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1 Introduction

For almost a century, computer technology has been a necessary part of our
lives: mankind exploits it in everyday life, in medicine, in transportation or
in heavy industry. Naturally, computer programs should be error-free, since
any error can have either little (such as bad user experience), medium (such
as cash loss) or even severe consequences (such as accidents or crashes). To
prevent these errors before-hand, one can try to use formal analysis and verifi-
cation, however, these techniques still face a great challenge: complex systems
leads to an analysis of infinite state space, and, in many cases, even to infea-
sibility. While, for many classes of programs we can prove or analyse many
properties (including safety, termination or atomicity of programs), every year
the list keeps growing with many new properties to be checked and many new
characteristics of programs to be analysed leading to brand new challenges

For instance recently, developers have been more frequently demanding
tools that would help them understand the performance of their code. In some
cases, they even need to verify that their programs stay within the expected
resource bounds (i.e. bounds on the expected consumption of computational
time, memory, disk space, energy, etc.) or at least obtain a reasonable estimate
of the program performance. In their software, performance-related issues are
common and lead to a poor user experience or a waste of computational re-
sources, as is documented by many recent studies [JSS+12]. These studies
claim that the root cause of all of these issues is that developers do not under-
stand the performance of their programs enough. But there are many other
important factors involved in such widespread: insufficient performance regres-
sion testing, small test workloads or the fast development frequently breaking
the codebase.

Unlike in the case of functional bugs, a large percentage of performance
bugs is usually discovered through code reasoning or profiling, and not through
the majority of users reporting negative effects of the bugs or through regu-
lar automated checks. Performance degradations are subtle, and they tend to
manifest only with considerably big workloads. In the end they are missed
by the frequent regression testing and noticed only by individual users in in-
dividual cases. So, naturally, techniques to help developers reason about the
performance, better test oracles or better profiling techniques are needed in or-
der to discover these kinds of bugs early in the process. Obviously, we have to
extend the developer’s everyday toolbox with efficient automated performance
analyses and automated detection of performance bugs.

Although some research of automated performance analysis has already
been done, the currently known techniques are still far from being satisfactory.
This is especially true when the analysed code works not only with simple data
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types such as integers, but employs complex dynamic data structures based
on pointers such as lists, trees, and their various combinations or extensions.

Such data structures are commonly used in complex system code like op-
erating system kernels, compilers, database engines, browsers and even em-
bedded systems, whose poor performance can significantly impact the user
experience. It is a well-known fact that dynamic data structures are hard
to develop and can contain intricate errors which, in addition, only manifest
under certain circumstances and are thus difficult to track down. Moreover,
in performance critical applications, developers use even more advanced data
structures such as, e.g. red-black trees, priority heaps, or lock-free linked lists,
as well as various advanced programming techniques like, e.g. pointer arith-
metic or block operations for performance speed up. For programs based on
such techniques, even safety verification is still a challenge and works on their
automated performance analysis are extremely rare.

In theory we can divide performance analysis into two main approaches —
static and dynamic analysis. For an input program, the first one allows us
to infer theoretically proven resource bounds; on the other hand, the latter
collects performance records from one or more program runs, possibly ex-
trapolates these data and then only estimates resource bounds, without any
theoretical proof. But while both approaches have their advantages, e.g. in
terms of the speed or precision, and the right time to be used, they share many
challenges that must be overcome to apply them in everyday development.

One of these challenges is choosing a suitable formal theory to describe the
program invariants. We need a theory that allows for a scalable analysis to
be implemented on top of it and that is, at the same time, expressive enough
to be able to reason about properties of advanced structures, especially their
shapes or resource bounds. Commonly, researches use logics due to their great
expressive power. However, with such power comes the price: great complexity
of the associated decision problems, with some logics even being undecidable.
In order to achieve an efficient analysis, one then has to improve the state of
the art or use dedicated theories such as, e.g. separation logic [Rey02], or weak
monadic second order logic with one successor (WS1S) [Büc59].

The latter, WS1S, has lots of applications not only for reasoning over the
data structures [MPQ11, ZHW+14]. It is still a decidable logic, however, its de-
cision problem lies in the NONELEMENTARY class: it lurks on the borders
of decidability. So while many WS1S formulae are decidable in a reasonable
time, sometimes its complexity simply strikes back. And then we have to
either fight back or give up building on the WS1S at all. But, we hope we
could exploit the recent advancements in automata theory, e.g. the antichain
principles, to push the usability border of WS1S even further.

Another challenge is how to build such analysers. In particular, in the area
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of resource bounds analysis, current static resource bounds analyses are so far
mostly limited to programs with integer variables only. When pointers are used
in the analysed programs the analysers usually return a huge number of false
negatives, not knowing the precise targets of the used pointers or the shape
of the dynamic data structures being handled. They are forced to work with
basic assumptions over the pointer variables, and thus they have to sacrifice
soundness or precision of the approach. Programs with pointers are, however,
common in practice, so this limitation is rather significant from the point of
view of applicability.

Alternatively, we can give up the precision of the static analysis, focus on
dynamically captured data and only settle for estimates of the program per-
formance from concrete program runs. While one cannot guarantee how the
program under analysis will perform or whether it will trigger any bug, dy-
namic analysis can still provide a useful insight and can be exploited, e.g. to
detect performance changes or to infer statistical models of expected perfor-
mance, leading to a better program understanding.

In the end, both static and dynamic analyses have their own shortcomings,
nevertheless, we, researchers, should also focus our efforts on the developer
experience. We should always strive to achieve a high performance bug fix ratio
instead of high bug detection ratio since only that shows that our methods are
applicable in practice. Every performance analysis should provide at least (i)
approximate location where the bug was located, (ii) estimated severity how
the performance or functionality is influenced by the bug, and (iii) detection
confidence whether the bug was real or spurious. These factors greatly affect
whether the developer will confirm the bug the subsequent decision whether
it should be fixed. However, most importantly, if these bugs are to be fixed at
all, developers have to catch them early in the development process when their
mindset is still in the context of the influenced code. This can only be achieved
by integrating static and dynamic analysers into the existing development
workflows such as the continuous integration.

1.1 Goals of the Thesis

The aim of this thesis is to extend the current state of the art of formal analysis
and verification of systems with infinite state space and with the focus on
techniques based on automata. In particular, we address this goal in two
distinct parts. On one hand, the thesis focuses on developing novel methods
based on static analysis and, on the other hand, also on enhancing methods
for deciding formal theories, that are currently used in existing methods, to
enable analysis and verification of a broader range of programs.

The first goal is enhancing the current methods for deciding selected logics.
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In particular, the focus is put on decision procedures for the weak monadic
second order logic of one successor (WS1S), which is the target of the trans-
lation of, e.g. logics of Strand [MPQ11] and UABE [ZHW+14] — logics
allowing expression of invariants of advanced data structures and arrays re-
spectively. The current state-of-the-art decision procedures, however, are not
efficient enough to decide more complex formulae and so authors of Strand
and UABE had to find a workaround in order to apply them properly in the
field of program verification. Motivated by this situation, one of the goals is
thus to improve the current state of the art in WS1S decision procedures, and
to make them more efficient to be usable on more complex formulae such as
those of Strand or UABE.

The other goal focuses on performance analysis for heap-manipulating pro-
grams (with the emphasis on resource bounds analysis and automatic com-
plexity analysis). While the current state-of-the-art of the resource bounds
analysis of integer programs is already quite advanced, the state of the art of
performance analysis of heap-manipulating programs is much less developed.
We build on results from the fields of shape analysis [HŠRV13] and resource
bounds analysis of integer programs [SZV17] to develop a sound analysis for
verification of resource bounds of programs manipulating with advanced data
structures. The key to solving this goal lies in a proper definition of so-called
shape norms — numerical measures on data structures, such as the length of
list or the number of elements in trees. Hence, the goal is to propose a flexible
and powerful class of norms that will allow one to analyse a wide selection of
data structures, such as binary trees or even skip-lists.

2 Preliminaries

We first introduce the notion of weak monadic second-order logic of one suc-
cessor. Moreover, we present a brief introduction to automata theory.

Syntax. WS1S is a monadic second-order logic over the universe of discourse
N0. This means WS1S supports second-order variables, usually denoted using
upper-case letters X, Y, . . . , that range over finite subsets of N0, e.g. X =
{0, 3, 42}. Given X and Y are variables, we can defined WS1S atomic formulae
as follows: (i) X ⊆ Y , i.e. the standard set inclusion, (ii) Sing(X), i.e. the
singleton predicate, (iii) X = {0}, i.e. X is a singleton containing 0, and (iv)
X = Y + 1, i.e. X = {x} and Y = {y} are singletons and x is the successor
of y, i.e. x = y + 1. More complex formulae can be built using the classical
logical connectives ∧ (conjunction), ∨ (disjunction), ¬ (negation), and the
quantifier ∃X (existential quantification) where X is a finite set of variables
(we write ∃X if X is a singleton {X}).
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Semantics. A model of a WS1S formula ϕ(X ) with the set of free variables
X is an assignment ρ : X → 2N0 of the free variables X of ϕ to finite subsets
of N0 for which the formula is satisfied, written ρ |= ϕ. Satisfaction of atomic
formulae is defined as follows: (i) ρ |= X ⊆ Y iff ρ(X) ⊆ ρ(Y ), (ii) ρ |=
Sing(X) iff ρ(X) is a singleton set, (iii) ρ |= X = {0} iff ρ(X) = {0}, and
(iv) ρ |= X = Y + 1 iff ρ(X) = {x}, ρ(Y ) = {y}, and x = y+ 1. Satisfaction of
formulae formed using logical connectives is defined as usual. A formula ϕ is
valid, written |= ϕ, iff all assignments of its free variables to finite subsets of N0

are its models, and satisfiable if it has a model. Otherwise it is unsatisfiable.

Finite Automata Let X be a set of variables. A symbol τ over X is a
mapping of all variables in X to either 0 or 1, e.g. τ = {X1 7→ 0, X2 7→ 1} for
X = {X1, X2}. An alphabet over X is the set of all symbols over X, denoted
as ΣX. For any X (even empty) we use 0̄ to denote the symbol which maps all
variables from X to 0, 0̄ ∈ ΣX, the so-called zero symbol.

A (non-deterministic) finite (word) automaton (abbreviated as FA in the
following) over a set of variables X and an alphabet ΣX is a quadruple A =
(Q, δ, I, F) where Q is a finite set of states, I ⊆ Q is a set of initial states,
F ⊆ Q is a set of final states, and δ ⊆ Q × ΣX × Q is a set of transitions of
the form (p, τ, q) where p, q ∈ Q and τ ∈ ΣX. We use p

τ−→ q ∈ δ to denote
that (p, τ, q) ∈ δ. Note that for an FA A over X = ∅, A is a unary FA with
the alphabet ΣX = {0̄}.

A run r of A over a word w = τ1τ2 . . . τn ∈ Σ∗X from the state p ∈ Q to
the state s ∈ Q is a sequence of states r = q0q1 . . . qn ∈ Q+ such that q0 = p,
qn = s and for all 1 ≤ i ≤ n there is a transition qi−1

τi−→ qi in δ. If s ∈ F, we
say that r is an accepting run. We write p

w
=⇒ s to denote that there exists

a run from the state p to the state s over the word w. The language accepted
by a state q is defined by LA(q) = {w | q w

=⇒ qf , qf ∈ F}; the language of a set
of states S ⊆ Q is defined as LA(S) =

⋃
q∈S LA(q). When it is clear which FA

A we refer to, we only write L(q) or L(S). The language of A is then defined
as L(A) = LA(I). We say that the state q accepts w and that the automaton
A accepts w to express that w ∈ LA(q) and w ∈ L(A) respectively. We call
a language L ⊆ Σ∗X universal iff L = Σ∗X. For a set of states S ⊆ Q, we define

post [δ,τ ](S) =
⋃
s∈S{t | s

τ−→ t ∈ δ}.
We define the complement of an automaton A as the automaton AC =

(2Q, δC, {I}, ↓{Q \ F}) where δC =
{
P

τ−→ post [δ,τ ](P )
∣∣∣ P ⊆ Q

}
, and ↓{Q \ F}

is the set of all subsets of Q that do not contain any final state of A; this
corresponds to the standard procedure that first determinizes A by the subset
construction and then swaps its sets of final and non-final states. The language
of AC is the complement of the language of A, i.e. L(AC) = L(A).

For a set of variables X and a variable X, the projection of X from X,
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denoted as πX(X), is the set X \ {X}. For a symbol τ , the projection of X
from τ , denoted πX(τ), is obtained from τ by restricting τ to the domain
πX(X)1. For a transition relation δ, the projection of X from δ, denoted as

πX(δ), is the transition relation
{
p

πX(τ)−−−→ q | p τ−→ q ∈ δ
}

.

A word over a finite alphabet Σ is a finite sequence w = a1 · · · an, for
n ≥ 0, of symbols from Σ. Its i-th symbol ai is denoted by w[i]. For n = 0,
the word is the empty word ε. A language L is a set of words over Σ. We
use the standard language operators of concatenation L.L′ and iteration L∗.
The (right) quotient of a language L w.r.t the language L′ is the language
L − L′ = {u | ∃v ∈ L′ : uv ∈ L}. We abuse the notation and write L − w to
denote L− {w}, for a word w ∈ Σ∗.

3 Decision Procedures for WS1S

Weak monadic second-order logic of one successor (WS1S) is a powerful lan-
guage for reasoning about regular properties of finite words. It has, indeed,
found numerous applications, ranging from software and hardware verification
through controller synthesis to, e.g. computational linguistics or verification
of parametric systems. Most of these successful applications were possible due
to the well-known Mona tool [EKM98], which implements classical automata-
based decision procedures for WS1S and WS2S logics (a generalization of
WS1S to finite binary trees). However, the worst-case complexity of WS1S
is NONELEMENTARY [Mey72], and, despite many optimizations imple-
mented in Mona and other tools, the complexity sometimes simply strikes
back. However, for a logic as expressive as WS1S any further advancements
in its decision procedures could improve its practical applicability as well as
open new applications, e.g. for performance or resource bounds analysis.

3.1 Nested Antichains for WS1S

The classical approach for deciding WS1S, e.g. as implemented within the
Mona tool, works with deterministic automata. It uses determinization exten-
sively, and it relies on efficient minimization of deterministic automata to sup-
press the complexity blow-up. However, the worst-case exponential complexity
of determinization often significantly harms the performance of the tool. But
we believe that we can alleviate this problem by exploiting some of the recent
works on efficient methods for handling non-deterministic automata—in par-

1Note there are several ways how to restrict the symbol to the domain — either by removing the track
corresponding to the variable from the transitions or pump the transition relation by so-called don’t cares, i.e.
the track will contain both 0 or 1.
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ticular, works on efficient testing of language inclusion and universality of finite
automata [ACH+10] and works on reducing the size of finite automata using
simulation relations [ABH+08]. These methods can handle non-deterministic
automata while avoiding the determinization, and it has been shown they pro-
vide great efficiency improvements2, e.g. in shape analysis. We thus make a
major step towards building the entire decision procedure of WS1S on non-
deterministic automata using similar techniques. We propose a generalization
of the antichain algorithms of [DR10] to address the main bottleneck of the
automata-based decision procedure for WS1S, i.e. the source of its complexity:
the elimination of alternating quantifiers, which — when implemented on the
automata level — produces nondeterministic FAs, and is followed by determin-
isation needed to allow subsequent negations.

The classical automata-based decision procedure translates the input WS1S
formula into a finite word automaton such that its language represents all mod-
els of the formula. The automaton is built in a bottom-up manner according to
the syntactic structure of the formula, starting with predefined automata for its
literals (called ”atomic” automata in the following) and applying a correspond-
ing automata operation for every logical connective and quantifier (∧,∨,¬,∃).

We can explain the source of the nonelementary complexity of the pro-
cedure on an example formula of the form ϕ′ = ∃Xm∀Xm−1 . . . ∀X2∃X1 :
ϕ0. First, we replace universal quantifiers by negation and existential quan-
tification, which results into the formula ϕ = ∃Xm¬∃Xm−1 . . .¬∃X2¬∃X1 :
ϕ0. The algorithm then builds a sequence of automata for the sub-formulae
ϕ0, ϕ

]
0, . . . , ϕm−1, ϕ

]
m−1 of ϕ where ϕ]i = ∃Xi+1 : ϕi and ϕi+1 = ¬ϕ]i for

0 ≤ i < m. Every automaton in the sequence is constructed from the previous
one by applying automata operations corresponding to negation or elimination
of the existential quantifier. The latter corresponds to modifying automata
transitions and may potentially introduce non-determinism.

However, the typical approach of complementing an NFA, i.e., determin-
ising it first and then switching final and nonfinal states, may result into
an exponential blowup: given an automaton for ψ, the automaton for ¬ψ
is constructed by the classical automata-theoretic construction consisting of
determinization by the subset construction followed by swapping of the sets
of final and non-final states. Since the subset construction is exponential in
the worst case, the worst-case complexity of the procedure on the given ϕ is
then a tower of exponentials with one level for every quantifier alternation in ϕ.
Note that this high computational cost cannot be avoided completely—indeed,
the nonelementary complexity is an inherent property of the problem.

2Naturally, the worst-case exponential complexity of these methods is an inherent property, however, the
average complexity can indeed be improved so the methods can be used in practice.
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An overview of the proposed algorithm. Instead we propose an algo-
rithm for processing alternating quantifiers in the prefix of a formula which
avoids the explicit determinization (and hence the associated exponential blow-
up) of automata in the classical procedure and significantly reduces the state
space explosion associated with it. Our algorithm is based on a generalization
of the antichain principle used for deciding universality and language inclu-
sion of finite automata [ACH+10]. We generalized the antichain algorithms
so that instead of processing only one level of the chain of automata, we pro-
cess the whole chain of quantifications with i alternations on-the-fly. Basically
this means we are working with automata states that are sets of sets of sets
. . . of states of the automaton representing ϕ0 of the nesting depth i (this
corresponds to i levels of subset construction being done on-the-fly). In our
algorithm we use nested symbolic terms to represent sets of such automata
states and a generalized version of antichain pruning based on a notion of
subsumption that descends recursively down the structure of the terms while
pruning on all their levels.

However, note that our proposed nested antichain approach has its own
limitations: currently we can only process a quantifier prefix of a formula,
after which we return the answer to the validity query, but not an automaton
representing all models of the input formula. That is, we cannot use the
optimized algorithm for processing inner negations and alternating quantifiers
which are not a part of the quantifier prefix or unground formulae.

Contributions. We summarize our contributions to WS1S achieved by our
first proposed approach linked with the dWiNA tool:

1. By generalization of antichain techniques, we develop a decision proce-
dure that can efficiently process long chains of quantifiers in the given
formulae.

2. We show in our experimental evaluation that we improve the state of the
art of WS1S decision procedures. In particular, we report on a series of
parametric families of formulae, where we outperformed the state-of-the-
art approaches.

3.1.1 Experimental Evaluation

We have implemented a prototype of our first approach in the tool called
dWiNA [FHLV14]. We built it over the frontend of the Mona tool to parse
the input formula into an internal representation in the form of FAs encoded
using the MTBDD-based representation from the libvata library [LŠV12].
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We evaluated dWiNA against several parametric families of manually con-
structed formulae, from which some were originally designed as show cases for
evaluation of other tools. We compared dWiNA with the Mona tool, an
implementation of the coalgebraic decision procedure [Tra15], which we refer
to as Coalg, a decision procedure based on symbolic automata [DV], which
we refer to as SFA, and the tool Toss implementing a procedure based on the
Shelah’s decomposition [GK10].

Since the tools support a limited set of syntactic features, we could only use
a subset of the available benchmark formulae. Namely, we took the parametric
families of formulae HornLeq from [DV] and HornIn from [GK10], originally
proposed to evaluate the performance of SFA and Toss, respectively, and
our parametric family of formulae SetClosed.3 This experiment was run on
a machine with a system that meets the requirements of all the tools4, with
an Intel Core i7-4770@3.4 GHz processor and 16GiB RAM, running Debian
GNU/Linux. Table 1 gives the run times of the tools. We use ∞ in case the
time exceeded 2 minutes and oom to denote that the tool ran out of memory.
We can see that dWiNA outperforms the other tools on the most of the
formulae.

Table 1: Experiments with parametric families of formulae

Benchmark Mona Toss Coalg SFA dWiNA

HornLeq [DV]
horn-leq06 0.01 0.02 1.10 0.01 0.01
horn-leq07 0.01 0.02 11.09 0.01 0.01
horn-leq08 0.01 0.02 101.48 0.01 0.01
horn-leq09 0.01 0.02 ∞ 0.01 0.01
horn-leq11 0.05 0.03 ∞ 0.02 0.01
horn-leq13 0.19 0.04 ∞ 0.02 0.01
horn-leq14 0.45 0.04 ∞ 0.02 0.01
horn-leq15 1.19 0.05 ∞ 0.03 0.02
horn-leq16 3.35 0.05 ∞ 0.03 0.02
horn-leq17 9.07 0.05 ∞ 0.03 0.02
horn-leq18 22.89 0.06 ∞ 0.03 0.02
horn-leq19 oom 0.06 ∞ 0.03 0.03

Benchmark Mona Toss Coalg SFA dWiNA

SetClosed

set-closed01 0.01 0.02 0.04 0.01 0.01
set-closed02 0.01 0.02 ∞ 0.13 0.01
set-closed03 0.01 0.18 ∞ 0.14 0.01
set-closed04 0.34 ∞ ∞ 13.96 0.01
set-closed05 ∞ ∞ ∞ ∞ 0.01
set-closed07 ∞ ∞ ∞ ∞ 0.01
set-closed09 ∞ ∞ ∞ ∞ 0.10
set-closed11 ∞ ∞ ∞ ∞ 0.95
set-closed12 ∞ ∞ ∞ ∞ 3.61
set-closed13 ∞ ∞ ∞ ∞ 14.3
set-closed14 ∞ ∞ ∞ ∞ 69.08
set-closed15 ∞ ∞ ∞ ∞ ∞

3.2 Lazy Automata Techniques for WS1S

We have said that the classical WS1S decision procedure builds an automa-
ton Aϕ accepting all encodings of models of the given formula ϕ in a form of
finite words, and only then tests whether the language of Aϕ is empty. The
bottleneck of this procedure is the size of Aϕ, which can be huge due to the
fact that the derivation of Aϕ involves many nested automata product con-
structions and complementation steps, preceded by determinization. We have
demonstrated how one can avoid this bottleneck when processing the topmost
quantifier prefix of the given formulae in our previosu method. However, we

3Note that the HornSub family is not supported by Toss and Coalg, and thus we chose a comparably
complex family of SetClosed to present the overall comparison.

4Note that the Toss tool required specific version of OCaml that was not available for a stable debian
build.
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limited ourselves to processing of this prefix only and hence could not process
arbitrary formula efficiently, and, moreover, in quite some cases the decision
procedure still led to a state-space explosion.

Hence, our next goal is to avoid more of the state-space explosion involved
in the explicit construction and to handle formulae without a need to transform
them into the prenex normal form. We represent automata symbolically and,
while constructing Aϕ, we test the emptiness of Aϕ on the fly which allows us
to omit the state space irrelevant to the emptiness test. We build on two main
principles: lazy evaluation and subsumption-based pruning. These principles
have, to some degree, already appeared in the so-called antichain-based testing
of language universality and inclusion of finite automata [WDHR06]. However,
the richer structure of the WS1S decision problem allows us to elaborate on
these principles in novel ways and utilize their power even more.

Overview of our algorithm. We propose an algorithm which originates
in the classical WS1S decision procedure, in which models of formulae are
encoded by finite words over a multi-track binary alphabet where each track
corresponds to a variable of ϕ. In tϕ, the atomic formulae of ϕ are replaced
by predefined automata accepting languages of their models. Boolean opera-
tors (∧, ∨, and ¬) are turned into the corresponding set operators (∪, ∩, and
complement) over the languages of models. An existential quantification ∃X
becomes a sequence of two operations. First, a projection πX removes informa-
tion about valuations of the quantified variable X from symbols of the alpha-
bet, i.e. the so-called projection operation. After the projection, the resulting
language L may, however, encode some but not necessarily all encodings of
the models. In particular, encodings with some specific numbers of trailing
0̄’s, used as a padding, may be missing. To obtain a language containing all
encodings of the models, L must be extended to include encodings with any
number of trailing 0̄’s.

Here, we take the (right) 0̄∗-quotient of L, written L− 0̄∗, which is the set of
all prefixes of words of L with the remaining suffix in 0̄∗. We give an example
WS1S formula ϕ in equation (1) and its language term t[ϕ] in equation (2).
The dotted operators represent operators over language terms.

ϕ ≡ ∃X : Sing(X) ∧ (∃Y : Y =X + 1) (1)

t[ϕ] ≡ πX(
{
ASing(X) ∩ (πY (AY=X+1)− 0̄∗)

}
)− 0̄∗ (2)

The novelty of our work is that we test the emptiness of Lϕ directly over t[ϕ].
The term is used as a symbolic representation of the automata that would
be explicitly constructed in the classical procedure: inductively to the terms
structure, starting from the leaves and combining the automata of sub-terms by
standard automata constructions that implement the term operators. Instead
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of first building the automaton and only then testing emptiness, we test it on
the fly during the construction. This offers opportunities to prune out portions
of the state space that turn out not to be relevant for the test.

A sub-term t[ψ] of t[ϕ], corresponding to a sub-formula ψ, represents final
states of the automaton Aψ accepting the language encoding models of ψ. Pre-
decessors of the final states represented by t[ψ] correspond to quotients of t[ψ].
All states of Aψ could hence be constructed by applying quotient operation
on t[ψ] until fixpoint. By working with terms, our procedure can often avoid
building large parts of the automata when they are not necessary for answering
the emptiness query. For instance, when testing the emptiness of the language
of a term t1 ∪ t2, we adopt the lazy approach (in this particular case, the so-
called short-circuit evaluation) and first test the emptiness of the language
of t1; if it is non-empty, we do not need to process t2. Testing language empti-
ness of terms arising from quantified sub-formulae is more complicated since
they translate to −0̄∗ quotients. We evaluate the test on t − 0̄∗ by iterating
the −0̄ quotient from t. We either conclude with the positive result as soon
as one of the iteration computes a term with a non-empty language, or with
the negative one if the fixpoint of the quotient construction is reached. The
fixpoint condition is that the so-far computed quotients subsume the newly
constructed ones, where subsumption is a relation under-approximating inclu-
sion of languages represented by terms. We also use subsumption to prune the
set of computed terms so that only an antichain of the terms maximal wrt
subsumption is kept.

Besides lazy evaluation and subsumption, our approach can benefit from
multiple further optimizations. For example, it can be combined with the
explicit WS1S decision procedure, which can be used to transform arbitrary
sub-terms of tϕ to automata. These automata can then be rather small due
to minimization, which cannot be applied in the on-the-fly approach (the au-
tomata can, however, also explode due to determinisation and product con-
struction, hence this technique comes with a trade-off). We also propose a
novel way of utilising BDD-based encoding of automata transition functions in
the Mona style for computing quotients of terms. Finally, our method can
exploit various methods of logic-based pre-processing, such as anti-prenexing,
which, in our experience, can often significantly reduce the search space of
fixpoint computations.

Contributions. We summarize our contributions to WS1S achieved by our
second proposed approach linked with the Gaston tool:

1. Instead of the explicit automata construction, we develop an on-the-fly
decision procedure based on the so-called language terms that can effi-
ciently process arbitrary formulae. Contrary to the classical procedure,

15



our method can avoid costly determinisation in many cases.

2. We propose a combination of our procedure with the classical decision
procedure for WS1S as implemented, e.g. by the Mona tool. This allows
one to exploit the key optimizations of both approaches, i.e. minimiza-
tion and lazy evaluation.

3. Besides the novel decision procedure, we develop a series of optimizations
that are not limited to our approach only. Other tools and methods
can exploit these optimizations, such as, e.g. anti-prenexing, to achieve
better efficiency.

4. In our experimental evaluation, we demonstrate we improve the state of
the art of WS1S decision procedures, especially on formulae describing
program invariants of advanced data structures. In particular, we report
on a series of benchmarks used for verification of programs, where we
outperformed the Mona tool.

5. We perform an extensive evaluation of all the publicly available tools
on a series of benchmarks that are used to stress-test WS1S decision
procedures. We present a fair speed comparison of all of the available
tools.

3.2.1 Experimental Evaluation

We have implemented the optimized procedure in a prototype tool Gas-
ton [FHJ+16] 5. Our tool uses the front-end of Mona to parse input formulae,
to construct their corresponding abstract syntax trees, and to explicitly con-
struct automata for sub-formulae.

We have compared Gaston’s performance with that of Mona, our pre-
vious approach [FHLV15] implemented in the dWiNA tool, the Toss tool
implementing the method of [GK10], and the implementations of the decision
procedures of [Tra15] and [DV] (which we denote as Coalg and SFA, re-
spectively). In our experiments, we consider formulae obtained from various
formal verification tasks as well as parametric families of formulae designed
to stress-test WS1S decision procedures. We performed the experiments on
a machine with the Intel Core i7-2600@3.4 GHz processor and 16 GiB RAM
running Debian GNU/Linux.

5The name was chosen to pay homage to Gaston, an Africa-born brown fur seal who escaped the Prague
Zoo during the floods in 2002 and made a heroic journey for freedom of over 300 km to Dresden. There he was
caught and subsequently died due to exhaustion and infection.
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Table 2: The comparison of Mona and Gaston on UABE benchmark.

Formula
Mona Gaston

Time Space Time Space

a-a 1.71 30 253 ∞ ∞
ex10 7.71 131 835 12.67 82 236
ex11 4.40 2 393 0.18 4 156
ex12 0.13 2 591 6.31 68 159
ex13 0.04 2 601 1.19 16 883
ex16 0.04 3 384 0.28 3 960
ex17 3.52 165 173 0.17 3 952
ex18 0.27 19 463 ∞ ∞
ex2 0.18 26 565 0.01 1 841
ex20 1.46 1 077 0.27 12 266
ex21 1.68 30 253 ∞ ∞
ex4 0.08 6 797 0.50 22 442
ex6 4.05 27 903 22.69 132 848
ex7 0.90 857 0.01 594
ex8 7.69 106 555 0.03 1 624
ex9 7.16 586 447 9.41 412 417
fib 0.10 8 128 24.19 126 688

A comparison of Gaston with Mona on UABE formulae. In Ta-
ble 2, we show results of our experiments with formulae from the recent work
of [ZHW+14] (denoted as UABE below), which uses WS1S to reason about
programs with unbounded arrays of bounded elements . For this set of ex-
periments, we considered Mona and Gaston only since the other tools were
missing key features (e.g. atomic predicates) needed to handle the formulae.

The tables compare the overall time (in seconds) the tools needed to decide
the formulae, and they also try to characterize the sizes of the generated state
spaces. For the latter, we count the overall number of states of the gener-
ated automata for Mona, and the overall number of generated sub-terms for
Gaston. The tables contain just a part of the results, the full results can be
found in [FHJ+16]. We use ∞ in case the running time exceeded 2 minutes,
oom to denote that the tool ran out of memory, +k to denote that we added k
quantifier alternations to the original benchmark, and N/A to denote that the
benchmark requires some key feature or atomic predicate unsupported by the
given tool. The results thus confirm that our approach can defeat Mona on
many formulae in practice.

A comparison of Gaston with other tools. The second part of our ex-
periments concerns parametric families of WS1S formulae used for evaluation
in [GK10, FHLV15, DV], and also parametric versions of selected UABE for-
mulae [ZHW+14]. Each of these families has one parameter (whose meaning
is explained in the respective works). Table 3 gives times needed to decide
instances of the formulae for the parameter having value of 20. If the tools
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did not manage this value of the parameter, we give in parentheses the highest
value of the parameter for which the tools succeeded. In this set of experi-
ments, Gaston managed to win over the other tools on many of their own
benchmark formulae.

Table 3: Experiments with parametric families of formulae

Benchmark Mona dWiNA Toss Coalg SFA Gaston

HornLeq [DV] oom(18) 0.03 0.08 ∞(08) 0.03 0.01
HornLeq (+3) [DV] oom(18) ∞(11) 0.16 ∞(07) ∞(11) 0.01
HornLeq (+4) [DV] oom(18) ∞(13) 0.04 ∞(06) ∞(11) 0.01
HornIn[GK10] oom(15) ∞(11) 0.07 ∞(08) ∞(08) 0.01
HornTrans [FHLV15] 86.43 ∞(14) N/A N/A 38.56 1.06
SetSingle [FHLV15] oom(04) ∞(08) 0.10 N/A ∞(03) 0.01
Ex8 [ZHW+14] oom(08) N/A N/A N/A N/A 0.15
Ex11(10) [ZHW+14] oom(14) N/A N/A N/A N/A 1.62

4 Using Static Analysis for Performance Anal-
ysis

The state of the art of static performance analysis of C and C++ programs
focuses mostly on resource bounds and termination analysis of integer pro-
grams. While this field is currently well-established, works focusing on heap-
manipulating programs are rather rare since they require precise analysis of
the shape of the heap. Moreover, most of the works on shape analysis are
usually limited to linear structures or have a hard-coded support for a single
data structure.

Researchers usually transform the input heap-manipulating program into
an integer one that is equal from the point of view of its termination or com-
plexity. However, one has to first define the so-called shape numerical measures
(or shape norms), that simulate the original data structures in the universe
of integer programs. An example of a shape norm can be, e.g. the number
of nodes in a tree, the length of a singly-linked list, or the height of a tree.
Defining a suitable class of shape norms and inferring how their values change
upon execution of program statements is the biggest challenge of such a trans-
formation. Some classes are restricted to concrete data structures, such as
singly-linked lists or trees. Other are applicable for a limited range of pro-
gram constructions only, and cannot show resource bounds in many cases, e.g.
when the resource bounds depend both on the shape of the heap and some
integer constraints. Finally, many classes are not fully automatically usable
and require manual involvement of the user.
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4.1 From Shapes to Amortized Complexity

We first define a new parametric class of shape norms expressing the distance
between two distinct points (memory cells pointed by some program variables
and/or selector chains (so-called access paths); we can refer to these as “point-
ers”) in the shape over some selector paths (such as left, right or next field),
which conforms to a (restricted) regular expression. Moreover, we show how
one can automatically derive a set of shape norms from the control flow graph
(CFG) of a program. We strive to get a small set of the norms such that the
analysis is as efficient as possible. If this set turns out not to be sufficient, it can
later be (automatically) refined. This way the approach becomes fully auto-
mated. Based on this new class of shape norms, we then propose an approach
to resource bounds analysis that exploits state-of-the-art shape analysers to
transforms the input heap-manipulating program to a corresponding integer
program. The resulting integer program can then be analysed similarly as in
other existing works in the area. In our experiments we show, we improve
on earlier results along several dimensions aiming at the automated resource
bounds analysis of heap-manipulating programs that cannot be handled by
existing approaches.

Overview of our approach. Our analysis works in three major steps. We
first run a shape analysis and annotate the program with shape invariants.
Second, using the results from the shape analysis, we create a corresponding
integer abstraction of the program based on numeric information about the
heap. Finally, we perform resource bound analysis purely on the resulting
integer program.

The integer abstraction is based on our new class of shape norms, i.e.
numerical measures on dynamic data structures (e.g. the length of a linked
list). Our first contribution in this chapter is the definition of a class of shape
norms that expresses the longest distance between two points of interest in a
shape graph defined in terms of basic concepts from graph theory. We propose
a class of norms that are parametric by the program under analysis and that
are extracted in a pre-analysis (with a possibility of extending the initial set
of tracked norms during the subsequent analysis); the extracted norms then
correspond to the selector paths found in the program.

The second contribution is a calculus for our class of shape norms that
allows us to derive how the norms change along a program statement, i.e. if
the norm is incremented, resp. decremented, or reset to some other expression.
The calculus consists of two kinds of rules. (1) Rules that allow one to directly
infer the change of a norm and do not need to take any additional information
into account. (2) Rules that rely on the preceding shape analysis; the shape
information is mainly used there for (a) dealing with pointer aliasing and (b)
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deriving an upper bound on the value of a norm from the result of the shape
analysis (if possible). We point out that rules of the second kind encapsulate
the points of the analysis where information about the shape is needed, and
thus describe the minimal requirements on the preceding shape analysis. We
believe that this separation of concern also allows one to use various other
shape analysers if they satisfy the given criteria.

When creating the integer abstraction of the given heap-manipulating pro-
gram, we could use all shape norms that we extracted from the program.
However, we have an additional pre-analysis phase that eliminates norms that
are not likely to be useful for the later bounds analysis. This reduction of
norms has the benefit that it keeps the number of variables in the integer ab-
straction small. The number of extracted norms can be quadratic in the size
of the program in the worst case, and adding quadratically many variables
can be prohibitively expensive. The pre-analysis is therefore crucial to the
efficiency of the later bound analysis. Moreover, the smaller number of ad-
ditional variables increases the readability of the resulting integer abstraction
and simplifies the development and debugging of subsequent analyses.

Finally, we perform resource bound analysis on the created integer ab-
straction. This design decision has two advantages. First, we can leverage the
existing research on resource bound analysis for integer programs and do not
have to develop a new bound analysis at all. Second, being able to analyse
not only the shape but also integer changes has the advantage that we can
analyse programs which mix integer iterations with data structure iterations;
we illustrate this point on the flagship example of [Atk11], which combines
iteration over data structures and integer loops in an intricate way. So far, no
other approach has inferred precise resource bounds for this loop.

Contributions. We summarize our contributions to resource bounds anal-
ysis of heap-manipulating programs:

1. In comparison with related approaches, we consider a wider class of shape
norms.

2. We develop a calculus for deriving the numeric changes of the considered
shape norms. The rules of our calculus precisely identify the information
that is needed from a shape analyser. We believe that this definition of
minimal shape information is useful for development of future resource
bound analysis tools for programs with recursive data structures as well.

3. Our norms are not fixed in advance but derived from the program to be
verified: we define a pre-analysis that reduces the number of considered
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Table 4: Experimental results.

Benchmark Short description Real bounds
Ranger AProVE Costa

Bound SA IG BA Time Bound Time Bound

Basic
SLL-cst Constant-length SLL Traversal O(1) O(1) 0.002s 0.023s 0.011s O(1) 3.664s O(n) 0.251s
SLL SLL Traversal O(n) O(n) 0.012s 0.087s 0.040s O(n) 6.434s O(n) 0.441s

SLL-nested SLL with non-reset nested traversal O(n) O(n) 0.027s 0.256s 0.057s O(n) 6.361s O(n2) 1.582s
SLL-int SLL Traversal with int combination O(n) O(n) 0.037s 0.275s 0.057s O(n) 8.945s O(n) 0.921s
CSLL CSLL Traversal O(n) O(n) 0.013s 0.086s 0.032s ERROR Unknown 0.383s
CSLL-nt Non-terminating CSLL Traversal O(∞) O(∞) 0.003s 0.001s 0.011s ERROR Unknown 0.843s

Advanced Structures
DLL-next Forward DLL Traversal O(n) O(n) 0.034s 0.518s 0.036s O(n) 5.954s Unknown 0.657s
DLL-prev Backward DLL Traversal O(n) O(n) 0.031s 0.181s 0.044s O(n) 6.459s Unknown 0.712s
DLL-nt Non-terminating DLL Traversal O(∞) O(∞) 0.011s 0.004s 0.024s ERROR Unknown 0.684s
DLL-int Forward DLL Traversal with int combination O(n) O(n) 0.044s 0.654s 0.044s O(n) 5.723s Unknown 0.946s
DLL-par Parallel Forward and Backward DLL Traversal O(n) O(n) 0.058s 0.510s 0.069s ERROR Unknown 0.668s
Butterfly Terminating Butterfly Loop O(n) O(n) 0.005s 0.054s 0.024s O(n) 7.389s O(n) 0.883s

Butterfly-int Terminating Butterfly Loop with int combination O(n2) O(n2) 0.026s 0.198s 0.059s O(n)∗ 3.513s Unknown 0.899s
Butterfly-nt Non-terminating Butterfly Loop O(∞) O(∞) 0.005s 0.090s 0.015s O(n)∗ 7.768s Unknown 1.701s

BST-double Leftmost BST Traversal with nested Rightmost O(n2) O(n2) 25.147s 12.523s 0.203s O(n2)∗∗ 14.547s Unknown 3.004s
BST-left Leftmost BST Traversal O(n) O(n) 2.947s 7.321s 0.171s O(n)∗∗ 13.335s Unknown 2.476s
BST-right Rightmost BST Traversal O(n) O(n) 2.895s 5.779s 0.168s O(n)∗∗ 13.007s Unknown 2.457s
BST-lr Random BST Traversal O(n) O(n) 3.331s 7.010s 0.188s O(n)∗∗ 14.488s Unknown 2.619s
2-lvl SL-l1 2-lvl Skip-list Traversal via lvl1 O(n) O(n) 0.309s 0.837s 0.036s ERROR Unknown 1.449s
2-lvl SL-l2 2-lvl Skip-list Traversal via lvl2 O(n) O(n) 0.096s 0.526s 0.042s ERROR Unknown 1.442s

Advanced Algorithms
FuncQueue Queue implemented by two SLLs O(n) O(n) 0.046s 0.519s 0.136s O(n) 8.222s Unknown 4.808s

Partitions SLL Partitioning O(n) O(n) 0.094s 0.729s 0.059s O(n2) 8.526s O(n2) 7.047s

InsertSort Insert Sort on SLL O(n2) O(n2) 0.041s 0.288s 0.051s O(n2) 6.453s O(n2) 0.904s

MergeInner Showcase example of Atkey [Atk11] O(n) O(n) 3.589s 14.080s 1.502s O(n2) 57.935s TIMEOUT(60s)

norms. To our experience, this reduction is especially affecting the effi-
ciency of the underlying resource bounds analysers, but it is also useful
for reporting the derived integer abstraction to the user.

4. We demonstrate in an experimental validation that we obtain a powerful
analysis. We report on iterations over complex data structures that
could not be analysed before and discuss our fully-automated amortised
analysis of a challenging example from the literature [Atk11] .

4.1.1 Experiments

We have implemented our method in a prototype tool called Ranger. The
implementation is based on the Forester shape analyser [HŠRV13], which rep-
resents sets of memory shapes using so-called forest automata (FAs). We use
the Loopus tool [?] as a back-end resource bounds analyser for the generated
integer programs. We evaluated Ranger on a set of benchmarks including
programs manipulating various complex data structures or requiring amortized
reasoning for inferring precise bounds.

Our experiments were performed on a machine with an Intel Core i7-
2600@3.4 GHz processor and 32 GiB RAM running Debian GNU/Linux. We
compared our prototype Ranger with two other tools: AProVE and Costa.
For our tool, we report three times: the running time of the shape analysis of
Forester (SA), generation of the integer program (IG), and bounds analysis
in Loopus (BA). For the other tools, we report times as reported by their web
interface6. Further, from the outputs of the tools, we extracted the reported
complexity of the main program loop, and, if needed, simplified the bounds to
the big O notation.

The results are summarized in Table 4. We use TIMEOUT(60s) if a

6We could not directly compare the tools on the same machine due to the tool availability issues.
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time-out of 60 seconds was hit, ERROR if the tool failed to run the example7,
and Unknown if the tool could not bound the main loop of the example.

In benchmarks marked with (*), AProVE returned an incorrect bound
in our experiments. Further, in benchmarks marked with (**), we obtained
different bounds from different runs of AProVE even though it was run in
exactly the same way. In both cases, we were unable to find the reason.

The results confirm that our approach, conceived as highly parametric in
the underlying shape and bounds analyses, allowed us to successfully combine
an advanced shape analysis with a state-of-the-art implementation of amor-
tized resource bounds analysis. The most encouraging result is the fully auto-
matically computed precise linear bound for the mergeInner method [Atk11].

5 Conclusion and Future Directions

The main goal of this thesis was to improve the state of the art of formal
analysis and verification of systems with infinite state space and with the
focus on techniques based on automata. In particular, we addressed this goal
in two distinct parts.

In the first part, we focused on weak monadic second-order logic of one suc-
cessor (WS1S): a highly expressive, yet decidable, theory that was successfully
applied in several formal analyses and verification methods. First, we limited
ourselves to formulae in the prenex normal form and proposed an antichain-
based decision procedure. The procedure checks the validity of a formula by
constructing a corresponding finite automaton for the matrix (i.e. the quanti-
fier free sub-formula) of the given formula followed by processing the prefix of
quantifiers by recursively computing the fixpoint of final resp. nonfinal states.
Finally, the method concludes that the formula is valid if the intersection of
initial and final states is non-empty. We further optimized this procedure by
a generalization of the antichain-based universality checking which allows us to
considerably reduce the explored state space. We demonstrated the efficiency
of this method on a series of both artificial formulae and formulae describ-
ing invariants of programs manipulating with singly-linked lists beating the
state-of-the-art methods.

We further generalized the procedure to arbitrary formulae. We proposed
a systematic way to express the formulae as so-called language terms and check
validity of the formulae using an on-the-fly algorithm. We optimized the basic
algorithm by two main techniques: a antichain-based pruning of the state space
and a lazy evaluation of the sub-terms. We evaluated the procedure on a series
of formulae used for verification of programs manipulating singly-linked lists or

7However, we verified that all our examples are syntactically correct.
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arrays. Our second procedure outperformed both the state-of-the-art methods
as well as our initial approach by several orders of magnitude.

In the second part of the thesis, we focused on resource bounds analysis of
heap-manipulating programs. We proposed a novel parametric class of shape
norms that express the distance between two distinct points through selector
paths (such as the norm x〈next∗〉NULL expressing the lengths of paths through
the next selector from the variable x to null pointer). Based on this class
of norms, we designed a method that transforms an input heap-manipulating
program into a corresponding integer representation. We then analyse the
resulting integer program using state-of-the-art resource bounds analysers for
integer programs. In order to construct the integer representation efficiently,
we propose to (1) derive the norms directly from the program, (2) use a calcu-
lus that infers changes of norms according to the results of the shape analysis,
and (3) prune the set of tracked norms based on several heuristics. We eval-
uated our approach on a series of programs either manipulating non-trivial
data structures or requiring amortized reasoning for inferring precise resource
bounds. Our procedure managed to outperform the state-of-the-art methods
both in terms of the speed and the precision of the bounds.

All of our contributions were implemented as tools. The first antichain
based method was implemented as a prototype tool called dWiNA [FHLV14]
and the second lazy method was implemented in the Gaston tool [FHJ+16].
We implemented the novel resource bounds analyser Ranger [FHR+18b] on
top of the Forester and Loopus tools.

5.1 Further Directions

In the introduction, we discussed that the current state of the art of perfor-
mance analysis of complex data structures is still less developed than, e.g.
analysis of integer programs. While our contributions have hopefully pushed
the usability border of both performance analysis and WS1S logic, we still
think that there is a lot of potential directions we could follow or enhance.

We mentioned that WS1S has many applications, e.g, as an underlying
theory for specification of invariants of linear data structures. The next nat-
ural step is to extend our procedures to WS2S — weak monadic second-order
logic of two successors — which would enable us to model properties of more
complex data structures, such as trees. However, one will have to cope with
a more complex type of automata, in particular, tree automata. For tree au-
tomata, however, even some basic operations, such as subsumption testing
or the simulation relation, are more complex and more expensive. Moreover,
while our procedures performed well on many formulae, e.g. describing prop-
erties of arrays [ZHW+14] or singly-linked lists [MPQ11], they still failed on

23



many other due to a state space explosion — an inherent property of WS1S.
We believe that we could achieve further state space reduction by adapting,
e.g. simulation-based techniques [Cé17] both on the generated automata as
well as by weakening the term-subsumption relation. Another possible reduc-
tion could be achieved by integration of our approach with SAT and SMT
techniques or by adapting some of the techniques proposed by the authors of
the Mona tool [KMS02].

In the second part, we proposed a resource bounds analysis of the heap-
manipulating programs based on a new class of norms, which model numerical
measures such as lengths of lists by selector paths between distinct points.
Our class of norms is currently limited to simple selector paths only, and
so we would like to extend its calculus to a richer variety of selector paths.
In particular, we would like to support concatenation (to support sequential
traversals in the control flow) and iteration (to support nested cycles in the
control flow) of selector paths. Moreover, we believe we could infer resource
bounds for a wider class of programs if we combined our path-based norms
with size-based norms as defined, e.g. in AProVE [FG17]. At last, we would
like to extend our approach to analysis of open programs. We believe that
adapting bi-abduction techniques [LQC15] for resource bounds analysis could
allow us to scale better and to be applied in the practice.

In this thesis, we mainly researched possibilities of static analysis for perfor-
mance analysis of programs. Another direction that we are currently exploring
is dynamic analysis of programs. In particular, we propose to model the per-
formance of programs based on real data captured from actual program runs.
One can then model the performance of a program using, e.g. regression,
non-parametric, or multivariate analyses [Dev11] . Based on these models, we
believe we can automatically detect performance changes between two distinct
versions of programs, i.e. detect from pairs of models for current and some
baseline version of a program that the performance considerably degraded.
Moreover, we wish to explore possibilities of using, e.g. fuzz-testing for trig-
gering performance changes in program runs. Finally, we would like to develop
an optimized collection of resource data from real runs by limiting the analysis
only to subset of program units (functions, etc.) that impacts the program
performance the most. Of course, a question is how to find this subset.

5.2 Publications Related to this Thesis

We developed two decision procedures for WS1S logic. The first one based on
antichains was initially published in TACAS’15 [FHLV15]; its extended version
with additional proofs and more thorough examples was published in the Acta
Informatica journal [FHLV19]. Our follow-up work, which generalised the
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original decision procedure to arbitrary formulae based on lazy techniques and
on-the-fly exploration of the state space was published in TACAS’17 [FHJ+17].

In the field of performance analysis of heap-manipulating programs, we
built on efficient approaches of the Loopus and Forester tools and proposed
a parametric framework for amortized resources bounds analysis published in
VMCAI’18 [FHR+18a].

In summary, we developed three tools. The implementations of antichain
based and lazy decision procedures for WS1S logic called dWiNA [FHLV14]
and Gaston [FHJ+16] respectively. Further, we extended the Forester tool
into a Ranger tool [FHR+18b] which translates input heap-manipulating pro-
grams into corresponding integer programs. At last, our ongoing work is cur-
rently developed as the Perun tool [FGL+18].
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Nationality: Czech Republic
Date of birth: May 1, 1990
E-mail: ifiedortom@fit.vutbr.cz

Homepage: http://www.fit.vutbr.cz/~ifiedortom/

Education

since 2014 Brno University of Technology, Faculty of Information Tech-
nology, studying in Ph.D. study programme Computer Sci-
ence and Engineering

2012 – 2014 Brno University of Technology, Faculty of Information Tech-
nology, master’s degree in Information Technology, master’s
thesis A Decision Procedure for the WSkS Logic

2009 – 2012 Brno University of Technology, Faculty of Information Tech-
nology, bachelor’s degree in Information Technology, bache-
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Abstrakt

Tato práce se věnuje vylepšeńı současného stavu formalńı analýzy a verifikace
založené na automatech a zaměřené na systémy s nekonečnými stavovými pros-
tory.

V prvńı části se práce zabývá dvěma rozhodovaćımi procedurami pro logiku
WS1S, které jsou založené na korespondenci mezi formulemi logiky WS1S a
konečnými automaty. Prvńı metoda je založena na tzv. antǐretězćıch, ale, je
limitována pouze na formule v prenexńım normálńım tvaru. Následně je tento
př́ıstup zobecněn na libovolné formule, jsou zavedeny tzv. jazykové termy a na
jejich základě je navržena nová procedura, která pracuje za běhu a zpracovává
tyto termy ”ĺıným” zp̊usobem. Abychom źıskali efektivńı rozhodovaćı proce-
duru, je dále navržena sada optimalizaćı (přičemž některé nejsou limitovány
pouze pro naše př́ıstupy). Obě metody jsou srovnány s ostatńımi nástroji
implementuj́ıćımi r̊uzné známé rozhodovaćı procedury. Źıskané výsledky jsou
povzbuzuj́ıćı a ukazuj́ı, že použitelnost logiky WS1S je možno rozš́ı̌rit na širš́ı
tř́ıdu formuĺı.

V druhé části se práce zabývá analýzou meźı zdroj̊u programů manipu-
luj́ıćıch s haldou. Je zde navržena nová tř́ıda tzv. tvarových norem založených
na délkách cest mezi význačnými mı́sty na haldě, které jsou automaticky odvo-
zovány z analyzovaného programu. Na základě této tř́ıdy norem je dále navržen
kalkul, který je schopen přesně odvodit změny odvozených normů a použ́ıt je k
vygenerováńı odpov́ıdaj́ıćı celoč́ıselné reprezentace vstupńıho programu, která
je následně využita pro následovanou dedikovanou analýzou meźı zdroj̊u. Tato
metoda byla implementována nad analýzou tvaru založenou na tzv. lesńıch au-
tomatech, implementovanou v nástroji Forester, a dále byl použit dobře zave-
dený analyzátor meźı zdroj̊u, implementovaný v nástroji Loopus. V experi-
mentálńı evaluaci bylo ukázáno, že je opravdu takto źıskán silný analyzátor,
který je schopen odvodit meze programů, které ještě nikdy plně automatizo-
vaně odvozené nebyly.
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