE’13, 2013.

[21] S. Venkataramani, A. Sabne, V. J. Kozhikkottu,
K. Roy, and A. Raghunathan. Salsa: systematic logic
synthesis of approximate circuits. In DAC ’12, pages
796–801.

[22] S.-C. Wang. Interdisciplinary Computing in Java
Programming, chapter Artificial Neural Network,
pages 81–100. Springer US, Boston, MA, 2003.

[23] N. Weste and D. Harris. CMOS VLSI Design: A
Circuits and Systems Perspective. Addison-Wesley
Publishing Company, USA, 4th edition, 2010.

[24] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu.
Approxann: An approximate computing framework
for artificial neural network. In DATE ’15, 2015.

Paper III

75

Paper IV

Approximating Complex
Arithmetic Circuits with Formal
Error Guarantees: 32-bit
Multipliers Accomplished

ČEŠKA Milan, MATYÁŠ Jiří, MRÁZEK Vojtěch, SEKANINA Lukáš,
VAŠÍČEK Zdeněk and VOJNAR Tomáš

In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design.
Irvine, CA: Institute of Electrical and Electronics Engineers, 2017, pp. 416-423. ISBN
978-1-5386-3093-8.

76

Approximating Complex Arithmetic Circuits with Formal
Error Guarantees: 32-bit Multipliers Accomplished

Milan Češka, Jiřı́ Matyáš, Vojtech Mrazek, Lukas Sekanina, Zdenek Vasicek and Tomas Vojnar
Faculty of Information Technology, Centre of Excellence IT4Innovations

Brno University of Technology, Brno, Czech Republic
{ceskam, imatyas, imrazek, sekanina, vasicek, vojnar}@fit.vutbr.cz

Abstract—We present a novel method allowing one to approx-
imate complex arithmetic circuits with formal guarantees on the
approximation error. The method integrates in a unique way
formal techniques for approximate equivalence checking into
a search-based circuit optimisation algorithm. The key idea of
our approach is to employ a novel search strategy that drives
the search towards promptly verifiable approximate circuits. The
method was implemented within the ABC tool and extensively
evaluated on functional approximation of multipliers (with up
to 32-bit operands) and adders (with up to 128-bit operands).
Within a few hours, we constructed a high-quality Pareto set
of 32-bit multipliers providing trade-offs between the circuit
error and size. This is for the first time when such complex
approximate circuits with formal error guarantees have been
derived, which demonstrates an outstanding performance and
scalability of our approach compared with existing methods that
have either been applied to the approximation of multipliers
limited to 8-bit operands or statistical testing has been used
only. Our approach thus significantly improves capabilities of
the existing methods and paves a way towards an automated
design process of provably-correct circuit approximations.

Index Terms—approximate computing, logical synthesis, ge-
netic programming, formal methods

I. INTRODUCTION

As many important applications are inherently error re-
silient, precision of the involved computations can be traded
for improved energy efficiency, performance, and/or chip area.
Various approaches exploiting this fact have been developed in
recent years and presented under the umbrella of the so-called
approximate computing [1]. These approximations can be
conducted at different system levels with circuit approximation
being one of the most popular.

Circuit approximation techniques can be classified into
two main groups: (1) Frequency/voltage over-scaling where
timing-induced errors can appear as the circuit is operated
on a higher frequency or lower voltage than the nominal
value. (2) Functional approximation where the original circuit
is replaced by a less complex one which exhibits some
errors but improves non-functional circuit parameters such
as power consumption or chip area. We only deal with the
latter approach in this paper. Circuit approximation can be
formulated as a multi-objective optimization problem where
the error and non-functional circuit parameters are conflicting
design objectives. Since the resulting approximate circuits are
common circuits, they can be implemented using the standard
circuit design flow.

We focus on approximate arithmetic circuits (AACs) be-
cause they are frequently used in key applications relevant
for approximate computing. Prominent examples are signal,

image, and video processing circuits (such as filters, discrete
transforms, and motion estimation blocks [2]), or the multiply-
accumulate-transform structures of artificial neurons in neural
networks (consuming about 50% of the total power in neural
network accelerators [3]).

Various error metrics, such as the worst-case relative error
or the mean absolute error, for evaluating approximate circuits
have been proposed (cf. Sect. III). A crucial question is then
how the error of a given approximation is derived. For that,
as discussed in more details in the related work section,
methods based on simulating the circuit on given inputs
are often used. However, such approaches suffer from low
scalability (exhaustive simulation), lack of strong guarantees
(when simulating the circuit for a random subset of the
possible inputs only), and/or specialization to certain circuits
only (statistical models). Alternatively, as in our case, the error
can be derived using formal verification. The main advantages
of this approach lie in that (1) formal error bounds can be given
as a part of the input and (2) the approach is more scalable
than exhaustive circuit simulation.

While formal methods of (exact) equivalence checking have
been studied for decades, only a few formal approximate
checking methods have been used in circuit approximation
tools. Depending on the particular error metric, the error
calculation is transformed to a decision problem and solved by
means of SAT solving or binary decision diagrams (BDDs).
Despite of enormous progress in the area of SAT solvers
and BDD libraries, approximation of arithmetic circuits with
formal error guarantees was so far limited to circuits no more
complex than 16-bit adders and 8-bit multipliers [4], [5], [6].

In this paper, we present a new method for designing
complex approximate arithmetic circuits with formal bounds
on the approximation error. The method uniquely integrates
new formal techniques for approximate equivalence checking
into search-based circuit optimization by means of Cartesian
genetic programming (CGP). The key idea is to employ
a novel search strategy driving the search towards promptly
verifiable approximate circuits. We have implemented the
strategy within the ABC tool and extended the underlying
equivalence checking algorithm to support queries on the
worst-case error. This extension builds on a new effective
construction of miters, i.e. auxiliary circuits interconnecting
the original correct circuit and its approximation such that
their approximate equivalence can be checked.

We decided to optimize for the worst-case error since its
exact value can be important in time-critical and dependable

Paper IV

77

systems (e.g., inverse kinematics in robot control [7]) or when
complex approximate arithmetic circuits are constructed using
less complex approximate building (circuit) blocks. The final
error then depends on how the worst case error is propagated
from low-level blocks to the result. Moreover, even in not so
critical applications such as image processing, low average
error but excessive worst-case error can produce unacceptable
results [8]. Finally, our results suggest that there is also a high
correlation between the worst-case error and the mean absolute
error (Sect. V).

While our primary motivation is to automatically approxi-
mate complex multipliers, our method is directly applicable
to other arithmetic circuits too. The method is capable of
providing Pareto fronts showing high-quality compromises
between the circuit error and non-functional circuit parameters.
Results are presented for approximate multipliers (with up to
32-bit operands) and adders (with up to 128-bit operands)
and compared with several approximate circuits available
in literature. This is for the first time when such complex
approximate arithmetic circuits with formally guaranteed error
bounds have been presented.

Contributions: We propose a new miter construction al-
lowing for efficient approximate equivalence checking tailored
to search-based approximation of complex arithmetic circuits.
We design a novel search strategy for synthesis of approximate
circuits with formal error guarantees that integrates Cartesian
genetic programming and the proposed approximate equiva-
lence checking. Using a resource-limited verifier, the strategy
drives the search towards promptly verifiable candidates and
thus provides scalable approximation of complex circuits. We
develop an implementation of the miter construction and the
search strategy within the ABC tool and perform extensive
experimental evaluation of our approach on large circuits
including approximation of 128-bit adders and 32-bit multi-
pliers. Within several hours, we are able to construct high-
quality Pareto sets of 128-bit adders and 32-bit multipliers
that represent the trade-offs between the circuit error and non-
functional circuit parameters.

II. RELATED WORK

This section presents a brief survey of the most important
approaches developed for functional approximation of mul-
tipliers and adders. We restrict our attention to these two
arithmetic operations because they represent the key compo-
nents of more complex circuits and thus their approximation
has been intensively studied. Moreover, multipliers—due to
their complex structure—represent one of the most difficult
arithmetic circuits from the perspective of both approximation
as well as verification.

A. Approximation Methods

The approximation process usually starts with a fully func-
tional circuit and a target error. Circuit-dependent approx-
imation methods then take the structure of the arithmetic
circuit at the input and (manually or algorithmically) introduce
modifications to carefully preselected parts of the circuit. In

the case of adders, it is possible to approximate elementary
1-bit adders, modify the carry propagation chain, or introduce
segments of adders and generate the carry using different
methods [9]. In the case of multipliers, generation of partial
products, the summation tree, counters, or compressors are
approximated [10]. In addition to that, the simple bit-width
reduction belongs to this category of methods too.

More complex approximate circuits can be constructed by
a smart composition of approximate elementary blocks. For
example, a 2-bit multiplier was approximated in [11] and then
used as a building block of more complex multipliers. This
strategy can be improved, e.g., by configurable lossy compres-
sion of the partial product rows based on their progressive bit
significance [12].

The concept of quality configurable circuits uses elementary
circuits composed in such a way that their error can be
modified online using several configuration bits in order to
dynamically reduce the power consumption. The configuration
bits can (dis)connect some preselected parts of the circuit.
As the source codes of quality configurable adders [13] and
multipliers [2] are available online, we compare them with
approximate circuits obtained using our approach.

General-purpose methods, such as SALSA [14] or
SASIMI [15], aim at automatically approximating circuits in-
dependently of their structure. These methods operate with dif-
ferent circuit representations and employ various heuristics to
identify circuit parts suitable for approximation. Evolutionary
algorithms have been recently applied to accomplish desired
approximations in a holistic scenario [16], [17]. A compre-
hensive library of 8-bit adders and multipliers was built using
multi-objective CGP [18].

B. Simulation-Based Error Computation

Conceptually, the simplest approach to obtain precise error
bounds of an AAC is to simulate its function on all possible in-
puts. However, even on state-of-the-art computer architectures,
this approach has principal scalability limitations causing that
it cannot be used to synthesize approximate circuits with more
than 12-bit operands [19].

Due to that, the error is commonly estimated using a subset
of input vectors only, e.g. 108 inputs were used to evaluate
16-bit adders in [9]. Of course, the main drawback of this
approach is that no formal guarantees on the error bound can
be provided. Alternatively, the circuit error can be calculated
using a statistical model constructed for elementary circuit
components and their compositions [20], [21]. However, re-
liable and general statistical models can only be constructed
in some specific situations.

C. Formal Error Computation

Recently, various applications of formal methods have been
intensively studied in order to improve the scalability of
the design process of correct as well as approximate cir-
cuits. For designing correct circuits (where one insists on
preserving the original functionality but tries to optimize
non-functional parameters), one can consider combinational

Paper IV

78

equivalence checking based on modern SAT solvers, efficient
BDD representations of circuits, or algebraic computation
techniques combining polynomial representation of circuits
with logic reductions [22], [23]. For designing AACs, a more
challenging notion of relaxed or approximate equivalence
checking is needed. This notion requires to quantify the
approximation error or, alternatively, prove whether the error
is below a certain threshold.

To quantify the approximation error using formal verifi-
cation techniques, a use of auxiliary circuits, called miters,
combining the original circuit and the approximate circuit was
proposed in [24]. In order to check whether a predefined worst-
case error is violated by the candidate approximate circuit,
a pseudo-Boolean SAT solver combining a SAT solver with
integer linear programming was then employed.

The number of inputs for which an approximate circuit
returns an incorrect result can be quantified using SAT counting
methods (so-called #SAT solvers). However, despite the recent
progress in the area of #SAT solvers (see, e.g., [25]), our pre-
liminary experiments indicate that #SAT problems encoding
the error quantification are currently beyond the capabilities
of state-of-the-art #SAT tools even for 12-bit multipliers.

An efficient BDD-based approach allowing one to guarantee
the worst-case and the average-case arithmetic error of approx-
imate adders up to 16-bit operands was proposed in [5]. An
alternative approach that uses BDDs representing characteris-
tic functions was employed in [4]. Compared to our approach,
this approximation method lags behind in scalability, which
is demonstrated by the fact that it has been applied to the
approximation of multipliers limited to 8-bit operands and
adders limited to 16-bit operands only.

III. ERROR METRICS FOR AACS

Various metrics describing the error of AACs have been
proposed and shown suitable for different application domains.
The most popular error metrics relevant especially to arith-
metic circuits are the worst-case absolute error (WCAE) and
the mean absolute error (MAE). For a correct circuit G, fur-
ther denoted as the golden circuit, which computes a function
fG, and its approximation C, computing a function fC , where
fG, fC : {0, 1}n → {0, 1}m, these metrics, relativized by the
range of the output, are defined as follows:

WCAE(G,C) =
maxx∈{0,1}n |int(fG(x))− int(fC(x))|

2m
,

MAE(G,C) =

∑
x∈{0,1}n |int(fG(x))− int(fC(x))|

2m
,

where int(x) denotes the integer representation of a bit vec-
tor x and |i| denotes the absolute value of an integer i.

A. Checking Worst Case Errors

To compute whether the WCAE is violated, we can adopt
the concept of approximation miter introduced in [24]. The
general configuration of the approximation miter is shown
in Fig. 1. The miter consists of the inspected approximate

Fig. 1. Approximation miter for the worst-case error analysis, typically
e(x) = |fG(x)− fC(x)|.

circuit C, the golden circuit G which serves as the specifica-
tion, a subtractor, and a comparator which checks whether
the error introduced by the approximation is greater than
a given threshold T . The output of the miter is a single bit
which evaluates to 1 if and only if the error is violated, i.e.
WCAE(G,C) > T .

For a given input vector x, the subtractor calculates the
difference between the output of the golden circuit, i.e. fG(x),
and the output of the approximate circuit, i.e. fC(x). Let
d = int(fG(x))− int(fC(x)) be the error magnitude. A direct
computation of the WCAE according to its definition leads to
evaluating the expression e = |d|, i.e. the absolute difference
of the error magnitude. The absolute difference is typically
calculated by means of a common two’s complement subtrac-
tor (implemented using m full-adders with the first carry-in
set to 1 and inverting each bit of the subtrahend) followed by
a circuit determining the absolute value (computed using m
half-adders and m XOR gates).

B. The Proposed Miter Construction

Miters used in the literature compute the absolute value of
the difference between fG and fC . The computation is usually
performed in two steps. Firstly, a subtractor with a signed
output evaluates fG − fC . Secondly, the absolute value has
to be computed. The circuit performing such a task contains
XOR chains which are a known cause of poor performance
of the state-of-the-art SAT solvers [26]. The main reasons are
that unlike AND/OR gates, the Boolean constraint propagation
over XOR gates is limited, and the XOR operations cause the
CNF form of the formulae to grow rapidly.

In order to avoid long XOR chains at the output of the miter
which slowdown the decision process, we propose to employ
a different approach. The key idea is to compare the result
of the subtractor with both the positive and negative value
of the threshold and thus avoid the expensive evaluation of
the absolute value. For a given threshold T on the worst-case
absolute error WCAE, it holds that e > T is satisfied iff d
is positive and d > T , or d is negative and −d > T . As
we typically deal with numbers in the two’s complement, the
second condition is equal to ¬d > (T −1). Hence, we can use
the two’s complement representation and examine the positive
and negative values separately to avoid usage of the absolute
difference of the output.

Since the threshold T is fixed during the design process, we
can easily avoid the standard comparator consisting of a long
chain of XOR gates. This helps us to further simplify the
miter and improve the performance of the decision procedure.

Paper IV

79

Fig. 2. The proposed approximation miter for the worst-case error analysis:
an example for T = 5, N = 6.

In particular, we replace the sequential comparison of the
particular bits of the operands implemented as

A > B ≡
∨

0≤i≤N−1


Ai ∧ ¬Bi

∧

i<j≤N−1
Aj ⊕Bj


 ,

for B being a constant bit vector representing the threshold
T , by a simpler procedure implemented as

A > B ≡
∨

0≤i≤N−1 ∧ Bi=0


Ai

∧

i<j≤N−1 ∧ Bj=1

Aj


 .

As is evident, the resulting formula does not contain any
XOR gate. Note that d is represented as an m+1 bit number in
the two’s complement—hence, A corresponds to the N least
significant bits of d where N = m. The (m + 1)-th bit is
reserved for the sign and employed for determining whether d
encodes a positive or negative number. The miter for T = 5,
fC and fG with 6-bit outputs is illustrated in Fig. 2.

The proposed construction, compared to the construction us-
ing the absolute value and full comparators, allows us to obtain
smaller and structurally less complex miters. Such miters can
be efficiently used in the SAT-based CEC procedures, resulting
in a significant acceleration of the candidate circuit evaluation.
Our experiments show that, in the case of arithmetic circuits
having 64 output bits (e.g. 32-bit multipliers), the proposed
construction improves the size of the miters (in terms of the
number of And-Inverter Graph (AIG) nodes representing the
circuit) by about 25–35% depending on the value of T , where
T ranged from 0.0001% to 0.5% of the maximal value at the
output (i.e. 264) in our experiment.

IV. SEARCH-BASED DESIGN OF AACS

In this section, we present our novel approach to the search-
based design of AACs combining principles of CGP with
a verifiability-driven search strategy that employs a fitness
function based on the approximate equivalence checking.

A. Cartesian Genetic Programming

CGP is a form of genetic programming where the candidate
solutions are represented as a string of integers of a fixed
length that is mapped to a directed acyclic graph [27]. This
integer representation is called a chromosome. CGP can effi-
ciently represent common computational structures including

Fig. 3. Full adder represented by CGP. Chromosome: (0, 2, 2) (0, 1, 0)
(1, 3, 2) (3, 2, 0) (5, 6, 3) (4, 6, 1) (5, 8), node functions: AND (0), OR (1),
XOR (2), NOT (3).

mathematical equations, computer programs, neural networks,
and digital circuits. The candidate circuits are typically repre-
sented in a two-dimensional array of programmable two-input
nodes. Every node is encoded by three integers in the chromo-
some representation where the first two numbers denote the
node’s inputs, the third represents the node’s function (see the
illustration in Fig. 3).

In circuit approximation, the evolution loop starts with
a parent representing a correctly working circuit. New can-
didate circuits are obtained from the parent using a mutation
operator which performs random changes in the candidate’s
chromosome in order to obtain a new, possibly better candidate
solution. In the next step, the algorithm evaluates the quality of
each solution using a specified metric, called the fitness func-
tion. This function assesses important correctness and perfor-
mance aspects of circuits. The candidate with the best fitness
value is chosen as the parent of the next generation, the other
solutions are removed and the evolution continues with gener-
ating new candidate circuits. The whole loop is repeated until
a termination criterion is met. For details of CGP, see [27].

The most critical and time consuming part of the CGP loop
is the fitness evaluation, which principally limits the scalability
of the search-based design. To alleviate this problem, we
propose below a novel search strategy.

B. Verifiability-Driven Search Strategy

The verifiability-driven search strategy can be seen as a gen-
eral concept improving the scalability of evolutionary design
methods. We demonstrate its key idea on the below problem.

Problem: For a given golden circuit G and a threshold T ,
our goal is to find a circuit C∗ with the minimal size such
that the error WCAE(G,C∗) ≤ T .

This problem formulation allows us to define the fitness
function f in the following way:

f(C) =

{
size(C) if WCAE(G,C) ≤ T ,
∞ otherwise

where size(C) denotes the size of the circuit C. Since the
procedure deciding whether WCAE(G,C) ≤ T (further
denoted as SAT solver) represents the most time consuming
part of the design loop, we avoid calling the procedure as
much as possible. Therefore, we only call SAT solver for
circuits C satisfying size(C) < size(B) where B is the best
solution with an acceptable error (i.e., WCAE(G,B) ≤ T)
that we have found so far. Our experiments show that, during
the evolution process, a significant set of candidate designs C
does not satisfy the condition size(C) < size(B) and thus
their fitness can be easily assessed without SAT solver.

Paper IV

80

Miter template
Golden model G

Threshold on

WCAE

Initial circuit B

Time limit

Miter

UNSATSAT / limits L reachedGreater

yes Approximate circuit with WC absolute error guarantee

P‘

+

Resource
limits L

C

no

Golden model

C

B

Generate
approximate

circuit C from B

Compare
Size(C) and
Size(B)

SAT solver

Replace B by C
Time limit
exceeded

Fig. 4. The main steps of the proposed verifiability-driven search scheme.

Our experiments further indicate that a long sequence of
candidate circuits Bi improving the size and having an ac-
ceptable error has to be typically explored to obtain a solution
that is sufficiently close to C∗. Therefore, both the SAT and
the UNSAT queries to SAT solver have to be short. To this
end, we use an additional criterion for the evaluation of the
circuit C, namely, the ability of SAT solver to prove that
WCAE(G,C) ≤ T with a given limit L on the resources
available to the underlying decision procedure. If the proce-
dure fails to prove WCAE(G,C) ≤ T within the limit L, we
set f(C) =∞ and generate a new candidate. The design loop
using the verifiability-driven search is illustrated in Fig. 4.

The inputs of the design process include: (1) the golden
model G, (2) the threshold on the worst case absolute error T ,
(3) the initial circuit B having an acceptable error (it can
be either the golden model or a suitable approximation we
want to start with), and (4) the time limit on the overall
design process. The loop exploits the CGP principles; namely,
it uses mutations to generate new candidate circuits C from
the candidate circuit B representing the best approximation
of the circuit C∗ that we have found so far. The circuit C
is then evaluated using the fitness function f as described
above. If the candidate C belongs to the improving sequence
(i.e., size(C) < size(B) and WCAE(G,C) ≤ T), we replace
B by C. The design loop terminates if the time limit is reached
and B is returned as the output of the design process.

In our verifiability-driven search scheme, we use the re-
source limit L (as a parameter of the design loop) to drive the
search towards candidates that can be promptly evaluated. We
intentionally throw away improving candidates Bi that require
greater resources and thus longer, but still feasible, verification
time. The reason for this is the fact that by mutating these
candidates we would most likely obtain solutions that would
require the same or even longer verification times and thus
finding the whole improving sequence would become time-
infeasible. Instead, we require that every improving candidate
Bi has to be verifiable using the resource limit L and thus
drive the search towards candidates Bi that, for a given time
limit on the overall design process, lead to longer improving
sequences. Our experiments indicate that these sequences lead
to candidate circuits that are closer to C∗. Since we are able
to evaluate a much larger set of candidate circuits, we have
a better chance to find a long improving sequence within the
given time provided that it exists for the limit L.

The obvious disadvantage is that we possibly cut improving
sequences that would lead to good solutions within the given
design time. It can also happen that, for the limit L, no
improving sequence exists, while it exists for a slightly greater
resource limit. Despite of this limitation, our results clearly
show that the proposed verifiability-driven search strategy
allows us to utilise the given design time in a more efficient
way compared to the standard evolution schemes.

C. Integration to the ABC Tool

The proposed approach performs the approximation at the
level of the CGP problem representation (i.e., on acyclic
oriented graphs with arbitrary two-input logic functions in the
nodes). The green part of Fig. 4 shows the position of ABC in
our methodology. ABC is primarily used to construct the miter
and decide whether the maximal arithmetic error of the candi-
date circuit is not above T . The proposed miter construction
allows us to reduce the problem of approximate equivalence
checking to the Boolean satisfiability (SAT) problem. In order
to evaluate a candidate circuit, (1) a candidate chromosome
is used to construct a corresponding AIG, (2) another AIG,
representing the golden circuit, is constructed (just once at the
beginning of the evolution), and (3) the miter is built. The
state-of-the-art techniques used for CEC in the ABC tool—
the iprove engine—are then applied to decide the equiv-
alence. An important feature of the mix of techniques used
in iprove is that one can control the time needed for one
query, which is the key feature we exploit in our verifiability-
driven search strategy. In particular, the satisfiability checking
can be controlled by fine-tuning various resource limits for the
different techniques used, such as the number of simulations
performed to prove non-equivalence, the number of conflicts in
structural hashing, or the number of logic-reduction steps. We
so far used solely a limit on the maximal number of conflicts
in which a single variable (representing an AIG node) can
be involved during the backtracking process. Our experiments
show that this resource limit allows us to effectively control
the time needed for particular iprove queries and thus to
drive the search towards promptly verifiable circuits.

A similar approach has recently been used in circuit ap-
proximation exploiting the approximate-aware rewriting of an
AIG representation of circuits [4]. Principally, our approach
differs in the candidate circuit representation (the gate-level
CGP encoding), its evaluation, and in using the verifiability-
driven evolution instead of a simple greedy algorithm for AIG
pruning. The gate-level representation is an important feature
of our approach which allows us to efficiently capture XOR-
intensive structures existing in arithmetic circuits.

V. RESULTS

To evaluate the proposed method, we primarily focused on
complex approximate multipliers as they are the most chal-
lenging benchmark problems. Since only 8-bit multipliers with
guaranteed error bounds were presented in the literature so
far, there are no solutions available for a direct comparison in
the case of 16-bit and more complex approximate multipliers.

Paper IV

81

Hence, (1) we compare the 16-bit approximate multipliers
that we generated using our method with 16-bit multipliers
(available in the literature) whose error was determined using
simulation, and then (2) we present Pareto fronts (the error and
key circuit parameters) for 20-bit, 24-bit, 28-bit, and 32-bit
approximate multipliers and up to 128-bit approximate adders
to demonstrate the scalability of the proposed method.

A. Experimental Setup

We implemented our approach, including the miter con-
struction and verifiability-driven evolution, within the ABC
tool [28]. Array multipliers and ripple carry adders composed
of 2-input gates were employed as the initial (golden) circuits
for CGP. The number of nodes in the CGP’s grid is equal to
the number of gates of the initial circuit. The set of functions
consists of the common two-input logic gates, the buffer, and
the inverter. We used 2 circuits in the population and 5 integers
were modified by the mutation operator.

For each target WCAE, we performed 30 independent runs
of CGP to obtain statistically significant results. Each CGP
was executed for 2 hours on an Intel Xeon X5670 2.4 GHz
processor using a single core. The individual CGP runs are
independent and thus we executed them in parallel using
a cluster of these processors to accelerate the design process.

For purposes of the fitness evaluation, the circuit size is
estimated as the sum of the relative area of the two-input
gates used, where the sizes of each gate are taken from the
technology library. At the end of the evolution, the 5 most
fitting circuits for each WCAE were synthetized using the
Synopsys Design Compiler (high-effort compiling for a better
quality of the results) for a 45 nm technology library in
order to obtain non-functional parameters like the area and
power-delay product (PDP). The accurate implementations
were created by means of Verilog ∗ and + operators and
synthesized in the same way as approximate circuits.

B. 16-bit Approximate Multipliers

An evaluation of the verifiability-driven search: In the
first experiment, we approximated the golden 16-bit multiplier
for 9 target values of WCAE from the set {0.1, 0.2, 0.5, 1, 2,
5, 10, 15 and 20%} and evaluated the proposed method with
three different settings of the resource limit L controlling the
maximal number of conflicts for one AIG node: (1) no limits,
i.e., L=∞, (2) L=160K, and (3) L=20K. The limits L=160K
and L=20K roughly correspond to the time limit of 120 sec.
and 3 sec., respectively, on 16-bit multipliers.

Fig. 5 shows that, for WCAE ≥ 2%, the resource limit L has
a marginal impact on the PDP and area. However, with a de-
creasing target WCAE, the limit L=20K provides significantly
better results. For example, if WCAE = 0.1% and L=20K,
22,050 SAT calls were produced and 11% of them were
terminated on average because of the termination condition.
In the case of L=160K, 856 SAT calls were produced only
(15% terminated). The average number of SAT calls (across
all target errors) that were forced to terminate is 6.28%
(for L=160K) and 8.84% (for L=20K). If L=∞, 170 SAT

0.1 0.2 0.5 1 2 5 10 15 20
Maximal allowed worst-case absolute error [%]

0

1

2

3

4

5

6

7

8

9

P
D

P
 [
1
0
¡
12
W
s]

0.1 0.2 0.5 1 2 5 10 15 20
Maximal allowed worst-case absolute error [%]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
re

a
 [
¹
m
2
]

limit L=1 limit L=160K limit L=20K

Fig. 5. PDP and area of approximate 16-bit multipliers for 9 target errors
obtained using 3 different resource limits L on the SAT solver. The red line
shows the PDP and area of the accurate multiplier.

calls were evaluated for WCAE = 0.1% only. Despite the
fact that some potentially good candidate circuits are quickly
rejected, the aggressive resource limits allowed us to generate
and evaluate significantly more candidate circuits and thus to
substantially improve the quality of results. Box plots in Fig. 5
also show that independent runs with L=20K lead to circuits
having very similar parameters (low inter-quartile distances)
and thus this limit is be used in the following experiments.

Note that the parameters of some approximate multipliers
shown in Fig. 5 are worse than for the accurate multiplier.
The reason is that the relative area is the only non-functional
circuit parameter optimized by CGP while the PDP and area
are computed at the end of the optimization using the Synopsys
Design Compiler. We have never observed this discrepancy for
the limit L=20K.

A comparison with other multipliers: Next, we generated
16-bit approximate multipliers using the setup described in
the previous section and compared them with approximate
multipliers available in the literature. In order to perform
a fair comparison (the error of the published multipliers
was originally estimated using simulation), we modified our
method and applied a binary search strategy to determine the
WCAE exactly. In addition to WCAE, we also provide MAE
obtained using simulation (109 vectors).

We considered the following 16-bit approximate multipliers:
M1 Approximate configurable multipliers from the lpACLib

library [13], where the multiplication is recursively sim-
plified using two different variants (denoted as Lit and
V1) of an elementary block representing a 2-bit multiplier.
The partial results are summed using accurate adders. We
implemented 32 different architectures consisting of four
8-bit multipliers where each of these multipliers is config-
urable as exact/approximate (24 configurations) and can
be built using either Lit (M1Lit) or V1 (M1V1) blocks.

Paper IV

82

103 104 105 106 107 108 109

Mean absolute error

0

2

4

6

8

10

P
D

P
[1

0−
1
2
W
s]

10−4 10−3 10−2 10−1 100 101 102

Worst case absolute error [%]

0

2

4

6

8

10

P
D

P
[1

0−
1
2
W
s]

Proposed method
M1Lit (ConfMult16x16Lit)
M1V1 (ConfMult16x16V1)
M2 (BSDLC)

M3 (Bit-width truncation)
M4 (Kulkarni 2x2)
M5 (EvoApproxLib8)
Accurate multiplier

Fig. 6. Parameters of 16-bit approximate multipliers considered in our study.

M2 The approximate multiplier employing the bit-significan-
ce-driven logic compression as introduced in [12].

M3 Approximate multipliers obtained from exact multipliers
using the bit-width reduction. The reduction replaces 16-
bit multipliers by accurate x-bit multipliers (for x < 16).
It ignores the LSBs of the operands and leaves the LSBs
of the result zero.

M4 The approximate multiplier composed of approximate
2-bit multipliers as proposed in [11].

M5 Approximate multipliers composed of 8-bit multipliers
that are available in the EvoApproxLib library [18]. The
construction principle is taken from [11].

For all considered multipliers, the value of PDP is plotted
against WCAE and MAE in Fig. 6 (only Pareto fronts are
visualized). While the bit-width reduction provides the same
quality of results as our method for large target errors (up to
20% WCAE), it is significantly outperformed by our approach
for small target errors. Despite that the existing approximate
multipliers typically exhibit good tradeoffs between the error
and PDP in specific applications (as demonstrated in the
relevant literature), Fig. 6 clearly shows that these multipliers
are considerably Pareto-dominated by the multipliers obtained
using our approach. These results were, in fact, expected as
the proposed method is based on a global holistic optimiza-
tion approach while the other approximate multipliers were
composed of smaller ones and the composition procedure
always introduces some overhead. Finally, it is an interesting
observation that MAE follows the trend of WCAE. It seems
that WCAE can be used as a good indicator of MAE.
C. Complex Multipliers

The aim of our further experiments is to show that the pro-
posed method is scalable and can approximate complex multi-
pliers. We present the results of the approximation process on

12-bit, 16-bit, 20-bit, 24-bit, 28-bit, and 32-bit multipliers. The
target WCAEs were adapted accordingly to respect the range
of values in the different considered bit widths. We used the
same setup as in the previous sections but increased the time of
optimization to 4 hours for the 24-bit multiplier and 6 hours for
larger multipliers. The reason is that the search space becomes
much bigger. While the exact 12-bit multiplier contains 850
two-input gates, the 32-bit exact multiplier requires over 6,300
gates. We obtained (as the result of evolution) over 1190
unique multipliers. Because of this huge number and for
the sake of clarity, Fig. 7 shows parameters of approximate
multipliers occupying the Pareto fronts only.

In the experiments, we observed that, in the case of 12-
bit multipliers, 2.4% of SAT calls were terminated on av-
erage due to the resource limit L=20K only. However, this
number increased to 36.9% in the case of approximate 32-bit
multipliers. For all bit widths, the MAE is around 30% of
the worst-case error, which again demonstrates that WCAE is
a good indicator of MAE. Fig. 7 also shows that the obtained
approximations cover the whole range (up to 100%) of the
Area axis. However, this is not the case for PDP. The reason
is that we optimize the relative area and PDP is computed
after the synthesis.

Since Pareto fronts shown in Fig. 7 follow the trend of the
highly competitive fronts for the 16-bit multipliers presented
before, we believe that the tradeoffs between the circuit error
and size obtained for more complex multipliers are also very
good and thus the corresponding circuits represent the cutting
edge of approximate multipliers and can serve as a new
benchmark set for approximate computing.

D. Approximate Adders

In order to demonstrate that the proposed method is appli-
cable for other complex arithmetic circuits, we constructed
Pareto fronts for approximate adders with 20-bit to 128-
bit operands. Approximation of adders is much easier than
approximation of multipliers since adders are structurally less
complicated and the number of outputs is lower. For example,
the exact 20-bit adder requires 140 two-input gates and the
128-bit adder consists of 1,000 gates.

The approximate adders were constructed using the same
setup as in the previous section. A single CGP run took 2 hours
(for all bit widths). Fig. 8 shows parameters of approximate
adders occupying the corresponding Pareto fronts. We report
16 to 18 non-dominated implementations of 24-bit, 28-bit, and
32-bit adders in terms of PDP and WCAE. For 64-bit and 128-
bit adders, 12 tradeoffs are reported only because we have
restricted the number of target error levels. Similarly to the
evolved multipliers, the proposed approximate adders are also
good candidates for including into a new benchmark suite.

VI. CONCLUSION

Automated design of approximate circuits with formal error
guarantees is a landmark of provably-correct construction of
energy-efficient systems. We present a solution to this prob-
lem, introducing a novel verifiability-driven search strategy

Paper IV

83

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

Worst case absolute error [%]

0%

20%

40%

60%

80%

100%

A
re

a
 [

%
]

Area and WCAE for multipliers

101 103 105 107 109 1011 1013 1015

Mean absolute error

0%

20%

40%

60%

80%

100%

P
D

P
 [

%
]

PDP and MAE for multipliers

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

Worst case absolute error [%]

0%

20%

40%

60%

80%

100%

P
D

P
 [

%
]

PDP and WCAE for multipliers

12x12 multipliers 16x16 multipliers 20x20 multipliers 24x24 multipliers 28x28 multipliers 32x32 multipliers

Fig. 7. Pareto fronts showing parameters of evolved approximate multipliers. 100% refers to parameters of the accurate multiplier for a given bit width.

10-37 10-34 10-31 10-28 10-25 10-22 10-19 10-16 10-13 10-10 10-7 10-4 10-1

Worst-case absolute error [%]

0%

20%

40%

60%

80%

100%

P
D

P
 [

%
]

20+20 adders
24+24 adders

28+28 adders
32+32 adders

64+64 adders
128+128 adders

Fig. 8. Pareto fronts showing parameters of evolved approximate adders.
100% refers to parameters of the accurate adder for a given bit width.

that uniquely integrates approximate equivalence checking into
a search-based circuit optimisation algorithm. Able to con-
struct high-quality Pareto sets of 32-bit multipliers and 128-bit
adders, our method shows excellent scalability and paves the
way for design automation of complex approximate circuits.

In the future, we will thoroughly explore relationships be-
tween resource limits on the underlying SAT solvers and the
structure of the resulting circuits. This will allow us to further
improve the performance of our method and thus to go beyond
the approximation of 32-bit multipliers. We will also integrate
the constructed circuits into real-world energy-aware systems
to demonstrate practical impacts of our work.

Acknowledgments: This work has been supported by the
Czech Science Foundation grant No. GA16-17538S.

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, 2016.

[2] M. Shafique, R. Hafiz et al., “Invited: Cross-layer approximate comput-
ing: From logic to architectures,” in Proc. of DAC’16, 2016, pp. 1–6.

[3] P. Judd, J. Albericio et al., “Proteus: Exploiting numerical precision
variability in deep neural networks,” in ICS’16, 2016, pp. 1–12.

[4] A. Chandrasekharan, M. Soeken et al., “Approximation-aware rewriting
of AIGs for error tolerant applications,” in Proc. of ICCAD’16, 2016,
pp. 83:1–83:8.

[5] Z. Vasicek, V. Mrazek, and L. Sekanina, “Towards low power approxi-
mate DCT architecture for HEVC standard,” in Proc. of DATE’17, 2017,
pp. 1576–1581.

[6] C. Yu and M. Ciesielski, “Analyzing imprecise adders using BDDs – a
case study,” in Proc. of ISVLSI’16, 2016, pp. 152–157.

[7] B. Grigorian and G. Reinman, “Dynamically adaptive and reliable
approximate computing using light-weight error analysis,” in Proc. of
AHS’14, 2014, pp. 248–255.

[8] D. S. Khudia, B. Zamirai et al., “Rumba: An online quality management
system for approximate computing,” in ISCA’15, 2015, pp. 554–566.

[9] H. Jiang, J. Han, and F. Lombardi, “A comparative review and evaluation
of approximate adders,” in Proc. of GLVLSI’15, 2015, pp. 343–348.

[10] H. Jiang, C. Liu et al., “A comparative evaluation of approximate
multipliers,” in Int. Symp. Nanoscale Architectures, 2016, pp. 191–196.

[11] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for power
in a multiplier architecture,” J. Low Power Electronics, vol. 7, no. 4, pp.
490–501, 2011.

[12] I. Qiqieh, R. Shafik et al., “Energy-efficient approximate multiplier
design using bit significance-driven logic compression,” in Proc. of
DATE’17, 2017, pp. 7–12.

[13] M. Shafique, W. Ahmad et al., “A low latency generic accuracy
configurable adder,” in Proc. of DAC’15, 2015, pp. 86:1–86:6.

[14] S. Venkataramani, A. Sabne et al., “SALSA: systematic logic synthesis
of approximate circuits,” in Proc. of DAC’12, 2012, pp. 796–801.

[15] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: a unified design paradigm for approximate and quality config-
urable circuits,” in Proc. of DATE’13, 2013, pp. 1367–1372.

[16] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate
digital circuits design,” IEEE Trans. Evol. Comput., vol. 19, no. 3, pp.
432–444, 2015.

[17] K. Nepal, S. Hashemi et al., “Automated high-level generation of low-
power approximate computing circuits,” IEEE Trans. Emerg. Topics
Comput., pp. 1–13, 2017.

[18] V. Mrazek, R. Hrbacek et al., “Evoapprox8b: Library of approximate
adders and multipliers for circuit design and benchmarking of approxi-
mation methods,” in Proc. of DATE’17, 2017, pp. 258–261.

[19] V. Mrazek, S. S. Sarwar et al., “Design of power-efficient approximate
multipliers for approximate artificial neural networks,” in Proc. of
ICCAD’16, 2016, pp. 81:1–81:7.

[20] C. Li, W. Luo et al., “Joint precision optimization and high level
synthesis for approximate computing,” in DAC’15, 2015, pp. 1–6.

[21] S. Mazahir, O. Hasan et al., “Probabilistic error modeling for approxi-
mate adders,” IEEE Trans. Comput., vol. 66, no. 3, pp. 515–530, 2017.

[22] M. Ciesielski, C. Yu et al., “Verification of gate-level arithmetic circuits
by function extraction,” in Proc. of DAC ’15, 2015, pp. 52:1–52:6.

[23] A. Sayed-Ahmed, D. Große et al., “Formal verification of integer
multipliers by combining Gröbner basis with logic reduction,” in Proc.
of DATE’16, 2016, pp. 1048–1053.

[24] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco:
Modeling and analysis of circuits for approximate computing,” in Proc.
of ICCAD’11, 2011, pp. 667–673.

[25] S. Chakraborty, K. S. Meel et al., “Approximate probabilistic inference
via word-level counting,” in Proc. of AAAI’16, 2016, pp. 3218–3224.

[26] C.-S. Han and J.-H. R. Jiang, “When boolean satisfiability meets
gaussian elimination in a simplex way,” in CAV’12, 2012, pp. 410–426.

[27] J. F. Miller, Cartesian Genetic Programming, 2011.
[28] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength

verification tool,” in Proc. of CAV’10, ser. LNCS, 2010, pp. 24–40.

Paper IV

84

Paper V

Towards Low Power Approximate
DCT Architecture for HEVC
Standard

VAŠÍČEK Zdeněk, MRÁZEK Vojtěch and SEKANINA Lukáš

In: Proc. of the 2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE). Lausanne: European Design and Automation Association, 2017, pp. 1576-1581.
ISBN 978-3-9815370-9-3.

85

Towards Low Power Approximate DCT
Architecture for HEVC Standard

Zdenek Vasicek, Vojtech Mrazek and Lukas Sekanina
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno, Czech Republic
Email: {vasicek, imrazek, sekanina}@fit.vutbr.cz

Abstract—Video processing performed directly on IoT nodes
is one of the most performance as well as energy demanding
applications for current IoT technology. In order to support real-
time high-definition video, energy-reduction optimizations have
to be introduced at all levels of the video processing chain. This
paper deals with an efficient implementation of Discrete Cosine
Transform (DCT) blocks employed in video compression based
on the High Efficiency Video Coding (HEVC) standard. The
proposed multiplierless 4-input DCT implementations contain
approximate adders and subtractors that were obtained using
genetic programming. In order to manage the complexity of
evolutionary approximation and provide formal guarantees in
terms of errors of key circuit components, the worst and average
errors were determined exactly by means of Binary decision
diagrams. Under conditions of our experiments, approximate 4-
input DCTs show better quality/power trade-offs than relevant
implementations available in the literature. For example, 25%
power reduction for the same error was obtained in comparison
with a recent highly optimized implementation.

I. INTRODUCTION

Small embedded systems connected to Internet of Things
(IoT) are expected to be a new infrastructure of the information
society. These systems range from simple smart sensors to
advanced embedded applications requiring considerable com-
puting resources. Video processing performed directly on IoT
nodes is one of the most performance as well as energy
demanding applications. In order to support real-time coding
and decoding of high definition video on low cost devices,
energy consumption optimization has to be introduced at all
levels of the video processing system.

One of the most frequently performed and thus energy
demanding operations is the Discrete Cosine Transform (DCT)
block. In commonly optimized DCT blocks, bit width of
all operations is reduced as much as possible, multipliers
are replaced with additions, subtractions and shifts, and less
important logic is pruned in order to reduce power consump-
tion [1]. As video processing is, in principle, an error re-
silient application, DCT can further be approximated. Various
approaches to the DCT approximation will be reported in
Section II.

This paper deals with a deep optimization and approxima-
tion of the DCT block employed in the state of the art High Ef-
ficiency Video Coding (HEVC) standard [2]. In addition to the
common optimization techniques, we propose to approximate
adders and subtractors of a multiplierless DCT in such a way
that the resulting error is kept under a predefined threshold.

As the error of addition/subtraction is computed formally,
without applying circuit simulation, it is always guaranteed
that the target error is never exceeded. The error calculation
procedure is based on relaxed equivalence checking using
Binary Decision Diagrams (BDDs). BDDs are also used to
analyze power consumption during the approximation process.

The approximate adders and subtractors are generated using
a genetic programming-based approximation method. The so-
called functional gate-level approximation is, in fact, per-
formed in which accurate logic circuits are gradually simpli-
fied while an acceptable error is tolerated. Various approximate
implementations of DCT showing good trade-offs between
the quality of video processing and power consumption were
obtained. These implementations were employed in refer-
ence HEVC implementation in order to compare them with
available relevant implementations and determine their impact
on the quality of video processing on selected benchmark
video sequences. For example, 25% power reduction for the
same error was obtained in comparison with a recent highly
optimized implementation [1].

The rest of the paper is organized as follows. Section II
briefly surveys relevant approximate circuit design approaches.
Section III is devoted to the principles of DCT and its
efficient implementation. The proposed approximation method
for adders and subtractors is presented in Section IV. After
presenting the experimental setup in Section V, results are
reported and discussed in Section VI. Conclusions are given
in Section VII.

II. RELATED WORK

Efficient implementations of signal processing blocks in
general and DCT in particular have been developed for
decades (see the introduction to DCT in Section III). This
effort has recently led to establishing a new High Efficiency
Video Coding standard. Profiling results of HEVC given in [3]
indicate that there is a good potential for improving energy
and implementation efficiency especially of forward as well
as inverse DCT blocks. These improvements can, in fact, be
considered as approximations introduced at various levels of
the algorithm and its implementation. They primarily include
employing the integer data representation, bit width reduction,
multiplierless multiplication and coefficient approximation [3],
[1].

Paper V

86

A. DCT as a Test Problem for Approximate Computing

However, with the development of the approximate com-
puting paradigm, more radical approximations have been pro-
posed. DCT blocks of JPEG and MPEG often serve as one of
several test circuits used to evaluate the quality of general
purpose approximation methods which usually perform the
optimization and approximation at the gate level; see, for
example, SALSA [4], ASLAN [5] and the logic isolation based
approximation method [6]. In paper [7], several simplified
transistor-level implementations of a 1 bit full adder were
introduced and used in approximate adders that are employed
in DCT of the JPEG implementation. Raha et al. proposed
a power efficient video encoder in which all the adders
and subtractors of the motion estimation and DCT blocks
were replaced by their approximate configurable versions. The
method enabled to automatically adjust a degree of hardware
approximation dynamically based on the video characteris-
tics [8]. A very specific optimization approach exploiting the
sensitivity error analysis and error variance propagation in the
DCT graph was developed in [9]. With respect to the available
budget, the optimal number of 1 bit adders that should be
approximated in all adders and multipliers was computed using
the mixed integer nonlinear problem solver. The determined
1 bit adders were then replaced by their approximate versions
taken from [7].

With respect to the approach developed in this paper, the
aforementioned methods show two main drawbacks. Firstly,
they do not deal with DCT intended for HEVC. Secondly, the
papers show that DCT can be approximated, but the results
are not compared against other DCT approximation methods.

B. Approximate Adders

As the proposed approach is based on approximate adders,
this subsection briefly surveys this subarea of approxi-
mate computing. Adders are approximated by either general-
purpose approximation methods or problem-specific methods.
In the former case, the adders serve as one of many circuit
classes that can be approximated by methods such as [4], [6]
or multiobjective genetic programming-based methods [10].
Problem-specific methods exploit the structure of conventional
adders. Another class of circuits are quality configurable
adders (e.g. GeAR adders) which allow for a dynamic control
of the error-power trade-off [11].

Four types of approximate adders are considered and eval-
uated in [12]: (1) Speculative adders in which the carry is
speculated for each sum bit using only one or several bits.
(2) Segmented adders, where an n-bit adder is divided into
k-bit sub-adders and the carry is then generated by using
different methods. (3) Carry-select adders in which multiple
sub-modules are used to compute the sum for different carry
values, and the result is determined according to the carry of
a sub-module. (4) Approximate 1 bit full adders where the
full adder is approximated at the transistor level and used as
a building block of more complex adders [7].

C. Error Calculation

Almost all circuit approximation methods compute the error
by circuit simulation. An open question is how many test
vectors have to be applied in order to obtain trustworthy
results. Only a few papers deal with formal analysis of can-
didate approximate circuits to establish the error and provide
formal guarantees on the error bound. Checking the worst error
can be based on satisfiability (SAT) solving as demonstrated
in [13]. Binary decision diagrams (BDDs) were used to obtain
the average arithmetic error, worst error, error rate [14] and
average Hamming distance [15]. However, the formal methods
are currently inapplicable for determining some types of errors
for certain classes of circuits, e.g. the average error for non-
trivial multipliers.

III. DCT AND ITS APPROXIMATION

A. Principle of DCT

For a given input vector X = [x0,x1, . . . ,xN−1]T, its
corresponding DCT output Y = [y0,y1, . . . ,yN−1]T is
given by Y = CNX, where CN denotes the N -point DCT
kernel. In general, CN consists of real numbers. The elements
cij ∈ CN are defined as cij = A√

N
cos[πN (j + 1

2)i], where
i, j = 0, . . . , N − 1. A is equal to 1 and

√
2 for i = 0 and

i > 0 respectively.
HEVC standard utilizes 4-point, 8-point, 16-point and 32-

point DCT in its forward (video coder) as well as inverse
(video decoder) form. In order to simplify the complexity
of hardware circuits computing the output of DCT, HEVC
scales the coefficients by a power of two and rounds them to
the integer value. The scaling and rounding was optimized to
preserve the main advantages and properties of DCT such as
the orthogonality of basis vectors, equal norm of basis vectors
and good compression efficiency on the one hand as well as
the low complexity of hardware circuits on the other hand [16].

Let us restrict ourself to a 4-point 1D forward transform
whose output is defined as follows:



y0
y1
y2
y3


 = C4




x0
x1
x2
x3


 =




64 64 64 64
83 36 −36 −83
64 −64 −64 64
36 −83 83 −36







x0
x1
x2
x3


 (1)

The output of DCT could be determined by means of
straightforward matrix multiplication. This approach, however,
requires to perform N2 multiplications and N(N − 1) addi-
tions. The costly matrix multiplication could be avoided by
utilizing the symmetry properties of basis vector. A decompo-
sition technique known as Even-Odd decomposition [16] could
be employed to reduce the computational complexity of DCT.
The 4-point DCT given by Eq. 1 can then be rewritten to

[
y0
y2

]
= Co

2

[
a0
a1

]
=

[
64 64
64 −64

] [
a0
a1

]

[
y1
y3

]
= Ce

2

[
b0
b1

]
=

[
83 36
36 −83

] [
b0
b1

] (2)

Paper V

87

where a0 = x0+x3, a1 = x1+x2, b0 = x0−x3, b1 = x1−x2.
This gives us a hardware architecture shown in Fig. 1. In the
first part (I.), the partial sums ai and bi are calculated using
two w-bit adders and two w-bit subtractors, both producing
a (w + 1)-bit signed integer value. In the second part (II.),
multiplication is performed. Finally, the multiplied values are
summed up by two adders and two subtractors (part III.).

Fig. 1: Architecture of 4-point integer DCT.

In order to reduce the complexity of adder (subtractor)
computing the output y0 (y2), the multiplication by factor 64
which is performed by means of a simple logic shift may be
postponed and executed after summing (subtracting) the partial
sums a0 and a1. This simple modification helps to reduce the
bitwidth of adder (subtractor) by six. Both components operate
with two (w + 1)-bit integers.

As the coefficients utilized in Eq. 2 are constant, we can
avoid the usage of costly multipliers and employ a much
efficient approach – multiplierless multiple constant multiplier
(MCM) which determines the value of 36 · bi and 83 · bi
efficiently. MCM is a hardware block that exclusively consists
of additions, subtractions, and shifts.

Fig. 2: Multiplierless multiple constant multiplier (83, 36)

The most compact implementation of MCM for 83 and 36
is shown in Fig. 2. The MCM has a single input denoted bi
and two outputs bi,83 and bi,36. According to Fig. 1, bi is an
(w+ 1)-bit signed integer. The MCM consists of three adders
arranged in such a way that they have a minimal possible
bitwidth. One (w+ 4)-bit signed adder (A1) which adds (w+
1)-bit and (w + 4)-bit signed values is shared between the
subcircuit outputting 83·bi and the subcircuit outputting 36·bi.
The remaining two adders (i.e. (w+6)-bit A2 and (w+7)-bit
A3) are employed to determine 83 · bi.
B. The Proposed Approximation of DCT

DCT can be approximated by reducing the number of
utilized adders (subtractors) and/or employing approximate

+

+

<3<

<2<

<2<

bi

bi,4

bi,8

bi,5

bi,9 bi,36

bi,80<4< +<2<

<5<

bi

bi,4 bi,5

bi,32

bi,80<4<

a) b)

Fig. 3: Two variants of approximate MCM (83, 36)

adders (subtractors). In this paper, we investigate the impact
of both approaches.

The number of components can be reduced, for example,
by approximating the coefficients of the matrix Ce

2 shown in
Eq. 2. It means, in fact, that we replace the MCM blocks
employed in the architecture shown in Fig. 1 with different
ones. The selection of the proper coefficients is nontrivial as
it is necessary to consider not only the distance between the
original and approximate coefficients, but also the number of
components and the bit-width of the components. In this case,
we exhaustively enumerated all possible MCM implementa-
tions with two coefficients that are within the range of +-16.
We obtained three architectures representing the best trade-off
among the considered parameters. Two of them are shown in
Fig. 3. In the first case (Figure 3a), coefficient 83 is replaced
with coefficient 80. This small difference helps to reduce the
number of adders by one. In addition to that, the bit-width
of the adder and subtractor combining the outputs of MCM
block in DCT can be reduced by 2 because the shift by 2 can
be postponed. When the coefficient 32 is used instead of the
coefficient 36, we can remove another adder (see Figure 3b).
This helps to reduce the bit-width by 4.

The third architecture, as proposed in [1], utilizes MCM
with coefficient 64 and 32. i.e. the multiplication is replaced
by the shifts. The bit-width is reduced by 5.

IV. DESIGN OF APPROXIMATE ADDERS AND SUBTRACTORS

Several approaches have been proposed to approximate
arithmetic circuits. In this work, we employed Cartesian Ge-
netic Programming (CGP) [17] because it can easily handle
constraints given on candidate circuits, the method is naturally
multi-objective and high-quality approximate circuits have
already been obtained with it [18].

The standard CGP is a branch of genetic programming
which represents candidate designs using directed acyclic
graphs. A candidate circuit is modeled using an array of
programmable nodes. In our case, 2-input Boolean functions
are considered. The circuit utilizes ni primary inputs and no
primary outputs. Feedback connections are not enabled.

The primary inputs and the outputs of the nodes are labeled
0, 1 . . . N and considered as addresses which the node inputs
can be connected to. A candidate solution is represented in the
so-called chromosome (which is, in fact, a netlist) by N − ni
triplets (x1, x2, ψ) determining for each node its function ψ
(ψ ∈ Γ where Γ is the set of available functions) and input
connections. The last part of the chromosome contains no
integers specifying the nodes where the primary outputs are
connected to.

Paper V

88

CGP employs a simple search method in which the initial
population P contains at least one implementation of the accu-
rate circuit (adder or subtractor) and a few circuits generated
using mutation of the accurate circuit. The next step consists of
the evaluation of candidate circuits using the fitness function.
Each member of P then receives the so-called fitness score
and the highest-scored individual becomes a new parent of the
next population. From this parent, λ candidate solutions are
generated using mutation. The termination criterion is given
by the maximum number of iterations.

A. Error metrics
In order to design signed approximate adders and subtrac-

tors exhibiting suitable parameters, the worst-case arithmetic
error and average-case arithmetic error need to be kept under
some level. In our approach, we employed the worst-case arith-
metic error as a design constrain and average-case arithmetic
error as a design objective.

The error metrics are determined using BDDs as follows.
For each candidate solution, we create a virtual circuit that
is subsequently represented using BDDs. The virtual circuit
(shown in Fig. 4) takes a 2n-bit input vector x and produces
absolute difference between the (n+ 1)-bit output of accurate
adder (subtractor) f(x) and approximate adder (subtractor)
f ′(x). Subtraction in virtual circuit is calculated using m =
n+2 full-adders with first carry-in set to 1 and inverting each
bit of the subtrahend. The absolute value is computed using
m− 1 half-adders and m− 1 XOR gates.

Fig. 4: Virtual circuit used for arithmetic error analysis

The difference D(x) is represented by m-bit binary vector
which corresponds with a natural number. It holds that D(x) =∑

0≤i<m di(x) · 2i. Then, Algorithm 1 is used for the worst
case error analysis.

Algorithm 1: worst-case error analysis
Input: BDD representation of the virtual circuit (d)
Output: The maximum arithmetic error (εmax)

1 εmax ← 0, µ← true;
2 for i ∈ {m− 1,m− 2, . . . , 0} do
3 if satisfiable(µ ∧ di) then
4 µ← µ ∧ di; εmax ← εmax + 2i;

5 return εmax;

The average-case arithmetic error can be obtained by m
calls of SATcount operation (one per each bit of D) which
determines the number of input assignments that evaluates di
to one.

Algorithm 2: average-case error analysis
Input: BDD representation of the virtual circuit (d)
Output: The average arithmetic error (εavg)

1 εavg ← 0;
2 for i ∈ {m− 1,m− 2, . . . , 0} do
3 εavg ← εavg + 2i−2n · satcount(di);

4 return εavg;

B. Fitness function

In this paper, the following fitness function is utilized:

fitness(A) = −
{
Pwr(A) if εmax(A) ≤ E
∞ otherwise

,

where A represents a candidate circuit, E the maximum ac-
ceptable error level and Pwr(A) is the power consumption of
A. In order to estimate the power consumption of a candidate
circuit, we adopted a method based on the switching activity
estimation introduced in [10].

For each candidate circuit, a virtual circuit is constructed
and represented using BDDs. The construction of BDD starts
with a candidate circuit denoted as DUT in Fig. 4. At the end
of this step, BDD for each output bit of f ′(x) is available. At
this point, transition probabilities are determined for each gate
of DUT. These probabilities are employed to determine the
switching activity and subsequently the power consumption.
Then, the rest of the virtual circuit is created and worst-case
error εmax is analyzed using the Algorithm 1.

V. EXPERIMENTAL SETUP

We will evaluate the impact of the 4-point DCT (with
bit-width-optimized adders) approximations on the quality
of video processing and power consumption. The accurate
implementation of 4-point DCT (denoted as A1) requires five
different adders and two different subtractors (see the discus-
sion in Section III-A). In addition to A1, three approximate
architectures are considered: architecture A2 which utilizes
MCM from Fig. 3a, A3 employing MCM from Fig. 3b and
finaly A4 which replaces MCM with logic shifts. As the
MCMs presented in Fig. 3 contain shifts that can be moved
after the adders and subtractors situated in the third part of
DCT architecture, six additional adders and three subtractors
needs to be designed. In total, we need to implement 16
different circuits (11 adders and 5 subtractors) to construct
four considered DCT architectures.

The goal of CGP is to design various approximate im-
plementations of each circuit. We considered seven error
levels defining the maximum acceptable worst-case error,
in particular E ∈ {0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 10%}.
Note that 100% corresponds with εmax = 2w+1, where
w is the circuit’s bit-width. For each E, 20 independent
CGP runs were executed with parameters: λ = 5, Γ =
{BUF,AND,OR,XOR,NAND,NOR,XNOR}. CGP is

Paper V

89

TABLE I: Average time needed to perform error analysis for
w-bit adders/subtractors

w = 4 w = 8 w = 12 w = 16

simulation 4.5 µs 1.9 ms 682.4 ms 140.90 s

BDD εmax 10.3 µs 3.5 ms 127.9 ms 1.38 s
Speedup 0.43× 0.54× 5.33× 102.30×
BDD εavg 14.0 µs 4.6 ms 312.7 ms 2.93 s
Speedup 0.32× 0.42× 2.18× 48.09×

terminated when 106 generations are exhausted or when its
duration exceeded 120 minutes.

We obtained 140 different solutions for each circuit and
2240 solutions in total. For each E and each circuit, we iden-
tified a single solution exhibiting the best trade-off between the
power consumption and average-case error (the exact average-
case error was calculated using Algorithm 2). Then, the chosen
circuits were utilized to create 7 approximate variants for each
of four considered DCT architectures.

We obtained 32 different implementations of DCT whose
parameters were subsequently evaluated. Firstly, we imple-
mented these architectures in Verilog, synthesized in ABC
and measured their power consumption. Secondly, we imple-
mented them in C language and employed in reference imple-
mentation of HEVC1 where we replaced the code performing
the 4-point DCT with our implementations of DCT.

VI. RESULTS

The results of performance analysis of the BDD-based
method calculating the error of approximate adders (subtrac-
tors) are summarized in Table I. We measured the average time
needed to perform the whole error analysis when employed
in evolutionary loop. We run CGP for 10 minutes to obtain
statistically significant results.

The proposed BDD-based technique is compared with
an optimized approach based on exhaustive simulation. As
evident, the BDD-based method performs better for more
complex circuits (adders having at least 12-bits, i.e. 24 inputs).
This result was expected as the simulation algorithm is able to
evaluate circuit response for up to 256 different input vectors
in one pass using modern CPUs. For example, for a 16-bit
adder, the achieved speedup is greater than 100 in the case of
the worst-case error analysis. The average-case error analysis
is approximately two times slower compared to the worst-case
error analysis. Despite this, the speedup greater than 48 was
achieved for 16-bit adder when compared with the exhaustive
simulation.

Figure 6 shows results of evolutionary approximation of
one circuit instance – 16-bit signed adder. According to the
boxplots size, the proposed evolutionary method provides
relative stable results independently of the number of executed
evolutionary runs. It is evident that the power consumption

1Reference software for ITU-T H.265 high efficiency video coding available
at https://www.itu.int/rec/T-REC-H.265.2

40%
50%
60%
70%
80%
90%

100%

Re
la

tiv
e

po
we

r

0.0% 0.1% 0.2% 0.5% 1.0% 2.0% 5.0% 10.0%
Maximum allowed worst-case error (E)

0.0%

1.0%

2.0%

3.0%

4.0%

Av
er

ag
e

er
ro

r ε
a
vg

Fig. 6: Parameters of evolved approximate 16-bit adders for
various error levels. For each E, 20 solutions are considered.

0.0% 0.1% 0.2% 0.5% 1.0% 2.0% 5.0% 10.0%
Maximum allowed worst-case error (E)

0%

20%

40%

60%

80%

100%

R
e
la

ti
v
e
 p

o
w

e
r

co
n
su

m
p
ti

o
n

[1]

Architecture of 4-point DCT
A1 A2 A3 A4

Fig. 7: Parameters of various DCT architectures constructed
using the evolved adders and subtractors. The triangles repre-
sent the implementations employing the accurate components.

decreases when error E is increasing. Naturally, the average-
case error follows the opposite trend.

Parameters of all (i.e. 32) obtained implementations of 4-
point DCT are summarized in Figure 7. The architectures
utilizing accurate adders and subtractors (symbol A1, E = 0)
exhibit the highest power consumption. The power consump-
tion decreases with increasing number of adders removed
from MCM as well as decreasing bit-width of adders and
subtractors placed in the third part of DCT architecture. As a
consequence of that, architecture A4 shows a 45% reduction
in power consumption compared to A1. When we compare
the power consumption of seven approximate versions of each
architecture, we can see that power consumption decreases
with increasing E. For E = 10%, the architectures exhibit
very similar power consumption.

The impact of the approximate DCT on the quality of
obtained video sequences was evaluated on six common test
video sequences2. Results for three of them are shown in
Figure 5. For each video sequence, we measured the peak
signal-to-noise ratio (PSNR) between the original frames and
frames encoded and subsequently decoded by HEVC codec.
To evaluate PSNR, 100 video frames were used. When we
compare parameters of the architectures utilizing the accurate
adders and subtractors (see triangles in Figure 5), it is evident

2YUV video sequences available at http://trace.eas.asu.edu/yuv/

Paper V

90

30.15 30.20 30.25 30.30 30.35 30.40 30.45 30.50
PSNR [dB]

0%

20%

40%

60%

80%

100%

R
e
la

ti
v
e
 p

o
w

e
r

co
n
su

m
p
ti

o
n

[1]

mobile_cif.yuv

30.85 30.90 30.95 31.00 31.05
PSNR [dB]

0%

20%

40%

60%

80%

100%

R
e
la

ti
v
e
 p

o
w

e
r

co
n
su

m
p
ti

o
n

[1]

bus_cif.yuv

31.70 31.75 31.80
PSNR [dB]

0%

20%

40%

60%

80%

100%

R
e
la

ti
v
e
 p

o
w

e
r

co
n
su

m
p
ti

o
n

[1]

stefan_cif.yuv

Architecture of 4-point DCT
A1 A2 A3 A4

Fig. 5: The quality expressed in terms of average PSNR between original and encoded video sequences and relative power
consumption evaluated for three common video sequences. Each point corresponds with one implementation of 4-point DCT.
The triangles represent the implementations employing the accurate components.

that A4 proposed in [1] provides the worst results. In all cases,
A2 provides better results than A3 and A3 provides better
results than A4. The difference in quality between A2 and A3
is very small, however, A3 is able to achieve more than 30%
power reduction. When approximate adders and subtractors
are introduced to DCT, the dependency between the power
consumption and quality is more complex. It happens, for ex-
ample, that A1 with approximate adders/subtractors exhibiting
0.1% worst-case error provides better PSNR then the exact
A1. We hypothesize that this phenomenon is related to the
construction of DCT coefficient values in the reference HEVC
implementation.

VII. CONCLUSIONS

We proposed a new method for optimization and approxi-
mation of the DCT block employed in the HEVC standard.
The proposed multiplierless DCT implementations contain
approximate adders and subtractors that were obtained using
CGP. In order to manage the complexity of evolutionary
approximation, the worst and average errors were determined
by means of BDDs. Under conditions of our experiments,
evolved implementations show better quality/power trade-
offs than relevant implementations available in the literature.
Our future work will be devoted to applying the proposed
approximation method on other blocks of HEVC in order to
find even better quality/power trade-offs.

ACKNOWLEDGMENTS

This work was supported by Czech science foundation
project GA16-17538S.

REFERENCES

[1] M. Jridi and P. Meher, “A scalable approximate dct architectures for
efficient HEVC compliant video coding,” IEEE Trans. Circuits Syst.
Video Technol, pp. 1–10, 2016.

[2] G. J. Sullivan, J. R. Ohm et al., “Overview of the high efficiency video
coding (HEVC) standard,” IEEE Trans. Circuits Syst. Video Technol,
vol. 22, no. 12, pp. 1649–1668, 2012.

[3] F. Bossen, B. Bross et al., “HEVC complexity and implementation
analysis,” IEEE Trans. Circuits Syst. Video Technol, vol. 22, no. 12,
pp. 1685–1696, 2012.

[4] S. Venkataramani, A. Sabne, V. J. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “SALSA: systematic logic synthesis of approximate circuits,” in
The 49th Annual Design Automation Conference 2012, DAC’12. ACM,
2012, pp. 796–801.

[5] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan,
“ASLAN: Synthesis of approximate sequential circuits,” in Proc. Con-
ference on Design, Automation and Test in Europe, ser. DATE’14. EDA
Consortium, 2014, pp. 1–6.

[6] S. Jain, S. Venkataramani, and A. Raghunathan, “Approximation through
logic isolation for the design of quality configurable circuits,” in 2016
Design, Automation Test in Europe Conference Exhibition (DATE),
March 2016, pp. 612–617.

[7] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE Trans. on
CAD of Integr. Circuits and Systems, vol. 32, no. 1, pp. 124–137, 2013.

[8] A. Raha, H. Jayakumar, and V. Raghunathan, “A power efficient video
encoder using reconfigurable approximate arithmetic units,” in 2014 27th
International Conference on VLSI Design and 2014 13th International
Conference on Embedded Systems, 2014, pp. 324–329.

[9] F. S. Snigdha, D. Sengupta, J. Hu, and S. S. Sapatnekar, “Optimal design
of JPEG hardware under the approximate computing paradigm,” in 2016
53nd ACM/EDAC/IEEE Design Automation Conf. (DAC), 2016, pp. 1–6.

[10] R. Hrbacek, V. Mrazek, and Z. Vasicek, “Automatic design of approx-
imate circuits by means of multi-objective evolutionary algorithms,” in
Proc.of the 11th Int. Conf. on Design and Technology of Integrated
Systems in Nanoscale Era. IEEE, 2016, pp. 239–244.

[11] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic
accuracy configurable adder,” in Proc. 52nd Annual Design Automation
Conference. ACM, 2015, pp. 86:1–86:6.

[12] H. Jiang, J. Han, and F. Lombardi, “A comparative review and evaluation
of approximate adders,” in Proc. 25th Edition on Great Lakes Symposium
on VLSI. ACM, 2015, pp. 343–348.

[13] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “MACACO:
Modeling and analysis of circuits for approximate computing,” in
2011 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2011, pp. 667–673.

[14] M. Soeken, D. Grosse, A. Chandrasekharan, and R. Drechsler, “BDD
minimization for approximate computing,” in 21st Asia and South Pacific
Design Automation Conf. ASP-DAC 2016. IEEE, 2016, pp. 474–479.

[15] Z. Vasicek and L. Sekanina, “Evolutionary design of complex ap-
proximate combinational circuits,” Genetic Programming and Evolvable
Machines, vol. 17, no. 2, pp. 1–24, 2016.

[16] M. Budagavi, A. Fuldseth, G. Bjontegaard, V. Sze, and M. Sadafale,
“Core transform design in the high efficiency video coding (hevc)
standard,” IEEE J. Sel. Topics Signal Process., vol. 7, no. 6, pp. 1029–
1041, Dec 2013.

[17] J. F. Miller, Cartesian Genetic Programming. Springer-Verlag, 2011.
[18] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate

digital circuits design,” IEEE Trans. Evol. Comput., vol. 19, no. 3, pp.
432–444, 2015.

Paper V

91

Paper VI

The Role of Circuit Representation
in Evolutionary Design of
Energy-Efficient Approximate
Circuits

MRÁZEK Vojtěch, VAŠÍČEK Zdeněk and HRBÁČEK Radek

IET Computers & Digital Techniques. Stevenage: The Institution of Engineering and
Technology, 2018. ISSN 1751-8601.

92

IET Computers & Digital Techniques

Research Article

Role of circuit representation in evolutionary
design of energy-efficient approximate
circuits

ISSN 1751-8601
Received on 13th September 2017
Revised 20th March 2018
Accepted on 24th April 2018
doi: 10.1049/iet-cdt.2017.0188
www.ietdl.org

Vojtech Mrazek1 , Zdenek Vasicek1, Radek Hrbacek1

1Faculty of Information Technology, Brno University of Technology, Centre of Excellence IT4Innovations, Czech Republic
 E-mail: imrazek@fit.vutbr.cz

Abstract: Circuit approximation has been introduced in recent years as a viable method for constructing energy-efficient
electronic systems. An open problem is how to effectively obtain approximate circuits showing good compromises between key
circuit parameters – the error, power consumption, area and delay. The use of evolutionary algorithms in the task of circuit
approximation has led to promising results. Unfortunately, only relatively small circuit instances have been tackled because of
the scalability problems of the evolutionary design method. This study demonstrates how to push the limits of the evolutionary
design by choosing a more suitable representation on the one hand and a more efficient fitness function on the other hand. In
particular, the authors show that employing full adders as building blocks leads to more efficient approximate circuits. The
authors focused on the approximation of key arithmetic circuits such as adders and multipliers. While the evolutionary design of
adders represents a rather easy benchmark problem, the design of multipliers is known to be one of the hardest problems. The
authors evolved a comprehensive library of energy-efficient 12-bit multipliers with a guaranteed worst-case error. The library
consists of 65 Pareto dominant solutions considering power, delay, area and error as design objectives.

1 Introduction
In recent years, a new research field was established to investigate
how computer systems can be made more energy efficient, faster
and less complex by relaxing the requirement that they are correct.
This field, denoted as approximate computing, exploits the fact that
many applications are error resilient and the errors in computing
are thus either invisible or acceptable [1]. The concept of
approximation has intensively been studied, developed and applied
not only in computer science, but also in mathematics and
engineering disciplines. However, it has never been applied in the
areas in which only accurate implementations have traditionally
been accepted. Nowadays, the designers intentionally introduce
errors into computation to satisfy the never-ending requirement for
lowering of power consumption.

As one of the most promising energy-efficient computing
paradigms that is able to cope with current challenges of computer
engineering, approximate computing has gained a lot of research
attention in the past few years. We can identify two main directions
in approximate computing: energy-efficient computing with
unreliable components and approximation of systems implemented
on common platforms [1]. In the first case, the problem is that the
exact computation utilising nanometre transistors provided by
recent technology nodes is extremely expensive in terms of energy
requirements and reliable behaviour. An open question is how to
effectively and reliably compute with a huge number of unreliable
components. The second research direction is motivated by the fact
that many applications (typically in the areas of multimedia,
graphics, data mining and big data processing) are inherently error
resilient. This resilience can be exploited in such a way that the
error is exchanged for improvements in power consumption,
throughput or implementation cost. After analysing many
applications, Chippa et al. [2] reported that about 83% of the
runtime is spent in computations that can be approximated.

Various approximation techniques have been proposed recently.
A good survey of the proposed approaches can be found, for
instance, in [1, 3]. According to the level of the computer stack
where the approximations are conducted, the approaches could be
roughly divided into software level and hardware level. At the
software level, for example, we could selectively ignore certain
computations and/or memory accesses that are not critical for
obtaining the desired quality of the result. At the hardware layer,

we could either use a less accurate yet more energy-efficient circuit
for computation or purposely reduce the supply voltage for certain
hardware components to trade-off energy and accuracy.

As the complexity of today's computer systems grows, the
manual approximation is not an efficient design method. Hence,
several automated approximate design methods have been
introduced. The design of approximate circuits is typically based
on modifying fully functional circuits. Venkataramani et al. [4], for
example, uses a quality function which decides whether a
predefined quality constraint is met or not. The algorithm is
allowed to modify the circuit as long as the quality constraint is not
violated. Among others, 32-bit adders, 8-bit multipliers, finite
impulse filter (FIR) filters and discrete cosine transform (DCT)
blocks were approximated. Another approach looks for signal pairs
having similar values with a high probability. By substituting one
signal for the other, a part of the circuit can be removed resulting in
area and power savings at the cost of an error introduced to the
output [5]. Unlike the aforementioned methods, Nepal et al. [6]
proposed an approach operating directly on the behavioural
descriptions of circuits. His method generates approximate circuits
from input behavioural descriptions by performing global
transformations on an abstract synthesis tree created from the
behavioural description. The outcome approximate circuits are still
expressed in behavioural code and can be synthesised by means of
standard synthesis tools. The main weakness of these design
methods, however, is that they are typically able to produce only a
few design points.

Several papers dealing with the evolutionary design of
approximate circuits have been published. One of the seminal work
on this topic is the paper of Sekanina et al. who addressed the
problem of evolutionary design of small approximate circuits
consisting of elementary gates [7]. Later, Vasicek and Sekanina [8]
introduced heuristic seeding and demonstrated how to improve the
scalability of the evolutionary design of approximate circuits. The
proposed method was applied to the evolution of 4-bit multipliers
and 25-input median circuits. Recently, Mrazek et al. [9] utilised
evolutionary approach to evolve energy-efficient 8-bit approximate
multipliers optimised for the usage in artificial neural networks. In
addition to that, multi-objective design of 8-bit approximate
multipliers was addressed by Hrbacek et al. [10]. Apart from the
approximate design of median circuits and work of Hrbacek, the

IET Comput. Digit. Tech.
© The Institution of Engineering and Technology 2018

1

Paper VI

93

authors represent the circuits by means of basic logic gates. There
is no work that investigates whether there is a better representation
that may improve the performance of the evolutionary algorithm or
the quality of the obtained approximate circuits. In addition to that,
the power consumption is typically optimised indirectly as the
number of gates or the area on the chip (see e.g. [8, 9]).

In this paper, we present a comprehensive analysis which
compares two different representations – the mainstream gate-level
representation where we represent the circuits using common logic
gates, and cell-based representation that utilises more complex
building blocks such as full adders. Interestingly, the gate-level
representation represents a routinely adopted approach since the
late 1990s [11]. We hypothesise that evolution at the level of more
complex cells could produce solutions of higher quality because
the standard cells available in every technology library exhibit
substantially better design parameters (area, power, delay)
compared to the equivalent circuits implemented using standard
gates. In order to confirm the validity of this claim, we applied
evolutionary methods to the design of key arithmetic circuits such
as adders and multipliers. In particular, 8-bit and 12-bit
approximate circuits were considered. In order to support the
evolution of 12-bit circuits, we implemented a state-of-the-art
circuit simulator operating on 256 bits in parallel. The simulator,
first introduced in [10], is employed to determine the quality of
approximate circuits. In addition to that the switching activity is
simultaneously calculated. A robust power estimation engine based
on known switching activity represents a key idea how to ensure
that the evolutionary approach produces energy-efficient solutions.

The contributions of this paper are as follows. This is the first
time a detailed analysis of various representations of digital circuits
is evaluated and discussed. We analyse also the impact of the
chosen representation on results produced by a synthesis tool
utilised to obtain a physical implementation of a given circuit.
Finally, this is the first paper that presents an automatic approach
that is able to produce high-quality approximate 12-bit multipliers
with guaranteed error parameters. We obtained >60 Pareto
dominant implementations that are available for download (http://
www.fit.vutbr.cz/research/groups/ehw/approxlib). This result is
encouraging for evolutionary computation community on the one
hand and practically useful for hardware community on the other
hand. The 8-bit and 12-bit approximate multipliers can be
employed directly to improve the power efficiency of deep neural
networks [1, 9] or as building blocks of complex circuits. Four 8-
bit multipliers, for example, can be employed to construct a 16-bit
approximate multiplier using the common approach of constructing
larger multipliers from smaller ones [12].

The rest of this paper is organised as follows. The proposed
method is introduced in Section 2. The design methodology

followed by the analysis of obtained results is presented in Section
3. Finally, the conclusions are given in Section 4.

2 Proposed method
In order to approximate digital circuits, various approaches have
been proposed [4–7]. In this work, we employ Cartesian genetic
programming (CGP) [11]. CGP can easily handle constraints given
on candidate circuits, the method is naturally multi-objective and
high-quality approximate circuits have already been obtained with
CGP [8, 10].

This section introduces the overall idea of the proposed method,
the utilised evolutionary algorithm and the construction of the
fitness function for the design of energy-efficient approximate
circuits.

2.1 Representation of digital circuits

Standard CGP is a branch of genetic programming which
represents candidate designs using directed acyclic graphs [11]. A
candidate circuit is modelled using a two-dimensional (2D) array
of programmable nodes with nc columns and nr rows. Originally,
CGP with single-output programmable nodes was introduced by
Miller in 1998 [13]. Simple nodes with two inputs and single
output were considered in the evolution of digital circuits [13].
This approach, however, can be generalised to support nodes with
arbitrary number of inputs and outputs. In this work, we use the
extended version of CGP that supports nodes with na inputs and
outputs [10]. This arrangement allows one to have a node
evaluating up to nb Boolean functions defined over na variables.
The function of a node, however, cannot be arbitrary. Each node
can implement one of nG functions defined by Γ. The node
parameters (i.e. na, nb) are fixed during the evolution. In order to
fully specify the behaviour of each node, we use the following
principle. In case that a node implements a Boolean function,
which utilises less than na operands, the redundant input
connections are ignored. In case that a node implements less than
nb Boolean functions, the unused outputs are internally connected
to the output of the last Boolean function. Let us suppose, for
example, that a single output Boolean function is chosen from Γ.
Then, all nb outputs produce the same value (see e.g. schematics of
XOR gate shown in Fig. 1 implemented using three-input two-
output CGP node). This mechanism helps us to avoid the necessity
to use chromosome validation and repair mechanisms.

The circuit utilises ni primary inputs and no primary outputs.
Feedback connections are not enabled. The primary inputs are
labelled 0, 1, …, (ni − 1). The first output of the first CGP node is
assigned index ni, the second output ni + 1 and the last output of

Fig. 1  Example of a circuit (3-bit ripple-carry adder) encoded using CGP with parameters: ni = 6, no = 4, na = 3, nb = 2, nc = 3, nr = 2,
Γ = {0and, 1or, 2xor, 3full − adder}. Given these parameters, the considered circuit can be represented using a chromosome consisting of the following sequence of
28 integers: 0, 3, 2, 2; 3, 0, 5, 0; 1, 4, 9, 3; 7, 2, 9, 3; 7, 10, 13, 2; 2, 5, 11, 3; 6, 10, 16, 17. Two nodes with outputs 12, 13, 14 and 15 are not used (top-right
XOR gate and full adder). These redundant and inactive nodes as well as the redundant wires are greyed out. The common two-input logic gates are
implemented as shown on the left – only two inputs are employed, the third input is ignored, both outputs implement the same logic function. More complex
blocks (full adder in this example) may utilise all inputs and may capture more Boolean functions (two functions are implemented in case of the full adder).
The principle of the CGP encoding is as follows. The first 24 integers are divided into six quadruples that define input connections and function of each of six
CGP nodes. The first quadruple (0, 3, 2, 2) is associated with the top-left node. The first three numbers of each quadruple determine indexes where the node's
inputs are connected. The last (underlined) number defines the function of a node. Considering the first quadruple, the node represents XOR gate connected to
I0, I3 and I2. However, the third connection, i.e. I2, is in fact redundant because XOR is a two-input logic gate. The last four numbers of the chromosome, i.e.
the numbers 6, 10, 16 and 17, define the connection of the primary outputs. The first primary output O0 associated with the first number is connected to the
first output of the top-left node because this node output has index 6

2 IET Comput. Digit. Tech.
© The Institution of Engineering and Technology 2018

Paper VI

94

this node is associated with ni + nb − 1. The remaining outputs of
the CGP nodes are successively labelled
(ni + nb), (ni + nb + 1), …, (nc ⋅ nr ⋅ nb + ni − 1). All the labels are
considered as addresses where the node inputs and primary outputs
can be connected to. A candidate solution is represented by means
of the so-called chromosome (which is, in fact, a netlist) by nr ⋅ nc
tuples consisting of na + 1 items (x1, x2, …, xna, ψ) determining for
each node its function ψ (ψ ∈ Γ) and input connections xi
(0 ≤ xi < nc ⋅ nr ⋅ nb + ni). The last part of the chromosome contains
no integers specifying the nodes where the primary outputs are
connected to. While the chromosome size s is constant
s = ncnr(na + nb) + no, the circuit size is variable and measured as
the number of active (i.e. used) nodes. The set of valid
chromosomes (netlists) represents the whole search space.

The encoding used in CGP is highly redundant as many nodes
can be disconnected and deactivated during evolutionary
optimisation. In order to deactivate a node, it is sufficient to
reconnect all active references to that node. Moreover, there are
usually many ways to implement a given logic function in each
CGP instance. This redundancy together with a relatively powerful
mutation operator is considered as a key feature of CGP allowing
for an efficient circuit evolution [11].

An example of a circuit (common 3-bit ripple carry adder)
represented using CGP is shown in Fig. 1. Despite the fact that the
adder can be represented using three three-input/two-output CGP
nodes (three full adder cells), we employ six three-input/two-output
CGP nodes arranged into three columns and two rows. This
arrangement helps us to demonstrate the redundancy of CGP
representation (only four out of six nodes are active) and the
flexibility of the proposed encoding (a half adder is implemented
using two logic gates, full adders are implemented as standard
cells). In addition to that, the example shows that the chromosome
captures a valid netlist even though the second output of the AND
node (output with label 9) is connected to another node. As stated
earlier, all the outputs of a node representing a single-output logic
gate are equivalent. The corresponding chromosome is shown in
Fig. 1.

2.2 Search strategy

CGP employs a simple search method. In our case, the initial
population P of CGP contains one of various implementations of
the accurate circuit (e.g. multiplier) and a few circuits generated
using mutation of the accurate circuit. Creating the accurate
multiplier required by the initial population is trivial as there is a
one-to-one mapping between circuit netlists and CGP
chromosomes. The next step consists in the evaluation of candidate
circuits using the fitness function. Each member of P then receives
the so-called fitness score and the highest-scored individual
becomes the new parent of the next population. From this parent, λ
candidate solutions are generated using mutation. The termination
criterion is given by the number of iterations or maximum
acceptable runtime.

Despite several attempts to propose a suitable crossover
operator to CGP [14, 15], the mutation is still used as the crucial
genetic operator. The mutation operator modifies up to h randomly
chosen genes (integers) of the chromosome. Their new values are
generated randomly, but it is checked whether the new values are
valid. One mutation can affect either the node function, node input
connection, or primary output connection. As the mutation operator
is able to disconnect gates (by changing either primary output
connection, node input connection or node function), it can be
employed to reduce redundancy of the initial circuit.

2.3 Fitness function

Since the goal is to design energy-efficient approximate circuits, it
is necessary to integrate this requirement into the fitness. The
power consumption of the candidate circuits can be optimised
directly or indirectly. In the context of evolutionary computation,
only the latter approach has been applied in the literature because it
does not require to implement complex simulation engines or

employ time-demanding analogue simulations. In [8], for example,
the authors demonstrated that it is sufficient to reduce the number
of gates because the power consumption of arithmetic circuits is
highly correlated with the area. For recent technology nodes,
however, this simplification may lead to unsatisfactory results
especially for circuits consisting of few gates exhibiting high
switching activity. Hence we propose to optimise the power
directly.

The power consumption of digital circuits can be divided into
the dynamic (Pdynamic) and the static (Pstatic) power components.
The first one occurs every time the output of a gate changes its
logic value. Static power consumption is caused mainly by the
leakage current which exists even when the circuit is in a stable
state, i.e. not switching. Even though the static power component
has always been present, it has gained importance in sub-
micrometre and nanometre devices [16]. As a consequence of that,
the total power consumption has to be optimised by reducing static
as well as dynamic part of the power consumption.

Since the static part of the power consumption depends only on
a function of a logic gate, the total static power consumption can be
obtained by summing static leakage Pleak for all gates of the
candidate circuits, i.e. Pstatic = ∑∀i Pleak

(i) . The situation gets
complicated when we want to precisely determine dynamic power.
In order to simplify this process and avoid running a costly
analogue simulator, we propose to exploit the knowledge of the
switching activity of each gate. The dynamic power consumption
of a single gate Pdyn can be defined as follows:

Pdyn = 1
2 × Cload × Vdd

2 ⋅ f ⋅ E(transitions), (1)

where Cload is the total load capacitance of the output (i.e. the sum
of all input capacitances of the connected gates defined in the
liberty file), Vdd is the supply voltage, f is the target frequency and
E(transitions) is the expected value of the output transitions per
global clock cycle (switching activity) [17]. The total dynamic
power is equal to Pdynamic = ∑∀i Pdyn

(i) and the total power
consumption of a candidate circuit is calculated as

Ptotal = Pstatic + Pdynamic . (2)

To simplify the problem, glitches are not typically considered. This
decision enables to use the zero-delay model. As a consequence of
that, the switching activity can be obtained using common circuit
simulator which evaluates the response for all (or some for
complex problems) input vectors. Total switching activity of a gate
is calculated as follows:

E(transitions) = 2 ⋅ (p0 ⋅ p1) = 2 ⋅ p1 ⋅ (1 − p1), (3)

where p0 is the probability that the output of a considered gate is
equal to logical zero, similarly p1 is the probability that the output
is equal to logical one. There are more ways to determine the
transition probabilities. The simplest approach is to use the
simulation and count the number of cases for which the output
value was equal to 1. The advantage of this approach is that this
calculation can be done during the function verification which
represents an inevitable step of the fitness evaluation.

Various error criteria can be utilised to evaluate the quality of
approximate arithmetic circuits. The average-case and worst-case
arithmetic errors represent the most common metrics considered in
the context of design of approximate arithmetic circuits [10, 18].
The worst-case error ewst(C) is employed in this paper. This metric
is defined as the maximum absolute difference in magnitude
between the original and approximate circuit computed over all
inputs:

ewst(C) = max
∀i

|O(Corig, i) − O(C, i) | , (4)

IET Comput. Digit. Tech.
© The Institution of Engineering and Technology 2018

3

Paper VI

95

where O(Corig, i) denotes the output value of the fully functional
circuit for the input vector i and O(C, i) denotes the output value of
approximate circuit C. For a circuit having ni inputs, the input
vectors are the numbers 0 ≤ i < 2ni.

Let ε be the maximum acceptable worst-case error. Then, the
fitness value of a candidate circuit C is calculated as follows:

fitness(C) = −
Pnorm(C) if ewst(C) < ε
∞ otherwise,

(5)

where Pnorm(C) = Ptotal(C)/Ptotal(Corig) is the normalised power
consumption of C and Ptotal(Corig) is the energy consumption of the
original reference circuit Corig and represents a constant value. The
goal of the evolutionary strategy is to maximise the fitness and thus
minimise the cost metric Pnorm. It means that solutions with the
error greater than ε are infeasible. Depending on design objectives,
CGP has to be executed multiple times with different target errors
εi if a Pareto front is requested.

3 Experimental results
The proposed method was evaluated in the task of evolutionary
design of approximate adders and multipliers. These arithmetic
circuits were chosen because they represent key components of
many real-world applications in signal processing and machine
learning [1]. In addition to that, the evolution of multipliers is
considered as a very difficult benchmark in the evolutionary
community. Apart from common 8-bit instances typically
addressed in the literature (see e.g. a survey paper [19] which lists
and compares different 8-bit approximate multipliers), 12-bit
instances were chosen to validate our hypothesis. In case of 12-bit
multipliers, we have to deal with complex netlists consisting of
hundreds of gates. As our goal is to evolve approximate circuits
with known worst-case error parameters, we need to evaluate the
response for all input vectors for every candidate solution. It means
that 224 input combinations have to be evaluated for a 12-bit
multiplier. This is the main reason, why we did not consider 16-bit
instances. As it is infeasible to evaluate 232 responses in a
reasonable time, it would be necessary to employ a random
simulation. Using a subset of all possible input combinations,
however, may lead to a bias in evaluation since we cannot
guarantee whether the worst acceptable error is met or not. Due to
the limited space, only results for 12-bit multipliers will be
presented in detail.

The experimental setup depicted in Fig. 2 is as follows. The
goal of the evolution is to design an approximate multiplier
showing the lowest possible power consumption for a given worst-
case error. The power consumption is estimated as described in
Section 2.3 and represents the only criterion reflected in the fitness
function. The evolutionary algorithm starts with a common
conventional multiplier whose fitness (i.e. power) is gradually
optimised while keeping the worst-case error within the required
bound. The worst-case error is used as a constraint εi. For each
circuit, 11 error levels ranging from ε1 = 0.02 % to ε11 = 20 % were
considered. This range covers the values that are typically
employed in the literature (see e.g. [9, 18, 19]). The CGP
parameters were initialised as follows. We employed λ = 24
individuals in the population, mutation rate was h = 5 %, number
of rows nr = 1. The number of columns equals to the number of
components of the initial conventional multiplier used to seed the
evolution. The setting of the CGP parameters is based on the
experiments conducted in our previous research [8]. Two different
sets of experiments were executed. In the first scenario, only

common two-input gates were considered. Each CGP node had two
inputs and one output (i.e. na = 2, nb = 1) and could implement one
of the following eight functions: Γ1 = {BUF (buffer), INV
(inverter), AND, OR, XOR, NAND, NOR, XNOR}. In the second
scenario, the set of functions was extended to 15 functions that
correspond with common standard cells available in the chosen
target technology: Γ2 = Γ1 ∪ {NAND3 (3-input NAND), NOR3 (3-
input NOR), MUX2 (2-to-1 multiplexer), AOI21 (3-input AND/
NOR), OAI21 (3-input OR/NAND), FA (full adder), HA (half
adder)}. The advantage of complex cells is that they are highly
optimised for each target technology considering the area on a chip
and performance. The full adder, for example, available as a
technology cell occupies typically lower area, consumes less power
and has lower delay compared to a full adder implemented using
common gates. In order to support these functions, a CGP node
with three inputs and two outputs, which corresponds with na = 3
and nb = 2, was employed. Due to practical reasons, runtime was
chosen as the only terminating criterion. This decision helps us to
easily predict the end of evolution.

The evaluation of the fitness consists of two steps. In the
beginning, active nodes are identified. Then, only active nodes are
evaluated by means of a circuit simulator for all input
combinations. In both scenarios, we utilised exactly the same
circuit simulator based on a machine-code translation introduced in
[20] and further extended in [21]. During the detection of the active
nodes, each complex block such as full adder is replaced by an
equivalent circuit consisting of common two-input gates. This
simple preprocessing helps one to improve the performance of the
simulator. Since there are only basic operations, SIMD instructions
from AVX extension allowing processing 256-bit vectors can
directly be exploited. As a consequence of that, we can simulate
the response for 256 input vectors in parallel.

In order to avoid a possible bias preventing discovering of some
implementations caused by seeding, we will seed the evolution
with several conventional architectures of multipliers. The
multipliers include ripple-carry array multiplier (denoted as
RCAM), two carry-save array multipliers (CSAM1 and CSAM2)
and three Wallace tree architectures (WTM1, WTM2 and WTM3).
The array multiplier (RCAM) offers the lowest speed but occupies
the smallest area on a chip compared to the other variants and
especially the most expensive Wallace tree multiplier. The carry-
save array multiplier is implemented as a set of 1-bit full adders
without any carry-chaining that is finally reduced using a single n-
bit adder. This arrangement helps one to slightly improve the delay
compared to RCAM without introducing a noticeable area
overhead. Two variants of carry-save multiplier are considered
depending on the adder employed in the final stage – CSAM1
utilising ripple-carry adder (RCA) and CSAM2 with carry-save
adder (CSA). Wallace-tree adder multiplier is the fastest known
architecture which sums the partial products using multiple levels
of CSA. Similarly to the carry-save array multiplier, the products
are finally summed up using a single n-bit adder. In our case, three
adders are considered in the final stage – RCA (denoted as
WTM1), CSA (WTM2) and carry-look-ahead adder (WTM3). The
latter variant offers the lowest delay but occupies a substantial area
on a chip.

In total, six different multiplier architectures were described in
Verilog language and synthesised using Synopsys DC and 45 nm
technology. For each architecture, two Verilog netlists were
generated. In the first case, the gate-level description was
employed where all high-level building blocks such as half adders,
full adders and multiplexers were implemented using generic two-
input gates. In the second case, the structural description was

Fig. 2  Proposed experimental setup for evolutionary design of approximate circuits represented using either standard gates or standard cells

4 IET Comput. Digit. Tech.
© The Institution of Engineering and Technology 2018

Paper VI

96

utilised. In this case, all the cells available in the chosen technology
could be utilised in the description of the multipliers.

The parameters of the synthesised multipliers such as the power
consumption, area on a chip or delay are summarised in Table 1. In
addition to that, parameters of the initial netlists (i.e. specification)
such as the number of cells (i.e. the number of components, the
verilog netlist consists of), the number of full adders (column FAs),
estimated power consumption Ptotal calculated using (2) and
normalised power consumption Pnorm are provided.

The results of the synthesis suggest that the Synopsys DC
integrates a powerful optimisation engine that is able to
significantly improve the initial design parameters. This is
noticeable especially if we compare the estimated power
consumption with the power consumption of the final
implementation. In all cases, the power consumption was
substantially improved. Despite a visible difference between the
estimated and real power consumption and considering the fact that
the inaccuracy of the power estimation tool is believed to be
around 10%, the power consumption increases proportionally with
the increasing fitness value which is important for our evolutionary
optimisation process. Let us notice that 12-bit CSAM1 occupies a
smaller area on a chip than RCAM at 45 nm which is quite
surprising since RCAM is generally known as the most compact
multiplier architecture.

Interestingly, the synthesis tool is quite capable in discovering
and recovering the full adders from the gate-level netlists. The
number of full adders in the implemented circuits is nearly the
same independently on the chosen representation. This suggests
that it does not matter whether we conduct the evolution at the
level of gates or at the level of more complex building blocks such
as full and half adders as the synthesis tool produces quite similar
results in both cases.

3.1 Impact of the chosen representation on the efficiency of
evolutionary design process

As evident from parameters in Table 1, the netlists containing only
standard gates require a substantially higher number of components
compared to the netlists composed of cells. For example, 768 gates
are required to represent RCAM by means of standard gates. The
same design can be implemented using 276 components only
provided that half and full adders can be employed. Since the
netlists are used to create the initial population, the higher number
of components implies long chromosomes and more complex
search spaces. In this particular case, the chromosome size
increased by >64% when going down to the gate-level
representation.

The chromosome length does not impact only the size of the
search space but also the process of evaluation and consequently
the scalability of the evaluation. The problem is that more nodes
may be active because more nodes are available. As a consequence

of that, more time is needed to evaluate fitness and quality of a
candidate circuit.

In order to evaluate the impact of the chosen representation to
the efficiency of the evolutionary design process, we will
investigate two different parameters – the average size of a
candidate solution and the convergence rate. The average number
of active nodes impacts the speed of the fitness evaluation. In
addition to that and when investigated at the end of a long-term
evolutionary run, it also reflects the quality of discovered
approximations because it is natural to expect that compact
solutions typically result in a better power consumption.

The average size of a candidate solution can be measured
directly as the number of active nodes or indirectly as the average
time required to evaluate a single candidate solution. The problem
of the first approach is that the average number of active CGP
nodes does not reflect varying simulation complexity of each node.
Hence, we adopted the latter approach that enables not only to
fairly compare both representations but also to estimate practical
limits of the evolutionary design process. In fact, it means that we
consider the average size of candidate circuits expressed in terms
of two-input equivalent gates. This is caused by the construction of
the circuit simulator that is used to determine the fitness (the
complex cells are replaced with two-input logic gates).

The average time required to evaluate a candidate solution is
shown in Fig. 3. Since the size of a candidate solution varies with
the error level (the approximate circuits with higher error level
typically consist of a lower number of components), the results are
reported for each error level separately. Sixty independent
evolutionary runs (10 per each seed) were executed for each error
level and each representation. The results of these runs are
summarised by means of a single boxplot item. Each run was
executed for 16,200 s to guarantee statistical significance. As
evident, the results confirm our expectation related to the size of
candidate solutions and error level. The average size of candidate
solutions decreases nearly linearly with the increasing error level
independently on the used representation. This trend is noticeable
especially in the middle of the range because the error levels are on
a logarithmic scale. On average, 224 ms (167 ms) is required to
evaluate a candidate solution represented using standard gates
(cells). The evaluation time decreased >2.3 times (1.9 for standard
cells) when we increased the allowed error from 0.02 to 20%. It
suggests that solutions consisting of approximately half of the
equivalent gates were produced for 20% error.

If we compare the results for both representations, we can see
that the representation based on standard cells leads to a more
efficient design process. The time of the evaluation was reduced
noticeably. As a consequence of that, more generations can be
executed, and more compact solutions can be discovered.
Considering the average results, more than four (standard gates)
and nearly six (standard cells) candidate solutions can be evaluated
per second. It means that we can improve the scalability by a factor
ranging from 1.1 (higher errors) to 1.5 (lower errors) just by

Table 1 Parameters of six different 12-bit multipliers described at the level of gates (upper part) and standard cells (bottom
part). The estimated power Ptotal as well as power of the implemented circuit is given in mW, area on a chip in μm2 and delay in
ns
Multiplier arch. Specification Implemented circuit

Repr. No. instances No. FAs Ptotal Pnorm No. cells No. FAs Area Delay Power
RCAM gates 768 0 1.60 1.00 433 110 1679 3.22 1.23
CSAM1 gates 768 0 1.61 1.01 369 118 1595 2.28 1.18
CSAM2 gates 831 0 1.73 1.08 377 118 1608 2.33 1.19
WTM1 gates 809 0 1.66 1.04 394 115 1655 2.07 1.22
WTM2 gates 966 0 1.90 1.19 424 113 1708 2.39 1.23
WTM3 gates 1269 0 1.88 1.17 562 103 1961 1.68 1.39
RCAM cells 276 120 1.27 1.00 424 110 1666 3.40 1.20
CSAM1 cells 276 120 1.28 1.01 374 118 1605 2.28 1.16
CSAM2 cells 296 123 1.37 1.08 393 117 1639 2.25 1.19
WTM1 cells 313 119 1.31 1.04 414 113 1687 2.12 1.21
WTM2 cells 362 129 1.48 1.17 463 111 1767 2.06 1.28
WTM3 cells 824 102 1.52 1.20 532 104 1889 1.77 1.33

IET Comput. Digit. Tech.
© The Institution of Engineering and Technology 2018

5

Paper VI

97

changing the representation to standard cells. Looking and the
boxplots, we can see that there is only negligible difference in the
spread between both representations.

The representation impacts the speed of the fitness evaluation
but does not necessarily mean that the evolution will produce better
(i.e. more power efficient) solutions. Hence we analysed the power
consumption of the discovered solutions. The results are shown in
Fig. 4 where we plot the boxplots for normalised power (fitness
value). We can observe the same trend as in Fig. 3. The power
consumption decreases with the increasing error level
independently on the chosen representation. In addition to that, a
large improvement in the power efficiency can be seen in case of
standard cell representation. This is noticeable especially for lower
error levels. The cell-based representation is able to discover more
efficient implementations. For example in the case of 0.2% error,
the average power of a multiplier represented by standard cells
equal to the power of best multiplier represented by standard gates.
Starting at 5% error, there is no significant difference between
parameters of the discovered results. This is caused mainly by the
fact that the discovered approximate multipliers consist of an
extremely small number of components. For example, approximate
multipliers exhibiting 5% error consist of 6–14 times fewer
components on average compared to original implementation.
More than 64% of the components constitute simple gates. If we
compare the boxplots, we can see that not only the extreme but
even the spread is improved in the case of the cell-based
representation.

The positive effect of the cell-based representation on the
evolutionary design process is also evident on the convergence
curves that are shown in Fig. 5. The evolutionary design process
converges faster to the desired solutions not only from the point of
view of absolute time but also when the number of generations is
considered. The difference in convergence rate is largest for 0.2%
error and gradually disappears with increasing error. This
behaviour corresponds with our conclusions stated in the previous
paragraph. For 2% error, the cell-based representation reaches the
inflection point around a 1000th generation. When we employ a
standard gate-level representation, we require more than three
times higher number of generations to achieve the same results.
This number corresponds to more than four times longer runtime.
Nearly, the same convergence is achieved when we increase the

error by one order. On contrary, when we decrease error to 0.2%,
the difference is substantial. Not only that the gate-level
representation converges slowly but also the time of evaluation is
larger. Expressed in terms of runtime it means that after >270 min
of evolution we obtained solutions whose quality is comparable
with candidate solutions represented using cells that were
generated in 20th minute of evolution.

A more detailed analysis is provided in Table 2 where we
calculated the computational effort required to design an
approximate multiplier exhibiting a required power reduction. The
table shows the mean number of generations that have to be
evaluated to obtain a multiplier satisfying the required criteria. In
addition to that, the percentage of the evolutionary runs
discovering the required circuit is given. The averages are
determined from 120 independent evolutionary runs (60 for each
representation). Note that not all combinations are viable as the
maximum possible power reduction decreases with decreasing
error. The power reduction is determined using Pnorm.

As evident, the cell-based representation leads to much lower
computational complexity than the gate-level representation. In
average, less than half generations are required to obtain the same
results. To give one example, we need to evaluate at least 455
generations in average to obtain an approximate multiplier with
error below 0.2% that consumes 35% less power compared to the
accurate RCAM multiplier. For this particular case, 50 out of 60
evolutionary runs successfully discovered such a multiplier. This
corresponds to success rate 83%. For error levels above 10%, we
can see that practically all runs were able to discover a multiplier
having power consumption reduced by at least 95%. The mean
number of generations for 95% power reduction suggests that
evolution of the multipliers with a high error rate is a relatively
easy task. Even the evolution of sub-optimal multipliers is easy.
Every evolutionary run was able to discover an approximate
multiplier exhibiting at least 20% power reduction for ε ≥ 1%.
Less than one hundred generations were required in average. On
the other hand, we can see that the computational complexity
increases as the required power reduction is approaching the
maximum possible reduction for a given error. More than one
thousand (2000 for gate-level representation) generations are
typically required to achieve the best possible power reduction.

Fig. 3  Average time required to evaluate a candidate solution representing an approximate 12-bit multiplier

Fig. 4  Normalised power consumption Pnorm (the lower value the better result) of discovered 12-bit approximate multipliers

6 IET Comput. Digit. Tech.
© The Institution of Engineering and Technology 2018

Paper VI

98

3.2 Results of synthesis

For each evolved solution, we created a Verilog netlist consisting
of the same components as encoded in the corresponding
chromosome. The netlists were then implemented in 45 nm
technology (https://www.eda.ncsu.edu/) using Synopsys Design

Compiler Ultra. The synthesis effort was set to high. Apart from an
optimised netlist, the synthesis tool reports energy consumption,
delay and area on a chip under iso-speed conditions.

The power consumption of the evolved approximate circuits
synthesised using synthesis tool is shown in Fig. 6. When we
compare the results with the estimated power consumption shown

Fig. 5  Convergence curves for evolutionary approximation of 12-bit multipliers for three error levels and both representations. For each combination, the
median value (dotted line), the lower bound and upper bound of the interquartile range are calculated using 60 evolutionary runs

Table 2 Performance of gate-level and cell-based representation expressed as the mean number of generations that have to
be evaluated to obtain a 12-bit approximate multiplier exhibiting a required power reduction. The percentage of evolutionary
runs that discovered a circuit satisfying the given parameters is shown after slash symbol (100% means that all 60 runs
executed for each target error and each representation successfully produced such a circuit). The better results are printed in
bold. In each generation 24 candidate solutions were generated and evaluated
ε Repr. Required power reduction

20% 35% 50% 65% 80% 95%
0.02 gates 2516/17 — — — — —

cells 935/78 — — — — —
0.05 gates 2232/38 — — — — —

cells 688/75 2079/35 — — — —
0.1 gates 1576/58 2697/13 — — — —

cells 533/92 1073/75 — — — —
0.2 gates 1045/72 1934/53 2948/8 — — —

cells 340/95 455/83 1566/62 — — —
0.5 gates 622/82 1159/78 1932/62 2902/7 — —

cells 207/98 382/97 669/88 1881/27 — —
1 gates 509/100 884/97 1283/87 1803/60 — —

cells 138/100 271/100 403/98 809/93 — —
2 gates 346/98 552/95 743/90 1107/83 2046/43 —

cells 107/98 194/98 336/98 501/95 1443/52 —
5 gates 156/100 273/100 353/98 513/98 890/98 —

cells 52/100 93/100 143/100 216/100 371/100 —
10 gates 110/100 185/100 259/100 288/97 447/97 2810/38

cells 42/100 75/100 111/100 163/100 271/100 2875/25
15 gates 87/100 142/100 206/100 282/100 398/100 824/93

cells 36/100 63/100 93/100 134/100 210/100 768/97
20 gates 51/100 85/100 117/100 162/100 231/100 536/100

cells 42/100 73/100 103/100 139/100 202/100 473/100

IET Comput. Digit. Tech.
© The Institution of Engineering and Technology 2018

7

Paper VI

99

in Fig. 4, we can see that both boxplots contain very similar data at
least when we consider relative relations and spread. Solutions
represented using the standard cells exhibit better energy efficiency
compared to the solutions described using standard gates. The
absolute values are different, but this was expected as discussed
earlier because the discovered netlists may be modified during
synthesis by the optimisation engine. In fact, the power
consumption of the synthesised and implemented multipliers is
typically lower than the power consumption before synthesis and
the difference increases with the increasing circuit complexity. This
is evident from the plots shown in Fig. 7 where we analysed the
degree of correlation between estimated power and power after
synthesis. There is a nearly linear relationship. In order to measure
the linear relationship, we employed the Pearson correlation
coefficient whose value varies between −1 and +1. The correlations
of −1 or +1 imply an exact linear relationship, while zero implies
no correlation. The correlation coefficient is slightly better than
0.99, in particular it equals 0.994 for standard cells and 0.992 for
standard gates. The high positive value implies that as estimated
power increases, so does the power of the synthesised multiplier. If
we look at the output of simple linear regressions, we can see that
the points concentrate around two trend lines having their slope
slightly larger than 1. It means that the synthesis tool was able to
improve the power in all cases and we actually overestimated the
final value. For standard cells, the power of the multipliers was
reduced during synthesis by a factor of 1.1 on average. This factor
increases to 1.4 when standard gates are employed.

It is necessary to realise, however, that the ability to quantify
the relative dependencies of the design power consumption is much
more important than the ability to capture the absolute values since
the search is driven by the comparison of parental and candidate
solution's fitnesses. For comparison of the values it is only needed
to achieve a high-fidelity value which can be calculated as follows.
Let R = {R0, …, Rn} be a set of n reference values and

E = {E0, …, En} be a set of n estimated values. Let T be a set of n
circuits that were used to calculate Ri and Ei. The fidelity
describing the quality of the estimation with respect to its ability to
quantify relative dependencies of the tuples reference/estimation
values is defined as

Fidelity% = 100 2
n(n − 1) ∑

i = 1

n − 1
∑

j = i + 1

n
μi j, (6)

where μi j is determined as

μi j =
1 if Ri > Rj ∧ Ei > E j or Ri = Rj ∧ Ei = E j

or Ri < Rj ∧ Ei < E j

0 otherwise
(7)

According to the analysis, the fidelity calculated using the set of
660 evolved approximate multipliers represented using standard
cells is 97.21%. For the second set of 660 multipliers encoded
using standard gates, the fidelity is nearly similar – 97.25%. It
means that the estimated values correlate with the results after
synthesis in 422,814 (422,960 for the second set) out of 434,940
inspected cases.

The second plot in Fig. 7 shows the dependency between
estimated area and power of the synthesised multipliers. The
obtained results suggest that worse results will be obtained by
considering the area in the fitness function only and demonstrates
the superiority of the fitness function based on power estimation.
The fidelity dropped to 93.7% (95.3% for the second set), the
Pearson correlation coefficient decreased to 0.95 (0.97) and even
the slope and distance of the regression lines increased.

In order to better understand the behaviour of both investigated
representations for errors higher than 2%, we separately analysed
the evolved netlists and corresponding netlists after synthesis and
determined the number of cells and the corresponding area on a
chip. We divided the cells utilised in the netlists to seven categories
– buffers (BUF), inverters (INV), common two-input gates (F2X1),
more complex cells with three and four inputs (F3X1, F4X1), half
adders (HA) and full adders (FA). The area on a chip occupied by
these cells before and after synthesis is shown in Fig. 8. For each
error level, we plot the area of ten multipliers exhibiting the best
power as reported by the synthesis tool.

Let us discuss the results for the gate-level representation. The
evolved netlists consist mainly of two-input gates. Few buffers and
inverters are employed only. The evolution is not directly forced to
use the buffers and inverters but we assume that the evolution
introduced them to improve the power since they exhibit a better
output capacity and we consider the capacity of each gate in (2). If
we look at the netlists optimised by the chosen synthesis tool we
can see that the synthesis tool is able to identify a large number of
complex cells such as full adders and three-input cells. Few
instances of half adders and four-input cells are utilised only.
Interestingly, the number of inverters increased substantially after
synthesis. We inspected the netlists and identified that buffers and
inverters are used mainly to improve the timing.

Fig. 6  Power consumption of the synthesised 12-bit evolved approximate multipliers

Fig. 7  Estimated power consumption and area of 12-bit approximate
multipliers represented in evolution using
(a) Standards gates and (b) Standard cells vs. power after synthesis

8 IET Comput. Digit. Tech.
© The Institution of Engineering and Technology 2018

Paper VI

100

As evident, full adder represents a key component for the
construction of power-efficient multipliers. On the other hand, we
can see that the number of full adders decreases with increasing
error. Only one or two instances are utilised in approximate
multipliers with an error higher than 5%. This observation is valid
even for cell-based representation which explains why evolution at
the level of gates and cells provide the same results.

As we already discussed, the synthesis tool was able to improve
the energy consumption of the initial netlists. In addition to that,
we can see that even area on a chip was reduced substantially. The
area of approximate multipliers exhibiting 0.02% error, for
example, was reduced from >2000 to 1500 μm2. On the average,
the area was improved by 32%.

In the case of the cell-based representation, the area on a chip
after synthesis remains practically the same as before synthesis. We
can also observe that the number of full adders in the evolved
multipliers remains preserved. It suggests that the evolution
produces highly optimised solutions that are hard to improve by the
synthesis. This is also evident if we compare the results after
synthesis for both representations. Multipliers produced from the
cell-based netlists are more compact.

There are only a few half adders in the evolved solutions.
Surprisingly, they practically disappeared after the synthesis. In
comparison with the gate-level evolution, the buffers and inverters
are utilised only rarely. This leads to a conclusion that it does not
offer any advantage to consider complex three-input and four-input
building blocks during the evolution because they are not utilised
at all. Even the half adder seems to be not important. The essential
thing is to include a full adder in the set of possible functions.

3.3 Evaluation of the proposed multipliers

The approximate circuit design problem is naturally a multi-
objective optimisation problem in which the accuracy and other
circuit parameters are conflicting design objectives. In our
approach, only the power consumption was intentionally
considered in the fitness function. It is thus fair to evaluate also the
other circuit parameters. Hence, we took all synthesised
approximate multipliers, determined the circuit parameters (worst-
case error, power, area, delay) and identified the points on the
Pareto front. In order to determine the Pareto dominant solutions,

the Pareto-dominance relation was employed [22]. The resulting
Pareto set projected into three 2D plots is shown in the upper part
of Fig. 9. The bottom part of Fig. 9 shows the parameters of the
chosen solutions as a function of mean error distance which was
not directly optimised. As evident, the cell-based representation
lead to substantially better solutions compared to the gate-level
representation. A rich library of various implementations was
obtained. When we ignored the solutions that exhibit nearly similar
parameters, we obtained 17 Pareto-dominant solutions for the gate-
level approach and 27 solutions for the cell-based approach. Note
that two parameters were considered similar when their difference
was <0.1 for the error (in log scale), power consumption and delay,
and <100 for the area.

Fig. 9 includes also a comparison with the state-of-the-art
approaches. For this purpose, we implemented two approximate
architectures that are believed to provide the best results according
to the latest review [19]. In particular, we implemented the
truncated CSA array multiplier and the broken-array multiplier.
Truncation, sometimes also referred to as a bit-width reduction,
represents a straightforward approach to perform approximation.
The key idea is to remove the least significant bits of the input
operands and use a smaller multiplier instead of an accurate one.
Similarly to the truncated multiplier, the broken-array multiplier
removes some of the carry-save adders in an array multiplier,
however the removed adders are determined by two parameters. In
addition to that, we reimplemented one of the first approximate
multipliers published by Kulkarni et al. in 2011 [23]. Kulkarni's
multiplier employs a common modular approach and constructs
multipliers of higher bit-widths using small manually designed 2-
bit approximate multiplier. For more details related to the
implemented architectures, we kindly refer the reader to the review.
Surprisingly, the multipliers constructed using our method provide
the best results if we consider cell-based representation only.
Despite the fact that only the worst-case error and power were
considered during the evolution, the obtained multipliers perform
very well even under the mean error distance. There are only some
minor discrepancies in the area– ewst and area– emae plots. On the
other hand, Kulkarni's modular approach results in an extremely
inefficient 12-bit approximate multiplier. More than eight times
better power consumption can be achieved for the same mean error.

Fig. 8  Area on a chip of evolved 12-bit approximate multipliers occupied by various types of standard cells before and after synthesis. For each error level,
area of ten discovered fittest solutions is analysed separately for gate-level (top row) and cell-based (bottom row) representation

IET Comput. Digit. Tech.
© The Institution of Engineering and Technology 2018

9

Paper VI

101

The situation is even worse for the worst-case error. Kulkarni's
multiplier exhibits >50 times worse power consumption compared
to the other considered multipliers having the same worst-case
error.

4 Conclusion
In this paper, we introduced and evaluated a CGP-based
evolutionary method for the design of energy-efficient approximate
circuits. In contrast to evolutionary circuit design approaches
available in the literature, we proposed to conduct the evolution at
a higher level. In particular, we employed standard cells routinely
used in design automation as building blocks for implementing
digital circuits. This decision required to extend common CGP to
support nodes with multiple outputs. In addition to that, a more
powerful 256-bit simulator and power-estimation engine was
employed in the fitness function. These changes gave rise to a
more efficient design method which was able to handle more
complex problem instances.

It was demonstrated that the proposed cell-based representation
enabled not only to reduce the time of the evaluation but also to
improve the convergence of the evolutionary design process.
Interestingly, the detailed analysis suggests that including of a full
adder in the set of possible functions is the key feature. The
experiment related to the evolutionary design of 12-bit
approximate multipliers revealed that the candidate circuits
produced in the 20th minute of the evolution exhibit practically the
same quality as the candidate solutions generated in the 270th
minute of the evolution conducted at the level of common gates.
Considering the fact that the results were achieved on a common
2.4 GHz Xeon CPU using a single thread application, the proposed
method can be easily integrated to a standard design flow. As
today's CPUs typically contain many cores, we can run several
independent evolutionary runs and obtain more different results at
the same time.

According to the literature, 8-bit multiplier represents the most
complex instance with precisely determined error parameters that

have been evolutionarily approximated. In this paper, we were able
to push the limits and discover several non-dominated 12-bit
multipliers exhibiting different circuit parameters. As shown, the
discovered multipliers outperform the state-of-the-art multipliers
available in the literature.

Despite this optimism, it is clear that exhaustive simulation
cannot be applicable for 16-bit multipliers, where 232 input test
vectors have to be evaluated to guarantee the worst-case error.
Similarly to the methods originating from the hardware
community, however, we can cope with this issue by relaxing the
requirement for strict worst-case error guarantee. It means that only
a subset of all possible input combinations is used to determine the
error parameters. By relaxing this requirement, we can
approximate even larger problem instances. Even though worst-
case error was employed only, the proposed approach can be
applied for any error criteria.

5 Acknowledgments
This work was supported by the Czech Science Foundation grant
no. GA16-17538S and by the Brno University of Technology
project FIT/FSI-J-17-4294.

6 References
[1] Mittal, S.: ‘A survey of techniques for approximate computing’, ACM

Comput. Surv., 2016, 48, (4), pp. 62:1–62:33
[2] Chippa, V.K., Chakradhar, S.T., Roy, K., et al.: ‘Analysis and characterization

of inherent application resilience for approximate computing’. The 50th
Annual Design Automation Conf., (DAC'13, 2013), Austin, TX, USA, 2013,
pp. 1–9

[3] Xu, Q., Mytkowicz, T., Kim, N.S.: ‘Approximate computing: a survey’, IEEE
Des. Test, 2016, 33, (1), pp. 8–22

[4] Venkataramani, S., Sabne, A., Kozhikkottu, K., et al.: ‘SALSA: systematic
logic synthesis of approximate circuits’. Proc. of DAC'12, 2012, pp. 796–801

[5] Venkataramani, S., Roy, K., Raghunathan, A.: ‘Substitute-and-simplify: a
unified design paradigm for approximate and quality configurable circuits’.
Proc. of DATE'13 (European Design Automation Association), Grenoble,
France, 2013, pp. 1367–1372

[6] Nepal, K., Li, Y., Bahar, R.I., et al.: ‘Abacus: a technique for automated
behavioral synthesis of approximate computing circuits’. Proc. of the Conf.

Fig. 9  Parameters of the evolved approximate 12-bit multipliers occupying the global Pareto front (worst-case error, power, area, and delay considered) as
well as the state-of-the-art approximate multipliers. Parameters of the accurate multipliers are shown using empty circles. Note that the x-axis has logarithmic
scale. Solid line shows local Pareto fronts in which the remaining two objectives are ignored

10 IET Comput. Digit. Tech.
© The Institution of Engineering and Technology 2018

Paper VI

102

on Design, Automation and Test in Europe (DATE ’14), Dresden, Germany,
2014, pp. 1–6

[7] Sekanina, L., Vasicek, Z.: ‘Approximate circuit design by means of evolvable
hardware’. IEEE Int. Conf. on Evolvable Systems (ICES), Singapore, 2013,
pp. 21–28

[8] Vasicek, Z., Sekanina, L.: ‘Evolutionary approach to approximate digital
circuits design’, IEEE Trans. Evol. Comput., 2015, 19, (3), pp. 432–444

[9] Mrazek, V., Sarwar, S.S., Sekanina, L., et al.: ‘Design of power-efficient
approximate multipliers for approximate artificial neural networks’. Proc. of
ICCAD'16, Austin, TX, USA, 2016, pp. 81:1–81:7

[10] Hrbacek, R., Mrazek, V., Vasicek, Z.: ‘Automatic design of approximate
circuits by means of multi-objective evolutionary algorithms’. Proc. of
DTIS'16, Istanbul, Turkey, 2016, pp. 239–244

[11] Miller, J.F.: ‘Cartesian genetic programming’ (Springer-Verlag, New York,
NY, USA, 2011)

[12] Weste, N.H., Harris, D.: ‘CMOS VLSI design: a circuits and systems
perspective’ (Addison-Wesley, Boston, USA, 2005, 3rd edn.)

[13] Miller, J.F., Thomson, P., Fogarty, T.: ‘Designing electronic circuits using
evolutionary algorithms. Arithmetic circuits: a case study’ (Wiley, 1998), pp.
105–131

[14] Clegg, J., Walker, J.A., Miller, J.F.: ‘A new crossover technique for Cartesian
genetic programming’. Proc. of The Genetic and Evolutionary Computation
Conf. (GECCO), London, 2007

[15] Slany, K., Sekanina, L.: ‘Fitness landscape analysis and image filter evolution
using functional-level CGP’. Proc. of European Conf. on Genetic
Programming, Valencia, Spain, 2007 (LNCS, 4445), pp. 311–320

[16] Wiltgen, A., Escobar, K., Reis, A., et al.: ‘Power consumption analysis in
static CMOS gates’. 2013 26th Symp. on Integrated Circuits and Systems
Design (SBCCI), Curitiba, Brazil, 2013, pp. 1–6

[17] Monteiro, J., Devadas, S., Ghosh, A., et al.: ‘Estimation of average switching
activity in combinational logic circuits using symbolic simulation’, IEEE
Trans. Computer-Aided Des. Integr. Circuits Syst., 1997, 16, (1), pp. 121–127

[18] Jiang, H., Han, J., Lombardi, F.: ‘A comparative review and evaluation of
approximate adders’. Proc. of GLVLSI'15, Pittsburgh, PA, USA, 2015, pp.
343–348

[19] Jiang, H., Liu, C., Maheshwari, N., et al.: ‘A comparative evaluation of
approximate multipliers’. Int. Symp. Nanoscale Architectures, Beijing, China,
2016, pp. 191–196

[20] Vasicek, Z., Slany, K.: ‘Efficient phenotype evaluation in cartesian genetic
programming’. Proc. of the 15th European Conf. on Genetic Programming,
Malaga, Spain, 2012 (LNCS, 7244), pp. 266–278

[21] Hrbacek, R.: ‘Parallel multi-objective evolutionary design of approximate
circuits’. GECCO ‘15 Proc. of the 2015 Conf. on Genetic and Evolutionary
Computation, Madrid, Spain, 2015, pp. 687–694

[22] Deb, K.: ‘Multi-objective optimization using evolutionary algorithms’ (Wiley,
New York, NY, USA, 2001)

[23] Kulkarni, P., Gupta, P., Ercegovac, M.: ‘Trading accuracy for power with an
underdesigned multiplier architecture’. 2011 24th Int. Conf. on Very-Large-
Scale Integration (VLSI) Design, Chennai, India, 2011, pp. 346–351

IET Comput. Digit. Tech.
© The Institution of Engineering and Technology 2018

11

Paper VI

103

Paper VII

Trading between Quality and
Non-functional Properties of
Median Filter in Embedded
Systems

VAŠÍČEK Zdeněk and MRÁZEK Vojtěch

Genetic Programming and Evolvable Machines. Berlin: Springer Verlag, 2017, vol. 18, no.
1, pp. 45-82. ISSN 1389-2576.

104

Trading between quality and non-functional properties
of median filter in embedded systems

Zdenek Vasicek1 • Vojtech Mrazek1

Received: 20 December 2015 / Revised: 6 July 2016 / Published online: 19 July 2016

� Springer Science+Business Media New York 2016

Abstract Genetic improvement has been used to improve functional and non-

functional properties of software. In this paper, we propose a new approach that

applies a genetic programming (GP)-based genetic improvement to trade between

functional and non-functional properties of existing software. The paper investigates

possibilities and opportunities for improving non-functional parameters such as

execution time, code size, or power consumption of median functions implemented

using comparator networks. In general, it is impossible to improve non-functional

parameters of the median function without accepting occasional errors in results

because optimal implementations are available. In order to address this issue, we

proposed a method providing suitable compromises between accuracy, execution

time and power consumption. Traditionally, a randomly generated set of test vectors

is employed so as to assess the quality of GP individuals. We demonstrated that

such an approach may produce biased solutions if the test vectors are generated

inappropriately. In order to measure the accuracy of determining a median value and

avoid such a bias, we propose and formally analyze new quality metrics which are

based on the positional error calculated using the permutation principle introduced

in this paper. It is shown that the proposed method enables the discovery of solu-

tions which show a significant improvement in execution time, power consumption,

or size with respect to the accurate median function while keeping errors at a

moderate level. Non-functional properties of the discovered solutions are estimated

using data sets and validated by physical measurements on physical microcon-

trollers. The benefits of the evolved implementations are demonstrated on two real-

& Zdenek Vasicek

vasicek@fit.vutbr.cz

Vojtech Mrazek

imrazek@fit.vutbr.cz

1 Faculty of Information Technology, IT4Innovations Centre of Excellence, Brno University of

Technology, Brno, Czech Republic

123

Genet Program Evolvable Mach (2017) 18:45–82

DOI 10.1007/s10710-016-9275-7

Paper VII

105

world problems—sensor data processing and image processing. It is concluded that

data processing software modules offer a great opportunity for genetic improve-

ment. The results revealed that it is not even necessary to determine the median

value exactly in many cases which helps to reduce power consumption or increase

performance. The discovered implementations of accurate, as well as approximate

median functions, are available as C functions for download and can be employed in

a custom application (http://www.fit.vutbr.cz/research/groups/ehw/median).

Keywords Genetic programming � Genetic improvement � Cartesian genetic

programming � Median function � Comparison network � Permutation principle �
Median filter

1 Introduction

Genetic programming (GP) has traditionally been used to evolve entirely new

expressions or functions to solve a particular problem which is usually specified by

a training data set [23]. With the development of search based software engineering,

GP has been applied to repair errors in software and assist in numerous tasks of

software engineering [10]. The successful applications of GP in search based

software engineering have attracted more and more researchers which has resulted

in the establishment of a new research direction called Genetic improvement (GI).

The Genetic improvement of software is defined as the application of evolutionary

and search-based optimization methods with the aim of improving functional and/or

non-functional properties of existing software [38].

The number of lines of code, execution time, memory usage, or power

consumption represent the typical non-functional properties of software. These

properties can be improved, for example, by replacing the existing code fragments

by newly evolved code fragments that are semantically equivalent. The improve-

ment of existing software by optimizing its non-functional properties was first

addressed by White et al. [38]. Eight different target functions were considered in

the paper. The authors showed that GP was able to discover code optimization tricks

that are probably unreachable by current compilers. These tricks enabled slight

improvements in the execution time of the chosen functions. Recently, Cody-Kenny

et al. [3] demonstrated that GP was able to reduce the number of instructions for

various manually constructed off-the-shelf implementations of a sort and prefix-

code programs written in Java. Genetic Improvement has also been used to evolve

an improved version of C?? code using automated code transplantation [22]. The

authors evolved a faster version of Boolean satisfiability solver MiniSAT which is

specialized for solving a particular problem known as Combinatorial interaction

testing. Finally, the reduction of energy consumption of non-trivial programs was

addressed in [26]. The authors introduced a system which can further optimize the

low level Intel X86 code generated by optimizing compilers. While the previous

examples have dealt with non-functional improvements, Langdon and Harman

showed that GP can, in addition to non-functional parameters, improve the

functionality of existing code [15]. The authors demonstrated that GP was able to

46 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

106

automatically improve behaviour (i.e. accuracy) of a widely-used DNA sequencing

system consisting of 50,000 lines of C?? code.

A similar research direction has been explored in the field of approximate

computing which is a promising approach to obtain energy-efficient computer

systems. In constrast to Genetic improvements that preserve the code functionality,

approximate computing exploits the fact that many applications are error resilient

and do not require a perfect output to be produced. Hence a suitable compromise is

sought between the error (quality), power consumption and performance. The

approximations can be introduced at the level of hardware as well as software. An

approximate solution is typically obtained by a heuristic procedure that modifies the

original implementation. For instance, artificial neural networks were used to

approximate software modules [7] in order to accelerate computations and reduce

power consumption. In addition, search-based methods were allowed to approxi-

mate hardware components [21, 36]. Using GP in the context of approximate

computing has been reported for digital circuit approximation [29, 34].

In this paper, we deal with GP-based improvements of non-functional properties

of programs (C functions) that are intended for low-cost microcontrollers. As we

seek significant improvements mainly of power consumption and execution time,

we consider the approximate computing scenario and accept some errors in the

outputs. The function to be approximated is the median filter which is crucial in

signal processing, image processing and sensor data processing. The goal of the GP-

based search strategy is to improve the existing, in most cases even functionaly

optimal, median implementations and find programs showing suitable compromises

between the accuracy, execution time and power consumption for various median

functions when implemented on a microcontroller. This paper develops our previous

results that were presented at the first GI workshop [20]. In contrast to our

previously published work, a more efficient GI method based on a two-stage

optimization process is introduced. The quality of the candidate solutions is

measured as a distance between the candidate program and a fully-working median

implementation. A generalized version of the zero–one principle [14] denoted as

permutation principle is used to determine this distance. The permutation principle,

first introduced in this paper, is formally proven in Sect. 4.2. Compared to the

previous results, the quality of the obtained solutions is improved significantly. In

addition, the benefit of GI approach is demonstrated using two real-world problems

that are typically handled by embedded systems—sensor data processing and image

processing. The obtained results are evaluated using data sets and by physical

measurements on physical microcontrollers.

In the context of this work, one can observe that the evolutionary design and/or

optimization of an (accurate) median outputting program has been carried out by GP

only rarely [27]. However, a considerable number of research papers were devoted

to the design and optimization of sorting algorithms (e.g., [1, 38]) and sorting

networks (e.g. [11, 12, 28, 33]), which are useful structures when the median value

has to be obtained. As checking whether a specification (i.e. an original code) and a

candidate solution are semantically equivalent is time consuming, exact equivalence

checking is not performed in the fitness function. The fitness is usually based on

evaluating candidate solutions using a training data set and subsequent testing at the

Genet Program Evolvable Mach (2017) 18:45–82 47

123

Paper VII

107

end of evolution using other data sets. According to the zero–one principle, the

training data are typically restricted to binary input vectors. A genetic improvement

of two different implementations of Bubble-Sort algorithm was demonstrated in

[38], where GP enabled the discovery of code optimization tricks probably

unreachable by current compilers. These tricks enabled slightly improved execution

time of the chosen sorting functions.

The rest of the paper is organized as follows. Section 2 briefly surveys genetic

improvement and its relation to the approximate computing. Then an overview of

the key areas related to this paper is given in Sect. 3. In particular, the median

function and possibilities for the improvement are discussed. In Sect. 4, the

permutation principle is introduced. The proposed method is described in Sect. 5.

Section 6 introduces the experimental setup. The results are presented and analyzed

in Sect. 7. Then, the obtained medians are applied to solve real-world problems. A

detailed discussion is given in Sect. 8. Finally, Sect. 9 concludes the paper.

2 From genetic improvement to approximate computing

In contrast to approximate computing that has been developed to improve energy

efficiency and performance for the cost of accuracy, GI has always kept the code

functionality identical with the original software. In approximate computing,

software and hardware is approximated (i.e. simplified with respect to fully accurate

implementations) in order to reduce power consumption or increase performance.

As a consequence, errors can emerge during computations. In many cases errors can

be tolerated because human perception capabilities are limited, no golden solution is

available for validation of results, or users are willing to accept some inaccuracies.

Therefore, the error (accuracy of computations) can be used as a design metric and

traded for area on a chip, delay, throughput, or power consumption.

One way to reduce energy consumption is by allowing timing errors by voltage

over scaling or frequency over clocking. Another approximation technique, which is

relevant for this paper, is functional approximation. The idea of functional

approximation is to implement a slightly different function to the original one,

provided that the error is acceptable and the non-functional parameters are improved

adequately. Functional approximation can be conducted at the level of software as

well as hardware.

After introducing several approximate circuits that were created manually [9],

researchers started to develop more efficient systematic semi-automatic and fully-

automatic methods. EnerJ [24], an extension of Java that adds approximate data

types, represents one of the semi-automatic methods. Using these types, the system

automatically maps approximate variables to low-power storage, uses low-power

operations, and even applies more energy-efficient algorithms provided by the

programmer. Axilog is a set of language annotations that provide the necessary

syntax and semantics for an approximate hardware design and reuse in Verilog [39].

Axilog enables the designer to relax the accuracy requirements in certain parts of

the design, while keeping the critical parts strictly precise. In contrast to fully-

automatic methods, an approximate solution is typically obtained by a heuristic

48 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

108

procedure that modifies the original implementation. For example, artificial neural

networks were proposed in [7] to learn to behave like a general-purpose code

written in an imperative language. The trained network then replaced the original

code. There are also general search-based methods that allows us to approximate

hardware components [21, 36].

While the approximate problem has already been addressed by GP community

[30, 34], GI has been used to improve functional and non-functional properties of

software so far. However, by having the fitness function of GP-based GI permit

errors, one can easily obtain approximate solutions. Applying the GI methodology

for approximate computing (particularly for approximate software) seems to be

straightforward. The main outcomes would be to obtain better trade-offs among key

system parameters (note that the search-based methods are not constrained by

various assumptions of mathematically rigorous methodologies) and reducing the

optimization time with respect to commonly used solvers such as ILP. The key

advantage is that the GI systems can be constructed as multi-objective (i.e. they

provide a Pareto front showing the best trade-offs among the error, speed, memory

usage, energy consumption, network loading, etc.) at the end of each run.

3 Background

In this section, we give an overview of the key areas related to this paper, especially

the median function, construction of median networks and possibilities for the

improvement of median functions. The section is concluded with problem

formulation.

3.1 Median of a data set

Given a finite sequence of data samples, the median is defined as a value separating

the higher half of data samples from the lower half. The median is of central

importance in robust statistics [16], as it is the statistic that is the most resistant to

outliers that could be presented in a given sequence. Contrasted to the mean, the

median is a robust measure of central tendency. The main feature of the robust

methods is their high efficiency in a neighbourhood of the assumed statistical model

which is widely exploited in signal processing where the median is usually

employed to filter the measured data.

There exists two basic approaches to determine the median of a given sequence.

A straightforward and naı̈ve approach is to employ a generic sorting algorithm, for

example, the most popular and efficient quicksort algorithm. Implementations of

sorting algorithms are very compact and robust, however, the execution time needed

to determine the median value may vary with the values of the elements in a

particular input sequence. This kind of nondeterminism may be problematic in real-

time applications intended for microcontrollers having limited computing power. In

addition, the sorting of the whole input sequence generates an substantial overhead.

In order to eliminate the overhead, a more efficient in-place algorithm known as

Quick select can be applied [14].

Genet Program Evolvable Mach (2017) 18:45–82 49

123

Paper VII

109

An alternative way of calculating the median value is to use a median network.

The median network is a kind of sorting network whose concept is deeply

elaborated in [14]. A sorting network is defined as a sequence of elementary

compare-swap operations that sorts all input sequences. The sequence of compara-

tors is fixed and depends only on the number of elements to be sorted, not on the

values of the elements. Similarly, a median network is a sequence of elementary

compare-swap operations that calculates the median for all input sequences. A

compare-swap operation of two elements (a, b) compares a and b and exchanges (if

it is necessary) the elements in order to obtain a sorted sequence.

3.2 Construction of median networks

A sorting network with n inputs and n outputs can be constructed using an instance

of the sorting algorithm which is operating over a sequence of n items. The only

condition is that the algorithm must be data independent. Bitonic-sorting and

Batcher’s odd-even merge sorting are examples of such algorithms.

A median network can be constructed from a sorting network by removing the

useless compare-swap operations (i.e. operations that do not contribute to the output

value). Aside from this, an optimal sequence of compare-swap operations is known

for some median networks [4, 31]. Generally, the direct design of the median and

sorting networks is a nontrivial task, especially for larger values of N.

In order to illustrate the difference among the results produced by various

algorithms, let us suppose that we need to construct a 9-median network (i.e. a

median network for n ¼ 9 inputs). When Bitonic-sorting algoritm is used, we obtain

a sequence of 23 operations. The Batcher’s odd-even merge sorting produces the

median network consisting of 22 operations (see Fig. 1a). The optimal 9-median

dtype median9_22(dtype *din)
{

CS(0 ,1); CS(3,4); CS(5,6);
CS(7 ,8); CS(0,2); CS(5,7);
CS(6 ,8); CS(0,3); CS(1,2);
CS(6 ,7); CS(0,5); CS(1,4);
CS(2 ,3); CS(1,2); CS(3,4);
CS(1 ,6); CS(2,7); CS(3,8);
CS(4 ,5); CS(2,4); CS(3,6);
CS(3,4)
return din [4];

}

dtype median9_19(dtype *din)
{

CS(1,2); CS(4,5); CS(7 ,8);
CS(0,1); CS(3,4); CS(6 ,7);
CS(0,3); CS(1,2); CS(4 ,5);
CS(7,8); CS(3,6); CS(4 ,7);
CS(5,8); CS(1,4); CS(2 ,5);
CS(4,7); CS(4,2); CS(6 ,4);
CS(4,2)

return din [4];
}

(a) (b)

Fig. 1 Two instances of a median network for 9 inputs. The compare-swap operation is implemented
using macro CS(a, b) which assigns the lower value to din[a] and higher value to din[b]. One of the
possible implementations of CS is the following one:

if (z din[b] − din[a]) < 0 then din[a] ← din[a] + z;

din[b] ← din[b] − z; end

a Median constructed using Batcher’s odd-even merge sorting. b Optimal implementation of 9-input
median [4]

50 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

110

network consists, however, of 19 operations (see Fig. 1b). The corresponding codes

in C language are shown in Fig. 1. Note that various implementations can be

utilized. If there is a requirement to preserve the input data samples (i.e. to avoid the

usage of in-place computations), two temporary variables have to be associated with

each output of the CS operation.

Alternativelly, each compare-swap operation can be replaced by two basic

operations—minimum and maximum. This allows us to furthermore decrease the

total number of required instructions because not every output value calculated by

the compare-swap element is subsequently utilized. For example, the last operation

shown in Fig. 1b calculates din[2] and din[4]. It is evident that it makes no sense to

determine the value of din[2] because only din[4] is returned at the end. The

representation based on the minimum/maximum operations enables us to reduce the

code size of the 9-median shown in Fig. 1b by 21 % provided that the minimum and

maximum macros share the code required to determine the relation between both

input values.

3.3 Power-aware improvement of median networks

It is clear that the performance as well as power consumption of a particular median

network implementation directly depends on the number of operations a given

median network consists of. The higher number of operations results in a higher

power consumption as well as a longer execution time. This relation can easily be

revealed, for example, by inspecting the implementations shown in Fig. 1. The

median networks shown consist of a fixed number of operations. Each operation is

executed in the same number of clock cycles on average if it is measured at the level

of machine code instructions.

Decreasing the number of operations represents the only way to improve the

performance and power consumption. Unfortunately, a reduction of the number of

operations is not possible without accepting some errors in the outputs produced by

a median function. In other words, we have to search for a sequence of compare-

swap operations that are capable of approximating the median. Let us call such a

sequence a comparator network.

Two possible approaches can be applied to achieve our goal. One way to obtain

an improved median network with a reduced number of operations is to construct a

comparator network completely from scratch. It means to employ a variant of GP

(e.g. linear GP, cartesian GP, etc.) and evolve programs satisfying the required

quality as well as target size constraints (i.e. consisting of the required number of

operations). The other possibility is to apply evolutionary techniques to reduce the

number of operations of already existing median networks provided that the quality

is maximized. In this scenario, a fully working median network used as a starting

point is gradually modified according to the genetic improvement methodology. At

the end of this process, a comparator network of the highest possible quality

consisting of the required number of operations is expected. The question is which

of these approaches performs better.

It seems to be natural to employ the first approach, however, due to the limited

scalability of the evolutionary design, this approach seems to be extremely

Genet Program Evolvable Mach (2017) 18:45–82 51

123

Paper VII

111

inefficient. As shown in [34], randomly seeded GP discovered fully functional

solutions for the 9-median, however, no correct solution was discovered for the

25-median. While the evolutionary design of a 9-median is a relatively simple

problem, a 25-median consisting of more than 200 operations seems to be outside of

the range of possibilities of the evolutionary design approach. If a median consisting

of more than 100 operations is required, then direct evolution is unable to

accomplish the goal. The authors claimed that solving the larger instances from

scratch seems to be impossible for any evolutionary algorithm based on direct

encoding.

3.4 Problem formulation

Given an existing median network N, i.e. a sequence of compare-swap operations of

length n, and the target number of compare-swap operations m, find an alternative

sequence of compare-swap operations M of length m s that this sequence maximizes

the functional objective (quality) and minimizes the non-functional objectives.

In general, the problem can be understood as a single-objective as well as a

multiple-objective optimization problem. The number of operations and time of

execution and power consumption represent the typical software-related non-

functional objectives. In addition, the number of stages required to determine the

output value can be considered. This parameter is, however, important only when

the comparator networks are intended for hardware implementation.

4 The quality of the improved median networks

In this section, we give an overview of approaches that enable us to assess the

quality of partially working software and hardware. Then we discuss how to

determine the quality of the improved median networks. We introduce and prove the

permutation principle which gives a clue on how to determine the quality of median

functions efficiently. In order to measure the distance between an original and

improved version of the median, a problem-specific quality metric is proposed.

4.1 Common quality metrics

Various approaches to evaluate the quality of partially working software and

hardware have been proposed in the literature.

The error probability (error rate) and Hamming distance represent metrics

typically used to measure the quality of digital circuits. The error rate (Hamming

distance) is defined as the percentage of input vectors (bits of output) for which the

approximate output differs from the original one. In general, 2wn input combinations

exist for an n-input median network operating with elements encoded using w-bit

integers. Clearly, it is intractable to evaluate all possible input combinations,

however, the number of input combinations can substantially be reduced by

applying the zero–one principle. The zero–one principle states that if a sorting

network with n inputs sorts all 2n input sequences of 0’s and 1’s into a

52 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

112

nondecreasing order, it will sort any arbitrary sequence of n elements into a

nondecreasing order [14]. As a consequence, 2n input combinations are sufficient to

determine the error rate. Unfortunately, it seems to be difficult to apply this metric

in practice. For example, there can exist a candidate implementation slightly

modifying one half of the output values, but still providing good performance if

used, for example, in image filtering.

The average error magnitude is another metric which is used for determining the

quality of arithmetic circuits, not only in the field of evolutionary design, but also in

the approximate computing. The average error magnitude is defined as the sum of

absolute differences in magnitude between the original and approximate circuits,

averaged over all inputs. Two complex issues are, however, connected with this

parameter when used to evaluate the quality of a median network. Firstly, it is not

possible to apply the zero–one principle in this case. As a consequence, we are

unable to determine the exact value of this metric. In practice, we have to use a

subset of all possible input combinations which helps us to estimate the value of the

average error magnitude. The selection of the input vectors must be done carefully

because it influences the precision of the estimate. Secondly, the averaging may

hide situations in which completely wrong results are returned.

The common problem of the previously discussed generic metrics is that they do not

reflect the quality of selecting the median value. In order to investigate the impact of the

approximations on the quality of obtained results, regardless of the values of the input

items, we introduce a new problem-specific metric. Let us recall that the median of a

finite list of numbers can be found by arranging all the numbers from the lowest value to

the highest value and picking themiddle one. In otherwords, themedian of a finite list of

numbers consisting of 2k þ 1 items is equal to the ðk þ 1Þth lowest value. The most

important property of the median functions implemented in accordance with Sect. 3.2

is that the output always equals one of the input values. Let the output value equal to the

jth lowest value. To describe the quality of an approximate median function, we can

introduce distance error defined as the distance of the item chosen as the output value

(i.e. jth lowest value) from the median (i.e. ðk þ 1Þth lowest value) calculated as

jj� k þ 1j. Two additional metrics can be inferred from the distance error: average

distance error defined as the sum of error distances averaged over all input

combinations producing an invalid output value andworst case distance error defined

as the maximal distance error calculated over all input combinations.

Note that it is not necessary to investigate all possible input combinations in

practice. The permutation principle introduced in Sect. 4.2 permits one to

substantially reduce the total number of input combinations that has to be

investigated for a given comparator network in order to precisely determine the

properties of the network. According to the permutation principle, the aforemen-

tioned distance errors can be determined using the permutations of a set S consisting

of 2k þ 1 different values. To determine the quality, we propose to use a set

S ¼ f�k;�k þ 1; . . .; 0; . . .; k � 1; kg. The set S consists of 2k þ 1 successive

integers starting at the value �k. This particular arrangements enable to calculate

the average distance error in the same way as the average error magnitude. This is

possible because the median of S is equal to zero and the distance between jth

lowest item (i.e. the value j� ðk þ 1Þ) and ðk þ 1Þth lowest item (i.e. median of S)

Genet Program Evolvable Mach (2017) 18:45–82 53

123

Paper VII

113

is equal to j� ðk þ 1Þ. Compared to the process of determining the average error

magnitude, however, a substantially lower number of input combinations is required

to be processed by a candidate median implementation.

4.2 The permutation principle

Definition 1 Let R be an ordered alphabet. A comparator network is a directed

acyclic graph with n inputs and n outputs (n� 2), where each node has two inputs

ðx1; x2Þ and two outputs ðy1; y2Þ. The function of a node is defined as

y1 ¼ minðx1; x2Þ ^ y2 ¼ maxðx1; x2Þ, where x1; x2 2 R.

Definition 2 A sorting network is a comparator network that monotically sorts

every input sequence.

Definition 3 Let A ¼ ða1; . . .; anÞ be a sequence of n different elements, A 2 R�.
Let dA: R� ! N be a mapping which assigns each element ai 2 A the position of

this element in the sorted variant of A. Let dA be defined as follows:

dAðxÞ ¼ 0 , 8a 2 A:x\a

dAðxÞ ¼ jAj � 1 , 8a 2 A:x[a

8 1� i; j� n:ai\aj , dAðaÞ\dAðbÞ

For simplicity, let dðAÞ denote the sequence ðdAða1Þ; dAða2Þ; . . .; dAðanÞÞ.

Lemma 1 ([14]) Let N be a sorting network with n inputs that transforms a

sequence A ¼ ða1; a2; a3; . . .; anÞ to a sequence B ¼ ðb1; b2; b3; . . .; bnÞ. If a

monotonic mapping f is applied to the sequence A, the network N transforms a

sequence A0 ¼ ðf ða1Þ; f ða2Þ; f ða3Þ; . . .; f ðanÞ) to B0 ¼ ðf ðb1Þ; f ðb2Þ; f ðb3Þ; . . .;
f ðbnÞÞ.

Theorem 1 Let N be a comparator network with n inputs. Let S be a set consisting

of n distinct values. If every permutation of a set S is sorted by N, then every

arbitrary sequence is sorted by N.

Proof Suppose A ¼ ða1; . . .; anÞ is an arbitrary sequence which is not sorted by N.

This means NðAÞ ¼ B ¼ ðb1; . . .; bnÞ is unsorted, i.e. there is a position k such that

bkþ1\bk. Clearly, mapping dA is monotonic. By applying Lemma 1 and dA, the
following holds dAðbkþ1Þ\dAðbkÞ, i.e. dðBÞ ¼ dðNðAÞÞ is unsorted. This means that

NðdðAÞÞ is unsorted or, in other words, that the sequence dðAÞ is not sorted by the

comparator network N.

We have shown that, if there is an arbitrary sequence A that is not sorted by N,

then there is a sequence dðAÞ, i.e. a sequence of ð0; . . .; n� 1Þ values, that is not

sorted by N. Equivalently, if there is no ð0; . . .; n� 1Þ-sequence that is not sorted by

N, then there can be no sequence A whatsoever that is not sorted by N. Equivalently

again, if all ð0; . . .; n� 1Þ-sequences are sorted by N, then all arbitrary sequences

are sorted by N.

Clearly, there exists a bijection between all permutations of S and all

ð0; . . .; n� 1Þ-sequences as follows from the definition of S. In particular, dS

54 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

114

ensures the bijective mapping. This means that if all permutations of S are sorted by

N, then all arbitrary sequences are sorted by N. h

4.3 The permutation principle and distance error

The permutation principle introduced in the previous section can be employed to

determine the distance between an arbitrary comparator network (e.g. partially

working sorting network) and a sorting network as follows.

Theorem 2 Let C be a comparator network, and N be a sorting network, both with

n inputs. Let A be an arbitrary sequence A ¼ ða1; . . .; anÞ. Let D ¼ CðdðAÞÞ �
NðdðAÞÞ ¼ ðd1; . . .; dnÞ be a mapping which assigns each element ai a number di.

Then, di is error expressed as the number of positions that are required to shift ai to

the right in sequence CðdðAÞÞ to obtain sorted variant of sequence A.

Proof Let B ¼ NðAÞ and B0 ¼ CðAÞ. For each element b0k 2 B0 holds that

difference between a correct position and position of b0k in a sorted variant of

sequence A is equal to dk ¼ dAðb0kÞ � k. As N is a sorting network, it holds that

dAðbkÞ ¼ k which implies that dk can be expressed as dk ¼ dAðb0kÞ � k ¼
dAðb0kÞ � dAðbkÞ. By applying Lemma 1, it holds that D ¼ CðdðAÞÞ � NðdðAÞÞ: h

Definition 4 Let A and B be two sequences of elements. Let � d denote an

equivalence relation on the set of all sequences defined as follows:

A� dB , jAj ¼ jBj ^ dðAÞ ¼ dðBÞ

To conclude this part, let us give a simple example which illustrates the principle

of determining the position error for a comparator network with 4 inputs and 4

outputs and two chosen sequences A and B.

Example 1 Let A and B be two sequences consisting of 4 items defined as

A ¼ ð25; 14; 36; 8Þ, B ¼ ð16; 12; 20; 2Þ. Let N denotes the sorting network and C be

a comparator network both with 4 inputs and 4 outputs, where C is defined as

follows: Cða1; a2; a3; a4Þ ¼ ðminða1; a2Þ;maxða1; a2Þ; a3; a4Þ:
According to the Definition 3, dðAÞ ¼ ð2; 1; 3; 0Þ and NðdAðAÞÞ ¼ ð0; 1; 2; 3Þ

which follows fromNðAÞ ¼ ð8; 14; 25; 36ÞwhereN(A) denotes the sorted sequenceA.
As the output of C is equal to CðAÞ ¼ ð14; 25; 36; 8Þ, the CðdðAÞÞ ¼ dðCðAÞÞ ¼
ð1; 2; 3; 0Þ. To calculate the positional differencesDCðAÞ, we apply Theorem 2 which

yields the following resultDCðAÞ ¼ CðdðAÞÞ � NðdðAÞÞ ¼ ð1; 2; 3; 0Þ�ð0; 1; 2; 3Þ ¼
ð1; 1; 1;�3Þ. The result can be interpreted in such a way that each of the first three

elements of the partially sorted sequence C(A) should be shifted one position to the

right and the last element should be shifted three positions to the left. If all the shifts are

applied, we obtain a sorted sequence.

The same sequence of steps applied to B yields DCðBÞ ¼ CðdðBÞÞ � NðdðBÞÞ ¼
ð1; 2; 3; 0Þ �ð0; 1; 2; 3Þ ¼ ð1; 1; 1;�3Þ. It reveals that DCðBÞ ¼ DCðAÞ, i.e. the same

Genet Program Evolvable Mach (2017) 18:45–82 55

123

Paper VII

115

sequence as for Awas obtained. It means that we have applied the sequence within the

same equivalence class, i.e. A� dB. This fact can be easily checked by comparing the

output of dðAÞ and dðBÞ. It holds that dðBÞ ¼ dðAÞ.

4.4 Final remarks

In general, there exist 2wn input combinations that can be processed by an n-input

comparator network operating at w-bits. We have shown that it is sufficient to

reduce the number of the possible input combinations to n! to prove the validity of a

sorting network due to the existence of permutation principle (see Theorem 1).

According to the zero–one principle, the validity of a sorting network can, however,

be checked using 2n binary vectors. As it can easily be checked, the 2n is for n� 4

lower than n!, hence it seems that the proposed permutation principle does not offer

an advantage. However, the problem of zero–one principle is that the binary vectors

cannot probably be used to evaluate the quality of a comparator network. The reason

is that we are not able to distinguish which value comes from what input (there are

only two values—0’s and 1’s). To address this problem, Theorem 2 helps to

determine the so called position error (distance error) which can be used as a basis

of an error metric.

The impact of the introduced permutation principle can be seen from theoretical

as well as practical point of view. From the theoretical point of view, it was proven

that we can use this principle to evaluate the quality of candidate solutions without

loss of generality (i.e. it is not necessary to evaluate responses for all w-bit input

combinations). The permutation principle significantly reduces the number input

vectors that have to be applied to obtain the fitness. In particular, 362, 880 vectors

instead of 2569 vectors are sufficient to precisely determine quality of a 9-input

comparator network operating at 8-bits. From the practical point of view, the

permutation principle (if properly applied) extremely simplifies the evaluation of

candidate solutions because the response of a comparison network (i.e. output

value) is equal to the distance from the median value. It means that we can avoid

precomputing and storing of a training dataset.

Example 1 illustrates that no additional information about an investigated

network is obtained when we try to check some property of a comparator network

using sequences belonging to the same equivalence classes. This may happen when

randomly generated test cases are used to determine this property. In fact, the

randomly generated input sequenced may introduce a bias when used to evaluate

quality of a comparison network. The probability of occurrence such cases is

relatively high, because only the relation among the values within a generated

sequence is important (i.e. not values themselves). Let us give an example. We

created 106 test vectors consisting of nine randomly generated 8-bit values. Then,

we calculated the number of covered equivalence classes according to Definition 4.

It revealed that only 337,751 out of 362,880 (i.e. 93 %) of all possible equivalence

classes were covered despite the fact that we generated approximately three times

more test vectors than the number of equivalence classes. It means that there is

many test vectors belonging to the same equivalence class.

56 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

116

The permutation principle and the obtained conclusions can directly be applied

not only to comparator networks discussed in this section but also to comparator

networks with a single output. In other words, the permutation principle can be used

to assess the quality of partially working median as well as sorting networks.

5 The proposed method

In order to search for solutions with some improved level of a non-functional

property, we must be able to quantify that property. In our case, the execution time

and power consumption are considered. To estimate these non-functional properties,

we can use the number of operations of which the median function consists of. This

is a fairly reliable high-level estimate not only of execution time but also of power

consumption. A more detailed simulation employing an accurate simulator would

be necessary in general, however, our programs are designed as a sequence of min

and max operations. It is supposed that each operation is transformed by compiler to

a sequence of instructions that requires exactly the same number of clock cycles to

perform this operation. In addition to that it also reflects the nature of modern

embedded systems (e.g. ARM) whose instruction set predominantly consists of

instructions that can be executed within one clock cycle.

In this paper, the task is formulated as a single objective optimization problem

where the number of operations en represents a constraint specified by designer.

Because both considered non-fuctional objectives linearly depend on this constraint,

it is not necessary to include these objectives in the fitness function. This represents

the main advantage of the constraint-oriented approach. In addition to this, the

constrain-oriented approach is relevant to practice where the designers usually

wants to achieve a particular power reduction in order to improve the performance

of the whole embedded system.

To achieve our goal, we propose to use cartesian GP (CGP) in its linear form

[18]. The linear form seems to be preferred approach compared to the traditional

form of CGP representing the solved problems using two-dimensional array of

nodes.

5.1 Representation of comparator networks

Each comparator network with n inputs can be represented using a directed acyclic

graph consisting of k nodes. In order to encode such a graph, we can map the nodes

to a 1D array of N nodes (N � k) that can be encoded using cartesian GP

representation as follows. The number of rows, which is one of CGP parameters, is

set to nr ¼ 1. The number of columns nc is equal to the number of nodes, i.e.

nc ¼ N.

The 1D array of nodes can be encoded using a string of integers, the so-called

chromosome. The inputs are labelled ð0; 1; . . .; n� 1Þ and the nodes are labelled

ðn; nþ 1; . . .; nþ nc � 1Þ. Each node has two inputs and is encoded in the

chromosome using three integers—two labels specifying where the node inputs are

connected to and a single label specifying the function of the node. Finally, the

Genet Program Evolvable Mach (2017) 18:45–82 57

123

Paper VII

117

chromosome contains a single integer specifying the label of a node where the

output is connected. The chromosome consists of 3nc þ 1 integers (i.e. genes).

The main feature of CGP is that nc as well as nr (i.e. the total number of nodes N)

are constant during evolution. It means that the size of the chromosome is constant

because it depends only on nc. On the other hand, the size of graph represented by

this chromosome is variable as some nodes may become inactive. The nodes which

do not contribute to the output value are called the inactive nodes. Example is given

in Fig. 2 where only 4 out of 5 nodes are active.

Each node can act as minimum or maximum function. The inputs of a node can

be connected either to the output of a node placed in previous l columns or to one of

the input variables. This restriction ensures that no feedbacks are allowed. The

output can be connected to output of any node. The l-back parameter will be

unrestricted, i.e. l ¼ nc.

5.2 Quality of candidate solutions

The computational effort of EA directly depends on the number of test cases that are

used for fitness evaluation of the GP individuals. Even if we apply the permutation

principle which substantially reduces the number of all possible test cases that have

to be investigated, we cannot run all of these due to time constraints. Thus, the

number of test cases is fixed and specified at the beginning of the evolution. Based

on the preliminary experiments and in accordance with observations related to the

minimum number of test vectors required to evaluate candidate solutions [34], we

determine the number of test cases as T ¼ 103 � n2, where n is the number of input

variables. The number of test cases is chosen in such a way that we are able to

relatively precisely estimate the quality of the individuals while the time of fitness

evaluation remains reasonable. Surprisingly, this simplification does not have any

significant effect in practice provided that a reasonable number of unique

permutations is used. The example given in Fig. 3 demonstrates how the number

of test cases influences the shape of distribution of distance error for an approximate

version of 25-input median. If more than 104 test vectors are used, the distributions

are almost identical.

The first generated test case is the sequence S ¼ ð�k;�k þ 1; . . .; 0; . . .; k � 1; kÞ
where n ¼ 2k þ 1. The next test case is obtained by swapping two randomly chosen

items. This step ensures that a permutation of S is obtained. Note that the process of

MIN

2

3
5 MAX

1

4
6

0

5
7

7

6
8

7

4
9

i0

i1

i2

i3

o (8)

i4

MAX MAXMIN

0

1

2

3

4

Fig. 2 Example of a 5-input comparator network encoded using cartesian GP with parameters: k ¼ 5,
nc ¼ 5, l ¼ 4. Chromosome: 2, 3, min; 1, 4, max; 0, 5, max; 7, 6, min; 7, 4, max; 8. Node 9 is not used.
The behaviour of the encoded comparator network is defined as:
o ¼ minðmaxði0;minði2; i3ÞÞ;maxði1; i4ÞÞ

58 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

118

generating the test cases have to be deterministic because we have to guarantee that

exactly the same fitness score is obtained for individuals that represent the same

behaviour. In order to satisfy this requirement, a separate random generator is used

to perform the random exchanges. This generator is reinitialized with the same seed

whenever we begin to generate the permutations.

The quality of the GP individuals is determined as follows. For each test case, the

chromosome is interpreted. This step requires to successively determine the value at

the output of each node. Finally, the response of a comparator network encoded by

the individual is calculated. Because the permutations of a set proposed in Sect. 4.1

are applied to the inputs, the obtained response equals to the distance error

determined for a given test case. In order to prefer the implementations with the

lowest worst case distance error, we propose to calculate a histogram of distance

errors and summarize the obtained results as follows:

qðCÞ ¼ hðC; 0Þ �
X

k

i¼�k

hðC; iÞi2; ð1Þ

where q(C) denotes the quality of a comparator network C and h(C, i) represents the

number of occurrences of a case for which the distance error equals to i, formally:

hðC; iÞ ¼
X

t2T

1; ifCðtÞ ¼ i:

0; otherwise:

�

ð2Þ

where C(t) denotes the response of the comparator network C obtained for a test

case t 2 T and T is a set of considered permutations of S. There are two reasons for

including i2. Firstly, only positive numbers are summed. Secondly, a natural weight

is provided in order to emphasize the most important part of the histogram.

5.3 Search method

The search method follows the standard CGP approach [18], i.e. the evolutionary

strategy 1þ k is applied. The initial population is seeded by an existing median

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Distance error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

R
el

at
iv

e
fre

qu
en

cy
T= 103

T= 104

T= 105

T= 108

Fig. 3 Distribution of distance error for an approximate version of 25-input median as a function of the
number of test cases T

Genet Program Evolvable Mach (2017) 18:45–82 59

123

Paper VII

119

network. In order to generate a new population, k offspring individuals are created

by a point mutation operator modifying h genes of the parent individual. The best

individual of the current population (i.e. the parent individual together with k
offspring) serves as the parent of new population. The process is repeated until a

given number of generations is not exhausted.

One mutation can alter either the function of a node, node input connection, or

output connection. If a mutation hits a non-active node, this is detected and the

candidate solution is not evaluated in terms of functionality because it has the same

fitness as its parent. Mutations that do not affect the fitness score are called neutral

and seem to be important in CGP because a series of neutral mutations can

accumulate useful structures in the part of the chromosome which is not currently

active (see detailed analysis in [8, 19]). In order to support this kind of neutrality,

neutral mutants always replace their parent in CGP. One adaptive mutation can then

connect these structures with active nodes which could lead to discovering new

useful implementations.

In order to obtain an approximate version of median function M, we propose to

apply a two-stage procedure. At the beginning, the designer specifies the target

reduction that should be achieved, e.g. 15 %. The specified value is internally

understood as the number of operations L of the approximate median function. In

our example, L is equal to 85 % of the number of operations in the original median

function.

The first stage starts with a fully functional solution. As has been discussed in

Sect. 3.2, the initial solution can always be obtained in practice. In this stage, the

goal is to gradually modify the initial sequence consisting of minimum and

maximum operations and produce a reduced sequence of length L providing that a

5 % difference is tolerated with respect to L (tolerating a small deviance in the

number of operations is acceptable; otherwise the search could easily stuck in a

local extreme). The fitness function fit1 used in the first stage is thus solely based on

the number of operations

fit1ðCÞ ¼ jCj; ð3Þ

where C denotes a candidate solution implemented using |C| operations.

In the second stage, which begins after obtaining an implementation consisting of

the target number of operations, the fitness function reflects not only the size, but

also the quality:

fit2ðCÞ ¼
qðCÞ; if 0:95L� jCj � 1:05L:

�1; otherwise:

�

ð4Þ

It is requested that the number of operations remains within 5 % tolerance with

respect to L. Candidate circuits violating this hard constraint are discarded.

The proposed two-stage method eliminates the problem with seeding of initial

population which may be considered as a limitation of the resource-oriented method

[20]. The advantage of our method is that we do not need to implement a heuristics

for generating the initial solution consisting of L operations. Instead, a fully working

median function obtained by pruning a sorting-network is used as the start point. In

60 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

120

addition to this, it was demonstrated that the randomly seeded CGP was unable to

produce reasonable solutions when the complexity of the problem to be solved

increases. The role of seeding was investigated for example in [34]. The benefits of

the two-stage method are not only in improving the quality of evolved circuits, but

also in reducing the time of evolution.

6 Experimental setup

In order to evaluate the performance of the proposed approach, i.e. the ability to

improve the considered non-functional parameters of the existing median functions,

namely time of execution and power consumption, we have chosen four instances of

the median filter that are common in practice. The results of optimization for

9-median, 11-median, 13-median, and 25-median will be reported. While the

9-input and 25-input medians are typically employed in image processing, the

9-input, 11-input and 13-input medians represent instances used to filter data

coming from sensors. We did not consider the lower number of inputs because there

is nearly no potential for improvement due to the small code complexity.

As previously mentioned, the designer has to specify the target reduction that

ought to be achieved by reducing the number of instructions. Eight to eleven design

points (i.e. different values of L) were considered for each problem. We carried out

100 repetitions of CGP at each design point to evaluate the variation in the output

caused by the random seed. In total, 4000 experimental runs were performed. To be

able to evaluate all runs in a reasonable time, the number of generations was limited

to gmax ¼ 1� 104. The number of generations is based on the initial experiments

and represents a compromise between the ability to demonstrate the advantage of

the genetic improvement in the solving of the chosen problem and the amount of

required computational resources. If the objective is to find the best possible

implementation for a certain design point, we recommend to increase the number of

generations. In order to improve the efficiency of the fitness function, approach

proposed in [35] was employed.

The following settings was used for the search strategy: Twenty offspring

individuals are generated from the parent (i.e. k ¼ 20) using the mutation operator

that modifies up to 5 % of the chromosome genes. The number of columns nc is

fixed for each design point and is initialized according to the number of operations

of the original median function. In the case of 9-input and 25-input median, the

optimal implementations consisting of the minimal number of compare-swap

elements were used from [4]. Each compare-swap element was replaced by

minimum and maximum operation and the worthless operations were removed as

mentioned in Sect. 3.2. The obtained sequence of minimum and maximum

operations was used as a starting point for seeding the evolutionary algorithm. In

remaining cases, the initial fully working median networks were derived from a

25-input median network by reducing the number of inputs and removing redundant

operations. We have verified that this approach produces more compact median

networks compared to the results obtained using the approach employing a sorting

algorithm. The parameters of the initial networks are summarized in Table 1.

Genet Program Evolvable Mach (2017) 18:45–82 61

123

Paper VII

121

7 Results

The results of the evolution are summarized in Fig. 4. For each problem and each

design point, the normalized fitness score is given. This score is calculated

according to Eq. 4, however, the results are normalized by the total number of test

Table 1 Parameters of the fully working median functions used to seed the evolution and the range in

which the design points are sampled

Parameter 9-Median 11-Median 13-Median 25-Median

Number of compare-swaps elements 19 33 43 99

Number of min/max operations 30 56 74 174

Number of min operations 15 (50 %) 28 (50 %) 37 (50 %) 87 (50 %)

Number of max operations 15 (50 %) 28 (50 %) 37 (50 %) 87 (50 %)

Minimum value of L 8 8 10 50

Maximum value of L 30 56 74 174

Number of design points 11 8 8 13

9 11 13 15 17 19 21 23 25 27 29

Size limit L

−6

−5

−4

−3

−2

−1

0

1

N
or

m
al

iz
ed

 fi
tn

es
s

9 input median

11 17 23 29 35 41 47 53

Size limit L

−8

−6

−4

−2

0

N
or

m
al

iz
ed

 fi
tn

es
s

11 input median

14 22 30 38 46 54 62 70

Size limit L

−10

−8

−6

−4

−2

0

N
or

m
al

iz
ed

 fi
tn

es
s

13 input median

55 65 75 85 95 105 115 125 135 145 155 165 175

Size limit L

−20

−15

−10

−5

0

N
or

m
al

iz
ed

 fi
tn

es
s

25 input median

Fig. 4 The fitness score of the evolved comparator networks (approximate median function) based on
100 experimental runs performed for each design point. The dash line represents target Pareto frontier

62 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

122

cases. The interpretation of the y-axis is as follows. While the fully working median

functions represented by the fittest solutions have their fitness score equal to one, the

solutions of lower quality have assigned the fitness score lower than one.

For each problem, we sampled the design space equidistantly to be able to

construct the Pareto frontier which helps us to discuss the performance of the

method. As mentioned earlier, the maximum value of L is bounded by the size of the

initial solution. Conversely, it makes no sense to explore situations where L is lower

than the number of input variables because it means that some inputs will not be

involved in computation. In the case of 25-input median, we restricted the lower

bound even more because it would be computationally expensive to perform

evolution for all cases. According to the measurements, 8.8 ms are required in

average to calculate fit2 for 9-input median. This time, however, increases up to

368.3 ms in the case of 25-input median. The experiments were conducted on a

64-bit Linux machine running on Intel Xeon X5670 CPU (2.93 GHz, 12 MB cache)

equipped with 32 GB RAM.

Interestingly, compared to the resource-oriented method [34], our method is

extremely efficient if the time required to obtain an implementation consisting of

L operations is considered. According to the experiment, the average duration of the

first stage is less than 10 ms in the case of 9-median and less than 373 ms in the case

of 25-median.

The obtained results given in Fig. 4 are presented using boxplots which illustrate

distribution of the normalized fitness calculated independently for each considered

design point. As it can be seen, the variance of the fitness score is quite low for each

design point. Taking into account that the number of generations was relatively low,

these results demonstrate the robustness and stability of our method. The only

exception is the 25-input median where we can see higher variance primarily at both

extremes of L. In order to analyse this situation more thoroughly, we created a target

pareto frontier (see dashed lines in Fig. 4) representing the goal of evolution. This

Pareto frontier was obtained by interpolation of the fittest implementations obtained

for 9-input, 11-input and 13-input median. The obtained regression models were

generalized and projected backward to the plots. In most cases, we were able to find

solutions that are very close to this imaginary pareto frontier. Unfortunately, in the

case of 25-median (see Fig. 4, bottom right), we can see that there are cases in

which the fitness score of the obtained results is far from the expected one. This is

evident especially for cases where L is between 125 and 155. To investigate the

reason of this gap, we tried to prolong the time of evolution for few of these cases

and we discovered that this problem is caused by the insufficient number of

generations. In order to obtain better results, it would be necessary to increase ng
adequately (at least by two orders of magnitude).

Whilst the initial implementations of 9-input and 25-input median networks

remained unchanged, which was in fact expected as it is believed that the

corresponding sequences of compare-swap elements are optimal, the evolution

discovered improved versions of 11-input fully functional median function

consisting of 50 operations and improved version of 13-input fully functional

median counting 66 operations which yields 11 % reduction in both cases.

Genet Program Evolvable Mach (2017) 18:45–82 63

123

Paper VII

123

A more detailed analysis of the quality of discovered solutions is shown in Fig. 5

where we present histograms of the error distribution for each problem. The

histograms are created using the best solutions obtained from all experimental runs.

It means that for each design point, the fittest solution was identified and chosen.

The quality is expressed in terms of the distance error. The histogram of distance

errors are calculated for each discovered solution using 1000 times more

permutations compared to the number of permutations utilized to determine fit2;

this enables to obtain precise results exhibiting the error in the order of 10�3.

Let us discuss, for example, the results for 11-input median (see Fig. 5, top right).

If we reduce the number of operations by 12 % (i.e. to 44 operations), the output

value is determined correctly in more than 93 % all possible cases. In the rest of the

cases (i.e. 6 %), the output value is determined incorrectly as the 4th lowest item of

a sorted list of numbers. In less than 0.9 % of cases, the 6th lowest item is returned.

Because the median value corresponds with 5th lowest item, the distance between

median and output value is equal to 1 in both cases. If the number of operations is

reduced to 20 (60 %), the worst case error increases to 2. According to the

distribution of errors, this error, which is caused by outputting 3th or 7th lowest

item, occurs in 3.6 % of all input cases only. The remaining 47.2 % erroneous

outputs are caused by selecting 4th or 6th lowest item.

An interesting feature of the discovered solutions is the asymmetric distribution

of the errors. This is more evident if we look at the histogram for 25-input

-4 -3 -2 -1 0 1 2 3 4

Distance error

30 %

33 %

47 %

53 %

67 %

73 %

87 %

100 %

op

er
at

io
ns

9-input median

-5 -4 -3 -2 -1 0 1 2 3 4 5

Distance error

28 %

40 %

50 %

60 %

64 %

76 %

88 %

100 %

op

er
at

io
ns

11-input median

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Distance error

26 %

39 %

52 %

58 %

62 %

73 %

88 %

100 %

op

er
at

io
ns

13-input median

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Distance error

34 %

40 %

51 %

61 %

86 %

92 %

94 %

100 %

op

er
at

io
ns

25-input median

0.5 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Fig. 5 The quality of the best discovered solutions consisting of a different number of operations
expressed in terms of the distance error. The zero error means that the 5th, 6th, 7th, and 13th lowest item
of input sequence was returned for 9-input, 11-input, 13-input, and 25-input median respectively

64 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

124

comparator network consisting of 150, i.e. 86 %, operations (see Fig. 5, bottom

right). While the 4th lowest item is returned in 20 % of cases, the 6th lowest item is

returned in more than 29 % of cases. We have not investigated the exact reason

because it does not represent a real problem, however, it is worth noting that we

have obtained many solutions with the same fitness score and it may happen that

there is a solution with the same or slightly lower fitness score having a symmetric

distribution of errors.

We can conclude that the obtained reduced median networks are of high quality.

Even in the extreme case, where approximately 50 % of operations are removed, the

error is not worse than one position for 9-input median, 2 positions for 11-input

median, and 3 positions for 13-input and 25-input median respectively. The 25-input

median consisting of more than 170 operations offers the largest possibilities for

improvement. We can remove more than 25 % operations without a significant

decrease in the quality. For more than 75 % of all possible input combinations, the

median value or the values next to the median are returned.

To have a notion of properties of the discussed error metrics, Table 2 reports the

error probability, mean distance error, and left and right worst case distance error for

9-input median. It can be seen that as the number of operations decreases, the error

probability as well as the distance error are increasing. The mean value increases,

however, it is not easy to a priori specify the required target value. The same is valid

even for the error probability which gives the number of invalid output values, i.e.

the amount of cases in which a value different from median was returned. Looking

at the results shown in Fig. 5, it can easily be revealed that the issue with the mean

value is that the distribution of errors is not the Gaussian distribution, especially for

cases with a small reduction of the number of operations.

8 Improved medians in real embedded systems

Because the medians are typically employed to solve some real problem, we take

the best discovered approximated median filters whose quality was discussed in the

previous section and evaluated their performance in two different real-world

Table 2 Parameters of the improved implementations of 9-input median

No. of

operations

Achieved

improvement (%)

Error

probability(%)

Distance error

Mean Left/right Worst-case

9 70.00 68.11 0:871	 0:702 �2 2

10 66.67 63.36 0:776	 0:677 �2 2

14 53.33 53.12 0:591	 0:601 �2 2

16 46.67 42.85 0:428	 0:495 �1 1

20 33.33 30.93 0:321	 0:491 �1 2

22 26.67 25.26 0:253	 0:434 �1 1

26 13.33 21.53 0:215	 0:411 �1 1

Genet Program Evolvable Mach (2017) 18:45–82 65

123

Paper VII

125

problems—processing of data acquired by sensor devices, and removing of noise in

image data.

For each case study, the problem is briefly introduced first. Then, non-functional

parameters of evolved as well as commonly used implementations are analysed and

discussed. Finally, the impact of the approximate medians on quality and

performance is evaluated providing that the approximate medians are employed

as the main component which process data.

Four microcontrollers were chosen to evaluate the non-functional parameters of

the evolved median functions. The microcontrollers were programmed using the

complied C codes of discovered implementations discussed in the previous sections.

Two non-functional parameters were measured: (a) the time that each microcon-

troller spends in a routine which computes the median value, and (b) energy

consumed by the microcontroller to execute this routine.

A specific program was implemented, compiled and executed by the microcon-

trollers to perform the measurements. The program is designed as follows. Firstly,

an input vector consisting of n integers is randomly initialized and fed to the

routines calculating the median. Note that n is equal to the number of inputs of

median. Then, an infinite loop is executed, which contains calling of the routine

calculating the median value followed by a code modifying a randomly chosen

value of the input vector to another value. Passing one iteration of the loop is

indicated by inverting the logic value on a given pin. The execution time is then

obtained using an oscilloscope by monitoring the period of the signal on the pin.

The average execution time is reported.

In order to precisely determine an average energy needed to calculate the median

value, all unused peripheral devices are switched off. Only those external

components remain used which are necessary for program execution. Energy

consumption was measured using Agilent N6705B DC Power Analyzer displaying

the error lower than 0.025 % for voltage as well as current measurements.

8.1 Microcontrollers used for testing

In order to evaluate the non-functional parameters, we have chosen the following

common-off-the-shelf microcontrollers available in our lab: 8-bit microcontroller of

Microchip PIC family with code name PIC16F628A, 16-bit PIC24F08KA102, low-

power 16-bit microcontroller MSP430F2617 from Texas Instruments and 32-bit

ARM-based microcontroller STM32F100RB produced by STMicroelectronics. The

goal is to present results for various architectures because there typically exist

variations in the performance caused by different instruction sets on the one side and

different internal architecture on the other side. To be able to interpret the obtained

results, the main features of the microcontrollers are briefly discussed in this section.

The 8-bit PIC equipped with 3.5 kB of FLASH and 224 B of RAM is optimized

for low-cost applications. Hence, a simple accumulator architecture without a stack

is used. The instruction set consists of 35 instructions encoded using a 14-bit wide

instruction word. The two-stage instruction pipeline allows all instructions to be

executed in a single cycle, except for program branches. The chosen chip has an

internal oscillator running at 4 MHz and consuming about 10 nA in the sleep mode

66 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

126

and about 565 lA in the active mode. Note that these values were measured when

all the peripherals were deactivated.

The 16-bit PIC represents a class of microcontrollers with a register architecture

consisting of 16 general-purpose 16-bit registers and 7 special registers. The

instructions are encoded using a 24-bit instruction word with a variable length of the

opcode field. The chosen chip contains 8 kB of FLASH memory, 1.5 kB of RAM

memory and employs an internal oscillator running at 8 MHz. The instructions

require from 1 to 3 clock cycles and are executed at 4 MHz. Our chip consumes

about 4 mA in the active mode and 25 nA in the sleep mode.

The MSP430F2 is a 16-bit ultralow-power RISC microcontroller with register

architecture optimized for processing data from sensor devices. The chosen CPU

consists of 16 registers, is equipped with 92 kB of FLASH memory and 4kB of

RAM, and can operate at 16 MHz. The calibrated digitally controlled internal

oscillator can be configured to generate up to 8 MHz signal for system clock. The

instruction set consists of 51 instructions with three formats and seven address

modes. In contrast with PIC, there are instructions that enable to access two memory

operands. The instructions require from 1 to 6 cycles to be executed. The

instructions working with registers require a single clock cycle, the instructions

addressing memory require 3 or 6 (when two memory accesses are required) cycles.

The chip consumes 365 lA in the active mode at 1 MHz and 500 nA in the standby

mode. In order to exploit the low-power capabilities, we configure the internal

oscillator to operate at 1 MHz.

The STM32F100RB incorporates a high-performance RISC ARM Cortex M3

core offering twelve 32-bit general-purpose registers. This core builds on the

ARMv7-M architecture and shows higher computational power compared to the

aforementioned chips. For example, a single-cycle multiplication and a hardware

division are supported. STM32 is equipped with 128 kB of FLASH memory, 8 kB

of RAM and operates at 24 MHz. The maximum current consumption in the sleep

mode is approx. 3.8 mA. When the peripherals are enabled, the current increases to

9.6 mA. The current in active mode ranges from 10 to 150 mA depending on the

state of peripherals.

8.2 Evolved code on different microcontrollers

The process of obtaining C code from a chromosome is straightforward. Every

active node, starting from one with the lowest index, corresponds with a single line

of code containing a call of min or max function whose operands are taken from the

input sequence or the outputs of preceding operations.

The min and max functions are defined as two macros outputting the minimal and

maximal value for two operands. The compiler is then able to unroll the code and

optimize it in terms of register assignment and overall performance.

8.3 Processing data from sensor devices with approximated median filters

When we look at signals coming from various devices such as A/D converters,

temperature sensors, or accelerometers, the data are noisy even in a perfect

Genet Program Evolvable Mach (2017) 18:45–82 67

123

Paper VII

127

environment. In a real situation, where the accelerometers are, for example, used to

stabilize various flight vehicles, the situation is even worse because of various

vibrations caused by motors or propellers that are for example out of balance. When

such a sensor acts as a central element controlling a process, it is necessary to

remove the noise so as to prevent unwanted behaviour.

There are many filters that can be applied to smooth the measured data, for

example, a variant of low-pass filter. The filter tries to keep the low frequency data

while removing the high frequency noise (i.e. spikes). A low-pass filter usually is

implemented in a situation where a limited number of computational resources are

available because its implementation is simple. It can be implemented as an

exponentially weighted moving average xtþ1 ¼ ayt þ ð1� aÞxt where yt represents

data measured at time t and xt the output value obtained at time t. Alternatively, a

more robust Kalman filter may be used [13]. In contrast to the low-pass filter which

has a fixed parameter a, Kalman filter is an adaptive estimator which minimizes the

mean square error of the estimated parameters according to the previous state and

actual measured value. Given only the mean and standard deviation of noise, the

Kalman filter is the best linear estimator.

Unfortunately, there are two issues connected with the usage of linear filters. The

first problem is that the data is being delayed by the filter which is a feature of linear

filters when they are set to have a strong filtering effect. The second issue is that the

filtered signal does not seem to follow the original measured data very well. To

avoid the delay and provide results of high quality, we can employ an instance of

median filter to smooth the measured data.

A relatively small number of samples are sufficient to be able to filter the

measured data and remove the outliers. To demonstrate the benefits of the

discovered approximations, we will apply the evolved 11-input and 13-input

medians to filter the outliers presented in a signal captured by an accelerometer

sensor. The obtained non-functional parameters are summarized in Tables 3 and 4.

As the non-functional parameters are manually evaluated on real systems, only

some of the Pareto dominant discovered solutions are investigated. It should be

noted that only the number of operations and the quality defined by Eq. 1 was

considered during construction of the Pareto set. We have implemented and

measured not only the evolved solutions, but also three common approaches to

determine median value—the quicksort algorithm, quickselect algorithm and the so

called running median. While quicksort represents a sorting algorithm, the

quickselect is a selection algorithm which is able to find the kth smallest element

in an unordered list [4]. The quickselect uses the same overall approach as

quicksort, however, it only recurses into one side of the input sequence which

reduces the average complexity. The running median attempts to minimize

processing time by maintaining a data list that is sorted from the smallest value to

the largest value [25]. When a new sample is submitted, it replaces the oldest

sample. The new sample is then shifted in the sorted list to bring it to the correct

location.

Firstly, let us discuss size of the machine code of the complied C codes. If we

compare the amount of bytes occupied by median networks and common

approaches such as quicksort, quickselect and running median, we can easily

68 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

128

T
a
b
le

3
N
o
n
-f
u
n
ct
io
n
al

p
ar
am

et
er
s
o
f
ac
cu
ra
te

(e
m
p
h
as
iz
ed
)
an
d
ap
p
ro
x
im

at
ed

im
p
le
m
en
ta
ti
o
n
s
o
f
1
1
-i
n
p
u
t
m
ed
ia
n
fu
n
ct
io
n
m
ea
su
re
d
o
n
d
if
fe
re
n
t
M
C
U
s

Im
p
l.

M
ac
h
in
e
co
d
e
si
ze

[B
]

E
x
ec
u
ti
o
n
ti
m
e
[l
s]

C
o
n
su
m
ed

en
er
g
y
[n
W
s]

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

1
4
-o
p
s

1
1
8

3
2
4

3
2
8

1
5
6

4
.0

8
8

3
4
1

3
1
0

1
2
0

6
0
4

6
8
2

2
4
9

2
0
-o
p
s

1
5
8

4
4
1

4
5
2

2
2
4

4
.6

1
0
8

4
5
0

3
5
6

1
4
0

7
4
5

9
0
0

2
8
6

2
5
-o
p
s

2
0
6

5
4
9

5
6
7

2
7
6

5
.5

1
2
7

5
5
2

3
7
5

1
6
9

8
7
8

1
1
0
5

3
0
1

3
0
-o
p
s

2
3
2

6
4
8

6
8
4

3
1
8

5
.9

1
4
4

6
5
9

4
1
0

1
7
9

9
9
5

1
3
1
8

3
2
9

3
2
-o
p
s

2
5
4

6
9
6

8
4
5

3
4
2

6
.2

1
5
3

7
9
1

4
2
0

1
8
8

1
0
5
7

1
5
8
2

3
3
7

3
8
-o
p
s

2
9
4

8
1
9

1
0
6
5

4
0
0

6
.8

1
7
5

9
8
2

4
5
0

2
0
7

1
2
0
8

1
9
6
4

3
6
1

4
4
-o
p
s

3
2
8

9
0
0

1
2
0
0

4
3
4

7
.5

1
8
7

1
1
0
5

4
6
5

2
3
0

1
2
9
0

2
2
1
0

3
7
3

5
0
-o
p
s

3
7
8

1
0
3
2

1
3
2
0

4
7
2

8
.6

2
1
0

1
2
2
0

4
8
0

2
6
1

1
4
4
9

2
4
4
0

3
8
5

q
so
rt

1
2
8

3
3
3

–
1
9
6

4
0
.5

9
5
8

–
1
5
1
5

1
2
3
5

6
6
1
0

–
1
2
1
7

q
se
le
ct

2
1
2

8
4
9

6
0
7

2
7
6

1
7
.5

4
8
8

2
9
1
0

7
0
5

5
3
5

3
3
6
7

5
8
2
0

5
6
6

ru
n
n
in
g

2
3
6

7
2
9

4
1
2

3
4
4

1
4
.2

2
7
4

7
8
5

6
9
0

4
3
5

1
8
8
7

1
5
7
0

5
5
4

A
n
im

p
le
m
en
ta
ti
o
n
la
b
el
le
d
as

n
-o
p
s
d
en
o
te
s
ev
o
lv
ed

co
m
p
ar
at
o
r
n
et
w
o
rk

co
n
si
st
in
g
o
f
n
o
p
er
at
io
n
s

Genet Program Evolvable Mach (2017) 18:45–82 69

123

Paper VII

129

T
a
b
le

4
N
o
n
-f
u
n
ct
io
n
al

p
ar
am

et
er
s
o
f
ac
cu
ra
te

(e
m
p
h
as
iz
ed
)
an
d
ap
p
ro
x
im

at
ed

im
p
le
m
en
ta
ti
o
n
s
o
f
1
3
-i
n
p
u
t
m
ed
ia
n
fu
n
ct
io
n
m
ea
su
re
d
o
n
d
if
fe
re
n
t
M
C
U
s

Im
p
l.

M
ac
h
in
e
co
d
e
si
ze

[B
]

E
x
ec
u
ti
o
n
ti
m
e
[l
s]

C
o
n
su
m
ed

en
er
g
y
[n
W
s]

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

1
7
-o
p
s

1
3
8

3
7
8

3
8
7

1
9
2

4
.4

9
6

3
7
5

3
3
5

1
3
5

6
6
6

7
5
0

2
6
9

2
6
-o
p
s

2
1
4

5
8
8

5
9
4

2
8
8

5
.6

1
3
6

5
8
7

3
9
0

1
7
2

9
3
5

1
1
7
4

3
1
3

3
4
-o
p
s

2
8
8

7
4
7

9
2
2

4
0
2

7
.0

1
6
3

8
8
0

4
7
0

2
1
5

1
1
2
5

1
7
6
0

3
7
7

3
8
-o
p
s

3
3
0

8
2
5

1
0
5
4

4
3
4

8
.0

1
7
6

9
8
0

4
8
0

2
4
4

1
2
1
8

1
9
6
0

3
8
5

4
1
-o
p
s

3
3
2

8
9
4

1
1
4
4

5
1
6

8
.0

1
9
0

1
0
5
8

5
3
0

2
4
5

1
3
0
9

2
1
1
5

4
2
6

4
8
-o
p
s

3
9
8

1
0
2
0

1
3
0
6

5
7
4

8
.8

2
1
0

1
2
0
5

5
6
5

2
7
0

1
4
5
2

2
4
1
0

4
5
4

5
8
-o
p
s

4
7
8

1
2
0
9

1
5
9
0

6
4
2

9
.5

2
4
2

1
6
9
0

5
8
5

2
9
0

1
6
7
2

3
3
8
0

4
7
0

6
6
-o
p
s

4
9
6

1
3
5
3

1
8
5
4

6
6
6

1
0
.2

2
6
6

1
6
9
0

5
6
0

3
1
1

1
8
3
5

3
3
8
0

4
5
0

q
so
rt

1
2
8

3
3
3

–
1
9
6

5
1
.6

1
1
7
8

–
1
8
0
0

1
5
7
4

8
1
2
8

–
1
4
4
5

q
se
le
ct

2
1
2

8
4
9

6
0
7

2
7
6

2
1
.4

6
1
0

4
0
6
0

8
0
0

6
5
2

4
2
1
2

8
1
2
0

6
4
2

ru
n
n
in
g

2
3
6

7
3
2

3
9
4

3
4
4

1
3
.1

5
5
2

1
1
0
0

7
5
0

4
0
0

3
8
0
9

2
2
0
0

6
0
2

70 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

130

determine that these implementations are more compact compared to the accurate

median filter implemented using the median network consisting of 50 min/max

operations for the 11-input median and 66 operations for the 13-input median. The

size of the quicksort routine is equal to the size of the 11-input approximate median

consisting of 14 operations. To sum up, quicksort is the most compact algorithm.

Nevertheless, it is interesting to note that PIC16 does not allow one to execute the

quicksort algorithm because its implementation relies on the recursion which cannot

fit the in-memory emulated stack. The implementation of the running median

occupies approximately a 1.8 times higher number of bytes on average compared to

the quicksort. Quickselect consumes a bit more except for STM32 and MSP430

where the algorithm requires a lower number of bytes to be implemented.

The number of operations of the approximate median functions correlates with

the machine code size. There is only one exception. The 13-input comparator

network consisting of 38 operations implemented on STM32 exhibits nearly no

reduction compared to the code consisting of 41 operations. It seems that some

optimization tricks were discovered by the ARM compiler.

If we compare the size of machine code across all considered microcontrollers,

the ARM architecture has an extremely efficient mechanism of instruction

encoding. In addition, it revealed that the ARM compiler contains a very effective

optimization engine. Similarly, the code generated by the MSP430 GCC compiler is

very compact compared to the code for PIC microcontrollers. It is worth noting that

it is extremely important to enable GCC optimizations. Otherwise, not only the size

of the machine code, but also computation time increases by 60 % on average

without changing a line of C code. When we take into account the fact that MSP430

is equipped with an exceptionally large FLASH memory (see Sect. 8.1), it seems to

be a very powerful low-cost microcontroller.

The average execution time and average energy consumption measured for

various implementations of 11-input and 13-input accurate as well as approximate

median functions are given in the second and third part of Tables 3 and 4. Let us

first discuss the parameters of the accurate implementations. During the measure-

ments, it turned out that the energy consumption pattern remains almost invariant

because all approximations use identical sequences of instructions. Consumed

energy thus mainly depends on the execution time which is shorter when more

aggressive approximations are applied. The average power consumption, when an

accurate median is calculated, is 0.8 mW for MSP430, 2 mW for PIC16, 6.9 mW

for PIC24 and 30.5 mW for ARM. In the case of the 11-input median function

implemented on PIC24, the median network is 4.5 times faster than the quicksort

algorithm and the consumed energy was reduced from 6610 to 1449 nWs (i.e. by

78 %). The median network is 4.7 times faster than quicksort on the STM32 and the

energy was also reduced by 78 %. A little bit worse situation is at MSP430. The

median network is 3.1 times faster than quicksort, but its energy consumption

decreases by 68 %. Similar results were obtained for the 13-input median. The

median network implemented on PIC24 is 4.4 times faster than the quicksort

algorithm and the consumed energy was reduced by 77 %. At STM32, the quicksort

algorithm exhibits 5 times worse execution time and an 80 % higher energy

consumption compared to the median calculated using 66 min/max operations. At

Genet Program Evolvable Mach (2017) 18:45–82 71

123

Paper VII

131

MSP430, the median network is executed 3.2 times faster than quicksort. While

there is a relative large performance gain of median networks compared to the

quicksort algorithm, the execution time of running median is comparable with the

median networks. The best improvement is achieved at STM32 where the

implementations of median networks are executed 1.7 times faster than running

median. For the rest, the gain varies around 1.4 on average.

Let us now move on to the execution time and energy consumption of the

evolved approximate median functions. At first glance, it is evident that the

execution time decreases with the decreasing number of operations. The situation is,

however, a little bit complicated here. Let us compare the execution time of, for

example, an 11-input accurate median network consisting of 50 operations and an

11-input reduced network consisting of 25 operations. While the number of

operations is reduced by 50 %, the execution time is adequately decreased only at

PIC16, where a 54 % improvement was achieved. STM32 and PIC microcontrollers

exhibit improvement which is less than 39 %. In the case of MSP430, only a 22 %

reduction was achieved. In order to better understand this phenomenon, we have to

firstly investigate the dependence between the number of min/max operations and

the number of generated instructions for MSP430. The implementation of an

accurate median network consists of 219 instructions and the reduced median

network consists of 122 instructions which leads to a 44 % improvement.

Unfortunately, the difference between the improvement at the level of instructions

(44 %) and improvement at the level of operations (50 %) is relatively small. In

order to determine the root source of such a discrepancy, it is necessary to perform

an analysis at the level of a machine code. It has been revealed that two different

mechanisms were used to implement the min/max operations. Some operations are

implemented using indirect addressing, other operations are optimized and consists

of instructions only manipulated with registers. This makes a huge difference in the

number of clock cycles required to execute a single min/max operation. Some

operations are evaluated within 5 cycles, others require up to 11 clock cycles.

Despite this finding, there is linear dependence between the energy consumption and

time of execution and longer times imply a higher energy demand.

Despite the fact that STM32 has the largest current consumption in active mode,

it provides the best results from the perspective of energy consumption. Even if the

MSP430 is declared as an ultralow-power microcontroller, it requires about a 1.7

times higher amount of energy to execute the same code. It is necessary to note,

however, that higher energy consumption is in close relation with the time of

execution which is more than 60 times higher compared to STM32. Compared to

PIC16 and PIC24, MSP430 consumes from 3 to 6 times lower energy to accomplish

the same task. On the other hand, PIC24 is able to produce about five times more

results within the same period of time at the cost of 30 % higher energy

consumption compared to MSP430. In order to avoid misinterpretation, it is worth

noting that MSP430 operates at 1 MHz while PIC24 operates at 4 MHz. When we

increase the frequency to 4 MHz, the time of execution decreases four times with no

additional cost (the energy consumption remains at the same level).

Figure 6 gives an example of real data filtered by various implementations of

11-input and 13-input median filters. The data were obtained from an accelerometer

72 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

132

whose output signal was sampled at 8 kHz. Taking into account the sample rate, the

considered accurate median filters introduce a delay not worse than 1.7 ms which

represents a reasonable value. When six operations (12 %) are removed from the

11-input median network, the resulting approximate median produces an output that

is nearly similar to the output of accurate implementation. There are only neglible

differences that do not prevent us from applying this inaccurate implementation in

an embedded application to filter the outliers and save energy. In the case of

implementation at STM32, for example, we can reduce the consumed energy by

11.8 % by introducing the approximated median network consisting of 44

operations.

Interestingly, the median network which consists of 20 operations (60 %)

produces a signal which is very similar to the output of an accurate median, despite

the fact that the measured signal is very noisy. It seems that the output is of a better

visual quality compared to the output of a network having 30 operations. In contrast

to the output of an accurate median, there are some small oscillations around 1.7

seconds caused by the oscillations in a signal coming from the accelerometer.

Nevertheless, the trend in data is reliably followed. In case these small differences

do not represent a real problem for a target application, it is worth implementing the

improved median network which is able to offer a 40 % reduction of power

consumption on the one hand, its approximately 1.8 times faster execution time on

the other hand.

The approximate versions of the 13-input median also performs very well. Only

small differences are observable when a median network with 38 % removed

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

time [s]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

ac
ce

le
ra

tio
n

11-input median

20 ops (40 %) 30 ops (60 %) 44 ops (88 %) accurate median measured data

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

time [s]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

ac
ce

le
ra

tio
n

13-input median

17 ops (25 %) 34 ops (51 %) 41 ops (62 %) 58 ops (87 %) accurate median

Fig. 6 Example of data filtered using accurate as well as approximate versions of 11-input and 13-input
median filter. Note that only some of the measured points are shown because of readability

Genet Program Evolvable Mach (2017) 18:45–82 73

123

Paper VII

133

operations is used. Compared to a commonly used running median, we obtain a

solution which has 38 % lower power consumption when implemented on a STM32

microcontroller. Interestingly, the approximate median networks which consists of

17 and 58 operations exhibit lower delay compared to the fully working 13-input

median. It can be seen that the filtered data appears to be shifted to the left when

these filters are used.

It can be concluded that the observations on real examples are consistent with

conclusions given in Sect. 7. As the quality of an approximate median defined by

Eq. 1 decreases, the amount of inaccuracies in the output signal increases. The

processing of the sensor data seems to be an application with great potential for

genetic improvement. As was previously shown, we are able to significantly

improve energy consumed by the filters for a cost of small differences in the output

data. In fact, any of the presented approximations can be used to filter the input

signal because no golden solution is available for the validation of the obtained

outputs. The filtration is typically used to avoid high variances in output signal (i.e.

to reduce sensitivity of the output signal to the outliers). In this sense, we can

employ approximate medians consisting of 50 % (or even less) operations to

accomplish this task because they are able to sufficiently remove the outliers.

8.4 Median in image processing

The processes of acquiring, transmitting and storing images in computer systems are

not always ideal and hence some pixels or groups of pixels can be corrupted. Hence,

noise elimination is a typical low level image processing task. In many applications,

the noise elimination has to be implemented by non-linear functions because the

noise contained in the images is inherently non-linear [6]. A typical representative

of non-linear noise is a shot noise which manifests itself by setting some individual

pixels to a random value. Median-based non-linear filters play a prominent role

among the filters utilized to suppress the shot noise [2]. Traditionally, a simple

median filter applied to every pixel of the input image is employed. In advanced

image filters (e.g. switching filters [32]) the filtering function is only applied if a

noise detector, implemented typically using a median, detects some noise.

The image filters operate with pixel values in the neighbourhood of the centre

pixel. The process of filtration is based on a sliding window, a square window of an

odd size (2k þ 1), that moves along the image. More formally, let I be an image

consisting of m� n pixels xði; jÞ 2 I, where 1� i�m; 1� j� n. Then, each pixel of

the filtered image I0 is calculated as yðm; nÞ ¼ medianðWIðm; nÞÞ, where WIðm; nÞ ¼
fxðmþ i; nþ jÞ 2 I j �k\i; j\kg is a sliding window function. It is evident that

the median value is calculated using ð2k þ 1Þ2 pixels. The typical sliding windows

employed in image processing consists of 3� 3 and 5� 5 pixels which corresponds

with 9-input and 25-input filtering functions.

The measured non-functional parameters of various implementations of 9-input

accurate as well as approximate median filters are summarized in Table 5. Apart

from the evolved implementations, two common approaches to determine a median

value are evaluated—the quicksort algorithm and the quickselect algorithm. The

74 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

134

T
a
b
le

5
N
o
n
-f
u
n
ct
io
n
al

p
ar
am

et
er
s
o
f
ac
cu
ra
te

(e
m
p
h
as
iz
ed
)
an
d
ap
p
ro
x
im

at
ed

im
p
le
m
en
ta
ti
o
n
s
o
f
9
-i
n
p
u
t
m
ed
ia
n
fu
n
ct
io
n
m
ea
su
re
d
o
n
d
if
fe
re
n
t
M
C
U
s

Im
p
l.

M
ac
h
in
e
co
d
e
si
ze

[B
]

E
x
ec
u
ti
o
n
ti
m
e
[l
s]

C
o
n
su
m
ed

en
er
g
y
[n
W
s]

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

9
-o
p
s

7
8

2
0
4

2
0
7

9
6

3
.2

6
5

2
2
8

2
7
4

9
7

4
5
0

4
5
7

2
2
0

1
0
-o
p
s

8
4

2
3
4

2
3
8

1
0
8

3
.3

7
1

2
5
6

2
8
0

1
0
2

4
9
2

5
1
2

2
2
5

1
4
-o
p
s

1
1
2

3
1
5

3
2
4

1
5
6

3
.9

8
6

3
3
8

3
1
0

1
1
8

5
9
0

6
7
5

2
4
9

1
6
-o
p
s

1
2
6

3
7
2

3
7
6

1
7
6

4
.1

9
6

3
8
6

3
2
4

1
2
6

6
6
6

7
7
1

2
6
0

2
0
-o
p
s

1
5
8

4
4
1

4
5
4

2
0
8

4
.6

1
0
8

4
5
2

3
4
0

1
4
1

7
4
5

9
0
5

2
7
3

2
2
-o
p
s

1
8
0

4
9
5

5
0
2

2
3
4

5
.0

1
1
8

5
0
6

3
6
0

1
5
1

8
1
8

1
0
1
2

2
8
9

2
6
-o
p
s

2
0
8

5
7
3

5
8
6

2
8
0

5
.4

1
3
2

5
7
6

3
8
8

1
6
5

9
0
9

1
1
5
3

3
1
2

3
0
-o
p
s

2
4
0

6
4
5

6
7
6

3
3
0

6
.4

1
4
4

6
5
0

4
1
2

1
9
6

9
9
4

1
2
9
9

3
3
1

q
so
rt

1
2
8

3
3
3

–
1
9
6

2
6
.8

8
3
0

–
1
3
2
5

8
1
6

5
7
2
7

–
1
0
6
4

q
se
le
ct

2
1
2

8
4
9

6
0
7

2
7
2

1
5
.3

4
6
6

2
2
5
5

6
9
0

4
6
7

3
2
1
9

4
5
1
0

5
5
4

Genet Program Evolvable Mach (2017) 18:45–82 75

123

Paper VII

135

running median discussed in the previous section is not applicable in this case

because more than one value has to be removed/added between two subsequent

processing windows. The discussion that has been given for the implementation of

the 11-input median and its variants is also valid for the 9-input alternative whose

parameters are included in Table 5. There is nearly a linear dependency between the

number of operations used to approximate the median value and the execution time

as well as power consumption.

The results for the 25-input median and its alternative implementations are given

in Table 6. In contrast with the 13-input approximate medians, the difference

between the improvement achieved at the level of operations and improvement at

the level of instructions does not exceed 5 %. Similarly, the time of execution

decreases linearly with a decreasing number of operations with one exception—

implementation compiled for MSP430 which suffers from issues observed also for

13-input approximate medians. There is an 18 % difference between the reduction

at the level of instructions and the reduction of execution time (see the execution

time for 174-ops and 60-ops implementations). Since the response of other

architectures to a reduced number of operations is as expected, it may suggest that

there may be a problem with the quality of the compiled code. We did not analyse

this problem in detail as it is outside the scope of this paper.

The chosen problem nicely demonstrates the overhead of median networks

implemented in the software. The accurate median function implemented using 174

operations occupies ten times more bytes than the quicksort algorithm. Even if we

remove half of the operations, the machine code is more than six times larger. This

is the price that must be sacrificed for greater speed of the algorithm based on a

median network. As regards the execution time, the median can be calculated 70 %

faster when the median network which consists of 174 operations is used instead of

the quicksort algorithm and 31 % faster when compared to the quickselect

Table 6 Non-functional parameters of accurate (emphasized) and approximated implementations of

25-input median function measured on different MCUs

Impl. Machine code size [B] Execution time [ls] Consumed energy [nWs]

STM32 PIC24 TI430 STM32 PIC24 TI430 STM32 PIC24 TI430

60-ops 502 1302 742 10.9 262 665 333 1808 534

70-ops 596 1527 912 12.3 303 785 375 2091 630

88-ops 796 1887 1180 16.4 366 955 501 2525 767

107-ops 920 2250 1438 18.4 428 1100 562 2953 883

150-ops 1264 3015 1688 23.9 554 1130 727 3823 907

160-ops 1378 3195 1818 24.6 584 1200 751 4030 964

164-ops 1454 3255 1826 26.0 596 1240 793 4109 996

174-ops 1524 3423 1864 27.6 619 1270 841 4271 1020

qsort 128 333 196 104.0 2430 2610 3172 16,767 2096

qselect 212 849 276 39.1 1040 1685 1194 7176 1353

Note that PIC16 is not included in this table due to small amount of available RAM memory

76 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

136

algorithm. The 25-median implemented using 150 operations enables us to reduce

the energy by more than 10 %. According to the distribution of errors shown in

Fig. 5, this implementation provides an output of high quality with a low percentage

of erroneous outputs that are close to the median value.

In order to evaluate the filtering quality as well as robustness of the evolved

approximate medians, the medians were employed as median filters and evaluated

using 25 randomly selected test images (384x256 pixels) from [17] that were

corrupted by random valued shot noise. Because the removal of random valued shot

noise represents a difficult problem, it usually is used to compare the performance of

various median filters [5]. Considering the fact that a sliding window is used, more

than two million test cases were in fact used for quality assessment. There exists

several approaches to measure the quality of filtered images. The structural

similarity index (SSIM) represents probably the most advanced approach which

attempts to quantify the visibility of errors (differences) between a distorted image

and a reference image[37].

Boxplots of the structural similarity index calculated for 9-input and 25-input

accurate as well as approximate median networks used as image filters are given in

Fig. 7. As is evident from the results, there is a relatively large variance in the

similarity index of accurate as well as inaccurate median filters. The index of

similarity for images produced by accurate an 9-input median filter is 88.6 % in

average. The average similarity index decreases with the decreasing number of

operations. Interestingly, it decreases very slightly without any radical change in

variance. When we reduce the number of operation to 16 (53 %), the average

similarity index decreases to 87.5 %. The results suggest that it is possible to use an

approximate median network consisting of half the number of operations instead of

an accurate median. The impact on quality of the filtered images is negligible.

Figure 8 illustrates filtering capabilities of various filters on an image corrupted

by random valued shot noise where 10 % of the pixels are affected. The output of

the median filter and approximate median filter is visually indistinguishable. Nearly

all of the noisy pixels were successfully detected and removed, even for a median

with 16 operations. When we reduce the number of operations to 14, a few noisy

pixels remain in the filtered image. This behaviour corresponds with the distribution

9 10 14 16 20 22 26 30

operations

60

65

70

75

80

85

90

95

100

S
S

IM
 [%

]

59 60 70 88 107 150 160 164 174

operations

60

65

70

75

80

85

90

95

100

(a) (b)

Fig. 7 Boxplots illustrating the distribution of structural similarity index for evolved median networks
calculated using a set of test images corrupted by 10 % random valued shot noise. a 9-input median. b 25-
Input median

Genet Program Evolvable Mach (2017) 18:45–82 77

123

Paper VII

137

of errors shown in Fig. 5 and a detailed analysis provided in Table 2. The 9-input

approximate median with 16 operations exhibits the worst-case distance error equal

to one, while the 14-ops implementation has the worst-case distance error equal to

two.

If we compare the distribution of the similarity index for a 9-input and 25-input

median filter, it is evident that the 25-input median filters provide results of lower

quality. The similarity index of the accurate implementation consisting of 174

operations is equal to 80.3 %. The reason is obvious. Increasing the size of the

filtering window allows for the common median filter to remove a great deal of

noisy pixels, however, because the standard median filters modify almost all pixels,

images become smudged and less detailed. Nevertheless, this fact does not prevent

the employment of the 25-input median filter as a robust noise detector.

Interestingly, there is only a small degradation in quality of the reduced 25-input

median filters. When we remove 50 % of operations, the similarity index decreases

to 79.4 % on average. This approximation yields a 40 % reduction in power

consumption when implemented on STM32 microcontroller.

Similar conclusions may be inferred even if we use the peak signal-to-noise ratio

(PSNR) which represents another commonly used quality metric. In contrast to

structural similarity, PSNR does not respect a psycho-visual model of the human

optical system. While PSNR of the images filtered by the accurate 9-input median

filter is equal to 29.4 dB in average, PSNR of the images obtained by the 14-ops (9-

ops) filter drops by 1.3 dB (3.5 dB). The PSNR of the images filtered by the accurate

25-input median filter is equal to 25.9 dB. When the number of operations is

reduced to 59, the PSNR only decreases by 0.7 dB.

The results demonstrate how robust the evolved implementations are and that

there is great space for improvement of the non-functional parameters in practice. In

Fig. 8 Detail of an image a corrupted by 10% random valued shot noise filtered by b 9-input accurate
median filter and approximated median filters consisting of c 22 (73 %) operations, d 16 (53 %), e 14
(46 %) and f 10 (33 %) operations

78 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

138

most cases, it is not even necessary to exactly determine the median value which

helps us to reduce the power consumption or increase the performance (i.e. speed)

of a given piece of software.

9 Conclusions

In this paper, we presented a new approach to improve non-functional properties of

software. In particular, we concentrated on improvements in the execution time and

power consumption of various instances of the median function. In general, it is

impossible to improve non-functional parameters of the median function without

accepting occasional errors in results since optimal implementations of typical

instances are available. In order to address this problem, we adopted the

approximate computing scenario which allows us to accept some errors in the

outputs.

In approximate computing, software and hardware is approximated, i.e.

simplified with respect to fully accurate implementations, in order to reduce power

consumption or increase performance. As a consequence, errors can emerge during

computations which is tolerable in many real applications. When an approximation

should be introduced, the common approach is to remove the less significant bits

and reduce data widths. This paper shows that the approximation conducted at the

level of function (algorithm) that are based on EA is able to deliver significantly

better results.

The median is implemented using a sequence of elementary operations that forms

a median network. The task is formulated as a single objective optimization problem

where the number of operations represents constraints specified by the designer. The

constrains-oriented approach is relevant to practice where the designers usually

wants to achieve a particular power reduction in order to improve the performance

of the whole embedded system. The method is based on cartesian GP and exploits

the fact that GP is able to find a good trade-off between the error and number of

operations, even if the number of operations is intentionally constrained.

In order to avoid problem with seeding (only fully functional implementations of

various instances of median filter exist), we proposed to apply a two-stage

procedure. The first stage starts with a fully functional median network and

gradually reduces the number of employed operations in order to satisfy constraints

given by a designer. As soon as a satisfactory candidate solution is found, the

second stage responsible for maximizing the quality of partially working

implementations is used.

The accuracy of determining a median value is measured by means of a problem-

specific quality metric. The proposed metric is based on the positional error

calculated using the permutation principle introduced in this paper. The impact of

the permutation principle was discussed from a theoretical as well as a practical

point of view. Firstly, the permutation principle helps us to reduce the computa-

tional complexity of the fitness evaluation. Secondly, the permutation principle

enables one to construct a metric approaching the quality of selecting the median

value and, what is important, which can be efficiently calculated. Finally, the

Genet Program Evolvable Mach (2017) 18:45–82 79

123

Paper VII

139

permutation principle helps to understand how to avoid biased solutions that may be

produced when we generate test vectors used to determine the fitness score

inappropriately (randomly). In order to understand this phenomenon, it is necessary

to realize that the median value is determined according to a set of values (i.e. the

ordering of input values is completely ignored). It was illustrated and discussed that

it is necessary to generate test vectors from different equivalence classes so as to

avoid any bias.

The problem of trading between quality and non-functional parameters was

demonstrated in four different instances of the median function that are typically

employed in practice. The performance of the best discovered approximated median

filters was evaluated in two real-world problems—sensor data processing and image

processing. The non-functional parameters were measured for four microcontrollers

so as to avoid misleading conclusions. The results confirmed that median functions

are very good examples of functions for which it makes sense to introduce their

approximate versions. When the approximate medians are employed in a particular

application, the output quality remains relatively high, even for significant

reductions of the number of operations. Hence significant improvements in energy

consumption can be obtained.

Even though the permutation principle as well as the proposed error metric are

problem specific, this paper demonstrated the ability of GI to provide competitive

solutions for a chosen real-world problem from the area of approximate computing.

This opens a complete new application area for GI. The ability to deliver partially

working solutions seems to be natural for evolutionary techniques. Hence the

approximate computing seems to have a great potential for these techniques.

There are several directions for future research. Execution time and power

consumption are two possible non-functional criteria that can be optimized. There

are additional criteria such as delay that need to be considered, especially if median

networks would be implemented in the hardware. Despite the fact that the proposed

permutation principle helps to significantly improve the time required to determine

the fitness value, the test based approach used to calculate the fitness score

represents a bottleneck of the whole framework. Unfortunately, this is a general

problem of all generate-and-test-based evolutionary approaches. As a consequence

of that, only a subset of all possible permutations was used for quality assessment.

This simplification introduces two issues. Firstly, it means that we are not able to

guarantee the worst-case error unless all the input permutations are tested. Secondly,

it may happen that the quality of a given network is worse than determined.

Suprisingly, the experiments revealed that our simplification does not have any

significant effect in practice. We are convinced, however, that these issues can be

completely eliminated by introducing a formal method based on BDDs to the fitness

function.

Acknowledgments This work was supported by the Czech science foundation project 14-04197S—

Advanced Methods for Evolutionary Design of Complex Digital Circuits.

80 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

140

References

1. A. Agapitos, S.M. Lucas, Evolving efficient recursive sorting algorithms, in IEEE Congress on

Evolutionary Computation, pp. 2677–2684 (2006)

2. R.H. Chan, C.W. Ho, M. Nikolova, Salt-and-pepper noise removal by median-type noise detectors

and edge-preserving regularization. IEEE Trans. Image Process. 14, 1479–1485 (2005)

3. B. Cody-Kenny, E.G. Lopez, S. Barrett, locoGP: improving performance by genetic programming

java source code, in Genetic Improvement 2015 Workshop, ed. by W.B. Langdon, J. Petke, D.R.

White (ACM, Madrid, 2015), pp. 811–818

4. N. Devillard, Fast Median Search: An ANSI C Implementation (1998). http://ndevilla.free.fr/median/

median.pdf

5. Y. Dong, A new directional weighted median filter for removal of random-valued impulse noise.

IEEE Signal Process. Lett. 14(3), 193–196 (2007)

6. E.R. Dougherty, J.T. Astola, (eds.) Nonlinear Filters for Image Processing. SPIE/IEEE Series on

Imaging Science and Engineering. SPIE/IEEE (1999)

7. H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, Neural acceleration for general-purpose

approximate programs. Commun. ACM 58(1), 105–115 (2014)

8. B.W. Goldman, W.F. Punch, Analysis of cartesian genetic programming’s evolutionary mechanisms.

IEEE Trans. Evol. Comput. 19(3), 359–373 (2015)

9. J. Han, M. Orshansky, Approximate computing: An emerging paradigm for energy-efficient design,

in Proceedings of the 18th IEEE European Test Symposium, pp. 1–6. IEEE (2013)

10. M. Harman, B.J. Jones, Search-based software engineering. Inf. Softw. Technol. 43, 833–839 (2001)

11. W.D. Hillis, Co-evolving parasites improve simulated evolution as an optimization procedure. Phys.

D 42(1–3), 228–234 (1990)

12. H. Juille, Evolution of non-deterministic incremental algorithms as a new approach for search in state

spaces, in Genetic Algorithms: Proceedings of the 6th International Conference (ICGA95), ed. by L.

Eshelman (Morgan Kaufmann, Pittsburgh, PA, USA, 1995), pp. 351–358

13. R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng.

82(Series D), 35–45 (1960)

14. D.E. Knuth, The Art of Computer Programming, vol. 3, 2nd edn. (Sorting and Searching. Addison

Wesley Longman Publishing Co., Inc, Redwood City, 1998)

15. W.B. Langdon, M. Harman, Optimizing existing software with genetic programming. IEEE Trans.

Evol. Comput. 19(1), 118–135 (2015)

16. R. Maronna, D. Martin, V. Yohai, Robust Statistics: Theory and Methods, Wiley Series in Probability

and Statistics (Wiley, New Jersey, 2006)

17. D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its

application to evaluating segmentation algorithms and measuring ecological statistics, in Proceedings

of the 8th International Conference Computer Vision, vol. 2, pp. 416–423 (2001)

18. J.F. Miller, Cartesian Genetic Programming (Springer, Berlin, 2011)

19. J.F. Miller, S.L. Smith, Redundancy and computational efficiency in cartesian genetic programming.

IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

20. V. Mrazek, Z. Vasicek, L. Sekanina, Evolutionary approximation of software for embedded systems:

Median function, in Genetic Improvement 2015 Workshop, ed. by W.B. Langdon, J. Petke, D.R.

White (ACM, Madrid, 2015), pp. 795–801

21. K. Nepal, Y. Li, R.I. Bahar, S. Reda, Abacus: A technique for automated behavioral synthesis of

approximate computing circuits, in Proceedings of the Conference on Design, Automation and Test

in Europe, DATE ’14, pp. 1–6. EDA Consortium (2014)

22. J. Petke, M. Harman, W.B. Langdon, W. Weimer, Using genetic improvement and code transplants

to specialise a C?? program to a problem class, in 17th European Conference on Genetic Pro-

gramming, LNCS, vol. 8599, ed. by Miguel Nicolau, et al. (Springer, Granada, Spain, 2014),

pp. 137–149

23. R. Poli, W.B. Langdon, N.F. McPhee, A Field Guide to Genetic Programming.Published via http://

lulu.com and http://www.gp-field-guide.org.uk (2008)

24. A. Sampson, W. Dietl, E. Fortuna, Gnanapragasam, D., Ceze, L., Grossman, D.: Enerj: Approximate

data types for safe and general low-power computation, in Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation, pp. 164–174. ACM (2011)

Genet Program Evolvable Mach (2017) 18:45–82 81

123

Paper VII

141

25. P. Schmidt, Simple median filter library designed for the arduino platform (2014). https://github.com/

daPhoosa/MedianFilter

26. E. Schulte, J. Dorn, S. Harding, S. Forrest, W. Weimer, Post-compiler software optimization for

reducing energy, in Proceedings of the 19th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS’14 (ACM, Salt Lake City, 2014),

pp. 639–652

27. L. Sekanina, Evolutionary design space exploration for median circuits, in Applications of Evolu-

tionary Computing, LNCS 3005, pp. 240–249. Springer (2004)

28. L. Sekanina, M. Bidlo, Evolutionary design of arbitrarily large sorting networks using development.

Genet. Progr. Evolv. Mach. 6(3), 319–347 (2005)

29. L. Sekanina, Z. Vasicek, Approximate circuits by means of evolvable hardware. in Proceedings of

the 2013 IEEE Symposium Series on Computational Intelligence (SSCI), 2013 IEEE International

Conference on Evolvable Systems, pp. 21–28. IEEE CIS (2013)

30. P. Sitthi-Amorn, N. Modly, W. Weimer, J. Lawrence, Genetic programming for shader simplifica-

tion. ACM Trans. Gr. 30(6), 152:1–152:12 (2011)

31. J.L. Smith, Implementing median filters in xc4000e fpgas. XCell 23(1), 16 (1996)

32. T. Sun, Y. Neuvo, Detail-preserving median based filters in image processing. Pattern Recognit. Lett.

16, 341–347 (1994)

33. V.K. Valsalam, R. Miikkulainen, Using symmetry and evolutionary search to minimize sorting

networks. J. Mach. Learn. Res. 14(1), 303–331 (2013)

34. Z. Vasicek, L. Sekanina, Evolutionary approach to approximate digital circuits design. IEEE Trans.

Evol. Comput. 19(3), 432–444 (2015)

35. Z. Vasicek, K. Slany, Efficient phenotype evaluation in cartesian genetic programming, in Pro-

ceedings of the 15th European Conference on Genetic Programming, LNCS 7244, pp. 266–278.

Springer Verlag (2012)

36. S. Venkataramani, A. Sabne, V.J. Kozhikkottu, K. Roy, A. Raghunathan, Salsa: systematic logic

synthesis of approximate circuits, in The 49th Annual Design Automation Conference 2012, DAC

’12, pp. 796–801. ACM (2012)

37. Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: from error visibility to

structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

38. D.R. White, A. Arcuri, A. John, Evolutionary improvement of programs. IEEE Trans. Evol. Comput.

15(4), 515–538 (2011)

39. A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendrakumar, S. Sethuraman, K.

Ramkrishnan, N. Ravindran, R. Jariwala, A. Rahimi, H. Esmailzadeh, K. Bazargan, Axilog: Lan-

guage support for approximate hardware design, in Design, Automation and Test in Europe,

DATE’15, pp. 1–6. EDA Consortium (2015)

82 Genet Program Evolvable Mach (2017) 18:45–82

123

Paper VII

142

	Introduction
	Motivation
	Open problems
	Research objectives
	Thesis outline

	Survey of the state of the art
	Power consumption of digital circuits
	The technology impact
	Transistor-level digital circuits
	Gate-level digital circuits

	Approximate arithmetic circuits
	Approximation methods for arithmetic circuits
	Manual approximation methods
	Automated approximation methods
	Quality of approximate circuits
	Quality evaluation

	Cartesian Genetic Programming
	Circuit representation
	Search algorithm
	Circuit approximation using CGP

	Research summary
	Overview
	Papers included in the thesis
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI
	Paper VII
	Author’s contributions to selected papers

	List of other publications
	Research projects and grants
	Awards

	Conclusions
	Challenges and Methodology
	Contributions
	Developed libraries available online
	Future research directions

	Bibliography
	Related papers
	Evolutionary Design of Transistor Level Digital Circuits using Discrete Simulation
	EvoApprox8b: Library of Approximate Adders and Multipliers for Circuit Design and Benchmarking of Approximation Methods
	Design of Power-Efficient Approximate Multipliers for Approximate Artificial Neural Networks
	Approximating Complex Arithmetic Circuits with Formal Error Guarantees: 32-bit Multipliers Accomplished
	Towards Low Power Approximate DCT Architecture for HEVC Standard
	The Role of Circuit Representation in Evolutionary Design of Energy-Efficient Approximate Circuits
	Trading between Quality and Non-functional Properties of Median Filter in Embedded Systems

