
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS

ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

EVOLUTIONARY DESIGN AND OPTIMIZATION OF

COMPONENTS USED IN HIGH-SPEED COMPUTER

NETWORKS
EVOLUČNÍ NÁVRH A OPTIMALIZACE KOMPONENT POUŽÍVANÝCH

VE VYSOKORYCHLOSTNÍCH POČÍTAČOVÝCH SÍTÍCH

EXTENDED ABSTRACT OF A PHD THESIS

ROZŠÍŘENÝ ABSTRAKT DISERTAČNÍ PRÁCE

AUTHOR Ing. DAVID GROCHOL

AUTOR PRÁCE

SUPERVISOR prof. Ing. LUKÁŠ SEKANINA, Ph.D.

ŠKOLITEL

BRNO 2019

Abstract
The research presented in this thesis is directed toward the evolutionary optimization

of selected components of network applications intended for high-speed network monitor-
ing systems. The research started with a study of current network monitoring systems.
As an experimental platform, the Software Defined Monitoring (SDM) system was cho-
sen. Because traffic processing is an important part of all monitoring systems, it was
analyzed in greater detail. For detailed studies conducted in this thesis, two components
were selected: the classifier of application protocols and the hash functions for network flow
processing. The evolutionary computing techniques were surveyed with the aim to optimize
not only the quality of processing but also the execution time of evolved components. The
single-objective and multi-objective versions of evolutionary algorithms were considered and
compared.

A new approach to the application protocol classifier design was proposed. Accurate and
relaxed versions of the classifier were optimized by means of Cartesian Genetic Programming
(CGP). A significant reduction in Field-Programmable Gate Array (FPGA) resources and
latency was reported.

Specialized, highly optimized network hash functions were evolved by parallel Linear
Genetic Programming (LGP). These hash functions provide better functionality (in terms
of quality of hashing and execution time) than the state-of-the-art hash functions. Using
multi-objective LGP, we even improved the hash functions evolved with the single-objective
LGP. Parallel pipelined hash functions were implemented in an FPGA and evaluated for
purposes of network flow hashing. A new reconfigurable hash function was developed as
a combination of selected evolved hash functions. Very competitive general-purpose hash
functions were also evolved by means of multi-objective LGP and evaluated using represen-
tative data sets. The multi-objective approach produced slightly better solutions than the
single-objective approach. We confirmed that common LGP and CGP implementations
can be used for automated design and optimization of selected components; however, it
is important to properly handle the multi-objective nature of the problem and accelerate
time-critical operations of GP.

Keywords
Evolutionary Algorithms, Cartesian Genetic Programming, Linear Genetic Programming,
Network Monitoring, Network Application, Computer Network, Hash Function

Reference
GROCHOL, David. Evolutionary design and optimization of components used in high-
speed computer networks. Brno, 2019. EXTENDED ABSTRACT OF A PHD THESIS.
Brno University of Technology, Faculty of Information Technology. Supervisor prof. Ing.
Lukáš Sekanina, Ph.D.

Contents

1 Introduction 4
1.1 Research Objectives . 5
1.2 Abstract Outline . 6

2 State of the Art 7
2.1 Computer Networks . 7
2.2 Network Monitoring . 9
2.3 Hash Function Design . 15
2.4 Evolutionary Design . 17
2.5 Multi-Objective EAs . 21

3 Research Summary 26
3.1 Methodology . 26
3.2 Papers . 27
3.3 List of Other Papers . 31

4 Discussion and Conclusions 33
4.1 Contributions . 34
4.2 Future Work . 35

Bibliography 36

Curriculum vitae 44

3

Chapter 1

Introduction

Many hardware providers have announced a support for 100 gigabit-per-second (Gbps)
networks to overcome current 10–40 Gbps solutions [45, 57, 46]. The 400 Gbps and even
1 Tbps networks will be needed in a few next years, see Fig. 1.1. Commercial companies,
data and supercomputer centers, and other entities around the world are now working to-
wards launching 100 Gbps networks in order to benefit from faster communication and wider
bandwidth in high-throughput requesting applications such as high-performance comput-
ing, high-quality video streaming or Internet of Things (IoT). Managing 100 Gbps networks
requires more precise performance monitoring (involving bandwidth monitoring, traffic an-
alytics and anomaly detection) than in the previous era.

In order to effectively monitor and analyze high-speed networks at the level of packet
contents, software defined monitoring (SDM) concept has been developed [43]. Having less
than 7 ns to process one packet in a 100 Gbps network, SDM performs the analysis using
relatively simple (and so fast) hardware whose functionality (i.e. the rules of operation) are
defined in the software. Unrecognized traffic is then processed by sophisticated algorithms
in the software. The analysis is performed at the level of network flows, where a network
flow is defined as a set of packets (with the same key features) that passed an observation
point in the network during a given time interval.

Because there are only a few nanoseconds to process each packet, monitoring systems
have to be carefully designed and optimized. Traffic monitoring systems perform many
operations with flows (such as an extraction of the information from packet headers and
a deep packet inspection to determine the application protocol) As these operations have
to be executed for each packet in the flow, it is important to provide their efficient (highly
optimized) implementations in high-speed networks.

Evolutionary algorithms (EAs) have successfully been used to design and optimize many
applications. The automated search for a new or an improved piece of software is a typical
task specifically for genetic programming (GP). GP can be used to improve existing soft-
ware (e.g. [55]), create or optimize parallel programs (e.g. [56]) or automate generating full
computer programs (e.g. [4]). In recent years, significant development and progress have
been reported in evolutionary circuit design. In many cases these techniques were capable of
delivering efficient circuit designs in terms of an on-chip area minimization (e.g. [89]), adap-
tation (e.g. [40]), fabrication variability compensation (e.g. [90]), and many other properties
(see, for example, many requirements on synthetic benchmark circuits in [84]).

The main focus of this thesis is the optimization of low-level HW/SW components of
network monitoring systems. It is important to identify the components that significantly
influence performance in currently developed and future implementations of these systems.

4

Figure 1.1: The network traffic is increasing rapidly in the last years (adopted from [11]).

The selected components require an optimization or a re-design not only in terms of func-
tionality but also in terms of latency which is critical for high-speed networks. This thesis
will explore how evolutionary algorithms (in particular genetic programming) can be em-
ployed to design and/or optimize selected components of high-speed network monitoring
systems.

1.1 Research Objectives
We hypothesize that by using well-tuned evolutionary algorithms selected components of
high-speed network monitoring systems can automatically be re-designed or optimized to
improve their functionality and optimize other parameters (such as the implementation
cost) in comparison with the state-of-the-art solutions.

The following research objectives were formulated:

1. To study network monitoring systems and identify their components suitable for au-
tomated optimization.

2. To define objectives and constrains that are important for an efficient optimization of
the selected components.

3. To propose and implement single- and multi-objective variants of EAs including suit-
able fitness functions.

4. To validate the proposed approach and evolved solutions using relevant data sets.

5. To compare evolved solutions with the state-of-the-art implementations.

5

1.2 Abstract Outline
The extended abstract summarizes author’s doctoral thesis. The thesis is composed as a
collection of papers. The research contribution is presented in five peer-reviewed papers .

The extended abstract of the thesis is organized as follows. Chapter 2 surveys the
state-of-the-art. It primarily includes the principles of network monitoring and evolution-
ary design of circuits and programs. A special attention is devoted to the classification
of application protocols in hardware and to the hash function design because these two
problems are later selected as the case studies for this thesis. The research methodology
and overview of scientific papers constituting this thesis is given in Chapter 3. Finally,
Chapter 4 concludes the thesis and suggests possibilities for future research.

6

Chapter 2

State of the Art

This chapter provides a necessary background needed to understand the research presented
in this thesis. Chapter 2.1 introduces relevant concepts of computer networks and network
applications that are important for monitoring and security of computer networks. The hash
function design is presented in Chapter 2.3. Chapter 2.4 surveys the principles of genetic
programming including the graph-based and linear-based variants of GP. Multi-objective
approaches for evolutionary algorithms are presented in Chapter 2.5.

2.1 Computer Networks
A computer network is a telecommunication network that provides connections among
end-systems in order to share resources.

Computer networks [70] consist of end-systems (such as personal computers, servers,
mobile devices or IoT nodes) and network devices (such as routers, switches, bridges, fire-
walls). These devices are connected by different types of links (wired, wireless or optical).
Computer networks can be local, connecting nodes in the boundary of space, or global,
connecting nodes all around the world (the Internet). The basic architecture of a computer
network includes:

∙ A technology for signal transmission,

∙ a technology for reliable data transmission and

∙ an application layer which provides services for users.

Several network architecture models have been proposed. The reference network archi-
tecture model is the ISO/OSI model [97], which contains seven layers, namely Physical,
Datalink, Network, Transport, Session, Presentation and Application layers. The most
widespread model is the TCP/IP model, which is based on the ISO/OSI model, but uses a
simpler architecture than the ISO/OSI model. It has only four instead of seven layers used
in the ISO/OSI model. A comparison of these models is shown in Table 2.1.

2.1.1 TCP/IP Model

The TCP/IP model [33, 85] has been designed with respect to reliability, independence of
the transmission medium, decentralized and simple implementation. Table 2.1 shows all
the layers and the typical protocols associated with each layer. Each layer uses services

7

GET http://www.fit.vutbr.cz

HTTP message

TCP packet

IP datagram

Ethernet frame

WWW page

LAN 1 LAN 2

Internet

HOST 1 HOST 2WWW client WWW server

Sender
Receiver

Figure 2.1: Example of the data encapsulation on the Sender side and the data decapsula-
tion on the Receiver side.

provided by lower layers. Each layer adds a header or a footer to the data coming from the
higher layers and delegates the encapsulated data to the lower layer for the next processing.
Example of the data encapsulation on the sender side and decapsulation on the receiver
side is shown in Figure 2.1. The lowest layer sends all the data with headers (footers) to a
target device.

Network interface layer defines requirements on physical medium, electrical signals
and optical signals. Examples of the network interface layer implementations are Ethernet,
TokenRing, Frame Relay, FDDI or RS-232C. In addition to these requirements, the network
interface layer defines the methods enabling the access to a physical medium.

Internet layer addresses and routes basic transfer structures (the so-called datagrams)
containing the header and payload sections. Datagrams are routed using the best-effort
delivery strategy, which tries to find a compromise between the shortest and the fastest
paths through the entire network. If the datagram is lost during its transport via the
network, the sender has to arrange for its re-sending. The internet layer typically uses five
protocols. The Internet Protocol (IP) provides services for transport layer protocols. It
distinguishes devices in the network. Two versions of IP are currently used IPv4 and IPv6,
see Figure 2.2. Next protocols are Address Resolution Protocol (ARP) and Reverse ARP
(RARP). The ARP translates an IP address to a MAC address and RARP translates a MAC
address to an IP address. Internet Group Message Protocol (IGMP) is used for logging to
multicast groups. Internet Control Message Protocol (ICMP) sends error messages in the
networks, for example, a device goes offline or a service is unavailable. All internet layer
protocols have to be implemented in the operation system.

Transport layer ensures logical connections between processes on the end devices
connected through the IP. The logical connection is identified by a port number. The
transport protocol divides the data coming from the application layer to smaller pieces and
adds a header in order to form a packet. The packets create a sequence which is called the
network flow. The network flow is defined as a set of packets with the same key features
and is passed by an observation point in the network during a given time interval. The
transport layer uses two protocols. (i) The Transmission Control Protocol (TCP) ensures
reliable connections. It means that all the data sent from a sender will be delivered to a
recipient correctly. The TCP adds special packets to the communication to establish the
connection, finish the connection, confirm an acceptance, synchronize all entities, etc. (ii)

8

Figure 2.2: Comparison of IPv4 header (left) and IPv6 header (right).

Table 2.1: Comparison of ISO/OSI model and TCP/IP model.
ISO/OSI model TCP/IP model Group of Layers Examples

Application Layer
Application Layer Application Layer Web Pages and

Internet browsersPresentation Layer
Session Layer

Transport Layer Transport Layer Internetwork Layer TCP/IP SoftwareNetwork Layer Network Layer
Data Link Layer Data Link Layer Hardware Layer Ethernet ports, cables
Physical Layer Physical Layer and ethernet drivers

The User Datagram Protocol (UDP), in fact, creates unreliable connections as there is no
mechanism to check if a packet is delivered correctly. The data transfer is faster using UDP
than TCP because there are no additional control packets. UDP is employed by services
which need a fast transmission but can tolerate some undelivered packets, for example,
Video on Demand (VOD), audio stream, etc.

Application layer covers many different application protocols developed for specific
applications. Each protocol uses either TCP or UDP as transport protocol. Well-known
protocols such as HTTP, SMTP, SIP, SSH have a port number assigned. The port numbers
are divided into three ranges. The well-known ports, also known as the system ports, belong
to the interval from 0 to 1023. These applications have to e strictly registered. The second
group of ports (with numbers from 1024 to 49151) is a subject to registration at IANA
organization. For the last group, with the so-called dynamic (or private) ports in the range
from 49152 to 65535, there are no specific requirements for registration.

2.2 Network Monitoring
The network monitoring is crucial for ensuring the correct functionality of computer net-
works. It is based on probing of device states, traffic analysis and collecting traffic informa-
tion. Results of monitoring are useful for administrators to improve network security, per-
formance and functionality. Two types of network monitoring techniques exist [78, 66, 54].
(i) The active monitoring lies in injecting test traffic into the network and analyzing its
impact. These tests can reveal real-time problems such as packet loss, jitter, insufficient
bandwidth, unknown device status, latency and measure the quality of services (QoS). The

9

Network 1
Network 2

Probe

Monitoring

probe

User Analyser Storage

Probe

Probe

Figure 2.3: Schema of a monitoring system architecture.

active monitoring can thus relatively quickly detect network problems. The disadvantages
of the active monitoring are increased network traffic and missing information about the
data in the packed payload because only injected packets are analyzed. (ii) The passive
monitoring is based on an analysis of real network traffic without injecting any new network
traffic. It requires either special network devices to capture the network data or a built-in
support in switches and other network devices. The passive monitoring provides more op-
portunities for the analysis than active monitoring. For example, the volume of the data
generated by a device or anomalies in the traffic behavior can be detected. Any specific
application, any user or any specific traffic may be observed and analyzed. The long-term
statistics created from captured data are of a great importance for future infrastructure
planning and upgrades. A monitoring probe is typically inserted between two networks,
see Figure 2.3. The network probes typically send the data to a collector that analyses the
data and distribute them to users or makes certain automatic or semi-automatic actions
such as blocking of specific devices (users), applications or attacks in real-time.

Current high-speed networks operate at 10 Gbps and 40 Gbps. Solutions for 100 Gbps
networks have been already demonstrated [43]. The specifications for 400 Gbps and even
1 Tbps are under design. High-speed networks require a novel approach to traffic monitoring
because the monitoring systems used in 10 Gbps networks do not have enough throughput.
A common feature of software implementations of network monitoring systems is that the
monitoring probe is flexible and easily adapts to a given network. However, the software
solution is often insufficient in terms of performance. Hardware implementations of mon-
itoring systems, based on field-programmable gate arrays (FPGA) or application-specific
integrated circuits (ASIC), usually have a sufficient throughput but it is often difficult to
adapt them to a certain network or add new monitoring features.

A new approach to high-speed network monitoring known as Software Defined Mon-
itoring (SDM) has recently been developed [43, 45]. The SDM combines hardware and
software approaches. The SDM consists of three fundamental parts: i) a special hardware
card with an FPGA based network monitoring accelerator, ii) a firmware controlling the
data preprocessing in hardware and iii) user applications, see Fig. 2.4. The main benefit

10

Figure 2.4: Software Defined Monitoring system architecture (adopted from [43]).

of SDM is its ability to control the hardware preprocessing of network flows by means of
software applications. The control software sets the rules for the hardware accelerator with
respect to the particular flows, groups of flows, devices (users) or selected protocols. It also
sets various actions specifying how to discard packets, collect basic network characteristics,
capture all packets for detailed analysis, etc. A rule or a set of rules is defined to preprocess
each flow. Because the software part has to process only a small portion of the traffic
(already preprocessed and aggregated data) it can be executed on a standard multi-core
processor. About 80% of flows can be processed in hardware after the learning phase of
the SDM system is finished [43]. However, during the learning phase, the software has to
handle most of the flows.

2.2.1 Processing of Network Traffic and Network Flows

This section briefly describes the flow processing in the SDM system and identifies the most
time-critical operations.

Network Traffic Processing

In the current networks, which are mostly based on TCP/IP model [72], a packet is formed
by headers and payload. Every layer has its own header for identification and processing.
A flow can be uniquely identified by a 5-tuple extracted from these headers: source and
destination internet protocol addresses (IPv4 or IPv6), source and destination ports and
transport protocol (mostly TCP or UDP). Each flow represents one direction of the com-
munication between two applications on the devices. In the flow-based monitoring, we deal
with the basic flow characteristics such as the flow length (the number of packets or bytes)
and timing (the start time, the end time, the duration). These characteristics are often
amended by certain interesting information from an application layer such as the type of
protocol or some information extracted from the payload.

11

Header analyser

Flow Cache

Application Classi er

Rules database

Flow processing

Storage and

post-processing

Flow identi cator

Create ow

in cache

Action for ow

Packets

Figure 2.5: Packet processing in monitoring systems such as SDM.

Flow Processing

Fig. 2.5 shows a typical packet processing pipeline in the monitoring systems such as SDM.
At first, the 5-tuple identification of the packet is extracted from packet headers. The
packet is assigned to a flow record if the corresponding flow already exists in the flow cache.
Otherwise, a new flow record is created in the flow cache and rules for the processing of the
packets belonging to this flow are defined. There are different types of rules, for example,
“capture all traffic”, “get basic characteristics” or “get advanced characteristics”. These
rules can affect complete network traffic, a specific user, a subnet, a specific protocol or a
group of protocols (e.g. communication protocols).

One of the challenges in network monitoring is the identification of application protocols.
The research in the area of application identification has come up with distinct approaches
to identify the applications carried out in the traffic. These approaches differ in the level of
detail that is utilized in the identification method. The most abstract one is the behavioral
analysis [38, 95]. Its idea is to observe only the port numbers and destination of the
connections per each host and then to deduce the application running on the host by its
typical connection signature. If more details per connection are available, the statistical
fingerprinting [65] comes into play. In this case, a feature set is collected per each flow
and the assumption is that the values of the feature set vary across applications, and
hence, the applications leave a unique fingerprint. Behavioral and statistical fingerprinting

12

Table 2.2: Characteristics of different speed links. *Packet size is 64 bytes **CPU fre-
quency = 3.6GHz

Link speed Packets* Time to process approximate CPU**
[Gbps] per second one packet [ns] clocks cycles

1 1 953 125 512.0 1843
10 19 531 250 51.2 184
40 78 125 000 12.8 46
100 195 312 500 5.12 18
400 781 250 000 1.28 5

generally classifies the traffic into the application classes rather than into the particular
applications. The reason is that different applications performing the same task often
exhibit similar behavior. For instance, application protocols such as Oscar (ICQ), MSN
and XMPP (Jabber) transport interactive chat communications, and hence, they exhibit
a similar behavior, which is very hard to differentiate for the monitoring system. The
inability to distinguish applications within the same class is in some situations seen as a
drawback, for example, when it is necessary to block/capture an application while other
applications of the same class have to remain running. The approach utilizing the greatest
level of detail is called deep packet inspection. It identifies applications based on the packet
payload. The payload is matched with known patterns (defined, for example, by regular
expressions) derived for each application [80].

The L7 filter [25] is a popular program for the application protocol identification, which
utilizes regular expressions to describe the application protocols. It performs pattern match-
ing in network flows. If a known pattern is matched in the payload, the corresponding appli-
cation protocol is assigned to the network flow. Current processors are not powerful enough
to achieve 100 Gbps throughput for the regular expression matching. The throughput of L7
decoder is less than 1 Gbps per one CPU core even for the latest Xeon processors [31, 32].
In order to achieve 100 Gbps throughput, it is necessary to use highly optimized hardware
accelerators.

2.2.2 FPGA Based Accelerators

Table 2.2 shows how requirements on CPUs are growing with increased link speed. As a
processor-based network monitoring is only applicable to 10 Gbps, hardware acceleration is
needed for faster links.

Paxson et al. [69] argue that these performance requirements should be met by leveraging
a high degree of possible parallelism that is inherent to network traffic monitoring. FPGAs,
as well as ASICs, may deliver a vast support of parallelism. However, only FPGAs enable
possibility to prototype and implement critical components for various network applications
at the highest speeds while the optimized ASICs follow broad deployment a few years
later. FPGAs are extensively used in the so-called hardware-accelerated network cards to
implement the first line of network traffic processing such as monitoring, forwarding and
other applications [1, 44].

FPGAs consist of programmable routing network and basic building blocks such as look-
up tables (LUTs), registers, and block memories. A particular setup of the routing network
defines the interconnection of these components. The LUTs serve to implement combi-
national logic while registers and block memories serve to keep the stateful information.

13

Figure 2.6: Increasing the throughput by multiple pattern matching units.

Modern FPGAs contain millions of LUTs and registers and thousands of block memories
with the total capacity of hundreds MB [94]. All these components may, theoretical, work
in parallel, independently of each other, and provide enormous computation power with low
energy consumption in tens of Watts per chip. Moreover, FPGAs targeting the network
market provide more than a hundred of high-speed transceivers allowing for connection to
high-speed network links (e.g. high-end Virtex UltraScale+ FPGA offers up to 4 Tbps of
aggregated transceiver throughput [93]).

The crucial task is to transform a high-level description of the circuit (for example, writ-
ten in VHDL or SystemC) into an effective implementation in FPGA from the perspective
of meeting the timing and resource constraints.

In recent years, many researchers have proposed high-speed pattern matching hardware
architectures, which utilize the fine-grained parallelism of FPGA technology. Mapping of
the regular expressions matching to an FPGA was first explored by Floyd and Ullman [26],
who showed that pattern matching realized by a Nondeterministic Finite Automaton (NFA)
can be implemented using a programmable logic array. Sindhu et al. [82] proposed an
efficient mapping of NFAs to FPGA and Clark et al. improved the implementation by a
shared decoder [12, 13] which significantly reduced the amount of consumed logic resources.
The AMTH (At Most Two-Hot encoding) architecture [96] provides another improvement
of the NFA implementation in the FPGA. The combination of one-hot and binary encoding
reduces the amount of flip-flops, representing the NFA states.

Several authors introduced an optimized mapping of Perl Compatible Regular Expres-
sions (PCRE), which are widely used in Intrusion Detection Systems (IDS), to the FPGA.
Sourdis et al. published in [83] an architecture that allows for the sharing of character
classes, static sub patterns and introduced components for efficient mapping of constrained
repetitions to the FPGA. Lin et al. created an architecture for sharing infixes and suf-
fixes [58]. Nevertheless, these optimizations are relevant only for large sets of PCREs in
IDS systems.

The throughput of a pattern matching circuit is determined by the number of bytes
processed within one clock cycle and frequency of the hardware matching unit. The FPGA
technology limits the maximum frequency to several hundreds of MHz. To increase the
processing speed, the NFA can be modified to process multiple bytes per one clock cy-
cle [8]. Unfortunately, with the increasing size of the NFA input, the amount of NFA
transitions grows exponentially. As a result, the hardware matching unit consumes more
FPGA resources and its frequency decreases rapidly.

14

The throughput can be increased by introducing multiple parallel matching units. These
units need additional logic resources and buffers to distribute the network data to the
matching units and join the results. The overhead of parallel processing is illustrated in
Fig. 2.6. First, the splitter has to assign the sequence number for every packet and store the
packet to a buffer. The packet data are then sent with a lower rate to one of the parallel
matching units. The units perform pattern matching and send the results to a binder,
which contains buffers to put the results in the right sequence order.

Introducing the parallel matching units can improve the matching speed up to 100 Gbps,
but only at the cost of significant overhead in terms of latency, FPGA logic resources
and memory buffers. This overhead is avoided by focusing on highly optimized hardware
architectures with high throughput and low latency [59, 60].

2.3 Hash Function Design
Hash functions are often employed in hardware accelerators of network monitoring systems.
They are responsible for searching in the rule table, for distributing data to process units and
for storing the flows data to database. For example, in the distribution unit, a hash function
is called for each packet. In order to maximize the performance of network monitoring
systems, hashing has to be not only of a high quality, but also fast.

A hash function is a mathematical function ℎ that maps an input binary string (of
length 𝑙𝐷) to a binary string of fixed length (𝑙𝑅), ℎ : 𝐷 → 𝑅, where 𝑙𝐷 > 𝑙𝑅. The
output value is called a hash value or simply hash [50]. The definition of hash function
implies the existence of collisions, i.e. ℎ(𝑑) = ℎ(𝑑′), where 𝑑, 𝑑′ ∈ 𝐷 are two different input
messages. An important requirement imposed on hash functions is that a small change in
the input should generate a large change in the output, which is called the avalanche effect.
Good hash functions usually satisfy both criteria – maximizing the avalanche effect and
minimizing the collision rate.

Two major types of hash functions exist, cryptographic and non-cryptographic. The
cryptographic hash functions are suitable for cryptographic applications [86]. They have to
satisfy many requirements, e.g.:

∙ practical efficiency – for 𝑑 ∈ 𝐷 it is computationally efficient to find a hash value
𝑟 ∈ 𝑅 s.t. ℎ(𝑑) = 𝑟;

∙ first preimage resistance (one-way) – for 𝑟 ∈ 𝑅 it is computationally infeasible to find
an input value 𝑑 ∈ 𝐷 s.t. ℎ(𝑑) = 𝑟;

∙ second preimage resistance (weak collision resistance) – for 𝑑 ∈ 𝐷 it is computationally
infeasible to find a value 𝑑′ ∈ 𝐷, s.t. 𝑑′ ̸= 𝑑 and ℎ(𝑑′) = ℎ(𝑑);

∙ collision resistance (strong collision resistance) – it is computationally infeasible to
find two distinct values 𝑑′, 𝑑 ∈ 𝐷, s.t. ℎ(𝑑′) = ℎ(𝑑).

These requirements lead to more complicated construction of hash functions and, hence,
the cryptographic hash functions need more time to compute the hash value than the non-
cryptographic hash functions. The cryptographic hash functions have many applications,
for example, in message authentication tools, digital signatures or in other forms of authen-
tication.

15

Figure 2.7: Merkle–Damgård construction of hash functions.

The non-cryptographic hash functions have to satisfy weaker requirements, but the
practical efficiency and collision resistance are also important. These properties are often
used to quantify the hashing quality of non-cryptographic hash functions.

Because the input size is usually arbitrary, hash functions are often designed using a
pipelined (Merkle–Damgård) construction, see Fig. 2.7. It means that an input message is
divided into blocks of a fixed size and processed block by block. The block is processed one
at a time with an inside reduction function, each time combining the input block with the
output of the previous round. The size of the output is typically the same as the size of
the hash value. The last round produces the hash value. The last block of the message is
typically padded with zeros to the required size.

The non-cryptographic hash functions have many applications, for example, in hash
tables, search duplication, caches, bloom filters [61, 71, 36]. The hash table is a data
structure used to implement an associative array, a structure which maps keys to values,
see Figure 2.8. Hash tables have many applications, such as database indexing, object
representation in programming languages or sets. Because hash functions produce collisions,
it is necessary to resolve them in the hash tables. A well-known technique is separate
chaining, where each slot in the hash table refers to a linear list that contains the records
having the same hash. While determining the slot for a given input is performed in constant
time, a particular record have to be searched sequentially. Next approach the collision

K1 K3

K2

h(K1)

h(K3)

h(K2)

h

Figure 2.8: Example of hash table with size 6 slots, utilizing the separate chaining.

16

Figure 2.9: Example of inserting key to hash table with Cuckoo hashing.

resolving is the open addressing. This method searches (using some algorithms) for an
alternative position in the hash table, where to store the data. Another approach, cuckoo
hashing [68], uses two hash functions. A key is hashed by both hash functions and the
data are stored to an empty slot indexed by one of them. If both slots are occupied, one
of the keys stored in the table is rehashed by the other hash function and stored there, see
example in Figure 2.9.

Many (non-cryptographic) hash functions have been proposed, for example, DJBHash [6],
DEKHash [50], FVN (Fowler-Noll-Vo) [27], One At Time and Lookup3 [36]. MurmurHash2
and MurmurHash3, which are utilized in many open source projects, are hash functions
suitable for general hash-based lookup [2]. CityHash is a family of non-cryptographic
hash functions designed for fast hashing of strings [71]. Additional details are available
in Paper II.

In addition to the general purpose non-cryptographic hash functions, there are also
exist application-specific hash functions. They address specific properties of a particular
application and, therefore, can be better (with respect to these properties) than the general-
purpose hash functions. For hashing of network flows, the so-called XOR folding has been
proposed [9]. Its implementation works with inputs of fixed size and is optimized in terms
of performance.

SHMHasher [3] is a framework developed for evaluation of hash functions. It pro-
vides a test suite to evaluate the distribution, collision and performance properties of non-
cryptographic hash functions. It contains many hash functions that can be used for a
comparison. We used this framework in Paper V to measure the performance of hash
functions.

2.4 Evolutionary Design
Evolutionary algorithms (EAs) [75] are inspired by the principles of biological evolution
which is seen as an excellent optimization system. EAs are a class of stochastic optimization
algorithms in which a population (a set) of candidate solutions is modified by genetic
operations in order to solve a particular optimization problem. The quality of candidate

17

solutions is evaluated by means of the fitness function. A general evolutionary algorithm
works as follows:

1. Initialize the population of candidate solutions (individuals).

2. Evaluate all individuals to determine their fitness value.

3. If termination conditions are met then stop. The result of EA is the individual with
the best fitness value.

4. By means of a selection method select individuals from the population to a set of
parents.

5. Create a set of offspring by applying genetic operators on the parents:

(a) Reproduction – copy an individual to the offspring set unchanged
(b) Recombination – exchange some parts of two or more individuals
(c) Mutation – randomly modify some parts of an individual

6. Create a new population using the set of parents and offspring

7. Continue with step 2.

Many variants of evolution algorithms have been proposed in the literature, for exam-
ple, evolution strategy [74], differential evolution [73], genetic algorithm [15] and genetic
programming [52].

Genetic programming (GP) [52, 53] is primarily used for automated design of computer
programs. Candidate programs are represented in memory as syntactic trees in the so-called
tree version of GP. Nodes of the tree represent operations (arithmetic, logic, control etc.)
and leaves contain terminal symbols such as program’s inputs or constant values. During
evolution, every candidate program is executed on a training data set in order to obtain its
fitness value. Genetic operators randomly modify one candidate tree (mutation) or two or
more candidate trees (swapping of subtrees) in crossover. The resulting tree is evaluated
using a test set to validate its behavior on unseen data.

Other variants of GP use a different encoding of candidate programs. Cartesian GP
and Linear GP are described in greater detail in the next chapter because they are relevant
for this thesis.

2.4.1 Cartesian Genetic Programming

Cartesian genetic programming (CGP) has been developed by Miller since 1999 [64] and has
been utilized in many applications as summarized in monograph [62]. A typical application
of CGP is evolutionary circuit design. The idea of evolvable hardware and automated circuit
design by means of artificial evolution was introduced by Higuchi et al. in 1993 [34]. A
recent survey of the field covering key subfields (evolutionary hardware design and adaptive
hardware) is available in [79]. In CGP, a candidate solution is modeled as a directed acyclic
graph and represented in a 2D array of 𝑛𝑐 × 𝑛𝑟 processing nodes. Each node can perform
one of the 𝑛𝑎-input functions specified in Γ set. The setting of 𝑛𝑐, 𝑛𝑟 and Γ significantly
influences the performance of CGP [63, 29].

The remaining parameters of CGP are the number of primary inputs (𝑛𝑖), the number
of primary outputs (𝑛𝑜), and the level-back parameter (𝐿) specifying which columns can

18

Figure 2.10: Example of a combinational circuit in CGP with parameters: 𝑛𝑎 = 2, 𝑛𝑖 = 5,
𝑛𝑜 = 2, 𝐿 = 4, 𝑛𝑐 = 4, 𝑛𝑟 = 2, Γ = {AND (0), OR (1), XOR (2)}. Gates 8, 11 and 12
are not utilized. Chromosome: 2,3,0; 4,3,2; 5,4,1; 2,0,1; 5,7,0; 5,6,1; 0,6,2; 7,6,2; 9, 10. The
last two integers indicate the outputs of the circuit.

be used as inputs for a given gate. The primary inputs are labeled 0 . . . 𝑛𝑖−1. The outputs
of all nodes are labeled 𝑛𝑖 − 1 . . . 𝑛𝑐 · 𝑛𝑟 + 𝑛𝑖 − 1 and considered as addresses where the
connections can be fed to. In the chromosome, each 𝑛𝑎-input node is then encoded using
𝑛𝑎 + 1 integers (𝑛𝑎 inputs and a node function). Finally, for each primary output, the
chromosome contains one integer specifying the connection address. In CGP, the encoding
is redundant because some nodes, some of their inputs or some primary inputs need not be
used in the phenotype.

Algorithm 1: CGP
Input: CGP parameters, fitness function, original circuit 𝑝
Output: The highest scored individual and its fitness

1 𝑃 ← CreateInitialPopulation(𝑝);
2 EvaluatePopulation(𝑃);
3 while ⟨terminating condition not satisfied⟩ do
4 𝛼← SelectHighest-scored-individual(𝑃);
5 if fitness(𝛼) ≥ fitness(𝑝) then
6 𝑝← 𝛼;
7 𝑃 ← {𝑝} ∪ {𝜆 offspring of 𝑝 created by mutation};
8 EvaluatePopulation(𝑃);
9 return 𝑝, fitness(𝑝);

CGP utilizes a search method known as 1 + 𝜆, where 𝜆 is the population size [62]. The
initial population is randomly generated or seeded using conventional solutions. A new
population consisting of 𝜆 individuals is generated by applying the mutation operator on
the best individual of the previous population. The mutation operator randomly modifies
ℎ integers of the chromosome. The evolution is terminated after producing a given number
of generations or a suitable solution is discovered, see Algorithm 1.

In the standard CGP used for combinational circuit evolution, the number of primary
inputs 𝑛𝑖 and outputs 𝑛𝑜 is set accordingly to the requirements of the target circuit and
Γ contains a set of Boolean functions. Figure 2.10 shows an example of a circuit and a
corresponding chromosome.

A candidate circuit is evaluated by checking its responses for all possible input combi-
nations. In order to accelerate the fitness function evaluation on a common processor, a
bit-level parallel simulation of a candidate combinational circuit is employed. Contrasted

19

double LGP (double x){
r[0] = x

r[2] = r[0] * r[0]
r[1] = r[2] + r[0]
r[3] = r[1] + r[0]
r[1] = r[1] + r[4]
r[0] = r[1]
return r[0]

}

Figure 2.11: Example of a candidate program in LGP.

to a naïve simulation, in which 2𝑛𝑖 vectors are sequentially submitted for evaluation (where
𝑛𝑖 is the number of primary inputs), the bit-level parallel simulation exploits the fact that
current processors enable performing bitwise operations over two 𝑤-bit operands in paral-
lel [62]. Hence, the input vectors are grouped into 𝑤-bit words and simulated in parallel.
The obtained speedup is 𝑤 on a 𝑤-bit processor, for example, 64× on a 64 bit common
personal computer.

Although various new designs have been discovered using the standard CGP, the method
is not directly applicable for the design of large combinational circuits because the fitness
evaluation time grows exponentially with the number of primary inputs. Moreover, the
number of requested fitness evaluations can easily go into millions, even for small (but
nontrivial) circuits such as 4 bit multipliers. This problem has partially been eliminated by
introducing circuit decomposition techniques at the representation level [87, 81] and formal
verification methods in the fitness function [89]. Other successful applications of CGP have
been proposed in domains in which candidate circuits are not evaluated using all possible
input combinations (see, e.g., hash functions [41], image operators [88] or classifiers [40]).

The modern FPGAs contain 4- or 6-inputs LUTs. There are only a few papers dealing
with the evolutionary circuit design at the level of 4-input LUTs [10, 41] and no paper
dealing with 6-input LUTs. Unfortunately, the bit-level parallel simulation is inefficient for
circuits consisting of LUTs because their logic function has to be emulated using a sequence
of binary logic operations. As discussed in Paper I, employing CGP with 6-input LUTs
(each of them encoded using 64 bits in the chromosome) would lead to long chromosomes,
complex search spaces and very inefficient search procedures.

2.4.2 Linear Genetic Programming

Linear genetic programming (LGP) [7, 67, 92] is a variant of GP which uses a linear repre-
sentation of candidate programs. Every program is composed of operations (called instruc-
tions) that are executed in a register machine. Operands, intermediate results and final
results are stored in registers or in an external memory. Example of a candidate program
is given in Figure 2.11. Linear GP evolves sequences of instructions in a machine language.

An instruction is typically represented by the instruction code, destination register
and two source registers, for example, [+, 𝑟0, 𝑟1, 𝑟2] represent the operation 𝑟0 = 𝑟1 + 𝑟2.
The program result is returned in a predefined register. The number of instructions in
a candidate program varies during the evolution, but the minimal and maximal size are
defined. The number of registers available in the register machine is constant. The function

20

set known from GP corresponds with the set of available instructions. The instructions are
general-purpose (e.g., addition and multiplication) or domain-specific (e.g., read sensor 1).
Conditional and branch instructions are important for solving many problems. As in tother
branches of GP, protected versions of some instructions (e.g., a division returning a value
even if the divisor is zero) are employed in order to execute all programs without exceptions
(such as division by zero).

LGP is usually used with a tournament selection, one-point or two-point crossover and
a mutation operator modifying either the instruction type or the register index. Advanced
genetic operators have been proposed for LGP, for example [21, 22].

Like in other GP branches, the most computationally expensive part of LGP is the
fitness function evaluation. In order to obtain the program’s fitness score, the candidate
program is executed on a set of training inputs, its outputs are collected and compared
with desired values.

An individual can contain unused code parts, called introns, which do not affect the
fitness value. However, the introns slow down the program execution. If introns are detected
and eliminated, the evaluation time can be significantly reduced. According to [7], the
existence of introns is important for the evolution process. Introns may act as a protection
that reduces the effect of the variation process on the effective code.

The fitness function is typically focused on functionality, but other parameters of can-
didate programs can be optimized, such as the number of used instructions, execution time
or power consumption of the processor.

2.4.3 Evolution of Hash Functions

Hash functions were successfully designed by evolutionary algorithms in recent years. The
main advantage of EAs is that they are capable of producing high-quality hash functions
optimized for a given application domain. Hash functions were evolved with genetic algo-
rithms [76], tree GP [24], grammatical evolution [5] and Cartesian GP [91]. Both scenarios
– application-specific hash functions (see, e.g., [42, 47, 51]) and general-purpose hash func-
tions (see, e.g., [24, 39]) – were addressed in the literature. Relevant details are given in
papers II, III, IV and V.

The fitness functions used in EAs developed for hash function design have been mostly
focused only on the quality of hashing, usually expressed in terms of the collisions resistance,
avalanche effect and distribution of outputs. The execution time of hash functions were not
addressed by the GP literature before my research has been initiated.

2.5 Multi-Objective EAs
Previous chapters have dealt with single-objective EAs that produce solutions with respect
to only one objective [18]. In many real-world problems such as the hash function design
problem discussed in chapter 2.4.3, there are two or more optimization objectives that are
conflicting. A simple approach is to combine several objectives into one (scaled) fitness
function. Modern EAs, however, provide many useful techniques for truly multi-objective
optimization [23, 16, 49].

A general multi-objective optimization problem is defined as follows:

21

Table 2.3: Solution relations in a multi-objective approach [23].
relation notation interpretation
strictly dominates 𝑥 ≺≺ 𝑦 𝑓𝑛(𝑥) > 𝑓𝑛(𝑦)∀𝑛
dominates 𝑥 ≺ 𝑦 𝑓𝑛(𝑥) ≥ 𝑓𝑛(𝑦)∀𝑛 ∧ ∃𝑖 : 𝑓𝑖(𝑥) > 𝑓𝑖(𝑦)
weakly dominates 𝑥 ⪯ 𝑦 𝑓𝑛(𝑥) ≥ 𝑓𝑛(𝑦)∀𝑛
incomparable 𝑥 ‖ 𝑦 ¬(𝑥 ⪯ 𝑦) ∧ ¬(𝑦 ⪯ 𝑥)
indifferent 𝑥 ∼ 𝑦 𝑓𝑛(𝑥) = 𝑓𝑛(𝑦)∀𝑛

minimize/maximize 𝐹 (𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), ...𝑓𝑛(𝑥))
subject to 𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1, ...,𝑚,

ℎ𝑗(𝑥) = 0, 𝑗 = 1, ..., 𝑝,
(2.1)

where 𝑓𝑖 is the objective (fitness) function, 𝑛 is the number of objectives and 𝑥 is an
individual. 𝑔𝑖 and ℎ𝑖 are inequity and equity constraints, where 𝑚 and 𝑝 is the number
of constrains. Various multi-objective algorithms have been proposed. These algorithms
use different approaches to combine the optimization criteria and select new candidate
solutions. A straightforward approach is to assign a weight for each fitness function. The
final fitness function is the sum of the weighted fitness values:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =

𝑛∑︁
𝑖=1

𝑤𝑖𝑓𝑖(𝑥), (2.2)

where 𝑤𝑖 is the weight for 𝑖-th fitness function. Another approach is based on lexicograph-
ical sorting, in which individuals are gradually sorted by fitness values according to user
preference. For example, VEGA algorithm [77] randomly divides the population into 𝑛
subsets, where 𝑛 is the number of objectives. Each subset is evaluated by one fitness func-
tion. The new population is formed by individuals from all subsets selected by a selection
algorithm based on the fitness value.

The most successful multi-objective algorithms are based on the principle of Pareto dom-
inance. We say that solution 𝑥 Pareto dominates solution 𝑦 if the following two conditions
are fulfilled:

1. Solution 𝑥 is better than solution 𝑦 in at least one objective.

2. Solution 𝑥 is no worse than solution 𝑦 in all objectives (𝑥 ≺ 𝑦).

This is formally captured by relation (the objective is to maximize 𝐹𝑖):

𝑥 ≺ 𝑦 : ∀𝑛𝑓𝑛(𝑥) ≥ 𝑓𝑛(𝑦) ∧ ∃𝑖 : 𝑓𝑖(𝑥) > 𝑓𝑖(𝑦) (2.3)

Table 2.3 summarizes all important relations between two solutions.
The set of solutions (out of all solutions) that are not dominated by any other solution

forms Pareto-optimal front or Pareto-optimal set. Pareto front can also be constructed using
solutions from a given population, i.e. using a subset of all possible solutions. Fig. 2.12
shows Pareto front (black) containing solutions which dominate the other solutions (white)
in the population. The ultimate goal of the multi-objective algorithm is to find the Pareto-
optimal set of solutions.

Evaluation algorithms utilizing the Pareto dominance employ different strategies to se-
lect individuals to the offspring population. Their main purpose is to maintain the diversity

22

Figure 2.12: Individuals on the Pareto front (black points) dominate the remaining indi-
viduals (white points) in the population. 𝑓1 and 𝑓2 have to be minimized.

of the population. Selected multi-objective algorithms are described in detail in the next
paragraphs.

Strength Pareto Evolutionary Algorithm 2

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) was proposed by Zitzler et al. in
2001 [98, 48]. SPEA2 uses two sets of individuals (population and archive). The archive
includes all non-dominated individuals from populations. If the archive is oversized, the
number of individuals in the archive is reduced by the truncation operation; otherwise, if
the archive is undersized, it is filled by the best dominated individual(s) from the popula-
tion. The truncation operation performs the nearest neighbor algorithm on the individuals
included in the archive. The individual with a minimal distance to another individual is
chosen to be removed from the archive. The truncation operation removes individuals from
the archive until the required size of the archive is reached.

SPEA2 uses a binary tournament selection with replacement, recombination and muta-
tion for creating the offspring population.

Pareto Envelope-based Selection Algorithm II

Pareto Envelope-based Selection Algorithm II (PESA-II) [14, 28] employs a region-based
selection, which enables to reduce the computational time for creating Pareto fronts. The
search space is divided into hyper-boxes. Fitness functions assign every individual to a
hyper-box. Using a standard selection method, a hyper-box is selected. Parents are ran-
domly chosen from a given hyper-box and using standard genetic operators (crossover and
mutation) offspring individuals are created. The selection algorithm operates with hyper-
boxes instead of individuals.

23

Figure 2.13: A cuboid used to determine the crowding distance of individual 𝑖.

Non-dominated Sorting Genetic Algorithm

One of the most popular multi-objective algorithms is Non-dominated Sorting Genetic
Algorithm II (NSGA-II) proposed by Deb et al. in 2002 [17, 20, 37]. The algorithm is
based on partitioning individuals from population 𝑃 to non-dominated fronts. First front
𝐹1 contains all non-dominated solutions. Every next front 𝐹𝑖 is constructed as Pareto front
for the population but individuals already included in 𝐹𝑖−1, 𝐹𝑖−2... are not considered. Each
solution is assigned with a rank, which corresponds to the front (𝑝𝑟𝑎𝑛𝑘 = 𝑖 for 𝐹𝑖). A naïve
approach to create the non-dominated fronts requires 𝑂(𝑀𝑁3) operations, where 𝑀 is the
number of objectives and 𝑁 is the population size.

The NSGA-II proposes a fast-non-dominated sort, which requires 𝑂(𝑀𝑁2) operations.
In this algorithm, the set 𝑆𝑝 contains individuals from the population that are dominated by
individual 𝑝. The number of individuals which dominate 𝑝 is stored in 𝑛𝑝. Each individual
𝑝 in the first front has 𝑛𝑝 = 0. Creating next fronts is based on knowledge of 𝑆𝑝 and 𝑛𝑝. For
each solution in 𝐹𝑖, we visit each member 𝑞 from 𝑆𝑝 and decrement the domination value

P

Q

F

F

F

F

F

1

2

3

4

5

t

Rt

t

P
t+1

Rejected

Q
t+1

Recombination

Mutation

Figure 2.14: NSGA-II main algorithm step scheme.

24

𝑛𝑞 = 𝑛𝑞 − 1. If any member gets 𝑛𝑞 = 0, we put it to the next front 𝐹𝑖+1. This process
continues until all fronts are identified.

The crowding distance assignment algorithm , differentiates individuals inside a front.
The algorithm estimates the perimeter of the cuboid formed by the nearest neighbors to
determine the crowding distance 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, see Figure 2.13. The value 𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the average
side length of the cuboid. The algorithm requires to sort individuals for each objective
value. The boundary solutions are assigned with an infinite distance value. Other solutions
are represented by a normalized distance of two nearby individuals. The crowding distance
is the sum of these values for each objective. The normalization is computed using 𝑓𝑚𝑖𝑛

𝑚

and 𝑓𝑚𝑎𝑥
𝑚 values, which are the minimum and maximum values of 𝑚-th objective function.

The main steps of NSGA-II algorithm are shown on Figure 2.14. Parent population
𝑃𝑡 and offspring population 𝑄𝑡, both of size 𝑁 , are combined to auxiliary population 𝑅𝑡

and sorted using the fast non-dominated sorting algorithm. Each solution is assigned to a
front. New parent population 𝑃𝑡+1 is composed by adding individuals from fronts 𝐹1, 𝐹2...
until the number of individuals in the population is 𝑁 . When the number of individuals in
𝑃𝑡+1 exceeds 𝑁 , the crowding distance algorithm is used to select additional individuals
according to the distance of the parent population 𝑃𝑡+1. An offspring population 𝑄𝑡+1 is
created from 𝑃𝑡+1 using standard genetic operation: selection, recombination and mutation.

Non-dominated Sorting Genetic Algorithm III (NSGA-III) is a new version of NSGA-II
intended for many-objective problems [19, 35]. A many-objective problem has more ob-
jectives than a multi-objective problem, typically more than five. The main difference is
in the selection algorithm, where it is important to maintain the diversity of the popula-
tion. NSGA-III employs a different strategy for including candidate individuals to the new
population.

25

Chapter 3

Research Summary

This chapter summarizes the research process conducted in order to write this thesis. Chap-
ter 3.1 introduces the methodology adopted to fulfill the objectives specified in Chapter 1.
Chapter 3.2 presents selected papers of the author, their abstracts and contributions. Chap-
ter 3.3 lists other papers of the author that are not included in this thesis.

3.1 Methodology
The overall objective addressed in this thesis is to improve key parameters of selected compo-
nents of high-speed network monitoring systems. Based on our survey of the state-of-the-art
approaches to network monitoring reported in Chapter 2, SDM and its hardware/software
implementation developed in [45] has been chosen as a framework suitable for arranging
and performing our experiments.

3.1.1 The Use of Evolutionary Computation Methods

The proposed approach is based on employing well-known GP algorithms; LGP for program
design and CGP for circuit design and optimization. As it is necessary to optimize not only
one parameter of the components (for example, the quality of processing), the proposed
design/optimization approach has to consider more design objectives. In the thesis, two
approaches have been developed:

∙ a single-objective approach based on constraining one of the objectives (e.g. by spec-
ifying the maximum acceptable latency) and optimizing the other objective (e.g. the
quality) and

∙ a truly multi-objective method optimizing all design objectives together.

In order to accelerate the design process, a parallel LGP implementation has been
developed and evaluated. Moreover, as computing the exact values of some component’s
parameters (e.g. the exact program execution time) is relatively time consuming, we had to
cheaply estimate these values to obtain the appropriate fitness value. Because evolutionary
algorithms are non-deterministic heuristics, their outcomes have to be statistically analyzed
and interpreted. It has systematically been done in all the case studies reported in the
papers constituting this thesis.

26

3.1.2 Selection of Target Components

In order to evaluate the proposed EA-based design and optimization approach, we selected
two components – a circuit implementing a simplified application protocol classifier and a
software hash function. We believe that these two components provide many properties
and features that characterize the type of design problems that have to be addressed in
systems such as SDM. The most interesting features are:

∙ We do not usually know a “perfect implementation” of these components in terms of
functionality. The design of these components is usually based on experimental work
whose objective is to minimize an error metric on various data sets.

∙ In both cases, performance (in other words, delay) has to be optimized in addition to
the functionality.

∙ One of the components (the classifier) is implemented as a digital circuit; the second
component (the hash function) is primarily implemented as a software routine. There
is thus an opportunity to investigate if, in principle, the same methodology can be
applied for their design and what are the differences.

∙ Hash functions are developed as either application-specific or general-purpose func-
tions. There is an opportunity to investigate if one evolutionary design method can
lead to acceptable results for both the scenarios.

3.1.3 Validation of Evolved Implementations

EAs require some training data sets in order to establish a fitness value. Other data sets
are needed to validate the evolved solutions. In both our case studies, we used real network
data collected by co-authors of our papers to evaluate and validate the evolved solutions.
We also used additional real world data and synthetic data to evolve general-purpose hash
functions. We implemented state-of-the-art classifiers and hash functions to compare the
results they produce with evolved solutions. In the case of circuit implementations we
employed industrial design tools for FPGAs to obtain the area and delay of evolved circuits.
In the case of hash functions, the execution time was measured on common processors.

3.2 Papers
This chapter presents the papers included in this thesis. For each paper, we present an
abstract, a brief description with motivation and a summary of the main contributions.

3.2.1 Paper I

GROCHOL David, SEKANINA Lukas, KORENEK Jan, ZADNIK Martin and KOSAR
Vlastimil. Evolutionary Circuit Design for Fast FPGA-Based Classification of Network
Application Protocols. Applied Soft Computing. Amsterdam: Elsevier Science, 2016, vol.
38, no. 1, pp. 933-941. ISSN 1568-4946.

Author participation: 40%
Journal Impact Factor (IF): 3.541

27

Abstract

The evolutionary design can produce fast and efficient implementations of digital circuits. It
is shown in this paper how evolved circuits, optimized for the latency and area, can increase
the throughput of a manually designed classifier of application protocols. The classifier is
intended for high-speed networks operating at 100 Gbps. Because a very low latency is the
main design constraint, the classifier is constructed as a combinational circuit in a field
programmable gate array (FPGA). The classification is performed using the first packet
carrying the application payload. The improvements in latency (and area) obtained by
Cartesian genetic programming are validated using a professional FPGA design tool. The
quality of classification is evaluated by means of real network data. All results are com-
pared with commonly used classifiers based on regular expressions describing application
protocols.

Contribution

In order to identify the application (or the application protocol) which the network traffic
belongs to, one has to inspect one or several packets with a payload. The main difficulty is
that the time to process one packet is less than 7 ns in the case of modern 100 Gbps links.
This work is the extension of our initial work on the classifier design [30]. The main goal of
the work is to show that these circuit classifiers can be optimized by means of Cartesian GP
in order to reduce their latency and resources requirements. The improvements in latency
and area obtained by CGP are validated by professional FPGA design tools. All results
are compared with commonly used classifiers on several data sets.

This work introduces a new concept of the hardware classifier which is constructed as
a fast-combinational circuit performing pattern matching over application protocols to be
classified. We proposed accurate and relaxed versions of the classifier. Their circuit opti-
mization by means of Cartesian GP led to 48.2% improvement in the area in FPGA (LUTs)
and 19.8% improvement in latency with respect to an accurate human-designed classifier.
Table 6 in Paper I shows results of synthesis for proposed classifiers. In order to compare
the proposed solutions with the state-of-the-art classifiers from the literature, parameters of
Yamagaki/Clark and AMTH circuit classifiers were included to this table. The classifiers
were evaluated on real-network data.

3.2.2 Paper II

GROCHOL David and SEKANINA Lukas. Evolutionary Design of Fast High-quality Hash
Functions for Network Applications. In: GECCO ’16 Proceedings of the 2016 on Genetic
and Evolutionary Computation Conference. New York, NY: Association for Computing
Machinery, 2016, pp. 901-908. ISBN 978-1-4503-4206-3.

Author participation: 60%
Conference rank: A (Core)

Abstract

High-speed networks operating at 100 Gbps pose many challenges for hardware and soft-
ware involved in the packet processing. As the time to process one packet is very short the
corresponding operations have to be optimized in terms of the execution time. One of them
is non-cryptographic hashing implemented in order to accelerate traffic flow identification.

28

In this paper, a method based on linear genetic programming is presented, which is capable
of evolving high-quality hash functions primarily optimized for speed. Evolved hash func-
tions are compared with conventional hash functions in terms of accuracy and execution
time using real network data.

Contribution

One of the most frequently called functions in the flow processing is the hash function,
which determines a memory address where the data of packet (flow) are stored. The goal
of this work is to propose and evaluate a special hash function for flow hashing which has
a good quality and is faster than the state-of-the-art hash functions. The hash function
is constructed as a sequence of instructions for a CPU by means of a parallel linear GP
exploiting the island model. In order to minimize the execution time, the hash function
is constructed using a limited number of simple instructions. The evolved hash functions
were compared with the hash functions available in the literature on real network datasets.

The paper shows that parallel single-objective LGP is capable of producing special hash
functions for flow hashing. The program size is restricted to 12 instructions which was
determined experimentally. Only simple instructions are used to minimize the execution
time. The fitness function is based on the number of collisions and penalizing a solution
generating many collisions on a given training data set. The evolved hash functions were
compared with 11 hash functions available in the literature on real network data sets. The
quality of hash functions is compared in Tab. 2 in Paper II. The best-evolved hash function
has almost identical quality of hashing as the other hash functions but provides 3% improve-
ment to the special network hash function (XORhash). Table 3 in Paper II compares the
execution time of the hash functions on the CPU. The best-evolved hash function provides
26.9% improvement with the respect to the Murmur hash 3, which is typically used in SDM
and which, on the other hand, provides a slightly lower number of collisions.

3.2.3 Paper III

GROCHOL David and SEKANINA Lukas. Multiobjective Evolution of Hash Functions
for High Speed Networks. In: Proceedings of the 2017 IEEE Congress on Evolutionary
Computation. San Sebastian: IEEE Computer Society, 2017, pp. 1533-1540. ISBN 978-1-
5090-4600-3.

Author participation: 70%
Conference rank: B (Core)

Abstract

Hashing is a critical function in capturing and in an analysis of the network flows as its
quality and execution time influences the maximum throughput of network monitoring
devices. In this paper, we propose a multi-objective linear genetic programming approach
to evolve fast and high-quality hash functions for common processors. The search algorithm
simultaneously optimizes the quality of hashing and the execution time. As it is very
time consuming to obtain the real execution time for a candidate solution on a particular
processor, the execution time is estimated in the fitness function. In order to demonstrate
the superiority of the proposed approach, evolved hash functions are compared with hash
functions available in the literature using real-world network data.

29

Contribution

This work extends Paper II by including a multi-objective approach to the evolution pro-
cess. The approach is based on the NSGA-II algorithm and linear GP. The multi-objective
algorithm uses two fitness functions. The quality fitness function is taken from the previous
work. The second fitness function estimates the execution time. Another contribution of
this work is a new approach developed to quickly estimate the execution time of a can-
didate program. The execution time is estimated as a weighted number of instructions,
where different weights are assigned to different types of instructions, based on their com-
plexity. The estimation algorithm takes into account some features of modern CPUs, such
as SIMD (Single Instruction Multiple Data) executions. The evolved hash functions were
compared with hash functions available in the literature and hash functions obtained from
our previous work.

This work resulted in an extension of LGP algorithm with a multi-objective approach.
The quality of the execution time estimation is evaluated using randomly generated pro-
grams. The multi-objective method provided many non-dominated hash functions. Some of
them are better than the commonly used hash functions and the specialized hash functions
obtained by using the single-objective LGP with respect to chosen objective.

3.2.4 Paper IV

GROCHOL David and SEKANINA Lukas. Multi-Objective Evolution of Ultra-Fast General-
Purpose Hash Functions. In: European Conference on Genetic Programming 2018. Berlin:
Springer International Publishing, LNCS 10781, 2018, pp. 187-202. ISBN 978-3-319-77553-
1.

Author participation: 70%
Conference rank: B (Core)

Abstract

Hashing is an important function in many applications such as hash tables, caches and
Bloom filters. In the past, genetic programming was applied to evolve application-specific
as well as general-purpose hash functions, where the main design target was the quality
of hashing. As hash functions are frequently called in various time-critical applications,
it is important to optimize their implementation with respect to the execution time. In
this paper, linear genetic programming is combined with NSGA-II algorithm in order to
obtain general-purpose, ultra-fast and high-quality hash functions. Evolved hash functions
show a highly competitive quality of hashing but significantly reduced execution time in
comparison with the state-of-the-art hash functions available in the literature.

Contribution

Paper II and Paper III have dealt with application-specific hash functions. This paper is
focused on general-purpose hash functions that accept variable-length inputs, instead of
a fixed-length input, which we considered in network hash functions. This change in the
specification of hash functions led to the modification of the execution time estimation
algorithm. Hence, the candidate (hash) program has to be wrapped to a loop, in which the
input stream is processed block by block.

The evolved hash functions were compared with hash functions available in the literature
on randomly generated data sets and real-world data sets (user passwords, network data,

30

Twitter and Facebook posts). The evolved hash functions produce a very similar number
of collisions as other good hash functions from the literature on all data sets. However,
evolved hash functions exhibit the shortest execution time in almost all cases on randomly
generated and real-world data sets. They are slower than the special network hash functions,
but faster than the general purpose hash functions when evaluated on the specific network
datasets.

3.2.5 Paper V

GROCHOL David and SEKANINA Lukas. Fast Reconfigurable Hash Functions for Net-
work Flow Hashing in FPGAs. In: Proceedings of the 2018 NASA/ESA Conference on
Adaptive Hardware and Systems. Edinburgh: Institute of Electrical and Electronics Engi-
neers, 2018, pp. 257-263. ISBN 978-1-5386-7753-7.

Author participation: 67%
Conference rank: unknown

Abstract

Efficient monitoring of high-speed computer networks operating with a 100 Gbps data
throughput requires a suitable hardware acceleration of its key components. We present
a platform capable of automated design of hash functions suitable for network flow hash-
ing. The platform employs a multi-objective linear genetic programming developed for the
hash function design. We evolved high-quality hash functions and implemented them in a
FPGA. Several evolved hash functions were combined together in order to form the new
reconfigurable hash function. The proposed reconfigurable design significantly reduces the
area on a chip while the maximum operation frequency remains very close to the fastest
hash functions. The characteristics of evolved hash functions were compared with the state-
of-the-art hash functions in terms of the quality of hashing, chip area and the operation
frequency in the FPGA.

Contribution

Using the methodology developed in Paper II and Paper III, we evolved hash functions
suitable for FPGA implementations. We also introduced reconfigurable hash functions.

The evolved hash functions were translated to VHDL. In order to maximize their through-
put, we added synchronization registers to enable pipelined processing. One of the recon-
figurable hash functions was constructed using three evolved hash functions. These hash
functions employ similar basic components that can be shared in the FPGA. The proposed
reconfigurable hash function thus needs less than 50 % resources in comparison with the sum
of resources needed to independently implement the three original hash functions.

3.3 List of Other Papers
∙ GROCHOL David, SEKANINA Lukas, ŽÁDNÍK Martin and KOŘENEK Jan. A

Fast FPGA-Based Classification of Application Protocols Optimized Using Cartesian
GP. In: Applications of Evolutionary Computation. Berlin: Springer International
Publishing, LNCS 9028 , 2015, pp. 67-78. ISBN 978-3-319-16548-6.

Author participation: 50%

31

Conference rank: unknown

∙ GROCHOL David. Evoluční hardware v síťových aplikacích. In: Počítačové ar-
chitektury a diagnostika PAD 2016. Bořetice: Faculty of Information Technology
BUT, 2016, pp. 57-60. ISBN 978-80-214-5376-0.

Author participation: 100%
Conference rank: unknown

∙ GROCHOL David and SEKANINA Lukas. Comparison of Parallel Linear Genetic
Programming Implementations. In: Recent Advances in Soft Computing: Proceed-
ings of the 22nd International Conference on Soft Computing (MENDEL 2016) held in
Brno, Czech Republic, at June 8-10, 2016. Cham: Springer International Publishing,
2017, pp. 64-76. ISBN 978-3-319-58088-3.

Author participation: 60%
Conference rank: unknown

32

Chapter 4

Discussion and Conclusions

This chapter summarizes the results presented in this thesis and outlines some possibilities
for a future research.

The research presented in this thesis was directed toward the optimization of selected
components of network applications intended for high-speed network monitoring systems.
The work started with a study of current network monitoring systems. As an experimental
platform, the SDM system was chosen. Because the traffic processing is an important part
of all monitoring systems, it was analyzed in a greater detail. For detailed studies conducted
in this thesis two applications were selected: the classifier of application protocols and the
hash functions for flow processing. The evolutionary computing techniques were surveyed
with the aim to optimize not only the quality of processing, but also the execution time. The
single-objective and multi-objective versions of evolution algorithms were considered. The
gained knowledge was summarized in Chapter 2 and used as background for the following
research.

The research started with the design and optimization of the application protocol clas-
sifier. As the SDM required an accurate classification of application protocols, the classifier
was based on deep packet inspection (by means of the application data). The proposed
application protocol classification is based on a pattern matching algorithm, which is a
time-consuming operation, emphasizing the need for a hardware acceleration. The current
approaches require a lot of resources in hardware. A new approach was proposed to clas-
sify a small set of protocols in the FPGA (denoted CL-acc in Paper I). The classifier was
synthesized by a professional design tool to an FPGA. The final circuit of the classifier was
optimized using CGP, reducing thus the amount of resources and latency. We also proposed
relaxed implementations of the classifier. CL-cmp is a compromised version of the classifier
(showing an additional area reduction for a small error in classification) and CL-lat is a
minimal version of the classifier. Both relaxed classifiers were optimized by CGP. which
enabled us to achieve a significant reduction of resources and latency. The accuracy of the
classifiers was verified on real network data. On the other hand, FSM-based classifiers are
more flexible and scalable.

The research continued with the hash function design using LGP. The first special-
ized network hash functions (evaluated for flow hashing) were optimized for the quality
of hashing and constructed using a limited number of simple instructions. Single-objective
and multi-objective LPG implementations were proposed for this purpose. Using the multi-
objective approach, hash functions (NSGAHash1, NSGAHash2, NSGAHash3, NSGAHash4,
NSGAHash5, NSGAHash6, NSGAHash7) were evolved, showing a better trade-off between
the quality of hashing and the execution time than the state-of-the-art hash functions.

33

The pipelined versions of network hash functions were implemented for FPGA. An adap-
tive configurable hash function was also created from three evolved hash functions. Several
high-quality general-purpose hash functions (EvoHash1, EvoHash2) were also evolved using
the proposed method.

All evolved hash functions were evaluated on real-world network data sets (see NetSet1,
NetSet2, NetSet3 in Paper V) and common real-world data sets (Passwords, Facebook,
Twitter). The general-purpose hash functions were further evaluated on social network and
randomly generated data sets. The evolved hash functions exhibit the same or better quality
of hashing, but provide shorter execution time than the state-of-the-art hash functions.

4.1 Contributions
The section summarizes main contributions presented in this thesis, with respect to the
research objectives formulated in Chapter 1.1:

Classification of application protocols:

∙ A new approach to the application protocol classifier design was proposed. Accurate
and relaxed versions of the classifier were optimized by means of CGP. A significant
reduction in FPGA resources and latency was reported in Paper I. A possible disad-
vantages of the proposed approach is that common classifiers are more flexible and
scalable.

Hash Functions:

∙ Specialized, highly optimized network hash functions were evolved by parallel LGP.
These hash functions provide better functionality (in terms of quality of hashing and
execution time) than the state-of-the-art hash functions (Paper II).

∙ Using the multi-objective LGP, we evolved a set of non-dominated hash functions
showing better trade-offs between the quality of network flow hashing and the execu-
tion time in comparison with the state-of-the-art hash functions (Paper III).

∙ Parallel pipelined hash functions were implemented in an FPGA and evaluated for
purposes network flow hashing. A new reconfigurable hash function was developed as
a combination of selected evolved hash functions (Paper V).

∙ Very competitive general-purpose hash functions were evolved by means of the multi-
objective LGP and evaluated using representative data sets (Paper IV).

We also confirmed that common LGP a CGP implementations can be used for auto-
mated design and optimization of selected components; however, it is important to:

∙ properly handle the multi-objective nature of the problem and

∙ accelerate time-critical operations (particularly the fitness calculation).

Based on these results, it can be concluded that the initial hypothesis of this research
has been confirmed. The proposed EAs can design and optimize selected components
of network applications of high-speed network monitoring systems and improve their key
parameters.

34

4.2 Future Work
Based on our experience gained during this research the following future research directions
were identified:

∙ Network monitoring systems are large and complex systems composed of many com-
ponents. It is not a straightforward task to identify the critical components that
should be optimized. Automated identification of such components for evolutionary
re-design/optimization would be of high importance.

∙ An automated runtime optimization of components would be useful because the mon-
itoring system could be adapted to the actual state of the system. If the optimization
is fast, the component can be optimized for a specific situation or an important subset
of input data.

∙ If the automated identification of components in network monitoring systems is con-
nected to the runtime optimization, the system could adapt different components in
runtime in a variable environment.

∙ Modern CPUs utilize many complex instructions, including application-specific in-
structions, such as hash function (for example Intel CPU: SHA1RNDS4 or AESDE-
CLAST), special floating-point instructions or SIMD instructions (MMX and SSE).
A future research could be focused on identifying a suitable subset of instructions
that can be utilized by LGP; considering all possible instructions in LGP seems to be
intractable.

∙ Other HW parts of monitoring systems those implemented in FPGA can be optimized
using a multi-objective CGP. Contrasted to our work based on gate-level circuit op-
timization, a future work could deal with LUT-based circuit optimization in order to
obtain more efficient FPGA implementations.

35

Bibliography

[1] Antichi, G.; Giordano, S.; Miller, D.; et al.: Enabling open-source high speed network
monitoring on NetFPGA. In Network Operations and Management Symposium
(NOMS), 2012 IEEE. April 2012. pp. 1029–1035.

[2] Appleby, A.: Murmur hash functions. Https://github.com/aappleby/smhasher,
[ONLINE, accessed: 31. 1. 2016].

[3] Appleby, A.: SMHasher. Https://github.com/aappleby/smhasher, [ONLINE,
accessed: 1. 11. 2017].

[4] Becker, K.; Gottschlich, J.: AI Programmer: Autonomously Creating Software
Programs Using Genetic Algorithms. arXiv preprint arXiv:1709.05703. 2017.

[5] Berarducci, P.; Jordan, D.; Martin, D.; et al.: GEVOSH: Using Grammatical
Evolution to Generate Hashing Functions. In MAICS. 2004. pp. 31–39.

[6] Bernstein, D. J.: Mathematics and computer science. Https://cr.yp.to/djb.html,
[ONLINE, accessed: 31. 1. 2016].

[7] Brameier, M.; Banzhaf, W.: Linear genetic programming. New York: Springer. 2007.

[8] Brodie, B. C.; Taylor, D. E.; Cytron, R. K.: A Scalable Architecture For
High-Throughput Regular Expression Pattern Matching. SIGARCH Computer
Architecture News. vol. 34, no. 2. 2006: pp. 191–202. ISSN 0163-5964.

[9] Cao, Z.; Wang, Z.: Flow identification for supporting per-flow queueing. In Computer
Communications and Networks, 2000. Proceedings. Ninth International Conference
on. IEEE. 2000. pp. 88–93.

[10] Cheang, S. M.; Lee, K. H.; Leung, K. S.: Applying Genetic Parallel Programming to
Synthesize Combinational Logic Circuits. IEEE Transactions on Evolutionary
Computation. vol. 11, no. 4. 2007: pp. 503–520.

[11] Cisco: The Future Is 40 Gigabit Ethernet. 2016. c11-737238-00.

[12] Clark, C.; Schimmel, D.: Efficient Reconfigurable Logic Circuits for Matching
Complex Network Intrusion Detection Patterns. In Field Programmable Logic and
Application, 13th International Conference. Lisbon, Portugal. 2003. ISBN
3-540-40822-3. pp. 956–959.

[13] Clark, C. R.; Schimmel, D. E.: Scalable Pattern Matching for High-Speed Networks.
In IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM).
Napa, California. 2004. pp. 249–257.

36

[14] Corne, D. W.; Jerram, N. R.; Knowles, J. D.; et al.: PESA-II: Region-based selection
in evolutionary multiobjective optimization. In Proceedings of the 3rd Annual
Conference on Genetic and Evolutionary Computation. Morgan Kaufmann
Publishers Inc.. 2001. pp. 283–290.

[15] Davis, L.: Handbook of genetic algorithms. 1991.

[16] Deb, K.: Multi-objective optimization using evolutionary algorithms. vol. 16. John
Wiley & Sons. 2001.

[17] Deb, K.; Agrawal, S.; Pratap, A.; et al.: A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimization: NSGA-II. In International Conference on
Parallel Problem Solving From Nature. Springer. 2000. pp. 849–858.

[18] Deb, K.; Deb, K.: Multi-objective Optimization. Boston, MA: Springer US. 2014.
ISBN 978-1-4614-6940-7. pp. 403–449.

[19] Deb, K.; Jain, H.: An Evolutionary Many-Objective Optimization Algorithm Using
Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems
With Box Constraints. IEEE Transactions on Evolutionary Computation. vol. 18,
no. 4. Aug 2014: pp. 577–601. ISSN 1089-778X.

[20] Deb, K.; Pratap, A.; Agarwal, S.; et al.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE transactions on evolutionary computation. vol. 6, no. 2.
2002: pp. 182–197.

[21] Defoin Platel, M.; Clergue, M.; Collard, P.: Maximum Homologous Crossover for
Linear Genetic Programming. In Genetic Programming, Lecture Notes in Computer
Science, vol. 2610. Springer Berlin Heidelberg. 2003. ISBN 978-3-540-00971-9. pp.
194–203.

[22] Downey, C.; Zhang, M.; Browne, W. N.: New crossover operators in linear genetic
programming for multiclass object classification. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation. ACM. 2010. pp. 885–892.

[23] Ehrgott, M.: Multicriteria optimization. vol. 491. Springer Science & Business Media.
2005.

[24] Estebanez, C.; Saez, Y.; Recio, G.; et al.: Automatic design of noncryptographic hash
functions using genetic programming. Computational Intelligence. vol. 30, no. 4.
2014: pp. 798–831.

[25] Filtr, L.: Project WWW Page.
http://l7-filter.sourceforge.net/. 2010.

[26] Floyd, R. W.; Ullman, J. D.: The Compilation of Regular Expressions into
Integrated Circuits. J. ACM. vol. 29, no. 3. 1982: pp. 603–622.

[27] Fowler, G.; Vo, P.; Noll, L. C.: FVN Hash.
Http://www.isthe.com/chongo/tech/comp/fnv/, [ONLINE, accessed: 31. 1. 2016].

[28] Gadhvi, B.; Savsani, V.; Patel, V.: Multi-objective optimization of vehicle passive
suspension system using NSGA-II, SPEA2 and PESA-II. Procedia Technology.
vol. 23. 2016: pp. 361–368.

37

[29] Goldman, B. W.; Punch, W. F.: Analysis of Cartesian Genetic Programming’s
Evolutionary Mechanisms. IEEE Transactions on Evolutionary Computation. vol. 19,
no. 3. 2015: pp. 359–373.

[30] Grochol, D.; Sekanina, L.; Zadnik, M.; et al.: A Fast FPGA-Based Classification of
Application Protocols Optimized Using Cartesian GP. In Applications of
Evolutionary Computation, 18th European Conference. LNCS 9028. Springer
International Publishing. 2015. pp. 67–78.

[31] Guo, D.; Bhuyan, L. N.; Liu, B.: An efficient parallelized L7-filter design for multicore
servers. IEEE/ACM Transactions on Networking. vol. 20, no. 5. 2011: pp. 1426–1439.

[32] Guo, D.; Liao, G.; Bhuyan, L. N.; et al.: A scalable multithreaded l7-filter design for
multi-core servers. In Proceedings of the 4th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems. ACM. 2008. pp. 60–68.

[33] Hassan, M.; Jain, R.: High performance TCP/IP networking. vol. 29. Prentice Hall
Upper Saddle River, NJ. 2003.

[34] Higuchi, T.; Niwa, T.; Tanaka, T.; et al.: Evolving Hardware with Genetic Learning:
A First Step Towards Building a Darwin Machine. In Proc. of the 2nd International
Conference on Simulated Adaptive Behaviour. MIT Press. 1993. pp. 417–424.

[35] Jain, H.; Deb, K.: An Evolutionary Many-Objective Optimization Algorithm Using
Reference-Point Based Nondominated Sorting Approach, Part II: Handling
Constraints and Extending to an Adaptive Approach. IEEE Transactions on
Evolutionary Computation. vol. 18, no. 4. Aug 2014: pp. 602–622. ISSN 1089-778X.

[36] Jenkins, B.: A hash function for hash Table lookup.
Http://www.burtleburtle.net/bob/hash/doobs.html, [ONLINE, accessed: 31. 1.
2016].

[37] Jensen, M. T.: Reducing the run-time complexity of multiobjective EAs: The
NSGA-II and other algorithms. IEEE Transactions on Evolutionary Computation.
vol. 7, no. 5. 2003: pp. 503–515.

[38] Karagiannis, T.; Papagiannaki, K.; Faloutsos, M.: BLINC: Multilevel Traffic
Classification in the Dark. SIGCOMM Comput. Commun. Rev.. vol. 35, no. 4. 2005:
pp. 229–240.

[39] Karasek, J.; Burget, R.; Morskỳ, O.: Towards an automatic design of
non-cryptographic hash function. In Telecommunications and Signal Processing
(TSP), 2011 34th International Conference on. 2011. pp. 19–23.

[40] Kaufmann, P.; Glette, K.; Gruber, T.; et al.: Classification of Electromyographic
Signals: Comparing Evolvable Hardware to Conventional Classifiers. IEEE Tran.
Evolutionary Computation,. vol. 17, no. 1. 2013: pp. 46–63.

[41] Kaufmann, P.; Plessl, C.; Platzner, M.: EvoCaches: Application-specific Adaptation
of Cache Mappings. In Proceedings of the NASA/ESA Conference on Adaptive
Hardware and Systems (AHS). IEEE Computer Society. 2009. pp. 11–18.

38

[42] Kaufmann, P.; Plessl, C.; Platzner, M.: EvoCaches: Application-specific Adaptation
of Cache Mappings. In Adaptive Hardware and Systems (AHS). IEEE CS. 2009. pp.
11–18.

[43] Kekely, L.; Kucera, J.; Pus, V.; et al.: Software Defined Monitoring of Application
Protocols. IEEE Transactions on Computers. vol. 65, no. 2. 2016: pp. 615–626.

[44] Kekely, L.; Pus, V.; Benacek, P.; et al.: Trade-offs and progressive adoption of FPGA
acceleration in network traffic monitoring. In Field Programmable Logic and
Applications (FPL), 2014 24th International Conference on. 2014. pp. 1–4.

[45] Kekely, L.; Pus, V.; Korenek, J.: Software Defined Monitoring of Application
Protocols. In Proceedings of the IEEE INFOCOM 2014 — IEEE Conference on
Computer Communications. 2014. pp. 1725–1733.

[46] Kekely, M.; Kořenek, J.: Packet Classification with Limited Memory Resources. In In
proceedings 2017 Euromicro Conference on Digital System Design. Institute of
Electrical and Electronics Engineers. 2017. ISBN 978-1-5386-2145-5. pp. 179–183.

[47] Kidoň, M.; Dobai, R.: Evolutionary design of hash functions for IP address hashing
using genetic programming. In Evolutionary Computation (CEC), 2017 IEEE
Congress on. IEEE. 2017. pp. 1720–1727.

[48] King, R. A.; Deb, K.; Rughooputh, H.: Comparison of nsga-ii and spea2 on the
multiobjective environmental/economic dispatch problem. University of Mauritius
Research Journal. vol. 16, no. 1. 2010: pp. 485–511.

[49] Knowles, J.; Corne, D.: On metrics for comparing nondominated sets. In Proceedings
of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600),
vol. 1. IEEE. 2002. pp. 711–716.

[50] Knuth, D. E.: The Art of Computer Programming (Volume 3). 1973.

[51] Kocsis, Z. A.; Neumann, G.; Swan, J.; et al.: Repairing and optimizing Hadoop
hashCode implementations. In International Symposium on Search Based Software
Engineering. Springer. 2014. pp. 259–264.

[52] Koza, J. R.: Genetic programming as a means for programming computers by
natural selection. Statistics and computing. vol. 4, no. 2. 1994: pp. 87–112.

[53] Koza, J. R.: Human-competitive results produced by genetic programming. Genetic
Programming and Evolvable Machines. vol. 11, no. 3-4. 2010: pp. 251–284.

[54] Landfeldt, B.; Sookavatana, P.; Seneviratne, A.: The case for a hybrid passive/active
network monitoring scheme in the wireless Internet. In Proceedings IEEE
International Conference on Networks 2000 (ICON 2000). Networking Trends and
Challenges in the New Millennium. Sep. 2000. pp. 139–143.
doi:10.1109/ICON.2000.875781.

[55] Langdon, W. B.; Harman, M.: Optimizing existing software with genetic
programming. IEEE Transactions on Evolutionary Computation. vol. 19, no. 1. 2015:
pp. 118–135.

39

[56] Langdon, W. B.; Lam, B. Y. H.; Modat, M.; et al.: Genetic improvement of GPU
software. Genetic Programming and Evolvable Machines. vol. 18, no. 1. 2017: pp.
5–44.

[57] Liao, G.; Znu, X.; Bnuyan, L.: A new server I/O architecture for high speed networks.
In 2011 IEEE 17th International Symposium on High Performance Computer
Architecture. 2011. ISSN 2378-203X. pp. 255–265. doi:10.1109/HPCA.2011.5749734.

[58] Lin, C.-H.; Huang, C.-T.; Jiang, C.-P.; et al.: Optimization of Pattern Matching
Circuits for Regular Expression on FPGA. IEEE Trans. Very Large Scale Integr.
Syst.. vol. 15, no. 12. 2007: pp. 1303–1310. ISSN 1063-8210.

[59] Matousek, D.; Matousek, J.; Korenek, J.: High-Speed Regular Expression Matching
with Pipelined Memory-Based Automata. In 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). April
2018. ISSN 2576-2621. pp. 214–214.

[60] Matoušek, D.; Kubiš, J.; Matoušek, J.; et al.: Regular Expression Matching with
Pipelined Delayed Input DFAs for High-speed Networks. 07 2018. pp. 104–110.
doi:10.1145/3230718.3230730.

[61] Maurer, W. D.; Lewis, T. G.: Hash table methods. ACM Computing Surveys
(CSUR). vol. 7, no. 1. 1975: pp. 5–19.

[62] Miller, J. F.: Cartesian Genetic Programming. Springer-Verlag. 2011.

[63] Miller, J. F.; Smith, S. L.: Redundancy and Computational Efficiency in Cartesian
Genetic Programming. IEEE Transactions on Evolutionary Computation. vol. 10,
no. 2. 2006: pp. 167–174.

[64] Miller, J. F.; Thomson, P.: Cartesian Genetic Programming. In Proc. of the 3rd
European Conference on Genetic Programming EuroGP2000, LNCS, vol. 1802.
Springer. 2000. pp. 121–132.

[65] Moore, A. W.; Zuev, D.: Internet Traffic Classification Using Bayesian Analysis
Techniques. In Proceedings of the 2005 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems. SIGMETRICS ’05. ACM. 2005.
pp. 50–60.

[66] Natu, M.; Sethi, A. S.: Active Probing Approach for Fault Localization in Computer
Networks. In 2006 4th IEEE/IFIP Workshop on End-to-End Monitoring Techniques
and Services. April 2006. pp. 25–33. doi:10.1109/E2EMON.2006.1651276.

[67] Oltean, M.; Grosan, C.: A comparison of several linear genetic programming
techniques. Complex Systems. vol. 14, no. 4. 2003: pp. 285–314.

[68] Pagh, R.; Rodler, F. F.: Cuckoo Hashing. In Algorithms — ESA 2001. LNCS 2161.
Springer. 2001. pp. 121–133.

[69] Paxson, V.; Asanović, K.; Dharmapurikar, S.; et al.: Rethinking Hardware Support
for Network Analysis and Intrusion Prevention. In Proceedings of the 1st USENIX
Workshop on Hot Topics in Security. HOTSEC’06. Berkeley, CA, USA: USENIX
Association. 2006. pp. 11–11.
Retrieved from: http://dl.acm.org/citation.cfm?id=1268476.1268487

40

http://dl.acm.org/citation.cfm?id=1268476.1268487

[70] Peterson, L. L.; Davie, B. S.: Computer networks: a systems approach. Elsevier. 2007.

[71] Pike, G.; Alakuijala, J.: Introducing cityhash. 2011.

[72] Press, C.: CCNA Exploration Course Booklet: Network Fundamentals, Version 4.0.
Pearson Education India.

[73] Price, K.; Storn, R.: Differential evolution: A simple evolution strategy for fast
optimization. Dr. Dobb’s journal. vol. 22, no. 4. 1997: pp. 18–24.

[74] Rechenberg, I.: Evolution Strategy: Optimization of Technical systems by means of
biological evolution. Fromman-Holzboog, Stuttgart. vol. 104. 1973: pp. 15–16.

[75] Rozenberg, G.; Bäck, T.; Kok, J. N.: Handbook of natural computing. Springer. 2012.

[76] Safdari, M.; Joshi, R.: Evolving Universal Hash Functions Using Genetic Algorithms.
In In Proc. of the Future Computer and Communication. 2009. pp. 84–87.

[77] Schaffer, J.: Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. 01 1985. pp. 93–100.

[78] Schwaller, P. J.; Bellinghausen, J. M.; Borger, D. S.; et al.: Methods, systems and
computer program products for network performance testing through active endpoint
pair based testing and passive application monitoring. September 23 2003. uS Patent
6,625,648.

[79] Sekanina, L.: Evolvable hardware. In Handbook of Natural Computing. Springer
Verlag. 2012. pp. 1657–1705.

[80] Sen, S.; Spatscheck, O.; Wang, D.: Accurate, Scalable In-network Identification of
P2P Traffic Using Application Signatures. In Proceedings of the 13th International
Conference on World Wide Web. ACM. 2004. pp. 512–521.

[81] Shanthi, A. P.; Parthasarathi, R.: Practical and scalable evolution of digital circuits.
Applied Soft Computing. vol. 9, no. 2. 2009: pp. 618–624.

[82] Sidhu, R.; Prasanna, V. K.: Fast Regular Expression Matching Using FPGAs. In
FCCM ’01: Proceedings of the the 9th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines. IEEE Computer Society. 2001.
ISBN 0-7695-2667-5. pp. 227–238.

[83] Sourdis, I.; Bispo, J.; Cardoso, J. M. P.; et al.: Regular Expression Matching in
Reconfigurable Hardware. Journal of Signal Processing Systems. vol. 51, no. 1. 2008:
pp. 99–121.

[84] Srivani, L.; Giri, N. K.; Ganesh, S.; et al.: Generating synthetic benchmark circuits
for accelerated life testing of field programmable gate arrays using genetic algorithm
and particle swarm optimization. Applied Soft Computing. vol. 27. 2015: pp. 179 –
190.

[85] Stallings, W.: High-speed networks: TCP/IP and ATM design principles. vol. 172.
Prentice hall Englewood Cliffs, NJ. 1998.

41

[86] Standard, S. H.: The Cryptographic Hash Algorithm Family: Revision of the Secure
Hash Standard and Ongoing Competition for New Hash Algorithms. 2009.

[87] Stomeo, E.; Kalganova, T.; Lambert, C.: Generalized Disjunction Decomposition for
Evolvable Hardware. IEEE Transaction Systems, Man and Cybernetics, Part B.
vol. 36, no. 5. 2006: pp. 1024–1043.

[88] Vasicek, Z.; Bidlo, M.; Sekanina, L.: Evolution of efficient real-time non-linear image
filters for FPGAs. Soft Computing. vol. 17, no. 11. 2013: pp. 2163–2180.

[89] Vasicek, Z.; Sekanina, L.: Formal Verification of Candidate Solutions for
Post-Synthesis Evolutionary Optimization in Evolvable Hardware. Genetic
Programming and Evolvable Machines. vol. 12, no. 3. 2011: pp. 305–327.

[90] Walker, J. A.; Trefzer, M.; Bale, S. J.; et al.: PAnDA: A Reconfigurable Architecture
that Adapts to Physical Substrate Variations. IEEE Transactiona on Computers.
vol. 62, no. 8. 2013: pp. 1584–1596.

[91] Widiger, H.; Salomon, R.; Timmermann, D.: Packet classification with evolvable
hardware hash functions–an intrinsic approach. In International Workshop on
Biologically Inspired Approaches to Advanced Information Technology. Springer. 2006.
pp. 64–79.

[92] Wilson, G.; Banzhaf, W.: A comparison of cartesian genetic programming and linear
genetic programming. In Genetic Programming. Springer. 2008. pp. 182–193.

[93] Xilinx: UltraScale Architecture and Product Overview. 2015.

[94] Xilinx Inc.: UltraScale+ FPGA, Product Tables and Product Selection Guide.
Https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-
fpga-product-selection-guide.pdf, [ONLINE, accessed: 26. 7.
2019].

[95] Yoon, S.-H.; Park, J.-W.; Park, J.-S.; et al.: Internet Application Traffic
Classification Using Fixed IP-Port. In APNOMS, Lecture Notes in Computer Science,
vol. 5787. Springer. 2009. pp. 21–30.

[96] Yun, S.; Lee, K.: Optimization of Regular Expression Pattern Matching Circuit
Using At-Most Two-Hot Encoding on FPGA. International Conference on Field
Programmable Logic and Applications. vol. 0. 2010: pp. 40–43. ISSN 1946-1488.

[97] Zimmermann, H.: OSI Reference Model - The ISO Model of Architecture for Open
Systems Interconnection. IEEE Transactions on Communications. vol. 28, no. 4.
April 1980: pp. 425–432. ISSN 0090-6778. doi:10.1109/TCOM.1980.1094702.

[98] Zitzler, E.; Laumanns, M.; Thiele, L.: SPEA2: Improving the strength Pareto
evolutionary algorithm. TIK-report. vol. 103. 2001.

42

Curriculum vitae

43

Ing. David Grochol

Education
2014–yet Ph.D. of Computer Science and Engineering , Faculty of Information Technol-

ogy, Brno University of Technology , Brno.
Supervisor: prof. Ing. Lukáš Sekanina, Ph.D.

2012–2014 Master of Bioinformatics and Biocomputing, Faculty of Information Technol-
ogy, Brno University of Technology , Brno, Ing.
Master thesis: Fast Detection of Application Protocols,
Supervisor: prof. Ing. Lukáš Sekanina, Ph.D.

2009–2012 Bachelor of Information Technology, Faculty of Information Technology, Brno
University of Technology , Brno, Bc.
Bachelor thesis: Document Archiving System,
Supervisor: Ing. Jiří Ševcovic

2005–2009 Secondary school, Secondary Technical School Trinec, Trinec.
Automation technology

Conferences
2015 Evostar
2016 GECCO, MENDEL, PAD
2017 CEC
2018 EuroGP, AHS

Projects
+ GA14-04197S - Advanced Methods for Evolutionary Design of Complex Digital
Circuits

+ FIT-S-14-2297 - Architecture of parallel and embedded computer systems
+ GA16-08565S - Advancing cryptanalytic methods through evolutionary computing
+ LQ1602 - IT4Innovations excellence in science
+ FIT-S-17-3994 - Advanced parallel and embedded computer systems
+ LTC18053 - Advanced Methods of Nature-Inspired Optimisation and HPC Imple-
mentation for the Real-Life Applications

Teaching
+ Practical Aspects of Software Design – labs
+ Personal Computers – lectures, projects
+ Bio-Inspired Computers – labs

1/3

Publications
GROCHOL David, SEKANINA Lukas, ŽÁDNÍK Martin and KOŘENEK Jan. A Fast FPGA-Based
Classification of Application Protocols Optimized Using Cartesian GP. In: Applications of
Evolutionary Computation. Berlin: Springer International Publishing, LNCS 9028 , 2015, pp. 67-78.
ISBN 978-3-319-16548-6.

Author participation: 50%
Conference rank: unknown
Cited: WoS: 0, Scopus: 0

GROCHOL David. Evoluční hardware v síťových aplikacích. In: Počítačové architektury a
diagnostika PAD 2016. Bořetice: Faculty of Information Technology BUT, 2016, pp. 57-60. ISBN
978-80-214-5376-0.

Author participation: 100%
Conference rank: unknown
Cited: WoS: 0, Scopus: 0

GROCHOL David, SEKANINA Lukas, KORENEK Jan, ZADNIK Martin and KOSAR Vlastimil.
Evolutionary Circuit Design for Fast FPGA-Based Classification of Network Application
Protocols. Applied Soft Computing. Amsterdam: Elsevier Science, 2016, vol. 38, no. 1, pp.
933-941. ISSN 1568-4946.

Author participation: 40%
Journal Impact Factor (IF): 3.541

Cited: WoS: 0, Scopus: 0

GROCHOL David and SEKANINA Lukas. Evolutionary Design of Fast High-quality Hash
Functions for Network Applications. In: GECCO ’16 Proceedings of the 2016 on Genetic and
Evolutionary Computation Conference. New York, NY: Association for Computing Machinery, 2016,
pp. 901-908. ISBN 978-1-4503-4206-3.

Author participation: 60%
Conference rank: A (Core)
Cited: WoS: 3, Scopus: 3

GROCHOL David and SEKANINA Lukas. Comparison of Parallel Linear Genetic Programming
Implementations. In: Recent Advances in Soft Computing: Proceedings of the 22nd International
Conference on Soft Computing (MENDEL 2016) held in Brno, Czech Republic, at June 8-10, 2016.
Cham: Springer International Publishing, 2017, pp. 64-76. ISBN 978-3-319-58088-3.

Author participation: 60%
Conference rank: unknown
Cited: WoS: 0, Scopus: 0

GROCHOL David and SEKANINA Lukas. Multiobjective Evolution of Hash Functions for High
Speed Networks. In: Proceedings of the 2017 IEEE Congress on Evolutionary Computation. San
Sebastian: IEEE Computer Society, 2017, pp. 1533-1540. ISBN 978-1-5090-4600-3.

Author participation: 70%
Conference rank: B (Core)
Cited: WoS: 0, Scopus: 0

GROCHOL David and SEKANINA Lukas. Multi-Objective Evolution of Ultra-Fast General-Purpose
Hash Functions. In: European Conference on Genetic Programming 2018. Berlin: Springer International

2/3

Publishing, LNCS 10781, 2018, pp. 187-202. ISBN 978-3-319-77553-1.
Author participation: 70%
Conference rank: B (Core)
Cited: WoS: 0, Scopus: 0

GROCHOL David and SEKANINA Lukas. Fast Reconfigurable Hash Functions for Network
Flow Hashing in FPGAs. In: Proceedings of the 2018 NASA/ESA Conference on Adaptive
Hardware and Systems. Edinburgh: Institute of Electrical and Electronics Engineers, 2018, pp.
257-263. ISBN 978-1-5386-7753-7.

Author participation: 67%
Conference rank: unknown
Cited: WoS: 0, Scopus: 0

Work Experience
2017–yet Developer, ARTISYS s.r.o,, Brno.

Software Developer
2012–2017 Operator, CBL Communication by light s.r.o., Brno.

Network Monitoring and Troubleshooting
2016–2017 Operator, Miracle Network, Brno.

Network Monitoring and Troubleshooting
2010–2012 Operator, STAR 21 Networks, a.s., Brno.

Network Monitoring and Troubleshooting

3/3

	Introduction
	Research Objectives
	Abstract Outline

	State of the Art
	Computer Networks
	Network Monitoring
	Hash Function Design
	Evolutionary Design
	Multi-Objective EAs

	Research Summary
	Methodology
	Papers
	List of Other Papers

	Discussion and Conclusions
	Contributions
	Future Work

	Bibliography
	Curriculum vitae

