
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

ON-THE-FLY COMPRESSION IN TIME-DOMAIN
ULTRASOUND SIMULATIONS
PRŮBĚŽNÁ KOMPRESE V ULTRAZVUKOVÝCH SIMULACÍCH V ČASOVÉ OBLASTI

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. PETR KLEPÁRNÍK
AUTOR PRÁCE

SUPERVISOR prof. Dr. Ing. PAVEL ZEMČÍK, dr. h. c.
ŠKOLITEL

BRNO 2022



Abstract
This work proposes a new compression method and its application in the framework of time-
domain ultrasound simulations, specializing in high-intensity focused ultrasound (HIFU).
Large-scale numerical simulations of HIFU, important for model-based treatment planning,
generate large amounts of data. A simulation typically requires hundreds of gigabytes of
storage. The goal of using this method is to significantly save computing resources while
maintaining sufficient quality of the simulation outputs. At the core of this work, experi-
mental simulations are presented, which show that the proposed compression method and
its use for on-the-fly calculation of the average acoustic intensity during the simulation bring
significant improvements. The main advantage is to a large extent (up to 99%) reduced
consumption of precious disk space and approximately the same requirement for opera-
tional memory during simulation, which can significantly reduce the price of the computing
platform. Compression does not adversely affect the overall simulation time. The accuracy
of the new method was evaluated using thermal simulations. Using the new method, the
same results are achieved in ablated tissue determination as in other approaches.

Abstrakt
Tato práce navrhuje novou kompresní metodu a její aplikaci v rámci ultrazvukových simu-
lací v časové oblasti se specializací na cílený ultrazvuk o vysoké intenzitě (HIFU). Rozsáhlé
numerické simulace HIFU, důležité pro plánování léčby založené na modelu, generují velké
množství dat. Při simulaci je obvykle nutné ukládat stovky gigabajtů. Cílem použití této
metody je významná úspora výpočetních prostředků při zachování dostatečné kvality sim-
ulačních výstupů. V jádru této práce jsou prezentovány experimentální simulace, které
ukazují, že navržená kompresní metoda a její využití pro on-the-fly výpočet průměrné aku-
stické intenzity během simulace přináší významné vylepšení. Hlavní výhodou je do značné
míry (až 99 %) snížená spotřeba vzácného místa na disku a přibližně stejný nárok na oper-
ační paměť během simulace, což může výrazně snížit cenu výpočetní platformy. Komprese
neovlivňuje nepříznivě celkovou dobu simulace. Přesnost nové metody byla vyhodnocena
prostřednictvím tepelných simulací. Pomocí nové metody je dosaženo v podstatě stejných
výsledků při stanovení ablatované tkáně jako u jiných přístupů.
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Chapter 1

Introduction

Simulations of ultrasound wave propagation have a wide range of applications. Especially
simulations of ultrasound propagation through biological tissues are very useful for planning
ultrasound treatments. High-intensity focused ultrasound (HIFU) presents a typical early
stage technology that most probably will be widely used in the future for cancer treatment.
It is a non-invasive therapy, during which a narrowly focused beam of ultrasound is used
to rapidly heat the tissue in the selected area and the cells are destroyed by this. The most
important effect of ultrasound is a precisely localized, well-timed thermal effect. HIFU
simulations can significantly help surgeons and researchers advance this technology and
make treatments more precise and successful.

At this time, to perform accurate ultrasound simulations, extensive computational
power and a large amount of storage space are required. Typically, it is necessary to
save hundreds of gigabytes or tens of terabytes during and after the simulation running on
several thousands of processor cores.

The topic of this thesis falls mainly into two categories of computer technology. The
first category covers large-scale ultrasound simulations and the second is data compression.

This work is focused on the compression of such large specific ultrasound simulations
data. The work proposes a new on-the-fly compression method and its application within
time-domain ultrasound simulations with a specialization in HIFU. The goal of the new
compression method is to significantly save computing resources while maintaining sufficient
quality of simulation outputs.

In the core of this work, experimental simulations are presented, showing that the
proposed compression method and its use for the on-the-fly calculation of the average
acoustic intensity during the simulation (which uses a staggered-grid pseudospectral time
domain (PSTD) method) bring significant improvements. The main advantage is to a large
extent (up to 99%) reduced consumption of precious disk space and approximately the
same requirement for operational memory during simulation, which can significantly reduce
the price of the computing platform. Compression does not adversely affect the overall
simulation time. The accuracy of the new method was evaluated using thermal simulations.
Using the new method, the same results are achieved in ablated tissue determination as
with other approaches.

The use of a new method could also lead to, for example, more efficient treatment plan-
ning, fast four-dimensional (4-D) volume data visualizations, and parallel data processing
on-the-fly during simulations. Saving computing resources increases the chances of making
effective use of acoustic simulations in practice. The method can be applied to signals of
similar character, for example, electromagnetic radio waves.
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The consequent Chapter 2 provides information on state-of-the-art ultrasound simula-
tions - tasks, outputs, applications, and technologies. Chapter 3 is focused on methods for
data compression. Basic information on general data compression is presented. The known
and powerful state-of-the-art image, video, and audio compression methods are presented
in more detail. In addition, some methods or techniques that are more relevant to charac-
teristic ultrasound simulation data and high-performance computing (HPC) are discussed.
The evaluation measures for compression efficiency are mentioned in Chapter 4. First, the
typical and known general measures for compression are presented, and then some possible
approaches related to the main topic of this thesis are discussed. The core of this work
is contained in Chapter 5. Section 5.1 contains the formulation of the hypothesis and the
specification of the verification of this hypothesis. Sections 5.3 and 5.4 present core publica-
tions with experiments and work results. These are followed by Section 5.5, which validates
the results and the scientific contribution. Section 5.6 is focused on applications and future
work and Chapter 6 concludes the thesis.
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Chapter 2

Ultrasound simulations

The purpose of this chapter is to present the state-of-the-art in the field of ultrasound
simulations. This chapter is focused on ultrasound simulation tasks, outputs, applications,
and used technologies. The topic is very closely related to the k-Wave acoustic toolbox and
the HIFU simulations [33, 78] which are state-of-the-art technologies.

2.1 Tasks of ultrasound simulations
Ultrasound is a compression-dilatation wave with high frequencies (1–20MHz in medical
ultrasound compared to 20Hz–20 kHz for audible sound). The pressure wave is composed
of phases with compression and dilatation which propagate in the medium. Thus, sound
and ultrasound cannot propagate in a vacuum. The average value of the sound speed in
the biological environment is 1,540m s−1, the corresponding wavelengths for ultrasound are
usually between 0.08mm to 1.54mm [82].

Ultrasound simulations have various uses. For example, simulations are needed to per-
form transcranial focused ultrasound safely [4] or have become a widely used technique to
evaluate ultrasound interactions in bone [38]. Another use is, for example, pelvic ultrasound
simulation training among residents, sonographers, and general practitioners [5]. Significant
use of simulations is also made in the field of ultrasound tomography (UST) - here a full
time-domain waveform inversion is performed as a UST image formation technique [52, 57].
This work focuses mainly on HIFU simulations.

HIFU is one of the modern technologies for cancer treatment. It is an emerging non-
invasive therapeutic technique that uses ultrasound waves to destroy tissue, such as tumors
inside the human body. A beam of ultrasound energy is sent into the tissue using a focused
transducer. The focused region is rapidly heated, resulting in irreversible tissue damage,
while surrounding tissue is not affected (illustrated in Figure 2.1) [12, 20, 33, 73, 89].

In recent years, many HIFU clinical trials have been conducted for the treatment of
tumors in the prostate, kidney, liver, breast or brain, but the most important issue and
challenge is the precise placement of the ultrasound focus. There are some tissue properties
that can significantly distort ultrasound distribution, for example the skull. That is the
main reason why precise simulations are needed [33].

However, there are two main challenges. First, it is necessary to create an acoustic and
thermal model that is physically complex, due to a heterogeneous medium and nonlinear
wave propagation. Second, the simulations are computationally very intensive and expen-
sive, as they must be executed on large domains with billions of grid points. An important
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Figure 2.1: Schematic illustration of the HIFU device1and therapy2.

factor is the time required for realistic and useful simulations. Now, some sophisticated
parallel implementations in distributed clusters have been developed using message passing
interface (MPI) technology or graphic processing units (GPU). One problem is the time
required for the simulations, but the next big issue is the storage space required to save the
simulation outputs [33, 35, 72].

Due to the large distances traveled by the ultrasound waves relative to the wavelength
of the highest frequency harmonic and for precise results and applications in medical treat-
ments, very large simulations have to be performed. Currently, the resolutions of the
ultrasound simulation grid reach up to 4096× 2048× 2048 samples in three-dimensional
(3-D) space. Usually, the limited number of time steps in a small area encompassing the
focus (sensor mask) or a discontinuous field of point sensors have to be sampled and saved
for further processing, for example, in thermal modeling. The typical size of the sampled
data for a clinically applicable simulation reaches 0.5TB. If the entire simulation datasets
had to be stored, for example, for 3000 simulation steps, ca 68TB of storage space would
be needed. To obtain a clinically relevant simulation, the grid sizes of 40963 to 81923 must
be defined at least for 50 thousand simulation time steps [33, 72].

Typically, a simulation of wave propagation in a heterogeneous material is nonlinear.
Thus, some higher harmonic frequencies of the source frequency are generated. The source
frequency is usually between 0.5 and 2MHz. Differences between harmonic frequencies
generated in water and tissue are shown in Figure 2.2. At low focused locations, it is
possible to get up to 10 harmonic frequencies, but at highly focused locations. Up to 600
harmonics would be useful for accurate modeling of heat propagation. For example, for
histotripsy, up to 50 harmonics may be needed [33, 72].

In a real situation, for example, it is necessary to carry out a simulation of ultrasound
propagation in the real domain with a size of 5 cm3 (uniform Cartesian grid), the output
data of the simulation must be saved using the maximum frequency 20MHz and the speed
of sound is assumed to be 1,500m s−1 (in water). So, with respect to the Nyquist theorem,
a simulation grid size of 26673 is needed and this means 71GB space for one matrix (one
step in time) [33, 72].

To avoid the computational complexity of solving nonlinear acoustic equations in 3-D,
there are one-way models, which have been successfully solved and simulated in homoge-

1http://miamiurologyconsultants.com/images/HIFU_lesions_labeled_C.jpg
2http://www.stargen-eu.cz/ostatni/medicina-2/fokusovany-ultrazvuk
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Figure 2.2: Time domain waveforms at the maximum peak pressure location in water and
kidney and windowed harmonic frequency spectrum of the same wave forms3.

neous media. However, for heterogeneous simulation of HIFU beams, the use of full-wave
nonlinear models has been reported. These models are based on finite difference time do-
main (FDTD) methods (e.g. SimSonic4 software). The computation has excellent weak
scaling for properties for given grid sizes, but for large grids, there is big accumulation
of numerical dispersion. The possible way to eliminate numerical dispersion is using the
Fourier pseudospectral method and a more efficient k-space pseudospectral method that
uses a time-staggered PSTD (e.g. software, such as k-Wave [78])[33].

Special methods for nonlinear ultrasound simulations in an axisymmetric coordinate
system were also developed. The assumption of axisymmetry allows simulations with dense
computational grids to model the propagation of nonlinear fields over large domains [81].

Typical HIFU treatment planning should consist of several steps:

1. The first step is computed tomography (CT) or magnetic resonance imaging (MRI)
scan of the patient. On the scanned data a segmentation of bones, fat, skin, etc. is
performed and the medium properties are gained (density, the speed of sound). A
model for an acoustic simulation is created from these parameters [78].

2. The next step is the acoustic simulation. During the simulation HIFU, the source
ultrasound signal is emitted from a transducer into the tissue with which it interacts.
Multiple intersecting ultrasound beams are concentrated on the target (focus point).
Some phenomena, such as attenuation, time delay, scattering, or nonlinear distortion,
may occur during ultrasound propagation [7, 24, 73].

3. The output of the simulation can be in various quantities. This is usually acoustic
pressure, acoustic particle velocity, or time-averaged acoustic intensity. Based on
these data, for example, parameters for thermal simulations (the volume rate of heat
deposition) can then be calculated [78].

4. Finally, the thermal simulation is executed to calculate the heat deposition. The result
of the thermal simulation is information about the temperature in the target region

3The illustration taken from [72].
4http://www.simsonic.fr
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after heating and cooling, the thermal dose, and the lesion size and an accurate focus
position and aberration correction can be obtained. The final step is the application
of ultrasound treatment [12, 33, 51, 55, 73].

2.2 Acoustic simulations
To model the effects of nonlinearity, acoustic absorption, and heterogeneities in the material
properties, the final equation can be composed of three-coupled first-order partial differ-
ential equations [33, 73, 78] derived from conservation laws and a Taylor series expansion
for pressure about density and entropy - momentum conservation Equation (2.1), mass
conservation Equation (2.2) and pressure-density relation Equation (2.3)

𝜕u

𝜕𝑡
= − 1

𝜌0
∇𝑝+ F, (2.1)

𝜕𝜌

𝜕𝑡
= −𝜌0∇ · u− u · ∇𝜌0 − 2𝜌∇ · u+M, (2.2)

𝑝 = 𝑐20(𝜌+ d · ∇𝜌0 +
𝐵

2𝐴

𝜌2

𝜌0
− L𝜌) (2.3)

where u is the acoustic particle velocity, 𝑝 is the acoustic pressure, F is a force source
term in Nkg−1, M is a mass source term in units of kgm−3 s−1, d is the acoustic particle
displacement, 𝜌 is the acoustic density, 𝜌0 is the ambient density, 𝑐0 is the isentropic speed
of sound, 𝐵/𝐴 is the nonlinearity parameter and L is a loss operator accounting for acoustic
absorption and dispersion that follows a frequency power law.

The equations can be discretized using k-space pseudospectral method, where spatial
gradients are calculated using the Fourier collocation spectral method, and time integration
is performed using an explicit dispersion-corrected finite difference scheme [33, 73].

It is crucial and also somewhat disadvantageous that this method uses a staggered
spatial and temporal grid for the calculation of the simulation step (the solution of the
coupled first-order equations). In practice, this means that after one simulation step, the
acoustic particle velocity is shifted relative to the acoustic pressure by half the time step
and also by half the grid point spacing. Details are explained, for example, in [33].

It is important that the computation required 6 forward 3-D fast Fourier transforms
(FFT), 8 inverse 3-D (FFTs) and overall it is about 100 element wise matrix operations.
The development of an efficient numerical implementation that partitions the computational
cost and memory usage across a large-scale parallel computer is desired.

The execution of the k-space pseudospectral method can be divided into three phases:
preprocessing, simulation, and postprocessing [33, 78]. During the preprocessing, the input
data for the simulation is generated - defining the domain discretization based on the size of
the physical domain and the maximum frequency of interest, defining the spatially varying
material properties (e.g., using a CT), defining the properties of the ultrasound transducer
(e.g., the aperture diameter of the transducer bowl and the radius of curvature) and the
drive signal, and defining the desired output data. The source ultrasound signals are always
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defined by a known harmonic function of a given frequency, usually a pressure sinusoid of
frequency ranging from 0.5–1.5MHz [73]. These parameters are defined in hierarchical data
format (HDF55) files.

The simulation phase is executed with the input data and with the discrete equations.
The output data are stored. The postprocessing phase contains the analysis of the outputs
and converts these data into human-readable form.

Briefly, during the simulation phase, the complete set of data stored in the memory
contains:

• 21× real 3-D matrices in the spatial domain, and 3× real and 3× complex 3-D matrices
in the Fourier domain (medium properties, time-varying acoustic quantities, derivative
and absorption operators and temporary storage),

• 20× one-dimensional (1-D) size variable real vectors and

• approximately fifty scalar values defining, e.g., the domain size, grid spacing, number
of simulation time steps, etc.

For computing 3-D FFT with MPI, two main ways of domain decomposition were
developed. The first of them is 1-D domain decomposition [33], where 3-D matrices are
partitioned along the z dimension and distributed across the MPI processes. 1-D vectors
oriented along the dimensions x and y are broadcast. All scalar variables are broadcast and
replicated on each process. An illustration of this approach is shown in Figure 2.3.

Figure 2.3: 1-D slab decomposition used to partition the 3-D domain within a distributed
computing environment6.

The second approach is hybrid open multiprocessing (OpenMP) / MPI decomposi-
tion [32] which tries to alleviate the disadvantages of the pure MPI decomposition by
introducing a second level of decomposition and further breaking the 1-D slabs into pencils.

Another approach to compute the simulations is to use the local Fourier basis decomposi-
tion. By reducing the communication overhead and accepting a small numerical inaccuracy,
it is possible to improve scaling from 512 to 8192 cores while reducing the simulation time

5https://www.hdfgroup.org/solutions/hdf5/
6The illustration taken from [33].
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by a factor of 8.55. This approach eliminates the necessity of all-to-all communications
by replacing them with local nearest-neighbor communication patterns[35] (Figure 2.4).
More recent work [77], dedicated to local domain decomposition analysis of performance
and accuracy on a single server containing eight NVIDIA P40 graphical processing units
(GPUs), and compares it with the MPI version. Another recent work describes the im-
plementation on the Salomon cluster equipped with 864 Intel Xeon Phi (Knight’s Corner)
accelerators [83].

2. Local Fourier Basis decomposition

2.1. Formulation

As described in Sec. , the motivation behind domain decomposition using local Fourier basis

is to replace the global FFTs by local FFTs computed independently on a series of subdomains.

The general approach as applied to the k-space pseudospectral method can be described as

follows. First, the field variables and material parameters are divided across the subdomains,

including an overlap region (halo) with a specified width (see fig. 1). Here, the so-called non-

overlapped decomposition is used [25], and the subdomains are assumed to always be of an equal

size. Second, for each subdomain, an independent version of the complete k-space pseudospectral

model is run. The spatial gradients are calculated as normal using local Fourier basis, but

before taking the FFT, the halo is exchanged and function values are multiplied by a bell

function. This tapers to zero within the overlap region to enforce periodicity. Here, the erf-like

bell function defined by Boyd is used [25]. This is equal to 1 within the physical domain and given

by H(x) = 1
2(1 + erf(Lx/

√
1− x2)) within the overlap region, where L is a scaling parameter,

which in this case is set to 2. The discrete values for x within the overlap region are given by

x = −1,−1 + 2/(N − 1), . . . , 1, where N is the size of the overlap in grid points.

sub-domain 1

total domain

data transfer at each time step

overlap region

physical domain

data initially copied to subdomains

sub-domain 2

sub-domain 3

Figure 1. Schematic showing domain decomposition using local Fourier basis

2.2. Multidimensional decomposition

In 3D, there are several approaches to the decomposition of the global domain into subdo-

mains, including 1D slab decomposition, 2D pencil decomposition, and 3D cube decomposition.

The main differences are the number of interfaces a wave must travel through when traversing

the grid in a given direction (this affects accuracy as discussed in Sec 2.3), the ratio between the

halo and local subdomain size, and the number of data transfers that have to be performed [26].

The ratio between the halo and the local subdomain size improves with the dimensionality of

Spectral Domain Decomposition Using Local Fourier Basis: Application to Ultrasound...

42 Supercomputing Frontiers and Innovations

Figure 2.4: Schematic showing domain decomposition using local Fourier basis7.

The ratio between total simulation time with and without saving the output data de-
pends besides from the size of the sensor mask also on the type of implementation. The
version with MPI-I/O technology provides several times faster parallel storing of the data.
Generally, the time of storing the data range between 10% and 70% of the total simulation
time. The minimal memory consumption of a typical simulation roughly corresponds to
the size of the 3-D simulation domain times 30. But the MPI version with lots of compute
nodes has a global memory peak many times higher (terabytes). With double enlargement

7The illustration taken from [35].
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of the simulation domain, the time required for the simulation is about ten times larger.
These values and claims were obtained by personal consultation and custom experiments.

2.3 Average intensity calculation
To calculate the thermal ablation in the tissue, an acoustic simulation is first performed.
When using a time-staggered PSTD method, the results are the time-varying acoustic
pressure and particle velocity (spatially and temporally staggered, a vector field) which can
be used to calculate the time-averaged vector intensity. The average intensity can be used
to calculate the inputs to the thermal simulations [80].

During the execution of the acoustic simulation, the acoustic pressure and the time-
staggered particle velocity are often stored within the entire 3-D simulation domain. The
reason why the entire domain is stored rather than a small area around the focus is the
aliasing that arises when calculating the divergence of the average intensity as the input
to the thermal simulations, and the accuracy of the input is the critical parameter of
usability/precision of the thermal simulations. To calculate the average intensity, it is
necessary to sample a signal with a duration of at least one period (𝑇 ), which is given by
the fundamental frequency of the ultrasound signal.

In each simulation (sampling) step, the current acoustic pressure and the time-staggered
particle velocity are available. The use of staggered temporal (and also spatial) grids in the
simulation calculations is related to discretization. In the case of discretization, their use
brings us additional accuracy and stability [23]. Importantly, Fourier interpolation, which
is typically used to accurately recalculate the particle velocity time shift, requires entire
time series. Therefore, after the end of the simulation phase, the calculation of the average
intensity vector Iavg is performed in the postprocessing phase according to

Iavg =
1

𝑇

∫︁ 𝑇

0
𝑝(𝑡)u(𝑡)d𝑡 (2.4)

or

Iavg =
1

𝑁

𝑁−1∑︁
𝑛=0

𝑝(𝑛)u(𝑛) (2.5)

where

u(𝑛) = ustaggered(𝑛+ 0.5) (2.6)

and 𝑛 or 𝑡 is the simulation time step or time, respectively, 𝑝(𝑡) is acoustic pressure and
u(𝑡) is the vector acoustic particle velocity, 𝑇 is the acoustic period of the fundamental
frequency of the ultrasound signal. The evaluation of this equation is performed through
numerical integration. 𝑁 is the number of discrete signal samples taken within the period of
𝑇 (it is assumed that 𝑇 can be divided exactly into 𝑁 sampling periods (1/𝑓𝑠), Δ𝑡 = 𝑇/𝑁
(so that 𝑁Δ𝑡 = 𝑇 ), ustaggered(𝑛) is the time-staggered particle velocity output from the
simulation, and u(𝑛) is the velocity shifted half a step forward in time, typically using
Fourier interpolation. For the calculation of the average intensity, the pressure and velocity
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data (vector field for the x, y, and z axes) must be read from the output file so that they
are continuous over time [26, 78, 86].

A key bottleneck in this procedure is the fact that the average intensity must be cal-
culated after the end of the acoustic simulation from the stored time-varying pressure and
velocity data. The reason is the time shift of the particle velocity with respect to the
acoustic pressure, which results from the time grid staggering in the k-space pseudospectral
simulation method [33, 78]. This procedure requires reading the large stored time-varying
simulation data from the files, temporally shifting the velocity data by half a time step,
e.g., using Fourier interpolation, and calculating the average intensity by multiplying the
velocity and pressure, and averaging. For large simulations, this means a large disk and
memory consumption, in the order of terabytes, while the result should be a relatively small
3-D matrix with average intensity [26, 33, 73, 78].

2.4 Thermal simulations
As already mentioned in the Section 2.1, to obtain information about the temperature
in focused regions, the thermal simulations can be performed based on the outputs of
acoustic simulations. One of the ways to calculate thermal simulation is the Pennes’ bio-
heat equation [22, 26, 63, 73, 86] that uses, due to ultrasound absorption, the volume rate
of the heat deposition term 𝑄 as an input quantity and also includes heat loss due to tissue
perfusion (tissue blood flow) [78].

𝜌t𝐶t
𝜕𝑇

𝜕𝑡
= 𝐾t∇2𝑇 − 𝜌b𝑊b𝐶b(𝑇 − 𝑇b) +𝑄 (2.7)

where 𝜌t is the tissue density in kgm−3, 𝐶t is the tissue specific heat capacity in J kg−1K−1,
𝑇 is the total temperature in K, 𝐾t is the tissue thermal conductivity in Wm−1K−1, 𝜌b is
the blood density in kgm−3, 𝑊b is the blood perfusion rate in s−1, 𝐶b is the blood specific
heat capacity in J kg−1K−1, 𝑇b is the blood arterial temperature in K (initial temperature),
and 𝑄 is the volume rate of heat deposition in Wm−3. The subscripts ‘t’ and ‘b’ refers
to tissue and blood, resp. An example implementation (the time-domain solution) of this
function is the kWaveDiffusion MATLAB function from k-Wave toolbox [78].

The calculation of the 𝑄 term is performed as soon as the acoustic simulation reaches
a steady state. In the general case [26], the 𝑄 term can be calculated from the divergence
of the time-averaged intensity according to

𝑄 = −div(Iavg) (2.8)

where the divergence is calculated as the sum of the gradients for each axis. Another way
to calculate the 𝑄 term is by approximating the plane wave relationship [73]

𝑄 =
1

𝑐t𝜌t

𝑁∑︁
𝑛=1

𝛼t(𝑛𝑓0)|𝑃𝑛|2 (2.9)

where 𝑐t is the sound speed in the tissue, 𝜌t is the frequency dependent attenuation in
the tissue, 𝑓0 is the fundamental frequency of the ultrasound signal, 𝑃ℎ is the pressure of
the harmonic component ℎ and 𝐻 is the number of harmonics. The pressure values of
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each harmonic component can be obtained e.g. using the discrete Fourier transform of the
time-domain ultrasound waveforms at each spatial location.

2.5 Simulation outputs
The simulations outputs are usually saved in HDF5 files [33, 78]. This file format is built for
heterogeneous data, fast I/O processing and storage, and is composed of two primary types
of objects: groups and datasets, which may also contain attributes with some extra infor-
mation. By the way, this format also provides parallel writing to files. For postprocessing
and visualization, there are two basic types of datasets: 3-D datasets and 4-D datasets.

In case of time-variable 4-D datasets, acoustic pressure and acoustic particle velocity
can be stored across the defined area - sensor mask. Important is that the sensor mask can
be an arbitrary and sparse set of locations (e.g. part of the ball shape or selected points
corresponding to the skull bone illustrated in Figure 2.5) and the distribution of points in
the 3-D space can not be predicted. A typical pressure or velocity signal recorded at a single
grid point can be subdivided into three stages according to the magnitude of the amplitude
and its changes. During the first stage, the signal resembles noise with an amplitude close
to zero. The length (in samples) of this stage depends on the distance of the grid point
from the transducer. The second stage can be characterized by a large increase in amplitude
(a leading edge). This transient stage is usually very short, for example, around 5% of the
total simulation length. The third stage carries a relatively stable amplitude. This part of
the signal is the most important part of the calculation of a heat deposition [73]. The stable
stage usually starts at the moment when all waves emitted from the transducer arrive at
the focus point. A typical sampled pressure signal recorded at one grid point is shown in
Figure 2.6.

In 3-D datasets, aggregated values of acoustic pressure and acoustic particle velocity
are stored (minimum, maximum and root mean square (RMS)) or its final, minimum and
maximum values across the whole simulation domain. An example of volume rendered
maximum aggregated acoustic pressure and CT scan of a kidney is shown in Figure 2.7.
The figure is composed of two 3-D datasets. The blue cone with the small red area represents
the simulated acoustic pressure. Other blended colors correspond to different tissues in CT
data.

The data type of the computed values is float (32-bit). The datasets storage layout is
simple, that is, usually contiguous linearly saved values, which are less suitable, e.g., for
fast visualizations or postprocessing [40]. The format of the output data should be more
analyzed and improved, and this is also related to the possible research topic, the topic of
this thesis, and thus simulation data compression (more in Chapter 3). Everything depends
on the application of the simulation outputs. One thing is certain, the outputs are very
large and this fact must be considered.
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Figure 2.5: An example of a possible sensor mask definition for a skull8.

8https://www.bbc.com/news/science-environment-37276219
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Figure 2.6: Illustration of a HIFU simulation time-variable signal (acoustic pressure) at one
point in 3-D space including harmonic frequencies9.

9The illustration taken from [41].
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Figure 2.7: Example of volume rendered HIFU simulation output data10. The blue cone
represents the maximum acoustic pressure, other colors visualize different human tissues.
For example, the kidney is yellow.

10The illustration taken from [40].
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2.6 Application of simulation outputs
The applications of outputs are still in the development stage but can be, for example,
treatment planning, exposimetry, and medical equipment design. The output values are also
compared to the values measured from laboratory experiments, that is, in pure water [72].

One of the few published texts [72] concerns the use of a nonlinear ultrasound simulation
model to study the effect of attenuation, refraction, and reflection due to different types
of tissue on HIFU kidney therapy. Attenuation and beam splitting due to refraction were
found to be the most significant factors that reduce the intensity of the ultrasound field
(see Figure 2.8). Reflections from the rib cage could possibly cause significant losses, but
this can be avoided by optimal positioning of the transducer. The reflections due to tissue
interfaces were found to be negligible.
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Figure 3: (a) The focal point volume is shown with isosurfaces thresholded at -6 dB. The

target focal point is marked with a black cross. The shifting and splitting of the focal

point into one parent and four child focal volumes can be seen. (b) Histogram showing the

size of the child volumes relative to the parent focal volume for various pressure contours

varying from 50% to 80% of the global peak pressure.
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Figure 4: (a) Time domain waveforms at the maximum peak pressure location in water

and kidney. (b) Windowed (Hann) frequency spectrum of the same waveforms.

9

Figure 2.8: (a) The target focal point is marked with a black cross. It is possible to see
the shifting and splitting of the focal point into one parent and child focal volumes. (b)
Histogram showing the size of the child volumes relative to the parent focal volume11.

Other results [73] show that the efficacy of HIFU therapy in the kidney could be im-
proved with aberration correction. A method is proposed by which patient specific pre-
treatment calculations could be used to overcome the aberration and, therefore, make ul-
trasound treatment possible.

The next possible application is a “Convergence testing of a k-space pseudospectral
scheme for transcranial time-reversal focusing” [34]. The HIFU technology is used for the
treatment of essential tremors by ablation of the thalamus. The skull is an important
obstacle to efficient transcranial transmission of ultrasound. Ultrasound simulations are
used for time-reversal focusing.

Early-stage prostate cancer is often treated using external beam radiation therapy. This
procedure usually involves implanting a small number of gold fiducial markers into the
prostate to verify the position of the prostate gland between treatments. The objective

11The illustration taken from [72].
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of the work “Modelling beam distortion during focused ultrasound surgery in the prostate
using k-Wave” [24] was to systematically investigate, using computational simulations, how
the fiducial markers affect the delivery of HIFU treatment (see Figure 2.9).

Figure 2.9: Maximum pressure field (b) due to the presence of a single spherical marker
compared to (a) the a homogeneus simulation without a marker12.

Another publication that deals with the topic [7] experimentally investigates the effect
of a single external beam radiation therapy (EBRT) fiducial marker on the efficacy of HIFU
treatment delivery using a tissue-mimicking material (TMM).

Another study deals with transurethral ultrasound therapy and uses ultrasound simu-
lations to find out how prostatic calcifications affect therapeutic efficacy and to identify the
best sonication strategy when calcifications are present [74].

Significant applications of simulation outputs that are not directly related to HIFU
are in the field of UST. E.g., approach based on a second-order iterative minimization of
the difference between the measurements and a model based on a ray approximation to
the heterogeneous Green’s function [36] or also applications in the field of photoacoustic
microscopy [69, 70].

Ultrasonic simulations are also used in, for example, the inspection of railway track
infrastructure. An inspection based on nondestructive testing was developed. Ultrasonic
testing is one powerful method for nondestructive testing of internal railway crack, e.g.
detect internal defects. It is possible to simulate nondestructive testing processes that are
used to determine the parameters of ultrasonic testing [75](see Figure 2.10).

An interesting application of the outputs of HIFU simulations that are not directly
related to the k-Wave toolbox is an alternative solution to performing many simulations -
replacing with a surrogate model built from a database of simulation results. An interpo-
lator is used, which enables the generation of results in near real time for configurations
covered by the database range. This procedure and related tools have been implemented
in CIVA-HealthCare [13].

12The illustration taken from [24].
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(a)

(b)

Figure 2.10: (a) The cross section and 3-D computation domain of railway geometry. (b)
The 3-D beam pattern of RMS pressure for selected iteration steps for the value of pressure
≥ 3 Pa13.

13The illustration taken from [75].
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2.7 Technologies
The implementation of the discrete equations was originally written as an open-source k-
Wave acoustic toolbox for MATLAB. C++ simulation codes written as an extension to
this toolbox try to maximize computational performance for large simulations. The k-
Wave toolbox can be used for general time-domain acoustic and ultrasound simulations
in complex and tissue-realistic media. Among other things, the toolbox also includes the
option to use the forward model as a flexible time-reversal image reconstruction algorithm
for photoacoustic tomography with an arbitrary measurement surface and includes a fast,
one-step photoacoustic image reconstruction algorithm for recorded data. The HDF5 li-
brary, which also has a serial and parallel version (MPI-I/O) is used for storing simulation
outputs and inputs. There are 4 basic versions of implementations [78, 79]:

• The MATLAB version - it is not suitable for large simulations, it is not accelerated,
but it contains the most features, e.g. includes functions for thermal simulations.

• The C++ OpenMP central processing unit (CPU) version - accelerated version suit-
able for larger simulations. The feasibility of the simulation is determined by the
amount of available operating memory, and the simulation speed is mainly influenced
by the performance of the processor cores.

• The C++ GPU version - using CUDA to compute accelerated simulations on NVIDIA
graphics cards. There is a significant acceleration of the simulation calculation com-
pared to the OpenMP version, but the main limitation is the small amount of memory
on the GPU

Versions that have not yet been officially released are also being developed:

• The C++ MPI CPU version - used for the largest simulations, is written in C++
with MPI, FFTW14, single instruction, multiple data (SIMD) and is executed on
distributed clusters. Storing is performed via a parallel I/O module based on the
HDF5 library and Luster file system. The unavailability of large powerful computing
clusters for ordinary users may be limiting here [33].

• The C++ GPU version using the local Fourier basis decomposition - implementation
of the approach where global all-to-all FFT communications are replaced by direct
neighbor exchanges. At the expense of a slight reduction in accuracy, communication
can be significantly reduced. [35, 77, 83]

In general, the goal is to use the most modern technologies using parallel computing to
enable the fastest possible simulations.

14www.fftw.org
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Chapter 3

Compression methods

Since the goal of this work is to create a compression method for ultrasound simulation
data, this chapter is focused on the data compression methods which are most relevant to
the character of ultrasound simulation outputs. The point of the chapter is the introduction
of methods that could be used to create a benchmark. First, a general introduction to the
topic of data compression is presented. Then, the state-of-the-art compression methods of
binary executables, natural language text, images, video, and audio are mentioned. Next,
model-based coding is discussed. Some current papers and methods are described, which
are oriented to 3-D time-varying data. More relevant information is obtained from two
dissertations about ultrasonic signals compression. Finally, some methods from the HPC
field in connection with big data compression are presented.

3.1 Data compression
In brief, data compression is the art or science of representing information in a compact
form. These compact representations are created by identifying and using the structures
that exist in the data. The compression algorithm takes an input 𝑋 and generates a repre-
sentation 𝑋𝑐 that requires fewer bits, and there is a reconstruction algorithm that operates
on the compressed representation 𝑋𝑐 to generate the reconstruction 𝑌 . Based on recon-
struction requirements, data compression schemes can be divided into two broad classes:
lossless compression schemes, in which 𝑌 is identical to 𝑋, and lossy compression schemes,
which generally provide much higher compression ratio than lossless compression, but allow
𝑌 to be different from 𝑋. Depending on the quality required from the reconstructed signal,
varying amounts of loss of information about the value of each sample can be tolerated [67].

A compression algorithm can be measured in different ways - e.g. relative complexity,
required memory, speed, compression ratio. In lossy compression, there needs to be some
way to quantify the difference - often called distortion. In the compression of speech and
video, the final quality arbitrator is the human [67]. In the case of ultrasound signal com-
pression, the evaluation measures depend on the methods used by physicians or scientists
(more about measures in Chapter 4).

The development of data compression algorithms for a variety of data can be divided
into two phases - modeling (extraction of information about any redundancy and creation
of a model) and coding (a description of the model and how the data differ from the model
are encoded) [67].
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The principle of compression (especially lossless) is based on information theory (Shan-
non, probability, self-information, entropy) which are not described here due to lack of space.
Many approaches are based on this theory - Huffman coding, arithmetic coding, dictionary
techniques and their applications. With lossy compression some possibilities to reduce data
e.g. with vector and scalar quantization or differential encoding exist. Compression of mul-
timedia signals is often connected with transform coding (fast Fourier transforms (FFT),
discrete cosine transform (DCT), discrete wavelet transform (DWT)), which transforms the
input data into a form more suited for compression (usually lossy) [8, 9, 67].

3.2 State-of-the-art compression methods
Generally, it is challenging to find and check every compression method/tool. Usually, for
many different types of data, there are different sophisticated compression methods. All
data about compression quality, compression ratios and computing performance, specifically
for example memory consumption per signal sample in time, often cannot be read directly
from the available information. To measure the exact memory requirement of each method,
it is necessary to apply it to the required data, which is possible but very demanding. The
most known and state-of-the-art methods for common types of signals are mentioned bellow.

Image compression - JPEG 2000

JPEG 20001 is an image coding system that uses state-of-the-art (lossy and lossless) com-
pression techniques based on wavelet technology. It has a wide range of uses, from portable
digital cameras to medical imaging, and other key sectors. Thus, this compression could be
potentially applicable to the ultrasound simulations data. Of course, data compression in
2-D blocks, or its expansion into 3-D, is assumed here. Lossy compression of 3-D statistical
shape and intensity models of femoral bones is an example where the JPEG 2000 image
coding system is applied [44].

CMIX

CMIX2 is a lossless data compression program aimed at optimizing the compression ratio
at the cost of high CPU/memory usage. For new, this is the best known tool for large
text compression3. CMIX uses three main components: preprocessing, model predictor
(arithmetic coding), and context mixing. CMIX works with binary executables, natural
text language, and images. The main disadvantages in connection with potential ultra-
sound simulation data compression are the preprocessing stage, where the complete input
data must be transformed into another form and at least 32GB of random-access memory
(RAM).

OptimFROG

OptimFROG4 is a lossless audio compression program. It is similar to ZIP compression,
but it is highly specialized in compressing audio data. The compression ratios that can be
obtained with OptimFROG are generally ranging between 25% and 70%. This method is

1http://jpeg.org/jpeg2000/index.html
2http://www.byronknoll.com/cmix.html
3http://mattmahoney.net/dc/text.html
4http://losslessaudio.org/
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specialized for optimized high compression ratios at the expense of encoding and decoding
speed. A comparison of CPU usage versus file size is shown in the Figure 3.1.

Average of all CDDA sources

These graphs are part of a report which can be found on
audiograaf.nl/losslesstest/Lossless audio codec comparison - revision 5 - cdda.html
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Figure 3.1: Lossless audio codec comparison. CPU-usage versus file size, average of all
CDDA sources.5.

5These graphs are part of a report which can be found on http://www.audiograaf.nl/losslesstest/
Lossless%20audio%20codec%20comparison%20-%20revision%205%20-%20cdda.html.
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Audio compression

In addition to the already mentioned OptimFROG, which is among the codecs with the
highest lossless compression, plenty of coding methods have been developed to deal with
the compression of audio and speech signals. Motion picture experts group 1 (MPEG-1)
or MPEG-2 audio layer III (MP3), MPEG-2 advanced audio coding (AAC), Ogg Vorbis,
Windows media audio (WMA) are the most known lossy audio compression technologies.
Lossy compression methods provide higher compression ratios at the cost of fidelity. These
methods rely on human psychoacoustic models to reduce the fidelity of less audible sounds.
In contrast to this, lossless methods produce a representation of the input signal that de-
compresses to an exact duplicate of the original signal. However, the compression ratios are
around 50–75% of the original size. There is a possibility to apply some of these techniques
to ultrasound simulation data, but general audio signals differ from ultrasound simulation
signals - e.g., by number of harmonic frequencies (see Chapter 2). Furthermore, since the
existing audio coding methods were not designed for use in extremely memory-limited en-
vironments, they consume the signal samples in frames typically containing thousands of
samples. The size of these frames directly affects RAM consumption. These high memory
requirements probably bring disadvantages for use in acoustic simulations. The following
is a description of several methods, implemented in the FFmpeg6 framework, that could be
used for comparison with possible ultrasound signal compression [10, 19].

AAC is an international standard for lossy audio compression. It was designed to be
the successor of the ubiquitous MP3 format. Because AAC generally achieves better sound
quality than MP3 at the same bit rate. The compression process can be described as follows.
First, a modified discrete cosine transform (MDCT) based filter bank is used to decompose
the input signal into multiple resolutions. Afterward, a psychoacoustic model is used in
the quantization stage to minimize the audible distortion. The time-domain prediction can
be employed to take advantage of correlations between multiple resolutions. The format
supports arbitrary bit rates. The minimum frame size is 1024 samples.

Dolby AC-3 (also Dolby digital, ATSC A/52) is a lossy audio compression standard
developed by Dolby Laboratories. The decoder has the ability to reproduce various channel
configurations from 1 to 5.1 from the common bitstream. During compression, the input
signal is grouped into blocks of 512 samples. However, depending on the nature of the
signal, an appropriate length of the subsequent MDCT-based filter bank is selected. The
format supports selected bit rates ranging between 32 and 640 kbit s−1. The minimum
frame size is 1536 samples.

Opus is an open lossy audio compression standard developed by the Xiph.Org Founda-
tion. It is the successor of the older Vorbis and Speex methods. The codec is composed of
a layer based on linear prediction and a layer based on the MDCT, but both layers can be
used at the same time (hybrid mode). Opus supports all bit rates from 6 to 510 kbit s−1.
The minimum frame size is 120 samples. This compression requires input values in 16-bit
PCM format.

ADPCM is a lossy compression format with a single fixed compression ratio of approx-
imately 4:1. ADPCM compression works by separating the input signal into blocks and
predicting its samples on the basis of the previous sample. The predicted value is then
adaptively quantized and encoded in the nibbles, giving rise to the 4:1 compression ratio
(192 kbit s−1 for 48 kHz sampling rate). A psychoacoustic model is not used at all. The
minimum frame size is 2036 samples.

6https://ffmpeg.org/
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FLAC is an open lossless audio format now covered by the Xiph.org Foundation. FLAC
uses linear prediction followed by coding of the residual (Golomb-Rice coding). For music,
various benchmarks reported that FLAC generally reduces the size of the input signal size
to 50–75% of the original size. The minimum frame size is 16 samples, which is not so
much, but on the other hand, the compression ratios are not very high.

ALAC is the open lossless audio format by Apple. Similarly to FLAC, ALAC uses
linear prediction with Golomb-Rice coding of the residual. Furthermore, the achievable
compression performance is similar to that of FLAC. The minimum frame size is 4096
samples, which is very high.

As mentioned earlier, the typical size of the ultrasound data to be compressed reaches
about 0.5MHz. The frame sizes can be set to the minimum supported size of a given com-
pression method, but still typically require thousands of bytes of memory for one processed
signal at a time. In conjunction with the previous point, such large frame sizes make the
common audio codecs unusable for compression of the ultrasound data. Another issue to
deal with is the sampling rate. Because the human hearing range is commonly given as
20 to 20,000Hz, the common audio codecs were designed to process signals of comparable
rates (e.g., 44.1, 48, 96, or 192 kHz). However, ultrasound signals are acquired (simulated)
at a much higher sampling rate. Another problem is that many audio compression tech-
niques require a normalized signal at the input, for example, to the ⟨0, 1⟩ interval. The
outputs of ultrasound simulations are difficult to normalize, as the range of values is not
known in advance.

3.3 Model-based coding
The idea of a model-based compression coding scheme is to characterize the source data in
terms of some strong underlying model. Thus, some model parameters exist that define our
signal [9]. It can be combined with transform coding - models created with transformed
form of input signal.

A typical example of the model-based approach is presented in a paper named “Model-
based filtering, compression and classification of the ECG” [17]. It is based on a realistic
nonlinear electrocardiogram model (ECG) to account for T-wave asymmetry. The fitting
procedure using a nonlinear optimization allows filtering (removing noise), efficient com-
pression, and classification of the ECG. Compression based on the ECG signal model based
on the hybridization technique is also addressed in [2].

There are also techniques for model-based coding of 3-D head sequences [25]. 3-D frames
are analyzed and registered using a 3-D face model. The result is efficient compression.

In the voice codecs section, a model-based coding algorithm of MDCT spectral coeffi-
cients is used[71] in AAC, Dolby AC-3 and Opus.

Model-based compression scheme for seismic data models seismic traces as multitone
sinusoidal waves superposition. Sinusoidal waves are represented by a set of distinct pa-
rameters. Here, a parameter estimation algorithm takes place. The performance of the
method was shown to be better than that of linear predictive coding (LPC) and distributed
principal component analysis (DPCA) [56].

An evaluation of model-based approaches to sensor data compression is presented [29].
This publication provides in-depth analysis of the benchmark results, obtained using 11
different real data sets consisting of 346 heterogeneous sensor data signals (see Figure 3.2).
Compression approaches are classified into 4 categories: constant models, linear models,
nonlinear models, and correlation models. The constant models category includes, e.g.,
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piecewise aggregate approximation (PAA), piecewise constant approximation (PCA), adap-
tive piecewise constant approximation (APCA), and piecewise constant histogram (PCH).
Linear models include, for example, piecewise linear approximation (PLA), piecewise linear
histogram (PWLH), sliding window and bottom-up (SWAB), lightweight temporal compres-
sion (LTC), and slide/swing filters (SF). The category of nonlinear models includes Cheby-
shev approximations (CHEB). Correlation models include self-based regression (SBR), ro-
bust information-driven data compression architecture RIDA, and grouping and amplitude
scaling (GAMPS). Six approaches were selected for experimental evaluation: PCA, APCA,
PWLH, SF, CHEB, and GAMPS. The datasets contain various physical variables, e.g.
moisture, humidity, voltage, radiation, or pressure. The interesting thing is that the com-
pression ratio with the error tolerance set to 1 and 5% is usually significantly better for the
pressure dataset than for the other signals. From this it can be concluded that model-based
coding could also be suitable for our HIFU simulation signals.

size) that might significantly affect the performance of
compression. However, finding the best parameters for
each method would be difficult; and even if we could find
them, it would be unfair to the methods with fewer
parameters. Therefore, for fair comparison, all the para-
meter settings are decided based on the original authors’
recommendation and fixed for all runs. In case of no precise
recommendation, we use a test set consisting of 10 streams
for each data category. For each parameter setting, we
define all possible values and then use brute-force search to
find the best value with respect to compression ratio. The
compression ratio is used because it is considered as the
most important metric.

In addition, by the design of our framework, potential
users are still able to change these parameter settings by
simply altering the configuration file in the benchmark. This
is actually another motivation of our benchmark, which
aims to offer a reference for potential users to find not only
best suited method but also appropriate parameters for
their specific application.

3.3 Data Sets

To evaluate the model-based compression methods under
realistic settings, we carefully chose sensor data sets while
considering heterogeneity of sensors, volatility of data

values, diversity of sampling rates, and regions where the
data were collected. The data sets were obtained from a
wide variety of sensors deployed for an environmental
monitoring project.5 These sensors measured 11 physical
variables: moisture, pressure, humidity, voltage, lysimeter,
snow height, temperature, CO2, radiation, wind speed and
wind direction. Each data set contains a different number
of sensor data signals from another. Table 3 offers key
statistics of each data set, and Fig. 5 demonstrates
a subsequence of each data set. As mentioned above, the
sensor signals show very diverse trends and volatilities of
data, which can effectively impact the performance char-
acteristics of each model-based compression approach.
Note that the mean and min values of snow height have
negative values, which are inaccurate, due to the sensors’
mechanical problems for some periods.

3.4 Evaluation Measures

We characterize the compression methods compared in the
benchmark using five measures: compression ratio, computa-
tion time, transmission cost, approximation error, and sensitivity
to outliers. Regarding transmission cost, we consider two
important metrics: packet ratio and power ratio. We
describe the details for each of the measures in the sequel.

2440 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 11, NOVEMBER 2013

Fig. 5. Visualizations of 10,000 data points in each sensor data set.

TABLE 3
Real Data Sets Used in the Benchmark

5. http://www.swiss-experiment.ch.
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Figure 3.2: Real data sets used in the benchmark7.

7The illustration taken from [29].
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3.4 3-D time-varying data compression
The next point of view, which is connected to the topic compression and ultrasound simu-
lation data, is 3-D time-varying data compression. Some works in the medical data imaging
section, which are focused on 4-D (usually volume) medical data, GPU, visualization and
also compression. None of the bellow mentioned techniques is focused directly on ultra-
sound.

For example, there is a framework for 4-D medical data compression architecture [87].
It is based on the detection of spatial and time redundancy in recorded 4-D medical data.
The motion that produces input parameters for the neural network is analyzed. It is a
combination of segmentation, block matching, motion field prediction, and wavelet packets.
However, this framework is designed for general medical data and from the perspective of
parallel processing, memory requirements and large-scale simulations it is not suitable for
large ultrasound simulation data.

Compilation is usually related to rendering (out-of-core streaming techniques, GPU).
Some streaming compression techniques have been developed for interactive visualization
of time-varying volume data [62]. The rendering scheme combines a temporal prediction
model and variable-length coding with a fast block compression algorithm. However, similar
to other methods, 4-D data must be stored somewhere and are not applicable to on-the-fly
ultrasound simulations.

For large-scale scientific simulations, which typically run on a cluster of CPU and the
time steps are stored in the file system, compression of floating-point values was pro-
posed [54]. Most of the compression schemes are designed to operate offline, but this
proposed lossless scheme works online and achieves state-of-the-art compression rates and
speeds. This method is also included in the HPC compression category. It is probably pos-
sible to apply these methods to ultrasound simulations as well, but the average compression
rates of around 30% that the method achieves may not be so beneficial for the simulations.

Another important thing is a fast decompression process. A compression scheme for
large-scale time-varying volume data using spatio-temporal features with low-cost and fast
decompression process was proposed [88]. This compression scheme contains two compres-
sion processes: spatial domain compression and temporal domain compression, which utilize
spatial features and temporal features and are also connected to the fast rendering process
(specialized particle-based volume rendering (PBVR)). However, this case of compression
and decompression probably is not designed to work with really large-scale datasets. The
presented experiments were carried out with only about 19GB of data for all time steps
and are not focused on on-the-fly parallel processing with a cluster of CPUs.

3.5 Ultrasound signals compression
Some works have been developed focused directly on the ultrasound signals compression.
Many techniques have been applied to process 1-D ultrasonic signals (e.g., matching pursuit,
1-D discrete cosine transform (DCT), Walsh-Hadamard transform (WHT)) [1, 9]. They
specialize in the topics of general ultrasonic imaging [11, 39, 64], 3-D ultrasound computed
tomography (USCT) [66] or fetal Doppler ultrasound audio signals [76].

The last publication [76] is older, but the character of Doppler ultrasound signals is
similar to HIFU simulation signals. A method was proposed to reduce the data rate for
transmitting signals to cardiotocographs. The method involves splitting the signal into
amplitude and frequency components. The amplitude is represented by samples of the signal
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envelope, and the frequency information is represented by the number of zero-crossings
within fixed intervals (windows). They claim that their method can be used to reproduce
the signal with no audible difference compared to the original waveform. A 15: 1 reduction
in the data rate is achieved. However, the purpose of Doppler ultrasound signals (e.g. to
determine the fetal heart) is different from HIFU signals and better precision than “no
audiable difference” is needed for HIFU simulations (Figure 3.3).

Figure 3.3: A fetal Doppler ultrasound audio signal shown over one heart cycle: (a) before
compression; (b) after reconstruction using 5 ms windows and zero-crossing averaging8.

The dissertation “Compression, estimation, and analysis of ultrasonic signals” [11] deals
with different signal processing techniques to compress and denoise ultrasonic signals. The
focus is on ultrasonic imaging, so the processing of data gained by transmitting acoustic
waves into the specimen using an ultrasound transducer. The compression of this type of

8The illustration taken from [76].
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data is also handled, for example, by publication [39]. Other work addresses this problem
using deep neural networks [64]. The type of data in ultrasonic imaging is different from
HIFU.

The other dissertation named “Data Compression in Ultrasound Computed Tomog-
raphy” [66] is focused on the reduction of 3-D USCT data. USCT is developed at the
Karlsruhe Institute of Technology aiming at a new medical imaging system for early detec-
tion of breast cancer. A discrete wavelet based data compression method at a compression
ratio of 15 was suggested for compression of USCT datasets.

There are also other compression algorithms for radio frequency (RF) ultrasound sig-
nals [1, 15, 37]. These images are compressed after analog to digital conversion and before
beamforming. The most used techniques are peak gates (PG), trace compression (TC),
largest variation (LAVA), linear predictive coding (LPC), and also the well-known ZIP,
JPEG or MPEG. In context with HIFU simulation signals, these data have some similar
properties, i.e., temporal redundancy between adjacent frames.

In the area of GPU-based simulations, a paper focused on acceleration of GPU-based
ultrasound simulation via data compression [27] was published. They have demonstrated a
speedup of 1.5 times on a simulation that compresses single-precision floating-point values
into 3 bytes. Unfortunately, this approach was developed only for small two-dimensional
(2-D) simulations on GPU.

3.6 High-performance computing data compression
With exascale computing era, big problems are approaching - transferring and storing really
big data. It is quite challenging to design a generic error-bounded lossy compressor with a
very high compression ratio for HPC applications [19].

There is some comparison of the most known lossy and lossless compression schemes [68].
The lossless compression schemes such like FPC, ISOBAR, PRIMACY, ALACRITY, CC
or IOFSL usually have the maximum achievable compression ratio just above 2×. Some of
them use well-known algorithms like zlib or gzip. The typical lossy compression schemes
for HPC are ISABELA, FPZIP or APAX. They use approximation algorithms similar to
B-spline on sorting data or Lorenzo predictor with mapping values to integers and encoding
residuals. The typical compression ratio, for example, for ISABELA is up to 5× with error
less than 1%. With lossy compressions several future challenges remain - e.g reducing
the memory requirements to perform in-situ compression and performing compression in
parallel.

ZFP and FPZIP are floating-point compressors developed by Peter Lindstrom et al.9
These libraries were designed for compressing 1-D, 2-D or 3-D arrays of floating-point
precision numbers. FPZIP is the floating-point analogue to PNG image compression, and
ZFP is an advanced JPEG for floating-point arrays. ZFP [53] is lossy but optionally error-
bounded compression, FPZIP [54] is a (older) library for lossless or lossy compression of
2-D or 3-D floating-point scalar fields.

SZ (Squeeze) [19] is a lossy compression scheme with strictly bounded errors and low
overheads. In an extreme-scale use case, experiments show that the compression ratio (3.3–
436) of SZ exceeds that of ZFP by 80%. The key idea is to check each data point to see if it
can be approximated by some bestfit curve fitting model and replace it by using a two-bit
code indicating the model type if the approximation is within user-specified error bound.

9http://computation.llnl.gov/projects/floating-point-compression
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Another example of a research area where it is necessary to solve data compression for
HPC is astronomy. Research astronomy facilities can generate terabytes of data per day
at a constant rate. Lossless compression algorithms were developed for these astronomical
radio data, which reduce their size to 28% of its original size and decompression with a
throughput greater than 1GB s−1 on a single core [61].

An example of an efficient compression algorithm that falls into the category of HPC,
simulations, and also into Section 3.4 (3-D time-varying data compression) is named HLR-
compress [50]. It is spatial data compression. It is based on hierarchical low-rank HLR
methods combined with floating-point number compression schemes. On average, a greater
than 100-fold compression of the original size of the datasets is achieved.

A similar lossy compression method, based on the theory of multigrid methods, is
multigrid adaptive reduction of data (MGARD) [3, 14]. A specific feature of this method
is the provision of guaranteed, computable bounds on the loss incurred by the reduction of
the data.

Some of the methods from that section could be applied offline to ultrasound simulation
outputs (ISABELA, ZFP, FPZIP); here is the question of compression error with regard to
the application of these data. Other methods could also be applied to the data during the
simulation calculation, e.g. MGARD or HLRcompres. However, these methods are focused
on spatial compression.
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Chapter 4

Evaluation measures

This chapter focuses mainly on compression quality metrics and evaluation methods. In
general, compression evaluation is a complex problem due to the lack of measures to univer-
sally evaluate compression methods. It is hard to claim that one compression algorithm is
better than the other. The first one can have a higher compression ratio with a smaller er-
ror, but the second one can be faster and less memory-intensive. Another thing is utilization
of the compressed data, e.g. an audio stream vs. an image. For some cases, mathematical
metrics can be used, but especially video, audio, and image compression quality measure-
ments have to be tested on humans - algorithms are based on auditory perception in a
human visual system [67]. Thus, it is necessary to set some evaluation methods for our case
of data compression, including, for example, in terms of the application of outputs or the
consumption of computing resources.

4.1 General measures
Several basic general evaluation measures exist [67]. A very basic and very logical way to
measure how well a compression algorithm compresses is to look at the ratio of the number
of bits required to represent the data before compression to the number of bits required to
represent the data after compression - compression ratio. The compression ratio can also
be expressed as a percentage, i.e. the reduction of the amount of data as a percentage of
the size of the original data. Another measure is rate - e.g. the average number of bits
required to represent a single sample.

Several ways to quantify the difference between the original and compressed signal in
lossy compression exists - often called the distortion. Lossy techniques are generally used
for the compression of data that originate as analog signals, such as speech and video. Here,
the final arbiter of quality is a human.

Two popular measures of distortion or difference between the original and reconstructed
sequences are the squared error measure and the absolute difference measure. These are
called difference distortion measures. If {𝑥𝑛} is the source output and {𝑦𝑛} is the recon-
structed sequence, then the squared error measure is given by

𝑑se(𝑥𝑛, 𝑦𝑛) = (𝑥𝑛 − 𝑦𝑛)
2 (4.1)

and the absolute difference measure is given by

𝑑ad(𝑥𝑛, 𝑦𝑛) = |𝑥𝑛 − 𝑦𝑛|. (4.2)

35



Several average measures are used to summarize the information in the difference se-
quence. The most used average measure is the average of the squared error measure - mean
squared error (MSE). The mean squared error can be defined as

𝐷 = 𝐸

{︃
1

𝑁

𝑁∑︁
𝑛=1

(𝑋𝑛 − 𝑌𝑛)
2

}︃
=

1

𝑁

𝑁∑︁
𝑛=1

𝐸
[︀
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2
]︀

(4.3)

where the information sequence is a sequence of random variables {𝑋𝑛} and the reconstruc-
tion sequence is the sequence of random variables {𝑌𝑛}, for a sequence of length 𝑁 , where
the expectation is with respect to the joint distribution of 𝑋𝑛 and 𝑌𝑛. In practice (ergodic
sequences), the ensemble averages in Equation (4.3) are replaced with the time averages to
obtain

𝜎2
𝑑 =

1

𝑁

𝑁∑︁
𝑛=1

(𝑥𝑛 − 𝑦𝑛)
2. (4.4)

Symbol 𝜎2
𝑑 is used for MSE and implies that the variance of the distortion sequence 𝑑(𝑥𝑛, 𝑦𝑛)

is equal to the second moment or that the distortion sequence is zero mean. For the size of
the error relative to the signal, it is possible to calculate the ratio of the average squared
value of the source output and the MSE - signal-to-noise ratio (SNR):

SNR =
𝜎2
𝑥

𝜎2
𝑑

(4.5)

where 𝜎2
𝑥 is the average squared value of the source output. The SNR can be measured on

a logarithmic scale in decibels (dB) units. If the interest is in the size of the error relative
to the peak value of the signal 𝑥peak, it is possible to use peak-signal-to-noise ratio (PSNR,
in dB):

PSNR(dB) = 10 log10
𝑥2peak
𝜎2
𝑑

. (4.6)

A simple difference distortion measure, that is, the average of the absolute difference
(based on the ℓ1-norm [21]), is also often used:

𝑑1 =
1

𝑁

𝑁∑︁
𝑛=1

|𝑥𝑛 − 𝑦𝑛|. (4.7)

To evaluate errors in some applications, the maximum value of the error magnitude may
also be of interest (ℓ∞-norm, ℓ∞-error [21]):

𝑑∞ = max
𝑛

|𝑥𝑛 − 𝑦𝑛| (4.8)

or its relative version [6]:

Relative 𝑑∞ =
max
𝑛

|𝑥𝑛 − 𝑦𝑛|

max
𝑛

(𝑥𝑛)
. (4.9)
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And similarly the distortion measure based on ℓ2-norm (ℓ2-error) [6]:

𝑑2 =

⎯⎸⎸⎷ 𝑁∑︁
𝑛=1

(𝑥𝑛 − 𝑦𝑛)2 (4.10)

and its relative version:
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𝑛=1 𝑥
2
𝑛

. (4.11)

For 2-D images compressed with JPEG or JPEG2000, structure similarity measure
(SSIM) is often used. The average mutual information (AMI) and normalized mutual
information (NMI) are widely used for image registration, the entropies are calculated to
show the quality of distorted images. Other metrics are homogeneity-based measure or
gradient vector flow [48, 66, 67].

4.2 Evaluating of compression quality of ultrasound simula-
tion data

For our case of data compression, the quality of compression can be measured, for example,
in three ways.

1. In the first case, the original and compressed data can be obtained and compared. It
is possible to use known quality metrics (MSE, SNR, ℓ∞ error, ...) and compare the
measured numbers (e.g. the compression ratio) of the new method with other state-of-
the-art compression methods designed for various data types (e.g. JPEG2000, AAC,
CMIX, ISABELA, SZ, ZFP). In this case, many algorithms can be tested because the
parallel environment where the simulations are performed and their applications are
not taken into account

2. The next possible measurement is from the point of view of the application of the
simulated data. It is meant as the utilization of the data by scientists or medical
doctors - e.g. visualization, related calculations, more efficient treatment planning. It
is possible to conduct experiments and measure how the compression method affects
the quality of the application. It is possible to compare the application with and
without compression. If a new compression can be shown to facilitate the work of
doctors or scientific research, the work can be said to have a scientific benefit. Carrying
out experiments is, however, demanding and complex, because the applications of the
outputs are still in the development phase. For example, a comparison of temperature
doses after thermal simulation with and without compression is offered here.

3. A third possible way of evaluating compression is in the area of computer simulation
performance. That is, how the new compression method affects computing resources
(RAM, a storage space, network bands, computing speed, the number of CPU cores
within a supercomputer, GPU memory), e.g., from an economic point of view, if
the target quality is set as satisfactory for applications and the goal is to compress
data on-the-fly, during simulations. However, this measurement case depends on the
previous case.
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Some combinations of approaches between these measures can be tested and evaluated.
It is ideal to carry out an evaluation using a combination of all three approaches. First,
to perform a potential new method of compressing ultrasound simulation data with other
methods that compress signals of a similar type, and then to evaluate this method from
the point of view of application, comparing the quality of the outputs and the use of
computing resources with and without compression. However, it is necessary to determine
the acceptable quality of the simulation outputs and their application.

4.3 Acceptable errors in ultrasound simulation outputs
It is very difficult to determine which output quality is satisfactory and which is not.
Unfortunately, there are almost no applications that determine specific and clear values of
acceptable errors.

The publication from which these values can be derived deals with intercomparison of
compressional wave models within transcranial ultrasound simulation [6]. Nine numerical
benchmarks are defined for increasing geometric complexity (e.g. different types of bones,
see Table 4.1 and Figures 4.1 and 4.2).

Table 4.1: Summary of benchmarks of the intercomparison. SC1 corresponds to the focused
bowl transducer and SC2 to the plane piston transducer. Outputs are resampled to a regular
Cartesian mesh with a grid spacing of 0.5 mm. Simulation layouts are shown in Figures 4.1
and 4.2), gp = grid points [6].

Label Description Output grid size

PH1-BM1-SC1/2 Water (lossless) 120×70mm (241×141 gp)

PH1-BM2-SC1/2 Water (artificial absorption of 1 dB/cm at
500 kHz) 120×70mm (241×141 gp)

PH1-BM3-SC1/2 Flat, single-layer skull (cortical bone) in
water 120×70mm (241×141 gp)

PH1-BM4-SC1/2 Flat, skin, three-layered skull, and brain 120×70mm (241×141 gp)

PH1-BM5-SC1/2 Curved, single-layer skull (cortical bone)
in water 120×70mm (241×141 gp)

PH1-BM6-SC1/2 Curved, skin, three-layered skull, and
brain 120×70mm (241×141 gp)

PH1-BM7-SC1/2 Truncated skull mesh in water, target in
visual cortex 120×70×70mm (241×141×141 gp)

PH1-BM8-SC1/2 Whole skull mesh, target in visual cortex 225×170×190mm (451×341×381 gp)
PH1-BM9-SC1/2 Whole skull mesh, target in motor cortex 212×224×184mm (425×449×369 gp)

Eleven different modeling tools are used to compare the results. Modeling tools include,
in addition to the pseudospectral method, other numerical techniques, such as the finite
difference method in the time domain, the angular spectrum method, the boundary element
method, and the spectral element method. Difference metrics used for the intercomparison
are defined in Equations (4.12) to (4.15):

Relative ℓ2 =

√︃∑︀
(𝑝1 − 𝑝2)2∑︀

𝑝21
, (4.12)
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Relative ℓ∞ =
max|𝑝1 − 𝑝2|
max(𝑝1)

, (4.13)

Focal (peak) pressure =
|max(𝑝1)−max(𝑝2)|

max(𝑝1)
, (4.14)

Focal position = ||pos max(𝑝1)− pos max(𝑝2)||2. (4.15)

Here, 𝑝1 and 𝑝2 are amplitudes of the pressure in the 2-D or 3-D comparison domains, for
reference and comparison field, resp. The sums and maximum values are over the entire
domain. The focal values are taken from inside the brain region only [6].

When comparing the results in a cross-comparison, the mean values for each benchmark
for the difference in focal pressure and position are less than 10% and 1mm, respectively.
It can be read from the results that the values of difference in focal pressure are below 1%
only exceptionally, usually during simulations only in water, without bones, skin and other
more complex properties of the medium. Similar are the results of relative ℓ∞ and ℓ2 errors
in cases for the entire field (simulation domain). Based on the results of these benchmarks,
where the errors of different modeling tools are evaluated, it can be concluded that the
maximum acceptable relative errors caused by the application of potential compression
should be in units of percent [6].
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linear wave propagation (previous studies have shown that

nonlinear effects are negligible for typical TUS parame-

ters)12 Only compressional waves were considered for this

stage of the intercomparison. In some circumstances, elastic

wave effects will also play a role, particularly if the ultra-

sound waves are not close to normal incidence with respect

to the skull bone,13,14 but these effects were not investigated

here. All simulations were conducted in three dimensions.

B. Transducer characteristics

Two transducer definitions were used (see Fig. 1). The

first was a spherically curved transducer with a 64 mm

radius of curvature and a 64 mm aperture diameter. This is

representative of the single-element transducers frequently

used for TUS.15 The second was a plane piston transducer

with a diameter of 20 mm. Piston transducers are often used

in multi-element arrays. While the typical diameter of an

element in a multi-element array is smaller than 20 mm, this

diameter was used to provide identifiable beam characteris-

tics within the simulation domain. For some numerical tech-

niques, piston transducers are easier to model, particularly

when aligned with the computational grid, which avoids

staircasing artifacts.16 Both transducers were driven at

500 kHz with a constant surface velocity of 0.04 m/s.17

Assuming an acoustic impedance of 1.5 megarayls, this is

equivalent to modeling the sources as a distribution of free-

field monopole radiators with a source pressure of 60 kPa.

C. Material properties

The material properties used for the benchmarks are

given in Table I (all materials are modeled as acoustic

media, i.e., fluids). These are intended to be representative

(rather than definitive) values and were taken from the range

presented in the literature.18–25 For the simulations including

absorption, the loss is defined to be non-dispersive, i.e.,

either frequency independent or, for power law models,

dependent on frequency squared.

D. Simulation outputs

The simulation results were stored as two variables

named p_amp and p_phase. These represent the ampli-

tude and phase of the complex pressure field at 500 kHz

over the specified comparison domain. For time domain

models, these parameters can be extracted precisely by set-

ting the time step to an integer number of points per period

(PPP), recording the steady-state pressure field for an integer

FIG. 1. (Color online) Transducer definitions and simulation layouts for benchmarks 1–7. Benchmarks 1–6 use a two-dimensional (2D) comparison domain

of 120 mm (axial) by 70 mm (lateral) through the central z plane. Benchmark 7 uses a 3D comparison domain of 120� 70 by 70 mm. The material properties

used are given in Table I.
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Figure 4.1: Transducer definitions and simulation layouts for benchmarks 1–7. Benchmarks
1–6 use a 2-D comparison domain, benchmark 7 uses a 3-D comparison domain (description
in Figure 4.1)1.

1The illustration taken from [6].
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with water on the exterior and brain on the interior as shown

in Fig. 1. The thickness values are based on average values

for parietal bone29 and scalp.30

Benchmark 5 increases the geometric complexity of

benchmark 3 by using a curved 6.5 mm layer of cortical

bone immersed in water, with inner and outer radii of 68.5

and 75 mm, respectively. Note that the bone layer is spheri-

cally (not cylindrically) curved, meaning the curvature in

the out-of-plane dimension is the same as that shown in Fig.

1. Benchmark 6 is a curved extension of benchmark 4,

where the thickness values correspond to differences in the

curvature radii.

Benchmarks 7–9 increase the geometric complexity fur-

ther by using a homogeneous skull mesh generated from the

MNI152_T1_1mm magnetic resonance imaging template

brain.31,32 The template image was run through an adapted

version of SimNIBS headreco.33 Additional smoothing of

the tissue surfaces while simultaneously preventing intersec-

tions between neighboring surfaces was performed using

SimNIBS functions. Benchmarks 7 and 8 use a transducer

position targeted at the foveal representation of the primary

visual cortex, while benchmark 9 uses a transducer position

targeted at the hand area of the primary motor cortex.

The skull mesh was stored as two .stl files represent-

ing the inner and outer surfaces of the skull bone. Position

transforms were stored as three-dimensional (3D) affine

transformations that position the transducer relative to the

coordinates in the .stl files. Grid-based discretizations

containing a binary skull mask were also generated using

the iso2mesh MATLAB toolbox.34,35 These were generated

on a regular Cartesian mesh at a range of resolutions after

applying the appropriate inverse position transforms (to

move the skull mesh relative to the transducer) and were

truncated to the appropriate comparison domain (see Sec.

II D). The skull files and position transforms are available

alongside the simulation results.11

G. Intercomparison metrics

A number of metrics were chosen to compare the simu-

lated fields. Mathematical definitions for some metrics are

given in Table III. Metrics based on the entire field were

taken from the exit plane of the source, excluding the first

grid point in the x-direction for the piston transducer and the

first 19 grid points in the x-direction for the bowl transducer.

The relative L2 and L1 errors provide a useful (and strict)

measure of the overall differences between simulations.

FIG. 2. (Color online) Simulation lay-

outs for benchmarks 8 (top row) and 9

(bottom row) showing the central x-y
and x-z slices. The position of the bowl

transducer is shown for reference.

Benchmark 7 (shown in Fig. 1) uses a

subset of the skull mask and the same

relative transducer position as bench-

mark 8, with a reduced comparison

domain size as shown with the dashed

line. The material properties used are

given in Table I.
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Figure 4.2: Simulation layouts for benchmarks 8 (top row) and 9 (bottom row) showing
the central x-y and x-z slices (description in Figure 4.1)2.

2The illustration taken from [6].
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Chapter 5

Proposal of on-the-fly compression
in ultrasound simulations

This chapter covers the core of the work - proposal of on-the-fly compression in ultrasound
simulations. First, in Section 5.1, the objectives of the work are presented, that is, the
hypothesis is formulated and the way of verifying it. In the next Section 5.2, the potential
of the new compression method is shown on hypothetical application examples, and the
justification of this proposal is presented.

In the following Section 5.3, the proposal of the new compression method is detailed.
Experiments with this method and their results follow. Specifically, a comparison of the new
method with other state-of-the-art methods that have a similar character is presented. Since
there are a large number of compression methods for data with partially similar character,
as mentioned, among others, in Chapter 3, and it is not possible to make a comparison with
all of them, selected audio compression algorithms were used for this purpose. However,
these experiments are primarily intended to verify that the new method has comparable
properties in terms of output quality according to general evaluation measures, such as
compression ratio or PSNR.

The next Section 5.4 presents probably the most important part of this work, namely
the application of the compression method for on-the-fly calculation of the average acoustic
intensity in time-domain ultrasound simulations. The section first describes a new, more
efficient way to calculate the acoustic intensity using the already introduced compression
method. Furthermore, an experimental evaluation, where there is a comparison of the use
and not use of the compression with regard to the consumption of computing resources and
numerical errors.

5.1 Goal of the thesis
The area of interest of my work is the compression of HIFU large-scale simulation data.
No standard compression scheme exists for this type of simulation data. The goal was to
develop new methods for simulation data reduction that will be efficient and applicable
within large-scale HIFU simulations. Compression is assumed to be performed in parallel
and on-the-fly during simulations on large CPU clusters. From the point of view of scientific
contribution, the goal is primarily to find a significant application of this compression. The
scientific contribution of my Ph.D. work consists in proving the following hypothesis:
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It is possible to develop a novel on-the-fly compression method for 1-D time-varying data
series - HIFU simulation outputs, with a compression-ratio comparable the other state-of-
the-art methods, with the quality of application outputs from the users (scientists or medical
doctors) point of view using the compressed data will be comparable to the quality achieved
when the original uncompressed data or data compressed by other state-of-the-art methods
are used, and the novel method will lead in significant improvement of the HPC simulation
calculation through saving disk storage space by more than 90 % while the demands on other
computing resources, such as RAM and and computational time will remain approximately
the same.

The hypothesis is proved experimentally in the following Sections 5.3 and 5.4. At
least 3 types of simulation datasets for the experiments were obtained from scientists in
the field of HIFU simulations. The datasets contain typical data for clinical applications.
The experimental evaluation of quality of outputs applications is performed automatically,
e.g. calculation of heat propagation. Comparisons with other state-of-the-art compression
methods is made using general evaluation measures such as PSNR or the compression ratio.
The utilization of the computer resources is measured on HPC platforms typical for clinical
simulations.

5.2 Justification of the design of the novel method properties
Based on the study of the state-of-the-art in the field of ultrasound simulations, specifically
the k-space pseudospectral method that uses a time-staggered PSTD, it was generally found
that:

• the simulations generate really large data, continuously, during simulation calcula-
tions, and this data should be compressed already during the simulations,

• computations are performed primarily in a parallel environment and it is expensive
to exchange data between neighboring nodes, blocks or points,

• calculations have a high computational time and operational memory requirements
and since a large number of nodes and large matrices are used for calculations, an
increase in memory requirements for each point is undesirable,

• the selected sampled points can be often sparsely located in the space of the simulation
domain, multidimensional compression cannot be reasonably used,

• the outputs of the simulations have a harmonic character, while the input fundamental
frequency is known, and this information can be used in compression.

Furthermore, various compression methods were investigated and it was found that no
state-of-the-art method exactly matches for this type of data.

From these facts, it was decided that it would be appropriate to design a novel com-
pression method that would ideally have the following properties:

• design for parallel environment, so that data does not have to be sent between nodes,
blocks or points,

• on-the-fly simulation outputs processing, which allows saving compressed data during
the simulation,
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• low memory complexity, due to the high memory requirements for each point in the
simulation domain,

• high computational speed, which does not slow down the demanding calculation of
the simulation

• design for 1-D, due to the arbitrary shapes of the masks used in ultrasound simula-
tions,

• model-based coding, which uses the known input fundamental frequency and harmonic
character of the signal.

It is assumed that the novel method does not necessarily need to use spatial coherence, as
the individual points in space can be examined independently and sensor mask (selected
points to be sampled and stored) can be an arbitrary and sparse set of locations. Every grid
point of interest in 3-D space is processed separately. Moreover, by treating every spatial
grid point independently, no additional communication is needed on distributed clusters (in
the case of on-the-fly processing).

Suppose that some already existing state-of-the-art compression method was hypothet-
ically applied to the simulation data. Due to the nature of the processed ultrasound signal,
audio compression methods can be used, for example. Let us assume that the selected com-
pression method would have compression ratio 20:1. As discussed in the state-of-the-art
(Section 3.2), these methods process the signal by frames, which typically include thousands
of samples. Based on this, it can be assumed that the selected state-of-the-art compression
method could have a memory consumption per voxel (1 sampled point in the domain) of
1,024 bytes. Furthermore, let us assume that the novel compression method has a slightly
worse compression ratio of 10:1, but significantly less memory consumption of 16 bytes per
voxel for each harmonic component in the signal.

Several arguments why the development of a novel compression method defined in this
way makes sense are shown in Tables 5.1 to 5.4. Memory consumption in these examples
refers only to RAM, disk memory is not taken into account.

Let us define the simulation parameters as follows (close to the real life simulations):
The simulation domain size (number of voxels) 𝑁all is computed as 𝑁all = 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧,
where 𝑁𝑥, 𝑁𝑦, and 𝑁𝑧 are simulation domain sizes for the 𝑥-, 𝑦- and 𝑧-axes. The total
memory consumption is calculates as 30×𝑁all × 4 (ca 30 temporary matrices, 4 bytes per
voxel, see Section 2.2). The sensor mask size 𝑁sensor is the number of voxels sampled in
one time step and is calculated as 𝑁sensor = 𝑁all ×𝑅sensor, since the 𝑅sensor is a ratio that
indicates the number of sampled points of the domain size. The number of bytes stored in
one step is calculated as 𝑁sensor × 4 × 4 since 4 time-variable quantities are stored with 4
bytes per voxel. The simulation speed is hypothetical simulation speed given in steps per
second, adjusted for simulation size and computing environment.

In the first Table 5.1, another hypothetical (also realistic) example of simulation pa-
rameters is given. The simulation domain size is 7683 and in the each simulation step
10% of the simulation size is stored. Thus, the number of bytes stored in one simulation
step (sensor mask size) is ca 724MB. The total memory consumption (RAM) is ca 54GB
(30× 7683 × 4). We can assume that state-of-the-art compression method has a slightly
better compression ratio (20:1), but much bigger memory consumption per voxel 1,024.
The novel compression would require, for example, 48 bytes per voxel for 3 harmonic fre-
quencies (16 × 3). Data flow and increased memory consumption are shown in Table 5.2.
Without any compression there is excessive data flow (ca 760MB s−1), and with the use
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of some state-of-the-art compression method with a good compression ratio, the increase
in memory consumption is enormous (185GB). The novel compression method is a com-
promise, ca 8.6GB is not so much memory due to 54GB and the data flow 76MB s−1 is
acceptable.

Table 5.1: An example of simulation parameters for Table 5.2. The domain size: 7683,
10% of the size sampled for 4 time-variable quantities (acoustic pressure and the particle
velocity vector)

Simulation parameters
Total memory consumption 54GB
Simulation domain size (number of voxels) 452,984,832
Sensor mask size (number of sampled voxels in one time step) 45,298,483
Number of bytes stored in one step 724,775,731
Simulation speed (steps per second) 1.05
Bytes/voxel - novel compression method 48
Bytes/voxel - state-of-the-art compression method 1,024
Novel compression ratio 10:1
State-of-the-art compression ratio 20:1

Table 5.2: An hypothetical example of the comparison of approaches without compression,
with novel compression, and with state-of-the-art compression. The values are computed
from the parameters in Table 5.1.

No compression Novel
compression

State-of-the-art
compression

Mega samples/second 190 19 10
Megabytes/second 761 76 38
Increase in memory con-
sumption

0GB 9GB 186GB

Excessive data
flow OK

Excessive
increase in

memory
consumption
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The next hypothetical example of simulation parameters and the corresponding data
flow and the increase in memory consumption for larger simulations is shown in Tables 5.3
and 5.4. The simulation domain size is 11523 and ca 6.6% of the size is sampled. Total
memory consumption is much higher due to large-scale simulation on distributed clusters
(more than 700GB). We assume that the novel method is model-based and has higher
unit memory requirements for larger simulations, due to the occurrence of six harmonic
frequencies; therefore, the number of bytes per voxel of the novel compression method is
larger (96 bytes, 16×6). Due to the calculation on distributed clusters, the simulation itself
could be about twice faster. It can be seen an enormous increase in memory consumption
(more than 500GB) with the state-of-the-art compression method and large data flow
without any compression in Table 5.4.

Table 5.3: An example of simulation parameters for Table 5.4. The domain size: 11523, ca
6.6% of the size sampled for 4 time-variable quantities (acoustic pressure and the particle
velocity vector)

Simulation parameters
Total memory consumption 715GB
Simulation domain size (number of voxels) 2,038,431,744
Sensor mask size (number of sampled voxels in one step) 134,217,728
Number of bytes stored in one step 2,147,483,648
Simulation speed (steps per second) 2.19
Bytes/voxel - novel compression method 96
Bytes/voxel - state-of-the-art compression method 1,024
Novel compression ratio 10:1
State-of-the-art compression ratio 20:1

Table 5.4: An hypothetical example of the comparison of approaches without compression,
with novel compression, and with state-of-the-art compression. The values are computed
from the parameters in Table 5.3.

No compression Novel
compression

State-of-the-art
compression

Mega samples/second 1,176 118 59
Megabytes/second 4,703 470 235
Increase in memory con-
sumption

0GB 52GB 550GB

Excessive data
flow OK

Excessive
increase in

memory
consumption

The presented hypothetical examples show that it is really desirable to develop a new
compression method with the properties listed at the beginning of this subsection.
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5.3 Efficient compression of HIFU data
The subject of this section is the presentation of a new compression method for ultrasound
simulations. The core compression method for time varying HIFU simulation data I pub-
lished in [42], Efficient Lossy Compression of Ultrasound Data, with my colleagues Pavel
Zemčík, and Jiří Jaroš, and in [41], Efficient Low-Resource Compression of HIFU Data,
with my colleagues David Bařina, Pavel Zemčík, and Jiří Jaroš. Both publications contain,
in addition to the definition of the method itself, a comparison with audio codec - state-
of-the-art methods for on-the-fly data compression. The second publication is an extended
journal version of the first publication.

The compression algorithm is able to compress 3-D pressure time series of linear and
nonlinear simulations with very acceptable compression ratios and errors (over 80% of the
space can be saved with an acceptable error). The proposed compression enables significant
reduction of resources, such as storage space, network bandwidth, CPU time, and so forth,
enabling better treatment planning using fast volume data visualizations. This section is
based on the revised texts of the journal paper [41]. Specifically it contains a description
of the new method for compressing ultrasound simulation data, and also experiments and
comparison results with other compression methods. The presentation of this method here
is key to the Section 5.4 with its application to the calculation of time-averaged acoustic
intensity.

5.3.1 Compression method

Our compression method is focused on time-varying signals (on-the-fly data compression
during simulations) and is designed for 1-D data. Because the shape of the sensor mask can
be an arbitrary and sparse set of locations, we decided not to deal with spatial coherence.
Furthermore, by treating every spatial grid point independently, there was no need for ad-
ditional communication on the distributed clusters. The goals of the compression method
are low memory complexity and high processing speed; negligible data distortion is accept-
able. These intentions differentiate our method from other state-of-the-art compression
techniques.

The source ultrasound signal is defined by a known harmonic function of a given fre-
quency, usually a pressure sinusoid. We can assume that the time-varying quantities, such
as pressure and velocity at every grid point, also have a harmonic character with only small
amplitude and phase deviations. These quantities are usually amplitude-modulated and
can be composed of the fundamental and several harmonic frequencies. The number of har-
monics depends on the size of the simulation grid and a factor of nonlinearity. Currently,
we use up to five or six harmonics for real simulations, which corresponds to the HIFU in
thermal mode.

The proposed approach is to model an output signal, such as the decomposition of a 1-D
signal (one point in the 3-D space), as a sum of overlapped exponential bases multiplied
by a window function. We decided to use complex exponential bases, because such bases
can represent fundamental harmonic functions well, including phase changes and higher
harmonics, as well as window functions whose sum is constant if they are half-overlapped,
because of on-the-fly processing by parts of the signal. It is important that the input
frequency emitted by the transducer is known and that it can be used by the compression
algorithm.
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Each base is defined by its complex coefficients (amplitude and phase) and a harmonic
frequency (wavenumber). A shifted window function 𝑤 is defined as

𝑤(𝑡,𝑚, 𝑑) =

{︃
0 (𝑚+ 2)𝑑𝑇 ≤ 𝑡 < 𝑚𝑑𝑇

𝑤0(𝑡−𝑚𝑑𝑇 ) otherwise
(5.1)

or

𝑤(𝑛,𝑚, 𝑑) =

{︃
0 (𝑚+ 2)𝑑𝑁 ≤ 𝑛 < 𝑚𝑑𝑁

𝑤0(𝑛−𝑚𝑑𝑁) otherwise
(5.2)

where 𝑤0 is a window function (typically Hann or Triangular), 𝑁 or 𝑇 is the number of
samples within the period or acoustic period, respectively (Δ𝑡 = 𝑇/𝑁 , 𝑁Δ𝑡 = 𝑇 ), 𝑛 or 𝑡 is
the simulation time step or time, resp., 𝑚 is a window (the basis) index, and 𝑑 is an integer
multiple of overlap size (MOS). The length of the window is therefore 2𝑑𝑁 or 2𝑑𝑇 , resp.
We obtain complex exponential sliding-window basis vectors

𝑏(𝑡,𝑚, ℎ, 𝑑) = 𝑤(𝑡,𝑚, 𝑑)𝑒−𝑗ℎ𝜔𝑡 (5.3)

or

𝑏(𝑛,𝑚, ℎ, 𝑑) = 𝑤(𝑛,𝑚, 𝑑)𝑒−𝑗ℎΩ𝑛 (5.4)

where

𝜔 =
2𝜋

𝑇
and Ω =

2𝜋

𝑁
(5.5)

with the number of the harmonic frequency (wavenumber) ℎ and the known fundamental
angular frequency 𝜔 (Ω).

Let 𝑀 be the total number of periods of the fundamental frequency of the signal (let
us assume that 𝑀𝑁 is the total number of samples taken, also 𝑀𝑇 is the total duration
of the signal). The whole reconstructed signal 𝑠 can then be expressed as

𝑠(𝑛) =
𝐻∑︁

ℎ=1

2

𝑑𝑁

𝑀−1∑︁
𝑚=0

𝑏(𝑛,𝑚, ℎ, 𝑑)̂︀𝑘(𝑚,ℎ) (5.6)

where 𝐻 is the number of harmonics (1 to 𝐻), ℎ is a harmonic index, and 𝑘 are the resulting
complex coefficients. The normalization factor 2/𝑑𝑁 is based on the sum of the window
function samples 𝑑𝑁/2, i.e., the area 𝑑𝑇/2 in continuous time.

An illustration of three half-overlapped windows with 𝑑 = 2 (length = 4𝑁) and the
real-part sum of window functions is shown in Figure 5.1.

The coefficients 𝑘 for the harmonic frequency ℎ used to model the output simulation
signal 𝑥 are approximately computed for every frame 𝑚 (usually with a minimum length
of two periods 2𝑁 , which experimentally proved to be the most suitable) as a dot product
of the simulation signal sample 𝑥(𝑛) and the windowed exponential basis vector 𝑏 (the
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Figure 5.1: The illustration of three Hann window bases.

vinculum denotes complex conjugate of 𝑏)

̂︀𝑘(𝑚,ℎ) =

𝑀𝑁−1∑︁
𝑛=0

𝑏(𝑛,𝑚, ℎ, 𝑑)𝑥(𝑛). (5.7)

The bases of the individual harmonic components are independent/perpendicular to
each other because

𝑀−1∑︁
𝑚=0

𝑏(𝑛,𝑚, 𝑔, 𝑑)𝑏(𝑛,𝑚, ℎ, 𝑑) = 0 whenever 𝑔 ̸= ℎ. (5.8)

The coefficients for other harmonic frequencies can be computed independently and are
summed in the reconstruction phase. Every point in 3-D space can be processed separately
and in parallel within both the encoding and decoding phases. It is not necessary to have
the entire signal 𝑥 available to calculate one coefficient, because the sliding-window basis
vectors 𝑏 are zero for

(𝑚+ 2)𝑑𝑁 ≤ 𝑛 < 𝑚𝑑𝑁 . (5.9)

The number of memory cells 𝑐 (single-precision floating-point numbers) required for
computing intermediate results in one time step depends on the number of harmonics 𝐻
and it can be evaluated as

𝑐 = 4𝐻 (5.10)

as two complex numbers are needed per every harmonic frequency.
Within the decoding phase, the memory requirements remain the same as in the encod-

ing phase. Two complex coefficients are needed for every harmonic frequency; however, the
decoded samples are computed independently, which can be useful, for example, for fast
data visualization.
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The compression ratio of the method can be expressed as

length(𝑥)/(length(̂︀𝑘)2𝐻). (5.11)

The ratio is proportional to the width of the overlapping window bases. This signal
approximation method yields a very small distortion for the stable parts of the signal,
where the distortion depends only on the number of considered harmonic frequencies. The
distortion is greater in the transient parts of the signal.

5.3.2 Implementation

Currently, two baseline implementations of the proposed methods are available—an imple-
mentation in MATLAB and FFmpeg to process 1-D signals and a second implementation
in C++ to process large 4-D datasets. Both versions process the simulation data sequen-
tially and offline by reading datasets in the HDF5 format. Another parallel on-the-fly
implementation with CUDA and with the OpenMP version is also available.

The MATLAB and FFmpeg implementations were developed specifically to process 1-D
data (time series at a single grid point). The FFmpeg implementation mediates simple ways
for the compression method’s debugging, comparison with other coding methods (e.g., audio
codecs), and the visualizations of processing steps and results. The C++ implementation
differs from the MATLAB implementation in the ability to process a large amount of 4-D
data. Individual HDF5 datasets are loaded by 3-D blocks depending on the main memory
size. Both implementations were tested on a desktop computer with 24GB memory and
Intel Core i5-6500 processor. For experiments with extensive HDF5 files, the Salomon
cluster with 128GB memory, two Intel Xeon E5-2680v3 processors, and Lustre shared
storage space with a maximal theoretical throughput of 6GB s−1 for one computing node
was used [31].

5.3.3 Experiments and Results

Two sets of experiments were performed. The first set was focused on testing the compres-
sion method on 1-D signals, and the second set was conducted for large 4-D datasets. A
triangular window was used as a window function for the proposed compression method
for all experiments. The main objectives of the experiments were to determine the peak
signal-to-noise ratio (PSNR) with respect to the bit rate and to compare the proposed
method with other compression methods, particularly with audio codecs.

For the 1-D signal compression tests, three different types of signals were selected. We
always chose 50 random 1-D signals (points within the sensor mask) from the given datasets.
The schematic overview of the test signals is shown in Tables 5.5 and 5.6.

Table 5.5: The types of testing signals - part 1. All signals represent acoustic pressure.

Name Max number of harmonics (𝐻) Simulation size
Linear 1 256× 256× 350

Nonlinear 2 2 512× 384× 384
Nonlinear 6 6 1536× 1152× 1152
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Table 5.6: The types of testing signals - part 2. All signals represent acoustic pressure.

Name Sensor mask size Samples Period (𝑁)
Linear 55× 55× 82 3301 15

Nonlinear 2 101× 101× 101 10,105 35
Nonlinear 6 101× 101× 101 30,604 106

The signals differ mainly in the simulation size, sensor mask size, number of sampled sim-
ulation steps, input period, and type of the simulation. The dense sensor mask was always
defined within the highly focused HIFU area in which the highest amplitude and most of the
harmonics are observed. All signals contain acoustic pressure stored in 32-bit floating-point
format. The dataset referred to as Linear is the output of a linear simulation; thus, there
are no harmonics. The other datasets comprise the outputs from nonlinear simulations, and
the number of harmonics depended, among other factors, on the simulation resolution. For
a better connection to reality, a realistic simulation that was representative of the clinical
situation with heterogeneous tissue used a simulation grid size of 1536× 1152× 1152 and
contained about six significantly strong harmonics (referred to as nonlinear 6). The same
simulation (nonlinear 2) but with a smaller simulation grid size 512× 384× 384 contained
only two harmonics.

The compression experiments compared the results of the proposed HIFU compression
method (HCM) with several audio codecs implemented in the FFmpeg framework (either
natively or through an external library), specifically with ADPCM, FLAC, ALAC, AAC,
AC-3, Opus, and PCM. The main properties and settings of these codecs, including the
proposed method, are shown in Table 5.7. The above-listed methods were selected for
comparison purposes only. Except for PCM, none of them meets the memory requirements
needed for implementation in a distributed parallel environment. Because we target a
memory-limited environment, we set the frame size to the minimum size supported by the
specific sampling rate, sample format, and codec. We note that as a result of the frame-
based system, a delay is introduced after the encoding and decoding processes. This delay
is shown in the last column of the referenced table.

Table 5.7: Overview of tested formats and codec settings.

Codec Long Name Class Frame Size Delay
PCM Pulse-code modulation Lossless 1 0
FLAC Free lossless audio codec Lossless 16 0
ALAC Apple lossless audio codec Lossless 4096 0

ADPCM Microsoft ADPCM Lossy 2036 0
Opus Opus Lossy 120 120
AAC Advanced audio coding Lossy 1024 1024
AC-3 Dolby digital (ATSC A/52) Lossy 1536 256
HCM HIFU compression method Lossy 1 0

Because several audio codecs require the signal to be normalized on the ⟨0, 1⟩ interval,
we used the maximal absolute signal value for normalization. In some cases, the input
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signal had to be stored in 16-bit PCM format before the codec could be applied (ADPCM
and Opus). This conversion was performed with the use of the maximum 16-bit integer
value.

By default, the HCM expects an unknown maximum absolute signal value and therefore
uses 32-bit floating-point numbers to store compression coefficients. If the dynamic range of
values is known in advance, the method can convert 32-bit floating-point numbers into 16-
bit or even 8-bit integers with negligible loss of information (4 or 2 bytes for one complex
number). Thus, for normalized signals, two additional modifications of the HCM were
implemented. As shown in all figures and tables except Figures 5.2 to 5.4, 5.10 and 5.11,
the HCM used 8-bit integers for coefficients and thus 2 bytes for one complex number. For
a better understanding, a comparison of three types of HCM coding is shown in Figures 5.2
to 5.4.
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Figure 5.2: Different variations of the high-intensity focused ultrasound (HIFU) compres-
sion methods (HCMs). The average bit rate and the corresponding peak signal-to-noise
ratio (PSNR) for Linear dataset.

The dependence of the distortion on the bit rate is shown in Figures 5.5 to 5.7 for the
datasets Linear, nonlinear 2, and nonlinear 6. The lossless methods are represented by a
single point, as they do not have, by their nature, the ability to choose any custom bit
rate. Except for the ADPCM, the lossy methods are represented as a curve for which the
independent variable is the custom bit rate. Although the ADPCM is a lossy method, it
has no ability to choose a bit rate. Thus, in this case, the method is also represented by
a single point. Looking more closely at the referenced figure, we can see that the HCM
exhibited at least comparable compression performance. More precisely, the PSNR for the
Linear case, as shown in Figure 5.5, reached comparable values for all lossy methods except
the ADPCM and Opus, which had significantly worse results. The proposed HCM reached
the lowest bit rate. At its highest bit rate, the HCM also exhibited the best PSNR, which
was about 52 dB. It is possible to obtain better bit rates with the proposed method by
setting the multiple of overlap size (MOS) to higher values.

The results for the nonlinear simulation signals were slightly different from those for
the Linear dataset. In Figure 5.6, the PSNR and bit rate for the Nonlinear 2 dataset are
shown. We obtained a slightly worse PSNR, approximately 48 dB, for the proposed HCM,
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Figure 5.3: Different variations of the high-intensity focused ultrasound (HIFU) compres-
sion methods (HCMs). The average bit rate and the corresponding peak signal-to-noise
ratio (PSNR) for Nonlinear 2 dataset.

and better values for the other methods. We believe this was due to the presence of more
harmonics.

In the case of the Nonlinear 6 dataset (larger simulation grid size and about six har-
monics), the proposed method gave similar results as for the previous cases. ADPCM
exhibited comparable PSNR, and it was only slightly worse in terms of bit rate than the
proposed HCM. Moreover, the AAC codec achieved a slightly better bit rate, followed by
the competitive AC-3. Further details can be seen in Figure 5.7.

Different variations of the HCMs used for the Linear, Nonlinear 2, and Nonlinear 6
compression datasets can be observed in Figures 5.2 to 5.4. Importantly, the PSNR reached
comparable-quality values for all cases. It can be noticed that the bit rates converged to a
single point in the plot—this was caused by the use of a WAVE file header for storing the
compressed data. The WAVE format was used only for testing purposes with the FFmpeg
tool.

The particular results, including compression ratios, with the PSNRs set as close as
possible to 50 dB are listed in Tables 5.8 to 5.10. The values correspond to Figure 5.8. We
note the comparable bit rates of the HCM, AC-3, and AAC.

A short segment of a signal in the 1-D Nonlinear 6 dataset is shown in Figure 5.9.
The individual sub-figures illustrate the original, HCM-reconstructed, and corresponding
difference signals, respectively. All of these correspond to a MOS value set to 1. We note
the maximal error in a part with very transient signal values.

Table 5.8: Results for Linear dataset. Bit rates taken as close as possible to 50 dB.

HCM AC-3 AAC Opus ADPCM ALAC FLAC PCM
Bit rate (bit s−1) 1.28 1.33 5.33 6.38 4.27 7.54 43.42 16.19
Compression ratio 25:1 24:1 6:1 5:1 7.5:1 4.2:1 0.7:1 2:1

PSNR (dB) 52.05 44.66 48.67 22.43 33.83 101.11 101.11 101.11
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Figure 5.4: Different variations of the high-intensity focused ultrasound (HIFU) compres-
sion methods (HCMs). The average bit rate and the corresponding peak signal-to-noise
ratio (PSNR) for Nonlinear 6 dataset.

Table 5.9: Results for Nonlinear 2 dataset. Bit rates taken as close as possible to 50 dB.

HCM AC-3 AAC Opus ADPCM ALAC FLAC PCM
Bit rate (bit s−1) 0.98 1.33 2.03 5.65 4.12 6.69 27.04 16.06
Compression ratio 32.6:1 24:1 15.8:1 5.7:1 7.8:1 4.8:1 1.2:1 2:1

PSNR (dB) 47.81 47.87 49.85 25.35 42.03 101.23 101.23 101.23

We also conducted compression experiments with two 4-D datasets. The tested signals
were chosen from Nonlinear 2 and Nonlinear 6, and all the points stored in the sensor
mask were compressed (101× 101× 101× 10, 105 points for Nonlinear 2 4-D signal and
(101× 101× 101× 30, 604 points for Nonlinear 6 4-D signal). The proposed compression
method was tested with the setting of the MOS to values of 1, 2, 3, and 4.

We obtained interesting results for the Nonlinear 2 case (Figure 5.10). The PSNR values
for the 4-D dataset were approximately 20 dB better than for the 1-D signals.

In the case of the Nonlinear 6 signal, the results were slightly different (Figure 5.11).
The PSNR values for the 4-D signal were about 13 dB better than for the 1-D signal. This
phenomenon was likely caused by a 3-fold larger simulation grid size in the Nonlinear 6 case
but the same size of the sensor mask. We could conduct experiments with a corresponding
higher sensor mask size (e.g., 301× 301× 301) and expect results similar to those of the
Nonlinear 2 case, but more than 3TB of data would be need for the testing dataset, and
the time for offline compression would be enormous.

Table 5.10: Results for Nonlinear 6 dataset. Bit rates taken as close as possible to 50 dB.

HCM AC-3 AAC Opus ADPCM ALAC FLAC PCM
Bit rate (bit s−1) 0.92 1.00 0.69 5.55 4.05 4.53 19.41 16.02
Compression ratio 34.6:1 32:1 46.7:1 5.8:1 7.9:1 7.1:1 1.6:1 2:1

PSNR (dB) 45.92 49.80 50.82 28.94 51.28 102.34 102.34 102.34
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Figure 5.5: A relationship between the average bit rate and the corresponding peak signal-
to-noise ratio (PSNR) for Linear dataset with one harmonic.

 0

 20

 40

 60

 80

 100

 120

 0.01  0.1  1  10  100

P
S

N
R

 [
dB

]

bit-rate [bps]

HCM
AC-3
AAC
Opus

ADPCM
ALAC
FLAC
PCM

Figure 5.6: A relationship between the average bit rate and the corresponding peak signal-
to-noise ratio (PSNR) for Nonlinear 2 dataset with two harmonics.

The overall results indicate useful properties of the proposed method. The PSNRs of
all the signals had values comparable with those of the state-of-the-art audio codecs. The
maximum errors occurred only in short transient parts of the signals. The errors in the
stable segments were negligible. We expect better PSNRs with larger sensor masks and
smaller MOS values.

In further work from the point of view of publication [41, 42] it would be worth trying
to further optimize the basis and window functions so that the errors in transient signal
segments will possibly be reduced or to apply follow-up compression algorithms to further
compress the resulting coefficients so that higher compression ratios are achieved.

An efficient compression algorithm for HIFU simulation data was proposed, and offline
experiments were performed to evaluate it. We have shown that our method produces very
useful results. The important stable parts of the simulation signals are compressed with
very small distortion (0.1%) at compression ratios over 80%. The very short transient parts
of the signals are compressed with acceptable errors. The proposed compression algorithm
was also implemented in the existing implementation of the k-Wave simulation toolbox [78].
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Figure 5.7: A relationship between the average bit rate and the corresponding peak signal-
to-noise ratio (PSNR) for Nonlinear 6 dataset with six harmonics.
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Figure 5.9: Illustration of the Nonlinear 6 original, reconstructed, and difference signals
with multiple of overlap size (MOS) equal to 1.
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Figure 5.10: Peak signal-to-noise ratios (PSNRs) for different multiples of overlap size
(MOSs) with Nonlinear 2 1-D and 4-D signals.
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Figure 5.11: Peak signal-to-noise ratio (PSNRs) for different multiples of overlap size
(MOSs) with Nonlinear 6 1-D and 4-D signals.
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5.4 On-the-fly calculation of time-averaged acoustic inten-
sity

The subject of this section is the application of the compression method presented in the
previous chapter, i.e. on-the-fly calculation of the average acoustic intensity in time-domain
ultrasound simulations. The main article [43], On-the-Fly Calculation of Time-Averaged
Acoustic Intensity in Time-Domain Ultrasound Simulations Using a k-Space Pseudospec-
tral Method, that I published with my colleagues Pavel Zemčík, Bradley E. Treeby, and
Jiří Jaroš in the IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
journal, is the core publication of this work. This article presents a method for calculating
the average acoustic intensity during ultrasound simulation using a new approach that takes
advantage of compression of intermediate results.

The thermal simulation is preceded by the calculation of the average intensity within
the acoustic simulation. Due to the time staggering between the particle velocity and the
acoustic pressure used in such simulations, the average intensity calculation (Section 2.3)
is typically executed offline after the acoustic simulation, which consumes both disk space
and time (the data can spread over terabytes). Our new approach calculates the average
intensity during the acoustic simulation using the output coefficients of a new compression
method, which enables resolving the time staggering on-the-fly with huge disk space savings.
To reduce RAM requirements, the article also presents a new 40-bit method for encoding
compression complex coefficients.

Experimental numerical simulations with the proposed method have shown that disk
space requirements are up to 99% lower. The simulation speed was not significantly affected
by the approach and the compression error did not affect the prediction accuracy of the
thermal dose. From the standpoint of supercomputers, the new approach is significantly
more economical. Saving computing resources increases the chances of real use of acoustic
simulations in practice.

This section contains a description of a new time-averaged acoustic intensity calculation
approach and an experimental evaluation of the application of this calculation, i.e. the
section is based on the revised texts of the journal paper [43].

The following subsection follows the simulation workflow and offline average intensity
calculation that are described in the state-of-the-art part of this work - Section 2.3, as well
as the compression method described in the Section 5.3.1.

5.4.1 Proposed approach

This subsection is divided into 3 parts. The first is devoted to the calculation of the intensity
itself, the second to the memory requirements of the method and the third to the improved
coding of complex coefficients.

On-the-fly calculation of intensity

Here, we describe how to calculate the time-averaged intensity vector during the simulation
using on-the-fly data compression (Section 5.3.1) [41, 42]. This directly uses compression
coefficients to calculate the average intensity, which are not stored in files during the sim-
ulation.

In case of the average intensity calculation, we are specifically interested in the coef-
ficients of the acoustic pressure and the particle velocity. Let 𝑘𝑝 and ku_staggered be the

59



computed compression coefficients for the pressure and the staggered velocity from the pre-
vious Section 5.3.1. For simplicity, we consider the coefficients only for the one window
base. The shift of the particle velocity in time by half the sampling period (Δ𝑡/2, 1/2
sample, thus phase shift by Ω/2) is being calculated by exploiting a shift of the phase,
therefore

k𝑢(ℎ) = ku_staggered(ℎ)𝑒
𝑗ℎΩ/2 (5.12)

where k𝑢 is the particle velocity coefficient that is no longer shifted in time by (Δ𝑡/2)
relative to the pressure.

Equations (5.13) and (5.17) show only the derivation and only the last Equation (5.18)
or Equation (5.19) are important for the calculations. To use the integral for derivation, the
continuous notation is used. Using complex magnitude and phase angle of the coefficients,
the harmonic functions for the pressure 𝑝 and the velocity u with the angular frequency 𝑤
(first harmonics) and time 𝑡 for the one frame can be expressed as

𝑝(𝑡) = |𝑘𝑝| sin(𝜔𝑡+ arg(𝑘𝑝)) (5.13)
u(𝑡) = |k𝑢| sin(𝜔𝑡+ arg(k𝑢)). (5.14)

The average intensity can be calculated as the integral of product of pressure and particle
velocity over time from 0 to 𝑇 , dividing by 𝑇 to take the average

Iavg =
1

𝑇

∫︁ 𝑇

0
|𝑘𝑝| sin(𝜔𝑡+ arg(𝑘𝑝))

×|k𝑢| sin(𝜔𝑡+ arg(k𝑢))d𝑡

(5.15)

Iavg = |𝑘𝑝||k𝑢| cos(arg(𝑘𝑝)− arg(k𝑢))/2 (5.16)

by modifying the expression using trigonometric functions, we achieve

Iavg = |𝑘𝑝||k𝑢|Re(cos(arg(𝑘𝑝)− arg(k𝑢))

+𝑗 sin(arg(𝑘𝑝)− arg(k𝑢)))/2
(5.17)

Iavg = Re(𝑘𝑝k𝑢)/2 (5.18)

The average intensity over multiple frames (𝑀) including all harmonic frequencies 𝐻 can
be calculated using a simple principle of numerical integration with exploitation of non-
staggered velocity as

Iavg_all =
1

𝑀

𝑀−1∑︁
𝑚=0

𝐻∑︁
ℎ=1

Re(𝑘𝑝(𝑚,ℎ)k𝑢(𝑚,ℎ))/2. (5.19)

To obtain suitable results using the compression method, the half-width of the complex
exponential window basis should be an integer multiple of 𝑁 = 2𝜋/(𝜔Δ𝑡) (i.e. the input
period 𝑇 ), where 𝜔 is the known driving fundamental angular frequency and Δ𝑡 is known
time step. The minimum value of the half-width is equal to one period, and therefore, we
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need at least 2𝑁 of signal samples for the complete calculation of one complex coefficient.
However, if the signal already contains steady-state amplitudes, we can calculate an equally
accurate coefficient from the 𝑁 samples of the signal by mirroring the envelope (window
function). Thus, the window function has a constant value in the processed signal frame.
This is illustrated in Figure 5.12 (for the first harmonic frequency). The period is 106 time
steps. The first coefficient is “mirrored” and calculated as the sum of even (2nd, 4th,...,)
and odd (1st, 3rd,...,) coefficient for a signal length of one period. The second and third
coefficient are computed from two periods. To reconstruct one point in time of the modeled
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Figure 5.12: Accumulation of compression coefficients for the first and more periods.

signal, we need two coefficients whose weights are given by the overlapping envelopes. For
special cases, thus for the first and last period, the first and last coefficients are duplicated.

The minimum number of memory cells 𝑐 (single-precision floating-point numbers, 32
bits) required for computing intermediate results in one-time step for the stable parts of
the signal is

𝑐 = 2𝐻 (5.20)

as one complex number is needed per every harmonic frequency. Section 5.4.1 further
describes the method of encoding a complex coefficient to 40 bits instead of 2× 32 bits.

Compared to the original average intensity calculation procedure, the new approach
does not need to save the pressure and velocity data to a file during the simulation, but
needs more RAM. The calculation of the volume rate of heat deposition term 𝑄 is performed
in the same way as in the case of non-use of the compression method (offline).

Resource consumption

The compression method described above is advantageous especially in terms of saving disk
space, but also increases memory consumption. Consider the following several simulation
scenarios representing clinical HIFU simulations.

Table 5.11 shows the basic simulation parameters and the comparison of the minimum
file sizes required to calculate the 𝑄 term. The columns named 𝑁𝑥, 𝑁𝑦, and 𝑁𝑧 are simula-
tion domain sizes. The column named “Period” represents the number of simulation steps
per period (𝑁 = 1/(𝑓Δ𝑡) = 𝑇/Δ𝑡, where 𝑓 is the known transducer driving frequency, and
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Δ𝑡 is the known time step). The parameters (period, harmonics and number of simulation
steps) are calculated as part of creating the input simulation file, using the domain sizes,
transducer driving frequency, sound speed, real size in 𝑧-axis, and the Courant–Friedrichs–
Lewy (CFL) number [78].

The transducer driving frequency 𝑓 is 1MHz. Due to the nature of the input simula-
tion data (heterogeneous absorbing material properties) and in order to obtain reasonable
accuracy and stability of the simulations, the CFL number is set to 0.1. The real size in the
𝑧-axis 𝑧size is 22 cm. The aperture diameter of the transducer bowl is 12 cm, and the radius
of curvature is 14 cm. The reference sound speed 𝑐ref is 1,524m s−1. The number of points
per 𝑧-axis Δ𝑧 = 𝑧size/𝑁𝑧 and the number of points per wavelength PPW = 𝑐ref/(𝑓Δ𝑧).
The time step Δ𝑡 = 1/(𝑓 ⌊PPW/CFL⌋) and therefore the period 𝑁 = 1/(𝑓Δ𝑡). End time
is calculated as 𝑡end = 2𝑧size/𝑐ref and the number of simulation steps, i.e. the total number
of simulation steps from the beginning to the end of the simulation 𝑁𝑡 = ⌊(𝑡end/Δ𝑡)⌉. The
number of harmonics supported by the spatial grid is given by 𝐻 =

⌈︀
1× 10−6(𝑐ref/(2Δ𝑧))

⌉︀
.

The larger the grid size, the more accurate and usable results (more harmonics). As
already mentioned in Section 2.1, for planning HIFU therapy, we need a reasonably high
number of harmonic frequencies and the reasonably high spatial resolution. A typical
scenario using a single supercomputer node is the case 4. Case 9 is approaching the limits
of available supercomputers, using multiple nodes, if we do not want to wait a few days for
the result of the simulation.

In case of the proposed method that uses compression, it is enough to store only one
the 𝑄 term (a single 3-D matrix). Without the compression, the time series of pressure and
velocity data time series is necessary to store (leading into storage of four 4-D matrices).
Please note the fundamental difference in the amount of disk space required.

Table 5.11: Minimum file sizes for 𝑄 term calculation.

File sizes generated during
simulation

Domain size without compression

with
compres-

sion

Case 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝑁 𝐻 𝑁𝑡 1 period
3

periods

1 and
more

periods
1 256 256 350 24 2 6929 8.49GB 25.3GB 88MB
2 384 384 512 35 2 10105 40.6GB 121GB 288MB
3 576 576 768 53 3 15302 207GB 619GB 972MB
4 768 768 1024 70 4 20210 647GB 1.94TB 2.30GB
5 960 960 1280 88 5 25407 1.59TB 4.76TB 4.50GB
6 1152 1152 1536 106 6 30604 3.30TB 9.90TB 7.78GB
7 1344 1344 1792 124 7 35801 6.14TB 18.4TB 12.3GB
8 1536 1536 2048 141 8 40709 10.4TB 31.2TB 18.4GB
9 1728 1728 2304 159 8 45906 16.7TB 50.1TB 26.2GB
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Table 5.12: RAM used for the on-the-fly average intensity calculation.

with compression (2× 32 bits) with 40-bit compression (Section 5.4.1)
Case 1 period 2 and more periods 1 period 2 and more periods

1 1.66GB 3.06GB 1.14GB 2.01GB
2 5.47GB 10.1GB 3.74GB 6.62GB
3 26.2GB 49.6GB 17.5GB 32.1GB
4 80.6GB 154GB 53.0GB 99.1GB
5 194GB 374GB 126GB 239GB
6 397GB 770GB 257GB 490GB
7 729GB 1.42TB 469GB 901GB
8 1.23TB 2.41TB 793GB 1.53TB
9 1.76TB 3.44TB 1.13TB 2.18TB

The RAM required for the on-the-fly average intensity calculation is given in Table 5.12.
Here, we see that the amount of memory required depends on the number of harmonic
frequencies. 40-bit compression refers to the reduction of memory (reduce format) used for
complex coefficients from 64 to 40 bits, which is described in Section 5.4.1. The memory
calculation is performed according to

memory[MB] = 4𝑁𝑦𝑁𝑧(4 ⌈𝑁𝑥𝑚⌉𝑛𝐻 + 3𝑁𝑥)

10242
(5.21)

where 𝑁𝑥, 𝑁𝑦, and 𝑁𝑧 are simulation domain sizes, 𝐻 is the number of harmonic frequencies,
𝑛 is 1 for one period or 2 for any number of periods larger than 1, and complex size
multiplier 𝑚 is equal to 2 for compression and 1.25 for 40-bit compression. The first
number 4 represents the number of bytes per float while the second number 4 represents
the number of compressed 3-D matrices, i.e. pressure and velocity for the 𝑥-, 𝑦- and 𝑧-
axes. The number 3 represents uncompressed 3-D matrices for the time-averaged intensity
in each Cartesian direction. The operating memory for the original pressure and velocity
data is not included in Equation (5.21) as it is part of the simulation itself (described in
the following paragraph).

Table 5.13 shows the common memory requirements for the remaining partial opera-
tions of the entire acoustic simulation process. They are the same with and without the
compression. The first column is an estimate of the memory requirements of the simula-
tion itself, without other operations, such as compression or postprocessing, calculated on
the basis of simulation experiments. These values refer to the C++ OpenMP version of
k-Wave. By the way, data obtained from the k-Wave researcher from the MPI versions of
the simulations showed that the RAM requirements for the simulation itself are more than
twice as large. The second column contains the memory requirements for the calculation
of the 𝑄 term, which is performed as part of postprocessing, and the size corresponds to
the three auxiliary matrices that are needed to copy the average intensity matrices due to
the sensor mask (the sensor mask is a defined set of locations that will be sampled. In our
examples, all points in the domain are sampled, but in general the sensor mask can be an
arbitrary and sparse set of locations [65, 78]).
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Table 5.13: Other common RAM requirements.

Case
RAM estimation used for

simulation itself
RAM used for offline 𝑄 term

calculation
1 3.50GB 263MB
2 11.0GB 864MB
3 36.5GB 2.92GB
4 87.0GB 6.91GB
5 170GB 13.5GB
6 294GB 23.3GB
7 467GB 37.0GB
8 697GB 55.3GB
9 992GB 78.7GB

A comparison of the total memory usage with partial operations of the whole acoustic
simulation process using the new approach is shown in Figure 5.13. The graph shows the
case of using 40-bit compression over one period.

Case

R
A

M
 (T

B
)

0

1

2

3

4

1 2 3 4 5 6 7 8 9

Total RAM with the 40-bit compression of 1 period RAM used for offline Q term calculation
RAM estimation used for simulation itself

Figure 5.13: RAM memory requirements of the proposed method in TB.

It is difficult to evaluate what memory requirements the offline process of calculating the
average intensity without the compression has. In the presented case, the amount depends
on how much free memory is available on a given computing resource, and more RAM
means faster reading and computing. The ideal amount of RAM corresponds to the size of
the entire time series of pressure and velocity in the output files. In addition, the size of
the auxiliary matrix for the FFT is needed. It is important that due to the time shifts, it
is necessary to read at least the whole time series in time, while we can load and process
blocks of different sizes. The total offline intensity calculation time does not depend only on
the disk speed. In terms of memory layout of the stored 4-D data, it is more advantageous
to load as much data as possible at once.
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From the point of view of today’s clusters, one node contains up to hundreds of GB
of RAM. An example is the Barbora supercomputer in Ostrava (IT4Innovations), where
each standard computational node is equipped with 192GB of RAM [31]. Therefore, this
memory limits us to using the compression if it wants to use only one node, e.g., with
OpenMP technology. In the case of simulation on multiple nodes using the message passing
interface (MPI), the operating memory is not such a problem. Conversely, the amount of
free disk space and disk write speed can be a bigger complication, such as unavailability of
disk space, its high price or disk space quota for the user (e.g., user space quota 10TB on
Barbora scratch filesystem).

If we consider, in the case of no compression, the possibility of storing the entire time
series in RAM instead of in the file, in terms of the size of these data, it will not be
overall advantageous. This would be possible for smaller simulations, but, for example,
already in case 3 we would need at least 246GB RAM (207 + 36.5 + 2.92, according
to Tables 5.11 to 5.13), which is not realistic on one node of a common supercomputer. In
addition, if we needed to calculate the average intensity from two or more periods. RAM
requirements would multiply with each period. In the case of using the compression, the
RAM requirements for calculations from two or more periods will be essentially the same.

Efficient coefficient encoding

To reduce the RAM memory required for temporary complex coefficients kept during ac-
cumulation (scalar product or computing intermediate results in a one-time step), we have
proposed a method that uses 40 bits instead of 64 bits (2× 32 bits) for the float complex
number. There are many methods for lossy and lossless compression of float data, the best
known of which are FPZIP and ZFP [53, 54]. These algorithms do not solve our problem
because they are designed for single- or double-precision floating-point arrays. Further-
more, procedures for compressing blocks of complex numbers have been published. For
example, an exponent is shared across the block of samples and the encoding box is used
for the shared exponent to reduce quantization error [16]. Another approach is based on the
principle that the number of bits per mantissa is determined by the maximum magnitude
sample in the group and the exponent differences are encoded [85].

Our algorithm encodes one complex number independently of neighboring values and
uses an approximate range of pressure and particle velocity values. The assumption is
that we have at the input a complex number whose exponents of the imaginary and real
components do not differ significantly. Thanks to this and the assumed maximum range
of the values, only 4 bits are used to encode the larger exponent. The second exponent is
stored as the difference in the shifted mantissa. The format of the 40-bit encoded complex
number is shown in Table 5.14. Mantissa is composed from: 0–16 zero bits, 1 flag bit, and
0–16 data (mantissa or fraction) bits, in total it consists of exactly 17 bits. Number of zero
bits means exponent shift from the stored exponent. For comparison, the Table 5.15 shows
the standard format (IEEE-754) for encoding 2×32-bit complex number [30].

The encoding procedure is illustrated by Algorithm 1. The analogous decoding proce-
dure is illustrated by Algorithm 2.

The number of bits for the mantissa can potentially be further reduced, however, 16 +
1 bits, thus a total of 40 bits, is practical in terms of memory alignment to bytes and
acceptable errors. Within this article, the relative normalized ℓ∞ error of the 𝑄 term
calculation caused by compression up to about 1% is considered acceptable [6].
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Table 5.14: 40-bit complex floating-point format.

Type of
data real sign

imag.
sign

real
mantissa

imag.
mantissa

shifted
expo-
nent

Number
of bits 1 1 17 17 4

Table 5.15: Standard 2×32-bit complex floating-point format (IEEE-754).

Type of
data real sign

real ex-
ponent

real
mantissa

imag.
sign

imag.
expo-
nent

imag.
mantissa

Number
of bits 1 8 23 1 8 23

5.4.2 Experimental evaluation

The goal of the experimental numerical simulations was to investigate how the compression
method affects the simulation execution time, the consumption of computing resources, and
the numerical accuracy for realistic HIFU simulations.

Within the time measurement of the experimental simulations, the most important time
is the time of the simulation phase itself (iteration of simulation steps), which can range
from a few minutes to days, depending on the size of the simulation domain. The purpose of
this measurement is to show that applying compression does not slow down the simulation
process. Furthermore, we are interested in the time of the postprocessing phase, where the
calculation of the 𝑄 term and offline calculation of the average intensity takes place.

Considering the consumption of computing resources, we are mainly interested in the
consumption of RAM and disk space. The aim is to confirm the assumption that despite
the higher demands of the compression method on the operating memory, the total memory
requirements, including disk space, are significantly smaller.

Finally, the evaluation of compression errors is performed, both for the 𝑄 term, the av-
erage intensity, and for the outputs of the thermal simulation. The purpose is to show that
the number of different points of ablated tissue is ideally the same with and without the use
of compression. The proposed method was implemented within the k-Wave toolbox [78].
Simulations using the k-Wave (k-space pseudospectral methods) were experimentally ver-
ified with phantoms and biological tissues [18, 58, 59, 84]. The compression method was
implemented in both C++ OpenMP and CUDA versions, but due to the extent of the
measured data, this work contains detailed measured results of only the OpenMP version.
The original version of the intensity and 𝑄 term calculation was implemented only in the
MATLAB version. To compare the performance of both approaches, the calculation was
ported to C++ to the postprocessing stage. Spatial gradients are computed using Fourier
transform. The compression algorithm was implemented in a parallel environment and is
performed during the simulation.

Acoustic simulations were performed on one node of the Barbora supercomputer cluster,
where 36 processor nodes (2× Intel Cascade Lake 6240, 2.6GHz) and at least 192GB of
RAM are available. For reading and writing files, Barbora provides the Luster shared
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Algorithm 1 The 40-bit coefficient encoding procedure
1: Get the real and imaginary part of the input float complex number and their sign bits.

2: Get 8-bit exponents and subtract 𝑒 constant from them which allow the exponent to
be stored for only 4 bits.
In case of the acoustic pressure:
𝑒 = 138, max exponent is 226 (15 + 138 = 153, 153 - 127 = 26)
maximal encoding value is 226−16 × 0x1FFFF = 134216704
minimal encoding value is 226−16−15 × 0x1 = 0.03125

In case of the particle velocity:
𝑒 = 114, max exponent is 22 (15 + 114 = 129, 129 - 127 = 2)
maximal encoding value is 22−16 × 0x1FFFF = 7.99993896484375
minimal encoding value is 22−16−15 × 0x1 = 0.00000000186264514923095703125

3: Get 23-bit mantissas and set their default shift to the right by 6 bits - these least
significant bits will be discarded.

4: Find the higher exponent to be saved. Add the difference between the larger and smaller
exponents to the shift to the right for the mantissa of a number with a smaller exponent.

5: Crop exponents less than zero and the right shifts greater than 23. Apply right shifts
to the mantissas.

6: Round the least significant bits in the mantissas.
7: Set 1 flag bit for the shifted mantissa with a smaller exponent.
8: Check exponent overflow, and set maximum values if necessary.
9: Store the output data at 40 bits (using bitwise operators) as shown in Table 5.14.

filesystems. On the positive side, it provides a theoretical maximum throughput of 5GB s−1

(38GB s−1 with burst mode) [31]. Unfortunately, the fact that the filesystem is shared does
not guarantee this throughput. Experimental simulations have shown that the times of such
calculation phases, in which large files were written or read, sometimes differed significantly
(e.g., by a factor of 10).

Due to the available computing resources, four sizes of the simulation domain between
256× 256× 350 and 768× 768× 1024 were tested, corresponding to cases 1–4 presented
in Section 5.4.1. The average intensity was calculated only in the last simulation period. The
input simulations material properties such as sound speed, attenuation, density and 𝐵/𝐴
(nonlinearity parameter) were generated from the AustinWoman electromagnetic voxels
model [60]. The heterogeneous parameters were specified for every grid point independently
wherever enabled by the simulation tool. Individual book values for the material properties
in the human body were used [28].

Tables 5.16 and 5.17 show the measured performance data for each simulation case
without the use of compression (N), with the use of compression (C) and with the use of
compression using 40-bit coding (C 40-bit). The “file size” represents the size of the file that
must be used during the simulation. The RAM memory is divided into two columns. The
first is the memory needed for the simulation and sampling itself. The total RAM corre-
sponds to the amount of memory used in the whole simulation case, including compression
and postprocessing. In the case no compression is used, the effort is to use the maximum
amount of free RAM so that the data for offline calculation of the average intensity within
the postprocessing phase is read from the file as quickly as possible, to make the compar-

67



Algorithm 2 The 40-bit coefficient decoding procedure
1: Get the mantissas, signs, and exponent from the input 40-bits value (using bitwise

operators).
2: Shift the mantissas 6 bits to the left (we now have 23-bit mantissas).
3: Add the 𝑒 constant to the exponents (𝑒 = 138 for the acoustic pressure, 𝑒 = 114 for the

particle velocity).
4: For the both mantissas (mR, mI) and exponents (eR, eI):
5: if the mantissa is zero then
6: set the exponent zero (zero mantissa means zero float number),
7: else
8: find the index of the most left one bit in mantissa using the specialized function

(_BitScanReverse or __builtin_clz)
9: and shift the mantissa according to the index value to the left (mR «= 23 - index)

10: and recompute the final exponent by the index (eR -= 22 - index).
11: end if
12: Put together the output complex float numbers using bitwise operators at 2×32 bits

from signs, mantissas, and exponents.

ison as fair as possible. In the postprocessing phase, differences can be seen between the
times when only the 𝑄 term calculation is performed and when the average intensity is also
calculated. Given the overall simulation time, these values are negligible. To determine
the variability of the total times, the simulation time was measured for every 5% of the
total simulation steps. The Coefficient of Variation of simulation times 𝑐v = 𝜎/𝜇, where 𝜎
is the standard deviation and 𝜇 is the mean, was about 9%. Based on the measurement
results, we can say that the total simulation times with and without compression for the
given domain sizes do not differ significantly (variability is about 3%). Due to the fact
that only the last period was sampled for the calculation of the average intensity, which is
approximately 0.35% of all simulation steps, the total times are not significantly affected
by this sampling. However, we can also see the average iteration times in which the sam-
pling takes place in the table, and we can see that compression is faster than writing to
the files. The average non-sampling iteration time of a given simulation case is calculated
as the ratio of the sum of individual iteration times to the number of iterations, within
the simulation, when sampling was not performed. The average sampling iteration time is
calculated as the ratio of the sum of individual iteration times to the number of iterations,
within the simulation, when sampling was performed. In particular, the iteration times are
2 to 10 times faster with the compression than without the compression. In terms of the
memory used - the sum of the file size and RAM, the new approach is considerably more
economical. A disadvantage of the new approach may be the need for a minimum amount
of free RAM depending on the number of coded harmonics.

The numerical error caused by the compression is expressed as relative normalized ℓ∞
error, i.e., maximum absolute difference between non-compression (calculated without the
use of the compression) and compression data (calculated using compression) divided by the
absolute maximum value of non-compression data. The maximum values were calculated
across the entire domain. So for 𝑄 term and the average intensity over the whole simulation
3-D space and for the pressure and the velocity in addition also over the sampling simulation
time (4-D). Table 5.18 shows the error values in the percent of the volume rate of heat
deposition (𝑄 term), the average intensity for the individual axes (𝐼𝑥avg , 𝐼𝑦avg , and 𝐼𝑧avg),

68



Table 5.16: Comparison of memory usage in individual cases of simulations on one node of
the Barbora supercomputer cluster, with 36 processor cores (2× Intel Cascade Lake 6240,
2.6GHz) and at least 192GB of RAM.

Case Method File size
Simulation +

sampling RAM

Total RAM
including

postprocessing
1 N 8.54GB 3.44GB 14.1GB
1 C 88MB 5.08GB 5.34GB
1 C 40-bit 88MB 4.55GB 4.82GB
2 N 40.6GB 11.0GB 61.7GB
2 C 288MB 16.5GB 17.3GB
2 C 40-bit 288MB 14.7GB 14.7GB
3 N 207GB 36.9GB 168GB
3 C 972MB 63.2GB 66.1GB
3 C 40-bit 972MB 54.4GB 57.3GB
4 N 648GB 87.1GB 168GB
4 C 2.30GB 168GB 175GB
4 C 40-bit 2.30GB 140GB 147GB

the acoustic pressure (𝑝), and the non-staggered particle velocity for the individual axes (𝑢𝑥,
𝑢𝑦, 𝑢𝑧). If we take into account the accuracy of the float data type (∼7.2 decimal digits),
then the intensity errors are very small. Higher error values for the 𝑄 term are most likely
due to the type of gradient calculation, where many products are performed between FFT
and inverse fast Fourier transform (IFFT). In the case of compression, especially with 40-bit
coding, the error generally increases with the number of samples in the period.

The CUDA version is fundamentally limited especially by the amount of memory avail-
able on the GPU. The amount of memory listed in Table III, in the first column (approx-
imately) should also be available on the GPU and this is quite a major and fundamental
limitation. The compression with calculating the average intensity it is not performed on
a GPU and uses a CPU and a RAM connected to it. The compression on the GPU does
not make sense yet, as in one iteration its computational time is negligible compared to the
simulation and in addition it would need the amount of RAM similar to the sizes available
to CPUs on the GPUs, which is not yet true.

To be able to meaningfully evaluate the magnitudes of errors caused by the compres-
sion, the 𝑄 term is applied to the calculation of the thermal simulation. This will show
how large the differences will be caused by compression in the heat applied to the tissue,
and specifically how the ablated tissue will differ. Thermal simulations were performed in
MATLAB using the kWaveDiffusion function for the time-domain solution of the Pennes’
bioheat equation.

The input parameters of the thermal simulation are shown in Table 5.19. The heating
with the 𝑄 term calculated in the acoustic simulation was set to 10 s, the cooling time with
the 𝑄 = 0 was set to 20 s.

The results of the thermal simulation shown in Table 5.20 are the temperature after
heating, the temperature after cooling, cumulative equivalent minutes relative to 𝑇 = 43 °C
(CEM43) in %, maximum absolute value of CEM43 for cases without compression, and
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Table 5.17: Comparison of computational times in individual cases of simulations on one
node of the Barbora supercomputer cluster, with 36 processor cores (2× Intel Cascade Lake
6240, 2.6GHz) and at least 192GB of RAM.

Case Method
Postprocessing
time [seconds]

Simulation
time

[seconds]

Average
non-sampling

iteration
time

[seconds]

Average
sampling
iteration

time
[seconds]

1 N 11.4 906 0.11 0.82
1 C 1.05 814 0.11 0.27
1 C 40-bit 0.27 767 0.11 0.34
2 N 57.4 3,834 0.36 3.63
2 C 1.18 3,665 0.36 0.81
2 C 40-bit 2.73 3,816 0.36 1.11
3 N 529 20,456 1.33 45.5
3 C 6.64 21,383 1.33 3.13
3 C 40-bit 6.32 19,532 1.33 4.54
4 N 1,880 74,531 3.51 53.5
4 C 6.56 78,232 3.51 9.42
4 C 40-bit 7.22 74,849 3.51 12.4

the number of different points (also expressed as ablated volume in mm3) of binary matrix
representing ablated tissue, where CEM43 ≥ 240 min.

A very important result of the thermal numerical simulations is the number of ablated
tissue points. This value is essentially the same without and with the use of compres-
sion. The maximum thermal dose ℓ∞ errors are around 0.5%, which is negligible. The
temperature differences are also minimal.

Figures 5.14 to 5.18 show sections of the output 3-D data in the center of the 𝑥-axis
for the case 4. Some of the figures also include a zoomed-in figure cutout from the focused
region. Average intensity in 𝑧-axis and volume rate of heat deposition is shown in Fig-
ure 5.14, errors caused by the compression in Figure 5.15 and Figure 5.16. The thermal
dose in CEM43 units is shown in Figure 5.17 on the top and the ablated tissue (CEM43 ≥
240 min) is shown in red on the bottom, where shades of gray show the mass density derived
from the AustinWoman voxel model. The thermal dose errors caused by compression can
be seen in Figure 5.18, the compression error is on the top, the 40-bit compression error on
the bottom. The absolute thermal dose errors caused by compression shown in Figure 5.18
are, in fact, only very small relative errors (0.24% top and 0.036% bottom) due to the very
large maximum value of thermal dose 2.57× 1013 (see Table 5.20).

The overall results of the experimental evaluation showed that the application of the
new compression method for calculating the average intensity brings significant savings in
disk space, while other demands on computing resources are comparable. The quality of
the outputs is not fundamentally affected by the compression and is comparable to the
outputs without compression.
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Table 5.18: Relative errors caused by compression. The particle velocities (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) are
non-staggered.

Case 𝑄 𝐼𝑥avg 𝐼𝑦avg 𝐼𝑧avg 𝑝 𝑢𝑥 𝑢𝑦 𝑢𝑧

Compression ℓ∞ error in % (method C in Table 5.16)
1 0.00030 0.000045 0.000040 0.000031 0.0068 0.042 0.040 0.012
2 0.0092 0.000066 0.000058 0.000041 0.018 0.083 0.084 0.010
3 0.0098 0.000066 0.000094 0.000071 0.023 0.065 0.061 0.013
4 0.016 0.000090 0.000089 0.000085 0.014 0.048 0.044 0.010

40-bit compression ℓ∞ error in % (method C 40-bit in Table 5.16)
1 0.034 0.0045 0.0031 0.0038 0.0068 0.043 0.040 0.013
2 0.46 0.0046 0.0042 0.0043 0.020 0.083 0.085 0.013
3 0.85 0.0060 0.0049 0.0063 0.024 0.067 0.063 0.015
4 1.21 0.0093 0.0067 0.0068 0.017 0.051 0.046 0.013

Table 5.19: Thermal simulation parameters.

The initial temperature 37 °C
Density 1,020 kgm−3

Thermal conductivity 0.5Wm−1K
Specific heat capacity 3,600 J kg−1K
Number of heating time steps 100
Number of cooling time steps 200
Size of the time step (dt) 0.1
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Table 5.20: Thermal simulation errors.

Case

Maximum
tempera-
ture after
heating

error [°C]

Maximum
tempera-
ture after
cooling

error [°C]

Maximum
thermal

dose
(CEM43)
ℓ∞ error

[1%]

Absolute
maximum

thermal dose
without the
compression

[CEM43]

Number of
different
points of
ablated
tissue

(ablated
volume in
mm3 in

brackets)
Compression error

1 0.0001 0.000019 0.0013 2.82× 107 0 (0)
2 0.00023 0.000019 0.0082 8.06× 109 0 (0)
3 0.00029 0.000027 0.0089 4.37× 1012 0 (0)
4 0.00028 0.000038 0.010 2.57× 1013 0 (0)

40-bit compression error
1 0.0094 0.000088 0.049 2.82× 107 0 (0)
2 0.016 0.00011 0.62 8.06× 109 0 (0)
3 0.020 0.00019 0.48 4.37× 1012 1 (0.0235)
4 0.020 0.00015 0.42 2.57× 1013 0 (0)

72



Average intensity in z-axis

-50 0 50
z-position [mm]

-80

-60

-40

-20

0

20

40

60

80

y-
po

si
tio

n 
[m

m
]

0 0.05 0.1 0.15 0.2 0.25

[kW/cm2]

(a)

Volume Rate Of Heat Deposition

-50 0 50
z-position [mm]

-80

-60

-40

-20

0

20

40

60

80

y-
po

si
tio

n 
[m

m
]

0 0.01 0.02 0.03 0.04

[kW/cm3]

(b)

Figure 5.14: Visualization of (a) average intensity in 𝑧-axis and (b) volume rate of heat
deposition without the compression.
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Figure 5.15: Visualization of (a) average intensity error in 𝑧-axis and (b) volume rate of
heat deposition with the compression.
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Figure 5.16: Visualization of (a) average intensity error in 𝑧-axis and (b) volume rate of
heat deposition with the 40-bit compression.
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Ablated Tissue
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Figure 5.17: Visualization of (a) thermal dose and (b) ablated tissue without use of the
compression.
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Figure 5.18: Visualization of the thermal dose errors. (a) Compression error and (b) 40-bit
compression error.
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5.5 Validation and scientific contribution
In Section 5.3 a novel on-the-fly compression method for HIFU simulations outputs is in-
troduced and validates the first part of the hypothesis in the following way: The method
is focused on 1-D time-varying data series. Furthermore, the results of a comparison with
other state-of-the-art compression methods are presented. The compression ratio at the
maximum quality that this method enables is comparable to other state-of-the-art com-
pression methods, e.g. for compression of audio signals and significantly exceeds some. The
quality of outputs compressed by the method is comparable to the quality of compressed
by other state-of-the-art methods within general measures such as MSE or PSNR. From
the point of view of users, according to the Section 4.3, the ℓ∞-errors caused by the new
compression can be evaluated as acceptable, as they are at most in the order of percent.

The remaining part of the hypothesis is validated in Section 5.4 in the following way: The
compressed intermediate results are used for the on-the-fly calculation of the time-averaged
acoustic intensity. This quantity is further used to calculate the thermal simulation from
which the ablated tissue is then determined. The worst error in the performed experimental
evaluation caused by compression in ablated volume in is 0.0235mm3 a maximum thermal
dose (CEM43) ℓ∞-error is 0.62%. It is verified here that the quality of the outputs com-
pressed by the new method is also acceptable from the point of view of the application
of these outputs. The new procedure in the calculation of acoustic intensity significantly
reduces the consumption of disk space by up to 99%. At the same time, this procedure has
almost the same demands on total RAM consumption. The computing time is comparable
and in the case of longer simulations, the method can even reduce this time. Thus, the last
condition of the hypothesis in the field of computing resources is also fulfilled. Finally, the
entire hypothesis was proven by the above experiments, both parts of hypothesis on the
same types of datasets. The hypothesis worked on all the data it was tested on and it can
be assumed to be valid generally; however, further experiments would be needed for this.

In terms of contribution to science, the published methods allow users (scientists, doc-
tors) who use demanding simulations not only in the field of HIFU, to make more eco-
nomical calculations, especially in simulations, which use a staggered-grid pseudospectral
time-domain method.

5.6 Possible applications
Ultrasound simulations are widely used, for example, in the healthcare industry. Due to
the effect of nonlinearity, absorption, refraction, and scattering, the position of the focus
and the shape of the focal volume can be significantly affected, unlike the propagation
of an ultrasound wave, for example, in water or in a homogeneous environment. Using
simulations, it is possible to model these effects, and thus predict wave propagation more
accurately. And specifically to these simulations, it is possible to apply the presented
compression method, which significantly saves the disk space required for storing large-
scale output simulation data. The large-scale data represent a fundamental problem for
better deployment of simulations in practice.

The main application of the proposed method is presented in experiments with thermal
simulations. HIFU is used for fast precise localized non-invasive tissue destruction, for ex-
ample, in the treatment of cancer. The HIFU has been used in clinical trials, e.g., for the
treatment of tumors in the prostate, kidney, liver, bone, breast, and brain. The destruction
of tissue in the focus of the ultrasound beam is caused by thermal and cavitation effects.
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For the most accurate predictability of thermal effects, thermal simulations are performed.
However, only if the absorption of ultrasound waves is accurately captured in models and
simulations, a dose threshold in cumulative equivalent minutes leading to tissue devitali-
sation can be determined. Therefore, these thermal simulations are directly dependent on
the acoustic simulations, which are able to calculate the absorption. For accurate modeling
and simulation of the absorption, it is advisable to use general, i.e. more accurate methods
of calculating thermal simulation inputs, namely the heat deposition term, instead of using
other approximations. The improved calculation of the thermal simulation inputs, i.e. first
the average intensity and then the volume rate of heat deposition with the new proposed
compression method, brings significant savings in the use of computing resources, and thus
significantly positively pushes the boundaries of usability in practice.

Another possible application of the compression is, for example, in the area of fast
visualizations of simulation data. By the way, this has already been partially implemented
in compression experiments, but it has not yet found direct use for scientists. In the case of
a more significant deployment of HIFU simulations in practice, it could be useful. Reading
the compression coefficients instead of the complete uncompressed data from the files will
significantly reduce the required data flow, and thus the time required for fast visualization.
For visualizations, much larger distortions caused by compression, which are not detectable
by human vision, could theoretically be acceptable. This could again achieve higher data
flow and faster decompression. If the goal of the visualizations is to quickly display time
series of selected points in space or parts of the domain, the proposed compression is also
a suitable candidate for this, as it currently compresses individual points independently of
others and in parallel.

The application of effectively calculated average intensity, which could be explored and
tested, for example, in the field of 2-D/3-D reconstruction. Some of the publications in
which I participated deal with 3-D reconstruction of fractured long bones from plain 2-D
radiographs [44, 45, 46, 47, 48, 49]. Based on the 3-D statistical shape and intensity
models and two 2-D X-ray images, a 3-D model is calculated. If the subject was not the
bone registration, but e.g., registration of ablated tissue of the HIFU procedure, perhaps it
would be possible, analogously to two 2-D X-ray images, to perform two cheap and fast 2-D
simulations in different directions and with these the registration would then be performed.
Precisely 3-D statistical intensity models could be created using many spatial simulations,
which would not be so expensive and unavailable due to the use of the average acoustic
intensity calculation approach proposed in this work.

The method may also be useful in other industries. Wherever it is useful to perform
acoustic simulations, there are harmonic functions at the input of these simulations and
where the user is interested, for example, in the average acoustic intensity itself. The
possible use of simulations is offered, for example, in the production of acoustic instruments,
audio technology or for the propagation of sound in water pipes.
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Chapter 6

Conclusion

This work introduces a new compression method within ultrasound simulations and the
application of this method for calculating the time-averaged acoustic intensity vector during
ultrasound simulations performed using a staggered-grid PSTD method.

An efficient compression algorithm for HIFU simulation data is proposed, and offline
experiments were performed to evaluate it. Is it shown that our method produces very
useful results. The important stable parts of the simulation signals are compressed with
very small distortion (0.1%) at compression ratios over 80%. The very short transient
parts of the signals are compressed with acceptable errors.

The results of the application of the proposed method are based on the improvement
of the important intermediate step in the acoustic simulations - calculation of the average
intensity. The presented approach calculates it using the compression coefficients obtained
on-the-fly during the simulation, avoiding saving of the intermediate results of acoustic
pressure and particle velocity to the disk during the simulation, as used in state-of-the-art
approaches. The method has significant advantages over the state-of-the-art simulation with
uncompressed output. The main advantage is largely (up to 99%) reduced consumption
of precious disk space during the simulation, which may significantly reduce the price of
the computational platform and, in some existing configurations of such platforms, it can
even present an enabling factor for execution of the simulations. At the same time, the
presented method generally has approximately the same demand for RAM and in longer
simulations it can even reduce the computational time. Moreover, the compression errors
in the proposed method are negligible.

While acoustic simulation (without the intensity calculation) with the compression has
higher RAM requirements than without the compression, it brings significant disk space
savings. From the standpoint of supercomputers, the extensive consumption of fast I/O
disk storage space is a much bigger problem than the need for RAM. In terms of disk space
requirements, the new method is significantly more economical.

Through experimental numerical simulations, it has been shown that the average iter-
ation time during sampling is 2–10 times shorter, which can reduce the simulation time in
some cases. The compression does not adversely affect the overall simulation time.

The accuracy of the new method was evaluated using thermal simulations. Using the
new method, essentially the same results were achieved in the determination of the ablated
tissue as with other approaches. The maximum errors are around 0.5% for thermal dose and
0.02 °C for temperature after heating, which are minimal or even negligible. The accuracy
is equivalent to the state-of-the-art.
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The future work may show that the new method could be applicable for signals of
a similar nature, e.g., for electromagnetic radio waves, where the problem of immediate
calculation of intensity is the mutual time shift of the signals in time. Future work could
focus, e.g, on MPI implementation of the compression. This implementation has not been
done yet. Here, it could be proven that the higher demand for operational memory is not
such a big problem, since there should be enough of it on each node. The problem without
using compression will be expensive disk space and disk access policy, i.e. shared user
access and unguaranteed throughput. However, further optimizations of the compression
algorithm in the area of RAM utilization would also be useful. Furthermore, it is possible
to focus, for example, on the optimization of overlapped window functions and bases or
the reduction of the operational memory for higher harmonic frequencies, where the values
are usually very small but still very important. Extending compression to the 2-D or 3-D
space and using spatial correlation of the data is another area in which this work could be
followed.
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