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Abstract

This thesis focuses on improving the state of the art of automata-based formal analysis
and verification techniques for systems with an infinite state space.

In the first part of the thesis, we develop two efficient decision procedures for the WS1S
logic, both of them exploiting the correspondence between formulae of WS1S logic and fi-
nite automata. We start by proposing a novel antichain-based decision procedure which
is, however, limited to formulae in the prenex normal form. Later, we generalize the
approach to arbitrary formulae by defining the so-called language terms and construct-
ing an on-the-fly procedure dealing with the terms using lazy techniques. In order to
achieve an efficient implementation, we propose numerous optimizations (some of these
optimization are not limited to our approaches only). We evaluated both our methods
with other recent state-of-the art tools. The achieved results are encouraging and show
we can extend the usage of WS1S to wider classes of formulae.

The second part of the thesis focuses on resource bounds analysis of heap-manipulating
programs. We propose a new class of shape norms based on lengths of paths between
distinct points in the heap, which we derive automatically from the analysed program.
For this class of norms, we introduce a calculus capable of precisely inferring changes
of the analysed norms and use it to generate a corresponding integer representation
of an input program followed by dedicated state-of-the art resource bounds analysis.
We implemented our approach over the shape analysis based on forest-automata, im-
plemented in the Forester tool, and using a well-established resource bounds analyser,
implemented in the Loopus tool. In our experimental evaluation, we show that we in-
deed obtained a powerful analyser that is able to handle some showcase examples that
were never analysed fully automatically before.
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Abstrakt

Tato práce se věnuje vylepšeńı současného stavu formalńı analýzy a verifikace založené
na automatech a zaměřené na systémy s nekonečnými stavovými prostory.

V prvńı části se práce zabývá dvěma rozhodovaćımi procedurami pro logiku WS1S,
které jsou založené na korespondenci mezi formulemi logiky WS1S a konečnými au-
tomaty. Prvńı metoda je založena na tzv. antǐretězćıch, ale, je limitována pouze na
formule v prenexńım normálńım tvaru. Následně je tento př́ıstup zobecněn na libovolné
formule, jsou zavedeny tzv. jazykové termy a na jejich základě je navržena nová pro-
cedura, která pracuje za běhu a zpracovává tyto termy ”ĺıným” zp̊usobem. Abychom
źıskali efektivńı rozhodovaćı proceduru, je dále navržena sada optimalizaćı (přičemž
některé nejsou limitovány pouze pro naše př́ıstupy). Obě metody jsou srovnány s os-
tatńımi nástroji implementuj́ıćımi r̊uzné známé rozhodovaćı procedury. Źıskané výsledky
jsou povzbuzuj́ıćı a ukazuj́ı, že použitelnost logiky WS1S je možno rozš́ı̌rit na širš́ı tř́ıdu
formuĺı.

V druhé části se práce zabývá analýzou meźı zdroj̊u programů manipuluj́ıćıch s hal-
dou. Je zde navržena nová tř́ıda tzv. tvarových norem založených na délkách cest mezi
význačnými mı́sty na haldě, které jsou automaticky odvozovány z analyzovaného pro-
gramu. Na základě této tř́ıdy norem je dále navržen kalkul, který je schopen přesně
odvodit změny odvozených normů a použ́ıt je k vygenerováńı odpov́ıdaj́ıćı celoč́ıselné
reprezentace vstupńıho programu, která je následně využita pro následovanou dediko-
vanou analýzou meźı zdroj̊u. Tato metoda byla implementována nad analýzou tvaru
založenou na tzv. lesńıch automatech, implementovanou v nástroji Forester, a dále byl
použit dobře zavedený analyzátor meźı zdroj̊u, implementovaný v nástroji Loopus. V
experimentálńı evaluaci bylo ukázáno, že je opravdu takto źıskán silný analyzátor, který
je schopen odvodit meze programů, které ještě nikdy plně automatizovaně odvozené
nebyly.

Kĺıčová slova

Analýza meźı zdroj̊u, analýza tvaru, antǐretězce, amortizovaná složitost, binárńı
rozhodovaćı diagramy, formálńı analyza, konečné automaty, logika druhého řádu, lesńı
automaty, monadická logika, programy manipuluj́ıćı s haldou, nedeterminismus, statická
analýza, stromové automaty, tvarové normy, ws1s.
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Lenka, and Feši, for binge drinking, playing board games, various vacations and parties.
At last, I would like to thank my family for being supportive, especially my brother
Honza, who helped me with both technical and non-technical stuff during my studies.

The work presented in this thesis was supported by the Czech Ministry of Education,
Youth, and Sports (under the project LTE118019), the Czech Science Foundation (un-
der the projects GP13-37876P, GA14-11384S, GA16-17538S, GJ16-24707Y, and GA17-
12465S), the internal BUT FIT projects FIT-S-14-2486 and FIT-S-17-4014, and the
ECSEL Joint Undertaking (under the AQUAS and Arrowhead H2020 projects).

v



Contents

1. Introduction 1
1.1. Goals of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. An Overview of the Achieved Results . . . . . . . . . . . . . . . . . . . . . 4
1.3. Plan of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I. Decision Procedures for WS1S 8

2. Preliminaries 9
2.1. The WS1S Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2. Finite Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3. Deciding WS1S with Finite Automata . . . . . . . . . . . . . . . . . . . . 13

2.3.1. Implementations and Other Decision Procedures . . . . . . . . . . 17
2.4. Invariants of Data Structures as WS1S Formulae . . . . . . . . . . . . . . 18

2.4.1. STRAND: STRucture ANd Data Logic . . . . . . . . . . . . . . . 18
2.4.2. UABE: Unbounded Arrays with Bounded Elements . . . . . . . . 20

3. Nested Antichains for WS1S 24
3.1. Downward and Upward Closed Sets . . . . . . . . . . . . . . . . . . . . . 27
3.2. Nested Antichains for Alternating Quantifiers . . . . . . . . . . . . . . . . 31

3.2.1. Structure of the Algorithm . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2. Computing N ]

i on Representatives of ↑∐R-sets . . . . . . . . . . . 34

3.2.3. Computing F ]i on Representatives of ↓R-sets . . . . . . . . . . . . 36

3.2.4. Computation of F ]i and N ]
i on Symbolic Terms . . . . . . . . . . . 39

3.2.5. Testing Im ∩ Fm 6= ∅ on Symbolic Terms . . . . . . . . . . . . . . . 44
3.2.6. Subsumption of Symbolic Terms . . . . . . . . . . . . . . . . . . . 45

3.3. Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4. Lazy Automata Techniques for WS1S 51
4.1. Satisfiability via Language Term Evaluation . . . . . . . . . . . . . . . . . 54
4.2. Towards An Efficient Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1. Subsumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2. Lazy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.3. Efficient Data Structures . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.4. Combination of Symbolic and Explicit Algorithms . . . . . . . . . 63
4.2.5. Anti-prenexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



4.3. Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 69

II. Using Static Analysis for Performance Analysis 70

5. From Shapes to Amortized Complexity 71
5.1. Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1. Program Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.2. Memory Configurations . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3. Numerical Measures on Dynamic Data Structures . . . . . . . . . . . . . . 84
5.3.1. Shape Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.2. Deriving the Set of Candidate Shape Norms . . . . . . . . . . . . . 87

5.4. From Shapes to Norm Changes . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.1. Non-Destructive Pointer Updates . . . . . . . . . . . . . . . . . . . 91
5.4.2. Destructive Pointer Updates . . . . . . . . . . . . . . . . . . . . . 94
5.4.3. Data-Related Pointer Updates . . . . . . . . . . . . . . . . . . . . 96

5.5. Implementation and Experiments . . . . . . . . . . . . . . . . . . . . . . . 98
5.5.1. Requirements on Underlying Shape Analysis . . . . . . . . . . . . 98
5.5.2. Implementation on Top of Forester . . . . . . . . . . . . . . . . . . 99
5.5.3. Optimizations of the Basic Approach . . . . . . . . . . . . . . . . . 100
5.5.4. Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 102

5.6. Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . . . 103

6. Conclusion and Future Directions 105
6.1. Further Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2. Publications Related to this Thesis . . . . . . . . . . . . . . . . . . . . . . 107

vii



1. Introduction

For almost a century, computer technology has been a necessary part of our lives:
mankind exploits it in everyday life, in medicine, in transportation or in heavy industry.
Naturally, computer programs should be error-free, since any error can have either little
(such as bad user experience), medium (such as cash loss) or even severe consequences
(such as accidents or crashes). To prevent these errors before-hand, one can try to use
formal analysis and verification, however, these techniques still face a great challenge:
complex systems leads to an analysis of infinite state space, and, in many cases, even
to infeasibility. While, for many classes of programs we can prove or analyse many
properties (including safety, termination or atomicity of programs), every year the list
keeps growing with many new properties to be checked and many new characteristics of
programs to be analysed leading to brand new challenges.

For instance recently, developers have been more frequently demanding tools that
would help them understand the performance of their code. In some cases, they even
need to verify that their programs stay within the expected resource bounds (i.e. bounds
on the expected consumption of computational time, memory, disk space, energy, etc.)
or at least obtain a reasonable estimate of the program performance. In their software,
performance-related issues are common and lead to a poor user experience or a waste
of computational resources, as is documented by many recent studies [JSS+12, NJT13].
These studies claim that the root cause of all of these issues is that developers do not
understand the performance of their programs enough. But there are many other im-
portant factors involved in such widespread: insufficient performance regression testing,
small test workloads or the fast development frequently breaking the codebase.

Unlike in the case of functional bugs, a large percentage of performance bugs is usually
discovered through code reasoning or profiling, and not through the majority of users
reporting negative effects of the bugs or through regular automated checks. Performance
degradations are subtle, and they tend to manifest only with considerably big workloads.
In the end they are missed by the frequent regression testing and noticed only by in-
dividual users in individual cases. So, naturally, techniques to help developers reason
about the performance, better test oracles or better profiling techniques are needed in
order to discover these kinds of bugs early in the process. Obviously, we have to ex-
tend the developer’s everyday toolbox with efficient automated performance analyses
and automated detection of performance bugs.

Although some research of automated performance analysis has already been done,
the currently known techniques are still far from being satisfactory. This is especially
true when the analysed code works not only with simple data types such as integers,
but employs complex dynamic data structures based on pointers such as lists, trees, and
their various combinations or extensions.
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Such data structures are commonly used in complex system code like operating system
kernels, compilers, database engines, browsers and even embedded systems, whose poor
performance can significantly impact the user experience. It is a well-known fact that
dynamic data structures are hard to develop and can contain intricate errors which,
in addition, only manifest under certain circumstances and are thus difficult to track
down. Moreover, in performance critical applications, developers use even more advanced
data structures such as, e.g. red-black trees, priority heaps, or lock-free linked lists, as
well as various advanced programming techniques like, e.g. pointer arithmetic or block
operations for performance speed up. For programs based on such techniques, even
safety verification is still a challenge and works on their automated performance analysis
are extremely rare.

In theory we can divide performance analysis into two main approaches — static and
dynamic analysis. For an input program, the first one allows us to infer theoretically
proven resource bounds; on the other hand, the latter collects performance records from
one or more program runs, possibly extrapolates these data and then only estimates
resource bounds, without any theoretical proof. But while both approaches have their
advantages, e.g. in terms of the speed or precision, and the right time to be used, they
share many challenges that must be overcome to apply them in everyday development.

One of these challenges is choosing a suitable formal theory to describe the program
invariants. We need a theory that allows for a scalable analysis to be implemented
on top of it and that is, at the same time, expressive enough to be able to reason
about properties of advanced structures, especially their shapes or resource bounds.
Commonly, researches use logics due to their great expressive power. However, with
such power comes the price: great complexity of the associated decision problems, with
some logics even being undecidable. In order to achieve an efficient analysis, one then
has to improve the state of the art or use dedicated theories such as, e.g. separation
logic [Rey02], three-valued logic [SRW02], or weak monadic second order logic with one
successor (WS1S) [Büc59].

The latter, WS1S, has lots of applications not only for reasoning over the data struc-
tures [MPQ11, MQ11, ZHW+14]. It is still a decidable logic, however, its decision
problem lies in the NONELEMENTARY class: it lurks on the borders of decidability.
So while many WS1S formulae are decidable in a reasonable time, sometimes its com-
plexity simply strikes back. And then we have to either fight back or give up building on
the WS1S at all. But, we hope we could exploit the recent advancements in automata
theory, e.g. the antichain principles, to push the usability border of WS1S even further.

Another challenge is how to build such analysers. In particular, in the area of resource
bounds analysis, current static resource bounds analyses are so far mostly limited to
programs with integer variables only. When pointers are used in the analysed programs
the analysers usually return a huge number of false negatives, not knowing the precise
targets of the used pointers or the shape of the dynamic data structures being handled.
They are forced to work with basic assumptions over the pointer variables, and thus
they have to sacrifice soundness or precision of the approach. Programs with pointers
are, however, common in practice, so this limitation is rather significant from the point
of view of applicability.
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Alternatively, we can give up the precision of the static analysis, focus on dynamically
captured data and only settle for estimates of the program performance from concrete
program runs. While one cannot guarantee how the program under analysis will perform
or whether it will trigger any bug, dynamic analysis can still provide a useful insight
and can be exploited, e.g. to detect performance changes or to infer statistical models
of expected performance, leading to a better program understanding.

In the end, both static and dynamic analyses have their own shortcomings, never-
theless, we, researchers, should also focus our efforts on the developer experience. We
should always strive to achieve a high performance bug fix ratio instead of high bug
detection ratio since only that shows that our methods are applicable in practice. Every
performance analysis should provide at least (i) approximate location where the bug
was located, (ii) estimated severity how the performance or functionality is influenced
by the bug, and (iii) detection confidence whether the bug was real or spurious. These
factors greatly affect whether the developer will confirm the bug the subsequent decision
whether it should be fixed. However, most importantly, if these bugs are to be fixed at
all, developers have to catch them early in the development process when their mindset
is still in the context of the influenced code. This can only be achieved by integrat-
ing static and dynamic analysers into the existing development workflows such as the
continuous integration.

1.1. Goals of the Thesis

The aim of this thesis is to extend the current state of the art of formal analysis and
verification of systems with infinite state space and with the focus on techniques based
on automata. In particular, we address this goal in two distinct parts. On one hand, the
thesis focuses on developing novel methods based on static analysis and, on the other
hand, also on enhancing methods for deciding formal theories, that are currently used
in existing methods, to enable analysis and verification of a broader range of programs.

The first goal is enhancing the current methods for deciding selected logics that were
applied as an underlying formal theory for, e.g. representation of advanced data struc-
ture’s invariants. In particular, the focus is put on decision procedures for the weak
monadic second order logic of one successor (WS1S), which is the target of the transla-
tion of logics of Strand [MPQ11] and UABE [ZHW+14] — logics allowing expression
of invariants of advanced data structures and arrays respectively. The current state-of-
the-art decision procedures, however, are not efficient enough to decide more complex
formulae and so authors of Strand and UABE had to find a workaround in order to
apply them properly in the field of program verification. Motivated by this situation, one
of the goals is thus to improve the current state of the art in WS1S decision procedures,
and to make them more efficient to be usable on more complex formulae such as those
of Strand or UABE.
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The other goal focuses on static performance analysis for heap-manipulating pro-
grams (with the emphasis on resource bounds analysis and automatic complexity anal-
ysis). While the current state-of-the-art of the resource bounds analysis of integer pro-
grams is already quite advanced, the state of the art of performance analysis of heap-
manipulating programs is much less developed. We build on results from the fields of
shape analysis [HHR+12, HŠRV13, HHL+15a] and resource bounds analysis of integer
programs [ZGSV11, SZV14, SZV17] to develop a sound analysis for verification of re-
source bounds of programs manipulating with advanced data structures. The key to
solving this goal lies in a proper definition of so-called shape norms — numerical mea-
sures on data structures, such as the length of list or the number of elements in trees.
Hence, the goal is to propose a flexible and powerful class of norms that will allow one
to analyse a wide selection of data structures, such as binary trees or even skip-lists.

1.2. An Overview of the Achieved Results

We achieved encouraging results both in the resource bounds analysis and in the decision
procedures for underlying theories, showing that we succeeded in all of the proposed
goals. In particular, we have proposed two decision procedures for the WS1S logic,
with focus on deciding formulae describing structural invariants, and a parametric per-
formance analysis framework for static resource bounds analysis of heap-manipulating
programs. Our achievements include development of three tools which we evaluated on
various nontrivial examples. In the following, we will briefly describe all our results that
will be discussed in detail in the rest of the thesis.

Antichain-Based Decision Procedure for the WS1S Logic. The weak monadic
second-order logic of one successor is a concise yet decidable logic for describing regular
properties of finite words. It is a suitable theory that one can use to specify invariants of
linear structures such as linked-lists. Even though it was proven it has NONELEMEN-
TARY worst-case complexity [Mey72], it has been successfully applied in various fields,
including verification of programs with advanced data structures, mostly due to the well-
known and an efficient decision procedure implemented in the Mona tool [EKM98].

We had already remarked that there were several attempts in using WS1S to decide
properties of singly linked structures [MPQ11, MQ11] and arrays [ZHW+14], where the
underlying decision procedure of Mona failed for more complex formulae. The algorithm
of Mona is based on the correspondence between formulae and automata — it takes the
input formula ϕ and translates it to the corresponding finite automatonAϕ. The problem
of the unsatisfiability of the formula ϕ is then reduced to the problem of the emptiness of
the language of the automaton Aϕ. However, our idea is that always fully constructing
the corresponding automaton is not efficient. The NONELEMENTARY complexity
of WS1S is mainly caused by quantifier alternation (i.e. alternations of existential and
universal quantifications).
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The traditional decision procedure converts formulae with quantifier alternations ∀∃
to the form of ¬∃¬∃. The existential quantification is then done by removing or altering
some of the transitions in the corresponding automata and it may consequently introduce
non-determinism in the resulting automata. The subsequent processing of the negation,
however, requires a deterministic automaton as the input and so we are forced to perform
the determinisation first — a costly process. Hence a long chain of alternations leads to
a huge exponential blow-up. So if we explicitly construct the automaton, we have to
face the worst-case complexity the complement in every subformula.

Instead, we proposed a technique based on antichain principles of [ACH+10]. We
limited ourselves to formulae in the prenex-normal form, i.e. formulae of the form
ϕ = ∃Xm¬∃Xm−1 . . .¬∃X2¬∃X1 : ϕ0, where ϕ0 is a quantifier-free formula. In each
step, we process the whole chain of the quantifications with i alternations on-the-fly. So,
instead of working with sets of states, we work with sets of sets of . . . of states of the
automaton which we represent using so-called nested symbolic terms. During the state
space exploration, we use generalized antichain-based pruning on all of the levels of the
nested structure of symbolic terms and reduce the number of explored states. Hence,
we achieve two state space reductions (i) by efficiently representing the whole chain of
quantifiers and (ii) by pruning away portions of state space subsumed by other nested
symbolic terms. The emptiness check is then reduced to a simple test if the intersection
of nested symbolic terms representing initial and final states of Aϕ is empty.

We implemented the proposed algorithm in a prototype tool called dWiNA. We have
obtained encouraging results, when we were able to beat the Mona tool when process-
ing the last alternation in the formulae obtained from [MQ11] — encodings of various
invariants of singly-linked list methods. However, at this stage, we still failed for many
formulae, mostly due to limitations of our approach. This work was published as a pa-
per in the proceedings of 21st International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS) [FHLV15] and its extended version was
published in the Acta Informatica journal [FHLV19].

Lazy Decision Procedure for WS1S Logic While our first proposed decision pro-
cedure brought a significant progress, it was still limited to formulae in the prenex-normal
form. We generalized our antichain based technique to arbitrary formulae ϕ by repre-
senting the formula as a so-called language term t[ϕ] — a symbolic representation of the
explicit automaton Aϕ imitating its nested structure of subformulae. This symbolic rep-
resentation allows us to interleave the phases of the explicit automaton construction and
the language emptiness check (and hence the formula unsatisfiability check). Moreover,
by generalizing our antichain based reduction techniques we can significantly prune out
large portions of the generated state space (i.e. prune out states that are not relevant
to the test). Also, by interleaving the construction and the check we can avoid building
large portions of the automata explicitly (i.e. skip portions of state space that are not
necessary to prove the emptiness).
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Besides this generalized decision procedure, we also proposed series of heuristics and
optimizations. The most notable is the usage of the so-called anti-prenexing to push
quantifiers deeper in the syntax tree of the formula to minimize the extent of the state
space explosion. Moreover, the main advantage of our proposed procedure is that it
can be effectively combined with the explicit procedure of the Mona tool and exploit
its many optimizations. We explored various combinations of these two procedures and
finally proposed a heuristic which yields efficient results in practice — we use the explicit
procedure of Mona (exploiting its efficient minimization of automata) on quantifier
free subformulae and our on-the-fly procedure on the unprocessed rest.Some of these
optimizations are not limited only to our decision procedure and can be used by other
decision procedures to enhance their efficiency as well.

We extended our prototype dWiNA to a tool called Gaston and evaluated it on
series of experiments again with focus on formulae describing invariants of data struc-
tures [MQ11, ZHW+14]. Our tool Gaston was able to outperform both our previous
approach and other recent or state-of-the-art approaches including the Mona tool. We
believe that our efficient implementation opens new possibilities of using the WS1S logic
to express invariants of more complex data structures. This work was published as a pa-
per in the proceedings of 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS) [FHJ+17].

Parametric Framework for Resource Bounds Analysis The approach of [SZV17]
presents a well-established solution for resource bounds analysis. Indeed, their imple-
mentation was able to obtain precise bounds for about 45% of loops of an extensive
benchmark consisting of thousands of functions. However, it fails for many programs
that we ran it on; mostly due to a missing shape analysis of the advanced data structures
stored on the heap. Consequently, authors show that even with an unsound shape anal-
ysis they are able to increase the number of computed bounds to an astounding 71%.
So even just using imprecise shape analysis shows a great potential.

We proposed a parametric framework combining shape analysers with resource bounds
analysers to extend the state of the art in performance analysis to handle significantly
more heap manipulating programs. We build on foundations of [HHL+15a] implemented
within the Forester tool [HHL+15b] — a powerful shape analyser capable of handling
complex data structures such as skip-lists — and on foundations of [SZV17] implemented
within the Loopus tool [SZ10] — a light-weight resource bounds analyser capable of amor-
tized reasoning. In brief, our approach is based on identifying so-called shape-norms —
a numerical measure on data structures, such as lengths of lists or numbers of elements
in trees. In our case, we define shape norms as lengths of paths described by regular ex-
pressions between two distinct points in the heap such as cells pointed by certain pointer
variables or containing certain data. We derive the set of norms suitable for analysing
a given program directly from the input heap-manipulating program and transform the
original program to a corresponding integer representation by inferring changes of norms
for each pointer instruction. Finally, we use the underlying bounds analyser to compute
the resource bounds. This transformation is sound: the bounds on the generated integer
program imply the bounds on the original heap-manipulating program.
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We thus build on a well-established approach which takes the input heap-manipulating
program and transforms it into the output integer program driven by the shape norms,
which was already applied in many other works [MTLT10, AAG+12, FG17]. However,
while other definitions of norms are usually restricted only to a certain class of data
structures such as linked lists, our proposed class of norms is expressive enough to cope
with a wide variety of data structures such as singly-linked lists, binary search trees or
even skip-lists. Moreover, while the current state-of-the-art approaches either are limited
to an initial fixed set of norms or are dependent on user-defined predicates, we already
mentioned that we derive candidate norms directly from the input program, and so
provide a fully automated approach. Also, we introduce several heuristics for reduction
of the set of the tracked norms. Hence, while other approaches needlessly track many
irrelevant norms, we keep the resulting integer program minimal and include only those
norms really necessary to compute the resource bounds.

Our approach was implemented in a tool called Ranger [FHR+18b] that is an ex-
tension of the Forester tool [HHL+15a]. We compared Ranger with latest related
works [AAG+08, AFHG15] on a series of examples either containing advanced data
structures (such as sorts of linked lists or binary trees) or requiring amortized reasoning
to infer precise resource bounds. To the best of our knowledge, we were the first to
infer precise resource bounds for a showcase example of [Atk11] and for 2-level skiplists.
These results show we have accomplished the second goal of the thesis. This work was
published as a paper in the proceedings of 19th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI) [FHR+18a].

1.3. Plan of the Thesis

The thesis is structured into two parts. The first, Part I, focuses on enhancing the deci-
sion procedures for the WS1S logic and comprises three chapters. Chapter 2 introduces
the necessary theory such as the WS1S logic and its applications with focus on its us-
age as a formal theory for expressing invariants of data structures. Chapters 3 and 4
propose novel decision procedures, in particular the antichain based procedure and the
on-the-fly decision procedure, respectively. Part II focuses on using static analysis for
performance analysis, in particular on resource bounds analysis of heap-manipulating
programs. We introduce this field with Chapter 5 by defining new class of shape nu-
merical measures and a novel resource bounds analyser for heap-manipulating programs.
Finally, we summarize our research and achievements in Chapter 6.
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Part I.

Decision Procedures for WS1S
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2. Preliminaries

Weak monadic second-order logic of one successor (WS1S) is a powerful language for
reasoning about regular properties of finite words. It has, indeed, found numerous ap-
plications, ranging from software and hardware verification through controller synthesis
to, e.g. computational linguistics or verification of parametric systems. Some of its
more recent applications include verification of pointer programs and deciding related
logics [MPQ11, MQ11, IRŠ13, CDNQ12, ZKR08] as well as model synthesis from reg-
ular specifications [HJK10]. At last, one can also apply WS1S as a formal theory to
describe invariants of various linear data structures, such as singly-linked lists or arrays,
in particular, we can list several recent works based on translation to WS1S logic that
focus on verification of linear data structures [MPQ11, MQ11] or arrays [ZHW+14].

Most of these successful applications were possible due to the well-known Mona
tool [EKM98], which implements classical automata-based decision procedures for WS1S
and WS2S logics (a generalization of WS1S to finite binary trees). However, the worst-
case complexity of WS1S is NONELEMENTARY [Mey72], and, despite many op-
timizations implemented in Mona and other tools, the complexity sometimes simply
strikes back. Authors that tries to translate their problems to WS1S are then forced to
either find workarounds to circumvent this complexity blowup, such as in [MQ11], or
they must often restrict the extent of the input of their approach and give up translating
to WS1S altogether [WMK11].

However, for a logic as expressive as WS1S any further advancements in its decision
procedures could improve its practical applicability as well as open new applications,
e.g. for performance or resource bounds analysis. Especially if one increases their per-
formance (at least) for cases common in practice (e.g. as in the case of SAT solving).
Therefore, one of the goals of this thesis is to enhance the current state of the art of
WS1S decision procedures. In particular, we will focus on deciding formulae describing
properties and invariants of linear data structures (such as linked lists [MPQ11, MQ11]
or arrays [ZHW+14]) and aim at improving the decision time, hopefully, allowing these
procedures to be more widely used in practice. Our improvements of the existing de-
cision procedures are presented in Chapters 3 and 4. In this chapter, we introduce the
WS1S logic and present the classical decision procedure.
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2.1. The WS1S Logic

We first introduce the notion of weak monadic second-order logic of one successor. How-
ever, we will present only its minimal syntax; we refer the interested reader for the full
standard syntax and a more thorough introduction to, e.g. Section 3.3 in [CDG+08].
Though later we will present how to express more complex formulae on several examples.

Syntax. WS1S is a monadic second-order logic over the universe of discourse N0. This
means WS1S supports second-order variables, usually denoted using upper-case letters
X,Y, . . . , that range over finite subsets of N0, e.g. X = {0, 3, 42}. Given X and Y are
variables, we can defined WS1S atomic formulae as follows:

(i) X ⊆ Y , i.e. the standard set inclusion,

(ii) Sing(X), i.e. the singleton predicate,

(iii) X = {0}, i.e. X is a singleton containing 0, and

(iv) X = Y + 1, i.e. X = {x} and Y = {y} are singletons and x is the successor of y,
i.e. x = y + 1.

More complex formulae can be built using the classical logical connectives ∧ (conjunc-
tion), ∨ (disjunction), ¬ (negation), and the quantifier ∃X (existential quantification)
where X is a finite set of variables (we write ∃X if X is a singleton {X}). Naturally,
we can extend the syntax with more atomic formulae and logical connectives, but the
above are sufficient to obtain the full expressive power of the WS1S logic. However, one
has to note that if we extend our procedures to support richer syntax with more atomic
formulae and more logical connectives we can significantly enhance the speed of their
implementations.

Further we will consider second-order variables only; a first-order variable x can be
expressed using a second-order variable X restricted with the constraint Sing(X). Hence,

we can express the existential and universal first-order quantification as ∃x : ϕ
def
= ∃X :

Sing(X) ∧ ϕ and ∀x : ϕ
def⇐⇒ ∀X : Sing(X) ⇒ ϕ respectively. Atomic first-order

formulae of the form x = y+ 1 can be substituted with formulae of the form X = Y + 1

interpreted as X = Y + 1
def⇐⇒ ∃x, y : X = {x} ∧ Y = {y} ∧ x = y + 1, and atomic

formulae of the form x = ε are substituted with formulae of the form X = ε interpreted

as X = ε
def⇐⇒ ∃x : X = {x} ∧ x = ε, where ε is empty symbol. We can express

the implication, equivalence and universal quantification as ϕ ⇒ ψ
def⇐⇒ ¬ϕ ∨ ψ, ϕ ⇔

ψ
def⇐⇒ ϕ⇒ ψ ∧ ψ ⇒ ϕ and ∀X : ϕ

def⇐⇒ ¬∃X : ¬ϕ respectively.

10



Semantics. A model of a WS1S formula ϕ(X ) with the set of free variables X is an
assignment ρ : X → 2N0 of the free variables X of ϕ to finite subsets of N0 for which
the formula is satisfied, written ρ |= ϕ. Satisfaction of atomic formulae is defined as
follows: (i) ρ |= X ⊆ Y iff ρ(X) ⊆ ρ(Y ), (ii) ρ |= Sing(X) iff ρ(X) is a singleton set,
(iii) ρ |= X = {0} iff ρ(X) = {0}, and (iv) ρ |= X = Y + 1 iff ρ(X) = {x}, ρ(Y ) = {y},
and x = y + 1.

Satisfaction of formulae formed using logical connectives is defined as usual. A formula
ϕ is valid, written |= ϕ, iff all assignments of its free variables to finite subsets of N0 are
its models, and satisfiable if it has a model. Otherwise it is unsatisfiable. Observe the
limitation to finite subsets of N0 (related to the adjective weak in the name of the logic);
a WS1S formula can indeed only have finite models (although there may be infinitely
many of them). W.l.o g, we will assume that each variable in a formula is quantified at
most once.

Example 2.1. In the following we will show how one can express more complex WS1S
formulae using the minimal syntax and previously defined helper predicates. Equation 2.1
expresses the membership of first-order variable x in second-order set Y using only the
minimal WS1S syntax. Its semantics and the main idea behind the translation are
straightforward.

x ∈ Y def⇔ Sing(X) ∧X ⊆ Y (2.1)

But obviously, we can express more properties in a similar sense to extend the minimal
syntax. However, note that some translations can be complex, such as Equation 2.2
expressing that first-order variable x is lesser or equal than first-order variable y.

x ≤ y def⇔ ∀X :

(
y ∈ X ∧

(
∀z∃w : (w = z + 1 ∧ w ∈ X)⇒ z ∈ X

)
︸ ︷︷ ︸

ψ

)
⇒ x ∈ X(2.2)

Observe the subformula ψ that restricts X sets to only those that contains all numbers
lesser than some k, such as X = {1, 2, 3, 4, 5} for k = 5 (lets call this property prefix-
closed). Given x and y are singleton sets, e.g. x = {2} and y = {4} and y is subset of
every set X that is prefix-closed, then x has to be subset of X as well. And since this
holds for all prefix-closed sets that contains y, then it means that x is lesser or equal
than y.

We conclude, that while these user defined predicates can be useful on the syntactical
level, the direct translation to the minimal syntax (sometimes called the flattening) is
a costly process. Observe that Equation 2.2 introduces one quantifier alternation as well
as two additional variables, increasing the complexity by at least an order of magnitude.
However, in implementation we can avoid this increase in complexity e.g. by exploiting
the correspondence between finite automata and WS1S formulae and define a concrete
atomic automaton for the predicate x ≤ y1.

1The correspondence between WS1S formulae and finite automata will be elaborated in Section 2.2,
where we will define concrete atomic automata for corresponding atomic formulae and logical con-
nectives.

11



2.2. Finite Automata

Both the classical decision procedure as well as our methods are based on finite automata
(FA). So first, we will provide a brief preliminaries on automata theory. In WS1S decision
procedures we use FAs to represent WS1S formulae and/or their various subformulae.
In particular, we usually (e.g. in the case of the MONA tool) represent the entire given
WS1S formula and all of its subformulae by corresponding finite automata accepting the
language of their satisfying models (their encodings). But, in our methods, we use FAs
to represent only some of the subformulae of given WS1S formula, in particular, only
the atomic ones.

Let X be a set of variables. A symbol τ over X is a mapping of all variables in X to
either 0 or 1, e.g. τ = {X1 7→ 0, X2 7→ 1} for X = {X1, X2}. An alphabet over X is the
set of all symbols over X, denoted as ΣX. For any X (even empty) we use 0̄ to denote
the symbol which maps all variables from X to 0, 0̄ ∈ ΣX, the so-called zero symbol.

A (non-deterministic) finite (word) automaton (abbreviated as FA in the following)
over a set of variables X and an alphabet ΣX is a quadruple A = (Q, δ, I, F) where Q is
a finite set of states, I ⊆ Q is a set of initial states, F ⊆ Q is a set of final states, and
δ ⊆ Q × ΣX ×Q is a set of transitions of the form (p, τ, q) where p, q ∈ Q and τ ∈ ΣX.
We use p

τ−→ q ∈ δ to denote that (p, τ, q) ∈ δ. Note that for an FA A over X = ∅, A is a
unary FA with the alphabet ΣX = {0̄}.

A run r of A over a word w = τ1τ2 . . . τn ∈ Σ∗X from the state p ∈ Q to the state s ∈ Q
is a sequence of states r = q0q1 . . . qn ∈ Q+ such that q0 = p, qn = s and for all 1 ≤ i ≤ n
there is a transition qi−1

τi−→ qi in δ. If s ∈ F, we say that r is an accepting run. We write
p

w
=⇒ s to denote that there exists a run from the state p to the state s over the word

w. The language accepted by a state q is defined by LA(q) = {w | q w
=⇒ qf , qf ∈ F}; the

language of a set of states S ⊆ Q is defined as LA(S) =
⋃
q∈S LA(q). When it is clear

which FA A we refer to, we only write L(q) or L(S). The language of A is then defined
as L(A) = LA(I). We say that the state q accepts w and that the automaton A accepts
w to express that w ∈ LA(q) and w ∈ L(A) respectively. We call a language L ⊆ Σ∗X
universal iff L = Σ∗X.

For a set of states S ⊆ Q, we define

post [δ,τ ](S) =
⋃

s∈S
{t | s τ−→ t ∈ δ},

pre [δ,τ ](S) =
⋃

s∈S
{t | t τ−→ s ∈ δ}, and

cpre [δ,τ ](S) = {t | post [δ,τ ]({t}) ⊆ S}.

For post , pre and cpre relations, we will omit the transition relation δ if it is clear from
the context. The post and pre relations require no further comment; the cpre relation
contains only those states that can reach only states of S and no other states (i.e. the
so-called controlled predecessors).
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The complement of an automaton A is the automaton AC = (2Q, δC , {I}, ↓{Q \ F})
where δC =

{
P

τ−→ post [δ,τ ](P )
∣∣∣ P ⊆ Q

}
, and ↓{Q \ F} is the set of all subsets of Q that

do not contain any final state of A; this corresponds to the standard procedure that first
determinizes A by the subset construction and then swaps its sets of final and non-final
states. The language of AC is the complement of the language of A, i.e. L(AC) = L(A).

For a set of variables X and a variable X, the projection of X from X, denoted
as πX(X), is the set X \ {X}. For a symbol τ , the projection of X from τ , denoted
πX(τ), is obtained from τ by restricting τ to the domain πX(X)2. For a transition
relation δ, the projection of X from δ, denoted as πX(δ), is the transition relation{
p

πX(τ)−−−−→ q | p τ−→ q ∈ δ
}

.

A word over a finite alphabet Σ is a finite sequence w = a1 · · · an, for n ≥ 0, of
symbols from Σ. Its i-th symbol ai is denoted by w[i]. For n = 0, the word is the empty
word ε. A language L is a set of words over Σ. We use the standard language operators
of concatenation L.L′ and iteration L∗. The (right) quotient of a language L w.r.t the
language L′ is the language L−L′ = {u | ∃v ∈ L′ : uv ∈ L}. We abuse the notation and
write L− w to denote L− {w}, for a word w ∈ Σ∗.

2.3. Deciding WS1S with Finite Automata

The classical decision procedure for WS1S logic [Büc59] (as described in Section 3.3
of [CDG+08]) is based on an automata-logic correspondence and decides the validity (or
un/satisfiability) of a WS1S formula ϕ(X1, . . . , Xn) by constructing the FA Aϕ over the
set of variables {X1, . . . , Xn} which accepts language of all encodings of the models of
ϕ. This automaton is built in a bottom-up manner, according to the syntactic structure
of ϕ, starting with predefined atomic automata for literals and applying a corresponding
automata operation for every logical connective and quantifier (∧,∨,¬,∃). Hence, for
every sub-formula ψ of ϕ, the procedure will compute the automaton Aψ such that
L(Aψ) represents exactly all models of ψ, terminating with the resulting automaton Aϕ.

Models as words. The alphabet of Aϕ consists of all symbols over the set X =

{X1, . . . , Xn} of free variables of ϕ (for a, b ∈ {0, 1} and X = {X1, X2}, we use X1 : a
X2 : b

to denote the symbol {X1 7→ a,X2 7→ b}). A word w from the language of Aϕ is

a sequence of these symbols, e.g. X1 : ε
X2 : ε

, X1 : 011
X2 : 101

, or X1 : 01100
X2 : 10100

. We denote the

i-th symbol of w as w[i], for i ∈ N0. An assignment (model) ρ : X → 2N0 mapping
free variables X of ϕ to subsets of N0 is encoded into a word wρ of symbols over X in
the following way: wρ contains 1 in the j-th position of the row for Xi iff j ∈ Xi in ρ.
Formally, for every i ∈ N0 and Xj ∈ X, if i ∈ ρ(Xj), then wρ[i] maps Xj 7→ 1. On the
other hand, if i 6∈ ρ(Xj), then either wρ[i] maps Xj 7→ 0, or the length of w is smaller
than or equal to i.

2Note there are several ways how to restrict the symbol to the domain — either by removing the track
corresponding to the variable from the transitions or pump the transition relation by so-called don’t
cares, i.e. the track will contain both 0 or 1.
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Notice that there exist an infinite number of encodings of ρ. The shortest one is wsρ of
the length n+ 1, where n is either the largest number appearing in any of the sets that
is assigned to a variable of X in ρ, or −1 when all these sets are empty. The rest of
the encodings are all those corresponding to wsρ extended with an arbitrary number of 0̄
symbols appended to its end.

For example, X1 : 0
X2 : 1

, X1 : 00
X2 : 10

, X1 : 000
X2 : 100

, X1 : 000 . . . 0
X2 : 100 . . . 0

are all valid encodings of

the assignment ρ = {X1 7→ ∅, X2 7→ {0}}. For the soundness of the decision procedure,
it is important that Aϕ always accepts either all encodings of ρ or none of them. Later
we will see this issue as being crucial when processing selected logical connectives. We
use L(ϕ) ⊆ Σ∗X to denote the language of all encodings of a formula ϕ’s models, where
X are the free variables of ϕ.

For two sets X and Y of variables and any two symbols τ1, τ2 ∈ ΣX , we write τ1 ∼Y τ2

iff ∀X ∈ X \ Y : τ1(X) = τ2(X), i.e. the two symbols differ (at most) in the values
of variables in Y. The relation ∼Y is generalized to words such that w1 ∼Y w2 iff
|w1| = |w2| and ∀1 ≤ i ≤ |w1| : w1[i] ∼Y w2[i]. For a language L ⊆ Σ∗X , we define πY(L)
as the language of words w that are ∼Y -equivalent with some word w′ ∈ L. Seen from
the point of view of encodings of sets of assignments, πY(L) encodes all assignments
that may differ from those encoded by L (only) in the values of variables from Y. If
Y is disjoint with the free variables of ϕ, then πY(L(ϕ)) corresponds to the so-called
cylindrification of L(ϕ), and if it is their subset, then πY(L(ϕ)) corresponds to the
so-called projection [CDG+08]. We use πY to denote π{Y } for a variable Y .

Automata-logic connection. Now consider formulae over the set of variables V.
Let free(ϕ) be the set of free variables of ϕ, and let LV(ϕ) = πV\free(ϕ)(L(ϕ)) be the
language L(ϕ) cylindrified w.r.t those variables of V that are not free in ϕ. Let ϕ and
ψ be formulae and assume that LV(ϕ) and LV(ψ) are languages of encodings of their
models cylindrified w.r.t V. Languages of formulae obtained from ϕ and ψ using logical
connectives are defined by equations (2.3) to (2.6). Equations (2.3)-(2.5) above are
straightforward: logical connectives translate to the corresponding set operators over
the universe of encodings of assignments of variables in V.

LV(ϕ ∨ ψ) = LV(ϕ) ∪ LV(ψ) (2.3)

LV(ϕ ∧ ψ) = LV(ϕ) ∩ LV(ψ) (2.4)

LV(¬ϕ) = Σ∗V \ LV(ϕ) (2.5)

LV(∃X : ϕ) = πX (LV(ϕ))− 0̄∗ (2.6)

Existential quantification ∃X : ϕ translates into a composition of two language trans-
formations: projection and saturation. First, πX makes the valuations of variables of
X arbitrary, which intuitively corresponds to forgetting everything about values of vari-
ables in X (notice that this is a different use of πX than the cylindrification since here
variables of X are free variables of ϕ). The second step is removing suffixes of 0̄’s from
the model encodings. This process is necessary since πX (LV(ϕ)) might be missing some
encodings of models of ∃X : ϕ, as we outlined already.
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For example, suppose that V = {X,Y } and the only model of ϕ is {X 7→ {0}, Y 7→
{1}}, yielding LV(ϕ) = X : 10

Y : 01

[
0
0

]∗
. Then πY (LV(ϕ)) = X : 10

Y : ??

[
0
?

]∗
does not con-

tain the shortest encoding X : 1
Y : ?

(where each ‘?’ denotes an arbitrary value; sometimes

we refer to this value as a don’t care) of the only model {X 7→ {0}} of ∃Y : ϕ. It only
contains its variants with at least one 0̄ appended to it. This generally happens for
models of ϕ where the largest number in the value of the variable Y being eliminated
is larger than the maximum number found in the values of the free variables of ∃Y : ϕ.
The role of the −0̄∗ quotient is to include the missing encodings of models with a smaller
number of trailing 0̄’s into the language; we call this process saturation.

Formally, the automaton A∃X:ϕ = (Q, πX(δ), I, F ]) is obtained from automaton A′ϕ =

(Q, πX(δ), I, F) by computing F ] from F using the fixpoint computation F ] = µZ . F ∪
pre [πX(δ),0̄](Z). Intuitively, the least fixpoint denotes the set of states backward-reachable
from F following transitions of πX(δ) labelled by 0̄.

Classical Decision Procedure. The standard approach to decide unsatisfiability of
a WS1S formula ϕ with the set of variables V is to construct an automaton Aϕ accepting
LV(ϕ) and then check emptiness of its language. The construction starts with simple pre-
defined automata Aψ for ϕ’s atomic formulae ψ (see Fig. 4.2 for examples of automata
for selected atomic formulae and e.g. [CDG+08] for more details) accepting cylindrified
languages LV(ψ) of models of ψ. These are simple regular languages. The construction
then continues by inductively constructing automata Aϕ′ accepting languages LV(ϕ′) of
models for all other sub-formulae ϕ′ of ϕ, using equations (2.3)–(2.6) above. The lan-
guage operators used in the rules are implemented using standard automata-theoretic
constructions (see [CDG+08]).

The procedure returns an automaton Aϕ that accepts exactly all encodings of the
models of ϕ. This means that the language of Aϕ is (i) universal iff ϕ is valid, (ii) non-
universal iff ϕ is invalid, (iii) empty iff ϕ is unsatisfiable, and (iv) non-empty iff ϕ is
satisfiable. Notice that in the particular case of ground formulae (i.e. formulae without
free variables), the language of Aϕ is either L(Aϕ) = {0̄}∗ in the case ϕ is valid, or
L(Aϕ) = ∅ in the case ϕ is unsatisfiable.
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Example 2.2. In Table 2.1 we show definitions of selected atomic automata for the
minimal syntax of the WS1S logic. For each atomic automaton we also show an ex-
ample of a satisfying assignment and its encoding in the language of the corresponding
automata.

Table 2.1.: Examples of atomic DFA corresponding to atomic formulae of WS1S minimal
syntax, listed with example satisfying models and their encodings in the language of
automata.

Formula X ⊆ Y Sing(X)

Automaton
0

X:
Y:

[
0
0

]
,

[
0
1

]
,

[
1
1

]

0 1

X: [0]

X: [1]

X: [0]

Model
X 7→ {
Y 7→ {1,

2,
2,3,

4
4
}
} |= X ⊆ Y X 7→ {2} |= Sing(X)

Encoding
X:
Y:

[
0
0

][
0
1

][
1
1

][
0
1

][
1
1

][
0
0

]∗
⊆ L(AX⊆Y ) X : [0][0][1][0]∗ ⊆ L(ASing(X))

Formula X = {0} X = Y + 1

Automaton
0 1

X: [1]

X: [0]

0 1 2

X:
Y:

[
0
0

]
X:
Y:

[
0
1

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

Model X 7→ {0} |= X = {0} X 7→ {
Y 7→ {

2
1
}
} |= X = Y + 1

Encoding X : [1][0]∗ ⊆ L(AX={0})
X:
Y:

[
0
0

][
0
1

][
1
0

][
0
0

]∗
⊆ L(AX=Y+1)
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2.3.1. Implementations and Other Decision Procedures

We already mentioned that Mona [EKM98] is the usual tool of choice for deciding
WS1S formulae. The efficiency of Mona stems from many optimizations, both higher-
level (such as automata minimization, the efficient encoding of first-order variables used
in models, or the use of BDDs to encode the transition relation of automata) as well as
lower-level (e.g. optimizations of hash tables, etc.) [KMS02, Kla99]. Apart from Mona,
there are other related tools based on the explicit automata procedure as presented in
Section 2.3, such as jMosel [TWMS06] for a related logic M2L(Str)3, which implements
several distinct optimizations (such as second-order value numbering [MST10]) that allow
it to outperform Mona on some benchmarks (Mona also provides an M2L(Str) interface
on top of the WS1S decision procedure and so these two tools can be meaningfully
compared), or the procedure using symbolic finite automata implemented within the
Automata library of D’Antoni et al. in [DV14]. They both implement optimizations
that allow them to outperform Mona on some benchmarks, however, none of them
provides a compelling evidence of being consistently more efficient.

Recently, a couple of logic-based approaches for deciding WS1S appeared. Ganzow
and Kaiser [GK10] developed a new decision procedure for the weak monadic second-
order logic on inductive structures, within their tool Toss, which is even more general
than WSkS4. Such approach completely avoids using automata; instead, it is based on
Shelah’s composition method. Their Toss tool is quite promising as it outperforms
Mona on some of the benchmarks, however, it since it supports only minimal syntax we
cannot perform a meaningful comparison on benchmarks used in practice. On the other
hand, Traytel [Tra15] uses the classical decision procedure, recast in the framework of
coalgebras. The work focuses on testing the equivalence of a pair of formulae, which
is performed by finding a bisimulation between derivatives of the formulae. While it is
shown that it can outperform Mona on some simple artificial examples, the implemen-
tation is not yet optimized enough and is easily outperformed by the rest of the tools
on other benchmarks.

3M2L(Str) is a monadic second order logic on strings which differs from WS1S by restricting the
quantification by some constant bound k. In WS1S one can interpret M2L(Str) by restricting variables
with additional constraints and by introducing new variable $, which models the bound k of the
universe of discourse.

4Weak monadic logic with k successors. It is natural to observe that WS1S (k = 1) and WS2S (k = 2)
are specialization of this generic logic. Note that, it has been proven, that fixing k = 2 is enough to
obtain the whole expressive power of WSkS.
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2.4. Invariants of Data Structures as WS1S Formulae

In the beginning of the chapter, we have listed the many applications of WS1S. We
have mentioned that several authors tried to use it as an underlying theory for defining
structural invariants of programs or algorithms. In particular, we have listed its two
recent applications: the Strand [MPQ11, MQ11] and UABE [ZHW+14] logics used for
defining invariants of common linked lists and arrays respectively. Authors of Strand
chose WS1S as a target of the translation of their higher-level logic, however, they soon
got hit by the complexity blow-up while deciding more complex formulae [MPQ11]. So,
as their follow-up work, they simplified the underlying decision procedure to circumvent
this explosion in order to apply their method on a broader range of data structures and
examples [MQ11]. The simplification had encouraging results, yet there is still lots of
room for improvements and, moreover, these formulae can serve as a baseline benchmark
to compare new decision procedures. On the other hand, while the authors of UABE
had some successful initial application of their verification method, they failed for more
complex examples, and, in the end, they gave up on extending or simplifying the UABE
logic. Still, its rich expressiveness shows potential for possible application in practice.

We will use formulae of Strand and UABE as one of the benchmarks to experimen-
tally evaluate our decision procedures. So, in the following, we will briefly introduce
both of these logics. We will focus mainly on the translation of these higher-order logics
to WS1S and the structure of the resulting WS1S formulae. For more details about both
of these logics refer to original papers.

2.4.1. STRAND: STRucture ANd Data Logic

The Strand logic, which was introduced by Parlato et.al. in [MPQ11], combines reason-
ing over structural and data components of common dynamic data structures — a com-
bination necessary to express invariants used for verification of many complex heap-
manipulating programs. Each Strand formula ϕ comprises both structural constraints,
specified by a complete monadic second order logic over the heap-structure (which is
decided by the underlying MSO-solver) and data constraints, specified by a data-logic
over the the data fields of the elements or nodes (which is decided by the underlying
SMT solver). Such a combination is powerful enough to express invariants over many
data structures including nested lists, cyclic or doubly-linked lists. Note that in this
thesis, we limit ourselves to the linear fragment of the Strand logic only, and hence
WS1S will be used as the underlying MSO logic for specifying structural constraints in
the benchmarks we use. In order to specify invariants for tree structures, such as, e.g.
threaded trees, one would have to use the WS2S logic instead. Finally, we remark that
the Strand logic also has its own limitations as one cannot express, e.g. constraints
over the lengths of a list of nodes.
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The idea behind encoding structural constraints of data structures in the WS1S builds
on the notion of regular class of trees that serve as a skeleton or a backbone5. This class
can be used as a source over which one can then define the concrete data structures (such
as e.g. list between two concrete variables). The precise subset of nodes and edges of the
backbone tree corresponds to the concrete set of nodes and edges of some data structure
defined in a program. Thus, the structure on the heap can be defined as follows: the
locations on heap (memory cells, variables, etc.) can be mapped to backbone nodes,
and selector and field pointers can be mapped to backbone edges. So, in summary, the
structural part of Strand is directly encoded in WS1S as a formula specifying subset of
nodes and edges of a backbone tree. The underlying decision procedure then interprets
the resulting structural formulae on this tree-backbone.

Example 2.3. We adapt the example of [MPQ11] in order to show how to encode some
basic structural properties in WS1S. We will assume the following helper predicates, in

particular, predicates disjoint(S1, S2)
def⇐⇒ ¬∃z : (z ∈ S1 ∧ z ∈ S2) (to denote that sets

S1 and S2 are disjoint) and x→∗ y (to denote that x = y or x precedes y in the singly-
linked list). We can then define a structural formula denoting that two lists between
nodes head1 and tail1 and nodes head2 and tail2 are disjoint as follows:

∃S1, S2 :disjoint(S1, S2) ∧ head1 ∈ S1 ∧ tail1 ∈ S1 ∧ head2 ∈ S2 ∧ tail2 ∈ S2

∧ head1 →∗ tail1 ∧ head2 →∗ tail2
∧
[
∀z1 : (head1 →∗ z1 ∧ z1 →∗ tail1)⇒ z1 ∈ S1

]

∧
[
∀z2 : (head2 →∗ z2 ∧ z2 →∗ tail2)⇒ z2 ∈ S2

]

Authors of Strand proposed a program verification method using their logic. Their
method is based on inferring Hoare tripples of the Strand formulae corresponding to
pre-conditions, post-conditions and loop-invariants (supplied by the user) for selected
program locations (e.g. loop headers) and the subsequent check of this tripple. The
structural part of the decision procedure verifies that the number of minimal models is
finite and determines a bound on the size of these minimal models. Finally The data
part verifies that none of the constraints on data fields were violated. The main idea is
that if the formula is satisfiable, then it is also satisfiable by a data extension of some
minimal model.

We use the set of selected Strand formulae as one of the benchmarks to evaluate both
methods we proposed for deciding WS1S. In particular, we adapt formulae of [MQ11]
which encode pre-conditions, post-conditions, and loop-invariants of various operations
over singly-linked structures (such as bubblesort, insertion of an element into a singly-
linked list, etc.). These formulae were used to evaluate a revised decision procedure
introduced in [MQ11]. In this revision, the authors weakened the requirements of the
structural part of the Strand formulae yielding a more efficient decision procedure.

5You may be familiar with the notion of graph types [KS93] proposed by some of the authors of the
MONA tool. These graph types build on a similar notion of tree backbone, but the logic of Strand
is more generic and subsumes the notion of graph types. The main difference is in the definition of
backbone tree edges as graph types define its edges using regular expressions. For more information
regarding the differences between Strand and graph types refer to [MPQ11]
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As we remarked, this was due to their failed previous attempt where deciding the struc-
tural part proved to be the bottleneck of the procedure, because of the non-elementary
blowup. Note that we could not use the original benchmark of [MPQ11] since it contains
so-called zero-order (boolean) variables, which are currently not efficiently supported by
any of our tools. For an exact example of the used formulae from this benchmark, we
refer the reader to [FHJ+16].

2.4.2. UABE: Unbounded Arrays with Bounded Elements

Another recent application of WS1S as an underlying theory for encoding and checking
structural invariants is a decidable first-order unbounded array theory of bounded ele-
ments [ZHW+14] abbreviated as UABE. While the constraint of boundness may seem
too restrictive, the notion of bounded elements actually accurately abstracts real pro-
grams. The value of each element in a concrete array defined in a program is always
bounded by its data type, such as by an integer. However, note that, from a theoretical
perspective, there is also a consequence if one focuses on unbounded elements — the the-
ory becomes undecidable. The authors further propose a decision procedure for UABE,
which is based on the translation to the WS1S logic. So, in the following, we will focus
on the notion of this translation only.

The UABE logic is a single dimensional array theory, which is divided into three
subtheories each describing an individual aspect of arrays — the actual array theory T A,
the index theory T N and the element theory T Zn . As we remarked in the beginning,
the array theory T A describes arrays of unbounded lengths. This theory defines, besides
common array predicates (such as array read, array write or comparison of arrays), also
an additional attribute of its size6. The index theory T N allows one to define constraints
over array indexes whose values are defined over sort of N, with the signature (such
as adding constant to index or comparison of indexes). Although one can extend this
signature to allow e.g. addition of two variable indexes, authors actually show that
such extension leads to undecidability. At last, the element theory T Zn , is defined
over arbitrary bounded numerical sort (in particular, the authors focus on non-negative
numbers) with the signature of comparison and addition. For element theory, it is
important to point out its parameter n, i.e. the bound of the sort. This bound can
be seen e.g. as a number of bits available to store these elements in a program, i.e.
Zn = {0, 1, . . . , 2n − 1}.

The minimal syntax of UABE consists of atomic formulae defined over these three
listed theories (arrays, indexes and elements). The more complex formulae can be con-
structed using usual logical connectives — negation, conjunction and existential quantifi-
cation. Similarly to WS1S, UABE syntax can be extended with more logical connectives
or user predicates wlog as was demonstrated in Section 2.1.

6Note that while this may seem unnatural in theory, in many programming languages array types do
contain an attribute of array length, such as in the Java language.
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The semantics of UABE formulae is defined in standard way and will not be discussed
in this subsection, we will only remark several interesting points. Reading from an array
with an index out-of-bounds has an undefined result; this reflects the memory access with
an invalid address. Likewise addition of two elements of Zn sort with result exceeding
the constant 2n has an undefined result; this reflects the arithmetic overflow. However,
including such undefined results in the theory has a terrible consequence for verification
usage — formulae will be unsatisfiable, when some sanity conditions are violated by these
undefined values. Naturally, during verification, we are more interested whether the
formula is satisfiable if there occurs no undefined values. Hence, one has to include
additional restrictions in UABE formulae in order to remove these undefined values as
possible valid models.

Example 2.4. We adapt the example of [ZHW+14] to show UABE formula. The
formula 2.7 models that there exists non-empty array a that is strictly sorted, i.e. the
value in array with lesser index has always smaller value than those of higher index.
This formula demonstrates reasoning over all of the three theories: over the array a
from theory T A, over indexes i, j from theory T N and over individual array elements
a[i], a[j] from the theory T Zn.

∃a.
(
|a| > 0 ∧ ∀i, j : 0 ≤ i < j < |a| ⇒ a[i] ≤n a[j]

)
(2.7)

We can construct a direct translation function f from the UABE logic to WS1S.
Existence of such translation results has two consequences: (i) it gives an implementation
of a decision procedure and (ii) it proves the decidability of the logic (by reduction to
decidable problem). The actual translation rules are based on encoding of these three
underlying theories into the domain of WS1S logic, which allows only two kinds of
variables: first-order (corresponding to elements of N) and second-order (corresponding
to the subsets of N). We will need to construct translation rules for (1) variables and
constants of each subtheory, (2) atomic predicates of each subtheory and (3) logical
connectives forming more complex formulae.

Encoding numeric constants and index variables (i.e. the elements of N) is straight-
forward as they can be expressed in the domain of WS1S already and so we do not have
to encode them in any way. On contrary the elements of arrays, i.e. variables described
by theory T Zn , can be seen as n-bit non-negative integers7 represented by bitmask (e.g.
9 can be expressed as 1001 in bits). Given an array element x, we will denote the ith
bit of x as xi. We can encode x in the WS1S as the set Sx = {i | xi = 1}, i.e. the set
containing all indexes of bits, where bits are equal to one in the bit representation of
value of x.

7Note that we can model even negative integers, but then we would have to dedicate one bit to be
a sign bit.
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The array theory T A builds on a similar notion — we can view an array as an un-
bounded sequence of its elements. Assume that the array a stores elements of Zn which
can be consequently represented by n bits. Then a can then be encoded as n sets
a0, a1, . . . , an−1, where each set ai contains indexes of elements in an array, where ith bit
is equal to one, i.e. ai = {j |a[j]i = 1}. Finally as we remarked, we include a variable
|a|, which models the length of the array. So to summarize the encoding of all three
sorts in the WS1S: each index variable i corresponds to a first-order variable i′, each
element variable x corresponds to a second-order set Sx, and each array a corresponds
to n second-order sets a0, . . . an−1 encoding each bit and first-order variable |a| encoding
its length. We finish the description of the encoding with the following three formalized
rules of translation f for variables:

f(a)
def
= a0, . . . , an−1 = {j | a[j]0 = 1}, . . . , {j | a[j]n−1 = 1} (array var)

f(i)
def
= i (index var)

f(x)
def
= Sx

def
= {i | xi = 1} (element var)

The actual translation of formula ϕ then consists of two phases: (1) translating atomic
formulae according to the rule table on the leaves of syntactical structure of ϕ and
(2) translating the logical connectives, i.e. existential quantifications, negations and
conjunctions according to the nested syntactic structure of ϕ in bottom-up manner.

f(x <n y)
def
=

n−1∨

d=0

[
¬d ∈ Sx ∧ d ∈ Sy ∧

n−1∧

d′=d+1

(d′ ∈ Sx ⇔ d′ ∈ Sy)
]

(element cmp)

f(x = a[i])
def
= i < |a| ∧

n−1∧

d=0

d ∈ Sx ⇔ i ∈ ad (array read)

f(a = b{i← x}) def= |a| = |b| ∧ i < |a| ∧
n−1∧

d=0

(i ∈ ad ⇔ d ∈ Sx)∧

∧ ∀j :
[
(j 6= i ∧ j < |a|)⇒

n−1∧

d=0

(j ∈ ad ⇔ j ∈ bd)
]

(array write)

Above, three selected rules for translating atomic UABE formulae into WS1S are
listed. Note that there are two ways how we can interpret testing whether bit is set
in the WS1S logic — one for indexed arrays and one for element variables. In element
variables, we can test if ith bit is set in variable x by testing if the index i is in the set
Sx. On the other hand, we can test if ith bit is set in array element on the index j if the
index j is in the set ai. These two variants can then be used in rules e.g. for comparison
of elements or for reading from an array.
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f(∃x : ϕ)
def
= ∃Sx : f(ϕ) (element ex)

f(∃i : ϕ)
def
= ∃i : f(ϕ) (index ex)

f(∃a : ϕ)
def
= ∃|a|, a0, . . . , an−1 : f(ϕ) (array ex)

f(¬ϕ)
def
= ¬f(ϕ) (negation)

f(ϕ ∧ ψ)
def
= f(ϕ) ∧ f(ψ) (conjunction)

Rules for logical connectives are straightforward. The translation function f is prop-
agated towards leaves within the nested structure of the formulae. Quantified variables
are transformed w.r.t encoding of the variables, hence existential quantification over
array results into multiple variables in WS1S.

The resulting formulae naturally grow in size, but at most but no more than one order
of magnitude (w.r.t the construction of the transition rules). However, one also has to
note that since each array is translated to n + 1 variables in WS1S, the deciding time
may be increased considerably in practical implementations. Such an increase is due
to the usual usage of MTBDDs to represent the transition relations in corresponding
automata as the efficiency of underlying libraries for MTBDDs may vary greatly.

Example 2.5. In the following, we revise our Example 2.7 translate it to the WS1S.
For an exact rules that were used refer to the original paper of [ZHW+14].

∃|a|, a0, a1 : ∀i, j : 0 < i < |a| ⇒
(
j < |a| ∧

[
(¬i ∈ a0 ∧ j ∈ a0 ∧ i ∈ a1 ⇔ j ∈ a1) ∨ (¬i ∈ a1 ∧ j ∈ a1)

])

We use the set of selected formulae of UABE logic as another benchmark to evaluate
both of the methods we proposed for deciding WS1S. In particular, we adapt formulae
provided by the authors of UABE logic [ZHW+14], which encode various array prop-
erties, such as whether an array is sorted, whether any subarray of an array is sorted,
or whether an array is a Fibonacci sequence. We further parametrize some of these
benchmarks with a parameter k to stress test the scalability of our methods measured
against the well-established procedure of Mona. For an example of the used formulae
from this benchmarks refer to [FHJ+16].
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3. Nested Antichains for WS1S

The classical approach for deciding WS1S, e.g. as implemented within the Mona tool
and as recalled in Chapter 3, works with deterministic automata. It uses determinization
extensively, and it relies on efficient minimization of deterministic automata to suppress
the complexity blow-up. However, the worst-case exponential complexity of determiniza-
tion often significantly harms the performance of the tool. But we believe that we can
alleviate this problem by exploiting some of the recent works on efficient methods for han-
dling non-deterministic automata—in particular, works on efficient testing of language
inclusion and universality of finite automata [DR10, WDHR06, ACH+10] and works on
reducing the size of finite automata using simulation relations [BG00, ABH+08]. These
methods can handle non-deterministic automata while avoiding the determinization, and
it has been shown they provide great efficiency improvements1, e.g. in [BHH+08] (ab-
stract regular model checking) or in [HHR+12] (shape analysis). We thus make a major
step towards building the entire decision procedure of WS1S on non-deterministic au-
tomata using similar techniques. We propose a generalization of the antichain algorithms
of [DR10] to address the main bottleneck of the automata-based decision procedure
for WS1S, i.e. the source of its complexity: the elimination of alternating quantifiers,
which — when implemented on the automata level — produces nondeterministic FAs,
and is followed by determinisation needed to allow subsequent negations. Our proposed
approach was first published in [FHLV15] and then its extended version in [FHLV19].

We repeat that the classical automata-based decision procedure translates the input
WS1S formula into a finite word automaton such that its language represents all models
of the formula. The automaton is built in a bottom-up manner according to the syn-
tactic structure of the formula, starting with predefined automata for its literals (called
”atomic” automata in the following) and applying a corresponding automata operation
for every logical connective and quantifier (∧,∨,¬, ∃).

We can explain the source of the nonelementary complexity of the procedure on an
example formula of the form ϕ′ = ∃Xm∀Xm−1 . . . ∀X2∃X1 : ϕ0. First, we replace univer-
sal quantifiers by negation and existential quantification, which results into the formula
ϕ = ∃Xm¬∃Xm−1 . . .¬∃X2¬∃X1 : ϕ0. The algorithm then builds a sequence of au-
tomata for the sub-formulae ϕ0, ϕ

]
0, . . . , ϕm−1, ϕ

]
m−1 of ϕ where ϕ]i = ∃Xi+1 : ϕi and

ϕi+1 = ¬ϕ]i for 0 ≤ i < m. Every automaton in the sequence is constructed from the
previous one by applying automata operations corresponding to negation or elimination
of the existential quantifier. The latter corresponds to modifying automata transitions
and may potentially introduce non-determinism.

1Naturally, the worst-case exponential complexity of these methods is an inherent property, however,
the average complexity can indeed be improved so the methods can be used in practice.
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However, the typical approach of complementing an NFA, i.e., determinising it first
and then switching final and nonfinal states, may result into an exponential blowup:
given an automaton for ψ, the automaton for ¬ψ is constructed by the classical automata-
theoretic construction consisting of determinization by the subset construction followed
by swapping of the sets of final and non-final states. Since the subset construction is
exponential in the worst case, the worst-case complexity of the procedure on the given ϕ
is then a tower of exponentials with one level for every quantifier alternation in ϕ. Note
that this high computational cost cannot be avoided completely—indeed, the nonele-
mentary complexity is an inherent property of the problem.

An overview of the proposed algorithm. Instead we propose an algorithm for
processing alternating quantifiers in the prefix of a formula which avoids the explicit
determinization (and hence the associated exponential blowup) of automata in the clas-
sical procedure and significantly reduces the state space explosion associated with it.
Our algorithm is based on a generalization of the antichain principle used for deciding
universality and language inclusion of finite automata [WDHR06, ACH+10]. We gener-
alized the antichain algorithms so that instead of processing only one level of the chain
of automata, we process the whole chain of quantifications with i alternations on-the-fly.
Basically this means we are working with automata states that are sets of sets of sets
. . . of states of the automaton representing ϕ0 of the nesting depth i (this corresponds
to i levels of subset construction being done on-the-fly). In our algorithm we use nested
symbolic terms to represent sets of such automata states (in particular, we use nested
upward and downward closed sets as we discussed in Section 3.1) and a generalized ver-
sion of antichain pruning based on a notion of subsumption that descends recursively
down the structure of the terms while pruning on all their levels.

However, note that our proposed nested antichain approach has its own limitations:
currently we can only process a quantifier prefix of a formula, after which we return
the answer to the validity query, but not an automaton representing all models of the
input formula. That is, we cannot use the optimized algorithm for processing inner
negations and alternating quantifiers which are not a part of the quantifier prefix or
unground formulae. Naturally we wish to extend our approach to arbitrary formulae as
a follow-up work, which we will discuss in the Chapter 4.

An experimental evaluation. We have implemented the proposed approach in a pro-
totype tool called dWiNA and compared its performance with other publicly available
WS1S solvers on both generated formulae and formulae obtained from various verifica-
tion tasks. From our experiments, we have obtained encouraging results showing that
there are cases in which dWiNA outperforms Mona as well as other recently proposed
decision procedures. This shows that our approach has a great potential to handle even
more complex formulae and we believe it can be pushed even further, making WS1S
scale enough for new classes of applications. However, our tool still failed on many
other formulae, which show that we still have much room for improvements. Indeed, we
propose an improved solution based on so-called language terms in Chapter 4.
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Contributions. We summarize our contributions to WS1S achieved by our first pro-
posed approach linked with the dWiNA tool:

1. By generalization of antichain techniques, we develop a decision procedure that
can efficiently process long chains of quantifiers in the given formulae.

2. We show in our experimental evaluation that we improve the state of the art
of WS1S decision procedures. In particular, we report on a series of parametric
families of formulae, where we outperformed the state-of-the-art approaches.

Outline. The chapter is structured into three sections. In Section 3.2, we introduce
our decision procedure based on antichain principles. In particular, we outline how to
compute symbolic representants of final and non-final states for automaton Aϕi corre-
sponding to the ith quantifier alternation. We briefly describe the implementation of
this procedure and report on its experimental evaluation in Section 3.3. Finally, we
conclude the chapter with Section 3.4 and propose possible future research directions.
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3.1. Downward and Upward Closed Sets

We start by introducing the notion of downward and upward closed sets. These sets
are necessary to represent the nested structure of automata corresponding to WS1S
formulae in our decision procedure. We want to process the whole chain of quantifier
alternations on-the-fly2 — requiring to process the negation of the formula which leads
to the complementation of an automaton, which, in particular, must have as an input
a deterministic automaton. So, instead of costly process of explicit determinisation and
construction of whole automaton we represent final (resp. non-final) states by upward
(resp. downward) closed sets. In experimental evaluation of our tool dWiNA (see
Section 3.3), we show that this representation yields a significant reduction in explored
state space.

For a set D and a set S ⊆ 2D, we use ↓S to denote the downward closure of S,
i.e. the set ↓S = {R ⊆ D | ∃S ∈ S : R ⊆ S}, and ↑S to denote the upward closure
of S, i.e. the set ↑S = {R ⊆ D | ∃S ∈ S : R ⊇ S}. The set S is in both cases
called the set of generators of ↑S or ↓S respectively. For instance, if D = {1, 2, 3},
the downward closure ↓{{1, 2}, {3}} = {∅, {1}, {2}, {1, 2}, {3}} and the upward closure
↑{{1, 2}, {3}} = {{1, 2}, {1, 3}, {2, 3}, {3}, {1, 2, 3}}. A set S is downward closed if it
equals its downward closure, S = ↓S, and upward closed if it equals to its upward
closure, S = ↑S. The choice operator

∐
(sometimes also called the unordered Cartesian

product) is an operator that, given a set of sets D = {D1, . . . , Dn}, returns the set of all
sets {d1, . . . , dn} obtained by taking one element di from every set Di. Formally,

∐
D =

{
{d1, . . . , dn} | (d1, . . . , dn) ∈

n∏

i=1

Di

}
(3.1)

where
∏

denotes the Cartesian product. Note that for a set D,
∐{D} is the set of all

singleton subsets of D, i.e.
∐{D} = {{d} | d ∈ D}. Further note that if any Di is the

empty set ∅, the result is
∐
D = ∅. The following lemmata show important properties of∐

.

Lemma 3.1. Let X and Y be sets of sets. Then it holds that

↑∐X ∩ ↑∐Y = ↑∐ (X ∪ Y). (3.2)

Proof. From the definition of the
∐

operator, it holds that

↑∐X = ↑
{
{x1, . . . , xn}

∣∣ (x1, . . . , xn) ∈
∏

X
}

and

↑∐Y = ↑
{
{y1, . . . , ym}

∣∣ (y1, . . . , ym) ∈
∏

Y
}
.

(3.3)

2In Section 2.3 we outlined the complexity issue with processing the quantifier alternation and remarked
that these alternations are the source of WS1S huge complexity.
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Notice that the intersection of a pair of upward closed sets given by their generators
can be constructed by taking all pairs of generators (X,Y ), s.t. X is from

∐
X and Y is

from
∐
Y, and constructing the set X ∪ Y . It is easy to see that X ∪ Y is a generator of

↑∐X∩↑∐Y and that ↑∐X∩↑∐Y is generated by all such pairs, i.e. that ↑∐X∩↑∐Y
is equal to

↑
{
{x1, . . . , xn} ∪ {y1, . . . , ym}

∣∣ (x1, . . . , xn) ∈
∏

X ∧ (y1, . . . , ym) ∈
∏

Y
}
. (3.4)

We observe that this set can be also expressed as

↑
{
{x1, . . . , xn, y1, . . . , ym}

∣∣ (x1, . . . , xn, y1, . . . ym) ∈
∏

(X ∪ Y )
}

(3.5)

or, to conclude the proof, as ↑∐ (X ∪ Y).

Lemma 3.2. Let R be a set of sets. Then, it holds that

↑∐R =
⋂

Rj∈R
↑∐{Rj}. (3.6)

Proof. Because intersection and union are both associative operations and the set R =
{R1, . . . , Rn}, this lemma is a simple consequence of Lemma 3.1.

As we stated, we can use upward and downward closed sets to represent sets of states
of finite automata, in particular, we will use them to represent intermediate sets of final
(resp non-final) states of the ith sub-automaton corresponding to ith quantifier alterna-
tion in the formula ϕ. Lemmata 3.1 and 3.2 are then necessary in fixpoint computations
which are used to iteratively compute these final (resp. non-final states) — the core of
our procedure.

Lemma 3.3. (Equation 3.5) Let Rj ⊆ Qi−1 and ω be a symbol over πi(X) for i > 0.
Then

cpre [δi,ω](↑∐{Rj}) = ↑∐
{

pre [δ]i−1,ω](Rj)
}
. (3.7)

Proof. First, we show that the set cpre [δi,ω](↑∐{Rj}) is upward closed. Second, we
show that all elements of the set

∐{
pre [δ]i−1,ω](Rj)

}
are contained in cpre [δi,ω](↑∐{Rj}).

Finally, we show that for every element T in the set cpre [δi,ω](↑∐{Rj}) there is a smaller
element S in the set

∐{
pre [δ]i−1,ω](Rj)

}
.

1. Proving that cpre [δi,ω](↑∐{Rj}) is upward closed: Consider a state S ∈ Qi s.t.
S ∈ cpre [δi,ω](↑∐{Rj}). From the definition of cpre, it holds that

post [δi,ω]({S}) ⊆ ↑∐{Rj}, (3.8)

and from the definition of δi, it holds that

post [δi,ω]({S}) = {post [δ]i−1,ω](S)}. (3.9)
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For T ⊇ S, it clearly holds that

post [δ]i−1,ω](T ) ⊇ post [δ]i−1,ω](S) (3.10)

and, therefore, it also holds that

post [δi,ω]({T}) = {post [δ]i−1,ω](T )} ⊆ ↑∐{Rj}. (3.11)

Therefore, T ∈ cpre [δi,ω](↑∐{Rj}) and the set cpre [δi,ω](↑∐{Rj}) is upward closed.

2. Proving that for all S ∈ ∐
{

pre [δ]i−1,ω](Rj)
}

it holds that S ∈ cpre [δi,ω](↑∐{Rj}):
From the properties of

∐
, it holds that S = {s} is a singleton. Because s ∈

pre [δ]i−1,ω](Rj), there is a transition s
ω−→ r ∈ δ]i−1 for some r ∈ Rj . Since

post [δ]i−1,ω](S) ⊇ {r}, it follows from the definition of δi that post [δi,ω]({S}) = {T}
where T ⊇ {r}, and so T ∈ ↑∐{Rj} and post [δi,ω]({S}) ⊆ ↑∐{Rj}. We use the
definition of cpre to conclude that S ∈ cpre [δi,ω](↑∐{Rj}).

3. Proving that for every T ∈ cpre [δi,ω](↑∐{Rj}) there exists some element S ∈∐{
pre [δ]i−1,ω](Rj)

}
such that S ⊆ T : From T ∈ cpre [δi,ω](↑∐{Rj}) and the defi-

nition of δi, we have that

post [δi,ω]({T}) = {P} ⊆ ↑∐{Rj} (3.12)

for P s.t. post [δ]i−1,ω](T ) = P . Since P ∈ ↑∐{Rj}, there exists r ∈ Rj ∩ P and

t ∈ T s.t. t
ω−→ r ∈ δ]i−1. Because t ∈ pre [δ]i−1,ω]({r}), we choose S = {t} and we are

done.

Lemma 3.4. (Equation 3.6) Let Rj ⊆ Qi−1 and ω be a symbol over πi(X) for i > 0.
Then

pre [δi,ω](↓{Rj}) = ↓{cpre [δ]i−1,ω](Rj)}. (3.13)

Proof. First, we show that pre [δi,ω](↓{Rj}) is downward closed. Second, we show that
S = cpre [δ]i−1,ω](Rj) is in pre [δi,ω](↓{Rj}). Finally, we show that every element T in
pre [δi,ω](↓{Rj}) is smaller than S.

1. Proving that pre [δi,ω](↓{Rj}) is downward closed: Consider a state S′ ∈ Qi s.t.
S′ ∈ pre [δi,ω](↓{Rj}). From the definitions of pre and δi, it holds that

post [δi,ω]({S′}) = {post [δ]i−1,ω](S′)} ⊆ ↓{Rj}, (3.14)

and, therefore, post [δ]i−1,ω](S′) ∈ ↓{Rj}. For T ⊆ S′, it clearly holds that

post [δ]i−1,ω](T ) ⊆ post [δ]i−1,ω](S′) (3.15)

and so it also holds that

post [δi,ω]({T}) = {post [δ]i−1,ω](T )} ⊆ ↓{Rj}. (3.16)

Therefore, T ∈ pre [δi,ω](↓{Rj}) and pre [δi,ω](↓{Rj}) is downward closed.
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2. Proving that S = cpre [δ]i−1,ω](Rj) ∈ pre [δi,ω](↓{Rj}): From the definition of cpre,
it holds that

post [δ]i−1,ω](S) = S′ ⊆ Rj . (3.17)

Further, from the definition of δi, it holds that S
ω−→ S′ ∈ δi and, therefore,

S ∈ pre [δi,ω](↓{Rj}).

3. Proving that for every T ∈ pre [δi,ω](↓{Rj}) it holds that T ⊆ S: From T ∈
pre [δi,ω](↓{Rj}), we have that T

ω−→ P ∈ δi for P ⊆ Rj , and, from the definition of
δi, we have that P = post [δ]i−1,ω](T ). From P = post [δ]i−1,ω](T ) and the definition
of cpre, it is easy to see that T ⊆ cpre [δ]i−1,ω](P ), and, moreover

P ⊆ Rj =⇒ cpre [δ]i−1,ω](P ) ⊆ cpre [δ]i−1,ω](Rj). (3.18)

Therefore, we can conclude that T ⊆ cpre [δ]i−1,ω](Rj) = S.

Lemmata 3.4 and 3.3 are also necessary for the fixpoint computation of final (resp
non-final) states. In Section 2.3, we discussed how to handle existential quantification,
which consists of two phases: projection (i.e. removing tracks in transition relation
corresponding to the quantified variables) and saturation (i.e. pumping the final states
of the automaton ensuring it will accept all of the encodings of valid models of formulae).
Computing cpre and pre relations of the upward (resp downward) closed sets corresponds
to the one step of the saturation phase, when we expand the set of final (resp non-final
sets) with every state backward reachable by 0̄ symbols3 from previously computed final
(resp. non-final) states until fixpoint is reached.

3Recollect we pointed out there is an issue with potentially infinite extensions of encodings of valid
models by chain of 0̄
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3.2. Nested Antichains for Alternating Quantifiers

We now present our approach for dealing with alternating quantifiers in WS1S formulae
in more details. Let us consider a ground formula ϕ of the form

ϕ = ¬∃Xm ¬. . .¬∃X2 ¬∃X1 : ϕ0(X)︸ ︷︷ ︸
ϕ1

. .
.

︸ ︷︷ ︸
ϕm

(3.19)

where each Xi is a set of variables {Xa, . . . , Xb}, ∃Xi is an abbreviation for a non-empty
sequence ∃Xa . . . ∃Xb of consecutive existential quantifications, and ϕ0 is an arbitrary
formula called the matrix of ϕ. Note that the problem of checking validity or satisfiability
of a formula with free variables can be easily reduced to this form as follows: given
Xf = free(ϕ), i.e. the set of free variables of ϕ, we can check validity (resp. satisfiability)
of an unground formula ϕ by checking validity of the formula ψ = ∀Xf : ϕ (resp.
ψ = ∃Xf : ϕ.

The classical procedure presented in Section 2.3 computes a sequence of automata
Aϕ0 ,Aϕ]0 , . . . ,Aϕ]m−1

,Aϕm where for all 0 ≤ i ≤ m − 1, ϕ]i = ∃Xi+1 : ϕi and ϕi+1 =

¬ϕ]i . The ϕi’s are subformulae of ϕ shown in (3.19) corresponding to the ith quantifier
alternation. Since eliminating existential quantification on the automata level introduces
non-determinism (due to the projection on the transition relation), every A

ϕ]i
may be

non-deterministic. The computation of Aϕi+1 then has to involve a subset construction
and becomes exponential. The worst-case complexity of eliminating the whole prefix is
therefore the tower of exponentials of the height m. Even though the construction may
be optimized, e.g. by minimizing every Aϕi (which is implemented by Mona), the size
of the generated automata can quickly become intractable.

The basic algorithm. The main idea of our algorithm is inspired by the antichain
algorithms [DR10] for testing language universality of an automaton A. In a nutshell,
testing universality ofA is testing whether in the complementA ofA (which is created by
determinization via subset construction, followed by swapping final and non-final states),
an initial state can reach a final state. The crucial idea of the antichain algorithms is
based on the following: (i) The search for the final state can be done on the fly while
constructing A. (ii) The sets of states that arise during the search are closed (upward
or downward, depending on the variant of the algorithm). (iii) The computation can be
done symbolically on the generators of these closed sets. We also noticed it is enough
to keep only the extreme generators of the closed sets (maximal for downward closed,
minimal for upward closed). The generators that are not extreme (we say that they
are subsumed) can be pruned away, which, in our experience, vastly reduces the search
space.
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We notice that individual steps of the algorithm for constructing Aϕ are very similar to
testing the universality. Automaton Aϕi arises by subset construction from A

ϕ]i−1
, and

to compute A
ϕ]i

, it is necessary to compute the set of final states F ]i . Those are states

backward reachable from the final states of Aϕi via a subset of transitions of δi (those

labelled by symbols projected to 0̄ by πi+1). To compute F ]i , the antichain algorithms
could be actually taken off-the-shelf and run with A

ϕ]i−1
in the role of the input A and

A
ϕ]i

in the role of A. This approach, however, has the following two problems. First,

antichain algorithms do not produce the automaton A (here A
ϕ]i

), but only a symbolic

representation of a set of (backward) reachable states (here of F ]i ). Since A
ϕ]i

is the

input of the construction of Aϕi+1 , the construction of Aϕ could not continue. The
other problem is that the size of the input A

ϕ]i−1
of the antichain algorithm is only

limited by the tower of exponentials of the height i − 1, and this might be already far
out of reach.

So our main contribution is an algorithm that alleviates these two problems. We based
it on a novel way of performing not only one, but all the 2m steps of the construction of
Aϕ on the fly. Moreover, we use a nested symbolic representation of sets of states and
a form of nested subsumption pruning on all levels of their structure. This is achieved
by a substantial refinement of the basic ideas of antichain algorithms.

3.2.1. Structure of the Algorithm

We start by explaining the top-level structure of our on-the-fly algorithm for efficient
handling the quantifier alternation. Following the construction of automata described in
Section 3.2, the structure of the automata sequence from the previous section, Aϕ0 ,A

ϕ]0
,

. . . , A
ϕ]m−1

, Aϕm , can be described using the following recursive definition. We use πi(C)

for any mathematical structure C to denote projection of all variables in X1 ∪ · · · ∪ Xi
from C.

Let Aϕ0 = (Q0, δ0, I0, F0) be an FA over X. Then, for each 0 ≤ i < m, the FAs A
ϕ]i

and Aϕi+1 are over the alphabet πi+1(X) and have from the construction the following
structure:

A
ϕ]i

= (Qi, δ
]
i , Ii, F

]
i ) where Aϕi+1 = (Qi+1, δi+1, Ii+1, Fi+1) where

δ]i =πi+1(δi) and δi+1 =
{
R
τ−→post [δ]i ,τ ](R)

∣∣∣R∈Qi+1

}
,

F ]i =µZ . Fi∪pre[δ]i ,0̄](Z). Qi+1 =2Qi , Ii+1={Ii}, and Fi+1=↓{Qi\F ]i }.

We recall that A
ϕ]i

directly corresponds to the existential quantification of all variables

in Xi (cf. Section 2.3), and Aϕi+1 directly corresponds to the complement of A
ϕ]i

(cf.

Chapter 2).
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A crucial observation behind our approach is that, because ϕ is ground, Aϕ is an FA
over an empty set of variables, and, therefore, L(Aϕ) is either the empty set ∅ or the set
{0̄}∗ (as described in Section 2.3). Therefore, we need to distinguish between these two
cases only. To determine which of them holds, we do not need to explicitly construct
the automaton Aϕ. Instead, it suffices to check whether Aϕ accepts the empty string
ε. This is equivalent to checking existence of a state that is at the same time final and
initial, that is

|= ϕ iff Im ∩ Fm 6= ∅. (3.20)

To compute Im from I0 is straightforward (it equals to {{. . . {{I0}} . . .}} nested m-
times). In the rest of the section, we will describe how to compute Fm (in particular, its
symbolic representation), and how to test whether it intersects with Im.

The algorithm takes advantage of the fact that to represent final states, one can
use their complement, the set of non-final states. For 0 ≤ i ≤ m, we write Ni and
N ]
i to denote the sets of non-final states Qi \ Fi of Ai and Qi \ F ]i of A]i respectively.

The algorithm will then instead of computing the sequence of automata Aϕ0 , A
ϕ]0

, . . . ,

A
ϕ]m−1

, Aϕm only compute the sequence F0, F
]
0 , N1, N

]
1, . . . up to either Fm (if m is even)

or Nm (if m is odd), which still suffices for testing the validity of ϕ. The algorithm starts
with F0 (which can be obtained using classical automata construction as presented in
Section 2.3) and uses the following recursive equations:

(i) Fi+1 = ↓{N ]
i }, (ii) F ]i = µZ . Fi ∪ pre [δ]i ,0̄](Z),

(iii) Ni+1 = ↑∐{F ]i }, (iv) N ]
i = νZ .Ni ∩ cpre [δ]i ,0̄](Z).

(3.21)

Intuitively, (i) and (ii) come directly from definitions of Ai and A]i . (iii) is a dual of (i):

Ni+1 contains all subsets of Qi that contain at least one state from F ]i (cf. the definition
of the

∐
operator). Finally, (iv) is a dual of (ii): in the k-th iteration of the greatest

fixpoint computation, the current set of states Z will contain all states that cannot reach
an Fi state over 0̄ within k steps. In the next iteration, only those states of Z are kept
such that all their 0̄-successors are in Z. Hence, the new value of Z is the set of states
that cannot reach Fi over 0̄ in k + 1 steps, and the computation stabilizes with the set
of states that cannot reach Fi over 0̄ in any number of steps.

In the next two sections, we will show that both of the above fixpoint computations
can be carried out symbolically on representatives of upward and downward closed sets.
Particularly, in Sections 3.2.2 and 3.2.3, we show how the fixpoints from (ii) and (iv)
can be computed symbolically, using subsets of Qi−1 as representatives (generators) of
upward/downward closed subsets of Qi. Section 3.2.4 explains how the above symbolic
fixpoint computations can be carried out using nested terms of depth i as a symbolic
representation of computed states of Qi. Section 3.2.5 shows how to test the emptiness
of Im ∩Fm on the symbolic terms, and Section 3.2.6 describes the subsumption relation
used to minimize the symbolic term representation used within computations of (ii) and
(iv).
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3.2.2. Computing N ]
i on Representatives of ↑∐R-sets

Computing N ]
i at each odd level of the hierarchy of automata is done by computing the

greatest fixpoint of the function from Equation 3.21(iv):

f
N]
i
(Z) = Ni ∩ cpre [δ]i ,0̄](Z). (3.22)

We will show that the whole fixpoint computation from Equation 3.21(iv) can be carried
out symbolically on the representatives of Z due to the following two properties: (a) all
intermediate values of Z have the form ↑∐R, where R ⊆ Qi, so the sets R can be
used as their symbolic representatives, and (b) cpre and ∩ can be computed on such
a symbolic representation efficiently (as we have shown in Section 3.1).

Let us start with the computation of cpre [δ]i ,τ ](Z) where τ ∈ πi+1(0̄), assuming that
Z is of the form Z = ↑∐R, represented by R = {R1, . . . , Rn}. Observe that a set
of symbolic representatives R stands for the intersection of denotations of individual
representatives, that is

↑∐R =
⋂

Rj∈R
↑∐{Rj}. (3.23)

The set cpre [δ]i ,τ ](Z) can thus be written as the cpre-image cpre [δ]i ,τ ](
⋂S) of the inter-

section of the elements of a set S =
{
↑∐{R1}, . . . , ↑

∐{Rn}
}

. Further, because cpre
distributes over ∩, we can compute the cpre-image of an intersection by computing
intersection of the cpre-images, i.e.

cpre [δ]i ,τ ](
⋂
S) =

⋂

S∈S
cpre [δ]i ,τ ](S). (3.24)

By the definition of δ]i (where δ]i = πi+1(δi)), the set cpre [δ]i ,τ ](S) can be computed using
the transition relation δi for the price of further refining the intersection. In particular,

cpre [δ]i ,τ ](S) =
⋂

ω∈π−1
i+1(τ)

cpre [δi,ω](S). (3.25)

Intuitively, cpre [δ]i ,τ ](S) contains states from which every transition labelled by any sym-
bol that is projected to τ by πi+1 has its target in S.

Using (3.24), (3.25), and the fact that Z =
⋂{↑∐{Rj} | Rj ∈ R

}
, we obtain

cpre [δ]i ,τ ](Z) =
⋂

Rj∈R
ω∈π−1

i+1(τ)

cpre [δi,ω](↑∐{Rj}). (3.26)

To compute the individual conjuncts cpre [δi,ω](↑∐{Rj}), we take advantage of the
special form of the operand ↑∐{Rj} and the fact that δi is, by its definition (obtained

from determinization via subset construction), monotone w.r.t. ⊇. That is, if P
ω−→ P ′ ∈

δi for some P, P ′ ∈ Qi, then for every R ⊇ P , there is R′ ⊇ P ′ s.t. R
ω−→ R′ ∈ δi. Due

to the monotonicity, the cpre [δi,ω]-image of an upward closed set is also upward closed.
Moreover, we observe that it can be computed symbolically using pre on elements of its
generators. Particularly, for a set ↑∐{Rj}, we get the following lemma:
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Lemma 3.5. Let Rj ⊆ Qi−1 and ω be a symbol over πi(X) for i > 0. Then

cpre [δi,ω](↑∐{Rj}) = ↑∐
{

pre [δ]i−1,ω](Rj)
}
. (3.27)

Proof. First, we show that the set cpre [δi,ω](↑∐{Rj}) is upward closed. Second, we
show that all elements of the set

∐{
pre [δ]i−1,ω](Rj)

}
are contained in cpre [δi,ω](↑∐{Rj}).

Finally, we show that for every element T in the set cpre [δi,ω](↑∐{Rj}) there is a smaller
element S in the set

∐{
pre [δ]i−1,ω](Rj)

}
.

1. Proving that cpre [δi,ω](↑∐{Rj}) is upward closed: Consider a state S ∈ Qi s.t.
S ∈ cpre [δi,ω](↑∐{Rj}). From the definition of cpre, it holds that

post [δi,ω]({S}) ⊆ ↑∐{Rj}, (3.28)

and from the definition of δi, it holds that

post [δi,ω]({S}) = {post [δ]i−1,ω](S)}. (3.29)

For T ⊇ S, it clearly holds that

post [δ]i−1,ω](T ) ⊇ post [δ]i−1,ω](S) (3.30)

and, therefore, it also holds that

post [δi,ω]({T}) = {post [δ]i−1,ω](T )} ⊆ ↑∐{Rj}. (3.31)

Therefore, T ∈ cpre [δi,ω](↑∐{Rj}) and the set cpre [δi,ω](↑∐{Rj}) is upward closed.

2. Proving that for all of the elements S ∈ ∐
{

pre [δ]i−1,ω](Rj)
}

it holds that S ∈
cpre [δi,ω](↑∐{Rj}): From the properties of

∐
, it holds that S = {s} is a singleton.

Because s ∈ pre [δ]i−1,ω](Rj), there is a transition s
ω−→ r ∈ δ]i−1 for some r ∈ Rj .

Since post [δ]i−1,ω](S) ⊇ {r}, it follows from the definition of δi that post [δi,ω]({S}) =
{T} where T ⊇ {r}, and so T ∈ ↑∐{Rj} and post [δi,ω]({S}) ⊆ ↑∐{Rj}. We use
the definition of cpre to conclude that S ∈ cpre [δi,ω](↑∐{Rj}).

3. Proving that for every T ∈ cpre [δi,ω](↑∐{Rj}) there exists some element S ∈∐{
pre [δ]i−1,ω](Rj)

}
such that S ⊆ T : From T ∈ cpre [δi,ω](↑∐{Rj}) and the defi-

nition of δi, we have that

post [δi,ω]({T}) = {P} ⊆ ↑∐{Rj} (3.32)

for P s.t. post [δ]i−1,ω](T ) = P . Since P ∈ ↑∐{Rj}, there exists r ∈ Rj ∩ P and

t ∈ T s.t. t
ω−→ r ∈ δ]i−1. Because t ∈ pre [δ]i−1,ω]({r}), we choose S = {t} and we are

done.
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Intuitively, sets with post-images above a singleton {p} ∈
{
{p} | p ∈ Rj

}
= ↑∐{Rj}

are those that contain at least one state q ∈ Qi−1 s.t. q
ω−→ p ∈ δ]i−1. Combining (3.26)

and Lemma 3.5 yields

cpre [δ]i ,τ ](Z) =
⋂

Rj∈R
ω∈π−1

i+1(τ)

↑∐
{

pre [δ]i−1,ω](Rj)
}
. (3.33)

By applying (3.23), we get the final formula for cpre [δ]i ,τ ](Z):

cpre [δ]i ,τ ](Z = ↑∐R) = ↑∐
{

pre [δ]i−1,ω](Rj) | ω ∈ π−1
i+1(τ), Rj ∈ R

}
. (3.34)

In order to compute f
N]
i
(Z), it remains to intersect cpre [δ]i ,0̄](Z), computed using (3.34),

with Ni. By Equation 3.21(iii), Ni equals ↑∐{F ]i−1}, and, by (3.23), the intersection
can be done symbolically as

f
N]
i
(Z) = ↑∐

(
{F ]i−1} ∪

{
pre [δ]i−1,ω](Rj) | ω ∈ π−1

i+1(0̄), Rj ∈ R
})
. (3.35)

Finally, note that a symbolic application of f
N]
i

to Z = ↑∐R represented as the set R
reduces to computing pre-images of the elements of R, which are then put next to each
other, together with F ]i−1. The computation starts from Ni = ↑∐{F ]i−1}, represented by

{F ]i−1}, and each of its steps, implemented by (3.35), preserves the form of sets ↑∐R,
represented by R.

3.2.3. Computing F ]
i on Representatives of ↓R-sets

Similarly as in the previous section, the computation of F ]i at each even level of the
automata hierarchy is performed by computing the least fixpoint of the function

f
F ]i

(Z) = Fi ∪ pre [δ]i ,0̄](Z). (3.36)

We will show that the whole fixpoint computation from Equation 3.21(ii) can be again
carried out symbolically due to the following two properties: (a) all intermediate val-
ues of Z are of the form ↓R, where R ⊆ Qi, meaning that sets R can be used as
their symbolic representatives, and (b) pre and ∪ can be computed efficiently on such
a symbolic representation. The computation is a simpler analogy of the one presented
in Section 3.2.2.
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We start with the computation of pre [δ]i ,τ ](Z) where τ ∈ πi+1(X), assuming that Z is of
the form ↓R, represented by R = {R1, . . . , Rn}. A simple analogy to (3.23) and (3.24)
of Section 3.2.2 is that the union of downward closed sets is a downward closed set
generated by the union of their generators, i.e.

↓R =
⋃

Rj∈R
↓{Rj} (3.37)

and that pre distributes over the union operator, i.e.

pre [δ]i ,τ ](
⋃
R) =

⋃

Rj∈R
pre [δ]i ,τ ](↓{Rj}). (3.38)

An analogy of (3.25) holds too:

pre [δ]i ,τ ](S) =
⋃

ω∈π−1
i+1(τ)

pre [δi,ω](S). (3.39)

Intuitively, pre [δ]i ,τ ](S) contains states from which at least one transition labelled by any
symbol that is projected to τ by πi+1 leads to the target in S. Using (3.38), (3.39), and
the fact that Z =

⋃{↓{Rj} | Rj ∈ R
}

, we obtain

pre [δ]i ,τ ](Z) =
⋃

Rj∈R
ω∈π−1

i+1(τ)

pre [δi,ω](↓{Rj}). (3.40)

To compute individual disjuncts pre [δi,ω](↓{Rj}), we take advantage of the fact that
every ↓{Rj} is downward closed, and that δi is, by its definition (determinization by

subset construction), monotone w.r.t. ⊆. That is, if P
ω−→ P ′ ∈ δi for some P, P ′ ∈ Qi,

then for every R ⊆ P , there is R′ ⊆ P ′ s.t. R
ω−→ R′ ∈ δi. Due to the monotonicity, the

pre [δi,ω]-image of a downward closed set is downward closed. Moreover, we observe that
this image can be computed symbolically using cpre only on elements of its generators.
In particular, for a set ↓{Rj}, we get the following lemma, which is a dual of Lemma 3.5:

Lemma 3.6. Let Rj ⊆ Qi−1 and ω be a symbol over πi(X) for i > 0. Then

pre [δi,ω](↓{Rj}) = ↓{cpre [δ]i−1,ω](Rj)}. (3.41)

Proof. First, we show that pre [δi,ω](↓{Rj}) is downward closed. Second, we show that
S = cpre [δ]i−1,ω](Rj) is in pre [δi,ω](↓{Rj}). Finally, we show that every element T in
pre [δi,ω](↓{Rj}) is smaller than S.

37



1. Proving that pre [δi,ω](↓{Rj}) is downward closed: Consider a state S′ ∈ Qi s.t.
S′ ∈ pre [δi,ω](↓{Rj}). From definitions of pre and δi, it holds that

post [δi,ω]({S′}) = {post [δ]i−1,ω](S′)} ⊆ ↓{Rj}, (3.42)

and, therefore, post [δ]i−1,ω](S′) ∈ ↓{Rj}. For T ⊆ S′, it clearly holds that

post [δ]i−1,ω](T ) ⊆ post [δ]i−1,ω](S′) (3.43)

and so it also holds that

post [δi,ω]({T}) = {post [δ]i−1,ω](T )} ⊆ ↓{Rj}. (3.44)

Therefore, T ∈ pre [δi,ω](↓{Rj}) and pre [δi,ω](↓{Rj}) is downward closed.

2. Proving that S = cpre [δ]i−1,ω](Rj) ∈ pre [δi,ω](↓{Rj}): From the definition of cpre,
it holds that

post [δ]i−1,ω](S) = S′ ⊆ Rj . (3.45)

Further, from the definition of δi, it holds that S
ω−→ S′ ∈ δi and, therefore,

S ∈ pre [δi,ω](↓{Rj}).

3. Proving that for every T ∈ pre [δi,ω](↓{Rj}) it holds that T ⊆ S: From T ∈
pre [δi,ω](↓{Rj}), we have that T

ω−→ P ∈ δi for P ⊆ Rj , and, from the definition of
δi, we have that P = post [δ]i−1,ω](T ). From P = post [δ]i−1,ω](T ) and the definition
of cpre, it is easy to see that T ⊆ cpre [δ]i−1,ω](P ), and, moreover

P ⊆ Rj =⇒ cpre [δ]i−1,ω](P ) ⊆ cpre [δ]i−1,ω](Rj). (3.46)

Therefore, we can conclude that T ⊆ cpre [δ]i−1,ω](Rj) = S.

Intuitively, the sets with the post-images below Rj are those that do not have an
outgoing transition leading outside Rj . The largest such a set is cpre [δ]i−1,ω](Rj). Com-
bining (3.40) with Lemma 3.6 yields

pre [δ]i ,τ ](Z) =
⋃

Rj∈R
ω∈π−1

i+1(τ)

↓{cpre [δ]i−1,ω](Rj)} (3.47)

Using (3.37), we get the final formula for pre [δ]i ,τ ](Z):

pre [δ]i ,τ ](Z = ↓R) = ↓{cpre [δ]i−1,ω](Rj) | ω ∈ π−1
i+1(τ), Rj ∈ R}. (3.48)

To compute f
F ]i

(Z), it remains to unite pre [δ]i ,0̄](Z), computed using (3.48), with Fi.

From Equation 3.21(i), Fi equals ↓{N ]
i−1}, so the union can be done symbolically as

f
F ]i

(Z) = ↓
(
{N ]

i−1} ∪
{

cpre [δ]i−1,ω](Rj) | ω ∈ π−1
i+1(0̄), Rj ∈ R

})
. (3.49)
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Therefore, a symbolic application of f
F ]i

to Z = ↓R represented using the set R reduces

to computing cpre-images of elements of R, which are put next to each other, together
with N ]

i−1. The computation starts from Fi = ↓{N ]
i−1}, represented by {N ]

i−1}, and
each of its steps, implemented by (3.49), preserves the form of sets ↓R, represented by
R.

3.2.4. Computation of F ]
i and N ]

i on Symbolic Terms

In Sections 3.2.2 and 3.2.3 we have shown how sets of states arising within the fixpoint
computations from Equations 3.21(ii) and 3.21(iv) can be represented symbolically using
representatives that are sets of states of the lower level (that represent either final or
non-final states of previous automaton in the hierarchy). Again, we will represent these
sets of states of the lower level only symbolically. When we compute the fixpoint of level
i, we will work with nested symbolic representation of states of depth i. Particularly,
sets of states of Qk, for 0 ≤ k ≤ i, are represented by terms of level k where a term of
level 0 is a subset of Q0, a term of level 2j + 1, for j ≥ 0, is of the form ↑∐{t1, . . . , tn}
where t1, . . . , tn are terms of level 2j, and a term of level 2j, for j > 0, is of the form
↓{t1, . . . , tn} where t1, . . . , tn are terms of level 2j − 1.

The computation of cpre and f
N]

2j+1
on a term of level 2j + 1 and computation of pre

and f
F ]2j

on a term of level 2j then becomes a recursive procedure that descends via the

structure of the terms and produces again a term of level 2j + 1 or 2j respectively. In
the case of cpre and f

N]
2j+1

called on a term of level 2j + 1, Equation (3.34) reduces the

computation to a computation of pre on its sub-terms of level 2j, which is again reduced
by (3.48) to a computation of cpre on terms of level 2j − 1, and so on until the bottom
level where the algorithm computes pre on the terms of level 0 (subsets of Q0). The case
of pre and f

F ]2j
called on a term of level 2j is symmetrical.

Example 3.1. We will demonstrate the run of our algorithm on the following example
formula:

ϕ ≡ ¬∃X¬∃Y ¬∃Z : X < Y ∧ Y < Z︸ ︷︷ ︸
ϕ0︸ ︷︷ ︸

ϕ]0︸ ︷︷ ︸
ϕ1

. .
.

︸ ︷︷ ︸
ϕ3

Note that we extended the minimal syntax introduced in Section 2 with two additional
atomic predicates and one additional logical connective (added to easily obtain automata
suitable for the demonstration of our algorithm).
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(b) AY <Z

Figure 3.1.: Atomic automata AX<Y and AY <Z
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Z : 0
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Y : 0
Z : 0
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Z : 0

X : ?
Y : ?
Z : ?

X : 1
Y : 0
Z : 0

X : ?
Y : 1
Z : 0

X : ?
Y : ?
Z : 1

Figure 3.2.: Automaton A0 for the formula ϕ0 ≡ X < Y ∧ Y < Z

The semantics of the atomic formula X < Y is defined as

X < Y ≡
(
∃x : x ∈ X ∧ ∀y : y ∈ Y ∧ ∃W :

(∃u : u ∈W ∧ y = u+ 1) ∧
(
∀w : w ∈W ∧ (∃w′ : w′ ∈W ∧ w = w′ + 1) ∨ w = x

))

∧ ∃y′ : y′ ∈ Y,

(3.50)

where we use the first-order variable quantification in the standard meaning. Informally,
X < Y denotes that both X and Y are non-empty and that the least element of X is
strictly smaller than any element of Y .

We build the base automaton Aϕ0 corresponding to the base formula ϕ0 ≡ X <
Y ∧ Y < Z by (i) cylindrification of the atomic automata AX<Y and AY <Z depicted
in Figures 3.1(a) and 3.1(b), respectively, and by (ii) constructing the intersection au-
tomaton A0 = AX<Y ∩AY <Z . The minimal non-deterministic automaton A0 is depicted
in Figure 3.2. The symbol ? denotes that the value on the given track can contain both
0 or 1.

Note that, in the example, we encode values of first-order variables by the first occur-
rence of 1 in the given variable track representing the value of first-order variable, i.e.
x : 00100 . . . , x : 00101 . . . , x : 00111 or x : 00110 . . . are all valid encodings of the

mapping {x 7→ 2}. Moreover, we remark that both our tools and the Mona tool adapt
this encoding in the practice.

Recall that our method decides the validity of ϕ by symbolically computing the sequence
of sets F ]0 , N1, N

]
1, F2, F

]
2 , N3, corresponding to the sequence of automata A

ϕ]0
, Aϕ1, A

ϕ]1
,

Aϕ2, A
ϕ]2

, Aϕ3, with each of the sets represented using a symbolic term, and then finally

checks whether I3 ∩N3 6= ∅.
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Let us show how this sequence is computed using our approach. Once we have con-
structed the base automaton, we first process the existential quantification of the vari-
able Z, i.e. the subformula ϕ]0 ≡ ∃Z : ϕ0. The first set in the sequence, F ]0 , is obtained
using a fixpoint computation given by Equation 3.21(ii), that is,

F ]0 = µW .F0 ∪ pre [δ]0,0̄](W ).

This computation returns the set of states backward-reachable from F0 via 0̄ transitions
of δ]0. Here, the zero symbol 0̄ corresponds to the mapping X : 0

Y : 0
of the free variables of

the subformula ϕ]0. The set F0 of states of the base automaton A0, from which the com-
putation starts, equals to {4}. Since we are processing ∃Z in the formula, the transition

relation δ]0 can be obtained by removing the track corresponding to the variable Z from

δ0. For instance, from the transition 1

X : 1
Y : 0
Z : 0−−−−−→ 2, we obtain the transition 1

X : 1
Y : 0−−−−−→ 2.

However, according to (3.40), instead of removing the track, our algorithm rather com-
putes the predecessors on the original transition relation δ0 according to symbols where
the value in the concerned Z-track is arbitrary. The set of such symbols is obtained
using the inverse operation of projection. In particular, the inverse operation of pro-
jection π−1

[Z](
X : 0
Y : 0

), which is used in the fixpoint computation of F ]0 , equals to the set{
X : 0
Y : 0
Z : 0

,
X : 0
Y : 0
Z : 1

}
. The fixpoint computation is then carried out as follows:

F ]0 = F0 ∪ pre
[
δ]0,

X : 0
Y : 0

]
(F0) ∪ pre2

[
δ]0,

X : 0
Y : 0

]
(F0) ∪ · · ·

= F0 ∪
( ⋃

q∈F0={4}
ω∈π−1

[Z]
( X : 0
Y : 0

)

pre [δ0,ω](q)
)
∪ · · · [by (3.40)]

= F0 ∪
(

pre
[
δ0,

X : 0
Y : 0
Z : 0

]
(4) ∪ pre

[
δ0,

X : 0
Y : 0
Z : 1

]
(4)

)
∪ · · ·

= {4} ∪ ({3, 4} ∪ {4}) ∪ · · ·

After two iterations, the fixpoint is fully computed, yielding the term

t[F ]0 ] = F ]0 = {3, 4}.

Next, we have to process the negation in the subformula ϕ1 ≡ ¬∃Z : ϕ0, which leads to
the computation of the term t[N1] using Equation 3.21(iii), yielding the term

t[N1] = ↑∐{F ]0} = ↑∐
{
{3, 4}

}
.
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The algorithm continues by computing the term for the set of states N ]
1, corresponding

to the subformula ϕ]1 ≡ ∃Y : ϕ1, which implies a need to process another quantifier
level (namely, that of variable Y ). Similarly to the previous computation, the transition

relation δ]1 can be obtained by removing the track corresponding to the variable Y . This
means that the fixpoint computation needs to compute cpre with the symbol 0̄ that now
corresponds to the symbol X : 0 . Instead of that, however, a computation over δ1

with symbols with arbitrary values of Y will be used. In particular, the set of such
symbols will be obtained by (3.26) using the inverse projection of Y , which yields the set

π−1
[Y ]( X : 0 ) = { X : 0

Y : 0
, X : 0

Y : 1
}. More concretely, the computation of N ]

1 is performed

according to Equation 3.21(iv) as follows:

N ]
1 = νW .N1 ∩ cpre [δ]1,0̄](W ).

To compute the above, Equation (3.35) is used to transform the problem of computing
the cpre [δ1,ω′]-image of a term into a computation of a series of pre [δ]0,ω]-images of its
sub-terms, which is carried out using (3.49) in the same way as when computing t[F ]0 ],
resulting into the following fixpoint computation:

N ]
1 = N1 ∩ cpre

[
δ]1, X : 0

]
(N1) ∩ cpre2

[
δ]1, X : 0

]
(N1) ∩ · · ·

= N1 ∩
( ⋂

Q∈N1

ω∈π−1
[Y ]

( X : 0 )

cpre [δ1,ω](Q)
)
∩ · · · [by (3.26)]

= N1 ∩
(

cpre
[
δ1,

X : 0
Y : 0

]
(↑∐ {{3, 4}}) ∩ cpre

[
δ1,

X : 0
Y : 1

]
(↑∐ {{3, 4}})

)
∩ · · ·

= N1 ∩
(
↑∐

{
pre

[
δ]0,

X : 0
Y : 0

]
({3, 4})

}
∩ ↑∐

{
pre

[
δ]0,

X : 0
Y : 1

]
({3, 4})

})
∩ · · ·

[by Lemma 3.5]

= N1 ∩
(
↑∐
{ ⋃

q∈{3,4}
ω∈π−1

[Z]
( X : 0
Y : 0

)

pre [δ0,ω](q)
}
∩ ↑∐

{ ⋃

q∈{3,4}
ω∈π−1

[Z]
( X : 0
Y : 1

)

pre [δ0,ω](q)
})
∩ · · · [by (3.40)]

= N1 ∩
(
↑∐
{

pre
[
δ0,

X : 0
Y : 0
Z : 0

]
(3) ∪ pre

[
δ0,

X : 0
Y : 0
Z : 1

]
(3) ∪

pre
[
δ0,

X : 0
Y : 0
Z : 0

]
(4) ∪ pre

[
δ0,

X : 0
Y : 0
Z : 1

]
(4)
}
∩

↑∐
{

pre
[
δ0,

X : 0
Y : 1
Z : 0

]
(3) ∪ pre

[
δ0,

X : 0
Y : 1
Z : 1

]
(3) ∪

pre
[
δ0,

X : 0
Y : 1
Z : 0

]
(4) ∪ pre

[
δ0,

X : 0
Y : 1
Z : 1

]
(4)
})
∩ · · ·

= ↑∐
{
{3, 4}

}
∩
(
↑∐
{
{3, 4}

}
∩ ↑∐

{
{2, 3, 4}

})
∩ · · ·

= ↑∐
{
{3, 4}

}
∩
(
↑∐
{
{3, 4} ∪ {2, 3, 4}

})
∩ · · · [by Lemma 3.1]

= ↑∐
{
{3, 4}

}
∩ ↑∐

{
{2, 3, 4}

}
∩ · · ·
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Note that in implementation we do not have to compute the term pre
[
δ]0,

X : 0
Y : 0

]
({3, 4})

as it was already computed in the previous iteration of the algorithm, and thus we can
use caching of intermediate results to obtain an even more efficient decision procedure.
We end up with the term

t[N]
1 ] = ↑∐

{
{3, 4}, {2, 3, 4}

}
.

We continue with processing of the second negation by computing the term corre-
sponding to the set F2 of automaton Aϕ2 for the subformula ϕ2 ≡ ¬∃Y : ϕ1 using
Equation 3.21(i) to obtain the term

t[F2] = ↓{N ]
1} = ↓

{
↑∐
{
{3, 4}, {2, 3, 4}

}}
.

Next, we process the last quantifier corresponding to the formula ϕ]2 ≡ ∃X : ϕ2. The

symbolic fixpoint computation of F ]2 from Equation 3.21(ii) then starts from F2 and uses
an iterative application of pre [δ]2,0̄] according to the equation

F ]2 = µW .F2 ∪ pre [δ]2,0̄](W ).

Note that, since in ϕ]2, all of the variables are projected away, the zero symbol 0̄ now
corresponds to the mapping ∅ of the empty set of free variables to the set {0, 1}.The
inverse projection of the symbol 0̄ is then the set π−1

[X](∅) = { X : 0 , X : 1 }. The

fixpoint computation proceeds similarly to the computation of t[F ]0 ]. Using (3.48), we
transform the computation of the image of pre [δ]2,ω

′′] into the computation of a series
of cpre [δ]1,ω

′]-images of the sub-terms of t[N]
1 ]. These are in turn transformed by (3.34)

into a computation of a series of pre [δ]0,ω]-images of sub-sub-terms of t[F ]0 ], i.e. subsets
of Q0. For our example, this yields a fixpoint computation analogous to the previous
computation of the t[F ]0 ], resulting in the term

t[F ]2 ] = ↓
{
↑∐
{
{3, 4}, {2, 3, 4}

}
, ↑∐

{
{3, 4}, {2, 3, 4}, {1, 2, 3, 4}

}}
.

Finally, using Equation 3.21(iii), we process the last negation corresponding to the for-
mula ϕ ≡ ϕ3 ≡ ¬∃X : ϕ2, which yields the final term representing N3, namely,

t[N3] = ↑∐
{
↓
{
↑∐
{
{3, 4}, {2, 3, 4}

}
, ↑∐

{
{3, 4}, {2, 3, 4}, {1, 2, 3, 4}

}}}
.

Now, it remains to check whether I3 ∩ F3 6= ∅ using the computed term t[N3]. We will
show how to evaluate this intersection in the next section.
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3.2.5. Testing Im ∩ Fm 6= ∅ on Symbolic Terms

Due to the special form of the set Im (every Ii, where 1 ≤ i ≤ m, is the singleton set
{Ii−1}, cf. Section 3.2.1), the test Im ∩Fm 6= ∅ can be done efficiently over the symbolic
terms representing Fm. Since Im = {Im−1} is a singleton set, testing Im ∩ Fm 6= ∅ is
equivalent to testing Im−1 ∈ Fm. But, if m is odd, our approach computes the symbolic
representation of Nm instead of Fm. However, obviously, since Nm is the complement of
Fm, it simply holds that Im−1 ∈ Fm ⇐⇒ Im−1 6∈ Nm. Our way of testing Im−1 ∈ ↓S on
a symbolic representation of the set ↓S of level m is based on these following equations:

{q} ∈ ↓S ⇐⇒ ∃S ∈ S : q ∈ S (3.56)

{q} ∈ ↑∐S ⇐⇒ ∀S ∈ S : q ∈ S (3.57)

and, for i = 0,

I0 ∈ ↑
∐
S ⇐⇒ ∀S ∈ S : I0 ∩ S 6= ∅. (3.58)

Given a symbolic term t[R]m of level m representing a set Rm ⊆ Qm, testing the
emptiness of Im ∩Rm or Im ⊆ Rm can be done over t[Rm] by a recursive procedure that
descends along the structure of t[Rm] using (3.56) and (3.57), essentially generating an
AND-OR tree, terminating the descent by an application of (3.58).

Example 3.2. To finish Example 3.1, we need to test whether I3 ∩ F3 = ∅. This is
equivalent to checking whether I3 ⊆ N3, i.e., whether {{{{1}}}} ⊆ N3, which holds iff

I2 = {{{1}}} ∈ N3, using t[N3] = ↑∐{F ]2} to represent N3. From (3.57), we get that

I2 = {{{1}}} ∈ ↑∐{F ]2} ⇐⇒ I1 = {{1}} ∈ F ]2

because F ]2 is the denotation of the only sub-term t[F ]2 ] of t[N3]. Equation (3.56) establishes
that

I1 = {{1}} ∈ F ]2 ⇐⇒
{1} ∈ ↑∐

{
{3, 4}, {2, 3, 4}

}
∨ {1} ∈ ↑∐

{
{3, 4}, {2, 3, 4}, {1, 2, 3, 4}

}
.

Each of the disjuncts can then be further reduced by (3.57) into a conjunction of mem-
bership queries on the base level, which is solved using (3.58) as follows:

I1 = {{1}} ∈ F ]2 ⇐⇒
(1 ∈ {3, 4} ∧ 1 ∈ {2, 3, 4}) ∨ (1 ∈ {3, 4} ∧ 1 ∈ {2, 3, 4} ∧ 1 ∈ {1, 2, 3, 4})

Since none of the disjuncts is satisfied, we have that I1 6∈ F ]2 , so I2 6∈ N3, implying
that I2 ∈ F3. We conclude that I3 ⊆ N3 and hence |= ϕ.
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3.2.6. Subsumption of Symbolic Terms

Although the use of symbolic terms instead of an explicit enumeration of sets of states
itself considerably reduces the searched space, an even greater degree of reduction can
be obtained using subsumption inside the symbolic representatives to reduce their size,
similarly as in the antichain algorithms [WDHR06]. For any set of sets S containing
a pair of distinct elements R, T ∈ S s.t. R ⊆ T , it holds that

↓S = ↓(S \ {R}) and ↑∐S = ↑∐(S \ {T}). (3.59)

Therefore, if S is used to represent the set ↓S, the element R is subsumed by T and can
be removed from S without changing its denotation. Likewise, if S is used to represent
↑∐S, the element T is subsumed by R and can be removed from S without changing
its denotation. We can thus simplify any symbolic term by pruning out its sub-terms
that represent elements subsumed by elements represented by other sub-terms, without
changing the denotation of the term.

Computing subsumption on terms can be done using the following two equations:

↓R ⊆ ↓S ⇐⇒ ∀R ∈ R : ∃S ∈ S : R ⊆ S (3.60)

↑∐R ⊆ ↑∐S ⇐⇒ ∀S ∈ S : ∃R ∈ R : R ⊆ S. (3.61)

Using (3.60) and (3.61), testing subsumption of terms of level i reduces to testing sub-
sumption of terms of level i − 1. The procedure for testing subsumption of two terms
descends along the structure of the term, using (3.60) and (3.61) on levels greater than
0, and on level 0, where terms are subsets of Q0, it tests subsumption by set inclusion.

Example 3.3. In Example 3.1, we can use the inclusions of {3, 4} ⊆ {2, 3, 4} ⊆
{1, 2, 3, 4} and (3.59) to reduce t[N]

1 ] = ↑∐
{
{3, 4}, {2, 3, 4}

}
and the intermediate term

t = ↑∐
{
{3, 4}, {2, 3, 4}, {1, 2, 3, 4}

}
to the terms

t[N]
1 ]
′ = ↑∐

{
{2, 3, 4}

}
and

t′ = ↑∐
{
{1, 2, 3, 4}

}
respectively.

Moreover, Equation (3.61) implies that the term t′ = ↑∐
{
{1, 2, 3, 4}

}
is subsumed by

t[N]
1 ]
′ = ↑∐

{
{2, 3, 4}

}
, and so we can reduce t[F ]2 ] = ↓

{
↑∐
{
{2, 3, 4}

}
, ↑∐

{
{1, 2, 3, 4}

}}

to

t[F ]2 ]
′ = ↓

{
↑∐
{
{2, 3, 4}

}}
.
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3.3. Experimental Evaluation

We have implemented a prototype of our approach in the tool called dWiNA [FHLV14].
We built it over the frontend of the Mona tool to parse the input formula into an internal
representation in the form of FAs encoded using the MTBDD-based representation from
the libvata library [LŠV12]. dWiNA supports two modes of operation. In Mode I,
we use Mona to generate the minimal deterministic automaton Aϕ0 corresponding to
the matrix of the tested formula. Since the input formula may not be in the prenex
normal form (i.e., a prefix of quantifiers followed by a quantifier-free matrix), the matrix
here corresponds to the subformula under the topmost quantifier, or, if there is no single
top-most quantifier, to the entire formula. The automaton is then translated into the
libvata format, and our algorithm is run on top of the libvata-represented automaton.
In Mode II, we first transform the input formula into the prenex normal form where the
occurence of negation in the matrix is limited to literals, and then construct a non-
deterministic automaton Aϕ0 for the matrix directly using libvata.

We evaluated dWiNA against two classes of benchmarks: formulae arising in veri-
fication of pointer programs using the method based on the logic Strand [MQ11] (as
presented in Section 2.4.1), and several parametric families of manually constructed for-
mulae, from which some were originally designed as show cases for evaluation of other
tools. The main focus of our experiment was on comparing dWiNA with Mona, but
we carried out some comparison with other available tools too. Namely, we compared
dWiNA with an implementation of the coalgebraic decision procedure [Tra15], which
we refer to as Coalg, a decision procedure based on symbolic automata [DV14], which
we refer to as SFA, and the tool Toss implementing a procedure based on the Shelah’s
decomposition [GK10], which were briefly described in related works.

A comparison of dWiNA with Mona on Strand formulae. Table 3.1 shows the
comparison of dWiNA and Mona against formulae arising in the shape analysis based
on the logic Strand [MQ11]. For this comparison, we used dWiNA in Mode I. We
measured the time the tools took for processing the quantifier prefix of the formulae.
Overall, dWiNA was comparable and sometimes slightly slower than Mona. However,
we also compared the sum of the numbers of states of all automata generated by Mona
when processing the quantifier prefix with the number of symbolic terms generated
by dWiNA. The state spaces generated by dWiNA are about one or two orders of
magnitude smaller than those generated by Mona. This makes us believe that with
enough optimization, dWiNA as a tool could become better even time-wise.

An attempt to run dWiNA on this benchmark in Mode II was unsuccessful since
libvata was not able to construct the matrix automaton in a reasonable time. This is be-
cause the construction implemented within libvata, which is based on non-deterministic
automata, is not optimized. In particular, it uses no automata reduction (whereas de-
terministic minimization is one of the key features of Mona).
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Table 3.1.: Results for formulae obtained from verification tasks of Strand [MQ11]

Benchmark
Time [s] Space [states]

Mona dWiNA Mona dWiNA

bubblesort-else 0.01 0.01 1285 19
bubblesort-if-else 0.02 0.23 4260 234
bubblesort-if-if 0.12 1.14 8390 28

sorted-list-insert-after-loop 0.01 0.01 167 36
sorted-list-insert-before-head 0.01 0.01 43 45
sorted-list-insert-before-loop 0.01 0.01 103 47
sorted-list-insert-error-error 0.01 0.01 103 47
sorted-list-insert-in-loop 0.01 0.01 463 59

sorted-list-reverse-after-loop 0.01 0.01 179 110
sorted-list-reverse-before-loop 0.01 0.01 179 110
sorted-list-reverse-in-loop 0.02 0.02 1311 271

sorted-list-search-after-loop 0.01 0.01 90 274
sorted-list-search-before-loop 0.01 0.01 90 274
sorted-list-search-in-loop 0.01 0.02 1311 84

A comparison of dWiNA with Mona on synthetic benchmarks. To demon-
strate that our approach can, indeed, scale significantly better than the explicit au-
tomata construction, we created several parametric families of WS1S formulae. Their
basic formulae express relations among subsets of N0, such as the existence of certain
transitive relations, singleton sets, or intervals (their more elaborated definitions can be
found in [FHLV14]). From these, we algorithmically generated families of formulae with
a larger quantifier depth, regardless of the meaning of the generated formulae (though
their semantics is still nontrivial).

In Table 3.2, we give results that we obtained from experimenting with one of the
families, called HornSub, where the basic formula expresses existence of an ascending
chain of n sets ordered w.r.t. ⊂.4 The parameter k stands for the number of alternations
in the prefix of the formula:

∃Y : ¬∃X1¬ . . .¬∃Xk, . . . , Xn :
∧

1≤i<n

(
Xi ⊆ Y ∧Xi ⊂ Xi+1

)
⇒ Xi+1 ⊆ Y.

We see that dWiNA clearly outperforms Mona, showing that in many cases it is unnec-
essary to construct the whole state space of the corresponding automaton Aϕ in order
to decide the validity of the formula ϕ. We ran these experiments in Mode II of dWiNA
(the experiment in Mode I was not successful due to a too costly conversion of a large
matrix automaton from Mona to libvata).

4Results for the other families are very similar and hence skipped here. An interested reader is referred
to [FHLV14] for more detailed measurements and evaluation.
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Table 3.2.: Results from experiments with the HornSub formulae

Time [s] Space [states]
k Mona dWiNA Mona dWiNA

2 0.20 0.01 25 517 44

3 0.57 0.01 60 924 50

4 1.79 0.02 145 765 58

5 4.98 0.02 349 314 70

6 ∞ 0.47 ∞ 90

All of the experiments above, targeted at a comparison of dWiNA and Mona only,
were performed on an Intel Core i7-4770@3.4 GHz processor with 32 GiB RAM.

A comparison of dWiNA with other tools. Our last set of experiments aims at
a comparison with other available implementations of WS1S decision procedures, namely
Toss [GK10], SFA [DV14], and Coalg [Tra15]. Since the tools support a limited set
of syntactic features, we could only use a subset of the available benchmark formulae.
Namely, we took the parametric families of formulae HornLeq from [DV14] and HornIn

from [GK10], originally proposed to evaluate the performance of SFA and Toss, re-
spectively, and our parametric family of formulae SetClosed.5 The basic formula of
the SetClosed family expresses the non-existence of an interval set. The parameter n
stands for the number of existential quantifications in the prefix of the formula:

∃X1, . . . , Xn : ∀x : ¬∀y, z :
∧

1≤i≤n

(
(x ∈ Xi ∧ x ≤ y ∧ y ≤ z ∧ z ∈ Xi)⇒ y ∈ Xi

)

This experiment had to be evaluated on a different machine with a system that meets
the requirements of all the tools6, with an Intel Core i7-4770@3.4 GHz processor and
16GiB RAM, running Debian GNU/Linux. Table 3.3 gives the run times of the tools.
We use∞ in case the time exceeded 2 minutes and oom to denote that the tool ran out of
memory. We can see that while Toss performs best on their own benchmarks, dWiNA
outperforms the other tools on the rest of the formulae.

5Note that the HornSub family is not supported by Toss and Coalg, and thus we chose a comparably
complex family of SetClosed to present the overall comparison.

6Note that the Toss tool required specific version of OCaml that was not available for a stable debian
build.
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Table 3.3.: Experiments with parametric families of formulae

Benchmark Mona Toss Coalg SFA dWiNA

HornLeq [DV14]

horn-leq06 0.01 0.02 1.10 0.01 0.01
horn-leq07 0.01 0.02 11.09 0.01 0.01
horn-leq08 0.01 0.02 101.48 0.01 0.01
horn-leq09 0.01 0.02 ∞ 0.01 0.01
horn-leq11 0.05 0.03 ∞ 0.02 0.01
horn-leq13 0.19 0.04 ∞ 0.02 0.01
horn-leq14 0.45 0.04 ∞ 0.02 0.01
horn-leq15 1.19 0.05 ∞ 0.03 0.02
horn-leq16 3.35 0.05 ∞ 0.03 0.02
horn-leq17 9.07 0.05 ∞ 0.03 0.02
horn-leq18 22.89 0.06 ∞ 0.03 0.02
horn-leq19 oom 0.06 ∞ 0.03 0.03

HornIn [GK10]

horn-in04 0.01 0.01 0.02 0.27 0.01
horn-in05 0.01 0.01 0.14 0.76 0.03
horn-in06 0.01 0.02 1.07 2.65 0.13
horn-in07 0.01 0.02 8.50 8.31 0.29
horn-in08 0.01 0.02 68.05 32.44 1.16
horn-in09 0.03 0.03 ∞ ∞ 3.42
horn-in10 0.09 0.04 ∞ ∞ 18.40
horn-in11 0.20 0.04 ∞ ∞ 54.74
horn-in12 0.48 0.04 ∞ ∞ ∞
horn-in13 1.20 0.04 ∞ ∞ ∞
horn-in14 2.95 0.05 ∞ ∞ ∞
horn-in15 7.26 0.05 ∞ ∞ ∞
horn-in16 oom 0.06 ∞ ∞ ∞

SetClosed

set-closed01 0.01 0.02 0.04 0.01 0.01
set-closed02 0.01 0.02 ∞ 0.13 0.01
set-closed03 0.01 0.18 ∞ 0.14 0.01
set-closed04 0.34 ∞ ∞ 13.96 0.01
set-closed05 ∞ ∞ ∞ ∞ 0.01
set-closed07 ∞ ∞ ∞ ∞ 0.01
set-closed09 ∞ ∞ ∞ ∞ 0.10
set-closed11 ∞ ∞ ∞ ∞ 0.95
set-closed12 ∞ ∞ ∞ ∞ 3.61
set-closed13 ∞ ∞ ∞ ∞ 14.3
set-closed14 ∞ ∞ ∞ ∞ 69.08
set-closed15 ∞ ∞ ∞ ∞ ∞

49



3.4. Conclusion

We proposed a novel approach for dealing with alternating quantifications within the
automata-based decision procedure for WS1S which we first proposed in [FHLV15] and
then published its extended version in [FHLV19]. Our approach is based on a generaliza-
tion of the idea of the so-called antichain algorithm for testing universality or language
inclusion of finite automata. Our approach processes a prefix of the formula with an
arbitrary number of quantifier alternations on-the-fly using an efficient symbolic rep-
resentation of the state space, enhanced with subsumption pruning. Our experimental
results are encouraging and show that the direction that we started in [FHLV15]—i.e. us-
ing modern techniques for non-deterministic automata in the context of deciding WS1S
formulae—is rather promising.

In the next chapter we will lift the symbolic pre/cpre operators to a more general
notion of terms that will allow us to work with general sub-formulae instead (that may
include logical connectives and nested quantifiers). Such algorithm could then be run
over arbitrary formulae, without the need of the transformation into the prenex normal
form. Moreover, we will show that this also opens a way of adopting optimizations
used in other tools as well as syntactical optimizations of the input formula such as
anti-prenexing.
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4. Lazy Automata Techniques for WS1S

In preliminaries, we have shown that the classical WS1S decision procedure builds an
automaton Aϕ accepting all encodings of models of the given formula ϕ in a form of
finite words, and only then tests whether the language of Aϕ is empty. As we have
already discussed in Chapter 3, the bottleneck of this procedure is the size of Aϕ, which
can be huge due to the fact that the derivation of Aϕ involves many nested automata
product constructions and complementation steps, preceded by determinization. We
have demonstrated how one can avoid this bottleneck when processing the topmost
quantifier prefix of the given formulae in Chapter 3. However, we limited ourselves to
processing of this prefix only and hence could not process arbitrary formula efficiently,
and, moreover, in quite some cases the decision procedure still led to a state-space
explosion.

Hence, our next goal is to avoid more of the state-space explosion involved in the
explicit construction and to handle formulae without a need to transform them into
the prenex normal form. We represent automata symbolically and, while constructing
Aϕ, we test the emptiness of Aϕ on the fly which allows us to omit the state space
irrelevant to the emptiness test. We build on two main principles: lazy evaluation and
subsumption-based pruning. These principles have, to some degree, already appeared
in the so-called antichain-based testing of language universality and inclusion of finite
automata [WDHR06]. However, the richer structure of the WS1S decision problem
allows us to elaborate on these principles in novel ways and utilize their power even
more.

Overview of our algorithm. We propose an algorithm which originates in the clas-
sical WS1S decision procedure, in which models of formulae are encoded by finite words
over a multi-track binary alphabet where each track corresponds to a variable of ϕ. In tϕ,
the atomic formulae of ϕ are replaced by predefined automata accepting languages of
their models. Boolean operators (∧, ∨, and ¬) are turned into the corresponding set
operators (∪, ∩, and complement) over the languages of models. An existential quan-
tification ∃X becomes a sequence of two operations. First, a projection πX removes
information about valuations of the quantified variable X from symbols of the alphabet,
i.e. the so-called projection operation. After the projection, the resulting language L
may, however, encode some but not necessarily all encodings of the models (a problem,
we have outlined in the Chapter 2). In particular, encodings with some specific numbers
of trailing 0̄’s, used as a padding, may be missing. To obtain a language containing all
encodings of the models, L must be extended to include encodings with any number of
trailing 0̄’s.
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In the method presented in Chapter 3, this process was handled by defined fixpoint
computations. Here instead, we take the (right) 0̄∗-quotient of L, written L−0̄∗, which is
the set of all prefixes of words of L with the remaining suffix in 0̄∗. We give an example
WS1S formula ϕ in equation (4.1) and its language term t[ϕ] in equation (4.2). The
dotted operators represent operators over language terms. See Fig. 4.2 for the automata
ASing(X) and AY=X+1.

ϕ ≡ ∃X : Sing(X) ∧ (∃Y :Y =X + 1) (4.1)

t[ϕ] ≡ πX(
{
ASing(X) ∩ (πY (AY=X+1)− 0̄∗)

}
)− 0̄∗ (4.2)

The novelty of our work is that we test the emptiness of Lϕ directly over t[ϕ]. The term
is used as a symbolic representation of the automata that would be explicitly constructed
in the classical procedure: inductively to the terms structure, starting from the leaves
and combining the automata of sub-terms by standard automata constructions that
implement the term operators. Instead of first building the automaton and only then
testing emptiness, we test it on the fly during the construction. This offers opportunities
to prune out portions of the state space that turn out not to be relevant for the test.

A sub-term t[ψ] of t[ϕ], corresponding to a sub-formula ψ, represents final states of
the automaton Aψ accepting the language encoding models of ψ. Predecessors of the
final states represented by t[ψ] correspond to quotients of t[ψ]. All states of Aψ could
hence be constructed by applying quotient operation on t[ψ] until fixpoint. By working
with terms, our procedure can often avoid building large parts of the automata when
they are not necessary for answering the emptiness query. For instance, when testing
the emptiness of the language of a term t1 ∪ t2, we adopt the lazy approach (in this
particular case, the so-called short-circuit evaluation) and first test the emptiness of
the language of t1; if it is non-empty, we do not need to process t2. Testing language
emptiness of terms arising from quantified sub-formulae is more complicated since they
translate to −0̄∗ quotients. We evaluate the test on t− 0̄∗ by iterating the −0̄ quotient
from t. We either conclude with the positive result as soon as one of the iteration
computes a term with a non-empty language, or with the negative one if the fixpoint of
the quotient construction is reached. The fixpoint condition is that the so-far computed
quotients subsume the newly constructed ones, where subsumption is a relation under-
approximating inclusion of languages represented by terms. We also use subsumption
to prune the set of computed terms so that only an antichain of the terms maximal wrt
subsumption is kept.

Besides lazy evaluation and subsumption, our approach can benefit from multiple
further optimizations. For example, it can be combined with the explicit WS1S decision
procedure, which can be used to transform arbitrary sub-terms of tϕ to automata. These
automata can then be rather small due to minimization, which cannot be applied in the
on-the-fly approach (the automata can, however, also explode due to determinisation and
product construction, hence this technique comes with a trade-off). We also propose
a novel way of utilising BDD-based encoding of automata transition functions in the
Mona style for computing quotients of terms. Finally, our method can exploit various
methods of logic-based pre-processing, such as anti-prenexing, which, in our experience,
can often significantly reduce the search space of fixpoint computations.
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Experiments. We have implemented our decision procedure in a tool called Gaston
and compared its performance with other publicly available WS1S solvers on benchmarks
from various sources. In our experiments, Gaston managed to win over all other solvers
on various parametric families of formulae that were designed—mostly by authors of
other tools—to stress-test WS1S solvers. Moreover, Gaston was able to significantly
outperform Mona and other solvers on a number of formulae obtained from various
formal verification tasks, in particular formulae describing properties of singly-linked
lists [MQ11] and arrays [ZHW+14] (see Section 2.4). This shows that our approach is
applicable in practice and has a great potential to handle more complex formulae than
those so far obtained in WS1S applications. We believe the efficiency of our approach
can be pushed much further, making WS1S scale enough for new classes of applications.

Contributions. We summarize our contributions to WS1S achieved by our second
proposed approach linked with the Gaston tool:

1. Instead of the explicit automata construction described in Section 2.3, we develop
an on-the-fly decision procedure based on the so-called language terms that can
efficiently process arbitrary formulae. Contrary to the classical procedure, our
method can avoid costly determinisation in many cases.

2. We propose a combination of our procedure with the classical decision procedure
for WS1S as implemented, e.g. by the Mona tool. This allows one to exploit the
key optimizations of both approaches, i.e. minimization and lazy evaluation.

3. Besides the novel decision procedure, we develop a series of optimizations that
are not limited to our approach only. Other tools and methods can exploit these
optimizations, such as, e.g. anti-prenexing, to achieve better efficiency.

4. In our experimental evaluation, we demonstrate we improve the state of the art of
WS1S decision procedures, especially on formulae describing program invariants
of advanced data structures. In particular, we report on a series of benchmarks
used for verification of programs, where we outperformed the Mona tool.

5. We perform an extensive evaluation of all the publicly available tools (listed in
Section 2.3.1) on a series of benchmarks that are used to stress-test WS1S decision
procedures. We present a fair speed comparison of all of the available tools.

Outline. The chapter is structured into three sections. In Section 4.1, we introduce the
notion of language terms and propose a basic version of the decision procedure for WS1S
based on such terms. Next, in Section 4.2, we show how to optimize this basic procedure.
In particular, we show how to exploit the lazy evaluation principles and subsumption
to prune out large portions of the generated state space. In addition, we also describe
other optimizations and heuristics, such as the anti-prenexing technique or a combination
of our procedure with the classical decision procedure as described in Chapter 2. We
briefly describe the implementation of the Gaston tool and the experimental evaluation
comparing our procedure with other tools in the Section 4.3. Finally, we conclude this
chapter with Section 4.4 and propose possible future directions of our research.
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4.1. Satisfiability via Language Term Evaluation

First, we introduce the basic version of our symbolic algorithm for deciding satisfiability
of a WS1S formula ϕ with a set of variables V. To simplify the presentation, we consider
the particular case of ground formulae (i.e. formulae without free variables), for which
satisfiability corresponds to validity. Satisfiability of a formula with free variables can be
reduced to this case by prefixing it with existential quantification over the free variables.
If ϕ is ground, the language LV(ϕ) is either Σ∗V in the case ϕ is valid, or empty if ϕ is
invalid. Then, to decide the validity of ϕ, it suffices to test if ε ∈ LV(ϕ).

Our algorithm evaluates the so-called language term t[ϕ], a symbolic representation of
the language LV(ϕ), whose structure reflects the construction of Aϕ. It is a (finite) term
generated by the following grammar:

t ::= A | t∪ t | t∩ t | t | πX (t) | t−α | t−α∗ | T
where A is a finite automaton over the alphabet ΣV, α is a symbol τ ∈ ΣV or a set
S ⊆ ΣV of symbols, and T is a finite set of terms. We use dotted variants of the
operators to distinguish the syntax of language terms manipulated by our algorithm
from the cases when we wish to denote the semantical meaning of the operators. A term
of the form t−α∗ is called a star quotient, or shortly a star, and a term t− τ is a symbol
quotient. Both are also called quotients. The language L(t) of a term t is obtained
by taking the languages of the automata in its leaves and combining them using the
term operators. Terms with the same languages are language-equivalent. The special
terms T , having the form of a set, represent intermediate states of fixpoint computations
used to eliminate star quotients. The language of a set T equals to the union of the
languages of its elements. The reason for having two ways of expressing a union of terms
is a different treatment of ∪ and T , which will be discussed later. We use the standard
notion of isomorphism of two terms, extended with having two set terms isomorphic iff
they contain isomorphic elements.

A formula ϕ is initially transformed into the term t[ϕ] by replacing every atomic
sub-formula ψ in ϕ by the automaton Aψ accepting LV(ψ), and by replacing the logical
connectives with dotted term operators according to equations (2.3)–(2.6) of Section 2.3.
The core of our algorithm is evaluation of the ε-membership query ε ∈ t[ϕ], which will
also trigger further rewriting of the term.

ε ∈ T iff ε ∈ t for some t ∈ T (4.3)

ε ∈ t∪ t′ iff ε ∈ t or ε ∈ t′ (4.4)

ε ∈ t∩ t′ iff ε ∈ t and ε ∈ t′ (4.5)

ε ∈ t iff not ε ∈ t (4.6)

ε ∈ πX (t) iff ε ∈ t (4.7)

ε ∈ A iff I(A) ∩ F (A) 6= ∅ (4.8)

The ε-membership query on a quotient-free term is evaluated using equivalences (4.3)
to (4.8). These equivalences reduce tests on terms to Boolean combinations of tests on
their sub-terms and allow pushing the test towards the automata at the term’s leaves.
Equivalence (4.8) then reduces it to testing intersection of the initial states I(A) and
the final states F (A) of an automaton.
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Evaluation of quotient terms. Equivalences (4.3) to (4.7) do not apply to quotients,
which arise from quantified sub-formulae (cf. equation (2.6) in Section 2.3). A quotient
is therefore (in the basic version) first rewritten into a language-equivalent quotient-free
form. This rewriting corresponds to saturating the set of final states of an automaton
in the explicit decision procedure with all states in their pre∗-image over 0̄. In our
procedure, we use rules (4.9) and (4.10).

πX (T )− 0̄∗ → πX (T −πX (0̄)∗) (4.9)

Rule (4.9) transforms the term into a form in which a star quotient is applied on a plain
set of terms rather than on a projection. A star quotient of a set is then eliminated using
a fixpoint computation that saturates the set with all quotients of its elements wrt the
set of symbols S = πX (0̄). A single iteration is implemented using rule (4.10).

T −S∗ →
{
T if T 	 S v T
(T ∪ (T 	 S))−S∗ otherwise

(4.10)

In rule (4.10), T 	 S is the set {t− τ | t ∈ T ∧ τ ∈ S} of quotients of terms in T wrt
symbols of S. (Note that rule (4.10) uses the identity S∗ = {ε}∪S∗S.) Termination of the
fixpoint computation is decided based on the subsumption relation v: some relation that
under-approximates language inclusion of terms. When the condition holds, then the
language of T is stable wrt quotient operation by S, i.e. L(T ) = L(T −S∗). In the basic
algorithm, we use term isomorphism for v; later, we provide a more precise subsumption
with a good trade-off between precision and cost. Note that an iteration of rule (4.10)
can be implemented efficiently by the standard worklist algorithm, which extends T only
with quotients T ′ 	 S of terms T ′ that were added to T in the previous iteration.

(t∪ t′)− τ → (t− τ)∪(t′− τ) (4.11)

(t∩ t′)− τ → (t− τ)∩(t′− τ) (4.12)

t− τ → t− τ (4.13)

πX (t)− τ → πX (t−πX (τ)) (4.14)

A− τ → pre [τ ](A) (4.15)

The set T 	S introduces quotient terms of the form t− τ , for τ ∈ ΣV, which also need
to be eliminated to facilitate the ε-membership test. This can be done using rewriting
rules (4.11) to (4.15), where pre [τ ](A) is A with its set of final states F replaced by
pre [τ ](F ), i.e. its predecessors.

If t is quotient-free, then rules (4.11)–(4.14) applied to t− τ push the symbol down
the structure of t towards the leaves, where it is eliminated by rule (4.15). Otherwise, if
t is not quotient-free, it can be re-written using (4.9)–(4.15). In particular, if t is a star
quotient of a quotient-free term, then the quotient-free form of t can be obtained by
iterating rule (4.10), combined with rules (4.11)–(4.15) to transform the new terms in
T into a quotient-free form. Finally, terms with multiple quotients can be rewritten to
the quotient-free form inductively to the structure. Every inductive step rewrites some
star quotient of a quotient-free sub-term into the quotient-free form. Note this is bound
to terminate since the terms generated by performing quotient operation on a star have
the same structure as the original term, differing only in the leaves. As the number of
the states is finite, so is the number of the terms. Hence, it will eventually terminate.
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Figure 4.1.: Example of deciding the validity of the formula ϕ ≡ ∃X : Sing(X) ∧ (∃Y :
Y = X + 1) using the basic procedure.
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(b) AY=X+1

Figure 4.2.: Example automata

Example 1. We will show how our procedure works using an example of testing the
satisfiability of the formula ϕ ≡ ∃X : Sing(X) ∧ (∃Y : Y = X + 1). We start by
rewriting ϕ into a term t[ϕ] representing its language LV(ϕ):

t[ϕ] ≡ πX({{q}∩πY ({t}−πY (0̄)∗)}−πX(0̄)∗)

(note that we have already used rule (4.9) twice). In the example, a set R of states will
denote an automaton obtained from ASing(X) or AY=X+1 (cf. Fig. 4.2) by setting the
final states to R. Red nodes in the computation tree denote ε-membership tests that
failed and green nodes those that succeeded. Grey nodes denote tests that were not
evaluated.
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As noted previously, it holds that |= ϕ iff ε ∈ t[ϕ]. The sequence of computation
steps for determining the ε-membership test is shown using the computation tree in
Fig. 4.1. The nodes contain ε-membership tests on terms and the test of each node is
equivalent to a conjunction or disjunction of tests of its children. On the other hand,
leafs of the form ε ∈ R are evaluated as testing intersection of R with the initial states
of the corresponding automaton. We remark that, in the example, we also use the lazy
evaluation — a technique (described in Section 4.2.2), which allows us to evaluate ε-
membership tests on partially computed fixpoints.

The computation starts at the root of the tree and proceeds along the edges in the
order given by their circled labels. Edges 2 and 4 were obtained by a partial unfolding
of a fixpoint computation by rule (4.10) and immediately applying ε-membership test
on the obtained terms. After step 3 , we conclude that ε /∈ {q} since {p} ∩ {q} = ∅,
which further refutes the whole conjunction below 2 , so the overall result depends on
the sub-tree starting by 4 . Steps 5 and 9 represent another application of rule (4.10),
which transforms πX(0̄) to the symbols

[
X : 0
Y : 0

]
and

[
X : 1
Y : 0

]
, respectively. Branch 5 pushes

the − [
X : 0
Y : 0

]
quotient to the leaf term using rules (4.12) and (4.5) and eventually fails

because the predecessors of {q} over the symbol
[
X : 0
Y : 0

]
in ASing(X) is the empty set. On

the other hand, the evaluation of branch 9 continues using rule (4.12), succeeding in

branch 10 . Branch 12 is further evaluated by projecting the quotient − [
X : 1
Y : 0

]
wrt Y

(rule 4.14) and unfolding the inner star quotient zero times (when the test 14 failed) and

once (when the test 16 succeeded). The unfolding of one symbol eventually succeeds in

step 19 , which leads to the conclusion that formula ϕ is, indeed, valid. Note that thanks
to the lazy evaluation, none of the fixpoint computations had to be fully unfolded.
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4.2. Towards An Efficient Algorithm

In this section, we show how to build an efficient algorithm based on the symbolic term
rewriting approach presented in Section 4.1. This symbolic approach offers many op-
timization opportunities that are to a large degree orthogonal to those of the explicit
approach. The main difference is in the available techniques for reducing the explored au-
tomata state space. While the explicit construction in Mona profits mainly from calling
automata minimization after every step of the inductive construction, the symbolic algo-
rithm can instead exploit generalized subsumption and lazy evaluation. Unfortunately,
neither the explicit nor the symbolic approach seems to be compatible with both mini-
mization and lazy techniques (at least in their pure variant, disregarding the possibility
or a combination of the two approaches that we will presented later in this section).

Efficient data structures have a major impact on performance of the decision proce-
dure. The efficiency of the explicit procedure implemented in Mona is to a large degree
due to the BDD-based representation of automata transition relations. BDDs compactly
represent transition functions over large alphabets and provide efficient implementation
of operations needed in the explicit algorithm. Our symbolic algorithm can, on the other
hand, benefit from a representation of terms as DAGs where all occurrences of the same
sub-term are represented by a unique DAG node. Moreover, we assume the nodes to be
associated with languages rather than with concrete terms (allowing the term associated
with a node to change during its further processing, without a need to transform the
DAG structure as long as the language of the term does not change).

We also show that despite our algorithm uses a completely different data structure
than the explicit one, it can still exploit a BDD-based representation of transitions of the
automata in the leaves of terms. Moreover, our symbolic algorithm can also be combined
with the explicit algorithm. Particularly, it turns out that, sometimes, it pays off to
translate to automata sub-formulae larger than atomic ones. Our procedure can then be
viewed as an extension of Mona that takes over once Mona stops managing. Lastly,
optimizations on the level of formulae often have a huge impact on the performance of
our algorithm. The technique that we found most helpful is the so-called anti-prenexing.
We elaborate on all these optimizations in the rest of this section.
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4.2.1. Subsumption

Our first technique for reducing the explored state space is based on the notion of sub-
sumption between symbolic terms, which is similar to the subsumption used in antichain-
based universality and inclusion checking over finite automata [WDHR06]. We define
subsumption as the relation vs on terms that is given by equivalences (4.16)–(4.21).
Notice that, in rule (4.16), all terms of T are tested against all terms of T ′, while in rule
(4.17), the left-hand side term t1 is not tested against the right-hand side term t′2 (and
similarly for t2 and t′1).

T vs T ′ iff ∀t ∈ T ∃t′ ∈ T ′ : t vs t′ (4.16)

t1 ∪ t2 vs t′1 ∪ t′2 iff t1 vs t′1 and t2 vs t′2 (4.17)

t1 ∩ t2 vs t′1 ∩ t′2 iff t1 vs t′1 and t2 vs t′2 (4.18)

t vs t′ iff t ws t′ (4.19)

πX (t) vs πX (t′) iff t vs t′ (4.20)

A vs A′ iff F (A) ⊆ F (A′) (4.21)

The reason why the dotted operator ∪ is order-sensitive is that the terms on different
sides of the ∪ are assumed to be built from automata with disjoint sets of states (origi-
nating from different sub-formulae of the original formula), and hence the subsumption
test on them can never conclude positively. The subsumption under-approximates lan-
guage inclusion and can therefore be used for v in rule (4.10). It is far more precise
than isomorphism and its use leads to an earlier termination of fixpoint computations.

Moreover, vs can be used to prune star quotient terms T −S∗ while preserving their
language. Since the semantics of the set T is the union of the languages of its elements,
then elements subsumed by others can be removed while preserving the language. T
can thus be kept in the form of an antichain of vs-incomparable terms. This pruning
corresponds to using the rewriting rule (4.22):

T → T \ {t} if there is t′ ∈ T \ {t} with t vs t′. (4.22)

4.2.2. Lazy Evaluation

Our approach works in the top-down nature. Hence, we can postpone evaluation of some
of the computation branches in case the so-far evaluated part is sufficient for determining
the result of the evaluated ε-membership or subsumption test. We call this optimization
lazy evaluation. A basic variant of lazy evaluation short-circuits elimination of quotients
from branches of ∪ and ∩ terms. When we test whether ε ∈ t∪ t′ (rule (4.4)), we first
evaluate, e.g. the test ε ∈ t, and when it holds, we can completely avoid exploring t′

and evaluating quotients there. We can proceed analogously when we test ε ∈ t∩ t′, if
one of the two terms is shown not to contain ε. Rules (4.17) and (4.18) offer similar
opportunities for short-circuiting evaluation of subsumption of ∪ and ∩ terms.
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Let us note that subsumption is in a different position than ε-membership since cor-
rectness of our algorithm depends on the precision of the ε-membership test, but sub-
sumption may be evaluated in any way that under-approximates inclusion of languages of
terms (and over-approximates isomorphism in order to guarantee termination). Hence,
ε-membership test must enforce eliminating quotients until it can conclude the result,
while there is a choice in the case of the subsumption. If subsumption is tested on
quotients, it can either eliminate them, or it can return the (safe) negative answer.
However, this choice comes with a trade-off. Subsumption eliminating quotients is more
expensive but also more precise. The higher precision allows better pruning of the state
space and earlier termination of fixpoint computation, which, according to our empirical
experience, pays off.

Lazy evaluation can also reduce the number of iterations of a star operator. We
can compute iterations on demand, only when we require them in the underlying tests.
The idea is to try to conclude a test ε ∈ T −S∗ based on the intermediate state T of
the fixpoint computation. We can perform such conclusion since L(T ) always under-
approximates L(T −S∗), hence if ε ∈ L(T ), then ε ∈ L(T −S∗). Continuing the fixpoint
computation is then unnecessary.

The above mechanism alone is, however, rather insufficient in the case of nested stars.
Assume that an inner star fixpoint computation was terminated in a state T −S∗ when
ε was found in T for the first time. Every unfolding of an outer star then propagates − τ
quotients towards T −S∗. We have, however, no way of eliminating it from (T −S∗)− τ
other than finishing the unfolding of T −S∗ first (which eliminates the inner star). The
need to fully unfold T −S∗ would render the earlier lazy evaluation of the ε-membership
test worthless. To remove this deficiency, we need a way of eliminating the − τ quotient
from the intermediate state of T −S∗.

T −S∗ → T −S∗ < T (4.23)

ε ∈ t < t′ if ε ∈ t′ (4.24)

t < T 6vs t′ if T 6vs t′ (4.25)

t < T ws t′ if T ws t′ (4.26)

The elimination is achieved by letting the star quotient T −S∗ explicitly “publish” its
intermediate state T using rule (4.23). The symbol < is read as “is under-approximated
by.” Rules (4.24)–(4.26) allow to conclude ε-membership and subsumption by testing
the under-approximation on its right-hand side (notice the distinction between “if” and
the “iff” used in the rules earlier).

(t < T )−S → ((t < T )−S) < T 	 S (4.27)

Symbol quotients that come from the unfolding of an outer star can too be evaluated
on the approximation using rule (4.27), which then applies the symbol-set quotient on
the approximation T of the inner term t, and publishes the result on the right-hand side
of <. The left-hand side still remembers the original term t−S.

T < T ′ → T (4.28)
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Terms arising from rules (4.23) and (4.27) allow an efficient update in the case an inner
term t spawns a new, more precise approximation. In the process, rule (4.28) is used to
remove old outdated approximations, if better ones are already available.

Example 4.1. We will now illustrate how we can apply these rules and how we can im-
plement them efficiently on an evaluation from Example 1. Note that, in Example 1, the
partial unfoldings of the fixpoints that are tested for ε-membership, e.g. the branch under
step 2 , are under-approximations of a star quotient term. For instance, branch 14 cor-
responds to testing ε-membership in the right-most approximation of the following term((

({t}−πY (0̄)∗) < {t}
)
− [

X : 1
Y : 0

])
< {t}− [

X : 1
Y : 0

]
by rule (4.24) (the branch determines

that ε /∈ {t}− [
X : 1
Y : 0

]
). The result of 14 cannot conclude the top-level ε-membership

test because {t}− [
X : 1
Y : 0

]
is just an under-approximation of term ({t}−πY (0̄)∗)− [

X : 1
Y : 0

]
.

Therefore, we need to compute a better approximation of the term and try to con-
clude the test on it. We compute it by first applying rule (4.28) twice to discard ob-
solete approximations ({t} and {t}− [

X : 1
Y : 0

]
), followed by applying rule (4.10) to replace

({t}−πY (0̄)∗)− [
X : 1
Y : 0

]
with

(
({t} ∪ ({t} 	 πY (0̄)))−πY (0̄)∗

)
− [

X : 1
Y : 0

]
. Let β = {t} ∪

({t} 	 πY (0̄)). Then, we can use the rules (4.23) and (4.27), to rewrite the term(
β−πY (0̄)∗

)
− [

X : 1
Y : 0

]
into

((
β−πY (0̄)∗ < β

)
− [

X : 1
Y : 0

])
< β 	 [

X : 1
Y : 0

]
, where β 	 [

X : 1
Y : 0

]

is the approximation used in step 16 , and re-evaluate the ε-membership test on it.
Implemented näıvely, the computation of subsequent approximations of fixpoint terms

would involve a lot of redundancy, e.g. in β− [
X : 1
Y : 0

]
we would need to recompute the

term {t}− [
X : 1
Y : 0

]
, which was already computed in step 15 . The mechanism can, how-

ever, be implemented efficiently so that it completely avoids the redundant computations.
Firstly, we can maintain a cache of already evaluated terms and never evaluate the same
term repeatedly. Secondly, suppose that a term t−S∗ has been unfolded several times
into intermediate states (T1 = {t})−S∗, T2−S∗, . . . , Tn−S∗. One more unfolding us-
ing (4.10) would rewrite Tn−S∗ into Tn+1 = (Tn ∪ (Tn 	 S))−S∗. When computing
the set Tn 	 S, however, we do not need to consider the whole set Tn, but only those
elements that are in Tn and are not in Tn−1 (since Tn = Tn−1 ∪ (Tn−1	S), all elements
of Tn−1 	 S are already in Tn).

Thirdly, in the direct acyclic graph (DAG) representation of terms, which we will
describe in Section 4.2.3, a term (T ∪ (T 	 S))−S∗ < T ∪ (T 	 S) is represented by the
set of terms obtained by evaluating T 	 S, a pointer to the term T −S∗ (or rather to
its associated DAG node), and the set of symbols S. The cost of keeping the history of
quotienting together with the under-approximation (on the right-hand side of <) is hence
only a pointer and a set of symbols.
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4.2.3. Efficient Data Structures

Further, we will introduce two important techniques that we use in our implementation
that concern (1) representation of symbolic terms and (2) utilisation of BDD-based
symbolic representation of transition functions of automata in the leaves of the terms.

Representation of language terms. We keep each term in the form of a DAG such
that all isomorphic instances of the same term are represented as a unique DAG node.
Moreover, when we rewrite a term into a language-equivalent one, we still associate it
with the same DAG node. Newly computed sub-terms are always first compared against
the existing ones, and, if possible, associated with an existing DAG node of an existing
isomorphic term. The fact that isomorphic terms are always represented by the same
DAG node makes it possible to test isomorphism of a new and previously processed term
efficiently—it is enough to test that their direct sub-terms are represented by identical
DAG nodes (let us note that we do not look for language equivalent terms because of
the high cost of such a check).

We also cache results of membership and subsumption queries. The key to the cache is
the identity of DAG nodes, not the represented sub-terms, which has the advantage that
results of tests over a term are available in the cache even after it is rewritten according to
→ (as it is still represented by the same DAG node). The cache together with the DAG
representation is especially efficient when evaluating a new subsumption or ε-membership
test since although the result is not in the cache, the results for its sub-terms often are.
As further optimization, we expanded our cache to maintain subsumptions closed under
the transitivity. In our experience, even though we are forced to compute the transitivity
in the cache, which can be costly, in process we profit from the faster subsumption tests.

BDD-based symbolic automata. One of the central challenges for our algorithm is
coping efficiently with large sets of symbols. Notice that rules (4.10) and (4.14) compute
a quotient for each of the symbols in the set πX (τ) separately. Since the number of the
symbols is 2|X |, this can easily make the computation infeasible. And, indeed, in our
benchmarks, the set X tends to be quite high leading not only into a big number of
symbols, but also into large underlying automata.

Mona handles large sets of symbols by using a BDD-based symbolic representation
of transition relations of automata as follows: The alphabet symbols of the automata
are assignments of Boolean values to the free variables X1, . . . , Xn of a formula. The
transitions leading from a state q can be expressed as a function fq : 2{X1,...,Xn} → Q
from all assignments to states such that (q, τ, q′) ∈ δq iff fq(τ) = q′. The function fq is
encoded as a multi-terminal BDD (MTBDD) with variables X1, . . . , Xn and terminals
from the set Q (essentially, it is a DAG where a path from the root to a leaf encodes
a set of transitions). The BDD apply operation is then used to efficiently implement the
computation of successors of a state via a large set of symbols, and to facilitate essential
constructions such as product, determinization, and minimization. We use Mona to
create automata in leaves of our language terms exploiting its efficient minimization and
automata representation. But, to fully utilize their BDD-based symbolic representation,
we first had to overcome the following two problems.
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First, our algorithm has to compute predecessors of states, while the BDDs of Mona
are designed to compute successors. So to use apply to compute states backwards,
the BDDs would have to be turned into a representation of the inverted transition
function. But, this is a costly process and, moreover, according to our experience,
prone to produce much larger BDDs. We have resolved this issue by inverting only the
edges of the original BDDs and by implementing a variant of apply that runs upwards
from the leaves of the original BDDs, against the direction of the original BDD edges.
Unfortunately, this solution cannot be as efficient as the normal apply because, unlike
standard BDDs, the DAG that arises by inverting BDD edges is non-deterministic, which
brings complications. Nevertheless, it still allows an efficient implementation of pre that
works well in the case of our implementation.

However, we are facing a more fundamental problem: our algorithm can use apply

to compute predecessors over the compact representation provided by BDDs only on
the level of explicit automata in the leaves of terms. Symbols generated by projection
during the evaluation of complex terms must be, on the contrary, enumerated explicitly.
For instance, the projection πX (t) with X = {X1, . . . , Xn} generates 2n symbols, with
no obvious option for reduction.

Our idea to overcome this explosion is to treat nodes of BDDs as regular automata
states. Intuitively, this means replacing words over ΣX that encode models of formulae
by words over the alphabet {0, 1}: every symbol τ ∈ ΣX is replaced by the string τ over
{0, 1}. Then, instead of computing a quotient over, e.g. the set πX (0̄) of the size 2n,
we compute only quotients over the 0’s and 1’s. Each application of quotient takes us
only one level down in the BDDs representing the transition relation of the automata
in the leaves of the term. For every variable Xi, we obtain terms over nodes on the i-th
level of the BDDs as −0 and −1 quotients of the terms at the level i− 1. The maximum
number of terms in each level is thus 2i. In the worst case, this causes roughly the same
blow-up as when enumerating the “long” symbols. The advantage of this techniques
is, however, that the blow-up can now be dramatically reduced by using subsumption
to prune sets of terms on the individual BDD levels. We believe that treating nodes
of BDDs as ordinary states is an idea worth further elaboration, and probably relevant
also in the context of symbolic automata [DV14].

4.2.4. Combination of Symbolic and Explicit Algorithms

It is possible to replace sub-terms of a language term by a language-equivalent automaton
built by the explicit algorithm before starting our symbolic algorithm. The main benefit
of this is that the explicitly constructed automata have a simpler, flat structure and, most
of all, can be minimized. The minimization, however, requires to explicitly construct
the whole automaton, which might, despite the benefit of minimization, be a too large
overhead. The combination hence represents a trade-off between the lazy evaluation
and subsumption of the symbolic algorithm, and the minimization and flat automata
structure of the explicit one.
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The overall effect depends on the strategy of choice of the sub-formulae to be translated
into automata, and, of course, on the efficiency of the implementation of the explicit
algorithm (where we can leverage the extremely efficient implementation of Mona). In
Section 4.3, we mention one particular strategy of choosing sub-formulae to be translated
to automata that was efficient in our experiments, but we believe that there is a space
for more involved heuristics in this are that could be further explored.

4.2.5. Anti-prenexing

Before we rewrite an input formula to a symbolic term, we first pre-process the formula
based on several language-preserving identities. Particularly, we move quantifiers down
based on rules (4.29)–(4.32), which we call the anti-prenexing. Moving a quantifier down
in the abstract syntax tree of a formula speeds up the fixpoint computation induced by
the quantifier. In effect, one costlier fixpoint computation is replaced by several cheaper
computations in the sub-formulae. This is almost always helpful since if the original
fixpoint computation unfolds, e.g. a union of two terms, the two fixpoint computations
obtained by anti-prenexing will each unfold only one operand of the union. The number
of union terms in the original fixpoint is roughly the product of the numbers of terms in
the simpler fixpoints. Other rules, such as rule (4.31), reduce the scope of the quantified
variables which obviously simplifies the fixpoints as well.

∃X : ϕ → ϕ iff X /∈ free(ϕ) (4.29)

∃X : ϕ ∨ ψ → (∃X : ϕ) ∨ (∃X : ψ) (4.30)

∃X : ϕ ∧ ψ → ϕ ∧ (∃X : ψ) iff X /∈ free(ϕ) (4.31)

∃X : ϕ ∧ ψ → (∃X : ϕ) ∧ ψ iff X /∈ free(ψ) (4.32)

Further, in order to push quantifiers even deeper into the formula syntax tree, we first
reorder the formula by several heuristics (e.g. we reorder subtrees of a large conjuction to
isolate occurrences of a quantified variable into a smaller subformula) and move negations
down in the structure towards the leaves using De Morgan’s laws. Note that we also
experimented with using rule (4.33) based on distributivity laws, however, this only led
to implementation complications, and, in the end, we did not measure any satisfying
results.

∃X : ϕ ∧ (ψ ∨ ρ) → (∃X : ϕ ∧ ψ) ∨ (∃X : ϕ ∧ ρ) (4.33)

We conclude that anti-prenexing is a powerful optimization and is not limited to our
decision procedure only. In our experiments, we show that even the simple rules (4.29)-
(4.32) can provide a speed-up of several orders of magnitude on some benchmarks.
However, we believe that there is still a room for improvements, such as exploring other
language-preserving formulae transformations that could lead to other cheap optimiza-
tions.
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4.3. Experimental Evaluation

We have implemented the optimized procedure in a prototype tool Gaston1. Our tool
uses the front-end of Mona to parse input formulae, to construct their corresponding
abstract syntax trees, and to explicitly construct automata for sub-formulae (as men-
tioned in Section 4.2.4). We explored several heuristics for choosing the sub-formulae
to be converted to automata by Mona. In the end, we convert only quantifier-free
sub-formulae and negations of innermost quantifiers to automata since Mona can usu-
ally handle them without any state-space explosion. Gaston, together with all the
benchmarks described below and their detailed results, is freely available [FHJ+16].

In the automata representation of Mona, MTBDDs are used to encode transition re-
lations of automata by representing post-images of states. Since our approach computes
pre-images of states, we had to deal with the issue of inverting the transition relation.
For that we created an efficient wrapper over the MTBDDs of Mona (see Section 4.2.3).

We have compared Gaston’s performance with that of Mona, dWiNA implementing
our previous approach [FHLV15], which we introduced in the Chapter 3, the Toss tool
implementing the method of [GK10], and the implementations of the decision procedures
of [Tra15] and [DV14] (which we denote as Coalg and SFA, respectively).2 In our
experiments, we consider formulae obtained from various formal verification tasks (in
particular, formulae that were used to describe invariants of advanced data structures,
which we described in Section 2.4) as well as parametric families of formulae designed to
stress-test WS1S decision procedures.3 We performed the experiments on a machine with
the Intel Core i7-2600@3.4 GHz processor and 16 GiB RAM running Debian GNU/Linux.

A comparison of Gaston with Mona on Strand and UABE formulae. In
Table 4.1, we show results of our experiments with formulae from the recent work
of [ZHW+14] (denoted as UABE below), which uses WS1S to reason about programs
with unbounded arrays of bounded elements (see Section 2.4.2). Table 4.2 gives results
of our experiments with formulae derived from the WS1S-based shape analysis of [MQ11]
(denoted as Strand; see Section 2.4.1). In the table, we use sl to denote Strand formu-
lae over sorted lists and bs for formulae from verification of the bubble sort procedure.
For this set of experiments, we considered Mona and Gaston only since the other tools
were missing key features (e.g. atomic predicates) needed to handle the formulae. In the
UABE benchmark, we used Gaston with the last optimization of Section 4.2.3 (treating
MTBDD nodes as automata states) to efficiently handle quantifiers over large numbers
of variables. In particular, without the optimization, Gaston hit 11 more timeouts. On
the other hand, this optimization was not efficient (and hence not used) in Strand.

1The name was chosen to pay homage to Gaston, an Africa-born brown fur seal who escaped the Prague
Zoo during the floods in 2002 and made a heroic journey for freedom of over 300 km to Dresden. There
he was caught and subsequently died due to exhaustion and infection.

2We are not comparing with jMosel [TWMS06] as we did not find it available any more on the Internet.
3We note that Gaston currently does not perform well on formulae with many Boolean variables and

M2L formulae appearing in benchmarks such as Secrets [KMS02] or Strand2 [MPQ11, MPQ], which
are not included in our experiments. To handle such formulae, further optimizations of Gaston such
as Mona’s treatment of Boolean variables via a dedicated transition are needed.
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Table 4.1.: The comparison of Mona and Gaston on UABE benchmark. Each formula
describes invariant or property of an array and was generated from the specification
of UABE logic, which we described in the Section 2.4.2. We measured the time in
seconds and space in overall number of automata states for Mona and overall number
of symbolic terms for Gaston. In each row, we highlight the clear winner in bold and
we use ∞if the runtime of a tool exceeded 2 minutes.

Formula
Mona Gaston

Time Space Time Space

a-a 1.71 30 253 ∞ ∞
ex10 7.71 131 835 12.67 82 236
ex11 4.40 2 393 0.18 4 156
ex12 0.13 2 591 6.31 68 159
ex13 0.04 2 601 1.19 16 883
ex16 0.04 3 384 0.28 3 960
ex17 3.52 165 173 0.17 3 952
ex18 0.27 19 463 ∞ ∞
ex2 0.18 26 565 0.01 1 841
ex20 1.46 1 077 0.27 12 266
ex21 1.68 30 253 ∞ ∞
ex4 0.08 6 797 0.50 22 442
ex6 4.05 27 903 22.69 132 848
ex7 0.90 857 0.01 594
ex8 7.69 106 555 0.03 1 624
ex9 7.16 586 447 9.41 412 417
fib 0.10 8 128 24.19 126 688

The tables compare the overall time (in seconds) the tools needed to decide the for-
mulae, and they also try to characterize the sizes of the generated state spaces. For the
latter, we count the overall number of states of the generated automata for Mona, and
the overall number of generated sub-terms for Gaston. The tables contain just a part of
the results, the full results can be found in [FHJ+16]. We use∞ in case the running time
exceeded 2 minutes, oom to denote that the tool ran out of memory, +k to denote that
we added k quantifier alternations to the original benchmark, and N/A to denote that
the benchmark requires some key feature or atomic predicate unsupported by the given
tool. On Strand, Gaston is mostly comparable, in two cases better, and in one case
worse than Mona. On UABE, Gaston outperformed Mona on six out of twenty-three
benchmarks, it was worse on ten formulae, and comparable on the rest. The results thus
confirm that our approach can defeat Mona on many formulae in practice.
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Table 4.2.: The comparison of Mona and Gaston on Strand benchmark. Each formula
describes invariant of a linear data structure and was generated from the specification
of Strand logic, which we described in the Section 2.4.1. We measured the time in
seconds and space in overall number of automata states for Mona and overall number
of symbolic terms for Gaston. In each row, we highlight the clear winner in bold.

Formula
Mona Gaston

Time Space Time Space

bs-loop-else 0.05 14 469 0.04 2 138
bs-loop-if-else 0.19 61 883 0.08 3 207
bs-loop-if-if 0.38 127 552 0.18 5 428
sl-insert-after-loop 0.01 2 634 0.36 5 066
sl-insert-before-head 0.01 678 0.01 541
sl-insert-before-loop 0.01 1 448 0.01 656
sl-insert-in-loop 0.02 5 945 0.01 1 079
sl-reverse-after-loop 0.01 1 941 0.01 579
sl-search-in-loop 0.08 23 349 0.03 3 247

A comparison of Gaston with other tools. The second part of our experiments
concerns parametric families of WS1S formulae used for evaluation in [GK10, FHLV15,
DV14], and also parametric versions of selected UABE formulae [ZHW+14]. Each of
these families has one parameter (whose meaning is explained in the respective works).
Table 4.4 gives times needed to decide instances of the formulae for the parameter having
value of 20. If the tools did not manage this value of the parameter, we give in parentheses
the highest value of the parameter for which the tools succeeded. The full results are
available in [FHJ+16]. In this set of experiments, Gaston managed to win over the
other tools on many of their own benchmark formulae. In the first six rows of Table 4.4,
the superior efficiency of Gaston was caused mainly by anti-prenexing. It turns out
that this optimization of the input formula is universally effective. When run on anti-
prenexed formulae, the performance of the other tools was mostly comparable to that of
Gaston. The last two benchmarks (parametric versions of formulae from UABE) show,
however, that Gaston’s performance does not stand on anti-prenexing only. Despite
that its effect here was negligible (similarly as for all the original benchmarks from UABE

and Strand), Gaston still clearly outperformed Mona. However, we could not compare
with other tools on these formulae due to a missing support of the used features (e.g.
first-order constants).
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Table 4.3.: The comparison of all available tools on parametric families of formulae. Each
row corresponds to a parametric family of formulae used to stress-test WS1S decision
procedures. We measured the time in seconds. We use ∞ in case the running time
exceeded 2 minutes, oom to denote that the tool ran out of memory, +k to denote that
we added k quantifier alternations to the original benchmark, and N/A to denote that
the benchmark requires some key feature or atomic predicate unsupported by the given
tool. We highlight the clear winners in bold. In case the tool hit the timeout or ran out
of memory, we list in the parenthesis the highest value of the parameter of the family
for which the tool succeeded.

Table 4.4.: Experiments with parametric families of formulae

Benchmark Mona dWiNA Toss Coalg SFA Gaston

HornLeq [DV14] oom(18) 0.03 0.08 ∞(08) 0.03 0.01
HornLeq (+3) [DV14] oom(18) ∞(11) 0.16 ∞(07) ∞(11) 0.01
HornLeq (+4) [DV14] oom(18) ∞(13) 0.04 ∞(06) ∞(11) 0.01
HornIn[GK10] oom(15) ∞(11) 0.07 ∞(08) ∞(08) 0.01
HornTrans [FHLV15] 86.43 ∞(14) N/A N/A 38.56 1.06
SetSingle [FHLV15] oom(04) ∞(08) 0.10 N/A ∞(03) 0.01
Ex8 [ZHW+14] oom(08) N/A N/A N/A N/A 0.15
Ex11(10) [ZHW+14] oom(14) N/A N/A N/A N/A 1.62
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4.4. Conclusion and Future Work

We have presented a novel WS1S decision procedure based on symbolic, term-based
representation of the languages of formulae, with on-the-fly emptiness testing, optimized
by, e.g. lazy evaluation and subsumption. Our experiments proved that the approach is
competitive and often better than state-of-the-art methods, including Mona.

But let us emphasize that, like with Mona, optimizations play a crucial role for the
efficiency of our tool—without them, the basic approach is much less efficient. We
believe there are many further optimization possible. Let us briefly enumerate some
of the further possible optimization opportunities. First, our utilization of BDDs is not
optimal since Mona gives us efficient post only. We would greatly benefit from an explicit
procedure producing automata encodings with efficient pre. Second, as we mention in
Section 4.3, performance of our tool could be improved by a specialized treatment of
Boolean variables. This type of variables is common in many challenging benchmarks
and so its support in WS1S tools is especially demanded. A plausible solution is to
integrate our approach with SAT/SMT technology or to adapt techniques of Mona
that dedicates special transitions in automata for Boolean variables. At last, another
logical step would be to use abstraction over the language terms or adapt simulation
techniques.

Note that many of the optimizations are of a heuristic nature. As we have seen in our
experimental evaluation, we used different sets of optimization for some benchmarks as
they had different effects. It would be helpful to know more about the cases where they
can be successfully applied.

We would also like to generalize or at least extend our approach to other kinds of
logics, such as M2L(str) or WS2S. The latter, has many practical applications. In
particular, the generalization to WS2S would allow us to define, e.g. invariants of tree-
like structures. However, handling more complex formulae, e.g. in the logic M2L(str),
such as those mentioned in Sec. 4.3, would obviously require specific optimizations.
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Part II.

Using Static Analysis for
Performance Analysis
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5. From Shapes to Amortized
Complexity

The state of the art of static performance analysis of C and C++ programs focuses
mostly on resource bounds and termination analysis of integer programs. While this
field is currently well-established, works focusing on heap-manipulating programs are
rather rare since they require precise analysis of the shape of the heap. Moreover, most
of the works on shape analysis are usually limited to linear structures or have a hard-
coded support for a single data structure.

We can further motivate the research by the experimental evaluation of the resource
bound analyser Loopus [SZV17], where authors analysed a large number of C programs.
Loopus computes resource bounds based on the updates to integer variables, but it has
only a limited support for pointers. One of the results of their experiments was that
missing pointer and shape analysis was the most frequent reason for a failure to compute
a resource bound. In [SZV17], the authors report that they obtained bounds for 753
of the 1659 functions in their extensive benchmark (45%), and that by a simple (but
unsound) shape analysis they were able to increase the number to 1185 (71%).

Researchers usually transform the input heap-manipulating program into an integer
one that is equal from the point of view of its termination or complexity. However,
one has to first define the so-called shape numerical measures (or shape norms), that
simulate the original data structures in the universe of integer programs. An example of
a shape norm can be, e.g. the number of nodes in a tree, the length of a singly-linked list,
or the height of a tree. Defining a suitable class of shape norms and inferring how their
values change upon execution of program statements is the biggest challenge of such
a transformation. Some classes are restricted to concrete data structures, such as singly-
linked lists or trees. Other are applicable for a limited range of program constructions
only, and cannot show resource bounds in many cases, e.g. when the resource bounds
depend both on the shape of the heap and some integer constraints. Finally, many
classes are not fully automatically usable and require manual involvement of the user.

In this chapter, we aim at automated resource bound analysis of heap-manipulating
programs. We focus on analysing programs with dynamic data structures as they can be
frequently found in systems code such as in operating system kernels or compilers. Good
performance is a major concern in system code and has led to the use of highly advanced
data structures such as, e.g. red-black trees, priority heaps, or lock-free linked lists —
data structures that both are complex and prone to introducing errors. Thus, automated
tool support is needed to increase the reliability of those systems and it can in turn lead
to a better user experience. Resource bound analysis of programs with data structures
has been addressed only by a few publications [GLS09, HR13, Atk11, AAG+12, FG17].

71



We first define a new parametric class of shape norms expressing the distance between
two distinct points (memory cells pointed by some program variables and/or selector
chains (so-called access paths); we can refer to these as “pointers”) in the shape over
some selector paths (such as left, right or next field), which conforms to a (restricted)
regular expression. Moreover, we show how one can automatically derive a set of shape
norms from the control flow graph (CFG) of a program. We strive to get a small set
of the norms such that the analysis is as efficient as possible. If this set turns out
not to be sufficient, it can later be (automatically) refined. This way the approach
becomes fully automated. Based on this new class of shape norms, we then propose an
approach to resource bounds analysis that exploits state-of-the-art shape analysers to
transforms the input heap-manipulating program to a corresponding integer program.
The resulting integer program can then be analysed similarly as in other existing works
in the area. Later we show, we improve on earlier results along several dimensions aiming
at the automated resource bounds analysis of heap-manipulating programs that cannot
be handled by existing approaches.

Overview of our approach. Our analysis works in three major steps. We first run
a shape analysis and annotate the program with shape invariants. Second, using the
results from the shape analysis, we create a corresponding integer abstraction of the
program based on numeric information about the heap. Finally, we perform resource
bound analysis purely on the resulting integer program.

The integer abstraction is based on our class of shape norms, i.e. numerical measures
on dynamic data structures (e.g. the length of a linked list). Our first contribution in
this chapter is the definition of a class of shape norms that expresses the longest distance
between two points of interest in a shape graph defined in terms of basic concepts from
graph theory. We propose a class of norms that are parametric by the program under
analysis and that are extracted in a pre-analysis (with a possibility of extending the
initial set of tracked norms during the subsequent analysis); the extracted norms then
correspond to the selector paths found in the program.

The second contribution is a calculus for our class of shape norms that allows us to
derive how the norms change along a program statement, i.e. if the norm is incremented,
resp. decremented, or reset to some other expression. The calculus consists of two kinds
of rules. (1) Rules that allow one to directly infer the change of a norm and do not need
to take any additional information into account. (2) Rules that rely on the preceding
shape analysis; the shape information is mainly used there for (a) dealing with pointer
aliasing and (b) deriving an upper bound on the value of a norm from the result of the
shape analysis (if possible). We point out that rules of the second kind encapsulate the
points of the analysis where information about the shape is needed, and thus describe the
minimal requirements on the preceding shape analysis. We believe that this separation
of concern also allows one to use various other shape analysers if they satisfy the given
criteria.
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When creating the integer abstraction of the given heap-manipulating program, we
could use all shape norms that we extracted from the program. However, we have an
additional pre-analysis phase that eliminates norms that are not likely to be useful for
the later bounds analysis. This reduction of norms has the benefit that it keeps the
number of variables in the integer abstraction small. The number of extracted norms
can be quadratic in the size of the program in the worst case, and adding quadratically
many variables can be prohibitively expensive. The pre-analysis is therefore crucial to
the efficiency of the later bound analysis. Moreover, the smaller number of additional
variables increases the readability of the resulting integer abstraction and simplifies the
development and debugging of subsequent analyses.

Finally, we perform resource bound analysis on the created integer abstraction. This
design decision has two advantages. First, we can leverage the existing research on re-
source bound analysis for integer programs and do not have to develop a new bound
analysis at all. Second, being able to analyse not only the shape but also integer changes
has the advantage that we can analyse programs which mix integer iterations with data
structure iterations; we illustrate this point on the flagship example of [Atk11], which
combines iteration over data structures and integer loops in an intricate way (see Sec-
tion 5.1 for details). So far, no other approach has inferred precise resource bounds for
this loop.

Implementation and Experiments. We implemented the generation of the inte-
ger program on top of the shape analyser Forester [HHL+15b]. We use the Loopus
tool [SZV17] for inferring the computational complexity of the obtained integer abstrac-
tions. Our experimental evaluation demonstrates that the combination of these tools can
yield a powerful analysis. We report on results for complex heap manipulating programs
that could not be handled by previous approaches as witnessed by experimental eval-
uation against the tools AProVE [AFHG15] and COSTA [AAG+12]. We remark that
our implementation leverages the strengths of both Forester and Loopus. We inherit the
capabilities of Forester to analyse complex data structures, and report on analysis results
for doubly-linked lists, trees, or skip-lists. Moreover, our analysis of shape norms and its
changes is precise enough to leverage the capabilities of Loopus for amortized complex-
ity analysis — we report on the amortized analysis of the flagship example of [Atk11] in
more details in Section 5.1, whose correct linear bound has to the best of our knowledge
never been inferred fully automatically.

Related work on Resource Bounds Analysis. A majority of the related ap-
proaches is based on well-established approach that derives an integer program from
an input heap-manipulating program followed by a dedicated analysis (e.g. termination
or resource bounds) for integer programs. The transformation, however, has to be done
conservatively, i.e. the derived integer program needs to simulate the original heap-
manipulating program such that the results (i.e. the bounds) for the integer program
hold for the original program. The related approaches then differ in the considered class
of numeric measures on the heap, the data structures that can be analysed or the degree
of automation.
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Several approaches have targeted restricted classes of data structures such as singly-
linked lists [BBH+11, DBCO06, LQ06, YB02, BCC+07] or trees [Rug04, HIRV07]. It is,
however, unclear how to generalise these results to more complex data structures which
require different numeric measures or combinations thereof.

A notable precursor to our work is the framework of [MTLT10] implemented in the
Thor tool [MTLT08], which describes a general method for deriving integer abstractions
of data structures. The automation of Thor, however, relies on the user for providing
the shape predicates of interest (to the best of our knowledge, the implementation only
supports list predicates; further predicates have to be added by the user). Further, we
found out during our initial experiments that Thor needlessly tracks shape sizes not
required for a later termination or bounds analysis. This can quickly lead to a bloat of
the program under analysis.

A general abstract interpretation-style framework for combining shape and numerical
abstract domains is described in [GLS09]. The paper focuses on tracking the partition
sizes, i.e. the only considered norm is the number of elements in a data structure. Our
framework is orthogonal to this approach: we can express different norms, e.g. the
height of a tree, which cannot be expressed in [GLS09]; on the other hand, we use
numeric information only in the second stage of the analysis which can be less precise
than the reduced product construction of [GLS09].

An automated approach to amortized complexity analysis of object-oriented heap-
manipulating programs is discussed in [HR13]. The approach is based on the idea of
associating a potential to (refinements of) data structure classes. Typing annotations
allow to derive a constraint system which is then solved in order to obtain valid potential
annotations. However, the implementation is currently limited to linear resource bounds
and appears to be restricted to list-like data structures.

The idea of using potentials for the analysis of data structures is also investigated
in [Atk11]. The author extends the separation logic with resource annotations exploiting
the idea of separation in order to associate resource units to every memory cell, resulting
in an elegant Hoare-logic for resource analysis. But, the suggested approach is currently
only semi-automated requiring the user to provide shape predicates and loop invariants
manually.

In [AAG+12], the authors propose an automated resource analysis for Java programs,
implemented in the COSTA tool. Their technique is based on abstracting arrays into
their sizes and linked structures into the length of the longest chain of pointers terminated
by the NULL pointer, followed by the construction and solving of a system of recurrence
equations. However, cyclic lists and more complicated data structures such as DLLs,
are, to the best of our knowledge, out of the capabilities of this technique as they require
more general numeric size measures.

The recent paper [FG17] investigates the automated resource analysis for Java pro-
grams and reports on its implementation in the AProVE tool. It is based on first
translating a program to an integer transition system, and then using a bounds analyser
to infer the complexity. The technique makes use of a single size-measure which is the
number of nodes reachable from the heap node of interest together with the sum of all
reachable integer cells. This norm is orthogonal to the norms considered in our work.
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However, note that our norms do not take the content of integer cells into account and
thus can be less precise when the termination depends on such integer cells. On the
other hand, the norm of [FG17] does often not correspond to the size of interest: for
example, in the case of an iteration over the top-level list of a list of lists, the relevant
norm is the length of the top-level list and not the number of elements of all involved
lists; similarly in case of a search in a sorted tree: the relevant size measure is the height
of a tree and not the number of elements. Moreover, it is unclear how the norm of [FG17]
deals with cyclic data structures; while the number of reachable elements is well-defined,
it is unclear whether (and how) the norm changes when a pointer is advanced because
the number of reachable nodes does not change.

Contributions. We summarize our contributions to resource bounds analysis:

1. In comparison with related approaches, we consider a wider class of shape norms.

2. We develop a calculus for deriving the numeric changes of the considered shape
norms. The rules of our calculus precisely identify the information that is needed
from a shape analyser. We believe that this definition of minimal shape information
is useful for development of future resource bound analysis tools for programs with
recursive data structures as well.

3. Our norms are not fixed in advance but derived from the program to be verified:
we define a pre-analysis that reduces the number of considered norms. To our
experience, this reduction is especially affecting the efficiency of the underlying
resource bounds analysers, but it is also useful for reporting the derived integer
abstraction to the user.

4. We demonstrate in an experimental validation that we obtain a powerful analysis.
We report on iterations over complex data structures that could not be analysed
before and discuss our fully-automated amortised analysis of a challenging example
from the literature (c.f. Section 5.1).

Outline. The chapter is structured into six sections. In Section 5.2, we introduce basic
preliminaries, such as the considered program model. We then propose a new class of
shape norms in Section 5.3. Based on this new class of norms we propose a resource
bounds analysis for heap-manipulating programs. We first illustrate the analysis in
Section 5.1 on a showcase example from the work of [Atk11] and describe the analysis
in more details in the following Section 5.4. We briefly describe the implementation
details and the experimental evaluation on several benchmarks in Section 5.5. Finally,
we conclude the chapter with Section 5.6 and propose further future research directions.
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5.1. Running Example

We will illustrate how our approach fully automatically infers the linear complexity of
the mergeInner function in Fig. 5.1, the inner loop of an in-place linked-list merge sort
implementation, the flagship example of [Atk11].

1 Function void mergeInner(Node* list, int k)
2 Node* p = list;
3 Node* tail = NULL;
4 Node* list = NULL;
5 while p 6= NULL ∧ k > 0 do
6 Node* q = p;
7 int j = k;
8 while j > 0 ∧ q 6= NULL do
9 q = q→next;

10 j−−;

11 Node* pstop = q;
12 qsize = k;
13 while (p 6= pstop) ∨

(
qsize > 0 ∧ q 6= NULL

)
do

14 Node* e;
15 if (p == pstop) then
16 e = q;
17 q = q→next;
18 qsize−−;

19 else if (qsize == 0 ∨ q == NULL) then
20 e = p;
21 p = p→next;

22 else if (p→ data ≤ q → data) then
23 e = p;
24 p = p→next;

25 else
26 e = q;
27 q = q→next;
28 qsize−−;

29 if (tail 6= NULL) then
30 tail→next = e;

31 else
32 list = e;

33 tail = e;

34 p = q;

35 if (tail == NULL) then
36 return;

37 else
38 tail→next = NULL;

Figure 5.1.: The inner loop of an in-place merge sort implementation, taken from [Atk11]
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Figure 5.2.: Illustration of the initial phase of mergeInner function at line 11. The
singly-linked list of length six is divided into two chunks (p-chunk and q-chunk) of length
three. The variable pstop serves as a sentinel for the p-chunk, while the value qsize = k
serves as bound for the q-chunk. At line 34, p-chunk and q-chunk will be merged into
one chunk of length 6. We use index i to denote the state of the variable at line i.

We first shortly describe the function and discuss the challenges it poses to an auto-
matic resource bounds analysis. The outer loop at line 5 iterates over the singly-linked
list list in steps of size 2k. The inner loop at line 8 progresses k steps through the
next-selector from pointer q. At line 11 we remember the original position of q in the
variable pstop and as consequence we have prepared two partitions of list list : (1) the
partition of size k between variables p and pstop (which is equal to the position of the
variable q), we refer to this partition as p-chunk, and (2) a partition which starts at
q and has size qsize equal to k, we will refer to this partition as q-chunk. Figure 5.2
illustrates the state of the input singly-linked list at this point.

The second inner loop at line 13 implements the ordered (ascending order) merging
of the elements of both chunks. It compares the current element of the p-chunk with the
current element of the q-chunk. In line 26 an element p→data of chunk p is swapped
with an element q→data of chunk q, if p→data is greater than q→data. Assuming
that both chunks were already sorted, their merged chunk of size 2k will be sorted when
reaching the line 34, which concludes one iteration of the outer loop.

The resulting list of merged chunks of size 2k is constructed using the variables tail
(pointer to the tail of the list), e (pointer to current front element of either p-chunk or
q-chunk) and list (pointer to the head of the list) on lines 28− 32. At line 36 we NULL

terminate the list of merged chunks. At this point, n/k chunks of length k are merged.
This whole process is illustrated in Figure 5.3.

Complexity of the mergeInner function. Given that the outer loop iterates over
the list in steps of size 2k while the first inner loop partitions the list into k-chunks and
the second inner loop iterates over these chunks, the overall complexity of the example
is linear in the size of the list. The example implements merge sort if we assume that
mergeInner is consecutively called with k = 1, 2, 4, . . . , n2 , where n is the size of list.
mergeInner is thus called log2(n) − 1 times, and we obtain the well-known merge sort
complexity of n log(n).

77



list ⊥
n n n n n n

p1, e2 p2 q1,2

list ⊥

n

n n n n n

p2,3 q2, e3 q3

list ⊥

n

n n
n

n n

p3, e4 p4 q3,4

list ⊥

n

n n
n

n n

p5p4, e5 q4,5

list ⊥

n

n

n

n
n n

q5, e6 q6

list ⊥

n

n

n

n
n n

q6, e7 q7

Figure 5.3.: Illustration of one run of the loop at line 13 on a singly-linked list from the
Figure 5.2. The loop iterates six times. In each iteration we denote already merged and
not-yet-merged nodes by yellow and black colour respectively. We use upper index i to
denote the state of the variable at the start of ith iteration of the cycle. Variables p and
q points to the beginning of the p-chunk and q-chunk, and the variable e points to the
currently merged node. We omit some of the variables from the illustration, such as the
pstop variable, from the picture.

This example poses two main challenges to an automated bound analysis since (1)
it requires precise shape analysis to track the interplay between the chunks of the list
pointed to by variables p and q, as well as handle the in-place modification of the
traversed list and (2) given an input singly-linked list of size n, in the worst case, k may
be n and the inner loops at line 8 and line 13 may thus iterate n-times on a single
execution of the outer loop, which itself can be iterated n-times for the case k = 1,
nevertheless, the overall complexity is O(n). However, the naive reasoning would lead
to imprecise O(n2) complexity.

The tools AProVE and Costa could not infer the linear complexity: Costa times
out after 5 minutes of computation and AProVE infers a quadratic complexity for the
example. In the following we describe how our approach infers the linear complexity of
the mergeInner function, as will discussed in the next sections.

Deriving of suitable norms. First, we derive the following tracked shape norms NC
from the code (as is outlined in Section 5.3.2): For the outer loop at line 5, we derive
the single norm p〈next∗〉NULL, for the first inner loop at line 8, we derive the norm
q〈next∗〉NULL and for the last inner loop at line 13, we derive the norms q〈next∗〉NULL,
p〈next∗〉pstop, pstop〈next∗〉p
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Generation of integer program. We generate an integer program using the initial
set of tracked norms Nc = {p〈next∗〉NULL, q〈next∗〉NULL, p〈next∗〉pstop, pstop〈next∗〉p}1.
Note that during the generation the initial set of norm candidates Nc is extended. As an
example, consider the instruction pstop = q in line 11. To model the effect on norms of
this instruction we add the norm p〈next∗〉q, derived from the norm p〈next∗〉pstop ∈ Nc to
Nc, which is then tracked as well. At the end of the analysis we track set of norms Nc =
{p〈next∗〉NULL, q〈next∗〉NULL, p〈next∗〉pstop, pstop〈next∗〉p, p〈next∗〉q, list〈next∗〉NULL}.
The resulting numerical instructions are shown in Algorithm 5.1, highlighted in red. We
include the original program statements for better understanding. However, our ap-
proach runs the bound analyser only on the integer program which results from removing
all pointer instructions from Algorithm 5.12.

Bounds Analysis. The integer program is analysed by the underlying bounds analyser
(in our case, the Loopus tool), which computes the bounds on program loops. Due to
the nature of integer program construction, an upper bound on the integer program is
also an upper bound on the original program. We give a brief sketch on how Loopus
infers a bound for our example (we refer the reader to [SZV17] for details on the used
algorithm).

For the main loop at line 5 we can use the norm p〈next∗〉NULL as the bound. The
norm is first initialized to the value of the norm list〈next∗〉NULL and it is never increased
(despite the swapping operations between p and q on lines 6 and 34) and it is decre-
mented at least once at every iteration — since we assume that k > 0, then either in
the inner loop at line 8 the instruction at line 9 is executed at least once (and hence
p〈next∗〉NULL is decremented after execution of line 34 ) or the loop is not executed at
all which implies that q〈next∗〉NULL == 0 and hence p〈next∗〉NULL == 0 will hold at
line 34. Hence, the outer loop has linear complexity in size of the list〈next∗〉NULL. Now
a similar reasoning can be applied for the loop at line 8, for which we can use the norm
q〈next∗〉NULL as the bound. q〈next∗〉NULL is initialized to the size of p〈next∗〉NULL, hence
the bound is linear in size of list〈next∗〉NULL as well.

However, for the inner loop at line 13, we have to use the combination of norms
p〈next∗〉pstop and q〈next∗〉NULL in order to compute bounds. The size of q〈next∗〉NULL
is bounded by the size of list〈next∗〉NULL and norm p〈next∗〉pstop is always set to 0 at
line 6 and is incremented on each execution of the instruction at line 9. This incre-
ment can be executed in maximum the same number of times as the loop at line 8.
Thus, the number of increments by one of p〈next∗〉pstop can be bounded by the size of
list〈next∗〉NULL and the overall bound on p〈next∗〉pstop is 0+ list〈next∗〉NULL ·1, i.e. it is
bounded by list〈next∗〉NULL as well. Thus, in worst case the loop at line 13 is executed
(p〈next∗〉pstop+ q〈next∗〉NULL)-times, hence the bound of the loop is 2 · list〈next∗〉NULL.
Since, all the loops are linearly bounded in the length of the list list , the overall com-
plexity of mergeInner is linear in the length of list .

1Note that we can reduce the set Nc and remove the norm pstop〈next∗〉p, since the position of the
pstop variable is not changed during the algorithm.

2Note, however, that the original instructions would have no effect on our backed resource bounds
analyser, Loopus, since it ignores these instructions
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Algorithm 5.1: Numerical abstraction of the Algorithm 5.1.

1 Function void mergeInner(Node* list, int k)
2 Node* p = list;

p〈next∗〉NULL = list〈next∗〉NULL;
3 Node* tail = NULL;
4 Node* list = NULL;
5 while p〈next∗〉NULL 6= 0 ∧ p 6= NULL ∧ k > 0 do
6 Node* q = p;

q〈next∗〉NULL = p〈next∗〉NULL; p〈next∗〉q = 0;
7 int j = k;
8 while j > 0 ∧ q〈next∗〉NULL 6= 0 ∧ q 6= NULL do
9 q = q→next;

q〈next∗〉NULL−−; p〈next∗〉q + +;
10 j−−;

11 Node* pstop = q;
p〈next∗〉pstop = p〈next∗〉q;

12 qsize = k;
13 while (p〈next∗〉pstop 6= 0∧ p 6= pstop)∨

(
qsize > 0∧ q〈next∗〉NULL 6= 0∧ q 6= NULL

)
do

14 Node* e;
15 if (p〈next∗〉pstop = 0 ∨ p == pstop) then
16 e = q;
17 q = q→next;

q〈next∗〉NULL−−; p〈next∗〉q + +;
18 qsize−−;

19 else if (qsize == 0 ∨ q〈next∗〉NULL = 0 ∨ q == NULL) then
20 e = p;
21 p = p→next;

p〈next∗〉NULL−−; p〈next∗〉pstop−−; p〈next∗〉q −−;

22 else if (∗) then
23 e = p;
24 p = p→next;

p〈next∗〉NULL−−; p〈next∗〉pstop−−; p〈next∗〉q −−;

25 else
26 e = q;
27 q = q→next;

q〈next∗〉NULL−−;p〈next∗〉q + +;
28 qsize−−;

29 if (tail 6= NULL) then
30 tail→next = e;

31 else
32 list = e;

33 tail = e;

34 p = q;
p〈next∗〉NULL = q〈next∗〉NULL; p〈next∗〉pstop = q〈next∗〉NULL; p〈next∗〉q = 0;

35 if (tail == NULL) then
36 return;

37 else
38 tail→next = NULL;

80



5.2. Preliminaries

First we introduce the basic notions, the program model, as well as reachable memory
configurations, which we later use to infer changes of our new class of shape norms.

5.2.1. Program Model

For the rest of the chapter, we will use Vp to denote the set of pointer variables, Vi
the set of integer variables, Sp the set of pointer selectors (or fields) of dynamic data
structures, and Si the set of integer selectors (or data fields). We assume all these sets
to be finite and mutually disjoint. Let V = Vp ∪ Vi be the set of all program variables
and S = Sp ∪ Si be the set of all selectors. Finally, let NULL denote the null pointer and
assume that NULL 6∈ V ∪ S.

We consider pointer manipulating program statements from the set stmtsp that are
generated by the following grammar where x, y ∈ Vp, z ∈ Vp ∪ {NULL} and sel ∈ Sp:

stmtp ::= x = z | x = y → sel | x→ sel = z |
x = malloc() | free(x ) | x == z | x 6= z

Further, we consider integer manipulating program statements from the set stmtsi that
are generated by the following grammar where x ∈ Vi, y ∈ Vp, sel ∈ Si, c ∈ Z, and f is
an integer operation (more complex statements could easily be added too):

stmti ::= x = op | x = f(op, op) | y → sel = op | x == op | x 6= op

op ::= c | x | y → sel

Finally, we let stmts = stmtsp ∪ stmtsi.

Control-flow graphs. A control-flow graph (CFG) is a tuple G = (Loc, T, lb, le)
where Loc is a finite set of program locations, T ⊆ Loc× stmts×Loc is a finite set of
transitions (sometimes also called edges), lb ∈ Loc is the initial (starting) location, and
le ∈ Loc is the final location.

Let G = (Loc, T, lb, le) be a CFG. A path in G of length n ≥ 0 is a sequence of
transitions t0 . . . tn = (l0, st0, l1)(l1, st1, l2) . . . (ln, stn, ln+1) such that ti ∈ T for all 0 ≤
i ≤ n. We denote the set of all such paths by ΦG. For a given location l, we denote
by Φl

G the set of paths where l0 = l, i.e. all paths starting from the location l. Given
locations l1, l2 ∈ Loc, we say l1 dominates l2 (and denote it by l1 � l2 ) iff all paths to
l2 in Φlb

G lead through l1. We call a transition (l, st, h) ∈ T a back-edge iff h � l. We call
the location h a loop header and denote the set of its back-edges as Th. Back-edges are
fundamental to resource bounds analysis, since we can reduce the computing the bounds
on the number of iterations of a loop to computing the bounds on the number of firing
of loop back-edges. Further, we denote the set of all loop headers as LH ⊆ Loc. Note
that, for a loop header hn of a loop nested in some outer loop with a loop header ho, we
have ho � hn.
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Loops. Given a CFG G = (Loc, T, lb, le) with a set of loop headers LH, a loop L
with a header hL ∈ LH is the sub-CFG L′ = (Loc′, T|Loc′ , hL, hL) where Loc′ = {l ∈
Loc | ∃n ≥ 0 ∃(l0, st0, l1) . . . (ln, stn, ln+1) ∈ ΦG : l0 = ln+1 = hL ∧ (∃0 ≤ i ≤ n : l =
li) ∧ (∀1 ≤ j ≤ n : hL � lj)}, i.e., the set of locations on cyclic paths from hL (but not
crossing the header of any outer loop in which L might be nested), and T|Loc′ is the
restriction of transitions T to Loc′ only. We will denote the set of all program loops as
L. Note that the set of loop headers LH can be divided according to the nesting level
of particular loops. By LH0 we denote the loop headers corresponding to the topmost
loops and then for each loop header lh ∈ LHi, we will denote by LHi+1(lh) all loop
headers corresponding to the nested loops of the loop represented by header lh.

5.2.2. Memory Configurations

Let Vp, Vi, Sp, and Si be sets of pointer variables, integer variables, pointer selectors, and
integer selectors, respectively, as defined in the previous subsection. We define memory
configurations, i.e., shapes, as triples s = (M,σ, ν) where (1) M is a finite set of memory
locations (or cells), NULL 6∈M , M∩Z = ∅, (2) σ : (M×Sp →M∪{NULL})∪(M×Si → Z)
is a function defining values of selectors, and (3) ν : (Vp → M ∪ {NULL}) ∪ (Vi → Z)
is a function defining values of program variables. We denote the set of all such shapes
by S. Note that a shape is basically an oriented graph, also called a shape graph, with
nodes from M ∪Z∪{NULL}, edges labeled by selectors, and some of the nodes referred to
by the program variables. For simplicity, we do not explicitly deal with undefined values
of pointers in what follows. For the purposes of resource bounds analysis, they can be
considered equal to null values. We will later propose a resource bounds analysis that
first runs the shape analysis on the given heap-manipulating program. So if the program
may crash due to using them, we assume this to be revealed by the shape analysis phase.

Let us assume the shape analyser that works with a set A of abstract shape represen-
tations (ASRs), which can be automata, formulae, symbolic graphs, etc. This means
that each ASR A ∈ A represents a (finite or infinite) set of shapes [[A]] ⊆ S. Allowing
for disjunctive abstract representations, we assume that we can run the shape analyser
and, as result, it will label each location of the CFG of a program by a set of ASRs
overapproximating the set of shapes reachable at that location. Moreover, we assume
that the shape analyser can infer a special successor relation between ASRs whenever
they label locations linked by a transition s.t. the statement of the transition may be
executed between some shapes encoded by the ASRs. The successor relation allows us
to analyse the shape before and after the execution of a program statement. This leads
to a notion of annotated CFGs defined below.

Annotated CFGs. An annotated CFG (ACFG) Γ is a triple Γ = (G,λ, ρ) where
G = (Loc, T, lb, le) is a CFG, λ : Loc → 2A is a function mapping locations to sets
of ASRs generated by the underlying shape analyser for the particular locations, and
ρ ⊆ (Loc×A)× (Loc×A) is a successor relation on pairs of locations and ASRs where
((l1, A1), (l2, A2)) ∈ ρ iff A1 ∈ λ(l1), A2 ∈ λ(l2), and there is a transition (l1, st, l2) ∈ T
and shapes s1 ∈ [[A1]], s2 ∈ [[A2]] such that st transforms s1 into s2. We show an example
of ACFG in Figure 5.4.

82



For the relation ρ, we will use ρ∗ and ρ+ as usual.
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Figure 5.4.: An example of Annotated Control-Flow Graph for two nested loops that
iterate over a singly-linked lists. Each location l ∈ Loc is annotated with ASRs, which
are shown in the dashed rectangles. Each ASR s ∈ A is depicted in simplified way in
the full rectangles, where the self loops on the nodes represent abstraction, i.e. that
the black node represents a segment of k nodes for some k ∈ N. We denote that
((l1, s1), (l2, s2)) ∈ ρ as s1 → s2, and, finally, we use x′ and y′ to denote the previous
positions of x and y before executing the pointer statements.
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5.3. Numerical Measures on Dynamic Data Structures

We now propose a notion of shape norms based on regular expressions that encode
sets of selector paths between some memory locations. Intuitively, we assume that the
program needs to traverse these paths and hence their length determines (or at least
significantly contributes to) the complexity of the algorithm. Typically, one considers
selector paths between two memory locations pointed by some pointer variables (e.g.
when we are looking for some element in some part of some data structure) or between
a location pointed by a variable and NULL (e.g. when we are traversing the structure from
its beginning to the end). However, one can also use paths between a source location
pointed by some variable and any location containing some specific data value.

For a concrete memory configuration, the numerical value of a shape norm corresponds
to the supremum of the lengths of the paths represented by the regular expression of the
norm. Indeed, in the worst case, the program may follow the longest (possibly cyclic
and hence infinite) path in the memory. However, note that we will propose a resource
bounds analysis that does usually not work with concrete values of shape norms but
instead it will work with ASRs and hence we will need to reason about the values of
a given norm over potentially infinite sets of shapes. So instead, we will track relative
changes (i.e., increments, decrements) of the norms in a way consistent with all the
shapes in a given ASR. An exception to this is the case where the value of a norm is
equal to a constant for all shapes in the ASR (e.g. after the statement y = x → next,
the distance from x to y via next is always 1).

When analysing a program, we will first infer an initial set of candidate norms Nc
(i.e., norms potentially useful for establishing resource bounds of the given program)
from the CFG of the program—this set may later be extended if we realize some more
norms may be useful. Subsequently, we derive as precisely as possible the effects (i.e.,
increments, decrements, or resets) that particular program statements have on the values
of the candidate norms in shapes represented by the different ASRs obtained from shape
analysis. We instead use the set of tracked norms Nc to generate a integer program
simulating the original program, which allows us to leverage the strength of current
resource bounds analysers for integer programs as well as to deal with resource bounds
arguments combining heap and numerical measures.

5.3.1. Shape Norms

Let Sp be the set of selectors. In the rest of the thesis, we will use the set RES of
restricted regular expressions re over Sp defined as follows:

re ::= ru∗ ru ::= sel | ru + ru | ε sel ∈ S.

Below, the ru sub-expressions are called regular units, sometimes distinguishing selector
units (sel) and join units (ru + ru). For re ∈ RES, we denote the language of selector
paths described by re as Lre. Intuitively, when we analyse the control-flow graph of
a program for traversals through selectors, a join unit corresponds to a branching of the
control-flow, and the star expression (re∗) to a whole loop.
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Our notion of selector regular expressions can be extended with concatenation units
(ru.ru) and nested star units (ru∗), corresponding to sequences of unit traversals and
nested loop traversals, respectively. Concatenation units are supported in our resource
bounds analyser. However, since they bring in many (quite technical) corner cases, in
this thesis we limit ourselves to the join units to simplify the presentation. On the other
hand, extending the techniques below by nested stars seems to be more complicated,
and we leave it for future work. Nevertheless, note that we did not find it much useful
in our experiments as it would correspond to using the same variable as the iterator of
several nested loops (while usually different pointer variables are used as the iterators of
the loops).

Let Vp be a set of pointer variables and Si a set of data selectors. We use P = Vp ∪
{NULL} ∪ {[.data = k] | k ∈ Z, data ∈ Si} to refer to locations of memory configurations
(shapes) of a program. While x ∈ Vp denotes the location that is pointed by the pointer
variable x, and NULL denotes the special null location, [.data = k] denotes any memory
location whose selector data has the value k ∈ Z. We note that these three cases are
the most frequently used in the loop header conditions. A numerical measure µ on a
memory configuration, i.e., a shape norm, is a triple (x, re, y) ∈ Vp × RES × P. We
will use N to denote the set of all shape norms, and, further, we will use x〈ru∗〉y as a
shorthand for the triple (x, ru∗, y) ∈ N .

As we have already mentioned above, we are interested in evaluating norms over ASRs,
not over concrete shapes. Moreover, up to the cases where a norm has the same constant
value for all shapes in an ASR, we are not interested in absolute values of the norms at
all, and we instead track changes of the values of the norms only. However, in order to
be able to soundly speak about such changes, we need to first define the value of a norm
for a shape.

We will define the value of norms in terms of graphs. For this, we first define the
notion of the height of a pointed graph. Then we describe how to obtain a pointed
graph for a pair of a shape graph and a norm.

Pointed graphs. A pointed graph G = (N,E, n) consists of a set of nodes N , a set of
directed edges E ⊆ N ×N and, a source node n ∈ N . A path π is a finite sequence of
nodes n0, · · · , nl such that (ni, ni+1) ∈ E for all 0 ≤ i < l. We call |π| = l the length
of the path. We say π starts in n if n0 = n. We define the height of G by setting
|G| = sup{|π| | path π starts in n} where we set sup(D) =∞ for an infinite set D ⊆ N.
We note that, for a finite graph G = (N,E, n), we have |G| = ∞ iff there is a cycle
reachable from n.

Pointed graphs associated to shape graphs and null-terminated norms. We
first consider norms µ that end in NULL, i.e, µ = x〈ru∗〉NULL. For a shape s = (M,σ, ν) ∈
S, we define the associated pointed graph Gx〈ru

∗〉NULL
s = (M ∪ {NULL}, E, ν(x)) where

E = {(n1, n2) ∈ M × (M ∪ {NULL}) | there is path from n1 to n2 in s s.t. the string of
selectors along the path matches the regular expression ru}.
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Pointed graphs associated to shape graphs and non-null-terminated norms.
We now consider a norm µ = x〈ru∗〉y with y ∈ P\{NULL}. For a shape s = (M,σ, ν) ∈ S,
we set s(y) = {ν(y)} for y ∈ Vp, and s(y) = {m ∈ M | σ(m, data) = k} for y =
[.data = k]. We define the shape s[y/NULL] = (M \ s(y), σ[y/NULL], ν[y/NULL]) where (1)
σ[y/NULL](m, sel) = σ(m, sel) if m 6∈ s(y) and σ[y/NULL](m, sel) = NULL otherwise, and
(2) ν[y/NULL](x) = ν(x) if ν(x) /∈ s(y) and ν[y/NULL](x) = NULL otherwise.

We define the associated pointed graph as Gx〈ru
∗〉y

s = Gx〈ru
∗〉NULL

s[y/NULL] .

Values of shape norms. We can now define values of shape norms in shapes. In
particular, the value of a norm µ ∈ N in a shape s ∈ S, denoted ‖µ‖s, is a value from
the set N ∪ {∞} defined such that ‖µ‖s = |Gµs |. This is, the value of the norm µ in the
shape s is defined as the height of the associated pointed graph.

The intuition behind the above definition is the following. The pointed graph associ-
ated to a norm µ = x〈ru∗〉y makes the instances of the regular expression ru explicit.
The height of the pointed graph corresponds to the longest chain of instances of the
expression ru in the given shape graph. The intuition behind replacing the targets of
norms with NULL stems from the fact that one either reaches the replaced target (and
hence program will terminate naturally) or reaches the NULL, dereferences it and thus
crashes (hence terminating unnaturally). However, if we exploit the results of a preced-
ing shape analysis, we can assume memory safety and exclude the case of termination
by crash. In case there exists a cycle in the shape reachable from the source point x, the
value of the norm is infinite. In such a case the norm is unusable for the later complexity
analysis, and hints at the potential non-termination of the program under analysis.

We further generalize the notion of values of norms from particular shapes to ASRs.
The value of a norm µ ∈ N over a set of shapes given by an ASR A ∈ A, denoted ‖µ‖A,
is a value from the set N∪{∞, ω} defined such that ‖µ‖A = supω{‖µ‖s | s ∈ [[A]]} where
(i) supωX = ω iff ∞ ∈ X and (ii) supω(X) = supX otherwise. Intuitively, we need
to distinguish the case when some of the represented shapes contains a cyclic selector
path and the case where the ASR represents a set of shapes containing paths of finite
but unbounded length (e.g. in the case when the ASR represents all acyclic lists of
any length). Indeed, in the former case, the program may loop over the cyclic selector
path while, in the latter case, it will terminate, but its running time cannot be precisely
bounded by a constant (it is bounded, e.g. by the length of the encountered list). We
illustrate all of the cases in Figure 5.5
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l r l r
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Figure 5.5.: Illustration of the three cases of norms values: constant; finite, but un-
bounded; and infinite. We denote the shape abstraction relation using the ∗ symbol
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5.3.2. Deriving the Set of Candidate Shape Norms

We propose a method that be used to infer a suitable initial set of norm candidates for
a given heap-manipulating program. Note that this set is only an initial set of norm
candidates that could be useful for inferring the bounds on the program loops. It is
extended when tracking norm changes as discussed in Section 5.4. For each program
loop L, we derive a set of norm candidates in the following three steps:

Inspection of Loop Conditions. We inspect conditions of the loop L which involve
pointer variables w.r.t the program model of Section 5.2.1 and declare each variable that
appears in such a condition as relevant. E.g., for the Algorithm 5.1 variables p and pstop
are declared as relevant due to the condition p 6= pstop in line line 13.

Analysis of Control-flow We iterate over all simple loop paths of L (a loop path
is any path which stays inside the loop L, and starts from and returns to the loop
header; a loop path is simple if it does not visit any location twice except for the loop
header) and derive a set of selectors Sx ⊆ Sp for each relevant variable x: Given a simple
loop path slp and a relevant variable x, we perform a symbolic backward execution to
compute the effect of slp on x, i.e., we derive an assignment x = exp such that exp
captures how x is changed when executing slp. For example, for our running example
Algorithm 5.1 we infer x = x → next, y = y for both simple loop paths of the outer
loop and y = y → next, x = x for the single simple loop path of the inner loop. In the
case exp is of form x → sel, i.e., the effect of the loop path is dereferencing variable x
by some selector sel ∈ Sp, we add sel to Sx. This basic approach can be easily extended
to handle consecutive dereferences of the same pointer over different selectors: We can
deal with expressions of the form exp = x→ sel1 → sel2 by adding sel1.sel2 to Sx.

Inferring Candidates Finally, we consider all subsets T ⊆ Sx and create norms for
each T = {sel1, ..., sell} using the regular expression join(T ) = sel1 + . . . + sell. The
candidate norms NL created for different forms of conditions of the loop L are given in
the right column of Table 5.1. For example, for our running example in Sect. 5.1: we
create norm p〈next∗〉NULL for the outer cycle; norm q〈next∗〉NULL for first inner cycle;
and norms p〈next∗〉pstop, pstop〈next∗〉p, and q〈next∗〉NULL for the second inner loop.

Condition of L Candidate Norms NL
x ◦ y { x〈join(T)∗〉y | T ⊆ Sx}

∪{ y〈join(T)∗〉x | T ⊆ Sx}
x ◦ NULL { x〈join(T)∗〉NULL | T ⊆ Sx}
x→ d ◦ k { x〈join(T)∗〉[.data = k] | T ⊆ Sx}

Table 5.1.: Norm candidates NL for a loop L, ◦ ∈ {=, 6=}
The overall set of tracked norm candidates Nc is then set to the union of norm can-

didates over all loops in the program, i.e. Nc =
⋃
L∈LNL. For each norm from Nc we

will track its size-changes, as we discuss in Section 5.4 in order to derive corresponding
integer program for a given heap-manipulating one. Note that we can optimize the size
of Nc by pruning irrelevant norms from the start, e.g. those norms that never decrease;
the concrete heuristics are described in Section 5.5.3.
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5.4. From Shapes to Norm Changes

In Section 5.3.2, we have shown how to automatically derive an initial set of candidate
norms Nc that are likely to be useful for deriving bounds on the number of executions
of the different program loops. This section describes the core of our procedure: how
to derive numerical changes of the values of these norms, allowing us to consequently
derive an integer program simulating the original heap-manipulating program from the
point of view of its runtime complexity. During this process, new norms may be found
as potentially useful, which leads to an extension of the set Nc and to a re-generation of
the integer program such that the newly added norms are also tracked.

In the integer program, we introduce a new numeric variable for each candidate norm.
By a slight abuse of the notation, we use the norms themselves to denote the correspond-
ing numeric variables, so, e.g. we will write x〈u∗〉NULL == 0 to denote that the value of
the numeric variable representing the norm x〈u∗〉NULL is equal to zero. These variables
store values from the set N ∪ {ω} with omega representing an infinite distance (due to
a loop in a shape). In what follows, we assume that any increment or decrement of ω
yields ω again and that ω is larger than any natural number. Note that we do not need
a special value to represent∞ for describing a finite distance without an explicit bound.
For that, we will simply introduce a fresh variable constrained to be smaller than ω.

The integer program is constructed using the ACFG Γ = (G,λ, ρ) built on the top
of the CFG G = (Loc, T, lb, le) of the original program. The original control flow is
preserved except that each location l ∈ Loc is replaced by a separate copy for each
ASR labelling it, i.e., it is replaced by locations (l, A) for each A ∈ λ(l). Transitions
between the new locations are obtained by copying the original transitions between those
pairs of locations and ASRs that are related by the successor relation, i.e., a transition
(l1, st, l2) is lifted to ((l1, A1), st, (l2, A2)) whenever ((l1, A1), (l2, A2)) ∈ ρ. Subsequently,
each pointer-dependent condition labelling some edge in the extended CFG is translated
to a condition on the numeric variables corresponding to the shape norms from Nc.
Likewise, each edge originally labeled by a pointer-manipulating statement is relabeled
by numerical updates of the values of the concerned norm variables. Integer conditions
and statements are left untouched.

Soundness of the abstraction. The translation of the pointer statements described
below is done such that, for any path π in the CFG of a program and the shape s resulting
from executing π, the values of the numeric norm variables obtained by executing the
corresponding path in the integer program conservatively over-approximate the values
of the norms over s. This is, if the numeric variable corresponding to some norm µ
can reach a value n ∈ N ∪ {ω} through the path π with pointer statements replaced as
described below, then ‖µ‖s ≤ n. As a consequence, we get that every bound obtained for
the integer abstraction is a bound of the original program.
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Translating pointer conditions. Given the above, the translation of pointer con-
ditions is straightforward. We translate each condition x == NULL to a disjunction of
tests x〈u∗〉NULL == 0 over all regular units u such that x〈u∗〉NULL ∈ Nc. Likewise, every
condition x == y is translated to a disjunction of conditions of the form x〈u∗〉y == 0
and y〈u∗〉x == 0 over all regular units u such that x〈u∗〉y, y〈u∗〉x ∈ Nc. The intuition
is that the condition holds when at least one of the norms is equal to zero and so the
source variable x has reached the target NULL or y in the shape. Pointer inequalities are
then translated to a negation of the conditions formed as above, leading to a conjunction
of inequalities on numeric norm variables.

Handling data-related pointer tests of the form x→ data == y is more complex. Con-
sider such a test on an edge starting from a location-ASR pair (l, A). Currently, we can
handle the test in a non-trivial way only if y evaluates to the same constant value in all
shapes represented by A, i.e., if there is some k ∈ N such that ν(y) = k for all shapes
(M,σ, ν) ∈ [[A]]. In this case, the test is translated to a disjunction of conditions of the
form x〈u∗〉[.data = k] == 0 over all regular units u such that x〈u∗〉[.data = k] ∈ Nc.
Otherwise, the test is left out—a better solution is an interesting issue for the future
work, possibly requiring more advanced shape analysis and a tighter integration with it.
Data-related pointer non-equalities can then again be treated by negation of the equality
test (provided y evaluates to a constant value).

Finally, after a successful equality test (of any of the above kinds), all numeric norm
variables that appeared in the disjunctive condition used are set to zero. All other
variables (and all variables in general for an inequality test) keep their original value.

Translating pointer statements. Next, we show how we translate non-destructive,
destructive, and data-related pointer statements other than tests. The translation can
lead to decrements, resets, or increments of the numeric norm variables corresponding to
the norms inNc. In case, we realize that we need some norm µ′ 6∈ Nc to describe the value
of some current candidate norm µ ∈ Nc, we add µ′ into Nc and restart the translation
process (in practice, of course, the results of the previously performed translation steps
can be reused). Such a situation can happen, e.g. when Nc = {x〈next∗〉NULL} and we
encounter an instruction x = list, which generates a reset of the norm x〈next∗〉NULL
to the value of the norm list〈next∗〉NULL. The latter norm is then added into Nc.3

The rules for translating non-destructive, destructive, and data-related pointer up-
dates to the corresponding updates on numeric variables are given in Figures 5.6, 5.9,
and 5.12, respectively. Before commenting on them in more detail, we first make several
general notes. First, values of norms of the form x〈u∗〉x are always zero, and hence we
do not consider them in the rules. Next, let u = sel1 + . . . + seln, n ≥ 1, be a regular
join unit. We will write sel ∈ u iff sel = seli for some 1 ≤ i ≤ n. Rules that use some
selector unit n (e.g. x = y → n) have two distinct cases on norms of form x〈u∗〉y: (1)
when n ∈ u (the so-called unit case) and (2) when n /∈ u (the so-called non-unit case).
We denote new values of norms using an overline, and the old values without an overline.
The norms that are not mentioned in a given rule keep implicitly the same value.

3Alternatively, one could use a more complex initial static analysis that would cover, although maybe
less precisely, even such dependencies among norms.
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Finally, in rules describing how the value of a norm variable µ is changed by firing
some statement between ASRs A1 and A2, we often use constructions of the form µ $
expr where expr is an expression on norm variables. This construction constrains the
new value of µ using the current values of norm variables or using directly the ASRs
encountered, depending on which case is more precise. First, if µ has the same natural
value in all shapes in [[A2]], i.e., if ‖µ‖A2 ∈ N, then we let µ = ‖µ‖A2 . Otherwise, if
the value of µ is infinite in A1 and unbounded but finite in A2, i.e., if ‖µ‖A1 = ω and
‖µ‖A2 = ∞, we constrain the new value of µ by the constraint µ = v ∧ v < ∞ where
v is a fresh numeric variable.4 The same constraint with a fresh variable is used when
‖µ‖A2 = ∞ and expr = ω. Otherwise, we let µ = expr. At last, we assume that the
preceding shape analysis will discover potential problems with a location being freed and
re-allocated with some dangling pointers still pointing to it (the ABA problem).

The described translation allows for sound resource bounds analysis. Indeed, for each
run of the original pointer program, there will exist one run in the derived integer
program where the norms get exact or overapproximated values. Provided that the
underlying bounds analyser is sound in that it returns worst-case bounds, the bounds
obtained for the integer program will not be smaller than the bounds of the original
program.

4Intuitively, this case is used, e.g. when µ = x〈n∗〉NULL, and the encountered pointer statement cuts
an ASR representing cyclic lists of any length pointed by x to an ASR representing acyclic NULL-
terminated lists pointed by x. Naturally, when one subsequently starts a traversal of the list, it will
terminate though in an unknown number of steps.
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5.4.1. Non-Destructive Pointer Updates

We now comment more on the less obvious parts of the rules from Figure 5.6. Concerning
the rule for x = NULL, Case 1 reflects the fact that we always consider all paths from x
limited by either the designated target w or, implicitly, NULL. Hence, after x = NULL,
the distance is always 0. Likewise, in Case 1 of x = malloc(), the distance is always 1 as
we assume all fields of the newly allocated cell to be nullified, and so the paths consist
of the newly allocated cell only. Case 2 of x = malloc() is based on that we assume the
newly allocated cell to be unreachable from other memory locations, and so any path
taken from another memory location towards x will implicitly be bounded by NULL.

[x = NULL]
∀w ∈ P, ∀z ∈ Vp \ {x}

x〈u∗〉w = 0 (1)

z〈u∗〉x $ z〈u∗〉NULL (2)

[x = malloc()]
∀w ∈ P \ {x}, ∀z ∈ Vp

x〈u∗〉w = 1 (1)

z〈u∗〉x $ z〈u∗〉NULL (2)

[x = y→n (alias)]

∃v ∈ AliasNext(A1, y, n)
∀w ∈ P ∀z ∈ Vp

x〈u∗〉w $ v〈u∗〉w (1)

z〈u∗〉x $ z〈u∗〉v (2)

[x = y→n (non-unit)]

n /∈ u, ∀w ∈ P, ∀z ∈ Vp
x〈u∗〉w $ ω (1)

z〈u∗〉x $ ω (2)
[x = y]

∀z ∈ Vp ∀w ∈ P
x〈u∗〉w $ y〈u∗〉w (1) z〈u∗〉x $ z〈u∗〉y (2)

[free(x)]
∀z ∈ Vp, ∀w ∈ P

z〈u∗〉w $

{
z〈u∗〉x AllPaths(A1, u, z, w, x))

z〈u∗〉w otherwise

[x = y→n (unit)]

n ∈ u, x 6= y, ∀t ∈ Alias(A1, y)
∀s ∈ MayAlias(A1, y)
∀w ∈ P \ MayAlias(A1, y)
∀z ∈ Vp \ Alias(A1, y)

t〈u∗〉x $ t〈u∗〉NULL (1)

x〈u∗〉s $ s〈u∗〉NULL− 1 (2)

x〈u∗〉w $ y〈u∗〉w − 1 (3)

z〈u∗〉x $ z〈u∗〉y + y〈u∗〉x (4)

Figure 5.6.: Translation rules for non-destructive pointer updates. The rules are assumed
to be applied between location-ASR pairs (l1, A1) and (l2, A2) linked by an edge labelled
by a non-destructive pointer update with x, y ∈ Vp, n ∈ Sp. For any case of any of the

rules with the left-hand side of the form a〈u∗〉b, u ranges over all regular units such that
a〈u∗〉b ∈ Nc. If the norms used on the right-hand side of any of the applied rules is not
in Nc, it is added into Nc, and the analysis is re-run with the new Nc.
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Free. Concerning the rules for free(x), the predicate AllPaths(A, u, z, w, x) holds iff
all paths over selector sequences matching u∗ between the location z and the location w
go through x in all shapes in [[A]]. In this case, clearly, all paths from z to w are shrunk
to paths to x by free(x) as x becomes undefined (which we take as equal to NULL for our
purposes5; we discussed the validity of this approach before.) Otherwise, we take the
old value of the norm since it either stays the same or the paths perhaps get shorter but
in some shapes only. However, using this reasoning will still get precise upper bounds
on the norms values. We illustrate this rule in Figure 5.7.

free( )x

z1

z2

z3

⊥

Figure 5.7.: Illustration of the [free(x)] rule. By freeing the variable x we can only
shorten the norm z2〈u∗〉NULL, since all of the red paths go through the variable x. On
the other hand, we keep the values of norms z1〈u∗〉NULL and z3〈u∗〉NULL, because the
green and orange paths may have been longer than those going through the x. Hence,
in order to infer safe bounds, we keep the previous values.

Non-destructive dereference. Concerning the rules for x = y → n, we first note
that, if applicable, the “alias” rule has priority. It is applied when the n-successor of y
is pointed by some variable v in all shapes in [[A1]]. Formally, v ∈ AliasNext(A, y, n) iff
∀(M,σ, ν) ∈ [[A]] : σ(ν(y), n) = ν(v). Such an alias can be used to define norms based
on x by copying those based on v. Of course, the distance from x to v after the update
should be zero, which is assured by the $ operator. If there is no such v, and n does
not match u, we can only limit the new value of the norm based on the ASR, which is
again taken care by the $ operator (otherwise we take the worst possibility, i.e., ω).

The most complex rule is that for x = y → n when there is no alias for the n-successor
of y, and the selector n matches u. First, note that the rule is provided for the case
of x being a different variable than y only. We assume statements x = x → n to be
transformed to a sequence y = x;x = y → n; for a fresh pointer variable y. In the rules,
we then use the following must- and may-alias sets: Alias(A, y) = {v ∈ Vp | ∀(M,σ, ν) ∈
[[A]] : ν(y) = ν(v)} and MayAlias(A, y) = {v ∈ Vp | ∃(M,σ, ν) ∈ [[A]] : ν(y) = ν(v)}.

Concerning Case 1, note that u can be a join unit and u∗ can match several paths
from y that need not go to the new position of x at all (and hence can stop only when
reaching NULL), or they can go there, but as there is no variable pointing already to the
new position of x, we anyway have to approximate such paths by extending them up to
NULL. The case when the only path to x is via n will then be solved by the $ operator.
The must aliases of y can naturally be treated in an equal way as y in the above.

5Note that all outgoing norms from the variable x will be set according to the shape, which is ensured
using the $ operator.
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In Case 2, we start by considering paths from x to y. Since we have no alias of the
n-successor of y that could help us define the value of the norm, we have to approximate
the distance from x to y by extending the paths from x up until NULL. Further note
that such paths are a subset of those from y to NULL (since the new position of x is
a successor of y). We can thus use y〈u∗〉NULL to approximate x〈u∗〉NULL6. However, we
can constrain the latter distance to be smaller by one. Indeed, if the longest path from
y to NULL does not go through the new position of x, the distance from x to NULL is
at least by one smaller. On the other hand, if the longest path goes through the new
position of x, then we save the step from y to the new position of x. The same reasoning
then applies for any variable that may alias y—for those that cannot alias it, one can
do better as expressed in the next case.

In Case 3, one can use a similar reasoning as in Case 2 as the paths from y to w include
those from the new position of x to w. Note, however, that this reasoning cannot be
applied when y may alias with w. In such a case, their distance may be zero, and the
distance from the new position of x to w can be bigger, not smaller.7 Finally, to see
correctness of Case 4, note that should there be a longer path over u from z to the
n-successor of y than going through y, this longer path will be included into the value
of the norm for getting from z to y too since the norm takes into account all u paths
either going to y or missing it and then going up until NULL (or looping). We illustrate
the four cases of this rule in Figure 5.8.

The intuition behind the rule for x = y is similar to the other statements.

y,s,t

z1

z2 x

⊥

w

n

Figure 5.8.: Illustration of the [x = y→n (unit)] rule. Blue paths from the aliased
variables t illustrate the case (1), when there may exist other paths that do not lead to
the variable x (e.g. when n = right, u = left+ right, and there exists a path from t to
NULL through t→ right). Red paths illustrate the case (2), where s〈u∗〉NULL− 1 is the
best approximation of the norm x〈u∗〉s. The rest of the paths illustrate the cases (3)
and (4). Note that norms z1〈u∗〉w and z2〈u∗〉w are not change at all by this rule.

6Note that y〈u∗〉NULL can naturally be equal to ω, in case there is a loop in the shape, i.e. one can get
back to y from its successors.

7Note that while the use of Alias is, in fact, an optimization, which could be removed, the use of
MayAlias is necessary.

93



5.4.2. Destructive Pointer Updates

We now proceed to the rules for destructive pointer statements shown in Figure 5.9.
Contrary to previous set of rules, destructive updates can change and increase the length
of the selector paths.

[x→n = NULL (unit)]
n ∈ u, ∀z ∈ Vp, ∀w ∈ P

z〈u∗〉w $

{
z〈u∗〉x+ 1 AllPathsFld(A1, u, z, w, x, n)

z〈u∗〉w otherwise

[x→n = y (unit)]

n ∈ u, ∀s1 ∈ Alias(A1, x), ∀s2 ∈ MayAlias(A1, x)
∀t1 ∈ Alias(A1, y), ∀t2 ∈ MayAlias(A1, y)
∀w ∈ P \ (Alias(A1, x) ∪ Alias(A1, y))

∀z ∈ Vp \ (MayAlias(A1, x) ∪ MayAlias(A1, y))

s1〈u∗〉t1 $ s1〈u∗〉t1 (1)

s2〈u∗〉w $

{
ω BadLoopClosed(A2, u, y, x, w)

s2〈u∗〉y + y〈u∗〉w otherwise
(2)

t2〈u∗〉w $

{
ω BadLoopClosed(A2, u, y, x, w)

t2〈u∗〉w otherwise
(3)

z〈u∗〉w $





z〈u∗〉x+ x〈u∗〉w AllPaths(A2, u, z, w, x))

max
(
z〈u∗〉x+ x〈u∗〉w, z〈u∗〉w

)
SomePaths(A2, u, z, w, x))

z〈u∗〉w otherwise

(4)

Figure 5.9.: Translation rules for destructive pointer updates. The rules are assumed to
be applied between location-ASR pairs (l1, A1) and (l2, A2) linked by an edge labelled
by a destructive pointer update with x, y ∈ Vp, n ∈ Sp. The treatment of the regular
units u is the same as in Fig. 5.6.

Destructive dereference update to NULL. We first start with the translation for
the statement x → n = NULL, considering the case of n being a unit, i.e., n ∈ u.
After this statement, the distance from any source memory location z to any target
memory location w either stays the same or decreases. The latter happens when the
changed n-selector of x influences the longest previously existing path from z to w.
Identifying this case in general is difficult, but one can reasonably recognize it in com-
mon ASRs at least in the situation when all paths between z and w whose selector
sequences match u∗ go through the n-selector of the memory location marked by x in
all shapes represented by the ASR A1, i.e., [[A1]]. We denote this fact by the predicate
AllPathsFld(A1, u, z, w, x, n). In this case, the new distance between z and w clearly
corresponds to the old distance between z and x plus one (for the step from x to NULL).
In all other cases, we conservatively keep the old value of the distance (up to it can be
reduced by the $ operator as usual). We illustrate this rule in Figure 5.10.
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x

z1

z2

z3

⊥n

Figure 5.10.: Illustration of the [x→n = NULL (unit)] rule. The intuition is similar to
the [free(x)] rule depicted in Figure 5.7. Only red paths from the z2 are shortened,
hence, we only modify the value of the norm z2〈u∗〉NULL.

Destructive dereference update to variable. Concerning the statement x→ n =
y, the distance between x and y (and their aliases) can stay the same or get shortened. In
Case 1 of the rule for this statement, the latter is reflected in the use of the $ operator.
In Case 2, we use the predicate BadLoopClosed(A2, u, y, x, w) to denote a situation
when the statement x → n = y closes a loop (over the u selectors) in at least some
shape represented by A2 such that w does not appear in between of y and x in the loop.
Naturally, in such a case, the distance between x (or any of its may-aliases) and w is
set to ω. Note that the may-alias is needed in this case since it is enough that this
problematic situation arises even in one of the concerned shapes. As for correctness of
the other variant of Case 2, if there are paths over u∗ from x to w not passing through y,
they will be covered by x〈u∗〉y, which will consider such paths extended up until NULL.
In Case 3, if the loop is not closed, then the paths from y to w are not influenced.

In Case 4, if all paths from z to w in the shapes represented by A2 go through x, we
can take the original distance of z and x, which does not change between A1 and A2 as
the change happens after x, and then add the new distance from x to w. If no path from
z to w passes x, the distance is not influenced by the statement. If some but not all of
the paths pass x, we have to take the maximum of the two previous cases. We illustrate
the cases in Figure 5.11.

As for non-unit cases of the above two statements, i.e., the case when n 6∈ u, the norms
do not change since the paths over u∗ do not pass the changed selector.

x

z1

z2

z3 y

w1

w2

w3

n

Figure 5.11.: Illustration of the [x→n = y (unit)] rule. The figure illustrates mainly
the case (4). The new value of the norm z1〈u∗〉w1 must contain the maximum constraints,
since we cannot guarantee that newly created paths are longer. The value of z2〈u∗〉w2,
however, can be safely shortened to z2〈u∗〉x + x〈u∗〉w2. At last the value of z3〈u∗〉w3
does not change at all.
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5.4.3. Data-Related Pointer Updates

[x→d = y (data-const)]

∃k ∈ Z : ValIsConst(A1, y, k), ∀z ∈ Vp \ {x}, ∀l ∈ Z \ {k}
x〈u∗〉[.d = k] = 0 (1)

x〈u∗〉[.d = l] $

{
x〈u∗〉NULL ValMayBe(A1, x, d, l)

x〈u∗〉[.d = l] otherwise
(2)

z〈u∗〉[.d = k] $

{
z〈u∗〉x AllPaths(A1, u, z, [.d = k], x)

z〈u∗〉[.d = k] otherwise
(3)

z〈u∗〉[.d = l] $

{
z〈u∗〉NULL ValMayBe(A1, x, d, l)

z〈u∗〉[.d = l] otherwise
(4)

[x→d = y (data-unknown)]

(¬∃k ∈ Z : ValIsConst(A1, y, k)), ∀z ∈ Vp, ∀l ∈ Z

z〈u∗〉[.d = l] $





z〈u∗〉[.d = l] z〈u∗〉[.d = l] < z〈u∗〉x
z〈u∗〉[.d = l] ¬ValMayBe(A1, x, d, l)

z〈u∗〉NULL

Figure 5.12.: Translation rules for data-related pointer updates. The rules are assumed
to be applied between location-ASR pairs (l1, A1) and (l2, A2) linked by an edge labelled
by a data-related pointer update with x ∈ Vp, y ∈ Vi, d ∈ Si. The treatment of the
regular units u is the same as in Fig. 5.6.

Our rules for translating data-related pointer updates are given in Figure 5.12. The
first of them applies in case the value being written into the data field d of the memory
location pointed by x is constant over all shapes represented by the ASR A1, i.e., if there
is some constant k ∈ Z such that ∀(M,σ, ν) ∈ [[A]] : ν(y) = k. This fact is expressed
by the ValIsConst(A1, y, k) predicate. In this case, after the statement x→ d = y, the
distance from x to a data value k becomes clearly zero. Case 2 captures the fact that if
the d-field of x may be l in at least one shape represented by A1, i.e., if ∃(M,σ, ν) ∈ [[A]] :
ν(y) = l, which is expressed by the ValMayBe(A1, x, d, l) predicate, the new distance of
x to a data value l is approximated by its distance to NULL. The reason is that the old
data value is re-written, and one cannot say whether another data field with the value
l may be reached before one gets to NULL. Otherwise, the norm keeps its original value.
Case 3 covers the distance from a location z other than x to a data value k. This distance
clearly stays the same or can get shorter after the statement. We are able to safely detect
the second scenario when all paths from z to a data value k lead through x. In that
case, the distance from z to a data value k shrinks to that from z to x. Otherwise, we
conservatively keep the norm value unchanged. Finally, Case 4 is an analogy of Case 2.
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In case the value being written through a data selector is not constant, which is
covered by the second rule of Fig. 5.12, our approach is currently rather conservative.
We keep the original value of the norms between z and a data value l if either this data
value is always reached from z before x is reached (the norm takes into account the first
occurrence of the data value) or if the re-written value of the data field d of x is not l
in any of the shapes represented by A1 (and hence the original value of the norm is not
based on the distance to this particular field). In such a case, the distance between z
and the data value l does surely not change. Otherwise, we conservatively approximate
the new distance between z and the data value l by the distance over paths matching
u∗ from z up until NULL.

The stress on handling constant values of data may seem quite restricted, but it may
still allow one to verify a lot of interesting programs. The reason is that often the pro-
grams use various important constants (like 0) to steer their control flow. Moreover, due
to data-independence, it is often enough to let programs work with just a few constant
values—c.f., e.g. [BHV04, AHH+13, HHL+15a] where just a few data values (“colors”)
are used when checking various advanced properties of dynamic data structures. We
illustrate the data rule in Figure 5.13. Still a better support of data is an interesting
issue for future work.

x

z1

z2

⊥

l1

l2

y

l3d

d

d

d

Figure 5.13.: Illustration of the [x→d = y] rule. Depending on the value of y, we have
to safely set the new values of norms. In case the x→ d was previously equal to l3, we
keep the value of the norm z1〈u∗〉[.d = l3], but reset z2〈u∗〉[.d = l3] to z2〈u∗〉NULL. The
similar intuition is applied to other cases.
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5.5. Implementation and Experiments

We have implemented our method in a prototype tool called Ranger. The implementa-
tion is based on the Forester shape analyser [HŠRV13, HHL+15a], which represents sets
of memory shapes using so-called forest automata (FAs). We use the Loopus tool [SZ10]
as a back-end resource bounds analyser for the generated integer programs. Moreover,
we use Z3 [Bjo08] as an underlying SMT solver for inferring concrete constant numer-
ical changes of the norms and for several optimizations. We evaluated Ranger on a
set of benchmarks including programs manipulating various complex data structures or
requiring amortized reasoning for inferring precise bounds. The experimental results we
obtained are quite encouraging and show that we were able to leverage both the precise
shape analysis of complex data structure provided by Forester as well as the amortized
analysis of loop bounds provided by Loopus and consequently we precisely analyse some
challenging programs for the first time fully-automatically.

In the rest of the section, we first briefly introduce our extension of the Forester tool
in some more detail and discuss how we implemented our approach on top of it. Next,
we mention some further optimizations that we included into the implementation. At
last, we present the experiments we performed and their results.

5.5.1. Requirements on Underlying Shape Analysis

In our approach, the underlying shape analysis is used as a parameter. This subsection
lists our requirements on what it should provide. We mainly use the inferred shape
invariants (i) to check the aliasing of variables, (ii) to compute the value of the norms for
a given ASR, and (iii) to generate the annotated control-flow graph for the given program
P as defined in Section 5.2.2. Contrary to, e.g. approaches of [MDR16] or [BCC+07],
we lay lower requirements on the shape analysis. In particular we require the following:

1. After a successful shape analysis run, we require the underlying shape analyser to
generate the annotated CFG (as defined in the Section 5.2.2), i.e. the analyser has
to annotate each location with a set of shapes together with the successor relation
of the shapes. We need these shapes and their relations (1) in the rules defined in
Sections 5.4.1-5.4.3, and (2) in selected optimizations.

2. Given an ASR at a given location in an annotated CFG, the underlying shape
analyser has to be able to return the value of any numerical measure (norm),
which represents the lengths of paths between two points in the shape (like e.g.
variables, NULL, etc.) denoted as a regular expression over selectors of dynamic data
structures. In particular, the returned value either has to be a numeric constant
c, a special symbol ∞ (to represent finite, but unbounded length of paths), or
a special symbol ω (to represent that the given ASR contains cyclic selector path).
Basically, the shape analyser has to implement the $ operator.
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3. Given an ASR at a given location in an annotated CFG, the underlying shape
analyser has to be able to traverse selector paths leading to (resp.from) a certain
distinct point (NULL, variables, etc.). Basically, it has to be able to implement the
predicates AllPaths, SomePaths, AllPathsFld, and BadLoopClosed.

4. For any given location and an ASR, the underlying shape analyser has to be able
to compute the must- and may- aliasing of variables. In particular, it has to be
able to compute Alias and MayAlias sets used in rules in Section 5.4.1 and 5.4.2.

5. For any given location and and ASR, the underlying shape analyser has to be able
to return (or at least safely approximate) the values of data fields. In particular,
it has to implement ValMayBe and ValIsConst predicates.

5.5.2. Implementation on Top of Forester

The Forester shape analyser represents particular shapes by decomposing them into
tuples of tree components, and hence forests. In particular, each memory location that
is NULL, pointed by a pointer variable, or that has multiple incoming pointers becomes
a so-called cut-point. Shape graphs are then cut into tree components at the cut-points,
and each cut-point becomes the root of one of the tree components. Leaves of the tree
components may then refer back to the roots, which can be used to represent both loops
in the shapes as well as multiple paths leading to the same location. Of course, Forester
does not work with particular shapes but with sets of shapes. This leads to a need of
dealing with tuples of sets of tree components, which are finitely represented using finite
tree automata (TAs). A tuple of TAs then forms an forest automaton (FA), which we
use as the ASR in our implementation. An example of FA is depicted in Figure 5.14.
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(a) Concrete tree structure S
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(b) Forest decomposition of S.

Figure 5.14.: Subfigure (a) shows a concrete tree structure with left and right successors
(or childs) terminated with NULL. Moreover, the root node is singly-linked with the
leaves of the tree. We highlight the four cut-points (i.e. the nodes with either multiple
references or variable reference) using colours. Each cut-point is the root of the tree
automaton depicted in subfigure (b). We denote references to ith node as ī.
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Hence, we need to be able to implement all the operations used on ASRs in the previous
section on FAs. Fortunately, it turns out that it is not at all difficult.8 In particular, we
can implement the various operations by searching through the particular TAs of an FA,
following the transitions that match the relevant unit expressions.9 We can then, e.g.
easily see whether the distance between some memory locations is constant, finite but
unbounded, or infinite. It is constant if the given memory locations are linked by paths
in the structure of the involved automata that are of the given constant length. It is finite
but unbounded if there is a loop in the TA in between of the concerned locations (allowing
the TA to accept a sequence of any finite length). Finally, the distance is infinite if some
path from the source leads—while not passing through the target location—to some of
the roots, which is then in turn referenced back from some leaf node reachable from it.
Likewise, one can easily implement checks whether all paths go through some location,
whether some variables are aliased (in Forester, this simply corresponds to the variables
being associated with the same root), or whether a loop is closed by some destructive
update (which must create a reference from a leaf back to a loop).

5.5.3. Optimizations of the Basic Approach

In Ranger, we use several heuristic optimizations to reduce the size of the generated in-
teger program. First, we do not translate each pointer statement in isolation to generate
the set of norm changes as described in Section 5.4. Instead, we perform the translation
per basic blocks. Basically, we take the blocks written in the static single assignment
form, translate the statements in the blocks as described in Section 5.4, and then per-
form various standard simplifications of the generated numeric constraint (in particular,
evaluation of constant expressions, copy propagation, elimination of variables) using the
SMT solver Z3 [Bjo08]. Finally, at the end of the block, we append the inferred and
simplified norm changes. In our experience, the size of the generated integer program
can be significantly reduced this way.

1 y = x
y〈next∗〉NULL1 = x〈next∗〉NULL0

2 x = y→next
x〈next∗〉NULL1 = y〈next∗〉NULL1 − 1

3 y = x→next
y〈next∗〉NULL2 = x〈next∗〉NULL1 − 1

4 x = y
x〈next∗〉NULL2 = y〈next∗〉NULL2

1 y = x

2 x = y→next

3 y = x→next

4 x = y
x〈next∗〉NULL2 = x〈next∗〉NULL0 − 2

Figure 5.15.: Comparison of translating pointer statements per instruction (on the left)
and per basic block (on the right).

8Based on our experience with other representations of sets of shapes, such as separation logic or
symbolic memory graphs, we believe it would not be difficult with other shape representations either.

9In Ranger, we support concatenation (at least to some degree), which requires us to look at sequences
of TA transitions to match a single unit. But to simplify the presentation we omit these details.
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Our second optimization aims at reducing the number of tracked norms. For that,
we use a simple heuristic exploiting the underlying shape analysis and the principle of
variable seeding [BCC+07]. Basically, for each pointer variable x used as a source/target
of some norm in Nc, we create a shadow variable x′, and remember the position of x at
the beginning of a loop by injecting a statement x′ = x before the loop. We then use
our shape analyser on the extended code to see whether the given variable indeed moves
towards the appropriate target location when the loop body is fired once. If we can
clearly see that this is not the case due to, e.g. the variable stays at the same location,
we remove it from Nc. For illustration, in our example from Section 5.1, we generate
two norms p〈next∗〉pstop and pstop〈next∗〉p for the loop at line 13. Using the above
approach, we can see that pstop is never moved, pstop〈next∗〉p is never decreased, and
so we can discard it. Moreover, we check which norms decrease at which loop branches
(or, more precisely, that cannot be excluded to decrease) and prune away norms that
decrease only when some other norm is decreased—we say that such a norm is subsumed.

E.g. lets have three norms n〈left∗〉NULL, n〈right∗〉NULL, n〈left+right∗〉NULL and non-
deterministic tree traversal. The non-deterministic traversal then leads to a butterfly
loop with two branches (one for left and one for right traversal). Norms n〈left∗〉NULL
and n〈right∗〉NULL are decreased only at left and right branches of the butterfly loop
respectively. However, the norm n〈left+right∗〉NULL is decreased at both branches (i.e.
it subsumes decreases of both of the norms) and hence is the only one included in NC .

1 Function void butterfly(Node* x)
2 while x != NULL do
3 if * then
4 x = x→left;

5 else
6 x = x→right;

l2

x〈left〉⊥ − −
x〈left+ right〉⊥ − −

x〈right〉⊥ − −
x〈left+ right〉⊥ − −

Figure 5.16.: The while cycle at line 2 is translated into a butterfly loop. Our
approach initially generates three candidate norms: x〈left∗〉NULL, x〈right∗〉NULL and
x〈left+right∗〉NULL. However, only norm x〈left+right∗〉NULL decreases in both branches
of the butterfly loop and so can be used as a loop bound. Since x〈left+right∗〉NULL
decreases every time x〈left∗〉NULL or x〈right∗〉NULL decreases, we say it subsumes these
norms. The subsumed norms can be removed from tracking.

Finally, we reduce the size of the resulting integer program by taking into account only
those changes (resets, increments, and decrements) of the norms whose effect can reach
the loop for whose analysis the norm is relevant. For that, we use a slight adaptation of
the reset graphs introduced in [SZV17].
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5.5.4. Experimental Evaluation

Our experiments were performed on a machine with an Intel Core i7-2600@3.4 GHz
processor and 32 GiB RAM running Debian GNU/Linux. We compared our prototype
Ranger with two other tools: AProVE and Costa. These two tools are, to the best
of our knowledge, the closest to Ranger and represent the most recent advancements in
bounds analysis of heap-manipulating programs. However, note that both of the tools
work over the Java bytecode, and thus we had to translate our benchmarks to Java.
For our tool, we report three times: the running time of the shape analysis of Forester
(SA), generation of the integer program (IG), and bounds analysis in Loopus (BA). For
the other tools, we report times as reported by their web interface10. Further, from the
outputs of the tools, we extracted the reported complexity of the main program loop,
and, if needed, simplified the bounds to the big O notation. We remark that Costa
uses path-based norms (i.e. a subset of our norms), so it is directly comparable with
Ranger. AProVE, however, uses norms based on counting all reachable elements, and
is therefore orthogonal to us. But, their norms are always bigger than our norms, thus
if it reports an equal or bigger computational complexity we can meaningfully compare
the results.

The results are summarized in Table 5.2. We use TIMEOUT(60s) if a time-out of
60 seconds was hit, ERROR if the tool failed to run the example11, and Unknown if
the tool could not bound the main loop of the example. We divided our benchmarks
to three distinct categories. The Basic category consists of simple list structures —
Singly-Linked Lists (SLL) and Circular Singly-Linked Lists (CSLL). In the Advanced
Structures category, we infer bounds for programs on more complex structures —
Binary Trees (BST), Doubly-Linked Lists (DLL), and even 2-level skip-lists (2-LVL SL).
The last category Advanced Algorithms includes experiments with various more
advanced algorithms, including show cases taken from related work.

In benchmarks marked with (*), AProVE returned an incorrect bound in our exper-
iments. Further, in benchmarks marked with (**), we obtained different bounds from
different runs of AProVE even though it was run in exactly the same way. In both
cases, we were unable to find the reason.

The results confirm that our approach, conceived as highly parametric in the under-
lying shape and bounds analyses, allowed us to successfully combine an advanced shape
analysis with a state-of-the-art implementation of amortized resource bounds analysis.
Due to this, we were able to fully automatically derive tight complexity bounds even over
data structures such as 2-level skip-lists, which are challenging even for safety analysis,
and to get more precise and tight bounds for algorithms like Partitions or Func-
Queue, which require amortized reasoning to get the precise bound. The most encour-
aging result is the fully automatically computed precise linear bound for the mergeInner
method [Atk11]. While AProVE was able to process the example, it was still not able
to infer the precise interplay between the traversals of the involved SLL partitions and
numeric values needed to compute the precise linear bound.

10We could not directly compare the tools on the same machine due to the tool availability issues.
11However, we verified that all our examples are syntactically correct.
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Of course, our path-based norms do have their limitations too. They are, e.g. not
sufficient to verify algorithms like the Deutsch-Schorr-Waite tree traversal algorithm or
tree destruction algorithms, which could be verified using norms, supported, e.g. by
AProVE, based on counting all memory locations reachable from a given location. We
thus see an approach combining such norms (perhaps with suitably bounded scope) with
our norms as an interesting direction of future research along with a better support of
norms based on data stored in dynamic data structures.

5.6. Conclusion and Future Directions

We have proposed a novel parametric class of shape norms that express the distance be-
tween two distinct points through selector paths. Further, we proposed a transformation
of an input heap-manipulating program into a corresponding integer representation that
can be followed by state-of-the-art resource bounds analysers for integer programs. Our
approach managed to outperform the state-of-the-art methods on a series of programs
either manipulating non-trivial data structures (such as trees, skip-lists or singly-linked
lists) or requiring amortized reasoning for inferring precise resource bounds.

However, there are still many further optimizations possible. First, our class of norms
is currently limited to simple selector paths only, and hence we would naturally like to
extend the calculus to a richer variety of selector paths, in particular, concatenation
and iteration of selector paths. Moreover, we could combine our path-based norms with
size-based norms as defined, e.g. in AProVE [FG17]. At last, we would like to adapt
bi-abduction techniques [CDOY11, LGQC14, LQC15] for resource bounds analysis that
could allow us to analyse open programs and to be applied in the practice.
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6. Conclusion and Future Directions

The main goal of this thesis was to improve the state of the art of formal analysis and
verification of systems with infinite state space and with the focus on techniques based
on automata. In particular, we addressed this goal in two distinct parts.

In the first part, we focused on weak monadic second-order logic of one successor
(WS1S): a highly expressive, yet decidable, theory that was successfully applied in several
formal analyses and verification methods. First, we limited ourselves to formulae in the
prenex normal form and proposed an antichain-based decision procedure. The procedure
checks the validity of a formula by constructing a corresponding finite automaton for the
matrix (i.e. the quantifier free sub-formula) of the given formula followed by processing
the prefix of quantifiers by recursively computing the fixpoint of final resp. nonfinal
states. Finally, the method concludes that the formula is valid if the intersection of initial
and final states is non-empty. We further optimized this procedure by a generalization
of the antichain-based universality checking which allows us to considerably reduce the
explored state space. We demonstrated the efficiency of this method on a series of both
artificial formulae and formulae describing invariants of programs manipulating with
singly-linked lists beating the state-of-the-art methods.

We further generalized the procedure to arbitrary formulae. We proposed a systematic
way to express the formulae as so-called language terms and check validity of the formulae
using an on-the-fly algorithm. We optimized the basic algorithm by two main techniques:
a antichain-based pruning of the state space and a lazy evaluation of the sub-terms.
We evaluated the procedure on a series of formulae used for verification of programs
manipulating singly-linked lists or arrays. Our second procedure outperformed both the
state-of-the-art methods as well as our initial approach by several orders of magnitude.

In the second part of the thesis, we focused on resource bounds analysis of heap-
manipulating programs. We proposed a novel parametric class of shape norms that ex-
press the distance between two distinct points through selector paths (such as the norm
x〈next∗〉NULL expressing the lengths of paths through the next selector from the variable
x to null pointer). Based on this class of norms, we designed a method that transforms
an input heap-manipulating program into a corresponding integer representation. We
then analyse the resulting integer program using state-of-the-art resource bounds anal-
ysers for integer programs. In order to construct the integer representation efficiently,
we propose to (1) derive the norms directly from the program, (2) use a calculus that
infers changes of norms according to the results of the shape analysis, and (3) prune the
set of tracked norms based on several heuristics. We evaluated our approach on a series
of programs either manipulating non-trivial data structures or requiring amortized rea-
soning for inferring precise resource bounds. Our procedure managed to outperform the
state-of-the-art methods both in terms of the speed and the precision of the bounds.
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All of our contributions were implemented as tools. The first antichain based method
was implemented as a prototype tool called dWiNA [FHLV14] and the second lazy
method was implemented in a tool called Gaston [FHJ+16]. We implemented the
novel resource bounds analyser Ranger [FHR+18b] on top of the Forester and Loopus
tools.

6.1. Further Directions

In the introduction, we discussed that the current state of the art of performance analysis
of complex data structures is still less developed than, e.g. analysis of integer programs.
While our contributions have hopefully pushed the usability border of both performance
analysis and WS1S logic, we still think that there is a lot of potential directions we could
follow or enhance.

We mentioned that WS1S has many applications, e.g, as an underlying theory for
specification of invariants of linear data structures. The next natural step is to extend
our procedures to WS2S — weak monadic second-order logic of two successors — which
would enable us to model properties of more complex data structures, such as trees.
However, one will have to cope with a more complex type of automata, in particular, tree
automata. For tree automata, however, even some basic operations, such as subsumption
testing or the simulation relation, are more complex and more expensive. Moreover,
while our procedures performed well on many formulae, e.g. describing properties of
arrays [ZHW+14] or singly-linked lists [MQ11], they still failed on many other due to
a state space explosion — an inherent property of WS1S. We believe that we could achieve
further state space reduction by adapting, e.g. simulation-based techniques [Cé17] both
on the generated automata as well as by weakening the term-subsumption relation.
Another possible reduction could be achieved by integration of our approach with SAT
and SMT techniques or by adapting some of the techniques proposed by the authors of
the Mona tool [KMS02].

In the second part, we proposed a resource bounds analysis of the heap-manipulating
programs based on a new class of norms, which model numerical measures such as
lengths of lists by selector paths between distinct points. Our class of norms is currently
limited to simple selector paths only, and so we would like to extend its calculus to
a richer variety of selector paths. In particular, we would like to support concatenation
(to support sequential traversals in the control flow) and iteration (to support nested
cycles in the control flow) of selector paths. Moreover, we believe we could infer resource
bounds for a wider class of programs if we combined our path-based norms with size-
based norms as defined, e.g. in AProVE [FG17]. At last, we would like to extend
our approach to analysis of open programs. We believe that adapting bi-abduction
techniques [CDOY11, LGQC14, LQC15] for resource bounds analysis could allow us to
scale better and to be applied in the practice.
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In this thesis, we mainly researched possibilities of static analysis for performance anal-
ysis of programs. Another direction that we are currently exploring is dynamic analysis
of programs. In particular, we propose to model the performance of programs based
on real data captured from actual program runs. One can then model the performance
of a program using, e.g. regression, non-parametric [WJ94, HTF09], or multivari-
ate [Dev11] analyses. Based on these models, we believe we can automatically detect
performance changes between two distinct versions of programs, i.e. detect from pairs
of models for current and some baseline version of a program that the performance con-
siderably degraded. Moreover, we wish to explore possibilities of using, e.g. fuzz-testing
for triggering performance changes in program runs. Finally, we would like to develop
an optimized collection of resource data from real runs by limiting the analysis only to
subset of program units (functions, etc.) that impacts the program performance the
most. Of course, a question is how to find this subset.

6.2. Publications Related to this Thesis

We developed two decision procedures for WS1S logic. The first one based on an-
tichains was initially published in TACAS’15 [FHLV15]; its extended version with ad-
ditional proofs and more thorough examples was published in the Acta Informatica
journal [FHLV19]. Our follow-up work, which generalised the original decision proce-
dure to arbitrary formulae based on lazy techniques and on-the-fly exploration of the
state space was published in TACAS’17 [FHJ+17].

In the field of performance analysis of heap-manipulating programs, we built on effi-
cient approaches of the Loopus and Forester tools and proposed a parametric framework
for amortized resources bounds analysis published in VMCAI’18 [FHR+18a].

In summary, we developed three tools. The implementations of antichain based and
lazy decision procedures for WS1S logic called dWiNA [FHLV14] and Gaston [FHJ+16]
respectively. Further, we extended the Forester tool into a Ranger tool [FHR+18b]
which translates input heap-manipulating programs into corresponding integer pro-
grams. At last, our ongoing work is currently developed as the Perun tool [FGL+18].
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