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FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

MINING MULTI-LEVEL SEQUENTIAL PATTERNS
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Abstrakt
Dolování sekvenčních vzorů je důležitá oblast získávání znalostí z databází. Stále
více průmyslových a obchodních aplikací uchovává data mající povahu sekvencí, kdy
je dáno pořadí jednotlivých transakcí. Toho může být využito například při analýze
po sobě jdoucích nákupů zákazníků.
Tato práce se zabývá využitím hierarchického uspořádání položek při dolování sekven-
čních vzorů. V rámci práce jsou řešeny dvě základní oblasti – dolování víceúrovňových
sekvenčních vzorů s křížením a bez křížení úrovní hierarchií. Dolovací úlohy pro obě
oblasti jsou v práci formalizovány a následně navrženy algoritmy hGSP a MLSP pro
jejich řešení. Experimentálně bylo ověřeno, že především algoritmus MLSP dosahuje
výborných výkonnostních vlastností a stability. Význam nově získaných vzorů je
ukázán na dolování reálných produkčních dat.

Abstract
Mining sequential patterns is a very important area of the data mining. Many indus-
trial and business applications save sequential data where the ordering of transactions
is defined. It can be used for example for analysis of consecutive shopping transac-
tions.
This thesis deals with the using of concept hierarchies of items for mining sequen-
tial patterns. This thesis focuses on two basic approaches – mining level-crossing
sequential patterns and mining multi-level sequential patterns. The approaches for
the both data mining tasks are formalized and there are proposed data mining algo-
rithms hGSP and MLSP to solve these tasks. Experiments verified that mainly the
MLSP has good performance and stability. The usability of newly obtained patterns
is shown on the real-world data mining task.
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Chapter 1

Introduction

Nowadays, the total amount of stored data in different kinds of databases is growing.
Many different applications save data about each transaction. For example, data
about merchant transactions are saved for billing purposes. If the data are collected
from a high number of customers, new dependencies about the customers’ behavior
can be formed. Another example is that data about insurance events can be stored.
If the reporting period is long enough, the data can be used for the risk analysis of
new contracts. Retrieving of such new knowledge from data is called Data Mining
(or Knowledge Discovery) introduced in early 90th of 20th century.

An established definition is that Data Mining is an extraction or “mining” of
hidden knowledge from large amounts of data [10]. Data Mining is a complex pro-
cess where the application of the data mining algorithm is only one step of the
process. The process is composed of following steps: data pre-processing (data clean-
ing, integration, transformation and reduction), data mining, pattern evaluation and
knowledge presentation.

Various types of databases require different data mining tasks and provide differ-
ent kinds of patterns. Examples of main data mining tasks and types of data to be
mined are following:

• Classes Characterization and Discrimination – data are associated with classes
and characterized and/or compared.

• Mining Frequent Patterns, Associations, and Correlations – frequent patterns
are such patterns that occur frequently in data (in other words, data which
occur in the dataset in a number which is higher than the given threshold
value).

• Classification and Prediction – data are labeled into classes. The algorithms of
classification try to find a model which describes each class and can be applied
on new (unlabeled) data. The prediction has a continuous target attribute.

• Cluster Analysis – clustering algorithms try to find a model which can divide
data into a specific number of groups. Clustering can be used for an initial
labeling of data.
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• Outlier Analysis – algorithms for outlier analysis reveal data records which
have different values than the majority. Such problem is typically used for
fraud detection.

This thesis deals with mining sequential patterns. Mining sequential patterns is a
special case of mining frequent patterns with a defined order of transactions. It is
used for many applications such as the analysis of customer patterns, web log data
purchase, security applications, etc. The goal is to find sequential patterns that occur
in the database frequently. Market basket analysis is a typical application example
where the sequential patterns like 〈PC minitower ink printer〉 can be discovered. The
pattern says that many people buy a minitower PC and then, later, they also buy an
ink printer.

Items in the database can be assorted and categorized into one or more tax-
onomies. An example of taxonomies of items is shown on Figure 1.1. Taxonomies
can be used to find patterns which items are on the different levels of hierarchy. We
demonstrate it on the example of customer purchase analysis. Following the sequen-
tial pattern example above, the pattern 〈PC printer〉 can be found by replacing all
items by items on a higher hierarchy level. Unfortunately, the amount of such pat-
terns can grow enormously, but many of the patterns can be considered as useless.
For instance, the pattern 〈PC printer〉 does not bring any new information if the
number of its occurrence in the database is the same as a number of 〈PC minitower
ink printer〉.

Example 1. For better illustration of the practical impact of the issue being solved,
the thesis uses a simple real world example from a PC shop. There is an illustration
of several categories representing products of the shop on Figure 1.1.

towerminitower

PC

CRT monitorLCD monitor

monitor

ink printerlaser printer

printer

colorblack

Figure 1.1: Example of the products structure in the shop.

When items are categorized in taxonomies, the sequential patterns can be divided
into the following two categories:

• multi-level (known also as intra-level)

• and level-crossing (known also as inter-level) [9].

All items of multi-level sequential patterns are at the same level of hierarchy, whereas
levels of items of level-crossing can be different. In Chapter 3 it is shown that very
few algorithms deal with the problem of mining multi-level sequential patterns. The
thesis deals with the both categories of sequential patterns and examines how to mine
them effectively.
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1.1 Goals of the Thesis

The Ph.D. thesis deals with the mining sequential patterns where taxonomies are
defined over items in a sequence database. The hypothesis of the thesis is following:

“The existence of taxonomies makes it possible to find a new type of sequential
patterns and a new method for mining it effectively can be developed.”

The goal of the thesis is to verify the hypothesis. The goal is decomposed into
the following three sub-goals.

1. To design and formally define the problem of mining sequential patterns with
items in taxonomies.

2. To design and formally define a new method(s) or algorithm(s) which can solve
the defined data mining problem effectively.

3. To experimentally evaluate properties of the developed method(s) or algo-
rithm(s) and to compare it (them) with the existing methods.

1.2 Thesis Contribution

The main contributions of the thesis are as follows.

• The both multi-level and level-crossing categories of mining sequential patterns
with items in taxonomies are discussed. There is proposed a new type of multi-
level sequential patterns task which reduces redundant (useless) patterns using
new constraints.

• New methods for mining of level-crossing and especially multi-level sequen-
tial patterns are introduced. There are proposed new optimization techniques
which significantly increase the speed of the multi-level mining algorithm. The
properties of algorithms are experimentally verified.

1.3 Structure of the Thesis

Pattern Mining is introduced in Chapter 2. The first part is focused on frequent
pattern mining. Then the sequential pattern mining is defined and a problem is
extended by the existence of taxonomies. The state of the art, especially existing
algorithms for frequent or sequential pattern mining, is described in Chapter 3. The
core of the thesis is described in Chapter 4. The first part deals with level-crossing
sequential patterns and the second part is focused on the research of multi-level
patterns. Here, a new data mining task is defined and algorithms to solve them are
proposed. The experiments and their results are described in Chapter 5. First, the
performance is compared on synthetic data, then, the practical results are shown.
Finally, the results are summarized and possible following research is suggested in
Chapter 6.

4



Chapter 2

Pattern Mining

Mining of frequent patterns is the most common of the data analysis and data mining
tasks [10]. Basic concepts of mining frequent patterns and association rules are
introduced first. Then, mining sequential patterns and mining with defined concept
hierarchy are described. In addition, the chapter gives basic formal background to
the pattern mining.

2.1 Mining Frequent Patterns

Mining frequent patterns was firstly studied by Agrawal et al. (1993) in the paper
[2]. The main objective was to find such sets of items (shortly itemsets) which occur
in transactions of input database more frequently than a given threshold. It is widely
used to discovery of associations and correlations among input items. It produces
simply understandable model of data and, therefore, the task is usually used for
initial data analysis of an unknown dataset.

The task became very popular for industry and business, especially for decision
making applications and marketing applications. The typical example of usage of
the association rules mining is a market basked analysis. The goal is to find items
which are usually purchased together. The example can be a typical computer shop
which sells items such as computers, notebooks, monitors, printers, keyboards etc.
The frequent pattern mining task can reveal that computers are usually purchased
together with monitors and keyboards, but notebooks are purchased just alone. The
task association rules analysis brings the results in the form of implication. It means
that if a customer buys a computer, he probably buy also a keyboard.

2.1.1 Problem Definition

Here, the problem is described formally.

Definition 1. (Itemset) Let I = {i1, i2, i3, . . . , ik} be a nonempty finite set of items.
Then an itemset T is a non-empty set of items I, such that T ⊆ I.

Definition 2. (Frequent Itemset) Let I be a set of items, D be set of transactions,
such that each transaction T is T ⊆ I, and A ⊆ I be an itemset. The transaction T
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contains an itemset A iff A ⊆ T . A relative support of the itemset A is a percentage
of transactions in D that contain A. Given the minimal support threshold value
min sup, the itemset A is called frequent itemset if its support is more than or equal
to min sup.

Definition 3. (Association Rule, Support of Association Rule, Confidence
of Association Rule) Let I be a set of items, D be set of transactions and let A
and B be itemsets such that A,B ⊆ I and A ∩ B = ∅. Then an association rule is
the implication A⇒ B. The support of the association rule A⇒ B is a percentage
of transactions of D that contain A ∪ B. The confidence of the rule A ⇒ B is a
percentage of transactions in D containing A which contain also B. This means

support(A⇒ B) = P (A ∪B), (2.1)

confidence(A⇒ B) = P (B|A) =
support(A ∪B)

support(A)
. (2.2)

Definition 4. (Mining Frequent Patterns) Given a database D and a minimal
support threshold min sup, the task of finding of the complete set of frequent itemsets
is called the mining frequent patterns.

2.1.2 Mining Maximal and Closed Frequent Itemsets

The huge number of result itemsets can be reduced using the maximal and closed
restrictions of frequent itemsets [7, 15].

Definition 5. (Maximal Frequent Itemset) Let F be a set of frequent itemsets.
A frequent itemset x ∈ F is called maximal frequent itemset if it is not a proper
subset of any other frequent itemset x′ ∈ F .

Definition 6. (Frequent Closed Itemset) Let F be a set of frequent itemsets. A
frequent itemset x ∈ F is called closed frequent itemset if it is not a proper subset of
any other frequent itemset x′ ∈ F such that support(x) = support(x′).

Definition 7. (Mining Maximal/Closed Frequent Patterns) Given a database
D and a minimal support threshold min sup, the task of finding of the complete set
of maximal (closed) itemsets is called the frequent maximal (closed) patterns mining.

2.2 Mining Sequential Patterns

Sequential pattern mining was introduced by Agrawal and Srikant in 1995 [1]. The
sequence is defined as an ordered list of transactions (itemsets) of one customer.
The example of usage of the sequential pattern mining can be also demonstrated
on market basket analysis. It can be expected that customers return for further
purchases. Therefore, the sequential patterns over purchased items can be found.
The example of such sequence can be, that a customer buys the computer with a
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monitor in the one purchase and, later, the customer returns and buys a printer. If
a sequence occurs in database more than a given threshold, it is called the sequential
pattern.

2.2.1 Problem Definition

In this section the problem of mining sequential patterns is formalized. Firstly, the
basic terms such as item, itemset, sequence and sequence database should be defined.

Definition 8. (Sequence) A sequence is an ordered list of itemsets. A sequence
s is denoted by 〈s1s2s3 . . . sn〉, where sj for 1 ≤ j ≤ n is an itemset. The itemset
sj is also called an element of the sequence. The length of a sequence is defined as
the number of instances of items in the sequence. A sequence of length l is called
an l-sequence. The sequence α = 〈a1a2 . . . an〉 is a subsequence of the sequence
β = 〈b1b2 . . . bm〉 where n ≤ m if there exist integers 1 ≤ j1 < j2 < · · · < jn ≤ m such
that a1 ⊆ bj1 , a2 ⊆ bj2 , . . . , an ⊆ bjn . We say that the sequence α is contained in the
sequence β. We denote it α v β and β is a supersequence of α .

Definition 9. (Sequence database) A sequence database D is a set of tuples
〈SID, s〉, where SID is a sequence identifier and s is a sequence.

Definition 10. (Sequence Support) Given sequence database D, the support of
a sequence s1 in D is defined as the number of sequences in D containing a sub-
sequence s1. Formally stated, the support of a sequence s1 in D is support(s1) =
|{〈SID, s〉|(〈SID, s〉 ∈ D) ∧ (s1 v s)}|.

Definition 11. (Sequential Pattern, Mining Sequential Patterns) Given se-
quence database D and minimal support threshold min supp, a frequent sequence is
such a sequence s whose support(s) ≥ min sup. A frequent sequence is called a se-
quential pattern. For a given sequence database D and a minimal support min supp,
the goal of mining sequential patterns is to find all frequent sequences in D.

Example 2. (Item, Element, Sequence, Sequence Database, Sequential
Pattern) For better understandability, the examples in the thesis are based on
the sequence database in Table 2.1. The set of items for the example is the set
I = {a11, a12, a1, a2, b1, b2, c1, d1, e1, f1, f2, g1, g2, h1, h2}. The table represents a se-
quence database with sequences in the sequence column. Let’s focus on the first
row containing the sequence s = 〈(c1d1)(a12b1c1)(a1b2f1)(a11c1d1f1)〉. The sequence
length is twelve, therefore the sequence is called 12-sequence. The sequence consists
of four elements (itemsets): (c1d1), (a12b1c1), (a1b2f1) and (a12c1d1f1). Note that
if element contains only one item, than the parentheses around the itemset can be
omitted, e.g. element e1 on the second row. Items denoted by the same letter, which
differ only in indexes, belong to one taxonomy. This notation will be described later
in Example 3 on page 9.

For the following examples we assume the minimal support thresholdmin supp=2,
unless otherwise stated. The support of item b2 is 3, denoted as 〈b2〉 : 3, because the
item is included in three sequences with SID 1, 2 and 3. Therefore, the 1-sequence
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〈b2〉 is frequent and is called sequential pattern. In contrast, the support of 1-sequence
〈g1〉 is 1 and it is not frequent. Further, the 2-sequences〈d1b1〉 : 2 , 〈d1f1〉 : 2 and
〈(b2f2)〉 : 2 are sequential patterns of length 2 with the support 2, e.g. the first se-
quence 〈d1b1〉 : 2 is the subsequence of sequences 1 and 4 of the sequence database.
In the sequence database there is no any sequential pattern longer than two.

Table 2.1: A sequence database D containing items on different taxonomy levels.
SID Sequence

1 〈(c1 d1)(a12 b1 c1)(a1 b2 f1)(a11 c1 d1 f1)〉
2 〈(a12 b2 f2) e1〉
3 〈(a2 b2 f2)〉
4 〈a11 (d1 g1 h1)(b1 f1)(a2 g2 h2)〉

2.2.2 Mining Maximal and Closed Sequential Patterns

In some special cases, some restrictions over the sequence length and support need to
be defined. In general, there are two restrictions similar to those introduced in Def. 5
and Def. 6 – maximal sequential patterns and closed sequential patterns. In the case
of maximal sequential patterns we are interested in sequences whose supersequences
are not frequent (simply, algorithms find the longest sequences). This problem was
deeply studied by Wang et al. [28]. In the case of closed sequential patterns proposed
by Agrawal in [1], the change of support of the supersequences is important and it also
bring us some information. In this case, we omit only subsequences whose support is
the same as theirs supersequences.

Definition 12. (Closed Sequential Pattern) Given sequence database D and a fre-
quent sequence s. If there is no proper supersequences of s with the same support,
i.e. @s′ such that s @ s′ and support(s) = support(s′), the sequence s is called closed
sequential pattern.

Definition 13. (Maximal Sequential Pattern) Given sequence database D, a frequent
sequence s and minimal support threshold min supp. If there is no proper frequent
supersequence of s, i.e. @s′ such that s @ s′ and support(s′) ≥ min supp, the
sequence s is called maximal sequential pattern.

2.3 Concept Hierarchy and Taxonomies

Concept hierarchy allows describing relations between concepts (values of attributes)
in database. The usage of concept hierarchy for data mining is summarized in [10]
and [6]. In general, the concept hierarchies define relations between lower (more
specific) and higher (more general) concepts. Formally, the concept hierarchy is a
partially (or totalky) ordered set of concepts. A special case of concept hierarchy is
a hierarchy of items referred as taxonomy.
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Definition 14. (Concept Hierarchy) A Concept Hierarchy CH is a partially or-
dered set (CH,�), or respectively a totally ordered set (CH,≺), where CH is a
finite set of concepts, and � and ≺ are partial and total order over CH, respectively.

Definition 15. (Taxonomy) The taxonomy structure of an itemset V (abbr. tax-
onomy) and edges E is a rooted tree τ = (V,E) with a root r ∈ V . In the context
of the tree, we refer to V as a set of nodes representing items. For each node v in
the tree, let UP (v) be a simple unique path from v to r. If UP (v) has exactly k
edges then the level of v is k for k ≥ 0. The level of the root is 0. The height of a
taxonomy is the greatest level in the tree. The parent of v 6= r, formally parent(v),
is the neighbor of v on UP (v), and for each node v ∈ V, v 6= r there exists a set of
its ancestors defined as:

ancestors(v) = {x|x ∈ UP (v), x 6= v}. (2.3)

The parent of r and the ancestors of r are not defined. If v is the parent of u then u
is a child of v. A leaf is a node having no child [14].

In every taxonomy there exists a is-a relation which is defined as follows:

is− a : V × V :≡ {(a, b)|b ∈ ancestors(a)}. (2.4)

Let ι = {I1, . . . , Im} be a partition of a nonempty finite set of items I. Then a
set of taxonomy structures of items I is a nonempty set of taxonomy structures
T = {τ1, . . . , τm} corresponding to ι such that τi = (Ii, Ei) where Ii ∈ ι for 1 ≤ i ≤ m.
It means that each item i ∈ I appears in exactly one taxonomy structure τi ∈ T . It
should be noted that we do not require that items need to be only leaf nodes. Items
ancestors(i) will be referred to as generalized items of i.

Example 3. (Taxonomy of Items, Taxonomy Level, Parent, Ancestor, Gen-
eralized Item.) The tree structures on Figure 2.1 are called Taxonomies of Items
which are used in the running example. The root symbols are alone letters from a to
h which are called root items. Then, all descendants are denoted by down-indexes.
By the definition, the level of item is the number of edges from item to root item,
for example the level of a12 is 2. Note, that the count of down-index digits denotes
the level of the item and the digit value denotes ordering of the item on the current
taxonomy level.

Now, we focus on relations between items in the taxonomies. The a1 is a parent
of both a11 and a12, denoted as parent(a11) = a1. Each item has almost one parent
item. In contrast, the ancestors are a set for each item laying on the path to root,
for example a11 has two ancestors a1 and a, denoted as ancestor(a11) = {a1, a}. The
generalized items of item a11 are both a1 or a.

2.3.1 Mining Multi-Level and Level-Crossing

The necessity of mining association rules on different concept levels has been firstly
mentioned by Agrawal et. al. in [3]. It is important to deal with multiple level pattern
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Figure 2.1: Visualization of taxonomies over items from the Example .

mining because association rules over leaf items may not satisfy minimal support but
association rules over more general items in the taxonomy may satisfy it.

Therefore, the task of mining association rules is extended to the form of the
generalized association rules [22] by the Def. 16.

Definition 16. (Generalized Association Rule) Let D be a set of transactions,
T be a set of taxonomies and I the set of all items, where each transaction T is a set
of items such that T ⊆ I. A transaction T supports an item x ∈ I if x ∈ T or x is
an ancestor of some item in T . A transaction T supports a set X ⊆ I if T supports
every item in X. Then, a generalized association rule is an implication A⇒ B, where
A,B ⊆ I,X ∩ Y = ∅ and no item in Y is an ancestor of any item in X. The support
of the generalized association rule A⇒ B is a percentage of transactions in D which
contain A ∪ B according to the support defined in this definition. The confidence of
the generalized association rule A⇒ B is percentage of transactions in D supporting
A that also support B.

Definition 17. (Mining Generalized Association Rules) Let D be a set of
transactions and T be a set of taxonomies. The task of mining generalized association
rules is to discover all rules that have support and confidence greater (or equal) than
the user specified minimal support and minimal confidence values.
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Chapter 3

State of the Art

The algorithms for mining sequential patterns have to deal with an ordering of trans-
actions of customers. This section contains an overview of approaches to the sequen-
tial patterns mining. The algorithms based on candidate generation are described
first and, then, the efficiency improvements based on pattern-growth approach are
introduced.

3.1 GSP Algorithm

The algorithms AprioriAll and AprioriSome described in the previous section enable
mining of non-constrained sequential patterns and maximal sequential patterns us-
ing post-processing procedure. Srikant introduced a new mining algorithm called
Generalized Sequential Patterns (GSP) in [21]. The GSP allows different types of
constraints of sequential patterns such as taxonomies, sliding windows and time con-
straints. Sliding windows and gap time constraints are not considered for the rest
of the thesis. The algorithm works iteratively. It makes a pass over the sequence
database in all iterations:

1. Initially, the support of items is counted in the first database pass. 1-sequences
are created from items with higher support value than a minimal support
min sup. Such 1-sequences are inserted into a partial result set L1 contain-
ing all frequent 1-sequences.

2. Then the following steps are processed iteratively until none k-sequential pat-
tern is generated:

(a) The Candidate Generation step generates Ck candidate sequences.

(b) The Counting Candidates step filters the frequent sequences into the Lk

sets.

3. The result set of sequential patterns is
⋃

k Lk.

The Candidate Generation runs in Join and Prune steps.
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1. In the Join step, a set of candidate sequences Ck is generated from sequential
patterns in Lk−1. A pair of sequences s1, s2 ∈ Lk−1 can be joined if subse-
quences, generated by omitting of the first item of s1 and the last item of s2,
are equal. Then, the candidate k-sequence is formed by adding the last item of
the s2 at the end of the sequence s1 as:

(a) the last new element containing one item x if x was in a separate element
in s2;

(b) as a next item of the last element in s1 otherwise.

(c) When joining x ∈ L1 with y ∈ L1, both sequences < (y)(x) > and <
(yx) > are generated as candidate sequences.

2. The Prune step removes candidates whose any (k − 1)-subsequence is not fre-
quent.

In the Counting Candidates step, the database is passed and the support of each
candidate sequence is counted. Candidates with a support greater than min supp
are added into the set Lk of sequential patterns. The contains test, checking if a
sequence s of the sequence databasecontains a candidate sequence sc, is used for
support evaluation.

3.2 PrefixSpan Algorithm

The PrefixSpan proposed by Pet et al. [17],[16] is a representative of the pattern-
growth algorithms. The algorithm does not use the time-consuming generating of
candidate sequences. The algorithm is based on the projected databases [11]. The
PrefixSpan algorithm works as follows. In the first scan, the algorithm finds all 1-
sequential patterns in the sequence database (the prefix is empty). Then, projected
database construction and PrefixSpan procedure is applied for each 1-sequential pat-
terns. Constructed projected databases are searched for a set of local frequent items
again. Output sequential patterns are constructed by joining a prefix with all local
frequent items. Finally, sequential patterns represents new prefixes and the PrefixS-
pan is run recursively.

3.3 Mining Multi-Level Sequential Patterns

The first method to deal with taxonomies over sequential patterns was described
in [18]. The method is called Uniform sequential approach [18] . It allows using
a common sequential patterns mining algorithm for mining multi-dimensional and
multi-level sequential patterns. This intuitive approach is based on the extending of
sequence database D. Each sequence s ∈ D is replaced by a new sequence s′ called
extended sequence where each item of s is replaced by all its ancestors within an
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element. Then, the presented AprioriSome and GSP algorithms will produce level-
crossing sequential patterns. Han et al. used in [8] such extended sequences for mining
multi-level sequential patterns by means of the PrefixSpan algorithm.

The topic of mining multi-level sequential patterns was deeply studied by Plante-
vit et al. [20] and [19]. They proposed several methods for mining different kinds of
multidimensional and multi-level sequential patterns. The multidimensional database
contains items from n distinct dimensions Di. Then items for data mining tasks are
n-tuples i = (d1, . . . , dn), where di ∈ dom(Di) ∪ {∗} and star symbol * denotes all
items of domain Di, called multidimensional items. They proposed an algorithm
called HYPE (HierarchY Pattern Extension). They described an idea of generaliza-
tion and specialization of sequential patterns [20]. The algorithm runs in two phases.
In the first phase, the algorithm creates the most specific (items in leaf nodes of
taxonomies) n−multidimensional items i = (d1, . . . , dn) denotes any item. The con-
struction gradually replaces star symbols by specific items of domains by joining pairs
of compatible hierarchical items – two items over n−dimensions are compatible, if
items share n− 2 items. In the second phase, the sequential patterns are iteratively
mined using an Apriori theorem.
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Chapter 4

Level-Crossing and Multi-level
Sequential Pattern Mining

Basic concepts of mining sequential patterns were described in previous Chapters
2 and 3. There were introduced the field of mining level-crossing and multi-level
sequential patterns. It was indicated that the usage of taxonomies of items can help
to find new results and new knowledge.The analysis of the state-of-the-art exposed
that such mining task is important and challenging, however, there does not exist
any satisfying solution.

In this chapter, my research over level-crossing and multi-level sequential pat-
tern mining is described. The main idea of my research is that the generalization
of sequence items can be performed when the subsequence support does not reach
the minimal support value. I have studied both sub-problems – level-crossing and,
also, multi-level sequential patterns. The naive solution for mining the level-crossing
sequential patterns uncovered the main issues of the task which are the huge search
space and the large result set. Therefore, there are proposed the constrains for
mining multi-level sequential patterns which simplifiy the complexity of the mining
process. The chapter summarizes facts published in research papers [24], [25] and
[26]. All those research papers were presented as results of TAČR research project
TA01010858: “Improving Security of the Internet by Using System for Analyzing of
Malicious Code Spreading” .

For the rest of the thesis two basic tasks will be distinguished:

• Level-crossing sequential patterns – items of sequential patterns can be gene-
ralized to any level of taxonomy.

• Multi-level sequential patterns – items of sequential patterns have to have the
same level of taxonomy.

Example 4. The difference between the complexity of level-crossing and multi-level
sequential patterns mining is shown on Figure 4.1. The multi-level mining approach
creates only the most bottom and top sequences: 〈a1 (b2 f2)〉 and 〈a (b f)〉 because
levels of items of those sequential patterns must be the same. However, there are
more 5 level-crossing sequential patterns between the pair of multi-level sequential
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patterns of length three. With the length of the sequential patterns, the number of
level-crossing patterns increases dramatically.

< a1 (b2,f2) >

< a1 (b,f2) > < a1 (b2,f) >

< a (b,f2) > < a1 (b,f) >

< a (b,f) >

< a (b2,f2) >

   equal-level generalization

            constraint

Figure 4.1: Difference between level-crossing and multi-level generalization of se-
quence 〈a1 (b2f2)〉.

A new support measure called a generalized support is introduced. The generalized
support gen supp is based on Def. 10 but the sequence subset relation is replaced by
the generalized subset relation ⊆g for the generalized support. Then, the generalized
support must test if the subsequence contains an item or any of its descendants.

Definition 18. (Generalized Support) Given elements e1, e2 ⊆ I, the generalized
subset relation ⊆g is defined as

e1 ⊆g e2 ⇔ ∀i ∈ e1 : i ∈ e2 ∨
∃j ∈ e2 : i ∈ ancestors(j). (4.1)

A sequence α = 〈a1a2 . . . an〉 is a generalized subsequence of a sequence β =
〈b1b2 . . . bm〉 if there exist integers 1 ≤ j1 < j2 < · · · < jn ≤ m such that a1 ⊆g

bj1 , a2 ⊆g bj2 , . . . , an ⊆g bjn . We denote α vg β. Formally, the definition of the
generalized support of a sequence s1 is

gen supp(s1) = |{〈SID, s〉|(〈SID, s〉 ∈ D) ∧ (s1 vg s)}|. (4.2)

The rest of the thesis will use shortened term support instead of generalized sup-
port.

Definition 19. (Generalization Procedure) The generalization procedure (shortly
generalization) is a procedure whose input is the node n of the taxonomy τ and the
output is the subset Na of ancestors of node n:

Na ⊆ τ ∧ n ∈ τ ∧Na ⊆ ancestors(n). (4.3)

4.1 Mining Level-Crossing Sequential Patterns

Sequential patterns are such subsequences which occur frequently in a sequence
database. Level-crossing sequential patterns allow items to be on different levels of
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taxonomies. On the other hand, the search space significantly grows for level-crossing
sequential patterns.

This section is based on facts published in [24] and [25]. First, the problem of
mining level-crossing sequential patterns is formalized. Especially, the relations as
parents and ancestors are defined for level-crossing sequences. Then, the algorithm
for mining level-crossing sequential patterns is proposed.

4.1.1 Problem Definition

Definition 20. (Element Parents) Given an element e = {i1, i2, . . . , in}, an ele-
ment parents of the element e is a set of the elements which are the same as e except
one of the items which is generalized. Formally,

parentsel(e) = {e \ {ik} ∪ {parent(ik)}|ik ∈ e
∧parent(ik) /∈ e ∧ 1 ≤ k ≤ n}. (4.4)

Note that items inside elements can be linearly ordered without lost of generality.
Now, the sequence parents and sequence ancestors can be defined using the ele-

ment parent definition.

Definition 21. (Sequence Parents) Given a sequence s = 〈e1e2 . . . en〉, where ek
are elements. The sequence parents of s is the set of sequences that are the same as
the sequence s except one of their elements which is replaced by one of its element
parents. Formally,

parentsseq(s) = {〈f1f2 . . . fn〉|fk ∈ parentsel(ek)

∧1 ≤ k ≤ n (4.5)

∧∀l 6= k, 1 ≤ l ≤ n : el = fl}.

Definition 22. (Root Sequence) Given taxonomy τ , a root sequence is a sequence
consisting of elements with items corresponding to root nodes only. The set of se-
quence parents of a root sequence is an empty set.

Definition 23. (Sequence Ancestors) Given the sequence s, the sequence ances-
tors of the sequence s is defined as follows:

ancestorsseq(s) = Mi, for such i that Mi+1 = Mi,where (4.6)

M0 = parentsseq(s)

Mi+1 = Mi ∪ {parentsseq(x) | x ∈Mi}
for i ≥ 0.

Example of sequence parents and sequence ancestors of sequence are in Example 5.
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Example 5. For a given sequence 〈a12 a11〉 : 1, a set of parent sequences is the
set of two sequences {〈a12a1〉 : 1, 〈a1 a11〉 : 1}. The set of ancestors of the sequence
〈a12 a11〉 : 1 is the set of sequences {〈a12 a1〉 : 1, 〈a1 a11〉 : 1, 〈a1 a1〉 : 1, 〈a1 a〉 : 2,〈aa1〉 :
1, 〈a a〉 : 2}. The sequence 〈a a〉 : 2 is the root sequence and it has no parent and
ancestor sequences.

4.1.2 The hGSP Algorithm

In this section, the algorithm hGSP (hierarchical-GSP) for mining level crossing
sequential patterns is introduced. The algorithm is based on GSP [21] described in
Section 3.1. In contrast to the method based on “extended-sequences”’, the hGSP
algorithm reduces the number of redundant patterns. If a sequence s is frequent and
s1 ∈ ancestorsseq(s), then s1 must be also frequent. Therefore, the sequence s1 is
redundant because it does not contain any new information. Due to the observation
our algorithm does not generate all possible generalizations of frequent sequences. It
performs generalization only when the sequence would be pruned. The hGSP is based
on the idea of concreteness of each sequence. The concreteness measure is evaluated
using information theory explained in the following subsection.

Concept of hGSP Algorithm

The main idea of the hGSP algorithm is that if a sequence s has support gen supp(s),
there can exist a generalized sequence sg ∈ parentsseq(s) such that gen supp(sg) >
gen supp(s). This can be applied repeatedly. Note that ∀sg ∈ parentsseq(s) :
gen supp(s) ≤ gen supp(sg).

Generally, more specific sequence s is more important result than its generalized
form sg because the generalized sg is more expectable in the result set. It corresponds
to the concept of Shannon information content [12].

For a sequence s, the dependence between information content h(s) and general-
ized support gen supp(s) causes that if the generalization from s to sg is performed
and gen supp(sg) > gen supp(s), then h(sg) < h(s). Some information is lost during
generalization. Therefore, the generalization should be performed only if the candi-
date sequence is not frequent (i.e. gen supp(s) < min supp) or the GSP algorithm
cannot perform join of two candidate sequences with joinable sequence ancestors.

Definition 24. (Concreteness) A sequence s1 is more concrete than a sequence s2
if (h(s2) < h(s1)) ∧ (ancestorsseq(s1) ∪ s1) ∩ (ancestorsseq(s2) ∪ s2) 6= ∅.

It means that to be more concrete s1must have higher information content then
s2 and both sequences must have at least one common ancestor or one sequence is
ancestor of the other.

Algorithm details

The hGSP algorithm uses modified join step and pruning step of the GSP algorithm.
The rest of the algorithm remains the same. The hGSP algorithm implementation
assumes that items in elements are in lexicographic order.
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The join step is modified for generating candidates of length k ≥ 3. Let s1 and
s2 be a pair of frequent sequences of length k − 1. The join can be performed if
subsequences of s1 after omitting the first item and s2 after omitting the last one
have a common sequence ancestor. Then the joined sequence of length k is composed
from the first item of s1, the most concrete sequence ancestor of common part and
the last item of s2. The last item is added as in GSP.

Support of candidates is counted similarly to original GSP. The only difference
is that we use gen supp(s) defined in Def. 18 instead of support. Therefore, only
the procedure for checking, if a candidate is a subsequence of sequences in a given
sequence database, is modified.

The modification of the pruning step is shown in Algorithm 4.2. The algorithm
uses a method for finding the approximation of the most concrete generalization set
of sequences which is described in Algorithm 4.1. The hGSP algorithm is based on
the greedy optimization technique [5]. The method FindGeneralization(s) returns
the set Gs of most concrete generalizations of the sequence s with higher information
value. Then the hGSP algorithm checks, if each sequence in Gs is frequent. If
so, it is added into set of sequential patterns, otherwise the candidate sequence is
generalized again. Therefore, the algorithm finds only sequences corresponding to
the local optimum of concreteness measure. Finding of a global optimum would
be extremely computationally complex. It is not necessary to evaluate information
content using logarithm functions but it is sufficient to compare ratios of supports of
sequences and theirs generalized forms.

Given sequence s and its generalized form s1, the information contents of these
sequences are h(s) = − log2

gen supp(s)
|D| and h(s1) = − log2

gen supp(s1)
|D| . The information

lost during generalization of s to s1 is ∆h = h(s)− h(s1). It follows that

∆h = log2

( gen supp(s1)
|D|

gen supp(s)
|D|

)
= log2

(
gen supp(s1)

gen supp(s)

)
. (4.7)

The generalization of s with the smallest information loss is found because then
the sequences will be the most concrete. Therefore, the algorithm minimizes ratio
gen supp(s1)
gen supp(s)

.
Generalized sequences which contain ancestor item of another item in the same

element are redundant and they are discarded.

4.2 Mining Hierarchically-Closed Multi-Level
Sequential Patterns

This section presents the core result of my research work. It deals with the for-
mal definition of the newly formulated task of mining hierarchically-closed sequential
patterns, and then it describes a new algorithm for mining such sequential patterns.

The level-crossing kind of sequential patterns introduced in previous section is
the natural taxonomical (hierarchical) extension of the sequential patterns. However,
the mining process of such patterns is very difficult and computationally expensive.
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Algorithm 4.1 Method FindGeneralization()
1: procedure FindGeneralization(s)
2: Gs = {}
3: min supp ratio = +∞
4: for all ps ∈ parentsseq(s) do
5: ratio = gen supp(ps)/gen supp(s)
6: if (gen supp(ps) 6= gen supp(s) ∧ ratio < min supp ratio then
7: Gs = {ps}
8: min supp ratio = ratio
9: else if (ratio = min supp ratio then
10: Gs = Gs ∪ {ps}
11: end if
12: end for
13: return Gs

14: end procedure

Therefore, the simplification of the problem was introduced in the research paper
[26]. The improvement is based on the multi-level sequential patterns concept. The
main idea is to find only patterns containing items of the same level. It reduces the
number of searched paths during the mining process.

The difference is explained on the following example which uses the taxonomies of
a shop from Example 1 on page 3. The possible result of mining level-crossing sequen-
tial patterns can contain e.g. sequences like 〈PC minitower ink printer〉,
〈PC minitower printer〉 or 〈PC printer〉 because there is no constraint for the com-
bination of the level of items. The multi-level sequential patterns, by contrast, must
not contain the sequential pattern as 〈PC minitower printer〉 because the levels of
items PC minitower and printer are different.

The hierarchically-closed sequential patterns follow the idea of the hGSP algo-
rithm which reveals only the most concrete patterns using the information con-
tent measure. It was observed, that the result becomes more clear and revealing
if the closed patterns are used [28], [1]. In our example, the analyst could be over-
loaded by redundant patterns if the result contains all 〈(PC minitower LCD monitor)
ink printer〉, 〈PC minitower ink printer〉, 〈LCD monitor ink printer〉,
〈(PC minitower LCD monitor)〉, etc. Moreover, no information is lost if the non-
closed patterns are omitted and the longest sequential patterns with the equal sup-
port are found. On the other hand, the mining of the close patterns are more com-
plicated, because result patterns must be retroactively pruned. In our work, the
“close” problem is applied to the process of generalization. It leads to the similar
type of redundant patterns like in mining closed sequential patterns – only the most
specific patterns with the no support change are revealing. Ancestors of the frequent
hierarchically-closed multi-level sequential patterns are always also frequent. How-
ever, the change of the support during the generalization is important. Therefore, we
focus on the mining the hierarchically–closed instead of the hierarchically–maximal
sequential patterns.
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Algorithm 4.2 Pseudocode of hGSP Pruning Step
1: procedure hGSP(Ck,min supp)
2: Lk = {}
3: for all sc ∈ Ck do
4: C ′k = {sc}
5: sequence added = false
6: while sequence added = false ∧ |C ′k| > 0 do
7: Gs = {}
8: for all s ∈ C ′k do
9: if gen supp(s) ≥ min supp then
10: Lk = Lk ∪ {s}
11: sequence added = true
12: else
13: Gs = Gs∪ FindGeneralization(s)
14: end if
15: end for
16: C ′k = Gs

17: end while
18: end for
19: return Lk

20: end procedure

4.2.1 Problem Definition

This section deals with the formal basics of the mining hierarchically-closed multi-
level sequential patterns. It follows the definitions Def. 1 (Itemset), Def. 8 (Se-
quence), Def. 9 (Sequence Database), Def. 14 (Concept Hierarchy), Def. 15 (Taxon-
omy of Items) and Def. 18 (Generalized Support).

First, the multi-level (ML) extensions of element, sequence, parent and ancestors
must be defined. The definitions of ML-element and the ML-sequence are derived
from definitions of element and sequence. The Definition 25 extends the element and
the sequence definitions using items from nodes of taxonomies where the level of all
items must be the same. The rest of the definition remains unchanged.

Definition 25. (ML-element, ML-sequence) Let l ∈ N be a level of items in
a taxonomy T ∈ τ . Then an ML-sequence is an ordered list of itemsets sML =
〈s1s2s3 . . . sn〉 such that the levels of all items of the itemsets are equal to l. The
itemset of the ML-sequence is called an ML-element. The length, subsequence and
supersequence of an ML-sequence is defined analogously to the ones in Definition 8.

Example 6. Next examples will be based on running example Example 2 on page
7. Assume three sequential patterns 〈a1 (bf1)〉 : 2 , 〈a1 (bf)〉 : 2 and 〈a (bf)〉 : 2.
The first sequence 〈a1 (bf1)〉 is not a ML-sequence because the level of items differs
in the element (bf1) – the level of b is 0 and the level of f1is 1. The second sequence
〈a1 (bf)〉 is not a ML-sequence too because the level of items differs between elements.
Finally, only the third sequence 〈a (bf)〉 is a ML-sequence because it satisfies Def.
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25. Therefore, only the third sequence may be included in the result of the mining
multi-level sequential patterns. Note that the sequence 〈a (bf)〉 is the root sequence
because all its items are the root items.

Here, it is possible to define taxonomic relations between ML-sequences. The ML-
element parent can be simply obtained by replacing all items of a ML-element by their
parent items. Then for the ML-sequence parent, all its ML-elements are replaced by
their ML-element parents. Note that the parent of a level-crossing sequence is a
set of sequences but a ML-sequence has only one ML-sequence parent. The ML-
sequence ancestors are the union of ML-sequence parents recursively up to the root
of a ML-sequence. These statements are formalized in the following definitions.

Definition 26. (ML-element parent) Given an ML-element e = {i1, i2, . . . , in},
an ML-element parent of the ML-element e is an element whose items are obtained
by replacing all items of their parents. This is defined as

parentel(e) = {parent(ik)|1 ≤ k ≤ n ∧ ik ∈ e}. (4.8)

Definition 27. (ML-sequence parent, ML-sequence ancestors) Given an ML-
sequence s = 〈e1e2 . . . en〉, where ek is a ML-element on a position k, the ML-sequence
parent of s is an ML-sequence such that all ML-elements of s are replaced by their
ML-element parents. Formally,

parentseq(s) = 〈f1f2 . . . fn〉, fk = parentel(ek), 1 ≤ k ≤ n. (4.9)

Definition 28. (ML-sequence ancestors) For a given set of taxonomies τ , a root
ML-sequence is an ML-sequence consisting of ML-elements with items corresponding
to root nodes of taxonomies. The ML-sequence parent of a root ML-sequence is
not defined. Based on the definition of the ML-sequence parent, the ML-sequence
ancestors of an ML-sequence s, ancestorsseq(s) is defined recursively as follows:

ancestorsseq(s) = Mi, for such i that Mi+1 = Mi,where (4.10)

M0 = {parentseq(s)}
Mi+1 = Mi ∪ {parentseq(x) | x ∈Mi} for i ≥ 0.

Example 7. For a given ML-sequence 〈a12a11〉 : 1, the ML-sequence parent is 〈a1a1〉 :
1. The set of ML-sequence ancestors of 〈a12 a11〉 : 1 is the set of two ML-sequences
{〈a1 a1〉 : 1, 〈a a〉 : 2}. The ML-sequence 〈a a〉 : 2 is the root sequence and it has no
ML-sequence parent and ML-sequence ancestors. Note that if the input sequence is
an ML-sequence, then the result parent sequence and ancestor sequences are ML-
sequences too because of the principle of their construction.

The multi-level approach reduces the search space of the data mining task. More-
over, we try to reduce the number of redundant (unimportant) patterns. Recall the
term closed in closed sequential pattern mining. The closed means that if a sequence
s and a supersequence of s have the same support, then the result set will contain

21



only a supersequence of s. In this case, any omitted subsequence can be derived from
the result set.

In the case of mining multi-level sequential patterns, the closeness property can
be applied for taxonomic relations. If a ML-sequence s and the ML-sequence ancestor
of s have the same support, then the result set will contain only the ML-sequence
s. A new data mining task is called mining hierarchically-closed multi-level
sequential patterns. It has the following two fundamental properties:

• Only ML-sequences are revealed. It ensures fulfillment of equal-level of all items
in the sequential patterns. The generalization (level changes) are allowed during
the mining process, however, all newly constructed sequences are ML-sequences.

• Sequences are filtered for the hierarchically-closed condition. If some ML-
sequences are in the ancestor relation and have the same value of the generalized
support, then only the most-bottom sequences in the meaning of taxonomies
are revealed. The generalized support must be used because the generalized
ML-sequences are supported by their more specific variants.

Let’s summarize all three basic constraints for the task of mining hierarchically-closed
multi-level sequential patterns:

• Constraint 1 (C1): A sequential pattern s must have sufficient support.

• Constraint 2 (C2): A sequential pattern s must be an ML-sequence.

• Constraint 3 (C3): A sequential pattern s must be hierarchically-closed.

The mining problem is formalized in the Definition 29.

Definition 29. (Mining hierarchically-closed multi-level sequential patterns)
The set of hierarchically-closed ML-sequences is such a set of ML-sequences which
does not contain any ML-sequence s and its ML-sequence ancestor with equal gener-
alized supports. Then, the problem of mining hierarchically-closed multi-level
sequential patterns (hereinafter ML-sequential patterns) for a given input sequence
database D and minimal generalized support threshold min supp is to find a set LML

of all ML-sequences in D such that:

LML = {sML v s|〈SID, s〉 ∈ D ∧ gen supp(sML) ≥ min supp (4.11)

∧ 6 ∃sx vg s[gen supp(sx) ≥ min supp

∧gen supp(sx) = gen supp(sML)

∧sML ∈ ancestorseq(sx)]}.

4.2.2 The MLSP Algorithm

Han et al. in their book [10] characterized the sequential pattern mining by follow-
ing words: “Sequential pattern mining is computationally challenging because such
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mining may generate and/or test combinatorial explosive number of intermediate sub-
sequences.” The task of mining hierarchically-closed multi-level sequential patterns
is even more difficult because of the traversing taxonomies and the result pruning. As
the research result, the algorithm MLSP (Multi-Level Sequential Patterns algorithm)
was proposed in [26] for the effective data mining of multi-level sequential patterns.

The algorithm MLSP is based on the candidate generation principle (adapted
from the GSP, see Section 3.1) combined with the on-demand generalization. The
algorithm works in phases.

The first phase

The algorithm passes through the sequence database and the values of the generalized
support are counted for all items. Unlike GSP, the MLSP continues the first phase
by generalization procedure. Candidate 1-sequences are created from all items in the
sequence database D. Candidate sequences are processed as follows:

1. The set of candidate 1-sequences is expanded by their all ML-sequence ances-
tors.

2. The value of the generalized support is counted for all candidate 1-sequences.

3. All hierarchically-closed 1-sequences with the sufficient support are added into
the set of sequential patterns.

Sequential patterns of length 1 are outputted by the algorithm and passed to the
second phase.

The next phases

The next phases of the algorithm run repeatedly until any new sequential pattern is
generated. There are two steps during each phase:

1. candidate generation step,

2. counting candidates step.

Candidate Generation Step

The candidate generation step is based on the join and prune principles. In the join
procedure, all pairs of k-length ML-sequential patterns are taken. They are tested if
they are joinable to the (k+1)-length candidate ML-sequences. Similarly to GSP, a k-
length ML-sequential pattern s1 can be joined with a k-length ML-sequential pattern
s2 if the subsequence created by removing the first item of s1 and the subsequence
created by removing the last item of s2 are equal. Moreover in MLSP, the ML-
sequences are also joinable if it is possible to perform such generalization of both
subsequences of sequences s1and s2, in which a common ML-sequence ancestor can
be found. The MLSP algorithm tries to find the common ML-sequence ancestor of
the candidate ML-subsequences in a bottom-up way. If a common ML-subsequence
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ancestor exists, then the generalized ML-sequences are joined into the new candidate
ML-sequence, otherwise, no candidate is generated. Levels of ML-sequences s1and
s2 can be different, but the levels of items of the generated ML-sequence are the
same. Finally, the prune principle is applied. The pruning is based on the Apriori
theorem of the possible frequent sequences. For the multi-level sequential patterns,
the Apriori theorem must be modified as follows (further referred as to MLSP
Apriori Rule): All ML-subsequences and their ancestors of a frequent ML-sequence
are frequent too.

The procedure for candidate generation is shown in Algorithm 4.3. Finally, the
whole procedure is explained in the running Example 8,

Algorithm 4.3 Method GenerateCandidateMLSequences()
1: procedure GenerateCandidateMLSequences(Lk−1, k)
2: Ck = ∅
3: for all s1, s2 ∈ Lk−1 do
4: if ML-subsequences MLSP join condition is fulfilled for s1 and s2 then
5: Join sequences s1 and s2 to a new ML-sequence s′

6: if the MLSP Apriori Rule is fulfilled for s′ then
7: Add s′ into Ck.
8: end if
9: end if
10: end for
11: return Ck

12: end procedure

Example 8. Assume the join of the following two 2-length multi-level sequential
patterns: 〈ba〉 : 2 and 〈a1f1〉 : 2. These two ML-sequences are firstly tested if the
join is possible. Because the ML-subsequences 〈a〉 and 〈a1〉 has a common ancestor
〈a〉 they are joinable. The second ML-sequence is generalized to 〈af〉 and then ML-
sequences are joined into a new ML-sequence 〈baf〉. Finally, the ML-sequence is
tested for MLSP Apriori Rule. The ML-subsequence 〈bf〉 and it’s any ancestor is
not frequent, therefore, the ML-sequence 〈baf〉 is also not frequent and the ML-
sequence is not added to the set of candidate sequences. In another case, assume
the join of ML-sequential patterns 〈(ab)〉 : 3 and 〈(bf)〉 : 4. The join condition is
fulfilled and a new ML-sequence 〈(abf)〉 is created. The Apriori test verifies that all
ML-subsequences 〈(ab)〉, 〈(bf)〉 and finally 〈(af)〉 are frequent . The ML-sequence
〈(abf)〉 is added to the set of candidate sequences.

Counting Candidates Step

When all candidate ML-sequences are generated, the frequent sequential patterns are
filtered by the support value. The counting step consists of two substeps: test and
generalization procedure and pruning of not hierarchically-closed sequential patterns.
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The idea of the test and generalization substep is to read the sequence database
and count the generalized support of all candidate ML-sequences sc ∈ Ck. For each
sc, one of the following results is possible:

1. The generalized support value satisfies the minimal support threshold and the
ML-sequence is marked as frequent one, denoted as sfc .

2. The generalized support value does not satisfy the minimal support threshold
and then the generalization procedure is performed. The generalization of the
ML-sequence tries to find a ML-sequence ancestor with the greatest sequence
level which satisfies the minimal support threshold. The on-demand bottom-
up generalization procedureGetFirstFrequentAncestor() is shown in Al-
gorithm 4.4. Upper-level ML-sequence is tested recursively until the ancestor
is found or the generalization procedure reach the root.

Algorithm 4.4 Method GetFirstFrequentAncestor()
1: procedure GetFirstFrequentAncestor(s,min supp)
2: repeat
3: if gen supp(s) ≥ min supp then
4: return s
5: end if
6: s← parentseq(s)
7: until s is root sequence
8: return null
9: end procedure

Example 9. The length 2 ML-sequence 〈a1a1〉 is generated in the running example
from the 1-sequence 〈a1〉 : 3 by the Candidate Generation step. All subsequences are
frequent, therefore, the sequence may be frequent. However, after Counting Candi-
dates, the generalized support of the sequence is 1 which does not satisfy the minimal
support threshold value. Therefore, the generalization is performed by the MLSP al-
gorithm and the ML-sequence parent 〈a a〉 is formed. The Counting Candidates step
evaluates the generalized support to 2. The ML-sequence ancestor (ML-sequence
parent) 〈a a〉 : 2 of ML-sequence 〈a1a1〉 : 1 is frequent and it is a ML-sequential
pattern. Moreover, the hierarchically-close condition is satisfied and the sequence is
hierarchically-closed multi-level sequential pattern by our definition.

The MLSP Algorithm Summarization

The algorithm MLSP has two inputs: a sequence database D with a taxonomy (or
taxonomies) defined for its items and a minimal support threshold value.

The algorithm output is the set of hierarchically-closed multi-level sequential pat-
terns. The algorithm MLSP runs in the phases. The sequence database D is passed
once in each phase. The first phase generates 1-length hierarchically-closed multi-
level sequential patterns. Next phases generate (k + 1)-length hierarchically-closed
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multi-level sequential patterns from the k-length sequential patterns. Because there
can exist candidate ML-sequences that are not hierarchically-closed, it is necessary to
verify that there is no child of the candidate ML-sequence with the same generalized
support. The procedure for the effective check of this constraint is described in Sec-
tion 4.2.5. The algorithm runs until any hierarchically-closed multi-level sequential
patterns are generated. The algorithm generates the complete set of hierarchically-
closed multi-level sequential patterns. The complete MLSP algorithm is formalized
in Algorithm 4.5.

Algorithm 4.5 The pseudocode of the MLSP algorithm
1: procedure MLSP(D,min supp)
2: k ← 1 . First phase.
3: I ←Insert all items and all their ancestors i in D and count their support
gen supp(i)

4: C1 ←Add all 1-ML-sequences for all items i from I
5: L1 ←{}
6: for all sc ∈ C1 do
7: if gen supp(sc) ≥ min supp and sc is hierarchically-closed then
8: L1 ← L1 ∪ {sc}
9: end if
10: end for
11: while Lk 6= ∅ do . Next iterative phases.
12: k ← k + 1
13: Ck ←GenerateCandidateMLSequences(Lk−1, k)
14: Count support gen supp(s) in D for all candidate ML-sequences and their

ML-sequence ancestors s ∈ ∪sc∈Ck
ancestorseq(sc) ∪ {sc}

15: LTMP ←{}
16: for all sc ∈ Ck do
17: LTMP ←LTMP∪ GetFirstFrequentAncestor(sc,min supp)
18: end for
19: Lk ←{}
20: for all s ∈ LTMP do
21: if s is hierarchically-closed then
22: Lk ← Lk ∪ {s}
23: end if
24: end for
25: end while
26: return

⋃k
i=1 Li

27: end procedure
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4.2.3 Optimization 1: Is-generalized-subsequence Check in
Linear Time-Complexity

The algorithm often performs “is-generalized-subsequence” test (e.g. for the gener-
alized support counting). It uses the generalized subset relation vg. The test can be
optimized to the linear time-complexity if a suitable complete ordering exists over
items. The simple lexicographical ordering cannot be used for MLSP because the
simple lexicographical ordering cannot be used because of the generalization which
changes the order. Therefore, MLSP uses two step ordering.

1. It sorts taxonomies lexicographically by their roots. It provides for a grouping
of items within elements by taxonomy.

2. Items within the taxonomy must be sorted unambiguously. The bottom-up
order is suitable, because such ordering can be used for join step comparison
and searching of the minimal necessary generalization. Suitable order type is a
post-order walk [4].

3. It guarantees that it is possible to check for an ideal mapping to ancestors in
linear time complexity.

The procedure IsGeneralizedSubsequence() tests if a sequence ssub is the gen-
eralized subset of a sequence ssuper: ssub vg ssuper. The maximal time complexity of
the procedure is m+n where m is a number of elements in sequence ssub and n is the
number of elements in sequence ssuper. The same is for each tested element in sub-
procedure ContainsGeneralizedElement(). Finally, IsAncestor() runs with
constant time-complexity using a hash table or with linear time complexity using
tree traversal. Therefore, the whole procedure keeps linear time-complexity w.r.t. to
lengths of sequences ssub and ssuper.

4.2.4 Optimization 2: Hash Table Pre-Check for Is-gene-
ralized-subsequence Check

The majority of “is-generalized-subsequence” tests return false. Such major false
case can be optimized by the pre-check. The ssub vg ssuper is true if all items of sub-
sequence ssub are contained in the set of items and their ancestors of supersequence
ssuper. If it is false, then the test results in false too. Then, a set of all items and
their ancestors is constructed for each sequence. Finally, the procedure IsGener-
alizedSubsequence() can be completed by the fast pre-check for false result. The
procedure is denoted in Algorithm 4.6. The procedure assumes that there exists a
simple function GetAllItems() which returns the set of all items in all elements of
the sequence.

Such set is organized (stored) as a hash table in a main memory because its search
time complexity is equal to 1 (details about generic hash table algorithms and their
properties are in [4]). Maximal number of searches in the hash table is equal to
the length of the sequence ssub . Final time-complexity of the whole pre-check is
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maximally linear too but it speeds-up the check for the most cases (see experiments
in the next chapter).

Algorithm 4.6 Pre-check procedure pseudocode for method IsGeneralizedSub-
sequence()
1: for all i ∈ GetAllItems(ssub) do
2: if i /∈ GetAllItems(ssuper) ∧ i /∈

⋃
x∈GetAllItems(ssuper)

ancestor(x)} then
3: return false
4: end if
5: end for

4.2.5 Optimization 3: Is-redundant Fast Check

Sequential patterns created by the join and generalization algorithm steps may not
be hierarchically-closed. Then, the post-processing (filtering) is necessary. A naive
approach compares each pair of sequential patterns, if one ML-sequence is an ML-
sequence ancestor of the other and prunes them, if so. Nevertheless, it is possible to
utilize the Counting Candidates Step procedure to mark sequential patterns which
are redundant.

• First, we associate a new helper indexed list of counters called a redundant base
to all candidate ML-sequences before the counting step. During the counting
step of a candidate ML-sequence sc , the algorithm increments by one the re-
dundant base counter on index sfc to all ancestors: S = ancestorsseq(s

f
c ) when

the generalization sub-procedure finds the most specific frequent sequential pat-
tern sfc ∈ ancestorseq(sc) ∪ {sc}. The redundant base of a ML-sequence x ∈ S
on index sfc is denoted as RBx[sfc ].

• Finally, the prune condition can be formulated as follows:

– If there exists any redundant base counter with value equal to the
value of the generalized support of the ML-sequence sfc , then the ML-
sequence sfc is redundant and is pruned,

– else, sfc is hierarchically-closed multi-level sequential pattern.
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Chapter 5

Experimental Evaluation

The issue of mining sequential patterns is generally computationally expensive. If
we imagine that the sequence length is the horizontal dimension, then the mining
multi-level sequential patterns adds a new vertical dimension over the patterns. The
complexity of the problem growths because the algorithm must deal with relations
between different multi-level sequences.

This chapter deals with a comparison of different multi-level approaches and algo-
rithms to solve them. The first section of experiments is focused on time comparison
of mining different algorithms on synthetic datasets. The following algorithms are
compared in experiments GSP, PrefixSpan, hGSP and MLSP. The advantage of syn-
thetic datasets is the possibility to define specific probabilistic properties. The second
section is focused on mining in real-world data. Mining in the real world dataset is an
important evaluation because it shows if the algorithms can be used and if revealed
results are useful. Commonly used real world testing dataset AdventureWorks [13]
by Microsoft is absolutely inappropriate because it does not contain a long-period
order history. Therefore, the five year order history of on-line e-shop VOPI [23] is
used for the real world evaluation.

5.1 Evaluation on Synthetic Datasets

The synthetic dataset allows changing only a specific property of the dataset without
changing others if necessary. The complete set of parameters of sequence databases
with defined taxonomies are shown in Table 5.1. The general methodology of ex-
periments are following. All parameters of generated datasets are fixed except one.
Then, the effect of the changes of such dataset or algorithm parameter is evaluated.
There was no generator for multi-level sequential patterns. This section describes a
generator of multi-level or level-crossing sequence datasets developed by the author
of this thesis published in [27]. .

Experiments were performed on a PC with CPU i5 3.3GHz, 8GB RAM, OS
MS Windows 10. Because there is no algorithm for mining multi-level sequential
patterns, results of our algorithms are compared with GSP and PrefixSpan. Authors
of the GSP recommended using GSP over an extended database for mining sequential
patterns with taxonomies. Algorithms GSP and PrefixSpan use post-processing to get
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Table 5.1: Parameters of our hierarchical sequence generator.
Parameter ML-Seq.Patt.
Dataset Size |D|
Avg. number of elements of sequences |C|
Avg. size of elements |T |
Avg. size of frequent elements |I|
Number of items N
Avg. length of (frequent) sequential patterns |S|
Number of sequential patterns NS

Avg. support of sequential patterns SuppS
Number of taxonomies (roots) |R|
Avg. taxonomy height Rh

Probability of children (general items) P I
ch

Probability of children (items of freq. sequences) P S
ch

complete set of hierarchically-closed multi-level sequential patterns. All algorithms
were implemented in C# on .NET platform using the MS SQL Server database.

5.1.1 Experiment 1: Dataset Size – Scalability

The first experiment is focused on scalability of the algorithms. The methodology
of the experiment is to measure the dependency of execution time on a dataset size.
For example, the values of fixed parameters denoted as C4T1.2S3I1.2N15%|D|R1k
are explained in Table 5.2. The suffix ’k’ of a number means that the value is ×1000.

Table 5.2: Dataset Parameters for Experiment 1
Dataset |C| |T | |S| |I| |N | |R| P I

ch, P
S
ch SuppS

C4T1.2S3I1.2N150kR1k 4 1.2 3 1.2 15% |D| 1k 0.9 0.045

The variable is the dataset size. The dataset size is set to different number of
sequences |D| ∈ {100 000, 250 000, 500 000, 750 000, 1 000 000} where each sequence is
of the average length 4 – it results in about from 400 000 up to 4 000 000 items in
the synthetic datasets. The number of items |N | cannot be set statically but it must
be related to |D| because the small number of items increases their support in the
dataset if the dataset naturally grows. Number of frequent sequences NS = 5 with
average support is SuppS = 0.045 (4.5 %).

The execution time in seconds was measured for the evaluation. Lower execution
time represents better scalability. Results are shown on Figure 5.1. The slowest is ba-
sic GSP algorithm. Moreover, for the |D| = 1 000 000 the run does not finish. Results
of GSP can be better using the hash optimization for fast is-generalized-subsequence
pre-check. Similarly the time complexity of our algorithm hGSP is computationally
hard and is comparable to optimized GSP using the hash is-subsequence check.
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Algorithms PrefixSpan and MLSP have better results. PrefixSpan is approxi-
mately 7× faster than MLSP without optimizations. However, the MLSP algorithm
can be improved using the optimized Is-generalized-subsequence Check. The opti-
mized MLSP (with hash is-generalized-subsequence check, denoted by “hash” suffix)
is the fastest of all the algorithms. It is in average 4× faster than the second Pre-
fixSpan.

5.1.2 Experiment 2: Changes of Minimal Support Threshold

The Experiment 1 showed that the Is-generalized-subsequence check brings important
speed-up of the algorithms GSP and MLSP. Therefore, next Experiments uses only
optimized variants for both GSP and MLSP. All further experiments were limited
by maximal execution time up to 3 600 seconds (1 hour) which should be sufficient
according to average execution times of Experiment 1.

In practice, the optimal minimal support threshold is not known on the beginning
of the analysis. The optimal minimal support is usually determined experimentally
when the data mining starts with the high minimal support threshold value and it is
gradually decreased until sequential patterns are found. The decreasing of the min-
imal support increases the number of generated candidate sequences and sequential
patterns while the dataset remains the same.

The setup of this experiment is following. The dataset parameters are
C4T1.2S3I1.2N15kR1k, |D| = 100 000. All algorithms were run with several values
of minimal support threshold min supp ∈ {0.025, 0.035, 0.045, 0.055, 0.065}. Results
of this experiment are similar to Experiment 1.

Figure 5.2 shows that the execution times of PrefixSpan and MLSP algorithms
are similar for high values of the minimal support. While the MLSP keeps the stable
execution times, the performance of the PrefixSpan get worse with the decreasing
value of the minimal support value parameter. The GSP and hGSP algorithms are
much slower in all cases.

5.1.3 Experiment 3: Length of Sequential Patterns

Next parameter which can affect the performance of the algorithm is the average
length of sequential patterns because the length of sequential patterns leads to a
higher number of frequent subsequences and candidate sequences during the mining
process. The Experiment 3 is focused on the gradually increasing length of the
sequential patterns from |S| ∈ {3, 5, 7, 9}. Number of elements of sequences in the
database D was determined to value |C| = 10. Note that the longer sequences result
into higher number of items in the database. Therefore the Experiment 3 is divided
into two parts.

First part analyses the dependence of the execution time on the length of sequences
in D because the average sequence length must be at least the average length of
sequential patterns. The experiment uses average number of elements of sequences
|C| ∈ {4, 6, 8, 10}. The fixed dataset parameters are T1.2I1.2N15kR1k, |D| = 100 000
and |NS| = 3 . The results are shown in Table 5.3. The fastest algorithm on such
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Figure 5.1: Comparison of execution time w.r.t. dataset size *1000 (in logarithmic
scale).

Figure 5.2: Comparison of execution time w.r.t. the minimal support threshold
value. .
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Table 5.3: The dependency of the execution time on the average length |C| of se-
quences in the database.

|C| GSP
(hash)

Prefix
Span

hGSP
MLSP
(hash)

4 229 11 137 5
6 633 79 2660 52
8 3253 136 N/A 333
10 967 34 N/A 367

Table 5.4: The dependency of the execution time on the average length of sequential
patterns |S|.

|S| GSP
(hash)

Prefix
Span

hGSP
MLSP
(hash)

3 967 34 N/A 367
5 N/A 1229 N/A 301
7 N/A N/A N/A 487
9 N/A N/A N/A 254

databases is the PrefixSpan. The MLSP is slower mainly for longer sequences. The
reason is that the combinations of candidate sequences which grows massively (there
are 116 candidate sequences for |C| = 4 and 17250 candidate sequences for |C| = 10).
Nevertheless the MLSP is up to 10× faster than the GSP algorithm. The hGSP does
not finish for longer sequences because of the large search space.

The second part analyses the dependence of execution time on the length of
sequential patterns. Experiment results are shown in Table 5.4. The experiment
shows the strongest point of the algorithm MLSP. The longer sequential patterns lead
to large number of candidate sequences and projected databases of the algorithms
based on extended databases. In contrast, the performance of the MLSP is not
affected by the length of sequential patterns but only by the number of final sequential
patterns. Therefore, the MLSP is the only algorithm which is able to finish on all
test cases. The other algorithms PrefixSpan and GSP do not finish for the cases
|S| ∈ {7, 9} the time limit of one hour.

5.1.4 Experiment 4: Number of Sequential Patterns

This experiment analyses the dependence of the execution time on the number of
sequential patterns. The experiment setup is following: fixed dataset parameters are
C4T1.2S3I1.2N15kR1k, |D| = 100 000, |NS| = 3 and variable is |NS| ∈ {3, 5, 7, 9, 30}.
The results of experiment are shown in Table 5.5. The best results of the experiment
were achieved by the PrefixSpan algorithm. The MLSP algorithm gives also satisfac-
tory results. GSP and hGSP algorithms achieved by the order of magnitude worse
results.

Finally, the experiment also tests the behavior of the algorithms when number
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Table 5.5: The dependency of the execution time on the total count of sequential
patterns |NS|.

|NS|
GSP

(hash)
Prefix
Span

hGSP
MLSP
(hash)

3 201 9 94 5
5 8 1 82 3
7 17 1 219 5
9 217 11 893 16
30 57 1 889 16

Table 5.6: The dependency of the execution time on the number of taxonomy levels
|Rh|

|Rh|
GSP

(hash)
Prefix
Span

hGSP
MLSP
(hash)

2 4.1 0.5 35.6 2.7
6 4.7 0.7 34.4 2.2

of sequential patterns is higher |NS| = 30. In that case the results were similar to
previous cases. Therefore, we can say, that the number of sequential patterns does
not negatively affect the execution time of the algorithms, especially examined MLSP
and hGSP algorithms.

5.1.5 Experiment 5: Taxonomy Height

The last experiment on the synthetic dataset analyses the dependency of the execution
time on the average taxonomy height (the total number of levels of all taxonomies).
The fixed parameters of the experiment are C4T1.2S3I1.2N15kR1k, |D| = 100 000,
|NS| = 3. The variable parameter is |Rh| ∈ {2, 6}. The first case of the average
height 2 shows algorithms behavior on low item categorizations. On the other hand,
the second case deals with the taxonomies of average height 6. The results are shown
in the Table 5.6. It is shown that the height of taxonomies do not affect the execution
time and the complexity of the run of the algorithms. The results are the same for
the both test cases.

5.1.6 Experiments Summary

Experiments on synthetic datasets compared algorithms GSP, PrefixSpan, hGSP
and MLSP. Best results are given by the algorithms MLSP and PrefixSpan. The
other algorithms are over a magnitude worse. The performance of the PrefixSpan is
significantly slower for mining long sequential patterns. Only the algorithm MLSP
finishes all the experiments and it proved very good results for mining hierarchically-
closed multi-level sequential patterns.

.
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5.2 Evaluation on Real-World Datasets

The previous experiments verify the behavior of algorithm MLSP however it does
not deal with usability on a real world dataset. The real world data are much more
suitable to test the usability. The dataset of orders history of the e-shop VOPI is
used for the experiment. First, the dataset is described from general and statistical
points of view. Second, the sequential patterns obtained by the MLSP algorithm are
discussed. Note, that some kind of data were anonymized or marked as N/P (not
presentable).

It was shown that the MLSP produces new sequential patterns on the real-world
datasets. The execution time of the MLSP on the real world dataset was in minutes
depending on parameters settings. Therefore ,we can say that the algorithm is fully
usable for real world data mining problems.
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Chapter 6

Conclusions

Mining sequential patterns, especially mining multi-level sequential patterns, is a
challenging task. The main goal of the thesis was to confirm the hypothesis that
taxonomies lead to find out new patterns and a new method to mine them effectively
can be formulated.

In my research, I focused on two main approaches of dealing with items in tax-
onomies. The first approach is to find out patterns called level-crossing sequential
patterns. A new algorithm called hGSP was proposed but the level-crossing ap-
proach came out as extremely time-consuming. The second approach adds some
special constraints which simplify the task while keeping important patterns in the
result. It leads to the definition of a new type of data mining task called min-
ing hierarchically-closed multi-level sequential patterns. Mining hierarchically-closed
multi-level sequential patterns produces results without redundant patterns useful for
the analyst. These research results confirm the first part of the thesis hypothesis.

The thesis introduces a new algorithm called MLSP designed for mining hierar-
chically-closed multi-level sequential patterns. Both the hGSP and MLSP algorithms
prefer the generalization of a sequence to dropping it. The performance of the al-
gorithms was evaluated in several experiments. The experiments were focused on
comparison of the performance in dependence on the dataset size (scalability), se-
quential patterns length and size and the taxonomies sizes. The best results are
provided by MLSP and PrefixSpan algorithms. The other algorithms were more
than over a magnitude slower. It was shown that the average length of sequential
patterns has a significant effect on the execution time. The PrefixSpan did not finish
for sequences containing 7 and more elements. Only the MLSP algorithm finished in
all runs. The usability of the MLSP algorithm was shown on real dataset where the
algorithm has found some new useful knowledge. This confirms the second part of
the hypothesis related to a new data mining method.

As a result, both parts of the hypothesis were confirmed. Therefore, the thesis
hypothesis was completely confirmed and the goal of the thesis was fulfilled.

It was shown that mining hierarchically-closed multi-level sequential patterns is
suitable for tasks of the analysis of customer behavior. But there are some other
domains where this type of mining task can be useful, for example security analysis
of Domain Name System because domains are also organized in taxonomies.
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The future work can be focused on the research of other constrains while mining
level-crossing or multi-level sequential patterns. In the field of mining methods,
research may continue exploring other optimizations.
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