
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

AUTOMATIC SURVEILLANCECAMERACALIBRATION
BY OBSERVATION OF RIGID OBJECTS
AUTOMATICKÁ KALIBRACE DOHLEDOVÉ KAMERY POZOROVÁNÍM RIGIDNÍCH OBJEKTŮ

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR ING. VOJTĚCH BARTL
AUTOR PRÁCE

SUPERVISOR prof. Ing. ADAM HEROUT, Ph.D.
ŠKOLITEL

BRNO 2023

i

BRNO UNIVERSITY OF TECHNOLOGY

Abstract

Faculty of Information Technology

Department of Computer Graphics and Multimedia

Doctor of Philosophy

Automatic Surveillance Camera Calibration by Observation of Rigid Objects

by Ing. Vojtěch Bartl

This work is focused on automatic camera calibration based on multiple observations of
arbitrary rigid objects. Based on observations of rigid objects moving in a common plane, we
are able to calibrate camera w.r.t. the plane, and thus we are able to do measurements in a
scene. Objects in the image plane are detected, and classified, and landmarks on these objects
are localized. Our motivation was the usage of these methods in traffic scenarios, and thus
as our “objects” we consider vehicles. We propose three different methods that are able to
compute camera calibration based on these localized landmarks in an image plane with the
only limitation — 3D models must be provided, but these can be known to the calibration
system as a background. The camera calibration process is then fully automatic, and no more
information is needed. Contrary to previous state-of-the-art methods for automatic camera
calibration, the proposed methods are able to estimate all camera parameters (including focal
length).

We also collected a new dataset BrnoCarPark, which contains records of different scenes
with detected vehicles and localized landmarks. Ground-truth measurements in scenes are
available, and these can be re-computed by computed camera calibration parameters. All the
proposed methods outperform the recent state-of-the-art method in an accurate manner. We
evaluated our methods on the constructed dataset and also another dataset BrnoCompSpeed.
We also made experiments on synthetic datasets, which prove the stability and usability of the
proposed methods.

https://www.fit.vut.cz/units/upgm

ii

Keywords
Automatic Camera Calibration, Rigid Objects, Calibration Dataset, Vehicle Detection,

Vehicle Classification, Landmarks Localization, Vehicle Re-Identification, Horizon

Estimation, AI City Challenge

Klíčová slova
Automatická Kalibrace Kamery, Rigidní Objekty, Datová Sada pro Kalibraci, Detekce

Vozidel, Klasifikace Vozidel, Lokalizace Význačných Bodů, Reidentifikace Vozidel,

Odhad Horizontu, AI City Challenge

Abstrakt

V této práci popisuji svoji práci během mého doktorského studia. Hlavním výstupem jsou tři
různé metody pro automatickou kalibraci kamery na základě pozorovnání rigidních objektů v
obraze ze stacionární dohledové kamery (v mém případě vozidel — na syntetických datech
bylo ověřeno, že metody fungují s libovolnými rigidními objekty). Objekty pohybující se v
určité rovině (např. rovina vozovky) jsou detekovány a na nich jsou lokalizovány význačné
body. Při dostupné kalibraci kamery je poté možné provádět měření ve scéně jako např. měření
rychlosti nebo rozměrů vozidel. Celý postup je složen z detekce vozidel, jejich klasifikace
(určení modelu vozidla) a lokalizace význačných bodů — tyto jednotlivé kroky jsou zajištěny
pomocí neuronových sítí.

Při znalosti modelu vozidla je možné použít příslušný 3D model a využít znalostí pozice
význačných bodů v prostoru modelu. Tyto pozice v 3D prostoru modelu jsou jediným vstupem
algoritmů a mohou být předem známy. Pozice bodů poskytují informace o prostoru a obsahují
tak dostatek informací pro následný postup automatické kalibrace kamery. Oproti dosavadním
přístupům dokáží navržené metody určit všechny parametry kamery (vnitřní i vnější) včetně
ohniskové vzdálenosti — předchozí metody často potřebovaly ohniskovou vzálenost jako
vstupní parametr.

Součástí práce bylo rovněž pořízení nového datasetu BrnoCarPark, sloužícího k porovnání
kvality kalibrace dohledové kamery na základě pozorování vozidel ve scéně. Pro určení
kvality kalibrace byla v jednotlivých scénách provedena měření vzdáleností mezi body na
vozovce. Při znalosti vzdáleností ve scéně (reálném světě) a pozic bodů v obraze je možné
přepočítat vzdálenosti na základě kalibrace a tím zjistit kvalitu kalibrace. Pořízený dataset je
veřejně dostupný a slouží dalším výzkumníkům k vývoji jejich vlastních řešení.

Dostupná měření dokazují, že navržené metody překonávají současné metody, které se zabývají
podobným problémem. Přestože každá z navržených metod přistupuje k problém trochu jiným
způsobem, výsledky všech metod jsou na dostupných datech lepší nežli dosavadní metody.
Společným rysem všech metod je detekce význačných bodů na vozidlech a určení modelu
vozidla; aby bylo možné použít správné 3D pozice význačných bodů.

Mimo tyto tři navržené metody pro automatickou kalibraci kamery obsahuje práce i informace
o mé účasti na různých projektech a výzvách. Během svého studia jsem se zaměřil i na různé
výzvy (challenges) pořádané v rámci konferencí. Během těchto výzev jsem řešil různé úkoly
a porovnával své výstupy s ostatními výzkumníky z celého světa, což mi pomohlo získat
velké množství zkušeností a znalostí. Rovněž práce na různých projektech mi pomohla získat
mnoho zkušeností v různých oblastech (strojové učení, počítačové vidění, neuronové sítě,
. . .).

iv

BARTL, Ing. Vojtěch: Automatic Surveillance Camera Calibration by Observation of Rigid

Objects. Brno, 2023, PhD thesis, Brno University of Technology, Faculty of Information
Technology. Supervisor prof. Ing. Adam Herout, Ph.D.

v

Declaration of Authorship

I, Ing. Vojtěch Bartl, declare that this thesis titled, “Automatic Surveillance Camera Calibration
by Observation of Rigid Objects” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself.

Date:

Signed:

vii

Acknowledgements
I would like to thank my supervisor, prof. Ing. Adam Herout, PhD., for his assistance as well
as his great and valuable advice throughout all my study. I would also like to thank all my
colleagues who participated in my research.

ix

Contents

Abstract i

Keywords ii

Abstrakt iii

Declaration of Authorship v

Acknowledgements vii

1 Introduction 1

2 Existing Methods for Camera Calibration and Other Computer Vision Tasks 5

2.1 Camera Calibration . 5
2.2 Vehicle Detection . 7
2.3 Fine-grained Vehicle Classification . 8
2.4 Landmarks Localization . 10

3 Proposed Methodology to Automatic Camera Calibration 11

3.1 The Common Basis of Proposed Methods 11
3.2 Datasets for Evaluation . 14
3.3 LandmarksCalib: Automatic Camera Calibration by Landmarks on Rigid

Objects . 21
3.4 PlaneCalib: Automatic Camera Calibration by Multiple Observations of Rigid

Objects on Plane . 28
3.5 OptInOpt: Dual Optimization for Automatic Camera Calibration by Multi-

Target Observations . 34
3.6 Evaluation and Combinations of Proposed Methods 38

4 Participation in Challenges 45

4.1 AI City Challenge — Vehicle Re-Identification 45
4.2 AI City Challenge — Automated Retail Checkout 56
4.3 Workshop on Maritime Computer Vision (MaCVi) — WACV 68

5 Horizon Estimation by Observation of Moving Objects 71

6 Proposed Future Work 87

x

7 Conclusion 89

Bibliography 93

A Teasers 111

1

Chapter 1

Introduction

Camera calibration is an essential task in computer vision, providing information about
relations between the 2D image plane and the 3D “real-world”. With the knowledge of camera
calibration parameters (intrinsic and extrinsic), it is possible to re-compute the position of an
arbitrary 2D point in an image to a 3D projection in WCS (world coordinate space). Thus,
measurements in the real world can be done. These measurements can be used for different
objectives e.g. object dimension computation, extended reality, vehicle speed measurement,
etc. Some more detailed information will be described in Chapter 3.

In this thesis, I want to describe, besides others, three proposed methods for automatic camera
calibration [1, 2, 3], which I published. The main goal was to develop a method that should
work automatically and should be able to calibrate the camera without the necessity to be
physically present by camera or in the scene.

After my master’s thesis, “Mapping the Motion of People by a Stationary Camera”, where I
gained some experience with video processing and computer vision, I decided to continue
similarly. My first published paper [4] was about horizon estimation by observation of
humans/vehicles in the scene. It was partly a follow-up work to the mentioned master’s thesis.
The first idea was that the located horizon provides information that should later be used
for camera calibration (2 vanishing points lie on it). However, it turned out that this would
probably not be the ideal direction for future research, and the usage of landmarks seemed to
be much more promising.

So, I changed the aim to automatic camera calibration as this was similar to the previous
topic, and I considered this topic exciting and valuable. As a first method, I proposed Land-

marksCalib (Section 3.3). As a part of this paper, we collected a new dataset BrnoCarPark

(Section 3.2.2) for the evaluation of camera calibration in car park scenes. However, due to the
prolonged review process in the journal (≈ 19 months), I could not compare the new dataset
with the lately proposed methods. It was a little disappointing, and I was sorry I could not
use the dataset in later articles I originally had in mind. Finally, the method was published
in Machine Vision and Applications journal (recent ImpactFactor 3.3, CiteFactor 5.7, Q2

Quartile).

2 Chapter 1. Introduction

During the review process of the first paper, I proposed another method OptInOpt (Sec-
tion 3.5). I evaluated this method on BrnoCompSpeed (Section 3.2.1) developed by my
colleagues earlier, but I could not use BrnoCarPark dataset as it was still under review. Not
to compare the method to only one method, I created a synthetic dataset (Section 3.2.3) to
have some more comparison and the possibility to do some more experiments. This paper was
published at Advanced Video and Signal Based Surveillance conference (Rank B).

Afterward, I proposed another method for camera calibration. Proposed method PlaneCalib

(Section 3.4) was developed during the review process of the first method. Thus, I still could
not use the new BrnoCarPark dataset. But the second method OptInOpt was already published,
and I could compare it with this method. So, the paper compares the OptInOpt method and
some experiments with synthetic data. This paper was published at Digital Image Computing:

Techniques and Applications conference (Rank B).

During the development of these methods, I improved the code to run Differential Evolution

(global optimization method used in my calibration methods as will be described in Chapter 3)
in TensorFlow. Thus, the computation was parallel and faster than the standard CPU version.
I created a “library” with all my methods and made it publicly available. This “library” is
a part of SmartCarPark project, which I solved during my study, as will be mentioned later.
Word library is in quotes because now it is in the form of source code and not a library in the
true sense of the word, but it should be potentially transformed into a library easily.

As all the methods were primarily aimed at calibration by vehicles’ observations, I started to
cooperate with my colleagues who were working in general on different traffic surveillance
tasks — e.g. license plate detection and recognition, vehicle re-identification, traffic analysis,
etc. This brought me to work also on this type of tasks, and I was a co-author of some
papers [5, 6] in this area. So, the direction of my further work has partially turned to Inteligent

Transportation Systems (ITS).

A part of my work was also participation in AI City Challenge as a workshop on Computer

Vision and Pattern Recognition (CVPR) conference. It covers different tasks, and some are
often aimed at traffic analysis. We published two papers [7, 8]. The first one [7] covered two
Tracks: City-Scale Multi-Camera Vehicle Tracking and City-Scale Multi-Camera Vehicle Re-

Identification. The second one [8] solves the Track called Multi-Class Multi-Movement Vehicle

Counting. The information about our participation can be found in Section 4.1. Although we
did not have great results, it was an interesting experience, and I gained much knowledge.

In 2022, as a part of AI City Challenge, a new challenge called Multi-Class Product Counting

& Recognition for Automated Retail Checkout appeared, and it seemed to be an exciting
task. So I proposed a new method to solve this problem — although our solution seemed
quite strange [9] (Section 4.2) we placed in the challenge as runner-up with a winning reward
(NVIDIA Jetson Xavier NX dev kit).

This year, I also participated in a challenge called Workshop on Maritime Computer Vision

(MaCVi) as a part of Winter Conference on Applications of Computer Vision. Here, we tried
some approaches to detecting objects in the sea, which can be seen by flying drones above
them [10]. We did not reach great results, but it was an exciting experience to work with
another type of data than usual. I also got in touch with some recent architectures based on
visual transformers such as DETR [11] or Pix2seq [12].

Chapter 1. Introduction 3

During my Ph.D. study, I also participated in many projects. Some interesting are, for example:

VRASSEO

Tools and methods for video and image processing to improve effectivity of rescue and security

services operations

In cooperation with: Ministry of the Interior of the Czech Republic
During the project’s solution, I aimed to develop a system for detecting and tracking per-
sons and vehicles. This system was integrated into an internal solution based on sending
messages into queues. I got in touch for example with Faster RCNN [13], YOLOv3 [14],
YOLO9000 [15], SORT [16], and DeepSORT [17].

SmarkCarPark

Surveillance Monitoring, Analysis and Re-identification of Traffic for Enhanced Car Parking

Supported by: Technology Agency of the Czech Republic
In cooperation with: FT Technologies a. s. — company
This project was probably the closest to the core of my thesis — automatic camera calibration.
The goal was to develop a system for monitoring the situation in car parks. As mentioned, my
“library” for camera calibration is a part of project outputs.

VirtualTraining

Research and development of algorithms for processing of videosequences

In cooperation with: VirtualTraining s.r.o. (Rouvy) — company
This was contract research for the company engaged in realistic indoor cycling. The project has
many problems to solve — my tasks were, for example, anonymization of humans, detection
of obstacles, segmentation of a road, super-resolution, etc. . I had to solve different problems,
so I worked for example with YOLOv5 [18], SoftTeacher [19], SegFormer [20], PSPNet [21],
RetinaFace [22], THOR [23], SiamMask [24], FuseFormer [25], LaMa [26], E2FGVI [27],
and SwinIR [28].

NiSiD

Non-Invasive and Secure IDentification

Supported by: Technology Agency of the Czech Republic
In cooperation with: Veracity Protocol s.r.o. — company
The project is aimed at the re-identification of any object. The main idea is to make this
process only by taking a photo of the object and the possibility to re-identify this object by
taking a new photo any time later. Objects can be very similar (e.g. same cloth), but two
identities must be recognized. Due to the necessity to capture fine details, we experimented
with Transformers [29], Reranking Transformers [30], or CMT [31].

Thanks to different projects, I gained much experience and practice in machine learning, com-
puter vision, neural networks, etc. during my Ph.D. study. The list of projects is incomplete,
but I consider these the most interesting.

All the proposed calibration methods are compared primarily with AutoCalib [32] method as
it was a state-of-the-art solution at the publication time of the proposed methods.

The most important contributions presented in this thesis are:

4 Chapter 1. Introduction

• Three different proposed methods for automatic camera calibration based on observa-
tions of rigid objects in a scene

• Publicly available implementation of all the proposed methods with TensorFlow opti-
mization speed-up implementation1

• Construction of BrnoCarPark dataset for evaluation of camera calibration in real-life
scenes, which is made publicly available2

1https://github.com/BUT-GRAPH-at-FIT/Automatic-Camera-Calibration
2https://nextcloud.fit.vutbr.cz/s/JXdfk9frbys88Zz

https://github.com/BUT-GRAPH-at-FIT/Automatic-Camera-Calibration
https://nextcloud.fit.vutbr.cz/s/JXdfk9frbys88Zz

5

Chapter 2

Existing Methods for Camera Calibration and

Other Computer Vision Tasks

In this part, I want to describe the state-of-the-art methods about camera calibration 2.1
and other computer vision steps necessary during the proposed camera calibration methods.
These include vehicle detection 2.2, fine-grained vehicle classification 2.3, and landmarks

localization 2.4. This Chapter is partly based on information from my previous work.

2.1 Camera Calibration

Datasets

A problem with camera calibration in a surveillance manner is a lack of datasets. There are
only a few datasets for camera calibration tasks in general. CVGL dataset [33, 34] is made
to calibrate the camera based on two images from the same camera somewhere on the street.
DeepSportRadar-v1 dataset [35] contains photos of a basketball board from a distance view;
this is slightly closer to my task but still different. Thus, only BrnoCompSpeed 3.2.1 is usable
for my problem, and this is the reason why we collected a new dataset BrnoCarPark 3.2.2.

Methods

Typically, camera calibration is made by inserting a suitable pattern of known properties in
the camera view — method popularized by Zhang [36] — a planar printed checkerboard is
used. Not only planar checkerboard is necessary, but arbitrary planar and non-planar [37, 38]
objects can also be used. Although this approach is quite old, it is still used nowadays together
with interactive solutions [39, 40]. However, these methods are not applicable in a traffic
surveillance manner.

Calibration of surveillance cameras can be done by observation of different objects. Some
methods use observation of pedestrians to calibrate cameras. Often are used approaches of
connection heads and feet of corresponding persons — these serve to estimate horizon line
together with the third vanishing point [41, 42, 43, 44, 45]. The main problem is the scale of
the scene; the mean height of a human is often used, which can be very inaccurate as it can
differ across the world or potentially in time, leading to poor results.

6 Chapter 2. Existing Methods for Camera Calibration and Other Computer Vision Tasks

Existing methods for camera calibration applicable in traffic surveillance are mostly based on
manual measurements [46, 47, 48], markers [49, 50, 51, 52, 53], vehicle movement [54, 55,
56, 57], or other principles like optical flow, recognition of cars, or license plates [58, 59, 60].

With the exceptions of methods [56, 57, 32], traffic calibration solutions require known
dimensions in the scene (e.g. width of lanes, length of dashed markings, the height of the
camera, etc.), and thus they cannot be used in a fully automatic manner. The calibration is
often constrained to a limited range of viewpoints, and it supports only the straight motion of
vehicles.

Maduro et al. [46] assume a known angle of the camera and an available width of the traffic
lanes. Marker-based methods either use special markers or horizontal road markings. Cathey
and Dailey [49] detect the vanishing point of the lane marking with a known lane width.
Grammatikopoulos et al. [50] assume a camera with zero roll, and they detect the vanishing
point of the road markings. He and Yung [51] calibrate the camera from a pattern formed
by dashed line markings on the road. Do et al. [52] use an equilateral triangle with known
dimensions drawn on the road.

Solutions based on vehicle movement typically detect vanishing points in the direction towards
the vehicle motion (first vanishing point) and in directions perpendicular to it (second and
third vanishing points). Schoepflin and Dailey [55] use a background model to detect lane
boundaries in the activity map. The intersection of lanes is assumed to be the vanishing point
of vehicle motion. The second vanishing point is detected from vehicle edges. One known
length in the scene is required for complete calibration.

Dubská et al. [56] proposed a fully automatic calibration method. It assumes straight move-
ment of cars on the road; this condition is usually met on freeways, but it cannot be considered
in parking lots, roundabouts, and similar scenarios. Their method uses a particular form of
cascaded Hough Transform [61] to search for vanishing points, and the scene scale is inferred
from the mean size of observed vehicles. Sochor et al. [57] extended this method by more
accurately detecting vanishing points and scale inference. They use fine-grained recognition
of vehicles and align the bounding box of a known 3D geometry to the observations in the
image. The accuracy of this method is sufficient for speed measurement with a mean error of
1.1 kph.

Bhardwaj et al. [32] use an approach somewhat similar to all my proposed methods. Within
their method AutoCalib, passing vehicles are also observed, and landmarks detected on these
vehicles are used. Their camera calibration is based on using a PnP (Perspective-n-Point)
method for each vehicle separately and averaging the outputs. However, landmarks are
detected only for a limited coherent view (roughly from the rear), and the average model for
all sedan vehicles is used for determining the 3D positions of landmarks. Since their algorithm
is based on the PnP method, the focal length f must be given as input. We consider the
knowledge of the focal length f as too restrictive since we are looking for fully automatic
calibration algorithms. AutoCalib is also not accurate enough — the error reported by the
authors in their article is 8.98 %.

All the proposed methods are compared with AutoCalib [32] method, as this was a state-of-
the-art solution to a similar problem when our methods were developed.

After publishing all the methods, Kocur and Ftáčnik [62] developed a solution based on the

2.2. Vehicle Detection 7

localization of vanishing points of vehicles by CNN and diamond space. After localizing
vanishing points, they can establish scene geometry. The method needs some measurement in
the scene to set the scale properly and thus is more limited to “worldwide” usage than our
solutions. The solution is evaluated on BrnoCarPark dataset and compared to LandmarksCalib

— the results are on par.

2.2 Vehicle Detection

Datasets

There are not many datasets focused purely on vehicle detection. One of the datasets focused
primarily on traffic is UA-DETRAC [63], also used for tracking and containing recordings of
the roads with detections of different types of vehicles. Typically, vehicle detectors are trained
on the datasets with wider usage and occurrence of many other classes like COCO [64] or
PASCAL VOC [65]. Many classes are available, and “car” is one of them. After extracting
proper images containing vehicles, it is possible to train on these data.

Nowadays, more and more datasets designed for autonomous driving are available. These can
also be used for training (or fine-tuning) the models because there are available detections
(segmentations) of vehicles. Although the view from a dashboard camera differs from the
surveillance camera, it can help the model generalize and reach better results. Some of these
datasets are for example Cityscapes [66], BDD [67], ApolloCar3D [68], Mapillary Vistas [69],
or nuScenes [70].

Methods

Today, it is no longer worth dealing with technologies other than those based on Convolutional
Neural Networks (CNN) or generally neural networks; therefore, no other will be mentioned
here.

Typically, some backbone (feature extractor) is the first part of a detection network. A
feature extractor has an image on input (e.g. 512 × 512 × 3). It proceeds its layers to
reduce information contained in the input image to some features in another dimension (e.g.

64 × 64 × 1024). These features are more convenient for neural networks, and they can
proceed features further. Features extractor can be almost any available (e.g. VGG-16 [71],
Inception v2 [72], Inception v3 [73], ResNet-101 [74], MobileNet [75], EfficientNetV2 [76],
ResNeXt [77], SqueezeNet [78], etc.).

Detectors typically fall into two categories: one-stage and two-stage detectors.

One-stage detectors One-stage object detectors are a class of object detection models that
directly predict object bounding boxes for an image in a one-stage fashion. This means no
intermediate task, such as region proposals, must be performed to produce an output. This
leads to a simpler and faster model architecture than two-stage detectors. On the other hand,
some tasks are for one-stage detectors much more complicated; for a long time, one-stage
detectors have not existed for segmentation. Nowadays, this restriction releases as some
detectors for segmentation appear (YOLACT [79], YOLOACT++ [80])

8 Chapter 2. Existing Methods for Camera Calibration and Other Computer Vision Tasks

One-stage object detectors skip the region proposal stage of two-stage models and run detection
directly over a dense sampling of locations. One-stage object detectors are designed to
prioritize inference speed. They are extremely fast but may not be as good at recognizing
irregularly shaped objects or a group of small objects (due to the grid of probabilities, where
small groups can be omitted). One of the most popular one-stage detectors is YOLO [81],
which has many further modifications — YOLO9000 [15], YOLOv3 [14], YOLOv4 [82],
YOLOv5 [18], YOLOv6 [83], YOLOv7 [84], PP-YOLO [85], YOLOR [86], YOLOX [87] —
and is still evolving. Another typical representative of one-stage detectors is SSD (Single Shot
Detection) [88], RetinaNet [89], CenterNet [90], or EfficientDet [91].

Two-stage detectors Two-stage object detectors divide the detection task into two stages:
extracting regions of interest (RoIs) and then classifying and regressing the RoIs. In the first
stage, the algorithm generates proposals in which potential objects can be present. During the
second stage, predictions are made based on the generated proposals. These types of detectors
are often more accurate than one-stage detectors but often at the cost of losing inference speed.

Two-stage detectors were developed before one-stage detectors, and the leading representative
is R-CNN [92]. In comparison with today’s architectures, this variant was extremely slow.
Evolution in the form Fast R-CNN [93] and Faster R-CNN [13] followed. The advantage
of two-stage detectors is the possibility of making more complex computations during the
second stage. For example, Mask-RCNN [94] computes segmentation masks of objects during
the second stage; or PanopticFPN [95] makes panoptic segmentation of the whole image
(combination of instance and semantic segmentation). Two-stage detectors are typically based
on FPN (Feature Pyramid Network) [96] — e.g. DetectoRS [97].

Transformers In the last few years, a significant expansion of transformers began. Trans-
formers [29], in comparison with previously mentioned methods, typically do not use con-
volution layers but fully connected and attention layers. It started to be popular thanks to its
results in natural language processing (NLP) and visual transformers (ViT [98]) came soon; it
transforms an image into small patches and works with it as a sequence (a sentence in NLP)
and applies attention layers to it. Although transformer technology reached exciting results in
some cases, there are works such as CMT [31] which suppress transformers’ good results by
using “typical” convolutional layers.

Some examples of transformer-based object detectors are: ViDT [99], DINO [100], DETR [11],
etc.

2.3 Fine-grained Vehicle Classification

Datsets

Compared with other tasks in my pipeline (camera calibration, vehicle detection in a surveil-
lance camera, landmarks on vehicles detection), a couple of datasets are intended for fine-
grained classification. One of them is the work of my colleagues Sochor et al. [101] called Box-
Cars116k. Other datasets usable for this task are The Comprehensive Cars (CompCars) [102],
Fine-Grained Vehicle Detection (FGVD) [103], or VehicleID (PKU VehicleID) [104].

2.3. Fine-grained Vehicle Classification 9

Methods

Recently, several methods for fine-grained recognition of various objects were published [105,
106, 107, 108], even for vehicles in particular [109, 110, 111, 112, 113, 114].

The task of fine-grained recognition (classification) benefits from extra image information
provided by parts of classified objects. However, it cannot be assumed that the location of
such parts is known in advance nor that the location is the same for all objects of the same
type. Simon and Rodner [105] proposed a method to deal with this problem (during training
& test time) by automatically discovering and locating such parts.

Lin et al. [106] and Gao et al. [107] approach this problem differently by using Bilinear

Pooling. Lin et al. [106] uses a bilinear classifier [115] to classify features extracted by
convolutional layers from a CNN. Gao et al. [107] improved this idea and proposed the
method for Compact Bilinear Pooling, reducing the number of features used while preserving
classification accuracy. The method proposed by Lin et al. [108] uses three different CNNs
for localization, alignment, and classification of images for general object recognition. So-
chor et al. [114] show that these general fine-grained methods are not accurate enough for
vehicle fine-grained recognition, and specialized approaches must be used.

A considerable group of existing fine-grained recognition algorithms are specialized in the
classification of vehicles. Some of them are limited to frontal/rear images of vehicles: Pearce
and Pears [109] use the detection of license plates to localize the front/rear part of the vehicle
for feature extraction, as these parts are usually very discriminative to recognize the vehicles.
Directly extracted features from frontal images of cars and exploiting the common structure
of the vehicle’s frontal mask are presented in the work by Zhang [110]. A more complex
method based on optimizing/fitting vehicle 3D CAD model to image data for fine-grained
classification was proposed by Lin et al. [111].

State-of-the-art results in this field are achieved by methods based on Convolutional Neural Net-
works. Liu et al. [112] proposed to use Deep Relative Distance trained on the re-identification
task to extract more discriminative feature vectors and Coupled Clusters Loss function during
training. On the other hand, Sochor et al. [114] improve the classification accuracy using
an “unwrapped” version of the 3D bounding box of detected vehicles to a 2D plane as an
additional input of CNN for fine-grained recognition and other modifications.

Hu et al. [116] proceed vehicle’s tracking and estimate their 3D orientation. Further 3D
orientation estimation is merged with CNN extracted features, and recurrent neural network
(RNN) is used to employ visual and temporal information to make classification. As mentioned
in vehicle detection, transformers are more often in all parts of computer vision, and fine-
grained classification is no exception. For example, He et al. [117] says that classical CNN
approaches often locate some significant areas and use these localized features to classify
images. On the other hand, transformers, thanks to their properties (from NLP), view a much
wider area and do not lose information from the whole image, as sometimes can happen to
CNNs.

10 Chapter 2. Existing Methods for Camera Calibration and Other Computer Vision Tasks

2.4 Landmarks Localization

Datasets

In comparison with fine-grained classification in landmarks localization, there is only one
dataset intended concretely for the task of landmark localization on vehicles (or at least I
was not able to find any other). Wang et al. [118] manually annotated 20 landmarks for the
whole VeRi-776 dataset [119]. All other datasets contain some landmarks intended for facial
landmarks or human pose estimation (joints). These can be considered somehow similar (in a
manner of “landmarks”), but the data are different. An excellent example of a dataset can be
COCO-WholeBody [120] containing various types of annotations — hand keypoints, body
keypoints, and face keypoints.

Methods

To localize landmarks in the 2D image, we use CNN architecture by Wang et al. [118] (OIF,
Orientation Invariant Features) — proposed for vehicle re-identification. It is based on Stack
Hourglass architecture by Newell et al. [121] proposed initially for human pose estimation.
So, any architecture proposed for human pose estimation should probably be easily modified
to locate the vehicles’ landmarks. Some standard architectures like HRNet [122] should be
fine-tuned to “vehicles”, or DWPose [123] based on knowledge distillation should also work
very well. As everywhere nowadays, transformers like ViTPose [124] can be potentially used
also.

11

Chapter 3

Proposed Methodology to Automatic Camera

Calibration

In this chapter, I describe three proposed methods for automatic camera calibration based on
the detection of landmarks on rigid objects (typically vehicles) detected in the view of a static
camera. This chapter is a simplification and combination of my main papers [1, 2, 3] for better
reading. Large parts of the papers are somehow similar, and thus, I created a reduced version
based on these papers and containing the most important information that should be more
readable.

All methods are similar in the manner of vehicles detection, fine-grained classification of the
vehicles, and detection of landmarks (keypoints) of the detected vehicles — thus, they share a
similar background, which is described at the beginning of this chapter, together with some
information how the methods are evaluated. Further, the methods are described separately
because each of them works a bit differently. Finally, all methods are compared to each other,
and also variants of combining different methods together are also explored.

3.1 The Common Basis of Proposed Methods

In this part, I describe some information to introduce the issue and also the background of all
the proposed methods. As all the methods are essentially similar, I decided to describe the
common information here, and thus it is not necessary to read the information later repeatedly.

3.1.1 Camera Calibration

Camera calibration is an important step in the majority of machine vision applications. In
various surveillance scenarios, calibration, including scale (to tell the position in world units,
like meters, not in image units), is of high importance. With the possibility of making
measurements in the scene, the speed of movement in the scene can be computed, and this can
be very beneficial to intelligent transportation systems and others — thus e.g. the estimation
of vehicles speed can be done (security on roads), or some type of 3D reconstructions are
possible (e.g. surveillance systems). While research works treat camera calibration as a solved
problem by showing a checkerboard to the experimental camera, practical applications often

12 Chapter 3. Proposed Methodology to Automatic Camera Calibration

require a calibration procedure that is automatized and suitable for large scene scales. There
is a large number of surveillance cameras around the world, and the possibility to calibrate
them (in order to be usable in machine vision applications) without the necessity of physical
presence is essential. Zhang [36] popularized calibration by inserting a suitable pattern of
known properties; in his case, a planar printed checkerboard is used, but arbitrary planar and
non-planar [37, 38] objects have been used since.

However, in surveillance of real-world scenes, especially with large numbers of processed
cameras, it is extremely inconvenient to calibrate the cameras by showing them markers and
by making additional distance measurements in the scene (e.g. in the midst of the traffic lanes
of a highway).

Despite the fact that other methods for the calibration of surveillance cameras have been
proposed — these are discussed in Chapter 2 — all of them either have some constraints,
limitations or do not reach satisfactory accuracy.

The goal is to develop fully automatic calibration algorithms for surveillance, providing the
internal camera parameters, camera’s rotation and translation with regard to the ground plane,
and also the scene’s scale so that measurements can be done in the world units (e.g. meters).

I focus on traffic surveillance; all the methods are described on the traffic surveillance problem,
and thus vehicles are used as objects of known properties (“markers”), but the algorithms
presented here work with any other suitable rigid objects (this was approved by experiments
with synthetic data).

The camera projects every point x in the world 3D homogeneous coordinates x = (x, y, z, 1)⊤

to its 2D screen image x′ = (u, v, 1)⊤:

λ x′ = K [R|t] x. (3.1)

By calibration, we mean obtaining internal (intrinsic) camera parameters K, the camera
rotation matrix R, and its translation vector t that best model such a projection.

The principal point can be assumed in the center of the image (surveillance cameras generally
meet this assumption [55, 125]), the pixels are square, and the skew is not present, therefore
K only contains one unknown parameter — the focal length.

The rotation and translation [R|t] have six degrees of freedom. Our approaches assume a
planar surface (the road) on which the vehicles are moving. As there is no given central point
on the ground plane, the origin of the world coordinate system can be potentially everywhere.
Since the first two elements of the translation vector, t indicate the location of the world origin
w.r.t. the principal point, we can set these values arbitrarily — further, zero values are used
so that the world origin will be projected in the principal point. The third element of the
translation vector t stands for the height of the camera, and thus it is the only parameter of t

which we will be interested in. So in the end, only 5 parameters are sought after — 3 rotation
angles, 1 translation value (height), and focal length. Also, an experiment with distortion was
done for LandmarksCalib method as is described later in Section 3.3.2.

3.1. The Common Basis of Proposed Methods 13

3.1.2 Landmarks Relations

All the proposed methods are based on detected landmarks in a scene and their known positions
in a 3D space — object coordinate system (OCS). Solving camera calibration on these known
3D positions and corresponding 2D positions in image space is the main goal. A similar task
is being solved by PnP (Perspective-n-Point) methods [126, 127, 128, 129, 130]. However,
these algorithms require the knowledge of the focal length f , which is unknown in our task,
and it must be optimized together with the rest of the calibration parameters. Even PnPf (PnP

with focal length estimation, [131, 132, 133]) methods exist, which are able to find the focal
length.

Moreover, the PnPf methods have a high error rate in focal length estimation when there are
higher values of noise at the locations of the points, which is quite usual in automatically
localized 2D landmarks, as will be mentioned later. In our scenario, we want to use more
observations of objects in the ground plane, which means that PnP/PnPf itself is not feasible as
it relates to each object separately, without taking into account the relations between individual
objects. In our case, the relations between the observations of single objects are crucial

and carry the necessary information.

3.1.3 Detection, Classification, and Landmarks

Our calibration methods are based on the detection and classification of vehicles in the video
frames. Each video frame is processed by a neural network for detection and localization
of vehicles (Faster R-CNN by Ren et al. [13], in this case, trained on the COD20k dataset
published by Juráneket al. [134]). The detected vehicles are classified into fine-grained
classes (make & model & submodel & model year) by using previously published vehicle
classifier [114] by my colleague. For the most common models, landmarks are localized
in vehicles’ positions by another neural network by Wang et al. [118]. This neural network
localizes 20 different landmarks in the image with a vehicle present. Some landmarks can be
occluded in the given frame; the network also decides about the landmarks’ visibility, and only
visible landmarks are further used. Also, not all landmarks are used due to their ambiguity, as
will be mentioned later.

It should be noted that although I describe the individual tasks of car detection, recognition,
and landmark localization as decoupled, in a production implementation, they could and
should be merged into a single neural network predicting for each car its type and locations
of the landmarks at the same time, similarly to Mask R-CNN [94] or the Panoptic Feature
Pyramid Networks [95], which predict a binary mask for each detection and potentially also
landmarks can be predicted.

All solutions are based on 2D-3D correspondences, and thus the landmarks must be as precise
as possible. Some of the localized landmarks have an ambiguous 3D position — for example,
headlights or fog lamps are hard to localize in the 3D space (not enough precisely). Therefore,
not all 20 keypoints are used; only the 12 most usable landmarks (4 wheels, 2 license plates,
2 logos, 4 corners of vehicle top).

14 Chapter 3. Proposed Methodology to Automatic Camera Calibration

3.2 Datasets for Evaluation

To evaluate the proposed methods, we detected and classify vehicles on two datasets. The
BrnoCompSpeed dataset was collected by my colleagues [135], and the BrnoCarPark dataset
was collected as a part of my thesis. Our novel BrnoCarPark dataset with recordings of parking
lots is also publicly available and can serve other research. The most common vehicles for
which precise 3D models were available were detected and classified in videos. Also, the
positions of keypoints were detected with known 3D positions of these keypoints in 3D OCS
(object coordinate system).

The vehicle models for which we have precise 3D models are as follows:

• Hyundai i30 Combi MK2 — (a)

• Hyundai i30 Hatchback MK2 — (b)

• Skoda Fabia Combi MK1 — (c)

• Skoda Fabia Combi MK2 — (d)

• Skoda Fabia Hatchback MK2 — (e)

• Skoda Octavia Combi MK1 — (f)

• Skoda Octavia Combi MK2 — (g)

• Skoda Octavia Sedan MK1 — (h)

• Skoda Octavia Sedan MK2 — (i)

• Volkswagen Golf Combi MK6 — (j)

• Volkswagen Passat Sedan MK6 — (k)

Preview of all models can be seen in Figure 3.1. Only vehicles classified as these for which
we have available 3D models are relevant and stored for further processing. Also, not all
landmarks are stored (as mentioned in 3.1.3) — the 12 most stable points are exported as a
part of the dataset.

3.2.1 BrnoCompSpeed Dataset

Although BrnoCompSpeed is a dataset made by my colleagues and is not my work, I use it
during the evaluation of the proposed methods, and thus some more information is provided
here to compare with other datasets. BrnoCompSpeed dataset contains recordings on a
highway — examples of sessions can be seen in Figure 3.2.

This dataset was made for the speed measurement of vehicles by a single monocular camera.
It contains video recordings of highways captured from the bridge above the highway in a
traffic surveillance manner, with ground truth measurements on a road plane and vehicles
with ground truth speed. Some more detailed information about the dataset can be found in
Table 3.1. However, the dataset only contains straight roads because of its purpose of vehicle
speed measurement, and thus the movement of the captured vehicles is limited to one direction
only — this is a reason why we collected a new dataset containing the non-straight movement
of vehicles.

3.2. Datasets for Evaluation 15

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

FIGURE 3.1: Available precise 3D models of most common vehicles in
datasets. (a) Hyundai i30 Combi MK2; (b) Hyundai i30 Hatchback MK2;
(c) Skoda Fabia Combi MK1; (d) Skoda Fabia Combi MK1; (e) Skoda Fabia
Hatchback MK2; (f) Skoda Octavia Combi MK1; (g) Skoda Octavia Combi
MK2; (h) Skoda Octavia Sedan MK1; (i) Skoda Octavia Sedan MK2; (j)

Volkswagen Golf Combi MK6; (k) Volkswagen Passat Sedan MK6.

3.2.2 BrnoCarPark Dataset

In order to be able to better evaluate the proposed methods, a novel challenging calibration
dataset BrnoCarPark was created. This dataset contains recordings of parking lots with
vehicles passing in front of the camera randomly (see Figure 3.3). Therefore, the cars are
not moving in any single dominant direction, and the extraction of a single set of vanishing
points for the whole scene is impossible. The recordings were captured at two locations from
different viewpoints (sessions), during various times of the day and somewhat diverse weather
conditions. Some more detailed information about the dataset can be found in Table 3.2.

16 Chapter 3. Proposed Methodology to Automatic Camera Calibration

S0C S0L S0R

S1C S1L S1R

S2C S2L S2R

S3C S3L S3R

S4C S4L S4R

S5C S5L S5R

S6C S6L S6R

FIGURE 3.2: An example images of BrnoCompSpeed dataset.

3.2.3 Synthetic Dataset

Because of problems with the slow review process and for the purpose of experimenting
with the influence of noise on landmarks’ localization, a synthetic dataset was created. The

3.2. Datasets for Evaluation 17

Ground truth
Duration Detections Keypoints GT pairs Mean distance

S0C 01:00:56 6 751 51 831 10 4.9
S0L 01:00:57 10 689 72 869 14 5.5
S0R 00:54:02 13 483 85 206 10 4.9
S1C 01:02:48 3 948 26 991 4 17.88
S1L 01:02:29 6 754 47 041 4 17.88
S1R 01:02:56 6 180 49 028 4 17.88
S2C 00:56:12 7 930 54 905 7 10.26
S2L 00:51:23 9 554 70 166 7 10.26
S2R 01:06:58 10 366 80 636 7 10.26
S3C 00:55:00 667 4 256 10 7.1
S3L 00:55:25 870 6 838 10 7.1
S3R 00:56:14 973 7 102 10 7.1
S4C 01:07:02 7 911 58 092 9 7.88
S4L 01:06:39 11 377 85 224 9 7.88
S4R 01:04:39 9 582 75 882 9 7.88
S5C 01:08:25 9 963 70 587 8 12.48
S5L 01:08:32 19 902 134 634 8 12.48
S5R 01:08:16 11 978 93 929 8 12.48
S6C 00:59:32 31 340 240 137 8 13.11
S6L 00:59:20 27 528 180 312 8 13.11
S6R 01:00:00 21 101 165 486 8 13.11

Mean 01:01:19 10 897 79 102 8.19 9.56

TABLE 3.1: Detailed information about BrnoCompSpeed dataset

Ground truth
Duration Detections Keypoints GT pairs Mean distance

S01 00:47:15 745 4 799 15 18.27
S02 00:47:26 153 1 041 10 24.34
S03 00:46:22 172 1 103 19 16.46
S04 00:46:21 45 283 361 885 17 18.84
S05 00:49:29 740 4 488 16 16.52
S06 00:49:30 36 489 281 418 8 23.02
S07 00:49:04 3 188 22 424 10 16.79
S08 00:49:00 4 520 33 120 12 18.47
S09 15:26:14 2 496 15 412 20 11.05
S10 12:28:01 1 421 9 581 59 14.91
S11 12:28:00 14 353 75 400 50 14.51

Mean value 4:15:09 9 960 73 697 21.45 16.16

TABLE 3.2: Detailed information about BrnoCarPark dataset

other benefit is the possibility of verifying the universality of the proposed methods (not
only vehicles). The dataset contains passages of various objects (car, cube, block, table,
etc.) in front of the camera — landmarks similar to those used in real scenarios together
with corresponding 3D positions in OCS are generated for each observation. Lanes are
generated randomly, and thus not only frontal views are available. Camera parameters are set

18 Chapter 3. Proposed Methodology to Automatic Camera Calibration

S01 S02 S03

S04 S05 S06

S07 S08 S09

S10 S11

FIGURE 3.3: An example images of BrnoCarPark dataset.

randomly in ranges corresponding to the ordinary setting of traffic surveillance cameras. In
total, the dataset consists of 40 different scenes, each containing randomly 500 to 4000 objects’
passages (93,652 observations in total). Measurements in the ground plane (20 random) and
corresponding 2D positions of endpoints are also generated for each scene as the ground truth
for calibration accuracy evaluation (3.4.4, 3.5.4). This dataset is also publicly available.

3.2.4 Ground Truth for Evaluation

All the datasets are equipped with ground-truth measurements in the ground plane, which
makes the evaluation of the calibration algorithms possible. The ground truth data consists of
measurements between various points in the real scene’s ground plane (with the exception
of synthetic dataset — these are generated) and corresponding 2D positions of the points
in the image plane. The existing BrnoCompSpeed dataset is equipped with 4 – 10 measure-
ments in each camera view, typically in the direction of the vehicles’ movement and in the
direction perpendicular to it; the measurements can be seen in Figure 3.4 and mean values of
measurements can be found in Table 3.1.

For our new BrnoCarPark dataset, we chose a number of distinctive points in the camera
images and measured distances between them when the parking lot was empty (at night). We
used a laser distance measurer with the precision of ±2 mm declared by its manufacturer. For

3.2. Datasets for Evaluation 19

S0C S0L S0R

S1C S1L S1R

S2C S2L S2R

S3C S3L S3R

S4C S4L S4R

S5C S5L S5R

S6C S6L S6R

FIGURE 3.4: Groud truth measurements in BrnoCompSpeed dataset.

each scene, 8 – 19 distance measurements are available. Ground truth distance measurements
with marked 2D points in the frames are depicted in Figure 3.5.

20 Chapter 3. Proposed Methodology to Automatic Camera Calibration

S01 S02 S03

S04 S05 S06

S07 S08 S09

S10 S11

FIGURE 3.5: Ground truth measurements in BrnoCarPark dataset.

As mentioned, datasets used for experiments are equipped with ground-truth measurements in
the ground plane, which form distances between these points in the real world:

D̂ =
{

d̂1, . . . , d̂D

}

. (3.2)

With the knowledge of calibration parameters (K, R, t — obtained by an arbitrary method),
these 2D points can be reconstructed to 3D positions in world coordinates by the usage of the
known height of the points above the ground plane, typically 0. Once 3D positions of the 2D
ground-truth points are computed, similar measurements corresponding to those in the ground
truth D̂ can be computed:

D = {d1, . . . , dD} (3.3)

and these can be compared against the ground truth D̂ by measuring the relative root mean
square error:

RMSE =

√

√

√

√

1

D

D

∑
i=1

(

di − d̂i

d̂i

)2

. (3.4)

This value tells us if the camera is calibrated correctly or if the real-world values that are
recomputed by estimated parameters are not correct.

3.3. LandmarksCalib: Automatic Camera Calibration by Landmarks on Rigid Objects 21

3.2.5 Common Notation of Detections

Evaluation of methods is proposed on datasets composed of videos but processing of these
videos is sufficient for easier further steps. The video is transformed into a set of cars’
observations:

C = {c1, . . . , cN} (3.5)

and for each car ci, a set of 2D landmark locations detected by the neural network [118] is
available:

K̄ci =
{

k̄ci
1 , . . . , k̄ci

K

}

. (3.6)

Not all detections are used, as we do not have precise 3D CAD models for all vehicles, but
only 9 car models are available (details can be seen in Section 3.2). Thus only these vehicles
are included in C. These 3D models were manually processed to obtain the accurate 3D
positions of the landmarks. Contrary to AutoCalib [32], where mean values of these points
were used, these locations differ for different recognized vehicle models. For each of the
observed vehicles ci, the correct 3D positions in the vehicle’s local coordinate system (OCS)
are available:

K̂ci =
{

k̂ci
1 , . . . , k̂ci

K

}

. (3.7)

This notation will be used during a description of all the proposed methods.

3.3 LandmarksCalib: Automatic Camera Calibration by Land-

marks on Rigid Objects

In this section, I will describe the method which I consider the most important in my work
(and also reaches the best results). It is based on the optimization of calibration parameters
based on known distances between keypoint, as will be described further.

3.3.1 Calibration by the Usage of Known Distances

Following notation described in Section 3.2.5 precise 3D positions of the landmarks define the
reference 3D distances of the landmarks (pairs of landmarks, identified by indices a and b) as:

δ̂(ci, a, b) =
∣

∣

∣
k̂ci

a , k̂ci

b

∣

∣

∣
, (3.8)

which is the Euclidean distance of any two potential landmarks a and b in the model coordinate
space. An example of these distances δ̂(ci, a, b), together with a few samples of the detected
2D landmarks K̄ci can be seen in Figure 3.6.

For each landmark’s projection k̄ci
j , it is possible to compute its 3D position in the world

coordinate system based on its known height above the ground plane (the Z-coordinate in the
3D model k̂ci

j) and based on given calibration parameters ϕ. This reconstructed 3D position

vector will be denoted as kci
j (ϕ), as it is a function of the calibration parameters ϕ, consisting

of focal length f (forming the intrinsic matrix Kϕ), rotation matrix Rϕ and translation vector
tϕ.

22 Chapter 3. Proposed Methodology to Automatic Camera Calibration

1273

2608

1520

1893

1186

1969

1969

1005

1024

19951995

FIGURE 3.6: left: Distances δ̂ (in millimeters) in the 3D model of Skoda

Octavia mk2 car. Only a small subset of all the distances in the set K̂ci is
shown. right: Examples of detected landmarks on actual vehicles of the same

type.

Starting with the camera projection (3.1), in our notation:

λ

[

k̄ci
j

1

]

= Kϕ

(

Rϕkci
j (ϕ) + tϕ

)

, (3.9)

which can be rearranged to

R−1
ϕ K−1

ϕ λ

[

k̄ci
j

1

]

= kci
j (ϕ) + R−1

ϕ tϕ (3.10)

and further:

kci
j (ϕ) = R−1

ϕ

(

K−1
ϕ λ

[

k̄ci
j

1

]

− tϕ

)

. (3.11)

The projective scale λ can be expressed from eq. (3.10) by using the Z coordinate known
from the CAD model k̂ci

j . Only the third component of all the column vectors is used from
(3.10) (operator [x]3 symbolizes the extraction of the third member):

λ =

[

k̂ci
j

]

3
+
[

R−1
ϕ tϕ

]

3
[

R−1
ϕ K−1

ϕ

[

k̄ci
j

1

]]

3

. (3.12)

For each car ci and each pair of landmarks a, b in the world coordinate system kci
j (ϕ), their

3D distance can then be computed as:

δ(ci, a, b, ϕ) =
∣

∣kci
a (ϕ), kci

b (ϕ)
∣

∣ . (3.13)

Although localization of the landmarks works well enough (according to [118], 88.8 % of

3.3. LandmarksCalib: Automatic Camera Calibration by Landmarks on Rigid Objects 23

landmarks are correctly predicted within 3 pixels), it fails significantly in some cases. In
particular, it leads to considerable outliers in the detection, which can impact the calibration
process significantly. For this reason, we propose to compute the re-projection error for each
car ci and transform it to weight, controlling the impact of the given sample on the whole
calibration. The PnP solver [127] provides extrinsic camera parameters for each vehicle
instance. Given those, the 3D points from K̂ci are projected to the image plane similarly to
eq. (3.9), yielding:

K̃ci =
{

k̃ci
1 , . . . , k̃ci

K

}

. (3.14)

The particular vehicle instance ci is then assigned its individual normalized re-projection error:

ϵ(ci) =

√

√

√

√

√

√

√

√

√

K

∑
j=1

∣

∣

∣
k̃ci

j , k̄ci
j

∣

∣

∣

K

∑
j=1

∣

∣

∣
k̃ci

j , Kci

∣

∣

∣

, (3.15)

where Kci is the mean of all the points k̄ci . The fraction normalizes the re-projection error
so that vehicle instances of different sizes are mutually comparable. The PnP computation
assumes knowledge of the intrinsic matrix, which is for now considered to be known, and its
estimation is discussed later.

For each vehicle ci its normalized re-projection error ϵ(ci) is computed by (3.15), which
defines its weight:

wci =

(

1

ϵ(ci)

)α

, (3.16)

where α controls the power of the weight, and its effect is studied in Section 3.3.2.

The total error/cost of the observations in the video given some calibration parameters ϕ can
be expressed as follows:

ε(ϕ) =
1

W ∑
ci∈ C

∑
a,b

(

δ(ci, a, b, ϕ)− δ̂(ci, a, b)

δ̂(ci, a, b)

)2

wci , (3.17)

where W = ∑ci∈ C wci and thus (3.17) is the weighted mean of vehicles’ reconstruction
errors. The process of calibration consists of finding such parameters ϕ that minimizes this
error function. In our experiments, we find the parameters ϕ by Differential Evolution [136]
minimizing (3.17). Any other global optimization method can be used; differential evolution
was chosen due to its fast computation and robustness. We experimented with local optimizers
as well (gradient descent, AdaGrad [137], Adam [138], L–BFGS [139]), but they failed, so
the problem appears to be considerably non-linear.

Since available 3D positions of landmarks K̂ are located in the vehicle’s (local) coordinate
system, projection of these 3D points to the image plane based on the calibration parameters
ϕ (by eq. (3.9)) would project all points near the world coordinate origin (3D coordinates are
not available in the world coordinate system). However, detected 2D landmarks’ positions
K̄ are localized in the whole world coordinate system (whole image plane), and thus these
projected positions do not correspond to the localized ones. Due to this fact, it is necessary to
use the reconstruction error computed from detected 2D landmarks’ positions K̄ instead of

24 Chapter 3. Proposed Methodology to Automatic Camera Calibration

the re-projection error in the image plane.

As was mentioned before, weights (3.16) are used in the process of calibration parameters
optimization (3.17). However, the computation of weights needs projected points K̃ci which
are computed by a PnP solver and thus the knowledge of the focal length is necessary. Since
the focal length value is assumed to be unknown, it must be estimated first, and only after
it the weights wci can be computed. Therefore, the whole calibration process is twofold; in
the first pass, all weights wci are set to the value 1.0. The estimated value of focal length in
the first pass is used for computing the more accurate weights wci by eq. (3.15), and these
weights are used during the second pass of the calibration process.

The usage of two iterations of computation (and also proper weights) seems to be beneficial
since the error is reduced approximately by 53 % as is described in Section 3.3.2.

3.3.2 Results

As explained in Section 3.2.4, RMSE can be computed for ground truth measurements in
scene similarly to AutoCalib [32], and thus we can compare our results with AutoCalib results.

S0L S0R S0C S1L S1R S1C S2L S2R S2C S3L S3R S3C S4L S4R S4C S5L S5R S5C S6L S6R S6C S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
0

2

4

6

8

RM
SE

 (%
)

1.48

1.96

4.71

0.00 0.00 0.00

1.05

0.42
0.61 0.46

0.87

0.44 0.33
0.54 0.41 0.47

0.96
1.21 1.09

0.83
0.57

1.31

0.26

1.00

1.76

0.34
0.09

1.75

0.65

1.94
2.33

1.84

3.80
3.63

6.12

3.42

1.93

3.09

3.49

1.94

2.35

2.86

1.85
2.21

2.75

1.74
2.12

3.19
3.57

4.03

5.49

2.21

2.94

5.08
4.74

8.92

7.79

5.30
5.57

7.64 7.77

4.57

3.77

3.18

Ground truth
Ours

FIGURE 3.7: Accuracy of the proposed calibration method vs ground truth
calibration. The red bars describe ground truth calibration, and the blue
bars describe proposed algorithm accuracy; red and blue horizontal lines
are averages per dataset (dashed) and overall measurements (solid). All
is evaluated on BrnoCompSpeed (left part) dataset and new BrnoCarPark

dataset (right part). The ground truth calibration has an average RMSE of
0.99 %, and the proposed method has an average RMSE of 4.03 %.

Although all the real-world measurements and the corresponding annotations of the 2D points
in the scene images were made as precise as possible, some inaccuracies must inevitably occur.
In order to quantify these, we made a calibration based on the 2D ground-truth measurements
D̂, by using the same methodology as described in Section 3.3.1 (with all the point’s Z

coordinate being 0). The ground truth calibration errors in the individual scenes are plotted in
Figure 3.7 as the red bars. The same graph also shows the error (3.4) of our method for all the
scenes (as measured by the more or less accurate ground truth).

We compared our proposed method to AutoCalib — the state-of-the-art alternative solution.
Since the authors did not make AutoCalib code public, we reimplemented their algorithm
according to their paper [32]. We used the same landmarks as in our method and also
shared the 3D models. We assume that this should constitute an improvement to the original
AutoCalib method because then only rear views of the vehicles were used, and the set of the
landmarks was thus greatly limited. Also, the authors of AutoCalib used one united 3D model

3.3. LandmarksCalib: Automatic Camera Calibration by Landmarks on Rigid Objects 25

representing all sedan vehicles by estimating some average landmark positions, and they do
not distinguish between individual vehicle models. Focal length values are necessary for
AutoCalib method — these are available within BrnoCompSpeed dataset; for the BrnoCarPark

dataset, focal length values computed by ground truth estimation, as was mentioned earlier,
were used.

S0L S0R S0C S1L S1R S1C S2L S2R S2C S3L S3R S3C S4L S4R S4C S5L S5R S5C S6L S6R S6C S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
M

S
E
 (

%
)

4.33

18.29

5.84

4.12
3.63

1.62

5.29

3.75

8.45

3.44

14.68

14.13

3.74

4.36

14.16

2.21

5.83

8.85

6.19

6.83

3.92

13.78

3.26

5.74

3.40 3.25

1521.37

4.19

4.98

9.87

4.90

6.47

3.80 3.63

6.12

3.42

1.93

3.09
3.49

1.94
2.35

2.86

1.85
2.21

2.75

1.74
2.12

3.19
3.57

4.03

5.49

2.21

2.94

5.08
4.74

8.92

7.79

5.30
5.57

7.64 7.77

4.57

3.77

3.18

AutoCalib

Ours

FIGURE 3.8: Comparison of accuracy for the proposed LandmarksCalib and
AutoCalib method. Average results are as follows: BrnoCompSpeed dataset
– AutoCalib 6.84 %, ours 3.08 %; BrnoCarPark dataset – AutoCalib 5.98 %,
ours 5.84 % (it should be mentioned that AutoCalib failed significantly on
scene S6 and thus this single scene is not evaluated for AutoCalib method);

both datasets — AutoCalib 6.56 %, ours 4.03 %.

The comparison of our method with AutoCalib is shown in Figure 3.8. The mean RMSE
across all the scenes was decreased from 6.56 % by AutoCalib to 4.03 % by our approach.
It should be noted that Bhardwaj et al. [32] report the error of 8.98 % on their data in their
paper; our implementation thus seems on par or even slightly better than the original solution
(though it should be noted that the evaluation dataset is different).

In all our experiments, the Differential Evolution parameters are set as follows: population size
(number of parents, NP) — 15 times the number of parameters (75); crossover probability
(CR) — 0.9; dither technique for setting weighting factor F is used, and values are randomly
selected for each generation from the interval [0.5, 1.0]; the method for creating trial candidates
is DE/best/1/bin (the notation and meaning of all the parameters are explained by Storn
and Price [136]).

Weighting Parameter α Used for Calibration

As explained in Section 3.3.1, it is beneficial to use weights wci of the observed vehicles during
the calibration process. These weights are meant to suppress the influence of vehicles whose
landmarks were detected inaccurately. Figure 3.9 shows the result of an experiment designed
to look for the proper parameter α used for the calibration (3.16). Different parameters α were
tested, and for each of them, the plot shows the distribution of the errors (3.4) across all the
scenes shown in Figures 3.7 and 3.8. The blue boxplot shows the median value (black central
line) and quartiles; the red dotted line in each box shows the average error across all the scenes.
Hollow circles show major outliers – scenes that notably failed.

As can be seen from eq. (3.16), parameter α emphasizes vehicles with a smaller re-projection
error (3.15) and suppresses vehicles with a higher error. It appears that small values of α lead
to instability caused by using the majority of vehicles, which can also contain very noisy

26 Chapter 3. Proposed Methodology to Automatic Camera Calibration

1 2 3 4 5 6 7 8 9 10
Parameter

5

10

15

20

25

30

RM
SE

 (%
)

FIGURE 3.9: Calibration error with different values of parameter α used for
calibration.

1 2 3 4 5
Iterations

4

5

6

7

8

RM
SE

 (%
)

FIGURE 3.10: Error with different count of calibration iterations.

landmarks detections, but on the other hand, large α tends to use very few vehicles with
the smallest re-projection error and not exploiting extra information from the other vehicles
detected. Therefore in the experiments reported here, α = 4 was used. It should be mentioned
that the average error across all the scenes is smaller than AutoCalib result 6.56 % in all
possible tested values of parameter α.

Number of Calibration Iterations

At the end of Section 3.3.1, we described that the whole calibration process is twofold. In the
first step, the calibration process is computed with weights wci set to the value 1.0 and in the
second step the weights are computed with more precise focal length value obtained in the
first step. We also made an experiment if more iterations with re-computation of the weights
with a new value of the focal length are beneficial.

Figure 3.10 shows the result of the experiment; it is apparent that one iteration of calibration
with weights set to the value 1.0 produces a much higher error than the usage of multiple

3.3. LandmarksCalib: Automatic Camera Calibration by Landmarks on Rigid Objects 27

iterations. It seems that a higher number of iterations is not so beneficial, where the largest
error reduction is between one and two iterations (about 53 % error reduction); thus, two
iterations are used within our experiments. The high reduction of error between one and two
iterations also shows the advantage of the weights used, as in the case of one iteration, weights
are neglected (set to 1.0).

Study of Calibration Parameters

Till now, we considered an almost perfect camera with the principal point in the middle of
the image plane and with no distortion present. However, in real scenarios, cameras can
suffer from distortion, and thus we experimented how the proposed method can handle this
situation. We extended the described method so that it also estimates the principal point and
the distortion parameters. In this setting, intrinsic matrix K also contains the principal point,
and before the computation of 3D distances (3.13), localized 2D landmarks are undistorted by
the distortion parameters. Since the experiment should only prove the ability to extend the
proposed method by other calibration parameters, only two radial distortion parameters k1, k2

are used (different models of camera distortion work with different numbers of parameters).
The first two distortion parameters are the most influencing ones [140], and thus these are
crucial, and we are not interested in the others. The computation of undistorted points with
some distortion parameters can be used as follows:

xu = xd(1 + k1r2 + k2r4),

yu = yd(1 + k1r2 + k2r4),
(3.18)

where r2 = x2
u + y2

u, (xu, yu) is undistorted point, and (xd, yd) is distorted point. These
equations can be approximated by an iterative algorithm, and further details can be found
in [141, 140].

We tested two settings — in the first one, the precision of calibration was tested on the
unchanged original dataset only with an extension of the estimated calibration parameters.
The second experiment should test how the method can deal with distortion, and thus localized
2D landmarks in the image plane were distorted by randomly set distortion parameters k1 and
k2 (in our experiment, random values with uniform distribution from ranges (−1.0; 1.0) and
(0.0; 3.0) were used for k1 and k2 respectively). As can be seen in Table 3.3, our method seems
to be able to handle both cases; both the extended number of parameters and the case when
the input data are really distorted. Although the results for the case of extended parameters
estimation are slightly better, the main disadvantage of this approach is computational time
— 4 additional parameters (px, py, k1, k2) must be estimated, and therefore the computation
takes more than twice as much time.

Calibration parameters Data Error

f , rx, ry, rz, tz Original 4.03 %

f , rx, ry, rz, tz Distorted 5.15 %

f , rx, ry, rz, tz, px, py, k1, k2 Original 4.01 %

f , rx, ry, rz, tz, px, py, k1, k2 Distorted 4.05 %

TABLE 3.3: Error of variant with extended parameters and distorted data.

28 Chapter 3. Proposed Methodology to Automatic Camera Calibration

3.4 PlaneCalib: Automatic Camera Calibration by Multiple Ob-

servations of Rigid Objects on Plane

In this section, I will describe another method. This time it is not based on distances of
landmarks, but the goal is to locate a common ground plane of all observations, which can
serve to locate calibration parameters.

3.4.1 Estimation of Extrinsic Camera Parameters

The process of extrinsic camera parameters estimation works with the known intrinsic matrix
K; it is thus considered to be known for the purpose of method description. The process of
focal length estimation is described later in Section 3.4.3.

Following common notation from Section 3.2.5 — detected 2D (K̄ci) and 3D (K̂ci) cor-
respondences for each car ci can be used to solve the PnP [127] problem — the solution
provides extrinsic camera parameters (rotation matrix Rci and translation vector tci for the
transformation between the object coordinate system (OCS) and the camera coordinate system
(CCS)).

Original 3D positions K̂ci in OCS can thus be transformed into 3D positions in CCS as:

kci
j = [Rci |tci]

[

k̂ci
j

1

]

. (3.19)

An example of object points’ positions in 3D CCS (after solving PnP and transformation
by eq. (3.19) from OCS to CCS) with corresponding points in the 2D frame is depicted in
Figure 3.11. For each car ci, parameters for transformation from OCS to CCS are available,
and the corresponding point describing the origin of OCS can be transformed into CCS. From
at least three of these origin points, a plane in the CCS can be computed (an example can be
seen in Figure 3.12).

FIGURE 3.11: left: Detected 2D landmarks in a single frame. right: 3D CCS
with corresponding 3D positions of detected landmarks in the 2D frame. The

PnP solution is computed to obtain parameters [Rci |tci].

CCS to WCS transformation The extrinsic camera parameters describe the camera position
in the WCS and the mutual transformation between WCS and CCS; the world ground plane is

3.4. PlaneCalib: Automatic Camera Calibration by Multiple Observations of Rigid Objects

on Plane
29

FIGURE 3.12: Computing the plane in the camera coordinate system. left:
Origins of three different objects transformed into the camera coordinate
system. right: plane in the camera coordinate system localized by three

(minimal case) origins of objects.

the same as the plane in the CCS after applying this transformation — this is the goal of the
described method. The equation of the plane is:

ax + by + c = z. (3.20)

The plane can be recovered in a least squares manner as follows:

x0 y0 1

x1 y1 1
...

xN yN 1

a

b

c

=

z0

z1
...

zN

, (3.21)

where xn, yn, zn are 3D coordinates of at least three car’s ground points transformed into the
camera coordinate system. This equation can be simplified to matrix notation as:

Ax = B, (3.22)

where x are the plane parameters [a, b, c]⊤. These plane parameters can thus be computed as:

a

b

c

= A+B, (3.23)

where A+ = (A⊤A)−1A⊤ is Moore-Penrose pseudoinverse of A.

Inference of the plane’s normal vector (denoted as n) from parameters [a, b, c]⊤ is straight-
forward (cross-product of two vectors lying on the plane). The rotation matrix R can be
computed from the rotation axis u and angle θ. The axis is determined by the normal vector n

and camera view vector c = [0, 0, 1]⊤ (marked green in Figures 3.11 and 3.12) as u = c × n.
The rotation angle θ is:

θ =
arccos(c · n)

|c| · |n|
. (3.24)

30 Chapter 3. Proposed Methodology to Automatic Camera Calibration

The final camera rotation matrix R is then obtained by Rodrigues formula:

R = (cos θ)I + (sin θ)[u]× + (1 − cos θ)(u ⊗ u), (3.25)

where [u]× is a cross product matrix (skew-symmetric matrix):

[u]× =

0 −uz uy

uz 0 −ux

−uy ux 0

(3.26)

and u ⊗ u is a tensor product of the vectors:

u ⊗ u = uu⊤ =

u2
x uxuy uxuz

uxuy u2
y uyuz

uxuz uyuz u2
z

. (3.27)

Assuming the world origin in the principal point, the first two elements of the vector t are set
to zero and the Z-coordinate of the camera is derived from equation (3.20) with x and y set to
zero (world origin projected into the principal point — no translation within x or y axis). The
translation vector t is then set to [0, 0, c]⊤ where c is one of the plane parameters from (3.23).
An example of the final calibration plane is shown in Figure 3.13.

FIGURE 3.13: Final calibration plane with the use of all available cars in
C. left: 2D frame with the final calibration in WCS. right: 3D CCS with

potential ground points and fitted plane.

3.4.2 Suppression of Outlier Samples

Similarly to the part describing weights in Section 3.3.1 it is necessary to somehow suppress
localization with a high failure rate — there can appear cases when landmarks localization fails
significantly in some vehicle instances (occluded ones, weird angles, unusual painting, custom
modifications, . . .). These outliers bring noise into the plane fitting computation (3.23) and,
thereby, the final calibration. For this reason, we propose to compute the re-projection error
for each car ci and transform it into weight. For each observed car, PnP [127] is computed to
obtain extrinsic parameters. The 3D points from K̂ci are projected to the image plane by (3.1),
yielding again:

K̃ci =
{

k̃ci
1 , . . . , k̃ci

K

}

. (3.28)

3.4. PlaneCalib: Automatic Camera Calibration by Multiple Observations of Rigid Objects

on Plane
31

The particular vehicle instance ci is then assigned its individual normalized re-projection error:

ϵ(ci) =

K

∑
j=1

∣

∣

∣
k̃ci

j , k̄ci
j

∣

∣

∣

K

∑
j=1

∣

∣

∣
k̃ci

j , Kci

∣

∣

∣

, (3.29)

where Kci is the mean of all the points k̄ci . This computation is similar to the eq. (3.15).

For each vehicle ci, its re-projection error ϵ(ci) is thus available, which serves for setting of
the weight:

wci =

(

1

ϵ(ci)

)

. (3.30)

Equation (3.23) for fitting a plane to the set of points must be slightly modified for the use of
weights. It is convenient to denote the weights as a matrix W with wci on its diagonal. Then,
the plane fitting equation can be modified as:

a

b

c

= (A⊤WA)−1 A⊤WB. (3.31)

The calibration ground plane is thus computed by the equation (3.31) instead of eq. (3.23),
and the rest of the calibration parameters inference is identical to the process described in
Section 3.4.1.

3.4.3 Focal Length Estimation

As mentioned earlier, our approach assumes the principal point in the middle of the frame,
square pixels, and zero skew. The only unknown intrinsic parameter is thus the focal length.
Many previous methods, as well as the AutoCalib [32] method, assume the focal length to be
known — we consider this assumption too limiting as the goal is to calibrate a general camera
without any previous knowledge. We thus propose to use focal length estimation.

The process of focal length estimation uses the detected 2D landmarks (K̄ci) and precise 3D
positions (K̂ci) located on the cars’ models.

We again define the pairwise distance between points a and b as:

δ̂(ci, a, b) =
∣

∣

∣
k̂ci

a , k̂ci

b

∣

∣

∣
. (3.32)

An example of these distances δ̂(ci, a, b) can be seen in Figure 3.6. After using the same
process as in eq. (3.9), (3.10), (3.11), (3.12), we get the same distances as in eq. (3.13):

δ(ci, a, b, ϕ) =
∣

∣kci
a (ϕ), kci

b (ϕ)
∣

∣ . (3.33)

32 Chapter 3. Proposed Methodology to Automatic Camera Calibration

1000 1500 2000 2500 3000 3500 4000 4500 5000
Focal length f

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Er
ro

r
(

)

FIGURE 3.14: Error function E(ϕ) on single scene of real world dataset (see
Section 3.2). The ground truth focal length value is marked red.

The error of the distance between a pair of visible landmarks given some calibration parameters
ϕ can be expressed as follows:

ε(a, b, ϕ) =
δ(ci, a, b, ϕ)− δ̂(ci, a, b)

δ̂(ci, a, b)
. (3.34)

The total error/cost of all the observations in the scene can be computed as follows:

E(ϕ) = ∑
ci∈ C

∑
a,b

wci ε(a, b, ϕ)

wci
, (3.35)

where wci is the weight defined by (3.30). The process of focal length estimation consists of
localizing such a focal length f that minimizes this error (3.35). Once a focal length value f

is determined, the rest of the calibration parameters (Rϕ and tϕ) are determined by the method
described in Section 3.4.1.

As can be seen in Figure 3.14, the proposed error function is convex, and a single minimal
value can be found. In our experiments, the optimal focal length f is found by Brent method.

Summary of Calibration Process

The main part of the whole calibration is the optimization of focal length f . In each step of
the focal length optimization, weights (as defined by (3.30)) are computed as these can change
by the different settings of parameter f . Afterward, extrinsic camera parameters are obtained
by the process described in Section 3.4.1. With all known camera parameters ϕ, the error
function (3.35) can be evaluated. Optimization reaches the best possible focal length value f

together with the final extrinsic camera calibration parameters.

3.4.4 Results

As mentioned in Section 3.2.4 RMSE is used to evaluate the method. The method was
compared to OptInOpt method (Section 3.5) because it was released before this method and
it was possible to make the comparison publicly available. This comparison can be seen
in Figure 3.15. The mean RMSE across all scenes is 3.65 % for the PlaneCalib method
and 3.01 % for the OptInOpt method (median values 3.23 % and 2.43 % for PlaneCalib and
OptInOpt respectively). Several examples of calibration on the BrnoCompSpeed dataset can
be seen in Figure 3.16.

3.4. PlaneCalib: Automatic Camera Calibration by Multiple Observations of Rigid Objects

on Plane
33

S0C S0L S0R S1C S1L S1R S2C S2L S2R S3C S3L S3R S4C S4L S4R S5C S5L S5R S6C S6L S6R
0

1

2

3

4

5

6

7

RM
SE

 (%
)

6.67

4.78

3.04

2.50
2.11

1.80

3.24

4.79

2.94

3.38

2.62 2.77 2.83

3.98

4.88

2.60

6.24

3.63

4.31

4.98

2.60

5.83

1.89

2.58
2.76

1.82 1.90 1.92

4.02

3.13

2.33 2.43
2.04 2.02

2.52

6.07

3.27

1.73

5.53

2.34

4.94

2.20

PlaneCalib
OptInOpt

FIGURE 3.15: Comparison of accuracy for the proposed PlaneCalib method
and the OptInOpt method. Average results are as follows: PlaneCalib 3.65 %,
OptInOpt 3.01 %. These results are measured when calibrating from all the
input samples; further, a mechanism for the selection of a more suitable subset

is discussed.

FIGURE 3.16: Sample images from BrnoCompSpeed dataset [135] together
with resulting calibration.

0 5 10
Gaussian noise (pixels)

0

1

2

3

RM
SE

 (%
)

PlaneCalib (mean)
PlaneCalibK (mean)
OptInOpt (mean)

FIGURE 3.17: Comparison of the calibration error by the proposed
PlaneCalib method and the OptInOpt method on synthetic dataset w.r.t. vary-
ing noise levels in landmarks’ 2D positions. Random Gaussian shift is added

to all localized landmarks — noise in landmarks localization.

Noise in Landmarks Detection The influence of the inaccuracies in the detection of the
landmarks was tested on the synthetic dataset (Section 3.2.3). Random values from the
Gaussian distribution were added to all detected 2D landmarks, which simulates the error in
the localization of 2D landmarks. The results of calibration accuracy w.r.t. varying noise
levels can be seen in Figure 3.17. Similarly to the evaluation on the real dataset, RMSE error
(3.4) of the known distances in the scene was computed.

34 Chapter 3. Proposed Methodology to Automatic Camera Calibration

The PlaneCalib method uses focal length estimation (Section 3.4.3), PlaneCalibK counts with
a known intrinsic matrix K. The PlaneCalib method seems to be more resistant to noise in the
landmarks’ positions than the OptInOpt method. The results presented are the mean values of
100 trials carried out using random scenes from the synthetic dataset.

10 50 100 200 300 400 500 750 1000 2000 all
Count of observations N used

0

2

4

6

8

10

12

RM
SE

 (%
)

FIGURE 3.18: Calibration error on all scenes from BrnoCompSpeed dataset
with a varying count of observations used.

Computation Speed-up and Improvement To speed up and improve the calibration pro-
cess, an approach that does not use all the observations was considered. As was mentioned in
Section 3.4.3, in each optimization step, the weights of individual observations are computed.
To make the calibration process faster, after each re-computation of the weights, only N best
observations (those with the highest weights) are used for further computation. The influence
of value N selection can be seen in Figure 3.18. In cases with high N, some noisy observations
can be present during calibration and these can affect the result. On the other hand, cases with
low N can become problematic due to insufficient observation coverage of the ground plane.
During our experiments, all observations in the scene were used for a fair comparison with
OptInOpt. But with the proper selection of value N, the resulting accuracy of 2.72 % error
can be reached, which outperforms the OptInOpt method.

3.5 OptInOpt: Dual Optimization for Automatic Camera Cali-

bration by Multi-Target Observations

Another proposed method is again somehow different from others. In this case, the locations
of single vehicles are optimized due to some calibration parameters, which are also optimized.
The proposed method is based on dual optimization — in each step of camera parameters
optimization are optimized positions of all single detected objects. These objects must fit the
position of localized landmarks as precisely as possible.

3.5.1 Optimization of Object Position

Following previous notation (Section 3.2.5) each detected vehicle ci is equipped with 3D
positions of detected landmarks K̂ci . However, these 3D positions are in the object coordinate
system and thus, no relations between different observations are not available by these
positions. For this reason, the positions of single observed vehicles must be optimized. Let us
assume some calibration parameters Kϕ, Rϕ and tϕ, whose estimation is described later in
Section 3.5.3. The position of an object in the world space is described by some transformation.
In our case, it is assumed that all objects lie within the common ground plane, and thus their

3.5. OptInOpt: Dual Optimization for Automatic Camera Calibration by Multi-Target

Observations
35

position in the space is described only by rotation around the Z-axis and translation along X-
and Y-axis (potentially more parameters can be used leading to an extension — relaxing the
constraint of objects’ common plane).

An object’s position can be transformed by a transformation matrix:

M(ωϕ) =

cos(rz) −sin(rz) 0 tx

sin(rz) cos(rz) 0 ty

0 0 1 0

0 0 0 1

(3.36)

to the world coordinate system by transformation parameters ωϕ, consisting of Z-axis rotation
rz, X-axis translation tx and Y-axis translation ty as:

k̂ci
j (ωϕ) = M(ωϕ)

[

k̂ci
j

1

]

. (3.37)

3D points K̂ci(ωϕ) transformed by some transformation parameters ωϕ can be projected
into 2D image plane by using eq. (3.1) as K̃ci(ωϕ). The resulting position of a single
object can thus be found by optimizing parameters ωϕ to minimize the re-projection error
ϵ(K̄ci , K̃ci(ωϕ)) defined by (3.38). Our experiments show that this minimization problem
is non-convex, and thus a global optimization method must be used. In all our experiments,
differential evolution [136] algorithm was used due to its computational speed and stability
(with suitably selected bounds for searching for the solution). An example of optimized
vehicle positions can be seen in Figure 3.19.

FIGURE 3.19: left: Projected 3D landmarks’ positions K̂ci to the image
plane (green points) and localized landmarks positions K̄ci (red points). right:

Projected 3D landmarks’ positions K̂ci (ωϕ) (green points) after optimization
of transformation parameters ωϕ and localized landmarks positions K̄ci (red

points).

3.5.2 Estimation of Objects Weight

Similarly to processes described in Sections 3.3.1 and 3.4.2 in this case are again estimated
weights of single detected vehicles. For each vehicle ci, calibration parameters by PnP [127]
can be computed as 2D correspondences K̄ci and 3D correspondences K̂ci are known. With
known calibration parameters, projected points K̃ci can be computed for each K̂ci by eq. (3.1)
as it serves for projection to the image plane. With known projected points K̃ci and localized

36 Chapter 3. Proposed Methodology to Automatic Camera Calibration

landmarks K̄ci , the re-projection error ϵ(ci) can be computed as:

ϵ(K̄ci , K̃ci) = ∑
j

∥

∥

∥
k̄ci

j , k̃ci
j

∥

∥

∥

2
. (3.38)

Since the PnP needs the intrinsic matrix K, which is assumed to be unknown, re-projection
error ϵ(K̄ci , K̃ci) is computed repeatedly F times with randomly set focal length f (from a
reasonable interval and with uniform distribution) and principal point in the middle of the
image plane. By this approach, F possible re-projection errors are available for each vehicle
ci and their mean ϵ(K̄ci , K̃ci) is used further. For each vehicle ci, the weight is thus computed
as the reciprocal value of the re-projection error:

w(ci) =
1

ϵ(K̄ci , K̃ci)
. (3.39)

3.5.3 Optimization of Calibration Parameters

The goal of camera calibration is to find such parameters that best describe the camera setting
and position in the world. Camera calibration parameters will be denoted as ϕ and they consist
of camera intrinsic matrix Kϕ, camera rotation matrix Rϕ, and camera translation vector
tϕ. For each possible setting of parameters ϕ, world positions of the objects K̂ci(ωϕ) are
available, as was described in previous Section 3.5.1. For each car ci, the re-projection error
ϵ(K̄ci , K̃ci(ωϕ)) can also be computed.

Similarly to PnP algorithms which determine the calibration parameters for one object based
on 2D-3D correspondences, our solution is based on the minimization of the re-projection
error. The objective function which is being minimized is as follows:

ε(ϕ) =

∑
ci∈C

ϵ
(

K̄ci , K̃ci(ωϕ)
)

w(ci)

∑
ci∈C

w(ci)
, (3.40)

which is a weighted arithmetic mean of re-projection errors of all detected vehicles C, with
weights computed as described in Section 3.5.2. The objective function is again non-convex
and differential evolution algorithm is used for its solving. In each iteration of the optimization,
some calibration parameters ϕ are set, and these parameters are used for the optimization
of objects’ positions in the world coordinate system K̂ci(ωϕ). Optimization iterations of
parameters ϕ tend to minimize the proposed objective function (3.40). Potentially any global
optimization algorithm can be used instead, but differential evolution seems to be robust and
provides good results.

3.5.4 Results

Because the proposed method was published before PlaneCalib method and also before
BrnoCarPark dataset, it is compared only with AutoCalib on BrnoCompSpeed dataset and on
synthetic dataset 3.2.3.

In the case of optimization of objects’ positions, the population size and iteration values are
set to 25 and 200, respectively. For the optimization of calibration parameters, the population

3.5. OptInOpt: Dual Optimization for Automatic Camera Calibration by Multi-Target

Observations
37

size and iteration values are set to 20 and 500, respectively. The value for objects’ weights
computation F, as described in Section 3.5.2, is set to the value of 10.

Comparison of OptInOpt and AutoCalib methods is shown in Figure 3.20. The mean
RMSE (3.4) across all scenes and all observations is 2.85 % for OptInOpt and 6.88 % for
AutoCalib (median values 2.50 % and 5.49 % for OptInOpt and AutoCalib, respectively). It
can also be seen that OptInOpt seems to be more stable without extreme outlier values, which
appear in the case of AutoCalib; moreover, it achieves better results without the knowledge of
the focal length.

S0L S0R S0C S1L S1R S1C S2L S2R S2C S3L S3R S3C S4L S4R S4C S5L S5R S5C S6L S6R S6C
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

RM
SE

 (%
)

4.33

18.29

5.84

4.12
3.63

1.62

5.83

3.75

8.45

3.44

14.68
14.13

3.74

5.49

14.16

2.21

5.83

9.96

4.24

6.83

3.92

1.72
2.50

5.97

2.26
1.74

2.84
3.81

3.08
2.08 2.24 1.78

2.35 2.76

4.43

2.09 2.08

3.73
3.03

4.62

2.07
2.71

AutoCalib
OptInOpt

FIGURE 3.20: Comparison of the calibration accuracy for the proposed
OptInOpt method and AutoCalib method. Average results are as follows:

OptInOpt 2.85 %, AutoCalib 6.88 %.

10 25 50 100 250 500 1000 all
Number of observations

0

2

4

6

8

10

12

14

16

RM
SE

 (%
)

FIGURE 3.21: Proposed algorithm accuracy w.r.t. different count of observa-
tions used. Results for all scenes from BrnoCompSpeed dataset (mean values

denoted by blue line).

0 5 10
Gaussian noise (pixels)

0

1

2

3

4

RM
SE

 (%
)

OptInOpt (mean)
OptInOpt (median)
AutoCalib (mean)
AutoCalib (median)

0 5 10
Gaussian noise (pixels)

0.0

0.5

1.0

1.5

Ro
ta

tio
n

er
ro

r (
de

gr
ee

s) OptInOpt (mean)
OptInOpt (median)
AutoCalib (mean)
AutoCalib (median)

0 5 10
Gaussian noise (pixels)

0.0

0.5

1.0

1.5

2.0

Tr
an

sla
tio

n
er

ro
r (

%
) OptInOpt (mean)

OptInOpt (median)
AutoCalib (mean)
AutoCalib (median)

FIGURE 3.22: Calibration accuracy by the proposed method OptInOpt and
by AutoCalib on synthetic dataset w.r.t. varying noise levels in 2D positions
of landmarks. Random Gaussian shift with standard deviation σ is added to
all 2D landmarks’ positions. left: Calibration error, center: rotation error,

right: translation error.

38 Chapter 3. Proposed Methodology to Automatic Camera Calibration

The relation of calibration accuracy w.r.t. the count of observations used was also evaluated.
The results can be seen in Figure 3.21. In this experiment, N observations with the highest
weight w(ci) were used for each scene from the BrnoCompSpeed dataset. It is apparent
that the increasing number of observations leads to better calibration accuracy — option all

contains all observations for each scene.

Other experiments were evaluated on the synthetic dataset (Section 3.2.3). The noise influence
on the landmarks’ localization was experimented with. The results of these experiments w.r.t.
varying noise levels can be seen in Figure 3.22. A random shift from Gaussian distribution
with varying standard deviation σ was added to 2D positions of landmarks — RMSE, rotation,
and translation errors are visualized. In all cases, OptInOpt seems to be at least comparable
or outperforms AutoCalib, moreover without the knowledge of focal length. The presented
values are the results of 500 trials over random scenes from the synthetic dataset.

3.6 Evaluation and Combinations of Proposed Methods

As the methods were published gradually it was not possible to make comparisons and
evaluations between all the methods. Every time was made a comparison with a suitable
method and available datasets; thus in previous Sections 3.3, 3.4, and 3.5 evaluations were
often limited by the time when the relevant paper was written — used results are from papers
as the text of these sections is based on the papers.

After publishing all the proposed methods it is now possible to evaluate all methods together
and on both relevant datasets — BrnoCarPark 3.2.2 as well as BrnoCompSpeed 3.2.1. For
comparison also AutoCalib method was evaluated on both datasets and the result can be seen
in Figure 3.23. The result of LandmarksCalib, PlaneCalib, and OptInOpt methods can be seen
in Figures 3.24, 3.25, and 3.26 respectively. It is necessary to emphasize that as all methods
somehow rely on optimization each run can result in slightly different results and thus results
can differ a bit compared to the values presented in papers.

From the graph is apparent that the BrnoCarPark (right side of graphs) is more difficult
for all the methods. There appear some extreme “failure cases” in methods AutoCalib

and PlaneCalib; also some not extreme “failure cases” appear in OptInOpt method. The
LandmarksCalib seems to be the most stable and reaches good results on all the scenes. The
exact values are available in Table 3.4.

S0C S0L S0R S1C S1L S1R S2C S2L S2R S3C S3L S3R S4C S4L S4R S5C S5L S5R S6C S6L S6R S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

RM
SE

 (%
)

5.84

4.33

18.29

1.62

4.12
3.63

8.45

5.29

3.75

14.13

3.44

14.68
14.16

3.74
4.36

8.85

2.21

5.83

3.92

6.19
6.83

13.78

3.26

5.74

3.40 3.25
4.19

4.98

9.87

4.90

6.47

1521.37 AutoCalib

FIGURE 3.23: AutoCalib method results

3.6. Evaluation and Combinations of Proposed Methods 39

S0C S0L S0R S1C S1L S1R S2C S2L S2R S3C S3L S3R S4C S4L S4R S5C S5L S5R S6C S6L S6R S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

RM
SE

 (%
)

6.11

3.72 3.58
3.10 3.30

1.94 2.36
3.43

1.92 2.23
2.84

1.85 2.11
2.71

1.75

4.06
3.27 3.53

2.72

5.41

2.19

4.89 5.29

10.14

7.63

5.85

4.52

7.88 8.07

4.51
3.77 3.41

LandmarksCalib

FIGURE 3.24: LandmarksCalib method results

S0C S0L S0R S1C S1L S1R S2C S2L S2R S3C S3L S3R S4C S4L S4R S5C S5L S5R S6C S6L S6R S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

RM
SE

 (%
)

5.89

2.33 2.77 2.75

1.17 1.14 1.59

2.99

1.22

2.92
2.16

3.21

1.50 1.26

3.97
3.27

4.98
4.19

1.63

6.45

1.59

16.52

8.10

14.76

5.18

11.34

12.77
13.70

6.86

9.69

12.37

2165.53 PlaneCalib

FIGURE 3.25: PlaneCalib method results

S0C S0L S0R S1C S1L S1R S2C S2L S2R S3C S3L S3R S4C S4L S4R S5C S5L S5R S6C S6L S6R S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

RM
SE

 (%
)

5.33

1.89 2.25
2.92

3.45

1.36
2.37

4.24
3.14

2.44 2.67 2.36 2.14

4.08
4.65

3.18 2.77
3.86

2.36
1.87

3.71

4.90 4.64

6.36

8.37

5.44 5.05

6.40

2.86

6.49

22.66 21.85 OptInOpt

FIGURE 3.26: OptInOpt method results

Combination of Methods

For the next experiment, I tried to combine the methods. The idea was that, for example,
PlaneCalib can make some coarse assumptions of calibration parameters and methods which
use optimization (LandmarksCalib, OptInOpt) can then make optimization in limited pa-
rameter space. The last part of combinations is thus every time method using optimization;
optimization then proceeds in smaller bounds of parameters compared to the method as is.

40 Chapter 3. Proposed Methodology to Automatic Camera Calibration

Method Mean Median

AutoCalib 53.9 5.13
LandmarksCalib 4.06 3.47

PlaneCalib 72.99 3.62
OptInOpt 4.93 3.57

Combination 1 4.62 3.85
Combination 2 5.46 4.53
Combination 3 17.67 10.33
Combination 4 34.20 26.97
Combination 5 6.92 4.42
Combination 6 7.91 5.70

TABLE 3.4: Evaluation of all methods (RMSE)

Possible combinations are as follows:

• Combination 1: PlaneCalib → LandmarksCalib

• Combination 2: PlaneCalib → OptInOpt

• Combination 3: LandmarksCalib → OptInOpt

• Combination 4: OptInOt → LandmarksCalib

• Combination 5: PlaneCalib → LandmarksCalib → OptInOpt

• Combination 6: PlaneCalib → OptInOpt → LandmarksCalib

The graphs of combinations’ evaluation can be see in Figures 3.27 (Combination 1), 3.28 (Com-
bination 2), 3.29 (Combination 3), 3.30 (Combination 4), 3.31 (Combination 5), and 3.32 (Com-
bination 6). The exact values are available in Table 3.4. From the result is apparent that
neither combination brings any improvement in reached values. Another finding is a failure
case when two “optimization” methods are combined together. It is probably caused by lower
bounds for the localization of parameters in a second step (method). On the other hand, neither
combination failed significantly when PlaneCalib is the first in combination.

S0C S0L S0R S1C S1L S1R S2C S2L S2R S3C S3L S3R S4C S4L S4R S5C S5L S5R S6C S6L S6R S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

RM
SE

 (%
)

6.38

3.82
2.87 2.99

6.70

2.55 2.36

3.72

1.92 2.09
2.78

2.33 2.17 2.23
1.78

4.04

6.77

4.47

2.73

4.85

2.32

4.94
3.90

13.70

4.08

10.78

4.80

7.16

13.11

4.52

6.16

3.02

PlaneCalib LandmarksCalib

FIGURE 3.27: Combination 1: PlaneCalib → LandmarksCalib

3.6. Evaluation and Combinations of Proposed Methods 41

S0C S0L S0R S1C S1L S1R S2C S2L S2R S3C S3L S3R S4C S4L S4R S5C S5L S5R S6C S6L S6R S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

RM
SE

 (%
)

7.00

2.06 2.30

4.13

8.37

3.34
2.24

3.19

1.32

3.11
2.10

7.72

1.97

4.37

3.12 3.28

10.80

6.22

1.81

5.84

2.28

10.08

6.19

10.54
9.48

8.46

4.30

7.06

13.71

5.51

8.44

4.69

PlaneCalib OptInOpt

FIGURE 3.28: Combination 2: PlaneCalib → OptInOpt

S0C S0L S0R S1C S1L S1R S2C S2L S2R S3C S3L S3R S4C S4L S4R S5C S5L S5R S6C S6L S6R S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

RM
SE

 (%
)

2.43

6.61 6.24

2.46

5.13

3.88

18.36

4.34

6.58

8.69

3.90
4.46

10.33

19.95

8.97

6.51 6.40

10.34

5.60

20.40 22.60 44.68 47.31 29.49 27.44 25.28 35.06 21.91 54.31 31.13 21.30 43.61LandmarksCalib OptInOpt

FIGURE 3.29: Combination 3: LandmarksCalib → OptInOpt

S0C S0L S0R S1C S1L S1R S2C S2L S2R S3C S3L S3R S4C S4L S4R S5C S5L S5R S6C S6L S6R S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

RM
SE

 (%
)

2.93 3.27

2.14

16.51

2.07

13.65

5.79

1.99

4.28

14.16

16.67

4.08

5.52

16.63

29.15 26.70 57.41 53.35 46.00 35.79 30.30 278.2621.65 37.82 58.56 43.66 72.30 63.53 27.23 29.40 45.78 27.70OptInOpt LandmarksCalib

FIGURE 3.30: Combination 4: OptInOt → LandmarksCalib

Computation Time

Another experiment with computation time was done. I was interested in how the count of
observations in the scene affects the computation time. In graphs 3.33 (LandmarksCalib),
3.34 (PlaneCalib), and 3.35 (OptInOpt) are depicted times of computation for each method.
As expected, OptInOpt method is extremely slow, compared to other methods, due to its
dual optimization. Another expectation was the “more linear” process of PlaneCalib method
because of less usage of optimization methods. On the other hand, LandmarksCalib and

42 Chapter 3. Proposed Methodology to Automatic Camera Calibration

S0C S0L S0R S1C S1L S1R S2C S2L S2R S3C S3L S3R S4C S4L S4R S5C S5L S5R S6C S6L S6R S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
RM

SE
 (%

)

6.01

4.75

3.10

4.60

6.59

3.25 3.08

4.37

2.23

3.37
2.30 2.52

1.99

4.03

5.52

2.64

14.42

4.48

2.29

8.54

5.45

4.09

5.92

9.74

5.19
5.76

3.54

11.72

3.60

9.51

3.30

63.66PlaneCalib LandmarksCalib OptInOpt

FIGURE 3.31: Combination 5: PlaneCalib → LandmarksCalib → OptInOpt

S0C S0L S0R S1C S1L S1R S2C S2L S2R S3C S3L S3R S4C S4L S4R S5C S5L S5R S6C S6L S6R S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

RM
SE

 (%
)

15.94

3.81
2.77 2.98

6.72

3.05 2.82
3.58

9.06

2.21

9.75

2.10 1.93
2.56

8.87

4.05

8.25

4.50

16.13

5.74

2.92

5.12

11.66

5.67

14.24

6.91

10.32

3.93

10.01

8.34

24.17 33.07PlaneCalib OptInOpt LandmarksCalib

FIGURE 3.32: Combination 6: PlaneCalib → OptInOpt → LandmarksCalib

OptInOpt methods use optimization and can finish computation much faster or slower — can
get stuck in a local minimum.

0 10000 20000 30000 40000
Count of observations

2

4

6

8

10

M
in

ut
es

LandmarksCalib

FIGURE 3.33: Computation time of LandmarksCalib method

3.6. Evaluation and Combinations of Proposed Methods 43

0 10000 20000 30000 40000
Count of observations

0

5

10

15

20
M

in
ut

es

PlaneCalib

FIGURE 3.34: Computation time of PlaneCalib method

0 10000 20000 30000 40000
Count of observations

500

1000

1500

2000

2500

3000

3500

4000

M
in

ut
es

OptInOpt

FIGURE 3.35: Computation time of OptInOpt method

45

Chapter 4

Participation in Challenges

In this section, I want to mention some information about our participation in challenges over
the years. As I mentioned earlier, I turned the aim of my work more to ITS as my colleagues
participated in AI City Challenge in 2018 [142], and it seemed interesting to me. So I added
to my colleagues in 2019 [7] in participation to Tracks City-Scale Multi-Camera Vehicle

Tracking and City-Scale Multi-Camera Vehicle Re-Identification. The goal is to track and
recognize single vehicles traveling through a city. Cameras’ views can be overlapping but also
can be a few kilometers far from each other. Once, we also participated in Multi-Class Product

Counting & Recognition for Automated Retail Checkout, where the goal is to recognize which
products are placed under the camera view. It is a step to entirely self-service checkout —
there are problems with overlapping single products so as overlapping by human hands.

4.1 AI City Challenge — Vehicle Re-Identification

Here is a copy of our paper [7] as a submission to AI City Challenge. I decided to place this
paper here as I consider this paper more interesting than the second one [8]. In this paper, I
made a big portion of the work and proposed some important parts of new ideas. We try some
new approaches with positional matching, which we still have in mind, and potentially we
will sometimes evolve this approach.

4.1.1 Abstract

In our submission to the NVIDIA AI City Challenge, we address vehicle re-identification
and vehicle multi-camera tracking. Our approach to vehicle re-identification is based on
the extraction of visual features and aggregation of these features in the temporal domain to
obtain a single feature descriptor for the whole observed track. For multi-camera tracking, we
proposed a method for matching vehicles by the position of trajectory points in real-world
space (linear coordinate system). Furthermore, we use CNN for the vehicle re-identification
task to filter out false matches generated by the proposed positional matching method for
better results.

46 Chapter 4. Participation in Challenges

4.1.2 Introduction

In this submission, we address the tasks of vehicle multi-camera tracking and re-identification
of the NVIDIA AI City Challenge 2019 (i.e. Track1 and Track2).

Our approach to visual vehicle re-identification is based on the extraction of feature vectors
using a convolutional neural network and aggregation of extracted feature vectors from
observed vehicles in the temporal domain. We use standard CNNs [74, 143, 75] trained for
the identification task and we employ an LFTD network [5] for feature aggregation.

For the multi-camera tracking part, we propose a method for matching points from vehicle
trajectories in real-world linear coordinate system space. This approach is based on a projection
of 2D image points into the real-world linear space [144] and the matching of vehicles in this
linear space with respect to time and space constraints. Furthermore, this approach can be
also combined with the extraction of feature vectors for all observed and pre-matched tracks.

To put our approach in a larger context, we include a brief overview of the state of the art in
vehicle re-identification. After that, we describe the used methods for both vehicle re-id and
multi-camera tracking in detail.

Vehicle Re-Identification

Formerly, the methods for vehicle re-identification were based on automatic license plate
recognition [145, 146, 147], using hand-crafted visual features (PCA-SIFT, HOG descriptors,
color histograms, etc.) extracted from vehicle images [148, 149, 150] or just information
about the date, time, color, speed and vehicles’ dimensions [149].

Recently, deep features learned by CNNs [151, 152, 153, 154, 155] are being used for this
task. Liu et al. [156] combine the hand-crafted and deep features. Improvements were also
made by exploiting spatio-temporal [156, 153] or visual-spatio-temporal [152] properties.
Some of them benefit from Siamese CNNs for license plate verification [156] or vehicle image
similarities [152]. Moreover, introduction of triplet loss [155, 157] or Coupled Cluster Loss
(CCL) [151] led to accuracy improvements and faster convergence. Recently, Yan et al. [154]
proposed to use Generalized Pairwise Ranking or Multi-Grain based List Ranking for retrieval
of similar vehicles, which performs even better than CCL.

A few person re-identification papers also proposed to use the triplet loss [158, 159] or
quadruplet loss [160] instead of training the network in a Siamese setting. There were also
attempts to learn a metric for the re-identification like KISSME [161], XQDA [162], You
et al. [53] learn Mahalanobis distance on LBP and HOG3D features, and finally Shi et al. [163]
learn Mahalanobis distance in an end-to-end manner.

On the other hand, a group of methods exists that propose to use feature pooling (aggregation)
in a temporal domain for re-identification tasks. Such pooling is usually used in the context of
person re-identification (with the exception of Yang et al. [164], who used it for video face
recognition). The methods are often trained by using a Siamese network [165, 166, 167, 168,
169, 164] with contrastive loss and optionally the identification loss as well. Similarly, in our
paper [5], we propose a method for feature aggregation in the temporal domain of multiple
observations of a vehicle in one track.

4.1. AI City Challenge — Vehicle Re-Identification 47

Vehicle Re-Identification Datasets

Comprehensive datasets of vehicles for fine-grained vehicle recognition are available [170,
171, 135] for more than 5 years now. However, when it comes to vehicle re-identification the
available datasets are limited in some ways. Liu et al. [156] constructed a rather small VeRi-
776 dataset containing 50 000 images of 776 vehicles. Liu et al. [151] collected VehicleID
dataset containing 26 267 vehicles in 220k images taken from a frontal/rear viewpoint above
the road. Recently, Yan et al. [154] published two datasets VD1 and VD2 for vehicle re-
identification and fine-grained classification with over 220k of vehicles in total, with make,
model, and year annotation. However, both datasets are limited to frontal viewpoints only.

Recently, we collected dataset CarsReId74k [5], which contains ≈74k of vehicle tracks from
various viewpoints with precise ground truth identity acquired from a zoomed-in camera by
license plate recognition.

4.1.3 Used Approach

In our submission to the NVIDIA AI City Challenge 2019, we focused on vehicle re-
identification (Track 2) and vehicle multi-camera tracking (Track 1). In the following text, we
describe our approach to both of these tasks.

FIGURE 4.1: Video screenshots from one recording session with a vehicle
with the same identity. Image source: [5].

Training Data for Vehicle Re-Identification

Both tasks contain vehicles observed from various viewpoints. It is necessary to acquire a
similar dataset for pre-training of the identification and also re-identification networks. We
used our dataset CarsReId74k [5] which contains 17 681 unique vehicles, 73 976 observed
tracks, and 292 226 positive pairs. For examples of positive and negative pairs, see Figure 4.2.

The dataset was collected using 8 cameras recording at the same time. Four cameras always
observed the same direction of traffic at one location from different viewpoints (left, center,
right), and one camera was zoomed in, and it was used for license plate detection and
recognition by our recent method [172]. The videos at one location were approximately
synchronized and the recognized license plates were assigned to the detected vehicles from
other cameras, producing the identities for all the vehicles. See Figure 4.1 for examples of
videos from one recording session.

48 Chapter 4. Participation in Challenges

FIGURE 4.2: Examples of queries, positive, and negative samples. The
negatives are sorted by difficulty from left to right (hard to easy) based on
distances obtained from our re-identification feature vectors. It should be
noted that the hardest negative sample has usually subtle differences (e.g.

missing a small spoiler in the first row). Image source: [5].

Vehicle Re-Identification

Following the methodology from our previous paper [5], we first fine-tuned the CNN on
vehicle identification task. We used ResNet-50 [74] and InceptionResNetV2 [173] with 2D
detection/cropped images only, and the input image size was 331 × 331. The fine-tuning was
done with Adam [174] optimizer, learning rate 1e − 4, and cross-entropy loss. We were not
able to use our previously proposed modification using “unpacked” version of vehicle images
[135] which is based on the construction of 3D bounding boxes as the input of the CNN due
to limitations of viewpoints and already cropped images in Track2.

On the identification features we trained LFTD network [5] to aggregate the features in the
temporal domain as there are multiple observations for the vehicle as they pass in front of the
cameras. The LFTD network contains one fully connected layer with 1,024 output features
and tanh non-linearity. Furthermore, the network contains a feature weighting mechanism
which weights different elements of the feature vectors by different weights. The network is
trained as a Siamese network.

It is possible to use a different distance function during LFTD network training. We used
Weighted Euclidean distance which is expressed as

dWE(u, v) =

√

√

√

√

D

∑
i=1

wi(ui − vi)2, (4.1)

where u, v are feature vectors and w = [w1, w2, . . . , wD] are learned weights.

We evaluated different variants of backbone networks together with the influence of using

4.1. AI City Challenge — Vehicle Re-Identification 49

image modifiers [113, 135] and pre-training the networks on different datasets. The complete
results of our experiments are depicted in Table 4.3.

Vehicle Re-Id Design Changes Results of our submissions from the evaluation server
showed unbalanced values compared to our evaluation (see Table 4.3). This led to designed
changes in our methodology proposed above. Inspired by previous works [157, 175], we tried
to replace our feature extractor by a much smaller CNN MobileNet [75] with feature vector
dimensionality reduced to 128 dimensions. The second change was in replacing cross-entropy
loss with triplet loss combined with semi-hard batch sampling [176]. The rest of our design
remained the same. We tried multiple variants of image modifiers and pooling methods. The
results can be found in Section 4.1.4.

Multi-Camera Tracking

Unlike the vehicle re-identification task, the multi-camera tracking task does not have to be
solved by visual comparison of detected vehicles only. The problem can be solved even using
positional matching with knowledge of GPS coordinates of cameras, known distances and
time synchronization between them, and their calibrations. In this case, matching is based on a
projection of the 2D point of vehicle trajectory from the image space into the world coordinate
space (linear system in our case). These projections from multiple cameras can be matched
with each other for every time step in order to obtain matching between tracks across multiple
cameras.

It should be noted that the approach described below assumes that for each camera within the
session, an overlap exists in the view area of the camera with at least one other camera in the
same session.

This condition is satisfied for almost all cameras in test sessions, as can be seen in Figure 4.7.
In other case, vehicles from a camera without any overlap cannot be matched with the rest of
the cameras and the matching procedure had to be modified. However, with knowledge of
time synchronization and distances between the cameras, this modification is straightforward.

FIGURE 4.3: left: Detections’ bottom points used for localization of camera’s
view area. right: Corresponding points transformed to the linear space

(viewpoint selected as the convex hull of these points).

Vehicle Trajectory Estimation Positional matching counts on an estimation of the trajectory
points of each observed vehicle. The selection of a point from the vehicle detection may
influence the precision of point localization in the world space. One solution is to construct the

50 Chapter 4. Participation in Challenges

3D bounding box [113, 135] around the vehicle and select the middle point of the vehicle base
lying on the ground plane. However, this 3D bounding box construction is computationally
expensive as it relies on the silhouette of the vehicle. We use the middle point of 2D detections’
bottom-line provided instead, as this point performs the best from available data.

Transformation from Image to World Coordinate System The transformation process
assumes that the calibration parameters for each camera are known. We used camera calibra-
tion provided with the dataset which was in the form of a homography matrix describing the
transformation from the image plane to GPS coordinates in DD (Decimal degrees) format. The
transformation between coordinate systems is a straightforward operation made only by matrix
multiplication — homography matrix H multiplied by GPS coordinates in homogeneous
format to transform from GPS to the image plane (i.e. inverted homography matrix multiplied
by image point in homogeneous format to transform image plane point to GPS coordinates).
Two cameras in the dataset (c005 and c035) are fisheye cameras and thus compensation for
the distortion of the point is necessary before transformation to GPS coordinate systems.

FIGURE 4.4: Visualization of the positional matching method. Red and
green tracks corresponds to same vehicle observed by multiple cameras.
Blue track represents another track of another vehicle. Positional matching
iteratively determines if points from one trajectory correspond to points from
another trajectory by constructing a circle with radius R in each time-step t
and matches are accumulated to the matching matrix. This matrix contains a

score for each possible combination of camera-track pairs.

Projection of GPS to Linear System Since GPS coordinates are known in the DD format
and not as positions on the flat plane, the distances and positions do not correspond precisely
to the real world because of the curvature of the Earth. Although distances in the DD format
can be computed by Haversine formula, they can potentially suffer by some inaccuracies, and
thus transformation to the linear space was done. We used transformation from EPSG:4326 to
EPSG:26975 (corresponds to North Iowa where the dataset was collected).

4.1. AI City Challenge — Vehicle Re-Identification 51

c006

c007

c008 c009

c006

c007

c008

c009

FIGURE 4.5: Matching matrix for S02. Each block size differs based on a
count of tracks detected in single cameras.

c006_001

c006_095

c007_001 c007_103c007_051

c006_050

FIGURE 4.6: Matrix corresponding to sub-block c006-c007 from Figure 4.5.
Each cell contains the count of matches between the track in each row and

track in each column.

Camera View Area Estimation A part of our solution is automatic detection of the camera
view area (polygon covering part of the real world, where objects can be seen by a specific
camera). For each of the observed vehicles, the two bottom corners of the vehicle’s bounding
box are transformed to the linear space. The convex hull of the points is used as a polygon
covering the camera’s view area. An example of the points used during the detection of a
camera’s viewpoint together with the corresponding linear space is depicted in Figure 4.3.
Examples of localized viewpoints for a part of all cameras in a session can be seen in Figure 4.7.
Our experiments show that it is convenient not to use all detections, but to limit these detections
in some way — detections must be larger than 1000 pixels (in area), and all detections should

52 Chapter 4. Participation in Challenges

be no further than 300 meters from a camera in the linear space.

16

17

18
19

20

21

22

23

24

25

26

FIGURE 4.7: Localized viewpoints for part of all cameras in S04 and S05.

Multi-Camera Tracks Positional Matching Positional matching between vehicle tracks
observed by multiple cameras at one session is based on comparing mutual positions of
individual trajectory points from multiple cameras in the real-world linear coordinate system
in each time step. Trajectory points from each camera in a session are sorted by the time
of their observation (time steps). For each time step and each trajectory point observed by
one camera, we construct a circle in the linear space with radius R, and we are looking for
trajectory points from other cameras in the session which are contained inside the constructed
circle (for better understanding, please see Figure 4.4). These pairwise cameras–track matches

are accumulated in a matching matrix M. This matrix contains all possible matches from each
track in one camera to all tracks in the other cameras. An example of the matching matrix can
be seen in Figure 4.5.

The matching matrix is split in pairwise camera blocks (see Figure 4.6). In each row of these
blocks, we are looking for maximal accumulated values in other camera blocks separately
using Linear Sum Assingment solver. These maximal values correspond to the best matching
tracks between all cameras in the session. Best matches are further processed and joined into
bigger groups if some element of pairs, triplets, quadruplets,... is missing in the other set
which has at least one shared element.

Even visual features can be employed in the proposed method for solving multi-camera
tracking problem. We are able to extract features (by using the same convolutional neural
network with pooling as described in Section 4.1.3) from vehicle tracks given by camera-track
indices of the matching matrix and to construct a pairwise distance matrix with the same shape
as the matching matrix. This distance matrix is then used for the weighting of elements in the
matching matrix.

4.1.4 Experiments

This section describes the experiments done while evaluating both challenge tracks.

4.1. AI City Challenge — Vehicle Re-Identification 53

Variant Sess IDF1 IDP IDR Prec Rec

R=5m 02 0.0640 0.1240 0.0431 0.1560 0.0543
R=5m + feats 02 0.0664 0.1315 0.0444 0.1608 0.0543

R=5m 02,05 0.0480 0.0264 0.2623 0.0510 0.5064
R=10m 02,05 0.0340 0.0181 0.2865 0.0365 0.5792
R=10m + feats 02,05 0.0358 0.0190 0.3015 0.0365 0.5792

TABLE 4.1: Results for different variants of positional matching from AIC
evaluation server. R represents a different radius of circle for positional

matching. Feats represent using visual features extracted from tracks.

Rank Team ID Team Name IDF Score
1 21 UWIPL 0.7059
2 49 DDashcam 0.6865
3 12 Traffic Brain 0.6653
4 53 Desire 0.6644
5 97 ANU AI city tracking and Re-ID team 0.6519
6 59 Zero_One 0.5987
7 36 DGRC 0.4924
8 107 IIAI-VOS 0.4504
9 104 Owlish 0.3369

10 52 CUNY-NPU 0.2850
11 48 BUPT-MCPRL 0.2846
12 115 KITMCT 0.2272
13 108 FirstBird 0.2183
14 7 iter1004 0.2149
15 60 i-TRACK 0.1752
16 87 DukBaeGi 0.1710
17 79 Alpha 0.1634
18 64 GRAPH@FIT 0.0664

19 43 VPUteam 0.0566
20 128 YXWM 0.0544
21 68 BUPT_MCPRL_MTMCT 0.0473
22 45 Insight DCU 0.0326

TABLE 4.2: Final ranking for multi-camera tracking part (Track 1) of
NVIDIA AI City Challenge 2019.

54 Chapter 4. Participation in Challenges

FIGURE 4.8: Example result of our positional matching method with a
projection of trajectory points into a linear coordinate system. Arrows depict
transformed points from image space to real-world space in a specific time-

step (displayed camera frame).

Evaluation of Vehicle Re-Identification

We employed our own version of evaluation on the training data in the same manner as the
official evaluation is performed. We extract 1 000 images from training data which were used
as our query images. This query set was used for the evaluation of networks performance on
the training set.

Comparison of different variants of our trained networks and big differences between the
performance on the training and the testing data can be seen in Table 4.3. Our original network
design (CNN trained for the identification task with the cross-entropy loss and addition CNN
for time-pooling — LFTD) was tested with a different combination of training data for both
these tasks (feature extraction, time pooling). We trained our network the CarsReId74k [5] or
we pre-trained the network on this dataset, and we fine-tune on AIC-ReID training data after
that.

The results on our evaluation set were promising. However, after evaluating on the testing set,
the results were very unsatisfactory. A big performance drop can be seen when training and
testing evaluations are compared. This is probably caused by the size of the AIC-ReID dataset
as the number of vehicles and their images included in the dataset is rather small.

We tried to replicate at least the baseline results provided by the authors of the challenge [175].
We trained MobileNet with a triplet loss function for feature embedding (128 dimensions) with
semi-hard batch sampling. Again, results based on our evaluation procedure were promising,
contrary to the final obtained results. However, the performance on the testing set is better.
The final rank for this part (Track 1) can be found in Table 4.4.

Training setup A feature extractor for the CarsReId74k dataset was trained with LR 0.0001,
Adam optimizer, and batch size 16 for 50 epochs while fine-tuning on the AIC-ReID dataset

4.1. AI City Challenge — Vehicle Re-Identification 55

Train evaluation Test evaluation (server)

Net Loss Pooling Mods Ext. Data Pool. Data mAP H@1 H@5 H@10 H@20 mAP H@1 H@5 H@10 H@20

RN-50 Xent avg - CR - 0.306 0.213 0.377 0.484 0.641 - - - - -
RN-50 Xent LFTD - CR CR 0.331 0.238 0.403 0.522 0.667 - - - - -
RN-50 Xent LFTD - CR CR+AIC 0.786 0.711 0.881 0.933 0.97 - - - - -
IRN-v2 Xent avg - CR - 0.357 0.256 0.447 0.562 0.699 - - - - -
IRN-v2 Xent LFTD - CR CR 0.375 0.273 0.468 0.592 0.73 - - - - -
IRN-v2 Xent LFTD - CR CR+AIC 0.766 0.678 0.875 0.933 0.969 - - - - -
RN-50 Xent avg IM CR - 0.297 0.209 0.361 0.472 0.623 - - - - -
RN-50 Xent LFTD IM CR CR 0.311 0.219 0.381 0.492 0.645 - - - - -
RN-50 Xent LFTD IM CR CR+AIC 0.789 0.715 0.88 0.928 0.965 - - - - -
IRN-v2 Xent avg IM CR - 0.346 0.251 0.423 0.543 0.69 - - - - -
IRN-v2 Xent LFTD IM CR CR 0.362 0.259 0.451 0.577 0.723 0.0568 0.1141 0.1141 0.1179 0.1331
IRN-v2 Xent LFTD IM CR CR+AIC 0.766 0.683 0.87 0.925 0.968 - - - - -
RN-50 Xent avg - CR+AIC - 0.844 0.768 0.942 0.972 0.99 - - - - -
RN-50 Xent LFTD - CR+AIC CR 0.741 0.655 0.85 0.91 0.956 - - - - -
RN-50 Xent LFTD - CR+AIC CR+AIC 0.983 0.976 0.993 0.996 0.998 - - - - -
IRN-v2 Xent avg - CR+AIC - 0.988 0.981 0.997 0.999 1 - - - - -
IRN-v2 Xent LFTD - CR+AIC CR 0.978 0.968 0.99 0.994 0.996 0.2329 0.3536 0.3555 0.3650 0.4068
IRN-v2 Xent LFTD - CR+AIC CR+AIC 0.992 0.989 0.995 0.995 0.996 0.2420 0.3498 0.3508 0.3574 0.3926
RN-50 Xent avg IM CR+AIC - 0.829 0.752 0.928 0.965 0.988 - - - - -
RN-50 Xent LFTD IM CR+AIC CR 0.726 0.638 0.833 0.896 0.948 0.1428 0.2861 0.2871 0.2928 0.3137
RN-50 Xent LFTD IM CR+AIC CR+AIC 0.982 0.972 0.994 0.996 0.997 - - - - -
IRN-v2 Xent avg IM CR+AIC - 0.986 0.978 0.997 0.999 1 - - - - -
IRN-v2 Xent LFTD IM CR+AIC CR 0.976 0.963 0.992 0.997 0.998 0.2311 0.3622 0.3631 0.3641 0.3992
IRN-v2 Xent LFTD IM CR+AIC CR+AIC 0.991 0.986 0.996 0.999 1 0.2449 0.3707 0.3717 0.3755 0.4240
MobNet Tri avg - AIC - 0.973 0.953 0.997 0.999 0.999 0.2883 0.3916 0.3916 0.4002 0.4496
MobNet Tri LFTD - AIC AIC 0.976 0.959 0.995 0.998 1 0.2582 0.3432 0.3451 0.3489 0.3850
MobNet Tri avg IM+Flip AIC - 0.962 0.934 0.995 0.998 0.999 - - - - -
MobNet Tri avg Flip AIC - 0.989 0.978 1 1 1 0.3157 0.4221 0.4221 0.4278 0.4270

TABLE 4.3: Results for different variants of CNN feature extractors trained
using different training setups (dataset used, network design, time pooling,
data augmentation) and big gaps in our evaluation on training data and official
evaluation. Net: RN-50 — ResNet50, IRN — InceptionResNet, MobNet — MobileNet; Loss:

Xent — cross-entropy loss, Tri — Triplet loss; Pooling: avg — average time-pooling, LFTD

— our time-pooling method [5]; Mods (data augmentation used while training): IM — Image

modifications [113, 135], Flip — Horizontal flip of image; Extractor/pooling data (data used

for training): CR — CarsReId74k, AIC data, CR+AIC combination of them.

was done for 20 epochs with the same hyperparameters. We use image modifications (IM)
during training as proposed by Sochor et al. [113, 135] — specifically, we use alterHSV and
imageDrop.

In the case of MobileNet with triplet loss trained for feature embedding, batch size 80 (4
samples for 20 vehicle identities) was used. The network was trained with LR 0.0003 with
Adam optimizer for 150 epochs.

Feature aggregation network (LFTD) was trained for weighted euclidean distance (WE) with
LR 10−4.4 using Adam optimizer, contrastive loss with margin 2.0, 30 rounds of hard negative
mining and final features length 1024.

Evaluation of Multi-Camera Tracking

We tried to compute positional matching for different circle radius R = {5, 10} with and
without visual features. Generated files with results contained ≈ 3 millions of rows and the
obtained results are unsatisfactory. This was probably caused by joining obtained matching
set to bigger sets as this results in the corruption of time constraints. This led to the selection
of a large number of false positive tracks which was confirmed by evaluation of session S02
only with better IDF1 score. Unfortunately, due to time reasons we were not able to process
more experiments and our method still needs more evaluation. All evaluated variants can be
found in Table 4.1. The final rank for this part (Track1) can be found in Table 4.2.

56 Chapter 4. Participation in Challenges

Rank Team ID Team Name mAP Score Rank Team ID Team Name mAP Score
1 59 Zero_One 0.8554 43 80 IFP 0.3266
2 21 UWIPL 0.7917 44 1 SJSU_Anastasiu 0.3242
3 97 ANU AI city tracking and Re-ID team 0.7589 45 64 GRAPH@FIT 0.3157

4 4 expensiveGPUs 0.7560 46 104 Owlish 0.3090
5 12 Traffic Brain 0.7302 47 33 HRI-SH 0.3081
6 53 Desire 0.6793 48 50 AHUer 0.3047
7 131 XINGZHI 0.6091 49 76 GOGOGO 0.3039
8 5 UMD_RC 0.6078 50 79 Alpha 0.2965
9 78 MVM 0.5862 51 63 QMUL 0.2928

10 127 flyZJ 0.5827 52 6 UWACS 0.2912
11 92 APTX 0.5725 53 108 FirstBird 0.2867
12 154 XJTU-SMILES Lab 0.5693 54 46 SkyRoads 0.2766
13 27 INRIA STARS 0.5344 55 87 DukBaeGi 0.2763
14 107 IIAI-VOS 0.5229 56 120 YXX 0.2713
15 132 AlphaVehicle 0.5096 57 117 AI Pioneers 0.2693
16 114 Casia&Sg.panasonic&Bjtu 0.5040 58 145 Luo Jia Team 0.2599
17 23 KFC 0.5028 59 68 BUPT_MCPRL_MTMCT 0.2531
18 24 Avengers5 0.4998 60 43 VPUteam 0.2505
19 40 AI Bandits 0.4631 61 57 UTF-Puma 0.2481
20 48 BUPT-MCPRL 0.4610 62 55 reiddoneright 0.2451
21 7 iter1004 0.4406 63 18 Team Argus 0.2347
22 37 VCA 0.4195 64 62 CQUPT_EINI 0.2345
23 52 CUNY-NPU 0.4096 65 91 SJK 0.2228
24 14 CVHCI-KIT 0.4014 66 85 Bohemian Rhapsody 0.2184
25 113 HCMUS 0.4008 67 49 DDashcam 0.2176
26 70 helloketty 0.3960 68 25 GIST 0.2110
27 54 zhengge 0.3922 69 159 Walrus 0.2063
28 36 DGRC 0.3887 70 146 NCTUAI 0.2018
29 35 VD-blue 0.3814 71 163 TeamFellows 0.1748
30 41 SYSUITS 0.3769 72 139 Alpha_TSZ 0.1627
31 30 CheeseEgg 0.3741 73 125 BDTitan 0.1598
32 17 CSAI 0.3723 74 28 228Office 0.1583
33 51 ZJU 0.3689 75 15 ReId-this 0.1559
34 22 singlerace 0.3675 76 116 Conduent Labs India 0.0852
35 89 MMVG-AlibabaAIC-INF 0.3566 77 44 BUPT-CSD-Vision 0.0782
36 26 SYSU-ISENET 0.3503 78 58 Ann Arbor AI Amateurs 0.0340
37 124 BUPTCP 0.3496 79 45 Insight DCU 0.0322
38 96 SDU&Oeasy 0.3430 80 60 i-TRACK 0.0146
39 72 VehicleJian 0.3378 81 19 UCF_reid 0.0025
40 20 TJU0432 0.3339 82 128 Robint 0.0022
41 29 NCTU-NOL 0.3325 83 13 KAIST MSC 0.0004
42 47 ZJU_ReID 0.3317 84 133 AIIT-Jack 0.0003

TABLE 4.4: Final ranking for the re-identification part (Track 2) of NVIDIA
AI City Challenge 2019.

4.1.5 Conclusions

We participated in two tasks of the NVIDIA AI City Challenge 2019: the vehicle re-
identification task and the multi-camera tracking task. Our solution for vehicle re-identification
is based on a convolutional neural network and time pooling of the feature vectors extracted
from the observed vehicles. For the multi-camera tracking part, we propose a method for
matching vehicle trajectory points in the real-world linear coordinate system space. This
approach can be also combined with the extraction of feature vectors for all observed and
pre-matched tracks.

4.2 AI City Challenge — Automated Retail Checkout

Information here is a copy of the paper [9], and thus results section differs from the information
provided in this thesis. The order of teams changed after evaluation by organizers on test-set-B

(which was not offered during development). We participated in the first year of this Track
— our solution looked quite strange (removal of information), but unexpectedly we reached
very good results (runner-up). Also, some other teams used a similar approach, which slightly
surprised us.

4.2.1 Abstract

In this paper, we present a solution for automatic check-out in a retail store as a part of AI City

Challenge 2022. We propose a novel approach that uses the “removal” of unwanted objects —

4.2. AI City Challenge — Automated Retail Checkout 57

in this case, body parts of operating staff, which are localized and further removed from video
by an image inpainting method. Afterward, a neural network detector can detect products with
a decreased detection false positive rate. A part of our solution is also automatic detection of
ROI (the place where products are shown to the system). We reached 0.4167 F1-Score with
0.3704 precision and 0.4762 recall which placed us at the 7th place of AI City Challenge 2022

in corresponding Track 4. The code is made public and available on GitHub1.

4.2.2 Introduction

Self-service is a trend that is extending to more and more aspects of daily life (e.g. airport
check-ins, automated teller machines at a bank, etc.). Customers are becoming more and more
familiar with self-service systems. The triumphant procession of self-service systems seems to
be extending to supermarkets. New automated self-checkout systems enable shoppers to scan,
bag, and pay for their purchases without or with minimal help from store personnel. Retailers
expect to reduce their costs and gain more flexibility by introducing self-checkout systems.
One cashier can now serve multiple customers simultaneously to use staff time efficiently.
Shorter checkout queues, a faster checkout process, more privacy, and greater control for the
customers are the key arguments being used to convince the retailers to introduce the new
self-checkout systems [177].

This year’s AI City Challenge 2022 [178] contains a new Track named Multi-Class Product

Counting & Recognition for Automated Retail Checkout. This Track aims to automatically
detect and report products present in front of a camera view and help during retail store
checkout. The goal is to report all products — meaning product name (ID) and the time when
the product was present. All products are present in the camera view in some defined area —
this is a condition typically realizable in real-world scenarios. In this case, the defined area is
a white tray which can be seen in Figure 4.9. The tray position is not defined and must be
localized automatically (this process is described in Section 4.2.4).

Products may be occluded or very similar to each other, which may cause problems in detecting
proper products and reporting their presence. One goal of the AI City Challenge 2022 [178]
is also to suppress an advantage of external data. Only provided or synthetic data can be
used for the training of models (information about these data is available in Section 4.2.5).
Our proposed solution comprises multiple sub-tasks that are done in the following order:
person detection, image inpainting, ROI detection, detection of products, tracking of products,
and tracks’ post-processing. The individual steps and their benefits are described below in
Section 4.2.4.

4.2.3 Related Work

In this part, a brief overview of related works from every field used during this challenge is
provided. Relevant methods and models for automated retail store checkout (Section 4.2.3),
multi-class object and body part detection (Sections 4.2.3, 4.2.3), multiple object tracking
(Section 4.2.3) and image inpainting (Section 4.2.3).

1https://github.com/BUT-GRAPH-at-FIT/PersonGONE

https://github.com/BUT-GRAPH-at-FIT/PersonGONE
https://github.com/BUT-GRAPH-at-FIT/PersonGONE

58 Chapter 4. Participation in Challenges

(a) (b)

(c)

(d)

FIGURE 4.9: Our proposed solution for product detection. (a): Original video
frame. (b): Detected mask of a person by CNN. (c): Removed “unwanted”
parts by image inpainting algorithm. (d): Resulting detection of a product by

CNN detector.

4.2. AI City Challenge — Automated Retail Checkout 59

Automated Retail Store Checkout

Self-service checkout systems can be divided into two main categories — centralized or
decentralized systems. Centralized systems are located at store exits, often created by self-
checkout terminals or tunnel scanners. Decentralized systems use handheld scanners or mobile
phones. In both cases, checkout depends on reading RFID [179, 180, 181, 182], EAN or QR
code tags [180, 183] from retail items.

Automated store checkout might be extended from reading tags to recognizing items during
checkout based on visual features of the item and its appearance in general. Aquilina and
Saliba [184] presented a method for retail store automated checkout using SCARA robots.
Their solution is based on a four-axis robotic system with machine vision, which automatically
transfers items placed by a customer on a conveyor to the container, recognizes them, packs
them, and prepares a total bill.

James et al. [185] proposes to use conventional multi-class detectors based on convolutional
neural networks to detect and recognize items from a single RGB image.

Multi-class Object Detection

Convolutional Neural Networks dominate in object detection of their accuracy compared to
older techniques [88, 186, 143, 187, 188, 87].

Single Shot Detectors (SSD) are one of the detection meta-architectures performing multi-class
object detection. Liu et al. [88] published a study on a method called SSD which uses a
single feed-forward CNN to directly predict classes without a second stage classification
operation processing the proposed boxes. The term itself can denote the whole class of such
detectors. Typical representatives of this group (aside from the original SSD detector) are
also Multibox [143], YOLO-series detectors [186, 15, 14, 82, 18] or the Region Proposal
Network (RPN) stage of the Faster R-CNN [13], which are used to predict class-independent
box proposals.

In recent months, anchor-free detection models have taken the lead in this field. Most of them
evolved from the anchor-based methods described in the previous paragraph. Chen et al. [188]
revisits the concept of feature pyramids networks (FPN) for one-stage detectors in the YOLOF

detector. The authors proposed a way to utilize only a one-level feature for detection instead
of the divide-and-conquer optimization problem solution inside FPN.

Feng et al. [187] introduces TOOD: Task-aligned One-stage Object Detection. This method
combines object localization and classification from attention maps into alignment metrics,
which better balances learning task-interactive and task-specific features. Together with the
proposed Task Alignment Learning for anchor position optimization, this step helps them
surpass previous one-stage detectors.

YOLOX is an anchor-free evolution of YOLO series detector models created by Ge et al. [87].
They also adapt advanced detection techniques such as a decoupled head and the leading
label assignment strategy SimOTA. YOLOX outperforms comparable models YOLOv3 [14],
YOLOv4 [82] and YOLOv5 [18] by a large margin.

60 Chapter 4. Participation in Challenges

Multiple Object Online Tracking

Simple Online Real-time Tracker (SORT) from Bewley et al. [16] is a visual multiple object
tracking framework that relies on fundamental data association and state estimation techniques
based on Kalman filter [189]. It estimates objects’ identities on-the-fly using detections from
past and current frames only. It also supports object re-entry in a predefined time window and
partial occlusion. The SORT tracker was extended using deep association metric based on
image features as DeepSORT tracker [17].

ByteTrack tracker by Zhang et al. [190] is a method for multiple objects’ tracking similar to
DeepSORT. ByteTrack does not filter out low score detections (e.g. occluded objects, small
objects) and associates almost every detection instead of the ones with a score over a threshold.
In this case, the tracker is processing detections from the YOLOX detection model; similarity
features for detection to track association are extracted from the FastReID model [191]. They
outperform many available online trackers.

Detection of Body Parts

A helpful step in automated retail store checkout solutions might be detecting human body
parts — especially hands. The known position of hands can be used as additional information
when a human is holding individual items during checkout.

The 3D hand pose and shape estimation from a single RGB image has many real-world
applications, such as robotics, augmented reality or gesture recognition. The goal is to localize
a human hand’s semantic keypoints (i.e. joints) in the 3D space. It is an essential technique
for understanding human behavior and human-computer interaction. Various deep learning
methods have been used. They can be divided into two main categories: joint estimation via
keypoint detection and object detection with instance segmentation.

Hand-joint detection is based on keypoint regression networks primarily. This covers also
SCNet [192], HRNet [193], or baseline methods of 3D hand pose datasets like FreiHand [194]
or InterHand2.6M [195]. These models can be further enhanced by using Unbiased Data
Processing (UDP) [196], during the training phase.

Another way to solve this task is employing object detector with instance segmentation —
mask of the detected object. DetectorRS [97], PointRend [197], YOLACT [79] and HTC [198]
are a few samples of such detectors. The knowledge of object masks might be used for image
pre-processing to boost the performance of the aforementioned multi-class object detectors.

Image Inpainting

Image inpainting refers to the task of completing missing regions of an image. This funda-
mental computer vision task has many practical applications, such as object removal and
manipulation, image retargetting, image compositing, and 3D photo effects.

Previously used patch-based methods (copy-pasting patches from known regions) or diffusion-

based methods (color filling using partial differential equation) are outdated nowadays. Gen-
erative adversarial neural networks (GANs) are taking the lead in recent years, and they are
still making great progress in generated image quality and preciseness. GAN models are
composed of two main components, generator, the part responsible for image synthesis, and
discriminator in the role of referee.

4.2. AI City Challenge — Automated Retail Checkout 61

Two-stage networks predict an intermediate representation of an image in the form of edge,
gradient, segmentation map, or a smoother image for final output enhancement. In order to
augment the adversarial loss and suppress artifacts, many works often train the generator with
additional reconstruction objectives such as perceptual, contextual, or l1 loss.

Yu et al. [199] aimed at expanding the receptive field of the network by incorporating dilated
convolutions to the generator and designing contextual attention to explicitly let the network
borrow patch features at a global scale.

To enhance global prediction capacity, Zhao et al. [200] propose an encoder-decoder network
that leverages style code modulation for global-level structure inpainting.

Suvorov et al. [26] propose to use Fourier convolution to acquire a global receptive field and
segmentation networks to compute perceptual loss to achieve better performance. Furthermore,
feature gating such as gated or partial convolution is proposed to handle invalid features inside
the hole.

4.2.4 Methodology

As mentioned earlier, our proposed method for checkout consists of several steps. Each of the
steps is described in more detail in the following sections.

Person Removal

As the data provided consists of synthetic images of individual products, these synthetic
images were used for training by inserting them into ordinary images (more details are in
Section 4.2.5). Objects are inserted into the “free space”, and therefore, these products were
often isolated in the frame during training, and there were no other objects near the annotated
products. For this reason, it has often been the case during inference that the worker’s hands
or body are detected as products even in cases where no product occurs in the scene (as can be
seen in Figure 4.10). Therefore, we decided to use an image inpainting method to remove the
person, which significantly reduced the false positive detection rate.

The method used to “delete” a person is LaMa [26]. This method requires an image and a
related mask as its input. Thus, it is necessary to detect the person’s mask as the first step.
Instance segmentation methods are used for this purpose — we tried several different methods
for instance segmentation from MMDetection toolbox [201]. In particular, we tested the
models DetectoRS [97], HTC [198], PointRend [197], and YOLACT [79]. All of these methods
suffer from some inaccuracies. We combined the outputs of all the methods — some examples
can be seen in Figure 4.11.

The usage of dilation additionally enhances the detected person masks. It helps to make some
higher external borders, and in some failure cases, “ghost objects” do not appear in the frame.
The dilation value must be set carefully as low dilation keeps the mentioned “ghost objects”.
On the other hand, too high a value removes potentially necessary information. The inpainting
is processed frame-by-frame, so in future work, video inpainting could be used (e.g. [202,
203, 27]). However, these methods have high memory requirements, and for our goal, image
inpainting is sufficient. An example of the convenience of the method used can be seen in
Figure 4.12.

62 Chapter 4. Participation in Challenges

FIGURE 4.10: False positive product detection on person body in original
frame.

ROI Localization

The trained model also had problems that it detect objects outside the required area, and at the
same time, the goal of the track is to report objects above the “white tray”. An example of
unwanted detection outside the area can be seen in Figure 4.13. The localization of ROI (region
of interest) is made automatically; the first step in this process is to extract the background
image. This image for each scene is extracted by following: Gaussian Mixture Model [204]
extracts background the part of each frame of the video sequence (with the usage of previous
frames), and the mean value of all these background images is computed as the resulting
background model. For the computation, inpainted video frames are used, as it makes the
process easier by removing unnecessary objects (persons). Examples of resulting background
images are depicted in Figure 4.14 top row.

When the mean background image is extracted for the scene, the image is transformed to
grayscale, and the Scharr operator (an enhanced variant of the Sobel operator) for edge
detection is applied. The Scharr operator is applied in x and y direction and combined together
(resulting edge detection is in Figure 4.14 — bottom left). A flood fill algorithm is used on
this image with detected edges, which searches the same/similar values as a seed (in our case,
the seed is in the image center, but can be set arbitrarily). In this way, all pixels until edges
are connected and marked as the “tray” in our case. Detected ROI can be seen in Figure 4.14
— bottom right. When ROI is detected, it serves for filtering detections outside (with some
extension). The resulting bounding box is an axis-aligned rectangle of all pixels found by the
flood fill algorithm.

Product Detection and Tracking

As mentioned earlier in the Introduction (Section 4.2.2) the next step after person removal and
ROI detection is the detection of the products themselves. For detection, we use a multi-class
YOLOX [87] detector, which reaches high precision on public datasets evaluation together

4.2. AI City Challenge — Automated Retail Checkout 63

(a) (b)

(c) (d)

(e)

FIGURE 4.11: Construction of person mask for further “removal”. (a):
DetectoRS output. (b): HTC output. (c): PointRend output. (d): YOLACT

output. (e): Combination of all the methods.

with fast inference speed. We trained our own model with 116 output classes on the provided
dataset of generated objects as described in Section 4.2.5. We reached AP 97.47 % on the
validation set during training. Together with object position, detection confidence, and class
confidence are available, which are used further in the tracks post-processing. An example of
object detection is available in Figure 4.15.

Together with the detection of products, tracking of individual products is performed. As a
part of our solution, we tried two tracking algorithms — SORT [16] and ByteTrack [190].
Both algorithms work online with bounding rectangles of the detections and use the Kalman
filter to predict the future positions and merge these detections/predictions to corresponding

64 Chapter 4. Participation in Challenges

FIGURE 4.12: The difference between detection in the original and the
inpainted frame.

FIGURE 4.13: Detection of products without/with the usage of detected ROI.

tracks.

Tracks Post-processing

The last step in our pipeline is a post-processing of the detected tracks. Each track ti contains
detections di

j. Each detection di
j is composed of a bounding box, class ID, class confidence, and

detection confidence as was mentioned previously. As a track can contain certain inaccurate
class values (in one track ti can be detections di

j with different class IDs) it is necessary to set

a single class value for the whole track ti.

For this purpose, classes are merged together by their class id as ci
id. For each single class

ci
id in track ti is computed its count |ci

id| and mean class confidence value ci
idclass_conf

of all
detections belonging to the corresponding class id. To each class id is computed its weighted
confidence value as:

ci
idconf

= ci
idclass_conf

|ci
id|

Ni
,

where Ni = |di
j| is the count of all detections in track ti. The resulting class for the whole

track ti is the class with the highest weighted confidence value ci
idconf

. In this way, not only a
count of single class detections but also class confidences of each detection play a role in the
decision of the final track class — this class is then reported as the final whole track class.

A part of the submission is also the time when the object was localized in front of the camera.
The time should be any second (integer) when the object was above the ROI (detection
described earlier in Section 4.2.4). As a part of our solution, we have frame numbers for each
detection di

j. The class ID for each track is determined based on the procedure described

earlier. Thus, the last necessary step is proper time computation. For each track, ti is a
computed list of time values in seconds as di

jframe
/fps and rounded down (math floor) to the

4.2. AI City Challenge — Automated Retail Checkout 65

FIGURE 4.14: Top row: Mean background images for two sample scenes.
Bottom left: Edges detection by the Scharr operator. Bottom right: Detection
of the “tray” by the usage of flood fill algorithm; bounding rectangle in red.

nearest integer. These time values are accumulated into individual bins corresponding to
proper values in seconds. The resulting (reported) second is the position of the bin with the
highest accumulated value (the most detections in the proper second).

4.2.5 Experiments

This section describes the datasets used in this work, the performed experiments, and the
achieved results. Datasets are divided into AIC Challenge Dataset for Track 4 and our
generated synthetic dataset for the training of the aforementioned YOLOX detector.

AIC Challenge Track 4 Dataset

The dataset for multi-class product counting and recognition for automated retail checkout
is provided as part of the AI City Challenge 2022 (Track 4). This dataset contains 116, 500

synthetic images, generated using a pipeline by Yao et al. [205] with masks for training,
created from 116 different merchandise item models captured by a 3D scanner. Random
background images, which are selected from Microsoft COCO [64], are used to increase
the dataset diversity. Sample images, together with masks, for some classes, are shown in
Figure 4.16.

The automated retail store checkout quality is evaluated on the testing part of the provided
dataset. This part is formed from 25 recorded test videos. These videos capture different
checkout procedures in a simulated environment from the top view. The task is to correctly
identify and count items in the region of interest at different times. A sample of these data can
be found in Figure 4.9 (a).

The test set is split between Test sets A and B with a ratio 20 % to 80 % accordingly. Test set
A was published for testing and result evaluation over the AIC evaluation server. Test set B is
dedicated for further evaluation and the final ranking.

66 Chapter 4. Participation in Challenges

FIGURE 4.15: Multi-class detection with our trained YOLOX detector.

FIGURE 4.16: Sample of the synthetic dataset of products (top row) with
generated object masks (bottom row).

Synthetic Dataset for Detector Training

The assignment of the AI City Challenge 2022 is quite strict in the usage of external data, and
thus we created our own dataset for the training of the detector as mentioned in Section 4.2.4.
The only allowed “extra” data are those from other challenge tracks, and therefore we used
these. We extracted 15, 531 frames from Track 1 and Track 3 datasets and inserted synthetic
images (Figure 4.16) into them. The inserted objects are cropped by the available masks;
synthetic objects are thus freely placed in each frame (see Figure 4.17). In total, 100, 000

and 20, 000 images were generated for the training and validation set, respectively. For each
(random) frame, 1 to 4 objects were randomly selected from the available synthetic dataset
(Section 4.2.5) and randomly placed into the frame.

FIGURE 4.17: Sample images from our generated dataset for detector training
with marked detections.

4.2. AI City Challenge — Automated Retail Checkout 67

Implementation Details

As mentioned in Section 4.2.4, we need to localize an exact person mask by combination of
different instance segmentation methods (DetectoRS [97], HTC [198], PointRend [197], and
YOLACT [79]). All these methods are implemented in MMDetection toolbox [201] and also
weights pretrained on COCO dataset [64] are available2.

Once the instance masks are available, we use LaMa [26] for image inpainting — a model
pretrained on Places2 dataset [206] is also available3. Before the image inpainting application,
the object mask is dilated. We experimented with different values and possible settings and
found the best dilation solution with a cross kernel of size 9 and 3 iterations. The expansion
of ROI for filtering is set to the value of 0.1 (expansion of width and height by 10 %).

We trained the YOLOX [87] detector on our generated dataset (Section 4.2.5); as the best, we
found variant YOLOX-L trained for 75 epochs with input image size 640 × 640. All other
training setting was equal to the original network setting (see website4). For tracking, we
tried two trackers: SORT [16] and ByteTrack [190] with the period for which the track can be
broken increased to 30 frames.

4.2.6 Evaluation

We tried several variants of the YOLOX network for object detection (Medium, Large, X-large)
in two possible settings (network pretrained on COCO dataset and training from scratch). As
a result, we selected variant Large trained from scratch. We also experimented with input
image size — results can be seen in Tab. 4.5. All variants seem to be similar and produce very
close results, and thus the input image size is probably not so important.

TABLE 4.5: Results with different input image size

Variant F1-Score Precision Recall
640 0.4082 0.3571 0.4762
736 0.4000 0.3448 0.4762
800 0.4167 0.3704 0.4762

We also experimented with SORT and ByteTrack trackers. In our experiments, ByteTrack

seems to be more stable and achieved the same result (0.4167 F1-Score) with lower image
resolution (640× 640) compared to the SORT tracker. However, all results are very close, and
it is almost impossible to say which one is better. Both variants are implemented, and users
can switch between them due to conditions. Our best result is 0.4167 F1-Score, so we placed
7th in the public part of Track 4 challenge. The public leaderboard can be seen in Tab. 4.6.

Processing Data from Multiple Streams

An automated retail store checkout system should be installed at every checkout spot in the
store to improve the Quality of Experience for customers. The solution based on computer
vision and machine learning technologies could be computationally heavy and need adequate
hardware for every checkout spot. Another possible approach is to use a distributed form

2https://github.com/open-mmlab/mmdetection
3https://github.com/saic-mdal/lama
4https://github.com/Megvii-BaseDetection/YOLOX

https://github.com/open-mmlab/mmdetection
https://github.com/saic-mdal/lama
https://github.com/Megvii-BaseDetection/YOLOX

68 Chapter 4. Participation in Challenges

TABLE 4.6: Public leaderboard of AI City Challenge 2022 Track 4

Rank Team Name Score

1 BUPT-MCPRL2 1.0000
2 SKKU Automation Lab 0.4783
3 The Nabeelians 0.4545
4 mizzou 0.4400
5 RongRongXue 0.4314
6 Starwar 0.4231
7 GRAPH@FIT 0.4167
8 HCMIU-CVIP 0.4082
9 CyberCore-Track4 0.4000
10 UTE-AI 0.4000

of processing using cloud-native applications. In this case, image data are transferred to the
cloud, where each part can be computed individually using multiple workers. The result of
each sub-tasks is passed to the following processing step. This approach corresponds with
NetApp for distributed processing of the 5G Enhanced Robot Autonomy project. The system
proposed in this work is an excellent example of a task for distributed processing, where a
single computational cluster located in the store or cloud may process many checkout spots.

4.2.7 Conclusion

We participated in AI City Challenge 2022, Track 4 called Multi-Class Product Counting &

Recognition for Automated Retail Checkout. We proposed a novel approach based on image
inpainting, which significantly improves the detection results and reduces the rate of false
positive detections. As a part of our solution, we also automatically detect the region of
interest and automatically segment out parts of humans and further “delete” them from the
scene. We achieve competitive results with most other teams with the YOLOX-L detection
network, which can run in real-time and trackers based only on bounding boxes (without deep
learning). In the final leaderboard, we placed 7th with F1-score 0.4167, which placed us in
the first half of the participants.

4.3 Workshop on Maritime Computer Vision (MaCVi) — WACV

The text here is our part of the resulting paper [10] from the challenge. We participated in the
object detection task. The goal was to detect different objects (boats, swimmers, etc.) in the
sea from a drone view above the sea. Some example of how the data can look is depicted in
Figure 4.18. The workshop is focused on security components — in case of some anomaly
incident, drones can be at the place much faster than boats/ships and can help to localize
people much faster.

We participated at 1st Workshop on Maritime Computer Vision (MaCVi) in task Object

Detection v2. The task was to detect objects in sea drones images. All our experiments were
done on a personal computer with the following setup:

• System: Ubuntu 20.04.5
• CPU: Intel Core i7-11700K

4.3. Workshop on Maritime Computer Vision (MaCVi) — WACV 69

FIGURE 4.18: Sample image from MaCVi Workshop object detection task

• GPU: Nvidia RTX3090
• RAM: 128 GB

We experimented with 4 different methods and achieved results as described in Table 4.7.

Method AP AP50 AP75 AR1 AR10

YOLOv7 0.5169 0.8013 0.5511 0.4214 0.5796
TOOD 0.4707 0.7324 0.4919 0.3961 0.5361
Pix2seq 0.4194 0.7485 0.4056 0.3940 0.5379
DETR 0.3502 0.6763 0.3344 0.3205 0.4387

TABLE 4.7: Results of tested methods

In all cases, we used models pre-trained on COCO dataset and fine-tuned them on SeaD-

ronesSee dataset provided by the challenge authors. If not mentioned, all training parameters
were the same as in training scripts provided in relevant repositories. Only YOLOv7 was able
to run about ≈ 10 FPS; all other methods run about ≈ 1.5 FPS.

YOLOv7

We used YOLOv7 repository [84] with prepared fine-tuning scripts — our variant was YOLOv7-

E6 with image size 1280 × 1280, batch size 4, and training for 300 epochs.

TOOD

Another tested method was TOOD [207]. We used implementation provided in MMDetection

toolbox [208] — our variant was ResNet101 backbone with DCNv2 (R-101-dcnv2). The
model was learned for 24 epochs with batch size 6.

Pix2seq

The next tested method was Pix2seq [12] which also provides prepared scripts for fine-tuning
— we used ResNet50 backbone with image size 1333 × 1333. The model was trained for 40

epochs with batch size 4.

70 Chapter 4. Participation in Challenges

DETR

We also tried DETR [11] model. Similarly to TOOD we used implementation provided in
MMDetection toolbox. The backbone was ResNet50, and the model was trained for 80 epochs
with batch size 6.

Observations

We tried to fine-tune two “classical” CNN models (YOLOv7, TOOD) and also two models
based on transformers (Pix2seq, DETR) on SeaDronesSee dataset. Our main observation is
that “classical” CNN models still reach comparable results, and transformers do not provide
significant result improvement.

71

Chapter 5

Horizon Estimation by Observation of Moving

Objects

The text here is a copy of my first published paper [4]. The idea was to estimate the horizon
and further make camera calibration based on some geometrical information present in a
scene. Horizon contains two vanishing points, and thus localization of all 3 vanishing points
is thus easier to solve. But this approach did not look promising, and I gave it up and turned
my research to “landmarks” and ITS direction.

5.1 Abstract

This paper deals with the automatic estimation of the horizon in videos from fixed surveillance
cameras. The proposed algorithm is fully automatic in the sense that no user input is needed
per-camera, and it works with various scenes (indoor, outdoor, traffic, pedestrian, livestock,
etc.). The algorithm detects moving objects, tracks them in time, assesses some of their
geometric properties related to the object dimensions, and infers observations related to the
position of the horizon. We collected a dataset of 47 public camera streams observing suitable
scenes of various natures. We annotated ground truth horizons based on geometric properties
in the images and by direct human input. We evaluate the proposed algorithm and compare it
to human guesses – it turns out that the algorithm is on par with humans or it outperforms
them in difficult scenes.

5.2 Introduction

Estimation of viewpoint is critical for understanding a given scene. Quick (and possibly not
quite accurate) guess of the viewpoint is an important component of the gist of the scene [209,
210]. Creating such a representation of an image can be beneficial not only for human visual
processing but also for computer vision. One of the most mentioned viewpoint aspects is the
image’s horizon [209]. Although horizon is a fairly intuitive characteristic of the viewpoint,
in some complicated scenes (urban, occluded, . . .), establishing the exact horizon can be
complicated for humans and even more so for machines.

72 Chapter 5. Horizon Estimation by Observation of Moving Objects

Horizon is very often simply explained as “the line where the sky meets the ground”. This
explanation corresponds to the intuitive human feeling about the horizon. The astronomical
horizon is defined by the horizon plane, a plane that is perpendicular to gravity and located
at the same altitude as the camera [209]. In a given image, the plane is only visible as a
horizontal line, it is not dependent on the slant of the ground surface nor on the presence
of occluders. Literature also defines a “horizon of an arbitrary plane” which is the line in
the image where all parallel lines within this plane meet (i.e. the projection of the plane’s
ideal line) [211]. Horizontal lines that are parallel in the real world meet at a vanishing point
that lies on the horizon. Horizon is thus naturally, and at no additional cost, established by
algorithms that recognize vanishing points in Manhattan worlds, e.g. [212].

Horizon is very often used for camera calibration because two horizontal vanishing points lie
on the horizon line. With the knowledge of the horizon line and the third (vertical) vanishing
point, camera calibration can be done [213, 214]. An approach that estimates the vanishing
points by connecting corresponding points of the same object and then constructs the horizon is
often used for camera calibration with human tracking [41, 42, 43, 44, 45], where pedestrian’s
head and feet are connected by lines as the person moves across the scene and their intersection
lies on the horizon line. Similarly, vanishing points and the horizon line can be localized for
example by detecting pedestrians’ toes in the ground plane [215]. Although camera calibration
methods that avoid using horizon exist, they typically have some constraints, for example,
known pedestrian height distribution [216, 217], ‘Manhattan world’ scene [218, 219, 220],
or dominant motion only in one coherent direction [56, 221]. Horizon can also be used for
estimating 3D scene geometry and object detection support [222, 223].

Our goal is to detect the horizon (in the sense of the ideal line of the ground plane perpendicular
to gravity) in a single static (often surveillance) uncalibrated camera stream based on the
motion of objects in the scene without any a priori constraints except that the majority of
motions happen in horizontal planes (which share the same horizon by definition). Such a
method can be later used for automatic camera calibration, scene understanding, and other
computer vision tasks. We assume that the scene contains arbitrary objects (pedestrians, cars,
dogs, cattle, machinery, . . .) with an arbitrary height/size distribution. The scene does not
need to be Manhattanian, and the motion can appear in any direction and in virtually any place
in the scene. Existing methods for horizon estimation [224, 225] use a single static image
without the assumption of a movement in the scene. Although motion can be used for horizon
estimation for example in the form of cloud motion together with wind velocity [226], in
our work we assume surveillance cameras without any constraints, no clouds thus need to be
present in the scene, and no additional information is provided.

Although datasets with horizon position in image exist (HLW [227], ECD [228], YUD [229]),
they only contain static images without any motion in the scene. To evaluate the method
and to allow for future comparison (to our knowledge, there is no existing dataset dealing
with this issue), we collected a dataset based on publicly available IP cameras. We manually
constructed a ground truth by using geometric properties of objects in the scene, and we also
collected human annotations which cast a light on the algorithm’s performance and allow for
its comparison to human (well trained and routinely used) gist of the scene mentioned earlier.
The second contribution of this paper – after proposing the fully automatic horizon estimation
algorithm – is making this dataset public1.

1https://medusa.fit.vutbr.cz/trajectories

https://medusa.fit.vutbr.cz/trajectories

5.3. Horizon Estimation by Observing Motion 73

5.3 Horizon Estimation by Observing Motion

This section describes the use of object trajectories in the scene and it proposes an algorithm
for fully automatic horizon estimation from them.

5.3.1 Trajectories and Horizons

Our horizon estimation is based on trajectories of objects tracked in a video (Figure 5.1).
The objects can be arbitrary and heterogeneous in the scene (unlike many approaches we do
not focus on a given known object class such as pedestrians or vehicles). The video is first
transformed into a set of trajectories T by tracking foreground objects:

T = {t1, . . . , tN} (5.1)

Every trajectory is composed of individual object observations

t = {o1, . . . , oMt} (5.2)

which will be referenced as t(1), t(2), . . . , t(Mt) for brevity. Each observation is described
by a pair (p, d) whose parts are:

t(i)p − position of the observation (5.3)

t(i)d − dimensions of the observation (5.4)

Position t(i)p is naturally the 2D position of the center of the observation in the image. The
dimensions t(i)d are possible dimensions of the observation (naturally width and height,
possibly diagonals, other chord lengths, a measure related to the area, . . .) and so d is
potentially k-dimensional. Since we are dealing with quite low-resolution videos, we are only
using the width, height, and diagonal of the axis-aligned bounding box in our experiments
and k is thus 3 (d is three-dimensional). Here and later in the text, we are assuming ‘normal’
surveillance camera orientation; should the camera be placed so that the horizon turns ‘vertical’,
such a situation would be easily detected and the algorithm can be adjusted in a straightforward
way. We are omitting such adjustments here for simplicity.

Let us consider an arbitrary horizon

h = (hm, hb), (5.5)

a straight line in the slope-intercept form

y = hmx + hb. (5.6)

We define the distance of a given observation with the position t(i)p from the given horizon h

as

∆(t(i), h) =

∣

∣

∣

∣

∣

hmt(i)
p
x − t(i)

p
y + hb

√

h2
m + 1

∣

∣

∣

∣

∣

(5.7)

If the object captured by a trajectory t is moving within the plane corresponding to the horizon
(and no occlusion is involved etc.) and the dimensions d are correctly selected, the measured
dimensions t(i)d must be linearly dependent on the distances ∆(t(i), h), as illustrated in

74 Chapter 5. Horizon Estimation by Observation of Moving Objects

FIGURE 5.1: One possible trajectory (a few selected observations) in the
video frame. Each observation consists of position t(i)p and possible dimen-

sions t(i)d. The distance ∆(t(i), h) from horizon h is also depicted.

Figure 5.1:
λ ∆(t(i), h) = t(i)d. (5.8)

5.3.2 Trajectory Contribution

Some scenes are typically problematic for horizon estimation; mainly scenes with one domi-
nant direction of motion present. In such cases, the motion provides information about one
vanishing point (situated on the horizon line), but not enough information about the whole
horizon. It is thus necessary to compute the contribution value of the given track, where tracks
in rare directions should contribute more since they provide valuable information. An example
of a scene with one dominant motion direction is shown in Figure 5.2.

For computing the contribution value for each trajectory t, histogram D is accumulated, which
stores information about the directions of motions that appear in the scene. Histogram D

contains B bins separating the interval of angles (0, π) uniformly. The trajectory is divided to
C parts uniformly, each part described by its motion direction (see Figure 5.3).

For every trajectory part vector defined by its endpoint indices a, b, i.e. v⃗ = t(b)p − t(a)p,
its angle to an arbitrary fixed reference horizon vector h⃗re f (typically the vector horizontal in
the image) is computed as

ϕ = arccos(⃗hre f · v⃗), (5.9)

with the assumption of normalized vectors. Angle ϕ determines which bin of histogram D is
incremented for each trajectory’s part. Histogram bin values are computed for all C parts of
the trajectory and the final contribution value γ(t) is computed by normalizing the sum of
values of the corresponding histogram bins using the sum of all histogram values. It should be
noted that for the efficiency of the computation, the histogram accumulation and evaluation
of the contribution value is done on the fly with further trajectories coming. The histogram
is first initialized by a non-zero value Γ configuring the initial estimation of the contribution
values.

5.3. Horizon Estimation by Observing Motion 75

FIGURE 5.2: Example of a scene with one dominant direction of objects’
motion. There are two directions of car movement on the road and a bidirec-
tional stream of pedestrians on the sidewalk. Most of the tracks only testify to
one vanishing point; only rare pedestrians crossing the road bring the missing

information.

FIGURE 5.3: An example of computing the trajectory contribution value.
Rectangles are observations, and endpoint observations of the trajectory parts
are blue. Direction vectors v⃗ = t(b)p − t(a)p for each consequent couple of
endpoint indices a, b are shown as green lines. left: Typical movement in the
single dominant direction (car on the road). right: Motion in an uncommon

direction (car leaving parking place).

5.3.3 Automatic Horizon Estimation

Parametric space M×Y of potential horizons is generated for horizon estimation. This
parametric space M×Y samples the set of potential horizons h = (hm, hb). Each horizon
is the line with slope hm, whose hb is computed so that the line intersects the vertical central
line of the image in the y coordinate. M are slopes of angles from interval (−β, β) sampled
with step sm, and Y are vertical positions of the horizons from interval (−ygen fh, ygen fh)

sampled with step sy, where fh is the height of the video frame and ygen is a configuration
constant, in the experiments ygen = 80 %, as illustrated by Figure 5.4.

For every potential horizon h and every trajectory t, a confidence value is computed indicating

76 Chapter 5. Horizon Estimation by Observation of Moving Objects

FIGURE 5.4: Generated potential horizons which are used for horizon esti-
mation. In this case with value ygen = 80 % (y values from interval defined
by 0.8 times the height of frame above and below top frame border) and slope

angle values from interval (−β, β).

5.3. Horizon Estimation by Observing Motion 77

how much the linear dependency assumption (5.8) of observation’s distances from the horizon
and their dimensions is met. In particular, least-squares linear regression is computed between
the presumably linearly dependent values, and its error ϵ(t, h) is computed as the root mean
square error (RMSE):

ϵ(t, h) =
k

∑
j=1

wj

√

√

√

√

1

Mt

Mt

∑
i=1

(

t(i)d
j − λ ∆(t(i), h)

)2
, (5.10)

where w is k-dimensional vector of weights for individual dimensions of observation t(i)d.
Regression error ϵ(t, h) describes how (un)likely the potential horizon h can be the real
horizon of trajectory t. The trajectory’s contribution value γ(t) (Section 5.3.2) is also
accounted for in the resulting confidence c(t, h) of the trajectory t being assigned to potential
horizon h. The resulting confidence is then

c(t, h) =
1

δe + ϵ(t, h)
·

1

δc + γ(t)
, (5.11)

where parameters δe and δc control the weight of regression error and trajectory contribution
value in the resulting confidence and they also ensure computational stability. This confidence
is computed for every trajectory t and every potential horizon h, and it is accumulated to the
parametric space of potential horizons M×Y in a manner similar to the Hough transform
and also following the work of Litman et al. [230] and the work by Zhai et al. [224]. After
accumulating all the tracks’ confidence, the horizon in the parametric space with the highest
confidence is selected as the most likely solution.

5.3.4 Motion with One Dominant Direction

Although the trajectory contribution value, as described in Section 5.3.2, is computed to
emphasize trajectories with unusual directions, in some specific scenes, the motion happens
solely in one dominant direction. In such cases, the trajectories do not provide enough
information about the horizon, only information about a single vanishing point corresponding
to the dominant direction. This is typical mainly for traffic surveillance scenes, where only the
single motion direction parallel to the road direction can be seen. An example of such a scene
is shown in Figure 5.5 (a).

In such problematic scenes, there is a typical pattern in the parametric space M×Y , where
confidences are accumulated mainly for potential horizons all of which are coincident with
the vanishing point given by the motion in the scene. The parametric space for such a scene
is shown in Figure 5.5 (b). It manifests as a pattern resembling a ‘line’ in the parametric
space – all potential horizons with high confidence intersect near one vanishing point. Simply
selecting one point with the highest confidence would be random (provided that the point is
on the line corresponding to the vanishing point). This situation is recognized by thresholding
the parametric space by Otsu’s algorithm [231] (Figure 5.5 (c)). A least-squares error line is
fitted to the non-zero points in the thresholded image (Figure 5.5 (d)) and if the mean non-zero
points’ distance to the fitted line is below a threshold, then the one dominant motion situation
is recognized. As a fallback solution, the horizon is declared to be the one horizon with
zero slope and the highest confidence (Figure 5.5 (e)). A non-problematic scene with multi-
direction movement is shown in Figure 5.6 for contrast; the ‘line’ pattern in the parametric

78 Chapter 5. Horizon Estimation by Observation of Moving Objects

(a) (b) (c) (d) (e)

FIGURE 5.5: Scene with a single dominant motion direction. (a) The scene.
The final horizon given by the fallback solution is marked by a red line; (b)
Parametric space M×Y of the scene with apparent vanishing point pattern;
(c) Parametric space M×Y after OTSU threshold computation; (d) Line
fitted to the non-zero values from (c) for points’ mean distance computation to
‘line’ pattern detection; (e) Parametric space M×Y with fallback solution

(zero slope) marked by a red circle.

(a) (b) (c) (d) (e)

FIGURE 5.6: Scene with multi-direction movement. (e) Parametric space
M×Y with solution marked by red circle (no fallback)

space is not present, and the fallback solution is not necessary.

5.4 Dataset — Geometric and Human Annotations

This section describes the dataset collected for testing the horizon estimation and its annota-
tions (geometric and human).

5.4. Dataset — Geometric and Human Annotations 79

5.4.1 Data Collection

Most of the recordings were taken from publicly available IP cameras, some recordings were
captured by a camcorder. One scene was used from the PETS dataset, but it is not a very
suitable one because of its short duration. One overcrowded scene was used from [232] to
cover as many complex scenes as possible.

The recordings differ in many aspects – places, camera positions, daytime, scene type, duration,
resolution, . . . The collection includes scenes from traffic, indoors, outdoors, pedestrians, etc.
Some recordings were taken during the night so different light conditions are also available.
The duration of the recordings is in the range from 5 minutes to 30 hours, mean length is about
2.9 hours (details in Figure 5.7). The resolution is largely varying with the given IP camera’s
quality in the range from 320 × 240 to 1 920 × 1 080 pixels. In total, 47 different usable
scenes were obtained. Some scenes were re-captured under different conditions (lighting,
crowd density, . . .), yielding 66 recordings in total.

0.0625 0.125 0.25 0.5 1 2 4 8 16 32
hours

0

2

4

6

8

10

12

14

16

18

co
u
n
t

FIGURE 5.7: Histogram of video durations in the dataset.

5.4.2 Horizon Annotations

Obtaining horizon ground truth turned out to be a challenging problem mostly due to the very
frequent occlusion of the natural horizon in the scenes (buildings, horizon out of frame, . . .).
In order to obtain a geometrical estimation of the horizon, we extracted one representative
frame from the video recording and manually annotated groups of lines that are parallel in
the original 3D scene (edges of a house’s windows, markings on the streets, patterns in the
pavings, etc.). Each of these groups of lines provides one estimated vanishing point; all
vanishing points should be collinear – coincident with the line of the horizon. The horizon
is obtained by using the least-squares linear regression on the set of the estimated vanishing
points obtained as the minimal error intersections of the lines in the individual groups. Such
obtained horizon is referenced as the ‘geometric’ annotation later in this text. This geometric
horizon line is established for every scene of the dataset; an example of this annotation process
is depicted in Figure 5.8 right.

Aside from the geometric horizon estimation, we collected horizon annotations by humans.
We created a web annotation tool (Figure 5.8 left) and knowledgeable people were asked to
estimate the horizon in the scene frame as precisely as possible. As described by Herdtweck
and Wallraven [209], people are able to localize the horizon in a given image with small errors

80 Chapter 5. Horizon Estimation by Observation of Moving Objects

FIGURE 5.8: Scene horizon annotation principles. left: Web annotation tool
for crowdsourced data collection. right: ‘Geometric’ ground truth annotation

by using scene parallel lines.

after a short description of what the horizon really is. To prevent people from simply assuming
a horizon line is always horizontal in the image (though this is common in many camera
shots), the images given to the users for annotation were rotated by ±20◦ and the maximal
rectangle was slightly cropped as in Figure 5.8 left.

Participants estimated the horizon by moving a visual line with markers on its sides as precisely
as possible – the users could try different positions of the controlled line and look for the best
match. Every participant marked 20 least annotated scenes. The annotations were filtered to
rid of annotations clearly skipped or carelessly performed. Finally, 16 – 21 annotations for
each of the 47 scenes are available (mean number 18.42 annotations per scene by different
human subjects). Some examples of annotated scenes are depicted in Figure 5.9. It is apparent
that in some scenes, it is very difficult for a human to mark the horizon (Figure 5.9 right) –
mostly in cases when the horizon is ‘somewhere above’ the frame or totally occluded. In
some scenes (Figure 5.9 left), the correlation between the horizons indicated by humans is
very high.

5.4.3 Trajectories Data

Object tracking (together with the necessary video decompression) is computationally the
most difficult part of the whole process of horizon estimation, and so these data are stored for
faster processing and also for possible later usage of these data by other users as part of our
dataset. We used our own implementation of the object tracking method proposed by Yang et

al. [233]. For every scene in the dataset, the following information is stored:

• Scene name

• ‘Geometric’ annotation

• Humans’ annotations

5.5. Experimental Results 81

FIGURE 5.9: Examples of humans’ annotations. Blue lines are individual
annotations, cyan is the mean horizon location. left: Convenient scenes.

right: Scenes with high variance in the annotations.

• Contours for all observations of individual trajectories

82 Chapter 5. Horizon Estimation by Observation of Moving Objects

TABLE 5.1: Algorithm parameters

Name Usage Value
B Section 5.3.2 45 (each bin covers 4◦)
C Section 5.3.2 10
Γ Section 5.3.2 10.0

h⃗re f Section 5.3.2 [1, 0] – zero slope
β Section 5.3.3 20◦

sm Section 5.3.3 0.5◦

ygen Section 5.3.3 0.8
sy Section 5.3.3 1.0 px
δe Section 5.3.3 5e−2
δc Section 5.3.3 5e−4

5.5 Experimental Results

This section evaluates the algorithm by comparing it to the humans’ and ‘geometric’ annota-
tions on all 47 scenes (66 recordings) from our dataset.

5.5.1 Experimental Setup

All experiments used parameters defined in Table 5.1. Preliminary experiments showed that
the computation is not very sensitive to settings of parameters δe and δc. As was mentioned
in Section 5.3.1, axis-aligned bounding boxes of the observations are used for computation
of observations’ dimensions t(i)d. Experiments with contour usage instead of axis-aligned
bounding box were done but contours’ dimensions incline to be more noisy.

After the preliminary experiments, the weight vector w (Section 5.3.3) was set to the value
w = (0.7; 0.3; 0.6), where the observation dimensions t(i)d are sequentially: bounding box
height, width, and diagonal length. The height provides the most valuable contribution to the
resulting error computation (5.10) and is well usable for humans (objects that do not change
dimensions rapidly during motion). Width and diagonal lengths help with computation for
objects, which change their dimensions by rotation in the scene (typically vehicles).

5.5.2 Evaluation and Results

The experiments are done by comparing the proposed algorithm outputs with the humans’ and
the ‘geometric’ annotations in their values of ω (angle of horizon’s slope in degrees) and ψ

(vertical position of the horizon, relative to image height, i.e. 0 at image top, 1.0 at image
bottom.

The left graph in Figure 5.10 displays the absolute differences between the horizons’ positions
ψ, comparing the algorithmic outputs to the humans’ annotations (mean horizon) and to
the ‘geometric’ references: when compared to the humans’ annotations, in 80 % cases, the
relative vertical position difference is under 0.112 (cca 11 % of the image height), and 95 % of
cases fit under 0.144 relative vertical position difference. When compared to the ‘geometric’
annotations, the values of ψ are bellow 0.055 in 80 % of cases and bellow 0.083 in 95 %

cases. The right plot in Figure 5.10 shows the absolute differences between the horizon angles,
compared both to the humans’ annotations and to the ‘geometric’ reference. When compared

5.5. Experimental Results 83

0.0 0.1 0.2 0.3 0.4 0.5
ψ

0.0

0.2

0.4

0.6

0.8

1.0

algorithm - humans’

‘geometric’ - humans’

algorithm - ‘geometric’

0 2 4 6 8 10
ω

0.0

0.2

0.4

0.6

0.8

1.0

algorithm - humans’

‘geometric’ - humans’

algorithm - ‘geometric’

FIGURE 5.10: Cumulative histograms of differences between different meth-
ods of obtaining the horizons (human crowdsourced annotation, ‘geometric’
horizons, algorithmic method). left: differences in vertical position ψ (rela-
tive to frame height), right: differences in the horizon’s angle ω in degrees.

0 1 2 3 4 5
σ

0.0

0.2

0.4

0.6

0.8

1.0

ψ - distance

ω - angle

ψ –ω space

0 1 2 3 4 5
σ

0.0

0.2

0.4

0.6

0.8

1.0

ψ - distance

ω - angle

ψ –ω space

FIGURE 5.11: Cumulative histograms of output distances to the human input
means in terms of σ. left: algorithmic horizons, right: ‘geometric’ horizons.

to the human annotations, in 80 % cases the angular error (in degrees) was below 2.33◦ and
in 95 % cases below 5.7◦. When compared to the ‘geometric’ annotations, in 80 % cases the
value was below 2.08◦, and in 95 % cases it fit under 3.3◦.

The graphs in Figure 5.10 indicate that the algorithm’s outputs compared to ‘geometric’
ground truth are on par or outperform the human ‘guesses’. We, therefore, conclude that the
algorithmic approach based on observing moving objects can provide the ‘gist’ of the scene
[209, 210] used by humans for understanding an arbitrary visual scene.

For another comparison with the humans’ annotations, the mean of annotation horizons is
taken as the reference value and the errors are expressed in terms of standard deviation σ –
see Figure 5.11 for the results. The left graph shows the difference of the algorithmically
obtained horizons from the mean of human annotations; the right graph shows the distance
of the ‘geometric’ annotations from the mean of the human annotations. It is apparent that
humans can indicate the horizon quite accurately because the Mahalanobis distance in 2D
ψ – ω space (as also depicted in Figure 5.12) is below 1σ in 51 % of cases and in 83 % cases
bellow 2σ.

Some examples of the proposed algorithm outputs can be seen in Figure 5.12 together with
the humans’ and ‘geometric’ references.

84 Chapter 5. Horizon Estimation by Observation of Moving Objects

a)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ψ

−40

−20

0

20

40

ω

0.10 0.15 0.20 0.25 0.30 0.35 0.40
ψ

0

2

4

6

8

10

12

14

−8 −6 −4 −2 0 2 4

ω

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

b)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ψ

−40

−20

0

20

40

ω

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ψ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

−8 −6 −4 −2 0 2 4 6 8

ω

0.00

0.05

0.10

0.15

0.20

0.25

c)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ψ

−40

−20

0

20

40

ω

0.38 0.40 0.42 0.44 0.46 0.48 0.50
ψ

0

5

10

15

20

25

30

35

40

45

−4 −3 −2 −1 0 1 2 3 4 5

ω

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

d)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ψ

−40

−20

0

20

40

ω

0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
ψ

0

5

10

15

20

25

30

−6 −5 −4 −3 −2 −1 0 1 2 3

ω

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

e)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ψ

−40

−20

0

20

40

ω

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
ψ

0

5

10

15

20

25

−10 −8 −6 −4 −2 0 2 4

ω

0.00

0.05

0.10

0.15

0.20

0.25

0.30

f)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ψ

−40

−20

0

20

40

ω

−1.5 −1.0 −0.5 0.0 0.5 1.0
ψ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

−60 −40 −20 0 20 40 60

ω

0.000

0.005

0.010

0.015

0.020

0.025

0.030

FIGURE 5.12: Selected scene samples. camera images include alternative
horizons; red: ‘geometric’ horizon, green: horizon computed from the video,
cyan: mean of human inputs. graphs: blue dots are individual human an-
notations, green dot is computed by the algorithm, red dot is the ‘geometric’
horizon, shades of red are parts of normal distribution of the human inputs
(1σ, 2σ, 3σ) left: ψ – ω plot, center: distribution along ψ axis, right: distribu-

tion along ω axis.

5.6. Conclusions 85

The main source of inaccuracies is the noise in the tracked data – occlusions of the tracked
objects, pixel segmentation imprecisions, etc. Despite that, the method works with comparable
accuracy as the human annotators; in difficult scenes, our method outperforms humans (with
the ‘geometric’ horizon as the reference). One source of inaccuracy is the radial distortion
of many of the cameras. In such cases, the horizons (lines) produced by our method behave
similarly to the human annotations and to the geometric construction. Thus established
approximate horizon can still serve the purpose of a basic understanding of the scene. The
final observation is that with longer videos, the results improve (as expected) and the noise
cancels out. Our method is, therefore, suitable for fixed surveillance cameras, because with
more coming data, it has the chance to improve (contrary to methods only processing one
frame of the video).

State-of-the-art method for horizon detection by only processing one image by Zhai et

al. [224] fails when short line segments or curved structures are present in a scene (relies on
line segments). Our proposed method does not rely on visual information thus it can also
handle this type of scene. By contrast, compared to methods that only process one image,
the proposed method can finish with different results for the same scene (depending on the
motions happening in the scene at the given time). Figure 5.13 shows results for different
recordings of the same scene.

FIGURE 5.13: Resulting detected horizons for different recordings of the
same scene (different lighting conditions, daytime, present objects, . . .); red:

‘geometric’ horizon, green: horizon computed from the video, cyan: mean of
human inputs

5.6 Conclusions

This paper introduced an algorithm for estimating the horizon in surveillance videos based
only on motion in the scene. Contrary to existing approaches, our algorithm does not assume
the presence of particular objects (such as vehicles or humans) in the scene, but it works with
arbitrary scenes.

86 Chapter 5. Horizon Estimation by Observation of Moving Objects

We collected a set of videos from real-life web cameras, surveillance cameras, and other
scenes, and make it public along with this paper. The videos in this dataset are very diverse
(in terms of scale, nature of the scene, type of objects appearing, horizon position, lighting,
etc.). We provide two kinds of annotations of this dataset: geometrically extracted horizons,
and direct human annotations. The dataset also contains the tracks of the objects moving in
the scene.

Our algorithm manages to get the ‘gist’ of the scene, which could help other tasks of computer
vision (as it has been shown that it helps humans in their understanding). The experiments
show that the accuracy achieved by our solution is comparable to the performance of human
annotators; some scenes even confused the human annotators so much that our algorithm
outperformed humans. Our purpose was to show that this task is possible to solve and to
establish a baseline for further development.

87

Chapter 6

Proposed Future Work

The results presented in Section 3.3.2 are a considerable improvement over the previous
state-of-the-art method [32], but they are still not totally satisfying: both the accuracy of the
ground truth (around 1 % error) and the results of the calibration themselves (around 4 %

error evaluated by the mentioned ground truth). We have carried out preliminary experiments
which should lead to considerable improvement of the accuracy. The calibration methodology
presented in the article remains the same; the improvements are centered in providing better
inputs to the algorithms: providing both better ground truth measurements and even more
importantly, better landmarks on the vehicle.

FIGURE 6.1: Experiments with more precise ground truth calibration mea-
surements. left: Two people place a rope with regular marks (five 1 m sections
in this case) into multiple locations in front of the camera. right: In a short
and uncomplicated process, a high number of precise measurements can be
obtained — for each rope placement, one frame of the video gives several very
accurate distance measurements in the ground plane by manual or automatic

recognition of the distance marks.

Firstly, Figure 6.1 illustrates the new approach to ground truth measurements. The motivation
for the new design is twofold. The measurements done with a precisely constructed straight
rope are more precise because they do not rely on distances between ambiguous natural
elements in the scene. Besides, this approach allows us to obtain a multitude of measurements
with small effort and in a short time. Each rope placement provides several (five in the shown
case) measurements along one straight line, and the rope can be easily placed into multiple
locations and orientations. The experiment captured in Figure 6.1 resulted in the ground-truth
calibration of around 0.45 % (cross-validated on the rope measurements).

88 Chapter 6. Proposed Future Work

FIGURE 6.2: SfM reconstruction of a particular vehicle model, later used
for accurate landmark localization. left: one frame of the source video, with
the keypoints marked by green, right: reconstructed point cloud; points are

candidate landmarks for the calibration.

FIGURE 6.3: Observations of a vehicle of known type, whose landmarks can
be obtained accurately and their mutual distances are reconstructed precisely

(Figure 6.2).

Secondly, the keypoints/landmarks on the vehicles can be extracted specifically for the given
type of the observed vehicle, not by the generic (and fairly imprecise) extractor used now [118].
The true 3D distances δ̂(ci, a, b) are already make & model specific (Section 3.3.1), and there-
fore assuming fine-grained recognition of the vehicle ([113, 114]) does not constitute a new
requirement. We made a detailed reconstruction of one vehicle (Toyota Auris SW 2017) from
a walk-around video by using an existing Structure-from-Motion solution OpenMVG [234],
see Figure 6.2. This vehicle moved randomly in the scene and 25 observations varying in the
vehicle’s location and orientation were selected, see Figure 6.3. The landmarks/keypoints
were manually extracted and their real-world 3D distances δ̂(ci, a, b) were obtained from the
point cloud reconstructed by the SfM. The calibration obtained by our algorithm from this
input achieved an error of 0.79 % (evaluated by the new ground truth, Figure 6.1). We are
working on making this process fully automatic, but this preliminary experiment shows that
the algorithm presented in this article can promise very usable accuracy when the input data is
sufficiently precise. The purpose of this section is to show that such precise input data indeed
could be obtained.

89

Chapter 7

Conclusion

This thesis presents my work during my Ph.D. study. As the main core, I consider three
proposed methods for automatic camera calibration based on detecting landmarks on rigid
objects (in my case, vehicles). These methods are described in Chapter 3, which is reduced
compared to the original papers, as there are many common things to all methods. The goal is
better readability and a more straightforward understanding of the methods.

Individual methods were compared to different datasets in the respective papers. Later after
their publication, our BrnoCarPark dataset was published, that since then, became a good
benchmark dataset for similar methods. The dataset is one of the main contributions of my
Ph.D. study as it is publicly available and it serves other researchers with their work. I also
provide the implementation of all the methods publicly available, and anyone can use the code
as they want.

As the dataset is public, I was able to evaluate all my methods on the new BrnoCarPark dataset
together with BrnoCarSpeed (published by my colleagues). It seems that the LandmarksCalib

method is the most stable and it can handle different types of scenes. I also evaluated different
possible combinations of the methods, where the main idea is using a fast method for a coarse
estimation and further more precise computation by a slower method; this idea did not seem
to bring additional gains.

At the beginning of my study, I tried to follow up on my master’s thesis and made a method
for horizon estimation. Still, the direction of landmarks calibration seemed to me much more
interesting. During the development of the calibration methods, I started to co-work with
my colleagues in the ITS area a co-authored some of the works. One of the results of this
cooperation was participation in workshops — mainly the AI City Challenge.

Work on various projects was also an integral part of my Ph.D. study. Although the work
could not be published in the form of research papers (often commercial/restricted usage by
companies), it gave me a lot of knowledge and experience and the work led to production use
of my research and development.

91

My Publications

[1] Vojtěch Bartl and Adam Herout. “OptInOpt: Dual Optimization for Automatic Camera
Calibration by Multi-Target Observations”. In: International Conference on Advanced

Video and Signal Based Surveillance (AVSS). 2019.

[2] Vojtěch Bartl, Roman Juránek, Jakub Špaňhel, and Adam Herout. “PlaneCalib: Auto-
matic Camera Calibration by Multiple Observations of Rigid Objects on Plane”. In:
Digital Image Computing: Techniques and Applications (DICTA). 2020.

[3] Vojtech Bartl, Jakub Špaňhel, Petr Dobeš, Roman Juránek, and Adam Herout. “Auto-
matic Camera Calibration by Landmarks on Rigid Objects”. In: Machine Vision and

Applications (MVAP). 2021.

[4] Vojtěch Bartl and Adam Herout. “Fully Automatic Horizon Estimation for Surveil-
lance Cameras”. In: Digital Image Computing: Techniques and Applications (DICTA).
2017.

[5] Jakub Špaňhel, Jakub Sochor, Roman Juranek, Petr Dobeš, Vojtěch Bartl, and Adam
Herout. “Learning Feature Aggregation in Temporal Domain for Re-Identification”.
In: Computer Vision and Image Understanding (CVIU). 2020.

[6] Petr Dobeš, Jakub Špaňhel, Vojtěch Bartl, Roman Juránek, and Adam Herout. “Density-
Based Vehicle Counting with Unsupervised Scale Selection”. In: Digital Image Com-

puting: Techniques and Applications (DICTA). 2020.

[7] Jakub Špaňhel, Vojtěch Bartl, Roman Juranek, and Adam Herout. “Vehicle Re-
Identifiation and Multi-Camera Tracking in Challenging City-Scale Environment”. In:
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2019.

[8] Ján Folenta, Jakub Špaňhel, Vojtěch Bartl, and Adam Herout. “Determining Vehicle
Turn Counts at Multiple Intersections by Separated Vehicle Classes Using CNNs”. In:
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2020.

[9] Vojtěch Bartl, Jakub Špaňhel, and Adam Herout. “PersonGONE: Image Inpainting
for Automated Checkout Solution”. In: Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW). 2022.

[10] Benjamin Kiefer, Matej Kristan, Janez Perš, Lojze Žust, Fabio Poiesi, Fabio Au-
gusto de Alcantara Andrade, Alexandre Bernardino, Matthew Dawkins, Jenni Raito-
harju, Yitong Quan, Adem Atmaca, Timon Höfer, Qiming Zhang, Yufei Xu, Jing
Zhang, Dacheng Tao, Lars Sommer, Raphael Spraul, Hangyue Zhao, Hongpu Zhang,
Yanyun Zhao, Jan Lukas Augustin, Eui-ik Jeon, Impyeong Lee, Luca Zedda, An-
drea Loddo, Cecilia Di Ruberto, Sagar Verma, Siddharth Gupta, Shishir Muralidhara,

92 My Publications

Niharika Hegde, Daitao Xing, Nikolaos Evangeliou, Anthony Tzes, Vojtěch Bartl,
Jakub Špaňhel, Adam Herout, Neelanjan Bhowmik, Toby P. Breckon, Shivanand
Kundargi, Tejas Anvekar, Chaitra Desai, Ramesh Ashok Tabib, Uma Mudengudi,
Arpita Vats, Yang Song, Delong Liu, Yonglin Li, Shuman Li, Chenhao Tan, Long Lan,
Vladimir Somers, Christophe De Vleeschouwer, Alexandre Alahi, Hsiang-Wei Huang,
Cheng-Yen Yang, Jenq-Neng Hwang, Pyong-Kun Kim, Kwangju Kim, Kyoungoh Lee,
Shuai Jiang, Haiwen Li, Zheng Ziqiang, Tuan-Anh Vu, Hai Nguyen-Truong, Sai-Kit
Yeung, Zhuang Jia, Sophia Yang, Chih-Chung Hsu, Xiu-Yu Hou, Yu-An Jhang, Simon
Yang, and Mau-Tsuen Yang. “1st Workshop on Maritime Computer Vision (MaCVi)
2023: Challenge Results”. In: Winter Conference on Applications of Computer Vision

(WACV). 2023.

93

Bibliography

[11] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko. End-to-End Object Detection with Transformers.
2020.

[12] Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and Geoffrey Hinton. Pix2seq: A

Language Modeling Framework for Object Detection. 2021.

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks”. In: Advances in Neural

Information Processing Systems (NIPS). 2015.

[14] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In: arXiv

preprint arXiv:1804.02767 (2018).

[15] Joseph Redmon and Ali Farhadi. “YOLO9000: better, faster, stronger”. In: Conference

on Computer Vision and Pattern Recognition (CVPR). 2017.

[16] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. “Simple
Online and Realtime Tracking”. In: International Conference on Image Processing

(ICIP). 2016.

[17] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. “Simple Online and Realtime
Tracking with a Deep Association Metric”. In: International Conference on Image

Processing (ICIP). 2017.

[18] Glenn Jocher. YOLOv5. online. 2020. URL: https://github.com/ultralytics/
yolov5.

[19] Mengde Xu, Zheng Zhang, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei,
Xiang Bai, and Zicheng Liu. “End-to-End Semi-Supervised Object Detection with
Soft Teacher”. In: International Conference on Computer Vision (ICCV) (2021).

[20] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and
Ping Luo. “SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers”. In: Neural Information Processing Systems (NeurIPS). 2021.

[21] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. “Pyra-
mid Scene Parsing Network”. In: Conference on Computer Vision and Pattern Recog-

nition (CVPR). 2017.

[22] Jiankang Deng, Jia Guo, Yuxiang Zhou, Jinke Yu, Irene Kotsia, and Stefanos Zafeiriou.
RetinaFace: Single-stage Dense Face Localisation in the Wild. 2019.

[23] Axel Sauer, Elie Aljalbout, and Sami Haddadin. “Tracking Holistic Object Represen-
tations”. In: British Machine Vision Conference (BMVC). 2019.

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5

94 Bibliography

[24] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr. “Fast
Online Object Tracking and Segmentation: A Unifying Approach”. In: Conference on

Computer Vision and Pattern Recognition (CVPR). 2019.

[25] Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xi-
aogang Wang, Jifeng Dai, and Hongsheng Li. “FuseFormer: Fusing Fine-Grained
Information in Transformers for Video Inpainting”. In: International Conference on

Computer Vision (ICCV). 2021.

[26] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii
Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. “Resolution-robust Large Mask Inpainting with Fourier Convolutions”. In:
arXiv preprint arXiv:2109.07161 (2021).

[27] Zhen Li, Cheng-Ze Lu, Jianhua Qin, Chun-Le Guo, and Ming-Ming Cheng. “Towards
An End-to-End Framework for Flow-Guided Video Inpainting”. In: Conference on

Computer Vision and Pattern Recognition (CVPR). 2022.

[28] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu
Timofte. “SwinIR: Image Restoration Using Swin Transformer”. In: arXiv preprint

arXiv:2108.10257 (2021).

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. 2023.

[30] Fuwen Tan, Jiangbo Yuan, and Vicente Ordonez. “Instance-level Image Retrieval
using Reranking Transformers”. In: International Conference on Computer Vision

(ICCV). 2021.

[31] Jianyuan Guo, Kai Han, Han Wu, Chang Xu, Yehui Tang, Chunjing Xu, and Yunhe
Wang. CMT: Convolutional Neural Networks Meet Vision Transformers. 2021.

[32] Romil Bhardwaj, Gopi Krishna Tummala, Ganesan Ramalingam, Ramachandran Ram-
jee, and Prasun Sinha. “AutoCalib: Automatic Traffic Camera Calibration at Scale”.
In: International Conference on Systems for Energy-Efficient Built Environments

(BuildSys 2017). 2017.

[33] Talha Hanif Butt and Murtaza Taj. “Camera Calibration Through Camera Projection
Loss”. In: International Conference on Acoustics, Speech and Signal Processing

(ICASSP). 2022.

[34] Talha Hanif Butt and Murtaza Taj. “Multi-task Learning for Camera Calibration”. In:
arXiv preprint arXiv:2211.12432 (2022).

[35] Gabriel Van Zandycke, Vladimir Somers, Maxime Istasse, Carlo Del Don, and Davide
Zambrano. “DeepSportradar-v1: Computer Vision Dataset for Sports Understanding
with High Quality Annotations”. In: Workshop on Multimedia Content Analysis in

Sports. ACM, 2022.

[36] Zhengyou Zhang. “A Flexible New Technique for Camera Calibration”. In: Transac-

tions on Pattern Analysis and Machine Intelligence (TPAMI) (2000).

[37] Xiaoqiao Meng and Zhanyi Hu. “A New Easy Camera Calibration Technique Based
on Circular Points”. In: Pattern Recognition (2003).

[38] Zhengyou Zhang. “Camera Calibration with One-dimensional Objects”. In: Transac-

tions on Pattern Analysis and Machine Intelligence (TPAMI) (2004).

Bibliography 95

[39] Pavel Rojtberg and Arjan Kuijper. “Efficient Pose Selection for Interactive Camera
Calibration”. In: International Symposium on Mixed and Augmented Reality (ISMAR).
2018.

[40] Songyou Peng and Peter Sturm. “Calibration Wizard: A Guidance System for Camera
Calibration Based on Modelling Geometric and Corner Uncertainty”. In: International

Conference on Computer Vision (ICCV). 2019.

[41] Imran N. Junejo and Hassan Foroosh. “Robust Auto-Calibration from Pedestrians”.
In: International Conference on Video and Signal Based Surveillance. 2006.

[42] Worapan Kusakunniran, Hongdong Li, and Jian Zhang. “A Direct Method to Self-
Calibrate a Surveillance Camera by Observing a Walking Pedestrian”. In: Digital

Image Computing: Techniques and Applications (DICTA). 2009.

[43] Fengjun Lv, Tao Zhao, and R. Nevatia. “Self-Calibration of a Camera From Video
of a Walking Human”. In: International Conference on Pattern Recognition (ICPR).
2002.

[44] Fengjun Lv, Tao Zhao, and R. Nevatia. “Camera Calibration From Video of a Walking
Human”. In: Transactions on Pattern Analysis and Machine Intelligence (TPAMI)

(2006).

[45] Guido M. Y. E. Brouwers, Matthijs H. Zwemer, Rob G. J. Wijnhoven, and Peter H. N.
de With. “Automatic Calibration of Stationary Surveillance Cameras in the Wild”. In:
European Conference on Computer Vision Workshops (ECCVW). 2016.

[46] Cristina Maduro, Katherine Batista, Paulo Peixoto, and Jorge Batista. “Estimation
of Vehicle Velocity and Traffic Intensity Using Rectified Images”. In: International

Conference on Image Processing (ICIP). 2008.

[47] Adi Nurhadiyatna, Benny Hardjono, Ari Wibisono, Immaculate Sina, Wisnu Jatmiko,
M.Anwar Ma’sum, and Petrus Mursanto. “Improved Vehicle Speed Estimation Us-
ing Gaussian Mixture Model and Hole Filling Algorithm”. In: Advanced Computer

Science and Information Systems (ICACSIS), 2013 International Conference on. 2013.

[48] Diogo C. Luvizon, Bogdan Tomoyoki Nassu, and Rodrigo Minetto. “Vehicle Speed
Estimation by License Plate Detection and Tracking”. In: Acoustics, Speech and

Signal Processing (ICASSP). 2014.

[49] F.W. Cathey and Daniel Dailey. “A Novel Technique to Dynamically Measure Vehicle
Speed Using Uncalibrated Roadway Cameras”. In: Intelligent Vehicles Symposium.
2005.

[50] Lazaros Grammatikopoulos, George Karras, and Elli Petsa. “Automatic Estimation of
Vehicle Speed from Uncalibrated Video Sequences”. In: Proceedings of International

Symposium on Modern Technologies, Educationand Profeesional Practice in Geodesy

and Related Fields. 2005.

[51] Xiao Chen He and N. H C Yung. “A Novel Algorithm for Estimating Vehicle Speed
from Two Consecutive Images”. In: Workshop on Applications of Computer Vision

(WACV). 2007.

96 Bibliography

[52] Viet-Hoa Do, Le-Hoa Nghiem, Ngoc Pham Thi, and Nam Pham Ngoc. “A Simple
Camera Calibration Method for Vehicle Velocity Estimation”. In: Electrical Engi-

neering/Electronics, Computer, Telecommunications and Information Technology

(ECTI-CON). 2015.

[53] Xinhua You and Yuan Zheng. “An Accurate and Practical Calibration Method for
Roadside Camera Using Two Vanishing Points”. In: Neurocomputing (2016).

[54] Daniel Dailey, Fritz W. Cathey, and Suree Pumrin. “An Algorithm to Estimate Mean
Traffic Speed Using Uncalibrated Cameras”. In: Transactions on Intelligent Trans-

portation Systems (T-ITS) (2000).

[55] Todd N. Schoepflin and Daniel J. Dailey. “Dynamic Camera Calibration of Roadside
Traffic Management Cameras for Vehicle Speed Estimation”. In: Transactions on

Intelligent Transportation Systems (T-ITS) (2003).

[56] Markéta Dubská, Jakub Sochor, and Adam Herout. “Automatic Camera Calibration
for Traffic Understanding”. In: British Machine Vision Conference (BMVC). 2014.

[57] Jakub Sochor, Roman Juránek, and Adam Herout. “Traffic Surveillance Camera
Calibration by 3D Model Bounding Box Alignment for Accurate Vehicle Speed
Measurement”. In: Computer Vision and Image Understanding (CVIU) (2017).

[58] Jinhui Lan, Jian Li, Guangda Hu, Bin Ran, and Ling Wang. “Vehicle Speed Measure-
ment Based on Gray Constraint Optical Flow Algorithm”. In: Optik – International

Journal for Light and Electron Optics (2014).

[59] David Fernández Llorca, Camila Salinas, M. Jimenez, I. Parra, A. G. Morcillo, R.
Izquierdo, Javier Lorenzo, and Miguel Ángel Sotelo. “Two-camera Based Accurate
Vehicle Speed Measurement Using Average Speed at a Fixed Point”. In: Conference

on Intelligent Transportation Systems (ITSC). 2016.

[60] Patryk Filipiak, Bartlomiej Golenko, and Cezary Dolega. “NSGA-II Based Auto-
Calibration of Automatic Number Plate Recognition Camera for Vehicle Speed Mea-
surement”. In: EvoApplications 2016. Springer International Publishing, 2016.

[61] Markéta Dubská and Adam Herout. “Real Projective Plane Mapping for Detection of
Orthogonal Vanishing Points”. In: British Machine Vision Conference (BMVC). 2013.

[62] Viktor Kocur and Milan Ftáčnik. “Traffic Camera Calibration via Vehicle Vanishing
Point Detection”. In: Artificial Neural Networks and Machine Learning – ICANN

2021. 2021.

[63] Longyin Wen, Dawei Du, Zhaowei Cai, Zhen Lei, Ming-Ching Chang, Honggang Qi,
Jongwoo Lim, Ming-Hsuan Yang, and Siwei Lyu. “UA-DETRAC: A New Benchmark
and Protocol for Multi-Object Detection and Tracking”. In: Computer Vision and

Image Understanding (CVIU) (2020).

[64] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
Microsoft COCO: Common Objects in Context. 2014.

[65] Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams,
John Winn, and Andrew Zisserman. “The Pascal Visual Object Classes Challenge: A
Retrospective”. In: International Journal of Computer Vision (IJCV) 111 (2015).

Bibliography 97

[66] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. “The Cityscapes
Dataset for Semantic Urban Scene Understanding”. In: Conference on Computer

Vision and Pattern Recognition (CVPR). 2016.

[67] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu,
Vashisht Madhavan, and Trevor Darrell. BDD100K: A Diverse Driving Dataset for

Heterogeneous Multitask Learning. 2020.

[68] Xibin Song, Peng Wang, Dingfu Zhou, Rui Zhu, Chenye Guan, Yuchao Dai, Hao
Su, Hongdong Li, and Ruigang Yang. “ApolloCar3D: A Large 3D Car Instance
Understanding Benchmark for Autonomous Driving”. In: Conference on Computer

Vision and Pattern Recognition (CVPR) (2018).

[69] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulò, and Peter Kontschieder. “The
Mapillary Vistas Dataset for Semantic Understanding of Street Scenes”. In: Interna-

tional Conference on Computer Vision (ICCV). 2017.

[70] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang
Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. “nuScenes: A
Multimodal Dataset for Autonomous Driving”. In: Conference on Computer Vision

and Pattern Recognition (CVPR). 2020.

[71] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: arXiv preprint arXiv:1409.1556 abs/1409.1556
(2014).

[72] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift”. In: arXiv preprint arXiv:1502.03167

(2015).

[73] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
“Rethinking the Inception Architecture for Computer Vision”. In: Conference on

Computer Vision and Pattern Recognition (CVPR). 2016.

[74] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning
for Image Recognition”. In: Conference on Computer Vision and Pattern Recognition

(CVPR). 2016.

[75] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. “Mobilenets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications”. In: arXiv preprint

arXiv:1704.04861 (2017).

[76] Mingxing Tan and Quoc V. Le. EfficientNetV2: Smaller Models and Faster Training.
2021.

[77] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. “Aggre-
gated Residual Transformations for Deep Neural Networks”. In: arXiv preprint

arXiv:1611.05431 (2016).

[78] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William
J. Dally, and Kurt Keutzer. “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size”. In: arXiv:1602.07360 (2016).

98 Bibliography

[79] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. “YOLACT: Real-time
Instance Segmentation”. In: International Conference on Computer Vision (ICCV).
2019.

[80] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. “YOLACT++: Better
Real-time Instance Segmentation”. In: Transactions on Pattern Analysis and Machine

Intelligence (TPAMI) (2020).

[81] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look

Once: Unified, Real-Time Object Detection. 2016.

[82] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “Yolov4: Optimal
Speed and Accuracy of Object Detection”. In: arXiv preprint arXiv:2004.10934

(2020).

[83] Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan Ke,
Qingyuan Li, Meng Cheng, Weiqiang Nie, Yiduo Li, Bo Zhang, Yufei Liang, Linyuan
Zhou, Xiaoming Xu, Xiangxiang Chu, Xiaoming Wei, and Xiaolin Wei. YOLOv6: A

Single-Stage Object Detection Framework for Industrial Applications. 2022.

[84] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. YOLOv7: Train-

able bag-of-freebies sets new state-of-the-art for real-time object detectors. 2022.

[85] Xiang Long, Kaipeng Deng, Guanzhong Wang, Yang Zhang, Qingqing Dang, Yuan
Gao, Hui Shen, Jianguo Ren, Shumin Han, Errui Ding, and Shilei Wen. PP-YOLO:

An Effective and Efficient Implementation of Object Detector. 2020.

[86] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. You Only Learn One

Representation: Unified Network for Multiple Tasks. 2021.

[87] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. “YOLOX: Exceeding
YOLO Series in 2021”. In: arXiv preprint arXiv:2107.08430 (2021).

[88] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. “SSD: Single Shot Multibox Detector”. In: European

Conference on Computer Vision (ECCV). 2016.

[89] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal Loss

for Dense Object Detection. 2018.

[90] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian.
“CenterNet: Keypoint Triplets for Object Detection”. In: International Conference on

Computer Vision (ICCV). 2019.

[91] Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet: Scalable and Efficient

Object Detection. 2020.

[92] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich Feature Hier-
archies for Accurate Object Detection and Semantic Segmentation”. In: Conference

on Computer Vision and Pattern Recognition (CVPR). 2014.

[93] Ross Girshick. “Fast R-CNN”. In: The IEEE International Conference on Computer

Vision (ICCV). 2015.

[94] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask R-CNN”. In:
International Conference on Computer Vision (ICCV). 2017.

Bibliography 99

[95] Alexander Kirillov, Ross B. Girshick, Kaiming He, and Piotr Dollár. “Panoptic Feature
Pyramid Networks”. In: arXiv preprint arXiv:1901.02446 (2019).

[96] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature Pyramid Networks for Object Detection. 2017.

[97] Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. “DetectoRS: Detecting Objects with
Recursive Feature Pyramid and Switchable Atrous Convolution”. In: arXiv preprint

arXiv:2006.02334 (2020).

[98] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. “An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale”. In: International Conference on Learn-

ing Representations (ICLR). 2021.

[99] Hwanjun Song, Deqing Sun, Sanghyuk Chun, Varun Jampani, Dongyoon Han, Byeongho
Heo, Wonjae Kim, and Ming-Hsuan Yang. “ViDT: An Efficient and Effective Fully
Transformer-based Object Detector”. In: International Conference on Learning Rep-

resentation (ICLR). 2022.

[100] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M. Ni,
and Heung-Yeung Shum. DINO: DETR with Improved DeNoising Anchor Boxes for

End-to-End Object Detection. 2022.

[101] Jakub Sochor, Jakub Špaňhel, and Adam Herout. “BoxCars: Improving Fine-Grained
Recognition of Vehicles Using 3-D Bounding Boxes in Traffic Surveillance”. In: IEEE

Transactions on Intelligent Transportation Systems (T-ITS) (2018).

[102] Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. “A Large-scale Car
Dataset for Fine-grained Categorization and Verification”. In: Conference on Computer

Vision and Pattern Recognition (CVPR). 2015.

[103] Prafful Kumar Khoba, Chirag Parikh, Rohit Saluja, Ravi Kiran Sarvadevabhatla, and
C.V. Jawahar. “A Fine-Grained Vehicle Detection (FGVD) Dataset for Unconstrained
Roads”. In.

[104] Hongye Liu, Yonghong Tian, Yaowei Wang, Lu Pang, and Tiejun Huang. “Deep Rela-
tive Distance Learning: Tell the Difference Between Similar Vehicles”. In: Conference

on Computer Vision and Pattern Recognition (CVPR. 2016.

[105] Marcel Simon and Erik Rodner. “Neural Activation Constellations: Unsupervised Part
Model Discovery with Convolutional Networks”. In: International Conference on

Computer Vision (ICCV). 2015.

[106] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. “Bilinear CNN Models for
Fine-grained Visual Recognition”. In: International Conference on Computer Vision

(ICCV). 2015.

[107] Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. “Compact Bilinear
Pooling”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[108] Di Lin, Xiaoyong Shen, Cewu Lu, and Jiaya Jia. “Deep LAC: Deep Localization,
Alignment and Classification for Fine-Grained Recognition”. In: Conference on Com-

puter Vision and Pattern Recognition (CVPR). 2015.

100 Bibliography

[109] Greg Pearce and Nick Pears. “Automatic Make and Model Recognition from Frontal
Images of Cars”. In: Conference on Advanced Video and Signal Based Surveillance

(AVSS). 2011.

[110] Bailing Zhang. “Classification and Identification of Vehicle Type and Make by Cortex-
like Image Descriptor HMAX”. In: International Journal of Computational Vision

and Robotics (IJCVR) (2014).

[111] Yen-Liang Lin, Vlad I. Morariu, Winston Hsu, and Larry S. Davis. “Jointly Optimizing
3D Model Fitting and Fine-Grained Classification”. In: European Conference on

Computer Vision (ECCV). 2014.

[112] Hongye Liu, Yonghong Tian, Yaowei Yang, Lu Pang, and Tiejun Huang. “Deep Rela-
tive Distance Learning: Tell the Difference Between Similar Vehicles”. In: Conference

on Computer Vision and Pattern Recognition (CVPR). 2016.

[113] Jakub Sochor, Adam Herout, and Jiri Havel. “BoxCars: 3D Boxes as CNN Input for
Improved Fine-Grained Vehicle Recognition”. In: Conference on Computer Vision

and Pattern Recognition (CVPR). 2016.

[114] Jakub Sochor, Jakub Špaňhel, and Adam Herout. “BoxCars: Improving Fine-Grained
Recognition of Vehicles using 3D Bounding Boxes in Traffic Surveillance”. In: arXiv

preprint arXiv:1703.00686 (2017).

[115] Hamed Pirsiavash, Deva Ramanan, and Charless C. Fowlkes. “Bilinear Classifiers for
Visual Recognition”. In: Advances in Neural Information Processing Systems (NIPS).
Curran Associates, Inc., 2009.

[116] Anqi Hu, Zhengxing Sun, Qian Li, Yechao Xu, Yihuan Zhu, and Sheng Zhang. “Fine-
grained Traffic Video Vehicle Recognition Based Orientation Estimation and Temporal
Information”. In: Multimedia Tools and Applications (2023).

[117] Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, and
Changhu Wang. “TransFG: A Transformer Architecture for Fine-grained Recognition”.
In: Conference on Artificial Intelligence. 2022.

[118] Zhongdao Wang, Luming Tang, Xihui Liu, Zhuliang Yao, Shuai Yi, Jing Shao, Junjie
Yan, Shengjin Wang, Hongsheng Li, and Xiaogang Wang. “Orientation Invariant Fea-
ture Embedding and Spatial Temporal Regularization for Vehicle Re-Identification”.
In: International Conference on Computer Vision (ICCV). 2017.

[119] Xinchen Liu, Wu Liu, Huadong Ma, and Huiyuan Fu. “Large-scale Vehicle Re-
Identification in Urban Surveillance Videos”. In: International Conference on Multi-

media and Expo (ICME). 2016.

[120] Sheng Jin, Lumin Xu, Jin Xu, Can Wang, Wentao Liu, Chen Qian, Wanli Ouyang,
and Ping Luo. “Whole-Body Human Pose Estimation in the Wild”. In: European

Conference on Computer Vision (ECCV). 2020.

[121] Alejandro Newell, Kaiyu Yang, and Jia Deng. “Stacked Hourglass Networks for
Human Pose Estimation”. In: European Conference on Computer Vision (ECCV).
2016.

[122] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. “Deep High-Resolution Represen-
tation Learning for Human Pose Estimation”. In: Conference on Computer Vision and

Pattern Recognition (CVPR). 2019.

Bibliography 101

[123] Zhendong Yang, Ailing Zeng, Chun Yuan, and Yu Li. “Effective Whole-body Pose
Estimation with Two-stages Distillation”. In: arXiv preprint arXiv:2307.15880 (2023).

[124] Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. “ViTPose: Simple Vision
Transformer Baselines for Human Pose Estimation”. In: Advances in Neural Informa-

tion Processing Systems. 2022.

[125] Kai-Tai Song and Jen-Chao Tai. “Dynamic Calibration of Pan–Tilt–Zoom Cameras
for Traffic Monitoring”. In: Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics (2006).

[126] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm
for Model Fitting with Applications To Image Analysis and Automated Cartography”.
In: (1981).

[127] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. “EPnP: An Accurate O(n)
Solution to the PnP Problem”. In: International Journal of Computer Vision (IJCV)

(2008).

[128] Joel A. Hesch and Stergios I. Roumeliotis. “A Direct Least-Squares (DLS) method
for PnP”. In: International Conference on Computer Vision (ICCV). 2011.

[129] Yinqiang Zheng, Yubin Kuang, Shigeki Sugimoto, Kalle Åström, and Masatoshi
Okutomi. “Revisiting the PnP Problem: A Fast, General and Optimal Solution”. In:
International Conference on Computer Vision (ICCV). 2013.

[130] Laurent Kneip, Hongdong Li, and Yongduek Seo. “UPnP: An Optimal O(n) Solution
to the Absolute Pose Problem with Universal Applicability”. In: European Conference

on Computer Vision (ECCV). 2014.

[131] Adrian Penate-Sanchez, Juan Andrade-Cetto, and Francesc Moreno-Noguer. “Ex-
haustive Linearization for Robust Camera Pose and Focal Length Estimation”. In:
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2013).

[132] Yinqiang Zheng, Shigeki Sugimoto, Imari Sato, and Masatoshi Okutomi. “A General
and Simple Method for Camera Pose and Focal Length Determination”. In: Conference

on Computer Vision and Pattern Recognition (CVPR). 2014.

[133] Yinqiang Zheng and Laurent Kneip. “A Direct Least-Squares Solution to the PnP
Problem with Unknown Focal Length”. In: Conference on Computer Vision and

Pattern Recognition (CVPR). 2016.

[134] Roman Juránek, Adam Herout, Markéta Dubská, and Pavel Zemčík. “Real-Time
Pose Estimation Piggybacked on Object Detection”. In: International Conference on

Computer Vision (ICCV). 2015.

[135] Jakub Sochor, Roman Juránek, Jakub Špaňhel, Lukáš Maršík, Adam Široký, Adam
Herout, and Pavel Zemčík. “Comprehensive Data Set for Automatic Single Camera
Visual Speed Measurement”. In: Transactions on Intelligent Transportation Systems

(T-ITS) (2018).

[136] Rainer Storn and Kenneth Price. “Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces”. In: Journal of Global

Optimization (1997).

102 Bibliography

[137] John C. Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization”. In: Journal of Machine Learning

Research (2011).

[138] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
International Conference on Learning Representations (2014).

[139] Dong C. Liu and Jorge Nocedal. “On the Limited Memory BFGS Method for Large
Scale Optimization”. In: Mathematical Programming (1989).

[140] Jason P. de Villiers, F. Wilhelm Leuschner, and Ronelle Geldenhuys. “Centi-pixel
Accurate Real-time Inverse Distortion Correction”. In: Optomechatronic Technologies

2008. 2008.

[141] Faisal Bukhari and Matthew Dailey. “Automatic Radial Distortion Estimation from a
Single Image”. In: Journal of Mathematical Imaging and Vision (2013).

[142] Jakub Sochor, Jakub Špaňhel, Roman Juránek, Petr Dobeš, and Adam Herout. “Graph@FIT
Submission to the NVIDIA AI City Challenge 2018”. In: Computer Vision and Pattern

Recognition Workshops (CVPRW). 2018.

[143] Christian Szegedy, Scott Reed, Dumitru Erhan, Dragomir Anguelov, and Sergey
Ioffe. “Scalable, High-Quality Object Detection”. In: arXiv preprint arXiv:1412.1441

(2014).

[144] Yi Wei, Nenghui Song, Lipeng Ke, Ming-Ching Chang, and Siwei Lyu. “Street
object detection / tracking for AI city traffic analysis”. In: SmartWorld, Ubiquitous

Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing &

Communications, Cloud & Big Data Computing, Internet of People and Smart City

Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (2017).

[145] Shan Du, Mahmoud Ibrahim, Mohamed Shehata, and Wael Badawy. “Automatic
license plate recognition (ALPR): A state-of-the-art review”. In: Circuits and Systems

for Video Technology (2013).

[146] Konrad Kluwak, Jakub Segen, Marek Kulbacki, Aldona Drabik, and Konrad Wo-
jciechowski. “ALPR - Extension to Traditional Plate Recognition Methods”. In:
Intelligent Information and Database Systems: 8th Asian Conference, ACIIDS 2016,

Da Nang, Vietnam, March 14–16, 2016, Proceedings, Part II. 2016.

[147] Ying Wen, Yue Lu, Jingqi Yan, Zhenyu Zhou, Karen M von Deneen, and Pengfei Shi.
“An Algorithm for License Plate Recognition Applied to Intelligent Transportation
System”. In: Transactions on Intelligent Transportation Systems (T-ITS) (2011).

[148] Clemens Arth, Christian Leistner, and Horst Bischof. “Object Reacquisition and
Tracking in Large-scale Smart Camera Networks”. In: International Conference on

Distributed Smart Cameras. 2007.

[149] Rogerio Schmidt Feris, Behjat Siddiquie, James Petterson, Yun Zhai, Ankur Datta,
Lisa M Brown, and Sharath Pankanti. “Large-scale Vehicle Detection, Indexing, and
Search in Urban Surveillance Videos”. In: Transactions on Multimedia (2012).

[150] Dominik Zapletal and Adam Herout. “Vehicle Re-Identification for Automatic Video
Traffic Surveillance”. In: Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW. 2016.

Bibliography 103

[151] Hongye Liu, Yonghong Tian, Yaowei Yang, Lu Pang, and Tiejun Huang. “Deep Rela-
tive Distance Learning: Tell the Difference Between Similar Vehicles”. In: Conference

on Computer Vision and Pattern Recognition (CVPR). 2016.

[152] Yantao Shen, Tong Xiao, Hongsheng Li, Shuai Yi, and Xiaogang Wang. “Learn-
ing Deep Neural Networks for Vehicle Re-ID With Visual-Spatio-Temporal Path
Proposals”. In: International Conference on Computer Vision (ICCV). 2017.

[153] Zhongdao Wang, Luming Tang, Xihui Liu, Zhuliang Yao, Shuai Yi, Jing Shao, Junjie
Yan, Shengjin Wang, Hongsheng Li, and Xiaogang Wang. “Orientation Invariant Fea-
ture Embedding and Spatial Temporal Regularization for Vehicle Re-Identification”.
In: International Conference on Computer Vision (ICCV). 2017.

[154] Ke Yan, Yonghong Tian, Yaowei Wang, Wei Zeng, and Tiejun Huang. “Exploiting
Multi-Grain Ranking Constraints for Precisely Searching Visually-Similar Vehicles”.
In: International Conference on Computer Vision (ICCV). 2017.

[155] Yiheng Zhang, Dong Liu, and Zheng-Jun Zha. “Improving Triplet-wise Training
of Convolutional Neural Network for Vehicle Re-Identification”. In: International

Conference on Multimedia and Expo (ICME). 2017.

[156] Xinchen Liu, Wu Liu, Tao Mei, and Huadong Ma. “A Deep Learning-Based Ap-
proach to Progressive Vehicle Re-identification for Urban Surveillance”. In: European

Conference on Computer Vision (ECCV). 2016.

[157] Ratnesh Kumar, Edwin Weill, Farzin Aghdasi, and Parthsarathy Sriram. “Vehicle
Re-Identification: An Efficient Baseline Using Triplet Embedding”. In: arXiv preprint

arXiv:1901.01015 (2019).

[158] De Cheng, Yihong Gong, Sanping Zhou, Jinjun Wang, and Nanning Zheng. “Person
Re-Identification by Multi-Channel Parts-Based CNN With Improved Triplet Loss
Function”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2016.

[159] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In Defense of the Triplet Loss

for Person Re-Identification. arXiv:1703.07737. 2017.

[160] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi Huang. “Beyond Triplet
Loss: A Deep Quadruplet Network for Person Re-Identification”. In: Conference on

Computer Vision and Pattern Recognition (CVPR). 2017.

[161] M. Köstinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof. “Large Scale Metric
Learning from Equivalence Constraints”. In: Conference on Computer Vision and

Pattern Recognition (CVPR). 2012.

[162] Shengcai Liao, Yang Hu, Xiangyu Zhu, and Stan Z. Li. “Person Re-Identification by
Local Maximal Occurrence Representation and Metric Learning”. In: Conference on

Computer Vision and Pattern Recognition (CVPR). 2015.

[163] Hailin Shi, Yang Yang, Xiangyu Zhu, Shengcai Liao, Zhen Lei, Weishi Zheng, and
Stan Z. Li. “Embedding Deep Metric for Person Re-identification: A Study Against
Large Variations”. In: European Conference on Computer Vision (ECCV). Springer
International Publishing, 2016, pp. 732–748.

104 Bibliography

[164] Jiaolong Yang, Peiran Ren, Dongqing Zhang, Dong Chen, Fang Wen, Hongdong
Li, and Gang Hua. “Neural Aggregation Network for Video Face Recognition”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

[165] Niall McLaughlin, Jesus Martinez del Rincon, and Paul Miller. “Recurrent Con-
volutional Network for Video-Based Person Re-Identification”. In: Conference on

Computer Vision and Pattern Recognition (CVPR). 2016.

[166] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. “ShuffleNet: An Extremely
Efficient Convolutional Neural Network for Mobile Devices”. In: arXiv preprint

arXiv:1707.01083 (2017).

[167] Yichao Yan, Bingbing Ni, Zhichao Song, Chao Ma, Yan Yan, and Xiaokang Yang.
“Person Re-identification via Recurrent Feature Aggregation”. In: European Confer-

ence on Computer Vision (ECCV). Ed. by Bastian Leibe, Jiri Matas, Nicu Sebe, and
Max Welling. Springer International Publishing, 2016.

[168] Lin Chen, Hua Yang, Ji Zhu, Qin Zhou, Shuang Wu, and Zhiyong Gao. “Deep Spatial-
Temporal Fusion Network for Video-Based Person Re-Identification”. In: Conference

on Computer Vision and Pattern Recognition Workshops (CVPRW. 2017.

[169] Shuangjie Xu, Yu Cheng, Kang Gu, Yang Yang, Shiyu Chang, and Pan Zhou. “Jointly
Attentive Spatial-Temporal Pooling Networks for Video-based Person Re-Identification”.
In: International Conference on Computer Vision (ICCV). 2017.

[170] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. “3D Object Representations
for Fine-Grained Categorization”. In: International Conference on Computer Vision

(ICCV) Workshops. 2013.

[171] Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. “A Large-Scale Car
Dataset for Fine-Grained Categorization and Verification”. In: Conference on Com-

puter Vision and Pattern Recognition (CVPR). 2015.

[172] Jakub Špaňhel, Jakub Sochor, Roman Juránek, Adam Herout, Lukáš Maršík, and Pavel
Zemčík. “Holistic Recognition of Low Quality License Plates by CNN Using Track
Annotated Data”. In: Conference on Advanced Video and Signal Based Surveillance

(AVSS). 2017.

[173] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. “Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning”. In: arXiv preprint

arXiv:1602.07261 (2016).

[174] D Kinga and J Ba Adam. “A Method for Stochastic Optimization”. In: International

Conference on Learning Representations (ICLR). 2015.

[175] Zheng Tang, Milind Naphade, Ming-Yu Liu, Xiaodong Yang, Stan Birchfield, Shuo
Wang, Ratnesh Kumar, David Anastasiu, and Jenq-Neng Hwang. “CityFlow: A
City-Scale Benchmark for Multi-Target Multi-Camera Vehicle Tracking and Re-
Identification”. In: arXiv preprint arXiv:1903.09254 (2019).

[176] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet: A Unified Em-
bedding for Face Recognition and Clustering”. In: Conference on Computer Vision

and Pattern Recognition (CVPR). 2015.

Bibliography 105

[177] Thorsten Litfin and Gerd Wolfram. “New Automated Checkout Systems”. In: Retailing

in the 21st Century: Current and Future Trends. Ed. by Manfred Krafft and Murali K.
Mantrala. 2010.

[178] Milind Naphade, Shuo Wang, David C Anastasiu, Zheng Tang, Ming-Ching Chang,
Yue Yao, Liang Zheng, Sharifur Rahman, et al. “The 6th AI City Challenge”. In:
Conference on Computer Vision and Pattern Recognition Workshop (CVPRW). 2022.

[179] Gavin Chappell, David Durdan, Greg Gilbert, Lyle Ginsburg, Jeff Smith, and Joseph
Tobolski. “Auto-ID in the Box: the Value of Auto-ID Technology in Retail Stores”. In:
Auto-ID Center (2003).

[180] Matthias Hauser, Sebastian A Günther, Christoph M Flath, and Frédéric Thiesse.
“Towards Digital Transformation in Fashion Retailing: A Design-oriented IS Re-
search Study of Automated Checkout Systems”. In: Business & Information Systems

Engineering (2019).

[181] Matthias Hauser, Sebastian Günther, Christoph Flath, and Frédéric Thiesse. “Lever-
aging RFID Data Analytics for the Design of an Automated Checkout System”. In:
(2017).

[182] MFM Busu, I Ismail, MF Saaid, and SM Norzeli. “Auto-checkout System for Retails
Using Radio Frequency Identification (RFID) Technology”. In: Control and System

Graduate Research Colloquium. 2011.

[183] Matthew Ritchie, Tiana Longino, Daniel Garza, and Alp Katranci. “Optimized Auto-
mated Checkout Process for Major Food Retailers”. In: (2021).

[184] Yesenia Aquilina and Michael A Saliba. “An Automated Supermarket Checkout
System Utilizing a SCARA Robot: Preliminary Prototype Development”. In: Procedia

Manufacturing (2019).

[185] Namitha James, Nikhitha Theresa Antony, Sara Philo Shaji, Sherin Baby, and Jyotsna
Annakutty. “Automated Checkout for Stores: A Computer Vision Approach”. In:
Revisita Geintec-Gestao Inovacao E Tecnologias (2021).

[186] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. “You
Only Look Once: Unified, Real-Time Object Detection”. In: arXiv preprint arXiv:1506.02460

(2015).

[187] Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R Scott, and Weilin Huang. “TOOD:
Task-aligned One-stage Object Detection”. In: International Conference on Computer

Vision (ICCV). 2021.

[188] Qiang Chen, Yingming Wang, Tong Yang, Xiangyu Zhang, Jian Cheng, and Jian Sun.
“You Only Look One-level Feature”. In: Conference on Computer Vision and Pattern

Recognition (CVPR). 2021.

[189] Rudolph Emil Kalman. “A New Approach to Linear Filtering and Prediction Prob-
lems”. In: (1960).

[190] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan, Ping
Luo, Wenyu Liu, and Xinggang Wang. “ByteTrack: Multi-Object Tracking by Associ-
ating Every Detection Box”. In: arXiv preprint arXiv 2110.06864 (2021).

106 Bibliography

[191] Lingxiao He, Xingyu Liao, Wu Liu, Xinchen Liu, Peng Cheng, and Tao Mei. “Fas-
tReID: A Pytorch Toolbox for General Instance Re-Identification”. In: arXiv preprint

arXiv:2006.02631 (2020).

[192] Jiang-Jiang Liu, Qibin Hou, Ming-Ming Cheng, Changhu Wang, and Jiashi Feng.
“Improving convolutional networks with self-calibrated convolutions”. In: Conference

on Computer Vision and Pattern Recognition (CVPR). 2020.

[193] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao,
Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, et al. “Deep high-resolution
representation learning for visual recognition”. In: Transactions on Pattern Analysis

and Machine Intelligence (TPAMI) (2020).

[194] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan Russell, Max Argus,
and Thomas Brox. “Freihand: A Dataset for Markerless Capture of Hand Pose and
Shape from Single RGB Images”. In: Conference on Computer Vision and Pattern

Recognition (CVPR). 2019.

[195] Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori, and Kyoung Mu Lee.
“Interhand2. 6m: A Dataset and Baseline for 3D Interacting Hand Pose Estimation
from a Single RGB Image”. In: European Conference on Computer Vision (ECCV).
2020.

[196] Junjie Huang, Zheng Zhu, Feng Guo, and Guan Huang. “The Devil is in the Details:
Delving Into Unbiased Data Processing for Human Pose Estimation”. In: Conference

on Computer Vision and Pattern Recognition (CVPR). 2020.

[197] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick. “PointRend: Image
Segmentation as Rendering”. In: arXiv preprint arXiv:1912.08193 (2019).

[198] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin.
“Hybrid Task Cascade for Instance Segmentation”. In: Conference on Computer Vision

and Pattern Recognition (CVPR). 2019.

[199] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. “Gener-
ative image inpainting with contextual attention”. In: Conference on Computer Vision

and Pattern Recognition (CVPR). 2018.

[200] Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I Chang, and
Yan Xu. “Large Scale Image Completion via Co-modulated Generative Adversarial
Networks”. In: arXiv preprint arXiv:2103.10428 (2021).

[201] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang
Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen
Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai,
Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin.
“MMDetection: Open MMLab Detection Toolbox and Benchmark”. In: arXiv preprint

arXiv:1906.07155 (2019).

[202] Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xi-
aogang Wang, Jifeng Dai, and Hongsheng Li. “FuseFormer: Fusing Fine-Grained
Information in Transformers for Video Inpainting”. In: International Conference on

Computer Vision (ICCV). 2021.

Bibliography 107

[203] Yanhong Zeng, Jianlong Fu, and Hongyang Chao. “Learning Joint Spatial-Temporal
Transformations for Video Inpainting”. In: European Conference on Computer Vision

(ECCV). 2020.

[204] Zoran Zivkovic and Ferdinand van der Heijden. “Efficient Adaptive Density Estima-
tion per Image Pixel for the Task of Background Subtraction”. In: Pattern Recognition

Letters (2006).

[205] Yue Yao, Liang Zheng, Xiaodong Yang, Milind Napthade, and Tom Gedeon. “Attribute
Descent: Simulating Object-Centric Datasets on the Content Level and Beyond”. In:
arXiv preprint arXiv:2202.14034 (2022).

[206] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.
“Places: A 10 million Image Database for Scene Recognition”. In: Transactions on

Pattern Analysis and Machine Intelligence (TPAMI) (2017).

[207] Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R. Scott, and Weilin Huang. TOOD:

Task-aligned One-stage Object Detection. 2021.

[208] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang
Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu,
Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong
Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. MMDetection:

Open MMLab Detection Toolbox and Benchmark. 2019.

[209] Christian Herdtweck and Christian Wallraven. “Estimation of the Horizon in Pho-
tographed Outdoor Scenes by Human and Machine”. In: PLoS ONE (2013).

[210] Guillaume A. Rousselet, Olivier R. Joubert, and Michele Fabre-Thorpe. “How Long
to Get to the “Gist” of Real-world Natural Scenes?” In: Visual Cognition (2005).

[211] Kirsti Andersen. Brook Taylor’s Work on Linear Perspective. Springer New York,
1992.

[212] Jana Košecká and Wei Zhang. “Video compass”. In: European Conference on Com-

puter Vision (ECCV). 2002.

[213] Bruno Caprile and Vincent Torre. “Using Vanishing Points for Camera Calibration”.
In: International Journal of Computer Vision (IJCV) (1990).

[214] Radu Orghidan, Joaquim Salvi, Mihaela Gordan, and Bogdan Orza. “Camera Calibra-
tion Using Two or Three Vanishing Points”. In: Federated Conference on Computer

Science and Information Systems (FedCSIS). 2012.

[215] Shiyao Huang, Xianghua Ying, Jiangpeng Rong, Zeyu Shang, and Hongbin Zha.
“Camera Calibration From Periodic Motion of a Pedestrian”. In: Conference on

Computer Vision and Pattern Recognition (CVPR). 2016.

[216] Lucas Teixeira, Fabiola Maffra, and Atta Badii. “Scene Understanding for Auto-
Calibration of Surveillance Cameras”. In: 2014.

[217] Jingchen Liu, Robert T. Collins, and Yanxi Liu. “Surveillance Camera Autocalibration
based on Pedestrian Height Distribution”. In: British Machine Vision Conference

(BMVC) (2011).

[218] Sung Chun Lee and Ran Nevatia. “Robust Camera Calibration Tool for Video Surveil-
lance Camera in Urban Environment”. In: Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW). 2011.

108 Bibliography

[219] Jonathan Deutscher, Michael Isard, and John MacCormick. “Automatic Camera
Calibration from a Single Manhattan Image”. In: European Conference on Computer

Vision (ECCV). 2002.

[220] Horst Wildenauer and Allan Hanbury. “Robust Camera Self-Calibration from Monoc-
ular Images of Manhattan Worlds”. In: Conference on Computer Vision and Pattern

Recognition (CVPR). 2012.

[221] M. Dubská, A. Herout, R. Juránek, and J. Sochor. “Fully Automatic Roadside Camera
Calibration for Traffic Surveillance”. In: Transactions on Intelligent Transportation

Systems (T-ITS) (2015).

[222] Derek Hoiem, Alexei A. Efros, and Martial Hebert. “Putting Objects in Perspective”.
In: International Journal of Computer Vision (IJCV) (2008).

[223] Patrick Wang, Kenneth Morton, Peter Torrione, and Leslie Collins. “Viewpoint Adap-
tation for Rigid Object Detection”. In: arXiv preprint arXiv:1702.07451 (2017).

[224] Menghua Zhai, Scott Workman, and Nathan Jacobs. “Detecting Vanishing Points
using Global Image Context in a Non-Manhattan World”. In: Conference on Computer

Vision and Pattern Recognition (CVPR). 2016.

[225] Jose Lezama, Rafael Grompone von Gioi, Gregory Randall, and Jean-Michel Morel.
“Finding Vanishing Points via Point Alignments in Image Primal and Dual Domains”.
In: Conference on Computer Vision and Pattern Recognition (CVPR). 2014.

[226] Nathan Jacobs, Mohammad T. Islam, and Scott Workman. “Cloud Motion as a Cali-
bration Cue”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2013.

[227] Scott Workman, Menghua Zhai, and Nathan Jacobs. “Horizon Lines in the Wild”. In:
British Machine Vision Conference (BMVC). 2016.

[228] Olga Barinova, Victor Lempitsky, Elena Tretiak, and Pushmeet Kohli. “Geometric
Image Parsing in Man-Made Environments”. In: European Conference on Computer

Vision (ECCV). 2010.

[229] Patrick Denis, James H. Elder, and Francisco J. Estrada. “Efficient Edge-Based Meth-
ods for Estimating Manhattan Frames in Urban Imagery”. In: European Conference

on Computer Vision (ECCV). 2008.

[230] Roee Litman, Simon Korman, Alex Bronstein, and Shai Avidan. “Inverting RANSAC:
Global model detection via inlier rate estimation”. In: Conference on Computer Vision

and Pattern Recognition (CVPR). 2015.

[231] Nobuyuki Otsu. “A Threshold Selection Method from Gray-level Histograms”. In:
Automatica (1975).

[232] Shuai Yi, Hongsheng Li, and Xiaogang Wang. “Understanding Pedestrian Behaviors
from Stationary Crowd Groups”. In: Conference on Computer Vision and Pattern

Recognition (CVPR). 2015.

[233] Tao Yang, Quan Pan, Jing Li, and S. Z. Li. “Real-time Multiple Objects Tracking with
Occlusion Handling in Dynamic Scenes”. In: Conference on Computer Vision and

Pattern Recognition (CVPR). 2005.

Bibliography 109

[234] Pierre Moulon, Pascal Monasse, and Renaud Marlet. “Global Fusion of Relative
Motions for Robust, Accurate and Scalable Structure from Motion”. In: International

Conference on Computer Vision (ICCV). 2013.

111

Appendix A

Teasers

The teasers used in the papers to shortly summarize single methods are placed here.

A.1 LandmarksCalib

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

...

...

...

FIGURE A.1: Overview of the proposed approach. Vehicles observed in the
input video (dashed – orange) are classified (to obtain the exact make & model)
and processed by a landmark detector (middle dotted – red). For visible
landmarks K̄ci , their 3D positions K̂ci are obtained from a CAD model (top
dotted – blue). Pairwise distances from the known 3D positions δ̂(ci, a, b) are
compared with the observed 3D distances δ(ci, a, b, ϕ) and the camera model
ϕ is optimized (solid – green) by a global optimization method to obtain the

best solution.

112 Appendix A. Teasers

A.2 PlaneCalib

FIGURE A.2: Overview of the proposed PlaneCalib method. First of all,
vehicles are detected, localized, classified in images (video frames), and
landmarks are localized within these detections. Correspondences of the
localized 2D and 3D landmarks (blue) are used to solve PnP to obtain the
rotation and translation of the object with respect to the camera (red). For
each object, the origin point which lies in the ground plane is transformed into
the camera coordinate system (green). Finally, these potential ground plane
points of all the objects observed are used to compute the calibration ground
plane as the best fit to these origin points (orange) and the transformation of
this ground plane to the world coordinate system is computed (magenta).

A.3. OptInOpt 113

A.3 OptInOpt

FIGURE A.3: Overview of the proposed OptInOpt method. In each step of
optimizing the calibration parameters Kϕ, Rϕ, tϕ (outer magenta arrow),
optimization of individual vehicles’ position is used (green box). Each single
vehicle position is optimized (inner magenta arrows) based on localized
landmarks and re-projection error of these landmarks w.r.t. actual calibra-
tion parameters Kϕ, Rϕ, tϕ. All vehicles’ positions are used to evaluate
the objective function (bottom black box — see Section 3.5.3 for details).
Calibration grids (blue arrows) show improvement of calibration parameters
based on reduction of the objective function between optimization steps (only

for visualization).

