
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

MINING MULTI-LEVEL SEQUENTIAL PATTERNS
DOLOVÁNÍ VÍCEÚROVŇOVÝCH SEKVENČNÍCH VZORŮ

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR PRÁCE Ing. MICHAL ŠEBEK
AUTHOR

VEDOUCÍ PRÁCE doc. Ing. JAROSLAV ZENDULKA, CSc.
SUPERVISOR

BRNO 2016

Abstrakt
Dolování sekvenčních vzorů je důležitá oblast získávání znalostí z databází. Stále
více průmyslových a obchodních aplikací uchovává data mající povahu sekvencí, kdy
je dáno pořadí jednotlivých transakcí. Toho může být využito například při analýze
po sobě jdoucích nákupů zákazníků.
Tato práce se zabývá využitím hierarchického uspořádání položek při dolování sekven-
čních vzorů. V rámci práce jsou řešeny dvě základní oblasti – dolování víceúrovňových
sekvenčních vzorů s křížením a bez křížení úrovní hierarchií. Dolovací úlohy pro obě
oblasti jsou v práci formalizovány a následně navrženy algoritmy hGSP a MLSP pro
jejich řešení. Experimentálně bylo ověřeno, že především algoritmus MLSP dosahuje
výborných výkonnostních vlastností a stability. Význam nově získaných vzorů je
ukázán na dolování reálných produkčních dat.

Abstract
Mining sequential patterns is a very important area of the data mining. Many indus-
trial and business applications save sequential data where the ordering of transactions
is defined. It can be used for example for analysis of consecutive shopping transac-
tions.
This thesis deals with the using of concept hierarchies of items for mining sequen-
tial patterns. This thesis focuses on two basic approaches – mining level-crossing
sequential patterns and mining multi-level sequential patterns. The approaches for
the both data mining tasks are formalized and there are proposed data mining algo-
rithms hGSP and MLSP to solve these tasks. Experiments verified that mainly the
MLSP has good performance and stability. The usability of newly obtained patterns
is shown on the real-world data mining task.

Klíčová slova
získávání znalostí z databází, dolování sekvenčních vzorů, konceptové hierarchie, uza-
vřené vzory, víceúrovňové sekvenční vzory

Keywords
data mining, mining sequential patterns, concept hierarchies, closed patterns, level-
crossing sequential patterns, multi-level sequential patterns

Citace
Michal Šebek: Dolování víceúrovňových sekvenčních vzorů, disertační práce, Brno,
FIT VUT v Brně, 2016

Dolování víceúrovňových sekvenčních vzorů

Prohlášení
Prohlašuji, že jsem tuto disertační práci vypracoval samostatně pod vedením pana
doc. Ing. Jaroslava Zendulky, CSc.

. .
Michal Šebek

23. června 2016

Poděkování
Rád bych poděkoval mému školiteli doc. Ing. Jaroslavu Zendulkovi, CSc. za ve-
dení, pomoc a poskytnutí cenných rad během mého výzkumu a při psaní této práce.
Dále bych rád poděkoval firmám AVG Technologies CZ, s.r.o., v rámci níž vznikala
výzkumná část této práce, a firmě VOPI s.r.o. za poskytnutí dat pro experimentální
ověření metod. V neposlední řadě patří dík i mé rodině za morální podporu po celou
dobu mého studia.

c© Michal Šebek, 2016.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 Goals of the Thesis . 5
1.2 Thesis Contribution . 5
1.3 Structure of the Thesis . 5

2 Pattern Mining 6
2.1 Mining Frequent Patterns . 6

2.1.1 Problem Definition . 6
2.1.2 Mining Maximal and Closed Frequent Itemsets 7

2.2 Mining Sequential Patterns . 7
2.2.1 Problem Definition . 8
2.2.2 Mining Maximal and Closed Sequential Patterns 9

2.3 Concept Hierarchy and Taxonomies 10
2.3.1 Mining Multi-Level and Level-Crossing 11

3 State of the Art 15
3.1 Mining Frequent Patterns . 15

3.1.1 Candidate Generation Approach 15
3.1.2 Pattern Growth Approach . 16
3.1.3 Mining Maximal and Closed Frequent Itemsets 17
3.1.4 Mining Multi-level Frequent Patterns 18

3.2 Mining Sequential Patterns . 20
3.2.1 AprioriAll, AprioriSome and DynamicSome Algorithms 20
3.2.2 GSP Algorithm . 22
3.2.3 SPAM Algorithm . 26
3.2.4 PrefixSpan Algorithm . 28
3.2.5 Other Sequential Pattern Mining Methods 29
3.2.6 Mining Closed Sequential Patterns 30
3.2.7 Sequential Generator Patterns 32

3.3 Mining Multi-Level Sequential Patterns 32
3.3.1 Approach Based on Extended Sequences 33
3.3.2 Generalization Based Methods 34

1

4 Level-Crossing and Multi-level Sequential Pattern Mining 35
4.1 Introduction . 35
4.2 Mining Level-Crossing Sequential Patterns 37

4.2.1 Problem Definition . 38
4.2.2 The hGSP Algorithm . 39
4.2.3 Complex Example . 41

4.3 Mining Hierarchically-Closed Multi-Level
Sequential Patterns . 44
4.3.1 Problem Definition . 45
4.3.2 The MLSP Algorithm . 51
4.3.3 Optimization 1: Is-generalized-subsequence Check in Linear

Time-Complexity . 56
4.3.4 Optimization 2: Hash Table Pre-Check for Is-generalized-subse-

quence Check . 56
4.3.5 Optimization 3: Is-redundant Fast Check 58
4.3.6 Complex Example . 59

5 Experimental Evaluation 65
5.1 Evaluation on Synthetic Datasets . 65

5.1.1 Generating Synthetic Datasets 66
5.1.2 Parameters of the Generator 67
5.1.3 The method of the generator 67
5.1.4 Experiment 1: Dataset Size – Scalability 69
5.1.5 Experiment 2: Changes of Minimal Support Threshold 72
5.1.6 Experiment 3: Length of Sequential Patterns 74
5.1.7 Experiment 4: Number of Sequential Patterns 74
5.1.8 Experiment 5: Taxonomy Height 76
5.1.9 Experiments Summary . 76

5.2 Evaluation on Real-World Datasets 77
5.2.1 Dataset Description . 77
5.2.2 Mining Results . 77

6 Conclusions 80

Bibliography 82

2

Chapter 1

Introduction

Nowadays, the total amount of stored data in different kinds of databases is growing.
Many different applications save data about each transaction. For example, data
about merchant transactions are saved for billing purposes. If the data are collected
from a high number of customers, new dependencies about the customers’ behavior
can be formed. Another example is that data about insurance events can be stored.
If the reporting period is long enough, the data can be used for the risk analysis of
new contracts. Retrieving of such new knowledge from data is called Data Mining
(or Knowledge Discovery) introduced in early 90th of 20th century.

An established definition is that Data Mining is an extraction or “mining” of
hidden knowledge from large amounts of data [19]. Data Mining is a complex pro-
cess where the application of the data mining algorithm is only one step of the
process. The process is composed of following steps: data pre-processing (data clean-
ing, integration, transformation and reduction), data mining, pattern evaluation and
knowledge presentation.

Various types of databases require different data mining tasks and provide differ-
ent kinds of patterns. Examples of main data mining tasks and types of data to be
mined are following:

• Classes Characterization and Discrimination – data are associated with classes
and characterized and/or compared.

• Mining Frequent Patterns, Associations, and Correlations – frequent patterns
are such patterns that occur frequently in data (in other words, data which
occur in the dataset in a number which is higher than the given threshold
value).

• Classification and Prediction – data are labeled into classes. The algorithms of
classification try to find a model which describes each class and can be applied
on new (unlabeled) data. The prediction has a continuous target attribute.

• Cluster Analysis – clustering algorithms try to find a model which can divide
data into a specific number of groups. Clustering can be used for an initial
labeling of data.

3

• Outlier Analysis – algorithms for outlier analysis reveal data records which
have different values than the majority. Such problem is typically used for
fraud detection.

This thesis deals with mining sequential patterns. Mining sequential patterns is a
special case of mining frequent patterns with a defined order of transactions. It is
used for many applications such as the analysis of customer patterns, web log data
purchase, security applications, etc. The goal is to find sequential patterns that occur
in the database frequently. Market basket analysis is a typical application example
where the sequential patterns like 〈PC minitower ink printer〉 can be discovered. The
pattern says that many people buy a minitower PC and then, later, they also buy an
ink printer.

Items in the database can be assorted and categorized into one or more tax-
onomies. An example of taxonomies of items is shown on Figure 1.1. Taxonomies
can be used to find patterns which items are on the different levels of hierarchy. We
demonstrate it on the example of customer purchase analysis. Following the sequen-
tial pattern example above, the pattern 〈PC printer〉 can be found by replacing all
items by items on a higher hierarchy level. Unfortunately, the amount of such pat-
terns can grow enormously, but many of the patterns can be considered as useless.
For instance, the pattern 〈PC printer〉 does not bring any new information if the
number of its occurrence in the database is the same as a number of 〈PC minitower
ink printer〉.

Example 1. For better illustration of the practical impact of the issue being solved,
the thesis uses a simple real world example from a PC shop. There is an illustration
of several categories representing products of the shop on Figure 1.1.

towerminitower

PC

CRT monitorLCD monitor

monitor

ink printerlaser printer

printer

colorblack

Figure 1.1: Example of the products structure in the shop.

When items are categorized in taxonomies, the sequential patterns can be divided
into the following two categories:

• multi-level (known also as intra-level)

• and level-crossing (known also as inter-level) [17].

All items of multi-level sequential patterns are at the same level of hierarchy, whereas
levels of items of level-crossing can be different. In Chapter 3 it is shown that very
few algorithms deal with the problem of mining multi-level sequential patterns. The
thesis deals with the both categories of sequential patterns and examines how to mine
them effectively.

4

1.1 Goals of the Thesis

The Ph.D. thesis deals with the mining sequential patterns where taxonomies are
defined over items in a sequence database. The hypothesis of the thesis is following:

“The existence of taxonomies makes it possible to find a new type of sequential
patterns and a new method for mining it effectively can be developed.”

The goal of the thesis is to verify the hypothesis. The goal is decomposed into
the following three sub-goals.

1. To design and formally define the problem of mining sequential patterns with
items in taxonomies.

2. To design and formally define a new method(s) or algorithm(s) which can solve
the defined data mining problem effectively.

3. To experimentally evaluate properties of the developed method(s) or algo-
rithm(s) and to compare it (them) with the existing methods.

1.2 Thesis Contribution

The main contributions of the thesis are as follows.

• The both multi-level and level-crossing categories of mining sequential patterns
with items in taxonomies are discussed. There is proposed a new type of multi-
level sequential patterns task which reduces redundant (useless) patterns using
new constraints.

• New methods for mining of level-crossing and especially multi-level sequen-
tial patterns are introduced. There are proposed new optimization techniques
which significantly increase the speed of the multi-level mining algorithm. The
properties of algorithms are experimentally verified.

1.3 Structure of the Thesis

Pattern Mining is introduced in Chapter 2. The first part is focused on frequent
pattern mining. Then the sequential pattern mining is defined and a problem is
extended by the existence of taxonomies. The state of the art, especially existing
algorithms for frequent or sequential pattern mining, is described in Chapter 3. The
core of the thesis is described in Chapter 4. The first part deals with level-crossing
sequential patterns and the second part is focused on the research of multi-level
patterns. Here, a new data mining task is defined and algorithms to solve them are
proposed. The experiments and their results are described in Chapter 5. First, the
performance is compared on synthetic data, then, the practical results are shown.
Finally, the results are summarized and possible following research is suggested in
Chapter 6.

5

Chapter 2

Pattern Mining

Mining of frequent patterns is the most common of the data analysis and data mining
tasks [19]. Basic concepts of mining frequent patterns and association rules are
introduced first. Then, mining sequential patterns and mining with defined concept
hierarchy are described. In addition, the chapter gives basic formal background to
the pattern mining.

2.1 Mining Frequent Patterns

Mining frequent patterns was firstly studied by Agrawal et al. (1993) in the paper
[2]. The main objective was to find such sets of items (shortly itemsets) which occur
in transactions of input database more frequently than a given threshold. It is widely
used to discovery of associations and correlations among input items. It produces
simply understandable model of data and, therefore, the task is usually used for
initial data analysis of an unknown dataset.

The task became very popular for industry and business, especially for decision
making applications and marketing applications. The typical example of usage of
the association rules mining is a market basked analysis. The goal is to find items
which are usually purchased together. The example can be a typical computer shop
which sells items such as computers, notebooks, monitors, printers, keyboards etc.
The frequent pattern mining task can reveal that computers are usually purchased
together with monitors and keyboards, but notebooks are purchased just alone. The
task association rules analysis brings the results in the form of implication. It means
that if a customer buys a computer, he probably buys also a keyboard.

2.1.1 Problem Definition

Here, the problem is described formally.

Definition 1. (Itemset) Let I = {i1, i2, i3, . . . , ik} be a nonempty finite set of items.
Then an itemset T is a non-empty set of items I, such that T ⊆ I.

Definition 2. (Frequent Itemset) Let I be a set of items, D be set of transactions,
such that each transaction T is T ⊆ I, and A ⊆ I be an itemset. The transaction T

6

contains an itemset A iff A ⊆ T . A relative support of the itemset A is a percentage
of transactions in D that contain A. Given the minimal support threshold value
min sup, the itemset A is called frequent itemset if its support is more than or equal
to min sup.

Definition 3. (Association Rule, Support of Association Rule, Confidence
of Association Rule) Let I be a set of items, D be set of transactions and let A
and B be itemsets such that A,B ⊆ I and A ∩ B = ∅. Then an association rule is
the implication A⇒ B. The support of the association rule A⇒ B is a percentage
of transactions of D that contain A ∪ B. The confidence of the rule A ⇒ B is a
percentage of transactions in D containing A which contain also B. This means

support(A⇒ B) = P (A ∪B), (2.1)

confidence(A⇒ B) = P (B|A) =
support(A ∪B)

support(A)
. (2.2)

Definition 4. (Mining Frequent Patterns) Given a database D and a minimal
support threshold min sup, the task of finding of the complete set of frequent itemsets
is called the mining frequent patterns.

2.1.2 Mining Maximal and Closed Frequent Itemsets

The huge number of result itemsets can be reduced using the maximal and closed
restrictions of frequent itemsets [14, 30].

Definition 5. (Maximal Frequent Itemset) Let F be a set of frequent itemsets.
A frequent itemset x ∈ F is called maximal frequent itemset if it is not a proper
subset of any other frequent itemset x′ ∈ F .

Definition 6. (Frequent Closed Itemset) Let F be a set of frequent itemsets. A
frequent itemset x ∈ F is called closed frequent itemset if it is not a proper subset of
any other frequent itemset x′ ∈ F such that support(x) = support(x′).

Definition 7. (Mining Maximal/Closed Frequent Patterns) Given a database
D and a minimal support threshold min sup, the task of finding of the complete set
of maximal (closed) itemsets is called the frequent maximal (closed) patterns mining.

2.2 Mining Sequential Patterns

Sequential pattern mining was introduced by Agrawal and Srikant in 1995 [1]. The
sequence is defined as an ordered list of transactions (itemsets) of one customer.
The example of usage of the sequential pattern mining can be also demonstrated
on market basket analysis. It can be expected that customers return for further
purchases. Therefore, the sequential patterns over purchased items can be found.
The example of such sequence can be, that a customer buys the computer with a

7

monitor in the one purchase and, later, the customer returns and buys a printer. If
a sequence occurs in database more than a given threshold, it is called the sequential
pattern.

2.2.1 Problem Definition

In this section the problem of mining sequential patterns is formalized. Firstly, the
basic terms such as item, itemset, sequence and sequence database should be defined.

Definition 8. (Sequence) A sequence is an ordered list of itemsets. A sequence
s is denoted by 〈s1s2s3 . . . sn〉, where sj for 1 ≤ j ≤ n is an itemset. The itemset
sj is also called an element of the sequence. The length of a sequence is defined as
the number of instances of items in the sequence. A sequence of length l is called
an l-sequence. The sequence α = 〈a1a2 . . . an〉 is a subsequence of the sequence
β = 〈b1b2 . . . bm〉 where n ≤ m if there exist integers 1 ≤ j1 < j2 < · · · < jn ≤ m such
that a1 ⊆ bj1 , a2 ⊆ bj2 , . . . , an ⊆ bjn . We say that the sequence α is contained in the
sequence β. We denote it α v β and β is a supersequence of α .

Definition 9. (Sequence database) A sequence database D is a set of tuples
〈SID, s〉, where SID is a sequence identifier and s is a sequence.

Definition 10. (Sequence Support) Given sequence database D, the support of
a sequence s1 in D is defined as the number of sequences in D containing a sub-
sequence s1. Formally stated, the support of a sequence s1 in D is support(s1) =
|{〈SID, s〉|(〈SID, s〉 ∈ D) ∧ (s1 v s)}|.

Definition 11. (Sequential Pattern, Mining Sequential Patterns) Given se-
quence database D and minimal support threshold min supp, a frequent sequence is
such a sequence s whose support(s) ≥ min sup. A frequent sequence is called a se-
quential pattern. For a given sequence database D and a minimal support min supp,
the goal of mining sequential patterns is to find all frequent sequences in D.

Example 2. (Item, Element, Sequence, Sequence Database, Sequential
Pattern) For better understandability, the examples in the thesis are based on
the sequence database in Table 2.1. The set of items for the example is the set
I = {a11, a12, a1, a2, b1, b2, c1, d1, e1, f1, f2, g1, g2, h1, h2}. The table represents a se-
quence database with sequences in the sequence column. Let’s focus on the first
row containing the sequence s = 〈(c1d1)(a12b1c1)(a1b2f1)(a11c1d1f1)〉. The sequence
length is twelve, therefore the sequence is called 12-sequence. The sequence consists
of four elements (itemsets): (c1d1), (a12b1c1), (a1b2f1) and (a12c1d1f1). Note that
if element contains only one item, than the parentheses around the itemset can be
omitted, e.g. element e1 on the second row. Items denoted by the same letter, which
differ only in indexes, belong to one taxonomy. This notation will be described later
in Example 4 on page 11.

For the following examples we assume the minimal support thresholdmin supp=2,
unless otherwise stated. The support of item b2 is 3, denoted as 〈b2〉 : 3, because the
item is included in three sequences with SID 1, 2 and 3. Therefore, the 1-sequence

8

〈b2〉 is frequent and is called sequential pattern. In contrast, the support of 1-sequence
〈g1〉 is 1 and it is not frequent. Further, the 2-sequences〈d1b1〉 : 2 , 〈d1f1〉 : 2 and
〈(b2f2)〉 : 2 are sequential patterns of length 2 with the support 2, e.g. the first se-
quence 〈d1b1〉 : 2 is the subsequence of sequences 1 and 4 of the sequence database.
In the sequence database there is no any sequential pattern longer than two.

Table 2.1: A sequence database D containing items on different taxonomy levels.

SID Sequence
1 〈(c1 d1)(a12 b1 c1)(a1 b2 f1)(a11 c1 d1 f1)〉
2 〈(a12 b2 f2) e1〉
3 〈(a2 b2 f2)〉
4 〈a11 (d1 g1 h1)(b1 f1)(a2 g2 h2)〉

Table 2.2 contains items without indexes called root nodes (root nodes of tax-
onomies are described later in Section 10). Now, it will be compared the result of
the same mining task using the database Droot of root items. The support of item
b is 4 because it is contained in elements of all sequences in database. Note that
the support b2 was only 3. Moreover, the longest sequential patterns in Droot are of
length 4, for example the sequential pattern 〈a (bf) a〉 : 2 which is contained in the
sequences 1 and 4 of the database Droot.

Table 2.2: A sequence database Droot of items without indexes from Table 2.1 for
running example.

SID Sequence
1 〈(c d)(a b c)(a b f)(a c d f)〉
2 〈(a b f) e〉
3 〈(a b f)〉
4 〈a (d g h)(b f)(a g h)〉

2.2.2 Mining Maximal and Closed Sequential Patterns

Restrictions over the sequence length and support can be defined. In general, there
are two restrictions similar to those introduced in Def. 5 and Def. 6 – maximal
sequential patterns and closed sequential patterns. In the case of maximal sequen-
tial patterns we are interested in sequences whose supersequences are not frequent
(simply, algorithms find the longest sequences). This problem was deeply studied by
Wang et al. [45]. In the case of closed sequential patterns proposed by Agrawal in [1],
the change of support of the supersequences is important and it also bring us some
information. In this case, we omit only subsequences whose support is the same as
theirs supersequences.

Definition 12. (Closed Sequential Pattern) Given sequence database D and a fre-
quent sequence s. If there is no proper supersequences of s with the same support,

9

i.e. @s′ such that s @ s′ and support(s) = support(s′), the sequence s is called closed
sequential pattern.

Definition 13. (Maximal Sequential Pattern) Given sequence database D, a frequent
sequence s and minimal support threshold min supp. If there is no proper frequent
supersequence of s, i.e. @s′ such that s @ s′ and support(s′) ≥ min supp, the
sequence s is called maximal sequential pattern.

Example 3. One of the longest sequential patterns in Table 2.2. is 〈a (bf) a〉 : 2
which is also a closed and maximal sequential pattern. The sequential pattern 〈aba〉 :
2 is neither the closed, nor maximal sequential pattern because its support is equal
to supersequence 〈a (bf) a〉 : 2.

2.3 Concept Hierarchy and Taxonomies

Concept hierarchy allows describing relations between concepts (values of attributes)
in database. The usage of concept hierarchy for data mining is summarized in [19]
and [10]. In general, the concept hierarchies define relations between lower (more
specific) and higher (more general) concepts. Formally, the concept hierarchy is a
partially (or totally) ordered set of concepts. A special case of concept hierarchy is a
hierarchy of items referred as taxonomy.

Definition 14. (Concept Hierarchy) A Concept Hierarchy CH is a partially or-
dered set (CH,�), or respectively a totally ordered set (CH,≺), where CH is a
finite set of concepts, and � and ≺ are partial and total order over CH, respectively.

The concept hierarchy can be defined explicitly or can exist implicitly in the
database. In the case of implicitly defined concept hierarchy, the levels of hierarchy are
encoded by the database schema. For example for location dimension, the database
schema could contain attributes street, city, province and country. Moreover, the lo-
cation concept hierarchy is totally ordered as following street≺city≺province≺country.
In contrast, we can expect a partially ordered concept hierarchy in time dimension
such as (1) day≺month≺quarter≺year or (2) day≺week≺year. The partial order can
be represented by lattice shown on Figure 2.1.

day

week

quarter

year

month

(a)

street

province

country

city

(b)

Figure 2.1: The hierarchy of concepts for (a) time dimension and (b) location.

10

Definition 15. (Taxonomy) The taxonomy structure of an itemset V (abbr. tax-
onomy) and edges E is a rooted tree τ = (V,E) with a root r ∈ V . In the context
of the tree, we refer to V as a set of nodes representing items. For each node v in
the tree, let UP (v) be a simple unique path from v to r. If UP (v) has exactly k
edges then the level of v is k for k ≥ 0. The level of the root is 0. The height of a
taxonomy is the greatest level in the tree. The parent of v 6= r, formally parent(v),
is the neighbor of v on UP (v), and for each node v ∈ V, v 6= r there exists a set of
its ancestors defined as:

ancestors(v) = {x|x ∈ UP (v), x 6= v}. (2.3)

The parent of r and the ancestors of r are not defined. If v is the parent of u then u
is a child of v. A leaf is a node having no child [28].

In every taxonomy there exists a is-a relation which is defined as follows:

is− a : V × V :≡ {(a, b)|b ∈ ancestors(a)}. (2.4)

Let ι = {I1, . . . , Im} be a partition of a nonempty finite set of items I. Then a
set of taxonomy structures of items I is a nonempty set of taxonomy structures
T = {τ1, . . . , τm} corresponding to ι such that τi = (Ii, Ei) where Ii ∈ ι for 1 ≤ i ≤ m.
It means that each item i ∈ I appears in exactly one taxonomy structure τi ∈ T . It
should be noted that we do not require that items need to be only leaf nodes. Items
ancestors(i) will be referred to as generalized items of i.

Example 4. (Taxonomy of Items, Taxonomy Level, Parent, Ancestor, Gen-
eralized Item.) The tree structures on Figure 2.2 are called Taxonomies of Items
which are used in the running example. The root symbols are alone letters from a to
h which are called root items. Then, all descendants are denoted by down-indexes.
By the definition, the level of item is the number of edges from item to root item,
for example the level of a12 is 2. Note, that the count of down-index digits denotes
the level of the item and the digit value denotes ordering of the item on the current
taxonomy level.

Now, we focus on relations between items in the taxonomies. The a1 is a parent
of both a11 and a12, denoted as parent(a11) = a1. Each item has almost one parent
item. In contrast, the ancestors are a set for each item laying on the path to root,
for example a11 has two ancestors a1 and a, denoted as ancestor(a11) = {a1, a}. The
generalized items of item a11 are both a1 or a.

2.3.1 Mining Multi-Level and Level-Crossing

The necessity of mining association rules on different concept levels has been firstly
mentioned by Agrawal et. al. in [4]. It is important to deal with multiple level pattern
mining because association rules over leaf items may not satisfy minimal support but
association rules over more general items in the taxonomy may satisfy it.

Therefore, the task of mining association rules is extended to the form of the
generalized association rules [38] by the Def. 16.

11

a11

a1

a

a2

a12

b1

b

b2 c1

c

d1

d

e1

e

f1

f

f2 g1

g

g2 h1

h

h2

Figure 2.2: Visualization of taxonomies over items from the Example .

Definition 16. (Generalized Association Rule) Let D be a set of transactions,
T be a set of taxonomies and I the set of all items, where each transaction T is a set
of items such that T ⊆ I. A transaction T supports an item x ∈ I if x ∈ T or x is
an ancestor of some item in T . A transaction T supports a set X ⊆ I if T supports
every item in X. Then, a generalized association rule is an implication A⇒ B, where
A,B ⊆ I,X ∩ Y = ∅ and no item in Y is an ancestor of any item in X. The support
of the generalized association rule A⇒ B is a percentage of transactions in D which
contain A ∪ B according to the support defined in this definition. The confidence of
the generalized association rule A⇒ B is percentage of transactions in D supporting
A that also support B.

Definition 17. (Mining Generalized Association Rules) Let D be a set of
transactions and T be a set of taxonomies. The task of mining generalized association
rules is to discover all rules that have support and confidence greater (or equal) than
the user specified minimal support and minimal confidence values.

The item ancestor definition can be extended to itemsets by Def. 18 by Srikant
et al. [38].

Definition 18. (Ancestors of Itemset, Ancestor of Rule, Close Ancestor of
Rule) Let D be a set of transactions, T be a set of taxonomies and I the set of
all items. The X̂ ⊆ I is called the ancestor of an itemset X ⊆ I if we can get X̂
from X by replacing one or more items in X by their ancestors and |X| = |X̂|. Rules
X ⇒ Ŷ ,X̂ ⇒ Y and X̂ ⇒ Ŷ are all the ancestors of rule X ⇒ Y . Given a set of
rules, we call X̂ ⇒ Ŷ a close ancestor of rule of X ⇒ Y if there is no rule X ′ ⇒ Y ’
such that X ′ ⇒ Y ’ is an ancestor of X ⇒ Y and X̂ ⇒ Ŷ is an ancestor of X ′ ⇒ Y ’.

From the perspective of the structure of association rules, two different approaches
to pattern mining with taxonomies are distinguished:

• Multi-level (multiple level) mining – all items of result patterns (or association
rules) are on the same level of taxonomies l.

• Level-crossing Mining – items of result patterns could be on different levels of
taxonomies.

12

There are several observations related to the phenomenon of the generalization of
mining association rules and frequent patterns [38].

1. Let x and y be items x, y ∈ I, x̂ be an ancestor of x and ŷ be an ancestor of
y. If a set {x, y} satisfies a minimal support min supp, so do all {x, ŷ}, {x̂, ŷ}
and {x̂, ŷ}.

2. If a rule X ⇒ Y satisfies a minimal support and minimal confidence, only the
ruleX ⇒ Ŷ satisfies a minimal support and a minimal confidence automatically.
The rules X̂ ⇒ Ŷ and X̂ ⇒ Y satisfies minimal support, but they may not
satisfy the minimal confidence threshold.

3. The support of an item x in the taxonomy is not equal to the sum of the supports
of all its children because several children of x can occur in one transaction in
D together. Therefore, the support of non-leaf items of taxonomy cannot be
simply derived from the support of theirs leaf children items.

4. Mining of generalized association rules by the Definition 17 produces many
redundant rules and frequent patterns. Then, the analyst is glutted by many
related rules (or patterns).

Interesting rules

The measure of interest has been formulated to deal with the redundant rules and to
filter them. The definition of mining generalized association rules by the Def. 17 is
reformulated to mining interesting association rules.

The first definition of interesting measure for generalized association rules was
formulated in [33] by Piatetsky-Shapiro. There was suggested to filter not interesting
rules whose support is expectable

support(A⇒ B) ≈ support(A)× support(B). (2.5)

However, by Srikant et al. in [38] the interesting measure in equation 2.5 is
not sufficient for real world datasets. They demonstrated that only 1% of rules
become not interesting in this sense. Therefore, it was introduced a new method
for the interesting measure. Consider a rule A ⇒ B and C = A ∪ B, denoted as
C = {c1, . . . , cn}, and its ancestor Ĉ in the form of Ĉ = {ĉ1, . . . , ĉj, cj+1, . . . , cn}.
Then, the expected value of probability P(C) for given P(Ĉ) is

EĈ [P(C)] =
P(c1)

P(ĉ1)
× · · · × P(cj)

P(ĉj)
× P(Ĉ). (2.6)

Similarly, let A ⇒ B be a rule in the form of B = {b1, . . . , bn}, and B̂ be its
ancestor in the form B̂ = {b̂1, . . . , b̂j, bj+1, . . . , bn}. Then the expected confidence of
rule A⇒ B given Â⇒ B̂ is defined

EÂ⇒B̂ [P(B|A)] =
P(b1)

P(b̂1)
× · · · × P(bj)

P(b̂j)
× P(B̂|Â). (2.7)

13

The a rule A⇒ B is called R-interesting if the support of the rule A⇒ B, where
C = A ∪B, is R times the expected support EĈ [P(C)] or the confidence is R times
the expected confidence EÂ⇒B̂ [P(B|A)]. Using the redefined interesting measure,
the interesting rules are defined in Def. 19.

Definition 19. (Interesting rules) Given a minimal interest R, a rule A ⇒ B is
called interesting if it has no ancestors or it is R-interesting w.r.t. its close ancestor
rules among its interesting ancestors rules.

14

Chapter 3

State of the Art

Various approaches and algorithms have been developed to solve data mining tasks
introduced in Chapter 2. There are two basic approaches to mining frequent and
sequential patterns – candidate generation and pattern growth. The candidate gen-
eration approach algorithms iteratively generate (n + 1)-length patterns from the
n-length ones. Also, it creates high number of non-frequent candidate sequences
during the mining process. The pattern growth approach, by contrast, generates
final frequent patterns directly. This chapter is organized into three sections. The
first section describes algorithms for mining frequent patterns. The second section is
focused on methods for mining sequential patterns. The third section explains the
methods for mining more complex sequential patterns. Selected principles are used
within new methods for mining multi-level sequential patterns later in Chapter 4.

3.1 Mining Frequent Patterns

Frequent patterns are such patterns which occur in a dataset more than a given
threshold value. In following subsections, basic approaches to mining frequent pat-
terns are described.

3.1.1 Candidate Generation Approach

The first method is based on the candidate generation. It means that during the
mining process the candidates are generated and then tested if they are frequent.
The basic algorithm for mining frequent patterns is the Apriori algorithm presented
by Agrawal in [4]. The algorithm works iteratively. The following algorithm assumes
that itemsets in Li and Ci are implemented as lists and itemsets are sorted in lex-
icographic order. Originally, frequent itemsets were called as large, therefore they
are often denoted by letter L. The operator x[i] is the index operator returning i-
position item of the sorted list x. The algorithm processes the database iteratively.
The support of all items in the database is counted in the first iteration. Items with
sufficient support form the initial frequent 1-itemsets denoted as L1. Next iterations
consist of two phases:

15

1. In the first candidate generation phase of k−1 iteration, the candidate itemsets
Ck are generated from the frequent itemsets L(k−1). All itemsets from the L(k−1)
are tested with all others if they are joinable. The procedure is called the join
step. The itemsets l1 ∈ L(k−1) and l2 ∈ L(k−1) are joined into a new candidate
itemset c = {l1[1], l1[2], . . . , l1[k − 2], l1[k − 1], l2[k − 1]}

if l1[1] = l2[1]∧l1[2] = l2[2]∧· · ·∧l1[k−2] = l2[k−2]∧l1[k−1] < l2[k−1]. (3.1)

Then, the “Apriori” theorem is tested in the pruning step. The theorem is
formulated as that all the (k−1)-itemsets of the frequent k-itemset are frequent.
Therefore, the candidate k-itemsets, which contain at least one non-frequent
(k − 1)-subset, are deleted.

2. In the second phase called counting phase, the algorithm makes a pass through
the database and the support values are counted for all candidate itemsets in the
c ∈ Ck. Finally, if the support of the candidate itemset is sufficient according
to minimal support threshold, the itemset is marked as frequent one and added
into Lk.

Different modifications of the Apriori algorithm were published. The AprioriTid
algorithm [4] counts the support of itemsets of size two and greater from the special
data structure Ck. The data structure is the reduced projection of the database D
which contains potentially frequent itemsets. Therefore, the size of the structure Ck
may be smaller than D.

Other interesting research issue is the constrained association rules defined in
[39]. The constrained association rules are focused on the situation when the analyst
is interested only in the subset of all association rules which contain a specific item
or children of a specific item in a hierarchy.

3.1.2 Pattern Growth Approach

The main disadvantages of the Apriori method, described in previous Section 3.1.1,
are high number of generated candidates and number of database scans during the
mining process. The solution was described by Han et al. in [21] where authors
proposed the two-pass algorithm FP-growth (Frequent-Pattern growth). It does not
generate candidates. The algorithm is based on the tree structure called the FP-tree.
The algorithm runs in the following steps:

1. The first step is similar to the Apriori algorithm. The database is scanned and
support of all items is counted.

2. In the second step, the FP-tree is constructed. The algorithm starts with one
root node tree called null. During the second database scan, the transactions
are transformed to the representation in the FP-tree. Items of each transaction
are sorted in descendant support value order and they are added as nodes into
the FP-tree. The first item of the transaction is added as a child of the root
node null, the second item is added as a child of the node of the first item, etc.

16

The support value of each node is initialized to value 1. Because the items are
in descendant support order, items with higher support are in upper levels of
the tree. If there exists some prefix of items in the tree, the support of nodes is
incremented by 1 and only nodes for new items are added into a new sub-tree
of the last common item. Finally, the nodes for each item are linked in the list
started in the Header table. The example of FP-tree is shown on Figure 3.1.

f:4

root

c:1

c:3

a:3

m:2

p:2

b:1

p:1

b:1

b:1

m:1

item

f

c

m

b

p

a

Header Table
head of

node-links

Figure 3.1: The example of a FP-tree data structure (taken from [21]).

• The last step is generating of frequent patterns from the FP-tree structure. The
conditional FP-tree is constructed for each frequent item of tree. The condi-
tional FP-tree by item base x, denoted as x-conditional FT-tree, is constructed
similarly to basic FP-tree from the set of prefix paths of the item x in the
FP-tree. The process of the construction of conditional FP-tree is executed
recursively on the x-conditional FP-tree until the conditional FP-tree contains
only one path. The set of frequent patterns is generated by enumeration of all
combinations of the subpaths of such conditional FP-trees.

3.1.3 Mining Maximal and Closed Frequent Itemsets

Maximal and closed frequent itemsets mining tasks reduce the number of generated
frequent patterns without losing the interesting patterns. Efficient methods for min-
ing such patterns are based on the early pruning of search space.

MaxMiner Algorithm

The MaxMiner algorithm, introduced in [8], uses the breadth-first search method.
The method uses the Apriori property for pruning the infrequent itemsets and a new
prune condition for non-maximal frequent itemsets. The algorithm produces larger
itemsets gradually.

17

GenMax Algorithm

The GenMax algorithm, presented in [14, 15], is based on the backtracking (depth-
first search) method. In this case, larger itemsets are not generated gradually but the
whole subtree of item node is searched for maximal frequent itemsets. The maximal
itemsets condition remains the same.

The disadvantage of maximal frequent itemsets is that the information about
support of subsets of maximal frequent itemsets is lost. The closed frequent itemsets,
by contract, have the same power as mining frequent itemsets, however, the result
set may be smaller [29].

CLOSET Algorithm

Pei et al. presented an algorithm for mining frequent closed itemsets called CLOSET
[30] which is based on the construction of the conditional FP-trees. The algorithm
CLOSET divides the search space by the list f list = (i1, i2, . . . , in), which is a list
of frequent items in the transaction database in descendant order of support. First,
only in-conditional databases are mined. The i-conditional database is a subset of
transactions containing an item i, and all occurrences of i and items after i in f− list
are omitted. Therefore, all frequent itemsets are divided into subsets based on f−list.
Then, the process runs recursively on each conditional database and X-conditional
databases are constructed (transactions containing all items in itemset X). Frequent
itemsets X are mined from X-conditional databases and tested if they are closed : if
X is closed frequent itemset, then there is no item appearing in all transactions of
X-conditional database.

3.1.4 Mining Multi-level Frequent Patterns

There can be defined taxonomies over items. Moreover, some association rules may
not satisfy the minimal support or the minimal confidence threshold on the lowest
level of the hierarchy but it may satisfy them on higher levels.

The issue was discussed by Han et al. in [18]. They allowed that the minimal
support and the minimal confidence values can differ for different levels of taxonomy.
Authors proposed a basic method and several optimization variants for mining multi-
level association rules. We can expect that children of all nodes of taxonomy are
in lexicographic order without loss of generality. Methods are based on a encoded
transaction tables DT [x] containing tuples in the form 〈TID, Itemset〉 which all
items are encoded as follows. For item on level l, the code contains l numbers. Each
number is the ordering index of a child node in the taxonomy. For example, the code
124 code for an item a means that the item a is the fourth child on level 3 of the
second node on level 2 of the first node of the top level. Then, the method finds large
k-itemsets on each level l of taxonomy denoted as L [k, l].

18

Algorithm ML T2L1

The first algorithm proposed in [18] is the ML T2L1 variant. The algorithm is based
on the top-down approach which finds frequent itemsets on the highest level and goes
down in hierarchy. The pseudocode of the method is in the Algorithm 3.1. First, the
transformed table DT [1] is created and 1-itemsets on the level 1 are counted. Using
such itemsets, the filtered encoded table DT [2] contains only frequent items. Then,
the algorithm runs iteratively in the k iterations. The itemsets of size k are created
from the frequent itemsets of size k− 1. This iterative procedure is run for all levels.
Finally, all result frequent itemsets are returned.

Algorithm 3.1 Method ML T2L1(DT [1], min supp[l])

1: for (l = 1;L [l, 1]) 6= ∅ ∧ l ≤ max level; l + +) do
2: if l = 1 then
3: L [l, 1] = get large 1 itemsets(DT [1] , l)

4: DT
′
= get filtered table(DT [1] ,L [l, 1])

5: else
6: L [l, 1] = get large 1 itemsets(DT [2] , l)
7: end if
8: for (k = 2;L [l, k − 1] 6= ∅; k + +) do
9: Ck = get candidates(L [l, k − 1])
10: for all t ∈ DT [2] do
11: Increment support for all itemsets in Ck which are subsets of t
12: end for
13: L [l, k] = {c ∈ Ck|support(c) ≥ min supp[l]}
14: end for
15: LL [l] =

⋃
k L [l, k]

16: end for
17: return Multi-level frequent itemsets

⋃
l LL [l]

Algorithms ML T1LA, ML TML1, ML T2LA

Authors in [18] proposed several modifications of the algorithm ML T2L1.

• The ML T1LA avoids generating of second transformed table DT [2] and gen-
erates table L [l, 1] for all levels in the one scan.

• The ML TML1 uses transformed tables for each level DT [l].

• The ML T2LA uses two transformed tables like the ML T2L1 variant, but
generates table L [l, 1] for all levels in the one scan.

It was shown that performance of variants differs for different datasets and parame-
ters.

19

Algorithm Cumulate

Srikant and Agrawal in [38] deal with the redundancy of multi-level association rules
defined in Def. 19. They proposed an algorithm for mining multi-level association
rules called Cumulate. Note that they don’t distinguish between multi-level and level-
crossing terms. They recommended using an extended database which contains all
ancestors of items in the transactions. It allows counting support without traversing
the taxonomy tree each time. In general, the algorithm is based on Apriori candidate
generation method.

The algorithm is improved by several optimizations:

• use of a hash-tree for counting support,

• use of an extended transaction database,

• removal of all candidates which contain both item and its ancestor (redundant
itemsets),

• removal of all ancestors that are not contained in any candidate.

3.2 Mining Sequential Patterns

Basic algorithms for mining frequent patterns were described in the previous section.
Similar concepts were adapted to mining sequential patterns. Moreover, the algo-
rithms for mining sequential patterns have to deal with an ordering of transactions of
customers. This section contains an overview of approaches to the sequential patterns
mining. The algorithms based on candidate generation are described first and, then,
the efficiency improvements based on pattern-growth approach are introduced.

3.2.1 AprioriAll, AprioriSome and DynamicSome Algorithms

The first algorithms for mining (maximal) sequential patterns called AprioriAll, Apri-
oriSome and DynamicSome were proposed by Agrawal et al. in paper [1]. The algo-
rithms are based on the Apriori theorem known from frequent patterns mining. The
algorithms consist of the following phases:

1. Sort Phase – the database is sorted by the transaction arrival time. In the
first phase, the database of transactions D is sorted primary by the customer id
and secondary by the transaction time. The customer sequences are implicitly
created in this phase.

2. Litemset Phase – in this phase, the algorithm finds all litemsets (frequent item-
sets, also called large itemsets). The set of initial 1-sequences are found. The au-
thors recommended the special mapping of litemsets – each k-itemset is mapped
to a single unique integer label. Such mapping allows comparing two litemsets
for equality in the constant time and it reduces the time for checking if the
sequence is contained in a customer sequence.

20

3. Transformation Phase – the mapping created in the second phase is used to
transformation of sequences of the database D. Each transaction is replaced by
the all litemsets contained in the transaction. Therefore, the non-frequent items
are removed from the transformed database. If the sequence does not contain
any litemset, it is removed from the transformed database but it is counted to
the total count of transactions. The transformed database is called DT .

4. Sequence Phase – in this phase, sequential patterns are generated and added
into the result set.

5. Maximal Phase – this phase performs the post-processing operation which re-
moves the non-maximal sequential patterns from the result set. In some algo-
rithms, the phase is integrated directly in the Sequence Phase.

AprioriAll Algorithm

AprioriAll is an iterative algorithm. Initially, the frequent 1-sequences are mined
from the database. Then, in each iteration, the set Ck of candidate k-sequences
are created from the large (k − 1)-sequences from the previous iteration. Generated
candidate sequences c ∈ Ck, such that their all (k − 1)-subsequences are not in the
set L(k−1), are deleted (Apriori property check). Finally, the support values for all
candidate k-sequences are counted in the step called counting step and the set Lk of
frequent k-sequences generated. The complete procedure is shown in Algorithm 3.2.

Candidate k-sequences are joined from sequences s1 ∈ L(k−1) with s2 ∈ L(k−1).
Given a pair of sequences s1 = 〈s11s12s13 . . . s1(k−1)〉 and s2 = 〈s21s22s23 . . . s2(k−1)〉, if s11 =

s21 ∧ s12 = s22 ∧ s13 = s23 ∧ · · · ∧ s1(k−2) = s2(k−2), the sequences are joined into a new
sequence s = 〈s11s12s13 . . . s1(k−1)s2(k−1)〉 .

Algorithm 3.2 Method AprioriAll(D, min supp)

1: L1={frequent 1-sequences}
2: for (k = 2;Lk−1 6= ∅; k + +) do
3: Ck = New candidates generated from Lk−1
4: for ∀s ∈ D do
5: Increment support of all c ∈ Ck which are contained in s
6: end for
7: Lk= Candidates from Ck which satisfy min supp
8: end for
9: return Maximal Sequences in

⋃
k Lk

AprioriSome Algorithm

The disadvantage of the AprioriAll is the post-processing phase for pruning of non-
maximal sequential patterns. Therefore, two other algorithms were proposed in the
research paper [1]. AprioriSome algorithm includes two phases – forward one and
backward one.

21

• The time-consuming counting step (counting support of candidates) is omit-
ted in specified iterations of forward phase. Authors proposed an evaluation
technique that decides which forward counting steps should be omitted. They
defined a ratio value hitk = |Lk|/|Ck|. Using the value hitk is determined how
many next forward counting steps will be skipped and Lk will not be gener-
ated. However, the AprioriSome algorithm uses the same candidate generation
procedure as the AprioriAll algorithm. The Lk−1 is used for generation of Ck in
the AprioriSome algorithm if previous counting step was not skipped according
to hitk, otherwise the Ck−1 must be used.

• Then, in the backward phase, all Lk sequential patterns skipped in forward
phase are evaluated. Also, the non-maximal sequences can be simply identified
and removed because all the longer large sequences are known.

DynamicSome Algorithm

The third modification of the algorithm is called DynamicSome. Generated Ck can-
didate sequences are determined by the parameter step. The algorithm is composed
of four steps for a given step value:

• Initialization phase – all the candidate sequences of length up to value step are
counted. For example, for the step = 4, the candidate sequences of lengths 1,
2, 3 and 4 are counted.

• Forward phase – The candidate sequences, whose lengths are multiples of step,
are counted. For the step = 4, the sequences of lengths k = 8, 12, 16, etc. are
counted until any sequence of the length k exists.

• Intermediate phase – unlike the AprioriSome algorithm, several lengths of can-
didate sequences are skipped in the forward phase. Candidates of such lengths
are counted in the intermediate phase from k = kmax − 1 decreasingly, where
kmax is the maximal length of candidate sequences in the forward phase.

• Backward phase – the same phase to the AprioriSome algorithm. The non-
maximal sequences are removed from the result set.

The results in the paper [1] show that the AprioriAll and the AprioriSome have a
similar performance result. The DynamicSome algorithm gives the worst performance
results.

3.2.2 GSP Algorithm

The algorithms AprioriAll and AprioriSome described in the previous section allow
mining of non-constrained sequential patterns and maximal sequential patterns us-
ing post-processing procedure. Srikant introduced a new mining algorithm called
Generalized Sequential Patterns (GSP) in [37]. The GSP allows different types of
constraints of sequential patterns such as:

22

• Taxonomies – can be defined over items in a sequence database. In this case,
an itemset si contains an item x ∈ I if x is in si or x is an ancestor of some
item in si. Then, the itemset si contains an itemset X ⊆ I if ei contains all
items in X. The rest of the contains relation remains the same. The rest of
the thesis focuses on this problem.

• Sliding windows – allow only such sequences, in which a maximum distance
between the first and the last item of sequence in the sequence database is
less than the window size. A sequence d = 〈d1, . . . , dm〉 in database contains a
sequence s = 〈s1, . . . , sn〉 if there exist integers li ≤ u1 ≤ l2 ≤ u2 < · · · < ln ≤
un such that si is contained in

⋃ui
k=li

dk, 1 ≤ i ≤ n and

– transaction time(dui)− transaction time(dli) ≤ window size where 1 ≤
i ≤ n.

• Time constraints – extend the sliding windows adding themin gap andmax gap
conditions. Such constraints allow only patterns with minimally and maximally
limited gap between itemsets. First part of definition is the same for sliding
windows. Further, it defines the following two restrictions:

– transaction time(dli)−transaction time(dui−1
) > min gap where 2 ≤ i ≤

n and

– transaction time(dui) − transaction time(dli−1
) ≤ max gap where 2 ≤

i ≤ n.

The algorithm is important for this work and, therefore, it will be described in detail.
The main steps of the GSP algorithm are:

• Candidate Generation – new candidate sequences are generated.

• Counting Candidates -- the support values of new candidates are counted.

The algorithm works iteratively. It makes a pass over the sequence database in all
iterations:

1. Initially, the support of items is counted in the first database pass. 1-sequences
are created from items with higher support value than a minimal support
min sup. Such 1-sequences are inserted into a partial result set L1 contain-
ing all frequent 1-sequences.

2. Then the following steps are processed iteratively until none k-sequential pat-
tern is generated:

(a) The Candidate Generation step generates Ck candidate sequences.

(b) The Counting Candidates step filters the frequent sequences into the Lk
sets.

23

3. The result set of sequential patterns is
⋃
k Lk.

The Candidate Generation runs in Join and Prune steps.

1. In the Join step, a set of candidate sequences Ck is generated from sequential
patterns in Lk−1. A pair of sequences s1, s2 ∈ Lk−1 can be joined if subse-
quences, generated by omitting of the first item of s1 and the last item of s2,
are equal. Then, the candidate k-sequence is formed by adding the last item of
the s2 at the end of the sequence s1 as:

(a) the last new element containing one item x if x was in a separate element
in s2;

(b) as a next item of the last element in s1 otherwise.

(c) When joining x ∈ L1 with y ∈ L1, both sequences < (y)(x) > and <
(yx) > are generated as candidate sequences.

2. The Prune step removes candidates whose any (k − 1)-subsequence is not fre-
quent.

In the Counting Candidates step, the database is passed and the support of each
candidate sequence is counted. Candidates with a support greater than min supp
are added into the set Lk of sequential patterns. The contains test, checking if a
sequence s of the sequence database contains a candidate sequence sc, is used for
support evaluation. Because of the time constraints, the contains test consists of two
phases. Given an input data sequence d and a candidate sequence s, the procedure
works as follows:

1. Forward phase – the algorithm finds one-after-one elements of s in the d until
the gap between the start position of the next element of s and the position of
the previous item of s is less than the min gap constraint. If the gap is greater
than the max gap, the algorithm switches into the backward phase. If the next
item of s is not found in the searched part of d, the algorithm returns with
result that the s is not contained in the d with specified max gap constraint.

2. Backward phase – the algorithm backtracks previous elements and pulls-up
them. The backward phase for si tries to find the first occurrence of si−1 such
that end time(si) − start time(si−1) ≤ max gap. Then, the algorithm moves
back and pulls-up the si−2 because si−1 may not satisfy the max gap constraint.
The backward phase is switched back to forward phase after x-steps when the
max gap constraint could not be satisfied for si−x. If any element could not
be pulled-up, the algorithm returns result that s is not contained in d with
specified max gap constraint.

The pseudo code of the basic steps of GSP is shown on Algorithm 3.3. Authors of
the GSP also presented the proof of completeness of the algorithm in [37]. The proof
idea is that the join step for construction of Ck sequences from Lk−1 is equivalent

24

Algorithm 3.3 The GSP algorithm

1: procedure GSP(D,min supp)
2: Lk =frequent 1-sequential patterns
3: while Lk = ∅ do
4: Ck+1 = CandidateGeneration(Lk)
5: for ∀s ∈ D do
6: Increment support of all candidates that are contained in s
7: end for
8: Lk+1 = {s ∈ Ck+1|support(s) ≥ min supp}
9: end while
10: return

⋃
k Lk

11: end procedure

Table 3.1: The sequential patterns with the min supp = 2 mined from the sequence
database of root items in Table 2.2.

1-seq. patterns 2-seq. patterns 3-seq. patterns 4-seq. patterns
1. 〈d〉 : 2 〈da〉 : 2 〈dba〉 : 2 〈d (bf) a〉 : 2
2. 〈a〉 : 4 〈db〉 : 2 〈d (bf)〉 : 2 〈a (bf) a〉 : 2
3. 〈b〉 : 4 〈df〉 : 2 〈dfa〉 : 2
4. 〈f〉 : 4 〈ad〉 : 2 〈(abf)〉 : 3
5. 〈aa〉 : 2 〈aba〉 : 2
6. 〈(ab)〉 : 3 〈a (bf)〉 : 2
7. 〈ab〉 : 2 〈afa〉 : 2
8. 〈(af)〉 : 3 〈(bf) a〉 : 2
9. 〈af〉 : 2
10. 〈ba〉 : 2
11. 〈(bf)〉 : 4
12. 〈fa〉 : 2

to extending all Lk−1 with each frequent item followed by deleting those sequences
which (k − 1)-subsequences with deleted the first item are not in Lk−1.

Sliding windows and gap time constraints are not considered for the rest of the
thesis.

Example 5. This example explains the GSP procedure using the running example
data from the Example 2. Assume the sequence database Droot in Table 2.2. The
procedure works as follows.

1. The GSP algorithm reads the sequence database and counts the support for all
items in the database. The support values for items are:a : 4, b : 4, c : 1, d : 2,
e : 1, f : 4, g : 1, h : 1. Then, the 1-sequential patterns are created from the
frequent items {a, b, d, f} only: 〈a〉 : 4, 〈b〉 : 4, 〈d〉 : 2 and 〈f〉 : 4.

25

2. In the next phase, the candidate 2-sequences are joined from the 1-sequential
patterns. Three candidate sequences are generated using each pair of 1-sequential
patterns, for example from pair 〈b〉 and 〈f〉 join procedure creates sequences
〈bf〉, 〈fb〉 and 〈(bf)〉 (note that 〈(fb)〉 is equal to 〈(bf)〉). Similarly, all candi-
date 2-sequences are created. Finally, the counting step is performed using next
database pass: 〈bf〉 : 1, 〈fb〉 : 0 and 〈(bf)〉 : 4. Assuming the minimal support
equal to 2, only the 〈(bf)〉 : 4 from this pair is a frequent pattern. Remaining
sequences are removed. The complete set of 2-sequential patterns is shown in
Table 3.1.

3. Then in the next phase, the algorithm continues with join step of 2-sequential
patterns into candidate 3-sequences. The algorithm must verify if the join of
the pair of sequential patterns is possible. For example: the pair 〈(bf)〉 : 4
and 〈(ab)〉 : 3 can be joined into the sequence 〈(abf)〉 because there exists
the common 1-subsequences〈(b)〉 and 〈(b)〉. In this case, the items are joined
into one element. The pair 〈(bf)〉 : 4 and 〈ab〉 : 2 can be also joined into
another sequence 〈a(bf)〉. Note that the common 1-subsequences in this case
are〈 b〉 and 〈(b)〉, therefore the sequence with 2 elements is created. Finally,
the pair 〈(bf)〉 : 4 and 〈aa〉 : 2 cannot be joined because there is no common
subsequence. As in the previous iteration, the counting step, making a next
database pass and removing of non-frequent sequences, is finally performed. In
the example above, 3-sequential pattern 〈(abf)〉 has support 3.

4. The algorithm continues generating 4-sequential patterns. In our example, the
pair 〈d (bf)〉 : 2 and 〈(bf) a〉 : 2 is used to create the candidate sequence
〈d (bf) a〉 : 2 and the pair 〈a (bf)〉 : 2 and 〈(bf) a〉 : 2 to create the candidate
sequence 〈a (bf) a〉 : 2.

5. The pair of 4-sequential patterns could not be joined and no candidate sequence
is created. Therefore, the GSP algorithm finishes. The complete result of
mining the database Droot is shown in Table 3.1.

3.2.2.1 Variants of Sequential Pattern Mining

By Shrikant [37] there exist several extensions of basic sequential pattern mining
problem. In general, extensions are based on redefinition of contains subsequence
function.

3.2.3 SPAM Algorithm

Algorithms described in previous sections were based on the breadth first search strat-
egy [6]. It means that in each iteration the algorithms generate sequences longer by
one item than in the previous one. In contrast, the SPAM algorithm presented in [7]
is the representative of the depth first search [6] strategy. In general, this strategy
tries to extend the sequence being processed immediately.

First, the lexicographical ordering ≤ over items is defined in the database D. For
given items i, j ∈ I, if the item i lexicographically precedes item j, then we denote

26

i ≤ j. The same ordering is applied to sequences. Given sequences s1 and s2, we
denote s1≤s2 if s1 is a subsequence of s2. Then, the sequence tree, denoted as T , is
arranged from nodes as follows. Nodes of level l represent only the sequences of the
length l. The root of the sequence tree is a node n = 〈〉. Then, recursively, if the
node n is the node in the tree, the children of n are all nodes n′ such that n ≤ n′

and ∀m ∈ T : n′ ≤ m⇒ n ≤ m. The sequences are generated by sequence extension
steps (S-step; a new item is appended to the sequence as a new element) and itemset
extension steps (I-step; a new item is append to the sequence into the last element).
Each node n in the tree is associated with two sets: Sn is the set of candidate items
with possible S-step extension and In is the set of candidate items for possible I-step
extension. The tree is traversed by the depth first search traversal approach – for
each node all its children are processed before going to next sibling.

Because of the large search space, two optimization pruning rules are applied
during traversing the tree. The algorithm pseudocode is in Algorithm 3.4.

S-Step Pruning

Suppose sequence s of the node n, ij, ik ∈ I. Its S-Step extensions are sa = 〈s, ij〉,
which is frequent, and sb = 〈s, ik〉, which is not frequent. According to the Apriori
theorem, both extensions 〈s, ij, ik〉 and 〈s, (ij, ik)〉 are not frequent and, therefore, ik
can be removed from both Sm and Im sets of items, where m is any child node of n
corresponding to frequent sequence.

I-Step Pruning

Suppose sequence s = 〈s′, (i1, . . . , in)〉 of the node n, ij, ik ∈ I and its I-Step exten-
sions sa = 〈s′, (i1, . . . , in, ij)〉, which is frequent, and sb = 〈s′, (i1, . . . , in, ik)〉, which is
not frequent. According to the Apriori theorem, 〈s′, (i1, . . . , in, ij, ik)〉 is not frequent
and ik can be removed from Im. Notice that the Sm set can be pruned by the same
items as in the S-Step.

Vertical database format

A vertical bitmap database format enables an effective S-Step and I-Step and effective
support counting. The vertical bitmap table is in format Bi = (SID, TID,B), where
SID is sequence identifier, TID is a unique transaction identifier and B is a list of
bits bi , where the bit for item i is set to one, if the transaction TID of sequence
SID contains i, or zero otherwise. Then, the bitmap can be also evaluated for a
sequence, for example for 2-sequence s = 〈i, j〉, the bitmap is evaluated as a logical
AND operator applied over bitmaps for item i and item j. Bitmap tables are divided
into groups by lengths. The group contains sequences from the 2k + 1 length up to
2k+1 for k = 1, . . . , 5. Therefore, the maximal sequence length is 64, longer sequences
are ignored. Authors say that longer sequences occur minimally. Then, the support
counting only checks, if any bit of the corresponding bitmap partition for a sequence
is set to one.

27

Algorithm 3.4 The SPAM algorithm

1: procedure SPAM(noden = 〈s1, . . . , sk〉, Sn, In)
2: Stemp = ∅
3: Itemp = ∅
4: for ∀i ∈ Sn do
5: if 〈s1, . . . , sk, {i}〉 is frequent then
6: Stemp = Stemp ∪ {i}
7: end if
8: end for
9: for ∀i ∈ Stemp do
10: SPAM(〈s1, . . . , sk, {i}〉, Stemp, {j ∈ Stemp|i < j}
11: end for
12: for ∀i ∈ In do
13: if 〈s1, . . . , sk ∪ {i}〉 is frequent then
14: Itemp = Itemp ∪ {i}
15: end if
16: end for
17: for ∀i ∈ Itemp do
18: SPAM(〈s1, . . . , sk ∪ {i}〉, Stemp, {j ∈ Itemp|i < j}
19: end for
20: end procedure

The main advantage is in the way how the S-Step and I-Step are performed.
The I-Step simply performs logical AND over a sequence bitmap and a bitmap of
appended item. The S-Step needs transformation step.

3.2.4 PrefixSpan Algorithm

The PrefixSpan proposed by Pet et al. [32],[31] is a representative of the pattern-
growth algorithms. The algorithm does not use the time-consuming generating of
candidate sequences. The algorithm is based on the projected databases [20]. With-
out loss on generality, the algorithm assumes that the items of elements are sorted in
lexicographical order.

For the purpose of the algorithm, the prefix and suffix terms were introduced.
Given sequences α = 〈s1s2 . . . sn〉 and β = 〈s′1s′2 . . . s′m〉 where (m < n). Sequence β
is a prefix of sequence α iff s′i = si for (i ≤ m − 1) and e′m ⊆ em and all items in
(em − e′m) are lexicographically after all items in e′m.

Given a sequence α = 〈s1s2 . . . sn〉 and β = 〈s1s2 . . . em−1s′m〉 (m < n) be a prefix
of α. A sequence γ = 〈e′′mem+1 . . . en〉 is a suffix of α w.r.t. a prefix β. The suffix
is denoted as γ = α\β and α = β.γ. The projected database for a prefix sequence
α, denoted as S|α, is defined as a set of suffixes of sequences in S with regards to
prefixα. The length of prefix α is denoted as l.

The PrefixSpan algorithm works as follows. In the first scan, the algorithm finds
all 1-sequential patterns in the sequence database (the prefix is empty). Then,

28

projected database construction and PrefixSpan procedure are applied for each 1-
sequential patterns. Constructed projected databases are searched for a set of local
frequent items again. Output sequential patterns are constructed by joining a pre-
fix with all local frequent items. Finally, sequential patterns represent new prefixes
and the PrefixSpan is run recursively. The pseudo code of the PrefixSpan is in the
Algorithm 3.5.

Algorithm 3.5 The PrefixSpan algorithm

1: procedure PrefixSpan(α, l, S|α)
2: Find all frequent items X in the projected database S|α
3: for each item x ∈ X do
4: Construct (l + 1)-sequential pattern α′ appending x to prefix α
5: Output sequential pattern α′

6: Construct projected database for α′ and run PrefixSpan(α′, l + 1, S|α′)
7: end for
8: end procedure

The construction of projected databases is inefficient. Therefore, optimization
called pseudo-projection was proposed. The projected databases are not constructed
by copying subsequences but they are constructed by pointing to the sequences in
D. The only condition is that the sequence database D has to be loaded in the main
memory.

Example 6. The PrefixSpan example shows the pattern-growth approach. Given
the sequence database in Table 2.2 and the min supp = 2 the algorithm works in
following steps.

1. First, the algorithm finds the frequent items during the first database scan:
a, b, d, f .

2. Projected databases are created using the frequent items from the first step
during the second full database scan. Projected databases with length 1 prefixes
are shown in Table 3.2. Note, that an element of form 〈(x) . . . 〉 denotes that
the last element of the prefix is part of this element.

3. Each projected database in Table 3.2 is scanned for 2-sequential patterns and
the procedure is run recursively for such sequential patterns, e.g. the 〈b〉 pro-
jected database contains sequential patterns 〈ba〉 : 2 and 〈(bf)〉 : 4, projected
databases 〈ba〉 and 〈(bf)〉 are constructed and PrefixSpan is called recursively
for those projected databases.

3.2.5 Other Sequential Pattern Mining Methods

Several other algorithms and their variants for mining sequential patterns were dis-
covered. Some important principles are described in this section.

29

Table 3.2: Projected databases and final sequential patterns.

Prefix Projected database Sequential patterns (mined recursively)
〈a〉 : 4 〈(bc)(abf)(acdf)〉, 〈(bf) e〉, 〈a〉 : 4, 〈ad〉 : 2, 〈aa〉 : 2, 〈(ab)〉 : 3, 〈ab〉 : 2,

〈(bf)〉, 〈(dgh)(bf)(agh)〉 〈(af)〉 : 3, 〈af〉 : 2, 〈(abf)〉 : 3, 〈aba〉 : 2,
〈a (bf)〉 : 2, 〈afa〉 : 2, 〈a (bf) a〉 : 2

〈b〉 : 4 〈(c)(abf)(acdf)〉, 〈(f) e〉〈(f)〉, 〈b〉 : 4, 〈ba〉 : 2, 〈(bf)〉 : 4, 〈(bf) a〉 : 2
〈(f)(agh)〉

〈d〉 : 2 〈(f)〉, 〈(gh)(bf)(agh)〉 〈d〉 : 2, 〈da〉 : 2, 〈db〉 : 2, 〈df〉 : 2, 〈dba〉 : 2,
〈d (bf)〉 : 2, 〈dfa〉 : 2, 〈d (bf) a〉 : 2

〈f〉 : 4 〈(acdf)〉, 〈e〉, 〈(agh)〉 〈f〉 : 4,〈fa〉 : 2

SPADE

The vertical database format was firstly used for mining sequential patterns in the
SPAM algorithm described in Section 3.2.3. The improved vertical database algo-
rithm is the SPADE algorithm presented by Zaki et al. in [50]. Sequences are divided
into equivalent classes by atoms, which are initially all frequent items in the sequence
database. Used principle is in general similar to the SPAM algorithm; however, it
uses different internal representation. The SPADE does not use the bitmap repre-
sentation but it stores the pairs of (SID,EID) for each sequence, where the SID is
a sequence identifier and EID is a timestamp of the event (transaction ID).

The algorithm uses two ways how to extend sequences using vertical databases of
sequences:

• temporal join – a new item is appended as a new element to a base sequence,
the temporal join can be performed if the item to be appended has its EID
greater than the base sequence has.

• equality join – a new item is appended as a part of the last element of a base
sequence, the equality join can be performed if the item to be appended has its
EID equal to the base sequence has.

LAPIN-SPAM

The LAPIN-SPAM algorithm, presented in [47], is an algorithm also based on the
vertical database format. It improves the SPAM [7] algorithm. The S -step and I -step
and a bitmap representation is adopted from the SPAM algorithm. It improves the
counting step using a temporal table for each sequence of sequence database D which
keeps information about the last occurrence of items in sequences of D. It enables
to skip several AND operations when the last occurrence of the candidate item is
behind the current prefix position.

3.2.6 Mining Closed Sequential Patterns

The problem of mining closed sequential patterns is defined in Def. 12. In following
subsections, major algorithms for mining closed sequential patterns are described.

30

The advantage of closed sequential patterns is that the result set of sequential patterns
is significantly smaller. In general, algorithms use techniques of early pruning to avoid
exploring of non-closed sequential patterns.

BIDE

The first representative for mining closed sequential patterns is the BIDE (Bi-Direc-
tional Extension) algorithm presented in [45]. The algorithm is based on the principle
of projected databases used in PrefixSpan. It uses several optimization techniques
for early pruning and fast check if the sequence can be closed. Authors of algorithm
formulated the following lemma: If there exists neither forward-extension event nor
backward-extension event w.r.t. to a prefix sequence α, then α is a closed sequence,
otherwise, α must be non-closed. The forward-extension and backward-extension
events check the following conditions:

1. Forward-extension event checking – The sequence database contains an exten-
sion of prefix sequence α = 〈e1 . . . en〉 extended by item i in following form
α′ = 〈e1 . . . eni〉, such that support(α) = support(α′). The check of the con-
dition can be done by counting local frequent items in the projected database
with prefix α.

2. Backward-extension event checking – The sequence database contains an ex-
tension of prefix sequence α = 〈e1 . . . en〉 extended by item i in following two
forms α′ = 〈e1 . . . eki ek+1 . . . en〉 or α′ = 〈i e1 . . . en〉, such that support(α) =
support(α′). The check finds all items which are included in all prefixes of
sequence database D which supports a current prefix α. Formally, backward-
extension events are items which occur in all a maximum periods of a prefix
sequence in D. Details are described in [45].

Finally, the procedure for early pruning method called BackScan is defined. It analy-
ses if there is a chance to get any closed frequent sequences with prefix α. The authors
presented that the algorithm outperforms PrefixSpan and SPADE algorithms.

CloSpan

The algorithm CloSpan is next representative of family of pattern growth algorithms.
It uses projected databases similarly to the PrefixSpan and a lexicographic sequence
tree [46]. The algorithm generates a superset of all closed sequential patterns in the
first step and the non-closed sequential patterns are eliminated in the second step.
The optimization of the algorithm is based on the usage of early termination by
equivalence of the projection databases: given sequences s and s′ and its projected
databases such that s v s′ and size(S|s) = size(S|s′), then ∀i ∈ I : support(〈s i〉) =
support(〈s′ i〉). Therefore, many countings over projected database can be skipped.

Such method generates also non-closed sequential patterns. Therefore, authors
added the post-processing step for removing such patterns inspired by a method
developed by Zaki in [49] for mining closed itemsets. The method uses the hash table
for fast access indexed by support of sequences.

31

ClaSP

One of recent algorithms for mining closed sequential patterns is the algorithm ClaSP
presented by Gomariz et al. in [13]. The algorithm combines some previously pre-
sented principles – the vertical format of the database with the depth first search
method. The algorithm adopts the pruning method from the CloSpan algorithm and
saves the sequential patterns into a lexicographic sequence tree. Finally, a hash table
is used for fast determination of possible redundant (non-closed) sequences.

3.2.7 Sequential Generator Patterns

The sequential pattern generator is in the opposite to closed sequential patterns.
Whereas the mining closed sequential patterns finds the longest sequential patterns,
the mining sequential generator patterns finds the shortest ones w.r.t. equal support.
The sequential generator is defined by the Definition 20.

Definition 20. (Sequential Pattern Generator) A sequential pattern sa is said
to be a generator if there is no other sequential pattern sb, such that sb v sa, and
their supports are equal.

There exists several algorithms to solve this problem such as GenMiner [24], FEAT
[12], FSGP [48]. However, the problem is very time consuming because of large search
space. It was proposed a depth first search method VGEN based on a vertical format
database for mining sequential pattern generators in our paper [11]. The experiments
show that the algorithm VGEN works from one to two orders of magnitude faster
than the algorithms mentioned above.

3.3 Mining Multi-Level Sequential Patterns

Mining multi-level and level-crossing sequential patterns is a big challenge. Similarly
to the multi-level frequent itemsets described in Section 3.1.4, the multi-level sequen-
tial patterns mining algorithms try to find items on higher taxonomy levels. The
task is very difficult according to the large search space of the possible results. The
straightforward solutions bring very unclear results with many redundant patterns.
In this subsection, current approaches are described, however, none of them provides
sufficient solution. This section is closely related to the core of the thesis.

Example 7. The example explains the benefit of multi-level sequential patterns in
contrast to sequential patterns. Remind the sequence database in Table 2.1 on page
9. Given the min supp = 2 and the sequence database in Table 2.1. The sequential
patterns, found by the GSP method, are shown in Table 3.3. Only three 2-sequential
patterns are found. Now, the sequence database containing only root items in Table
2.2 is mined. The resulting sequential patterns are presented in Table 3.1 on page
25. In that case, 22 sequential patterns of length 2, 3 and 4 are found. Sequential
patterns of the root items are multi-level sequential patterns on the highest level.
Here it was shown, that new sequential patterns can be found on higher taxonomy

32

levels. The rest of the thesis deals with the methods how to get effectively different
types of multi-level sequential patterns.

Table 3.3: The sequential patterns with the min supp = 2 mined from the sequence
database in Table 2.1.

1-seq. patterns 2-seq. patterns
1. 〈d1〉 : 2 〈d1b1〉 : 2
2. 〈a12〉 : 2 〈d1f1〉 : 2
3. 〈b1〉 : 2 〈(b2f2)〉 : 2
4. 〈b2〉 : 3
5. 〈f1〉 : 2
6. 〈a11〉 : 2
7. 〈f2〉 : 2
8. 〈a2〉 : 2

3.3.1 Approach Based on Extended Sequences

The first method to deal with taxonomies over sequential patterns was described
in [34]. The method is called Uniform sequential approach [34]. It allows using
a common sequential patterns mining algorithm for mining multi-dimensional and
multi-level sequential patterns. This intuitive approach is based on the extending of
sequence database D. Each sequence s ∈ D is replaced by a new sequence s′ called
extended sequence where each item of s is replaced by all its ancestors within an
element. Then, the presented AprioriSome and GSP algorithms find level-crossing
sequential patterns. There were proposed 2 optimizations in the [37].

1. Pre-compute the ancestors of each item and drop ancestors which are not in
any of the candidates being counted before.

2. Do not count the sequential patterns which contain both an item and it’s any
ancestor within one element. The support of such sequence is the same as one
of the sequence containing the item.

Han et al. used in [16] such extended sequences for mining multi-level sequential
patterns by means of the PrefixSpan algorithm. The modification of the sequence
database was used in the principle adopted from the mining multi-level frequent pat-
terns algorithms proposed in [22]. Authors encoded items by n-tuples representing
their order in different levels of taxonomies. Moreover, they assumed fuzzy member-
ship of items in taxonomies.

Example 8. Given a sequence database in Table 2.1 on page 9. The extended se-
quence database is shown in Table 3.4. The modification is straightforward – all items
in the sequence database are expanded by all their ancestors (w.r.t. taxonomies on
Figure 2.2). E.g. if the element contains item a12, then items a1 and a are added

33

into element. Therefore, multi-level sequential patterns can be mined using the ca-
sual data mining algorithms for mining sequential patterns with extended sequences.
However, many redundant sequential patterns are mined. For example, all generalized
patterns 〈db1〉, 〈d1b〉 and 〈db〉 are found together with sequence〈d1b1〉.

Table 3.4: An extended sequence database to sequence database in Table 2.1.

Sequence ID Sequence
1 〈(c1 c d1 d)(a12 a1 a b1 b c1 c)(a1 a b2 b f1 f)(a11 a1 a c1 c d1 d f1 f)〉
2 〈(a12 a1 a b2 b f2 f) (e1 e)〉
3 〈(a2 a b2 b f2 f)〉
4 〈(a11 a1 a)(d1 d g1 g h1 h)(b1 b f1 f)(a2 a g2 g h2 h)〉

3.3.2 Generalization Based Methods

The topic of mining multi-level sequential patterns was deeply studied by Plantevit
et al. [36] and [35]. They proposed several methods for mining different kinds of
multidimensional and multi-level sequential patterns. The multidimensional database
contains items from n distinct dimensions Di. Then items for data mining tasks are
n-tuples i = (d1, . . . , dn), where di ∈ dom(Di) ∪ {∗} and star symbol * denotes all
items of domain Di, called multidimensional items.

They proposed an algorithm called HYPE (HierarchY Pattern Extension). They
described an idea of generalization and specialization of sequential patterns [36].
The algorithm runs in two phases. In the first phase, the algorithm creates the
most specific (items in leaf nodes of taxonomies) n−multidimensional items i =
(d1, . . . , dn) denotes any item. The construction gradually replaces star symbols by
specific items of domains by joining pairs of compatible hierarchical items – two items
over n−dimensions are compatible, if items share n− 2 items. In the second phase,
the sequential patterns are iteratively mined using an Apriori theorem.

The disadvantage of the HYPE is that only two levels of hierarchy are assumed –
the most specific one (items) and most general (star symbols) level. The algorithm
was improved in [35] where more levels of taxonomies were used. Authors defined a
specificity relation �I over items and �S over sequences where s1 � s2 denotes that
the s2 is more specific or equal to s1. The algorithm firstly creates the most specific
MAF (maximal atomic frequent) sequences which are the most specific frequent 1-
sequences. For mining longer sequences, authors recommended to use any existing
algorithm such as SPADE. However, the algorithm does not perform generalization
operations after an initialization of MAF-sequences and it does not reveal all most
specific sequences with size greater than one.

34

Chapter 4

Level-Crossing and Multi-level
Sequential Pattern Mining

Basic concepts of mining sequential patterns were described in previous Chapters
2 and 3. There were introduced the field of mining level-crossing and multi-level
sequential patterns. It was indicated that the usage of taxonomies of items can help
to find new results and new knowledge. The analysis of the state-of-the-art exposed
that such mining task is important and challenging, however, there does not exist
any satisfying solution.

In this chapter, my research over level-crossing and multi-level sequential pat-
tern mining is described. The main idea of my research is that the generalization
of sequence items can be performed when the subsequence support does not reach
the minimal support value. I have studied both sub-problems – level-crossing and,
also, multi-level sequential patterns. The naive solution for mining the level-crossing
sequential patterns uncovered the main issues of the task which are the huge search
space and the large result set. Therefore, there were proposed the constrains for
mining multi-level sequential patterns which simplified the complexity of the mining
process. The chapter summarizes facts published in research papers [41], [42] and
[43]. All those research papers were presented as results of TAČR research project
TA01010858: “Improving Security of the Internet by Using System for Analyzing of
Malicious Code Spreading” .

4.1 Introduction

The existence of taxonomies can be used for mining level-crossing and multi-level
sequential patterns. The advantage is shown in Examples 5 and 7 in the previous
chapter. The result contains only three sequential patterns of the length two. The re-
sult of root sequential patterns, by contrast, contains 22 sequences of lengths from two
up to four. These examples compare two extreme situations – the situation without
the generalization and the situation with the maximal generalization of items. The
simple mining method based on an extended database produces totally 77 sequential
patterns. Such result contains high number of unimportant sequential patterns (e.g.

35

〈f1 a〉 and also 〈f a〉). Note that in this chapter will be used the notations from the
Example 4 on page 11.

For the rest of the thesis two basic tasks are distinguished:

• Level-crossing sequential patterns – items of sequential patterns can be gene-
ralized to any level of taxonomy.

• Multi-level sequential patterns – items of sequential patterns have to have the
same level of taxonomy.

Example 9. The difference between the complexity of level-crossing and multi-level
sequential patterns mining is shown on Figure 4.1. The multi-level mining approach
creates only the most bottom and top sequences: 〈a1 (b2 f2)〉 and 〈a (b f)〉 because
levels of items of those sequential patterns must be the same. However, there are
more 5 level-crossing sequential patterns between the pair of multi-level sequential
patterns of length three. With the length of the sequential patterns, the number of
level-crossing patterns increases.

< a1 (b2,f2) >

< a1 (b,f2) > < a1 (b2,f) >

< a (b,f2) > < a1 (b,f) >

< a (b,f) >

< a (b2,f2) >

 equal-level generalization

 constraint

Figure 4.1: Difference between level-crossing and multi-level generalization of se-
quence 〈a1 (b2f2)〉.

For multi-level sequential patterns mining, the definition of the support must
be modified. The basic Def. 10 of the support takes into account only items of the
sequences in the sequence database. Multi-level and level crossing sequential patterns
can contain the items of the taxonomies and their ancestors which are not directly
contained in the sequences. Therefore, using of Def. 10 is not possible.

A new support measure called a generalized support is introduced. The generalized
support gen supp is based on Def. 10 but the sequence subset relation is replaced by
the generalized subset relation ⊆g for the generalized support. Then, the generalized
support must test if the subsequence contains an item or any of its descendants.

Definition 21. (Generalized Support) Given elements e1, e2 ⊆ I, the generalized
subset relation ⊆g is defined as

e1 ⊆g e2 ⇔ ∀i ∈ e1 : i ∈ e2 ∨
∃j ∈ e2 : i ∈ ancestors(j). (4.1)

A sequence α = 〈a1a2 . . . an〉 is a generalized subsequence of a sequence β =
〈b1b2 . . . bm〉 if there exist integers 1 ≤ j1 < j2 < · · · < jn ≤ m such that a1 ⊆g

36

Table 4.1: Table shows differences between support and generalized support of an-
cestors of sequence 〈(b2 f2)〉. The SID column indicates sequences which support the
sequence s. The Type column denotes the type of the sequence s: common sequence
(S), level-crossing sequence (L-C) and multi-level sequence (M-L).

Sequence s support(s) gen supp(s) SID Type

〈(b2 f2)〉 2 2 2,3 S, M-L, L-C
〈(b2 f)〉 – 3 1,2,3 L-C
〈(b f2)〉 – 2 2,3 L-C
〈(b f)〉 – 4 1,2,3,4 M-L, L-C

bj1 , a2 ⊆g bj2 , . . . , an ⊆g bjn . We denote α vg β. Formally, the definition of the
generalized support of a sequence s1 is

gen supp(s1) = |{〈SID, s〉|(〈SID, s〉 ∈ D) ∧ (s1 vg s)}|. (4.2)

Example 10. For given sequence database in Table 2.1, this example explains the
method of generalized support counting for sequence 〈(b2 f2)〉. The ancestors are the
following: 〈(b f2)〉, 〈(b2 f)〉, 〈(b f)〉. The support and generalized support of the se-
quence 〈(b2f2)〉 are equal to 2. The sequence 〈(b2f)〉 is supported by sequences which
contain 〈(b2 f2)〉 or 〈(b2 f1)〉. Therefore, the generalized support value of sequence
〈(b2 f)〉 is 3.

The rest of the thesis will use shortened term support instead of generalized sup-
port.

Definition 22. (Generalization Procedure) The generalization procedure (shortly
generalization) is a procedure whose input is the node n of the taxonomy τ and the
output is the subset Na of ancestors of node n:

Na ⊆ τ ∧ n ∈ τ ∧Na ⊆ ancestors(n). (4.3)

4.2 Mining Level-Crossing Sequential Patterns

Sequential patterns are such subsequences which occur frequently in a sequence
database. Level-crossing sequential patterns allow items to be on different levels of
taxonomies. On the other hand, the search space significantly grows for level-crossing
sequential patterns.

This section is based on facts published in [41] and [42]. First, the problem of
mining level-crossing sequential patterns is formalized. Especially, the relations as
parents and ancestors are defined for level-crossing sequences. Then, the algorithm
for mining level-crossing sequential patterns is proposed and it is explained on the
complex example.

37

4.2.1 Problem Definition

Definition 23. (Element Parents) Given an element e = {i1, i2, . . . , in}, an ele-
ment parents of the element e is a set of the elements which are the same as e except
one of the items which is generalized. Formally,

parentsel(e) = {e \ {ik} ∪ {parent(ik)}|ik ∈ e
∧parent(ik) /∈ e ∧ 1 ≤ k ≤ n}. (4.4)

Note that items inside elements can be linearly ordered without lost of generality.
Now, the sequence parents and sequence ancestors can be defined using the ele-

ment parent definition.

Definition 24. (Sequence Parents) Given a sequence s = 〈e1e2 . . . en〉, where ek
are elements. The sequence parents of s is the set of sequences that are the same as
the sequence s except one of their elements which is replaced by one of its element
parents. Formally,

parentsseq(s) = {〈f1f2 . . . fn〉|fk ∈ parentsel(ek)
∧1 ≤ k ≤ n (4.5)

∧∀l 6= k, 1 ≤ l ≤ n : el = fl}.

Definition 25. (Root Sequence) Given taxonomy τ , a root sequence is a sequence
consisting of elements with items corresponding to root nodes only. The set of se-
quence parents of a root sequence is an empty set.

Definition 26. (Sequence Ancestors) Given the sequence s, the sequence ances-
tors of the sequence s is defined as follows:

ancestorsseq(s) = Mi, for such i that Mi+1 = Mi,where (4.6)

M0 = parentsseq(s)

Mi+1 = Mi ∪ {parentsseq(x) | x ∈Mi}
for i ≥ 0.

Example of sequence parents and sequence ancestors of sequence are in Exam-
ple 11.

Example 11. For a given sequence 〈a12 a11〉 : 1, a set of parent sequences is the
set of two sequences {〈a12a1〉 : 1, 〈a1 a11〉 : 1}. The set of ancestors of the sequence
〈a12 a11〉 : 1 is the set of sequences {〈a12 a1〉 : 1, 〈a1 a11〉 : 1, 〈a1 a1〉 : 1, 〈a1 a〉 : 2,〈aa1〉 :
1, 〈a a〉 : 2}. The sequence 〈a a〉 : 2 is the root sequence and it has no parent and
ancestor sequences.

38

4.2.2 The hGSP Algorithm

In this section, the algorithm hGSP (hierarchical-GSP) for mining level crossing
sequential patterns is introduced. The algorithm is based on GSP [37] described in
Section 3.2.2. In contrast to the method based on “extended-sequences”, the hGSP
algorithm reduces the number of redundant patterns. If a sequence s is frequent and
s1 ∈ ancestorsseq(s), then s1 must be also frequent. Therefore, the sequence s1 is
redundant because it does not contain any new information. Due to the observation
our algorithm does not generate all possible generalizations of frequent sequences. It
performs generalization only when the sequence would be pruned. The hGSP is based
on the idea of concreteness of each sequence. The concreteness measure is evaluated
using information theory explained in the following subsection.

Concept of hGSP Algorithm

The main idea of the hGSP algorithm is that if a sequence s has support gen supp(s),
there can exist a generalized sequence sg ∈ parentsseq(s) such that gen supp(sg) >
gen supp(s). This can be applied repeatedly. Note that ∀sg ∈ parentsseq(s) :
gen supp(s) ≤ gen supp(sg).

Generally, more specific sequence s is more important result than its generalized
form sg because the generalized sg is more expectable in the result set. It corresponds
to the concept of information content.

Definition 27. (Shannon information content) The Shannon information con-
tent [25] of a value x with probability p(x) is defined as

h(x) = log2

1

p(x)
. (4.7)

The probability p(s) that a sequence s occurs in a sequence database D is

p(s) =
gen supp(s)

|D|
. (4.8)

The information content of s in D is

h(s) = log2

1
gen supp(s)
|D|

= − log2

gen supp(s)

|D|
. (4.9)

For a sequence s, the dependence between information content h(s) and general-
ized support gen supp(s) causes that if the generalization from s to sg is performed
and gen supp(sg) > gen supp(s), then h(sg) < h(s). Some information is lost during
generalization. Therefore, the generalization should be performed only if the candi-
date sequence is not frequent (i.e. gen supp(s) < min supp) or the GSP algorithm
cannot perform join of two candidate sequences with joinable sequence ancestors.

Definition 28. (Concreteness) A sequence s1 is more concrete than a sequence s2
if (h(s2) < h(s1)) ∧ (ancestorsseq(s1) ∪ s1) ∩ (ancestorsseq(s2) ∪ s2) 6= ∅.

39

It means that s1 must have higher information content then s2 to be more concrete
and both sequences must have at least one common ancestor or one sequence is
ancestor of the other.

Algorithm details

The hGSP algorithm uses modified join step and pruning step of the GSP algorithm.
The rest of the algorithm remains the same. The hGSP algorithm implementation
assumes that items in elements are in lexicographic order.

The join step is modified for generating candidates of length k ≥ 3. Let s1 and
s2 be a pair of frequent sequences of length k − 1. The join can be performed if
subsequences of s1 after omitting the first item and s2 after omitting the last one
have a common sequence ancestor. Then the joined sequence of length k is composed
from the first item of s1, the most concrete sequence ancestor of common part and
the last item of s2. The last item is added as in GSP.

Support of candidates is counted similarly to original GSP. The only difference
is that we use gen supp(s) defined in Def. 21 instead of support. Therefore, only
the procedure for checking, if a candidate is a subsequence of sequences in a given
sequence database, is modified.

The modification of the pruning step is shown in Algorithm 4.2. The algorithm
uses a method for finding the approximation of the most concrete generalization set
of sequences which is described in Algorithm 4.1. The hGSP algorithm is based on
the greedy optimization technique [9]. The method FindGeneralization(s) returns
the set Gs of most concrete generalizations of the sequence s with higher information
value. Then the hGSP algorithm checks, if each sequence in Gs is frequent. If
so, it is added into set of sequential patterns, otherwise the candidate sequence is
generalized again. Therefore, the algorithm finds only sequences corresponding to
the local optimum of concreteness measure. Finding of a global optimum would
be extremely computationally complex. It is not necessary to evaluate information
content using logarithm functions but it is sufficient to compare ratios of supports of
sequences and theirs generalized forms.

Given sequence s and its generalized form s1, the information contents of these
sequences are h(s) = − log2

gen supp(s)
|D| and h(s1) = − log2

gen supp(s1)
|D| . The information

lost during generalization of s to s1 is ∆h = h(s)− h(s1). It follows that

∆h = log2

(gen supp(s1)
|D|

gen supp(s)
|D|

)
= log2

(
gen supp(s1)

gen supp(s)

)
. (4.10)

The generalization of s with the smallest information loss is found because then
the sequences will be the most concrete. Therefore, the algorithm minimizes ratio
gen supp(s1)
gen supp(s)

.
Generalized sequences which contain ancestor item of another item in the same

element are redundant and they are discarded.

40

4.2.3 Complex Example

In this section, the basic principles of hGSP are described in the Example 12 based
on the dataset in Table 2.1 on page 9.

Example 12. The algorithm hGSP is running in Phases. In each Phase the database
pass is made.

Phase 1

In the first phase, the algorithm finds all sequences of length 1. First, the support
of all items are counted in the sequence database D. The resulting 1-sequential
patterns are 9 sequences: L1 = {〈a11〉 : 2, 〈a12〉 : 2, 〈a1〉 : 3, 〈a2〉 : 2, 〈b1〉 : 2, 〈b2〉 :
3, 〈d1〉 : 2, 〈f 1〉 : 2, 〈f 2〉 : 2}.

Phase 2

The algorithm continues by the second phase taking all pairs s1 ∈ L1, s2 ∈ L1 and
trying to join them into new level-crossing sequential patterns.

• Candidate Generation Step: Pair s1 = 〈d1〉, s2 = 〈b2〉 – Sequences are joined
into new candidate sequences s′ = 〈d1b2〉 and s′′ = 〈(b2d1)〉 and sequences are
added into candidate set C2.
Counting Step: The support for sequence s′ is counted s′ = 〈d1b2〉 : 1. Such
sequence does not satisfies the minimal support threshold and the generalization
is performed s′g1 = 〈d1 b〉 : 2 and s′g2 = 〈d b2〉 : 1. The first generalization is
enough and the candidate sequence s′g1 is added into result set L2. The second
generalized sequence s′g2 does not satisfy the minimal support and it is removed.
The second candidate sequence s′′ is not frequent and cannot be generalized to
any frequent ancestor, therefore, it is removed.

The hGSP algorithm finds 29 level-crossing sequential patterns L2 of length 2.

Phase 3

In the next Phase 3, the algorithm finds 19 sequential patterns L3 of length 3.

Phase 4

In Phase 4, the hGSP algorithm finds the following four sequential patterns L4 =
{〈d1 (b f1) a〉 : 2}, 〈d (b f) a〉 : 2, 〈a1 (b f1) a〉 : 2}, 〈a1 (b f) a〉 : 2}}.

Phase 5

Finally, during the Phase 5 algorithm cannot create any candidate sequence and
finishes.

41

The hGSP algorithm creates 200 candidate sequences totally for mining process
and it reveals 61 level-crossing sequential patterns. The number of generated can-
didate sequences is still high. Such result is better than in case of using extended
sequences in original GSP but improvements are still required.

42

Algorithm 4.1 Method FindGeneralization()

1: procedure FindGeneralization(s)
2: Gs = {}
3: min supp ratio = +∞
4: for all ps ∈ parentsseq(s) do
5: ratio = gen supp(ps)/gen supp(s)
6: if (gen supp(ps) 6= gen supp(s) ∧ ratio < min supp ratio then
7: Gs = {ps}
8: min supp ratio = ratio
9: else if (ratio = min supp ratio then
10: Gs = Gs ∪ {ps}
11: end if
12: end for
13: return Gs

14: end procedure

Algorithm 4.2 Pseudocode of hGSP Pruning Step

1: procedure hGSP(Ck,min supp)
2: Lk = {}
3: for all sc ∈ Ck do
4: C ′k = {sc}
5: sequence added = false
6: while sequence added = false ∧ |C ′k| > 0 do
7: Gs = {}
8: for all s ∈ C ′k do
9: if gen supp(s) ≥ min supp then
10: Lk = Lk ∪ {s}
11: sequence added = true
12: else
13: Gs = Gs∪ FindGeneralization(s)
14: end if
15: end for
16: C ′k = Gs

17: end while
18: end for
19: return Lk
20: end procedure

43

4.3 Mining Hierarchically-Closed Multi-Level
Sequential Patterns

This section presents the core result of my research work. It deals with the formal
definition of the newly formulated task of mining hierarchically-closed sequential pat-
terns, and then it describes a new algorithm for mining such sequential patterns. For
better intelligibility, all steps are explained on detailed examples.

The level-crossing kind of sequential patterns introduced in previous section is
the natural taxonomical (hierarchical) extension of the sequential patterns. However,
the mining process of such patterns is very difficult and computationally expensive.
Therefore, the simplification of the problem was introduced in the research paper
[43]. The most computationally expensive task of mining level-crossing patterns is the
number of various searched paths during the generalization. Moreover, the number of
searched paths increases dramatically with the length of sequential patterns and the
heights of taxonomies. The proposed solution is inspired by adding a new stronger
constraint [18]. The constraint uses a multi-level approach. Generalizations are
performed for all items in itemsets simultaneously. Therefore, the improvement is
based on the multi-level sequential patterns concept. The main idea is to find only
patterns containing items of the same level. It reduces the number of searched paths
during the mining process.

The difference is explained on the following example which uses the taxonomies of
a shop from Example 1 on page 4. The possible result of mining level-crossing sequen-
tial patterns can contain e.g. sequences like 〈PC minitower ink printer〉,
〈PC minitower printer〉 or 〈PC printer〉 because there is no constraint for the com-
bination of the level of items. The multi-level sequential patterns, by contrast, must
not contain the sequential pattern as 〈PC minitower printer〉 because the levels of
items PC minitower and printer are different.

The hierarchically-closed sequential patterns follow the idea of the hGSP algo-
rithm which reveals only the most concrete patterns using the information con-
tent measure. It was observed, that the result becomes more clear and revealing
if the closed patterns are used [45], [1]. In our example, the analyst could be over-
loaded by redundant patterns if the result contains all 〈(PC minitower LCD monitor)
ink printer〉, 〈PC minitower ink printer〉, 〈LCD monitor ink printer〉,
〈(PC minitower LCD monitor)〉, etc. Moreover, no information is lost if the non-
closed patterns are omitted and the longest sequential patterns with the equal sup-
port are found. On the other hand, the mining of the close patterns are more com-
plicated, because result patterns must be retroactively pruned. In our work, the
“close” problem is applied to the process of generalization. It leads to the similar
type of redundant patterns like in mining closed sequential patterns – only the most
specific patterns with the no support change are revealing. Ancestors of the frequent
hierarchically-closed multi-level sequential patterns are always also frequent. How-
ever, the change of the support during the generalization is important. Therefore, we
focus on the mining the hierarchically–closed instead of the hierarchically–maximal
sequential patterns.

44

4.3.1 Problem Definition

This section deals with the formal basics of the mining hierarchically-closed multi-
level sequential patterns. It follows the definitions Def. 1 (Itemset), Def. 8 (Se-
quence), Def. 9 (Sequence Database), Def. 14 (Concept Hierarchy), Def. 15 (Taxon-
omy of Items) and Def. 21 (Generalized Support).

First, the multi-level (ML) extensions of element, sequence, parent and ancestors
must be defined. The definitions of ML-element and the ML-sequence are derived
from definitions of element and sequence. The Definition 29 extends the element and
the sequence definitions using items from nodes of taxonomies where the level of all
items must be the same. The rest of the definition remains unchanged.

Definition 29. (ML-element, ML-sequence) Let l ∈ N be a level of items in
a taxonomy T ∈ τ . Then an ML-sequence is an ordered list of itemsets sML =
〈s1s2s3 . . . sn〉 such that the levels of all items of the itemsets are equal to l. The
itemset of the ML-sequence is called an ML-element. The length, subsequence and
supersequence of an ML-sequence is defined analogously to the ones in Definition 8.

Example 13. Next examples will be based on running example Example 2 on page
8. Assume three sequential patterns 〈a1 (bf1)〉 : 2 , 〈a1 (bf)〉 : 2 and 〈a (bf)〉 : 2.
The first sequence 〈a1 (bf1)〉 is not a ML-sequence because the level of items differs
in the element (bf1) – the level of b is 0 and the level of f1is 1. The second sequence
〈a1 (bf)〉 is not a ML-sequence too because the level of items differs between elements.
Finally, only the third sequence 〈a (bf)〉 is a ML-sequence because it satisfies Def.
29. Therefore, only the third sequence may be included in the result of the mining
multi-level sequential patterns. Note that the sequence 〈a (bf)〉 is the root sequence
because all its items are the root items.

Here, it is possible to define taxonomic relations between ML-sequences. The ML-
element parent can be simply obtained by replacing all items of a ML-element by their
parent items. Then for the ML-sequence parent, all its ML-elements are replaced by
their ML-element parents. Note that the parent of a level-crossing sequence is a
set of sequences but a ML-sequence has only one ML-sequence parent. The ML-
sequence ancestors are the union of ML-sequence parents recursively up to the root
of a ML-sequence. These statements are formalized in the following definitions.

Definition 30. (ML-element parent) Given an ML-element e = {i1, i2, . . . , in},
an ML-element parent of the ML-element e is an element whose items are obtained
by replacing all items of their parents. This is defined as

parentel(e) = {parent(ik)|1 ≤ k ≤ n ∧ ik ∈ e}. (4.11)

Definition 31. (ML-sequence parent, ML-sequence ancestors) Given an ML-
sequence s = 〈e1e2 . . . en〉, where ek is a ML-element on a position k, the ML-sequence
parent of s is an ML-sequence such that all ML-elements of s are replaced by their
ML-element parents. Formally,

parentseq(s) = 〈f1f2 . . . fn〉, fk = parentel(ek), 1 ≤ k ≤ n. (4.12)

45

Definition 32. (ML-sequence ancestors) For a given set of taxonomies τ , a root
ML-sequence is an ML-sequence consisting of ML-elements with items corresponding
to root nodes of taxonomies. The ML-sequence parent of a root ML-sequence is
not defined. Based on the definition of the ML-sequence parent, the ML-sequence
ancestors of an ML-sequence s, ancestorsseq(s) is defined recursively as follows:

ancestorsseq(s) = Mi, for such i that Mi+1 = Mi,where (4.13)

M0 = {parentseq(s)}
Mi+1 = Mi ∪ {parentseq(x) | x ∈Mi} for i ≥ 0.

Example 14. For a given ML-sequence 〈a12 a11〉 : 1, the ML-sequence parent is
〈a1 a1〉 : 1. The set of ML-sequence ancestors of 〈a12 a11〉 : 1 is the set of two ML-
sequences {〈a1 a1〉 : 1, 〈a a〉 : 2}. The ML-sequence 〈a a〉 : 2 is the root sequence and
it has no ML-sequence parent and ML-sequence ancestors (see Fig. 4.2). Note that if
the input sequence is an ML-sequence, then the result parent sequence and ancestor
sequences are ML-sequences too because of the principle of their construction.

< a1 a1 >:1

< a a >:2

< a12 a11 >:1

< a1 a2 >:1

SID:1 SID:4

ML-seq ancestors

ML-seq parent

Figure 4.2: The example of the ML-sequence parent and ML-sequence ancestors.
The most bottom line in squares are SIDs of the origin sequences from the sequence
database which increment support.

The multi-level approach reduces the search space of the data mining task. More-
over, we try to reduce the number of redundant (unimportant) patterns. Recall the
term closed in closed sequential pattern mining. The closed means that if a sequence
s and a supersequence of s have the same support, then the result set will contain
only a supersequence of s. In this case, any omitted subsequence can be derived from
the result set.

In the case of mining multi-level sequential patterns, the closeness property can
be applied for taxonomic relations. If a ML-sequence s and the ML-sequence ancestor
of s have the same support, then the result set will contain only the ML-sequence
s. A new data mining task is called mining hierarchically-closed multi-level
sequential patterns. It has the following two fundamental properties:

• Only ML-sequences are revealed. It ensures fulfillment of equal-level of all items
in the sequential patterns. The generalization (level changes) is allowed during
the mining process, however, all newly constructed sequences are ML-sequences.

46

• Sequences are filtered for the hierarchically-closed condition. If some ML-
sequences are in the ancestor relation and have the same value of the generalized
support, then only the most-bottom sequences in the meaning of taxonomies
are revealed. The generalized support must be used because the generalized
ML-sequences are supported by their more specific variants.

Let’s summarize all three basic constraints for the task of mining hierarchically-closed
multi-level sequential patterns:

• Constraint 1 (C1): A sequential pattern s must have sufficient support.

• Constraint 2 (C2): A sequential pattern s must be an ML-sequence.

• Constraint 3 (C3): A sequential pattern s must be hierarchically-closed.

The mining problem is formalized in the Definition 33 and explained in Example 15.

Definition 33. (Mining hierarchically-closed multi-level sequential patterns)
The set of hierarchically-closed ML-sequences is such a set of ML-sequences which
does not contain any ML-sequence s and its ML-sequence ancestor with equal gener-
alized supports. Then, the problem of mining hierarchically-closed multi-level
sequential patterns (hereinafter ML-sequential patterns) for a given input sequence
database D and minimal generalized support threshold min supp is to find a set LML

of all ML-sequences in D such that:

LML = {sML v s|〈SID, s〉 ∈ D ∧ gen supp(sML) ≥ min supp (4.14)

∧ 6 ∃sx vg s[gen supp(sx) ≥ min supp

∧gen supp(sx) = gen supp(sML)

∧sML ∈ ancestorseq(sx)]}.

Example 15. In this example, different situations of mining hierarchically-closed
multi-level sequential patterns are described. The example describes the meaning of
the constraints C1-C3 and their implications while mining two root ML-sequences
〈a d〉 and 〈(a b)〉 and their descendants. Given the minimal support valuemin supp =
2 and the sequence database D from the Example 2 on page 8. The example shows
interesting hierarchical relations among constructed sequences during the mining pro-
cess.

First case. The root ML-sequence 〈a d〉 is supported by two sequences in sequence
database D: SID = 1 and SID = 4. The items of sequences in D counted for support
are marked in bold:

• SID 1 : 〈(c1 d1)(a12 b1 c1)(a1 b2 f1)(a11 c1 d1 f1)〉

• SID 4 : 〈a11 (d1 g1 h1)(b1 f1)(a2 g2 h2)〉

Descendants of the root ML-sequence 〈a d〉 are shown on Fig. 4.3 and a related
mining hierarchically-closed ML-sequential patterns process is explained below.

47

< a d >:2

< a1 d1 >:2

< a11 d1 >:1< a12 d1 >:1

SID:1 SID:4

Figure 4.3: Example of the generalization process of sequences 〈a12 d1〉 and 〈a11 d1〉
in which constraints for hierarchically-closed ML-sequential patterns are applied.

• The sequence 〈a12 d1〉 does not satisfy following constraints:

– C1: Only a sequence with SID = 1 in the sequence database supports it,
therefore, it does not satisfy min supp. The support of the sequence is
gen supp(〈a12 d1〉) = 1.

– C2: The sequence is not a ML-sequence.

The sequence must be generalized to the closest ML-sequence 〈a1 d1〉.

• The sequence 〈a11 d1〉 does not satisfy following constraints:

– C1: Only a sequence with SID = 4 in the sequence database supports it,
therefore, it does not satisfy min supp. The support of the sequence is
gen supp(〈a11 d1〉) = 1.

– C2: The sequence is not a ML-sequence.

The sequence must be generalized to the closest ML-sequence 〈a1 d1〉.

• The sequence 〈a1 d1〉 satisfies all constraints C1, C2 and C3. Two different
approaches can be used for construct the sequence:

– by generalization from 〈a12 d1〉 and/or 〈a11 d1〉,
– directly from the sequence database from SID = 1.

Sequence 〈a1 d1〉 is supported by sequences SID = 1 and SID = 4, therefore,
the support of the sequence is gen supp(〈a1 d1〉) = 2. The sequence 〈a1 d1〉 is
a hierarchically-closed multi-level sequential pattern.

• The root sequence 〈a d〉 does not satisfy following constraint:

– C3: The sequence 〈a d〉 is not hierarchically-closed because
gen supp(〈a1 d1〉) = gen supp〈a d〉).

The sequence 〈a d〉 will not be included into result.

48

< (a b) >:3

< (a1 b2) >:2< (a1 b1) >:1

< (a12 b2) >:1

SID:1 SID:3

< (a2 b2)>:1

SID:2

< (a12 b1) >:1

Figure 4.4: Example of the generalization process of sequences 〈a12 b1〉, 〈a12 b2〉
and 〈a2 b2〉 in which constraints for hierarchically-closed ML-sequential patterns are
applied.

Second case. The root sequence 〈(a b)〉 is supported by three sequences in sequence
database D: SID = 1, SID = 2 and SID = 3.:

• SID 1 : 〈(c1 d1)(a12 b1 c1)(a1 b2 f1)(a11 c1 d1 f1)〉

• SID 2 : 〈(a12 b2 f2) e1〉

• SID 3 : 〈(a2 b2 f2)〉

Descendants of the root ML-sequence 〈(a b)〉 are shown on Fig. 4.4 and a related
mining hierarchically-closed ML-sequential patterns process is explained below.

• The sequence 〈(a12 b1)〉 does not satisfy following constraints:

– C1: Only a sequence with SID = 1 in the sequence database supports it,
therefore, it does not satisfy min supp. The support of the sequence is
gen supp(〈(a12 b1)〉) = 1.

– C2: The sequence is not a ML-sequence.

The sequence must be generalized to the closest ML-sequence〈(a1 b1)〉.

• The sequence 〈(a1 b1)〉 does not satisfy following constraint:

– C1: Only a sequence with SID = 1 in the sequence database supports it,
therefore, it does not satisfy min supp. The support of the sequence is
gen supp(〈(a1 b1)〉) = 1.

The sequence must be generalized to the closest ML-sequence parent 〈(a b)〉.

• The sequence 〈(a12 b2)〉 does not satisfy following constraints:

– C1: Only a sequence with SID = 2 in the sequence database supports it,
therefore, it does not satisfy min supp. The support of the sequence is
gen supp(〈(a12 b2)〉) = 1.

49

– C2: The sequence is not a ML-sequence.

The sequence must be generalized to the closest ML-sequence 〈a1 b2〉.

• The sequence 〈(a1 b2)〉 satisfies all constraints C1, C2 and C3.

– Sequence 〈(a1 b2)〉 is supported by sequences SID = 1 and SID = 2,
therefore, the support of the sequence is gen supp(〈(a1 b2)〉) = 2.

– The sequence 〈(a1 b2)〉 is a hierarchically-closed multi-level sequential pat-
tern.

• The sequence 〈(a2 b2)〉 does not satisfy following constraint:

– C1: Only a sequence with SID = 3 in the sequence database supports it,
therefore, it does not satisfy min supp. The support of the sequence is
gen supp(〈(a2 b2)〉) = 1.

The sequence must be generalized to the closest ML-sequence parent 〈(a b)〉.

• The root sequence 〈(a b)〉 satisfies all constraints C1, C2 and C3.

– The root sequence 〈(a b)〉 is supported by three sequences of sequence
database D: SID = 1, SID = 2 and SID = 3, therefore, the support of
the sequence is support gen supp(〈(a b)〉) = 3.

– The sequence 〈(a b)〉 is a hierarchically-closed multi-level sequential pat-
tern. In contrast to the case with sequence 〈a d〉, the sequential pattern
〈(a b)〉 has got greater support than all its children and, therefore, it sat-
isfies also the C3.

Example 16. Let’s consider that we have a method for mining hierarchically-closed
multi-level sequential patterns by Def. 33 and let’s consider the sequence database D
from Example 2 on page 8 and given parameter min supp = 2. Then the outputs of
such method are sequential patterns shown in Table 4.2.

Results of all approaches to the mining of sequential patterns with defined tax-
onomies presented in this thesis that were applied on the sequential database from
Example 2 on page 8 are summarized in Table 4.3. Case 1 shows the parameters of
the result mining basic sequential patterns. Total number of patterns is 11 with max-
imal length only 2. In the case, much information, which is contained in sequences on
higher taxonomy levels, is lost during the mining process. On the other hand, Case
2 reveals a high number of sequences of the maximum length 4. However, it contains
also redundant sequential patterns (e.g. a sequence and its parent with the same sup-
port) which do not bring any new information to the analyst. Case 3 is opposite to
Case 1. It contains only the top-most items. Discovered sequential patterns in Case
3 contain only very general elements. Finally, Case 5 reveals sequential patterns by
Def. 33 which are between extreme Cases 1 and 3. It finds only important patterns
to the analyst. Case 4 is an intermediate step to Case 5 – it reduces the number of
redundant patterns but it is still computationally expensive.

50

Table 4.2: The result of mining hierarchically-closed multi-level sequential patterns
in the sequence database D.

1-seq. patterns 2-seq. patterns 3-seq. patterns 4-seq. patterns
1. 〈a〉 : 4 〈aa〉 : 2 〈(abf)〉 : 3 〈a (bf) a〉 : 2
2. 〈a1〉 : 3 〈(ab)〉 : 3 〈aba〉 : 2 〈d (bf) a〉 : 2
3. 〈a2〉 : 2 〈(a1b2)〉 : 2 〈a(bf)〉 : 2
4. 〈a11〉 : 2 〈ab〉 : 2 〈afa〉 : 2
5. 〈a12〉 : 2 〈a1d1〉 : 2 〈(bf)a〉 : 2
6. 〈b〉 : 4 〈(af)〉 : 3 〈dba〉 : 2
7. 〈b1〉 : 2 〈a1f1〉 : 2 〈d(bf)〉 : 2
8. 〈b2〉 : 3 〈ba〉 : 2 〈dfa〉 : 2
9. 〈d1〉 : 2 〈(bf)〉 : 4
10. 〈f〉 : 4 〈(b2f2)〉 : 2
11. 〈f1〉 : 2 〈da〉 : 2
12. 〈f2〉 : 2 〈d1b1〉 : 2
13. 〈d1f1〉 : 2
14. 〈fa〉 : 2

4.3.2 The MLSP Algorithm

Han et al. in their book [19] characterized the sequential pattern mining by follow-
ing words: “Sequential pattern mining is computationally challenging because such
mining may generate and/or test combinatorial explosive number of intermediate sub-
sequences.” The task of mining hierarchically-closed multi-level sequential patterns
is even more difficult because of the traversing taxonomies and the result pruning. As
the research result, the algorithm MLSP (Multi-Level Sequential Patterns algorithm)
was proposed in [43] for the effective data mining of multi-level sequential patterns.

The algorithm MLSP is based on the candidate generation principle (adapted
from the GSP, see Section 3.2.2) combined with the on-demand generalization. The
algorithm works in phases.

The first phase

The algorithm passes through the sequence database and the generalized support is
counted for all items. Unlike GSP, the MLSP continues the first phase by general-
ization procedure. Candidate 1-sequences are created from all items in the sequence
database D. Candidate sequences are processed as follows:

1. The set of candidate 1-sequences is expanded by their all ML-sequence ances-
tors.

2. The value of the generalized support is counted for all candidate 1-sequences.

3. All hierarchically-closed 1-sequences with the sufficient support are added into
the set of sequential patterns.

51

Table 4.3: Summarization of the results of approaches to the mining of sequential
patterns with defined taxonomies over items.

Case Type Patt. Count Redundant Reference
/ Max Length Patterns Count

1 Sequential Patterns 11/2 - - Example 7
2 Sequential Patterns in

Extended Sequences
90/4 54 Example 8

3 Sequential Patterns
Containing Root Items

Only

26/4 0 Example 5

4 Level-Crossing Sequential
Patterns

61/4 25 Example 12

5 Hierarchically-closed
Multi-level Sequential

Patterns

36/4 0 Example 16

Sequential patterns of length 1 are outputted by the algorithm and passed to the
second phase.

The next phases

The next phases of the algorithm run repeatedly until any new sequential pattern is
generated. There are two steps during each phase:

1. candidate generation step,

2. counting candidates step.

Candidate Generation Step

The candidate generation step is based on the join and prune principles. In the join
procedure, all pairs of k-length ML-sequential patterns are taken. They are tested if
they are joinable to the (k+1)-length candidate ML-sequences. Similarly to GSP, a k-
length ML-sequential pattern s1 can be joined with a k-length ML-sequential pattern
s2 if the subsequence created by removing the first item of s1 and the subsequence
created by removing the last item of s2 are equal. Moreover in MLSP, the ML-
sequences are also joinable if it is possible to perform such generalization of both
subsequences of sequences s1 and s2, in which a common ML-sequence ancestor can
be found. The MLSP algorithm tries to find the common ML-sequence ancestor of
the candidate ML-subsequences in a bottom-up way. If a common ML-subsequence
ancestor exists, then the generalized ML-sequences are joined into the new candidate
ML-sequence, otherwise, no candidate is generated. Levels of ML-sequences s1 and
s2 can be different, but the levels of items of the generated ML-sequence are the
same. Finally, the prune principle is applied. The pruning is based on the Apriori
theorem of the possible frequent sequences. For the multi-level sequential patterns,

52

the Apriori theorem must be modified as follows (further referred as to MLSP
Apriori Rule): All ML-subsequences and their ancestors of a frequent ML-sequence
are frequent too.

The procedure for candidate generation is shown in Algorithm 4.3. The necessity
of the generalization during the join step is demonstrated in the real-world Example
17. Finally, the whole procedure is explained in the running Example 18,

Algorithm 4.3 Method GenerateCandidateMLSequences()

1: procedure GenerateCandidateMLSequences(Lk−1, k)
2: Ck = ∅
3: for all s1, s2 ∈ Lk−1 do
4: if ML-subsequences MLSP join condition is fulfilled for s1 and s2 then
5: Join sequences s1 and s2 to a new ML-sequence s′

6: if the MLSP Apriori Rule is fulfilled for s′ then
7: Add s′ into Ck.
8: end if
9: end if
10: end for
11: return Ck
12: end procedure

Example 17. Assume a pair of 2-ML-sequences 〈PC minitower CRT monitor〉 and
〈LCD monitor laser printer〉 which cannot be joined in GSP because subsequences
〈CRT monitor〉 and 〈LCD monitor〉 are not equal. However for MLSP, they have a
common parent monitor. Therefore, the items should be generalized to the common
subsequence 〈monitor〉 and the sequences are joined to a 3-ML-sequence〈PC, monitor,
printer〉 by MLSP.

Example 18. Assume the join of the following two 2-length multi-level sequential
patterns: 〈ba〉 : 2 and 〈a1f1〉 : 2. These two ML-sequences are firstly tested if the
join is possible. Because the ML-subsequences 〈a〉 and 〈a1〉 have a common ancestor
〈a〉 they are joinable. The second ML-sequence is generalized to 〈af〉 and then ML-
sequences are joined into a new ML-sequence 〈baf〉. Finally, the ML-sequence is
tested for MLSP Apriori Rule. The ML-subsequence 〈bf〉 and it’s any ancestor are
not frequent, therefore, the ML-sequence 〈baf〉 is also not frequent and the ML-
sequence is not added to the set of candidate sequences. In another case, assume
the join of ML-sequential patterns 〈(ab)〉 : 3 and 〈(bf)〉 : 4. The join condition is
fulfilled and a new ML-sequence 〈(abf)〉 is created. The Apriori test verifies that all
ML-subsequences 〈(ab)〉, 〈(bf)〉 and finally 〈(af)〉 are frequent . The ML-sequence
〈(abf)〉 is added to the set of candidate sequences.

Counting Candidates Step

When all candidate ML-sequences are generated, the frequent sequential patterns are
filtered by the support value. The counting step consists of two substeps:

53

• test and generalization procedure,

• pruning of not hierarchically-closed sequential patterns.

The idea of the test and generalization substep is to read the sequence database and
count the generalized support of all candidate ML-sequences sc ∈ Ck. For each sc,
one of the following results is possible:

1. The generalized support value satisfies the minimal support threshold and the
ML-sequence is marked as frequent one, denoted as sfc .

2. The generalized support value does not satisfy the minimal support threshold
and then the generalization procedure is performed. The generalization of the
ML-sequence tries to find a ML-sequence ancestor with the greatest sequence
level which satisfies the minimal support threshold. The on-demand bottom-
up generalization procedureGetFirstFrequentAncestor() is shown in Al-
gorithm 4.4. Upper-level ML-sequence is tested recursively until the ancestor
is found or the generalization procedure reach the root.

Algorithm 4.4 Method GetFirstFrequentAncestor()

1: procedure GetFirstFrequentAncestor(s,min supp)
2: repeat
3: if gen supp(s) ≥ min supp then
4: return s
5: end if
6: s← parentseq(s)
7: until s is root sequence
8: return null
9: end procedure

Example 19. The length 2 ML-sequence 〈a1a1〉 is generated in the running example
from the 1-sequence 〈a1〉 : 3 by the Candidate Generation step. All subsequences are
frequent, therefore, the sequence may be frequent. However, after Counting Candi-
dates, the generalized support of the sequence is 1 which does not satisfy the minimal
support threshold value. Therefore, the generalization is performed by the MLSP al-
gorithm and the ML-sequence parent 〈a a〉 is formed. The Counting Candidates step
evaluates the generalized support to 2. The ML-sequence ancestor (ML-sequence
parent) 〈a a〉 : 2 of ML-sequence 〈a1a1〉 : 1 is frequent and it is a ML-sequential
pattern. Moreover, the hierarchically-close condition is satisfied and the sequence is
hierarchically-closed multi-level sequential pattern by our definition.

The MLSP Algorithm Summarization

The algorithm MLSP has two inputs: a sequence database D with a taxonomy (or
taxonomies) defined for its items and a minimal support threshold value.

54

The algorithm output is the set of hierarchically-closed multi-level sequential pat-
terns. The algorithm MLSP runs in the phases. The sequence database D is passed
once in each phase. The first phase generates 1-length hierarchically-closed multi-
level sequential patterns. Next phases generate (k + 1)-length hierarchically-closed
multi-level sequential patterns from the k-length sequential patterns. Because there
can exist candidate ML-sequences that are not hierarchically-closed, it is necessary to
verify that there is no child of the candidate ML-sequence with the same generalized
support. The procedure for the effective check of this constraint is described in Sec-
tion 4.3.5. The algorithm runs until any hierarchically-closed multi-level sequential
patterns are generated. The algorithm generates the complete set of hierarchically-
closed multi-level sequential patterns. The complete MLSP algorithm is formalized
in Algorithm 4.5.

Algorithm 4.5 The pseudocode of the MLSP algorithm

1: procedure MLSP(D,min supp)
2: k ← 1 . First phase.
3: I ←Insert all items and all their ancestors i in D and count their support
gen supp(i)

4: C1 ←Add all 1-ML-sequences for all items i from I
5: L1 ←{}
6: for all sc ∈ C1 do
7: if gen supp(sc) ≥ min supp and sc is hierarchically-closed then
8: L1 ← L1 ∪ {sc}
9: end if
10: end for
11: while Lk 6= ∅ do . Next iterative phases.
12: k ← k + 1
13: Ck ←GenerateCandidateMLSequences(Lk−1, k)
14: Count support gen supp(s) in D for all candidate ML-sequences and their

ML-sequence ancestors s ∈ ∪sc∈Ck
ancestorseq(sc) ∪ {sc}

15: LTMP ←{}
16: for all sc ∈ Ck do
17: LTMP ←LTMP∪ GetFirstFrequentAncestor(sc,min supp)
18: end for
19: Lk ←{}
20: for all s ∈ LTMP do
21: if s is hierarchically-closed then
22: Lk ← Lk ∪ {s}
23: end if
24: end for
25: end while
26: return

⋃k
i=1 Li

27: end procedure

55

4.3.3 Optimization 1: Is-generalized-subsequence Check in
Linear Time-Complexity

The algorithm often performs “is-generalized-subsequence” test (e.g. for the gener-
alized support counting). It uses the generalized subset relation vg. The test can be
optimized to the linear time-complexity if a suitable complete ordering exists over
items. The simple lexicographical ordering cannot be used for MLSP because the
simple lexicographical ordering cannot be used because of the generalization which
changes the order. Therefore, MLSP uses two step ordering.

1. It sorts taxonomies lexicographically by their roots. It provides for a grouping
of items within elements by taxonomy.

2. Items within the taxonomy must be sorted unambiguously. The bottom-up
order is suitable, because such ordering can be used for join step comparison
and searching of the minimal necessary generalization. Suitable order type is
a post-order walk [5] (see Example 20). The post-order makes traversal in the
following steps:

(a) Traverse the left subtree by recursively calling the post-order.

(b) Traverse the right subtree by recursively calling the post-order.

(c) Return current element.

3. It guarantees that it is possible to check for an ideal mapping to ancestors in
linear time complexity.

The complete method for the “Is a generalized subsequence” test is shown in Algo-
rithm 4.6. The procedure IsGeneralizedSubsequence() tests if a sequence ssub
is the generalized subset of a sequence ssuper: ssub vg ssuper. The maximal time com-
plexity of the procedure is m+n where m is a number of elements in sequence ssub and
n is the number of elements in sequence ssuper. The same is for each tested element in
sub-procedure ContainsGeneralizedElement(). Finally, IsAncestor() runs
with constant time-complexity using a hash table or with linear time complexity us-
ing tree traversal. Therefore, the whole procedure keeps linear time-complexity w.r.t.
to lengths of sequences ssub and ssuper.

Example 20. The post-order walk for taxonomy a is shown on Figure 4.5.

4.3.4 Optimization 2: Hash Table Pre-Check for Is-gene-
ralized-subsequence Check

The majority of “is-generalized-subsequence” tests return false. Such major false
case can be optimized by the pre-check. The ssub vg ssuper is true if all items of sub-
sequence ssub are contained in the set of items and their ancestors of supersequence
ssuper. If it is false, then the test results in false too. Then, a set of all items and

56

Algorithm 4.6 Methods ContainsGeneralizedElement() and IsGeneralizedSub-
sequence()

1: procedure IsAncestor(item1, item2)
2: return true if item1 is ancestor or equal to item2, false otherwise
3: end procedure
4: procedure ContainsGeneralizedElement(esub, esuper)
5: ptrsuper ← 0
6: ptrsub ← 0
7: found← false
8: for ptrsub ← 0; ptrsub < Size(esub); ptrsub = ptrsub + 1 do
9: do
10: if Size(esuper) ≤ ptrsuper then
11: return false
12: end if
13: found←IsAncestor(esub[ptrsub], esuper[ptrsuper])
14: ptrsuper = ptrsuper + 1
15: while found = false
16: end for
17: return (ptrsub = Size(esub) ∧ found = true)
18: end procedure
19: procedure IsGeneralizedSubsequence(ssub, ssuper)
20: ptrsub ← 0
21: ptrsuper ← 0
22: found← false
23: for ptrsub ← 0; ptrsub < ElementCount(ssub); ptrsub = ptrsub + 1 do
24: do
25: if ElementCount(ssuper) ≤ ptrsuper then
26: return false
27: end if
28: found←ContainsGeneralizedElement(ssub[ptrsub], ssuper[ptrsuper])
29: ptrsuper = ptrsuper + 1
30: while found = false
31: end for
32: return (ptrsub = ElementCount(ssub) ∧ found = true)
33: end procedure

57

a11

a1

a

a2

a12 a21

Figure 4.5: Post-order walk for taxonomy of a is a list: (a11, a12, a1, a21, a2, a).

their ancestors is constructed for each sequence. Finally, the procedure IsGener-
alizedSubsequence() can be completed by the fast pre-check for false result. The
procedure is denoted in Algorithm 4.7 and it may be placed as a part of Algorithm
4.6 before the Line 23. The procedure assumes that there exists a simple function
GetAllItems() which returns the set of all items in all elements of the sequence.

Such set is organized (stored) as a hash table in a main memory because its search
time complexity is equal to 1 (details about generic hash table algorithms and their
properties are in [5]). Maximal number of searches in the hash table is equal to
the length of the sequence ssub . Final time-complexity of the whole pre-check is
maximally linear too but it speeds-up the check for the most cases (see experiments
in the next chapter).

Algorithm 4.7 Pre-check procedure pseudocode for method IsGeneralizedSub-
sequence()

1: for all i ∈ GetAllItems(ssub) do
2: if i /∈ GetAllItems(ssuper) ∧ i /∈

⋃
x∈GetAllItems(ssuper) ancestor(x)} then

3: return false
4: end if
5: end for

4.3.5 Optimization 3: Is-redundant Fast Check

Sequential patterns created by the join and generalization algorithm steps may not
be hierarchically-closed. Then, the post-processing (filtering) is necessary. A naive
approach compares each pair of sequential patterns, if one ML-sequence is an ML-
sequence ancestor of the other and prunes them, if so. Nevertheless, it is possible to
utilize the Counting Candidates Step procedure to mark sequential patterns which
are redundant.

• First, we associate a new helper indexed list of counters called a redundant base
to all candidate ML-sequences before the counting step. During the counting
step of a candidate ML-sequence sc , the algorithm increments by one the re-
dundant base counter on index sfc to all ancestors: S = ancestorsseq(s

f
c) when

the generalization sub-procedure finds the most specific frequent sequential pat-

58

tern sfc ∈ ancestorseq(sc) ∪ {sc}. The redundant base of a ML-sequence x ∈ S
on index sfc is denoted as RBx[sfc].

• Finally, the prune condition can be formulated as follows:

– If there exists any redundant base counter with value equal to the
value of the generalized support of the ML-sequence sfc , then the ML-
sequence sfc is redundant and is pruned,

– else, sfc is hierarchically-closed multi-level sequential pattern.

4.3.6 Complex Example

The MLSP algorithm contains several principles which are harder to understand
without a demonstration. Therefore, the whole algorithm is explained on a complex
step-by-step Example 21.

Example 21. (Complex step-by-step example) The example uses the sequence
database from the running Example 2 on page 8. For better readability of example,
the table from Example 2 is copied here to Table 4.4.

Table 4.4: A sequence database D containing items on different taxonomy level.

SID Sequence
1 〈(c1 d1)(a12 b1 c1)(a1 b2 f1)(a11 c1 d1 f1)〉
2 〈(a12 b2 f2) e1〉
3 〈(a2 b2 f2)〉
4 〈a11 (d1 g1 h1)(b1 f1)(a2 g2 h2)〉

Phase 1

The initial step of the algorithm is scanning of the sequence database D and counting
the values of generalized support for all items and their ancestors:

• The first processed sequence of D is SID=1 and the first read item is c1 which
is supported only by one sequence with SID = 1(shortly as SID 1). Also, the
item c1 is generalized to its parent c which is also supported only by SID 1.

• Item d1 is the next processed item. Its generalized support value is initiated
to 1 because of support by SID 1. Also, the item is generalized to its parent
d. Then, the support of d1 is incremented during the scan of the SID 4 to the
value 2. The same for d.

• The value of the generalized support of the item a12 is initiated to 1. Also,
the item is generalized to both ancestors a1 and a and their supports are also
initiated to 1. During the scan of SID 2, all support values of items a12, a1,
a are incremented to 2. Next, during the scan of the sequence SID 3, the

59

Table 4.5: Counted values of generalized support of all items of the sequence
databaseD.

Item Supported
by SIDs

Support Item Supported
by SIDs

Support

c1 1 1 a11 2,3 2
c 1 1 f2 2,3 2
d1 1,4 2 e1 2 1
d 1,4 2 e 2 1
a12 1,2 2 a2 3,4 2
a1 1,2,4 3 g1 4 1
a 1,2,3,4 4 g 4 1
b1 1,4 2 h1 4 1
b 1,2,3,4 4 h 4 1
b2 1,2,3 3 g2 4 1
f1 1,2 2 h2 4 1
f 1,2,3,4 4

algorithm increments the support of item a because it contains its descendant
a2. Finally, during the scan of SID 4, values of generalized support of items a1
and a are incremented because SID 4 contains a11 (a2, respectively).

• Then the algorithm processes similarly all items of sequences SID 1, 2, 3 and
4. The result of the scan is shown in Table 4.5. If any ancestor of a scanned
item is already initiated by the algorithm, its support is not initiated again and
it is incremented (i.e. for a11).

• Finally, found and counted 1-sequences are filtered by support and hierarchically-
closeness and added into the result set of sequential patterns L1. Both 〈c1〉 : 1
and 〈c〉 : 1 are not frequent and they are not added into L1. Next, the gen-
eralized support values of 〈d1〉 : 2 and 〈d〉 : 2 are both sufficient and they are
frequent. However, the support is same for both sequences where one is the
parent of the other. Therefore, the 1-sequence containing the item d is not
hierarchically-closed – it is redundant. Only the sequence 〈d1〉 : 2 is added into
the result set of sequential patterns L1. Further, the generalized support values
of items of a-taxonomy: a11 : 2, a12 : 2, a1 : 3, a2 : 2 and a : 4 differ among
ancestors and their descendants. Therefore, all sequences 〈a11〉 : 2 , 〈a12〉 : 2 ,
〈a1〉 : 3, 〈a2〉 : 2, 〈a〉 : 4 are hierarchically-closed multi-level sequential patterns
and they are all added into L1.

As a result, the set of hierarchically-closed multi-level sequential patterns of length
1 is a set of 12 ML-sequences L1 = {〈a11〉 : 2, 〈a12〉 : 2, 〈a1〉 : 3, 〈a2〉 : 2, 〈a〉 : 4, 〈b1〉 :
2, 〈b2〉 : 3, 〈b〉 : 4, 〈d1〉 : 2, 〈f 1〉 : 2, 〈f 2〉 : 2, 〈f〉 : 4}.

60

Phase 2

Because L1 is not empty, the algorithm continues by generating ML-sequences of
length 2. The algorithm takes all pairs s1 ∈ L1, s2 ∈ L1. The algorithm is demon-
strated on only several pairs. Notice, that the example is ordered by cases, not by
real processing order. The real processing order is by MLSP algorithm: candidate
generation step and counting step (and hierarchically-closed sequences filtering sub-
step).

• Candidate Generation Step: Pair s1 = 〈d1〉, s2 = 〈d1〉 – the algorithm cre-
ates one candidate ML-sequence s′ = 〈d1d1〉, the MLSP Apriori Rule is met
and the sequence is added into C2. The second ML-sequence s′′ = 〈(d1d1)〉 has
not allowed form because of the duplicate occurrence of on item in one element.
Counting Step: During the counting step of C2, the support is counted for
the ML-sequence s′ and for all its ML-sequence ancestors, concretely, it is gen-
eralized to s′g1 = 〈d d〉. Moreover, the redundant base is set: RB〈d d〉[〈d1d1〉] = 1
because 〈d1d1〉 is contained in SID 1 and, so, 〈d d〉. The support of both ML-
sequences is 1: 〈d1d1〉 : 1, 〈d d〉 : 1. ML-sequences 〈d1d1〉 : 1, 〈d d〉 : 1 are not
frequent and are removed.

• Candidate Generation Step: Pair s1 = 〈d1〉, s2 = 〈a〉 – it is not possible to
directly join ML-sequences s1and s2 because level(s1) 6= level(s2). Therefore,
s1 must be generalized to s′1 = 〈d〉. Then two ML-sequences are created by
join s′ = 〈d a〉 and s′′ = 〈(a d)〉 (notice that the items in the element are
lexicographically reordered). The MLSP Apriori Rule for both ML-sequences
is met and both are added into the set of candidate ML-sequences C2.
Counting Step: The support values for ML-sequences are counted: s′ = 〈da〉 :
2, s′′ = 〈(ad)〉 : 1. The ML-sequence s′ is supported by sequences SID 1,4. The
generalized support of gen supp(s′) = 2 is sufficient. The redundant base of
s′ contains two indexes:RB〈d a〉[〈d1a1〉] = 1,RB〈d a〉{〈d1a2〉] = 1. The redundant
base does not violate the hierarchical-closeness and s′ is added into L2. The
ML-sequence s′′ is supported only by sequence SID 1, the minimal support
threshold condition is not met and the candidate ML-sequence is removed.

• Candidate Generation Step: Pair s1 = 〈d1〉, s2 = 〈a1〉 – this case is closely
related to the previous one. The join creates two candidate ML-sequences
s′ = 〈d1 a1〉 and s′′ = 〈(a1 d1)〉 and they are added into C2.
Counting Step: The support values for ML-sequences are counted: s′ =
〈d1 a1〉 : 1, s′′ = 〈(a1 d1)〉 : 1. The ML-sequence s′ has not sufficient support
and, therefore, it is generalized to s′g1 = 〈d a〉. It will not be added to L2 because
it has already been added by the previous join pair.

• Candidate Generation Step: Pair s1 = 〈d1〉, s2 = 〈b1〉 – the pair is joined
into two candidate ML-sequences s′ = 〈d1 b1〉 and s′′ = 〈(b1 d1)〉 and they are
added into C2.
Counting Step: The support values for ML-sequences are counted: s′ =
〈d1 b1〉 : 2 , s′′ = 〈(b1 d1)〉 : 0. The ML-sequence s′ = 〈d1 b1〉 : 2 is frequent

61

and hierarchically-closed (the redundant base is empty). Therefore, the s′ is
sequential pattern and it is added into L2. Notice that during the counting
step, the redundant base is counted for all ML-sequence parents of s′. The
ML-sequence s′′ has zero support and is generalized into s′′g1 = 〈(b d)〉 whose
support is also zero and both candidate ML-sequences are removed.

• Candidate Generation Step: Pair s1 = 〈d1〉, s2 = 〈b2〉 the pair is joined into
two candidate ML-sequences s′ = 〈d1 b2〉 and s′′ = 〈(b2 d1)〉 and they are added
into C2.
Counting Step: The support values for ML-sequences are counted :s′ =
〈d1 b2〉 : 1, s′′ = 〈(b2 d1)〉 : 0. The ML-sequence s′ = 〈d1 b2〉 : 1 is not fre-
quent and MLSP algorithm tries to do the generalization to s′g1 = 〈d b〉. The
generalized support value of the generalized ML-sequence s′g1 is 2 s′g1 = 〈db〉 : 2.
Such ML-sequence s′g1 is frequent but the sequence is not hierarchically-closed
because the redundant base on index 〈d1 b1〉 is RB〈d b〉[〈d1b1〉] = 2 which is equal
to gen supp(s′g1) = 2. Therefore, the ML-sequence s′g1 is not added into L2 and
it is removed.

The processing of other pairs is similar. The final result set L2 after processing of all
pairs is shown in Table 4.2. It contains 14 hierarchically-closed multi-level sequential
patterns of length 2.

Phase 3

The algorithm continues by the third phase taking all pairs s1 ∈ L2, s2 ∈ L2 and
trying to join them into new hierarchically-closed multi-level sequential patterns of
length 3. There are also described only several cases of the running example to
demonstrate the algorithm principles. Mainly, the join step differs from the second
phase where the join was possible in all cases.

• Candidate Generation Step: Pair s1 = 〈d a〉, s2 = 〈d a〉 – First, the test
if the join step is possible is needed. The part of ML-sequence sx1 = 〈a〉 and
the part of ML-sequence sx2 = 〈d〉 are not equal and there is no common ML-
sequence ancestors of sx1 and sx2 . Therefore, the join step is not possible and
none new candidate ML-sequence could be generated.

• Candidate Generation Step: Pair s1 = 〈d a〉, s2 = 〈a a〉 – The join step is
possible for this pair of ML-sequences because sx1 = 〈a〉 is equal to sx2 = 〈a〉.
The Apriori condition is met for all ML-subsequences and the candidate ML-
sequence s′ = 〈d a a〉is added into C3.
Counting Step: The support for ML-sequence s′ is counted s′ = 〈d a a〉 : 1
which indicates that the ML-sequence is not frequent. The candidate sequence
cannot be generalized because it is a root ML-sequence and is removed.

• Candidate Generation Step: Pair s1 = 〈da〉, s2 = 〈(ab)〉 – The pair is joined
into the ML-sequence s′ = 〈d (a b)〉. Because all ML-subsequences are frequent

62

(namely 〈d b〉) are frequent, the Apriori condition is met. The candidate ML-
sequence is added into C3.
Counting Step: The ML-sequence s′ = 〈d (a b)〉 : 1 is supported only by
sequence SID 1. Here, the generalization is not possible because it is a root
ML-sequence and the candidate ML-sequence is removed.

• Candidate Generation Step: Pair s1 = 〈a a〉, s2 = 〈a1 d1〉 – The join step
is not directly possible because sx1 = 〈a〉 is not equal to sx2 = 〈a1〉, however,
there exists a common ML-sequence ancestor for the second sequence:〈a〉 – the
second sequence must be generalized by 1 level to ML-sequence sx2g1 = 〈a d〉.
The candidate ML-sequence s′ = 〈a a d〉 meets MLSP Apriori Rule and it is
added into C3.
Counting Step: The ML-sequence s′ = 〈a a d〉 : 1 is supported only by
sequence SID 1. The candidate ML-sequence is removed.

• Candidate Generation Step: Pair s1 = 〈(a1 b2)〉, s2 = 〈(b2 f2)〉 – The join
step is possible because sx1 = 〈b2〉 is equal to sx2 = 〈b2〉. New ML-sequence
s′ = 〈(a1 b2 f2)〉 is created, however, the MLSP Apriori Rule is not met for ML-
subsequence: 〈(a1 f2)〉 /∈ L2. Notice that the ML-sequential pattern 〈(a b f)〉 is
created by another join step by the MLSP algorithm.

• Candidate Generation Step: Pair s1 = 〈d1 b1〉, s2 = 〈b a〉 – The join step is
possible after the generalization of the common part to a new candidate ML-
sequence s′ = 〈d b a〉. All ML-subsequences 〈d b〉, 〈b a〉, 〈d a〉 are frequent and s′

is added into C3.
Counting Step: The counting step evaluates the generalized support to s′ =
〈d b a〉:2 because it is supported by SID 1,4. The redundant base of the ML-
sequence is empty. Therefore, the ML-sequence is added into L3.

Finally, the algorithm creates the result set L3 which contains eight hierarchically-
closed multi-level sequential patterns. All found sequential patterns are shown in
Table 4.2. Note that as ML-sequences get longer, they are much general because it
is harder to meet the minimal support threshold.

Phase 4

Because there were created new sequential patterns during the third phase, the MLSP
algorithm continues by the next phase in which it creates ML-sequences of length four.

• Candidate Generation Step: Pair s1 = 〈a (b f)〉, s2 = 〈(b f) a〉 – ML-
sequences can be joined into the new candidate ML-sequence s′ = 〈a (b f) a〉.
All ML-subsequences of s′: 〈a (b f)〉, 〈(b f) a〉, 〈a b a〉, 〈a f a〉 ∈ L3 and the
candidate ML-sequence is added into C4.
Counting Step: The counting step evaluates the value of the generalized
support of the ML-sequence s′ = 〈a (b f) a〉 : 2 because it is supported by
sequences SID 1,4 – it satisfies the minimal support threshold. The redundant
base of the s′ is empty and the s′ = 〈a (b f) a〉 : 2 is added into L4.

63

• Candidate Generation Step: Pair s1 = 〈d (b f)〉, s2 = 〈(b f) a〉 – ML-
sequences are joined into the new candidate ML-sequence s′ = 〈d (b f) a〉. The
rest od the case is the same as the previous one and the s′ = 〈d (b f) a〉 : 2 is
added into L4.

• All others cases do not lead to ML-sequential patterns of length four.

Phase 5

In the Phase 4, there were created two hierarchically-closed multi-level sequential
patterns. In Phase 5, the MLSP algorithm cannot create any candidate ML-sequence
because the patterns cannot be joined. The algorithm finishes.

Result of the running example using the MLSP algorithm is shown in Table 4.2.
Totally, it was generated 123 candidate ML-sequences during the mining process.
Finally, the algorithm finds 36 hierarchically-closed multi-level sequential patterns.

Scalability of the algorithm and other properties are discussed in the next chapter.

64

Chapter 5

Experimental Evaluation

The issue of mining sequential patterns is generally computationally expensive. If
we imagine that the sequence length is the horizontal dimension, then the mining
multi-level sequential patterns adds a new vertical dimension over the patterns. The
complexity of the problem growths because the algorithm must deal with relations
between different multi-level sequences.

This chapter deals with a comparison of different multi-level approaches and algo-
rithms to solve them. The first section of experiments is focused on time comparison
of mining different algorithms on synthetic datasets. The advantage of synthetic
datasets is the possibility to define specific probabilistic properties. The second sec-
tion is focused on mining in real-world data. Mining in the real world dataset is an
important evaluation because it shows if the algorithms can be used and if revealed
results are useful. Commonly used real world testing dataset AdventureWorks [26]
by Microsoft is absolutely inappropriate because it does not contain a long-period
order history. Therefore, the five year order history of on-line e-shop VOPI [40] is
used for the real world evaluation.

5.1 Evaluation on Synthetic Datasets

The synthetic dataset allows changing only a specific property of the dataset with-
out changing others if necessary. There was no generator for multi-level sequential
patterns. This section describes a generator of multi-level or level-crossing sequence
datasets developed by the author of this thesis published in [44].

The time complexity of algorithms is affected mainly by the set of dataset param-
eters:

• the dataset size,

• the relative or absolute number of sequential patterns,

• the length of sequences,

• the number of taxonomies,

• and the number of levels of taxonomies.

65

The complete set of parameters of sequence databases with defined taxonomies is
shown in Table 5.2. The general methodology of experiments is following. All pa-
rameters of generated datasets are fixed except one. Then, the effect of the changes
of such dataset or algorithm parameter is evaluated.

Experiments were performed on a PC with CPU i5 3.3GHz, 8GB RAM, OS MS
Windows 10. Because there is no algorithm for mining multi-level sequential patterns,
results of our algorithms are compared with GSP and PrefixSpan. Authors of the GSP
recommended using their algorithm over an extended database for mining sequential
patterns with taxonomies. Algorithms GSP and PrefixSpan must use post-processing
filtering to get complete set of hierarchically-closed multi-level sequential patterns.
All algorithms were implemented in C# on .NET platform using the MS SQL Server
database.

The following algorithms are compared in experiments:

• GSP over the database of extended sequences,

• GSP over the database of extended sequences (optimized by Optimization 2,
see Section 4.3.4),

• PrefixSpan over the database of extended sequences,

• hGSP – level-crossing sequential patterns,

• MLSP (without Optimization 2, see Section 4.3.4) – hierarchically-closed multi-
level sequential patterns,

• MLSP (with Optimization 2, see Section 4.3.4) – hierarchically-closed multi-
level sequential patterns.

5.1.1 Generating Synthetic Datasets

A well-known generator of synthetic datasets for mining association rules and sequen-
tial patterns is IBM Quest Synthetic Data Generator [23]. The last available version
supports three types of datasets: association rules, multi-level association rules and
sequential patterns. Parameters of each type are shown in Table 5.1.

Generator details for association rules datasets were described in [4]. Firstly,
the sizes of all transactions in |C| are initialized by picking random numbers with
a Poisson distribution (see Def. 34) with mean equal to the generator parameter
average transaction size |T |.

Definition 34. (Poisson distribution) The random variable X that equals the
number of counts in the interval is a Poisson random variable with parameter λ > 0
with probability mass function f(x) such that

f(x) =
e−λλx

x!
x = 0, 1, 2, . . . (5.1)

66

Table 5.1: Parameters of IBM Quest Synthetic Data Generator for Association Rules
(AR), Sequential Patterns (SP) and Multi-level Association Rules (Tax).

Parameter AR SP Tax
Number of Transactions/Sequences |C| |D| |C|
Number of Transactions |C|
Avg. size of Transaction |T | |T | |T |
Avg. size of potentially freq. itemsets |I| |I| |I|
Number of potentially freq. itemsets |L| NI |L|
Number of items N N N
Avg. length of potentially freq. sequences |S|
Number of potentially freq. sequences NS

Number of roots |R|
Avg. depth of items in transactions d

The Poisson random variable X with parameter λ has the mean and variance
equal to λ, i.e. E(X) = λ, D(X) = λ. A random variable X with Poisson distribution
with parameter λ is denoted as Po(λ) [27].

Then, the algorithm generates |L| potentially frequent itemsets T of average size
|I|. For each itemset, the probability of occurrence is randomly generated (notice that
the sum of probabilities must be equal to 1). Finally, each transaction is filled with
a selected subset of itemsets from T . In addition, the algorithm reflects other real-
world dataset properties such as corruption of itemsets or inter-itemset similarity.
It is impossible to set some important parameters such as expected threshold of
minimal support for frequent itemsets. Instead, the support is inversely related to
the number of |L|. In case of taxonomy generation, the only difference is that items are
firstly assigned to taxonomies. The concept of generating association rules datasets
described in [4] was extended to generation of sequential patterns datasets in [3].

5.1.2 Parameters of the Generator

The list of parameters of our generator is shown in Table 5.2. The parameters differ
to parameters of generator presented in [4] and [3] are in bold. The main difference is
that our generator allows specifying of average support SuppS of frequent sequences in
the output dataset. Note, that the dataset must have transactions of enough average
length otherwise the average support is wrong (e.g. frequent sequences of length |S|
cannot have support 60% if the average length of sequences is equal to |S|).

Further changes are in parameters of taxonomies. Number of children of each
taxonomy node is counted w.r.t. to the parameters Rh, |R| and N (details are
described below). The levels of items inside frequent sequences and other sequences
are managed by parameters P S

ch and P I
ch.

5.1.3 The method of the generator

The generator works basically in two phases:

67

Table 5.2: Parameters of our hierarchical sequence generator.

Parameter ML-Seq.Patt.
Dataset Size |D|
Avg. number of elements of sequences |C|
Avg. size of elements |T |
Avg. size of frequent elements |I|
Number of items N
Avg. length of (frequent) sequential patterns |S|
Number of sequential patterns NS

Avg. support of sequential patterns SuppS
Number of taxonomies (roots) |R|
Avg. taxonomy height Rh

Probability of children (general items) P I
ch

Probability of children (items of freq. sequences) P S
ch

1. Preparation of the result model – in this phase, all frequent sequences with the
probability of occurrence are prepared.

2. Generating of the output dataset – in this phase, sequences into the output
sequence database are generated.

In the following paragraphs, each step of generator is described in detail. First and
second step belong to the phase Preparation of the result model, third and fourth
steps belong to the phase Generating of the output dataset.

1. Create Hierarchies. The first step of the generator is to create the set of
|R| taxonomies and the set of all possible items in the dataset. The generator assigns
to each taxonomy in τ ∈ R the count of items of the taxonomy NRi

= Po(|N ||R|).

The count of all items N rand =
∑

Ri∈RNRi
generated by the random generator is

probably not equal to the required number of items N , therefore the numbers NRi

are normalized from interval 1, . . . , N rand to interval 1, . . . , N . Next, the number
of children ch of each node is evaluated expecting the tree R is a full ch-ary tree.
Note, that the total count of nodes in the full ch-ary tree of height Rh is NRi

≈
(chRh+1 − 1)/(ch − 1). Finally, starting with the root node in R, a set of Po(ch)
children are generated for each tree node recursively.

2. Generate hierarchical sequential patterns model. The sequential pat-
ters that should be contained in the dataset are prepared in this step. The generator
prepares NS sequences and initializes their lengths by numbers got from a random
variable with distribution Po(|S|). Then, elements and items of sequences are gen-
erated. Firstly, the generator randomly selects the taxonomy Ri. Then the concrete
item from Ri is selected randomly by top-down traversing a tree. Next, child-node
is selected with probability P I

ch during traversing if any child exists, otherwise actual
item is added into the last element of sequence. If the number of items in the ac-
tual element reaches the number defined by Po(|I|), the element is added into the
sequence and process repeats for each element of sequence. Finally, the probability

68

of selection is generated for each sequential pattern.
3. Generate the result dataset. The generator generates |D| dataset se-

quences. The length of each dataset sequence is set to a random number Po(|S|).
The dataset sequence can contain items of some sequential pattern or a noise (random
items). When the sequence is generated, it is decided, whether the next generated
item should be noise or next sequential pattern. The probability of generating se-
quential pattern is related to the support of sequence – if the support is higher,
the noise probability should be lower. The probability of noise in our generator is
PNOISE = 1 − NS∗SuppS∗|S|

|T | . The 1 − PNOISE probability ensures reservation of the
necessary number of items to reach sufficient support of sequential patterns. The
sequential pattern to be generated is selected randomly w.r.t. probabilities of se-
quential patterns. When the process of generating sequential pattern is started, the
items of the sequential pattern are copied into the sequence. If the current selected
item has a child, the item is replaced by its child with probability P I

ch or with P S
ch for

items of patterns, recursively. This allows generating various hierarchical sequence
datasets.

In the following sections describing experiments, the dataset properties are short-
ened to 6-parameters notation Cx1Tx2Sx3Ix4Nx5Rx6 wherex1 is a dataset size, x2 is
a length of sequences, x3 is a length of sequential patterns, x4 is average frequent
element size, x5 is a number of sequential patterns, x6 is a number of taxonomies.

5.1.4 Experiment 1: Dataset Size – Scalability

The first experiment is focused on scalability of the algorithms. The methodology
of the experiment is to measure the dependency of execution time on a dataset size.
For example, the values of fixed parameters denoted as C4T1.2S3I1.2N15%|D|R1k
are explained in Table 5.3. The suffix ’k’ of a number means that the value is ×1000.

Table 5.3: Dataset Parameters for Experiment 1

Dataset |C| |T | |S| |I| |N | |R| P I
ch, P

S
ch SuppS

C4T1.2S3I1.2N150kR1k 4 1.2 3 1.2 15% |D| 1k 0.9 0.045

The variable is the dataset size. The dataset size is set to different number of
sequences |D| ∈ {100 000, 250 000, 500 000, 750 000, 1 000 000} where each sequence is
of the average length 4 – it results in about from 400 000 up to 4 000 000 items in
the synthetic datasets. The number of items |N | cannot be set statically but it must
be related to |D| because the small number of items increases their support in the
dataset if the dataset naturally grows. Number of frequent sequences NS = 5 with
average support is SuppS = 0.045 (4.5 %).

The execution time in seconds was measured for the evaluation. Lower execution
time represents better scalability. Results are shown on Figures 5.1 and 5.2. The
slowest is basic GSP algorithm. Moreover, for the |D| = 1 000 000 the run does
not finish. Results of GSP can be better using the hash optimization for fast is-
generalized-subsequence pre-check. Similarly the time complexity of our algorithm

69

hGSP is computationally hard and is comparable to optimized GSP using the hash
is-subsequence check.

Algorithms PrefixSpan and MLSP have better results. PrefixSpan is approxi-
mately 7× faster than MLSP without optimizations. However, the MLSP algorithm
can be improved using the optimized Is-generalized-subsequence Check. The opti-
mized MLSP (with hash is-generalized-subsequence check, denoted by “hash” suffix)
is the fastest of all the algorithms. It is in average 4× faster than the second Pre-
fixSpan. Results are shown in Table 5.4. The log scale plot on Figure 5.2 shows that
execution times of all algorithms growth exponentially with the dataset size. They
differ in the parameter of the exponential function only.

The execution time is related to the number of candidates which are generated
during the mining process. Counts of candidate sequences are shown in Table 5.6.
The GSP generates a high number of candidates because it generates all combinations
for all extended items. It leads to a high number of redundant sequential patterns
in the result. A better situation is in case of the hGSP which does not generate all
combinations of candidates, however, it still combines a high number of level crossing
sequences. Finally, the MLSP reduces the number of candidate sequences and the
number of sequential patterns into non-redundant ones only.

Table 5.5 shows the memory requirements of algorithms depending on dataset
size. The experiment shows that the highest memory complexity has the PrefixSpan
algorithm because of the construction of projected tables. The candidate generating
algorithms have approx. 10 times lower memory complexity. It is also shown that
the fast hash table increases memory requirements by 60 % in the case of MLSP.

Table 5.4: The dependency of execution times in [s] on the dataset size |D| (in
thousands). The N/A means that the algorithm do not finish for the task.

|D| GSP
GSP

(hash)
Prefix
Span

hGSP MLSP
MLSP
(hash)

100k 3753 470 36 933 140 12
250k 1514 131 19 1330 276 24
500k 10568 959 145 4406 849 66
750k 31391 6987 779 3518 408 58
100k N/A 1630 197 N/A 3190 199

Table 5.5: The dependency of memory requirements in [MB] on the dataset size.

|D| GSP GSP
(hash)

Prefix
Span

hGSP MLSP MLSP
(hash)

100k 3 4 17 3 1 1
250k 2 3 41 5 3 3
500k 3 4 166 9 6 10
750k 3 4 39 12 6 13
100k N/A 4 87 N/A 11 12

70

Figure 5.1: Comparison of execution time w.r.t. dataset size *1000.

Figure 5.2: Comparison of execution time w.r.t. dataset size *1000 (in logarithmic
scale).

71

Table 5.6: The first part of the table shows the number of candidate sequences
generated during the mining process of candidate generation algorithms GSP, hGSP,
MLSP). The second part shows the number of sequential patterns. The extended
sequences are common for GSP and PrefixSpan. The extended sequences can be
pruned into non-redundant hierarchically-closed multi-level sequential patterns.

Candidate Sequences Sequential Patterns
|D| GSP hGSP MLSP Ext.

Seq.
L-C
Seq.

HC
ML
Seq.

100k 11409 2535 359 9119 236 67
250k 2371 1927 505 583 102 52
500k 6548 3281 660 4011 281 85
750k 17466 1374 258 16445 313 51
100k 7569 N/A 1343 1881 N/A 84

5.1.5 Experiment 2: Changes of Minimal Support Threshold

The Experiment 1 showed that the Is-generalized-subsequence check brings important
speed-up of the algorithms GSP and MLSP. Therefore, next Experiments uses only
optimized variants for both GSP and MLSP. All further experiments were limited
by maximal execution time up to 3 600 seconds (1 hour) which should be sufficient
according to average execution times of Experiment 1.

In practice, the optimal minimal support threshold is not known on the beginning
of the analysis. The optimal minimal support is usually determined experimentally
when the data mining starts with the high minimal support threshold value and it is
gradually decreased until sequential patterns are found. The decreasing of the min-
imal support increases the number of generated candidate sequences and sequential
patterns while the dataset remains the same.

The setup of this experiment is following. The dataset parameters are
C4T1.2S3I1.2N15kR1k, |D| = 100 000. All algorithms were run with several values
of minimal support threshold min supp ∈ {0.025, 0.035, 0.045, 0.055, 0.065}. Results
of this experiment are similar to Experiment 1.

Table 5.7 and Figure 5.3 show that the execution times of PrefixSpan and MLSP
algorithms are similar for high values of the minimal support. While the MLSP keeps
the stable execution times, the performance of the PrefixSpan gets worse with the
decreasing value of the minimal support value parameter. The main reason is that
the PrefixSpan must be applied on extended databases to mine multi-level sequential
patterns. Therefore, it must analyze high number of sequences and construct large
projected databases. Numbers of sequential patterns and candidate sequences are
shown in Table 5.8. The GSP and hGSP algorithms are much slower in all cases.

72

Table 5.7: The dependency of the execution time on the minimal support threshold
value.

|min supp| GSP
(hash)

Prefix
Span

hGSP
MLSP
(hash)

0.025 767 81 1563 18
0.035 597 43 1220 18
0.045 470 36 933 12
0.055 158 15 945 15
0.065 160 14 1051 15

Table 5.8: Numbers of candidate sequences and numbers of sequential patterns for
cases different values of minimal support threshold values.

Candidate Sequences Sequential Patterns
|min supp| GSP hGSP MLSP Ext.

Seq.
L-C
Seq.

HC
ML
Seq.

0.03 12814 3128 663 10142 283 82
0.04 11471 2571 539 9272 245 69
0.05 11409 2535 539 9199 236 67
0.06 3324 2008 423 1553 96 47
0.07 3324 2008 423 1553 96 47

Figure 5.3: Comparison of execution time w.r.t. the minimal support threshold value.

73

Table 5.9: The dependency of the execution time on the average length |C| of se-
quences in the database.

|C| GSP
(hash)

Prefix
Span

hGSP
MLSP
(hash)

4 229 11 137 5
6 633 79 2660 52
8 3253 136 N/A 333
10 967 34 N/A 367

5.1.6 Experiment 3: Length of Sequential Patterns

Next parameter which can affect the performance of the algorithm is the average
length of sequential patterns because the length of sequential patterns leads to a
higher number of frequent subsequences and candidate sequences during the mining
process. The Experiment 3 is focused on the gradually increasing length of the
sequential patterns from |S| ∈ {3, 5, 7, 9}. Number of elements of sequences in the
database D was determined to value |C| = 10. Note that the longer sequences result
into higher number of items in the database. Therefore the Experiment 3 is divided
into two parts.

First part analyses the dependence of the execution time on the length of sequences
in D because the average sequence length must be at least the average length of
sequential patterns. The experiment uses average number of elements of sequences
|C| ∈ {4, 6, 8, 10}. The fixed dataset parameters are T1.2I1.2N15kR1k, |D| = 100 000
and |NS| = 3 . The results are shown in Table 5.9. The fastest algorithm on such
databases is the PrefixSpan. The MLSP is slower mainly for longer sequences. The
reason is that the combinations of candidate sequences which grows massively (there
are 116 candidate sequences for |C| = 4 and 17250 candidate sequences for |C| = 10).
Nevertheless the MLSP is up to 10× faster than the GSP algorithm. The hGSP does
not finish for longer sequences because of the large search space.

The second part analyses the dependence of execution time on the length of
sequential patterns. Experiment results are shown in Table 5.10. The experiment
shows the strongest point of the algorithm MLSP. The longer sequential patterns lead
to high number of candidate sequences and projected databases of the algorithms
based on extended databases. In contrast, the performance of the MLSP is not
affected by the length of sequential patterns but only by the number of final sequential
patterns (see Table 5.11). Therefore, the MLSP is the only algorithm which is able
to finish on all test cases. The other algorithms PrefixSpan and GSP do not finish
for the cases |S| ∈ {7, 9} the time limit of one hour.

5.1.7 Experiment 4: Number of Sequential Patterns

This experiment analyses the dependence of the execution time on the number of
sequential patterns. The experiment setup is following: fixed dataset parameters are
C4T1.2S3I1.2N15kR1k, |D| = 100 000, |NS| = 3 and variable is |NS| ∈ {3, 5, 7, 9, 30}.

74

Table 5.10: The dependency of the execution time on the average length of sequential
patterns |S|.

|S| GSP
(hash)

Prefix
Span

hGSP
MLSP
(hash)

3 967 34 N/A 367
5 N/A 1229 N/A 301
7 N/A N/A N/A 487
9 N/A N/A N/A 254

Table 5.11: The dependency of the number of candidate sequences and sequential
patterns on the average length of sequential patterns |S|.

Candidate Sequences Sequential Patterns
|NS| GSP hGSP MLSP Ext.

Seq.
L-C
Seq.

HC
ML
Seq.

3 39743 N/A 17250 1742 N/A 177
5 N/A N/A 16268 N/A N/A 335
7 N/A N/A 16883 N/A N/A 560
9 N/A N/A 4893 N/A N/A 577

The results of experiment are shown in Table 5.12 and the numbers of generated
pattern are shown in next Table 5.13. The best results of the experiment are achieved
by the PrefixSpan algorithm. The MLSP algorithm gives also satisfactory results.
GSP and hGSP algorithms provide by the order of magnitude worse results.

Finally, the experiment also tests the behavior of the algorithms when number
of sequential patterns is higher |NS| = 30. In that case the results are similar to
previous cases. Therefore, we can say, that the number of sequential patterns does
not negatively affect the execution time of the algorithms, especially examined MLSP
and hGSP algorithms.

Table 5.12: The dependency of the execution time on the total count of sequential
patterns |NS|.

|NS|
GSP

(hash)
Prefix
Span

hGSP
MLSP
(hash)

3 201 9 94 5
5 8 1 82 3
7 17 1 219 5
9 217 11 893 16
30 57 1 889 16

75

Table 5.13: The dependency of the number of candidate sequences and sequential
patterns on the total count of sequential patterns |NS|.

Candidate Sequences Sequential Patterns
|NS| GSP hGSP MLSP Ext.

Seq.
L-C
Seq.

HC
ML
Seq.

3 4393 503 116 4100 203 34
5 648 579 263 104 30 23
7 1306 1230 365 129 41 33
9 6777 3837 907 3179 180 72
30 5618 5533 1420 203 61 61

Table 5.14: The dependency of the execution time on the number of taxonomy levels
|Rh|

|Rh|
GSP

(hash)
Prefix
Span

hGSP
MLSP
(hash)

2 4.1 0.5 35.6 2.7
6 4.7 0.7 34.4 2.2

5.1.8 Experiment 5: Taxonomy Height

The last experiment on the synthetic dataset analyses the dependency of the execution
time on the average taxonomy height (the total number of levels of all taxonomies).
The fixed parameters of the experiment are C4T1.2S3I1.2N15kR1k, |D| = 100 000,
|NS| = 3. The variable parameter is |Rh| ∈ {2, 6}. The first case of the average
height 2 shows algorithms behavior on low item categorizations. Second case is run
on dataset with the taxonomies of average height 6. The results are shown in Table
5.14. It is shown that the height of taxonomies do not affect the execution time and
the complexity of the run of the algorithms. The results are the same for the both
test cases.

5.1.9 Experiments Summary

Experiments on synthetic datasets compare algorithms GSP, PrefixSpan, hGSP and
MLSP. Best results are given by the algorithms MLSP and PrefixSpan. The other
algorithms are over a magnitude worse. The performance of the PrefixSpan is signifi-
cantly slower for mining long sequential patterns. Only the algorithm MLSP finishes
all the experiments and it proved very good results for mining hierarchically-closed
multi-level sequential patterns.

.

76

5.2 Evaluation on Real-World Datasets

The previous experiments verified the behavior of algorithm MLSP however they did
not deal with usability on a real world dataset. The real world data are much more
suitable to test the usability. The dataset of orders history of the e-shop VOPI is
used for the experiment. First, the dataset is described from general and statistical
points of view. Second, the sequential patterns obtained by the MLSP algorithm are
discussed. Note, that some kind of data were anonymized or marked as N/P (not
presentable).

5.2.1 Dataset Description

The real world mining task modeled in this experiment is to analyze the fidelity of
customers of the e-shop depending on the kinds of ordered products. In other words,
the task is to mine the sequential patterns of ordered items (or their categories) of
the same customer. For example, we expect sequential patterns like 〈a b〉 one, which
means that customers who buy product a, return in future and buy product b.

The dataset statistical properties are shown in Table 5.15. The total number of
different ordered items is |N | = 13000. The items are assorted to totally 32 different
root categories. The tree taxonomies in the problem are formed from the main
categories, their sub-categories and the products as leafs. The average taxonomies
height is Rh = 4. The very important parameter is |C| = 1.13, which means the
average number of transactions of a customer. From one point of view, such number
is low, however, it reflects the real highly competitive business environment. The
average transaction size |T | = 1.39 means that customers usually order more than
one product by one order.

The product catalogue contains two main kinds of products: 1. car carpets /
accessories and 2. home carpets. The products for cars are tailored for each model of
a car. For example, the items for Audi are different from ones for Skoda. Therefore,
the product catalogue for car accessories is very large.

Table 5.15: The Real-World dataset parameters.

Dataset |D| |C| |T | |S| |I| |N | |R| Rh |NS|
D N/P 1.13 1.39 N/A N/A 13000 32 4 N/A

5.2.2 Mining Results

The mining process was tested by MLSP algorithm in two runs with the values of
minimal support threshold min supp ∈ {0.07 %, 0.10 %}. Numbers of mined sequen-
tial patterns of different lengths are shown in Table 5.16. The main point is that the
support of sequential patterns of leaf products is very low. Sequential patterns are
formed on higher taxonomy levels. Therefore, mining without taxonomies would not
probably discover any interesting sequential patterns.

77

Table 5.16: Counts of sequential patterns of different length depending on minimal
support value.

Number of sequential patterns
min supp length = 1 length = 2 length = 3 length = 4

0.07 % 448 85 11 1
0.10 % 334 58 7 0

Selected important sequential patterns are shown in Table 5.17. Arrows in Table
show whole path from root to the found item in multi-level sequential patterns, for
example, a → b → c means that root item a is a parent of b and b is a parent of
c. Sequential patterns would contain only the item c. Following text interprets the
mining results:

• Rows 1, 10, 12 show that customers return for Car Carpets products.

• Rows 2, 3 are in relation such that the row 2 is the parent of row 3.

• Rows 4, 5, 8, 9, 11 show that the customers return for popular home products.

• Rows 6, 7 show mark-based orders for car carpets.

• Rows 13-16 show orders, where elements contain more than one frequent prod-
uct. Such patterns were observed for car products. Note that sequences on
rows 15 and 16 contain only one element.

It was shown that the MLSP produces new sequential patterns on the real-world
datasets. The execution time of the MLSP on the real world dataset is in minutes
depending on parameters settings. Therefore, we can say that the algorithm is fully
usable for real world data mining problems.

78

T
ab

le
5.

17
:

E
xa

m
pl

es
of

m
in

ed
se

qu
en

ti
al

pa
tt

er
ns

on
re

al
w

or
ld

da
ta

se
t.

#
P

at
te

rn
L

en
gt

h
Su

pp
or

t
[%

]
E

le
m

en
t

1
E

le
m

en
t

2
E

le
m

en
t

3
E

le
m

en
t

4

1
2

2.
16

C
ar

C
ar

p
et

s
C

ar
C

ar
p

et
s

2
2

0.
30

C
ar

C
ar

p
et

s
R

ub
b

er
C

ar
M

at
s

3
2

0.
12

C
ar

C
ar

p
et

s
→

T
ai

lo
re

d
T

ex
ti

le
C

ar
p

et
s

R
ub

b
er

C
ar

M
at

s→
P

la
st

ic
C

ar
M

at
s

4
2

0.
13

In
do

or
D

oo
rm

at
s

In
do

or
D

oo
rm

at
s

5
2

0.
13

O
ut

do
or

D
oo

rm
at

s
O

ut
do

or
D

oo
rm

at
s

6
2

0.
13

C
ar

C
ar

p
et

s
→

T
ai

lo
re

d
T

ex
ti

le
C

ar
p

et
s→

V
W

C
ar

p
et

s

C
ar

C
ar

p
et

s
→

T
ai

lo
re

d
T

ex
ti

le
C

ar
p

et
s→

V
W

C
ar

p
et

s
7

2
0.

11
C

ar
C

ar
p

et
s
→

T
ai

lo
re

d
T

ex
ti

le
C

ar
p

et
s→

Fo
rd

C
ar

p
et

s

C
ar

C
ar

p
et

s
→

T
ai

lo
re

d
T

ex
ti

le
C

ar
p

et
s→

Fo
rd

C
ar

p
et

s
8

2
0.

76
M

od
er

n
H

om
e

C
ar

p
et

s
M

od
er

n
H

om
e

C
ar

p
et

s
9

2
0.

40
M

od
er

n
H

om
e

C
ar

p
et

s→
E

to
n

C
ar

p
et

M
od

er
n

H
om

e
C

ar
p

et
s→

E
to

n
C

ar
p

et
10

3
0.

25
C

ar
C

ar
p

et
s

C
ar

C
ar

p
et

s
C

ar
C

ar
p

et
s

11
3

0.
13

M
od

er
n

H
om

e
C

ar
p

et
s

M
od

er
n

H
om

e
C

ar
p

et
s

M
od

er
n

H
om

e
C

ar
p

et
s

12
4

0.
07

C
ar

C
ar

p
et

s
C

ar
C

ar
p

et
s

C
ar

C
ar

p
et

s
C

ar
C

ar
p

et
s

13
3

0.
11

(C
ar

C
ar

p
et

s,
P

la
st

ic
C

ar
M

at
s)

C
ar

C
ar

p
et

s
14

3
0.

09
P

la
st

ic
C

ar
M

at
s

(C
ar

C
ar

p
et

s,
P

la
st

ic
C

ar
M

at
s)

15
3

0.
10

(C
ar

A
cc

es
so

ri
es

,
C

ar
C

ov
er

s,
C

ar
C

ar
p

et
s)

16
3

0.
16

(C
ar

A
cc

es
so

ri
es

,
C

ar
C

ar
p

et
s,

P
la

st
ic

C
ar

M
at

s)

79

Chapter 6

Conclusions

Mining sequential patterns, especially mining multi-level sequential patterns, is a
challenging task. The main goal of the thesis was to confirm the hypothesis that
taxonomies lead to find out new patterns and a new method to mine them effectively
can be formulated.

In my research, I focused on two main approaches of dealing with items in tax-
onomies. The first approach is to find out patterns called level-crossing sequential
patterns. A new algorithm called hGSP was proposed but the level-crossing ap-
proach came out as extremely time-consuming. The second approach adds some
special constraints which simplify the task while keeping important patterns in the
result. It leads to the definition of a new type of data mining task called min-
ing hierarchically-closed multi-level sequential patterns. Mining hierarchically-closed
multi-level sequential patterns produces results without redundant patterns useful for
the analyst. These research results confirm the first part of the thesis hypothesis.

The thesis introduces a new algorithm called MLSP designed for mining hierar-
chically-closed multi-level sequential patterns. Both the hGSP and MLSP algorithms
prefer the generalization of a sequence to dropping it. The performance of the al-
gorithms was evaluated in several experiments. The experiments were focused on
comparison of the performance in dependence on the dataset size (scalability), se-
quential patterns length and size and the taxonomies sizes. The best results are
provided by MLSP and PrefixSpan algorithms. The other algorithms were more
than over a magnitude slower. It was shown that the average length of sequential
patterns has a significant effect on the execution time. The PrefixSpan did not finish
for sequences containing 7 and more elements. Only the MLSP algorithm finished in
all runs. The usability of the MLSP algorithm was shown on real dataset where the
algorithm has found some new useful knowledge. This confirms the second part of
the hypothesis related to a new data mining method.

As a result, both parts of the hypothesis were confirmed. Therefore, the thesis
hypothesis was completely confirmed and the goal of the thesis was fulfilled.

It was shown that mining hierarchically-closed multi-level sequential patterns is
suitable for tasks of the analysis of customer behavior. But there are some other
domains where this type of mining task can be useful, for example security analysis
of Domain Name System because domains are also organized in taxonomies.

80

The future work can be focused on the research of other constrains while mining
level-crossing or multi-level sequential patterns. In the field of mining methods,
research may continue exploring other optimizations.

81

Bibliography

[1] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Data Engineering,
1995. Proceedings of the Eleventh International Conference on, Mar 1995, pp.
3–14.

[2] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between sets
of items in large databases,” SIGMOD Rec., vol. 22, no. 2, pp. 207–216, Jun.
1993.

[3] R. Agrawal and R. Srikant, “Mining sequential patterns,” IBM Research Divi-
sion. Almaden Research Center. 1994, Tech. Rep.

[4] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association rules,” in
Proc. 20th int. conf. very large data bases, VLDB, vol. 1215, 1994, pp. 487–499.

[5] A. V. Aho, J. E. Hopcroft, and J. Ullman, Data Structures and Algorithms,
1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1983, 427 p.

[6] M. Atallah, Algorithms and Theory of Computation Handbook, ser. Chapman &
Hall/CRC Applied Algorithms and Data Structures series. CRC Press, 1998,
950 p.

[7] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern mining using
a bitmap representation,” in Proceedings of the Eighth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, ser. KDD ’02.
New York, NY, USA: ACM, 2002, pp. 429–435.

[8] R. J. Bayardo, Jr., “Efficiently mining long patterns from databases,” in Pro-
ceedings of the 1998 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’98. New York, NY, USA: ACM, 1998, pp. 85–93.

[9] T. Cormen, Introduction to Algorithms. MIT Press, 2009, 1312 p.

[10] M. E. M. Di Beneditto and L. N. de Barros, “Using concept hierarchies in know-
ledge discovery,” in Advances in Artificial Intelligence–SBIA 2004. Springer,
2004, pp. 255–265.

[11] P. Fournier-Viger, A. Gomariz, M. Šebek, and M. Hlosta, “Vgen: Fast vertical
mining of sequential generator patterns,” in Data Warehousing and Knowledge

82

Discovery, ser. Lecture Notes in Computer Science, L. Bellatreche and M. Mo-
hania, Eds. Springer International Publishing, 2014, vol. 8646, pp. 476–488.

[12] C. Gao, J. Wang, Y. He, and L. Zhou, “Efficient mining of frequent sequence
generators,” in Proceedings of the 17th International Conference on World Wide
Web, ser. WWW ’08. New York, NY, USA: ACM, 2008, pp. 1051–1052.

[13] A. Gomariz, M. Campos, R. Marin, and B. Goethals, “Clasp: An efficient
algorithm for mining frequent closed sequences,” in Advances in Knowledge
Discovery and Data Mining, ser. Lecture Notes in Computer Science, J. Pei,
V. Tseng, L. Cao, H. Motoda, and G. Xu, Eds. Springer Berlin Heidelberg,
2013, vol. 7818, pp. 50–61.

[14] K. Gouda and M. Zaki, “Efficiently mining maximal frequent itemsets,” in
Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference
on, 2001, pp. 163–170.

[15] K. Gouda and M. Zaki, “Genmax: An efficient algorithm for mining maximal
frequent itemsets,” Data Mining and Knowledge Discovery, vol. 11, no. 3, pp.
223–242, 2005.

[16] J.-W. Han, J. Pei, and X.-F. Yan, “From sequential pattern mining to structured
pattern mining: A pattern-growth approach,” Journal of Computer Science and
Technology, vol. 19, no. 3, pp. 257–279, 2004.

[17] J. Han and A. Fu, “Mining multiple-level association rules in large databases,”
IEEE Trans. on Knowledge and Data Engineering, vol. 11, no. 5, pp. 798–805,
1999.

[18] J. Han and Y. Fu, “Discovery of multiple-level association rules from large data-
bases,” in VLDB, vol. 95, 1995, pp. 420–431.

[19] J. Han and M. Kamber, Data mining: concepts and techniques, ser. The Morgan
Kaufmann series in data management systems. Elsevier, 2006, 800 p.

[20] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu, “Freespan:
Frequent pattern-projected sequential pattern mining,” in Proceedings of the
Sixth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’00. New York, NY, USA: ACM, 2000, pp. 355–359.

[21] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate gener-
ation,” SIGMOD Rec., vol. 29, no. 2, pp. 1–12, May 2000.

[22] T.-K. Huang, “Developing an efficient knowledge discovering model for mining
fuzzy multi-level sequential patterns in sequence databases,” in New Trends in
Information and Service Science, 2009. NISS ’09. International Conference on,
June 2009, pp. 362–371.

83

[23] IBM, “IBM quest synthetic data generator,” [cit. 2016-01-15, on-line], 2010.
[Online]. Available: http://sourceforge.net/projects/ibmquestdatagen/

[24] D. Lo, S.-C. Khoo, and J. Li, “Mining and ranking generators of sequential
patterns.” in SDM. SIAM, 2008, pp. 553–564.

[25] D. MacKay, Information Theory, Inference, and Learning Algorithms. Cam-
brifge University Press, 2003, 640 p.

[26] Microsoft, “Microsoft sql server product samples database,” [cit. 2016-01-15,
on-line], 2016, published on: http://msftdbprodsamples.codeplex.com/.

[27] D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for
Engineers, 4th ed. John Wiley & Sons, May 2006.

[28] S.-I. Nakano, “Efficient generation of plane trees,” Inf. Process. Lett., vol. 84,
no. 3, pp. 167–172, nov. 2002.

[29] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent closed
itemsets for association rules,” in Database Theory - ICDT’99, ser. Lecture Notes
in Computer Science, C. Beeri and P. Buneman, Eds. Springer Berlin Heidel-
berg, 1999, vol. 1540, pp. 398–416.

[30] J. Pei, J. Han, R. Mao et al., “Closet: An efficient algorithm for mining frequent
closed itemsets.” in ACM SIGMOD workshop on research issues in data mining
and knowledge discovery, vol. 4, no. 2, 2000, pp. 21–30.

[31] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal,
and M.-C. Hsu, “Mining sequential patterns by pattern-growth: the prefixspan
approach,” Knowledge and Data Engineering, IEEE Transactions on, vol. 16,
no. 11, pp. 1424–1440, Nov 2004.

[32] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu,
“Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern
growth,” in Proc. of the 17th International Conference on Data Engineering.
IEEE Computer Society, 2001, pp. 0215–0215.

[33] G. Piatetsky-Shapiro, “Discovery, analysis and presentation of strong rules,”
Knowledge discovery in databases, pp. 229–238, 1991.

[34] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal, “Multi-dimensional
sequential pattern mining,” in Proceedings of the Tenth International Conference
on Information and Knowledge Management, ser. CIKM ’01. New York, NY,
USA: ACM, 2001, pp. 81–88.

[35] M. Plantevit, A. Laurent, D. Laurent, M. Teisseire, and Y. W. Choong, “Min-
ing multidimensional and multilevel sequential patterns,” ACM Trans. Knowl.
Discov. Data, vol. 4, no. 1, pp. 4:1–4:37, Jan. 2010.

84

http://sourceforge.net/projects/ibmquestdatagen/

[36] M. Plantevit, A. Laurent, and M. Teisseire, “Hype: Mining hierarchical sequen-
tial patterns,” in Proceedings of the 9th ACM International Workshop on Data
Warehousing and OLAP, ser. DOLAP ’06. New York, NY, USA: ACM, 2006,
pp. 19–26.

[37] R. Srikant and R. Agrawal, Mining sequential patterns: Generalizations and per-
formance improvements. IBM Research Division, 1996, 29 p., research Report.

[38] R. Srikant and R. Agrawal, “Mining generalized association rules,” Future Gen-
eration Computer Systems, vol. 13, no. 2, pp. 161–180, 1997, data Mining.

[39] R. Srikant, Q. Vu, and R. Agrawal, “Mining association rules with item con-
straints.” in KDD, vol. 97, 1997, pp. 67–73.

[40] VOPI, “Vopi.cz,” [cit. 2016-01-15, on-line], 2016, published on:
http://www.vopi.cz/.

[41] M. Šebek, M. Hlosta, J. Kupčík, J. Zendulka, and T. Hruška, “Multi-level se-
quence mining based on gsp,” in Proceedings of the Eleventh International Con-
ference on Informatics INFORMATICS’2011, ser. 1. Faculty of Electrical En-
gineering and Informatics, University of Technology Košice, 2011, pp. 185–190.

[42] M. Šebek, M. Hlosta, J. Kupčík, J. Zendulka, and T. Hruška, “Multi-level se-
quence mining based on gsp,” Acta Electrotechnica et Informatica, no. 2, pp.
31–38, 2012.

[43] M. Šebek, M. Hlosta, J. Zendulka, and T. Hruška, “Mlsp: Mining hierarchically-
closed multi-level sequential patterns,” in Advanced Data Mining and Applic-
ations, ser. Lecture Notes in Computer Science, H. Motoda, Z. Wu, L. Cao,
O. Zaiane, M. Yao, and W. Wang, Eds. Springer Berlin Heidelberg, 2013, vol.
8346, pp. 157–168.

[44] M. Šebek and J. Zendulka, “Generator of synthetic datasets for hierarchical se-
quential pattern mining evaluation,” in Proceedings of the Twelfth International
Conference on Informatics 2013. The University of Technology Košice, 2013,
pp. 289–292.

[45] J. Wang and J. Han, “Bide: efficient mining of frequent closed sequences,” in
Data Engineering, 2004. Proceedings. 20th International Conference on, March
2004, pp. 79–90.

[46] X. Yan, J. Han, and R. Afshar, “Clospan: Mining closed sequential patterns in
large datasets,” in In SDM, 2003, pp. 166–177.

[47] Z. Yang and M. Kitsuregawa, “Lapin-spam: An improved algorithm for mining
sequential pattern,” in Data Engineering Workshops, 2005. 21st International
Conference on, April 2005, pp. 1222–1222.

85

[48] S. Yi, T. Zhao, Y. Zhang, S. Ma, and Z. Che, “An effective algorithm for mining
sequential generators,” Procedia Engineering, vol. 15, pp. 3653–3657, 2011.

[49] M. J. Zaki and C.-J. Hsiao, “Charm: An efficient algorithm for closed itemset
mining.” in SDM, vol. 2. SIAM, 2002, pp. 457–473.

[50] M. J. Zaki, “Spade: An efficient algorithm for mining frequent sequences,” Ma-
chine Learning, vol. 42, no. 1-2, pp. 31–60, 2001.

86

	Introduction
	Goals of the Thesis
	Thesis Contribution
	Structure of the Thesis

	Pattern Mining
	Mining Frequent Patterns
	Problem Definition
	Mining Maximal and Closed Frequent Itemsets

	Mining Sequential Patterns
	Problem Definition
	Mining Maximal and Closed Sequential Patterns

	Concept Hierarchy and Taxonomies
	Mining Multi-Level and Level-Crossing

	State of the Art
	Mining Frequent Patterns
	Candidate Generation Approach
	Pattern Growth Approach
	Mining Maximal and Closed Frequent Itemsets
	Mining Multi-level Frequent Patterns

	Mining Sequential Patterns
	AprioriAll, AprioriSome and DynamicSome Algorithms
	GSP Algorithm
	SPAM Algorithm
	PrefixSpan Algorithm
	Other Sequential Pattern Mining Methods
	Mining Closed Sequential Patterns
	Sequential Generator Patterns

	Mining Multi-Level Sequential Patterns
	Approach Based on Extended Sequences
	Generalization Based Methods

	Level-Crossing and Multi-level Sequential Pattern Mining
	Introduction
	Mining Level-Crossing Sequential Patterns
	Problem Definition
	The hGSP Algorithm
	Complex Example

	Mining Hierarchically-Closed Multi-Level Sequential Patterns
	Problem Definition
	The MLSP Algorithm
	Optimization 1: Is-generalized-subsequence Check in Linear Time-Complexity
	Optimization 2: Hash Table Pre-Check for Is-generalized-subsequence Check
	Optimization 3: Is-redundant Fast Check
	Complex Example

	Experimental Evaluation
	Evaluation on Synthetic Datasets
	Generating Synthetic Datasets
	Parameters of the Generator
	The method of the generator
	Experiment 1: Dataset Size – Scalability
	Experiment 2: Changes of Minimal Support Threshold
	Experiment 3: Length of Sequential Patterns
	Experiment 4: Number of Sequential Patterns
	Experiment 5: Taxonomy Height
	Experiments Summary

	Evaluation on Real-World Datasets
	Dataset Description
	Mining Results

	Conclusions
	Bibliography

