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Abstract
Fault tolerance is one of the most commonly used techniques to eliminate the effect of faults
on digital systems and increase their reliability. This work presents a platform for testing
such fault tolerance techniques targeted to FPGA-based systems. The platform uses the
principles of functional verification, while the experimental electronic controller is moved
to the FPGA, which allows the use of fault injection directly into the FPGA. The plat-
form makes it possible to use the electro-mechanical application as an experimental system
and allows to monitor the effect of faults on both the electronic controller and the behav-
ior of controlled mechanical part. This work presents experiments with two experimental
systems – robot for finding a path through a maze and an electronic lock. The platform
is designed to allow the use of any experimental system with an electronic control unit
implemented in the FPGA.

Abstrakt
Odolnost proti poruchám je jedna z nejčastěji využívaných technik pro eliminaci vlivu
poruch na číslicové systémy a zvýšení jejich spolehlivosti. Tato práce popisuje platformu
pro testování technik pro zajištění odolnosti proti poruchám v systémech založených na
FPGA. Platforma využívá principů funkční verifikace, přičemž experimentální elektronická
řídicí jednotka je přesunuta na FPGA, což umožňuje využít injekci poruch přímo do FPGA.
Platforma umožňuje využít elektro-mechanickou aplikaci jako experimentální systém a sle-
dovat vliv poruch jak na elektronickou řídicí jednotku, tak na chování řízené mechanické
části. V práci jsou představeny experimenty se dvěma experimentálními systémy – robot
pro hledání cesty v bludišti a elektronický zámek. Platforma je navržena tak, aby umožnila
využití libovolného experimentálního systému s elektronickou řídicí jednotkou implemento-
vanou v FPGA.
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Chapter 1

Introduction

Digital systems play an important role in our everyday lives, and we meet them more
and more frequently in various applications. Digital systems are widely used in industrial
production, they are also used as control systems in vehicles, medicine, telecommunications,
and other sectors. The current trend is to move more responsibility to digital control
systems, which usually leads to a reduction of the weight of the mechanical part and thus
to a reduction of operating costs, for example in aviation [18, 5] or automotive [43]. As
a result, the complexity of digital systems is rising, which leads to an increase of their
integration. Unfortunately, this phenomenon results in an increased susceptibility of such
systems to faults. Both to faults caused during the design and implementation of the
system, as well as to faults occurred during the system operation. The occurrence of such
faults can have far-reaching consequences, not only in the huge financial losses but human
lifes can also be endangered (e.g. a failure in the aircraft control system).

This work deals with faults in systems based on Field Programmable Gate Arrays
(FPGAs). FPGAs are increasingly widespread modern circuits that provide speeds close
to the Application-Specific Integrated Circuits (ASICs), but at the same time allow easy
programmability (a change of the performed function). Thanks to the possibility of par-
tial dynamic reconfiguration, the performed function, even parts of the circuit, can be
changed while the system is running without the need to stop it. The FPGA configuration
is stored in the configuration memory, currently FPGAs with SRAM configuration memory
are mainly used. Unfortunately, the disadvantage is the increased susceptibility to faults
caused by charged particles, which can cause a change in the configuration memory. This
can lead to a change in the behavior of the whole system. Therefore, it is very important to
find ways how to ensure that the occurrence of these faults does not endanger the operation
of systems where FPGAs play a significant role.

Two main approaches to increase reliability are currently used: fault avoidance and fault
tolerance. This work focuses on the second approach, fault tolerance. Many fault-tolerant
methodologies have been developed, among others, to FPGA-based systems, and new ones
are under investigation. This work aims to create a platform for monitoring the impact
of faults in FPGA-based systems. The platform combines functional verification approach,
such as fault impact monitoring tool, and artificial fault injection. An integral part of the
platform is also the developed process, divided into a set of procedures, for monitoring
the impact of faults. The proposed platform can be used for automated evaluation of
fault-tolerant techniques. The platform proposes the possibility to apply these techniques
to a more complex system, nearly real systems. For this reason, an electromechanical
application is used as an experimental system, which makes it possible to monitor the
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impact of faults not only on the output of the digital part but also on the behavior of the
controlled mechanics.

1.1 Goals of the Thesis
The study of the state of the art in the field of fault-tolerant systems based on FPGAs show
the need to answer several questions:

∙ What will be the results of fault tolerance techniques on real systems?
∙ Is it possible to rely on the fact that not all faults in the electronic part of the system

affect the behavior of the controlled mechanical application?
∙ Can functional verification be used to evaluate the effect of faults on fault-tolerant sys-

tems?

These questions form the basic directions of the objectives of this thesis. I define two
main goals, which are supplemented by several sub-objectives:

Goal 1. Design and create an evaluation platform targeted to FPGA technology which
allows to test fault tolerant techniques and allows to monitor the impact of faults
not only on the output of the electronic part, but also on controlled mechanical
application.

1.1. Functional verification will serve as the basic technique that will be used to verify
the correctness of the outputs of the tested system affected by fault injection.

1.2. An integral part of the whole platform will be a fault injection tool, which was
previously developed by the team of doc. Kotásek. Thus, this thesis builds on
the earlier work of this team.

1.3. The core of this platform forms an experimental electromechanical application,
which means a system consisting of an electronic controller implemented on an
FPGA and mechanical applications controlled by this controller. Such a system
makes it possible to monitor the effect of faults not only on the output of the
electronic controller, but also on the controlled mechanical application.

Goal 2. The developed test platform is followed by the design of a process for monitor-
ing the impact of faults on the electro-mechanical application using the proposed
evaluation platform.

2.1. The proposed process for monitoring the impact of faults will reflect the expe-
riences obtained during experimental work with the designed platform and the
created experimental system.

2.2. The proposed process also includes a description of the necessary activities re-
lated to scalability, it means the use of another experimental system.

2.3. The proposed process allows scalability, it is generalized in such way that it can
be used for evaluation with the use of another experimental electromechanical
system. It is also demonstrated on a second experimental electromechanical
application.
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1.2 The Thesis Outline
This thesis is composed as a collection of published papers. The main ideas of this thesis and
the relevant research are, therefore, available in eight key articles published at international
conferences or in a journal with an impact factor. These articles are attached in their
original form as published. Chapter 2 presents the necessary basic theoretical information.
Chapter 3 summarizes the research results achieved in individual articles. Last Chapter 4
concludes the thesis, summarizes the benefits of the work and provides possible direction
of further research activities.
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Chapter 2

Background

This chapter summarizes the knowledge in the field of this thesis topic, thus in the field of
digital systems based on FPGA dependability.

2.1 Digital Systems Dependability
Dependability is not quantifiable in itself and the ČSN IEC 50 (191) [17] standard defines
it as follows:

Definice 1 Dependability is a general property of an object consisting of the ability to
perform the required functions and maintain the values of specified operating indicators
within the given limits and in time according to specified technical conditions.

The definition mentions an object, which is a general term for which we can substitute
the whole digital system, its part, or a separate component. Reliability cannot be expressed
as a single property that includes several different aspects, so the reliability attributes [37]
are used to express it, which form the evaluation of partial properties and together they
express dependability. These are as follows:

∙ Reliability of a system is the probability that the system operates without a failure
in the defined interval [t1, t2 ] under given operational conditions.

∙ Availabillity of a system at time t is the probability that a system is in operational
state (not in failure) at a given time.

∙ Safety is the probability that the system works correctly or does not work at all in
case that the function of another system may be compromised or personal safety may
be endangered.

∙ Maintainability is the effort required to maintenance (repair) the system after its
failure.

Obviously, the system may not always provide the function for which it is deliberate.
According to [7], the causes and consequences of deviations from the required function are
called dependability factors. We are talking about these three terms:

1. A fault is a phenomenon that leads to a disruption of an object’s ability to perform
a desired function. There is usually an external cause of the fault. We can mention
two basic sources of faults in digital systems:
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∙ Bugs caused by incorrect design usually lead to a mismatch between the desired
and the real behavior of the system. They are often caused by a poor specification
of the required behavior, or a misunderstanding of the system specification by
the designer.

∙ Physical defects in hardware occur during the manufacture or during the use
of the system. Faults caused during the use of the system can be caused by
various external influences (e.g. electromagnetic radiation) and when designing
a dependable system, we have to consider the possibility of these faults.

2. Error in a system is a deviation from the required operation of system which causes
the difference between actual processed data and expected correct data. It is usually
the result of a fault (see Figure 2.1), but not every fault manifests itself as an error.

3. Failure of the system means that it is not producing correct outputs and thus the
system is working with the behavior which differs from the required one. A failure is
caused by an error.

Figure 2.1: From fault to failure.

Physical faults in hardware that occur during the use of the system can be further
classified into several categories, mainly according to the duration time [7]:

1. Permanent faults are faults that can occur both during production process and dur-
ing the life of the system. These faults are permanent and can usually be repaired
only by replacing the failed component. As an example can serve fault type perma-
nent 1/permanent 0, short circuit, delay, etc.

2. Transient faults appear during the life of the system, arise unexpectedly and may dis-
appear in unpredictable moments. They are most often caused by external influences,
such as cosmic radiation, electromagnetic interference or various temperature fluctu-
ations. Sometimes they can also cause permanent damage. Most often we encounter
the following cases:.

∙ Single-Event Upset (SEU) represents a random change of values in memory ele-
ments and in sequential circuits.

∙ Single-Event Transient (SET) manifests as unwanted changes in signal values in
the circuit or oscillations in the combinational logic.

3. Intermittent faults are usually caused by the degradation of hardware parameters
during ages. They appear after a long time and over longer time can convert into
permanent faults.

Reliability improvements can be achieved by improving all partial reliability indicators,
which is usually impossible or very limited to implement. The biggest influence on the
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increase of reliability has the decrease of the intensity of failures, which leads to the im-
provement of all important reliability indicators. Methods for reducing the intensity of
failures are very complex and, above all, too expensive. This approach is often referred
as Fault Avoidance. A different approach to ensure reliability is Fault Tolerance. This
approach considers the possibility of faults and tries to prevent affecting the behavior of
system caused by fault impact.

2.1.1 Fault Tolerant Systems

A fault-tolerant system is such system that performs its function correctly in case of fault
occurrence in its hardware or error in software. The term performing its function correctly
can be understood in various ways, usually the function is considered correct if the following
conditions are met [33]:

1. data processing was not stopped or changed due to a fault,

2. the result is correct,

3. the result was obtained in the prescribed time.

There are two basic types of techniques to provide fault tolerance. The first type is
passive redundancy [27], which uses masking of faults that occur in the system. In this case,
no fault detection and correction techniques are usually used. The most common example
is the technique called Triple Modular Redundancy (TMR), which consists of a triplication
of a part of the system and the output of this part is the result with the majority.

The second approach is active redundancy [27], which also uses the ability to detect and
repair faults. In this approach, system testing is performed at runtime, informs about the
possible occurrence of a fault in the system. Then the fault is localized and isolated. Such
isolated fault cannot affect the function of other parts of the system. Finally, the detected
fault is repaired and the corrupted part is able to perform its original function correctly
again.

The classification of redundancy into several categories is most often given:

1. Spatial redundancy [15, 55], sometimes also called hardware redundancy, is the most
common way to ensure system fault tolerance. The individual components are dupli-
cated several times and supplemented by a special circuit that monitors whether all
units provide the same output. The above mentioned TMR technique can serve as
an example.

2. Time redundancy [35] is based on repeating the calculation with the same component
at different time intervals and comparing the stored results of each calculations. An
example of time redundancy is shown in Figure 2.2. The outputs of the combinational
logic, which are calculated at different time intervals, are stored in registers for later
comparison.

3. Information redundancy [61] is used to protect data from fault, the most common
form of information redundancy is coding. Various codes are used, which are able to
detect and possibly correct an error in the data.

4. Software Redundancy [29, 60] is a technique that provides fault tolerance at the level
of the software source code. We can use this technique, for example, to ensure fault
tolerance in processors.
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Figure 2.2: Basic time redundancy scheme for ensuring fault tolerance in combinational
logic.

2.2 Digital Systems Verification
Verification is the process that verifies whether the function of a digital system meets the
required specification or not. This is a very important stage in the design and development
of digital systems, as it helps us eliminate bugs caused by incorrect design. It is important
to detect non-compliance with the specification as soon as possible because the later we
detect it, the more costly it will be to eliminate it. With the increasing complexity of
modern digital systems, verification is becoming increasingly important, but also very time-
consuming.

Ideally, the verification output is yes/no, it means information whether it correspond-
s/does not correspond to the specification. We distinguish two basic types of verification
applicable for digital systems: 1) formal verification and 2) functional verification.

2.2.1 Formal Verification

Formal verification [39] uses an abstract mathematical model of the verified system and
formally proves its correctness or inaccuracy. This can be considered as a significant advan-
tage over functional verification, which is not able to prove the correctness of the verified
system. However, it is very computationally intensive, for example, when searching for state
space, there is an extreme increase of checked states, which is referred as the problem called
State Space Explosion. Similarly, the construction of an abstract mathematical model that
is equivalent to a validated system may not always be realistic.

Formal verification uses various methods, such as Theorem Prooving [31], Static Anal-
ysis [24], or Model Checking [8].

2.2.2 Functional Verification

Functional verification [51] checks whether the system is in compliance with the specifica-
tion by monitoring its inputs and outputs in a simulation environment (e.g. ModelSim [49]
or Questa Advanced Simulator [50]). This simulation approach means that functional veri-
fication does not provide any proof of system correctness. In general, the use of functional
verification is easier for digital system designers, it is an extended sophisticated version
of commonly used test environments (testbench). At the same time, there is no need to
create complex abstract mathematical models. Functional verification is one of the most
commonly used approach in the industry [73]. The basic principle of functional verification
is shown in the Figure 2.3. The verified system is marked as DUV (Device Under Verifica-
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tion), the outputs of this system are compared with the reference model (Reference Model).
The reference model is created by a different developer than the verified circuit, it leads to
the fact that more people interpret the required specification. If a mismatch is found be-
tween the outputs of the DUV and the reference model, it means that the specification was
misinterpreted by one of the developers. The output of the functional verification process
is also a report of the coverage of key functions of the verified system (Coverage Report).

DUV

ReferencepModel

Stimuli =
OK?

FAIL?

CoveragepReport

Constraint-randomp
Generator

+

Figure 2.3: The basic principle of functional verification.

To facilitate the creation of verification environments, there is a standardized language
SystemVerilog [1, 66, 9], which is an object-oriented language from the family of HDVL
(Hardware Description and Verification Language) languages, which are languages for hard-
ware description and verification [69]. There are several standardized methodologies for
functional verification, one of which is the UVM (Universal Verification Methodology) [62],
which provides freely available libraries with basic components for the verification environ-
ment. The Figure 2.4 shows an example of a verification environment according to the
UVM methodology. The basic components are obvious here:

∙ uvm_sequence provides verification stimuli in the form of a sequence of transactions,

∙ uvm_sequencer transforms the sequence of transactions into individual stimuli for the
verified circuit,

∙ DUV represents the verified circuit,

∙ uvm_driver converts the received stimuli into signals for the input pins of the verified
circuit,

∙ uvm_monitor monitors the output pins of the verified circuit and converts the signals
into transactions for further processing,

∙ uvm_scoreboard compares the obtained data with the expected values, generates re-
ports and statistics,

∙ Golden Model produces reference output values of the verified circuit.

SystemVerilog language allows cooperation with other programming languages through
an interface called Direct Programming Interface (DPI) [25]. It is thus possible to call
functions implemented in another language. An example of use is the implementation of
a reference model in another language and calling its functions using DPI.

The output report with the coverage of key functions of the verified system (Coverage
Report) tells us how thoroughly the individual specified functions were verified by used
input stimuli. We try to maximize the coverage to ensure that all key features are verified.
We distinguish these basic metrics [59]:
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Figure 2.4: The example of environment for functional verification according to UVM.

∙ Functional coverage must be specified manually by the programmer. It focuses mainly
on semantics and represents the coverage of system functions and behavior.

∙ Structural coverage is generated automatically by a simulation tool. It focuses on
structures in source code. Examples of typical structural metrics are:

– Code coverage measures what constructs and lines of source code were executed
during the verification run without any knowledge of its function. It includes
more detailed metrics such as coverage of branches, conditions, and expressions.

– Finite state machine coverage focuses on visited states and transitions in finite
state machines.

– Toggle coverage represents how often individual signals and registers change their
logical values.

In order to obtain high coverage, it is necessary to ensure a sufficient number of suitably
selected verification stimuli. This is the task for the generator that generates these inputs
based on the specified constraint conditions (Constraint-random Generator). In case the
coverage is not sufficient, the verification engineer has to adjust the limiting conditions, so
the generator generates other suitable stimuli [4].

2.3 Field Programmable Gate Arrays
Field Programmable Gate Arrays (FPGAs) [76] are circuits that can be programmed to
gain the required functionality. FPGAs can be programmed before use, but can also be
reconfigured, which means the programming of the circuit while the application is running.
Useful is also Partial Dynamic Reconfiguration (PDR) [74], which allows programming only
a part of the circuit while the rest of the circuit is running. It is the programmability that
differs FPGAs from the Application Specific Integrated Circuits (ASICs) [23], which acquire
their functionality already during the production process.

The FPGAs are becoming increasingly popular and are used in various applications,
primarily due to the programmability mentioned above, quite easy design, flexibility, de-
creasing power consumption, and also due to falling prices. They are used mainly in ap-
plications where small series need to be produced, and the ASIC design is not beneficial,
and the conventional microprocessor solution is unsuitable. Advantageously, the FPGA can
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be used to prototype more complex customer circuits that allow system testing during the
design process. Programmability can also be used to change the behavior of the circuit at
the customer, which allows you to correct design bugs or add new features to an already
used device.

2.3.1 Structure of the FPGA

The FPGA structure is shown in Figure 2.5.a. The circuit consists of a matrix of Config-
urable Logic Block (CLB), which are connected through a programmable interconnection
network. In addition to CLBs, modern FPGAs include a number of other features, such
as Block RAM (BRAM), fast multipliers, processor cores, and blocks of specialized Digital
Signal Processor (DSP). Input/Output Blocks (IOBs) are used for communication with the
surrounding environment.

Configurable logic block (CLB) allows the implementation of any logical function, its
structure is shown in Figure 2.5.b. It is the main component for implementing sequential
and combinational logic circuits. Each CLB is composed of an SRAM memory cell that
implements logical functions using a Look-Up Table (LUT). CLBs also contain the D flip-
flops and multiplexers.

The configuration of the individual blocks and the interconnection network of the circuit
is stored in the SRAM memory in the form of a configuration bitstream (bit sequence
containing the configuration of the FPGA circuit), which allows easy programming and
reconfiguration. On the other hand, it is necessary to configure the circuit each time it
starts, because the stored configuration is volatile, which is based on the SRAM principle.
Currently, the most commonly used are such FPGA circuits with a configuration stored in
SRAM.

LUT D outputinputs

clk

a)

b)

Figure 2.5: Structure of a)Field Programmable Gate Arrays (FPGA) and b) Configurable
Logic Block (CLB).

12



2.3.2 Faults Occurrence in FPGA

From a general perspective, all the mentioned types of faults can occur in the FPGAs,
but the most probable are the transient faults. These faults are typically caused by high-
energy particles [14], which occur not only in space but also in the upper parts of the Earth’s
atmosphere. Due to the influence of solar radiation, various types of particles are formed, we
distinguish between charged particles, which can be protons, electrons or ions, and particles
created by electromagnetic radiation, which we call photons. The concentration of these
particles increases with rising altitude. When designing systems where high reliability is
required, we must also take them into account in such systems operating at lower altitudes.

The hit of the high energy particle on the FPGA can cause unwanted jitter on the
transmitted signal, an effect called Single Event Transient (SET) [19]. When a charged
particle hits a memory cell, the voltage of the memory cell may decrease, which leads
to a change in the stored value. This effect is called Single Even Upset (SEU) [13, 20]
and is the most common fault affecting FPGAs. All configuration information about the
logic implemented in the FPGA is stored in the SRAM memory. The occurrence of an
SEU in this memory can have various impact on the circuit operation. To repair the SEU
in the FPGA, the reconfiguration can be advantageously used which ensures the correct
functionality of the circuit by restoring the original configuration. In the case of certain
conditions, the SEU may cause a permanent fault in the FPGA’s internal structure, such
as a short circuit in the LUT outputs.

The Figure 2.6 shows possible impact of SEU in FPGA [34]. The occurrence of the fault
in the LUT usually leads to a change of the logic function that the LUT implements. SEU
can also occur in a D flip-flop in CLB which leads to a fault in the sequence logic. A fault in
the part of the configuration memory that stores information about the configuration of the
interconnection network can lead to incorrect connection of individual blocks. BRAM block
memory is also sensitive to faults that can cause a change in stored data. The sensitivity
of the FPGAs to these failures and the possibility of reconfiguration are the main reasons
why a number of fault tolerant methodologies focusing on FPGA-based systems have been
developed [12, 67].

LUT

M M

M

M

Flip-flop M M M M

SEU

Block RAM

Xilinx Virtex

M

M configuration memory cell 

Figure 2.6: Example of SEU impact on FPGAs. [34].

2.3.3 Partial Dynamic Reconfiguration

An important feature of modern FPGAs, which can also be used to correct a detected fault,
is the Partial Dynamic Reconfiguration (PDR) [74, 30]. Thanks to the partial dynamic re-
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configuration, we can modify the specified part of the FPGA configuration memory. At
the same time, the rest of the circuit can perform the required functions without interrup-
tion. Previously prepared parts of the configuration memory can be stored in the external
memory, from where they are read when their use is requested. An example is a simple
system where the FPGA part works as a multiplier after initialization, but thanks to the
reconfiguration, we can change the function of this part to an adder (without limiting the
operation of other FPGA components).

Thanks to the partial dynamic reconfiguration, the part of the FPGA configuration
memory affected by the fault can be repaired, and the function of the whole system can be
restored into a fault-free state. The repair of a functional unit affected by a fault in the
TMR architecture is shown in Figure 2.7. If one of the three FUs is affected by a fault
(FU3), the TMR architecture provides the correct result at the system output, and FU3 can
be repaired using the PDR without interrupting the operation of the remaining functional
units. In the event of a fault occur in the second component (FU1), the TMR architecture
would no longer be able to provide the correct output, which leads to failure. Thanks to
the reconfiguration, the failure will not occur, because it is able to repair individual faults.

FU1

FU2

FU3

Voter
input output

FU1

FU2

FU3

Voter
input output

FU1

FU2 Voter
input output

SEU

system 
failure

?

partial reconfiguration

partial reconfiguration

SEU

Figure 2.7: The use of PDR to repair the failed functional unit.

2.4 Fault Tolerance Testing
During testing quality of fault tolerance, it is not feasible to wait for the natural occurrence
of faults (SEU) in the FPGA configuration memory. The main reason is a long time
between natural fault occurrence. The parameters MTTF (Mean Time To Failure) [44]
and MTBF(Mean Time Between Failures) [38] are very limiting here, which can be even
several years. These parameters indicate the average operating time of the system before
the occurrence of the first fault and the average time between the occurrence of two faults.
For this reason, it is necessary to simulate these faults in some way during testing fault
tolerance. This chapter introduces fault simulation and fault tolerance testing approaches
for FPGA-based systems.

2.4.1 Overview of Fault Tolerance Testing Approaches

Fault tolerance testing can be divided into two categories based on the used fault injection
technique. There are two basic approaches [6]:

∙ fault injection at the level of circuit simulation,

∙ fault injection into real hardware.
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Simulation-based Fault Injection

The use of functional verification for the fault tolerance evaluation with the use of fault
injection at the level of a simulation model was presented by the authors of [6]. In this
approach, functional verification is extended to include fault injection components at the
circuit simulation level. The basic scheme is shown in the Figure 2.8. Two instances of the
same implementation of the tested circuit are used, one serving as the tested circuit itself
(Faulty DUT ) and the other as a reference circuit (Golden DUT ). It includes a number of
other components that ensure the injection of faults into defined sensitive areas, monitoring
the behavior of the tested circuit, comparison with the outputs of the reference circuit, etc.

Figure 2.8: The use of functional verification for testing fault tolerance at the level of circuit
simulation [6].

A simulation method for emulating the impact of SEU faults in the FPGA configuration
memory is presented in [10]. The authors combine simulation and topological analysis of
a system that is implemented in the FPGA. The proposed analytical algorithm is able to
determine the effects of SEU failures accurately. This simulator was created with the aim
to provide designers cheaper alternatives to testing the impact of faults on real, relatively
expensive FPGA circuits.

A simulation-based fault injection approach is also presented in [53]. It presents an au-
tomated technique based on a simulator that is able to work at different levels of abstraction
(e.g. RTL or netlist). The authors also offer a developed environment for monitoring the
impact of faults on a finite state machine implemented in an FPGA.

The disadvantage of the simulation-based fault injection approach is the fact that fault
tolerance is not evaluated on the real target platform. On the other hand, this type of
evaluation can be performed without the existence of real hardware, i.e. in the early stages
of development.
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Fault Injection into Real Hardware

An FPGA-based fault injection tool, which is presented in [63], supports several synthesiz-
able fault models of digital systems, and is implemented using VHDL. The authors present
a real-time fault injection tool for fault injection into real hardware with good controlla-
bility and observability. However, the fault injection requires the addition of some extra
gates and wires to the original design and thus modifying the original VHDL. There are
several types of faults that can be generated. For example, the model of injecting SEU
can be seen in Figure 2.9. There are additional signals Bit and FIS which are connected
to the Fault injection component (implemented on the same FPGA). A weak point of this
approach is the difference between the Device Under Test (DUT) and the device which will
be manufactured.

M
U
X

D
Input

CLK

FIS[0]

Bit[0]

Figure 2.9: The synthesizable SEU model [63].

In [3, 2], techniques based on the fault injection into a real FPGA board without chang-
ing the original design were presented. These techniques are based on partial dynamic
reconfiguration which allows to read the configuration bitstream, inverse bits, and write
the affected bitstream back to the FPGA. The prototype of the evaluation board for the
fault injection purposes was presented in [3]. There are two FPGAs, the first one is used
as the DUT and the second one is used as the fault injection controller. The block diagram
is shown in Figure 2.10. In [2] the authors present platform called FLIPPER. This fault
injection platform is composed of two boards with FPGAs – the main board and the DUT
board. The fault injection is controlled by the main board driven by the software applica-
tion running on a PC. It is able to use various types of FPGAs as the DUT board, but only
if there are enough input/output pins on the main board. The disadvantage is the need
to purchase special hardware for fault injection, while the developer usually has commonly
produced development boards from FPGA manufacturers.

A similar approach presents authors of [46] which focus on the speed of the fault impact
evaluation, where the fault injection is fully controlled by a part of the design on the FPGA.
Communication with a PC is used only for the initial configuration of the fault injection
process. Thanks to a reduction in communication, the fault tolerance testing process is
significantly accelerated.

The FPGA-based fault injection method is also presented by the authors of [65], which is
demonstrated in [40]. This technique is implemented in Java and is based on the RapidSmith
library [41]. Thanks to a tool for finding a relationship between the individual parts of
the circuit description and the corresponding part of the FPGA, faults are injected into
a specified place on the FPGA. The authors provide a command line interpreter that can
operate in batch or interactive mode, and a graphical interface to specify the locations
of permanent faults. The authors mention that the method is unique because it is not
necessary to perform a new circuit synthesis before injecting the fault into a specified
location.
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Figure 2.10: The block diagram of a FLIPPER platform board which allows fault injection
into an FPGA composed of two FPGAs - DUT and fault injection controller [3].

Multi-platform fault injection is presented in [45]. This technique is based on the use of
a boundary scan [11] which is a tool for testing integrated circuits, printed circuit boards,
or complete systems. Joint Test Action Group (JTAG) interface is used for observing
and modifying signals in the design. It is possible to inject faults such as short circuits,
connection interruptions, permanent logic 1 or 0, and others.

Techniques that allow faults injection directly into the FPGA without the need to modify
the implemented circuit provide results that correspond to real operation. To perform such
experiments, it is necessary to have an FPGA, in some cases even a specialized board, which
leads to the fact that the experiments are not performed on the target platform and the
behavior in real operation may be slightly different.

2.4.2 Fault Injector based on the Partial Dynamic Reconfiguration

Research in the field of artificial fault injection is also covered by some members of the doc.
Kotásek team. An external SEU injector was developed that is described in more detail
in [68]. This injector is based on the SEU generation outside of the FPGA (in PC), so it
is not targeted to a specific FPGA board (testing was performed on the ML506 card with
the Virtex 5 FPGA technology). The original and the modified bitstream is transported
through the JTAG interface and the subsequent dynamic reconfiguration of the FPGA. The
process of the SEU generation is divided into four steps:

1. specifying location of the fault injection,

2. reading the related part of the configuration bitstream,

3. the SEU generation = inversion of the specified bit of the bitstream,

4. applying the bitstream using PDR without stopping the FPGA.

Our fault injector is implemented in TCL in two basic layers, the structure of which
is shown in Figure 2.11. The first layer (Bitstream Generation Layer) is responsible for
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communication with the FPGA through the standard JTAG interface and uses ChipScope
libraries. The SEU injection layer is responsible for the read and writes bitstream according
to the specified fault location. The last block (Added Functions) makes it possible to drive
the SEU generation by external sources, such as an external program or the UART interface.

FPGA

DesignTunderTtest

BitstreamTGenerationTLayer

read/writeTframe

SEUTPlacingTLayer
placingTpolicy

JTAGT interface

bitstream

PersonalT

ComputerT(PC)

AddedTFunctions

T UART/USB

SEUTgenerator

Figure 2.11: An external SEU injector structure [68].

2.4.3 Experimental system

Not only the tool for fault tolerance evaluation but also the experimental system to which
the tested techniques are applied is a very important element with an impact on the rel-
evance of the obtained results. The memory-focused fault tolerance techniques presented
in [61] are demonstrated and validated on simple memories without another logic. The
technique explained in [52] is demonstrated and evaluated only on a multiplexer with two
inputs, one simple adder, and a counter. Finite state machines and techniques for ensuring
their fault tolerance are proposed in [26]. The evaluation is performed only on a simple
finite state machine. It would be possible to give several similar examples, but this is not
the scope of this work.

Such simple circuits are fully sufficient for demonstration, but the evaluation results
are usually not relevant for their application to real systems, where the various individual
fault tolerance techniques must work together. Real systems are generally very complex
and contain a number of different blocks that require specific fault tolerance techniques.
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Chapter 3

Research Summary

The individual steps to achieve defined goals of this thesis were continuously published at
international conferences or in journals. This chapter is based on eight publications included
in this thesis (A, B, C, D, E, F, G, H). Individual publications are summarized into thematic
sub-chapters. Therefore, for detailed information during reading this summary, the reader
is supposed to consult the included papers.

3.1 Experimental System and First Experiments
As a first step, an experimental electro-mechanical system was developed, designed to be
as complex as possible, and include various aspects of the digital systems design. This
experimental system, together with experiments using the first simplified version of the
evaluation platform monitoring the impact of faults, is presented in this chapter.

Key Publication

(A) Podivinsky, J.; Cekan, O.; Simkova, M.; Kotasek, Z.: The Evaluation Platform for
Testing Fault-Tolerance Methodologies in Electro-mechanical Applications. In: 17th
Euromicro Conference on Digital Systems Design. Verona: IEEE Computer Society,
2014, pp. 312-319. ISBN 978-1-4799-5793-4.

The author participation: 32%, conference rank: B1 (Qualis)

This is the first conference publication, which presents the ideas of testing the impact
of faults on the electro-mechanical system and at the same time the experimental system
itself. It contains the definition of research objectives in this area as well as the definition
of the basic components of the verification platform and the implementation of simplified
experiments with fault injection. At the same time, the basic ideas of a platform based of
functional verification were defined in the article.

Robot for Searching Path through Maze

The robot for searching the path through the maze was chosen as the first experimental
electro-mechanical application. The electronic part is represented by the robot controller
(RC) implemented in the FPGA, while the mechanical part is represented by the robot
in the maze. Unfortunately, no real robot is used, but the robot and its environment are
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only simulated, using the freely available simulation environment Player/Stage [28]. The
use of simulation makes it very easy to change verification scenarios, i.e. the start and the
end positions and the maze that the robot goes through. The evaluated FT methodologies
can be applied to the electronic robot controller implemented in the FPGA. This controller
is designed to represent a complex system composed of components that represent various
aspects of digital system design (sequential and combinational circuits, finite state machines,
memories and buses), which will allow testing of various FT techniques. The central part
is the Wishbone bus [56], to which the partial functional units are connected. Individual
functional units process data from the sensors and search the path through the maze.

The First Version of Evaluation Platform for Testing Fault Tolerance

The first version of the evaluation platform consists of two basic blocks - a computer and an
FPGA board. These blocks are interconnected using two communication channels. The first
is the JTAG interface used by the fault injector, the second channel is used for data transfer
between the simulation environment of the robot and its controller. In this version, the
data transfer between the PC and the FPGA was realized proprietary as the transformation
of the USB interface to the input and output pins of the FPGA. The first version of the
platform is divided into three basic parts:

1) Xilinx ML506 board with FPGA Virtex 5 [75] where robot controller is implemented,
2) simulation environment Player/Stage [28] for robot simulation and monitoring of me-

chanical part behavior running on computer, and
3) fault injector [68] running on computer which is used for artificial fault injection.

Not only the fault injector itself is used, but also a tool for searching used bits of the
configuration bitstream which represent individual functional units is used in this work.
The PlanAhead [22] tool allows to define the positions of individual functional units on the
FPGA, which allows to use the RapidSmith [42] tool to analyze the FPGA and generate
bits that are related to the defined area on the FPGA. These are mainly configuration bits
that represent the used Look-up Tables (LUTs).

Experimental Results

The experiments monitoring the impact of faults on the FPGA were performed in order
to estimate the susceptibility of the robot controller to faults and to identify typical forms
of mechanical failure. After programming the FPGA and starting the robot, faults were
injected into the selected functional unit with a period of 2 s, until the robot started to
behave unusually. During experiments, two metrics were monitored: (1) the number of
fault which leads to failure (2) the way of mechanical part failure. The results are shown
in the graph in Figure 3.1. This is a statistical box plot, which shows for each functional
unit the range of the number of faults leading to the failure. It is evident that each unit
is differently prone to faults, two units (PFU_FSM and PFU_WB) could not even be
damaged by the injected faults.

The most common consequences of injected faults observed during experiments were:
(1) freezing on place, (2) deadlock (walk around in cycle), (3) crashing into a wall and
(4) other, e.g. freezing the robot in one place, then refreezing and walking in a circle, the
wrong turn of the robot in the maze, followed by freezing. The proportional representation
of these consequences is shown in Figure 3.2.
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Figure 3.1: Statistical box plot summarizing the number of faults injected into each com-
ponent which leads to failure.
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Figure 3.2: The chart representing typical consequences of injected faults on the mission of
the robot.

These experiments show that some faults have an impact on the behavior of the robot,
and others do not. In some cases, it was necessary to inject a large number of faults (e.g. 34
into BDU_FSM). According to this result, we were able to identify the parts/components
of the robot controller that need to be hardened by some fault-tolerance techniques.

3.2 Evaluation Platform for Monitoring Impact of Faults
The aim of this chapter is to introduce a platform for monitoring the impact of faults on
an electromechanical system with a control unit implemented in an FPGA. This platform
is created based on the techniques and principles used in functional verification. It is the
fundamental part of further work because later experiments are based on this platform.

Key Publications

(B) Podivinsky, J.; Cekan, O.; Lojda, J.; Zachariasova, M.; Krcma, M.; Kotasek, Z.:
Functional Verification Based Platform for Evaluating Fault Tolerance Properties. In:
Microprocessors and Microsystems. Amsterdam: Elsevier Science, 2017, vol. 52, no.
5, pp. 145-159. ISSN 0141-9331.

The author participation: 38%, impact factor: 1,045 (Q3), number of citations: 4
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(C) Podivinsky, J.; Lojda, J.; Kotasek, Z.: An Experimental Evaluation of Fault-Tolerant
FPGA-based Robot Controller. In: Proceedings of IEEE East-West Design & Test
Symposium. Kazan: IEEE Computer Society, 2018, pp. 63-69. ISBN 978-1-5386-
5709-6.

The author participation: 46%

The article published in the Microprocessors and Microsystems journal covers several
topics, the main one is the platform for testing the impact of faults on the electro-mechanical
system controlled by FPGA. Everything is proposed both from a general point of view and
also implemented and demonstrated on a specific example of a robot in a maze. In the
second article of this chapter another experiments with the same experimental system
extended by the application of fault tolerance technique to some components are presented.

The Process of Monitoring the Impact of Faults on Electro-mechanical
System

The proposed process of the fault impact evaluation is divided into three phases. In the first
phase,the simulation-based functional verification is used. It tests whether the electronic
controller works correctly, according to the specification. In this phase, a set of verification
scenarios is acquired. Implementation bugs are detected so they are not later mixed with
the impact of faults. It is necessary to create a verification environment including a ref-
erence model. It should be noted that the verification environment is connected with the
mechanical part.

During the second phase, the functional verification is modified so that the electronic
controller runs directly on the FPGA and faults can be injected into it. In this phase,
previously obtained verification scenarios are used. This ensures that all incorrect behavior
is caused by the injected fault, not by the implementation bug. Each verification scenario
is repeated several times. During each repetition, a different fault or set of faults is injected
(according to the chosen fault injection strategy) and their impact is monitored. The
output is a list of faults that, in combination with the given verification scenario, caused an
incorrect output of the electronic controller. In the last third phase, a detailed examination
of situations is performed where the injected fault corrupts the output of the electronics
and the impact of this fault on the mechanical part is evaluated. For monitoring the
effect of faults on the mechanical part, it is possible to use sensors used by the electronic
controller as feedback. Data from these sensors can be analyzed to determine whether the
mechanical part behaves according to the specification. Each run is then assigned to one of
the following categories: (1) The output from the FPGA and the reference model match,
the fault did not occur. (2) The outputs do not match, nevertheless the mechanical part
passes its mission. (3) The outputs do not match and at the same time the function of the
mechanical part has been disturbed.

In the second and third phases, a verification environment that uses an FPGA is used.
In this verification environment, the electronic controller is not simulated, but is moved to
the FPGA. The electronic controller on the FPGA and the mechanical part thus form an
independent unit, which works autonomously. The verification environment only monitors
its communication, it functions as an observer. The experimental platform which is com-
posed of a few components running on a computer or on an FPGA evaluation board was
designed for these purposes:
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1) software part of verification environment for the electronic controller running on a com-
puter,

2) software simulation environment for mechanical part simulation running on a computer,
3) electronic controller implemented into FPGA, and
4) external fault injector [68] running on a computer which allows us to simulate real faults

in the FPGA.

Robot in Maze as an Experimental system

The verified circuit into which the faults are injected is the electronic controller of robot
for searching a path through the maze. For the first phase, a verification environment
implemented according to the UVM (Universal Verification Methodology) was created.
The mechanical part, more precisely its simulation, is controlled by DUT outputs and at
the same time generates new inputs for DUT.

The verification environment using FPGA (Figure 3.3) is based on the simulation-based
verification environment. The verification environment is divided into two parts. The first
part is a robot simulation which communicates with the controller on the FPGA. This part
works completely autonomously, between the FPGA and the simulation environment an
information from the sensors and instructions for the robot movement flow. The second
part is the verification environment itself, which assumes most of the components from
the original environment. This verification environment operates as an observer; it means
that it is only passive monitor of the communication between the FPGA and the robot
simulation. The verification environment is also ready to be used in the third phase, in
which the values from the sensors are analyzed. The data from sensors are used to monitor
the behavior of the robot itself.
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Figure 3.3: The architecture of the extended FPGA-based verification environment used in
second and third phase of evaluation process.
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Faults can be injected according to the chosen strategy, for example single faults into
a selected functional unit or multiple faults into one or more functional units and others.
The output of this process is a report summarizing the performed experiments. For each
run, the position of the injected fault is also stored for the use in the next phase.

Experimental results

The Figure 3.4 shows the results of experiments, in which a single fault was injected dur-
ing each run of the verification scenario. The aim of these experiments was to evaluate
the susceptibility of individual functional units to single failures and at the same time to
demonstrate the use of the verification platform. The blue bars show the number of failures
of the robot electronic controller. During these experiments, the robot either stopped or
collided with the wall. Collision is considered as the worst possible impact. The red bars
show the number of collisions with the wall, in other cases the robot stopped moving. These
experiments again show that each functional unit is otherwise prone to failure. However,
in some cases the results are completely different from the experiments in the previous
chapter. This is probably due to a bug in the fault injector, which was repaired after the
first experiments.

Figure 3.4: Experimental results in functional verification.

Three functional units (PEU, BDU and ECU) were selected for further experiments,
these are significant units in terms of the role in the entire robot controller. A fault tolerant
version of the robot controller was prepared, where these function blocks were hardened
using Triple Modular Redundancy (TMR). These experiments were performed with the
injection of single faults into selected functional units, both in unhardened and hardened
versions. One fault was injected during each scenario. The analysis of the effect of injected
faults on the electronic controller is summarized in Table 3.1. The table clearly displays how
the susceptibility to faults decreased after TMR application. Some failures also occurred in
the hardened version - this can be the result of the fact that an unhardened voting circuit
(voter) was used. The advantage is that if a failure occurred in the hardened version, it
would not lead to a collision with the wall.

Multiple faults were also injected, again into the hardened and unhardened versions of
the robot controller. During each run, faults were injected with a period of 5 s until an
error at the output of the electronic controller was detected. The Table 3.1 shows how
many injections caused the failure and what was the impact on the mechanical robot. In
contrast to the injection of single disorders, it is evident that failures have occurred in a
significantly larger number of runs, and the reduction in susceptibility to faults is not as
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high as in the case of single faults. This is because no repair mechanism was used and
failure could occur in multiple parallel modules at the same time.

Table 3.1: The impact of faults injected into the unhardened and hardened versions of
robot controller both on the electronic controller and mechanical part.

Monitored impact
single faults injection multiple faults injection

PEU BDU ECU PEU BDU ECU
noft tmr noft tmr noft tmr noft tmr noft tmr noft tmr

Electronic OK [−] 971 1000 813 996 952 990 656 977 361 917 226 622
Electronic failed [−] 29 0 187 4 48 10 344 23 639 83 774 378

Goal not reached [−] 29 0 187 4 48 10 344 23 639 83 774 378
Collision with wall [−] 0 0 5 0 1 0 0 0 0 0 15 3
Robot stop on place [−] 29 0 182 4 47 10 344 23 639 83 759 375

Reliability improvement [%] 100.0% 97.9% 79.2% 93.3% 87.0% 51.2%

3.3 Scalability - Change of Electronic Controller
This chapter deals with scalability from the point of view of changing the experimental
electronic controller. The whole platform was designed to allow the application and testing
of various fault tolerance techniques on both a proposed experimental system and a specific
user system. For this reason, it is necessary to demonstrate the possibility of changing the
electronic controller and comparing the experimental results.

Key Publictions

(D) Podivinsky, J.; Zachariasova, M.; Cekan, O.; Kotasek, Z.: FPGA Prototyping and
Accelerated Verification of ASIPs. In: IEEE 18th International Symposium on De-
sign and Diagnostics of Electronic Circuits and Systems. Belgrade: IEEE Computer
Society, 2015, pp. 145-148. ISBN 978-1-4799-6779-7.

The author participation: 46%, conference rank: B3 (Qualis), number of citations: 5

(E) Podivinsky, J.; Lojda, J.; Cekan, O.; Kotasek, Z.: Evaluation Platform for Testing
Fault Tolerance Properties: Soft-core Processor-based Experimental Robot Controller.
In: Proceedings of the 2018 21st Euromicro Conference on Digital System Design.
Prague: IEEE Computer Society, 2018, pp. 229-236. ISBN 978-1-5386-7376-8.

The author participation: 38%, conference rank: B1 (Qualis), number of citations: 1

The paper published at the DDECS conference deals with accelerated functional veri-
fication of the processor, it is mainly the transfer of the verified processor to the FPGA,
which is the basis for the use of the processor on the FPGA to verify the impact of faults.
This is followed by the second article published at the DSD conference, where the processor
is used as an experimental electronic controller of an electro-mechanical system and related
experiments are presented.
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Verification Environment for Processor Running on FPGA

The decision was made to use a Codix RISC processor as an experimental processor, which
could be generated using Codasip Studio [16] (FIT owns an academic license). It is a 32-bit
processor with the RISC (Reduced Instruction Set Computer) architecture with 7 stages
pipelined processing, 32 registers, 512kB of memory and the instruction set contains 59
instructions. For the first phase of the proposed evaluation process, it is necessary to create
a verification environment. The advantage is the possibility of automatic generation using
Codasip Studio tools.

The second phase in the fault tolerance evaluation process is the functional verification
of the system implemented in the FPGA. For this purpose, it is necessary to modify the
original verification environment and move the processor into the FPGA. The verification
environment modified in this way is shown in Figure 3.5. It should be noted that almost all
UVM components have been moved to the FPGA, except of the Reference Model and the
Scoreboard. Communication between the software and hardware part of the verification
environment is ensured through a proprietary interface. The outputs of the reference model
are compared with the outputs of the Device Under Verification (DUV), which are obtained
from the FPGA. The contents of the memory and register field are compared after each
program execution, as well as the data on the processor output port.
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Figure 3.5: The architecture of accelerated verification environment with processor running
on FPGA.

During experiments with such a modified verification environment, it was found that
the FPGA-accelerated verification environment consumes less time to complete the same
task. The acceleration ratio is, on average, 1,7x and slowly grows up with the number of
the evaluated test programs. We expected better results. This is caused due to the complex
reference model, which runs slower than the DUV on the FPGA. However, for the purpose
of testing fault tolerance methodologies, the acceleration ratio is not important. What is
more important is that the processor runs on the FPGA and communication with the SW
side is ensured, which allows the use with the evaluation platform.

Processor Implemented in FPGA as Experimental Electronic Controller

Another processor was chosen for the implementation of the controller of the electrome-
chanical system, the freely available NEO430 [54] was used. On the one hand, the reason
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was free availability and independence from a commercial company, but mainly the request
of a colleague who planned to perform experiments with fault tolerance with the NEO430
processor.

The NEO430 processor is a customizable processor for FPGA designs. This processor is
based on Texas Instruments MSP430 [70] instruction set architecture. It is a processor with
Hardward architecture that has separate data and program memory. The processor already
implements standard features like a timer, a watchdog, UART and SPI serial interfaces,
general purpose IO ports, an internal bootloader, and internal memory for program code
and data. All of the peripheral modules are optional; it is possible to exclude them from
implementation to reduce the size of the system. Any additional modules can be connected
via a Wishbone bus. As Figure 3.6 shows, the NEO430 processor is the main element
of the robot controller for searching the path in the maze. The interface of the robot
controller remained the same, the difference is in internal implementation. The input
data are processed by a CFU (Custom Functional Unit), which allows to implement any
function and can also be used to process inputs. On the output side, the processor is
complemented with a MOVE unit controlled via input/output ports (GPIO) and ensures
the transformation of commands into signals for actuators. For the purposes of experiments,
fault tolerance was also applied. The whole robot controller realized by the processor was
implemented according to TMR architecture and supplemented by a voting circuit (voter).

robot_controller_neo430
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Figure 3.6: The architecture of the robot controller composed of the NEO430 Processor.

Experimental Results - the Comparison of the Original and New Robot
Controller

Experiments corresponding with all phases of the verification process were performed. From
the fault injection point of view, the second and the third phases are interesting, which mon-
itors the impact of faults both on the output of the electronic controller and the mechanical
part. Faults were injected according to two strategies: multiple and single faults. The ex-
periments were performed both with the unhardened version and the triplicated version of
the processor-based robot controller. The obtained results were compared with the original
version of the robot controller implemented in VHDL.

During multiple fault injection, faults were injected with a period of 15s until the robot
reached the goal or until a failure was detected. The results for all controller versions
(processor, triplicated processor, original and triplicated original) are summarized in the
Table 3.2. The table shows that the processor-based controller is more sensitive to faults.
The processor is a more complex system, which leads to a greater susceptibility to faults.
It is also obvious that triplication leads to a reduction of fault susceptibility. The last row
of the table shows a percentage expression, calculated according to the Equation 3.1. The
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table also summarizes the evaluation of the impact of faults on the mechanical part. It is
clear that the most common consequence is freezing on the place, which is less critical than
the crashing in the wall.

Table 3.2: A comparison of the impact of faults injected into the unhardened and hardened
version of the processor-based and the original hard coded robot controller.

Monitored impact Multiple fault injection Single fault injection
Processor Original Processor Original
noft tmr noft tmr noft tmr noft tmr

Electronic OK [−] 2751 4593 3544 4839 4729 4997 4802 4998
Electronic failed [−] 2201 407 1456 161 271 3 198 2
Electronic failed [%] 44.02% 8.14% 29.12% 3.22% 5.42% 0.06% 3.96% 0.04%

Finish not reached [−] 2179 403 1429 161 271 3 195 2
Collision with wall [−] 55 7 11 0 16 0 1 0
Robot stop on place [−] 2124 396 1418 161 255 3 194 2

Reliability improvement [%] 81.5% 88.9% 98.8% 98.9%

𝑟𝑒𝑙𝑖𝑎𝑏_𝑖𝑚𝑝𝑟𝑜𝑣 =
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠𝑛𝑜𝑓𝑡 − 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠𝑡𝑚𝑟

𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠𝑛𝑜𝑓𝑡
* 100 (3.1)

The figure shows a statistical box plot where a number of faults which led to the elec-
tronic failure is shown. It is again visible that in case of a processor-based controller,
a smaller number of injected faults is needed to fail. At the same time, it is obvious that
in case of TMR, a higher number of failures is needed to controller failure. Thus, we can
state that TMR leads not only to a smaller number of failures but when the failure occurs,
it was necessary to inject a larger number of faults.

Figure 3.7: The box plot shows a statistical comparison of the number of injected faults
which led to electronic failure for both the processor-based and the original robot controllers.

In case of single fault injection, one fault was injected at the beginning of the experiment
and then the behavior of both the electronic and mechanical parts was monitored. The
results are shown in the Table 3.2, which shows that the number of failures is significantly
lower than in the case of multiple fault injection. It can also be seen that almost all injected
faults into the TMR version were successfully masked. The results further confirm that the
processor is more prone to single faults.
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3.4 Comparison of Experimental Reliability Evaluation with
Theoretical Calculation

One important question appeared during the experiments with monitoring the impact of
artificially injected faults into the FPGA on the mechanical part. Is it possible to find
a technique for increasing accuracy and accelerating the evaluation of experimental system
susceptibility to faults? This chapter presents a combination of experimental evaluation
together with theoretical reliability analysis.

Key Publications

(F) Podivinsky, J.; Lojda, J.; Cekan, O.; Panek, R.; Kotasek, Z.: Reliability Analysis
and Improvement of FPGA-based Robot Controller. In: Proceedings of the 2017 20th
Euromicro Conference on Digital System Design. Vienna: IEEE Computer Society,
2017, pp. 337-344. ISBN 978-1-5386-2146-2.

The author participation: 36%, conference rank: B1 (Qualis), number of citations: 2
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Symposium. Santiago: IEEE Computer Society, 2019, pp. 97-100. ISBN 978-1-72811-
755-3.
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The paper published at the DSD conference presents a proposal for a combination of
experimental evaluation and theoretical calculation. Experiments extension is the scope of
paper published at the LATS conference, where another approach to reliability evaluation
was presented and both the original robot control unit and a robot control unit based on
a processor implemented in FPGA were used for experimental evaluation. The theoretical
calculation of reliability was performed in collaboration with authors colleague J. Lojda.

Theoretical Reliability Analysis

This chapter is based on the theory of reliability and reliability indicators, which is not
detailed here, the basics are presented in the attached papers (DSD 2017, LATS 2019),
or in the literature [33, 64, 71, 21, 37, 7]. The reliability itself can be quantified with the
support of the theory of probability as most of the reliability indicators are of a random
nature. The length of a time period 𝑡 of the system operation until the failure occurs is
an important starting point in the reliability indicators computation. This variable can be
considered the so-called random variable 𝜏 [71]. Cumulative Distribution Function (CDF)
of random variable 𝜏 expresses a probability of the system being in a failure state at the
time 𝑡, it is denoted as 𝑄(𝑡) and is called the failure function. Another reliability indicator is
the so-called reliability function which is denoted as 𝑅(𝑡). The reliability function expresses
a probability of the system being in a fault-less state at the time 𝑡 and it is a supplement
of the 𝑄(𝑡) according to the Equation 3.2.

𝑅(𝑡) = 1−𝑄(𝑡) (3.2)
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As a technique to improve reliability, we used triplication (TMR). It can be declared
that this implementation allows us to mask the failure of one module. The structural
schematic can be seen in 3.8. The two additional copies of the original functional unit are
incorporated into the system. The resulting units are named 𝐹1, 𝐹2 a 𝐹3. The vectors of
the input signals 𝑥 are connected in such a way that each of the functional units 𝐹𝑖 works
with the same input values. The output signals 𝑓𝑖(𝑥) are connected to the inputs of the
so-called voter which implements the so-called majority function. If we suppose that each
of the 𝐹𝑖 modules has an equivalent reliability function 𝑅(𝑡), then Equation 3.3 that can
be used to evaluate the resulting reliability function of the whole TMR module exists [21].

𝐹1

𝐹2

𝐹3

𝑥
𝑀

𝑓3(𝑥)

𝑓2(𝑥)

𝑓1(𝑥)

𝑓𝑚(𝑥)

Figure 3.8: A system module whose reliability was improved according to the TMR method.

𝑅𝑇𝑀𝑅(𝑡) = 3[𝑅(𝑡)]2 − 2[𝑅(𝑡)]3 (3.3)

Experimental Evaluation

In this work, the probability of a fault-free state 𝑅𝑛𝑜𝑓𝑡(𝑡) of an unhardened controller of
the robot for searching a path through a maze was experimentally determined. In the next
step, the probability of a fault-free state 𝑅𝑒𝑠𝑡(𝑡) was calculated based on the equation 3.3 for
the triplicated controller. The triplicated robot controller was also implemented in FPGA,
which allowed the probability of a fault-free state 𝑅𝑡𝑚𝑟(𝑡) to be practically evaluated.

The fault injection was used for practical evaluation of the reliability function. If we
suppose that component 𝑐 is subject to fault injection, then the important parameter to
unambiguously describe this type of fault injection is a time delay 𝑑𝑐 between two consecu-
tive SEUs injected to 𝑐. The 𝑑𝑐 actually does not necessarily have to be constant, it can be
represented by a random variable with a particular probability distribution. In our exper-
iments, we have experimentally chosen the 𝑑𝑐 to be described by the uniform distribution
with a mean value of 12𝑠 and a variance of 2𝑠.

Faults were injected according to three strategies. The first strategy (noft) was fault
injection into the unhardened robot controller, component 𝑐 was defined as the whole robot
controller (nof ). The second strategy (tmr) was fault injection into the triplicated version
of the robot controller, which respects increased area. Faults were injected into three
components 𝑐1, 𝑐2, 𝑐3 (instances of robot controller) concurrently. This led to three times
higher fault intensity for the whole robot controller. The third strategy (tmr1 ) was also
fault injection into the triplicated robot controller, but this time faults were injected into
one component 𝑐, which represents the whole hardened robot controller (fault intensity is
the same as in noft case). The experimental run was repeated 3500 times for all versions
of the robot controller units.

The data obtained from the previously described experiments were then processed.
The multi-set of all the times measured from the start of the operation of the system
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to the first detection of an error on the system outputs was transformed to a discrete
failure function 𝑄(𝑡) which was then converted to the reliability function 𝑅(𝑡). The 𝑅(𝑡)
functions for hard-coded robot controller are shown in Figure 3.9. Red lines show, that tmr
version (injection into 3 components concurrently, increased area respected) is better than
noft version, but significantly worse than estimation. Green line shows, that tmr1 version
(injection into whole controller, increased area is not taken into account) is almost the same
as estimation. These experiments show, that Equation 3.3 does not consider increased area
of TMR system.

Figure 3.9: An experimental evaluation of the measured results of the reliability function
for the noft and the tmr versions of the original hard-coded robot controller.

Additional experiments with processor-based robot controller were performed and pre-
sented in LASCAS2019 paper to confirm previous results. Figure 3.10 shows the same chart
for processor-based robot controller. The biggest difference is that tmr version (injection
into 3 components, increased area respected) is worse than noft version. The processor is
a complex system and a fault injection with higher intensity led to its worse reliability. On
the other hand, tmr1 version (injection into whole controller, increased area is not taken
into account) represented by green line is almost the same as estimated reliability. These
experiments confirm, that Equation 3.3 does not work with increased area of triplication
and does not take into account the possibility of increased fault intensity.

Figure 3.10: The measured results of the reliability function for the noft and the tmr
versions of the processor-based robot controller.
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3.5 Scalability - Change of the Evaluated System
The presented platform was designed to enable the application and testing of various fault
tolerance techniques not only on a prepared experimental system but also on a specific
system developed by the user. This chapter summarizes the steps necessary to change the
experimental system, but also a demonstration of one particular electro-mechanical system
from practice.
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The paper published at the LASCAS conference presents the use of the proposed plat-
form for monitoring the effect of faults on the electronic lock, which represents a real system.
In this paper, the evaluation platform is used to solve a real problem.

Scalability and Identification of Application Specific Components of the
Evaluation Platform

As the main part of this thesis, a platform for evaluation impact of faults on the elec-
tromechanical system was developed and a verification process divided into three phases
was provided. Although this platform is designed to the evaluation of any system, it has
been demonstrated on only one experimental system which is a robot for searching path
through maze and its robot controller implemented in two various ways. Before integra-
tion and evaluation of the impact of faults on another system, it is necessary to perform
a careful analysis of the experimental system and identify individual application-dependent
components.

Modified functional verification is used as a tool for monitoring the impact of faults
both on the electronic controller and the mechanical part of an electro-mechanical system.
The main difference is that the electronic controller is moved to the FPGA, which allows
us to inject artificial faults directly into FPGA and monitor their impact. The verifica-
tion environment is usually specific for each verified system, however, the versatility of the
proposed platform is based on the fact that functional verification is usually used during
electronic systems development. Therefore, the verification environment and the reference
model (the most important elements dependent on the evaluated system) are available from
the previous stage of system development and can be used for a fault tolerance evaluation.
To change the experimental system, it is important to have a verification environment and
modify it in such a way that the experimental controller works on an FPGA. Thus, an im-
portant condition for using the platform is that an electronic controller can be implemented
in an FPGA. The basic components of the verification environment and their application
dependence are summarized in Figure 3.11.

Each component requires different changes dependent on changed experimental applica-
tions. As already mentioned above, a verification environment with a reference model can
be created for any system. In our case, there is a condition that it can be implemented in
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Figure 3.11: The use of functional verification to monitor the impact of faults on the FPGA-
controlled electromechanical system and identification of application-specific components.

the FPGA. The mechanical part is also an important element. It is not important whether
it is a real mechanical part or its simulation. The availability of sensors that provide feed-
back on the mechanical part behavior is important. The values provided by these sensors
are monitored by the verification environment, which checks whether the system behaves
according to its specification. Usually, the use of simulation leads to faster testing and is
usually cheaper. The simulation environment of the mechanical part differs from system
to system, as well as its interface, which, however, is not a big problem due to the possi-
bility of functions import into the verification environment. Communication between the
verification environment and the FPGA is mostly universal. An important component is
also the fault injector and the associated selection of fault injection strategy suitable for
the experimental system.

Electronic Lock as an Experimental System

The aim of research activities in the field of electronic locks [57] is to evaluate whether faults
in the electronic controller can affect the mechanical part, i.e. whether it is possible to cause
an unintentional unlocking caused by a fault or to prevent proper locking. This situation
can be seen both from the point of view of the random occurrence of faults and from the
point of view of artificial induction of faults in the electronic part [58]. The proposed
platform for evaluation impact of faults on the electro-mechanical system is suitable for
these purposes. The main limitation is that the control electronics must be implemented in
the FPGA. Electronic locks usually use various types of motors as a mechanical element,
in many cases, it is a stepper motor [72], which was used in the proposed paper.

Most smart embedded systems are based on a processor [32], so the mechanical part
is controlled by the processor. Many processor implementations can be configured in the
FPGA to meet the condition for using the created platform. The NEO430 [54] processor was
chosen for experimental purposes, which is based on the often-used MSP430 [70] processor
from Texas Instruments.
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The block diagram in Figure 3.12 shows the use of functional verification for monitoring
the impact of faults on the stepper motor. It is possible to see the stepper motor itself,
more precisely its simulation; the FPGA, to which a processor-based controller is imple-
mented, into which faults are injected; and a reference model for output values comparison.
MATLAB and Simulink [47] are used for simulation, stepper motor simulation is a part of
Simscape library [48]. The available simulation model is generic and it has been configured
according to the stepper motor 28BYJ11-48 [36]. It is a 4-phase stepper motor with a gear-
box and a step of 5.625∘/64, 4096 steps are needed to turn 360∘, without the gearbox 64
steps lead to a 360∘ rotation.

ReferencejModel=

OK?
FAIL?

MOTORj
CONTROLLER

Driver Monitor

FPGA

FaultjInjection

MOTORj
CONTROLLER

Driver Monitor

FPGA

FaultjInjection
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Figure 3.12: The use of functional verification for monitoring the impact of faults on stepper
motor controller.

Experimental Results

The attached paper presents experiments corresponding to the second and third phases of
the proposed process of monitoring the impact of faults on the electro-mechanical system,
which are important in terms of detecting the possibility of unauthorized unlocking or
prevent the locking. Both single and multiple faults were injected at regular intervals, and
their impact on the output of the electronic controller and the behavior of the stepper motor
was monitored. The minimum, maximum, and final rotation angles were monitored and
stored. The faults were injected only into the used bits of the bitstream, which corresponds
to the LUT tables, in total it was 58496 bits.

Single faults were injected into 6000 randomly selected bits of the bitstream, which
is 10% of the total number. Five iterations of experiments with fault injection into the
same bits were performed, which made it possible to verify whether the fault impact on
electronics and mechanics is deterministic. The table 3.3 illustrates the failure rate of
the electronic controller in all three experiment iterations (rows 1, 2, 3, 4 and 5). The
total number of electronics failures for each iteration can be seen here. Obviously, the
differences are already at the level of the number of faults that lead to failure. We divided
the types of electronics failures into three classes: 1) the premature stopping — Stuck, 2)
unending controller operation — Time-out, and 3) the correct termination, although with
mismatching values — Mismatch. At the same time, it was found out that not all electronics
failures led to mechanics failures, as it can be seen in the table in the Mechanic OK - Total
column. The next columns show the number of these cases divided into individual classes
of electronics failure. As can be seen, the highest number appears in the last column, that
is when the controller terminated its activity correctly with mismatch values detected. The
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reason is that the electronics failure was evaluated strictly, single mismatching output was
considered as a failure. The table 3.3 also contains the row Multi with the evaluation of
multiple fault injection, i.e. a scenario where one fault was injected after another with
a period of 5s. It is obvious that the overall behavior is very similar to a single injection,
but the numbers are significantly higher. If an attacker injects a set of failures, there is
a bigger probability to fail. At the same time, it is more difficult to predict the behavior of
the entire system.

Table 3.3: The results and failures classification of single and multiple fault injection.

Iter. Electronic failure Mechanic OK

Total Stuck Time-out Mis-
match Total Stuck Time-out Mis-

match
1 633 159 260 214 210 5 2 203
2 633 174 270 189 186 5 3 178
3 572 93 145 334 331 6 3 322
4 624 172 269 183 183 5 3 175
5 574 100 147 327 327 6 3 318
Multi 5772 1248 1901 2605 592 35 26 531

The set of bits that have proven to cause failure was always a bit different between the
iterations. We compared all combinations of two (e.g. 1∩ 2, 1∩ 3 ...), three (e.g. 1∩ 2∩ 3,
1 ∩ 3 ∩ 4 ...) and four (e.g. 1 ∩ 2 ∩ 3 ∩ 4, 1 ∩ 3 ∩ 4 ∩ 5 ...) sets of results. We observed that
there were cases where the electronics did not fail in all iterations, but also cases where
the electronics failed in all iterations, but the classification of failures was not always the
same. The sets of failures that led to failure in individual iterations are not the same,
but a relatively significant intersection can be found between them. In case of deliberate
insertion of faults with the aim of unauthorized control of the lock, deterministic behavior
cannot be expected, which complicates the potential attack.

Moreover, we examined the motor rotation angle. Figure 3.13 contains a boxplot chart
which displays the maximal angle for all the iterations. As the chart illustrates, the required
rotation angle was 4500. The majority of the electronics failures led to a smaller final
rotation angle. Only a small number of faults caused a bigger rotation angle. If the goal
of the fault injection is to unlock the lock without authorization, it will not be probably
reached. On the other hand, if the goal is to prevent the door from locking it correctly, the
chances are significantly higher.
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Figure 3.13: Boxplot graph with rotation angle for (a) three experiment iterations with
single injection and (b) multiple injection.
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3.6 Author’s contributions to selected papers
The papers presented in this PhD thesis were prepared in collaboration with the Dependable
Systems Research Group at the Faculty of Information Technology, Brno University of
Technology led by authors supervisor doc. Kotasek. Although all co-authors contributed
to the selected papers, author of this thesis has the main role in all of them, especially in
terms of the presented results. This section explicitly summarizes author’s contribution to
selected papers.

∙ Paper A — the specification and the implementation of the experimental system, the
definition of research objectives in this area, the definition of the basic components of the
evaluation platform and the implementation of experiments with fault injection.

∙ Paper B — the development of platform for testing the impact of faults on the electro-
mechanical system controlled by FPGA, definition of testing process divided into several
phases, the demonstration on a specific example of a robot in a maze together with
experiments with fault injection.

∙ Paper C — the application of fault tolerance technique to some components of experi-
mental system, experimental evaluation with fault injection.

∙ Paper D — the implementation of the soft-core processor transfer to the FPGA and
the subsequent administration and evaluation of experiments.

∙ Paper E — the implementation of the robot controller using a soft-core processor, its
integration into the platform and the evaluation of experiments with fault injection.

∙ Paper F — the definition of the basic ideas of the theoretical reliability analysis concept,
the implementation of experimental system and the evaluation with fault injection.

∙ Paper G — the implementation of the second experimental system and the evaluation
of experiments with fault injection.

∙ Paper H — the implementation of the stepper motor controller, the integration of the
verified system and the proposed platform, experimental evaluation.
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Chapter 4

Conclusions

The research presented in this thesis is focused on monitoring the impact of faults on the
FPGA-based system during fault tolerance properties evaluation. Both existing approaches
and a newly proposed approach based on functional verification divided into three phases
are presented. The use of functional verification proves to be very advantageous because
the verification environment is usually implemented during the development of the system
and it is possible to modify further and use it.

In the Chapter 1.1 questions that defined the basic motivation of this work were asked:
∙ What will be the results of fault tolerance techniques on real systems?
∙ Is it possible to rely on the fact that not all faults in the electronic part of the system

affect the behavior of the controlled mechanical application?
∙ Can functional verification be used to evaluate the effect of faults on fault-tolerant sys-

tems?
I believe that during my research, a tool which helps to answer these questions was

developed. The use of functional verification has proven to be a very good step, the verifi-
cation environment after certain modifications can be used to advantage. Experiments have
shown that not all faults with impact on the output of the electronic part of the system
necessarily affect the behavior of the mechanical part.

The goals of the thesis are defined in the Chapter 1.1, they are listed again together
with a short comment:

Goal 1. Design and create an evaluation platform targeted to FPGA technology which
allows to test fault tolerant techniques and allows to monitor the impact of faults
not only on the output of the electronic part, but also on controlled mechanical
application.

1.1. Functional verification will serve as the basic technique that will be used to verify
the correctness of the outputs of the tested system affected by fault injection.

1.2. An integral part of the whole platform will be a fault injection tool, which was
previously developed by the team of doc. Kotásek. Thus, this thesis builds on
the earlier work of this team.

1.3. The core of this platform forms an experimental electromechanical application,
which means a system consisting of an electronic controller implemented on an
FPGA and mechanical applications controlled by this controller. Such a system
makes it possible to monitor the effect of faults not only on the output of the
electronic controller, but also on the controlled mechanical application.
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The platform for evaluation fault tolerance properties is the main topic of the paper [B]
presented in the Chapter 3.2. Functional verification really serves as a basic technique
for monitoring the correctness of electro-mechanical system behavior and a fault injector
developed by the team of doc. Kotásek is used. The robot for searching a path through
maze and its electronic controller represents the experimental electromechanical application
presented in paper [A] and Chapter 3.1.

Goal 2. The developed test platform is followed by the design of a process for monitor-
ing the impact of faults on the electro-mechanical application using the proposed
evaluation platform.

2.1. The proposed process for monitoring the impact of faults will reflect the expe-
riences obtained during experimental work with the designed platform and the
created experimental system.

2.2. The proposed process also includes a description of the necessary activities re-
lated to scalability, it means the use of another experimental system.

2.3. The proposed process allows scalability, it is generalized in such way that it can
be used for evaluation with the use of another experimental electromechanical
system. It is also demonstrated on a second experimental electromechanical
application.

The process of fault tolerance evaluation is defined and divided into three steps in
paper [B] and Chapter 3.2. Lots of experiments were performed with the proposed plat-
form, which were published in journals and on conferences. Experiments with the use of
fault tolerance to hardening of selected components of the robot controller are the con-
tent of the paper [C]. Scalability is referred from the point of view of the change of the
electronic controller, which is presented in the papers [D] and [E] mentioned in the Chap-
ter 3.3, experiments are also included. In the Chapter 3.4 the publications [F] and [G] are
presented. These publications deal with the comparison of theoretical analysis and experi-
mental evaluation of reliability using implemented robot controllers (both hard coded and
processor-based). Scalability is also referred from the perspective of changing the complete
experimental system, which is the content of the Chapter 3.5 and paper [H].

4.1 Summary of Main Contributions
This chapter summarizes the most important contributions of this thesis.

The use of functional verification

∙ The main contribution of this work is a demonstration of the use of functional veri-
fication for monitoring the impact of faults on electromechanical systems controlled
by FPGA. In the contrast with the literature [6], functional verification is used in
combination with fault injection directly into the FPGA. Such an approach required
to design a way to move the circuit under test to an FPGA, which allowed the use of
a fault injector to inject faults directly into the FPGA. The verification environment
is usually implemented during the implementation of the electronic system, so its
use is also offered for verifying the impact of faults. Various tools and ready-made
components are available for functional verification, which is a great advantage of this
approach.

42



Evaluation platform and process for monitoring impact of faults on
electro-mechanical system

∙ Within this work, a comprehensive platform for monitoring the impact of faults on
the electro-mechanical system was designed and functional verification is only one
important part. The platform also includes a proposed process of fault tolerance
evaluation divided into three phases. In the first phase, the classic functional verifica-
tion based on the simulation takes place and the performed verification scenarios are
repeated in the next phases. The second and the third phases work with a verified
circuit implemented in the FPGA and monitor the effect of faults on the electronic
controller and the controlled mechanical part.

Demonstration of the platform using a series of experiments

∙ The proposed platform has been demonstrated in a number of experiments. The main
experimental system was a robot for searching a path through a maze with two types
of control units. Experiments which compare experimental reliability evaluations with
theoretical reliability analyzes were also performed. The result is a useful tool that
can be used to evaluate various fault tolerance techniques.

Scalability - the change of experimental system

∙ An important point is the identification of application-specific parts of the evaluation
platform and the design of a method of scalability, i.e. changes of the experimental
electro-mechanical system. As a second experimental system, a smart lock consisting
of a stepper motor and its control processor implemented in an FPGA was introduced.
The output is experiments with interesting results from this area. It turned out that
the proposed platform can also be used to solve practical tasks, in this case monitoring
the impact of faults on the electronic lock.

4.2 Possibilities of Future Research
It is possible to continue working on this topic and do further research. Several directions
that seem promising for future research have been defined.

1. The first direction is definitely the use of the created platform and experimental sys-
tem for the evaluation of fault tolerance techniques. The platform can thus become
a tool for comparing the properties of individual techniques, both new and also exist-
ing techniques. As an example, the work of colleague whose research topic is the use
of reconfiguration for faulty module recovery should be quoted. He investigates the
properties of a reconfiguration controller in terms of its fault tolerance properties. He
uses the proposed platform for experimental evaluation.

2. The second direction is the use of the platform, or the proposed process and principles,
to evaluate the impact of faults on real systems. As an experimental system, the
developer can use the real system which is developed and evaluate its fault tolerance
properties by faults injection. Related to this point is the improvement of the platform
in terms of user-friendliness, the creation of a more user-friendly graphical interface,
and the like.
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3. As a continuation of the research, it may also be improvements of the platform,
both in terms of the above mentioned user interface, but also in terms of the used
components. In this work, a fault injector previously developed by the team of doc.
Kotásek is used. Nevertheless, it could be interesting to connect the platform with
another fault injector and compare the results of the experimental evaluation.

4. Another possible extension is to simplify the way to change the experimental system.
Currently, manual implementation of some components for monitoring the behavior
both of the electronic and mechanical parts of the verified system after moving the
electronic controller to the FPGA is required. An interesting direction of research
could be the automatic generation of these components.
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Abstract—The aim of this paper is to present a new platform
for estimating the fault-tolerance quality of electro-mechanical
applications based on FPGAs. We demonstrate one working
example of such EM application that was evaluated using our
platform: the mechanical robot and its electronic controller in an
FPGA. Different building blocks of the electronic robot controller
allow to model different effects of faults on the whole mission
of the robot (searching a path in a maze). In the experiments,
the mechanical robot is simulated in the simulation environment,
where the effects of faults injected into its controller can be seen.
In this way, it is possible to differentiate between the fault that
causes the failure of the system and the fault that only decreases
the performance. Further extensions of the platform focus on the
interconnection of the platform with the functional verification
environment working directly in FPGA that allows automation
and speed-up of checking the correctness of the system after the
injection of faults.

Keywords—Fault Tolerance, Electro-mechanical Systems, Fault
Injection, Single Event Upset.

I. INTRODUCTION

In several areas, such as aerospace and space applica-
tions or automotive safety-critical applications, fault tolerant
electro-mechanical (EM) systems are highly desirable. In these
systems, the mechanical part is controlled by its electronic
controller. Currently, a trend is to add even more electronics
into EM systems. For example, in aerospace, extending of the
electronic part results in a lower weight that helps reduce the
operating cost [1] [2]. The situation is similar in other sectors,
such as automotive [3].

It is obvious that the fault-tolerance methodologies are
targeted mainly to the electronic components because they
perform the actual computation. However, as the electronics
can be realized on different hardware platforms (processors,
ASICs, FPGAs, etc.), specific fault-tolerance techniques dedi-
cated for these platforms must be developed.

Our research is targeted to Field Programmable Gate
Arrays (FPGAs) as they present many advantages from the
industrial point of view. They can compute many problems
hundreds times faster than modern processors. Moreover, their
reconfigurability allows almost the same flexibility as pro-
cessors. FPGAs are composed of Configurable Logic Blocks
(CLBs) that are interconnected by a programmable intercon-
nection net. Every CLB consists of LUTs Look-Up Table
that realizes the logic function, a multiplexer and a flip-flop.
Structure of CLB is shown in Figure 1. The configuration of

CLBs and of the interconnection net is stored in the SRAM
memory.

The problem from the reliability point of view is that
FPGAs are quite sensitive to faults caused by charged particles
[4]. These particles can induce an inversion of a bit in the
configuration SRAM memory of an FPGA (or directly to
its internal flip-flops) and this may lead to a change in its
behaviour. Affecting SRAM or directly the flip-flops can be
seen as equivalent in possible consequences. This event is
called the Single Event Upset (SEU).

��� � ���	��
�	���

��

Fig. 1. Structure of Configurable Logic Blocks.

The paper is organized as follows. The related work
connected to the FPGA reliability is summarized in Section II.
The goals of our research and the interconnection scheme of
the platform for estimating the quality of EM applications can
be found in Section III. The architecture of our experimental
design, the robot controller, is provided in Section IV. A
detailed description of the fault injection process that is used
for artificial injection of faults into the robot controller can be
found in Section V. Results of the experiments with the robot
controller are available in Section VI. The future work that
includes using functional verification for automated evaluation
of impacts of faults and the test generation process is presented
in Section VII and VIII. Finally, Section IX concludes the
paper.

II. RELATED WORK

An important feature of FPGAs, which can be utilized
for reliability purposes after a fault (we consider SEUs) is
detected, is called Partial Dynamic Reconfiguration (PDR).
PDR can reconfigure the affected part of the FPGA (a faulty
module) and restore the electronic system into the correct
operation without interrupting other parts of the system. This
type of fault repair during the system runtime can be supported
by hardware redundancy architectures, such as Triple Modular
Redundancy (TMR) [5] or duplex system with Concurrent
Error Detection (CED) [6]. Sensitivity to faults (SEUs) and
the possibility of reconfiguration are the main reasons why so
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In our opinion, it is important to find a relation between the
level of functional corruption of the electronic controller and
the corruption of the mechanical functionality in the EM ap-
plications (i.e. between the robot controller and the simulated
mechanical robot). Therefore, it must be possible to introduce
various levels of external faults into the controller and check
whether the mechanical function: a) was not corrupted, b) was
corrupted partially, c) was corrupted completely.

IV. THE ROBOT CONTROLLER - STRUCTURE AND
PRINCIPLES

In Figure 4, the block diagram of the implemented robot
controller is available. The control unit is connected to the
PC (where the simulation environment is located) via the
Interface Block. Through this block, data from the simulation
are received (information about barriers, distances from control
points, target positions) and in the opposite direction, instruc-
tions about the movement of the robot are sent (direction and
speed).

The robot controller is composed of various blocks, their
function is described in [15]. Here, we only summarize main
characteristics of every component. The central block of the
robot controller is a bus through which the communication
between each block is accomplished. Each of components,
without the Engine Control Module, is connected to the bus.
The Position Evaluation Unit acquires the distance from the
control points, which are located in the fixed positions in
the maze. From these, the position of the robot in the maze
is calculated and provided to other units as coordinates x
and y. The Barrier Detection Unit (BDU) uses four sensors;
each located on one side of the robot (cubical robot) and
provides information about the distance to the surrounding
barriers. The output is a four-bit vector that represents the
four-neighbourhood of the robot and informs about barriers
in this area. Map updating is provided by the Map Unit
(MU) and is based on the information about the position
of the robot obtained from the Position Evaluation Unit and
the information about the occurrence of barriers in a four-
neighbourhood provided by the Barrier Detection Unit. The
Map Memory Unit (MMU) stores information about the up-
to-date map. The memory is realized by the block memory
(BRAM) available in the FPGA. The most important block that
manages the activity of other blocks in the robot controller is
the Path Finding Unit (PFU). It implements the simple iteration
algorithm for finding a path through the maze according to the
information about the current and the desired target position.
The mechanical parts of the robot are driven by the setting of
the speed in the required direction of the movement by the
Engine Control Module (ECM).

The robot controller is designed as a complex system with
specific components that will allow testing and validating var-
ious types of fault-tolerant methodologies focused on FPGAs:

• Combinational circuits
Combinational circuits are the basic types of digital
circuits, their output is dependent just on the current
input. In the robot controller, the Barrier Detection
Unit represents a pure combinational circuit.

• Sequential circuits
The output of the sequential circuit, unlike combina-

tional circuit, is not dependent only on the current
input but also on the actual state. These circuits
also contain a memory for storing a state. Sequential
circuits can be explicitly controlled by the finite state
machine. Sequential circuits without an explicit con-
trol are represented by the Map Unit and the Position
Evaluation Unit in the robot controller.

• Finite state machines
Finite state machines also represent sequential circuits,
their computational process is modeled by states and
transitions between them. In the robot controller, the
Path Finding Unit and the Engine Control Module, to-
gether with units that provide the bus communication,
are implemented as finite state machines.

• Buses
The bus is a central element of our controller. We
decided to use freely available Wishbone bus [16]
that is configured as a shared bus. It means that the
communication on the bus can be driven only by
one master device and the other units must wait for
releasing the bus. All function blocks are connected
to the bus via their wrapper.

• Memories
In the robot controller, we can find two occurrences of
different types of memory. The first, the Map Memory
Unit, is realized as the Block Memory (BRAM) which
is available on the FPGA. The second memory is
a queue in the Engine Control Module that stores
continuously calculated path to the destination.

V. EVALUATION OF RELIABILITY BY FAULT INJECTION

The weak point of FPGAs from the reliability point of view
is their configuration memory. The functionality of an FPGA
chip is defined by the sequence of configuration bits (called
bitstream) which is loaded into the configuration memory. In
our case, a specific part of bitstream determines the function-
ality of the robot controller.

However, even the smallest change in the configuration
memory can lead to different functionality. When a charged
particle strikes a memory cell, the resulting effect is the
inversion of the stored value (known as the Single Event Upset,
SEU) [17].

During testing the resilience of systems against faults,
waiting for their natural appearance is not feasible. A typical
reason is the Mean Time Between Failures (MTBF) parameter
that can be in the order of years. Therefore, some special
techniques are used in order to artificially accelerate the fault
occurrence. The most popular one is called fault injection.

Therefore, to simulate effects of faults in the FPGA,
it could be done by a direct change of the configuration
bitstream which is loaded into the configuration memory.
For this purpose we implemented a fault injector [13] which
allows to prepare bitstream for our FPGA and also to modify
single or multiple bits of the bitstream in order to simulate
single and multiple faults. As a consequence, the design
placed in the FPGA (determined by the configuration data)
is influenced similarly as by a real fault which strikes the
hardware architecture of the FPGA in a real environment.
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Fig. 4. The block diagram of the robot controller.

For effective testing of fault effects on a system composed
of several blocks, we need to determine the block in which the
fault will be injected. In the case of injecting faults into the
whole FPGA we are not sure which block is affected, or if the
useful part of the bitstream is hit. The implemented injector is
able to inject faults only to specified bits of the configuration
memory, a specification list of these bits is input parameter.

The list of bits representing each component is obtained
through several steps. First, we perform synthesis using Xilinx
synthesis tools [18]. The result of synthesis is a netlist,
which serves as an input for the next step. Next, we use the
PlanAhead [19] tool for the layout of the components on the
FPGA. Thanks to this, we know where each of components is
placed. The bitstream is generated in this step and the FPGA
can be programmed. The knowledge about component layout
allows us to use the RapidSmith [20] tool for analysing the
design. This tool is able to generate a list of the bitstream
bits that correspond to the identified areas of the FPGA, while
we know what components are in each area. The disadvantage
is that this process provides only a list of bitstream bits that
correspond to Lookup Tables (LUTs). Our goal in the future
will be to find a method which allows us to localize also bits
of the bitstream corresponding to the interconnection network.

VI. THE EXPERIMENT WITH THE ROBOT CONTROLLER

The aim of the experiment is to identify which parts of
the robot controller are vulnerable to faults. The flow of the
experiment is displayed in Figure 5. At first, we initiate the
environment of the robot in simulation. We generate a maze

Fault Injection

Maze 
Initialization

Start Position

End Position

Robot Controller 
Initialization

Monitoring of 
Impact of Faults

Fig. 5. The flow of one experiment.

together with the start and the end position for the mission
of the robot. As the first scenario, we chose a small maze
with 8x8 fields. The start position was in the upper left corner
and the end position in the lower right corner. Subsequently,
the robot controller is initiated. In particular, the bistream for
the Virtex5 FPGA board is generated. When loaded, the robot
starts to search a path to the end position. It moves quite slowly,
one robot mission takes about one minute. At this point, the
fault injection takes place. We generate randomly an LUT of
every unit of the robot controller into which the fault will
be injected. Thanks to the Rapidsmith, only corresponding
bits of the bistream are inverted. We want to point out that
we really target only bits if the bitstream belonging to the
robot controller design. Other bits of the bitstream belonging
to the unused parts of the FPGA or to the interconnection
network are not affected. Faults are injected one after another
(MTBF = 2s) until the robot starts to behave incorrectly or
fails. We were monitoring (1) the number of faults that led to
the malfunction of the robot and (2) how the behaviour of the
robot was changed.
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Fig. 6. The quartil graf of the results of experiments.

The results of the experiments are shown in Table I. In
the first column, the list of components of the robot controller
is provided. In the second column, the total number of bits
of the bitstream that belong to the LUTs of corresponding
components is shown. The following three columns represent
the number of injected faults into particular components which
caused incorrect behaviour of the robot. The first number is
minimum, the second number is median and the last number is
maximum of faults that led to failure. Injecting faults into all
bits of the bitstream would be very time-consuming. Therefore,
we utilise the statistic evaluation. 20 experimental runs were
performed for each component (320 experimental runs in
total). The last column of the table contains the state of the
robot that was evaluated as the wrong behaviour. These states
are described in more detail in the further text.

TABLE I. THE EXPERIMENTAL RESULTS.

Components Bits of bitstream Number of injected faults Consequence
Min Median Max

PEU 21 632 2 6 12 freezing
PEU FSM 2 112 >80 - >80 -
PEU WB 2 112 41 - >80 freezing
BDU 320 2 6 21 freezing
BDU FSM 2 752 3 6 34 freezing
BDU WB 2 176 3 9 28 freezing
SEPC INF 1 216 2 3 7 freezing
SEPC WB 9 088 2 3 7 freezing
ECM 25 664 1 2 7 freezing
PFU 7 488 3 6 12 deadlock
PFU WB 7 424 2 3 9 freezing
MU 11 840 1 2 3 crashing
MU FSM 1 280 1 3 5 freezing
MU WB 7 680 1 3 6 freezing
MMU 3 008 1 3 6 freezing
WB BUS 5 056 1 3 6 freezing

The statistical data from the measures are also demon-
strated in Figure 6. It is a quartile chart that for each component
shows the minimum, the first quartile (25%), median, the
second quartile (75%) and maximum of the measured number
of injected faults that led to the failure. Moreover, the line
across all components shows the average number of faults
in each component that led to the failure. One interesting
conclusion arises from the graph. The incorrect behaviour did
not appear immediately after the first injection of a fault. We

can conclude that some bits of the bitstream, despite they
are identified as related to the robot controller, are not used
to store a useful information. This can be seen particularly
in components PEU FSM and PEU WB. There are several
explanations of this, e.g. not all inputs of LUTs are employed
or not all states of FSMs are visited during the computation.
Nevertheless, we realised that some components contain more
critical bits than others and thus they should be preferred while
hardening against faults by some fault-tolerance methods.

The most common consequences of injected faults are:

• Freezing on place
Freezing on one spot means that the robot suddenly
stopped after the fault injection and did not continue
in its mission.

• Deadlock
After injection of certain number of faults the robot
began to walk around in a cycle.

• Crashing into a wall
In some cases, the robot did not recognise the occur-
rence of walls in the maze and repeatedly crashed to
the wall.

• Other
In the experiments, we observed a small number of
other interesting consequences of faults. An example
might be freezing of the robot in one place, then a re-
freezing or walking in a cycle. We note also a wrong
turn of the robot in the maze, which was followed by
freezing.

The proportional representation of these consequences is
displayed in Figure 7. As can be deduced from the chart,
the most common consequence of injected faults is Freezing
on place. We can also conclude that stopping of the robot is
not so critical as for example, a collision with the wall. This
conclusion can be very critical and useful for different kinds
of EM applications.
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Fig. 7. The chart of typical consequences of injected faults on the mission
of the robot.

VII. THE USE OF FUNCTIONAL VERIFICATION FOR
AUTOMATED EVALUATION OF FAULT IMPACTS

For extensive testing of the behaviour of the robot or any
other EM system placed into our evaluation platform, we need
to examine various test scenarios. After application of proper
test vectors, we can prove the correctness and accuracy of the
behaviour of the system with respect to the specification. The
manual check of these test vectors is difficult as it requires
a full control from the user. The user is responsible for
running the test environment, generating test vectors and also
analysing the outputs of the system. All these activities are
time-demanding and therefore, it is not possible to test the
system thoroughly within a reasonable time. It is necessary
to apply some kind of automation. An extended technique for
automated checking of the correctness of the system is called
verification. There are several techniques used in the verifica-
tion domain, but their description is not crucial for this work.
We decided to use an approach called functional verification,
as this type of verification fits best to our experiments.

Functional verification [21] is the process of verifying that
a model of the system, also called DUT or Design Under
Test, compliances with the specification by monitoring inputs
and outputs in simulation. Moreover, the DUT outputs are
compared to the outputs of the reference model (sometimes
also referred to as the golden model) that is typically imple-
mented by a verification engineer or a designer than did not
implemented the DUT. On the basis of the compared outputs
a discrepancy between the two models can be detected and
thus an error in the systems can be discovered. The basic
principle of functional verification is demonstrated in Figure 8.
An important prerequisite for functional verification is also a
good generator of input test vectors for testing all possible
scenarios.

To be able to inject faults into the FPGA while performing
functional verification, we must carry out verification directly
in the FPGA (not in the simulation as usually). Advantageously
we can use and modify hardware accelerated verification that
uses an FPGA as the acceleration board. An example of such
accelerator is the framework HAVEN [21]. The extension
of our evaluation platform with the support of functional
verification is shown in Figure 9. The DUT (in our case the
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Fig. 8. The main principle of functional verification.

robot controller) will be placed on the FPGA. The outputs
from the FPGA are compared to the outputs of the reference
model and they represent also the inputs that are propagated
to the simulation of the mechanical part. Thus, the output of
the DUT stimulates the movement of the mechanical part of
the robot in the simulated maze. The inputs for the FPGA
and for the reference model are data from the sensors of the
mechanical part of the robot.

As the reference model, a second implementation of the
control unit, for example in SystemVerilog, C, SystemC, or
the same VHDL implementation that is used as the DUT but
without injected faults, can be considered. The Fault Injector
is a feature that differentiates the current proposal from the
classic functional verification. Using this feature we can verify
that the fault-tolerance techniques used in the robot controller
work properly and the robot behaves correctly also in the
presence of faults injected into its controller.
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Fig. 9. Functional verification involvement in our platform with the fault
injection.

The verification process will be divided into two phases:

1) Verification of the electronic part only, without
monitoring the impact of faults on the mechanical
part.

Three possible outcomes can arise: (1) The output
from the DUT and from the reference model is the
same, an error did not appear. (2) The output is not
identical but despite this, the robot has completed
the mission (the robot reached the end position in
the maze). (3) The output is not identical and at
the same time, the mission was not accomplished.
The last outcome is the most serious one and it will
require a thorough analysis of the problem.
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2) Analysis of the faults, which affected the mechanical
part.

In this case, we will examine the faults that
caused the failure of the mission of the robot. This
activity will be carried out manually, since it is
necessary to run the required experiment again and
to monitor the behaviour of the mechanical part in
simulation as described in the experimental part of
this paper.

A very important element in the proposed platform is the
generation of test vectors. To be able to check all working
scenarios in functional verification and achieve the highest
possible coverage of all key functions in the verified circuit
the high-quality generator of inputs is needed. In our case, the
generation aims at different mazes and different starting and
end position of the movements of the robot. We also plan to
use the generator for controlling injecting of faults (because
now it is configured manually). We will generate signals that
will drive the generation of faults and will determine when
and into which place a fault should be injected.

VIII. TEST VECTOR GENERATION

Generation of test vectors is our further goal. To prove the
correct behaviour of the system according to its specification,
testing the system on a wide set of input values is needed. We
plan to adjust the generation of input test vectors to functional
verification purposes and as an advantageous method seems
to be an approach called Coverage Directed Test Generation
(CDTG) [22] [23]. This method generates test vectors accord-
ing to the defined design conditions and limitations which are
called constraints. The main challenge in the generation of
test vectors is to achieve maximal coverage of the system key
functions. If a system function remains unverified, this method
will define additional constraints in order to get this feature
covered. At the end, the coverage report which is the result of
the simulation runtime of verification is created.

Thanks to CDTG we will acquire two important advan-
tages. The first is the possibility that the uncovered features
of the system become covered and a higher level of coverage
will be achieved. The second advantage is in testing certain
scenarios multiple times for different input values.

Figure 10 shows the proposed method of generating test
vectors. This method is not limited only to generation of
inputs for the robot controller which will be described in the
next paragraph. It represents a universal approach that can
be used to generate inputs for different kinds of systems.
The basic elements of the universality of the generator are
two separate pseudo-formal models. The first model labelled
as the Problem Description contains information about the
scenario we want to generate. It may contain information about
variables, data types, static values or substitutes that we want
to generate. In simple words, this model defines what we want
to generate. The second model labelled as the Constraints
for the Problem describes how the scenario defined in the
Problem Description should be generated. This model thus
contains constraints that should be taken into account while
generating the scenario. This is essentially a limit for data
values, such as a variable cannot take certain values from the

range of the data type, or restriction of dependency, such as
some combination of variables cannot occur after the currently
generated combination. Both of these models are inputs to the
generator of test vectors that is currently in the implementation
phase.
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Fig. 10. The principle of the constraint generator.

Figure 11 shows an example of generating the mazes
for the robot device. This is a simple example that shows
the function of above mentioned approach. The problem of
generating the maze is defined as the generation of lines that
are represented by the boolean array of specific size. The
constraints restrict the minimal width of the corridor of the
maze, the walls of the maze can be only rectangular and a
room that have no path cannot appear in the maze. The result
obtained by the generator is a sequence of rows that consists of
zeroes or ones. Zeroes represent the corridors, ones represent
the walls. This generated output may be further processed.
In our case, this output is regenerated into a bitmap image
representing the desired maze for the robot.
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Fig. 11. An example of generating a maze for the robot controller.
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IX. CONCLUSION AND FUTURE WORK

In this paper, we introduced the evaluation platform for es-
timating reliability of FPGA designs. As our research focuses
on testing EM applications, we presented the experimental
design which is composed of the mechanical robot and its
electronic controller situated in the FPGA. The robot controller
contains a variety of components. During the experiments, ran-
dom faults were artificially injected into these components and
we were monitoring impact of these faults on the behaviour
of the robot in the simulation environment. These experiments
showed that some faults have an impact on the behaviour of
the robot, and others do not have. According to this result
we were able to identify the parts/components of the robot
controller that need to be hardened by some fault-tolerance
techniques.

In addition, we have recognised from the experiments
that some kind of automation is unavoidable in our future
experiments, especially in the early phases of testing. The
reason is that monitoring the behaviour of system in simulation
is very time-demanding. Therefore, we have already prepared
an innovative extension of our platform - interconnection of
fault injection and functional verification environment with
advanced test generation. Using this approach we will be able
to automatically verify an EM system during the fault injection.
The automation is achieved by comparing the outputs of the
verified system to the reference model that is in our case
represented by the same design but without injected faults.
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a b s t r a c t 

The fundamental topic of this article is the interconnection of simulation-based functional verification, 

which is standardly used for removing design errors from simulated hardware systems, with fault- 

tolerant mechanisms that serve for hardening electro-mechanical FPGA SRAM-based systems against 

faults. For this purpose, an evaluation platform that connects these two approaches was designed and 

tested for one particular casestudy: a robot that moves through a maze (its electronic part is the robot 

controller and the mechanical part is the robot itself). However, in order to make the evaluation platform 

generally applicable for various electro-mechanical systems, several subtopics and sub-problems need 

to solved. For example, the electronic controller can have several representations (hard-coded, proces- 

sor based, neural-network based) and for each option, extendability of verification environment must be 

possible. Furthermore, in order to check complex behavior of verified systems, different verification sce- 

narios must be prepared and this is the role of random generators or effective regression tests scenarios. 

Also, despite the transfer of the controller to the SRAM-based FPGA which was solved together with an 

injection of artificial faults, many more experiments must be done in order to create a sufficient fault- 

tolerant methodology that indicates how a general electronic controller can be hardened against faults 

by different fault-tolerant mechanisms in order to make it reliable enough in the real environment. All 

these additional topics are presented in this article together with some side experiments that led to their 

integration into the evaluation platform. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Digital systems play an important role in our everyday lives. 

They are widely used in industry, medicine and other safety criti- 

cal sectors. Not only the loss of a huge amount of money, but also 

the loss of human lives may occur in case of their failure. The cur- 

rent trend is that the complexity of digital systems is rising, which 

leads to an increased susceptibility to faults. It is possible to spec- 

ify two main sources of faults [1] : 1) Design faults (bugs) are always 

the consequence of an incorrect design, an ambiguous specification 

or misinterpretation of the specification and 2) Hardware/physical 

faults (defects) which arise during manufacturing or system opera- 

tion. 

The approach dealing with design faults is called functional ver- 

ification [2] which currently has an irreplaceable position in the 
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Cekan), ilojda@fit.vutbr.cz (J. Lojda), zachariasova@fit.vutbr.cz (M. Zachariasova), 

ikrcma@fit.vutbr.cz (M. Krcma), kotasek@fit.vutbr.cz (Z. Kotasek). 

development cycle of digital systems. It runs in a simulation (RTL - 

Register-Transfer Level simulators are typically used, like QuestaSim 

from Mentor Graphics or VCS from Synopsys) and uses sophisti- 

cated testbenches which are prepared according to UVM (Univer- 

sal Verification Methodology) [3,4] which ensures scalability and 

re-usability. Functional verification checks whether a hardware sys- 

tem satisfies a given specification. The main purpose is to find as 

many design faults as possible before the system is deployed. The 

main principle of functional verification is to apply a huge num- 

ber of input stimuli to the input ports of the verified circuit (DUT 

- Device Under Test ) and on the input ports of the reference model. 

Afterwards, the behavior of DUT and the reference model is com- 

pared for these stimuli. The reference model is prepared by a ver- 

ification engineer in SystemVerilog, C/C++ or other supported lan- 

guage and implements the reference behavior. 

Coverage is an important metric in verification. It measures 

how well input stimuli cover the behavior of DUT and provides 

feedback that determines when the verification process can be 

ended. Depending on the coverage criterion considered, the follow- 

ing coverage metrics can serve as an example: 

http://dx.doi.org/10.1016/j.micpro.2017.06.004 
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• Code coverage measures how well input stimuli cover the source 

code of DUT. Typical code coverage metrics are toggle, state- 

ment, branch, condition, expression or FSM coverage. 

• Functional coverage measures how well input stimuli cover the 

functional specification of DUT. The user defines the coverage 

points for the functions to be covered in a verified circuit, e.g.: 

Did the verification test cover all possible commands or did the 

simulation trigger a buffer overflow? 

Moreover, standard languages, methodologies and libraries were 

defined for functional verification. The most commonly known 

ones are the SystemVerilog IEEE language standard [5] , Universal 

Verification Methodology and the open-source UVM library (with 

all the basic components of verification environments). 

Of course, UVM-based functional verification does not guaran- 

tee 100% correctness of the system as formal verification does. The 

reason is that formal verification is based on an exhaustive explo- 

ration of the state space of DUT, hence it is potentially able to 

formally prove its correctness. However, the main disadvantage of 

this method is a state space explosion for real-world systems and 

the need to provide formal specifications of the behavior of the 

system which makes this method often hard to use. On the other 

hand, UVM-based functional verification is much easier to use and 

aims at covering properties determined by the specification, not 

the whole state space. Nevertheless, if these properties are selected 

accurately, all key aspects of the system are properly verified. 

The approaches which deal with hardware/physical faults are 

techniques called Fault avoidance or Fault tolerance [6] . Fault avoid- 

ance is mainly obtained by the use of radiation hardened technolo- 

gies, improved design of storage elements or asynchronous circuits. 

Fault tolerance is the ability of a system to continue performing its 

correct function even in the presence of unexpected faults. Many 

fault-tolerant methodologies have been developed inclined, among 

others, to Field Programmable Gate Arrays (FPGAs) and new ones are 

under investigation [7] , because FPGAs are becoming more popu- 

lar due to their flexibility and reconfigurability. The second reason 

why so many techniques are inclined to FPGAs is their sensitivity 

to faults and ability to be reconfigured in the case of fault occur- 

rence. FPGAs are composed of configurable logic blocks [8] which 

are connected by programmable interconnections. The configura- 

tion is stored as a bitstream in SRAM memory. The problem is that 

FPGAs are quite sensitive to faults caused by charged particles [9] . 

This particle can induce an inversion of a bit in the bitstream and 

this may lead to a change in its behaviour. This event is called Sin- 

gle Event Upset (SEU). 

It is important to test and evaluate these techniques. Various 

approaches to the evaluation of fault tolerance exist and some of 

them are performed on a theoretical level, for example, a simula- 

tion method for SEU emulation is presented in [10] . Another ap- 

proach is in the use of fault injection directly into the design im- 

plemented in FPGA. Special evaluation boards are developed for 

these purposes, one of them is presented in [11] or [12] . 

The systems implemented as fault-tolerant very often consist 

of two parts - an electronic one and a mechanical one. The me- 

chanical part is controlled by its electronic controller. It can be 

stated that such areas exist in which electro-mechanical appli- 

cations are implemented as fault-tolerant - aerospace and space 

applications can serve as an example. Until now, our work was 

dedicated to verification of fault-tolerant qualities that allow us 

to check just the resilience of electronic components. However, 

for electro-mechanical systems, the approach must be different. It 

must be possible to check what are the reactions of the mechani- 

cal component if the functionality of its electronic controller is cor- 

rupted by external attacks. 

This paper is organized as follows. The goals of our research 

are described in Section 2 . Section 3 introduces three phases of 

the evaluation process based on our platform. We focus on in- 

troducing every phase theoretically and at the same time, we 

elaborate on making the platform general for various electro- 

mechanical systems. The first phase is mentioned in Section 4 to- 

gether with verification environment architecture. Different possi- 

bilities for implementing the electronic controller (DUT) are men- 

tioned in Section 5 . This can be considered as the first step to 

generalization. The second step is preparing various verification 

scenarios for different DUTs and this process is summarized in 

Section 6 . FPGA-based verification environment which is needed 

for the second phase is presented in Section 7 . Principles which 

are used for checking reactions of the mechanical part in the 

third phase are introduced in Section 8 . For the demonstration 

of our evaluation platform we created a case-study presented in 

Section 9 which is supplemented by experiments and their results 

in Section 10 . Section 11 summarizes the results and proposes our 

plans for future research. 

2. Goals of the research 

Based on our previous analysis of actual research in the area of 

fault tolerance methodologies and their evaluation, we have identi- 

fied the main goals that we would like to focus on in our research 

of fault-tolerant FPGA-based systems. 

• The first point is to develop an evaluation platform based on 

FPGA technology for testing fault tolerance techniques . The ba- 

sic concepts and the first version of the evaluation platform 

were presented in our previous work [13] . Based on experi- 

ments with our platform we realized the necessity to automate 

the process of a fault impact evaluation. We found functional 

verification as an appropriate technique for this purpose. 

• The important task is to propose the process describing the use 

of the developed evaluation platform for fault tolerance properties 

improvement in general electro-mechanical systems. It means 

that our evaluation platform will be supplemented with a de- 

scription on how to configure the environment for the selected 

experimental system, especially how to evaluate fault tolerance 

properties and search for the possibilities of its improvement. 

• As was mentioned above, we need to take into account the me- 

chanical part which is usually driven by an electronic controller 

in real systems. Therefore, the verification environment should 

take into account also the operation of the mechanical part 

when evaluating the correctness of operations. 

The following sections describe our progress in achieving these 

goals. Firstly, the basic concept of the evaluation process is de- 

scribed and is divided into three phases. Each of these phases 

needs a specific verification environment with a specific config- 

uration, so the evaluation platform is described on a theoretical 

level for every phase separately. The evaluation platform is demon- 

strated on one case-study: a robot searching a path through a 

maze and its electronic controller. 

3. Basic concept of the evaluation process 

The proposed process of the fault impact evaluation, which is 

shown in Fig. 1 , is divided into three phases. In the first phase, we 

use the simulation-based functional verification where the VHDL 

description of the electronic controller is used as the DUT. In this 

phase, the correctness of the electronic controller design is evalu- 

ated. The main output of the first phase is a test on whether the 

electronic controller works correctly according to the specification. 

It is important because we have to ensure that the electronic con- 

troller does not contain any functional errors in the implementa- 

tion. It is also important to point out that in this phase we acquire 
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Fig. 1. The flow of phases in the FT evaluation systems verification. 

a set of verification scenarios that will also be used in the subse- 

quent phase. 

The second phase consists of the verification of the electronic 

controller implemented into FPGA with the scenarios obtained dur- 

ing the previous phase, but in addition, artificial faults are injected 

into FPGAs using implemented fault injector. 

The analysis of the faults which corrupted the mechanical part 

is the goal of the third phase. The outputs of the second phase 

are previously verified verification scenarios supplemented by in- 

formation about injected faults and its impact on the electronic 

part. The injected faults are divided into two categories, faults with 

no impact on electronic part and faults which cause mismatches 

on the output of the electronic part. Various strategies of fault in- 

jection may be used in this phase (e.g. one fault for one verification 

run, multiple faults in the same functional unit or multiple faults 

in different functional units). 

The development of the verification environment and a ref- 

erence model for the electronic control unit (the electronic con- 

troller) are the first steps towards this whole three-phase process. 

Both of these activities are described in detail in this paper. The 

second step is to implement the DUT into the FPGA and achieve 

interconnection with the simulation environment of the mechani- 

cal part. The architecture of the verification environment with the 

electronic controller implemented in the FPGA is also presented in 

this paper. 

4. The first phase - verification environment architecture 

The verification environment architecture, its basic components 

and used techniques are described in this section. First, the UVM 

based verification environment for one verification scenario (one 

model of real environment, one task for electro-mechanical sys- 

tem) is presented, which forms the core of an extended verification 

environment for multiple verification scenarios evaluation. 

The verification environment for the electronic controller is 

designed according to UVM, so that it corresponds with current 

trends and requirements. The basic architecture of the verification 

environment with main components is shown in Fig. 2 . It should 

be noted that the verification environment is connected with the 

Fig. 2. General verification environment for a single verification scenario. 

mechanical part, especially the simulation of the mechanical part. 

The mechanical part in real environment is controlled by the out- 

puts of the electronic controller (DUT) while the outputs of the 

mechanical part (information from sensors) are inputs for the elec- 

tronic controller. The information whether the DUT satisfies (or 

does not satisfy) specification and coverage report for the verified 

scenario are the outputs of the verification environment. These are 

the components of the system together with their description: 

• The electronic controller under a verification which can be im- 

plemented into FPGA in the next phase. Several approaches 

how to implement DUT exist, they will be described in 

Section 5 . 

• The golden (reference) model implemented in C/C++ according to 

the same specification as the electronic controller performs the 

same operations as DUT. 

• The sequence is the component which receives data from sen- 

sors placed in the mechanical part. Received data are trans- 

formed to the inputs of the verification environment. 

• The driver sends input values (data from sensors) to reference 

model and the DUT (electronic controller). 

• The monitor reads the outputs from the DUT (instructions for 

mechanical part) and forwards them to the scoreboard and to 

the mechanical part which operates according to these values. 

• The scoreboard compares the outputs of the monitor and ref- 

erence model for equality and checks mismatches on the out- 

puts. The detected mismatch shows that there are differences 

between the DUT and the reference model outputs. 

The presented verification environment is not able to evalu- 

ate multiple verification scenarios automatically so it must have 

been extended by components such as verification scenarios ran- 

dom generator or a simulator of the mechanical part. All the final 

components, their inputs, outputs and connections are shown in 

Fig. 3 and their description is as follows: 

• The verification scenarios generator allows us to generate a suf- 

ficient number of verification scenarios with respect to speci- 

fied parameters in order to achieve the required coverage. In 

our work, we use a verification scenario generator based on our 

universal generating principle described in Section 6 . 

• The mechanical part simulation replaces the real mechanical part 

in case we do not have a real one. 

• The UVM verification environment is the core of the extended 

evaluation. 

• Store the verification scenario allows us to use it in the second 

phase which utilizes a fault injector ( Fig. 1 ). A certain part of 

the stored verification scenario is also a report about the cover- 

age which was obtained by this scenario. 
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Fig. 3. Extension of the verification environment for multiple scenarios evaluation. 

• Merge the coverage achieved by the single verification scenario 

is important in order to obtain a final coverage report gained 

by stored sets of verification scenarios. 

Fig. 3 also shows the outputs of the first phase of the fault im- 

pact evaluation process presented in Section 3 which are Set of Ver- 

ification Scenarios and obtained Total Coverage Report . 

5. Electronic controller - implementation alternatives 

As mentioned above, an electronic controller can be imple- 

mented in several ways, each having different advantages and dis- 

advantages. Several key features exist which must be taken into ac- 

count. From one point of view it can be flexibility, scalability and 

extensibility. Another point of view may be fault tolerance, dura- 

bility and maintainability. From the economic point of view it is 

the cost, power consumption and time to market (the difficulty of 

development). 

In this paper we mention three possibilities of controller imple- 

mentation - a processor, a hard-coded controller and a controller 

based on neural networks. 

5.1. The use of processor as electronic controller of mechanical part 

The usage of a processor as the controller is the most univer- 

sal and flexible way of controlling the system. A lot of different 

classes and types of processors are in the market and it is possible 

to find a suitable device for the application. The main advantages 

are the flexibility of the solution due to the possibility of changing 

the software, short time to market and the low cost (if the proces- 

sor is selected properly). 

The usage of a processor also offers different ways to build a 

fault-tolerant controller. The processor can be secured using hard- 

ware redundancy - more processors can be used to build a robust 

system, or the processor can be secured on the level of its inner 

components. Another way is to secure the application at the soft- 

ware level using time and space redundancies [14] . 

5.2. Hard coded electronic controller 

In this case, the controller is composed of components de- 

scribed using a hardware description language (HDL). This solu- 

tion is less flexible than the previous one, but it can be more ef- 

ficient. The hard coded controller can be designed directly to the 

application in order to utilize resources effectively which can lead 

to high performance and/or low power consumption. High perfor- 

mance can be reached due to the possibility of utilizing high par- 

allelism and application-designed specific computing units. The ef- 

fective computing algorithms can then be implemented. The low 

power consumption is related to the effective usage of resources. 

Unneeded components can also be omitted (unlike in case of pro- 

cessor). 

Several ways on how to ensure fault tolerance exist in this 

case. Replicating the whole system is the well known way, how- 

ever in the case of hardcoding, it is easier to construct the redun- 

dancy on the level of inner components - the computing units, 

registers, multiplexers and other components the system is com- 

posed of. This makes it possible to secure only selected compo- 

nents, therefore, making the fault-tolerant design more effective by 

avoiding the redundancy where it is not needed. The component 

specific techniques can be deployed as well. It is also possible to 

use more specific techniques like securing using partial TMR [15] . 

It is also possible to use different coding schemes for securing the 

data - for example, parity codes, BCH codes and others error de- 

tection/correction codes. If the FPGA is used, the reconfiguration 

can offer suitable tools for fault-tolerant techniques implementa- 

tion [16] . 

This solution can generally be very effective in relation to per- 

formance, power consumption and fault tolerance. However, the 

time to market is longer and costs can be higher than in case of 

using the processors. Nevertheless, this solution can be suitable for 

tasks with specific recommendations. 

5.3. The use of neural networks as fault-tolerant electronic controller 

Artificial neural networks are one of the traditional disci- 

plines in the field of artificial intelligence and softcomputing. Even 

though the neural networks were almost forgotten for some pe- 

riod of time, at present their popularity is continually growing. 

The main advantage of neural networks is their capability of learn- 

ing and memorizing the data which make them suitable for differ- 

ent tasks such as classification, function approximation, timeseries 

prediction, etc. They are widely used, especially in the deep form 

which disposes of very interesting properties for the tasks such as 

image recognition. The neural networks are also used in control 

tasks [17] , the control of mobile robots included [18,19] . There- 

fore, we are going to experiment with a neural-network-based con- 

troller as well. 

The neural networks dispose of interesting fault-tolerant prop- 

erties which are used with different techniques. It is possible to 

modify a learning algorithm to train the network, not only to per- 

form the task, but to be fault-tolerant as well [20] . It is also pos- 

sible to retrain the network after a fault occurs [21] . Other ap- 

proaches use adding an extra redundancy into the network [22] . 

In our research we are dealing with the specific FPGA resource 

saving implementation of neural networks called FPNN [23] . We 

especially deal with its neural network approximation capabilities 

[24] and also with designing fault-tolerant techniques. In this man- 

ner, we designed the fault-tolerant type of FPNNs [25] . 
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6. Verification scenarios generation 

A very important part in the verification process is preparing 

and applying input stimuli. Just by using a significant number of 

diverse inputs, it is possible to cover most of the behavior of DUT 

and thus to be sure that DUT behaves as specified. When we 

consider the standard approach, stimuli are represented by trans- 

actions in the UVM-based verification environments. Transaction 

stands for a setting of input ports of DUT in one clock cycle. So, 

for example, when DUT has three input ports A (8 bits), B (16 bits), 

C (1 bit), the transaction can be represented by a triplet of values 

{8’h87,16’h11FF,1’b0} which is applied on these input ports on the 

rising edge of synchronization clock signal (or other specified syn- 

chronization event). 

Two approaches for preparing input stimuli exist: 

• Directed stimuli - a verification engineer prepares transactions 

manually. This approach is recommended at the beginning of 

the verification process for checking basic scenarios. 

• Pseudo-randomly generated stimuli - transactions are gener- 

ated by a random generator according to the given constraints 

(restrictions for values of inputs). That is the reason why this 

approach is often called constraint-based generation. An exam- 

ple of constraining an input is the following. Let us have an in- 

put port A (8 bits), then a constraint can restrict the generated 

values for this port in the range of 0–100 (from the possible 

range 0–255). 

In the following text, we will introduce the pseudo-random 

generation of stimuli using our proprietary generator. This genera- 

tor is unique in the way that it can be used for different scenarios 

and works with two formal models that significantly improves its 

performance. Afterwards, we will show how an evolutionary algo- 

rithm can be used for preparing optimal regression suites for dif- 

ferent systems. The motivation for using regression suites is sim- 

ple. If there is a need for running verification of DUT repeatedly 

- just to check that everything still works or after minor changes 

to DUT (like small optimizations), it is worth using an optimized 

small suite of tests (input stimuli) with a high level of DUT cover- 

age rather than start verification from scratch every time (it is very 

time consuming). 

The same applies to the evaluation platform. Depending on the 

electronic controller that is verified, we can either utilize direct 

stimuli, pseudo-randomly generated stimuli or an effective regres- 

sion test suite (especially when we want to evaluate fault injec- 

tion in the second and third phases of our evaluation process in- 

troduced in Section 3 ). 

6.1. Pseudo-random generation of verification scenarios 

Pseudo-random generation is also an integral part of our re- 

search. We are creating the solution for the stimuli generation 

which has to be versatile for our evaluation platform. We need a 

different stimuli for a different system that we verify. The origi- 

nal way of the generation that we presented in our previous paper 

[26] is generalized by using probabilistic context-free grammars 

[27] that we found as a suitable means for the stimuli generation. 

We gained universal description of verification scenarios (stimuli) 

while maintaining our originally designed architecture. We bene- 

fit from grammar systems which allow us to generate a defined 

language. This language will form stimuli for a given system. We 

are also able to control the generation process through the de- 

fined probabilities in the grammar. In our architecture, we use con- 

straints which allow us to modify stimuli during their generation 

and verification. 

In our previous research [26] , we proposed our solution of 

the generator which was based on our own proprietary descrip- 

Fig. 4. The detailed architecture for a probabilistic context-free grammar based 

stimuli generation. 

tion of the stimuli. Although the designed architecture was gen- 

eral, the description of the stimuli was not versatile for any sys- 

tem. A specific dependencies in stimuli creation had to be imple- 

mented when a new system should be supported. About 13 types 

of the constraints had to be implemented for valid generating of 

assembly programs for a RISC processor. The set of the constraints 

also increased with the inclusion of support for other systems. For 

these reasons, we were looking for another suitable solution that 

will be built on any mathematical apparatus. As the best solution, 

we have found the use of the grammatical system [28] from the 

theoretical computer science. 

In our actual research, we use the probabilistic context-free 

grammars. The probabilistic context-free grammar is the quintu- 

plet: 

G = (N,T,R,S,P); where: 

N is a finite set of non-terminal symbols. 

T is a finite set of terminal symbols, applies N ∩ T = 0. 

R is a finite set of rewrite rules with form A → α, where A ∈ N 

a α ∈ (N ∪ T) ∗. 

S is starting non-terminal. 

P is a finite set of probabilities for rewrite rules. 

The probabilistic context-free grammar looks like a common 

context-free grammar, but it has the special set of probabilities 

which represent how likely a rewrite rule of the grammar is ap- 

plied. It allow us to define the format of the stimuli through the 

formal description provided by grammars. We benefit from the 

probability definition for the rules, because it allows us to con- 

trol the application of the rules in the grammar and gives us the 

possibility to influence the stimuli creation. The probabilities are 

defined statically for the grammar definition which is not optimal 

for stimuli creation. Therefore, we extended this description with a 

special logic that is described through the constraints which allow 

us to dynamically change defined probabilities. 

The constraints represent restrictions and limitations for the ap- 

plication of the rewrite rules of the grammar and their use will 

change defined probabilities for specific rules during generation 

process such that the result is a valid stimulus. After application of 

any rule, the eligible constraints are performed and the new prob- 

abilities are set anywhere in the grammar. 

The architecture of the generation is shown in Fig. 4 . The prob- 

abilistic context-free grammar is defined in the input structure 

called Format , while special rules for restricting the grammar are 

defined in the Constraints structure. For an easier description of 
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the input structure, we use certain elements of the library Jinja2 

[29] which is a templating system for the Python programming 

language [30] . The templating system allows us to define cycles, 

branches and other special macros in the structure description. 

The preprocessing ( Preprocess ) expands these special macros and 

a complete description of stimuli ( Ext. Format ) is obtained. The ex- 

tended format suffices to be generated only when the original for- 

mat is changed, otherwise, the generator works directly with this 

extended format and is not generated any more. 

The Ext. Format and the Constraints are processed by the core 

of the generator. It performs the application of the rules from the 

starting non-terminal with leftmost derivations. After the deriva- 

tion of any rule is performed, the constraints for the relevant rule 

are triggered and thus the new probabilities are set for the given 

rules. Probabilities are adjusted using a special block Stochastic 

Modifier . Through this, the next derivation valid for the given stim- 

ulus is directed and prescribed constraints will be respected for 

generating a valid one. 

6.2. Regression test suites optimization using evolutionary algorithms 

Our optimization technique was firstly introduced in paper 

[31] and later on extended in paper [32] . It works off-line and 

takes a suite of input stimuli that were evaluated in the process 

of UVM-based functional verification and optimizes them automat- 

ically using the genetic algorithm (one of the evolutionary algo- 

rithms). The aim of optimization and the main contributions of this 

technique are: 

1. Eliminating the redundancy in the original suite of stimuli so 

the optimized suite is smaller and therefore, it will be running 

faster in simulation. 

2. Preserving the same level of coverage (the term coverage was ex- 

plained in Section 1 ) as was achieved by the original (unopti- 

mized) suite of stimuli. It guarantees that the behavior of DUT 

will be checked properly. 

3. Reusing already created verification environment for running re- 

gressions after minor changes in DUT are made so it is not nec- 

essary to utilize a separate approach for regression testing. 

Redundancy in the original suite of stimuli is caused by their 

randomness. In the first phase of verification when DUT is firstly 

created, redundancy in stimuli is often a beneficial factor [33] , be- 

cause key properties of the system have a chance to be checked 

more times (for example, we want to check multiplication, but it 

is good to check it repeatedly with different data) and it is almost 

always wanted. But after this phase, for example during regression 

testing, the redundancy is not needed anymore (it is enough to 

check every key property of the system just once), so it is good to 

have regression stimuli that are effectively reduced from the orig- 

inal suite and thus are running faster (in order to spend less time 

by running regressions). That is the reason why we decided to ap- 

ply our optimization after the first phase of verification with the 

aim to reduce redundancy. 

The survey of the proposed optimization technique follows; the 

process of optimization is divided into several steps: 

1. Run the UVM-based functional verification for a selected DUV 

and collect stimuli until the threshold in coverage is reached. 

2. Optimize stimuli by the proposed technique. 

3. Use the optimized suite everytime regression testing is needed. 

It is even possible to use existing verification environment for 

running regressions. 

The optimization technique incorporates the genetic algorithm 

as the main optimization tool. As described in [34] , the genetic 

algorithm employs a population of candidate solutions that are 

Fig. 5. The dependency between the optimization runtime and the level of opti- 

mization. 

evolved through several generations. The quality of candidate solu- 

tions is determined by the fitness function . According to the fitness, 

the best solutions are selected and serve as parents for the next 

generation. Offsprings are created by mutation and crossover ge- 

netic operators. If the algorithm works well, the average fitness of 

the population is rising because profitable parts of the search space 

are explored. At the same time, genetic operators ensure diversity, 

so the algorithm is resilient to the problem of local optimum. 

The main result is that the presented optimization technique 

was able to reduce the number of stimuli to the 0.522% of the orig- 

inal size and the resulting coverage statistics remained at the same 

level as was achieved by the original suite. What is more impor- 

tant, the simulation runtime of the optimized regression suite was 

much shorter and was reduced by 98.1% . See more details in paper 

[32] . 

Fig. 5 demonstrates the dependency between the achieved level 

of optimization of the regression suite (the y axis in the graph) and 

the time of optimization (the x axis in the graph). 

It can be seen that the longer the optimization runs, the shorter 

is the simulation runtime for regression testing. 

7. The second phase - evaluation platform architecture 

The second phase of the evaluation process is the functional 

verification of the design implemented into the FPGA. Moreover, 

the fault injection into the FPGA is performed in this phase. The 

experimental platform which is composed of a few components 

running on a computer or on an FPGA evaluation board was de- 

signed for these purposes: 

1. software part of verification environment for the electronic con- 

troller running on a computer, 

2. software simulation environment for mechanical part simula- 

tion running on a computer, 

3. electronic controller implemented into FPGA, and 

4. external fault injector [35] running on a computer which allows 

us to simulate real faults in the FPGA. 

The overall experimental platform interconnection is shown in 

Fig. 6 . The connection between a computer and an FPGA is real- 

ized by JTAG and Ethernet. JTAG interface is used for FPGA pro- 

gramming and the software and hardware part of verification en- 

vironment are connected through Ethernet. The fault injector also 

uses JTAG for placing faults into the FPGA configuration memory. 

The description of the architecture of the verification environment 

and of the fault injection process follows below. 
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Fig. 6. The structure of the experimental platform. 

Fig. 7. The general architecture of the FPGA-based verification environment. 

7.1. Architecture of FPGA-based verification environment 

For these purposes, the FPGA-based verification environment, 

which is displayed in Fig. 7 , is derived from the version created 

in the first phase. The architecture of the verification environment 

is divided into two parts. The first part is the simulation envi- 

ronment of a mechanical part which is controlled by the elec- 

tronic controller implemented into the FPGA. The communication 

between the software and the hardware parts is accomplished us- 

ing a proprietary interface (more details about the communication 

are provided in the subsequent subsections). This part operates 

autonomously, and the electronic controller receives information 

from the sensors which is produced by the simulation environ- 

ment and sends them to the FPGA through Output Wrapper. On 

the other hand, speed and direction of movement are sent through 

Input Wrapper from the electronic controller implemented in the 

FPGA to the mechanical part in a simulation. 

The second part is the UVM-based verification environment 

which operates as an observer without direct intervention to data 

transfers between the electronic controller and a mechanical part 

in a simulation environment. The verification environment just 

checks the correctness of transferred data which are resent to the 

verification environment as can be seen in Fig. 7 . Information from 

the sensors is received in the Sequence component where they are 

transformed to transactions and transferred to the Golden Model 

which produces reference output data. Instructions for mechanical 

part are received in the Monitor component and sent to the Score- 

board component. The Scoreboard compares received data with 

reference data obtained from the Golden Model. 

Fig. 8. FPGA-based verification environment for multiple evaluation with fault in- 

jection. 

Both parts are synchronized by signals sent from the Sequence 

and Monitor components to the mechanical part simulation envi- 

ronment. These signals indicate that the verification environment 

is ready to observe operations of mechanical part. 

The presented FPGA-based verification environment evaluates 

only one verification scenario, but automated evaluation of multi- 

ple verification scenarios with a fault injection is needed which is 

shown in Fig. 8 . The second phase eliminates the need for verifica- 

tion scenarios generation because scenarios pregenerated and ver- 

ified in the first phase are used. Conversely, there are new steps as 

a consequence of implementing electronic controller into the FPGA 

and the creation of an autonomous connection between the FPGA 

and the mechanical part. The first necessary step is programming 

the FPGA through the JTAG interface which must be done before 

each verification run. This step ensures that the correct functional- 

ity of the electronic controller is verified and is without faults. 

The next step is launching the mechanical part into a simu- 

lation and verification environment which enables signals to the 

simulation environment when it is ready to start monitoring. Then, 

the mechanical part starts its operation which is the proper time 

for fault injection. It should be noted that fault injection proceeds 

according to the selected strategy. Our fault injector allows us to 

inject faults into specified functional units which can be advanta- 

geously used. For example, we can inject single faults during one 

verification run into the specified functional unit, multiple faults 

into the specified functional unit or inject multiple faults into mul- 

tiple functional units. After fault injection, the verification run is 

finished or timeout has expired and then results of the verification 

are recorded into the verification report. 
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Fig. 9. The architecture of communication between SW and HW part. 

During fault injection, it is worth utilizing effective regression 

test suites for experiments. There are two reasons for this. 

The first reason is that regressions contain stimuli that achieve 

a high level of total coverage (the coverage of DUT behavior is 

very high) and, therefore, after fault injection, we can be sure that 

such stimuli/tests discover all potential problems combined with 

injected faults regarding functionality. To be precise, it is guaran- 

teed for DUT that if no artificial faults are injected, it always be- 

haves correctly for regression tests. After a fault is injected and an 

error or errors occur, it only means that the fault caused a criti- 

cal problem inside the system. The result of this phase is a list of 

faults and their locations, which caused discrepancy on the out- 

puts of DUT for a specific regression stimulus/test. Furthermore, it 

is possible to run an advanced analysis and harden some critical 

parts of DUT by fault-tolerant techniques, and to check the results 

for the selected regression tests again, until we are satisfied with 

the result. 

The second reason is that regressions are usually running much 

faster in RTL simulation as they represent significantly filtered 

pseudo-randomly generated stimuli. And when we consider run- 

ning verification after every single injected fault, the time-saving 

is significant. 

7.2. Communication between software and hardware parts 

Communication between the software and hardware parts of 

verification environment can be accomplished in various ways. One 

way is the use of some proprietary interface, or another way is 

to use one of the standardized interfaces which are used in veri- 

fication based on emulation in FPGAs [36] . One of them is Stan- 

dard Co-Emulation Modelling Interface (SCE-MI) [37] proposed by 

the Accellera organization. Thanks to the standard SCE-MI inter- 

face, users are able to reuse the existing hardware cores in FPGA 

in order to develop their system prototype. 

In our case we chose to use Ethernet interface supplemented 

with our proprietary protocol based on UDP. The communication 

between the electronic controller implemented in the FPGA (hard- 

ware part) and the mechanical part in a simulation environment 

(software part) is accomplished through Input and Output Wrap- 

per. We chose the ML506 development board [38] equipped with 

Xillinx Virtex 5 FPGA as the hardware platform. This board offers 

various peripherals and some of them can provide communication 

with a PC (e.g. PCIe, UART, USB or Ethernet). The chip implement- 

ing the Ethernet physical layer is connected to the FPGA and to 

the user design which implements higher layers of the Ethernet 

protocol stack that can communicate with this chip. However, we 

do not implement a full Ethernet protocol stack, instead we use an 

existing implementation presented in [39] . 

Fig. 9 shows the architecture of the communication layer. Al- 

though we use an existing implementation of Ethernet communi- 

cation, we must solve a problem with different clock signals on 

receive (RX) and transmit (TX) interfaces. These clock signals are 

generated by a physical layer chip and the designer is not able to 

modify the frequency and the phase offset. We use a FIFO memory 

as an input and output buffer with different writing and reading 

clock signals. This not only solves the problem with clock domain 

crossing, but also the problem with data storing before their pro- 

cessing. Data received from the Ethernet are buffered in the input 

buffer and data ready to be sent are buffered in the output buffer. 

We use FIFO as the interface of the DUT which allow us to ex- 

change a communication layer with another one which uses FIFO 

buffers. 

7.3. Evaluation of reliability by fault injection 

The simulation of the effects of faults in the FPGA can be done 

by a direct change of the configuration bitstream which is loaded 

into the configuration memory. For this purpose, we developed a 

fault injector [35] which allows us to prepare the bitstream for our 

FPGA and also modify single or multiple bits of the bitstream in 

order to simulate single and multiple faults. As a consequence, the 

design placed in the FPGA (determined by the configuration data) 

is similarly influenced by a real fault which strikes the hardware 

architecture of the FPGA in a real environment. 

The injector is based on the SEU generation outside of the FPGA 

(in PC), so it is not targeted to a specific FPGA board (testing was 

performed on the ML506 card with the Virtex 5 FPGA technology). 

The original and the modified bitstreams are transported through 

the JTAG interface. The process of the SEU generation is divided 

into four steps: 1) specifying the location of the fault injection, 2) 

reading the related part of the configuration bitstream, 3) the SEU 

generation (i.e. the inversion of the specified bit of the bitstream), 

and 4) applying the bitstream using Partial Dynamic Reconfiguration 

(PDR) without stopping the FPGA. 

The implemented fault injector is able to inject a fault into a 

specified bit of bitstream. If we are able to find a relation be- 

tween bits of bitstream and functional units, we can inject faults 

into the specified functional unit. For this purpose, the analysis 

of FPGA can be done by the RapidSmith [40] tool. This tool iden- 

tifies the bits of bitstream which are related to a specified area 

in the FPGA. Functional units placement in the FPGA is done by 

the PlanAhead [41] tool, so we know where each of the functional 

units is placed. This process allows us to inject faults into spec- 

ified functional units during our experiments. Unfortunately, the 

process actually finds only the bits of the bitstream corresponding 

with Look-up tables (LUTs). 

8. The third phase - mechanical part reactions 

The task for the third phase is to check reactions of the me- 

chanical part and there are several methods on how to do it. We 

can look either at the mechanical part or on its simulation and 

check whether it works. These methods require an observer, which 

can be a person or a digital camera supplemented with some kind 

of an algorithmic image processing. 

Another way is to use a type of information which represents 

the state of mechanical part. In modern electro-mechanical sys- 

tems, there are lots of sensors placed on a mechanical part which 

informs us about its state. These sensors are usually used as an in- 

put for the electronic controller, and we can use the information 

from these sensors for monitoring the behaviour of the mechan- 

ical part. For example, if we are monitoring the movement of an 

autonomously driven car, we can observe its behaviour by moni- 

toring the GPS location and a speed sensor. 

Our evaluation platform is based on functional verification 

which only observes the electronic outputs of verified circuits im- 

plemented into FPGA. These electronic outputs are compared with 

the outputs of the reference model which operates as a part of the 
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Fig. 10. Checking of the mechanical part behaviour by functional verification. 

verification environment according to the same specification as the 

verified circuit. Input for the reference model is the information 

from sensors produced by the mechanical part which is the same 

as for the verified circuit. Values from sensors received by the ver- 

ification environment can be used not only as inputs for the ref- 

erence model, but also as inputs for monitoring behaviour of the 

mechanical part. The modified verification environment is shown 

in Fig. 10 where the reference model is missing, information from 

sensors is routed directly to the scoreboard which can monitor the 

operation of the mechanical part. It means that scoreboard imple- 

ments functions for checking reactions of mechanical part based 

on information from sensors. 

9. Casestudy: robot searching a path through a maze and its 

electronic controller 

General principles used in our platform were presented in pre- 

vious sections and our experimental electro-mechanical system 

will serve as a demonstration example in the following text. As an 

experimental system we chose a robot which searches for a path 

through the maze. The mechanical part is a robot in the maze and 

the electronic part is its electronic controller. Unfortunately, we do 

not have a real robot device, so we used simulation environment 

for a robot and its environment. We use Player/Stage [42] simula- 

tion environment which is freely available and offers lots of possi- 

bilities for robot configuration. 

Our robot is a simple cubical robot which goes through the 

maze. The robot is equipped with a few sensors, three sensors 

which inform us about distances from three control points placed 

at fixed positions in the robot environment. They are used for de- 

termining its location (inspired by Global Positioning System). Four 

sensors are located on the sides of the cubical robot and inform 

us about the distances from barriers in the robot surrounding. The 

operation of the robot is driven by two inputs - speed of robot in 

x-axis and y-axis directions ( x_speed, y_speed ). 

The robot controller, whose structure is shown in Fig. 11 con- 

sists of various blocks, their function is described in [43] . The con- 

troller is connected to the PC on which the robot simulation en- 

vironment (SEPC) runs via the Interface Block. Through this block, 

data from the simulation are received, and in the opposite direc- 

tion, instructions defining the required movement of the robot are 

sent back. The central block of the robot controller is a bus through 

which communication between blocks is accomplished. The Posi- 

tion Evaluation Unit (PEU) calculates the positions of the robot in 

the maze and provides them to other units as coordinates x and 

y. The Barrier Detection Unit (BDU) uses four sensors and provides 

the information about the distance to the surrounding barriers. The 

map updating provided by the Map Unit (MU) is based on the in- 

formation about the positions of the robot and the barriers vec- 

tor. The Map Memory Unit (MMU) stores the information about an 

up-to-date map. The Path Finding Unit (PFU) implements a simple 

iteration algorithm for finding a path through the maze. The me- 

chanical parts of the robot are driven by setting the speed in the 

required direction of the movement by the Engine Control Module 

(ECM). The communication of functional units with a bus is ac- 

complished through the bus wrapper (FU_WB) and controlled by 

the finite state machine (FU_FSM). 

Our electro mechanical system was introduced, but verification 

environments for three phases of verification process must also 

be proposed. These verification environments are implemented ac- 

cording to principles presented above. 

9.1. Simulation based verification environment (the first phase) 

The general verification environment for the first phase shown 

in Fig. 2 is a standard UVM-based functional verification environ- 

ment which is usually created during electronic systems develop- 

ment. In our example, the electronic controller is a robot controller 

and the mechanical part is a robot going through a maze. The 

reference model is implemented with respect to the same spec- 

ification as the robot controller, the inputs are the information 

from sensors and outputs are speed values in x-axis and y-axis 

directions. These speeds are compared with the speed values re- 

ceived from the robot controller. Naturally, the compared speed 

values must be the same. The verification environment and refer- 

ence model are presented in more details in [44] . 

The verification environment is able to process multiple ver- 

ification scenarios (see 3 ), while one verification scenario is, in 

the case of robot, represented by a maze and start and goal po- 

sitions of the mission. Therefore, stimuli generation in this case- 

study means mazes generation. 

9.2. Maze generation 

Maze generation is a well known and explored area for which 

a considerable number of algorithms generate simple or sophisti- 

cated mazes [45] . The vast majority of algorithms operate in a two- 

dimensional space, keeping their current state and can constantly 

change cell values of a maze in time. These algorithms are highly 

unsuitable for our proposed architecture of the universal genera- 

tion, because the output of the generator (a line of the maze) can- 

not be determined in one step, therefore, it is determined gradu- 

ally by many factors and dependencies between different cells of 

the maze. However, an algorithm exists such that is based on a bi- 

nary tree and a particular line of the maze can be determined only 

from the previous one. This principle is completely satisfactory for 

our generator and the output maze is fully sufficient for our needs. 

The basic principle of the binary tree algorithm is shown in 

Fig. 12 . It starts from the basic matrix of the maze (a) in which 

some cells are tightly specified - either the corner or the wall. 

We represent the corridors by zeros and the walls by ones. Cells 

marked with a question mark represent areas that can take the 

value of 0 or 1, thus the corridor or the wall. In order to maintain 

the continuity from any corner of the maze to another, it is neces- 

sary to perform a modification of the basic matrix of the maze so 

that each two adjacent sides of the maze must contain the corridor 

over its entire dimension (b). In our case, we chose this corridor to 

the northern and the western side of the maze. The final and most 

critical task is to determine cells A, B, C, D which allows us to have 

the maximal continuous maze (c). 
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Fig. 11. The block diagram of the robot controller. 

Fig. 12. The demonstration of a conversion of the basic matrix of the maze for 

needs of the generator. 

The original description of the algorithm [45] divides cells of 

the maze in a line into groups of corridors bordered by walls. For 

each group, an algorithm determines one entrance, either in the 

northern or western part of the border. This ensures the passage 

from the northern part of the maze to the south and the same 

applies for the passage from the west to the east. We transferred 

this principle into one line dependency in the maze and the result 

is the following dependence. If cell A, respectively C, was randomly 

selected for the corner in Fig. 12 .b, then cell B, respectively D, will 

be a wall and vice versa. 

9.3. FPGA-based verification environment (the second phase) 

The second phase of our verification process is based on the 

FPGA-based verification environment. The environment is shown 

in Fig. 13 . It can be seen that the electronic controller is repre- 

sented by the robot controller implemented into FPGA and the me- 

chanical part is represented by a robot in a maze simulated in the 

Player/Stage environment for robot simulation. The verification en- 

vironment just observes the communication between the robot in 

the maze and its robot controller. 

Multiple verification scenarios evaluation is done with respect 

to the process shown in Fig. 8 . Stored verification scenarios are 

mazes with start and goal positions saved during the previous 

Fig. 13. The architecture of the FPGA-based verification environment for the robot 

controller. 

phase. The important step in this process is fault injection which 

allow us to inject faults according to various strategies. 

9.4. Mechanical part reactions (the third phase) 

Checking behaviour of the mechanical part is done by moni- 

toring the information provided by sensors on a robot. The dis- 

tances from three control points are used for monitoring robot tra- 

jectory through the maze, especially checking if the robot finds 

a goal position. The information about barriers are used for the 

detection of collisions with a wall. The information about barri- 
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Fig. 14. Three types of mazes. 

Table 1 

Average number of robot steps. 

Maze size 7 × 7 15 × 15 31 x 31 

Average number of steps 16 93 433 

ers are represented by four values with distances from the wall in 

four-neighbourhoods of the robot in the maze. These values can be 

compared with predefined minimal values and verification can de- 

tect if the robot is closer to the wall or if the robot crashes into 

the wall. 

Fig. 10 shows general functional verification environment for 

the third phase. The values from sensors are routed directly to the 

scoreboard and this verification environment is dedicated just to 

checking behavior of the mechanical part. In our example, we cre- 

ated one combined verification environment which serves both for 

the second and the third phase. This verification environment is 

shown in Fig. 13 where values from sensors and values from a ref- 

erence model are inputs to the scoreboard which checks electron- 

ical and mechanical parts concurrently. It means that scoreboard 

implements functions both for checking outputs of robot controller 

and also for checking reactions of mechanical robot. Behavior of 

mechanical robot is checked by monitoring distances of robot to 

the wall. 

10. Casestudy: experiments and results 

Performed experiments correspond to the activities of all 

phases of the fault tolerance evaluation process. 

10.1. The first phase - simulation based verification 

The outputs of the first phase are: 1) the electronic part with- 

out bugs (robot controller), 2) the list of the used verification sce- 

narios, and 3) achieved coverage. Fig. 14 shows three types of 

mazes which were used in our experiments. The presented mazes 

differ in their dimensions and we chose 7x7, 15x15 and 31x31 cells. 

Examples of start and goal positions are also shown in Fig. 14 . 

With the growing size of the maze the number of steps that the 

robot must go through increases. The average number of the robot 

steps in various types of mazes is shown in Table 1 . The main goal 

of the experiments, including debugging the robot controller, was 

to determine the optimal size of the maze and the number of gen- 

erated mazes (verification scenarios) which will lead to the best 

code coverage. 

For the experiment, we chose the number of performed ver- 

ification scenarios equal to 10, 10 0, 20 0 and 50 0, for which we 

monitored an achieved code coverage. The numbers of performed 

verification scenarios were the same for all types of mazes and in 

total 1500 verification scenarios were performed with a variety of 

mazes. Various bugs were identified and debugged during the ver- 

ification process. It can be stated that the robot controller operates 

according to its specification for the performed 1500 verification 

scenarios. 

Experimental results are presented in Table 2 . It can be rec- 

ognized that the maximal achieved total code coverage is 91.85%. 

The inability of achieving an ideal 100% is caused by the default 

branches in the source code which are never executed (which is 

correct), and also by some of the control expressions that are used 

only when an abnormal situation occurs (e.g. a fault). The table 

also shows that a rising number of verification scenarios does not 

increase the achieved code coverage. It is probably because in one 

scenario multiple input transactions are packed. 

On the other hand, resizing the maze from 7 x 7 to 15 x 15 

cells led to a slight increase of code coverage, which is possibly 

due to the effect of the maze. When increasing the size of maze to 

31x31 cells, the coverage was not changed. Such studies show that 

the 7 x 7 cells maze is too small for the next phase of fault impact 

evaluation process. This trend is shown in the bar chart in Fig. 15 

which shows the code coverage for different sizes of mazes for 100 

verification scenarios (the part of Table 2 ). 

The results needed to perform the next phase of the fault im- 

pact evaluation were obtained in the experiment. Faults will be in- 

jected into the electronic controller during each verification sce- 

nario in the second phase of evaluation. Each verification scenario 

will be repeated several times and during each run, various faults 

or various sequences of faults will be injected. 

10.2. The second phase - controller reactions 

The second phase in the proposed evaluation process is tar- 

geted towards evaluating the correct function of a robot controller 

implemented into the FPGA. For this purpose fault injection is 

used. No fault tolerance methodology implemented in the robot 

controller for these experiments was used and the goals of the 

experiment were: 1) detailed reliability analysis of the robot con- 

troller and its functional units, and 2) a demonstration that the 

evaluation platform can be used for a fault tolerance evaluation. 

As was mentioned above, faults can be injected in a way which 

reflects various strategies. Similar experiments were done in our 

previous work [13] , but significant differences in evaluation strate- 

gies are presented in this paper. We have decided to perform 50 

verification runs and inject one fault into one functional unit (sin- 

gle fault) during one verification run and to use mazes of larger di- 

mensions, the mazes of 15 x 15 for this phase. The robot controller 

consists of 15 functional units which leads to 750 verification runs 

Table 2 

The experimental results. 

# of verification scenarios 10 100 200 500 

Size of mazes 7 x 7 15 x 15 31 x 31 7 x 7 15 x 15 31 x 31 7 x 7 15 x 15 31 x 31 7 x 7 15 x 15 31 x 31 

Statement coverage 93,54% 93,70% 93,70% 93,54% 93,70% 93,70% 93,54% 93,70% 93,70% 93,54% 93,70% 93,70% 

Branch coverage 94,91% 95,07% 95,07% 94,91% 95,07% 95,07% 94,91% 95,07% 95,07% 94,91% 95,07% 95,07% 

Expression coverage 81,33% 81,33% 81,33% 81,33% 81,33% 81,33% 81,33% 81,33% 81,33% 81,33% 81,33% 81,33% 

Condition coverage 88,28% 89,18% 89,18% 88,28% 89,18% 89,18% 88,28% 89,18% 89,18% 88,28% 89,18% 89,18% 

Total coverage 91,61% 91,85% 91,85% 91,61% 91,85% 91,85% 91,61% 91,85% 91,85% 91,61% 91,85% 91,85% 
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Fig. 15. Code coverage for each type of mazes for 100 verification scenarios. 

Table 3 

Experimental results in functional verification. 

Unit Number of fails Fails in % Unit Number of fails Fails in % 

bdu 40 80.00 mu_wb 32 64.00 

bdu_fsm 20 40.00 peu 39 78.00 

bdu_wb 35 70.00 peu_fsm 40 80.00 

ecu 38 76.00 pfu 34 68.00 

intercon 30 60.00 pfu_wb 28 56.00 

mmu 31 62.00 sif_fsm 50 10 0.0 0 

mu 25 50.00 sif_wb 34 68.00 

mu_fsm 1 2.00 

Fig. 16. Experimental results in functional verification. 

and injected faults in total. The task of the verification environ- 

ment was to compare the outputs of the robot controller and check 

the impact of injected fault. Table 3 shows the number of verifica- 

tion runs where the incorrect outputs of the robot controller were 

caused by faults (percentage values are shown as well). The total 

number of verification runs for each functional unit is 50 and the 

main reason for this is the time complexity of the verification runs, 

because the robot has to go through the whole maze. 

The results of our experiments are shown in Fig. 16 as well. 

The bar chart expresses a percentage number of faults with their 

impact on the robot controller. As can be seen, some anomalies 

in the results of the experiments exist. These include results com- 

bined with three functional units mu_fsm, peu_fsm and sif_fsm . In 

the case of mu_fsm , it is apparently a low number of faults with an 

impact on the correct function of the robot controller. The peu_fsm 

and sif_fsm functional units represent a completely different sit- 

uation, the number of faults with an impact that is significantly 

higher than for other units. That is why we repeated the experi- 

ments on a higher number of verification runs (225 in this case) 

Table 4 

Extended experimental results. 

Unit Number of fails Fails in % 

mu_fsm 18 8 

peu_fsm 181 80.4 

sif_fsm 219 97.3 

with these functional units. Table 4 shows additional verification 

runs that were performed in order to analyse these anomalies in 

detail. As can be seen, the additional results are closer to the over- 

all average. 

10.3. The third phase - mechanical part reactions 

The evaluation of mechanical robot behaviour was the main 

task for the third phase. In this phase fault injection is also used. 

Faults are injected according to the same strategy as in the sec- 

ond phase because the second and the third phases share the 
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Fig. 17. Experimental results in functional verification. 

Table 5 

Number of robot collisions. 

Unit Number of el. fails Number of collisions Collisions in % 

bdu 40 11 27.50 

bdu_fsm 20 1 5.00 

bdu_wb 35 0 0.00 

ecu 38 10 26.32 

intercon 30 0 0.00 

mmu 31 2 20.00 

mu 25 11 4.00 

mu_fsm 1 1 22.00 

mu_wb 32 3 2.00 

peu 39 31 6.00 

peu_fsm 40 14 62.00 

pfu 34 12 28.00 

pfu_wb 28 0 0.00 

sif_fsm 50 3 6.00 

sif_wb 34 0 0.00 

same verification environment. The robot controller was also used 

without fault tolerance methodologies application and the goal of 

the experiments corresponding to the third phase was 1) to show 

the most frequent incorrect behavior of mechanical part; and 2) 

a demonstration that the evaluation platform based on functional 

verification is able to monitor the behaviour of the mechanical 

part. 

In these experiments, we found that the most common conse- 

quences of injected faults are robot stopping at one place and robot 

collision with a wall. We can say that all verification runs with 

electronic failure leads to one of these consequences. If the elec- 

tronic failure leads to the robot stopping at one place, it usually 

does not cause any damage. But on the other hand, the collision 

of the robot with the wall can lead to economical losses. Table 5 

summarizes the number of electronic failures for each component 

and this information is supplemented by the number of collisions 

with the wall. Also, the number of percentage of electronic failure 

which lead to a collision is shown. 

These results are also presented in the graphical version in the 

bar chart shown in Fig. 17 . It is evident that the percentage num- 

ber of collisions is different for each functional unit. It shows that 

some of functional units are more important to robot navigation 

than others. For example, the percentage for peu_fsm functional 

unit is the highest and the main task of this unit is routing infor- 

mation about its position to the bus. The path through the maze 

is searched by pfu and the movement of the robot is controlled by 

ecu , so the percentage number of collisions corresponding to these 

two functional units is also quite high. 

We have made a fault injection analysis of the robot controller. 

We found out that some blocks are more prone to faults than oth- 

ers. As can be recognized in the chart showing the results, the 

functional unit mu_fsm is less prone to faults than other units. On 

the other hand, the units peu_fsm and sif_fsm are the most prone 

units for faults. A failure of electronic part usually leads to the 

robot stopping at a place and to its collision with a wall. As was 

mentioned above, some of the damaged functional units lead to 

collisions in more cases than others. So, these functional units are 

more problematic from a safety point of view. This analysis is es- 

pecially important for future applications of fault-tolerant method- 

ologies. A system designer obtains the information on which blocks 

need more attention from a reliability point of view. 

The second finding is that we are able to use functional verifi- 

cation in conjunction with the fault injector to determine the im- 

pact of faults on the electro-mechanical system. If fault tolerance 

methodologies will be applied to the electro-mechanical system (in 

our case, the robot controller) our platform would be used to mon- 

itor impact of faults on system hardened against faults and there- 

fore to automate the evaluation of these fault tolerance method- 

ologies. 

11. Conclusions and future research 

In this work, we presented our evaluation platform for test- 

ing fault-tolerant methodologies and evaluation impact of faults 

on correct operation of electro-mechanical systems. Our evaluation 

platform is based on functional verification where the verified cir- 

cuit is running on FPGA which allows us to inject faults directly 

to the FPGA. Our evaluation process is divided into three phases 

and each of these phases needs a specific verification environment. 

Firstly, a basic verification environment was introduced for the first 

phase of the evaluation process which is able to evaluate a single 

verification scenario and the creation of an extension that allows 

automated evaluation of multiple verification scenarios which were 

presented as well. This automated evaluation uses the verification 

scenarios produced by our generator or those which are part of the 

optimized regression test suite. The verification environment for 

the second phase where DUT is implemented to the FPGA was also 

mentioned. In the proposed methodology, the verification environ- 

ment acts as an observer that checks data transferred between the 

electronic and mechanical parts. During the last phase, the impact 

of faults to the mechanical part is monitored by checking values 

received from sensors placed on a robot in a maze. The verifica- 

tion environment for the third phase was also introduced. 

For a demonstration of our evaluation platform we proposed 

one demonstration example which uses a robot and its electronic 
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controller as an experimental electro-mechanical application. Per- 

formed experiments correspond to all phases of a fault impact 

evaluation process. The output of the first phase was the debugged 

electronic controller and the list of verification scenarios for the 

next phase. During the concurrent second and third phase, the reli- 

ability analysis was done by means of fault injection into the FPGA. 

The result was the ratio of faults that caused an incorrect output 

of the electronic controller and the number of faults that caused 

the robot collision. 

The goal of our future work is to apply various fault tolerance 

methodologies on the robot controller and evaluate them with our 

evaluation platform. For example, we plan to construct our robot 

controller as a fault-tolerant neural network mentioned in this pa- 

per. We can also use more conventional fault-tolerant methodolo- 

gies, such as TMR, on-line checkers or error correction codes. We 

will focus on testing fault tolerance methodologies targeted to FP- 

GAs in the context of electro-mechanical systems which is often 

the way of using fault-tolerant electronic controllers. On the basis 

of these results, we are going to develop generally usable princi- 

ples of developing systems for evaluating fault-tolerant qualities of 

electro-mechanical systems. 
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Abstract

Field Programmable Gate Arrays (FPGAs) are be-
coming more popular in various areas. Single Event
Upsets (SEUs) are faults caused by a charged particle
in the configuration memory of SRAM-based FPGAs.
Such a charged particle can cause incorrect behavior in
the whole system. This problem becomes greater if such
a system operates in an environment with increased ra-
diation (e.g. space applications). Lots of techniques to
harden FPGAs against faults exist and new techniques
targeted to FPGA are in scope of many researchers.
One such technique is called Triple Modular Redun-
dancy (TMR). It is important to evaluate these tech-
niques on a real system with a real FPGA. An eval-
uation platform based on an artificial fault injection
and a functional verification for testing fault tolerance
methodologies is introduced in this paper. Parts of our
experimental system are hardened by using TMR and
its experimental evaluation is one of the main parts of
this paper. In this paper, we focus on the TMR fault
tolerance method and change the target functional unit,
on which the method is applied. This allows us to de-
termine the reliability gain obtained through the hard-
ening of a particular functional unit and allows us to
compare the results. We propose experiments with vari-
ous fault injection strategies (multiple and single faults)
and monitor impact of faults on both the electronic and
mechanical parts of the experimental system.

1. Introduction

Field Programmable Gate Arrays (FPGAs) are be-
coming more popular for a number of reasons. SRAM-
based FPGAs can provide hardware implementation
of applications that are often faster than processor-
based implementations and require lower costs than

Application-Specific Integrated Circuits (ASICs) [4].
Moreover, their reconfigurability makes them flexible
almost like processors do and offers us to change imple-
mented application during the life cycle of such a sys-
tem. FPGAs can be used in different areas, e.g. auto-
motive, aerospace or space. SRAM-based FPGAs con-
sist of programmable components (configurable logic
blocks, look-up tables, flip-flops, etc.) and their in-
terconnection. Configuration of FPGA is stored as a
bitstream in the configuration memory. Many FPGAs
use an SRAM memory as their configuration memory.
Sensitivity to faults caused by charged particles is the
problem of FPGAs from the reliability point of view.
A hit of charged particles can lead to the inversion of a
bit in configuration memory which can change imple-
mented behavior of the whole system. This problem is
called Single Event Upset (SEU). This may be a prob-
lem, especially when FPGAs are used in areas with
increased radiation, e.g. space applications [12].

Although 80-99% of SEUs hit unused bits of the
configuration bitstream [4], it is important to harden
FPGA-based systems against faults. Lots of fault tol-
erance techniques targeted to FPGAs exist and new
ones are subject of investigation. The use of spatial
redundancy for hardening user logic against SEUs is
presented in [12]. One of the main approaches of spa-
tial redundancy is Triple Modular Redundancy (TMR),
which many researchers are trying to improve. For
example, paper [14] proposes a new fault tolerance
method targeted to SRAM-based FPGAs. This tech-
nique is based on a heuristic and uses inaccurate mod-
ules in combination with TMR. This approach reduces
the power and area overhead of the hardened design.

Paper [15] presents improved TMR which interest
don’t care bits of LUT configuration bits. These LUTs
are classified to the set of SEU-sensitive and SEU-
insensitive. This improved approach just triplicates
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sensitive LUTs and reduces the area overhead unlike
the classical TMR approach.

It is important to evaluate fault tolerance tech-
niques targeted to FPGAs. Three main approaches
are presented in [4]: 1) modeling tools, 2) fault em-
ulation testing and 3) accelerated radiation testing.
Authors of [2] present emulation method which em-
ulates effect of SEUs in the configuration of FPGAs.
Presented method is based on combination of simula-
tion and topological analysis of the circuit configured
in FPGA. Methotds based on synthesizable model of
faults are presented in [11]. Authors propose fault in-
jection tool which allows to inject faults to FPGA, but
various synthesizable fault models must be added to
the original design. This method requires modifica-
tions of the original circuit in the VHDL, additional
gates and wires must be inserted. FLIPPER, the evalu-
ation platform based on the fault injection directly into
an physical FPGA without modification of the original
circuit description, is presented in [1]. Thank to the
dynamic reconfiguration, it is possible to read, modify
and write back the configuration memory. FLIPPER
uses two boards with FPGAs, one is the main con-
trol board and second is board where tested circuit is
implemented. The main board control fault injection
which can be driven by the application operating on a
computer. Fault injection can be controller by a ad-
ditional functional unit implemented the same FPGA.
This approach is presented in [6]. The main reason is
the acceleration of the fault impact evaluation. Fault
injection process can be initialized from computer to
which experimental FPGA is connected.

In our previous work, we focused on several archi-
tectures with various fault tolerance methods. Such as
in paper [9], we target a processor based system and
its hardening. In paper [5], we focused on systems gen-
erated with the use of High-Level Synthesis (HLS) and
proposed a mechanism to incorporate fault tolerance
into storage elements and operations through redefini-
tion of data types behavior.

In our last research, we developed the evaluation
platform which allow us to test fault tolerance prop-
erties [8]. The developed platform uses functional ver-
ification and previously developed fault injector [13].
The main advantage of our platform is its ability to
test the impacts of injected faults not only on elec-
tronic controller implemented in FPGA, but also on
the mechanical part controlled by the tested electronic
controller, because lots of electronic systems control the
mechanical part which is an important component of
the whole system. In this paper, triplication (TMR) is
applied on our experimental system which is composed
of robot in a maze and its electronic controller and our

platform is used to analyze the reliability gained. It
should be noted that a great number of fault tolerant
systems are electromechanical applications. As an ex-
ample, the FT systems in planes can be used. That is
why we concentrated on a robot with its controller as
the experimental system.

In our research group, we also investigate new meth-
ods in the area of fault-tolerant systems design automa-
tion. Our aim is to create a fully automated environ-
ment to fault-tolerant systems design and its evalu-
ation. The experiments presented in this paper are
a step towards this new methodology, as it is impor-
tant to understand the behavior of various components
of the system utilizing different proportions of FPGA
primitive types during the presence of faults in these
components.

The paper has the following structure. Section 2
introduces our functional verification-based evaluation
platform and experimental electro-mechanical system.
Experiments and results with multiple and single fault
injection are presented in Section 4. Section 5 contains
the conclusion of this work and presents plans for our
future research.

2. Evaluation Platform and Experi-
mental System

This section briefly describes our evaluation plat-
form for evaluating fault tolerance methodologies
which was presented in journal publication [8].
Our platform is based on functional verification [7]
and standardized Universal Verification Methodology
(UVM) [3]. The task of functional verification is to
check if a hardware system matches a given specifica-
tion. In our case, functional verification is used as a
tool for checking if injected faults caused some discrep-
ancy on the output of the tested system. The platform
is shown in Figure 1. It is composed of several compo-
nents running on a computer and on an FPGA develop-
ment board. The important part of the platform is the
software part of the verification environment which is
running on a computer. The verification environment
observes communication between both parts of the ex-
perimental electro-mechanical system (electronic con-
troller and controlled mechanical part). The electronic
controller is run on an FPGA which is connected to the
simulation of the mechanical part (running on a com-
puter) through the Ethernet interface. Artificial faults
are injected through JTAG interface which is used by
the fault injector [13]. The fault injector uses partial
reconfiguration, it reads specified part of the bitstream
stored in configuration memory, inverts the specified
bit and writes it back to the configuration memory.
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Figure 1. The evaluation platform architec-
ture.

Together with the platform, we need to introduce a
process for verifying fault tolerance properties which is
composed of three phases. The first phase of evalua-
tion process is simulation based verification. Verifica-
tion is completely done in an RTL simulator (Model-
Sim) in this phase. The task of this phase is to check if
the electronic controller operates correctly according to
the given specification. The task of the second phase is
verification of the electronic controller which is imple-
mented into an FPGA. Scenarios which was obtained
during first phase are repeated together artificial faults
injection into FPGA. Previously developed fault injec-
tor is used in this phase. The impact of injected faults
on the behavior of electronic part is monitored in this
phase. The goal of the third phase is the analysisof the
faults which lead to corruption of the mechanical part.
The second and third phases use the FPGA-based ver-
ification environment, where a device under test is run
on the FPGA. The second phase monitors the effect of
faults on communication between the electronic con-
troller an the mechanical part. The third phase checks
the values of sensors on the mechanical part and mon-
itors its behavior.

3. Case Study: Robot in A Maze

Our goal is to demonstrate the proposed platform
and evaluation process on a real electro-mechanical sys-
tem. Our experimental electro-mechanical system was
developed for these purposes. It is composed of a robot
for seeking a path in a maze and its electronic con-
troller implemented in FPGA. The robot controller is
not a very complex system, but it is split into var-
ious components (bus, finite state machines, memo-
ries, etc.) which allow us to evaluate a wide scale of
fault tolerance methodologies. We do not have a real
robot, and, thus, we simulate its behavior. We use the
Player/Stage simulation tool which is able to simulate
robot and its environment. In our case we simulate

the robot in a maze. The simulation tool is running
on a computer from which data must be transfered to
FPGA board. We use Ethernet interface which allows
us to transfer data between the robot in simulation
(computer) and its electronic controller (FPGA).

The main component of the Robot controller [10] is
central bus through which communication between var-
ious functional units is accomplished. Controller con-
sist of 16 functional units, the most important are Posi-
tion Evaluation Unit (PEU) together with the Barrier
Detection Unit (BDU). The main task of BDU is to cal-
culate actual position of robot and also to detect obsta-
cles in the neighborhood. The obtained informations
are stored in the Map Memory Unit (MMU) through
the Map Unit (MU). Path Finding Unit (PFU) imple-
ments the algorithm for seeking path in maze which is
based on informations stored in memory (MMU). The
Engine Control Unit (ECU) controls mechanical parts
of the robot in maze. A control finite state machine
(FSM) and bus wrapper are important accessories of
almost all functional units.

Figure 2 shows a combined FPGA-based verifica-
tion environment for the second and the third phases
of the proposed evaluation process. The verification
environment is composed of two parts: 1) the UVM-
based verification environment and 2) the experimental
electromechanical system (robot in a maze). The veri-
fication environment operates just as an observer which
checks communication of the robot in a maze with the
FPGA without direct intervention. The golden model
is used for the comparison of expected data and really
transfered data. Some discrepancy is indicated as an
error on the output of the electronic controller. On
the other hand, as the third phase, data from sensors
and the correct behavior of the mechanical robot are
monitored.

4. Experiments and Results

In our experiments, we decided to examine the im-
pact of faults on particular components of the robot
controller unit. The experiments comprise the compar-
ison of results obtained from selected unhardened com-
ponents of the controller unit with their hardened ver-
sions. As a method of redundancy insertion, the TMR
was selected. Three components of the robot controller
unit, the PEU, the BDU and the ECU, were selected
for comparison. The reason for this choice was that
the PEU and the BDU components compute the in-
put values for the path-searching algorithm. From this
point of view, these components are very important
and the complete controller unit is function-dependent
on them. The ECU component directly affects the
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Figure 2. The FPGA-based verification envi-
ronment for the second and third phases of
the robot controller evaluation.

movement of the robot, thus failure of this component
would cause the complete controller unit to fail.

In this experimentation, we use our evaluation plat-
form, which is based on a permanent configuration bit-
stream bit-flip, and, thus, we use this type of error in
our evaluation. The experiments were performed with
the usage of two fault injection strategies. The first
strategy was to inject a single fault into an individual
component per verification run before the robot was
started and observe its ability to reach the target po-
sition. The second strategy comprised multiple faults
injections per verification run. In this case, a number
of faults were injected until the first failure propagated
to the controller outputs was observed.

4.1. Multiple Faults Injection

In the multiple faults injection experiment, perma-
nent bit-flips were injected into utilized Look-up Tables
(LUTs) contents with a constant period of 5s. This
period was experimentally chosen based on the system
failure manifestation time. This means that each 5s
only one SEU was injected into the particular compo-
nent of the robot controller unit LUT contents (only
utilized LUT bits are considered) until the robot failed
or reached the target position.

At first, the multiple faults were injected into the
unhardened version of the robot controller. The reason
for this was to find out the behavior of the whole sys-
tem without any fault tolerance method involved. In

this stage, one set of 1000 verification runs was done
for each of the selected components in which faults
were only injected into the particular controller unit
LUTs contents. The statistical results are shown by
the PEU noft, the BDU noft and the ECU noft bars
of the box plot in Figure 3. Box plot shows for each
component the minimum, the first quartile (25%), me-
dian, the second quartile (75%) and maximum of the
numbers of faults injected into FPGA that for each
particular run were enough to manifest a failure on the
controller outputs. As can be seen, each component
has its own level of susceptibility to SEUs.

Figure 3. Box plot shows statistical evaluation
of number of faults injected into FPGA which
led to the electronic failure.

Then, three other robot controller unit designs with
the TMR applied selectively to the PEU, the BDU and
the ECU components were created. Equivalent exper-
iments were repeated with the three new designs in
which only the faults were injected into the particular
hardened component. The bars PEU tmr, BDU tmr
and ECU tmr in the box plot in Figure 3 show the
susceptibility to faults with the TMR applied. As can
be seen, each of the bars representing the hardened ver-
sion is above the unhardened one, therefore, more fault
injections were required to cause a malfunction of the
complete controller unit.

We must note that when multiple faults were in-
jected, the hardened version failed in a smaller number
of cases than the unhardened version. The numbers
of cases in which the complete controller unit failed
while faults were injected into the selected components
are shown in Table 1. As can be seen, the application
of the TMR led up to 93.3% decrease of failure man-
ifestations. We can conclude that the TMR led to a
lower number of electronic failures and also led to the
increased number of faults injected into FPGA which
caused a failure.

Besides the influence of faults on the electronic part
of the system, we also observed its influence on the
mechanical part. The electronic failure usually stopped



Table 1. The impact of multiple faults injected into the unhardened and hardened versions of robot
controller both on the electronic controller and mechanical part.

Monitored impact
PEU BDU ECU

noft tmr noft tmr noft tmr

Electronic OK [−] 656 977 361 917 226 622
Electronic failed [−] 344 23 639 83 774 378

Goal not reached [−] 344 23 639 83 774 378
Collision with wall [−] 0 0 0 0 15 3
Robot stop on place [−] 344 23 639 83 759 375

Reliability improvement [%] 93.3% 87.0% 51.2%

the robot on its position and in some cases the failure
led to a collision with a wall. It can be noted that the
stopping of the robot on its position is a less serious
failure consequence than the collision. Table 1 also
shows the numbers of cases in which the robot crashed
into the wall and the numbers of cases in which the
robot stopped at a place.

4.2. Single Faults Injection

In the case of the single faults injection experiment,
exactly one bit-flip of the utilized LUT contents of a
particular component was injected per verification run
and its impact on the behavior of the whole controller
unit was observed. At first, 1000 verification runs with
the unhardened design of our robot controller unit were
performed. Table 2 shows the numbers of runs that led
to an electronic failure. As can be seen, if the single
faults are injected, the number of failures is signifi-
cantly lower than in the case of multiple faults injec-
tion.

Then, the verification runs with single fault injec-
tions were repeated on the hardened design. Table 2
also shows the numbers of runs in which an injection
into the selected components with the TMR applied
led to a failure (the columns PEU tmr, BDU tmr and
ECU tmr). We believe that the fact the hardened
unit occasionally fails after the single fault injection
is caused by hitting the voter which is needed to in-
terface the particular component with the rest of the
system.

The Figure 4 shows the number of faults which lead
to the failure of the electronic controller. The figure
shows the graphical comparison of the hardened and
unhardened versions. One can see that the BDU com-
ponent is the most vulnerable to faults and this shows
that the BDU is a really important component of the
whole robot controller. One can see, for the hardened
version of the design, the number of failures is lower

for each of the selected components.

Figure 4. Number of faults injected into FPGA
which cause the electronic failure.

As in the previous case, we observed the impact of
faults both on the electronic and the mechanical parts
of the experimental system as well. Not all of the
faults injected into FPGA that caused the electronic
controller failure caused the robot to collide with the
wall. Table 2 also shows the numbers of wall collisions
and cases where the robot stopped during its journey.

5. Conclusions and Future Research

The use of functional verification as a tool for eval-
uation of impact of artificial faults injected into the
configuration of SRAM-based FPGAs was presented
in this paper. Our platform was demonstrated on the
evaluation of the impact of injected faults on the robot
controller which navigates the robot in a maze. The
paper shows experimental results with the hardened
(triplication) along with the unhardened robot con-
troller version. Both single and multiple faults injec-
tion strategies were used. Our experiments show the
benefit of triplication which in the case of the single
fault injections led to a lower number of electronic fail-
ures. We believe the susceptibility of the hardened unit
to the single fault injection is caused by hitting the



Table 2. The impact of single faults injected on the unhardened and hardened versions of robot
controller both on the electronic controller and mechanical part.

Monitored impact
PEU BDU ECU

noft tmr noft tmr noft tmr

Electronic OK [−] 971 1000 813 996 952 990
Electronic failed [−] 29 0 187 4 48 10

Goal not reached [−] 29 0 187 4 48 10
Collision with wall [−] 0 0 5 0 1 0
Robot stop on place [−] 29 0 182 4 47 10

Reliability improvement [%] 100.0% 97.9% 79.2%

voter, which is needed to interface the particular com-
ponent with the rest of the system. In the case of the
multiple faults injection, it is clearly visible that the
triplication led to a lower number of electronic failures,
but experiments have also shown that the number of in-
jected faults which cause a failure is higher than in the
case of the unhardened robot controller. The number
of failures is significantly higher than in the case of the
single fault injections, as in this experiment, multiple
faults were injected during one verification run.

The results presented in this paper are integral part
of our future research in which we will integrate faulty
module recovery into our robot controller, which sig-
nificantly increases the resource utilization, and, thus,
we aim to harden only the most sensitive functional
units of the robot controller. The results obtained in
this research will help us to increase the efficiency of
the reliability method.

As for future research, our goal is to use the re-
configuration as a tool for faulty module recovery. We
expect that the benefit of recovery will be most obvious
in the case of multiple faults injection. This expecta-
tion will be confirmed or refuted by repeating similar
experiments as shown in this paper.
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Abstract—In current SoC verification, the trend is to create
verification solutions that are tailored to specific issues in SoC
or to specific architectures. The reason is that the complexity
of these systems makes it difficult to use general verification
approaches such as formal or simulation-based verification. This
paper presents a solution that is targeted to one particular
area - Application-Specific Instruction-Set Processors (ASIP) and
multi-processor systems containing several ASIPs. We propose
automated FPGA prototyping and accelerated verification of
these systems while the accelerated verification environment
corresponds to the principles of UVM (Universal Verification
Methodology) therefore can easily be integrated. Automated
generation of verification environments and acceleration of ver-
ification runnning on a real hardware platform makes this
solution very unique and beneficial, not only in speed, but also
in debugging specific hardware issues.

Keywords—UVM, Acceleration, FPGA Prototyping, ASIP.

I. INTRODUCTION

The current embedded systems, such as Systems on Chip
(SoC), multi-processor systems (MPSoC) or equipment for
Internet of Things (IoT), are more and more complex. They
usually consist of one or more processors (either General Pur-
pose Processors (GPPs) or Application Specific Instruction-
set Processors (ASIPs)) and various types of peripherals. An
important phase in the development cycle of these systems
is the verification of their functionality. Various approaches
for verification currently exist, such as formal verification,
assertion-based verification or simulation-based verification
(also called functional verification). But in general, functional
verification is easier to apply for hardware engineers as they
are familiar with simulation tools and this approach does not
require a deep knowledge of formal specifications. Moreover,
standard languages, methodologies and libraries were defined
for functional verification. The most commonly known are
the SystemVerilog IEEE language standard [1], Universal
Verification Methodology (UVM) [2] and the open-source
UVM library (with all the basic components of verification
environments). They work well for unit level verification, but
for processors, SoC or MPSoC, they do not scale well. The
reason is not only in the complexity of these systems, but also
the fact that software embedded into processors must be taken
into account as well [3], [4]. Moreover, their verification is
time consuming and this can lead to undesirable prolongation
of the time to market.

Therefore, because of its complexity, it seems to be the
current state-of-the-art in SoC verification to come with a

verification solution that is adjusted to SoC (digital vs. analogy,
verification IPs, graph-based IP connections, etc.); or their
application domain (e.g. multimedia, DSP applications, smart
devices, etc.) and is often connected to the development
tool of these systems. For example, Breker [5] introduces a
graph-based approach to functional verification. Users capture
with graphs the IP level scenarios as nodes and connections
make the SoC level scenario. Cadence [6], Synopsys [7]
or Mentor Graphics [8] provides verification IPs for more
than 40 communication protocols and 60 memory interfaces
in order to facilitate SoC verification. Duolog [9] focuses
on IP integration problems and generates UVM verification
environments from interface-based executable specification.
Codasip company [10] provides Codasip Framework that is
targeted to ASIP and MPSoC development and offers auto-
mated generation of UVM verification environments for these
systems that are customized for a class of applications that run
on their embedded processor(s).

In our previous work we focused on automated generation
of UVM verification environments for ASIPs and MPSoC
from their high-level description in architecture description
language (ADL) [11]. This feature is now integrated into the
Codasip Framework. Moreover, we designed an open-source
framework HAVEN for FPGA acceleration of simulation-
based verification of various systems [12].

Our current research is a continuation of our previous work.
We designed and implemented a new feature for automated
FPGA prototyping and accelerated verification of ASIPs and
MPSoC. We realised that simulation-based verification of
ASIPs and MPSoC is valuable, but it runs slowly when we
need to evaluate thousands of embedded software applica-
tions. Therefore, in the accelerated version of verification
we replicate the main principle of HAVEN and move the
Device Under Test (DUT), which is ASIP or MPSoC, from
the software simulation into an FPGA. All other parts such as
loading package applications, a running reference model and
scoreboarding, remain in the software. If a bug is detected in
the accelerated version, we can use the pure software version
of the verification environment running in the simulator (the
non-accelerated version) for easier debugging of the problem.
Another important benefit of using FPGA is that the ASIP
prototype will run on real hardware. This helps us to uncover
bugs, which are related to the placement of the design into
real hardware and which are not detectable in simulation.

Regarding acceleration of verification in general (not nec-
essarily for processors), there already exist some commercial
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solution which are quite similar to our work. Mentor Graphics
Veloce technology [13] accelerates simulation by synthesising
the DUT and placing it into a proprietary emulator. Emulation
and acceleration of verification also offers Cadence company
in their Cadence Palladium Series [14]. However, our solution
is different as it aims exclusively at verification and FPGA-
prototyping of ASIPs and MPSoC. But as mentioned above,
targeting verification to a specific domain can be much more
precise. At the same time, we support system-level verification
as we are able to verify not only the hardware architecture of
ASIPs, but also various software applications that are executed
on them.

This paper is organized as follows. The architecture of the
accelerated verification environment is described in Section II.
The case study in Section III shows the process of generating
the verification environment for a selected ASIP (the accel-
erated and non-accelerated version) as well as experimental
results for different verification runs. Section IV summarizes
the results and proposes our plans for future research.

II. ARCHITECTURE OF THE ACCELERATED
ENVIRONMENT

In order to get an idea on how the accelerated verification
environment may look like, we prepared a simple demonstra-
tion model. The verified system (DUT) is a simple MPSoC
consisting of two ASIPs: ASIP1 and ASIP2. ASIP1 receives
input data and functions as a pre-processor for ASIP2, ASIP2
sends results to its output ports. But of course, DUT can be
represented by any other ASIP or MPSoC.

The non-accelerated UVM verification environment in Fig-
ure 1 (in SystemVerilog) for the demonstrated MPSoC is
generated automatically in Codasip Framework. The accel-
erated verification environment in Figure 2 is derived from
the non-accelerated version. It should be noted that almost
all UVM components are moved into the FPGA, except for
the Reference Model and Scoreboard. Nevertheless, we aim
at designing consistent verification architecture in FPGA too.
Therefore, UVM Agents and their inbuilt components are just
replaced by HW Agents. We believe that consistent FPGA
verification architecture is beneficial not only for the automated
generation of the accelerated version, but it also remains
understandable for verification engineers.
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Fig. 1. The architecture of the non-accelerated verification environment.

In the accelerated version, UVM testbench, Reference
Model and Scoreboard are running in software simulation and
the remaining parts are running in FPGA. Communication
between the software and hardware parts of the verification
environment is accomplished using the framwork HAVEN
(for more details please see [12]). More details about the
components of both parts are provided below in the following
subsections.
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Fig. 2. The architecture of accelerated verification environment.

A. Software Part of the Verification Environment

The main components of the software part are Refer-
ence Model and Scoreboard. Reference Model is generated
automatically from the high-level specification. Scoreboard
compares results of the Reference Model to the results of DUT
(received from the hardware part through the Output Wrapper
component). In particular, we compare the content of memories
and register fields when the specific data set is processed, and
we continuously check data from the output ports. The role
of Input Wrapper is to send applications (they are loaded to
ASIPs and define their functionality) and input data.

The applications are obtained from our designed and im-
plemented stimuli generator which is also at the forefront of
our overall research plan. The stimuli generator is especially
expected to be used in functional verification. The conception
of the stimuli generator is designed for versatile purposes.
The aim of the generator is changing its input parameters and
achieving its different behavior and thus its different outputs.
The generator is based on constraint solving [15] and it takes
problem specification as an input. For our purposes of the
ASIPs verification, the generator takes the assembly instruction
set specification and constraints for this instruction set as the
input. Instruction set defines what is to be generated and
constraints defines how it has to be generated. When generator
is operating, it must deal with numerous conditions and
restrictions (constraints). At a processor, it is needed to deal
mainly with jump instructions, memory access instructions
and latencies for each instruction. Thanks to the constraints,
there are reduced possible invalid outputs. The output from
the generator is an assembly program (stimulus) which is
transformed into machine code and passed into the Input
Wrapper. The basic principle of the presented generator are
show in Figure 3.
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The key part of the generator is the definition of the con-
straints and their fast interpretation. We defined 20 constraints
for valid generating an assembly code. For example absolute
jump instructions need 6 types of constraints for ensuring valid
and unique label generation in whole program. The generator
does not work with semantics of instructions. This allows
to focus on more application domains with different stimuli.
Therefore the generator is not limited only for processors and
can be used in many areas. We are able to generate valid
assembly programs for RISC (Reduced Instruction Set Com-
puting) and VLIW (Very Long Instruction Word) processors
so far. Some more information about the presented generator
is in [16].
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Fig. 3. The basic principle of the generator.

B. Hardware Part of the Verification Environment

Hardware components are currently implemented manually
in VHDL. During the following months we plan to generate
them automatically in VHDL/Verilog from the high-level spec-
ification (similarly as we generate UVM verification environ-
ments in the non-accelerated version). A short description of
the main hardware components follows.

Hardware Agents are similar to UVM Agents and their
main components are Drivers and Monitors. Drivers drive
input ports of DUT and Monitors, which on the other hand,
collect data from output ports. In Figure 2 you can see the
Hardware Memory Agent, two Hardware Register Agents and
the Hardware Platform Agent. The Hardware Memory Agent
is connected to the main memory. It contains the Driver called
the Application Loader that drives the loading of applications
into the program part of the memory at the beginning of
computation. The second component is the Monitor that takes
an image of the memory at the end of computation and sends it
to the software Scoreboard for comparison to reference results.
The Hardware Register Agent contains only the Monitor that
takes an image of register fields at the end of computation and
sends it to the software Scoreboard. The Hardware Platform
Agent is active during the whole computation; it contains the
Driver that during the computation stimulates input ports of
ASIP1 with data and Monitor that sends the valid output data
of ASIP2 to the software Scoreboard.

III. THE CASE STUDY

We performed our experiments and measures with the
DUT consisting of one ASIP called Codix RISC [17]. The
aim of these experiments was to evaluate and compare the
performance of the non-accelerated version of verification to
the FPGA-accelerated version.

The non-accelerated verification environment is generated
automatically in Codasip Framework. All parts are in Sys-
temVerilog (except of DUT in VHDL or Verilog) and are sim-
ulated in Mentor Graphics ModelSim SE-64 10.0c simulator
on the server with two quad-core Intel Xeon E5620@2.40 GHz
processors and 24 GiB of RAM. The accelerated verification
environment contains the DUT, Hardware Platform Agent,
Hardware Monitor Agent and Hardware Register Agent on
the FPGA site (Xilinx Virtex-5 FPGA) and Scoreboard and
Reference Model on the software site (simulated again in
ModelSim on the server). The amount of consumed FPGA
resources (slices) is the following: 1,428 (5.8%) for the Codix
RISC processor and 1,669 (6.9%) for the hardware verification
environment.

Results of these experiments are depicted in Table I. We
have the measured verification time (the accelerated and the
non-accelerated version) for a different number of application
programs. Moreover, the acceleration ratio was computed.

TABLE I. THE ACCELERATION RATIO AND THE RUN TIME OF
VERIFICATION.

Number of Run time Acceleration
programs [-] Non-accelerated [s] FPGA-accelerated [s] ratio [-]

500 3458 2010 1.719
1,000 6841 3974 1.721
2,000 13634 7917 1.722
4,000 27208 15784 1.723
6,000 40845 23682 1.724
8,000 54384 31451 1.729

10,000 67965 39372 1.726

The measured values are also presented in the graphs
of Figure 4 and 5. The acceleration ratio is on average
1,7x and slowly grows up with the number of the evaluated
test programs. Because we expected better results, we have
performed some specific additional measurements and have
identified candidates for further improvements.
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Fig. 4. The relation between the runtime of the non-accelerated and the
FPGA-accelerated verification and the number of processor programs.
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Fig. 5. The relation between the acceleration ratio and the number of
processor programs.

The software site of the verification environment is still
too complex and the runtime of the accelerated verification
depends on the speed of the SW verification environment. The
graphical reprezentation of this analysis is shown in Figure
6. The DUT consumes longest time in the non-accelerated
verification. But on the other hand, the time consumption of
DUT in the FPGA-accelerated verification is shortest. In this
case, the runtime of the whole verification is based on the time
consumption of the SW verification environment which is the
same for both the FPGA-accelerated and the non-accelerated
version. There we see a space for possible improvments.

SW verification 
environment

DUT running in 
SW simulation

DUT running 
on FPGA

Runtime of the non-accelerated verification

Runtime of the FPGA-accelerated verification

Space for possible 
improvements

Fig. 6. The graphical representation of the time consuption of the SW
verification environment, the simuletd DUT and FPGA-accelerated DUT.

The second problem is that we have executed a huge
number of small applications, but only with the basic data sets.
For precise verification, every application should be evaluated
with more transaction data. The computation burden will be
higher, so the acceleration will be more beneficial.

IV. CONCLUSIONS AND FUTURE RESEARCH

In this paper, the environment for FPGA-prototyping and
accelerated verification of ASIPs and MPSoC were presented.
The case study shows that by means of acceleration on FPGA
we are able to detect errors faster (1,7x) and debug not only the
software model but directly the hardware prototype on FPGA.
As for the great advantage of the accelerated verification
environment we see its correspondence to UVM, so it is
easily understandable for verification engineers. However, the
acceleration ratio was not so good as we expected so we should
find a way how to optimize the SW verification environment
even more so it will not be a bottlenck in the whole system.

In our future research we intend to interconnect the ac-
celerated verification environment with our fault injector that
also operates on FPGA. In this way we will connect our
research in the verification area to our research in fault-tolerant
systems design [16]. The aim is to create a robust platform for
validation of FT methodologies in which the introduced stimuli
generator will be also applied.
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Abstract—Various electronic systems play an important role
in our everyday lives. Some of them serve for fun or to make
our lives easier. These systems are useful but not necessary; when
they malfunction, the consequences are not critical. On the other
hand, there are systems which are more or less critical, and
their failure can cause undesirable consequences. For example,
a failure in medicine, aviation, the army or automotive systems
can cause high economic losses and/or endanger human health.
These systems must be protected against the impact of faults, and
flawless operation must be ensured. Fault tolerance is one of the
techniques that will ensure this. There are many fault-tolerance
methodologies targeted towards various systems and technologies,
and new methodologies are being investigated. It is also important
to verify these techniques; this is the main topic of this paper.
An evaluation platform for testing fault-tolerance methodologies
targeted towards SRAM-based FPGAs (Field Programmable
Gate Arrays) is presented and demonstrated. A robot for seeking
a path through a maze and the processor-based robot controller
serve as an experimental system case study. Experimental results
with the unhardened and hardened versions of the processor-
based robot controller are presented and discussed.

Keywords—Soft-core Processor, NEO430, TMR, FPGA, Fault
Tolerance, Robot Controller, Reconfiguration.

I. INTRODUCTION

We meet with various electronic systems playing important
roles in our everyday lives. These systems are integrated
in various commonly used devices such as cars, intelligent
buildings, and some entertainment systems. Electronic systems
make our lives easier, monitor our health, and provide new
opportunities. It is very important to ensure the reliability
of systems, the failure of which can cause high economic
losses and/or can endanger human health. The current trend
is to increase chip-level integration, which allows us to make
electronic systems smaller and integrate more functionality
into a smaller area on the chip. The problem is that this trend
also leads to greater sensitivity to faults. The number of digital
systems with a high demand on reliability, such as medicine,
space, and industry, is growing as well. It is important to
protect these systems against the consequences of faults.

Two main approaches to increase reliability are currently
used. The first is called fault avoidance [1]. It is a very
challenging and expensive approach; the primary goal is to
completely prevent failures in the system using more reliable
parts, manufacturing processes, etc. The second approach is
called fault tolerance [2]. Fault tolerance accepts the fact

that a fault can appear, but the goal of this approach is to
keep the system functional, even in the presence of faults.
Techniques based on the various types of redundancies are
used for this purpose. The most common types are spatial and
time redundancy. Time redundancy is based on computation
repeating and the results from the independent runs are then
compared. On the other hand, spatial redundancy usually uses
n-copies of the same functional unit and comparator to guar-
antee the proper function. Many fault tolerance methodologies
exist, which combine and improve these basic methods, e.g.
hardware and time redundancy are combined in the approach
presented in [3].

Many fault-tolerant methodologies have been developed,
among others, to Field Programmable Gate Arrays (FPGAs)
and new types are under investigation [2], [4], because FPGAs
are becoming more popular due to their flexibility and re-
configurability. FPGAs are an alternative solution to Applica-
tion Specific Integrated Circuits (ASICs), which are beneficial
in systems that are produced in small series. Fault-tolerance
methodologies targeted towards FPGAs are often based on
spatial redundancy, specifically on Triple Modular Redundancy
(TMR), which uses three copies of the same functional unit.
The disadvantage is the high consumption of resources, which
is leading scientists to develop some improvements. A new
technique based on the identification of critical bits of the
bitstream and their hardening with TMR is presented in [5].
The practical aspects of TMR implementation on the FPGA
and the proper location of triplicated units is discussed in [6].
It is advantageous to place individual copies in the disjoint
areas. The unconventional use of TMR combined with High
Level Synthesis is presented in [7].

The second reason why so many techniques are inclined
towards FPGAs is their sensitivity to faults and their ability to
be reconfigured if a fault occurs in the configuration memory.
FPGAs are composed of configurable logic blocks [8], which
are connected by programmable interconnection. The config-
uration is stored as a bitstream in the SRAM memory. The
problem, from the point of view of reliability, is that FPGAs
are quite sensitive to faults caused by charged particles [9].
This particles can induce the inversion of a bit in the bitstream,
and this may lead to a change in its behavior. This event is
called Single Event Upset (SEU) [2]. The advantage is that
faults which occurred in the configuration memory can be
repaired by Partial Dynamic Reconfiguration (PDR) [10].
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It is important to test and evaluate fault-tolerance tech-
niques. Various approaches to the evaluation of fault tolerance
exist. Some of them are performed on a theoretical level; for
example, a simulation method for SEU emulation is presented
in [11]. Another approach is the use of artificial fault injection
directly into the design implemented in the FPGA. Special
evaluation boards are developed for these purposes; one of
them is proposed in [12] and [13]. The combination of simu-
lation method and hardware evaluation is discussed in [14].

The goals of our research are to develop an evaluation
platform for testing fault-tolerance techniques based on func-
tional verification. Our evaluation platform was presented in
[15]. The proposed platform is able to monitor the impact of
faults on an electro-mechanical system; this means monitoring
the impact of faults both on the electronic controller and
the mechanical part, because electronic controllers usually
control some kind of mechanical part in real applications. Our
evaluation platform was tested and demonstrated with the use
of an experimental electro-mechanical system (a robot in a
maze and its electronic controller) with TMR applied. The
next step is to use another experimental system, apply some
kind of fault tolerance technique, and demonstrate the use of
an evaluation platform, which is the main topic of this paper.

This paper is organized as follows. Section II introduces
a previously developed evaluation platform for monitoring the
impact of faults on electro-mechanical applications. The exper-
imental electro-mechanical system composed of a robot in a
maze and its processor-based robot controller are proposed in
Section III. Experiments with proposed experimental systems
are presented in Section IV together with their comparison with
previously obtained results. Section V concludes the paper and
presents the plans for our future research.

II. THE EVALUATION PLATFORM AND THE EVALUATION
PROCESS

An evaluation platform for monitoring the impact of faults
on electro-mechanical systems was presented in our previous
work [15]. The evaluation process based on the evaluation
platform was also presented previously. In this paper, the de-
scription of the evaluation platform and the evaluation process
are brought to mind, and a case study with a new, experimental
electronic controller

A. The Evaluation Platform for Monitoring the Impact of
Faults on an Electro-mechanical System

Our evaluation platform is based on Functional Verification
[16]. The main task of functional verification is to check
whether a verified circuit meets its specifications. It compares
the outputs of a verified circuit running in an RTL simulator
with those of a reference model. In the case of the fault
injection, the verified circuit must be implemented into the
FPGA, so we do not use classical simulation-based functional
verification, but modified FPGA-based functional verification.
Our platform uses functional verification as a tool for monitor-
ing the impacts of faults injected into an electronic controller
implemented into the FPGA.

The two main components of the proposed evaluation
platform shown in Figure 1 are a computer and an FPGA
development board. The platform is designed to monitor the

impact of faults on the electro-mechanical application, so the
mechanical part (or its simulation) is an important unit running
on the computer. The mechanical part is connected with the
FPGA through an Ethernet interface. The software part of the
verification environment is also running on the computer and
performs the evaluation of the impacts of injected faults on
both the electronic and the mechanical parts.

The use of an FPGA development board where an elec-
tronic controller is implemented allows us to inject faults
directly into the FPGA. The fault injector is one of the
components which runs on the computer. Our fault injector
[17] is based on the partial reconfiguration. It reads part of the
configuration bitstream from the configuration memory, then
the specified bits of the bitstream are inverted and a modified
part of the bitstream is configured back to the configuration
memory. A JTAG interface is used for reading bitstreams from
the FPGA and writing modified bitstreams back to the FPGA.

Fig. 1. The architecture of the proposed evaluation platform.

An important metric in functional verification is coverage.
It measures how well the verification scenarios cover the
behavior of the DUT and provide feedback that determines
when the verification process can be ended. Depending on
the required coverage criteria, the Code coverage metrics
can serve as an example. Code coverage measures how well
the verification scenarios cover the source code of the DUT.
Typical code coverage metrics are toggle, statement, branch,
condition, expression, and FSM coverage.

B. The Three Phases of the Evaluation Process

The evaluation process of fault impact monitoring is shown
in Figure 2. The proposed process is divided into three main
phases. Simulation-based functional verification is performed
in the first phase. The VHDL description is used as the DUT
and the C/C++ implementation of the electronic controller is
used as a reference model. The simulation-based verification
environment, which is used in this phase, is usually developed
during the development cycle of the whole system. In this
phase, the correctness of the electronic controller design is
evaluated. The main output of the first phase is a test as to
whether the electronic controller works correctly, according to
the specification. This is important, because we have to ensure
that the electronic controller does not contain any functional
errors in its implementation. The generated set of verification
scenarios must lead to maximum code coverage, which ensures
that much of the code is verified. It is also important to point
out that the set of verification scenarios acquired in this phase
can be used in the subsequent phase.
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Fig. 2. The flow of phases in the FT evaluation system verification.

The evaluation of the impact of faults on the electronic
controller is a task for the second phase, which consists of veri-
fication of the electronic controller implemented into the FPGA
with the verification scenarios obtained during the previous
phase. Modifications of the verification environment used in
the previous phase are needed for this phase because functional
verification serves merely as a communication observer. It
monitors and checks communication between the mechanical
part and the electronic controller, and errors in communication
are reported and analyzed. In this phase, artificial faults are
injected into the FPGAs using an implemented fault injector.
The output of this phase is a list of verification runs with
information about the injected faults and the results of the ver-
ification run (success, failure). The injected faults are divided
into two categories: Faults with no impact on the electronic
part, and faults which cause mismatches on the output of the
electronic part. Various strategies of fault injection may be
used in this phase (e.g. one fault per verification run, multiple
faults in the same functional unit, or multiple faults in different
functional units).

The analysis of the faults that corrupted the mechanical
part is the goal of the third phase. The information from
the sensors on the mechanical part are used for monitoring
its behavior. These sensors usually provide sufficient infor-
mation about the behavior. Some additional modifications of
the verification environment are needed for this phase. It is
necessary to implement evaluation of the behavior from the
sensor information. The outputs of the third phase also form a
list of verification scenarios with the injected faults and their
impact on the mechanical part. The faults can cause failure
of the mechanical part, with collisions or inaccuracies in the
behavior of the mechanical part.

C. Verification Scenario Generation

An important tool in functional verification is verification
scenario generation. We need to generate a set of verification
scenarios which ensure sufficient code coverage and which

also would be suitable for our robot controller. The universal
Stimuli Generator was designed for these purposes. It performs
pseudo-random generation, which is appropriate to capture the
usual and unusual verification scenarios through the whole
state space for various systems.

The versatility of the generator is ensured by the proba-
bilistic grammar with constraints which was presented in [18].
Probabilistic grammar is the common context-free grammar
which has defined probabilities for its rewriting rules. The
constraints are our extension of this grammar, which modifies
the probabilities of rewriting rules during the generation.
Thanks to this, we are able to control the generation process
and get the valid verification scenario for various systems. In
probabilistic grammar, the desired verification scenarios are
encoded using finite language. In the constraints, there are
conditions in which a specific rewriting rule of the grammar
gets a new probability value. For this reason, it is ensured that
a particular rewriting rule is applied in certain situations, but
in other situations, it is not applied. Therefore, we are able
to get valid scenarios for a system (a subset of all possible
scenarios).

As can be seen from the previous text, in the previous
period we dealt with various activities in the area of evaluating
the design of fault-tolerant systems. Our new activity, namely
the use of a soft-core processor as the robot controller and its
use in fault-tolerant system design, certainly belongs to this
area.

III. CASE STUDY: SOFT-CORE PROCESSOR-BASED ROBOT
CONTROLLER

A robot in a maze, and its electronic controller imple-
mented in the FPGA, were used as an experimental electro-
mechanical system (Figure 3) in our previous work [15].
Unfortunately, we have no real robot device, so we use
a Player/Stage [19] tool for the robot and its environment
simulation. The task for our robot and its controller is to seek
a path through a maze. The electronic robot controller was a
”hard coded” implementation configured into the FPGA. There
are various possibilities to implement an electronic controller,
one of them is to use soft-core processor implemented on
FPGA together with some additional components and create a
System on Chip (SoC). The robot controller implemented as
an SoC with a processor is used for experiments in this paper.

Fig. 3. The robot in the maze and its electronic controller.

As an experimental processor we chose the NEO430
Processor [20], which is a customizable and microcontroller-
like processor for FPGA designs. This processor is based on
Texas Instruments MSP430 [21] instruction set architecture
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and provides compatibility with the original instruction set.
The architecture of the processor is shown in Figure 4. The
processor already implements standard features like a timer,
a watchdog, UART and SPI serial interfaces (implemented
together as a USART unit), general purpose IO ports, an
internal bootloader, and internal memory for program code and
data. All of the peripheral modules are optional; it is possible
to exclude them from implementation to reduce the size of
the system. Any additional modules can be connected via a
Wishbone bus.

Fig. 4. The architecture of the NEO430 Processor [20].

The use of the NEO430 Processor as the main part of
our robot controller is shown in Figure 5. Optional peripheral
modules which are used in our design are shown. We use
a Custom Functional Unit (CFU) as an input interface for
data with information about the robot’s position in the maze
(DIST A, DIST B, DIST C – simplified GPS) and the dis-
tances from the barriers in the robot four-neighborhood (S 0,
S 1, S 2, S 3). The CFU is connected to the processor system
bus and allows writing data to the registers. Information about
the robot’s position and barriers is written in registers, which
makes it available from the CPU.

Fig. 5. The architecture of the robot controller composed of the NEO430
Processor.

The input data are processed by the processor and the
General-purposes inputs and outputs (GPIO) are used for
communication with the MOVE unit. The MOVE unit controls
the mechanical robot by setting the speed in the X and Y axis
for a specified time, according to the input values. The input is
just the direction of the movement and activation signal (ACT).
The movement is confirmed by a DONE signal produced by
the MOVE unit. The processor must wait for the DONE signal

before the next input data are processed and the next movement
is activated.

The boot-loader was used only for program debugging.
In the experimental version of the processor-based robot
controller, the program is stored in the instruction read-only
memory (ROM). The UART is connected to the output inter-
face of the whole FPGA and can then be connected to the
computer. This allows us to monitor additional information
about the program behavior. A simple ”left hand on the wall”
method is used as a searching algorithm. This means that at
each crossroad, the robot turns left. The program is composed
of several steps, which are performed until the robot reaches
the goal position:

1) Read the information about the robot’s position and
barriers in the robot 4-neighborhood; the DIST A,
DIST B and DIST C values represent represent the
distances from the fixed points A, B, and C in a
map. From these values, the position coordinates are
calculated. The S x values represent distances from
barriers in the 4-neighborhood.

2) Evaluate the position and the barriers and calculate
the next position. A simple ”left hand on the wall”
algorithm is implemented.

3) The command to execute the robot’s movement is
sent to the MOVE unit, which sets the speed in the
X and Y directions for a specified time and the robot
moves to the next position.

Our evaluation platform is designed mainly for testing
fault-tolerance methodologies, so the current experiments cor-
respond with this. For the experiments discussed in the next
section, a hardened version of our experimental system was
developed, which allows us to compare the impact of faults on
on the electronic and mechanical parts, on both the hardened
and unhardened versions of the experimental system. The com-
monly used Triple Modular Redundancy (TMR) was chosen
for our experiments because it is a basic method, which is
used in many practical applications and forms the basis of
more advanced techniques. Of course, it is possible to use other
fault-tolerance techniques and the main steps of our evaluation
process will be the same.

The use of TMR architecture as an FT technique for our
processor-based robot controller is shown in Figure 6. There
are three instances of the processor with a majority voter for
correct output determination. We use a majority voter that
works ”per bits”. The connection of the UART interface with
the outer world is done only for a single instance of the
processor.

IV. CASE STUDY: EXPERIMENTAL RESULTS

The main part of this paper deals with experiments and
experimental results. The complete evaluation process is per-
formed and reported in the following section. The verification
environments needed for the evaluation in each phases of the
evaluation process are shown and described together with their
practical use during evaluation. A great deal of attention is paid
to results analysis and the achieved results are compared with
the results obtained during experiments with the original robot
controller.
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Fig. 6. The architecture of the TMR version of the robot controller composed
of NEO430 Processor.

A. The First Phase - Simulation-based Functional Verification

The first phase focuses on simulation-based functional
verification of the evaluated electronic controller. The output of
this phase is a robot controller without implementation faults,
which ensures that errors detected in the following phases are
caused by injected faults. The verification scenarios (images
of mazes) are generated with the use of our universal stimuli
generator in order to achieve maximum code coverage. Set of
verification scenarios with high code coverage is also one of
the outputs of this phase.

The verification environment used in the first phase is
implemented according to Universal Verification Methodology
(UVM) and is shown in Figure 7. The robot controller as the
DUV (Device Under Verification) is equipped with verification
components. The inputs for the robot controller (DUV) are
the outputs of the simulation of the robot in the maze, which
is driven by the outputs of the robot controller. An important
component is the Golden Model, which generates the reference
outputs for comparison with the outputs of the DUT.

Fig. 7. The architecture of the verification environment for the robot
controller.

We evaluated three types of mazes with various dimen-
sions, and our goal is to find which size is good enough for
the subsequent phases. Three sizes of maze (shown in Figure

8) were evaluated: 7x7, 15x15, and 31x31 cells. The average
number of steps that must be done by the robot on the way
to the finish position is shown in Table I. It can be seen that,
with the increasing dimensions of a maze, the number of steps
the robot has to go through also increases.

Fig. 8. Three types of mazes - the example of one scenario for each type.

TABLE I. AVERAGE NUMBER OF ROBOT STEPS

Maze size 7x7 15x15 31x31
Average number of steps 15 99 342

For each maze dimension, we generated 1,000 mazes
through our generator, which differ in corner composition
and also in the start and finish position for the robot in the
maze. We have verified the obtained mazes in the process of
functional verification for a correct output (the robot reached
the finish position after the prescribed number of steps) and
obtained the value of the code coverage for these mazes. The
number of verification scenarios for the evaluation was chosen
as 1, 10, 100 and 1,000. In total, we performed an evaluation
of 3,000 verification scenarios with different mazes. The main
objective of these experiments is to find the dimension and
number of mazes that will provide the highest code coverage.

The result of the experiments with measured code coverage
is presented in Table II. The achieved maximum total code
coverage is 75.80% for almost all test scenarios. The difference
is in the dimension of a maze 7x7 cells with 1 verification
scenario, where the total code coverage was 75.49%. The in-
ability to reach 100% total code coverage is due to the complex
implementation of the processor used. In the processor, there
are many functional units, signals, buses, etc. which are not
fully utilized, because the robot controller is, in principle, a
simple automaton compared to the processor’s possibilities.
The table also shows that with the increasing dimension of
the maze the achieved coverage does not increase. This is due
to the fact that one verification scenario carries several input
transactions. It is also clear from the table that just one maze
is sufficient to reach maximum coverage.

During experiments, the robot always arrived at the finish
position. The robot did not freeze on a place, crash, or behave
unusually, so we can say that the robot controller is properly
verified on 3,000 input stimuli and, therefore, it does not
contain any implementation errors.

Based on the previous paragraphs, we will select one
suitable maze for the subsequent phases. The selection of an
appropriate maze is done based on the total code coverage for
the individual mazes. The coverage is shown in Figure 9, with
a box plot graph which shows the range of coverage achieved.
The lower dash indicates the minimum achieved coverage,
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TABLE II. THE RESULT OF EXPERIMENTS WITH MEASURED CODE COVERAGE.

# of verification scenarios 1 10 100 1000
Size of mazes 7x7 15x15 31x31 7x7 15x15 31x31 7x7 15x15 31x31 7x7 15x15 31x31

Statement coverage 72.01 % 72.24 % 72.24 % 72.24 % 72.24 % 72.24 % 72.24 % 72.24 % 72.24 % 72.24 % 72.24 % 72.24 %
Branch coverage 69.46 % 69.66 % 69.66 % 69.66 % 69.66 % 69.66 % 69.66 % 69.66 % 69.66 % 69.66 % 69.66 % 69.66 %

Expression coverage 59.09 % 59.09 % 59.09 % 59.09 % 59.09 % 59.09 % 59.09 % 59.09 % 59.09 % 59.09 % 59.09 % 59.09 %
Condition coverage 76.92 % 78.02 % 78.02 % 78.02 % 78.02 % 78.02 % 78.02 % 78.02 % 78.02 % 78.02 % 78.02 % 78.02 %

Total coverage 75.49 % 75.80 % 75.80 % 75.80 % 75.80 % 75.80 % 75.80 % 75.80 % 75.80 % 75.80 % 75.80 % 75.80 %

while the upper dash shows the maximum achieved coverage.
The middle square defines the first and third quartiles (range of
achieved coverages between 25% and 75%). The line between
the quartiles represents the median value of the coverage. The
figure shows that when increasing the dimensions of the maze,
the maximum coverage is hit more frequently, because more
steps of the robot are performed. However, this does not change
the fact that from each dimension, a certain number of mazes
can be selected, because they reached the maximum possible
coverage. Based on Table I, which contains information about
the average number of steps of the robot (15 steps for 7x7,
99 steps for 15x15, and 342 for 31x31 cells), we chose the
maze with dimensions of 15x15 cells. For our experiments,
we need a sufficient number of steps to detect a mismatch
after the fault injection. For this reason, the 15x15 and 31x31
dimensions are suitable, but the 31x31 maze already contains
too many steps that do not bring any benefits and just prolong
the time to perform the experiments.

Fig. 9. The box and whisker chart for the selection of the right maze for the
robot controller.

The final step is to select the maze with dimensions of
15x15 cells, which has the optimal number of steps of the robot
from the start to the finish position. We chose the maze with the
maximum code coverage of 75.80% and with 85 steps, which
is an optimal number from our point of view. The selected
maze, including the start and finish positions, and the path
that the robot must follow, are shown in Figure 10.

Fig. 10. The selected maze for the robot controller and its path between the
start and finish position, which the robot found.

B. The Second and the Third Phases

The second phase focuses on the evaluation of the impact
of faults on the output of the electronic controller. We use a
processor-based robot controller whose outputs are commands
for robot movement. We must monitor whether the commands
for the robot in the maze are being generated properly. The
main task of the third phase is to monitor the impact of faults
on the mechanical part. The mechanical part is the robot in the
maze which is equipped with sensors measuring the distances
from the walls and the current position. The outputs of these
sensors can be used for monitoring the behavior of the robot
in the maze. We can detect collision of the robot with the wall,
stopping on place and, other behavior of the robot.

The UVM-based verification environment for both the
second and the third phases is shown in Figure 11. The
proposed verification environment covers the tasks for both
the second and the third phases. For the second phase of
the evaluation process, this verification environment monitors
communication before the simulated robot in the maze and its
robot controller running on FPGA. It operates as an observer
without any direct intervention in the monitored communica-
tion. The correctness of the communication is evaluated by
comparison with the outputs of the reference model. The third
phase of the evaluation process is done by monitoring the
outputs from the sensors and evaluating these outputs. We can
detect a small or zero distance from a wall, which is a critical
situation. In addition, we can detect when the robot stops in
any given place, or when the robot chooses to go in a direction
that does not match the implemented searching algorithm.

Fig. 11. The architecture of the FPGA-based verification environment for
the robot controller.

Figure 11 shows that the fault injector is an important
component. Thanks to the use of the FPGA board we can inject
faults directly into the configuration bitstream. We use our
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previously implemented fault injector [17], which allows us to
invert the specified bit of the bitstream. The fault injector uses
reconfiguration of the FPGA configuration bitstream. At first,
part of the configuration bitstream is read, then the specified
bit is inverted, and the modified bitstream is configured back
to the configuration memory. The fault injector is able to find
the relation between the bit of the bitstream representing the
Look-up Tables (LUTs) and the specified area on the FPGA.
This means that we are able to inject artificial faults into the
LUTs corresponding with the specified functional units.

Two different strategies of fault injection are used in these
experiments: Multiple faults and single faults. Experiments
are done for the mentioned unhardened version and the TMR
version of the processor-based robot controller. The number
of verification runs that were performed for each version
of the robot controller and each fault injection strategy is
5000 verification runs. Experimental results are compared
with the same experiments with the original hard-coded robot
controller.

1) Multiple fault injection: Permanent bit-flips were in-
jected into utilized LUT contents with a constant period of 15s.
This period was chosen experimentally, based on the system
failure manifestation time. This means that in each 15s only
one SEU was injected into the whole robot controller unit LUT
contents (only utilized LUT bits are considered) until the robot
failed or reached the finish position.

The experimental results for multiple fault injection strat-
egy are summarized in Table III. It shows the results of
both the unhardened and the TMR versions of the processor-
based robot controller and it contains a comparison with the
original hard-coded robot controller. One can see, see that the
unhardened electronic version failed in 44.02% and the TMR
version failed in 8.14% of the cases. This confirms that TMR
is a beneficial approach, even though the increase in resource
consumption is high. The table also shows the impact of faults
on the mechanical robot; a large number of electronic failures
leads to the robot stopping in a place which is less critical
than a collision with a wall. The reliability improvement was
calculated according to Equation 1. the In comparison with
the original hard-coded robot controller, the processor-based
robot controller is more susceptible to faults. This fact is
evident both for the unhardened and the TMR version. This
phenomenon was expected, because the processor represents a
more complex design with lots of partial components. These
experiments confirmed our expectations.

TABLE III. A COMPARISON OF THE IMPACT OF multiple FAULTS
INJECTED INTO THE UNHARDENED AND HARDENED VERSIONS OF THE

PROCESSOR-BASED ROBOT CONTROLLER AND THE ORIGINAL HARD
CODED ROBOT CONTROLLER.

Monitored impact Processor-based RC Original hard-coded RC
noft tmr noft tmr

Electronic OK [−] 2751 4593 3544 4839
Electronic failed [−] 2201 407 1456 161
Electronic failed [%] 44.02% 8.14% 29.12% 3.22%

Finish not reached [−] 2179 403 1429 161
Collision with wall [−] 55 7 11 0
Robot stop on place [−] 2124 396 1418 161

Reliability improvement [%] 81.5% 88.9%

reliab improv =
failuresnoft − failurestmr

failuresnoft
∗ 100 (1)

The experimental results for the multiple fault injection
strategy are also presented in Figure 12, where number of
faults which led to electronic failure is shown. This chart shows
that the number of faults which led to an electronic failure of
hardened processor-based robot controller is higher than in the
case of an unhardened robot controller. The same situation
is true in the case of the original robot controller, but there
are some differences between the hard-coded original robot
controller and the processor-based robot controller. The chart
shows that the original unhardened robot controller needs a few
more injected faults in order to fail. The situation is different
in the case of the TMR versions of the robot controller. In this
case, the number of faults which led to a failure is almost the
same.

Fig. 12. The box plot shows a statistical comparison of the number of
injected faults which led to electronic failure for both the processor-based and
the original robot controllers.

2) Single fault injection: Exactly one bit-flip of the utilized
LUT contents of a particular component was injected per
verification run, and its impact on the behavior of the whole
controller unit was observed.

The experimental results for single fault injection into the
unhardened and TMR versions of the processor-based robot
controller are presented in Table IV. It is obvious that the
number of failures is lower than in the case of multiple fault
injection. As can be seen, almost all faults are tolerated in
the TMR version. Even in the case of single fault injection
the number of electronic failures which leads to a collision
with the wall is low. The comparison with the original
hard-coded robot controller is also shown in Table IV. This
table confirms our findings realized during the experiments
with multiple injections. In the case of single fault injection,
the difference is not so significant, but Table IV shows that
processor based robot controller is more sensitive to injected
single faults than original hard coded robot controller. It is
also interesting that both single and multiple faults injected
into processor based robot controller without fault tolerance
mechanism led to more collisions of robot with wall. This also
confirms our assumption that the processor is a more complex
system with multiple vulnerable components.

TABLE IV. A COMPARISON OF THE IMPACT OF single FAULTS
INJECTED INTO THE UNHARDENED AND HARDENED VERSIONS OF THE

PROCESSOR-BASED ROBOT CONTROLLER AND THE ORIGINAL HARD
CODED ROBOT CONTROLLER.

Monitored impact Processor-based RC Original hard-coded RC
noft tmr noft tmr

Electronic OK [−] 4729 4997 4802 4998
Electronic failed [−] 271 3 198 2
Electronic failed [%] 5.42% 0.06% 3.96% 0.04%

Finish not reached [−] 271 3 195 2
Collision with wall [−] 16 0 1 0
Robot stop on place [−] 255 3 194 2

Reliability improvement [%] 98.8% 98.9%
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V. CONCLUSIONS AND FUTURE RESEARCH

The evaluation platform for monitoring the impact of
faults on the electro-mechanical system was presented in
this paper. The presented evaluation platform is based on
functional verification, and the evaluation process is divided
into three phases. The first phase uses classical simulation-
based functional verification and verifies the correctness of
the experimental system. The second phase focuses on fault
injection directly into an electronic controller running on
an FPGA. In this phase, modified FPGA-based verification
environment is necessary. Monitoring the impact of injected
faults on the mechanical part is a task for the third phase. The
third phase also uses an FPGA-based verification environment
modified for monitoring the behavior of the mechanical part.

The whole evaluation process was experimentally evaluated
in our research and demonstrated in this paper. A robot for
seeking a path through a maze with a new processor-based
robot controller serves as an experimental electro-mechanical
application. The new robot controller is designed as a sys-
tem on a chip composed of an NEO430 soft-core processor,
equipped with supporting peripheral components. Experiments
corresponding with the first phase were performed, and one
maze with high code coverage was selected for the subsequent
phases. The second and third phases were performed with the
use of one combined FPGA-based verification environment.
Experiments with fault injection were done for both the
unhardened and the TMR versions of a processor-based robot
controller. Experimental results show that TMR is beneficial
both for multiple and single fault injection strategy. The
comparison of the results gained from the processor-based
robot controller with the previously evaluated hard-coded robot
controller was also mentioned. Our experiments show that the
processor-based robot controller is a more susceptible to faults
than the original hard-coded robot controller. The experiments
confirmed our assumption that a processor is more complex
system with a number of critical components.

As a future work, we plan to apply some sophisticated fault
tolerance techniques on the presented experimental electro-
mechanical system and repeat the complete evaluation process.
One of the possible improvements is the use of reconfiguration
for faulty module recovery and synchronization of the recov-
ered module (processor in our case study) with failure-free
modules.
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Abstract—Faults occurring in the safety-critical systems can
lead to the failure of the whole system and cause high economical
losses or endanger human health. As an example, space, aerospace
or medical systems which are working in the environment with
increased occurrence of faults can serve. Fault avoidance and
fault tolerance are the main techniques, the goal of which is
to avoid such situations. This paper is the continuation of the
previously published work and presents an approach to evaluate
fault tolerance techniques by monitoring the impact of faults in
the experimental electro-mechanical system which consists of the
robot in a maze and its robot controller. The experiments with
the robot controller hardened against faults are combined with
the reliability analysis on a theoretical level in this paper. The
impact of faults artificially injected into the robot controller, in
which Triple Modular Redundancy is applied, is monitored and
used for statistic reliability analysis.

Keywords—Reliability Analysis, TMR, FPGA, Fault Tolerance,
Robot Controller, Reconfiguration.

I. INTRODUCTION

Various electronic systems play an important role in our
everyday lives. We can meet them in various types of com-
monly used devices such as cars, intelligent buildings, or
some entertainment systems. For example, electronic systems
make our lives easier, supervise our health or provide new
opportunities. The reliability of these systems is a problem,
especially in the case of systems in which failure can result in
injury or heavy financial losses or can endanger human health.
One of the reasons which leads to a higher susceptibility
to faults is an increase of chip-level integration. The current
trend is to make electronic systems smaller and integrate more
functionality to smaller area on the chip which leads to greater
sensitivity to faults. The number of digital systems with high
demand on reliability, such as medicine, space, industry, is
growing as well.

Two main approaches to increase reliability are currently
used. The first one is called fault avoidance [1]. As the name
indicates, the main goal is to completely avoid failures in the
system using the means of more reliable parts, manufacturing
processes, etc., which is very challenging and expensive.

The second approach is a technique called fault tolerance
[2]. Fault tolerance accepts the fact a fault can appear, but the
goal of this approach is to keep the system functional, even
in the presence of faults. Techniques based on the various
types of redundancy are used for this purpose. The most
common ones are hardware and time redundancy. Hardware
redundancy usually uses n-copies of the same functional unit
and comparator to guarantee the proper function. On the other
hand, time redundancy is based on computation repeating and

the results from the independent runs are then compared.
Many fault tolerance methodologies exist, which combine
and improve these basic methods, e.g. hardware and time
redundancy is combined in the approach presented in [3].

There have been many fault-tolerant methodologies in-
clined, among others, to Field Programmable Gate Arrays
(FPGAs) developed and new ones are under investigation
[4], because FPGAs are becoming more popular due to their
flexibility and re-configurability. The second reason why so
many techniques are inclined to FPGAs is their sensitivity
to faults and ability to be reconfigured in the case of fault
occurrence. FPGAs are composed of configurable logic blocks
[5] which are connected by programmable interconnection.
The configuration is stored as a bitstream in SRAM memory.
The problem from the reliability point of view is that FPGAs
are quite sensitive to faults caused by charged particles [6].
This particle can induce inversion of a bit in bitstream and
this may lead to a change in its behaviour. This event is called
Single Event Upset (SEU) [7]. The advantage is that faults
which occurred in configuration memory can be repaired by
Partial Dynamic Reconfiguration (PDR) [8].

It is important to test and evaluate these techniques. Various
approaches to the evaluation of fault tolerance exist, some
of them are performed on a theoretical level, for example,
a simulation method for SEU emulation is presented in [9].
Another approach is in the use of fault injection directly into
the design implemented in FPGA. Special evaluation boards
are developed for these purposes, one of them is presented in
[10] or [11]. The evaluation of fault tolerance techniques is one
of the goals of our research, in our previously published work
where we develop the platform for experimental evaluation of
the impact of faults that occurred in an experimental system
[12]. Our evaluation platform was tested and demonstrated
on the experimental electro-mechanical system (a robot in
a maze and its controller) without any hardening against
faults. The next step in our experiments is to apply a fault
tolerance technique on our experimental system and evaluate
it experimentally which is the main topic of this paper. We feel
that only a experimental evaluation is not good enough so the
theoretical reliability analysis based on experimental results is
also mentioned in this paper.

This paper is organized as follows. Section II introduces
reliability analysis and improvement. An evaluation platform
and experimental system on which reliability is experimentally
evaluated is presented in Section III. Verification scenarios
generation presented in Section IV is the important part
of evaluation platform. Section V is dedicated to reliability
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analysis based on experimental evaluation. The possibility of
using a dynamic reconfiguration for the faulty module recovery
is shown in Section VI. Section VII concludes the paper and
presents future plans of our research.

II. RELIABILITY ANALYSIS AND ITS IMPROVEMENT

A fault-tolerant system development usually starts with
a nondurable system that does not tolerate faults [13]. This
nondurable system is usually designed with minimum re-
dundancy and serves as a starting point for the process of
development. An experienced fault-tolerant system designer
then suggests the modifications that are to be made to the
nondurable system in order to to achieve a higher level of
fault tolerance. After these changes are incorporated into the
design, the result must be evaluated to be sure the applied
redundancy has the desired improvement on the reliability
of the system. The usual approach is to iterate between the
phases of development and the reliability analysis. Multiple
designs with various combinations of fault tolerance methods
assigned to the partitions of the design are created. The system
development ends either with the system complying with the
specification or the findings of the specifications not being
achievable. In this research we try to accelerate this procedure
of the development with an ability to estimate the reliability of
the resulting system even before the application of the method
itself. This allows for a designer to exclude such combinations
of reliability methods that do not look perspective from the
final specification needs point of view. The final specification
usually contains a list of so-called reliability indicators and
the corresponding ranges of values that must be achieved in
order to accept the resulting solution.

A. Reliability Analysis

The reliability itself can be quantified with the support of
the theory of probability as most of the reliability indicators are
of a random nature. The length of a time period of the system
operation until the failure occurs is an important starting point
in the reliability indicators computation. This variable can
be considered the so-called random variable. The simplified
definition of random variable according to [14] is shown in
Definition 1.

Definition 1: Random variable X on a sample space S is
a function X : S → R that assigns a real number X(s) to
each sample point s ∈ S.

The Cumulative Distribution Function (CDF) is an impor-
tant concept of studying random variables. A CDF expresses
a probability the random variable takes a value lower than a
given non-negative real number t which is defined in Equation
1. The CDF is a nondecreasing function.

F (t) = P(τ < t) (1)

1) Failure Function: If a random variable τ expresses a
length of a time interval from the systems start of the operation
to the point a fault occurs, then the CDF F (t) of random
variable τ expresses a probability of the system being in a
failure state at the time t. In this case, the CDF F (t) is denoted
as Q(t) and is called the failure function.

2) Reliability Function: Another reliability indicator is the
so-called reliability function which is denoted as R(t). The
reliability function expresses a probability of the system being
in an fault-less state at the time t and it is a supplement of the
Q(t) as expressed in Equation 2.

R(t) = 1−Q(t) (2)

3) Failure Density: The failure density f(t) is defined by
the time derivative of a CDF Q(t) if the random variable is
continuous and the derivative exists, as shown in Equation 3.

f(t) =
dQ(t)

dt
(3)

The product of f(t)dt then expresses the probability of
a fault occurrence for a short period of time dt that is
immediately following after the time t. Although, the case in
which the fault occurred earlier before the time t is not taken
into account.

4) Failure Rate: The next reliability indicator is failure
rate which is denoted by λ(t). The failure rate expresses a
conditional failure density at the time t assuming the failure
has not occurred yet. Equation 4 gives a relationship between
the λ(t) and Q(t).

λ(t) =
f(t)

R(t)
=

f(t)

1−Q(t)
(4)

Again, the product λ(t)dt gives a probability of a fault
occurrence for a short period of time dt immediately following
after the time t given the examined system was in a fault-less
state at the time t.

Throughout the whole lifetime of the system, the λ(t)
usually forms the so-called bathtub curve. The bathtub curve
can be divided into three main time periods with the first one
related to early failures, the middle one related to a constant
failure period and the last one corresponding with the wear-
out phase [15]. The time interval 〈t1, t2〉 in which the failure
rate keeps an approximate constant value is the most important
part for us, as this is the part where the random failures rate
is revealed.

λ

tt2t1

λ(t)

I II III

Fig. 1. The usual failure rate displayed as a function of a time t, the so-called
bathtub curve.

5) Mean Time To Failure: The Mean Time To Failure
(MTTF) which is in the following text denoted as Ts represents
a mean value of the random variable τ observed. The mean
value can be seen as a mean time of all the time period
lengths since the system started its operation to the first failure
occurrence. If the mentioned system is non-recoverable, the
value can be considered a mean time to the first failure as
well. To calculate the Ts, the Equation 5 can be used.
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Ts =

∫ ∞

0

R(t)dt (5)

B. Reliability Improvement

The reliability improvement can be achieved through sev-
eral means, all of which are based on the concept of redun-
dancy. The concept of time redundancy is based on increasing
the time spent by a particular computation. Another concept
of reliability improvement is to utilize redundant information.
The information redundancy is based on Error Detection
And Correction (EDAC) codes. Although all of the means of
redundancy are closely related, the most fundamental principle
is to utilize the hardware redundancy.

Probably the most known principle of the hardware re-
dundancy is the Triple Modular Redundancy (TMR, 3MR)
which is based on a triplication of the component we intend
to improve reliability of [16]. The TMR is based on a static
backup using three functionally and structurally equivalent
elements. The structural schematic can be seen in Figure 2.
The two additional copies of the original functional unit are
incorporated into the system. The resulting units are named
F1, F2 a F3. The vectors of the input signals x are connected
in such a way that each of the functional units Fi works with
the same input values. The output signals fi(x) are connected
to the inputs of the so-called voter which implements the
so-called majority function. The majority function can be
implemented in different ways, the selection of the majority
can be performed on the level of bits, whole vector, etc. It is
important to note that in the following text, the TMR version
using a voter that works on the per-bit basis is consulted.
The voter is built with the use of n instances of the so-called
majority gate with the n equal to the number of output bits of
F1 (which is the same for all the Fi units).

F1

F2

F3

x
M

f3(x)

f2(x)

f1(x)

fm(x)

Fig. 2. A system module whose reliability was improved according to the
TMR method.

If we omit some edge cases, such as the case when the
faults compensate each other, it can be declared that this
implementation allows us to mask the failure of one module.
If we suppose that each of the Fi modules has an equivalent
reliability function R(t), then Equation 6 that can be used to
evaluate the resulting reliability function of the whole TMR
module exists.

RTMR(t) = 3[R(t)]2 − 2[R(t)]3 (6)

The TMR method is useful for tasks that last for a short
period of time where an improvement of the reliability function
is desired. For longer lasting tasks an option for faulty modules
recovery can be added. An overview of the reliability indicators
of the TMR systems is shown in Table I [13], [16].

TABLE I. AN OVERVIEW OF THE TWO MAIN RELIABILITY INDICATORS
OF THE TMR SYSTEMS.

Reliability indicator Input variables Value

Reliability Function R(t) R(t) of the original RTMR(t) = 3[R(t)]2

RTMR(t) functional unit −2[R(t)]3

Mean Time To Failure λ λ of the original
Ts(TMR) = 5

6λTs(TMR) functional unit

III. EVALUATION PLATFORM AND ROBOT CONTROLLER
CASE STUDY

The development of the experimental system and the evalu-
ation platform for monitoring faults injected into FPGA-based
system was the scope, among other, of our previous work [12].
A created experimental system can serve as a case study for a
discussed techniques demonstration which is also in this paper.
Because the digital controlling systems very often control
some mechanical part, we decided to create an evaluation
platform which can use an electro-mechanical application as
an experimental system. It can be stated that such areas exist
in which electro-mechanical applications are implemented as
fault-tolerant - aerospace and space applications can serve as
an example.

A. The Robot Controller - Experimental Electro-mechanical
System

Our experimental electro-mechanical system consists of a
robot for searching a path through a maze and its electronic
controller implemented in FPGA. Unfortunately, we do not
have a real robot device, so we use the simulation tool
Player/Stage [17] which allows us to simulate the robot and its
environment (in our case the robot in a maze). The robot sim-
ulation is executed on a computer which is connected with the
FPGA board by the Ethernet (see Figure 3) interface through
which data between the robot and its controller are transmitted.
The robot controller is composed of various functional units
which are interconnected through the central bus. There is
in total 16 functional units, the main ones are the Position
Evaluation Unit (PEU) and the Barrier Detection Unit (BDU)
which calculate actual position of the robot in a maze and
detect barriers in robot 4-neighborhoods. The Map Unit (MU)
stores calculated informations into the Map Memory Unit
(MMU) on which path searching realized by Path Finding Unit
(PFU) is based. Mechanical parts of the robot are controlled
by Engine Control Unit (ECU). Almost all of these functional
units are equipped with a control finite stat machine (FSM)
and a bus wrapper.

Fig. 3. The robot in maze and its electronic controller.

B. The Evaluation Platform for Monitoring Impact of Faults
on Electro-mechanical System

The evaluation platform is based on Functional Verification
[18]. The main task of the functional verification is to check if
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a verified circuit satisfies its specification. It compares outputs
of a verified circuit running in a RTL simulator with a reference
model implemented in another programming language (e.g.
C/C++). In the case of the fault injection, the verified circuit
must operate in FPGA, so we do not use classical simulation-
based functional verification, but modified FPGA-based func-
tional verification. Our platform uses functional verification as
a tool for monitoring impacts of faults injected into electronic
controller implemented into the FPGA.

The two main parts of the implemented evaluation platform
(see Figure 4) are a computer and an FPGA development
board. It allows us to implement a verified electronic controller
in FPGA and inject faults directly into FPGA. The fault
injector is a component which runs on the computer. Our
fault injector [19] is based on the partial reconfiguration. It
reads part of the configuration bitstream from the configuration
memory, then the required number of specified bits of the
bitstream are inverted and a modified bitstream is configured
back to the configuration memory through the JTAG interface.
The platform is designed to evaluate the impact of faults
on the electro-mechanical application, so the simulation of
the mechanical part is important and is also runned on the
computer. The simulation of the mechanical part is connected
with FPGA through the Ethernet interface. The software part
of verification environment is also runned on the computer and
performs the evaluation of impacts of injected faults on both
the electronic and mechanical parts.

Fig. 4. The architecture of our evaluation platform.

An important metric in functional verification is the cov-
erage. It measures how well input stimuli cover the behavior
of DUT and provide the feedback that determines when the
verification process can be ended. Depending on the required
coverage criteria, the Code coverage metrics can serve as
an example. Code coverage measures how well input stimuli
cover the source code of DUT. Typical code coverage metrics
are toggle, statement, branch, condition, expression or FSM
coverage.

IV. VERIFICATION SCENARIOS GENERATION

Input stimuli are values on the input of the electronic
controller on which output values are based on. In the case
of the robot controller, input values are changed during the
evaluation of one verification scenario (maze, start and goal
position). High code coverage was achieved by the set of
verification scenarios in our previous work. Actual experiments
are simplified because we are using only one verification
scenario (one maze) which proposes sufficient code coverage
and a suitable number of steps from start to goal position.

The principles of finding such a scenario are described in the
following text.

In our previous research [12], we used a set of different
verification scenarios (mazes) for monitoring the impact of
faults on the robot controller. These mazes achieved sufficient
code coverage for the verification of the proper function of the
robot controller, but the evaluation was very time consuming.
The reason was the execution of a large number of experiments
which monitors the influence monitoring on the mechanical
part of the robot that simulates path finding in a maze. For
these experiments, a set of mazes with size 15x15 cells was
used. The set reached the maximal code coverage 91.85%.
To accelerate the experiments presented in this paper and also
future experiments, we build on the premise of finding the one
ideal maze (including the start and goal position of the robot)
to ensure the correct behavior of the robot controller and to
achieve the previously reached maximal coverage. The found
mazes should contain a reasonable number of the robot steps
from the start to goal position in order to avoid insignificant
prolongation of the experiments. Finding the ideal maze and
its positions can be divided into three steps - maze generation,
maze selection based on the coverage, and maze selection with
the optimal number of steps.

A. Maze Generation

We constantly improve and generalize our test stimuli gen-
erator which is based on our designed universal architecture.
This architecture allows us to describe the desired test stimuli
through two specific input structures. The first structure is used
to describe the format of the stimuli, while the second structure
defines restrictive conditions on how the format has to be
constructed into a valid stimulus. In our previous research,
we used to define these structures by using our description
(language). The language was not general, therefore, a special
functionality to provide a valid stimulus had to be implemented
with every new type of supported system. We have managed
to generalize the test stimuli generator while maintaining the
defined universal architecture. Instead of our own language,
probabilistic context-free grammar (PCFG) was used. PCFG
was extended by restrictive conditions which dynamically
adjust the probabilities for rewriting the rules of grammar
during the test stimuli generation. In this way, we define a
new grammar the expressive power of which is much higher.
More information about PCFG extended with constraints may
be found in [20].

Using this new grammar, we are also able to describe and
generate a maze, where a way between any two points exists.
To generate the maze, we use the principles of the binary tree
algorithm which can be encoded into our grammar. The basic
principle of the binary tree algorithm is shown in Figure 5. It
starts from the basic matrix of the maze (a) in which some cells
are tightly specified - either a corridor or a wall. The corridors
are represented by a white color and walls by a black color.
Cells marked with a question mark represent areas that can take
the white or black color. In order to maintain the continuity
from any corner of the maze to another, it is necessary to
perform a modification of the basic matrix of the maze so
that each two adjacent sides of the maze must contain the
corridor over its entire dimension (b). In our case, we chose
this corridor to the northern and the western side of the maze.
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The final and most critical task is to determine cells A, B, C, D
which allows us to have the maximal continuous maze (c). If
cell A, respectively C, was randomly selected for the corridor
in Figure 5.b, then cell B, respectively D, will be a wall and
vice versa. Such mazes may be generated directly into the
binary file (picture) in Bitmap format (BMP), including start
and goal positions which can be differentiated by a color.

Fig. 5. The demonstration of a conversion of the basic matrix of the maze
for needs of the generator.

For the selection of the one maze with maximal coverage,
we have generated 300 different mazes with dimensions of
7x7, 15x15, and 31x31 cells by using the described approach.
The mazes also have different start and goal positions. The
coverage of individual mazes and the differences between
different dimensions are shown in Figure 6 with a box plot
graph. The upper dash shows the maximal achieved coverage
and the lower dash shows the minimal achieved coverage for
the set of mazes. The inner line in the chart represents the
median value of the coverage. The last shown range defines
the first (25% of all values) and third (75% of all values)
quartiles. In the figure, it can be seen that with increasing the
size of the maze, accomplishment of the maximal coverage
occurs more frequently due to the execution of more steps of
the robot during the path finding in the maze. It is also evident
that some mazes with dimensions 15x15 and 31x31 cells are
able to achieve maximal coverage. Therefore, we calculated
the average number of steps of the robot for each size of the
maze - 13 steps for dimensions of 7x7, 125 steps for 15x15,
and 539 steps for 31x31 cells. Based on this information,
we have chosen the maze with dimensions of 15x15 cells
with maximal coverage 91.85% for further experiments. The
inability of achieving an ideal of 100% is caused by the default
branches in the source code which are never executed (which
is correct), and also by some of the control expressions that
are used only when an abnormal situation occurs (e.g. a fault).

Fig. 6. The Box and whisker chart helps select the right one maze for the
robot controller with maximal total coverage in functional verification.

B. Maze Selection With the Optimal Number of Steps

The final step is to select the one maze with dimensions of
15x15 cells which has the optimal number of steps of the robot

from the start to the goal position. This condition is important
because a maze with the long way has the same coverage as the
maze with the short way, but multiple steps do not bring any
profit and just prolong the time to perform the experiments.
On the other hand, the short mazes can cause a problem with
the detection of a fault which may not occur in a short time.
Among our test set of generated mazes with dimensions of
15x15 cells, we chose the maze with the maximal coverage of
91.85% and with the number of steps equal to 51 which is an
optimal number from our point of view. The selected maze,
including start and goal positions, and the way that the robot
must follow, is shown in Figure 7.

Fig. 7. The selected maze for the robot controller and its path between the
start and goal position which the robot found.

V. RELIABILITY ANALYSIS WITH EXPERIMENTAL
EVALUATION

The subject of this research is to evaluate some of the basic
reliability indicators of the robot controller unit which had
already been used in our previous research presented in Section
III and its fault-tolerant version that is implemented the TMR
method. The other subject of this research is to find out if the
process of the evaluation technique of the fault-tolerant robot
controller could be estimated by an analysis of the nondurable
robot controller system followed by an application of equations
to convert the reliability indicators to estimate the indicators
of the fault-tolerant controller.

A. Data Acquisition

At first, to be able to practically evaluate the parameters of
the robot controller and to verify that the equation mentioned
is applicable in our concept, two robot controller versions
were created. The first version that is referenced to as to
the noft version is actually the initial nondurable system we
started with. The noft version includes one component only
– the instance of robot controller alone named the rc. The
second version that is labeled the tmr was implemented using
three instances of the rc robot controller component from the
previously mentioned noft version and a voter. The components
are named rc1, rc2 and rc3. It is important to note the voter
itself was not subject to evaluation. The resources consumed
for both of the versions are shown in Table II.

TABLE II. RESOURCES CONSUMED FOR BOTH VERSIONS OF THE
ROBOT CONTROLLER UNITS.

Version Occupied Slice Slice Max freq. LUT bits
slices [−] reg. [−] LUTs [−] [MHz] used [−]

noft 1080 1617 1708 93.76 108480
tmr 2991 4755 5165 93.76 329824

For the practical evaluation of these two robot controller
versions, verification environment presented in Section III was
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used. The fault injection our verification environment utilizes
was set up with a constant SEU injection rate. The SEUs
were injected to the bits of the bitstream that are utilized
in the design and represent the content of Look-Up Tables
(LUTs) at the same time. If we suppose that component c is
subject to SEU fault injection, then the important parameter to
unambiguously describe this type of fault injection is a time
delay dc between two consecutive SEUs injected to c. The
dc actually does not necessarily have to be constant for the
whole time of the SEU simulation, it can be represented by
a random variable with a particular probability distribution.
In our experiments, we have experimentally chosen the dc to
be described by the uniform distribution with a mean value of
12 s and a variance of 2 s.

The scenario of one verification run was as follows:
1) the robot controller unit was configured into its initial

state, the maze map as well as its starting and target
positions were the same for all the verification runs,

2) the Player/Stage simulation environment was started,
the robot was placed on the starting position,

3) after 15 s, for each component c, the SEU injection
started with the dc time period between SEUs based
on the uniform distribution with the mean value of
12 s and variance of 2 s, the bits to inject SEU to
were selected uniformly at random,

4) mainly, the time from the robot start to the first failure
observed was monitored, moreover, the ability of the
robot to reach the target position was observed as
well.

This verification scenario was repeated 3500 times for both
of the two versions of the robot controller units. The data
acquired included the time of the first failure occurrence and
information on whether the robot successfully reached the
target position.

B. Method of Reliability Indicators Calculation

The data obtained from the previously described exper-
iments were then processed. The multi-set of all the times
measured from the start of the operation of the system to
the first detection of an error on the system outputs was
transformed to a discrete failure function Q(t) which was then
converted to the reliability function R(t). The other reliability
indicators included are the failure density f(t) and failure
rate λ(t).

All the data for the noft, tmr robot controller unit versions
and the estimation of parameters for the tmr version are
discretized with the time-step of 15 s in Table III. The
rows that are marked with est. contain the estimations of the
reliability function for the given time-steps calculated using
Equation 6. From there, the other reliability indicators (failure
function, failure density and failure rate) were calculated using
Equations 2, 3 and 4 from Section II respectively. The final
values of the reliability functions on the bottom of Table III
are not close to the limit value of zero, as in most cases the
faults injected did not appear in the form of an error on the
outputs of the robot controller unit. The threshold time length
the robot had to find its path within was evaluated to 204 s,
that is also the maximum time for which the system has been
verified.

TABLE III. A DISCRETIZATION OF THE MEASURED RELIABILITY
PARAMETERS OF THE noft AND tmr ROBOT CONTROLLER UNITS WITH THE

ESTIMATION OF THE PARAMETERS FOR THE tmr ROBOT CONTROLLER.
Time t First err. detect. Q(t) R(t) f(t) λ(t)
[s] [−] [%] [−] [−] [−] [−]

0− 14.9̄
noft 0 0.0% 0.00 1.00 0.0000 0.0000
tmr 0 0.0% 0.00 1.00 0.0000 0.0000
est. − 0.0% 0.00 1.00 0.0000 0.0000

15− 29.9̄
noft 6 0.2% 0.00 1.00 0.0001 0.0001
tmr 1 0.0% 0.00 1.00 0.0000 0.0000
est. − 0.0% 0.00 1.00 0.0000 0.0000

30− 44.9̄
noft 9 0.3% 0.00 1.00 0.0002 0.0002
tmr 0 0.0% 0.00 1.00 0.0000 0.0000
est. − 0.0% 0.00 1.00 0.0000 0.0000

45− 59.9̄
noft 35 1.0% 0.01 0.99 0.0007 0.0007
tmr 8 0.2% 0.00 1.00 0.0002 0.0002
est. − 0.0% 0.00 1.00 0.0000 0.0000

60− 74.9̄
noft 28 0.8% 0.02 0.98 0.0005 0.0005
tmr 25 0.7% 0.01 0.99 0.0005 0.0005
est. − 0.0% 0.00 1.00 0.0000 0.0000

75− 89.9̄
noft 8 0.2% 0.02 0.98 0.0002 0.0002
tmr 11 0.3% 0.01 0.99 0.0002 0.0002
est. − 0.0% 0.00 1.00 0.0000 0.0000

90− 104.9̄
noft 47 1.3% 0.04 0.96 0.0009 0.0009
tmr 53 1.5% 0.03 0.97 0.0010 0.0010
est. − 0.2% 0.00 1.00 0.0001 0.0001

105− 119.9̄
noft 42 1.2% 0.05 0.95 0.0008 0.0008
tmr 36 1.0% 0.04 0.96 0.0007 0.0007
est. − 0.2% 0.00 1.00 0.0001 0.0001

120− 134.9̄
noft 52 1.5% 0.06 0.94 0.0010 0.0011
tmr 34 1.0% 0.05 0.95 0.0006 0.0007
est. − 0.2% 0.01 0.99 0.0002 0.0002

135− 149.9̄
noft 36 1.0% 0.08 0.92 0.0007 0.0007
tmr 47 1.3% 0.06 0.94 0.0009 0.0010
est. − 0.4% 0.01 0.99 0.0003 0.0003

150− 164.9̄
noft 42 1.2% 0.09 0.91 0.0008 0.0009
tmr 33 0.9% 0.07 0.93 0.0006 0.0007
est. − 0.3% 0.01 0.99 0.0002 0.0002

165− 179.9̄
noft 50 1.4% 0.10 0.90 0.0010 0.0011
tmr 48 1.4% 0.08 0.92 0.0009 0.0010
est. − 0.6% 0.02 0.98 0.0004 0.0004

180− 194.9̄
noft 45 1.3% 0.11 0.89 0.0009 0.0010
tmr 46 1.3% 0.10 0.90 0.0009 0.0010
est. − 0.7% 0.03 0.97 0.0004 0.0004

195− 209.9̄
noft 856 24.5% 0.36 0.64 0.0163 0.0254
tmr 787 22.5% 0.32 0.68 0.0150 0.0221
est. − 21.8% 0.25 0.75 0.0146 0.0193

Fig. 8. An experimental evaluation of the measured results of the reliability
function for the noft and the tmr versions.

The results of our research can be seen from two different
points of view. The first point of view is from the improvement
of the reliability by the TMR application. As can be seen in
the chart on Figure 8, it is evident that the implementation
of the TMR method improved the reliability of the robot
controller unit in each of the time-steps we used to discretize
the calculation. As a known fact, the chart shows the TMR
without faulty modules recovery is useful mainly for shorter
mission times. From the second point of view, there is a
considerable difference between the estimated and measured
parameters for the tmr version of the robot controller unit.
One reason we believe could possibly cause this phenomenon

342



is the fact the evaluation was done with the fault injections
to the LUTs only. Another consideration includes a possible
problem within the method of the calculation. In order to find
out the true reason for this, disproportion is seen by us as a
good direction for future research.

VI. RELIABILITY IMPROVEMENT BY PARTIAL DYNAMIC
RECONFIGURATION

The results of our research demonstrated in the previous
parts of this paper is the increase of system reliability by
using the TMR approach. TMR is naturally only a passive
approach [21], which is capable of delivering correct output
when a fault occurs. However, just fault masking means that
FPGA is not fully utilized – namely the ability of changing its
configuration. Therefore, the extension of the passive by active
approach is very effective. The active approach of avoiding the
impact of fault occurrence is based on a reconfiguration. The
combination of passive and active approaches is described in
[22]. The utilization of a reconfiguration controller to eliminate
faults in FPGA based applications is a key technique for such
approaches. This controller is responsible for scrubbing and
other activities combined with bitstream relocation. A Partial
Dynamic Reconfiguration (PDR) is very advantageous when
used because it does not interrupt other functions implemented
in FPGA. Therefore, PDR is a very important approach for crit-
ical applications and Generic Partial Dynamic Reconfiguration
Controller (GPDRC) [23] is an example of such a controller
used for this purpose. An extension of the TMR majority voter
function is demanded to acquire information on which module
a fault has occurred. This extension resides in adding an output
from the voter, which identifies the malfunction module whose
output value is different from the other two. Mitigation of
faults that occur in individual TMR modules is possible due
to the GPDRC existence in the design. Such an approach
increases the reliability of a particular system.

A. PDR Controller Requirement
The requirement of including more components to FPGA

necessarily represents sufficient FPGA size. However, larger
and more expensive FPGA will be a requisite for achieving
fault tolerance improvement. Possibly, a reconfiguration con-
troller can be configured in FPGA with the application, or as
another component which has to be included into the system
(i.e. an extra FPGA). However, the increase in occupied FPGA
area is manifested in both cases. The probability of hitting the
utilized part of FPGA by some fault, which can cause a circuit
malfunction, increases concurrently with its reliability. Faults,
which hit the TMR module, are not important because the
reconfiguration controller will fix them. Nevertheless, some
faults can hit the reconfiguration controller that will behave
in an incorrect way. It can cause ultimate system breakdown
even if this system behavior is presumed. The malfunction-
ing controller might occasionally destroy a correct circuit
configuration due to a reconfiguration which is performed
unexpectedly. If the controller area in FPGA is considerably
smaller than the application in TMR, the controller should
provide longer failure-free time compared with triplication.

The reconfiguration controller is utilized to deliver bit-
streams into the FPGA configuration memory during the
PDR procedure. These bitstreams are called golden bitstreams.
Special memory can be used to save them. When a fault is
identified, the controller then loads and applies corresponding

bitstreams from this memory which should be protected against
faults as well. The records can be equipped with a correction
code. Another component which can possibly be included in
the FPGA produces higher FPGA area requirements. Another
possibility is the utilization of module triplication (TMR).
When there is a fault in one module, the remaining two
modules are still faultless. Therefore, three bitstreams of
three modules are downloaded from the FPGA configuration
memory. Then, a new bitstream is prepared as a majority value
of each bit of these bistreams. This new bitstream is used for
fixing faults instead of using golden bitstream. This approach
is called Lazy Scrubbing [24] by M. Garvie.

B. Fault Tolerant PDR Controller
Fault tolerance of a reconfiguration controller might be

also required in some applications. The same technique as
for protected circuit can possibly be used (i.e. TMR). The
reconfiguration controller will then be implemented three times
in FPGA and each of its instances will operate in parallel with
the remaining two. The outputs from each instance will be
compared and when a controller malfunction is detected, the
other two correctly functioning controllers will be capable of
reconfiguring the incorrectly working one. Even in this case,
when two controllers reconfigure the third one simultaneously,
it is possible to check fault occurrence. Because outputs of the
two correctly working controllers are compared and if they are
equal, no fault exists there. This approach corresponds to the
Duplication with Comparison (DwC) method. Nevertheless,
in the case of fault occurrence in DwC architecture it is
impossible to determine which controller works incorrectly. It
is important to note that the fault tolerance for reconfiguration
controller has a negative impact on FPGA area and circuit
delay – because of a majority voter addition to the system.

C. Research in the Area of GPDRC
Two versions of the PDR controller for FPGA, which we

designate as GPDRC, were designed and implemented within
our research group. The first version of the controller [23]
is capable to mitigate transient faults i.e. SEUs. The second
expanded version of the controller [25] is focused on the
mitigation of permanent faults too. The permanent fault is a
fault when some bits of FPGA configuration memory are in an
incorrect state without a possibility to change it. Some spare
modules for TMR are available in the FPGA to be used in
these situations. These modules are able to be used instead of
another TMR module with a permanent fault. When all spare
modules are exhausted and one more permanent fault occurs,
fault protection degrades to only DwC. The next permanent
fault causes circuit function termination.

Previous research aims at ensuring fault tolerance for the
circuit function itself. However, fault tolerance for the recon-
figuration controller itself is not provided. The controller has to
be in a radiation protection component outside FPGA, which
performs its function. It is certainly not the only alternative of
protecting the reconfiguration controller against faults.

Future research in the area of GPDRC will be oriented to
bringing fault tolerance into the GPDRC design. The utilization
of the TMR approach for the design of a fault tolerant GPDRC
is an idea for future research. This approach is based on placing
three equivalent controllers into the FPGA and connecting
their outputs to a special majority voter. The experiments
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with this approach will be executed and compared with the
version which contains just one reconfiguration controller.
In both cases, the reconfiguration controller will guarantee
the proper function of a robot controller, which is described
herein. Certainly, this is only a passive approach for fault
tolerance, which is not sufficient for proper attenuation of
the SEU impact on the FPGA. Therefore, we will solve how
to perform reconfiguration of the malfunction controller by
another two controllers which operate correctly. Obviously,
the malfunction reconfiguration controller must not interfere
in its reconfiguration. However, that problem will be solved
by a majority voter, which masks one incorrect output due to
another two correct outputs. We will ensure fault tolerance
for majority voters after thorough testing and comparison
with previous versions. The majority voters remain as the last
unprotected component of the system.

VII. CONCLUSIONS AND FUTURE RESEARCH
In this paper we introduced the combination of fault

injection-based experimental evaluation and theoretical relia-
bility analysis of our previously developed robot controller.
Our previous work was targeted mainly towards the exper-
imental evaluation, but we feel that the theoretical reliability
analysis has also important place in our evaluation process. We
applied a commonly used TMR on the top level of the robot
controller (there were three instances of the robot controller
complemented with the majority voter). The first step was
the fault injection-based experimental evaluation of the robot
controller without TMR applied and its reliability indicators
calculation. The calculation of reliability indicators of the
TMR version was done in the second step, then we gained
estimated reliability indicators. Reliability indicators of the
TMR version were also evaluated by fault injection. These
experiments show us that TMR has a significant impact on the
reliability indicator and improves reliability of the hardened
robot controller. When we compare a measured and estimated
reliability indicator we found that the measured values are not
so good as the estimated ones. We outlined possible causes
which are in the scope of our future research.
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Abstract—The reliability of safety-critical systems is very
important especially in case of electronic systems which are
working in environment with increased occurrence of faults. As
an example, space, aerospace or medical systems can serve. Fault
tolerance is one of the techniques the goal of which is to avoid
the impact of faults on such systems. Lots of fault tolerance
techniques exists and new ones are under investigation. This
paper is targeted mainly to Field Programmable Gate Arrays
(FPGAs) which are also the target technology of many fault
tolerant techniques. It is important to evaluate and test these
techniques. This paper is the continuation of our previously
published research results which presents experimental approach
to evaluate such fault tolerance techniques by monitoring the
impact of faults in the experimental electro-mechanical system
utilizing robot navigation in a maze. However, in this paper, we
research and compare similarities of the theoretical estimation to
various methods of the SEU injection approaches. The theoretical
estimation is calculated using known equations. The impact of
artificially faults injected into the electronic controller, in which
Triple Modular Redundancy is applied, is monitored and used
for statistic reliability analysis. This approach serves as a tool for
the fast reliability evaluation during the development process of
fault tolerance systems.

Keywords—Reliability Analysis, TMR, FPGA, Fault Tolerance,
Robot Controller.

I. INTRODUCTION

The reliability of safety-critical electronic systems which
are working in environment with increased occurrence of faults
is a very challenging topic. A technique called fault tolerance
[1] is commonly used technique which makes electronic sys-
tems more reliable. The goal of this approach is to keep the
system functional, even in the presence of faults. It means
that fault tolerance accepts the fact a fault can appear in
electronic system. Various types of redundancy are the core of
such techniques. Hardware and time redundancy are the most
common ones. Combination and improvements of these basic
methods are still under investigation, e.g. authors of [2] present
approach which is based on the combination of hardware and
time redundancies.

Many fault-tolerant methodologies targeted to Field Pro-
grammable Gate Arrays (FPGAs) have been developed and
new ones are under investigation [3]. The main reason is that
FPGAs are more popular thanks to their flexibility and ability
to be reconfigured in case of fault occurrence. Sensitivity of
FPGAs to faults caused by charged particles [4] is the problem
from the reliability point of view. The configuration of FPGA
is stored as a bitstream in SRAM memory and charged particle
can cause inversion of bit in the bitstream. This event is called
Single Event Upset (SEU) [5].

A fault-tolerant system development usually starts with
a nondurable system that does not tolerate faults [6]. This
nondurable system is usually designed with minimum re-
dundancy and serves as a starting point for the process of
hardening against faults. Then the modifications that should
be made to the nondurable system in order to achieve a
higher level of fault tolerance are proposed by an experienced
fault-tolerant system designer. After integration of proposed
changes into the design, the system must be evaluated to
ensure that the applied changes have the expected impact
on the reliability of the system. The iteration between the
phase of development and the reliability evaluation is the usual
approach. Multiple designs with various combinations of fault
tolerance methods assigned to the partitions of the design are
created. Development ends if two conditions are met: 1) the
system complying with the specification or 2) the findings of
the specifications not being achievable. We to accelerate this
procedure of the development with the capability to evaluate
the estimation of reliability of the resulting system even before
the integration of the method itself. This allows a designer to
exclude such combinations of reliability methods that do not
look perspective.

This work is the continuation of our previously published
paper. Additional experiments were done and experimental
results were compared with results obtained in our previous
publication [7]. This paper is organized as follows. Section II
described reliability analysis and reliability improvement. The
experimental platform which allow us to done experimental
evaluation on real FPGA is introduced in Section III. Section
IV presents reliability analysis and its experimental evaluation.
Section V concludes the paper and mentions plans for our
future research.

II. RELIABILITY ANALYSIS AND ITS IMPROVEMENT

The reliability itself can be quantified with the support of
the theory of probability as most of the reliability indicators are
of a random nature. The length of a time period of the system
operation until the failure occurs is an important starting point
in the reliability indicators computation.

1) Failure Function: If a random variable τ expresses a
length of a time interval from the systems start of the operation
to the point a fault occurs, then the Cumulative Distribution
Function (CDF) [8] F (t) of random variable τ expresses a
probability of the system being in a failure state at the time t.
In this case, the CDF F (t) is denoted as Q(t) and is called
the failure function.

2) Reliability Function: Another reliability indicator is the
so-called reliability function which is denoted as R(t). The978-1-7281-1756-0/19/$31.00 c©2019 IEEE



reliability function expresses a probability of the system being
in an fault-less state at the time t and it is a supplement of the
Q(t) as expressed in Equation 1.

R(t) = 1−Q(t) (1)

3) Failure Density: The failure density f(t) is defined by
the time derivative of a CDF Q(t) if the random variable [8] is
continuous and the derivative exists, as shown in Equation 2.

f(t) =
dQ(t)

dt
(2)

The product of f(t)dt then expresses the probability of
a fault occurrence for a short period of time dt that is
immediately following after the time t. Although, the case in
which the fault occurred earlier before the time t is not taken
into account.

4) Failure Rate: The next reliability indicator is failure
rate which is denoted by λ(t). The failure rate expresses a
conditional failure density at the time t assuming the failure
has not occurred yet. Equation 3 gives a relationship between
the λ(t) and Q(t).

λ(t) =
f(t)

R(t)
=

f(t)

1−Q(t)
(3)

5) Mean Time To Failure: The Mean Time To Failure
(MTTF) which is in the following text denoted as Ts represents
a mean value of the random variable τ observed. The mean
value can be seen as a mean time of all the time period
lengths since the system started its operation to the first failure
occurrence. If the mentioned system is non-recoverable, the
value can be considered a mean time to the first failure as
well. To calculate the Ts, the Equation 4 can be used.

Ts =

∫ ∞

0

R(t)dt (4)

The reliability improvement [9] can be done by several
techniques, lots of them are based on redundancy. Triple
Modular Redundancy (TMR, 3MR) which is based on a
triplication of the component is the most known application
of the hardware redundancy. In this paper, we plan to analyze
the reliability improvement just for TMR. The TMR is based
on using of three equivalent functional units, Figure 1 shows
the structural schematic. The TMR system is composed of
original functional unit and two additional copies of the
same functional unit, which are labeled F1, F2 and F3. The
input signals x are connected as an input for each of the
functional units Fi. The output signals fi(x) are connected
to the voter unit which implements majority function. The
majority function can be performed on the level of bits, whole
vector, etc. It should be noted, that voter used in this paper
operates on the per-bit basis.

If we are not taking into account the corner cases, TMR
by its nature allow us to mask the failure of one module.
Assuming that all Fi units have the same reliability function
R(t), then Equation 5 can be used to calculate the reliability
function of the whole TMR module. An overview of the
reliability indicators of the system with TMR implemented is
given in Table I [6], [9].

RTMR(t) = 3[R(t)]2 − 2[R(t)]3 (5)

F1

F2

F3

x
M

f3(x)

f2(x)

f1(x)

fm(x)

Fig. 1. The schematic representation of the TMR method.

TABLE I. TWO MAIN RELIABILITY INDICATORS OF THE TMR
SYSTEMS.

Reliability indicator Input variables Value

Reliability Function R(t) R(t) of the original RTMR(t) = 3[R(t)]2

RTMR(t) functional unit −2[R(t)]3

Mean Time To Failure λ λ of the original
Ts(TMR) = 5

6λTs(TMR) functional unit

III. EVALUATION PLATFORM AND EXPERIMENTAL
SYSTEM

The development of the evaluation platform for monitoring
impact of faults injected into FPGA-based system was the
scope, among other, of our previous work [10]. Developed
evaluation platform is designed for monitoring impact of faults
on electro-mechanical system. The main reason is that lots
of digital systems very often control some mechanical part.
The use of the electro-mechanical system allows us to monitor
not only the impact of faults on the electronic controller but
also on the mechanical part. Our evaluation platform uses
Functional Verification [11] as a tool for checking reactions
of experimental system on injected faults. Functional ver-
ification is usually used for checking if electronic system
corresponds with its specification by monitoring inputs and
outputs in design simulation. We propose extended version of
the functional verification where verified circuit is running on
FPGA as appropriate tool for our purposes. The evaluation
platform which is described in our previous work (e.g. [10])
is composed of:

1) software part of verification environment for the
electronic controller which checks the reaction of
electronic controller and mechanical part on injected
faults running on computer,

2) software simulation environment for mechanical part
simulation running on computer,

3) electronic controller implemented into FPGA, and
4) external fault injector [12] running on a computer

which allows us to simulate real faults in FPGA.

Our experimental electro-mechanical system consists of a
robot for searching a path through a maze and its electronic
controller implemented in FPGA. Unfortunately, we do not
have a real robot device, so we use the simulation tool
Player/Stage [13] which allows us to simulate the robot and
its environment (in our case the robot in a maze). The robot
simulation is executed on a computer which is connected
with the FPGA board by the Ethernet interface through which
data between the robot and its controller are transmitted. Two
versions of the robot controller are used for our experiments
and results comparison. The first version is hard-coded robot
controller which is composed of various functional units
interconnected through the central bus. The second version
is processor-based robot controller which consist of soft-core



processor NEO430 [14] and some external components imple-
mented in FPGA. The searching algorithm is implemented in
C/C++ and performed on the processor.

IV. RELIABILITY ANALYSIS AND EXPERIMENTAL
EVALUATION

The goal of this work is to evaluate some of the basic
reliability indicators of the two versions of robot controller
which was mention in Section III and their fault-tolerant
versions with TMR applied (noted as noft and tmr).

The fault injection was set up with a constant SEU in-
jection rate. The SEUs were injected to the utilized bits of
the bitstream that represent the content of Look-Up Tables
(LUTs). The important parameter of fault injection is a time
delay dc between two injected faults. The dc actually does
not necessarily have to be constant. We have experimentally
chosen the dc to be described by the uniform distribution with
a mean value of 12 s and a variance of 2 s.

The scenario of one verification run was as follows:
1) the robot controller unit was initialized, the maze and

starting and target positions were the same during all
the verification runs,

2) the Player/Stage simulation environment was started
with the robot placed on the starting position,

3) after 15 s, for each component c, the SEU injection
started with the dc time period, the bits into which
faults were injected were selected uniformly at ran-
dom,

4) the time from the robot start to the first failure was
monitored, the ability of the robot to reach the target
position was observed as well.

This verification scenario was repeated 3500 times for all
versions of the robot controller units. In detail, experimental
strategies follow:
• fault injection into unhardened robot controller, com-

ponent c is whole robot controller (noft),
• fault injection into TMR version of robot controller

which respect increased area, faults were injected
into three component c1, c2, c3 (instances of robot
controller) concurrently which led to three times fault
intensity for whole robot controller (tmr),

• fault injection into TMR version of robot controller,
faults were injected into one component c, which rep-
resents whole hardened robot controller (fault intensity
is the same as in noft case) (tmr1).

The data acquired included the time of the first failure
occurrence and information on whether the robot successfully
reached the target position.

The data obtained from the previously described exper-
iments were then processed. The multi-set of all the times
measured from the start of the operation of the system to
the first detection of an error on the system outputs was
transformed to a discrete failure function Q(t) which was
then converted to the reliability function R(t). The other
reliability indicators failure density f(t) and failure rate λ(t)
was computed according to proposed equations. All the data
are discretized with the time-step of 15 s in Table II. The final
values of the reliability functions on the bottom of Table II
are notclose to the limit value of zero, as in most cases the

faults injected did not appear in the form of an error on the
outputs of the robot controller unit. The threshold time length
the robot had to find its path within was evaluated to 204 s,
that is also the maximum time for which the system has been
verified.

TABLE II. A DISCRETIZATION OF THE MEASURED failure function
Q(T) OF THE noft AND tmr VERSION OF THE hard-coded AND

processor-based ROBOT CONTROLLER WITH THE ESTIMATION FOR THE tmr
ROBOT CONTROLLER.

Hard-coded robot cont. Processor-based robot cont.
Time t First err. detect. Q(t) First err. detect. Q(t)
[s] [−] [%] [−] [−] [%] [−]

0− 14.9̄

noft 0 0.0% 0.00 0 0.0% 0.00
tmr 0 0.0% 0.00 0 0.0% 0.00
tmr1 0 0.0% 0.00 0 0.0% 0.00
est. − 0.0% 0.00 − 0.0% 0.00

15− 29.9̄

noft 6 0.2% 0.00 16 0.5% 0.00
tmr 1 0.0% 0.00 8 0.2% 0.00
tmr1 0 0.0% 0.00 0 0.0% 0.00
est. − 0.0% 0.00 − 0.0% 0.00

30− 44.9̄

noft 9 0.3% 0.00 12 0.3% 0.01
tmr 0 0.0% 0.00 10 0.3% 0.01
tmr1 0 0.0% 0.00 2 0.1% 0.00
est. − 0.0% 0.00 − 0.0% 0.00

45− 59.9̄

noft 35 1.0% 0.01 45 1.3% 0.02
tmr 8 0.2% 0.00 35 1.0% 0.02
tmr1 3 0.1% 0.00 5 0.1% 0.00
est. − 0.0% 0.00 − 0.1% 0.00

60− 74.9̄

noft 28 0.8% 0.02 35 1.0% 0.03
tmr 25 0.7% 0.01 61 1.7% 0.03
tmr1 4 0.1% 0.00 3 0.1% 0.00
est. − 0.0% 0.00 − 0.2% 0.00

75− 89.9̄

noft 8 0.2% 0.02 11 0.3% 0.03
tmr 11 0.3% 0.01 69 2.0% 0.05
tmr1 1 0.0% 0.00 9 0.3% 0.01
est. − 0.0% 0.00 − 0.1% 0.00

90− 104.9̄

noft 47 1.3% 0.04 64 1.8% 0.05
tmr 53 1.5% 0.03 169 4.8% 0.10
tmr1 18 0.5% 0.01 26 0.7% 0.01
est. − 0.2% 0.00 − 0.5% 0.01

105− 119.9̄

noft 42 1.2% 0.05 30 0.9% 0.06
tmr 36 1.0% 0.04 76 2.2% 0.12
tmr1 8 0.2% 0.01 18 0.5% 0.02
est. − 0.2% 0.00 − 0.3% 0.01

120− 134.9̄

noft 52 1.5% 0.06 51 1.5% 0.08
tmr 34 1.0% 0.05 92 2.6% 0.15
tmr1 4 0.1% 0.01 21 0.6% 0.02
est. − 0.2% 0.01 − 0.6% 0.02

135− 149.9̄

noft 36 1.0% 0.08 30 0.9% 0.08
tmr 47 1.3% 0.06 66 1.9% 0.17
tmr1 4 0.1% 0.01 19 0.5% 0.03
est. − 0.4% 0.01 − 0.4% 0.02

150− 164.9̄

noft 42 1.2% 0.09 24 0.7% 0.09
tmr 33 0.9% 0.07 85 2.4% 0.19
tmr1 6 0.2% 0.01 16 0.5% 0.03
est. − 0.3% 0.01 − 0.3% 0.02

165− 179.9̄

noft 50 1.4% 0.10 17 0.5% 0.10
tmr 48 1.4% 0.08 64 1.8% 0.21
tmr1 8 0.2% 0.02 26 0.7% 0.04
est. − 0.6% 0.02 − 0.2% 0.03

180− 194.9̄

noft 45 1.3% 0.11 50 1.4% 0.11
tmr 46 1.3% 0.10 129 3.7% 0.25
tmr1 15 0.4% 0.02 58 1.7% 0.06
est. − 0.7% 0.03 − 0.8% 0.03

195− 209.9̄

noft 856 24.5% 0.36 1520 43.4% 0.54
tmr 787 22.5% 0.32 1373 39.2% 0.64
tmr1 129 3.7% 0.06 296 8.5% 0.14
est. − 21.8% 0.25 − 53.3% 0.57

Measured data were also transformed to reliability func-
tions R(t) for both versions of robot controller. The R(t)
functions for hard-coded robot controller are shown in Figure
2. Red lines show, that tmr version (injection into 3 compo-
nent, respect increased area) is better than noft version, but
significantly worse than estimation. These results were also
presented in [7] and additional experiments with version tmr1
(injection into whole controller, increased area is not taken into



account) were performed. Green line shows, that tmr1 version
is almost the same as estimation.

Fig. 2. An experimental evaluation of the measured results of the reliability
function for the noft and the tmr versions of the hard-coded robot controller.

Additional experiments with processor-based robot con-
troller were performed to confirmation of previous results.
Figure 3 show the same chart for processor-based robot con-
troller. The big difference is that tmr version (injection into 3
component, respect increased area) is worse than noft version.
The processor is a complex system and a fault injection with
higher intensity led to its worse reliability. On the other hand,
tmr1 version (injection into whole controller, increased area is
not taken into account) represented by green line is almost the
same as estimated reliability. These experiments confirm, that
equation 5 does not take into account increased area of TMR
system.

Fig. 3. The measured results of the reliability function for the noft and the
tmr versions of the processor-based robot controller.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we present the combination of experimental
and theoretical evaluation of robot controller reliability. We
applied a commonly used TMR on the robot controller (there
were three instances of the robot controller complemented
with the majority voter). The first step was fault injection into
unhardened version of robot controller, reliability indicators
calculation and then estimated reliability of TMR version
were calculated according to commonly used equation 5.
Next step was experimental evaluation of estimated reliability
indicators. The first experiments were done with fault injection
into all robot controller instances concurrently with respect to
increased area. The experimentally measured results indicated
significantly worse reliability than the estimation predicted.
The second experiment was done with fault injection just into
the whole robot controller and the obtained results correspond
with the estimated reliability. These experiments confirm, that
equation 5 does not take into account increased area of TMR
system.

Presented results were obtained using TMR without faulty
module recovery. The faulty module recovery significantly
increases the operation time without failure. The scope of our
future research is to apply reconfiguration as a tool for faulty
module recovery and perform similar experiments and examine
benefits and negatives.
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Abstract—This research paper presents the examination of the
influences of faults on a control unit of smart electronic locks. A
stepper motor is often used as an actuator of such smart locks
and its motor controller is usually implemented in a processor.
The aim of this paper is to examine the impact of faults occurring
in the control processor. It should be noted that faults in such
electronic systems can also be induced artificially, usually with
ulterior motives. The processor can be implemented in an FPGA
(Field Programmable Gate Array) in order to be able to emulate
HW faults inside the processor. This allows us to use previously
developed evaluation platform for fault tolerance testing. This
platform allows us to monitor the impact of faults both on
electronic and mechanical parts of electro-mechanical system. In
this paper, the evaluation of faults artificially injected in FPGA-
based processor is proposed. Experiments with both single and
multiple fault injections were performed. In our research, we
found out that a fault in the same position of the design does not
always affect the electronics in the same way. Also, the mechanics
may still operate correctly despite the electronics failure.

Keywords—Electronic Lock, Stepper Motor, FPGA, Fault Tol-
erance, Fault Injection.

I. INTRODUCTION

Nowadays, smart devices [1] are on the rise, their goal is to
make our lives more efficient, simpler and more pleasant. The
smart electronic lock [2] is an example of smart device that
can be met in our everyday life. Connecting electronics with
mechanical elements and a remote server brings new possibili-
ties for users to control these locks. The smart electronic locks
have many advantages, since they can be controlled remotely.

Various types of faults can arise in electronic systems,
especially if such systems are operated in environments with
increased level of electrostatic electricity, increased occurrence
of charged particles, etc. It should be noted that faults can
also be injected artificially, usually with malicious intentions.
For example, sensitive data from an embedded memory (parts
of an algorithm, encryption keys, etc.) can be extracted by
bumping attacks [3]. Attacks on smart cards based on fault
injection which modifies the behavior [4] can serve as another
example. Unauthorized or accidental unlocking of electronic
locks may also be caused by fault injection. Opening a lock
or preventing its closing can cause financial losses or endanger
human health or life. Unauthorized unlocking can be caused
by various types of attacks, either to the server part of the
whole system, or directly to the lock in the door [5]. Intently
inducing faults is one of the possible attacks which is yet an
unexplored topic that we will deal with in our research.

The evaluation of the effects of faults on an electro-
mechanical system is in focus of our research. Especially, we
focus on systems composed of SRAM-based FPGAs. Another

example of electro-mechanical system where faults can cause
undesirable consequences, is an electronic lock. In this work,
we are going to use previously developed tools to analyze
the impact of faults on electronic locks. Electronic locks are
usually controlled by an embedded processor that can be
implemented in an FPGA which gives us the possibility to
simulate faults. We have identified three main goals that we
are going to achieve during our research targeted on electronic
locks which are in detail presented in paper [6]:
1) The evalution of faults injected directly into stepper motor
control signals and the estimation of the risk of an unautho-
rized unlocking (solved in [6]).
2) To implement the stepper motor controller with a processor
configured into an FPGA and evaluate: a) the impact of faults
injected into processor and b) the possibility of unauthorized
unlocking (topic of this paper).
3) To verify the possibility of using standard fault tolerance
techniques for eliminating unauthorized lock unlocking.

During solving of the goals we will use three levels of
evaluation which were presented in [6] with various architec-
tures of component realization and interconnection. This paper
is based on interconnections of a PC for simulation running
and an FPGA where electronic controller is implemented.

This paper is organized as follows. Electronic lock com-
ponents are presented in Section II. Section III introduces
an evaluation platform for monitoring the impact of faults
on electro-mechanical applications. Section IV describes ex-
perimental environment architecture. Experiments with fault
injection are presented in Section V. Section VI concludes the
paper and mentions plans for our future research.

II. ELECTRONIC LOCK

Smart electronic locks are quite complex electronic de-
vices. The basis of the lock can be divided into three blocks
– control module, I/O module and motor module [7]. The
important block is the motor module which performs the
operation with the mechanical part of the lock. Stepper motor
is very often found in electronic locks [8] [9], that is why we
focus on experiments with stepper motor in our research.

The stepper motor is a DC electric motor whose full
rotation can be divided into several equal steps. The stepper
motor is controlled by input pulses (typically square pulses)
that precisely rotate the shaft position based on an angle
which is given by the number of motor steps. It consists of a
cylindrical rotor, a number of stators, a number of yokes, and a
set of coils [10]. We have chosen a conventional bipolar stepper
motor with a permanent magnet in its rotor which operates on
the attraction or repulsion between the rotor and the stator
electromagnets. The particular model of this type of stepper978-1-7281-3427-7/20/31.00/31.00 c©2020 IEEE



motor that we have chosen is 28BYJ-48 [11]. It is a small
stepper motor operating at 5V which is equipped with a 1/64
transmission gearbox. It has 4 phases with a single step angle
of 5.625◦/64 and 4,096 steps are needed to perform the full
rotation (64 steps without the gearbox).

III. THE VERIFICATION-BASED EVALUATION PLATFORM

The main evaluation tool used in this paper is our previ-
ously developed platform [12] for the evaluation of the impact
of faults injected in electronic part of electro-mechanical
system. The proposed evaluation platform is based on well
known functional verification technique [12]. The core of the
platform is an ML506 evaluation board with Virtex 5 FPGA
which allows us to inject faults directly to the FPGA in
which the electronic control unit is implemented. The fault
injector based on Partial Dynamic Reconfiguration (PDR) is
implemented in a computer and faults are injected through a
JTAG interface. The communication between the simulation
of mechanical part running on the computer and the electronic
controller on the FPGA is accomplished through the Ethernet.

Functional verification is used as a tool for monitoring
the impact of faults both on the electronic controller and
the mechanical part of an electro-mechanical system. The
modification of basic functional verification is shown in Figure
1. The main difference is that Device Under Test (DUT) is
moved to the FPGA, which allows to inject artificial faults
directly into FPGA and monitor their impact. The versatility
of the proposed platform is based on the fact that func-
tional verification is usually used during electronic systems
development. Therefore, the verification environment and the
reference model (the most important elements dependent on
the evaluated system) are available from the previous stage
of system development and can be used for a fault tolerance
evaluation. The verification scenario generation is usually
a part of the verification environment or we can use our
previously developed universal generator [13]. An important
condition for using the platform is that an electronic controller
can be implemented in an FPGA. The DUT implementation in
the FPGA and proper communication with the software part
of verification environment are realized by the driver and the
monitor components. These components are partly universal,
but they need to be customized for a particular DUT.

DUT
(ElectronicAPart)

ReferenceAModel
InputAStimuliA
Generation

=

SimulationAofA
MechanicalAPart

Driver Monitor

FPGA

FaultAInjection OK?
FAIL?

Fig. 1: The general concept of the use of functional verification
for monitoring impact of faults.

The mechanical part is also an important element which
allows to monitor the impact of faults not only on electronics,
but also on mechanics. It is not important whether it is a real
mechanical part or its simulation. The availability of sensors
that provide feedback of the mechanical part behavior is
important. The values provided by these sensors are monitored
by the verification environment which checks if the system
behaves according to its specification. Usually, the use of
simulation leads to a faster testing and is usually cheaper.

Together with the evaluation platform we proposed the
process of evaluation which is divided into three phases:
1) Classical simulation-based functional verification is done.
After this phase we can be sure that the detected failures
in following phases are caused by the injected faults. 2)
During the second phase, modified verification environment
(DUT implemented on FPGA) is used and artificial faults are
injected. The output of this phase is a list of faults with the
impact on electronic controller. 3) The third phase is focused
on the evaluation of the behaviour of the mechanical part if
the electronic part is corrupted by a fault.

IV. EXPERIMENTAL SETUP

In this work, we deal with monitoring the impact of faults
on the electronic lock, more precisely on the main mechanical
element which is the stepper motor and its control processor.
In this case, the verification environment is modified since no
feedback is used when the stepper motor is controlled only by
control signals. The measurement of the angle of rotation (both
continuous and resulting angle) is needed for monitoring the
behaviour of the mechanical part. The angle measurement can
be easily realized both in the case of experiments with a real
stepper motor (e.g. a stepper motor can rotate a potentiometer),
and in the case of simulation. Figure 2 shows the use of
functional verification-based platform for checking the impact
of faults injected into the control processor implemented in
FPGA.

Reference Model=

OK?
FAIL?

MOTORj
CONTROLLER

Driver Monitor

FPGA

FaultjInjection

MOTOR
CONTROLLER

Monitor

FPGA

Fault Injection

ANGLE?

Driver

Fig. 2: The use of functional verification for monitoring impact
of faults on stepper motor controller.

For our experimental purposes, we chose the NEO430 soft-
core processor [14] which is based on the Texas Instruments
MSP430 [15] instruction set architecture. The NEO430 is
based on the Harvard architecture and uses program (IMEM)
and data (DMEM) memory with configurable sizes. The
processor implements configurable peripherals like a timer,
a watchdog, UART and SPI serial interfaces (implemented
together as a USART unit), general purpose IO ports and
an internal bootloader. The peripheral modules are optional
due to the possibility to reduce the size of the implemented
system. In our experimental implementation (shown in Figure
3), we use UART interface for debugging purposes, Custom
Functional Unit (CFU) is used as an input interface for
the required number of steps and output signals for stepper
motor are provided through the General-purpose inputs and
outputs (GPIOs). The program is stored in ROM memory,
it means that the program starts working after the processor
is activated without any need to load the program from an
external memory. The program itself repeatedly sets the stepper
motor signals according to its specification. It is possible to
parameterize the required number of steps through a signed
number on the input ”STEPS”. The negative number causes



opposite direction of rotation. The outputs include four signals
for the stepper motor control.

motor_controller_neo430

CFU

USART

GPIO
SIG_B

SIG_A

SIG_C

SIG_D

SIG_B

SIG_A

SIG_C

SIG_D

STEPS

UART

CLK

RST

Fig. 3: The use of functional verification for monitoring impact
of faults on the stepper motor controller.

We decided to use MATLAB and Simulink [16] for
the simulation of the stepper motor, especially Simscape
library [17] which proposes the stepper motor simulation. This
model is generic, however, proper parameters from the stepper
motor datasheet [11] must be used. More accurately, it is the
4-phase stepper motor with a permanent-magnet rotor. The
output from the complete model is a current angle of the
stepper motor. It is also necessary to model a voltage controller
which converts logic inputs to the electric impulses which
excite the motor coils.

V. EXPERIMENTS AND EXPERIMENTAL RESULTS

The following subsections describe experiments corre-
sponding to the second and the third phase of the evaluation
process. There is no space for the first phase which is not
so important from the reliability point of view. Faults were
injected during the second and the third phase into the ex-
perimental processor according to two strategies – single bit-
flip faults injected at the start of experiment and multiple bit-
flip faults injected at a regular interval. We injected the faults
into the bits of the bitstream that are utilized by LUTs of the
controller implemented in the FPGA. The total number of the
utilized bits was 58496. The impact of faults was monitored
on the output of the electronic controller and then on the
behaviour of the mechanical part with corrupted electronic
controller.

During the mechanics simulation we recorded the rotation
angle. The collected information covers the minimal, maximal
and the final rotation angle of the stepper motor. The minimal
angle was identical during all iterations as the motor always
started at the same position and it never started to rotate
in the opposite direction. The maximal and the final angle
depended on an injected fault effect. Almost always the angles
were equal. The maximal rotation angle is the most important
variable in the context of a possible unwanted locking or
unlocking the lock.

A. Single fault injection
Since an exhaustive evaluation would be demanding, we

uniformly selected at random 6000 random bit faults that
were injected into the FPGA. We performed five iterations
of experiments with the selected bits in order to evaluate
whether the controller behaviour is affected randomly by the
particular injected fault or it remains the same. We compared
the iterations in order to extract common features of the fault
affected controller behaviour. The experiments were repeated
five times using the same set of faults. Table I illustrates the
failure rate of the electronic controller in all three experiment
iterations (rows 1, 2, 3, 4 and 5). The Electronic failure—Total

column covers the number of faults that caused the electronics
failure. We divided the types of the electronics failures into
three classes: 1) the premature stopping—Stuck, 2) unending
controller operation—Time-out and 3) the correct termination,
although with mismatching values—Mismatch. The numbers
of failures of the particular types are listed in Table I. In
the third phase we evaluated the mechanics behaviour. The
Mechanic OK—Total column shows the number of cases
when the electronics has failed but the mechanics functioned
correctly and reached the proper position as was evaluated
in the mechanics simulation. This number of faults therefore
affected the electronic controller without affecting the overall
lock behaviour at the same time. As can be seen, the highest
number appears in the last column, that is when the controller
terminated its activity correctly with mismatching values. The
reason is we evaluated the electronics failure strictly when we
considered even a single mismatching output as a failure.

TABLE I: The results of single and multiple injection experi-
ments with the failures classification.

Iter. Electronic failure Mechanic OK

Total Stuck Time-
out

Mis-
match Total Stuck Time-

out
Mis-
match

1 633 159 260 214 210 5 2 203
2 633 174 270 189 186 5 3 178
3 572 93 145 334 331 6 3 322
4 624 172 269 183 183 5 3 175
5 574 100 147 327 327 6 3 318

Multi 5772 1248 1901 2605 592 35 26 531

The set of bits that have proven to cause a failure was
always a bit different between the iterations. We compared all
combinations of two (e.g. 1∩ 2, 1∩ 3...), three (e.g. 1∩ 2∩ 3,
1 ∩ 3 ∩ 4...) and four (e.g. 1 ∩ 2 ∩ 3 ∩ 4, 1 ∩ 3 ∩ 4 ∩ 5...)
sets of results. The result statistics are listed in Table II.
The table does not cover all the combinations but describes
only the minimum, average and the maximum of all of the
combinations. The last row contains a combination of all
iterations, so it presents a precise value. The Electronic Failure
column covers the number of faults that caused an electronic
failure in all the compared iterations. The Mechanic OK
column covers the number of faults which have not affected
the mechanics during any iteration. Even though, the same
fault caused the electronics failure, the electronic did not fail
always in the same way (stuck, time-out and mismatch). The
column Different El. Failure covers the number of such faults.
As can be seen, the growing size of compared sets leads to a
smaller number of faults that cause electronic failure for each
iteration. At the same time, the number of faults that did not
cause any mechanic failure is lowering while on the other hand
the number of faults with different electronic failure grows. We
also detected unique bits, out of the total 6000, that caused a
failure of the controller when fault was injected during almost
one iteration which are shown in the last column. The number
of these unique bits is rising with the growing size of the
compared sets.

TABLE II: The iterations results comparison (single faults).
Num. of
Comp.

Electronic
Failure

Mechanic
OK

Different El.
Failure

El. Failure
Unique Bits

Runs min avg max min avg max min avg max min avg max

2 509 527 560 46 109 260 36 146 213 633 687 715
3 430 481 511 13 55 86 112 207 292 710 728 742
4 460 467 475 30 37 44 208 216 224 740 750 755

all 395 32 312 764

Moreover, we examined the motor rotation angle. Figure 4a



contains a boxplot chart which displays the maximal angle for
all the iterations. As the chart illustrates, the required rotation
angle was 4500◦. The majority of the electronics failures led
to a smaller final rotation angle. Only a small number of faults
caused a bigger rotation angle. If the goal of the fault injection
is to unlock the lock unauthorized, most likely it will not be
reached. On the contrary, if the goal is to prevent the door to
lock properly, the chances are significantly higher.
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Fig. 4: Boxplot graph with rotation angle for (a) three experi-
ment iterations with single injection and (b) multiple injection.

B. Multiple fault injection
Furthermore, we inspected the impact of a multiple fault

injection on both the electronics and the mechanics. We
performed 6000 experiments in this scenario as well. We
uniformly-at-random injected a single fault into utilized bits of
the motor controller design each five seconds. The particular
experiment was terminated when a fault impact was detected
or after 280 seconds if the faults proved to have no effect. The
time limit is important as some faults do not cause a significant
number of incorrect transactions on the controller output as
other faults, but they cause that the controller would not
stop the motor rotation when expected. The multiple injection
proved to cause a significantly higher rate of the controller
failures. Out of the 6000 total, 5772 experiments resulted in
incorrect controller output transactions when multiple faults
were injected.

The last row of Table I shows the number of faults that
led to the electronics failure and their classification. It also
contains the number that did not lead to the mechanics failure
as well as the relations with the electronics failures types. As
can be seen, the overall behaviour is similar to single fault
cases, therefore the mechanics did not fail despite the inputs
mismatch. The mechanics reactions on the incorrect controller
outputs are illustrated in Figure 4b. As can be seen, unlike in
the case of single faults, the smallest rotation angles did not
occur and the span between the minimum and maximum grew.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper we realized the second phase of our evaluation
of fault injections effects on the electronic controller of an
electronic lock implemented in HW. The stepper motor con-
trolled by the controller implemented in a processor was used
as our experimental platform. The processor was implemented
in FPGA which allowed us a repeated and nondestructive
testing of the faults effects. We examined the faults effects
on electronics and mechanics of the lock, when we inspected
how the faults affected the rotation of the motor. For these
purposes, we further developed our fault tolerant system testing
platform that we presented in our previous papers. The results
indicate that random single faults cause a failure in about 10
% cases which is not suitable for an exploitation. The same
faults proved not to always cause the same failures during
the multiple iterations, moreover they did not lead to the

mechanics failure every time. The mechanics failures most
often led to a smaller angle rotation than desired, therefore
these failures may prevent the door to lock. The failures proved
to be more probable when injecting multiple faults.

In our future research, we will focus on the third phase
which will utilize simulation accelerated on an FPGA in order
to speed up the evaluation.
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