
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

PRINCIPLES OF TEST STIMULI GENERATION
PRINCIPY GENEROVÁNÍ TESTOVACÍCH STIMULŮ

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. ONDŘEJ ČEKAN
AUTOR PRÁCE

SUPERVISOR doc. Ing. ZDENĚK KOTÁSEK, CSc.
ŠKOLITEL

BRNO 2021

Abstract
The research presented in this thesis is focused on the design of general principles in the field
of generating stimuli for various systems. Stimuli represent the input data of a system that
determines its behavior. A significant advantage is the use of these principles in the field
of functional verification. Functional verification is one of the verification techniques that
verifies the correct behavior of the system by monitoring its inputs and outputs. The pro-
posal took into account four key criteria in terms of generating stimuli - parameterizability,
speed, randomness, versatility.

Based on the design, the architecture of stimuli generation for general use was defined.
Input structures are used to describe stimuli, which define the desired stimulus format and
the constraints imposed on it. Thanks to this, it is possible to obtain both a valid stimulus
and change the constraints during the generation, which is especially suitable for obtaining
higher coverage in functional verification. The general definition of stimuli is ensured by
a formal description. The research defined the principles of creating stimuli for processors,
functional units and application data. The presented method achieves an improvement over
conventional approaches.

Abstrakt
Výzkum prezentovaný v této práci je zaměřen na návrh obecných principů v oblasti gen-
erování stimulů pro různé systémy. Stimuly představují vstupní data systému, které určují
jeho chování. Značnou výhodou je využití těchto principů v oblasti funkční verifikace.
Funkční verifikace je jedna z verifikačních technik, která ověřuje správné chování systému
monitorováním jeho vstupů a výstupů. Návrh zohlednil čtyři klíčová kritéria z hlediska
generování stimulů - parametrizovatelnost, rychlost, náhodnost, univerzálnost.

Na základě návrhu byla definována architektura generování stimulů pro obecné použití.
Pro popis stimulů slouží vstupní struktury, které definují požadovaný formát stimulu a ome-
zující podmínky na něj kladené. Díky tomu je možno získat jak validní stimul, tak měnit
omezující podmínky v průběhu generování, což je vhodné především pro získání vyššího
pokrytí ve funkční verifikaci. Obecnost definice stimulů je zajištěna pomocí formálního
popisu. V rámci výzkumu byly definovány principy tvorby stimulů pro procesory, funkční
jednotky i aplikační data. Představený způsob dosahuje zlepšení oproti konvenčním přís-
tupům.

Keywords
Verification Stimulus, Test Vector, Functional Verification, Constraints, Processor, Robot
controller, Assembler, Maze, Formal Grammar, Probabilistic Constraint Grammar

Klíčová slova
Verifikační stimul, testovací vektor, funkční verifikace, omezující podmínky, procesor, řadič
robota, assembler, bludiště, formální gramatika, pravděpodobnostní omezená gramatika

Reference
ČEKAN, Ondřej. Principles of test stimuli generation. Brno, 2021. PhD thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor doc. Ing. Zdeněk
Kotásek, CSc.

Principles of test stimuli generation

Declaration
I declare that I have prepared this dissertation independently under the guidance of doc.
Ing. Zdeněk Kotásek, CSc. I have listed all the literary sources, publications and other
sources, which were used during the preparation of this thesis.

. .
Ondřej Čekan
March 3, 2021

Acknowledgements
I would like to thank my supervisor, doc. Zdeněk Kotásek, for his professional guidance
and valuable advice that led to the creation of this dissertation. I would also like to thank
my colleagues from DCSY for factual comments and ideas. I also thank my wife and the
whole family for their support.

Contents

1 Introduction 3
1.1 Goals of the thesis . 4
1.2 Organization of the Thesis . 5

2 State of the Art 6
2.1 Verification of Digital Systems . 6

2.1.1 Formal Verification . 7
2.1.2 Functional Verification . 7

2.2 Principles of Functional Verification . 9
2.2.1 Random Stimuli Generation . 9
2.2.2 Random Stimuli Generation Based on Constraints 10
2.2.3 Coverage-driven Stimuli Generation 10

2.3 Constraint Satisfaction Problem . 11
2.3.1 Test Stimuli Generation Based on Constraints 13
2.3.2 Current Research in the Field of Test Stimuli Generation 14

2.4 Formal Grammar . 15

3 Summary of Research Activities 18
3.1 Research Process . 18

3.1.1 Architecture of Universal Stimuli Generation 20
3.1.2 Specific Structures and Processor Verification 21
3.1.3 Evaluation of Software Fault Tolerance 23
3.1.4 Verification of the Robot Controller in the Maze 25
3.1.5 Generalization Using Formal Grammar 26
3.1.6 Principles of Creating Stimuli for Various Systems Using the Grammar 29

3.2 List of Publications Included in the Thesis 39
3.2.1 Paper I . 39
3.2.2 Paper II . 40
3.2.3 Paper III . 40
3.2.4 Paper IV . 41
3.2.5 Paper V . 41
3.2.6 Paper VI . 42
3.2.7 Author’s contributions to selected papers 42

3.3 List of Other Publications . 42
3.4 Participation in Research Projects and Grants 46

4 Discussion and Conclusions 47
4.1 Contributions . 48
4.2 Future Work . 49

1

Bibliography 50

Appendices 55

A Publications cited by other authors 56

Related Papers 60

I The Evaluation Platform for Testing Fault-Tolerance Methodologies in
Electro-mechanical Applications 61

II Software Fault Tolerance: the Evaluation by Functional Verification 78

IIIVerification of Robot Controller for Evaluating Impacts of Faults in Electro-
mechanical Systems 83

IV A Probabilistic Context-Free Grammar Based Random Test Program
Generation 92

V Program Generation Through a Probabilistic Constrained Grammar 97

VI Input and Output Generation for the Verification of ALU: A Use Case 105

2

Chapter 1

Introduction

Electronic circuits are becoming more and more at the forefront of people’s daily lives,
and it could be said that since the 21st century, the world cannot exist without them.
Even young children encounter electronics built into their toys without realizing what is
behind the magic sounds or songs. Micro-controllers, which care about controlling certain
devices, are located where we probably would not expect them to be. They can be found
in toys, kitchen appliances, smart pendants or even in jewelry [33]. Such use of micro-
controllers represents the high-end of today, and the circuits that control such a thing are
not abnormally reliable. Circuits are tested for basic functionality and there is a lack of
deeper verification of correct behavior. Also, there is no reason to do exhaustive testing,
because circuit verification is time consuming and manufacturers try to meet at least the
basic things needed to sell a working product. On the other hand, there are applications in
which a lack of design or functionality of the system can mean a serious risk and endanger
human lives. Such applications are called safety-critical [59] and are represented by areas
of the automotive, aerospace, space applications or medical industries.

The circuits of these systems must be properly tested and verified for the correctness
to prevent unexpected and undesirable behavior that could cause damage. These systems
also contain additional circuitry to serve as a backup in the event of a fault or to monitor
proper behavior. Such systems are called fault-tolerant [29, 37] and can work correctly even
if some of their components fail.

If we focus on systems that do not contain design or implementation errors that could
cause incorrect behavior, then these systems must be thoroughly tested. The usual but also
unusual combinations of input values that may occur in a given system have to be taken
into account. As the complexity of the system continues to grow, so does the complexity
associated with thorough verification of its accuracy [56]. Simple systems are not difficult
to test manually. For more complex systems, manual testing is very time consuming. Also,
the formal techniques developed so far for the formal verification of large-scale systems
fail. For this reason, a technique called functional verification [17] was developed. This
technique verifies the correctness of the systems on the basis of monitoring their input and
output values.

The functional verification process typically involves several separate blocks that interact
with each other to verify the circuit as efficiently as possible. One of these blocks is the
generator of input stimuli, which is the subject of this dissertation thesis. The values
that enter the verified system are most often called stimuli, but can also be referred to as
transactions, test vectors, or tests.

3

Each system is in principle different and therefore requires specific input stimuli for its
operation [4, 58]. The design of such a specific stimulus generator significantly extends the
total time required to test and verify the system, so the aim of this work is to provide a
general approach to stimulus generation with respect to the use in the functional verification
process, re-usability, test quality and generation speed.

1.1 Goals of the thesis
Within the dissertation thesis, two main goals and their sub-goals were stated, which lead
to the fulfillment of the topic of this work:

1. Design and creation of a universal test stimulus generator based on solving
a constraint satisfaction problem, which will be especially suitable for the
use in functional verification.
The test stimulus generator must be parameterizable so that it can be used in func-
tional verification. The generator is then able to process the constraints during the
verification run and adapt the generated test stimuli to achieve a higher coverage of
the system functions. Inputs for the generator will be obtained from specially de-
signed structures, which will define the format of the generated test stimuli and the
constraints that will be applied in the process of generating these stimuli.
The sub-goals for this goal are as follows:

(a) Design and implementation of a stimulus generator based on input descriptions
defining the format and constraints for stimuli.

(b) Design of input descriptions for generating the first use case - programs for
processors. Verification of programs in functional verification.

(c) Design of input descriptions for another use case.

2. Design of a general and uniform description (language) of various systems,
which can be used to describe all the conditions and relations necessary
to generate a valid test stimulus. The result of this activity will be the
creation of test generation methods for various systems.
The main point is to create sets of input descriptions for various digital circuits
(processors, functional units, fault-tolerant units, etc.) that the designed generator
will use to generate test stimuli. The proposed input descriptions will be generalized
and based on them, a language will be defined for a uniform description of stimuli of
different digital systems. From this description, the key principles of test generation
for given types of circuits will be extracted.
The sub-goals for this goal are as follows:

(a) Generalization of generation and description of stimuli, creation of a framework.
(b) Transcription of stimuli using grammar. Evaluation of stimuli in functional

verification.
(c) Definition of stimuli for other systems.

4

1.2 Organization of the Thesis
The dissertation is created as a collection of selected published papers of the author. The
research contribution of this dissertation is contained in six papers attached at the end of
the thesis in the original published form.

The content of this work is arranged as follows. Verification, especially functional verifi-
cation, is introduced in Chapter 2, along with the most common techniques that functional
verification uses to increase the automation of verification process. The position of the
generator and its importance in functional verification is also shown in this chapter, where
the currently used input test generators are discussed. Chapter 3 summarizes the achieved
results of the dissertation thesis according to the set goals. Finally, Chapter 4 concludes
the thesis.

The six publications on which this dissertation is based are attached at the very end of
the thesis.

5

Chapter 2

State of the Art

This chapter summarizes the current state of the art, which is necessary to get acquainted
with and which is followed up in the dissertation. It is mainly a description of functional
verification and the constraints satisfaction problem on which the design of generating
stimuli for various systems is based.

2.1 Verification of Digital Systems
Verification [35, 36] is a process consisting of certain steps aimed at verifying the correctness
of a hardware design with its specification. Hardware design can be described at any stage
of abstraction - from high-level description to the physical placement of components. The
correctness of the design is verified with its specification, which can also be defined in various
ways - from behavioral description to timing requirements and other descriptions. However,
the verification does not deal with the validation of the specification, i.e. the system does
the actual intended activity that the customer expects from it, although it helps to make it
more precise. The quality of verification depends on how detailed and correct the system
specification is described and how its design is developed. As the digital system can be
quite complex, most verification techniques are unable to verify the complete description
of the system. For this reason, it is appropriate to divide the system into simpler units,
which are verified separately. In practice, it is then much more manageable to verify such
large circuits.

The main purpose of verification is to detect as many errors in the system as possible,
especially in the initial stages of digital system design, in order to verify the correct behavior,
speed up system testing and, as a result, deliver a cheaper, safer and error-free product to
the customer.

If we compare verification with simple testing or simulation, the verification proves that
the system does not contain errors for any valid input values (verifies all states), while
simulation and testing only allows to reproduce erroneous scenarios and thus debug errors
for certain inputs. Therefore, simulation and testing do not prove the faultlessness of the
system and also do not verify all possible states of the system [19].

Two basic approaches to verification used in digital systems are recognized. It is a formal
verification and a functional verification. This dissertation thesis does not deal with formal
verification. That is the reason why it is mentioned only marginally. The main attention
is paid to functional verification, which is used to verify the quality of input stimuli.

6

2.1.1 Formal Verification

Formal verification [39, 54] uses mathematical methods to verify the correctness of a system.
These mathematical methods help us to describe the system or a property of the system.
The result of the formal verification process is a proof of correctness for the specified
condition or an example that violates the given condition. Formal verification offers three
basic methods:

∙ Model Checking - verifies the property of the system by examining its complete state
space.

∙ Equivalence checking - verifies two system models interpreting the same specification
for equivalence in their behavior.

∙ Theorem proving - verifies the system or its property using proofs of mathematical
logic.

Although formal verification provides a clear answer to the verified condition in the
examined system, a number of problems can arise. One of them is infinity, where the result
cannot be determined in real time. Another problem may be the so-called state explosion
problem, during which the memory for storing states may not be sufficient. This problem
occurs mainly with the Model Checking method. The state space exploration in formal
verification is shown in Figure 2.1.

Figure 2.1: State space exploration in formal verification.

2.1.2 Functional Verification

Functional verification [46, 25] is a process in which the correctness of a system with respect
to its specification is verified by setting its inputs and monitoring its outputs. Functional
verification takes place in a simulation and therefore it does not provide evidence of system
correctness. In contrast, it uses additional techniques, making the simulation itself more
efficient. As shown in Figure 2.2, functional verification does not go through the state space
systematically, one case after another as formal verification, but goes through it randomly
in iterations, always from the initial setting, which is called seed.

Functional verification is based on two systems that are tested in parallel with the
same input data. The first system is a hardware device described in the HDL (Hardware
Description Language) language [5], referred to as DUT (Device Under Test) or DUV
(Device Under Verification), which is verified for correctness with respect to its specification.

7

Figure 2.2: State space exploration in functional verification.

The second system is a model of the verified system that meets the same specification and
is typically implemented in another programming language. The model is also typically
implemented by another developer to avoid the same implementation bugs and the same
problems in misunderstanding the specification. The model is often referred to as a reference
or golden model. The same test stimulus is typically applied to the input of the two systems,
which is typically obtained using a test stimuli generator. The outputs of these systems are
compared for equality.

The output of functional verification is the result of a comparison with the outputs of
both systems as well as information about code coverage or functional coverage [61, 23].
Code coverage [53] expresses how much hardware source program (HDL) has been executed
for a given test benchmark or test suite. Coverage is calculated as a percentage. If a
given benchmark has a large coverage, then a significant part of the program was executed
during its verification, and therefore there is a greater chance of detecting hidden design or
implementation errors. In contrast, if the achieved coverage is low, the program executed
a negligible part of the code, and so the system was not thoroughly verified.

When evaluating code coverage, several metrics can be tracked that focus on different
parts of the design description [45].

The total code coverage consists of the following 4 metrics:

1. Statement coverage
- verifies that each program command has been executed.

2. Branch coverage
- verifies that each branch of the program has been performed.

3. Expression coverage
- verifies that each expression has acquired all its values.

4. Condition coverage
- verifies that each condition has acquired a Boolean value of True or False.

Within the simulation environment, it is also possible to define user conditions that
form the second group of coverage - functional coverage [16], to be monitored in the sys-
tem. These conditions are typically specific cases of which the programmer is aware and
which must not be omitted during verification. Examples are input data thresholds, certain

8

sequences of transitions between states, or other situations.

When verifying functional coverage, 2 metrics can be monitored:

1. Data-oriented coverage
- verifies that a defined combination of data values has occurred.

2. Control-oriented overage
- verifies whether a defined sequence of steps in the program has occurred.

If all defined conditions are met, 100% coverage of the digital system is achieved, which
is a key criterion in terms of functional verification. The principle of functional verification
described above is shown in the Figure 2.3.

DUV

Reference model

Comparison of outputs
+ Coverage

Test
stimulus

Stimuli generator

Figure 2.3: Principle of functional verification.

The goal of functional verification is to constantly increase coverage and thus achieve an
ideal 100% coverage of the set system metrics. How coverage can be increased, preferably
in an automated manner, is described in the following subchapter.

2.2 Principles of Functional Verification
This subchapter presents three basic principles of functional verification, which are currently
used to verify the correct behavior of the system and achieve the highest possible coverage
of its monitored metrics. These principles differ from each other mainly in the level of
automation.

2.2.1 Random Stimuli Generation

The first principle of functional verification is the random stimuli generation [20] shown
in Figure 2.4. This principle is the simplest of the presented principles with the smallest
degree of automation. It uses a random stimulus generator that allows no configuration or
control. The basic behavior of the system is verified on the generated tests. If some system
metrics are still not verified (uncovered), the verification engineer manually generates a set
of verification stimuli (direct tests) depending on the coverage analysis until it covers these
metrics. The main disadvantage of this principle is the generation of a large number of
stimuli that are invalid and which cannot be considered as right input sequences of the

9

system. Valid sequences are in most systems a subset of all possible input combinations.
This approach lacks any management and the entire success of the verification depends on
the knowledge and experience of the verification engineer. This approach is also very time
consuming.

Stimuli generator

Direct tests

Coverage
analysis

Reference model
&

DUV

Figure 2.4: Principle of random stimuli generation.

2.2.2 Random Stimuli Generation Based on Constraints

The second principle extends the random stimuli generation by controlling using constraints
[22]. The principle is shown in Figure 2.5. When verifying the system, only certain test
scenarios are of interest because they are also valid. Using this principle, it is possible to
generate specific and mainly valid stimuli that meet defined constraints. These constraints
are created manually based on the system specification and represent inputs to the stimulus
generator. Depend on them, valid verification stimuli are generated. However, some parts of
the system may still remain uncovered, so additional constraints can be added manually to
generate additional stimuli to cover these parts. Also, direct tests can be defined manually
as in the previous principle. Verification of the system is accelerated in this case because
invalid combinations are eliminated. The task of the verification engineer is facilitated and
mainly focused on creating suitable constraints that will create the required stimuli.

Direct tests

Coverage
analysis

Reference model
&

DUV
Stimuli generator

Constraints

Figure 2.5: Principle of random stimuli generation based on constraints.

2.2.3 Coverage-driven Stimuli Generation

This last principle extends the previous principle of stimuli generation by controlling of
coverage evaluation [18]. The principle is shown in Figure 2.6 and is characterized by

10

considerable automation in contrast to the previous principles. It uses the information
available from the coverage analysis to automatically generate additional constraints in
order to direct the next stimuli generation cycle and thus achieve higher coverage of system
metrics. This principle is called coverage-driven verification. How the constraints are
adjusted is not solved by the stimulus generator itself, but by higher logic, such as the
genetic algorithm that performs this activity. This principle is characterized by minimal
interaction with the verification engineer.

Stimuli generator

Constraints

Reference model
&

DUV

Coverage
analysis

Constraints generator

Figure 2.6: Principle of coverage-driven stimuli generation.

2.3 Constraint Satisfaction Problem
Constraint satisfaction problem (CSP) [20, 38, 41] is a general mathematical problem that
is defined by a set of variables that can take values from a finite, nonempty, and discrete
domain, and a set of constraints. Each constraint is defined above a certain subset of
variables, for which it specifies valid values from a given domain that they can take. The
result of solving the CSP is one or all assignments of values to the variables so that all
constraints are fulfilled.

Definition 1 Let X be a set of variables, D be a domain of values and C be a set of
constraints. Then CSP is defined as a triplet (X,D,C) , where for each c ∈ C exists a
pair (t,R), where t is an n-tuple of variables and R is an n-ary relation over D.

CSP is an NP-complete problem, so for most complex problems there is no efficient
algorithm for finding a solution [9]. When searching for the right solution, the algorithm
must test all possible branches of the assignment, so it reaches a polynomial time complexity.
In practice, the fulfillment of all constraints is often omitted for complex problems (e.g.
some are not so necessary), but it is important to complete the calculation in real time.
Solutions that have all the constraints fulfilled are called exact, otherwise they are called
approximate.

If there exists such an assignment of all the variables from their domain of values that all
the constraints are fulfilled, then such a solution is satisfactory. However, if the variables
cannot be assigned so that the constraint is fulfilled, then the solution is unsatisfactory.
When searching for the right solution, a request can be made to find:

11

∙ The exact solution.

∙ All exact solutions.

∙ Optimum exact solution.

∙ An approximate solution that satisfies the conditions for the defined variables.

Simple and typical examples of CSPs belong to the N queens problem [6] or the graph
coloring problem [48]. These examples are shown in Figure 2.7.

The task of the N queens problem is to determine the position of individual N queens
on a chessboard with dimensions NxN so that none of the queens are endangered. Queens
represent variables, the dimensions of the chessboard represent the domain of values, and
the requirement not to endanger queens is a constraint placed on them.

The situation is similar to the graph coloring problem. The requirement is to color the
graph so that the two adjacent areas on the map have always different colors. Areas on the
map represent variables, the available colors are domain values, and the constraint is in the
form of a link between two adjacent areas. This problem can be converted into a so-called
constraint graph, which is equivalent to a CSP.

Figure 2.7: Example of the N queens problem (left) and the graph coloring problem (right).

CSP can be solved using several techniques. The most well-known of them is the
backtracking technique. The backtracking [51] technique sequentially initializes variables
and continuously validates any constraints placed on them. If a constraint is not fulfilled, the
variable assignment is returned to the last valid instance that has an alternate assignment
option.

Another technique is the constraints propagation [49]. This method is based on explicitly
removing a value or combination of values from the domain, when searching for the correct
assignment of variables. Gradually assigning values to variables will shrink the domain
because a certain subset of constraints cannot be longer satisfied. In the domain of variables,
there are always values that are available and that can be assigned without violating any
constraints. If the variable no longer contains any value in its domain for assigning, then
the solution does not exist.

Another option is to solve the CSP using the simplest technique called Generate-and-
Test, which sequentially tests all the values assignments from the domain to the variables.
If the constraints are satisfied for the tested combination of values, the valid solution was
found.

12

2.3.1 Test Stimuli Generation Based on Constraints

As shown in the subchapter about functional verification, the test stimuli generator plays an
important role in this process. Searching suitable stimuli can facilitate the whole process
of circuit verification and thus speed up the development of the system and reduce its
cost. The generation of test stimuli can be divided into two main categories - manual and
automatic generation [63].

Manual generation is an engineering activity in the form of manual test creation. Veri-
fication engineers understand the design and structure of the verified system in detail, and
therefore, they can focus on the baits of the system, its limit values, transitions between
states, etc. Manual testing is a very time-consuming activity, so the results of which may
not always be sufficient.

The second option is to use support programs that can create tests automatically. Such
programs are based primarily on solving constraints, the solution of these programs is a
valid test stimulus for the given system. A huge advantage of automatically generated tests
is their randomness and speed. Thanks to these benefits, the system is verified to atypical
and unpredictable combinations of input values that can occur in a given system. Also, the
combinations, which do not usually arise during manual generation, are verified.

In practice, a combination of both stimuli generation approaches is used. The system is
first tested on a small set of manually generated tests to determine basic functionality and
after that it is fully verified on automatically generated stimuli as long as it is beneficial.

Test Stimuli Generator Requirements

The requirements for a test stimuli generator can vary in many cases, which is mainly due
to the area of application of the generator. The topic of this dissertation thesis focuses
on the use of a test stimuli generator in the field of functional verification, therefore all
other areas of use will not be taken into account. In the field of functional verification, the
requirements follow from the previous subchapters:

Parameterizability
Parameterizability is an important feature for adjusting the behavior of the generator,
which generates the desired output based on the entered parameters, thanks to which
it adapts to the current needs of test stimuli to achieve high coverage. It is desirable
that the generator inputs are separate so that they can be changed externally.

Speed
The generator must be fast so that it does not slow down the already busy and time-
consuming simulation of the verified system. The faster the generator is, the more
inputs can be tested at the same time.

Randomness
Random tests are a prerequisite for the uniform generation of all possible combinations
of input values. This ensures to test unpredictable and marginal cases in the system.
It is important that the probability of generating all parts of the stimulus is balanced.

Versatility
Since each system is unique, it is suitable to design the generator in general so that
there is no need to always create a new generator for a specific system and it is
possible to use an existing stimuli generator for different systems. Again, this reduces
the total time required to verify the system.

13

2.3.2 Current Research in the Field of Test Stimuli Generation

Current research in the field of test stimuli generation deals with the automatic generation
of tests for one specific system, especially programs for the RISC (Reduced Instruction Set
Computing) [15] type processor. The trend for many applications is to use either a universal
processor or an Application Specific Instruction Set Processor (ASIP) due to its low cost,
rapid development, acceptable performance and consumption. The required programs for
processors are obtained from several specific input structures that describe a given processor
at different levels. These input blocks are defined specifically for processors and therefore
are not applicable to other digital systems or other application data.

The processor Instruction Set (ISA) [52] description is used as input, which is combined
with another additional description that ensures the correctness of the generated program.
The work [7] uses as a second description certain elements of the microarchitecture of the
processor. The dissertation [31] from the Slovak University of Technology in Bratislava
uses VHDL (VHSIC Hardware Description Language) [5] as the second description of the
processor. Subsequently, it uses a genetic algorithm (GA) to modify the program so that
the value of fitness or coverage in functional verification is as high as possible.

Another work [14], which automatically generates programs for processors, uses the rep-
resentation of programs using acyclic graphs. The input of the generator is a hand-designed
instruction library, which describes the assembler syntax of individual instructions and their
valid combinations of operands. Together with predefined macros, processor description and
real-time simulation, a valid program is generated that has sufficient coverage of processor
functions. Here comes a more general description of the input stimuli for different proces-
sors, but the format and combination of all possible operands for individual instructions
can be quite complex and extensive.

Test stimuli can also be generated using a Verification Description Language (VDL) such
as SystemVerilog [32] associated with the ModelSim [27] simulation environment. Using this
language, constraints can be defined and modeled for test stimuli represented by numbers.
Modeling more complex stimuli is a problem as adjusting the generation during the process
of functional verification.

Genetic programming techniques can also be used to generate programs for processors.
The work [13] shows the generation of assembler programs based on the definition of in-
struction macros and their combination into a more complex whole (program). GA plays a
key role in the selection of these macros and the assignment of their operands. The problem
with this approach is mainly in the time-consuming task of compiling a valid program.

The current research in the field of test stimuli generation implies the need to design and
create a universal test stimuli generator suitable for use in the principle of functional veri-
fication based on random stimuli generation driven by coverage.

An important condition for the current verification of the correct behavior of the system
is the parameterization during the verification run for the possibility of modifying the
properties of the generator and the generated stimuli. This makes verification as efficient
as possible and it obtains the highest possible coverage of the code and key functions of the
system. The effort is also to speed things up, so the universal generation principle should be
able to easily create a test scenario. The reusability of already defined structures underlines
the importance of universality and simplifies adaptation to a new field of application. A huge
advantage can be its use both in generating stimuli for different hardware and application
data for different software [44].

14

2.4 Formal Grammar
In the theory of formal languages, grammar [43, 34] is a mean of creating strings in a formal
language. It consists of a set of production rules that determine how language strings can
be created from a given alphabet. A string (also referred to a word) is defined as a finite
sequence of alphabet symbols.

Definition 2 An alphabet is a finite, nonempty set of elements that are called symbols.

Definition 3 Let Σ be an alphabet, then

∙ 𝜖 is a string over the alphabet Σ

∙ if x is a string over Σ and a ∈ Σ, then xa is a string over the alphabet Σ

The language L over the alphabet Σ is defined as a set of strings from the closure Σ*

(𝐿 ⊆ Σ*). A language can be finite - it contains a finite number of strings, or infinite - it
contains an infinite number of strings. Any language always contains at least two elements
- an empty set and an empty string 𝜖.

The grammar generates the language while the automaton [30] receives it. The gener-
ation of a string in a formal grammar takes place from a single initial symbol, to which
production rules are gradually applied in any order [40]. The production rules are applied
as long as the string is not composed only of terminal symbols. The terminal symbol is a
character from the alphabet Σ, which can appear in the generated string and which cannot
be further changed by production rules. A string change using a rule is called a derivation.

According to Chomsky’s hierarchy of languages, defined by Noam Chomsky in 1956 [11],
grammars are divided into four types:

Type-0 grammars - unrestricted grammars
Unrestricted grammars include all formal grammars and can be recognized by the
Turing machine. This is the grammar with the greatest expressive power. It is the
quaternion:

G = (N,T,P,S); where:

N is a finite set of nonterminal symbols (nonterminals).
T is a finite set of terminal symbols, applies 𝑁 ∩ 𝑇 = ∅.
P is a finite set of production rules in the form: (𝑁 ∪ 𝑇)*𝑁(𝑁 ∪ 𝑇)* → (𝑁 ∪ 𝑇)*.
S is the start symbol, 𝑆 ∈ 𝑁 .

Type-0 grammars are the family of all Recursively Enumerable (RE) languages.

15

Type-1 grammars - context grammars
Context grammars are formal grammars whose form of production rules preserves the
context in which the word can be further rewritten. Grammar is the quaternion:

G = (N,T,P,S); where:

N is a finite set of nonterminal symbols (nonterminals).
T is a finite set of terminal symbols, applies 𝑁 ∩ 𝑇 = ∅.
P is a finite set of production rules in the form: 𝛼𝐴𝛽 → 𝛼𝛾𝛽.
S is the start symbol, 𝑆 ∈ 𝑁 .

The following applies to grammar production rules, 𝛼, 𝛽 ∈ (𝑁 ∪ 𝑇)*, 𝐴 ∈ 𝑁 ,
𝛾 ∈ (𝑁 ∪ 𝑇)+. Type-1 grammars are the family of all Context-Sensitive (CS) lan-
guages.

Type-2 grammars - context-free grammars
Context-free grammars are special cases of context grammars, where the symbols 𝛼
and 𝛽 are omitted or replaced by the empty strings 𝜖. For this reason, any nontermi-
nal can be rewritten regardless of the surrounding context. It is the quaternion:

G = (N,T,P,S); where:

N is a finite set of nonterminal symbols (nonterminals).
T is a finite set of terminal symbols, applies 𝑁 ∩ 𝑇 = ∅.
P is a finite set of production rules in the form: 𝑁 → (𝑁 ∪ 𝑇)*.
S is the start symbol, 𝑆 ∈ 𝑁 .

Type-2 grammars are the family of all Context-Free (CF) languages.

Type-3 grammars - regular grammars
Regular grammars are formal grammars with the smallest expressive power. Gram-
mar is the quaternion:

G = (N,T,P,S); where:

N is a finite set of nonterminal symbols (nonterminals).
T is a finite set of terminal symbols, applies 𝑁 ∩ 𝑇 = ∅.
P is a finite set of production rules in the form: 𝐴 → 𝑥𝐵 or 𝐴 → 𝑥, where 𝑥 ∈ 𝑇

and 𝐴,𝐵 ∈ 𝑁 .
S is the start symbol, 𝑆 ∈ 𝑁 .

The grammar defined in this way is called the right regular grammar. If the grammar
has production rules of the form 𝐴 → 𝐵𝑥 or 𝐴 → 𝑥, then it is called the left regular
grammar. Type-3 grammars are the family of all Regular (REG) languages.

16

The relationship of the presented individual grammars according to the Chomsky hier-
archy is expressed as 𝑅𝐸𝐺 ⊂ 𝐶𝐹 ⊂ 𝐶𝑆 ⊂ 𝑅𝐸 and is shown in Figure 2.8.

RE

CS

CF

REG

Figure 2.8: Chomsky’s hierarchy of languages.

17

Chapter 3

Summary of Research Activities

This chapter summarizes the research results on which this dissertation thesis is based.
The subchapter 3.1 discusses in details the individual steps of research that have lead to
the fulfillment of the set goals of this thesis. A list of the six articles [I, II, III, IV, V, VI]
included in this work, together with their abstracts, can be found in the subchapter 3.2.
These articles form the basis of the thesis and are the output of individual partial steps of
the author. The subchapter 3.3 encompasses the list of other publications of the author
that are not part of this thesis, but should not be left out. The last subchapter 3.4 contains
additional information on participation in projects and grants.

3.1 Research Process
The main idea of the whole research was to create a uniform and as general as possible a
way of designing and creating stimuli, which can be applied to the widest possible set of
different systems. This will reduce the time required to develop a specific stimuli generator
for a particular system, speed up the whole process of verifying the correct behavior of
the system and improve the achieved results. An important condition is the suitability of
using such an approach in the process of functional verification. Based on these conditions
and the set goals of this thesis, the first proposal of a universal method of generation was
created, which was further developed and generalized.

The design of a universal method of test stimuli generation extends the classical func-
tional verification scheme by two additional blocks, which represent the input to the stimuli
generator itself based on the solving of constraint satisfaction problem (see Figure 3.1). The
task of these blocks is to describe the various systems in a uniform way so that the gen-
erator itself uses only these blocks for its operation to generate valid tests and therefore
does not require any further interventions in its source code. These input blocks provide
the parameterization, i.e. the behavior of the generation process can be changed during the
functional verification. It may be advantageous to generate these input descriptions (or at
least one) automatically from source files for describing digital systems. The meaning of
these blocks is discussed in details in the following subchapter 3.1.1 which is devoted to the
overall architecture of universal generation.

For the proposed method of stimuli generation, the first use case was chosen - processor
verification and the associated generation of assembler programs, which represent the re-
quired test stimuli. For these purposes, an available processor of the type RISC and VLIW
(Very Long Instruction Word) was chosen. Based on the instruction sets of individual

18

Functional
verification

environment
Stimuli generator Coverage

Constraints

Format

Figure 3.1: Design of a solution for stimuli generation based on input structures.

processors, input descriptions for generating valid programs were defined. An important
process in the design of stimuli was the creation of a set of constraints that ensure a valid
combination of consecutive program instructions while maintaining the greatest possible
randomness. In total, 18 types of constraints were created, which can ensure the construc-
tion of a valid program. The effectiveness of this solution was verified in the functional
verification of the selected processor. The knowledge from the construction of assembler
programs was further used in the verification of a new approach in evaluating the soft-
ware fault tolerance of memory elements of the processor to faults. Individual processor
instructions were generated in triplicate, including security using both time and space re-
dundancies. Using this method, it was possible to ensure the error-free execution of the
processor program in the event of single fault and partly also multiple faults in the memory
elements.

The following work was focused on the control unit of a robot searching for a path
in a maze. It is an electromechanical system for verifying the effect of faults on both the
electronic and mechanical parts. The robot control unit is implemented in the FPGA, while
the mechanical robot itself is simulated in a simulation environment on a PC. The correct
behavior of the robot is verified in a functional verification. The input of the robot, among
other parameters, is a maze in the form of a bitmap image, in which the robot searches for a
path from point A to point B. In this case, the maze is understood as stimuli. The behavior
of the robot, in case of its failure, needs to be verified on various sets of mazes, which
were also generated in this thesis, using the presented generation approach. Whether the
generated maze sufficiently covered the state space of the robot was verified by functional
verification. The most suitable dimension of the maze, the organization of the corridors
and the initial and target position of the robot were taken into account. To generate all
these factors, additional constraints were defined to ensure a valid maze creation.

The individual specific input descriptions of stimuli were subsequently generalized (bot-
tom-up method, see Figure 3.2) using a formal grammar that is able to generate a specific
language. The grammar design was based on the already existing probabilistic context-
free grammar. It adds to the classic context-free grammar the probability with which the
production rules are applied when rewriting a sentence form. This grammar alone would
not be able to define the language needed to generate valid stimuli, so its form has been
extended to include constraints. This grammar was designed in this thesis and is called a
probabilistic constrained grammar, which has a greater expressive power than context-free
languages. It allows to maintain the context (a certain state during generation) necessary
for the construction of valid stimuli. The specific constraints created for specific systems in
the previous author steps have been translated and encoded into a new grammar (uniform
formal description). This removed unwanted system-specific links. The whole generation
process was also accelerated and the resulting stimuli were improved.

19

System
description 1

System
description 2

System
description N

...

Language for describing system stimuli

Figure 3.2: Generalization using the bottom-up method.

The last part of the research was devoted to the verification of this newly created gram-
mar on the already investigated systems and the description of stimuli for another system
(arithmetic-logic unit [57] and stepper motor [2]). Based on the findings, the principles
and conditions necessary to ensure the generation of a valid test stimuli are described for
individual selected systems.

3.1.1 Architecture of Universal Stimuli Generation

The principle of universal generation, which is shown in Figure 3.3, aims to simplify and
speed up the generation of test stimuli for different systems.

Inputs

Problem
description

Constraints

Stimuli generator

Stimuli

Outputs

Figure 3.3: The principle of universal stimuli generation.

The main idea is based on two input descriptions (structures) that define the format
of the generated data and the conditions determining how this data should be composed

20

during the generation. The description defining the format of the generated data is marked
as the Problem Description, and the description defining the conditions and restrictions is
marked as Constraints. These two descriptions represent the input to the generator itself,
which generates valid stimuli on its output based on these descriptions. The obtained
stimuli can then be transmitted to a specific system as input data.

When creating custom test scenarios, the user does not program any code, but only
specifies the required format of the scenarios and the constraints. The generator then
solves these definitions as the constraint satisfaction problem. An important prerequisite
for this described generation principle is a wide set of input alphabets, which must generally
describe different problems and constraints for the test scenarios.

This principle of stimulus generation is parameterizable. It can process and change
constraints at runtime by modifying the input descriptions, and is therefore suitable for use
in a functional verification process.

The generation process combines the problem definition so that all constraints are sat-
isfied. The output of the generator is a sequence which corresponds to a defined problem
and which forms the resulting stimulus.

3.1.2 Specific Structures and Processor Verification

The Problem description is the first input of the stimuli generator. To define the problem,
i.e. what has to be generated, three basic parts have been designed (see Figure 3.4): Re-
placement, Variables and Syntax. The individual parts are defined in their own proprietary
language.

SyntaxReplacement Variables

Figure 3.4: Basic parts of Problem description.

The Replacement section defines the identifiers and all possible substitutions for which
the identifiers can be replaced. This is similar to an enumerated data type in programming
languages. Identifier is replaced by a specific string from a defined set of values. In each
new generation cycle, a particular substitution is randomly selected for a given identifier.
Substitution is used where it is necessary to substitute specific words or phrases in a certain
generated string.

The Variables section defines variables in a general sense. A random value is assigned
to each variable depending on its data type. In each new generation cycle, a new random
value is assigned to the variable, if the variable exists in generated sentence.

The Syntax section syntactically describes the strings, one by one, to be randomly gen-
erated at the output of the generator as part of the stimulus. Identifiers from Replacement
and Variables can be found in each defined syntax. These identifiers are replaced by a
specific or random value, depending on the type of identifier. If no identifiers are found in
the syntax string, their definitions are ignored and nothing is replaced. The Syntax section
represents the static values in the generated string, while the other two parts represent the
dynamic (changing) values in the generated string.

21

Constraints are the second input of the generator and represent the conditions imposed on
the generated stimuli. By limiting possible solutions, the generation of valid scenarios for
the selected system is ensured. Constraints are mainly conditions for data values (a variable
can only take values from a certain range) or dependency conditions (some combination of
values cannot occur after the currently generated combination). Like the Problem descrip-
tion, Constraints are unique to each system, and therefore different restrictions are applied
to different systems. Constraints are also defined using their own proprietary language, and
their syntax is similar to calling a function with parameters without a return value.

Generating Programs and Verification of the RISC Processor

The proposed stimuli generation architecture was implemented and input descriptions were
defined for generating Assembler code for the processor type RISC and VLIW. To design
the descriptions and test their functionality, the processors from Codix family [12] from
Codasip company were used, namely Codix-RISC and Codix-VLIW processors.

To generate assembler code, the Syntax section contains the instruction set of the se-
lected processor. Each defined instruction in this section consists of an identifier and its
assembler representation. The identifier serves as a reference between the instruction and
the constraint. The prepared assembler representations of instructions contain additional
identifiers that are used in section Replacement (these are mainly registers) and Variables
(these are mainly random numbers and strings).

Common instructions, which do not require special preprocessing, value restrictions,
or cooperation with other instructions, do not need to define any constraints. However,
some instructions require constraints to ensure their valid sequence and their valid operand
values. Therefore, several constraints have been created that address typical problems in
generating assembly code - jumps and calls, memory access, latency, program termination,
labels, and more. There are in total 18 of these constraints for the Codix-RISC processor
and they are demonstrated in Figure 3.5 for clarity. The figure also shows the sequential
application of individual constraints. Constraints marked with an asterisk are evaluated
only once during the entire generation process, other constraints are evaluated for each
instruction in each generation cycle.

*start() pb()

*end()

beforeinsert()

nouse() contain() different()

unique()mdiv() *outall()

output()nocare()

afterinsert()

*nlines()

mul() mod() div()

nolinecount()

Figure 3.5: Constraints needed to generate assembler programs.

22

For the selected Codix-RISC processor, a verification environment created according
to the Universal Verification Methodology (UVM) methodology [3] was available, which
was used for experimentation in conjunction with the ModelSim simulator from Mentor
Graphics [28]. The aim of the experiments was to determine the maximum coverage of key
functions of the processor, which guarantees the compliance of the processor with its specifi-
cation. As a part of the experiments, the coverage of processor instructions and states were
evaluated. Using the proposed stimuli generator, 1980 programs of 100 and 1000 instruc-
tions were generated. All this was further compared with a set of test programs obtained
from the MiBench tool [24]. The result of the comparison is shown in the Figure 3.6.

the number of programs

MiBench

the number of programs

MiBench

Figure 3.6: Achieved coverage of a) instructions and b) states in functional verification of
the processor.

Programs generated using the proposed approach achieved higher coverage and in less
time than programs from the MiBench test suite.

3.1.3 Evaluation of Software Fault Tolerance

This research was focused on evaluating the effect of transient faults caused by SEU (Single-
Event Upset) faults [50]. These can occur completely unpredictably through charged parti-
cles or electromagnetic interference [10]. To deal with these faults, additional hardware or
software techniques can be used. One option is to use software fault tolerance. The research
used software redundancy, which was applied for securing data in memory elements. The
processor with its registers and memory served as a sample device.

To solve this problem, an already designed and implemented stimuli generator was
used. Its input structures were modified to generate the required and secured program. For
software redundancy purposes, the new technique called Tripple Instructional Redundancy
(TIR) has been proposed, which is similar to the Tripple Modular Redundancy (TMR)
hardware technique [60], but runs at the software level. Figure 3.7 shows the technique of
tripling instructions, including evaluating the majority using additional instructions that
have the function of a voter. The condition for TIR must be that each of the instructions
I1-I3 or the voters V1-V3 must use another part of the memory space that is disjunct with
the others. Thanks to this, this method is able not only to detect the occurrence of a fault,
but also to correct it. During the generation, a fault was also artificially inserted into the
program in order to evaluate the proposed security methodology. A specific example of the
assembler code along with a simulated SEU fault injection is also shown in the figure.

23

I1

I2

I3

V1

V2

V3

SEU

r3 = ashr r5, r10

r11 = ashr r13, r18

r19 = ashr r21, r26

r3 = or r3, 12345

r3 = move eq r11, r19, r11

r11 = move eq r3, r19, r19

r19 = move eq r3, r11, r3

nop

r10 = sub r4, r4

r18 = sub r12, r12

r26 = sub r20, r20

…

I1

I2

I3

SEU

V1

V2

V3

C

I1

I2

I3

...

Figure 3.7: TIR software redundancy principle with example.

When defining the TIR in the universal stimuli generator, the definition of each proces-
sor instruction that works with the register or memory was tripled, and the newly created
trio of instructions was followed by comparative instructions that have the function of a
voter. To ensure the required separation of memory space between individual instances of
triple instructions, it was necessary to define new constraints that will ensure the correct
distribution of registers and memory addresses. The process of generating a program begins
with selecting a random instruction. All relevant constraints for this instruction are evalu-
ated, and in case of success, six instructions are printed to the output. Various instructions
on the output create a fault-tolerant processor program. The SEU injection is simulated in
the program by an instruction that is not secured by TIR and thus purposefully damages
the value stored in the register/memory.

Within the experiments, two random programs were created in one generation cycle,
each with 100 instructions. The first program was unsecured using TIR and no fault was
injected to it. This program served as a reference. The second program was identical to
the first, but was secured by TIR and a fault was simulated. The contents of the registers
and memory after the execution of programs were compared to verify the effect of security
on the proper behavior of the system. Up to 13 faults were injected into random parts of
the secured program. The measured statistical data are plotted in Figure 3.8. Single faults
were corrected in 100% of cases, double and triple faults in 95% and 90%, respectively.
With another multiplicity of faults, the success of the repair was decreased sharply.

0
5

10

18

28

35

58

65

77
82

91

99 100

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13

Probability of system

failure [%]

n - number of injected faults [-]

Figure 3.8: Probability of system failure in case of injection n faults.

24

3.1.4 Verification of the Robot Controller in the Maze

The robot controller in the maze is the second use case for which verification stimuli have
been generated. This is a partial part of the work, which fits into the whole concept of
the research group Diagnostics - the verification of methodologies on the electro-mechanical
system. The robot controller (implemented in VHDL (VHSIC Hardware Description Lan-
guage)) serves as a sample example available to the group. The task of the robot is to
search the path from point A to point B. The robot has a maze stored in its memory, in
which it orients itself using four sensors. The maze is one of several robot inputs that have
to be processed.

The task of this research was to verify the robot controller in order to eliminate its
design and implementation faults. This will ensure for subsequent future experiments with
fault injection that the controller misconduct was actually caused by the fault injection and
not the faulty design. For this reason, it was necessary to verify the robot’s behavior on
a sufficient sample of mazes to achieve the maximum possible coverage (preferably 100%)
and a sufficient number of steps, so that any failure could manifest on its mechanical part.

A number of algorithms for generating a random maze exists, however, their construc-
tion is not so straightforward for encoding into the input structures of the generator. For
this reason, an algorithm based on a binary tree was chosen and modified to minimize the
dependency constraints of individual maze lines on previous ones. The maze representa-
tion is binary, where a value of 1 represents a wall and a value of 0 represents a corridor.
This representation was later converted to a bitmap image. The maze creation algorithm
requires that the two adjacent sides of the maze always have a corridor along their entire
length. Thanks to this, it is then possible to identify the remaining cells of the maze so
that there is always a path between any two points in the maze. Figure 3.9 shows the basic
matrix of the maze, which was converted to a binary tree and new dependency conditions of
individual rows were defined. Thus, if cells A or C were randomly selected for the corridor,
then cell B or D will be the wall, and vice versa.

0

0
00

0
0

0
00

?

?

??
??

??
??

??

000

000

000
1 1 1 1 1 1 1
1
1
1
1
1
1 1 1 1 1 1 1

1
1
1
1
1

1 1

1 1
DB

CA
DB

CA

000

000

000
1 1 1 1 1 1 1
1
1
1
1
1
1 1 1 1 1 1 1

1
1
1
1
1

1 1

1 1 0

0
00

00

000

000
1 1 1 1 1 1 1
1
1
1
1
1
1 1 1 1 1 1 1

1
1
1
1
1

1 1

1 1
1

1

1

1

a. b. c.

Figure 3.9: Conversion of the basic matrix of the maze (a) for the needs of the generator
(b) and example (c).

The output of this work is a robot control unit without implementation errors, the list
of used verification scenarios and the achieved coverage. For the experiments, 3 types of
mazes were selected (see Figure 3.10), which differed in size and average number of steps
- 7x7 cells (16 steps), 15x15 cells (93 steps) and 31x31 cells (433 steps). A total of 1500
verification scenarios were performed, the result of which is shown in Figure 3.11. A maxi-
mum coverage of 91.85% was achieved. This is mainly due to the ”other“ branches in the
controller implementation, which never execute (which is correct). As a suitable size of the

25

maze, the size of 15x15 cells was chosen, which has a sufficient number of steps and the
maximum possible coverage.

START POSITION

GOAL POSITION

Figure 3.10: Three verified dimensions of mazes.

C
o
v
e
ra
g
e

Figure 3.11: Achieved total coverage for each dimension of the maze.

3.1.5 Generalization Using Formal Grammar

Formal grammar is a means of representing any language. For this reason, it is appropriate
to use or design a grammar that will be suitable to generate general stimuli. The aim of this
research is to generalize the specific structures of the previously designed stimuli generator
using a formal grammar based on the findings so far on specific test cases.

The newly proposed grammar is based on the already existing context-free grammar.
Specifically, it is a probabilistic context-free grammar [21]. It is the quintuplet:

G = (N,T,R,S,P); where:

N is a finite set of nonterminal symbols.
T is a finite set of terminal symbols, applies N∩T = ∅
R is a finite set of production rules in the form A → 𝛼, where A ∈ N a 𝛼 ∈ (N∪T)*.
S is the start nonterminal.
P is a finite set of probabilities for production rules.

26

For the probability in the context-free grammar, the following Definition 4 must be
applied.

Definition 4 Consider a probabilistic context-free grammar G. For each rule r in gram-
mar G, the transition probability 𝜋𝑟 is defined. For each non-terminal A ∈ N with its
production rules r1:A → 𝛼1, r2:A → 𝛼2, ..., r𝑘:A → 𝛼𝑟 the following rule must be applied:∑︀𝑘

𝑖=1 𝜋𝑟𝑖 = 1.

Thus, each production rule has assigned a probability with which the rule is applied
at a derivation (the derivation means a transcription of a string by using the rule). The
general probabilistic context-free grammars work first with the training dataset from which
a probability of each rule is determined. Then, the given grammar uses this probability
setting to generate strings.

For the purposes of this thesis (stimuli generation), three modifications of the general
probabilistic context-free grammar were introduced:

1. Production rules may not be strictly defined with probability values in which they
can be applied. If the probability is missing for a rule, it is calculated as the difference
of 100% -

∑︀
defined_probability for given nonterminal. If there is no definition of

probability for more than one rule, the probability for each of these rules will be
the same and will be calculated as (100% -

∑︀
defined_probabilities) / number_of

rules_without_probability for the given nonterminal. This defines the uniqueness
for the application of rules without strictly specified probabilities. Probabilities will
not be defined in most cases, because it is desirable to have the same probability for
almost every rule due to the large number of different combinations.

2. Probabilities will not be determined from the training dataset, but will be determined
by the developer based on the knowledge of the system. The aim is to limit the
generation of certain elements, whose excess would be of no use in the resulting
stimulus. If we consider the generation of processor instructions, then it is advisable
to limit the generation of, for example, a group of jump instructions. The excess
of instructions of this group would cause little usability of the code, because most
instructions would be skipped.

3. Production rules, which have some additional constraints, must be clearly identifiable
- they must have an identifier. The assigned probabilities of grammar rules will change
during the generation of stimuli, according to the constraints defined in the following
text of the thesis. Therefore, it is necessary to have a clear identification of the rules.
Rules will be denoted by a combination of alphanumeric characters.

The probabilistic context-free grammar defined in this way was used to design a new
grammar, which the author of this thesis calls Probabilistic Constrained Grammar. This
new grammar is a pair:

G = (H,C); where:

H is a probabilistic context-free grammar.

27

C is an ordered list of constraints for grammar H.

Constraints limit the grammar in the application of production rules for a given non-
terminal, and therefore limit the set of all possible strings in a given formal language. For
the set of production rules R, where the nonterminal X is on the left side of the rule applies
that the right side of the production rules represents the domain of values for the given non-
terminal X. The constraints were designed as quintuple with respect to the needs of stimuli:

cons(𝑅𝑆,𝑅𝐷,P,[𝑅𝐸],[C]); where:

R𝑆 is the identifier of the rule which calls this constraint.
R𝐷 is the identifier of the rule for which the probability is changed.
P is the new probability value.
R𝐸 (optional) is the identifier of the rule whose application removes the constraints.
C (optional) is the number of derivatives of the R𝐸 rule before the constraint is removed.

The task of the constraint is to set the probabilities during the generation so that the
result is a valid stimulus. After applying the R𝑆 rule, all constraints that have this identifier
defined are invoked and the probability value P is set to the rule with the identifier R𝐷. If
the parameter R𝐸 is not defined, this probability is set permanently. If the identifier R𝐸 is
specified, the probability value will be set until the C derivation of the rule R𝐸 . If C is not
specified, the default value of C is set to one derivation.

Probabilistic context-free grammar itself defines a static language, which is given by a
fixed probability setting, however, its behavior, in conjunction with constraints, is dynamic
and the generated language changes during the application of production rules.

Generation Process

Random stimuli generation is based on the introduced universal generation architecture
and the introduced probabilistic constrained grammar. The difference compared to the
original version is in the core of the generator and the processing of specific inputs. The
architecture is shown in Figure 3.12. Probabilistic context-free grammar is defined in the
input marked Format, while restrictions for individual grammar production rules in the
input Constraints. The first step before the generation is the preprocessing of the inputs.
Since grammars cannot effectively define, for example numeric ranges, a template system
[55] was used that allows the definition of cycles, branches, and other special macros suitable
for this purpose.

The output of the preprocessing is the Extended format and Extended constraints, which
already contain a complete definition of the production rules necessary to ensure the validity
and completeness of the generated program. It is sufficient to regenerate these extended
input descriptions only when changing the original inputs, otherwise it works directly with
this format and is no longer generated again.

The extended input descriptions form the resulting probabilistic constrained grammar
and are further processed by the generator core itself. It applies the production rules
from the initial nonterminal S using the leftmost derivations. After applying any rule, the
constraints that using these rules are invoked and the probabilities with which they can

28

Output

Inputs

Generator

Format

Preprocess

Generator Core

Constraints

Ext. Format

Stimulus

Preprocess

Ext. Constraints

Probabilistic Constrained Grammar

Figure 3.12: Detailed architecture of universal stimuli generation based on probabilistic
constrained grammar.

be applied are adjusted. This directs another iteration of the grammar derivation, which
ensures the validity of the generated stimulus.

3.1.6 Principles of Creating Stimuli for Various Systems Using the Gram-
mar

This subchapter shows sample examples, which explain the principles of creating stimuli
not only for systems that were introduced in this work, but also for other systems of similar
or different nature. Probabilistic constrained grammar is a general way of stimuli definition,
therefore the success of creating a grammar for a particular system always depends on the
developer. It is important, how effectively he is able to encode the problem into production
rules. The following subchapters show the solutions for the sample systems and their
necessary key conditions that must be fulfilled in order to generate a valid stimulus.

Assembler for RISC Processor

Processor instructions need to be divided into several groups according to the type of
instruction. Each group is defined by its own nonterminal, to which there is a path through
the application of production rules from the start nonterminal. Each group can have an
adjusted probability value depending on the type and number of instructions in the group so
that the distribution of instructions in the program is as even as possible, and thus there are
no more instructions than others. Jump instructions have typically less probability than,

29

for example, arithmetic ones, because their excess would cause low usability of program
instructions. Each created group is then further divided into subgroups defined by another
nonterminal, which combine instructions with the same format. For example, instructions
that work with two registers are in a different group than instructions that work with a
register and a value. The nonterminal of a subgroup is then replaced by an expression
containing both nonterminal and terminal symbols. Nonterminal symbols are replaced by
specific instruction names and operand values, which create one specific stimulus instruction
at the output.

However, such a grammar would never end up generation process without constraints
and the processor itself would not be able to handle the instructions. The generated pro-
gram would lack the appropriate labels, it would also not ensure correct and aligned memory
access and would not maintain the necessary latency to store the result in memory and its
subsequent use.

Example: Creating a grammar for a RISC processor from Codasip. Let us assume that
the nonterminal S is the starting symbol of the grammar. The processor instruction set,
which represents about 60 instructions, can be divided into 5 groups of instructions - arith-
metic (ARITHM), memory (MEMORY), conditional (CONDIT), jump (JUMPS) and oth-
ers (OTHER). For these groups, it is possible to define production rules with modified
probabilities subsequently (abbreviated notation - character ’|’ indicates ’or’):

S → ARITHM(50%)|MEMORY(20%)|CONDIT(15%)|JUMPS(5%)|OTHERS(10%)

If these production rules are followed by the start nonterminal, cyclic instruction generation
is achieved. The group of arithmetic instructions (ARITHM) can be further divided into an-
other 6 subgroups with different formatting, which determines a specific nonterminal. This
includes a subset of instructions using two registers as operands (ARITHM_RR), register
and value (ARITHM_RI), three registers as operands (ARITHM_THREE), sign extension
instructions (ARITHM_EXT), assignment instructions (ARITHM_ASS) and instructions
for loading a value into the upper half of the operand (ARITHM_LUI). Rules defining
these groups derive nonterminals already on the specific syntax of the given instruction
as they have defined in their instruction word. Specific registers and numerical values are
still hidden behind other nonterminals. An example of definitions of such rules is as follows:

ARITHM → ARITHM_RR|ARITHM_RI|ARITHM_THREE|ARITHM_EXT|ARITHM_ASS|ARITH_LUI

ARITHM_RR → DST = ARITHM_NAME SRC, SRC EOL
ARITHM_RI → DST = ARITHM_NAME SRC, IMM EOL
ARITHM_NAME → add|sub|add|or|xor|shl|shr
dst0: DST → r0
src0: SRC → r0
dst1: DST → r1
src1: SRC → r1
dst2: DST → r2
src2: SRC → r2
...
jmp: JUMP → jump NAME EOL ARITHM NAME: EOL

30

nj1: NAME &→ str1
nj2: NAME &→ str2
eol: EOL → \n

It may seem that the nonterminals DST and SRC representing the registers are identical,
because as a result there is a specific register behind them. That is the reason why we do
not need to have two different definitions of rules. In reality, however, it is necessary to
distinguish these operands for a given instruction, because for rules deriving the nonterminal
DST there are different constraints than for the nonterminal SRC. Due to maintaining
latency between instructions, i.e. for certain instructions, it is not possible to use the result
of the previous operation immediately in the next tact, because the result is not saved yet.

The nonterminals DST and SRC are defined in a similar way and already contain
specific processor registers. The nonterminal ARITHM_NAME is replaced to the specific
name of the arithmetic operation of the processor. The whole branch of the derivation
tree for the arithmetic sum operation is shown in Figure 3.13. It is obvious that a simple
modification can also generate a binary representation of the program.

S

ARITHM

ARITHM_RR

...

MEMORY CONDIT JUMPS OTHERS

ARITHM_THREE ARITHM_EXT ARITHM_RI ARITHM_ASS ARITHM_LUI

DST = ARITHM_NAME SRC, SRC

addr10 = r5 , r12

DST = ARITHM_NAME SRC, IMM

... ...

Figure 3.13: Derivation tree for arithmetic sum operation.

The constraints for such grammar can be defined as follows, to ensure the correctness
of the instructions in the program.

If the arithmetic operations have a latency of 2, i.e. the result stored in the register
under the nonterminal DST cannot be used in the next tact as the source register for all
other processor instructions. Therefore constraints, the activation of which causes that
the transcription of the destination register invalidates (sets the probability to zero) the
corresponding rule for the same source register in the one subsequent instruction, has to be
defined in the following way:

cons(dst0, src0, 0, eol, 1)
cons(dst1, src1, 0, eol, 1)

31

cons(dst2, src2, 0, eol, 1)

For jump instructions, only forward jumps are considered, because the specific values of the
registers are not known at the time the program is generated, and thus an undesired endless
loop would occur when returning in the program. The jump instruction jump NAME will
be generated by using the jmp rule, including its label marked by NAME : nonterminal.
Between the jump instruction and its label, any other instruction can be placed, except of
jumps. Both NAME non-terminals must be derived into the same string; therefore, the
leftmost derivation as a classic variant cannot be used. For this case, a special derivation
characterized with &→ mark is used. This ensures that all NAME nonterminals are derived
through the same selected rule. The use of the following constraints ensures the reduction
of the probability to zero after the application of a randomly selected label and thus the
uniqueness of the label in the whole program. The necessary condition is that there must
be a sufficient number of these labels in the grammar.

cons(nj1, nj1, 0)
cons(nj2, nj2, 0)

The end condition for generation is the achievement of a certain number of instructions.
For this reason, it is necessary to restrict the grammar so that after the application of a
certain number of new lines (identifier eol) the generation is terminated. It means that the
output string does not contain nonterminals. This is accomplished by adding the following
sequence of production rules:

start: S → START
end: START → nop(100%)
START → ARITHM START

cons(start,end,0,eol,1000);

Immediately after applying the first start rule, the constraint is invoked that prevents the
end rule from being applied to the next 1000 instructions (new lines), which sets the required
number of instructions in the stimulus. When this number is reached, the probability for
the end rule returns to 100% and the cyclic generation of instructions ends with the final
instruction nop.

Maze in Bitmap Image Format

To generate a maze in the form of a bitmap image, the encoding format of the .bmp image
must be known. It is an uncompressed format that is stored pixel by pixel. The pixel value is
stored in a certain number of bits, the length of which determines the possible color palette.
The structure of a bitmap image can be divided into three mandatory parts - BMP header,
DIP header and image data. The BMP header contains basic information for identifying
the image. The DIP header describes the stored image itself, how the stored image data
should be accessed. In the case of generating random mazes with a fixed size (e.g. 7x7
cells), it is possible to set BMP and DIP headers statically to constant values. Otherwise,

32

it is possible to use tools for pre-processing the input structures of the generator. For the
purposes of this work, image data are stored in hexadecimal as a trio of words representing
the RGB color palette (red-green-blue). Each cell of maze is represented as 8x8 pixels for
the needs of the robot control unit. Overall, it is necessary to generate 56x56 pixels. The
wall of the maze is defined by black color, while the corridor by white color.

The introductory part of the grammar design for maze generation includes the defini-
tion of production rules that address the bitmap image format. There are definitions of
static headers and colors that are used in rules that generate image data. The production
rules for color definition are already prepared to generate 7 pixels in a row. The maze must
always have an odd number of cells so that there are no irregular corridors or walls. These
production rules take the following form:

start: S → BMPHEAD DIBHEAD PIXDATA

BLACK → 0x00 0x00 0x00
WHITE → 0xFF 0xFF 0xFF
BLACK8 → BLACK BLACK BLACK BLACK BLACK BLACK BLACK BLACK
WHITE8 → WHITE WHITE WHITE WHITE WHITE WHITE WHITE WHITE

It is not necessary to show specific rules for replacing the nonterminals of the BMPHEAD
and DIBHEAD headers to explain the principle. The image data itself are hidden under
the nonterminal PIXDATA, which generates individual lines of pixels. Since the cell has
8 pixels, 8 identical rows are always generated. A necessary condition for generating a
continuous maze, is the split of rows into even and odd, as was introduced in the proposed
algorithm earlier. This is because an even row is always affected by its previous odd row,
which sets values for this even row based on a random selection of a corridor or wall.

For the robot control unit, it is necessary that the maze is always closed and there is
a continuous path from any cell to another, therefore a wall is always generated around
the maze. In addition, at least two adjacent sides of the maze must be a corridor, so the
top and right sides were chosen. These conditions are already taken into account when
designing production rules, which have the following form, including special macros that
facilitate writing:

PIXDATA → {% for i in range(1,8) %}
BLACK8 BLACK8 BLACK8 BLACK8 BLACK8 BLACK8 BLACK8

{% endfor %}
{% for i in range(1,8) %}

BLACK8 WHITE8 WHITE8 WHITE8 WHITE8 WHITE8 BLACK8
{% endfor %}
ODD
{% for i in range(1,8) %}

BLACK8 BLACK8 BLACK8 BLACK8 BLACK8 BLACK8 BLACK8
{% endfor %}

odd: ODD → ODDBODY EVEN
end: ODD → (100%)
EVEN → EVENBODY ODD

33

ODDBODY → {% for i in range(1,8) %}
BLACK8 A BLACK8 C BLACK8 WHITE8 BLACK8

{% endfor %}

EVENBODY → {% for i in range(1,8) %}
BLACK8 WHITE8 B WHITE8 D WHITE8 BLACK8

{% endfor %}

Ab: A → BLACK8
Aw: A → WHITE8
Bb: B → BLACK8
Bw: B → WHITE8
Cb: C → BLACK8
Cw: C → WHITE8
Db: D → BLACK8
Dw: D → WHITE8

The ending condition is similarly defined as for the processor, i.e. specific constraint is
invoked after the start rule, which in case of reaching the required number of lines with
pixels, sets the transcription to the empty string (epsilon) for the rule where nonterminal
ODD is on the left side. The remaining constraints set an odd line based on an even line:

cons(start,end,0,odd,2);

cons(Ab,Bb,0,Bw);
cons(Aw,Bw,0,Bb);
cons(Cb,Db,0,Dw);
cons(Cw,Dw,0,Db);

Input and Output Operands for Arithmetic-Logic Unit

The arithmetic-logic unit (ALU) is another example for which a grammar was designed to
obtain stimuli. However, it is not just about generating inputs for this circuit, as in previous
works, but with the help of the expressive power of probabilistic constrained grammar, it is
also possible to describe the expected output, which can be part of the resulting stimulus.
This makes it possible to quickly verify the correctness of the output when verifying the
circuit. Similarly, in the case of functional verification, it is possible to exclude a reference
model and thus compare the output of the verified circuit directly with the value of the
stimulus. This method can also be used for other circuits, e.g. for the calculation of the
cyclic redundancy check (CRC) [47].

The ALU typically has two input operands A and B, which are n bits long. Another
input is the selected operation, which in this case is set to addition with carry. Output R
is the result of an operation over the input operands.

The process of creating grammar production rules can be divided into several sections
- Inputs, Logic and Result. Each section contains its own appropriate production rules.
The most complex section is the Logic section, in which it is necessary to ensure that the

34

context of individual subtotals is correct and propagated into the final result for the given
operation. A schematic representation of these sections is shown in the Figure 3.14.

Stimulus

Input operands

OPERATION

OPERAND A

LOGIC

CONSTRAINTS

OPERAND B

RESULT

Figure 3.14: Schematic representation of grammar definition for ALU.

The resulting stimulus is made up of four lines, which correspond to random inputs and
the expected result. Values are represented in the binary numeral system. The first line is
the selected operation addition with carry, the second and third lines contain the operands,
and the last line is the result of the operation over the operands. The bit widths of the
input values can be chosen arbitrarily according to the required circuit. In this case, a
width of 1 bit per operation and 8 bits per operands and result were chosen for clarity. The
figure also shows constraints because they form an integral part of the proposed grammar.

The grammar production rules are designed so that each operand is divided into N other
unique nonterminals, where N is the number of bits per operand. The same applies to the
definition of the result. This division is very important for constraints, which will ensure
that the correct result is determined. Each of these new nonterminals for the individual bits
of operand A can then take the value zero or one. This achieves a randomly generated num-
ber in the first operand. In the case of generating bits of operand B, it is already needed to
keep in nonterminals the value that operand A acquired for the positionally same bit. That
is, each bit of operand A could be zero, one, zero with carry bit, one with carry bit. This
fact must be taken into consideration when creating rules for operand B and create other
nonterminals for it BxA0, BxA1, BxA0C, BxA1C. The definition of these rules is shown here:

A -> A7 A6 A5 A4 A3 A2 A1 A0
B -> B7 B6 B5 B4 B3 B2 B1 B0

A7 -> ’0’|’1’
A6 -> ’0’|’1’
...
A0 -> ’0’|’1’

B7 -> B7A0|B7A1|B7A0C|B7A1C
B7A0|B7A1|B7A0C|B7A1C -> ’0’|’1’
...

35

B0 -> B0A0|B0A1|B0A0C|B0A1C
B0A0|B0A1|B0A0C|B0A1C -> ’0’|’1’

R -> R7 R6 R5 R4 R3 R2 R1 R0
R8|R7|R6|R5|R4|R3|R2|R1|R0 -> ’0’|’1’

Based on the definition of these production rules, it is possible to determine the truth table
of addition with carry (see Tab. 3.1).

Table 3.1: Truth table of addition with carry.
Ai Bi Ri Ci+1

Ai->’0’ BiA0->’0’ Ri->’0’ 0
Ai->’0’ BiA0->’1’ Ri->’1’ 0
Ai->’0’ BiA0C->’0’ Ri->’1’ 0
Ai->’0’ BiA0C->’1’ Ri->’0’ 1
Ai->’1’ BiA1->’0’ Ri->’1’ 0
Ai->’1’ BiA1->’1’ Ri->’0’ 1
Ai->’1’ BiA1C->’0’ Ri->’0’ 1
Ai->’1’ BiA1C->’1’ Ri->’1’ 1

Without constraints, the generation of individual operands for the rules proposed in this
way would be completely random, so it is necessary to create a set of constraints that will
respect the truth table. Based on the generated value (zero or one) for individual bits of
operand A, specific constraints will be activated and will limit the use of rules for operand
B, i.e. set the correct context:

cons(A0->’0’, B0->B0A1, 0);
cons(A0->’0’, B0->B0A1C, 0);
cons(A0->’1’, B0->B0A0, 0);
cons(A0->’1’, B0->B0A0C, 0);
...

After performing these constraints, each bit of operand B always has only two rules that
can be used to generate its value. Depending on which rule is randomly used, the value
of the corresponding result bit is set using additional constraints. At the same time, the
possible carry bit is set for the next bit. The constraints that provide these actions are
briefly shown here:

cons(B0A0->’0’, R0->’0’, 100);
cons(B0A0->’0’, B1->B1A0C, 0);
cons(B0A0->’0’, B1->B1A1C, 0);
cons(B0A0->’1’, R0->’1’, 100);
cons(B0A0->’1’, B1->B1A0C, 0);
cons(B0A0->’1’, B1->B1A1C, 0);

cons(B0A1->’0’, R0->’1’, 100);

36

cons(B0A1->’0’, B1->B1A0C, 0);
cons(B0A1->’0’, B1->B1A1C, 0);
cons(B0A1->’1’, R0->’0’, 100);
cons(B0A1->’1’, B1->B1A0, 0);
cons(B0A1->’1’, B1->B1A1, 0);
...

This process of creating production rules and constraints is suitable for other arithmetic
and bitwise operations. An important prerequisite is to design additional nonterminals so
that the necessary context is maintained using appropriate production rules.

Stepper Motor Signals

Verifying the correct behavior of the stepper motor is another area of interest. The stepper
motor is being investigated as a drive for smart electronic locks, which must be secured
both from the point of view of cyber security and from the point of view of fault tolerance.
During the functional verification of the stepper motor, it is again necessary to generate
input stimuli (signals), according to which the angle of rotation of the stepper motor will
be evaluated. Based on the angle of rotation of the motor in the event of a fault, it is
examined whether the smart lock has been unlocked unauthorizedly or has not been locked
during the locking sequence.

Input stimuli are designed directly for the stepper motor itself, because there was no
control unit available to verify the real injection of faults. In fact, the missing control unit
and the fault injector can be replaced by the stimuli generator. Thanks to this, it is possible
to find out how the motor behaves with variously changed values on its input pins.

Input stimuli are generated for the available stepper motor model, which is part of the
MATLAB application and the Simulink package [42, 2]. This model requires at its input
a voltage for its 4 coils (0V or 5V) changing over time - stepping. For this reason, the
individual steps in the stimulus are represented by lines. Each line consists of five values,
where the first value represents the timestamp in which the step occurs. The remaining
four values represent the voltage levels on the four coils (COIL1 - COIL4) of the stepper
motor, which ensure its rotation. Logic levels are used to define the voltage (logic 0 = 0V,
logic 1 = 5V). The resulting format of one motor step is as follows:

TIMESTAMP,COIL1,COIL2,COIL3,COIL4

Many steps must be defined (tens to thousands) to turn the stepper motor around its entire
axis one or more times. Several steps obtained during the generation process define one
input stimulus. For this step format, it is necessary to create a probabilistic constrained
grammar. For a valid continuous motor rotation in one direction (or damaging such input
by a fault), it is necessary to keep a valid sequence of stepper motor coils. In the case of a
4-phase stepper motor, 8 steps are required. If it is a stepper motor with a gearbox, many
more steps are required.

During the creation of the grammar, several variables were defined using preprocessing
templates, which could be used to modify the stimulus generation parameters. Thanks to
this, it was possible to apply and test various scenarios of stepper motor attacks. These
are 4 parameters:

37

time - maximum timestamp value (end of generation).
minstep - minimum time between steps.
maxstep - maximum time between steps.
pcoil - probability of logical 0 or 1 for each coil.

When generating a valid sequence of 8 steps of a stepper motor, it is necessary to keep
the state in which the generation is located and on the basis of it determine the following
values for individual motor coils. For a valid sequence of steps, coils 1-4 are always acti-
vated individually or in combination with an adjacent coil (COIL12, COIL23, COIL34 or
COIL41). Preservation of the context in which of the 8 steps the generation is located is
achieved by production rules and constraints, which set the values of the other coils when
generating the value for COIL1. This achieves the cyclic generation of 8 steps and the
rotation of the stepper motor in one direction. These rules can look like this:

STEP -> TIMESTAMP ’,’ C1 ’,’ C2 ’,’ C3 ’,’ C4
c11: C1 -> C11
c12: C1 -> C12
c12|...|c18: C1 -> C13|C14|C15|C16|C17|C18
C2 -> ZERO|ONE
C3 -> ZERO|ONE
C4 -> ZERO|ONE

C11|...|C18 -> ZERO|ONE
ZERO -> ’0’
ONE -> ’1’

The constraints provide control of the generation so that when using the rule c11 for step
1 of 8, the probabilities of the rules for nonterminals C11, C2, C3 and C4 are set, whereby
the generated values will acquire a valid sequence of step 1,0,0,0. At the same time, the
following derivation is forced for the nonterminal C1 using the rule c12.

The value of the timestamp (nonterminal TIMESTAMP) will be determined by other
production rules, which are pre-generated according to the specified time interval for indi-
vidual steps. After preprocessing, these rules look like this:

t0: TIMESTAMP -> T0
t1: TIMESTAMP -> T1(0%)
t2|...|tx: TIMESTAMP -> T2(0%)|...|TX(0%)
T0 -> ’0.0’
T1 -> ’0.5’
T2 -> ’1.0’
...
TX -> ’60.0’

By supplementing the grammar with constraints, the generation of valid steps will be
ensured. For each step, the timestamps will be selected sequentially from T0, T1 and so on
by creating constraints, that during the application of the t0 rule will set the use of the t1
rule in the next derivation and similarly.

38

An example of constraints to ensure valid sequence of steps is shown here:

cons(t0,t1,100,t1); // timestamp
cons(t1,t2,100,t2);
...

cons(c11,c12,100); // step sequence
cons(c11,c11,0);
cons(c12,c13,100);
cons(c12,c12,0);
...

cons(c11,C11->ONE,100); // coil values in a given step
cons(c11,C2->ONE,0);
cons(c11,C3->ONE,0);
cons(c11,C4->ONE,0);

cons(c12,C12->ONE,100);
cons(c12,C2->ONE,100);
cons(c12,C3->ONE,0);
cons(c12,C4->ONE,0);
...

If values other than only 0% and 100% are used in constraints to set the correct sequence
of steps, a certain percentage error can be entered into the generation of individual coil
values and a fault at the input of the stepper motor can be simulated.

3.2 List of Publications Included in the Thesis
This subchapter shows an overview of published articles on which this dissertation thesis
is based, including their abstracts. The full texts of all these articles can be found at the
end of this thesis in the chapter Related Papers.

3.2.1 Paper I

PODIVÍNSKÝ Jakub, ČEKAN Ondřej, ŠIMKOVÁ Marcela and KOTÁSEK Zdeněk. The
Evaluation Platform for Testing Fault-Tolerance Methodologies in Electro-mechanical Ap-
plications. Microprocessors and Microsystems, vol. 39, no. 8, 2015, pp. 1215-1230. ISSN
0141-9331.

Author participation: 35% | Citations: 2 | Impact factor: 1.045 (Q3)

Abstract

The aim of this paper is to present a new platform for estimating the fault-tolerance quality
of electro-mechanical applications based on FPGAs. We demonstrate one working example
of such EM application that was evaluated using our platform: the mechanical robot and its

39

electronic controller in an FPGA. Different building blocks of the electronic robot controller
allow to model different effects of faults on the whole mission of the robot (searching a
path in a maze). In the experiments, the mechanical robot is simulated in the simulation
environment, where the effects of faults injected into its controller can be seen. In this way,
it is possible to differentiate between the fault that causes the failure of the system and
the fault that only decreases the performance. Further extensions of the platform focus on
the interconnection of the platform with the functional verification environment working
directly in FPGA that allows automation and speed-up of checking the correctness of the
system after the injection of faults.

3.2.2 Paper II

ČEKAN Ondřej, PODIVÍNSKÝ Jakub and KOTÁSEK Zdeněk. Software Fault Tolerance:
the Evaluation by Functional Verification. In: Proceedings of the 18th Euromicro Confer-
ence on Digital Systems Design. Funchal: IEEE Computer Society, 2015, pp. 284-287.
ISBN 978-1-4673-8035-5.

Author participation: 50% | Citations: 4 | Conference rank: B1 (Qualis)

Abstract

The aim of this paper is to present a new approach in evaluating Software Fault Tolerance
(SFT) methodologies. It is the way on how to ensure fault tolerance without any additional
hardware as is common in frequently used Triple Modular Redundancy (TMR). As our
research is focused on electromechanical systems which are commonly driven by processors
or Multi Processors Systems on Chip (MPSoC) we decided to use the soft-core processor
running on Field Programmable Gate Array (FPGA) as our experimental platform. The
new approach uses Functional Verification for automation of the evaluation process. The
functional verification environment is one of the important parts of the presented evaluation
platform architecture. Programs generation for a processor, where SFT is applied, is also
important. Experiments with the programs generator and fault injection are presented and
goals for future work are identified on that basis.

3.2.3 Paper III

PODIVÍNSKÝ Jakub, ČEKAN Ondřej, LOJDA Jakub and KOTÁSEK Zdeněk. Verifica-
tion of Robot Controller for Evaluating Impacts of Faults in Electro-mechanical Systems.
In: Proceedings of the 19th Euromicro Conference on Digital Systems Design. Limassol:
IEEE Computer Society, 2016, pp. 487-494. ISBN 978-1-5090-2816-0.

Author participation: 35% | Citations: 0 | Conference rank: B1 (Qualis)

Abstract

Functional verification is a modern approach to verifying that a digital system complies
with its specification. The verification environment for functional verification of robot con-
troller which searches path for the robot through a maze is presented in this paper. This
verification environment is designed according to UVM (Universal Verification Methodol-
ogy) principles. As an interesting feature of the verification environment we see the use of

40

a mechanical part (robot in a maze) simulation. The article describes the use of the veri-
fication environment for evaluating impacts of faults in electro-mechanical systems. It will
serve as a tool for automating the fault tolerance evaluation of electro-mechanical systems
and together with the fault injector will form the basis of the verification platform in the
future. The experimental results gained from the verification process are also presented in
the paper.

3.2.4 Paper IV

ČEKAN Ondřej and KOTÁSEK Zdeněk. A Probabilistic Context-Free Grammar Based
Random Test Program Generation. In: Proceedings of 20th Euromicro Conference on
Digital System Design. Wien: Technical University Wien, 2017, pp. 356-359. ISBN 978-1-
5386-2145-5.

Author participation: 95% | Citations: 2 | Conference rank: B1 (Qualis)

Abstract

The aim of this paper is to show the use of a probabilistic context-free grammar in the
domain of stimulus generation, especially random test program generation for processors.
Nowadays, the randomly constructed test stimuli are largely applied in functional verifica-
tion to verify the proper design and final implementation of systems. Context-free grammar
cannot be used by itself in this case, because conditions for instructions of the program are
changing during the generation. Therefore, there is a need to introduce additional logic in
the form of constraints. Constraints guarantee the continuous changes of probabilities in
the grammar and their application in order to preserve the validity of the program. The use
of the grammar system provides a formal description of the stimuli, while the connection
with constraints allows for the wide use in various systems. Experiments demonstrate that
this approach is competitive with a conventional approach.

3.2.5 Paper V

ČEKAN Ondřej, PODIVÍNSKÝ Jakub and KOTÁSEK Zdeněk. Program Generation
Through a Probabilistic Constrained Grammar. In: Proceedings - 21st Euromicro Con-
ference on Digital System Design, DSD 2018. Praha: IEEE Computer Society, 2018, pp.
214-220. ISBN 978-1-5386-7376-8.

Author participation: 90% | Citations: 1 | Conference rank: B1 (Qualis)

Abstract

The paper introduces a probabilistic constrained grammar which is a newly formed grammar
system for use in the area of test stimuli generation. The grammar extends the existing
probabilistic context-free grammar and establishes constraints for grammar limitations.
Stimuli obtained through the proposed principle are used in the functional verification of
a RISC processor and coverage metrics are evaluated. The detailed information about the
construction of an assembly code for processors is described, as well as the experimental
results with the implemented generator. Experiments show the expressive power of the
probabilistic constrained grammar and achieved code coverage in the verification of the
processor. The grammar system demonstrates that it is very suitable for an assembly code
generation and universal use in the area of test stimuli.

41

3.2.6 Paper VI

ČEKAN Ondřej, PÁNEK Richard and KOTÁSEK Zdeněk. Input and Output Generation
for the Verification of ALU: a Use Case. In: Proceedings of 2018 IEEE East-West Design
and Test Symposium, EWDTS 2018. Kazan: IEEE Computer Society, 2018, pp. 331-336.
ISBN 978-1-5386-5710-2.

Author participation: 85% | Citations: 0 | Conference rank: unknown

Abstract

The paper presents the approach to universal stimuli generation for an arithmetic-logic
unit (ALU). It is not focused only on input data generation, but it is possible to generate
also expected output in one stimulus. The process of generation is based on a probabilistic
constrained grammar which is designed to universally describe stimuli for various circuits.
This grammar is processed by our framework. The experiment in functional verification,
which shows the quality of generated stimuli, is also presented.

3.2.7 Author’s contributions to selected papers

Since the papers, on which this dissertation is based, were created in collaboration with
other members of the Diagnostics research group led by supervisor docent Kotásek, the
author’s contributions to selected papers are explicitly listed in this chapter.

∙ Paper I - design of universal stimuli architecture, specific input structures and def-
inition of constraints for assembler generation, functional verification of processor.
Details were presented in subchapter 3.1.1 and 3.1.2.

∙ Paper II - development of approach for software implemented fault tolerance based
on stimuli which contain triplicated instructions. More was discussed in subchapter
3.1.3.

∙ Paper III - definition of input structures for maze generation, functional verification
of robot controller searching path in generated mazes. Details were presented in
subchapter 3.1.4.

∙ Paper IV - development of general principles of generation based on newly defined
formal grammar - probabilistic constrained grammar. General principles were defined
in subchapter 3.1.5.

∙ Paper V - definition of the probabilistic constrained grammar for assembler code
generation and its functional verification. Definitions were part of subchapter 3.1.6.

∙ Paper VI - definition of the probabilistic constrained grammar for arithmetic logic
unit, generating both inputs and output. Details were presented in subchapter 3.1.6.

3.3 List of Other Publications
The author’s other publications are listed for completeness in this subchapter, where they
are sorted by year of publication.

42

2020

∙ LOJDA Jakub, PÁNEK Richard, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, KRČMA
Martin and KOTÁSEK Zdeněk. Analysis of Software-Implemented Fault Tolerance:
Case Study on Smart Lock. In: 2020 IEEE East-West Design and Test Symposium,
EWDTS 2020 - Proceedings. Varna: Institute of Electrical and Electronics Engineers,
2020, pp. 24-28. ISBN 978-1-7281-9899-6.

Author participation: 8%

∙ LOJDA Jakub, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, PÁNEK Richard, KRČMA
Martin and KOTÁSEK Zdeněk. Automatic Design of Reliable Systems Based on
the Multiple-choice Knapsack Problem. In: Proceedings - 2020 23rd International
Symposium on Design and Diagnostics of Electronic Circuits and Systems, DDECS
2020. Novi Sad: Institute of Electrical and Electronics Engineers, 2020, pp. 1-4.
ISBN 978-1-7281-9938-2.

Author participation: 10% | Conference rank: B3 (Qualis)

∙ PODIVÍNSKÝ Jakub, LOJDA Jakub, PÁNEK Richard, ČEKAN Ondřej, KRČMA
Martin and KOTÁSEK Zdeněk. Evaluation Platform For Testing Fault Tolerance:
Testing Reliability of Smart Electronic Locks. In: 2020 IEEE 11th Latin American
Symposium on Circuits Systems (LASCAS). San José: IEEE Circuits and Systems
Society, 2020, pp. 1-4. ISBN 978-1-7281-3427-7.

Author participation: 10% | Conference rank: B5 (Qualis)

∙ LOJDA Jakub, PÁNEK Richard, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, KRČMA
Martin and KOTÁSEK Zdeněk. Hardening of Smart Electronic Lock Software against
Random and Deliberate Faults. In: Proceedings - Euromicro Conference on Digital
System Design, DSD 2020. Kranj: Institute of Electrical and Electronics Engineers,
2020, pp. 680-683. ISBN 978-1-7281-9535-3.

Author participation: 12% | Conference rank: B1 (Qualis)

∙ PODIVÍNSKÝ Jakub, ČEKAN Ondřej, KRČMA Martin, BURGET Radek, HRUŠKA
Tomáš and KOTÁSEK Zdeněk. Iterative Algorithm for Multidimensional Pareto
Frontiers Intersection Determination. In: 2020 IEEE 11th Latin American Sympo-
sium on Circuits & Systems (LASCAS). San José: IEEE Circuits and Systems Society,
2020, pp. 1-4. ISBN 978-1-7281-3427-7.

Author participation: 20% | Conference rank: B5 (Qualis)

2019

∙ PODIVÍNSKÝ Jakub, ČEKAN Ondřej, KRČMA Martin, BURGET Radek, HRUŠKA
Tomáš and KOTÁSEK Zdeněk. Multidimensional Pareto Frontiers Intersection De-
termination and Processor Optimization Case Study. In: Proceedings of the 2019 22nd
Euromicro Conference on Digital System Design. Kalithea: Institute of Electrical and
Electronics Engineers, 2019, pp. 597-600. ISBN 978-1-7281-2861-0.

43

Author participation: 20% | Conference rank: B1 (Qualis)

∙ ČEKAN Ondřej, PODIVÍNSKÝ Jakub, LOJDA Jakub, PÁNEK Richard, KRČMA
Martin and KOTÁSEK Zdeněk. Testing Reliability of Smart Electronic Locks: Anal-
ysis and the First Steps Towards. In: Proceedings of the 2019 22nd Euromicro Con-
ference on Digital System Design. Kalithea: Institute of Electrical and Electronics
Engineers, 2019, pp. 506-513. ISBN 978-1-7281-2861-0.

Author participation: 19% | Conference rank: B1 (Qualis)

2018

∙ PODIVÍNSKÝ Jakub, ČEKAN Ondřej, KRČMA Martin, BURGET Radek, HRUŠKA
Tomáš and KOTÁSEK Zdeněk. A Framework for Optimizing a Processor to Selected
Application. In: Proceedings of IEEE East-West Design & Test Symposium. Kazan:
IEEE Computer Society, 2018, pp. 564-574. ISBN 978-1-5386-5710-2.

Author participation: 20% | Citations: 1

∙ PODIVÍNSKÝ Jakub, LOJDA Jakub, ČEKAN Ondřej and KOTÁSEK Zdeněk. Eval-
uation Platform for Testing Fault Tolerance Properties: Soft-core Processor-based
Experimental Robot Controller. In: Proceedings of the 2018 21st Euromicro Confer-
ence on Digital System Design. Praha: IEEE Computer Society, 2018, pp. 229-236.
ISBN 978-1-5386-7376-8.

Author participation: 24% | Citations: 1 | Conference rank: B1 (Qualis)

∙ LOJDA Jakub, PODIVÍNSKÝ Jakub, ČEKAN Ondřej, PÁNEK Richard and KOTÁ-
SEK Zdeněk. FT-EST Framework: Reliability Estimation for the Purposes of Fault-
Tolerant Systems Design Automation. In: Proceedings of the 2018 21st Euromicro
Conference on Digital System Design. Praha: IEEE Computer Society, 2018, pp.
244-251. ISBN 978-1-5386-7376-8.

Author participation: 20% | Conference rank: B1 (Qualis)

2017

∙ PODIVÍNSKÝ Jakub, ČEKAN Ondřej, LOJDA Jakub, ŠIMKOVÁ Marcela, KRČMA
Martin and KOTÁSEK Zdeněk. Functional Verification Based Platform for Evaluat-
ing Fault Tolerance Properties. Microprocessors and Microsystems, vol. 52, no. 5,
2017, pp. 145-159. ISSN 0141-9331.

Author participation: 18% | Citations: 4 | Impact factor: 1.045 (Q3)

∙ PODIVÍNSKÝ Jakub, LOJDA Jakub, ČEKAN Ondřej, PÁNEK Richard and KOTÁ-
SEK Zdeněk. Reliability Analysis and Improvement of FPGA-based Robot Con-
troller. In: Proceedings of the 2017 20th Euromicro Conference on Digital System
Design. Wien: IEEE Computer Society, 2017, pp. 337-344. ISBN 978-1-5386-2145-5.

Author participation: 13% | Citations: 2 | Conference rank: B1 (Qualis)

44

2016

∙ PODIVÍNSKÝ Jakub, ČEKAN Ondřej, LOJDA Jakub and KOTÁSEK Zdeněk. Func-
tional Verification as a Tool for Monitoring Impact of Faults in SRAM-based FPGAs.
In: Proceedings of the 2016 International Conference on Field Programmable Tech-
nology. Xi’an: IEEE Computer Society, 2016, pp. 293-294. ISBN 978-1-5090-5602-6.

Author participation: 22% | Citations: 1

∙ ČEKAN Ondřej. Generování testovacích stimulů. In: Počítačové architektury a diag-
nostika PAD 2016. Bořetice - Kraví Hora: Faculty of Information Technology BUT,
2016, pp. 97-100. ISBN 978-80-214-5376-0.

Author participation: 100%

∙ ČEKAN Ondřej, PODIVÍNSKÝ Jakub and KOTÁSEK Zdeněk. Random Stimuli
Generation Based on a Stochastic Context-Free Grammar. In: Proceedings of the 2016
International Conference on Field Programmable Technology. Xi’an: IEEE Computer
Society, 2016, pp. 295-296. ISBN 978-1-5090-5602-6.

Author participation: 90%

2015

∙ PODIVÍNSKÝ Jakub, ŠIMKOVÁ Marcela, ČEKAN Ondřej and KOTÁSEK Zdeněk.
FPGA Prototyping and Accelerated Verification of ASIPs. In: IEEE 18th Inter-
national Symposium on Design and Diagnostics of Electronic Circuits and Systems.
Belgrade: IEEE Computer Society, 2015, pp. 145-148. ISBN 978-1-4799-6780-3.

Author participation: 12% | Citations: 5 | Conference rank: B3 (Qualis)

∙ ČEKAN Ondřej. Principy generování verifikačních stimulů. In: Počítačové architek-
tury a diagnostika PAD 2015. Zlín: Faculty of Applied Informatics, Tomas Bata
University in Zlín, 2015, pp. 13-18. ISBN 978-80-7454-522-1.

Author participation: 100%

∙ ČEKAN Ondřej, ŠIMKOVÁ Marcela and KOTÁSEK Zdeněk. Universal Pseudo-
random Generation of Assembler Codes for Processors. In: Proceedings of The Third
Workshop on Manufacturable and Dependable Multicore Architectures at Nanoscale.
Grenoble: COST, European Cooperation in Science and Technology, 2015, pp. 70-73.

Author participation: 70%

2014

∙ ČEKAN Ondřej, ŠIMKOVÁ Marcela and KOTÁSEK Zdeněk. Solving of Constraint
Satisfaction Problem. In: Proceedings of the 20th Conference STUDENT EEICT
2014. Volume 3. Brno: Faculty of Information Technology BUT, 2014, pp. 291-295.
ISBN 978-80-214-4924-4.

45

Author participation: 65%

∙ PODIVÍNSKÝ Jakub, ČEKAN Ondřej, ŠIMKOVÁ Marcela and KOTÁSEK Zdeněk.
The Evaluation Platform for Testing Fault-Tolerance Methodologies in Electro-mecha-
nical Applications. In: 17th Euromicro Conference on Digital Systems Design. Verona:
IEEE Computer Society, 2014, pp. 312-319. ISBN 978-1-4799-5793-4.

Author participation: 30% | Conference rank: B1 (Qualis)

∙ ČEKAN Ondřej. Universal Generation of Test Vectors for Functional Verification.
In: Počítačové architektury a diagnostika 2014. Liberec: Liberec University of Tech-
nology, 2014, pp. 44-49. ISBN 978-80-7494-027-9.

Author participation: 100%

3.4 Participation in Research Projects and Grants
∙ FIT-S-20-6309 — Design, Optimization and Evaluation of Application Specific Com-

puter Systems, Brno University of Technology, team member.

∙ 8A18014, Proposal ID 783119-2 — SECREDAS - Product Security for Cross Domain
Reliable Dependable Automated Systems, ECSEL Joint Undertaking, team member.

∙ FIT-S-17-3994 — Advanced parallel and embedded computer systems, Brno University
of Technology, team member.

∙ LQ1602 — IT4Innovations excellence in science, MŠMT CZ, team member.

∙ 7H14002, 621439 — Algorithms, Design Methods, and Many-Core Execution Plat-
form for Low-Power Massive Data-Rate Video and Image Processing, Artemis Joint
Undertaking, team member.

∙ FIT-S-14-2297 — Architecture of parallel and embedded computer systems, Brno Uni-
versity of Technology, team member.

∙ LD12036 — Methodologies for Fault Tolerant Systems Design Development, Imple-
mentation and Verification, MŠMT CZ, team member.

∙ ED1.1.00/02.0070 — The IT4Innovations Centre of Excellence, MŠMT CZ, team
member.

46

Chapter 4

Discussion and Conclusions

This chapter summarizes the results achieved in this dissertation and suggests a possible
further direction for the research in the field of stimuli generation.

The research presented in this thesis focused on the design of general principles in the
field of generating stimuli for various systems. Stimuli represent the input data of a system
that determines its behavior. A significant advantage is the use of these principles in the
field of functional verification. How the stimulus generator can be involved in the whole
process of verifying the correct behavior was presented in the theoretical part of the thesis,
where the three most used techniques of functional verification were introduced. Functional
verification is one of the verification techniques that, based on simulation, verifies the cor-
rect behavior of the system by monitoring its inputs and outputs. After a detailed study of
already available stimuli generators, criteria were determined that completely differentiate
the architecture proposed by the author from the methods available so far. There are four
criteria - parameterizability, speed, randomness, versatility. Parameterizability is ensured
by separate input definitions with the possibility of change during verification. Significant
speed is given by obtaining a valid input without evaluating the semantics of the partial
components of the stimulus. Valid input is obtained by solving a constraint satisfaction
problem. Randomness and universality are determined by selecting a suitable general de-
scription using formal grammar with the possibility of balancing probabilities. The acquired
knowledge was summarized in Chapter 2, which serves as a starting point for the following
research.

The research started with the design of a universal stimuli generation architecture, which
aims to generally define the widest possible set of stimuli. The basis of this architecture are
two input descriptions that define the desired stimuli format and the constraints imposed on
it. Thanks to this, it is possible to obtain both a valid stimulus and change the constraints
during generation, which is especially suitable for obtaining higher coverage in functional
verification. The architecture designed in this way was already used in all other researches
of the author.

Input descriptions were further defined for the proposed generation method. These
input descriptions were created to verify the processor and generate assembler programs.
The instruction set of the available RISC and VLIW processors was encoded into the
input description along with the constraints that ensured a valid sequence of instructions,
preservation of the prescribed latencies, memory accesses, jumps and labels. In total, 18
types of constraints were proposed for these processors, which ensured the construction of a
valid program. The programs obtained in this way were verified by a functional verification.
The acquired knowledge was applied in the evaluation of software fault tolerance, where the

47

individual instructions of the program were secured by both time and space redundancy.
Thanks to this, it was possible to correct single and partly also multiple faults in the
program memory.

The research continued by verifying the control unit of a robot searching for a path in a
maze. One of the input data, that the robot uses, is a bitmap image of the maze in which
the robot searches for a path. Input descriptions were designed for such a maze in order to
verify the behavior of the robot in the event of a fault in various situations (mazes). When
designing the input descriptions, it was necessary to take into account the dimensions of
the maze, the start and goal position of the robot, the continuity of the corridors and the
existence of a path from any selected point to another. Based on this information, a set
of mazes was generated, on which the behavior of the robot in functional verification was
verified. It was also necessary to extend the specific input descriptions with additional
constraints.

The following part of the research focused on the generalization of previously defined
input descriptions using the bottom-up method. For this purpose, a formal grammar was
used, which is able to generate a certain language. The already existing probabilistic
context-free grammar was used and extended by constraints, which created a completely
new grammar with a higher expressive power than context-free grammar. In this disserta-
tion, the new grammar is called probabilistic constrained grammar. This grammar allows
the preservation of the generation context necessary to ensure the construction of a valid
stimulus. All previously described system stimuli have been encoded into this new gram-
mar thanks to a one general description. Descriptions of stimuli for other systems have
also been added (ALU and stepper motor), which underline the generality of the whole
proposal. The generation process has also been accelerated, improved and validated in
functional verification. In addition to the versatility of the whole solution compared to
conventional approaches, the generation in this way is faster and achieves comparable or
better results of coverage in functional verification.

Based on the findings, the principles of creating stimuli for verified systems were de-
scribed, and moreover, are also applicable in other similar systems. These principles are an
important output of this dissertation.

4.1 Contributions
Based on the objectives of the dissertation, this subchapter summarizes the main benefits
presented in this thesis:

1. Architecture of universal stimuli generation
A new architecture specially designed to generate stimuli was introduced. The ar-
chitecture extends the classic functional verification scheme by two additional blocks
that define the description of the required stimuli. This makes it possible to control
the generation during verification process and achieve better coverage results. This
architecture was introduced in Paper I.

2. Generation using formal grammar
A new formal grammar has been proposed based on solving the constraint satisfaction
problem. Formal grammar allows for a general description while constraints provide
the necessary expressive power and behavior to generate valid stimuli. The newly
designed grammar is called the Probabilistic Constrained Grammar. With the help of

48

constraints, it is possible to change the validity of production rules during generation
and ensure the use of only those rules that are valid for a given generated sequence.
The new grammar was introduced in Paper V.

3. Input descriptions for different systems
A set of input descriptions defining stimuli for different digital systems was proposed.
First, a great attention was paid to processors for which specific constraints were
created. Experimentation was also with software fault tolerance. (Paper II). The
robot controller required a maze for its operation (Paper III). After generalization
using formal grammar (Paper IV), descriptions were also created for other systems -
ALU (Paper VI) and stepper motor.

4.2 Future Work
Based on the findings, possible future research directions in the field of stimuli generation
were identified:

∙ One of the challenges for defining more complex structures is to generate a hardware
description language (HDL). The main idea is to design a certain grammar that can
be easily transformed into a corresponding finite state machine. The finite state
machine can then be transformed directly into an HDL using an existing tool (e.g.
Kiss2-to-VHDL [1]). Such a description can be directly analyzed and synthesized.

∙ There are a number of languages for describing digital systems (VHDL, Verilog [62],
Java HDL [8], Active-HDL [26], and more). If it was possible to use this description
as input and automatically generate at least a part of the production rules of formal
grammar or constraints, it would greatly speed up the whole process of creating
descriptions of stimuli and thus reduce the time needed to develop the system.

∙ The current stimuli generation always ends at the specified number of lines. A sig-
nificant advantage and optimization would be the introduction of a request-response
method, which would return one line of the generated stimulus based on the request
(in the case of a processor, it would be one instruction). The finality of the generation
would thus be determined by the system for which the given stimulus is intended.

49

Bibliography

[1] Abdel Hamid, A., Zaki, M. and Tahar, S. A Tool Converting Finite State
Machine to VHDL. Canadian Conference on Electrical and Computer Engineering.
june 2004, vol. 4, p. 1907 – 1910 Vol.4.

[2] Acarnley, P. Stepping Motors: A Guide to Theory and Practice. Institution of
Engineering and Technology, 2002. Control, Robotics and Sensors. Available at:
https://books.google.cz/books?id=mwDCORmy6u0C. ISBN 9780852964170.

[3] Accellera. Universal Verification Methodology (UVM) 1.2 User’s Guide [online].
October 2015 [cit. 2020-05-11]. Available at: https:
//www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf.

[4] Amiri, A. M., Khouas, A. and Boukadoum, M. Pseudorandom Stimuli Generation
for Testing Time-to-Digital Converters on an FPGA. IEEE Transactions on
Instrumentation and Measurement. 2009, vol. 58, no. 7, p. 2209–2215.

[5] Ashenden, P. The VHDL Cookbook [online]. Adelaide: Department of Computer
Science, University of Adelaide, 1990 [cit. 2015-01-02]. Available at:
http://www.ics.uci.edu/~alexv/154/VHDL-Cookbook.pdf.

[6] Ayub, M. A., Kalpoma, K. A., Proma, H. T., Kabir, S. M. and Chowdhury, R.
I. H. Exhaustive study of essential constraint satisfaction problem techniques based
on N-Queens problem. In: 2017 20th International Conference of Computer and
Information Technology (ICCIT). 2017, p. 1–6.

[7] Belkin, V. and Sharshunov, S. ISA Based Functional Test Generation with
Application to Self-Test of RISC Processors. In: Design and Diagnostics of Electronic
Circuits and systems, 2006 IEEE. April 2006, p. 73–74.

[8] Bellows, P. and Hutchings, B. JHDL-an HDL for reconfigurable systems.
In: Proceedings. IEEE Symposium on FPGAs for Custom Computing Machines (Cat.
No.98TB100251). 1998, p. 175–184.

[9] Brailsford, S. C., Potts, C. N. and Smith, B. M. Constraint satisfaction
problems: Algorithms and applications. European Journal of Operational Research.
1999, vol. 119, no. 3, p. 557 – 581. ISSN 0377-2217.

[10] Ceschia, M., Violante, M., Reorda, M., Paccagnella, A., Bernardi, P. et al.
Identification and classification of single-event upsets in the configuration memory of
SRAM-based FPGAs. Nuclear Science, IEEE Transactions on. 2003, vol. 50, no. 6,
p. 2088–2094. ISSN 0018-9499.

50

https://books.google.cz/books?id=mwDCORmy6u0C
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
http://www.ics.uci.edu/~alexv/154/VHDL-Cookbook.pdf

[11] Chomsky, N. Three models for the description of language. IRE Transactions on
Information Theory. 1956, vol. 2, no. 3, p. 113–124.

[12] Codasip. Codix Cores [online]. 2014 [cit. 2015-01-06]. Available at:
https://www.codasip.com/products/cores/.

[13] Corno, F., Reorda, M., Squillero, G. and Violante, M. A genetic
algorithm-based system for generating test programs for microprocessor IP cores.
In: Proceedings of the 12th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2000). IEEE Computer Society, November 2000, p. 195–198.
ISBN 0-7695-0909-6.

[14] Corno, F., Sanchez, E., Reorda, M. and Squillero, G. Automatic test program
generation: a case study. IEEE Design and Test of Computers. march 2004, vol. 21,
no. 2, p. 102–109. ISSN 0740-7475.

[15] Dandamudi, S. P. Guide to RISC Processors. Springer-Verlag New York, 2005.
ISBN 978-0-387-21017-9.

[16] Elakkiya, C., Murty, N. S., Babu, C. and Jalan, G. Functional Coverage -
Driven UVM Based JTAG Verification. In: 2017 IEEE International Conference on
Computational Intelligence and Computing Research (ICCIC). 2017, p. 1–7.

[17] Evans, A., Silburt, A., Vrckovnik, G., Brown, T., Dufresne, M. et al.
Functional Verification of Large ASICs. In: Proceedings of the 35th Annual Design
Automation Conference. New York, NY, USA: Association for Computing Machinery,
1998, p. 650–655. DAC ’98. Available at: https://doi.org/10.1145/277044.277210.
ISBN 0897919645.

[18] Fine, S. and Ziv, A. Coverage directed test generation for functional verification
using Bayesian networks. In: Proceedings of the 40th Design Automation Conference
(DAC 2003). June 2003, p. 286–291.

[19] Foster, P. R. Verification and validation of a diffraction program. In: IEE
Colloquium on Application and Validation of Design Tools for Antennas. 1993,
p. 4/1–4/5.

[20] George, M. and Ait Mohamed, O. Performance analysis of constraint solvers for
coverage directed test generation. In: The 23rd International Conference on
Microelectronics (ICM 2011). Elsevier Science, 2011, p. 1–5.

[21] Giegerich, R. Introduction to Stochastic Context Free Grammars. In: Gorodkin,
J. and Ruzzo, W. L., ed. RNA Sequence, Structure, and Function: Computational
and Bioinformatic Methods. Totowa, NJ: Humana Press, 2014, p. 85–106. Available
at: https://doi.org/10.1007/978-1-62703-709-9_5. ISBN 978-1-62703-709-9.

[22] Gohel, D. Pure SV Verification Environment Methodology for ASIC Verification.
may 2014, vol. 5, no. 5, p. 770–775. ISSN 2229-5518.

[23] Guglielmo, G. D., Guglielmo, L. D., Fummi, F. and Pravadelli, G. Efficient
Generation of Stimuli for Functional Verification by Backjumping Across Extended
FSMs. Journal of Electronic Testing. 2011, vol. 27, no. 2, p. 137–162. ISSN
1573-0727.

51

https://www.codasip.com/products/cores/
https://doi.org/10.1145/277044.277210
https://doi.org/10.1007/978-1-62703-709-9_5

[24] Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T. et al.
MiBench: A Free, Commercially Representative Embedded Benchmark Suite.
In: Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop. Washington, DC, USA: IEEE Computer Society, 2001,
p. 3–14. WWC ’01. Available at: http://dx.doi.org/10.1109/WWC.2001.15. ISBN
0-7803-7315-4.

[25] Hany, A., Ismail, A., Kamal, A. and Badran, M. Approach for a unified
functional verification flow. In: 2013 Saudi International Electronics,
Communications and Photonics Conference. 2013, p. 1–6.

[26] Haskell, R. E. and Hanna, D. M. Digital Design Using Digilent FPGA Boards
Verilog/Active-HDL Edition. 2nd ed. LBE Books, 2012. ISBN 9780980133776.

[27] Hatnik, U. and Altmann, S. Using ModelSim, Matlab/Simulink and NS for
Simulation of Distributed Systems. In: International Conference on Parallel
Computing in Electrical Engineering (PARELEC 2004). September 2004, p. 114–119.

[28] Hatnik, U. and Altmann, S. Using ModelSim, Matlab/Simulink and NS for
Simulation of Distributed Systems. In: Parallel Computing in Electrical Engineering,
2004. PARELEC 2004. International Conference on. September 2004, p. 114–119.

[29] Hlavička, J. Číslicové systémy odolné proti poruchám. Praha: ČVUT, 1992. 330 p.
ISBN 8001008525, 9788001008522.

[30] Hopcroft, J. E., Rajeev, M. and D., U. J. Introduction to Automata Theory,
Languages, and Computation. Pearson, 2006. ISBN 9780321462251.

[31] Hudec, J. An efficient technique for processor automatic functional test generation
based on evolutionary strategies. In: Proceedings of the ITI 2011, 33rd International
Conference on Information Technology Interfaces. June 2011, p. 527–532. ISSN
1330-1012.

[32] IEEE. Standard for SystemVerilog–Unified Hardware Design, Specification, and
Verification Language. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012). 2018,
p. 1–1315.

[33] Ju, A. L. and Spasojevic, M. Smart Jewelry: The Future of Mobile User Interfaces.
In: Proceedings of the 2015 Workshop on Future Mobile User Interfaces. New York,
NY, USA: Association for Computing Machinery, 2015, p. 13–15. FutureMobileUI
’15. Available at: https://doi.org/10.1145/2754633.2754637. ISBN 9781450335041.

[34] Jäger, G. and Rogers, J. Formal language theory: refining the Chomsky hierarchy.
Philosophical Transactions of the Royal Society B: Biological Sciences. 2012, vol. 367,
no. 1598, p. 1956–1970. Available at:
https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2012.0077.

[35] Kajan, M. Verifikace číslicových obvod ‌u [online]. UPSY FIT VUT v Brně, 2012 [cit.
2015-01-02]. Available at:
http://www.fit.vutbr.cz/units/UITS/grants/index.php?file=
%2Fproj%2F556%2Fpcs_verifikace_extended.pdf&id=556.

52

http://dx.doi.org/10.1109/WWC.2001.15
https://doi.org/10.1145/2754633.2754637
https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2012.0077
http://www.fit.vutbr.cz/units/UITS/grants/index.php?file=%2Fproj%2F556%2Fpcs_verifikace_extended.pdf&id=556
http://www.fit.vutbr.cz/units/UITS/grants/index.php?file=%2Fproj%2F556%2Fpcs_verifikace_extended.pdf&id=556

[36] Karlapalem, S. and Venugopal, S. Scalable, Constrained Random Software
Driven Verification. In: 2016 17th International Workshop on Microprocessor and
SOC Test and Verification (MTV). 2016, p. 71–76.

[37] Koren, I. and Krishna, C. M. Fault-Tolerant Systems. San Francisco: Morgan
Kaufmann Publishers Inc., 2007. 378 p. ISBN 0120885255, 9780080492681.

[38] Kotthoff, L. Constraint Solvers: An Empirical Evaluation of Design Decisions.
ArXiv e-prints. january 2010, p. 1–23.

[39] Kropf, T. Introduction to Formal Hardware Verification. New York, USA: Springer,
1999. 299 p. ISBN 9783540654452.

[40] Kumar, R. Theory Of Automata Languages Computation. McGraw-Hill Education
(India) Pvt Limited, 2010. ISBN 9780070702042.

[41] Kumar, V. Algorithms for Constraint Satisfaction Problems: A Survey. AI
MAGAZINE. 1992, vol. 13, no. 1, p. 32–44.

[42] MathWork R○. MATLAB and Simulink [https://www.mathworks.com/]. 2018.
Accessed: 2019-03-20.

[43] Meduna, A. Formal Languages and Computation. Taylor & Francis Informa plc,
2014. 315 p. Taylor and Francis. Available at:
https://www.fit.vut.cz/research/publication/10524. ISBN 978-1-4665-1345-7.

[44] Mehta, A. B. ASIC/SoC Functional Design Verification: A Comprehensive Guide
to Technologies and Methodologies. 1st ed. Springer Publishing Company,
Incorporated, 2017. ISBN 3319594176.

[45] Mehta, A. B. SystemVerilog Functional Coverage (SFC). In: ASIC/SoC Functional
Design Verification: A Comprehensive Guide to Technologies and Methodologies.
Cham: Springer International Publishing, 2018, p. 129–148. Available at:
https://doi.org/10.1007/978-3-319-59418-7_7. ISBN 978-3-319-59418-7.

[46] Meyer, A. Principles of Functional Verification. Amsterdam: Elsevier Science,
2003. 216 p. ISBN 978-0-7506-7617-5.

[47] Miller, F. P., Vandome, A. F. and McBrewster, J. Cyclic Redundancy Check:
Computation of CRC, Mathematics of CRC, Error Detection and Correction, Cyclic
Code, List of Hash Functions, Parity Bit, Information ... Cksum, Adler- 32,
Fletcher’s Checksum. Alpha Press, 2009. ISBN 6130219741.

[48] Mizuno, F. and Nishihara, S. Local minimum structures of graph-coloring
problems for stochastic constraint satisfaction algorithms. In: Proceedings 12th IEEE
Internationals Conference on Tools with Artificial Intelligence. ICTAI 2000. 2000,
p. 366–369.

[49] Monfroy, E., Crawford, B. and Soto, R. Automatic Triggering of Constraint
Propagation. In: Murgante, B., Misra, S., Carlini, M., Torre, C. M., Nguyen,
H.-Q. et al., ed. Computational Science and Its Applications – ICCSA 2013. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, p. 452–461. ISBN 978-3-642-39640-3.

53

https://www.mathworks.com/
https://www.fit.vut.cz/research/publication/10524
https://doi.org/10.1007/978-3-319-59418-7_7

[50] Oliveira, R., Jagirdar, A. and Chakraborty, T. J. A TMR Scheme for SEU
Mitigation in Scan Flip-Flops. In: ISQED ’07: Proceedings of the 8th International
Symposium on Quality Electronic Design. Washington, DC, USA: IEEE Computer
Society, 2007, p. 905–910. ISBN 0-7695-2795-7.

[51] Padmanabhuni, S. Extended analysis of intelligent backtracking algorithms for the
maximal constraint satisfaction problem. In: Engineering Solutions for the Next
Millennium. 1999 IEEE Canadian Conference on Electrical and Computer
Engineering (Cat. No.99TH8411). 1999, p. 1710–1715 vol.3.

[52] Patterson, D. A. Reduced Instruction Set Computers. Commun. ACM. New York:
ACM. january 1985, vol. 28, no. 1, p. 8–21. ISSN 0001-0782.

[53] Reid, S. The Art of Software Testing, Second edition. Glenford J. Myers. Revised
and updated by Tom Badgett and Todd M. Thomas, with Corey Sandler. John Wiley
and Sons, New Jersey, U.S.A., 2004. ISBN: 0-471-46912-2, pp 234. Software Testing,
Verification and Reliability. 2005, vol. 15, no. 2, p. 136–137. Available at:
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.322.

[54] Rodrigues, C. A case study for Formal Verification of a timing co-processor.
In: 2009 10th Latin American Test Workshop. 2009, p. 1–6.

[55] Ronacher, A. Jinja¶ [online]. The Pallets Projects, 2015 [cit. 2020-05-11].
Available at: https://jinja.palletsprojects.com/.

[56] Roy, S. and Ramesh, S. Functional verification of system on chips - practices, issues
and challenges. In: Proceedings of ASP-DAC 2002. 2002, p. 11–13.

[57] Russel, J. and Cohn, R. Arithmetic Logic Unit. Book on Demand, 2013. Available
at: https://books.google.cz/books?id=l6SBMAEACAAJ. ISBN 9785510817393.

[58] Schubert, K. POWER7 — Verification challenge of a multi-core processor. In: 2009
IEEE/ACM International Conference on Computer-Aided Design - Digest of
Technical Papers. 2009, p. 809–812.

[59] Storey, N. R. Safety critical computer systems. Addison-Wesley Longman
Publishing Co., Inc., 1996.

[60] Surhone, L., Tennoe, M. and Henssonow, S. Triple Modular Redundancy.
Betascript Publishing, 2010. Available at:
https://books.google.cz/books?id=NjumcQAACAAJ. ISBN 9786132988683.

[61] Tasiran, S. and Keutzer, K. Coverage metrics for functional validation of
hardware designs. Design Test of Computers, IEEE. june 2001, vol. 18, no. 4,
p. 36–45. ISSN 0740-7475.

[62] Thomas, D. and Moorby, P. The Verilog Hardware Description Language. 5th ed.
Springer US, 2002. ISBN 9780387849300.

[63] Yuan, J., Pixley, C. and Aziz, A. Constraint-based verification. New York:
Springer, 2006. I-XII, 1-253 p. ISBN 978-0-387-25947-5.

54

https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.322
https://jinja.palletsprojects.com/
https://books.google.cz/books?id=l6SBMAEACAAJ
https://books.google.cz/books?id=NjumcQAACAAJ

Appendices

55

Appendix A

Publications cited by other authors

∙ PODIVÍNSKÝ Jakub, ČEKAN Ondřej, ŠIMKOVÁ Marcela and KOTÁSEK Zdeněk.
The Evaluation Platform for Testing Fault-Tolerance Methodologies in Electro-mecha-
nical Applications. Microprocessors and Microsystems, vol. 39, no. 8, 2015, pp.
1215-1230. ISSN 0141-9331.

– MCWILLIAM, R.; KHAN, S.; FARNSWORTH, M.; et al.: Zero-maintenance
of Electronic Systems: Perspectives, Challenges, and Opportunities. Microelec-
tronics Reliability, volume 85, 2018: pp. 122–139

– HAO, Z.; ZHANG, M.: Cultivation of Mechanical Application Talents Based on
FPGA and Machine Learning. Microprocessors and Microsystems, IN PRESS,
2020, ISSN 0141-9331.

∙ ČEKAN Ondřej, PODIVÍNSKÝ Jakub and KOTÁSEK Zdeněk. Software Fault Tol-
erance: the Evaluation by Functional Verification. In: Proceedings of the 18th Eu-
romicro Conference on Digital Systems Design. Funchal: IEEE Computer Society,
2015, pp. 284-287. ISBN 978-1-4673-8035-5.

– SYED RIFFAT, A.: Reliability Testing for Advanced Networks. In: Next Gen-
eration and Advanced Network Reliability Analysis. Springer, Cham, 2019. pp.
277-304. ISBN 978-3-030-01646-3.

– ZHANG, T.; WANG, J.: A Spatial-Temporal Model for Software Fault Toler-
ance in Safety-Critical Applications. In: 2017 IEEE International Conference
on SoftwareQuality, Reliability and Security Companion (QRS-C), IEEE, 2017,
pp. 575–576.

– ZHANG, T.; WANG, X.: High-Reliable Testing for FPGA Software in Space
Utilization Engineering. In: 2017 International Conference on Dependable Sys-
tems and Their Applications (DSA), IEEE, pp. 86–91.

– CAI, B.; LIU, Y.; LIU, Z.; et al..:Bayesian Networks for Reliability Engineering.
Springer, 2020.

56

∙ PODIVÍNSKÝ Jakub, ŠIMKOVÁ Marcela, ČEKAN Ondřej and KOTÁSEK Zdeněk.
FPGA Prototyping and Accelerated Verification of ASIPs. In: IEEE 18th Inter-
national Symposium on Design and Diagnostics of Electronic Circuits and Systems.
Belgrade: IEEE Computer Society, 2015, pp. 145-148. ISBN 978-1-4799-6780-3.

– JORDANS, R.; JÓŹWIAK, L.; CORPORAAL, H.; et al.: Automatic Instruction-
set Architecture Synthesis for VLIW Processor Cores in the ASAM Project. Mi-
croprocessors and Microsystems, volume 51, 2017: pp. 114–133.

– CABA, J.; CARDOSO, J. M.; RINCÓN, F.; et al.: Rapid Prototyping and
Verification of Hardware Modules Generated Using HLS. In: International Sym-
posium on Applied Reconfigurable Computing, Springer, 2018, pp. 446–458.

– CABA, J.; RINCÓN, F.; DONDO, J.; et al.: Testing Framework For in-hardware
Verification of the Hardware Modules Generated Using HLS. In: 2018 28th In-
ternational Symposium on Power and Timing Modeling, Optimization and Sim-
ulation (PATMOS), IEEE,2018, pp. 103–110.

– CABA, J.; RINCÓN, F.; DONDO, J.; et al.: Testing Framework for on-board
Verification of HLS Modules Using Grey-box Technique and FPGA Overlays.
Integration, volume 68, 2019: pp. 129–138.

– CABA, J.; RINCÓN, F.; BARABA, J.; et al.: FPGA-Based Solution for On-
Board Verification of Hardware Modules Using HLS. Electronics, volume 9, no.
12, 2020.

∙ PODIVÍNSKÝ Jakub, ČEKAN Ondřej, LOJDA Jakub and KOTÁSEK Zdeněk. Func-
tional Verification as a Tool for Monitoring Impact of Faults in SRAM-based FPGAs.
In: Proceedings of the 2016 International Conference on Field Programmable Tech-
nology. Xi’an: IEEE Computer Society, 2016, pp. 293-294. ISBN 978-1-5090-5602-6.

– PENG, X.; et al.: Function Verification of SRAM Controller Based on UVM. In:
2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and
Identification (ASID). Xiamen, China, 2019, pp. 1-5, doi: 10.1109/ICASID.2019.8925105.

∙ PODIVÍNSKÝ Jakub, ČEKAN Ondřej, LOJDA Jakub, ŠIMKOVÁ Marcela, KRČMA
Martin and KOTÁSEK Zdeněk. Functional Verification Based Platform for Evaluat-
ing Fault Tolerance Properties. Microprocessors and Microsystems, volume 52, no. 5,
2017, pp. 145-159. ISSN 0141-9331.

– LIU, X.; YOUAN, G.; QIAO, S.: Accelerating Functional Verification for Digital
Circuit with FPGA Hard Processor System. Journal of Electronics Information
Technology, volume 41, no. 5, 2019.

– QAMAR, S.; BUTT, W. H.; ANWAR, M. W.; et al.: A Comprehensive In-
vestigation of Universal Verification Methodology (UVM) Standard for Design

57

Verification. In: Proceedings of the 2020 9th International Conference on Soft-
ware and Computer Applications, 2020, pp. 339–343.

– SABAMONIRI, S.; SOURI, A.: A Weighted Resource Discovery Approach in
Grid Computing. International Journal of Pervasive Computing and Communi-
cations, 2019.

– SOURI, A.; RAHMANI, A. M.; NAVIMIPOUR, N. J.; et al.: A Symbolic Model
Checking Approach in Formal Verification of Distributed Systems. Human-
centric Computing and Information Sciences, volume 9, no. 1, 2019: pp. 4.

∙ ČEKAN Ondřej and KOTÁSEK Zdeněk. A Probabilistic Context-Free Grammar
Based Random Test Program Generation. In: Proceedings of 20th Euromicro Confer-
ence on Digital System Design. Wien: Technical University Wien, 2017, pp. 356-359.
ISBN 978-1-5386-2145-5.

– PAVESE, ESTEBAN, et al. Inputs from Hell: Generating Uncommon Inputs
from Common Samples. arXiv preprint arXiv:1812.07525, 2018.

– SOREMEKUN, EZEKIEL, et al. Inputs from Hell Learning Input Distributions
for Grammar-Based Test Generation. IEEE Transactions on Software Engineer-
ing, 2020. doi: 10.1109/TSE.2020.3013716.

∙ PODIVÍNSKÝ Jakub, LOJDA Jakub, ČEKAN Ondřej, PÁNEK Richard and KOTÁ-
SEK Zdeněk. Reliability Analysis and Improvement of FPGA-based Robot Con-
troller. In: Proceedings of the 2017 20th Euromicro Conference on Digital System
Design. Wien: IEEE Computer Society, 2017, pp. 337-344. ISBN 978-1-5386-2145-
5.

– RUIZ-ROSERO, J.; RAMIREZ-GONZALEZ, G.; KHANNA, R.: Field Pro-
grammable Gate Array Applications — A Scientometric Review. Computation,
volume 7, no. 4, 2019: p. 63.

– WANG, L.; WANG, X.; JIA, P.; et al.: Reliability, Safety and Time - Domain
Sensitivity Analysis of Double 2-out-of-2 Redundancy System Based on Markov
Process and Multiple Beta Factor Model. In: 2018 3rd International Conference
on System Reliability and Safety (ICSRS), IEEE, 2018, pp. 153–161.

∙ ČEKAN Ondřej, PODIVÍNSKÝ Jakub and KOTÁSEK Zdeněk. Program Generation
Through a Probabilistic Constrained Grammar. In: Proceedings - 21st Euromicro
Conference on Digital System Design, DSD 2018. Praha: IEEE Computer Society,
2018, pp. 214-220. ISBN 978-1-5386-7376-8.

– FITZPATRICK, G.: Mind the gap: Modelling the human in human-centric com-
puting. In: 2018 IEEE Symposium on Visual Languages and Human-Centric

58

Computing (VL/HCC). IEEE Computer Society, 2018. p. 3-3.

∙ PODIVÍNSKÝ Jakub, LOJDA Jakub, ČEKAN Ondřej and KOTÁSEK Zdeněk. Eval-
uation Platform for Testing Fault Tolerance Properties: Soft-core Processor-based
Experimental Robot Controller. In: Proceedings of the 2018 21st Euromicro Confer-
ence on Digital System Design. Praha: IEEE Computer Society, 2018, pp. 229-236.
ISBN 978-1-5386-7376-8.

– RUIZ-ROSERO, J.; RAMIREZ-GONZALEZ, G.; KHANNA, R.: Field Pro-
grammable Gate Array Applications — A Scientometric Review. Computation,
volume 7, no. 4, 2019: p. 63.

∙ PODIVÍNSKÝ Jakub, ČEKAN Ondřej, KRČMA Martin, BURGET Radek, HRUŠKA
Tomáš and KOTÁSEK Zdeněk. A Framework for Optimizing a Processor to Selected
Application. In: Proceedings of IEEE East-West Design & Test Symposium. Kazan:
IEEE Computer Society, 2018, pp. 564-574. ISBN 978-1-5386-5710-2.

– Mazurek P.: BOSON - Application-Specific Instruction Set Processor (ASIP)
for Educational Purposes. In: 2020 16th International Conference on Control,
Automation, Robotics and Vision (ICARCV). Shenzhen, China, 2020, pp. 1323-
1328, doi: 10.1109/ICARCV50220.2020.9305396.

59

Related Papers

60

Paper I

The Evaluation Platform for
Testing Fault-Tolerance
Methodologies in
Electro-mechanical Applications

PODIVÍNSKÝ Jakub, ČEKAN Ondřej, ŠIMKOVÁ Marcela, KOTÁSEK
Zdeněk
Microprocessors and Microsystems, vol. 39, no. 8, 2015, pp. 1215-1230. ISSN 0141-9331.

61

The evaluation platform for testing fault-tolerance methodologies
in electro-mechanical applications

Jakub Podivinsky ⇑, Ondrej Cekan, Marcela Simkova, Zdenek Kotasek
Brno University of Technology, Faculty of Information Technology, Bozetechova 2, 612 66 Brno, Czech Republic

a r t i c l e i n f o

Article history:
Available online 30 May 2015

Keywords:
Fault-tolerance
Electro-mechanical systems
Fault injection
Single event upset
Functional verification

a b s t r a c t

The aim of this paper is to present a new platform for estimating the fault-tolerance quality of
electro-mechanical (EM) systems based on FPGAs. We demonstrate one working example of such an
EM system that was evaluated using our platform: the mechanical robot and its electronic controller
in an FPGA. Different building blocks of the electronic robot controller allow us to model different effects
of faults on the whole mission of the robot (searching a path in a maze). In the experiments, the mechan-
ical robot is simulated in a simulation environment, where the effects of faults artificially injected into its
controller can be seen. In this way, it is possible to differentiate between the fault that causes the failure
of the system and the fault that only decreases its performance. Further extensions of the platform focus
on the interconnection of the platform with the functional verification environment working directly in
FPGA that allows for the automation and speed-up for checking the correctness of the system after the
injection of faults.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

In several areas, such as aerospace and space applications or
automotive safety–critical applications, fault-tolerant electro-
mechanical (EM) systems are highly desirable. In these systems,
the mechanical part is controlled by its electronic controller.
Currently, the trend is to add even more electronics into EM sys-
tems. For example, in aerospace, extending of the electronic part
results in a lower weight that helps to reduce operating costs [1]
[2]. The situation is similar in other sectors, such as automotive
sg. [3].

It is obvious that the fault-tolerance methodologies are targeted
mainly to the electronic components because they perform the
actual computation. However, as the electronics can be realized
on different hardware platforms (ASICs, FPGAs, etc.), specific
fault-tolerance techniques dedicated for these platforms must be
developed.

The previous activities of the team at our department special-
ized on fault tolerant systems design are described in [4]. In that
paper, the fault tolerant methodology for the SRAM based FPGA
based on the use of Partial Dynamic Reconfiguration and the
Generic Partial Dynamic Reconfiguration Controller inside the
FPGA were presented.

The goal of our present research is to develop a platform for the
verification of EM systems resilience against faults which occur in
an electronic component controlling the system, the component is
designed as fault tolerant. Besides from this main activity, the use
of functional verification for the automated evaluation of fault
impacts is described. The goals are available in details in Section 3.

Our research is targeted to Field Programmable Gate Arrays
(FPGAs) [5] as they present many advantages from the industrial
point of view. They can compute many problems hundreds times
faster than modern microprocessors while their reconfigurability
allows the same flexibility as microprocessors. FPGAs can be either
programmed before their use or reconfigured during program run-
time of circuit. Partial dynamic reconfiguration can be also used
when programming is performed only on a part of the circuit,
while the rest of the circuit is working. The programmability of
FPGA differs from Application Specific Integrated Circuit (ASIC) to
which the required function was configured in its production cycle.
FPGAs are becoming increasingly popular and are used in many
applications, mainly due to their programmability, ease of design,
flexibility, decreasing power consumption and price. The robot
manipulator presented in [6], or the FPGA-based robot arm con-
troller presented in [7], can serve as an example. Moreover, the
National Instruments company presents their power train controls
which also use FPGAs on their web [8]. They are used mainly in the
applications where it is necessary to produce small series and
design of ASIC and solution with microprocessor is inappropriate.

http://dx.doi.org/10.1016/j.micpro.2015.05.011
0141-9331/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ipodivinsky@fit.vutbr.cz (J. Podivinsky), icekan@fit.vutbr.cz

(O. Cekan), isimkova@fit.vutbr.cz (M. Simkova), kotasek@fit.vutbr.cz (Z. Kotasek).

Microprocessors and Microsystems 39 (2015) 1215–1230

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

FPGAs can be used advantageously for prototyping complex cus-
tom devices. Programmability can also be used to change the
behavior of the circuit by a customer which allows to correct errors
in design or to add new features to circuit already in use.

FPGAs are composed of Configurable Logic Blocks (CLBs) that are
interconnected by a programmable interconnection net. Every CLB
consists of Look-Up Table (LUT) that realizes the logic function, a
multiplexer and a flip-flop. The structure of FPGA and CLB is shown
in Fig. 1. The configuration of CLBs and of the interconnection net is
stored in the SRAM memory. Except CLBs, FPGA contains advanced
circuits and other elements, such as Block Memory (BRAM), fast
multipliers or Digital Signal Processors (DSPs). Input/Output Blocks
(IOBs) can be used as the FPGA communication interface.

The problem from the reliability point of view is that FPGAs are
quite sensitive to faults caused by charged particles [9]. These par-
ticles can induce an inversion of a bit in the configuration SRAM
memory of an FPGA (or directly to its internal flip-flops) and this
may lead to a change in its behavior. Affecting SRAM or directly
the flip-flops can be seen as equivalent in possible consequences.
This event is called the Single Event Upset (SEU). That is the reason
why so many fault-tolerance methodologies inclined to FPGAs
have been developed and new ones are under investigation which
is mentioned in Section 2.

We decided to use FPGAs in our research mainly because of
their speed, re-configurability and because we aim to evaluate var-
ious fault-tolerant methodologies dedicated to FPGAs. Despite our
exemplary system is not so complex as typical FPGA applications
are, it serves for evaluating these methodologies connected to
the verification environment very well. All our previous research
in the area of fault tolerant systems design was oriented to
FPGAs and all our tools were developed for this platform.
Therefore, the system presented in this paper has been physically
also realized on FPGA mainly for our research purposes and not
because it cannot be realized on different platforms as well (for
instance, on an ASIC or on a microprocessor).

The paper is organized as follows. The basic concepts connected
to the FPGA reliability and verification of hardware systems are
summarized in Section 2. The goals of our research and the inter-
connection scheme of the platform for estimating the quality of
EM systems can be found in Section 3. The architecture of our
experimental design, the robot controller, is provided in

Section 4. A detailed description of the fault injection process that
is used for artificial injection of faults into the robot controller is
described in Section 5.1. Results of the experiments with the robot
controller are available in Section 5.2. The future work that
includes using functional verification for automated evaluation of
impacts of faults and the stimuli generation process is presented
in Sections 6 and 7. Section 8 presents another use case – the pro-
cessor, the reliability of which will be checked in our future work.
Finally, the paper is concluded in Section 9.

The research was supported by the following European pro-
jects: EU COST Action IC1103 - MEDIAN – ‘‘Manufacturable and
Dependable Multicore Architectures at Nanoscale’’ and project
IT4Innovations Centre of Excellence (ED1.1.00/02.0070).

2. Related work

Our presented research is unique in a combination of
fault-tolerance methodologies and functional verification for
improving the reliability of digital systems. For a better under-
standing, the reader should be familiar with the basic concepts
and trends in these two areas. The basic overview is outlined in
this section.

2.1. Fault-tolerance methodologies for FPGAs-based systems

Fault-tolerance (FT) is an important feature for many systems,
especially for those that aim to be highly reliable. A
fault-tolerant system is also able to operate correctly in the pres-
ence of faults (SEUs, transient faults, etc.). There are several basic
FT architectures that use hardware redundancy such as
n-modular redundancy or duplex systems [10]. A special type of
n-modular redundancy is Triple Modular Redundancy (TMR) which
is able to mask a single fault in the system. TMR uses three identi-
cal copies of a functional unit (FU) and the unit called Voter. If
there is a fault in one FU, Voter chooses the output value using a
majority function applied on the primary outputs of the FUs. The
TMR architecture is shown in Fig. 2a.

The duplex architecture also provides fault security and is used
as the core of many advanced FT architectures. The duplex system
can be seen in Fig. 2b. It uses two identical copies of a FU and a
comparator (XOR). The output signal error informs us about a fault
occurrence in the system.

The other type of redundancy, which can be used for hardening
against faults, is time redundancy [11]. Time redundancy is based
on the repetitive result calculation using the same components but
at different time intervals. The obtained results are then compared
together. If there are differences, a fault is detected. The scheme of
time redundancy is shown in Fig. 3.

The presented hardware redundancy is able to mask a fault
occurrence in the FT system. However, the fault localization is
needed in order to repair the faulty modules. For these purposes,
techniques called Concurrent Error Detection (CED) were developed.
These techniques encapsulate on-line checkers, self-checking units
or parity checkers. A combination of the duplex system with CED
that is based on time redundancy is presented in [12]. The duplex
system is able to detect a fault occurrence. If a fault is detected,
recomputation in the next time slot is able to locate the faulty
module. In comparison to the presented TMR architecture, this
approach saves some resources. The use of time redundancy as
CED leads to less power consumption because the result is recom-
puted only if a fault is detected. Moreover, this technique reduces
the number of input and output pins of the combinational logic.

An important feature of FPGAs, which can be utilized for reliabil-
ity purposes after a fault (we consider SEUs) is detected, is called
Partial Dynamic Reconfiguration (PDR) [13]. PDR allows for modifying

(a)

(b)

Fig. 1. Structure of (a) Field Programmable Gate Array (FPGA) and (b) Configurable
Logic Blocks (CLB).

1216 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230

or reloading a specified part of the FPGA configuration memory
while the rest of the FPGA is working correctly. Prepared parts of
configuration memory can be stored in an external memory and
read when they are needed. For example, a part of the FPGA can oper-
ate as a multiplier after the initialization, but the reconfiguration
process can change the function of this part to an adder.

PDR can also reconfigure the affected part of the FPGA (a faulty
module) and restore the electronic system into the correct operation
without interrupting the other parts of the system. The recovery of a
faulty module in TMR by using reconfiguration is illustrated in Fig. 4.
If one of three FUs of TMR is faulty, TMR still provides correct output
values and the faulty module (FU3) can be repaired by PDR without
stopping the FPGA operation. Moreover, if another module (FU1) is
faulty, then TMR produces incorrect output values. Due to the recon-
figuration, these faulty modules can be repaired and TMR is able to
produce the correct output.

Sensitivity to faults (especially SEUs) and the possibility of
reconfiguration are the main reasons why so many
fault-tolerance methodologies inclined to FPGAs have been devel-
oped and new ones are under investigation [14,15]. Our plan is to
test the usability and quality of these methodologies (and also
their new alternatives) while hardening FPGA-based controllers
of mechanical systems against faults.

2.2. Testing fault-tolerant systems implemented on FPGAs

The weak point of FPGAs from the reliability point of view is
their configuration memory. The functionality of an FPGA chip is

defined by the sequence of configuration bits (called bitstream)
which is loaded into the configuration memory. In our case, a
specific part of bitstream determines the functionality of the robot
controller. However, even the smallest change in the configuration
memory can lead to a different functionality. When a charged par-
ticle strikes a memory cell, the resulting effect is the inversion of
the stored value (SEU) [16].

During the testing of the resilience of systems against faults,
waiting for their natural appearance is not feasible. A typical rea-
son is the Mean Time Between Failures (MTBF) parameter that can
be in the order of years. Therefore, some special techniques were
developed in order to artificially accelerate the fault occurrence.

The accurate simulation method for the emulation of the effects
of SEUs in the configuration memory of FPGAs is presented in [17].
This approach combines simulation and topological analysis of the
design mapped on the FPGA. An analytical algorithm is presented
which is able to accurately identify the electrical effects induced
into the resources of the circuit affected by a SEU. This simulator
avoids designers to use an expensive FPGA board, but there is a
problem that the design is not evaluated on a real target platform
(FPGA).

An FPGA-based fault injection tool, which is presented in [18],
supports several synthetizable fault models of digital systems
and is implemented using VHDL. The authors present a real time
fault injection tool with good controllability and observability.
However, the fault injection requires an addition of some extra
gates and wires to the original design and thus modifying the orig-
inal VHDL. There are several types of faults that can be generated.
For example, the model of injecting SEU can be seen in Fig. 5. There
are additional signals Bit and FIS which are connected to the Fault
injection component (implemented on the same FPGA). A weak
point of this approach is the difference between the Device
Under Test (DUT) and the device which will be manufactured.

In [19,20], techniques which are based on the fault injection
into a real FPGA board without changing of the original design
were presented. These techniques are based on PDR which allows
us to read the configuration bitstream, inverse bits and write the
affected bitstream back to the FPGA. The prototype of the evalua-
tion board for the fault injection purposes was presented in [19].
There are two FPGAs, the first one is used as the DUT and the sec-
ond one is used as the fault injection controller. In [20] the authors

(a) (b)

Fig. 2. Architectures with hardware redundancy: (a) TMR and (b) the duplex architecture.

Fig. 3. Time redundancy basic scheme for combinational logic.

Fig. 4. Recovery of the faulty module in TMR by PDR.

J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230 1217

present FLIPPER. This fault injection platform is composed of two
boards with FPGAs – the main board and the DUT board. The fault
injection is controlled by the main board which is driven by the
software application running on a PC. It is able to use various types
of FPGAs as the DUT board, but only if there are enough input/out-
put pins on the main board. The authors in [21] focus on the speed
of the fault impact evaluation, where the fault injection is fully
controlled by a part of the design on the FPGA. Communication
with a PC is used only for the initial configuration of the fault injec-
tion process.

Our previous research also covered the artificial injection of
faults and we have developed an external SEU injector that is
described in more detail in [22]. This injector is based on the SEU
generation outside of the FPGA (in PC), so it is not targeted to a
specific FPGA board (testing was performed on the ML506 card
with the Virtex 5 FPGA technology). The original and the modified
bitstream is transported through the JTAG interface and the subse-
quent dynamic reconfiguration of the FPGA. The process of the SEU
generation is divided into four steps: (1) specifying location of the
fault injection, (2) reading the related part of the configuration bit-
stream, (3) the SEU generation = inversion of the specified bit of
the bitstream and (4) applying the bitstream using PDR without
stopping the FPGA. Our fault injector is implemented in TCL in
two basic layers, the structure of which is shown in Fig. 6. The first
layer (Bitstream Generation Layer) is responsible for

communication with the FPGA through the standard JTAG interface
and uses ChipScope libraries. The SEU injection layer is responsible
for the read and write bitstream according to the specified fault
location. The last block (Added Functions) makes it possible to
drive the SEU generation by external sources, such as an external
program or the UART interface.

2.3. Verification of hardware systems

Verification is the process of checking whether a model of the
hardware system satisfies a given correctness specification.
Verification is an important phase in the development of hardware
systems because, before the system is taped-out to the silicon, it is
desirable to detect all design and functional errors or the misinter-
pretations of the specification as early as possible. Moreover, as the
hardware complexity has grown rapidly in the last decade, verifi-
cation is even more important, but very time-consuming too.

Verification methods provide ideally yes/no answers, thus
informing about correctness or incorrectness of the system. There
are two basic types of verification – formal verification and func-
tional verification. Both aim at verifying the system functionality
according to the specification.

Formal verification [23] verifies the system by using mathemat-
ical methods in order to formally describe the system and on the
basis of logical formulas to prove the correctness of the system.
Functional verification [24] verifies the system by monitoring the
inputs and outputs in the simulation environment (usually RTL
simulators are used). For a thorough verification of the system, a
huge number of pseudo-random stimuli is needed in order to cover
all key properties of the system.

There is little space to thoroughly compare both of the above
mentioned verification approaches and to mention their pros and
cons. But in general, functional verification is easier to apply for
hardware engineers as they are familiar with simulation tools
and this approach does not require a deep knowledge of formal
specifications. Moreover, standard languages, methodologies and
libraries were defined for functional verification. The most com-
monly known are the SystemVerilog IEEE language standard,
Universal Verification Methodology (UVM) and the open-source
UVM library (with all the basic components of verification environ-
ments). On the other hand, formal verification is more precise. In
our work, we use functional verification. The main concepts of this
approach are mentioned in the following paragraphs.

At this point, it is important to mention the difference between
verification and testing the system against injected faults.
Verification is mostly the part of the pre-silicon development and
aims of design errors. Testing against faults is usually done after
verification and usually with real hardware representation of the
system (e.g. FPGA). The reason is that when we inject faults into
the system and the system does not behave correctly, we must
be sure that the failure is caused by the injected fault and not by
some design error still present in the system. Therefore, we will
distinguish design under verification (DUV) in the verification
phase and DUT in the testing phase.

In functional verification, the DUV outputs are compared to the
outputs of the reference model (sometimes also referred to as the
golden model) that is typically implemented by a verification engi-
neer or a designer who did not implement the DUV. This is very
important because the interpretation of the specification that is
done by two (or more) different people is actually compared. If a
discrepancy between the two models is detected, an error in the
system, or at least any suspicious behavior, can be discovered.
The basic principle of functional verification is demonstrated in
Fig. 7. An important prerequisite for functional verification is also
a good generator of stimuli for verifying all interesting scenarios
depicted by the specification.

Fig. 5. The synthetizable SEU model [18].

Fig. 6. An external SEU injector structure [22].

1218 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230

There are three basic methods on how stimuli are produced and
applied on the inputs of DUV.

The first method [25] (see Fig. 8) uses a random stimuli gener-
ator, which generates a set of stimuli without any control.
Uncovered key functions are covered by directed tests, which have
to be created manually by a verification engineer based on the cov-
erage analysis. The coverage analysis is an output from the simula-
tion environment (an RTL simulator supporting functional
verification) and contains information about the coverage of the
key functions and lines of code of DUV too. The main disadvantage
of this method is that it generates a large amount of invalid input
tests.

The second method is called constraint random stimuli genera-
tion (CRSG) [26] (see Fig. 9). Since we are interested in certain sce-
narios when we are verifying the system, by using CRSG we can
generate specific and always valid stimuli that satisfy predefined
constraints and target these scenarios. To be more specific, these
constraints represent inputs for the constraint solver. The con-
straint solver is a unit which solves defined constraints and gener-
ates valid stimuli. Some parts of the verified circuit may remain
uncovered, hence additional constraints or directed tests have to
be specified manually as in the previous method.

The last method is called coverage-directed stimuli generation
(CDSG) [27], also called coverage-driven verification (see Fig. 10)
and is characterized by some kind of automation. This method is
based on CRSG and moreover, it uses data from the coverage

analysis in order to direct the next round of input stimuli genera-
tion and to cover unverified areas of the system.

2.4. Constrained-random test generation

As was mentioned above in the previous subsection, functional
verification works with constraints. A generator, which is based on
solving constraints, is also known as the constraint solver. Its task
is to search such an assignment of a value to each variable so that
all imposed constraints are simultaneously satisfied. Solving
constraint-random stimuli generation in functional verification is
equivalent to solving the NP-hard problem called Constraint
Satisfaction Problem (CSP).

Constraint Satisfaction Problem [28,29] is a general mathemat-
ical problem defined as a set of variables which can take values
from a finite and discrete domain and a set of constraints. The con-
straint is defined on a subset of variables and determines values
from the domain that a variable can take. The result is a solution
of one or all evaluations of variables so that the constraints are sat-
isfied. Among the typical examples of CSPs are N Queens problem,
Map-Coloring problem, Car sequencing problem, Magic Square,
Social Golfers, etc.

The implementation of constraint-random stimuli generator
that effectively manages CSP and its parameters can be set or mod-
ified in runtime is highly desirable. Therefore, a part of our
research is supposed to be targeted to this domain.

3. The goals of the research

We have identified two areas that we would like to focus on in
our research of fault-tolerant FPGA-based systems: the first one is
that methodologies are validated and demonstrated only on simple
electronic circuits implemented in FPGAs. For instance, method-
ologies focusing on the memory in [30] are validated on simple
memories without any additional logic around. In [31], the
fault-tolerance technique is presented only on a two-inputFig. 7. The main principle of functional verification.

Fig. 8. The method with random stimuli generator.

Fig. 9. The method with constrained-random stimuli generator.

J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230 1219

multiplexer, one simple adder and one counter. Other methodol-
ogy dedicated to harden finite state machines [32] is only applied
on a simple finite state machine. Of course, for demonstration pur-
poses, such circuits are satisfactory. However, in real systems dif-
ferent types of blocks must be protected against faults at the
same time and must communicate with each other. Therefore, a
general evaluation platform for testing, analysis and comparison
of alone-working or cooperating fault-tolerance methodologies is
needed.

As for the second area of research and the main contribution of
our work, we feel that it must be possible to check the reactions of
the mechanical part of the system if the functionality of its elec-
tronic controller is corrupted by faults. It is either done through
simulation or by a physical realization.

According to the identified problems we have formulated our
goals in the following way:

1. Developing an evaluation platform based on the FPGA technology
for checking the resilience of EM applications against faults.

2. Developing and verifying a new methodology for increasing
fault-tolerance qualities of EM applications using the proposed
platform.

Under the term EM system a mechanical device and its elec-
tronic controller implemented in an FPGA is understood. In our
experiments, these components are represented by a robot device
and its controller, which drives the movement of a robot in a maze.

At this point, we also wanted to target the issue of complexity.
The electronic part, the robot controller, is designed as a complex
system with specific components that will allow testing and vali-
dating individual or cooperating fault-tolerance methodologies
based on the FPGA.

As for the first goal of our research, we have already imple-
mented the evaluation platform that consists of three basic parts:

� the Virtex5 FPGA board, where the robot controller is situated
after the synthesis and the place and route process;
� the simulation environment Player/Stage [33] for checking

responses of the mechanical device to instructions from the
robot controller (see Fig. 11);
� the external fault injector (PC) which inserts faults into the

robot controller [22].

The second goal of our research is covered by the development
of a methodology on how to incrementally harden EM systems
against faults. We expect to clearly identify the situations when
the reconfigurable hardware correctly covers its functions (and

the robot works properly), but also the situations when the
mechanical functions are corrupted and the robot collapses.

Fig. 12 shows the overall interconnection of the PC and the
FPGA board in our platform. It should be noted that there are
two devices called FITkit [34] in both directions, from the PC to
the FPGA and vice versa. FITkit is a hardware platform that was
developed for student projects at the Faculty of Information
Technology, Brno University of Technology. In our platform,
FITkits represent a communication layer and serve as a debugging
point for communication between the PC and the FPGA board. The
SEU injector runs on the PC and is connected through the JTAG
interface directly to the main FPGA board where the robot con-
troller is situated. Via the connection between the SEU injector
and the simulation environment (as shown in Fig. 12), we are able
to control the SEU injection process into the robot controller for
every mission and to see the effects of faults directly in simulation.

In our opinion, it is important to find a relation between the
level of functional corruption of the electronic controller and the
corruption of the mechanical functionality in the EM systems (i.e.
between the robot controller and the simulated mechanical robot).
Therefore, it must be possible to introduce various levels of exter-
nal faults into the controller and check whether the mechanical
function: (a) was not corrupted, (b) was partially corrupted, or
(c) was completely corrupted.

Fig. 10. The method coverage directed stimuli generation.

Fig. 11. The robot in a maze in player/stage simulation environment.

1220 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230

4. The robot controller – structure and principles

In Fig. 13, the block diagram of the implemented robot con-
troller is outlined. The control unit is connected to the PC (where
the simulation environment is located) via the Interface Block.
Through this block, data from the simulation is received (informa-
tion about barriers, distances from control points, target positions)
and in the opposite direction, instructions about the movement of
the robot are sent (direction and speed).

The robot controller is composed of various blocks, their func-
tion is described in [35]. Only the main characteristics of every

component are summarized here. The central block of the robot
controller is a bus through which the communication between
each block is accomplished. Each of the component, without the
Engine Control Module is connected to the bus. The Position
Evaluation Unit acquires its distance from the control points,
which are located in the fixed positions in the maze. From these,
the position of the robot in the maze is calculated and provided
to other units as coordinates x and y. The Barrier Detection Unit
(BDU) uses four sensors; each located on one side of the robot
(cubical robot) and provides information about the distance to
the surrounding barriers. The output is a four-bit vector that repre-
sents the four-neighborhood of the robot and informs us about bar-
riers in this area. Map updating is provided by the Map Unit (MU)
and is based on information about the position of the robot
obtained from the Position Evaluation Unit and information about
the occurrence of barriers in a four-neighborhood provided by the
Barrier Detection Unit. The Map Memory Unit (MMU) stores infor-
mation about the up-to-date map. The memory is realized by the
block memory (BRAM) available in the FPGA. The most important
block that manages the activity of other blocks in the robot con-
troller is the Path Finding Unit (PFU). It implements the simple iter-
ation algorithm for finding a path through the maze according to
the information about the current and the desired target position.
The mechanical parts of the robot are driven by the setting of the
speed in the required direction of the movement by the Engine
Control Module (ECM).

The robot controller is designed as a complex system with
specific components that will allow for testing and validating var-
ious types of fault-tolerant methodologies focused on FPGAs:

� Combinational circuits
Combinational circuits are the basic types of digital circuits and
their output is dependent just on the current input. In the robot
controller, the Barrier Detection Unit represents a pure combi-
national circuit.

Fig. 12. The platform for testing fault-tolerance methodologies.

Fig. 13. The block diagram of the robot controller.

J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230 1221

� Sequential circuits
The output of the sequential circuit, unlike the combinational
circuit, is not only dependent on the current input but also on
the actual state. These circuits also contain memory for storing
a state. Sequential circuits can be explicitly controlled by the
finite state machine. Sequential circuits without an explicit con-
trol are represented by the Map Unit and the Position
Evaluation Unit in the robot controller.
� Finite state machines

Finite state machines also represent sequential circuits, their
computational process is modeled by states and transitions
between them. In the robot controller, the Path Finding Unit
and the Engine Control Module, together with units that pro-
vide the bus communication, are implemented as finite state
machines.
� Buses

The bus is a central element of our controller. We decided to use
a freely available Wishbone bus [36] that is configured as a
shared bus. It means that the communication on the bus can
be driven only by one master device and the other units must
wait for releasing the bus. All function blocks are connected
to the bus via their wrapper.
� Memories

In the robot controller, we can find two occurrences of different
types of memory. The first, the Map Memory Unit, is realized as
the Block Memory (BRAM) which is available on the FPGA. The
second memory is a queue in the Engine Control Module that
stores a continuously calculated path to the destination.

5. Experiments with the robot controller

5.1. Evaluation of reliability by fault injection

In order to simulate the effects of faults in the FPGA, it could be
done by a direct change of the configuration bitstream which is
loaded into the configuration memory. For this purpose we imple-
mented a fault injector [22] which allows us to prepare the bit-
stream for our FPGA and also to modify single or multiple bits of
the bitstream in order to simulate single and multiple faults. As a
consequence, the design placed in the FPGA (determined by the
configuration data) is similarly influenced by a real fault which
strikes the hardware architecture of the FPGA in a real
environment.

For effective testing of fault effects on a system composed of
several blocks, we need to determine the block in which the fault
will be injected. In the case of injecting faults into the whole
FPGA we are not sure which block is affected, or if the useful part
of the bitstream is hit. The implemented injector is able to inject
faults only to the specified bits of the configuration memory and
a specification list of these bits is an input parameter.

The list of bits representing each component is obtained
through several steps. First, we perform synthesis using Xilinx syn-
thesis tools [37]. The result of synthesis is a netlist, which serves as
an input for the next step. Next, we use the PlanAhead [38] tool for
the layout of the components on the FPGA. Thanks to this, we know
where each component is placed. The bitstream is generated in this
step and the FPGA can be programmed. The knowledge about the
component layout allows us to use the RapidSmith [39] tool for
analysing the design. This tool is able to generate a list of the bit-
stream bits that correspond to the identified areas of the FPGA,
while we know which components are in each area. The disadvan-
tage is that this process only provides a list of bitstream bits that
correspond to Lookup Tables (LUTs). Our goal in the future will be
to find a method which allows us to also localize bits of the bit-
stream corresponding to the interconnection network.

5.2. Experimental results

The aim of the experiment is to identify which parts of the robot
controller are vulnerable to faults. The flow of the experiment is
displayed in Fig. 14. At first, the environment of the robot in sim-
ulation was initiated. We generated a maze together with the start
and the end position for the mission of the robot. As the first sce-
nario, we chose a small maze with 8 � 8 fields. The start position
was in the upper left corner and the end position in the lower right
corner. Subsequently, the robot controller is initiated. In particular,
the bistream for the Virtex5 FPGA board is generated. When
loaded, the robot starts to search a path to the end position. It
moves quite slowly, one robot mission takes about one minute.
At this point, the fault injection takes place. We generate randomly
a LUT of every unit of the robot controller into which the fault will
be injected. Thanks to the Rapidsmith, only corresponding bits of
the bistream are inverted. We want to point out that only bits of
the bitstream belonging to the robot controller design are targeted.
Other bits of the bitstream belonging to the unused parts of the
FPGA or to the interconnection network are not affected. Faults
are injected one after another (MTBF = 2 s) until the robot starts
to behave incorrectly or fails. We were monitoring (1) the number
of faults that led to the malfunction of the robot and (2) how the
behavior of the robot was changed.

The results of the experiments are shown in Table 1. In the first
column, the list of components of the robot controller is provided.
In the second column, the total number of bits of the bitstream that
belong to the LUTs of corresponding components is shown. The fol-
lowing three columns represent the number of injected faults into
particular components which caused the incorrect behavior of the
robot. The first number is minimum, the second number is median
and the last number is maximum of faults that led to failure.
Injecting faults into all bits of the bitstream would be very
time-consuming. Therefore, we utilized the statistic evaluation.
Twenty experimental runs were performed for each component
(320 experimental runs in total). The last column of the table con-
tains the state of the robot that was evaluated as the wrong behav-
ior. These states are described in more detail later in the text.

The statistical data from the measures are also demonstrated in
Fig. 15. It is a quartile chart that for each component shows the
minimum, the first quartile (25%), median, the second quartile
(75%) and maximum of the measured number of injected faults
that led to its failure. One interesting conclusion arises from the
graph. The incorrect behavior did not appear immediately after
the first injection of a fault. We can conclude that some bits of
the bitstream, despite the fact that they are identified as related
to the robot controller, are not used to store a useful information.
This can be seen particularly in components PEU_FSM and
PEU_WB, the numbers of injected faults were so high that they
did not fit into the graph. There are several explanations for this
(for example not all inputs of LUTs are employed or not all states
of FSMs are visited during the computation). On the other hand,
the components MU, MU_FS or MU_WB were corrupted by a

Fault Injec�on

Maze
Ini�aliza�on

Start Posi�on

End Posi�on

Robot Controller
Ini�aliza�on

Monitoring of
Impact of Faults

Fig. 14. The flow of one experiment.

1222 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230

relatively small number of faults. It means, that many bitstream
bits store useful information. Therefore, we realized that some
components contain more critical bits than others and thus they
should be preferred while hardening against faults by some
fault-tolerance methods.

The most common consequences of the injected faults are:

� Freezing on place
Freezing on one spot means that the robot suddenly stopped
after the fault injection and did not continue in its mission.
� Deadlock

After the injection of a certain number of faults the robot began
to walk around in a cycle.
� Crashing into a wall

In some cases, the robot did not recognize the occurrence of
walls in the maze and repeatedly crashed into the wall.
� Other

In the experiments, we observed a small number of other inter-
esting consequences of faults. An example might be freezing of
the robot in one place, then a re-freezing or walking in a cycle.
We also noted a wrong turn of the robot in the maze, which was
followed by freezing.

The proportional representation of these consequences is dis-
played in Fig. 16. As can be deduced from the chart, the most com-
mon consequence of injected faults is Freezing on place. We can also
conclude that the stopping of the robot is not so critical as for
example, a collision with the wall. This conclusion can be very crit-
ical and useful for different kinds of EM systems.

6. The use of functional verification for automated evaluation of
fault impacts

For extensive checking of the behavior of the robot or any other
EM system placed into our evaluation platform, we need to exam-
ine various scenarios. After the application of proper stimuli, we
can prove the correctness and accuracy of the behavior of the sys-
tem with respect to the specification. The manual check of these
stimuli is difficult as it requires full control from the user. The user
is responsible for running the testbench, generating stimuli and
also analysing the outputs of the system. All these activities are
time-demanding and, therefore, it is not possible to examine the
system thoroughly in a reasonable time. It is necessary to apply
some kind of automation. An extended technique for automated
checking of the correctness of the system is called functional veri-
fication and was described in Section 2.

In order to be able to inject faults into the FPGA while perform-
ing functional verification, we must carry out verification directly
in the FPGA (not just in the simulation as usual). We can advanta-
geously use and modify hardware accelerated verification that uses
an FPGA as the acceleration board. An example of such an acceler-
ator is the open-source framework HAVEN [40]. The extension of
our evaluation platform with the support of functional verification
is shown in Fig. 17. The DUT (in our case the robot controller) is
placed on the FPGA. The outputs from the FPGA are compared to
the outputs of the reference model and they also represent the
inputs that are propagated to the simulation of the mechanical
part. Thus, the output of the DUT stimulates the movement of
the mechanical part of the robot in the simulated maze. The inputs

Table 1
The experimental results.

Components # Bits Number of injected faults Consequence

Min Med Max

PEU 21,632 2 6 12 Freezing
PEU_FSM 2112 >80 – >80 –
PEU_WB 2112 41 – >80 Freezing
BDU 320 2 6 21 Freezing
BDU_FSM 2752 3 6 34 Freezing
BDU_WB 2176 3 9 28 Freezing
SEPC_INF 1216 2 3 7 Freezing
SEPC_WB 9088 2 3 7 Freezing
ECM 25,664 1 2 7 Freezing
PFU 7488 3 6 12 Deadlock
PFU_WB 7424 2 3 9 Freezing
MU 11,840 1 2 3 Crashing
MU_FSM 1280 1 3 5 Freezing
MU_WB 7680 1 3 6 Freezing
MMU 3008 1 3 6 Freezing
WB_BUS 5056 1 3 6 Freezing

Fig. 15. The quartile graph of the results of experiments.

Fig. 16. The chart of typical consequences of injected faults on the mission of the
robot.

J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230 1223

for the FPGA and the reference model are data from the sensors of
the mechanical part of the robot.

As the reference model, a second implementation of the control
unit, for example in SystemVerilog, C, SystemC, or the same VHDL
implementation that is used as the DUT but without injected faults,
can be considered. The Fault Injector is a unit that differentiates the
current proposal from the regular functional verification environ-
ment. By adding this feature we can verify that the
fault-tolerance techniques used in the robot controller are working
properly and the robot also behaves correctly in the presence of
faults injected into its controller.

The verification process aiming at evaluating the quality of
fault-tolerance methodologies in fault-tolerant EM systems that
utilizes the fault injection is shown in Fig. 18. This process is
divided into three main phases that are described below.

At first, the verification environment and the reference model for
the electronic control unit (the robot controller) must be created. In
our case, we decided to use the reference model implemented in the
C/C++ language. In the first phase, we use the regular
simulation-based functional verification where the VHDL descrip-
tion of the electronic robot controller is used as the DUT. It is also
important to connect the environment, where the mechanical parts
of the robot are simulated, to the verification environment. For clar-
ification, there are two simulation environments: functional verifi-
cation is running in the RTL simulation environment and the
mechanical robot is simulated in the separate simulation environ-
ment (the Player/Stage robot simulation). When the robot moves
through the maze, information from sensors about the position
and barriers is provided from the robot simulation to the verification
environment. You can see in Fig. 17 that the whole system consisting
of two simulation environments works in the loop. The main output
of the first phase is a claim whether the electronic controller (the
robot controller) works correctly as specified or not. It is important
because we have to be sure that the robot controller does not contain
functional errors in the implementation. It is also important to point
out that in this phase we acquire a set of verification scenarios (dif-
ferent mazes with different start and end positions for robot move-
ments) that will also be used in the next phase. One verification run
is represented by the robot moving through the maze from the start
position to the end position.

The second phase consists of the verification using an FPGA
with the verification scenarios obtained from the previous phase.
It is guaranteed for these scenarios that if no artificial faults are
injected into the system, the electronic part always behaves cor-
rectly. After a fault is injected, each of these scenarios is repeated
(according to the number of injected faults). The result of this
phase is a list of faults which causes a discrepancy on the output
of the electronic controller for these specific verification scenarios.
These faults will be examined in detail in the next phase where
three possible outcomes can arise: (1) The output from the DUT
and from the reference model is the same and an error did not
appear. (2) The output is not identical but despite this, the robot
has completed the mission (the robot reached the end position in
the maze). (3) The output is not identical and at the same time,
the mission was not accomplished. The last outcome is the most
serious one and it will require a thorough analysis of the problem.

The analysis of the faults which affected badly the mechanical
part is the task for the third phase. In this phase, we will examine
the faults that caused the failure of the mission of the robot. This
activity will be carried out manually, since it is necessary to run
the required experiments repeatedly and to monitor the behavior
of the mechanical part in the robot simulation as was described
in the experimental part of this paper.

The generation of stimuli is a very important element in the
proposed platform. In order to be able to check all working scenar-
ios in functional verification and to achieve the highest possible
coverage of all key functions in the verified circuit, a high-quality
generator of inputs is needed. In our case, the generation aims at
different mazes and a different starting and end positions of the
movements of the robot. We also plan to use the generator for con-
trolling the injection of faults (because now it is configured manu-
ally). We will generate signals that will drive the generation of
faults and determine when and into which place a fault should
be injected. The process of generating stimuli is described in the
next Section 7.

7. Stimuli generation for the robot controller

We wanted to make the process of generating stimuli as univer-
sal as possible. Therefore, this approach is not limited only to the

Fig. 17. The functional verification involvement in our platform with the fault
injection.

YES

Functional Verification of
the Original Design

Verification
Environment

Reference
Model

List of
Perspective
Scenarios

Functional
Error?

Repair

Functional Verification of Electronic .
Part with Fault Injection

 List of Faults with an Impact
on the Electronic Part

Monitoring Impact of the Critical Faults
on the Mechanical Part

NO

1.phase
2.phase

3.phase

Fig. 18. The flow of phases in the FT systems verification.

1224 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230

robot controller, but it can be used also in other kinds of systems
(the use case presented later in this paper demonstrates generating
assembly programs for the processor). The architecture of the uni-
versal stimuli generator consists of two formal models (see
Fig. 19): description of the problem and constraints defined for the
problem. Each of these formal models is represented by one file
with a specific purpose and a proprietary format.

The Problem Description model contains information about what
has to be generated.

The second model Constraints contains restrictions and limita-
tions for the problem described in the Problem Description model.
This model defines valid combinations, the ordering and conditions
for stimuli that are composed according to the constraints.

The core of the generation is the stimuli generator which takes
these two formal models (files) as inputs and generates stimuli by
their combined use. Theoretically, with this architecture, we are
able to cover many areas. An important prerequisite is the creation
of a set of general constraints that can be used directly or com-
bined together when solving a variety of target generation
problems.

7.1. The Problem Description model

The Problem Description model contains three basic parts for
the problem definition (see Fig. 20): the substitute part, the vari-
able part and the syntax part. Both of these models are defined
by their own proprietary language.

The Syntax part defines the syntactic strings, one after another,
which are needed to generate pseudo-random stimuli. In each syn-
tactic string, a variable or a substitute can appear, but it must be
defined in the Variable part or in the Substitute part. Variables
and substitutes will be replaced in syntactic strings. If they are
not somewhere in the Syntax part, these variables and substitutes
are ignored. The Syntax part represents static values, while the two
remaining parts represent dynamic or changing values in the syn-
tactic strings.

This part always starts with the keyword syntax followed by the
‘‘{’’ character, then contains n-lines of syntaxes and ends with the
‘‘}’’ character. The syntaxes can be easily grouped together for bet-
ter clarity. The syntax of the Syntax part is the following:

syntax {
synname1, synname2, . . . {‘‘generated
word"}

. . .

}

The words synname1, synname2, etc. represent the name for
each generated word. If it is needed to have some generated word
with the same syntax, but with a different syntax name, it is pos-
sible to advantageously use the keyword this in the generated word.

The Substitute part defines all possible substitutes which will be
pseudo-randomly replaced in any syntactic string defined in the
Syntax part. The Substitute part is similar to the enumeration data
type. In every new cycle of the generation process some replace-
ment is taken pseudo-randomly for a given substitution. The
Substitute part is widely used in places where generating some
specific words or phrases into the syntax is needed.

This part starts with the keyword substitute followed by the ‘‘{’’
character, then contains n-lines of substitutes and ends with the
‘‘}’’ character. The substitutes can be grouped together for better
clarity. The syntax of the substitute part is the following:

substitute {
repl1, repl2, . . .{subs1|subs2|. . .}
. . .

}

The words repl1, repl2, etc. represent words that will be
replaced in the generated word. The words subs1, subs2, etc. repre-
sent words that will be placed instead of words repl1, repl2, etc.

The Variable part defines the variables in a general sense. For
each of them a value is assigned pseudo-randomly based on its
data type. In every cycle of the generation process, new values
are assigned.

This part starts with the keyword variable followed by the ‘‘{’’
character, then contains n-lines of variables and ends with the
‘‘}’’ character. The syntax of the Variable part is:

Fig. 19. The architecture of the stimuli generation.

Fig. 20. The parts of the problem description model.

J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230 1225

variable {
data_type varname

. . .

}

The data type can take one value from Table 2.

7.2. The constraints model

As mentioned earlier, constraints represent conditions and lim-
itations for the generated stimuli. Constraints also ensure valid
stimuli generation. This is essentially a limitation for data values,
such as a variable cannot take certain values from the range of
the data type, or restriction of dependency, such as some combina-
tion of variables cannot occur after the currently generated combi-
nation. The constraints model is unique for each system as well as
the Problem Description model, therefore, various restrictions are
applied to different systems.

Constraints are defined using a proprietary language and their
syntax is like calling a function with parameters without the return
value. The number of parameters is one or two because there was
no need for complicated relationships between items in the
Problem Description model. The syntax of a constraint is as
follows:

constraintNameðp1;p2; . . . ; pnÞ

where n is the number of parameters (n > 0).

7.3. Stimuli Generator

The stimuli generator explores combinations of syntaxes, sub-
stitutes, and variables so that all constraints are satisfied. The gen-
erator must be able to understand constraints which are applied to
the constraints model. The output from the generator is a set of
lines that is valid for a defined problem.

The generation process starts with a random selection of one
syntax from the syntax part. Based on the chosen syntax, the valid-
ity of all constraints that are defined for this syntax is tested
sequentially. If all constraints are fulfilled, the syntax is sent to
the output. If some of the constraints are not fulfilled, the genera-
tion process backtracks and a new substitute is chosen or a new
value of a variable is generated. If some constraint is still not ful-
filled, a new syntax is chosen and the process is repeated.

7.4. Maze generation

A maze represents one verification stimulus for the robot con-
troller. Fig. 21 illustrates an idea of generating the mazes for the
robot controller. This is an example that shows the function of
the above-mentioned approach. The second example provided
later in this paper is the generation of the assembly code for a pro-
cessor. This use case is described in Section 8.3. The problem of
generating the maze is defined as the generation of lines that are
represented by the boolean array of a specific size. The constraints
restrict the minimal width of the corridor of the maze, while the

walls of the maze can be only rectangular and a room that has
no path cannot appear in the maze. The result obtained by the gen-
erator is a sequence of rows that consists of zeroes or ones. Zeroes
represent the corridors, ones represent the walls. This generated
output may be further processed. In our case, this output is regen-
erated into a bitmap image representing the desired maze for the
robot.

We analyzed this problem. There are a lot of approaches and
algorithms for mazes generation [41], but none of them is suitable
for the proposed universal process of generation. Therefore, maze
generation is still in the design process and we are trying to find
a suitable solution for our problem.

8. Use case – evaluation of processor

In our future work, we intend to concentrate on more complex
mechanical systems controlled by their electronic controllers (not
only just a robot in a maze). It is a well known fact that such elec-
tronic controllers are usually based on the use of processors to
cover all the necessary functions (e. g. aerospace applications).
Thus, in our research we decided to create the use case, where
the electronic control unit is represented by a processor. Such an
approach is described in this section. There already exist tech-
niques for hardening processors against faults on the software
level. This approach is called Software Implemented Fault
Tolerance. An overview of these techniques is summarized in
[42], a novel technique is also presented in [43]. Our idea is to eval-
uate the applicability of these techniques in the selected processor
that will be placed into the FPGA and faults will be artificially
injected into its architecture.

Table 2
Data types for variables.

Data type keyword Min value Max value Note

BOOL 0 1 Boolean number
VAR8 0 255 8-bit unsigned integer
VAR16 0 65,535 16-bit unsigned integer
STR STR0 STR29999 4–8 character long string

Fig. 21. An idea of generating a maze for the robot controller.

1226 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230

We decided to use the Codix RISC processor [44] of the Codasip
company [45] as our test-case. Codix RISC is a 32-bit RISC proces-
sor with 7 stages of pipeline, 32 general purpose registers, 512 kB
of the memory and 59 instructions. The architecture of the
UVM-based verification environment is presented in the following
subsection. For achieving a high level of coverage in functional ver-
ification, it is necessary to be able to generate a set of assembly
programs for this processor. Generation of these programs by our
universal generator is also described in the following subsections.
The current state of our research is that we are able to generate
the assembly programs and run functional verification for all these
programs with correct results. The next step in our work will be
applying the software fault tolerance to this processor and inject-
ing faults.

8.1. Verification environment for processor

When referring to the first phase of our evaluation process pre-
sented in Fig. 18, we must create the functional verification envi-
ronment for the processor and run the verification without
injecting faults. The UVM-based verification environment is shown
in Fig. 22 (implemented in SystemVerilog).

8.2. FPGA-based verification environment for processor

The second phase of the evaluation process (Fig. 18) is func-
tional verification of the design implemented in the FPGA. Also,
the fault injection into the FPGA takes place in this phase. For this
purposes, the FPGA-based verification environment that is dis-
played in Fig. 23 is derived from the version created in the first
phase. It should be noted that almost all UVM components are
moved into the FPGA, except for the reference model and
Scoreboard. Nevertheless, we aim at designing a consistent verifi-
cation architecture in the FPGA too. Therefore, UVM Agents and
their inbuilt components are just replaced by the HW Agents. We
believe that consistent FPGA verification architecture is then easily
understandable for verification engineers. The communication
between the software and the hardware part of the verification
environment is accomplished using a proprietary interface. More
details about the components of both parts are provided in the
subsequent subsections.

8.2.1. The software part of the verification environment
The main components of the software part are the Reference

Model and Scoreboard. The Reference Model is in this specific case
generated automatically from the high-level specification of the
processor in the Codasip Studio [45], but of course, it can be

implemented manually. Scoreboard compares results of the
Reference Model to the results of DUT (received from the hardware
part through the Output Wrapper component). In particular, we
compare the content of memories and register fields when the
specific assembly program is processed, and we continuously
check data from the output ports. The Input Wrapper serves for
sending programs (they are loaded to the processor and define
its functionality) and input data.

8.2.2. The hardware part of the verification environment
Hardware Agents are similar to UVM Agents and their main

components are Drivers and Monitors. Drivers drive the input
ports of DUT and Monitors collect data from the output ports. In
Fig. 23 you can see the Hardware Memory Agent, Hardware
Register Agent and the Hardware Platform Agent. The hardware
Memory Agent is connected to the main memory. It contains the
Driver called the Application Loader that drives the loading of
applications into the program part of the memory at the beginning
of computation. The second component is the Monitor that takes
an image of the memory at the end of the computation and sends
it to the software Scoreboard for the comparison to the reference
results. The Hardware Register Agent contains only the Monitor
that takes an image of register fields at the end of the computation
and sends it to the software Scoreboard. The Hardware Platform
Agent is active during the whole computation; it contains the
Driver that during the computation stimulates input ports of the
processor with data and Monitor that sends the valid output data
of the processor to the software Scoreboard.

8.3. Assembler stimuli generation for processor

Generation of the assembly code for a processor is one example
of the use of the universal generation concept presented in the pre-
vious section. We designed the Problem Description model and the
constraints model specifically for this test-case.

8.3.1. The Problem Description model for processor
The syntax part defines strings that we want to generate. We

want to generate assembly code, so this part contains all instruc-
tions of the processor. Each defined instruction consists of an iden-
tifier and an instruction syntax. The identifier is used for links
between the constraints. The instruction syntax is the body, where
replacement will be carried out and then the modified instruction
syntax will be printed. The example of one instruction is the
following:Fig. 22. The UVM-based verification environment for the processor.

Fig. 23. The architecture of the FPGA-based verification environment for the
processor.

J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230 1227

ori {‘‘dst = or src1, imm"}

where ori is the identifier, the string between curly braces is the
instruction syntax, dst and src1 are substitutes, and imm is a
variable.

The substitute part defines the set of strings to be replaced in the
instruction syntax. This part is typical for the register definition.
Here it is specified which substitutes will be replaced by a specific
string. The example of one substitute is the following:

dstf r0jr1jr2 g

where dst is a substitute string; r0, r1, and r2 are the replacements.
The variable part defines the variables in a general sense. It is

usually used for assigning a number into an immediate operand
in the instruction syntax or for assigning a string into a label in
the jump instructions. The example of one variable is:

VAR16 imm

where VAR16 is the 16-bit integer number and imm is the name of
the variable.

8.3.2. The constraints model for processor
We have developed several constraints which solve typical

problems of the assembly code generation. The set of constraints
for the processors is shown in Fig. 24. The successive application
of the constraints is also demonstrated. The constraints with star
mark are evaluated only once during the generation, other con-
straints are evaluated for each instruction. The description of the

constraints and their typical application in the assembly code gen-
eration is shown in Table 3.

8.3.3. Experimental results
As was already mentioned, the experiments were performed on

the processor Codix RISC. For this processor, we have automatically
generated the UVM-based functional verification environment and
the verification process was running in the ModelSim simulator
from Mentor Graphics [46].

The aim of the experiments is to achieve the maximum cover-
age of key system functions, because it guarantees the correctness
of the system with respect to its specification. In the event that we
will inject faults into the verified system, we can almost say with
certainty that faulty system behavior is caused solely by these
faults.

In our experiments, we examined the instruction and the state-
ment coverage for our programs in functional verification.
Coverage is expressed in percentages. We have generated 1980

Fig. 24. The set of the constraints for generating the assembly code.

Table 3
The constraints for assembly code generation.

Constraint Description Used for

*start()/
*end()

Generates an instruction as the
first/last one

Regs initialization, halt
generation

pb() Sets probability of an instruction
generation

Limits for instr

beforeinsert() Inserts instruction before a
specific instruction

Latency maintain

nocare() Sets that a substitute cannot carry
the value

Conditional instr

output() Sets a substitute of any instruction
as an output

Regs initialization

nouse() A variable cannot be used in the
next instruction

Latency maintain

contain() A variable assigns a previously
generated value

Jump instr., label

different() A variable must be different from
any variable

Jump instr.

div() A value of variable must be
divisible by a number

Mem aligned access

unique() A value must be unique in whole
program

Jump instr., label

afterinsert() Inserts an instruction after the
specific instruction

Latency maintain

*outall() At the end, prints instruction in
the contain() link

Label of instr.

(a)

(b)

Fig. 25. Achieved (a) instruction coverage and (b) statement coverage in functional
verification.

1228 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230

programs with 100 and 1000 instructions using the universal gen-
erator described before and we compared the results with the
MiBench test program suite [47] that was used in the company
as the main test suite. The MiBench suite is composed of 1980 pro-
grams with approximately 100–1000 instructions. We have inves-
tigated the maximal coverage and the number of programs that are
included in the test suite. The results of our experiments are
demonstrated in Fig. 25. X-axes of the graph are plotted in a loga-
rithmic scale.

The maximal coverage of our experiments was 88.09% for the
instruction coverage and 85.65% for the statement coverage.
These values were achieved for programs which were generated
by the proposed universal generator of test vectors. For 100
instructions, more programs were necessary than for 1000 instruc-
tions. In comparison with to the MiBench, higher coverage was
achieved, namely +14.29% for the instruction coverage and
+1.97% for the statement coverage. Moreover, the overall coverage
for our generator was achieved more quickly and it was higher for
any number of programs than the coverage achieved by the
MiBench test suite.

9. Conclusion and future work

In this paper, we introduced the evaluation platform for esti-
mating the reliability of FPGA designs. As our research focuses on
testing EM systems, we presented the experimental design which
is composed of the mechanical robot and its electronic controller
situated in the FPGA. The robot controller contains a variety of
components. During the experiments, random faults were artifi-
cially injected into these components and we monitored the
impact of these faults on the behavior of the robot in the simula-
tion environment. These experiments showed that some faults
have an impact on the behavior of the robot, and others do not.
According to these results we were able to identify the parts/com-
ponents of the robot controller that need to be hardened by some
fault-tolerance techniques.

Two main goals were mentioned in Section 3, the first goal is to
develop evaluation platform based on FPGA technology for check-
ing the resilience of EM systems against faults. The presented work
is the first step to achieve this goal, we performed preliminary
experiments with EM system. The conclusions from these experi-
ments are shown in Section 5.2 where the impact of faults in elec-
tronic controller of mechanical part was discussed. As for the
second goal which aims at developing and verifying a new
methodology for increasing fault-tolerance qualities of EM sys-
tems, the main idea how to achieve it was presented in
Section 6. The foundations for the proposed methodology are also
presented as the conclusions of the performed experiments.

In addition, we recognized from the experiments that some
kind of automation is unavoidable in our future experiments, espe-
cially in the early phases of testing. The reason is that monitoring
the behavior of the system in simulation is very time-demanding.
Therefore, we have already prepared an innovative extension of
our platform – interconnection of fault injection and functional
verification environment with an advanced stimuli generation.
Using this approach we will be able to automatically verify an
EM system during the fault injection. Automation is achieved by
comparing the outputs of the verified system to the reference
model that is in our case represented by the same design but with-
out injected faults.

Acknowledgments

The research was supported by the following European projects.
This work was supported by the following projects: EU COST

Action IC1103 – MEDIAN – ‘‘Manufacturable and Dependable
Multicore Architectures at Nanoscale’’, project IT4Innovations
Centre of Excellence (ED1.1.00/02.0070), National COST LD12036
– ‘‘Methodologies for Fault Tolerant Systems Design
Development, Implementation and Verification’’ and BUT project
FIT-S-14-2297.

References

[1] S. Cutts, A collaborative approach to the more electric aircraft, in: International
Conference on Power Electronics, Machines and Drives, 2002 (Conf. Publ. No.
487), 2002, pp. 223–228, http://dx.doi.org/10.1049/cp:20020118.

[2] J. Bennett, A. Jack, B. Mecrow, D. Atkinson, C. Sewell, G. Mason, Fault-tolerant
control architecture for an electrical actuator, in: 35th Annual Power
Electronics Specialists Conference, 2004, PESC 04, 2004, vol. 6, IEEE, 2004,
pp. 4371–4377, http://dx.doi.org/10.1109/PESC.2004.1354773.

[3] G. Leen, D. Heffernan, Expanding automotive electronic systems, Computer 35
(1) (2002) 88–93, http://dx.doi.org/10.1109/2.976923.

[4] M. Straka, J. Kastil, Z. Kotasek, L. Miulka, Fault tolerant system design and SEU
injection based testing, Microprocess. Microsyst. 2013 (37) (2013) 155–173.

[5] XILINX, FPGA, November 2014 <http://www.xilinx.com/fpga/index.htm>.
[6] F. Piltan, N. Sulaiman, M. Marhaban, A. Nowzary, M. Tohidian, Design of FPGA-

based sliding mode controller for robot manipulator, Int. J. Robot. Autom.
(IJRA) 2 (3) (2011) 173–194.

[7] U.D. Meshram, R. Harkare, FPGA based five axis robot arm controller, in: IEEE
Conference, 2005, pp. 3520–3525.

[8] N. Instruments, Powertrain Controls (May 2015) <http://sine.ni.com/ind-app/
app/app/p/id/app-71/lang/cs>.

[9] M. Ceschia, M. Violante, M. Reorda, A. Paccagnella, P. Bernardi, M. Rebaudengo,
D. Bortolato, M. Bellato, P. Zambolin, A. Candelori, Identification and
classification of single-event upsets in the configuration memory of SRAM-
based FPGAs, IEEE Trans. Nucl. Sci. 50 (6) (2003) 2088–2094.

[10] J.A. Cheatham, J.M. Emmert, S. Baumgart, A Survey of Fault Tolerant
Methodologies for FPGAs, vol. 11, ACM, New York, NY, USA, 2006. pp. 501–533.

[11] F.L. Kastensmidt, R. Reis, Fault-Tolerance Techniques for SRAM-Based FPGAs,
vol. 32, Springer, 2007.

[12] F.L. Kastensmidt, G. Neuberger, L. Carro, R. Reis, Designing and testing fault-
tolerant techniques for SRAM-based FPGAs, in: Proceedings of the 1st
conference on Computing frontiers, ACM, 2004, pp. 419–432.

[13] XILINX, Partial Reconfiguration User Guide.
[14] C. Bolchini, A. Miele, M.D. Santambrogio, TMR and partial dynamic

reconfiguration to mitigate SEU faults in FPGAs, in: DFT ’07: Proceedings of
the 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems, IEEE Computer Society, Washington, DC, USA, 2007, pp. 87–95.

[15] L. Sterpone, M. Aguirre, J. Tombs, H. Guzmán-Miranda, On the design of
tunable fault tolerant circuits on SRAM-based FPGAs for safety critical
applications, in: DATE ’08: Proceedings of the Conference on Design,
Automation and Test in Europe, ACM, New York, NY, USA, 2008, pp. 336–341.

[16] R. Oliveira, A. Jagirdar, T.J. Chakraborty, A TMR scheme for SEU mitigation in
scan flip-flops, in: ISQED ’07: Proceedings of the 8th International Symposium
on Quality Electronic Design, IEEE Computer Society, Washington, DC, USA,
2007, pp. 905–910.

[17] C. Bernardeschi, L. Cassano, A. Domenici, L. Sterpone, Accurate simulation of
SEUs in the configuration memory of SRAM-based FPGAs, in: IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2012, IEEE, 2012, pp. 115–120.

[18] S. Rudrakshi, V. Midasala, S. Bhavanam, Implementation of FPGA based fault
injection tool (FITO) for testing fault tolerant designs, IACSIT Int. J. Eng.
Technol. 4 (5) (2012) 522–526.

[19] M. Alderighi, S. D’Angelo, M. Mancini, G.R. Sechi, A fault injection tool for
SRAM-based FPGAs, in: 9th On-Line Testing Symposium, 2003, IOLTS 2003,
IEEE, IEEE, 2003, pp. 129–133.

[20] M. Alderighi, F. Casini, S. d’Angelo, M. Mancini, S. Pastore, G.R. Sechi,
Evaluation of single event upset mitigation schemes for SRAM based FPGAs
using the flipper fault injection platform, in: 22nd IEEE International
Symposium on Defect and Fault-Tolerance in VLSI Systems, 2007, DFT’07,
IEEE, 2007, pp. 105–113.

[21] C. López-Ongil, M. Garcia-Valderas, M. Portela-Garća, L. Entrena, Autonomous
fault emulation: a new FPGA-based acceleration system for hardness
evaluation, IEEE Trans. Nucl. Sci. 54 (1) (2007) 252–261.

[22] M. Straka, J. Kastil, Z. Kotasek, SEU simulation framework for xilinx fpga: First
step towards testing fault tolerant systems, in: 14th EUROMICRO Conference
on Digital System Design, IEEE Computer Society, 2011, pp. 223–230.

[23] T. Kropf, Introduction to Formal Hardware Verification, Springer, 1999
<http://books.google.cz/books?id=p3xSw3AIlToC>.

[24] A. Meyer, Principles of Functional Verification, Elsevier Science, 2003
<http://books.google.cz/books?id=qaIiX3hYWL4C>.

[25] M. George, O. Ait Mohamed, Performance analysis of constraint solvers for
coverage directed test generation, in: 2011 International Conference on
Microelectronics (ICM), 2011, pp. 1–5, http://dx.doi.org/10.1109/ICM.2011.
6177404.

[26] D. Gohel, Pure SV verification environment methodology for asic verification 5
(2014) 770–775.

J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230 1229

[27] S. Fine, A. Ziv, Coverage directed test generation for functional verification
using bayesian networks, in: Proceedings of the Design Automation
Conference, 2003, 2003, pp. 286–291, http://dx.doi.org/10.1109/DAC.2003.
1219010.

[28] L. Kotthoff, Constraint Solvers: An Empirical Evaluation of Design Decisions,
ArXiv e-printsarXiv:1002.0134.

[29] V. Kumar, Algorithms for constraint satisfaction problems: a survey, AI Magaz.
13 (1) (1992) 32–44.

[30] N. Rollins, M. Fuller, M. Wirthlin, A comparison of fault-tolerant memories in
SRAM-based FPGAs, in: 2010 IEEE Aerospace Conference, 2010, pp. 1–12,
http://dx.doi.org/10.1109/AERO.2010.5446661.

[31] M. Naseer, P. Sharma, R. Kshirsagar, Fault tolerance in FPGA architecture using
hardware controller – a design approach, in: International Conference on
Advances in Recent Technologies in Communication and Computing, 2009,
ARTCom ’09, 2009, pp. 906–908, 2009, http://dx.doi.org/10.1109/ARTCom.236.

[32] L. Frigerio, F. Salice, Ram-based fault tolerant state machines for FPGAs, in:
22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems, 2007, DFT ’07, 2007, pp. 312–320, http://dx.doi.org/10.1109/DFT.
2007.33.

[33] B. Gerkey, R.T. Vaughan, A. Howard, The player/stage project: tools for multi-
robot and distributed sensor systems, in: Proceedings of the 11th International
Conference on Advanced Robotics, vol. 1, 2003, pp. 317–323.

[34] Z. Vasicek, FITkit, April 2014 <http://www.fit.vutbr.cz/FITkit>.
[35] J. Podivinsky, M. Simkova, Z. Kotasek, Complex control system for testing fault-

tolerance methodologies, in: Proceedings of The Third Workshop on
Manufacturable and Dependable Multicore Architectures at Nanoscale
(MEDIAN 2014), COST, European Cooperation in Science and Technology,
2014, pp. 24–27.

[36] OPENCORES, Wishbone B4: WISHBONE System-on-Chip (SoC) Interconnection
Architecture Portable IP Cores, April 2014 <http://cdn.opencores.
org/downloads/wbspecb4.pdf>.

[37] XILINX, Xst User Guide.
[38] N. Dorairaj, E. Shiflet, M. Goosman, Planahead software as a platform for

partial reconfiguration, Xcell J. 55 (68–71) (2005) 84.
[39] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, B. Hutchings, Rapid prototyping

tools for FPGA designs: Rapidsmith, in: 2010 International Conference on
Field-Programmable Technology (FPT), 2010, pp. 353–356, http://dx.doi.org/
10.1109/FPT.2010.5681429.

[40] M. Simkova, O. Lengal, M. Kajan, Haven: An Open Framework For FPGA-
Accelerated Functional Verification of Hardware, Tech. rep., 2011 <http://
www.fit.vutbr.cz/research/viewpub.php.en?id=9739>.

[41] P.W., Maze Algorithms, 1996 <http://www.astrolog.org/labyrnth/algrithm.
htm>.

[42] O. Goloubeva, M. Rebaudengo, M.S. Reorda, M. Violante, Software-
Implemented Hardware Fault Tolerance, Springer Science+Business Media,
LLC, New York, 2006. p. 224.

[43] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, D.I. August, Swift: software
implemented fault tolerance, in: Proceedings of the International Symposium
on Code Generation and Optimization, IEEE Computer Society, 2005, pp. 243–
254.

[44] Codasip, Codix RISC, November 2014 <https://www.codasip.com/
products/codix-risc/>.

[45] Codasip, Codasip Framework, November 2014 <http://www.codasip.com>.
[46] U. Hatnik, S. Altmann, Using modelsim, matlab/simulink and ns for simulation

of distributed systems, in: International Conference on Parallel Computing in
Electrical Engineering, 2004, PARELEC 2004, 2004, pp. 114–119, http://dx.doi.
org/10.1109/PCEE.2004.74.

[47] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown,
Mibench: a free, commercially representative embedded benchmark suite, in:
2001 IEEE International Workshop Proceedings of the Workload
Characterization, 2001, WWC-4, WWC ’01, IEEE Computer Society,
Washington, DC, USA, 2001, pp. 3–14, http://dx.doi.org/10.1109/WWC.2001.
15.

Jakub Podivinsky was born in 1989. In 2013 he grad-
uated (M.Sc.) at the Department of Computers Systems
of the Faculty of Information Technology, Brno
University of Technology. In 2013 he started his Ph.D.
studies at the Department of Computers Systems. His
scientific research is focused on evaluation quality of
fault tolerant systems and FPGA-based functional veri-
fication of digital systems.

Ondrej Cekan was born in 1989. In 2013 he graduated
(M.Sc.) at the Department of Computers Systems of the
Faculty of Information Technology, Brno University of
Technology. In 2013 he started his Ph.D. studies at the
Department of Computers Systems. His scientific
research is focused on functional verification and stim-
uli generation.

Marcela Simkova was born in 1987. In 2011 she grad-
uated (M.Sc.) at the Department of Computers Systems
of the Faculty of Information Technology, Brno
University of Technology. In 2011 she started her Ph.D.
studies at the same university. Her scientific research is
focused on optimization of UVM-based functional veri-
fication, automated verification of processors and
fault-tolerant system design.

Zdenek Kotasek was born in 1947. He received his
M.Sc. and Ph.D. degrees (in 1969 and 1991) from Brno
University of Technology (BUT), both in computer sci-
ence. Between 1969 and 2001, he worked at
Department of Computer Science of the Faculty of
Electrical Engineering and Computer Science, since
2002 at the Department of Computer Systems (DCSY) of
the Faculty of Information Technology, both at BUT. He
is an Associate Professor at BUT since 2000 and the head
of the DCSY (since 2005). His research interests include
digital circuit diagnostics and testing, testability analy-
sis and design and synthesis for testability and relia-

bility, fault tolerant system design. He is an IEEE member (since 2003).

1230 J. Podivinsky et al. / Microprocessors and Microsystems 39 (2015) 1215–1230

Paper II

Software Fault Tolerance: the
Evaluation by Functional
Verification

ČEKAN Ondřej, PODIVÍNSKÝ Jakub, KOTÁSEK Zdeněk
In: Proceedings of the 18th Euromicro Conference on Digital Systems Design. Funchal:
IEEE Computer Society, 2015, pp. 284-287. ISBN 978-1-4673-8035-5.

78

Software Fault Tolerance: the Evaluation by
Functional Verification
Ondrej Cekan, Jakub Podivinsky, Zdenek Kotasek

Faculty of Information Technology, Brno University of Technology
Bozetechnova 2, 612 66 Brno, Czech Republic

Tel.: +420 54114-{1361, 1361, 1223}
Email: {icekan, ipodivinsky, kotasek}@fit.vutbr.cz

Abstract—The aim of this paper is to present a new approach
in evaluating Software Fault Tolerance (SFT) methodologies. It is
the way on how to ensure fault tolerance without any additional
hardware as is common in frequently used Triple Modular
Redundancy (TMR). As our research is focused on electro-
mechanical systems which are commonly driven by processors
or Multi Processors Systems on Chip (MPSoC) we decided to
use the soft-core processor running on Field Programmable Gate
Array (FPGA) as our experimental platform. The new approach
uses Functional Verification for automation of the evaluation
process. The functional verification environment is one of the
important parts of the presented evaluation platform architecture.
Programs generation for a processor, where SFT is applied, is also
important. Experiments with the programs generator and fault
injection are presented and goals for future work are identified
on that basis.

Keywords—Software Fault Tolerance, SFT, Processor, Fault
Injection, Electro-mechanical Systems, Functional Verification.

I. INTRODUCTION

In several areas, various mechanical applications are con-
trolled by their electronic controllers, for example, medical
equipments or aerospace systems. This systems are usually
called Electro-mechanical or Cyber-physical Systems [1]. Elec-
tronic controllers are often implemented by processors or, in
the case of complex systems, Multi-Processors Systems-on-
Chip (MPSoCs) are used. Controllers can be also implemented
by Field Programmable Gate Arrays (FPGAs) [2] which are
becoming wider used.

Only FPGAs are in the scope of our research, as we are
focused on fault-tolerant systems implemented in FPGA and
their evaluation by fault injection. FPGAs are composed of
Configurable Logic Blocks (CLBs) that are interconnected by
a programmable interconnection net. Every CLB consists of
Look-Up Tables (LUTs) that realize the logic function, a
multiplexer and a flip-flop. The configuration of CLBs and
of the interconnection net is stored in SRAM memory. The
problem from the reliability point of view is that FPGAs
are sensitive to faults caused by charged particles [3]. These
particles can induce an inversion of a bit in the configuration
SRAM memory of an FPGA (or directly to its internal flip-
flops) and this may lead to a change in its behaviour. This
event is called the Single Event Upset (SEU).

The evaluation platform for testing fault-tolerance method-
ologies based on FPGAs in the context of electro-mechanical
applications was presented in our previous paper [4]. This
evaluation platform is composed of a robot, which represents
a mechanical part, and its electronic controller. It is possible to
apply various fault-tolerance methodologies on this controller

and evaluate the impact of injected faults, not only on the
electronic part, but also on the behaviour of the mechanical
robot. In our future work, we intend to use the processor or
MPSoC implemented in FPGA as an experimental electronic
controller. This paper is first step to achieve this goal. The
evaluation platform for testing fault-tolerance methodologies
targeted to processors, especially the software implemented
fault-tolerance, is presented in this paper.

The paper is organized as follows. The related work con-
nected to the processor reliability is summarized in Section II.
The goals of our research, using functional verification for
evaluating software fault tolerance can be found in Section III.
A detailed description of the generation process of programs
for a processor implemented as software fault tolerant is avail-
able in Section IV. Results of experiments with generated fault
tolerant programs are in Section V. Future work connected to
our research can be found in Section VI. Finally, the results
are summarized in Section VII.

II. RELATED WORK

In general, there are two ways on how to harden processors
against faults: (1) Hardware Fault Tolerance and (2) Soft-
ware Fault Tolerance, also known as Software Implemented
Hardware Fault Tolerance. A fault-tolerant processor archi-
tecture is presented in [5]. This architecture is based on
inserting a checker unit in front of the processor commit
stage. The checker unit re-executes both computation and
memory/register field reads. Whenever an error is detected,
the checker is assumed to be fully reliable and fixes the error,
then commits results, flushes the processor and restarts it at
the next instruction. Special techniques for soft-core processors
running on FPGA are also presented in the literature. In [6],
an overview of commonly used fault tolerant techniques based
on FPGA which can be used in the context of processors is
presented. The authors discuss Triple Modular Redundancy
(TMR) architecture, Duplex architecture and the use of Partial
Dynamic Reconfiguration (PDR). The use of PDR is also
presented in [7] and a fault tolerant approach on Look-up Table
(LUT) level is presented and the technique is evaluated on a
RISC processor. As mentioned above, hardware redundancy is
not in the scope of this paper and we focus on the software
fault tolerance.

A. Software Fault Tolerance
In our research, we are focusing on transient faults caused

by SEUs. Transient faults are errors that occur unpredictably
due to charged particles or electro-magnetic interferences.
We did not solve these problems classically by additional

2015 Euromicro Conference on Digital System Design

978-1-4673-8035-5/15 $31.00 © 2015 IEEE

DOI 10.1109/DSD.2015.107

284

hardware (hardware redundancy), but we used techniques that
ensure correct behaviour by the software (time or information
redundancy). One of the possible ways that can be used in
order to deal with such errors, is Software Fault Tolerance
(SFT). It is sometimes used as extra protection of the soft-
ware. SFT is a commonly used technique which ensures the
continuous availability of service while maintaining the desired
performance and safety of the software in case faults. Fault
Tolerance (FT) is generally very important in safety-critical
applications. SFT can be divided into several levels that ensure
availability and data consistency of the application.

In the case that we do not count software without fault
tolerance, four levels [8] of SFT exist:

1) Automatic detection and restart,
2) Level 1 + checkpoints, logs and initial state recovery,
3) Level 2 + persistent data recovery,
4) Continuous operation without any interruption.

Level 1 uses mechanisms that can detect an error in the
software. This level of SFT utilizes Error Control Codes (ECC)
through which the software is able to detect errors and protect
itself against faults. Level 2 adds to the previous level the pos-
sibility of storing the internal state of the application process.
Storing takes place in the form of periodic checkpoints, where
the critical volatile data are saved. Level 3 uses an additional
backup disk on which the persistent data of the application
is replicated. The backup data are consistent with data in the
application process. In case of error detection, the application
is recovered from the backup disk.

Level 4 is the last level of SFT in which an interruption
does not occur after an error and recovery is masked. At this
level, there are frequently used replication techniques such
as process replication, N-version software or information and
time redundancy. This level of SFT is generally referred under
the term software redundancy [9]. This is typical for safety-
critical real-time applications. Availability and data consistency
of the application are on the highest possible value for this
level than for previous levels. Software redundancy is typically
based on additional instructions which are added extra into the
original application. There are two possibilities on how the
software redundancy can be performed:

• by hardening the data,
• by hardening the control flow.

The first method uses operation and information redun-
dancy which leads to duplication of instructions, procedures
or programs. There are three general characteristics for this
method. First, the memory space for the original program is
at least two times larger in the modified program. Second, the
computation time of modified program is two times slower
than the original program. Third, the programmer must follow
specific rules for programming data structures and statements.

The second method uses special techniques for hardening
a microprocessor-based system against errors of control flow.
These errors cause changes in instructions (it does not modify
only data as previous errors) and thus unexpected fetch and
execution of the instruction by the processor. In [9], many
techniques for tackling these errors are described. Because
SEUs invade memory elements, we focus on the first method
of hardening.

In the following sections, we will propose our approach
based on time and information redundancy through triplica-
tion of instructions with the same values stored in different
registers.

III. THE GOALS OF THE RESEARCH

The main goal of research presented in this paper is the
evaluation of Software Fault Tolerance on a processor running
on an FPGA, also called a soft-core processor. Our plan is
an automatic generation of programs for a processor where
software fault tolerance is applied and then the impact of fault
by fault injection into memory cells of an FPGA is evaluated.
Precise evaluation is not possible without using some kind of
automation which is the main reason why we decided to use
a technique called Functional Verification.

The functional verification [10] is the process of verifying
that a model of the system, also called Device Under Test
(DUT), complies with the specification by monitoring inputs
and outputs in a simulation. Moreover, the DUT outputs are
compared to the outputs of the reference model that is typically
implemented by a verification engineer or a designer that did
not implement the DUT. On the basis of comparing the outputs
a discrepancy between the two models can be detected and
thus an error in the systems can be discovered. In order to be
able to inject faults into the FPGA while performing functional
verification, we must carry out the verification directly in the
FPGA (not in the simulation as is usual). Advantageously we
can use and modify hardware accelerated verification that uses
an FPGA as the acceleration board. An example of such an
accelerator, framework HAVEN [10] can be noted.

The main principle of using functional verification of a
processor running on FPGA for evaluating software fault
tolerance is shown in Figure 1. Apps Generator is needed
for generating fault tolerant programs for a processor. Not
only is the quality of fault tolerance required, but a functional
coverage which is ensured by generating a sufficiently large
set of programs too. DUT Platform is the main component
which contains a processor where the generated programs are
executed. When we need Fault Injection for fault simulation
it is possible to run DUT platform on an FPGA, but for the
functional coverage measures of generated sets of programs
an FPGA is not required. Reference Model and Scoreboard for
detecting differences in processor output can also be identified.

������ ��	�
��

��
�

����
��	���
��	

�������
����

���������
�
�

�

������

������	����� ��

�����!��� �""��

�	���
��

Fig. 1. The overview scheme of using functional verification for evaluating
software fault tolerance.

285

IV. FAULT-TOLERANCE PROGRAMS GENERATION

In Section II, we chose the method of SFT for hardening
the data against SEU errors. The idea is based on information
redundancy which is added into the assembly instruction level.
In our previous work [4], our approach of universal stimuli
generation that we use in this work in a convenient way was
presented. Our stimuli generator is used for the purpose of
generating fault-tolerant assembly programs which are immune
against SEU errors. We use a modification of the technique
of instruction duplication which is based on triplication of
instructions. Although Triple Modular Redundancy (TMR) is
used predominantly in hardware, we used principles of TMR
in software. We have implemented software Triple Instruc-
tional Redundancy (TIR) which is an analogy of TMR in the
hardware. Verifying fault-tolerance effectiveness of programs
is performed by an injector for simulation of SEU errors which
modifies data using suitably positioned instructions. To our
best knowledge, practical implementation of TMR in software
which concurrently verifies fault-tolerance using simulation of
SEU errors in the software does not exist in the literature.
In the following text, the whole process of generating TIR
programs, including the injection, is presented.

A. Triple Instruction Redundancy

TIR has the same scheme (see Figure 2a) as TMR, but it
operates on the software level of program instructions. In the
figure, I1-I3 (instruction elements) are instances of the same
instruction, V1-V3 are majority voters for the results obtained
from each instruction and interconnections determine the binds
between instruction results and voters for evaluation of the
majority. Our focus is on fault-tolerance in the registers of the
processor, therefore, three voters are needed for conservation
of error-less behaviour. In every cycle of the processor, an
SEU may occur, therefore, three voters have to be placed
after each instruction element. If we focus on fault-tolerance
in data memory, only one voter can be used, because voters
typically work with register data which cannot be damaged in
data memory orientation.

In Figure 2b, the example of TIR is shown. Every I1-I3
element of TIR is the carrier of value (register) for the in-
struction result. Each instruction I1-I3 cannot use all registers,
because they would rewrite their results. As can be seen, the
I1 element has a wrong value after the instruction execution.
This TIR mechanism is able to recover from SEU error. The
voter on the instruction level performs a comparison operation
which writes into the same register as the instruction element.

��

��

��

��

��

��

�

��

��

��

��

��

	
 �

Fig. 2. a) Principle of TIR architecture with 3 voters and b) its example.

B. Simulation of SEUs Injection

Simulation of SEU errors in software is performed by
inserting an instruction in a specific position in the program.
Through instruction generation without TIR mechanism we
are able to simulate SEUs that may occur between the voter
and instruction element or between instruction element and the
voter. The main idea is to generate an instruction which writes
into a register after the execution of instruction elements or
voters. The result of this injection is the rewriting of exactly
one register. This operation is equivalent to the single event
upset. These instructions can be generated in the program
with a certain probability, therefore, more SEUs may be
injected into the program in different positions. The example of
simulation of the SEU injection in an assembly RISC program
between instruction elements and voters is shown in Figure 3.

��

��

��

��

��

��

���

�����	
�����
����
������	
������
����
������	
������
����
�������������	�
�
����������������
����
����
����������������
����
����
����������������
����
���
���
������
�����
���
������
������
����
������
������
����
�

��
��
��

�
�
 �
 �
 �
!
��
��
��
"""

Fig. 3. Example of simulation of the SEU injection.

C. TIR Programs Automatic Generation

An automatic assembly code generation is based on the
universal principle of generation presented in [4]. The gener-
ator is based on two specific input structures which define a
format of generated data (Problem Description) and restrictions
and conditions (Constraints) and on how the data have to be
generated in order to be valid for a specific system. For the
TIR definition, each syntax of instruction of the processor has
to be triplicated in its definition in the Problem Description
structure and has to be also followed by three comparison
instructions representing the voters. The instructions which
do not write any values into registers, do not have to be
secured by TIR and their definition is described only by their
real syntaxes. Constraints structure contains commands which
ensure the valid generating of jumps and labels, memory
access, latencies, probabilities etc. For the TIR definition,
one additional constraint has to be created. This constraint
cares about the distribution of registers between TIR instances.
The process of program code generation starts with selecting
an instruction. Then the constraints for the instruction are
evaluated on the validity. If all constraints are satisfied, six
instructions are written to output in the case of TIR with three
voters. Various instructions put together the final fault-tolerant
program for the processor. SEU injection is simulated by
generating the instruction which contains only its real syntax.
The whole process of TIR program generation is illustrated
by a block diagram in Figure 4. We are able to generate
concurrently programs with and without a software fault-
tolerance TIR technique between them there is an equivalence.

286

��������
	�
���
����

���

���
�������

���
������

��
������������

�����������������

���
����������

���
����������

Fig. 4. The process of TIR program generation.

V. EXPERIMENTS AND RESULTS

According to the principle presented in Section IV-C, we
have defined both input structures (problem description and
constraints) which are needed for the automatic generation
of TIR programs for the Codix RISC processor. The most
interesting experiments from the perspective of evaluating
software fault tolerance are experiments with fault injection.
The principle of fault injection without using a real FPGA
is presented in Section IV-B. From measurement, we decided
to use TIR programs with 100 instructions per program for
our next experiment. The same number of TIR programs was
generated with n inserted faults where 0 < n ≤ 13. It
means, that we have n sets of TIR programs and the difference
between these sets is the number of injected faults into each of
the programs. This allow us to perform statistical experiments
where probability of failure is evaluated for each n. The
maximal value of n (13) was obtained experimentally, because
for a higher number of inserted faults the same probability was
achieved (100% of failure).

�
�

��
��

��
��

��
��

		
��

�

 ���

�

��

��

��

��

���

� � � � � � 	 �
 �� �� �� ��

���������	
����

	���
�����������

��� ���������������	�������	
����

Fig. 5. Bar graph showing the probability of system failure if n faults are
injected.

Measured statistical data are shown in Figure 5. It contains
n bars and each of them shows the probability of system
failure when n faults are injected. It can be assumed, based
on principles of TIR, that only one injected fault has no
apparent effect on processor output. This is confirmed by our
experiments because the Figure show 0% of single faults that
lead to the failure. The main contribution of these experiments
is a statement that functional verification of a processor can be
effectively used for the evaluation of software fault tolerance.
The conclusion forms the root for our future work base on the
use of functional verification with a processor on a real FPGA.

VI. FUTURE WORK
There are two main goals in our future work. The short

term goal is the direct continuation of this paper which means
the use of the designed architecture for testing Software Fault
Tolerance on a real FPGA by the fault injection. It was
mentioned in Section I that our main research goal is focused
on testing fault tolerance methodologies based on FPGA in
the context of electro-mechanical systems [4]. This is our long
term goal and in the context of this paper means connecting
processor and software fault tolerance with electro-mechanical
systems.

VII. CONCLUSION

In this paper, a new approach to the evaluation of Software
Fault Tolerance which is based on functional verification of
processor is described. The main principle of SFT is shown.
We have focused on software redundancy. We presented the
principle of automatic generation of SFT programs. These
programs were evaluated by using the simulation-based variant
and measured statistics were shown in graph. Our future work
is based on processor implementation on real FPGA. This
paper belongs to our long term goals which are focused on
evaluation of FPGA-based fault tolerant methodologies in the
context of electro-mechanical applications. In this area, we
plan to use a processor implemented in FPGA as an electronic
controller of the mechanical system and evaluate SFT in a real
application.

ACKNOWLEDGMENT

This work was supported by the following projects:
EU COST Action IC1103 ”MEDIAN”, National COST
LD12036, project Centre of excellence IT4Innovations
(ED1.1.00/02.0070), and BUT project FIT-S-14-2297.

REFERENCES

[1] S. Khaitan and J. McCalley, “Design techniques and applications of
cyberphysical systems: A survey,” Systems Journal, IEEE, vol. PP,
no. 99, pp. 1–16, 2014.

[2] D. Macii, M. Avancini, L. Benciolini, S. Dalpez, M. Corra, and
R. Passerone, “Design of a redundant fpga-based safety system for
railroad vehicles,” in 17th Euromicro Conference on Digital System
Design (DSD), 2014, Aug 2014, pp. 683–686.

[3] M. Ceschia, M. Violante, M. Reorda, A. Paccagnella, P. Bernardi,
M. Rebaudengo, D. Bortolato, M. Bellato, P. Zambolin, and A. Can-
delori, “Identification and classification of single-event upsets in the
configuration memory of SRAM-based FPGAs,” Nuclear Science, IEEE
Transactions on, vol. 50, no. 6, pp. 2088–2094, 2003.

[4] J. Podivinsky, O. Cekan, M. Simkova, and Z. Kotasek, “The evaluation
platform for testing fault-tolerance methodologies in electro-mechanical
applications,” in 17th Euromicro Conference on Digital System Design
(DSD). IEEE, 2014, pp. 312–319.

[5] A. Bouajila, T. Sommer, J. Zeppenfeld, W. Stechele, and A. Herkers-
dorf, “A fault-tolerant processor architecture,” in 22nd International
Conference on Architecture of Computing Systems (ARCS), 2009, March
2009, pp. 1–6.

[6] J. S. Patel and D. H. Shah, “Different types of fault tolerant techniques
of softcore processor,” I-journal, 2014.

[7] A. Vavousis, A. Apostolakis, and M. Psarakis, “A fault tolerant approach
for fpga embedded processors based on runtime partial reconfiguration,”
Journal of Electronic Testing, vol. 29, no. 6, pp. 805–823, 2013.

[8] Y. Huang and C. Kintala, “10 software fault tolerance in the application
layer,” 1995.

[9] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante,
Software-Implemented Hardware Fault Tolerance. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2006.

[10] M. Šimková, Hardware Accelerated Functional Verification. Lambert
Academic Publishing, 2011.

287

Paper III

Verification of Robot Controller
for Evaluating Impacts of Faults in
Electro-mechanical Systems

PODIVÍNSKÝ Jakub, ČEKAN Ondřej, LOJDA Jakub, KOTÁSEK
Zdeněk
In: Proceedings of the 19th Euromicro Conference on Digital Systems Design. Limassol:
IEEE Computer Society, 2016, pp. 487-494. ISBN 978-1-5090-2817-7.

83

Verification of Robot Controller for Evaluating
Impacts of Faults in Electro-mechanical Systems

Jakub Podivinsky, Ondrej Cekan, Jakub Lojda, Zdenek Kotasek
Faculty of Information Technology, Brno University of Technology

Bozetechnova 2, 612 66 Brno, Czech Republic
Tel.: +420 54114-{1361, 1361, 1360, 1223}

Email: {ipodivinsky, icekan, ilojda, kotasek}@fit.vutbr.cz

Abstract—Functional verification is a modern approach to
verifying that a digital system complies with its specification.
The verification environment for functional verification of robot
controller which searches path for the robot through a maze is
presented in this paper. This verification environment is designed
according to UVM (Universal Verification Methodology) princi-
ples. As an interesting feature of the verification environment we
see the use of a mechanical part (robot in a maze) simulation.
The article describes the use of the verification environment for
evaluating impacts of faults in electro-mechanical systems. It will
serve as a tool for automating the fault tolerance evaluation of
electro-mechanical systems and together with the fault injector
will form the basis of the verification platform in the future. The
experimental results gained from the verification process are also
presented in the paper.

Keywords—Functional Verification, Robot Controller, Electro-
mechanical Systems, Fault Tolerance, Maze Generation.

I. INTRODUCTION

Digital systems play an important role in our everyday
lives. They are widely used in industry, medicine and other
safety critical sectors. Not only the loss of a huge amount of
money, but also the loss of human lives may occur in case of
their failure. The current trend is that the complexity of digital
systems rises, which leads to an increased susceptibility to
faults. It is possible to specify two main sources of faults [1]:
1) Design faults (bugs) are always the consequence of an in-
correct design, an ambiguous specification or misinterpretation
of the specification and 2) Hardware/physical faults (defects)
which arise during manufacturing or during system operation.

The approach which deals with design faults is called func-
tional verification [2] which currently has an irreplaceable po-
sition in the development cycle of digital systems. Functional
verification checks whether a hardware system satisfies a given
specification. The main purpose is to find as many design faults
as possible before the system is deployed. The main principle
of functional verification is to compare the outputs of verified
circuits with those of the reference model. Different coverage
metrics are defined in order to assess that the design has
been adequately exercised. These include code coverage and
functional coverage. Code coverage gives information about
how many lines and how many times expressions and branches
are executed. This coverage is collected by the simulation tool.
Functional coverage is defined by the user. The user defines
the coverage points for the functions to be covered in a verified
circuit (DUT - Design Under Test) and it is completely under
user control. Moreover, standard languages, methodologies
and libraries were defined for functional verification. The
most commonly known are the SystemVerilog IEEE language

standard, Universal Verification Methodology (UVM) [3] and
the open-source UVM library (with all the basic components
of verification environments).

The techniques called Fault avoidance or Fault toler-
ance [4] deal with the second type of faults called hard-
ware/physical faults. Fault avoidance is mainly obtained by
the use of radiation hardened technologies, improved design
of storage elements or asynchronous circuits. Fault tolerance
is the ability of a system to continue performing its correct
function even in the presence of unexpected faults. There have
been many fault-tolerant methodologies inclined, among oth-
ers, to Field Programmable Gate Arrays (FPGAs) developed
and new ones are under investigation [5], because FPGAs
are becoming more popular due to their flexibility and re-
configurability. The second reason why so many techniques
are inclined to FPGAs is their sensitivity to faults and ability
to be reconfigured in the case of fault occurrence. FPGAs are
composed of configurable logic blocks [6] which are connected
by programmable interconnection. The configuration is stored
as a bitstream in SRAM memory. The problem is that FPGAs
are quite sensitive to faults caused by charged particles [7].
This particle can induce inversion of a bit in bitstream and
this may lead to a change in its behaviour. This event is called
Single Event Upset (SEU).

It is important to test and evaluate these techniques. Various
approaches to the evaluation of fault tolerance exist, some
of them are performed on a theoretical level, for example,
a simulation method for SEU emulation is presented in [8].
Another approach is in the use of fault injection directly to the
design implemented in FPGA. Special evaluation boards are
developed for these purposes, one of them is presented in [9]
or [10]. The systems implemented as fault-tolerant very often
consist of two parts - an electronic one and a mechanical one.
The mechanical part is controlled by its electronic controller. It
can be stated that such areas exist in which electro-mechanical
applications are implemented as fault-tolerant - aerospace and
space applications can serve as an example. The platforms
for the verification of fault-tolerant qualities that allow us to
just chceck the resilience of the electronic component have
been used until now. We feel that for electro-mechanical
systems the approach must be different. It must be possible
to check what are the reactions of the mechanical component
if the functionality of its electronic controller is corrupted by
external attacks.

The basic concepts and the first version of evaluation
platform were presented in our previous work [11]. The first
version of the evaluation platform is composed of three parts:

2016 Euromicro Conference on Digital System Design

978-1-5090-2817-7/16 $31.00 © 2016 IEEE

DOI 10.1109/DSD.2016.38

487

1) robot controller running on FPGA, 2) simulation of the
robot and its environment running on PC and 3) previously
developed fault injector [12] running on PC. Based on experi-
ments with our platform we realized the necessity to automate
the process of a fault impact evaluation. We found functional
verification as an appropriate technique for this purpose.

The proposed process of the fault impact evaluation, which
is shown in Figure 1, is divided into three phases. In the
first phase, we use the simulation-based functional verification
where the VHDL description of the electronic robot controller
is used as the DUT. In this phase, the correctness of the
robot controller is evaluated. The second phase consists of
the verification of the robot controller implemented into FPGA
with the scenarios obtained during the previous phase and uses
a previously implemented fault injector. The analysis of the
faults which corrupted the mechanical part is the goal of the
third phase. The development of the verification environment
and the development of a reference model for the electronic
control unit (the robot controller) are the first steps towards
this process. Both of these activities are described in detail in
this paper. The second step is to implement DUT to FPGA
and its interconnection with the simulation environment of
robot. The architecture of the verification environment with
the robot controller implemented to FPGA is also presented in
this paper. The experiments which correspond with the first and
the second phases of the proposed process are also important
parts of our work.

YES

Functional Verification of

the Original Design

Verification

Environment

Reference

Model

List of
Perspective

Scenarios

Functional

Error?
Repair

Functional Verification of Electronic .

Part with Fault Injection

 List of Faults with an Impact
on the Electronic Part

 Monitoring Impact of the Critical Faults

on the Mechanical Part

Mo

NO

cc
1

. p
h

a
s
e

2
. p

h
a

s
e

3
. p

h
a

s
e

Fig. 1. The flow of phases in the digital systems verification.

The main output of the first phase is a test on whether the
robot controller works correctly according to the specification.
It is important because we have to ensure that the robot
controller does not contain any functional errors in the imple-
mentation. It is also important to point out that in this phase
we acquire a set of verification scenarios (different mazes with
different start and goal positions for robot movements) that will
also be used in the subsequent phase. One verification run is
represented by the robot moving through the maze from the
start position to the goal position.

The outputs of the second phase are previously verified
verification scenarios supplemented by information about in-
jected faults and its impact on the electronic part. The injected
faults are divided into two categories, faults with no impact
on electronic part and faults which cause mismatches on
the output of the electronic part. Various strategies of fault
injection may be used in this phase (e.g. one fault for one
verification run, multiple faults in the same functional unit or
multiple faults in different functional units).

This paper is organized as follows. The architecture of the
verification environment for the first phase is described in Sec-
tion II. Section III describes evaluation platform architecture
used in the second phase. The principles of generating verifi-
cation scenarios are described in Section IV. Section V shows
experiments and results corresponding with the first and second
phases of the evaluation process. Section VI summarizes the
results and proposes our plans for future research.

II. THE FIRST PHASE - VERIFICATION ENVIRONMENT
ARCHITECTURE

The verification environment architecture, its basic com-
ponents and used techniques are described in this section.
First, UVM based verification environment for one verification
scenario (one maze, start and goal positions) is presented,
which forms the core of an extended verification environment
for multiple verification scenarios evaluation.

A. Verification Environment for Single Verification Scenario

The verification environment for the robot controller is
designed according to UVM, so it corresponds with current
trends and requirements. The basic architecture of the verifi-
cation environment with main components is shown in Figure
2 [13]. It should be noted that the verification environment is
connected with the robot in the maze (the robot in the maze is
simulated in simulation environment Player/Stage [14]). The
robot in the maze is controlled by the outputs of the robot
controller (DUT) while the outputs of the robot in the maze
(information from sensors) are inputs to the robot controller.
The information whether DUT satisfies (or does not satisfy)
specification and coverage report for the verified scenario are
the outputs of the verification environment. These are the
components of the system together with their description:

• The robot controller under verification implemented
in VHDL is able to search a path through a maze.
Detailed information is available in [15].

• The golden (reference) model implemented in C/C++
according to the same specification as the robot con-
troller performs the same operations as DUT. The
reference model is described in detail in [13].

• The sequence is the component which receives data
from sensors placed in the robot in the maze. Received
data (information about barriers in four neighborhoods
and the position in the maze) are transformed to the
inputs of the verification environment.

• The driver sends input values (data from sensors) to
reference model and DUT (robot controller).

• The monitor reads the outputs from DUT (speed of
the robot in the maze) and forwards them to the
scoreboard and to the robot in the maze which moves
according to these values.

488

• The scoreboard compares the outputs of the monitor
and reference model on equality and checks mis-
matches on the outputs. The detected mismatch shows
that there are differences between DUT and reference
model outputs.

���������	
���

�����
�����

������������

���������������

����
����

���
������

���
������� ��

�
��

��
��

�

��

���
���������

����

���
���������

Fig. 2. Verification environment for single verification scenario.

B. Extended Multiple Verification Scenarios Evaluation

The presented verification environment is not able to eval-
uate multiple verification scenarios automatically and we need
the extension of the process to be automated. The extension
of the verification environment is presented in this section.
The verification environment is used as one of several com-
ponents. Other components such as maze random generator
are also important. The design of the complete extension is
shown in Figure 3. The components, their inputs, outputs and
connections are shown in the figure and their description is as
follows:

• The maze generator allows us to generate a sufficient
number of mazes with respect to specified parameters
(size, width of corridor etc.) in order to achieve
the required coverage. In our work, we use a maze
generator based on our universal generating principle
described in Section IV.

• The robot simulation replaces the real robot because
we do not have a real one. As mentioned above, we use
the Player/Stage [14] simulation environment which
provides features that we need for our research.

• The step counter calculates the number of steps that
the robot must perform to pass from the starting to the
goal position. This information is important for proper
operation of the UVM verification environment.

• The UVM verification environment is the core of the
extended evaluation.

• The verification scenario allows us to use it in the
second phase which uses a fault injector (Figure 1). A
certain part of the stored verification scenario is also a
report about the coverage which was obtained by this
scenario.

• Merge the coverage achieved by the single verification
scenario is important to obtain a final coverage report
gained by stored sets of verification scenarios.

Figure 3 also shows the outputs of the first phase of the
fault impact evaluation process presented in Section I which
are Set of Verification Scenarios and obtained Total Coverage
Report.

������������	�

	�	����
�����	� ������	�����

����������	���������	 �����������	������

��������	�������

��	��

�	�����	�������

��	��

����	��
����������	��
�������	�

�������	
�����	��

����
����������	��

�����	�
���

Fig. 3. Extension of verification environment for multiple evaluation.

III. THE SECOND PHASE - EVALUATION PLATFORM
ARCHITECTURE

The second phase of the evaluation process is functional
verification of the design implemented to the FPGA. Moreover,
the fault injection into the FPGA is performed in this phase.
The experimental platform was designed for these purposes
which is composed of a few components running on a com-
puter or on an FPGA evaluation board:

1) software part of verification environment for the robot
controller running on computer,

2) software simulation environment for robot simulation
(Player/Stage) running on computer,

3) robot controller implemented to FPGA, and
4) external fault injector [12] running on a computer

which allows us to simulate real faults in FPGA.

The overall experimental platform interconnection is shown
in Figure 4. The connection between a computer and an FPGA
is realized by JTAG and Ethernet. JTAG interface is used for
FPGA programming and the software and hardware part of
verification environment are connected through Ethernet. The
fault injector also uses JTAG for placing faults into the FPGA
configuration memory. The description of the architecture of
the verification environment and of the fault injection process
follows.

A. Architecture of FPGA-based verification environment

For these purposes, the FPGA-based verification environ-
ment which is displayed in Figure 5, is derived from the
version created in the first phase. The architecture of the
verification environment is divided into two parts. The first
part is the simulation environment of a robot in the maze

489

��������

	�
�����
����
�

����
�������

�����������

�����

��������

�����
������
�
�� !
"���#

�� !
���$
%��#����

����
�

����
�������

�����������

����

��$�����

&�'��

��
��(�

Fig. 4. The structure of the experimental platform.

which is controlled by the robot controller implemented to
FPGA. The communication between the software and the
hardware part is accomplished using a proprietary interface
(more details about the communication are provided in the
subsequent subsections). This part operates autonomously, the
robot controller receives information from the robot sensors
which are produced by the simulation environment and sends
them to the FPGA through Output Wrapper. On the other
hand, speed and direction of movement are sent through Input
Wrapper from the robot controller implemented in FPGA to
the robot in a simulation.

The second part is the UVM-based verification environ-
ment which operates as an observer without direct intervention
to data transfers between the robot controller and robot in
a simulation environment. The verification environment just
checks the correctness of transferred data which are resent
to the verification environment as can be seen in Figure 5.
Information from sensors is received in the Sequence com-
ponent where they are transformed to transactions and trans-
ferred to the Golden Model which produces reference output
data. Speed and direction of movement are received in the
Monitor component and sent to the Scoreboard component.
The Scoreboard compares received data with reference data
obtained from Golden Model.

Both parts are synchronized by signals sent from the
Sequence and Monitor components to the robot simulation
environment. These signals indicate that the verification en-
vironment is ready to observe robot movement in the maze.

Presented FPGA-based verification environment evaluates
only one verification scenario, but automated evaluation of
multiple verification scenarios with fault injection is needed.
The second phase eliminates the need for maze generation
because mazes pregenerated and verified in the first phase
are used. Conversely, there are new steps as a consequence
of implementing robot controller into FPGA and the creation
of an autonomous connection between the FPGA and robot
in the maze. The first necessary step is programming the
FPGA through JTAG interface which must be done before each
verification run. This step ensures that the correct functionality
of the robot controller is verified and is without faults. Pro-
gramming FPGA clears BRAM memory where a map of the
maze is continuously stored which is important when the maze
is changed.

The next step is launching the robot in a simulation and
verification environment which provides enable signals to the
simulation environment when it is ready to start monitoring.
Then, the robot starts to search for paths through the maze

��������	
�����

�����
���

���
�	���	

���
�
���
	 ��

�
��

	
��

�
	�

���
���������
����

���
��������	

	
�
��
�
����������
���������
��
����	
������

������
������
	

�
��
 �

��
!
	�

�	

��
 �

��
!
	�

�	

Fig. 5. The architecture of the FPGA-based verification environment.

which is the proper time for fault injection. It should be
noted that fault injection proceeds according to the selected
strategy. Our fault injector allows us to inject faults into
specified functional units which can be advantageously used.
For example, we can inject single faults during one verification
run into the specified functional unit, multiple faults into
the specified functional unit or inject multiple faults into
multiple functional units. After fault injection, the verification
run is finished or timeout is expired and then results of the
verification are recorded into the verification report.

B. Communication Between Software and Hardware Part

Communication between the robot controller implemented
on the FPGA (hardware part) and robot in a simulation
environment (software part) is accomplished through Input
and Output Wrapper. We chose ML506 development board
[16] with Xillinx Virtex 5 FPGA as the hardware platform.
This board offers various peripherals and some of them can
provide communication with a PC (e.g. PCIe, UART, USB
or Ethernet). We decided to use Ethernet communication
because of its versatility. The chip implementing the Ethernet
physical layer is connected to the FPGA and user design
which implements higher layers of the Ethernet protocol stack
that can communicate with this chip. However, we do not
implement a full Ethernet protocol stack, but use an existing
implementation presented in [17].

Figure 6 shows the architecture of the communication
layer. Although we use an existing implementation of Ethernet
communication we must solve a problem with different clock
signals on receive (RX) and transmit (TX) interfaces. These
clock signals are generated by a physical layer chip and the
designer is not able to modify the frequency and phase offset.
We use FIFO memory as an input and output buffer with
different writing and reading clock signals. This solves not
only the problem with clock domain crossing, but also the
problem with data storing before their processing. Received

490

data from Ethernet are buffered in the input buffer and data
ready to be sent are buffered in the output buffer. We use
FIFO as the interface of DUT which allow us to exchange
a communication layer with another one which uses FIFO
buffers.

�������	

�����

���

�����

��������

��������

������������

���

���

��

���

��

���

��

��

��
� �

��
!�

��
��

�
��

�

��

	��"

!�

	��"

�����

�����		��

#��!$
��
����

!�
����

�����

%� ��
#&�&'$

'�����

%� ��
#&�&'$

'�����
)������

�����
)������ &���
*����+
,
����

����� ���

-
���

�
��

�.

�/

�/

Fig. 6. The architecture of communication between SW and HW part.

C. Evaluation of Reliability by Fault Injection

The simulation of the effects of faults in the FPGA can be
done by a direct change of the configuration bitstream which
is loaded into the configuration memory. For this purpose, we
implemented a fault injector [12] which allows us to prepare
the bitstream for our FPGA and also modify single or multiple
bits of the bitstream in order to simulate single and multiple
faults. As a consequence, the design placed in the FPGA
(determined by the configuration data) is similarly influenced
by a real fault which strikes the hardware architecture of the
FPGA in a real environment.

The injector is based on the SEU generation outside of the
FPGA (in PC), so it is not targeted to a specific FPGA board
(testing was performed on the ML506 card with the Virtex 5
FPGA technology). The original and the modified bitstream
is transported through the JTAG interface. The process of the
SEU generation is divided into four steps: 1) specifying the
location of the fault injection, 2) reading the related part of
the configuration bitstream, 3) the SEU generation (i.e. the
inversion of the specified bit of the bitstream), and 4) applying
the bitstream using Partial Dynamic Reconfiguration (PDR)
without stopping the FPGA.

The implemented fault injector is able to inject a fault into
a specified bit of bitstream. If we are able to find a relation
between bits of bitstream and functional units, we can inject
faults into the specified functional unit. For this purpose, the
analysis of FPGA can be done by RapidSmith [18] tool. This
tool identifies the bits of bitstream which are related with a
specified area on the FPGA. Functional units placement on
the FPGA is done by PlanAhead [19] tool, then we know
where each of the functional units are placed. This process
allows us to inject faults into specified functional units during
our experiments. Unfortunately, the process actually finds only
the bits of the bitstream corresponding with Look-up tables
(LUTs).

IV. MAZE GENERATION

Maze generation is a well known and explored area for
which a considerable number of algorithms generate simple
or sophisticated mazes that exist [20]. The vast majority
of algorithms operate in a two-dimensional space, keep the
current state and can constantly change cell values of a maze in
time. These algorithms are highly unsuitable for our proposed

architecture of the universal generator [21], because the output
of the generator (a line of the maze) cannot be determined
in one step, therefore, it is determined gradually by many
factors and dependencies between different cells of the maze.
However, an algorithm exists that is based on a binary tree and
a particular line of the maze can be determined only from the
previous one. This principle is completely satisfactory for our
generator and the output maze is fully sufficient for our needs.

The basic principle of the binary tree algorithm is shown
in Figure 7. It starts from the basic matrix of the maze (a) in
which some cells are tightly specified - either the corner or
the wall. We represent the corridors by zeros and the walls
by ones. Cells marked with a question mark represent areas
that can take the value of 0 or 1, thus the corridor or the wall.
Inorder to maintain the continuity from any corner of the maze
to another, it is necessary to perform modification of the basic
matrix of the maze so that each two adjacent sides of the maze
must contain the corridor over its entire dimension (b). In our
case, we chose this corridor to the northern and the eastern
side of the maze. The final most critical task is to determine
the cells A, B, C, D which allows us to have the maximal
continuous maze (c).

0

0
00

0
0

0
00

?

?

??
??

??
??

??

000

000

000
1 1 1 1 1 1 1
1
1
1
1
1
1 1 1 1 1 1 1

1
1
1
1
1

1 1

1 1
DB

CA
DB

CA

000

000

000
1 1 1 1 1 1 1
1
1
1
1
1
1 1 1 1 1 1 1

1
1
1
1
1

1 1

1 1 0

0
00

00

000

000
1 1 1 1 1 1 1
1
1
1
1
1
1 1 1 1 1 1 1

1
1
1
1
1

1 1

1 1
1

1

1

1

a. b. c.
Fig. 7. The demonstration of a conversion of the basic matrix of the maze
for needs of the generator.

The original description of the algorithm [20] divides cells
of the maze in a line into groups of corridors bordered by
walls. For each group, an algorithm determines one entrance,
either in the northern or in the eastern part of the border. This
ensures the passage from the northern part of the maze to the
south and the same applies for the passage from the west to
the east. We transferred this principle into one line dependency
in the maze and the result is the following dependence. If a
cell A respectively C was randomly selected for the corner in
Figure 7.b, then the cell B respectively D will be a wall and
vice versa.

The architecture of the universal generator is based on two
input structures - the Problem Description and Constraints. In
this case, the Problem Description defines a set of values and
desired output format - zeros and ones. Constraints represent
restrictions based on the preceding paragraph which are re-
quired for the continuous generation of the maze. The samples
of simplicity of both structures, without further explanation,
are available below. The structures are sufficient to generate
the maze with 7x7 cells.

----- Problem Description -----

substitute {
A,C { "0"|"1" }
B,D { "0" }

}

491

syntax {
odd { "1A1C101" }
even { "10B0D01" }

}

----- Constraints -----

constraints {
nlines(7,7)

ifthen(A("0"),B("1"))
ifthen(C("0"),D("1"))

start("1111111")
start("1000001")

useonly(odd)
afterinsert(odd,even)

end("1111111")
}

We continued in our previous research published in [11] by
this maze generation and we have shown another possible area
for our architecture of the generator. Any desired dimension
of the maze can be generated with minor modifications. In
order to use an assumption of the basic matrix of the maze,
it is necessary to choose the odd dimensions of mazes. In our
previous work, we were able to generate assembler programs
for RISC and VLIW processors [21] which is a completely
different type of input stimuli for the same generator.

V. EXPERIMENTS AND RESULTS

Performed experiments correspond to the activities of the
first and second phase of the fault impact evaluation process.

A. The First Phase

The outputs of the first phase are: 1) the electronic part
without bugs (robot controller), 2) the list of the used veri-
fication scenarios, and 3) achieved coverage. Figure 8 shows
three types of mazes which we used in our experiments. The
presented mazes differ in their dimensions, we chose 7x7,
15x15 and 31x31 cells. Examples of start and goal positions
are also shown in Figure 8. With the growing size of the
maze the number of steps that the robot must also go through
increases. The average number of the robot steps in various
types of mazes is shown in Table I. The main goal of the
experiment, including debugging the robot controller, was to
determine the optimal size of the maze and the number of
generated mazes (verification scenarios) which will lead to the
best code coverage.

TABLE I. AVERAGE NUMBER OF ROBOT STEPS

Maze size 7x7 15x15 31x31
Average number of steps 16 93 433

For the experiment, we chose the number of performed
verification scenarios equal to 10, 100, 200 and 500, for
which we monitored achieved code coverage. The numbers of
performed verification scenarios were the same for all types
of mazes, in total 1,500 verification scenarios were performed
with a variety of mazes. Various bugs were identified and

���������	�	�

��������	�	�

��
�

���

Fig. 8. Three types of mazes.

debugged during the verification process. We can state that
the robot controller operates according to its specification for
the performed 1,500 verification scenarios.

Experimental results are presented in Table II. It can be
recognized that the maximal achieved total code coverage is
91.85%. The missing percentage to an ideal 100% is caused
by the ”others” branches in the source code which are never
executed (which is correct), and also by some of the control
expressions that are used only when an abnormal situation
occurs (e.g. fault). The table also shows that a rising number
of verification scenarios does not increase the achieved code
coverage. It is probably because in one scenario multiple input
transactions are packed.

On the other hand, resizing the maze from 7x7 to 15x15
cells led to a slight increase of code coverage, suggesting the
effect of the maze. When increasing the size of maze to 31x31
cells, the coverage was not changed. Such studies show that
the 7x7 cells maze is too small for the next phase of fault
impact evaluation process. This trend is shown in a bar chart
in Figure 9 which shows the code coverage for different sizes
of mazes for 100 verification scenarios.

�����

������

������

������

������

	������

�
 	��	�
	�
	
������������������ ��������������� �������������������
��� �������������� !���"���������

Fig. 9. Code coverage for each type of mazes for 100 verification scenarios.

The results needed to perform the next phase of the fault
impact evaluation were obtained in the experiment. Faults
will be injected into the electronic controller during each
verification scenario in the second phase of evaluation. Each
verification scenario will be repeated several times and during
each run various faults or various sequences of faults will be
injected.

B. The Second Phase

The second phase in the proposed evaluation process
is targeted towards evaluating the correct function of robot
controller implemented into the FPGA. For this purpose fault
injection is used. No fault tolerance methodology implemented

492

TABLE II. THE EXPERIMENTAL RESULTS

of verification scenarios 10 100 200 500
Size of mazes 7x7 15x15 31x31 7x7 15x15 31x31 7x7 15x15 31x31 7x7 15x15 31x31

Statement coverage 93,54 % 93,70 % 93,70 % 93,54 % 93,70 % 93,70 % 93,54 % 93,70 % 93,70 % 93,54 % 93,70 % 93,70 %
Branch coverage 94,91 % 95,07 % 95,07 % 94,91 % 95,07 % 95,07 % 94,91 % 95,07 % 95,07 % 94,91 % 95,07 % 95,07 %

Expression coverage 81,33 % 81,33 % 81,33 % 81,33 % 81,33 % 81,33 % 81,33 % 81,33 % 81,33 % 81,33 % 81,33 % 81,33 %
Condition coverage 88,28 % 89,18 % 89,18 % 88,28 % 89,18 % 89,18 % 88,28 % 89,18 % 89,18 % 88,28 % 89,18 % 89,18 %

Total coverage 91,61 % 91,85 % 91,85 % 91,61 % 91,85 % 91,85 % 91,61 % 91,85 % 91,85 % 91,61 % 91,85 % 91,85 %

in the robot controller for these experiments was used and the
goals of the experiment are: 1) detailed reliability analysis of
the robot controller and its functional units, and 2) demonstra-
tion that the evaluation platform can be used for fault tolerance
evaluation.

Before explaining the details of our experiments, we must
introduce the robot controller which consists of various blocks,
whose function is described in [15]. The controller is con-
nected to the PC on which robot simulation environment
(SEPC) runs via the Interface Block. Through this block,
data from the simulation are received and in the opposite
direction, instructions defining the required movement of the
robot are sent back. The central block of the robot controller
is a bus through which the communication between blocks is
accomplished. The Position Evaluation Unit (PEU) calculates
the positions of the robot in the maze and provides them
to other units as coordinates x and y. The Barrier Detection
Unit (BDU) uses four sensors and provides information about
the distance to the surrounding barriers. The map updating
provided by the Map Unit (MU) is based on information about
the positions of the robot and the barriers vector. The Map
Memory Unit (MMU) stores the information about an up-
to-date map. Path Finding Unit (PFU) implements a simple
iteration algorithm for finding a path through the maze. The
mechanical parts of the robot are driven by setting the speed in
the required direction of the movement by the Engine Control
Module (ECM). The communication of functional units with
bus is accomplished through the bus wrapper (FU WB) and
controlled by the finite state machine (FU FSM).

As was mentioned above, faults can be injected in a way
which reflects various strategies. Similar experiments were
done in our previous work [11] but significant differences
in evaluation strategies are presented in this paper. We have
decided to perform 50 verification runs and inject one fault into
one functional unit (single fault) during one verification run
and to use the mazes of larger dimensions, the mazes of 15x15,
for this phase. The robot controller consists of 15 functional
units which leads to 750 verification runs and injected faults in
total. The task of the verification environment was to compare
the outputs of the robot controller and check the impact of
injected fault. Table III shows the number of verification runs
where the incorrect outputs of the robot controller were caused
by faults (percentage values are shown as well). The total
number of verification runs for each functional unit is 50
and the main reason for this is the time complexity of the
verification runs, because the robot has to go through the whole
maze.

The results of our experiments are shown in Figure 10 as
well. The bar chart expresses a percentage number of faults
with their impact on the robot controller. Horizontal lines in
the chart show minimum, average and maximum values. As
can be seen, some anomalies in the results of the experiments

TABLE III. EXPERIMENTAL RESULTS IN FUNCTIONAL VERIFICATION.
Unit Number

of fails
Fails in % Unit Number

of fails
Fails in %

bdu 40 80 mu wb 31 2
bdu fsm 19 38 peu 39 78
bdu wb 35 70 peu fsm 40 80
ecu 38 76 pfu 34 68
intercon 31 62 pfu wb 28 56
mmu 31 62 sif fsm 50 100
mu 25 50 sif wb 34 68
mu fsm 1 2

exist. These include results combined with three functional
units mu fsm, peu fsm and sif fsm. In the case of mu fsm,
it is apparently a low number of faults with an impact on
the correct function of the robot controller. Functional units
peu fsm and sif fsm represent a completely different situation,
the number of faults with impact is significantly higher than
for other units. That is why we repeated the experiments on
a higher number of verification runs (225 in this case) with
these functional units. Table IV shows additional verification
runs that was performed in order to analyse these anomalies
in detail. As can be seen, the additional results are closer to
the overall average.

�
��
��
��
��
��
��
��
	�

�
���

�

��

��

��

��

��

��
���
���
�	

�
�

�

���
���
��
��

���

���

��

Fig. 10. Experimental results in functional verification.

We have made the fault injection analysis of the robot
controller. We have found out that some blocks are more
prone to faults than others. As can be recognized in the chart
showing the results, the functional unit mu fsm is less prone
to faults than the other units. On the other hand, the units
peu fsm and sif fsm are the most prone units to faults. This
is especially important for future application of fault-tolerant
methodologies. A system designer obtains the information
which blocks needs more attention from a reliability point of
view.

The second finding is that we are able to use the functional
verification in conjunction with the fault injector to determine
the impact of faults on the electro-mechanical system. Our sys-
tem could be used to automate the evaluation of fault tolerance
methodologies after these methodologies are applied to the
electro-mechanical system (in our case the robot controller).

VI. CONCLUSIONS AND FUTURE RESEARCH

In this work, we introduced a verification environment
which shows the progress of our research. The verification

493

TABLE IV. EXTENDED EXPERIMENTAL RESULTS.
Unit Number of fails Fails in %
mu fsm 18 8
peu fsm 181 80.4
sif fsm 219 97.3

environment is the main part of our platform for evaluating
fault impact on the electro-mechanical system. The introduced
basic verification environment is able to evaluate a single
verification scenario and the creation of an extension which
allows automated evaluation of multiple verification scenarios
was presented as well. This automated evaluation uses the
maze generator based on our universal generator approach.
The verification environment for the second phase where the
DUT is implemented to the FPGA was also created. In the
proposed methodology, the verification environment acts as an
observer that checks data transferred between the electronic
and mechanical part.

Performed experiments correspond to the first and second
phases of a fault impact evaluation process. The output of the
first phase is the debugged electronic controller and the list
of verification scenarios for the next phase. During the second
phase, the reliability analysis was done by means of the fault
injection into the FPGA. The result is the ratio of faults that
caused an incorrect output of the electronic controller.

In our future research, we shall prepare experiments cor-
responding with the third phase of the proposed evaluation
process which checks reactions of the mechanical part, not
only of the electronic part. We must create the extension of
our evaluation platform for these purposes. Thanks to the
Player/Stage simulation environment we are able to receive
not only information from sensors, but also information about
the behaviour of a robot in the maze. Next, the goal of our
future work is to apply various fault tolerance methodologies
on the robot controller and evaluate them with our evaluation
platform. For example, we plan to construct our robot con-
troller as a fault tolerant neural network. We can use more
conventional fault tolerant methodologies such as TMR, on-
line checkers or error correction codes. We will focus on
testing fault tolerance methodologies targeted to FPGAs in
the context of electro-mechanical systems which is often the
way of using fault-tolerant electronic controllers. On the basis
of these results, we are going to develop generally usable
principles of developing systems for evaluating fault tolerant
qualities of electro-mechanical systems.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II); project IT4Innovations excellence in science
- LQ1602, ARTEMIS JU under grant agreement no 641439
(ALMARVI) and BUT project FIT-S-14-2297.

REFERENCES

[1] A. Benso and P. Prinetto, Fault Injection Techniques and Tools for
Embedded Systems Reliability Evaluation, ser. Frontiers in Electronic
Testing. Springer Science & Business Media, 2003, vol. 23.

[2] A. Meyer, Principles of Functional Verifica-
tion. Elsevier Science, 2003. [Online]. Available:
http://books.google.cz/books?id=qaIiX3hYWL4C

[3] V. R. Cooper, Getting Started with UVM: A Beginner’s Guide. Austin,
TX : Verilab, 2013.

[4] I. Koren and C. M. Krishna, Fault-Tolerant Systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[5] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Mitigation of
Radiation Effects in SRAM-Based FPGAs for Space Applications,”
ACM Comput. Surv., vol. 47, no. 2, pp. 37:1–37:34, Jan. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2671181

[6] XILINX. (2014, Nov.) FPGA. [Online]. Available:
http://www.xilinx.com/fpga/index.htm

[7] M. Ceschia, M. Violante, M. Reorda, A. Paccagnella, P. Bernardi,
M. Rebaudengo, D. Bortolato, M. Bellato, P. Zambolin, and A. Can-
delori, “Identification and Classification of Single-event Upsets in the
Configuration Memory of SRAM-based FPGAs,” vol. 50, no. 6, 2003,
pp. 2088–2094.

[8] C. Bernardeschi, L. Cassano, A. Domenici, and L. Sterpone, “Accurate
Simulation of SEUs in the Configuration Memory of SRAM-based
FPGAs,” in Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2012 IEEE International Symposium on. IEEE, 2012,
pp. 115–120.

[9] M. Alderighi, S. D’Angelo, M. Mancini, and G. R. Sechi, “A Fault In-
jection Tool for SRAM-based FPGAs,” in On-Line Testing Symposium,
2003. IOLTS 2003. 9th IEEE. IEEE, 2003, pp. 129–133.

[10] M. Alderighi, F. Casini, S. d’Angelo, M. Mancini, S. Pastore, and
G. R. Sechi, “Evaluation of Single Event Upset Mitigation Schemes for
SRAM-based FPGAs Using the FLIPPER Fault Injection Platform,” in
Defect and Fault-Tolerance in VLSI Systems, 2007. DFT’07. 22nd IEEE
International Symposium on. IEEE, 2007, pp. 105–113.

[11] J. Podivinsky, O. Cekan, M. Simkova, and Z. Kotasek, “The Evalu-
ation Platform for Testing Fault-Tolerance Methodologies in Electro-
Mechanical Applications,” in Digital System Design (DSD), 2014 17th
Euromicro Conference on. IEEE, 2014, pp. 312–319.

[12] M. Straka, J. Kastil, and Z. Kotasek, “SEU Simulation Framework
for Xilinx FPGA: First Step Towards Testing Fault Tolerant Systems,”
in 14th EUROMICRO Conference on Digital System Design. IEEE
Computer Society, 2011, pp. 223–230.

[13] S. Krajcir, “Functional Verification of Robotic System
Using UVM,” Tech. Rep., 2015. [Online]. Available:
http://www/study/DP/DP.php?id=15154

[14] B. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage Project:
Tools for Multi-robot and Distributed Sensor Systems,” in Proceedings
of the 11th international conference on advanced robotics, vol. 1, 2003,
pp. 317–323.

[15] J. Podivinsky, M. Simkova, and Z. Kotasek, “Complex Control System
for Testing Fault-Tolerance Methodologies,” in Proceedings of The
Third Workshop on Manufacturable and Dependable Multicore Archi-
tectures at Nanoscale (MEDIAN 2014). COST, European Cooperation
in Science and Technology, 2014, pp. 24–27.

[16] Xilinx Inc., “Ml506 Evaluation Platform User Guide,” UG347 (v3. 1.2),
2011.

[17] P. Skibik, “Implementation of Ethernet Communication Interface
into FPGA Chip,” Tech. Rep., 2011. [Online]. Available:
https://www.vutbr.cz/www base/zav prace soubor verejne.php?file id
=40494

[18] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings,
“Rapid Prototyping Tools for FPGA Designs: RapidSmith,” in Field-
Programmable Technology (FPT), 2010 International Conference on,
Dec 2010, pp. 353–356.

[19] N. Dorairaj, E. Shiflet, and M. Goosman, “PlanAhead Software as a
Platform for Partial Reconfiguration,” vol. 55, no. 84, 2005, pp. 68–71.

[20] Jamis Buck. (2011, Feb.) Maze generation: Algorithm
recap. [Online]. Available: http://weblog.jamisbuck.org/2011/2/7/maze-
generation-algorithm-recap

[21] J. Podivinsky, O. Cekan, M. Simková, and Z. Kotásek, “The
evaluation platform for testing fault-tolerance methodologies in
electro-mechanical applications,” Microprocessors and Microsystems -
Embedded Hardware Design, vol. 39, no. 8, pp. 1215–1230, 2015.
[Online]. Available: http://dx.doi.org/10.1016/j.micpro.2015.05.011

494

Paper IV

A Probabilistic Context-Free
Grammar Based Random Test
Program Generation

ČEKAN Ondřej, KOTÁSEK Zdeněk
In: Proceedings of 20th Euromicro Conference on Digital System Design. Vídeň: Technische
Universität Wien, 2017, pp. 356-359. ISBN 978-1-5386-2146-2.

92

A Probabilistic Context-Free Grammar Based
Random Test Program Generation

Ondrej Cekan, Zdenek Kotasek
Faculty of Information Technology, Brno University of Technology, Centre of Excellence IT4Innovations

Bozetechnova 2, 612 66 Brno, Czech Republic
Tel.: +420 54114-{1361, 1223}

Email: {icekan, kotasek}@fit.vutbr.cz

Abstract—The aim of this paper is to show the use of a
probabilistic context-free grammar in the domain of stimulus
generation, especially random test program generation for proces-
sors. Nowadays, the randomly constructed test stimuli are largely
applied in functional verification to verify the proper design and
final implementation of systems. Context-free grammar cannot be
used by itself in this case, because conditions for instructions of
the program are changing during the generation. Therefore, there
is a need to introduce additional logic in the form of constraints.
Constraints guarantee the continuous changes of probabilities
in the grammar and their application in order to preserve
the validity of the program. The use of the grammar system
provides a formal description of the stimuli, while the connection
with constraints allows for the wide use in various systems.
Experiments demonstrate that this approach is competitive with
a conventional approach.

Keywords—Probabilistic Context-Free Grammar, Random Test
Program Generation, Stimulus, Constraint

I. INTRODUCTION

Electronic circuits are presently used in many facilities,
therefore, people regularly meet them in their lives. Reliability
in terms of hardware components, and also in terms of the
software design and solution, plays an important role in these
systems. The incorrect behaviour which may occur in a system
during the operation could be very costly for manufacturers
and human lives can be endangered, especially in critical
applications. For these reasons, systems under development
must be tested thoroughly for the purpose of eliminating design
and implementation errors during development. The usual and
unusual combinations of input values that can occur in the
system must be taken into account. The complexity of the
system is continually growing, as well as the complexity
associated with thorough verification of the system functions
which are increasing [1]. It is not difficult to test simple
systems manually. For more complex systems, manual testing
is very time consuming. In addition, previously developed
formal techniques for the verification of large systems have
failed. Therefore, the technique called functional verification
was developed.

Functional verification [2] is the activity of checking the
correctness of the system according to its specification. In this
activity, two systems are tested in parallel with the same input
data (stimulus). At present, the stimulus is obtained from a
generator and is constructed randomly.

In our research, we benefit from the grammar systems
which allow us to formally define and generate any language.

This language forms desired stimuli for the given system. In
this paper, we show that is possible to generate an assembly
code for a processor through the probability context-free
grammar with our extension. An innovation that we bring to
this grammar is the dynamic change of probabilities during
the generation of the language through a special constraint
definition.

The text of the paper is structured as follows. Section 2
describes the state of the art in the area. In section 3, the
aim of our research is presented. A probabilistic context-free
grammar with the process of instructions encoding is described
in section 4. Section 5 describes the purpose of constraints. In
section 6, a method of generating stimuli is demonstrated. The
experiments with the generation of assembly programs through
the proposed principle and conventional approach is presented
in section 7. Finally, in section 8, we summarize the results.

II. RELATED WORK

The current research in the field of program generation
deals with the automatic generation of an assembly code for
a specific processor. The programs are obtained from several
input blocks that describe the processor. These input blocks
are typically designed for the given type of processor and,
therefore, it loses the flexibility of the solution for wider use.
The description of the instruction set (ISA) [3] of the processor
is used as an input which is combined with another description.
The paper [4] uses certain elements of the processor micro-
architecture as the second description. The paper [5] uses the
VHDL description (VHSIC Hardware Description Language)
of the processor as the second description. Another work [6]
that automatically generates programs for processors, utilizes
self-designed instruction library which describes the assembler
syntax of each instruction and valid operand combinations.
Together with a genetic algorithm (GA) [7], the resulting
program is constructed. The work [8] shows the generation
of assembly programs on the basis of an abstract model of
the processor. According to this abstract model, programs are
formed by means GA.

A significant disadvantage in the above mentioned solu-
tions is seen due to the complexity of the stimuli description
and the inability of using the generator in various systems other
than the selected processors. The presented solutions are based
on proprietary formats that work with detailed information
about a selected processor and it is very time consuming to
use such generators.

2017 Euromicro Conference on Digital System Design

978-1-5386-2146-2/17 $31.00 © 2017 IEEE

DOI 10.1109/DSD.2017.26

356

From among versatile solutions which deal with a random
test stimuli generation, the MicroGP tool can be mentioned [9].
Originally it was an assembly program generator for testing
microprocessors, but later it was used for a wider range of
problems. MicroGP uses GA for finding the optimal solution
of hard problems. The architecture of this tool is composed of 3
separated blocks: an evolutionary core, a problem definition (an
instruction library) and an external evaluator. The evolutionary
core generates a population of individuals and performs the
optimization process. The problem definition contains macros
of instructions for valid assembly code generation in the case
of the processor. The external evaluator simulates the program
and provides the feedback to the evolutionary core.

In this paper, we present the solution which uses context-
free grammars that allow us to define stimuli for the selected
system in a consistent way. This work represents a gener-
alization of knowledge gained from our previous research
[10] where we generated assembly programs based on two
proprietary input structures which defined the format of the
stimulus and its restrictive conditions. The comparison of our
principle will be done with MicroGP which is similar in
versatile functionality but different in the used approach.

III. THE GOALS OF THE RESEARCH

We have two main goals in our research:

1) To develop a stimuli generation framework for vari-
ous systems.

2) To develop a methodology for using this framework
in stimuli generation.

Under the concept of stimulus generation we understand
generating randomly constructed input test data that determine
the behaviour of the system. In the case of a processor, the
input stimulus is a program which determines its computing
operation. In the case of a robot controller, input stimulus is a
maze that the robot goes through. This random stimulus creates
new circumstances which the system must solve.

The first goal of our research is described in this paper.
It represents a generalization of the gained knowledge and
definition of a universal description of stimuli which is based
on the grammar system. The description of stimulus through
probabilistic context-free grammar with constraints provides a
formal representation of the stimulus and a possibility of its use
in various systems. In our architecture, we use the previously
designed schematic of the universal generation (see Fig. 1).

Fig. 1: The architecture of the universal stimuli generation.

The second main goal represents our long-term direction
which we intend to achieve in our research.

IV. A PROBABILISTIC CONTEXT-FREE GRAMMAR

Probabilistic context-free grammars [11] were introduced
in bioinformatics where they have been used for modelling
RNA structures. Their possible usage was found in other
areas, especially in the field of natural language processing or
creating a programming language. These grammars are based
on fundamental context-free grammars where into the rewrite
rules the probabilities that a rule can be applied are delivered.
Probabilistic context-free grammar is the quintuplet:

G = (N,T,R,S,P); where:

N is a finite set of non-terminal symbols.
T is a finite set of terminal symbols, applies N∩T =

0.
R is a finite set of rewrite rules with form A → α,

where A ∈ N a α ∈ (N∪T)*.
S is starting non-terminal.
P is a finite set of probabilities for rewrite rules.

For the probability in the context-free grammar, the fol-
lowing Definition 1 must be applied.

Definition 1: Consider a probabilistic context-free grammar
G. For each rule r in grammar G, the transition probability
πr is defined. For each non-terminal A ∈ N with its rewrite
rules r1:A → α1, r2:A → α2, ..., rk:A → αr the following
rule must be applied:

∑k
i=1 πri = 1.

A sample of writing probability for individual rules (the
character | means ’or’) is:

S → AS(90%)|A(10%)
A → aBc(70%)|abc(30%)
B → bb(100%)

A. Encoding Instructions Into the Grammar

Processor instructions should be divided into several groups
depending on the type of the instruction. Each group is defined
by a custom non-terminal into which it is possible to get
from the starting symbol. Each group has a defined probability
which is increased/decreased on the basis of the type and the
count of instructions. The arithmetic instructions will typically
have a higher probability than jump instructions. Based on
the format of the instruction, each group is subdivided into
another non-terminal which brings together the same format
of instructions. For example, the arithmetic instructions which
work with two register operands will be in a different group
than the arithmetic instructions which work with a register and
immediate operand. In the next step, each instruction is defined
by using a template that is composed of non-terminal and
terminal symbols. Non-terminal symbols are already rewritten
to specific registers and operations which create the actual
instruction of the program.

V. CONSTRAINT DEFINITIONS

Constraints represent restrictions and limitations for deriva-
tion of rewrite rules and their application will change defined
probabilities for specific rules. These constraints are defined

357

as a function call without a return value, so it is a command.
The constraint is defined as the quintuplet:

cons(RS,RD,P,[RE],[C]); where:

RS is the identifier of the rule which calls this con-
straint.

RD is the identifier of the rule for which the proba-
bility is changed.

P is the new probability value.
RE (optional) is the identifier of the rule, the ap-

plication of which causes the abolition of the
constraint.

C (optional) is the count of derivations of RE rule
before abolishing the constraint.

The task of the constraint is to set the probabilities during
the generation process so that the result is a valid stimulus.
After the application of the RS rule, the algorithm will call
all the constraints that have defined this identifier and the
value of the P probability will be set for the rule with the RD

identifier. In the case that the RE parameter is not defined,
the probability is permanently set. In the case that the RE

identifier is specified, the value of the probability will be set
until C derivations of the RE rule will not be done. If the C
parameter is not defined, the default value for C is set to one.

VI. RANDOM PROGRAM GENERATION

Random generation of stimuli (programs) is based on
our architecture of universal generation. We continue in our
research in this direction. The difference from the previous
version can be seen in the core of generator and in processing
the specific inputs. [12] The architecture based on the grammar
presented in this paper is shown in Fig. 2. The probabilistic
context-free grammar is defined in the input structure called
Format, while the constraints for rules are in input Con-
straints. The preprocessing (Preprocess) of inputs is the first
step before the generation starts. Since context-free grammar
cannot effectively define numerical ranges or names for jump
instructions, we use the templating system Jinja2 [13] for the
Python programming language [14] which allows us to define
the cycles, branches and other special macros that we use.
The demonstration of the IMM non-terminal definition for the
derivation of random decimal number in the range from 1 to
1,000 through the library Jinja2 follows:

{% for i in range(1,1000) %}
IMM → {{i}}

{% endfor %}

The output of preprocessing is an extended format of
the probabilistic context-free grammar and constraints which
already contains the complete definitions of the rewrite rules
and constraints necessary to ensure the completeness and
validity of the generated program.

The extended formats are processed by the core of the gen-
erator. It performs the application of the rules from the starting
non-terminal with leftmost derivations. After the derivation of
any rule is performed, the constraints for the relevant rule are
triggered and thus the new probabilities are set for the given
rules.

Fig. 2: The detailed architecture for a probabilistic context-free
grammar based stimuli generation.

VII. EXPERIMENTAL RESULTS

During our experiments, we have verified that the proposed
method of encoding program instructions into the grammar is
possible and is fully suitable for the generation of valid test
programs.

We describe the experiment which is based on compar-
ing the generation time of assembly programs with different
number of instructions. Generation time is an important factor
that affects the whole process of testing and verification of the
system. It can significantly contribute to reducing the overall
time needed for system testing. The comparison was done
between this proposed approach of generation (referred to as
USG generator), MicroGP tool (where we utilize only instruc-
tion library block), and our previously optimized generator
of assembly programs for processors (referred to as RISC
generator). We have defined adequate input structures for the
creation of a valid assembly code for each tool. The results of
our experiment can be seen in Fig. 3 and Table I.

The fastest tool is the RISC generator which is our specific
generator, especially designed for RISC and VLIW processors.
The generation time was less than 1 second for 25,000 valid
instructions. The USG generator was in the second position
with a generation time slightly over 1 second for the same
number of instructions. The worst was MicroGP tool with 43
seconds for the same number of instructions. The generation
speed of our generators is obvious. The main contribution
which makes our approach different from conventional ones
is in the description. We do not use any semantic information
about the system. The whole process of the generation is
based solely on ensuring defined constraints, without additional
calculations and semantic dependencies. Thanks to this, we are
able to save up to 42 seconds through the USG generator in
comparison with the MicroGP tool.

358

TABLE I: The comparison of generation time for USG, RISC, and MicroGP tool (in seconds).

Number of instructions 1000 2000 5000 10000 15000 20000 25000
MicroGP 0.7 1.5 4.0 10.0 18.0 29.0 43.0
USG generator 0.1 0.1 0.2 0.5 0.7 0.9 1.1
RISC generator 0.1 0.1 0.2 0.3 0.5 0.6 0.7

Fig. 3: The comparison of generation time for USG, RISC,
and MicroGP tool.

However, there is also a minor difference between our ap-
proaches. The difference exists because grammar systems can-
not effectively define the above mentioned numerical ranges
or labels and all possible cases have to be enumerated. For this
reason, a large set of rules is defined which results in browsing
slowing down generation performance.

VIII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, our research in the field of randomly gen-
erated test stimuli was presented and the application of the
approach to a processor was described. In this case, stimuli
representing the programs consist of instructions. We have
demonstrated the universal architecture of stimuli generation
which is based on two input structures. We have defined the
format using a probabilistic context-free grammar which is
a context-free grammar with added probabilities for rewrite
rules. Through the constraints we ensured an application of
rewrite rules in the defined grammar so that the final program
was valid for the given processor. The experiment with gener-
ation time demonstrated a substantial acceleration against the
conventional tool.

Although we presented our approach on the processor, the
architecture allows us to generate stimuli for different systems
which will be the focus of our future research. We shall also
examine optimization possibilities of the complete generation

process in order to achieve higher quality of the generated
stimuli.

ACKNOWLEDGEMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II); project IT4Innovations excellence in science
- LQ1602, ARTEMIS JU under grant agreement no 621439
(ALMARVI) and BUT project FIT-S-17-3994.

REFERENCES

[1] S. Roy and S. Ramesh, “Functional verification of system on chips -
practices, issues and challenges,” in Proceedings of ASP-DAC 2002,
2002, pp. 11–13.

[2] A. Meyer, Principles of Functional Verification. Amsterdam: Elsevier
Science, 2003.

[3] D. A. Patterson, “Reduced instruction set computers,” Commun. ACM,
vol. 28, no. 1, pp. 8–21, January 1985.

[4] V. Belkin and S. Sharshunov, “Isa based functional test generation with
application to self-test of risc processors,” in Design and Diagnostics
of Electronic Circuits and systems, 2006 IEEE, April 2006, pp. 73–74.

[5] J. Hudec, “An efficient technique for processor automatic functional
test generation based on evolutionary strategies,” in Proceedings of the
ITI 2011, 33rd International Conference on Information Technology
Interfaces, May 2011, pp. 527–532.

[6] F. Corno, E. Sanchez, M. Reorda, and G. Squillero, “Automatic test
program generation: a case study,” IEEE Design and Test of Computers,
vol. 21, no. 2, pp. 102–109, March 2004.

[7] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms,
1st ed. Springer Publishing Company, Incorporated, 2007.

[8] F. Corno, M. Reorda, G. Squillero, and M. Violante, “A genetic
algorithm-based system for generating test programs for microprocessor
ip cores,” in Proceedings of the 12th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2000). IEEE Computer
Society, November 2000, pp. 195–198.

[9] G. Squillero, “Microgp—an evolutionary assembly program generator,”
Genetic Programming and Evolvable Machines, vol. 6, no. 3, pp.
247–263, 2005. [Online]. Available: http://dx.doi.org/10.1007/s10710-
005-2985-x

[10] J. Podivinsky, O. Cekan, M. Simkova, and Z. Kotasek, “The
evaluation platform for testing fault-tolerance methodologies in
electro-mechanical applications,” Microprocessors and Microsystems,
vol. 39, no. 8, pp. 1215 – 1230, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141933115000630

[11] R. Giegerich, Introduction to Stochastic Context Free Grammars,
J. Gorodkin and L. W. Ruzzo, Eds. Totowa, NJ: Humana Press, 2014.

[12] O. Cekan, M. Simkova, and Z. Kotasek, “Universal pseudo-random
generation of assembler codes for processors,” in Proceedings of The 4th
Workshop on Manufacturable and Dependable Multicore Architectures
at Nanoscale. COST, European Cooperation in Science and
Technology, 2015, pp. 70–73. [Online]. Available: http://www.median-
project.eu/wp-content/uploads/18 IV-2 median2015.pdf

[13] A. Ronacher. (2014) Jinja2 (the python template engine). [Online].
Available: http://jinja.pocoo.org/

[14] M. Lutz, Learning Python, 2nd ed. Sebastopol, CA, USA: O’Reilly
& Associates, Inc., 2003.

359

Paper V

Program Generation Through a
Probabilistic Constrained
Grammar

ČEKAN Ondřej, PODIVÍNSKÝ Jakub, KOTÁSEK Zdeněk
In: Proceedings of the 2018 21st Euromicro Conference on Digital System Design. Praha:
IEEE Computer Society, 2018, pp. 214-220. ISBN 978-1-5386-7376-8.

97

Program Generation
Through a Probabilistic Constrained Grammar

Ondrej Cekan, Jakub Podivinsky, Zdenek Kotasek
Faculty of Information Technology, Brno University of Technology, Centre of Excellence IT4Innovations

Bozetechnova 2, 612 66 Brno, Czech Republic
Tel.: +420 54114-{1361, 1361, 1223}

Email: {icekan, ipodivinsky, kotasek}@fit.vutbr.cz

Abstract—The paper introduces a probabilistic constrained
grammar which is a newly formed grammar system for use
in the area of test stimuli generation. The grammar extends
the existing probabilistic context-free grammar and establishes
constraints for grammar limitations. Stimuli obtained through
the proposed principle are used in the functional verification
of a RISC processor and coverage metrics are evaluated. The
detailed information about the construction of an assembly code
for processors is described, as well as the experimantal results
with the implemented generator. Experiments show the expressive
power of the probabilistic constrained grammar and achieved
code coverage in the verification of the processor. The grammar
system demonstrates that is very suitable for an assembly code
generation and universal use in the area of test stimuli.

Keywords—Probabilistic Constrained Grammar, Probabilistic
Context-Free Grammar, Stimulus, Constraint, Functional Verifi-
cation

I. INTRODUCTION

Nowadays, electronic circuits become more and more com-
plex due to new technologies of production and many different
components are merged into one chip. It causes a problem with
testing and verification of the whole system too. The classical
approaches of testability fail, as well as formal techniques for
the verification of the large systems. The emphasis on the
quality of a proposed system is also still rising, therefore,
thorough verification of the system has to be done. Due to
this fact, the functional verification technique was designed to
accelerate the verification of the correct behaviour of complex
systems [1].

In the functional verification, the system inputs are set
while its outputs are monitored. The functional verification
is based on two systems which are tested in parallel with
the same input data (stimulus). The first system is the hard-
ware implementation of a device typically described in HDL
(Hardware Description Language) [2], known as DUT (Device
Under Test) which verifies its correctness due to the given
specification. The second system is a model of the verified
system which corresponds to the same specifications and is
typically implemented in a different programming language.
The model is known as the golden model. The same stimulus
is brought to the input of these two systems which is typically
obtained from a stimulus generator. Both systems are simu-
lated. The output of the functional verification is the result of
comparing the outputs of both systems on equality and also
the information about the coverage of the key system functions
[3]. In the context of the simulation environment, the metrics

and conditions (key functions) which should be monitored can
be defined. Therefore, coverage is an important metric in this
process. It defines the percentage value which represents the
level of the system verification, and how well input stimuli
cover the behaviour of the system.

In our research, we focus on the stimuli generation which
can be used in the functional verification. We benefit from
the grammar systems which allow us to formally define and
generate any language through the application of production
rules. We extend the grammar system through special con-
straints which restrict the application of the production rules
in the grammar. In this paper, we show stimuli generation of a
valid assembly code for a RISC processor [4] and we measure
the coverage value in our experiments through the functional
verification.

The text of the paper is structured as follows. Section
2 describes our previous research which this work is based
on. The state of the art in the area of stimuli generation is
described in section 3. In section 4, a probabilistic constrained
grammar with the design of input structures is described.
Section 5 describes the process of encoding instructions into
the probabilistic constrained grammar. In section 6, a method
of generating stimuli through our architecture is demonstrated.
The experiments with the generation of assembly programs
through the proposed principle and conventional approaches
are presented in section 7. Finally, in section 8, we summarize
the results in the conclusion.

II. PREVIOUS RESEARCH

In our previous research, we concentrated on:

• A universal architecture of stimuli generation, which is
based on two input structures, was developed. [5] The
first structure called Format contains the information
about the format of the stimulus. The second structure
called Constraints defines the restrictive conditions
for stimulus format and prescribes how the stimulus
should be created, because only a subset of all pos-
sible solutions is valid for the given system. Based
on these structures, valid stimuli are generated. We
utilize this architecture in this work where a stimulus
format is described through a probabilistic context-
free grammar and together with constraints, it defines
our new grammar system - probabilistic constrained
grammar. The extended architecture for the use in
grammar systems can be seen in Fig. 1.

214

2018 21st Euromicro Conference on Digital System Design

978-1-5386-7377-5/18/$31.00 ©2018 IEEE
DOI 10.1109/DSD.2018.00049

• Specific input structures (no general) for describing
assembly programs for RISC and VLIW processors,
and input structures for generating random mazes for
the robot controller were designed [6].

• A stimuli generator based on the described architec-
ture which generates a defined set of stimuli on the
basis of the problem of constraint solving [7] was
implemented.

Fig. 1: The versatile architecture of stimuli generation.

III. RELATED WORK

An assembler code is mainly used as a randomly generated
program for processors, because it does not require a compiler,
and therefore, offers a full control over the operations and
registers of a processor. These programs are typically de-
scribed by several input blocks that are designed for a specific
processor, and therefore, they can not be used for another
type of processor or different system. As an input block, a
description of the processor instruction set (ISA) [8] is used
and is combined with either a VHDL processor description [9]
or some micro-architecture elements [10]. Another approach
is through a specially designed library [11] that defines all
possible combinations of instructions and operations that are
valid for the given processor and the resulting program is
obtained using the genetic algorithm [12]. The generation
approach using the abstract processor model has been also
described in the literature [13].

These approaches are quite complex, the definition of
stimuli is complicated and dependent on a specific processor.
The use of such generator of stimuli is very time-consuming,
because the input block definition is quite extensive and
based on proprietary formats that combine detailed information
about the processor architecture and the semantics of each
instruction. The generators are also limited to the specific
processor and can not be used for any other.

As a universal stimuli generator, we can mention MicroGP
tool [14] which does not only generate stimuli but it also finds
the most optimal solution of hard problems. The architecture

of this tool is composed of 3 separated blocks: an evolutionary
core, a problem definition (an instruction library) and an ex-
ternal evaluator. The evolutionary core and external evaluator
are the blocks for the optimization process. The optimization
process of the MicroGP tool is not in this paper discussed
and is only utilized the block of problem definition. In the
commercial sector, there are different program generators (e.g.
GenesysPro from IBM company [15]), however, they can not
be obtained and compared with them.

In this paper, we focus on universal stimuli generation
which is also suitable for assembly code generation. Through
the probabilistic constrained grammar, we are able to define the
desired instructions of the processor in a consistent way. This
work represents a generalization of our previous research. Our
approach of stimuli generation is compared with commercial
program generator from the Codasip company [16] and with
the MicroGP tool and the coverage of the process of the
functional verification is compared.

IV. A PROBABILISTIC CONSTRAINED GRAMMAR

Grammar is an instrument for the representation of any
language [17]. It is a generative system that can represent the
finite and infinite languages. The grammar uses two disjoint
finite alphabets: 1) the set N of non-terminal symbols, and 2)
the set T of terminal symbols. The non-terminals serve as the
auxiliary variables which are substituted for the non-terminal
or terminal strings through production rules and the substitu-
tion takes place until the string contains only terminal symbols.
Then, the sentence of the defined language is generated.

We introduce the definition of a new grammar system
which combines existing context-free grammar with a con-
straint satisfaction problem (CSP) [18]. CSP deals with the
assignment of values from a particular domain with respect
to restrictive conditions. We have described the new grammar
system as a Probabilistic Constrained Grammar which is pair
G:

G = (H,C); where:

H is a probabilistic context-free grammar.
C is a ordered list of constraints for the grammar

H.

A probabilistic (stochastic) context-free grammar [19] is
a basic context-free grammar into which probabilities for the
application of production rules were delivered. It is the 5-tuple:

H = (N,T,R,S,P); where:

N is a finite set of non-terminal symbols.
T is a finite set of terminal symbols, N∩T = 0.
R is a finite set of production rules with form A →

α, where A ∈ N a α ∈ (N∪T)*.
S is the starting non-terminal.
P is a finite set of probabilities for production rules.

The constraints represent the definition of the CSP and
restrict the grammar in the application of the production rules.
The non-terminal symbols N of grammar H can represent

215

variables that are constrained through probabilities P in the
application of the rules. The set of production rules R, where
the non-terminal X is on the left side of a rule, represents the
domain of values for the given non-terminal. The constraint is
the 5-tuple:

C = (RS,RD,P,[RE],[O]); where:

RS is the identifier of the rule which calls this con-
straint.

RD is the identifier of the rule for which the proba-
bility is changed.

P is the new probability value.
RE (optional) is the identifier of the rule, the ap-

plication of which causes the abolition of the
constraint.

O (optional) is the count of derivations of RE rule
before abolishing the constraint.

The constraints limit the application of production rules for
a given non-terminal and, therefore, restrict all possible strings
in a given formal language. The probabilistic context-free
grammar itself is a statical definition of a language, while the
addition of the constraints will cause a dynamic change of the
generated language during the application of production rules.
It is a certain analogy of programmable grammar; however, it
depends on the context that has been generated so far.

The implementation of the generator based on the new
grammar performs the application of the rules from the starting
non-terminal with leftmost derivations. After the application of
any rule, the constraints for the relevant rule are triggered and
new probabilities are set for the given rules.

V. ENCODING INSTRUCTIONS INTO THE GRAMMAR

In the context of coding instructions of the processor
into a probabilistic context-free grammar, we introduce three
conditions which have to be ensured against the standard
definition of the grammar.

Firstly, the production rules may not be strictly defined
with probability values in which they can be applied. In
the case that the probability for a rule is missing, it will
be calculated as 100% − ∑

definedProbabilities for the
given non-terminal. In the case where there is no definition
of probability for multiple rules, the probability for each
rule will be the same and will be calculated as (100% −∑

definedProbabilities)/numberOfRulesWithoutProba
bility for the given non-terminal. Through this, the explicitness
for the application of the rules without a strictly defined
probability is defined. The probability in most cases will not
be defined, because we have the goal of gaining the same
probability for almost every rule because of the large number
of combinations for generating an instruction in the program.

Secondly, the probabilities will not be calculated from
the training data set (as is in the typical application of the
grammar), but they will be determined by an engineer on
the basis of their knowledge about the processor. The main
task is to limit a certain group of instructions in order to
generate them in the minimum. This group can be represented
by jump instructions. Their excessive generating will cause
low utilization of the program code. The utilization of the

program code is defined by instructions which are physically
executed on the processor. Through the grammar definition
we do not describe semantics of the instructions (it is not the
aim of this principle), but only syntaxes. Therefore, we are
able to generate only forward jumps (i.e. their execution is
independent of the previous instruction sequences).

Thirdly, production rules which have some constraints must
be clearly identifiable (i.e. they must have an identifier). As-
signed probabilities of certain rules of the grammar will change
during the stimulus generation. It is needed to identify the rules
in which the probability will be dynamically changed based
on the previously used rules. The rules are typically labelled
numerically, but we will use a combination of alphanumeric
characters.

A. The Process of Encoding Instructions

Processor instructions should be divided into several groups
depending on the type of the instruction. Each group is defined
by a custom non-terminal into which it is possible to get
from the starting symbol. Each group has a defined probability
which is increased/decreased on the basis of the type and the
count of instructions. The arithmetic instructions will typically
have a higher probability than jump instructions. Based on
the format of the instruction, each group is subdivided into
another non-terminal which brings together the same format
of instructions. For example, the arithmetic instructions which
work with two register operands will be in a different group
than the arithmetic instructions which work with a register and
immediate operand. In the next step, each instruction is defined
by using a template that is composed of non-terminal and
terminal symbols. Non-terminal symbols are already replaced
to specific registers and operations which create the actual
instruction of the program.

B. The example of encoding instructions

This example shows the part of the assembly probabilistic
context-free grammar for the Codix Cobalt processor [16]
developed in the Codasip company [16]. This is a 32bit
RISC processor which contains around 60 types of instruc-
tions. Consider S as the starting grammar non-terminal. The
instruction set of the processor can be split into 5 groups
- arithmetic (ARITHM), memory (MEMORY), conditional
(CONDIT), jump (JUMPS) and other (OTHERS) instructions.
The definition of these production rules, including implied
probabilities, is as follows:

S → ARITHM(50%)|MEMORY(20%)|CONDIT(15%)|
JUMPS(5%)|OTHERS(10%)

The set probabilities are very important to achieve the
highest coverage in our experiments in the fastest possible
time. These probabilities were experimentally found as the best
setting. Other settings will cause slower coverage convergence.

In the case that at the end of these rules we define
again the starting non-terminal, we get a cyclic instruction
generation. We chose a group of arithmetic instructions that
can be divided into 6 subgroups with different formats which

216

specify other non-terminals. This includes a subset of instruc-
tions using two registers as operands (ARITHM RR), regis-
ter and immediate operand (ARITHM RI), three registers as
operands (ARITHM THREE), instructions for sign extension
(ARITHM EXT), assignment instruction (ARITHM ASS),
and instructions for assigning numbers into the upper half of
the immediate operand (ARITHM LUI). The rules defining
these groups production the non-terminal to a specific syntax
of the given instruction according to its definition. Register
and number values are still hidden behind other non-terminals.
Several examples of the definitions of these rules are as
follows:

ARITHM → ARITHM_RR|ARITHM_RI|
ARITHM_THREE|ARITHM_EXT|
ARITHM_ASS|ARITH_LUI

ARITHM_RR → DST = ARITHM_NAME SRC, SRC
ARITHM_RI → DST = ARITHM_NAME SRC, IMM
ARITHM_NAME → add|sub|add|or|xor|shl|shr
DST|SRC → r0|r1|r2|r3|r4|r5|r6|...|r31
...

At first sight, it seems that DST and SRC non-terminals
can be represented by the same non-terminal because they
specify the same register values and, therefore, we may not
have two different definitions of the rules. In fact, it requires
the differentiation between operands of the instruction because
constraints for the rules deriving the DST non-terminal will be
different than constraints for SRC non-terminal - for example,
in order to preserve the latency between instructions. The
entire selected branch of the derivation tree for the arithmetic
operation ADD is shown in Fig. 2. It is obvious that through
simple adjustments we are also able to generate a binary
representation of the assembly program.

Fig. 2: The derivation tree for ADD instruction which is
composed of destination register, instruction name, and two
source registers.

C. The example of constraints for instructions

For the clarity, we use the keyword C before the definition
of constraints.

1) Latency ensuring: Let us consider a simplified proba-
bilistic context-free grammar H with rules, where EOL marks
a new line:

S → DST = add SRC SRC EOL S
dr1: DST → r1
dr2: DST → r2
dr3: DST → r3
sr1: SRC → r1
sr2: SRC → r2
sr3: SRC → r3
eol: EOL → \n

Through the constraints we want to achieve that the add
instructions will have latency on two. It means that the
generator cannot use the result DST as the source operand
SRC in one following instruction; therefore, the result is not
stored in the register yet. The constraints will be defined in
the following way:

C(dr1, sr1, 0, eol, 2)
C(dr2, sr2, 0, eol, 2)
C(dr3, sr3, 0, eol, 2)

It is able to read the first constraint in the following way:
after application of the dr1 rule, the probability for the sr1
rule is set to 0, and after two applications of the eol rule, the
probability for the sr1 rule is set back to the default value
(33.33%).

2) Absolute forward jumps: Let us consider a simplified
probabilistic context-free grammar H with rules:

S → ADD S(80%)|JUMP S(20%)
T → ADD T|ADD
ADD → r3 = add r2 r1 EOL
jmp: JUMP → jump NAME EOL T NAME:
EOL → \n
nj1: NAME &→ STR1
nj2: NAME &→ STR2
nj3: NAME &→ STR3

Then the jump instruction jump NAME will be generated
by using the jmp rule, including its label marked by NAME:
non-terminal. Between the jump instruction and its label any
other instruction can be placed, except jumps. Both NAME
non-terminals must be derived into the same string; therefore,
the leftmost derivation as a classic variant cannot be used. For
this case, a special derivation characterized with &→ mark is
used. This ensures that all NAME non-terminals are derived
through the same selected rule. The use of the following
constraints ensures the reduction of the probability to zero
after the application of a randomly selected label and thus
the uniqueness of the label in the whole program.

C(nj1, nj1, 0)
C(nj2, nj2, 0)
C(nj3, nj3, 0)

217

3) Number of program instructions: It is possible to set the
number of instructions in a program through the proper settings
of the production rules and constraints. Consider a probabilistic
constrained grammar G with rules and constraints:

start: S → START
end: START → END(100%)
START → ADD START
ADD → r3 = add r2 r1 EOL
END → nop
eol: EOL → \n

C(start,end,0,eol,1000);

The key settings of the number of instructions lies in
the addition of a simple production rule that ensures the
application of the one defined constraint. It can be seen that
current configuration of the production rules will write only
one nop instruction in the program by application of the end
rule. The invocation of the constraint disables the application
of the end rule for the 1,000 productions and thus 1,000
of ADD instructions will be generated before the adjusted
probability is removed. After that, the one nop instruction will
also be generated.

VI. RANDOM PROGRAM GENERATION

The detailed architecture of the stimuli generation based
on the grammar system is shown in Fig. 3. In the figure,
there are two input structures which contain the probabilistic
context-free grammar (Format) and Constraints for restricting
the grammar rules. In the definition of structures, we use the
Jinja2 templating system [20], [21] which allows us to define
the cycles, branches and other special macros that simplify
the entry of production rules of the grammar. These structures
are preprocessed in the first step. Preprocess performs the
expansion of the Jinja2 macros and the result of this process
are the Extended structures of the probabilistic context-free
grammar and constraints which already contain the complete
definitions of the production rules and constraints necessary to
ensure the completeness and validity of the generated program.
The extended structures form the final Probabilistic constrained
grammar which is processed by the Generator core. It performs
the application of the rules from the starting non-terminal with
leftmost derivations. After the derivation of any rule, specific
constraints are triggered and new probabilities are set for
selected rules. The demonstration of the NAME non-terminal
definition for the set of names for label of jump instructions
through the library Jinja2 follows:

{% for i in range(1,100) %}
NAME &→ STR{{i}}

{% endfor %}

VII. EXPERIMENTAL RESULTS

In our experiments, we focused on two criteria. The first
criterion has its origin in the language theory and its aim is
to determine the expressive power of the new grammar. The
second criterion is the practical use of generated test stimuli
in the field of the functional verification.

Fig. 3: The detailed architecture of the stimuli generation based
on the grammar system.

A. Expressive power of the new grammar

The probabilistic constrained grammar alters the behaviour
of the original context-free grammar, and offers completely
new fields in the application area. It must also be mentioned
that the expressive power of the newly formed grammar is
displaced towards context languages which is a necessary
condition to generate a valid test stimulus. In the case of
the program generation, the context is necessary in order
to preserve the correct order of some assembly instructions,
uniqueness of jump instructions labels, etc. The proof that the
expressive power is changed from the context-free language
to the context language, or at least to the partially context
language, shows the following language:

L(G) = { anbncn : n ≥ 1 }

Strings which belong to the given language L(G) have
a non-zero length and are always sequences of a characters
followed by equally long sequences of b characters and c
characters. This language is context sensitive and thus cannot
be generated through context-free grammar due to its inability
to ensure the application of the same number of production
rules. The context-free grammar which can be defined for the
similar language can look like:

S → ABC
A → aA|a
B → bB|b
C → cC|c

218

TABLE I: The total code coverage in the functional verification for the generators for 100 programs.

Number of instructions 100 200 500 1000 2000 5000 10000 15000 20000 25000
USG 61.01% 72.33% 76.29% 79.35% 82.13% 84.50% 85.81% 86.45% 86.91% 87.26%
commercial 60.90% 72.47% 76.35% 79.48% 81.88% 84.04% 85.16% 85.63% 86.23% 86.56%
microGP 60.92% 71.88% 75.54% 78.59% 81.02% 82.92% 83.87% 84.37% 84.69% 84.91%
RISCG 60.94% 72.40% 76.13% 79.34% 81.76% 84.21% 85.44% 85.98% 86.02% 86.31%

Fig. 4: The comparison of achieved code coverages in the functional verification for 100 programs.

with language:

L(G) = { ambnco : m, n, o ≥ 1 }

The context-free grammar can be modified for generating
the language ambncn where m, n ≥ 1, but it is still not
the previously defined language. For the previously defined
language, the context sensitivity through the probabilistic con-
strained grammar is needed. In the following example, we
show the minor modification of the L(G) grammar which is
written through the probabilistic context-free grammar:

s: S → ABC
a: A → aA
ae: A → ε(100%)
b: B → bB
be: B → ε(100%)
c: C → cC
ce: C → ε(100%)

The number of applications of A, B, and C non-terminals
is achieved by adding three constraints which ensure this
functionality and establish context sensitivity. The rn number
of applications of production rules can be randomly generated
through a templating library [20] and the number value is
forwarded to the last parameter of each constraint.

{% set rn = random(1000)+1 %}
// rn can be set to any value
C(s,ae,0,a,{{rn}});
C(s,be,0,b,{{rn}});
C(s,ce,0,c,{{rn}});

B. Coverage in the functional verification

Grammar systems provide a new dimension in input test
stimuli generation. For this reason, we decided to perform an
experiment by achieving the highest coverage in the functional
verification on the Codix Cobalt processor. In our experiments,
we focus on the code coverage. It measures the system
source code through typical metrics like statements, branches,
expressions, conditions, and states. The main task of the
experiment is to verify the influence of stimuli generated
using the grammar system (marked as USG) on their quality
and achieved coverage in comparison with the microGP tool,
the commercial generator from Codasip and our previously
developed program generator for RISC processors (marked
as RISCG [6]). It should be mentioned that no optimization
process has been activated for the tools (e.g. genetic algorithm)
to compare the results with each other.

In the experiment, we generated 100 programs with a dif-
ferent number of assembly instructions through the mentioned
generators. All programs have been verified by the functional

219

verification on their validity and the total code coverage has
been measured. The result of the experiment can be seen in
Table I and Fig. 4.

From the results, it can be seen that for a small number of
instructions in the program, the coverage of all generators is
almost identical. This is accomplished by the fact that a small
number of different instructions trigger a series of transactions
that are executed, and therefore, the code coverage is suddenly
raised to 70-80%. For the higher number of instructions in
the program, the instruction sequence is very important which
invokes transactions occurring only in a certain state of the
processor and sequence of instructions. For this reason, the
coverage is rising relatively slowly and for 25,000 instructions
in 100 programs, the maximum possible code coverage is
approximately achieved.

The maximal total code coverage was 87.26% for our
USG generator for 100 programs with 25,000 instructions
(25,000 instructions is the maximum for the simulation tools).
Next in row was the commercial generator, our previously
developed generator RISCG and MicroGP tool. It can be stated
that the test stimuli generation using the grammar system is
an appropriate and effective way of stimuli generation. The
generation time spent to create the stimulus was 1.1 second
in case of USG, 0.7 second in case of RISCG, 1.5 second in
case of commercial tool and 43 seconds in case of MicroGP
tool for 25,000 instructions.

VIII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, our research in the field of random test stimuli
generation was presented. For the definition of the stimuli, we
used two input structures which defined the format of the stim-
uli and constraints. We introduced the new grammar system -
a probabilistic constrained grammar which was practically im-
plemented and verified in assembly code generation. The valid
stimulus was obtained through constraint definitions which
restrict the defined grammar in the application of production
rules. The expressive power of the probabilistic constrained
grammar was proven to be higher than the expressive power
of context-free languages. The experiment showed that the test
stimuli generation using the grammar system is competitive
and more profitable than other way.

The presented approach can be used for stimuli generation
of various systems. The approach was also applied on the
robot controller implemented into FPGA. The stimuli were
represented by mazes in which the robot controller searched
the path from the start to goal position (more information can
be found in [22]). In our future research, we are working on
an on-line solution of the generator and we will direct our
efforts towards creating a methodology for using the proposed
approach in the area of stimuli generation.

ACKNOWLEDGEMENT

This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II); project IT4Innovations excellence in science
- LQ1602 and BUT project FIT-S-17-3994.

REFERENCES

[1] A. Meyer, Principles of Functional Verification. Amsterdam: Elsevier
Science, 2003.

[2] P. Ashenden. (1990 [cit. 2015-01-02]) The vhdl cookbook [online]. Ade-
laide. [Online]. Available: http://www.ics.uci.edu/ alexv/154/VHDL-
Cookbook.pdf

[3] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation
of hardware designs,” Design and Test of Computers, IEEE, vol. 18,
no. 4, pp. 36–45, May 2001.

[4] “Risc principles,” in Guide to RISC Processors. New York: Springer,
2005, pp. 39–44.

[5] O. Cekan, M. Simkova, and Z. Kotasek, “Universal pseudo-random
generation of assembler codes for processors,” in Proceedings of The 4th
Workshop on Manufacturable and Dependable Multicore Architectures
at Nanoscale. COST, European Cooperation in Science and
Technology, 2015, pp. 70–73. [Online]. Available: http://www.median-
project.eu/wp-content/uploads/18 IV-2 median2015.pdf

[6] J. Podivinsky, O. Cekan, M. Simkova, and Z. Kotasek, “The
evaluation platform for testing fault-tolerance methodologies in
electro-mechanical applications,” Microprocessors and Microsystems,
vol. 39, no. 8, pp. 1215 – 1230, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141933115000630

[7] R. H. C. Yap, “Constraint processing by rina dechter, morgan kaufmann
publishers, 2003, hard cover: Isbn 1-55860-890-7, xx + 481 pages,”
Theory Pract. Log. Program., vol. 4, no. 5-6, pp. 755–757, Sep. 2004.
[Online]. Available: http://dx.doi.org/10.1017/S1471068404222189

[8] D. A. Patterson, “Reduced instruction set computers,” Commun. ACM,
vol. 28, no. 1, pp. 8–21, January 1985.

[9] J. Hudec, “An efficient technique for processor automatic functional
test generation based on evolutionary strategies,” in Proceedings of the
ITI 2011, 33rd International Conference on Information Technology
Interfaces, May 2011, pp. 527–532.

[10] V. Belkin and S. Sharshunov, “Isa based functional test generation with
application to self-test of risc processors,” in Design and Diagnostics
of Electronic Circuits and systems, 2006 IEEE, April 2006, pp. 73–74.

[11] F. Corno, E. Sanchez, M. Reorda, and G. Squillero, “Automatic test
program generation: a case study,” IEEE Design and Test of Computers,
vol. 21, no. 2, pp. 102–109, March 2004.

[12] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms,
1st ed. Springer Publishing Company, Incorporated, 2007.

[13] F. Corno, M. Reorda, G. Squillero, and M. Violante, “A genetic
algorithm-based system for generating test programs for microprocessor
ip cores,” in Proceedings of the 12th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2000). IEEE Computer
Society, November 2000, pp. 195–198.

[14] G. Squillero, “Microgp—an evolutionary assembly program generator,”
Genetic Programming and Evolvable Machines, vol. 6, no. 3, pp.
247–263, 2005. [Online]. Available: http://dx.doi.org/10.1007/s10710-
005-2985-x

[15] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv, “Genesys-pro: innovations in test program generation for
functional processor verification,” IEEE Design Test of Computers,
vol. 21, no. 2, pp. 84–93, Mar 2004.

[16] Codasip. (2016) Codasip — enabling the internet of extraordinary
things. [Online]. Available: http://www.codasip.com

[17] A. Meduna, Formal Languages and Computation: Models and Their
Applications, 1st ed. Boston, MA, USA: Auerbach Publications, 2014.

[18] V. Kumar, “Algorithms for constraint satisfaction problems: A survey,”
AI MAGAZINE, vol. 13, no. 1, pp. 32–44, 1992.

[19] R. Giegerich, Introduction to Stochastic Context Free Grammars,
J. Gorodkin and L. W. Ruzzo, Eds. Totowa, NJ: Humana Press, 2014.

[20] A. Ronacher. (2014) Jinja2 (the python template engine). [Online].
Available: http://jinja.pocoo.org/

[21] M. Lutz, Learning Python, 2nd ed. Sebastopol, CA, USA: O’Reilly
& Associates, Inc., 2003.

[22] J. Podivinsky, O. Cekan, J. Lojda, M. Zachariasova, M. Krcma, and
Z. Kotasek, “Functional verification based platform for evaluating fault
tolerance properties,” Microprocessors and Microsystems, vol. 52, pp.
145 – 159, 2017.

220

Paper VI

Input and Output Generation for
the Verification of ALU: A Use
Case

ČEKAN Ondřej, PÁNEK Richard, KOTÁSEK Zdeněk
In: Proceedings of IEEE East-West Design & Test Symposium. Kazan: IEEE Computer
Society, 2018, pp. 331-336. ISBN 978-1-5386-5709-6.

105

Input and Output Generation for the Verification of ALU: a Use Case

Ondrej Cekan, Richard Panek, Zdenek Kotasek

Brno University of Technology, Faculty of Information Technology,

Centre of Excellence IT4Innovations

Bozetechova 2, 612 66 Brno, Czech Republic

Tel.: +420 54114-{1361, 1362, 1223}

{icekan, ipanek, kotasek}@fit.vutbr.cz

Abstract

The paper presents the approach to universal

stimuli generation for an arithmetic-logic unit (ALU).

It is not focused only on input data generation, but it is

possible to generate also expected output in one

stimulus. The process of generation is based on a

probabilistic constrained grammar which is designed

to universally describe stimuli for various circuits. This

grammar is processed by our framework. The

experiment in functional verification, which shows the

quality of generated stimuli, is also presented.

1. Introduction

Random stimuli generation is currently a very

important process of checking the correct behavior of

various circuits [1]. Complex or also simple circuits

must be properly tested or verified before real

deployment to exclude design or implementation

errors. It is also necessary to verify the correct output

for expected and unexpected input combinations

(stimuli). Stimuli are typically randomly constructed

and may take many forms from binary values on simple

circuit pins to a complex program in the data memory

of a processor.

Each system is unique, and therefore, it requires

specific input stimuli for its operation. In order to

verify the correct behavior, it is necessary to create a

set of test cases (input stimuli and expected outputs) to

detect any possible mismatches in the circuit.

Depending on the complexity of the circuit, this

activity may be quite challenging, and therefore, tools

that allow to generate random inputs automatically are

created. These tools are targeted to a specific circuit

and their use is considerably limited for different

devices. Also, these tools do not allow the expected

output to be generated, and further efforts must be

made to create a reference system [2].

For the reasons outlined above, we have focused

on developing a framework for universal stimuli

generation that can be used for various circuits.

The paper is organized as follows. In section 2 our

previous research is described. In section 3 the related

work is summarized. Section 4 deals with our

definition of probabilistic constrained grammar that we

use for the generation process while section 5 devotes

to the grammar definition for the arithmetic-logic unit.

Experimental results are mentioned in section 6 and

finally in section 7 the paper is concluded.

2. Previous Research

In our previous research, we designed and

developed a framework for universal stimuli generation

based on a probabilistic (stochastic) context-free

grammar [3]. It is a common context-free grammar that

defines probabilities for its production rules with which

they are applied. We have extended this grammar by

restrictive conditions (constraints) and defined the new

grammar system - Probabilistic Constrained Grammar

(PCG) [4] that we use in our research. Constraints are

used to dynamically change the probabilities of

production rules during the generation.

We have also defined the architecture of universal

stimuli generation [5] that is shown in Fig. 1. This

architecture consists of two input structures

(Production Rules, Constraints) which are based on

PCG. The first structure defines the production rules of

a grammar, while the second structure includes

constraints for the application of production rules.

Together these two structures form the resultant

grammar. Grammar defined in this way is processed by

IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018 331

the Generator Core of the framework that assembles

the resultant stimulus on its output.

We applied this framework to more complex

circuits (e.g., RISC (Reduced Instruction Set

Computer) [6] processors, control unit) to verify the

possibility of generating stimuli using PCG. We

verified the quality of obtained stimuli from the point

of view of the generation speed and the achieved

coverage [7] in functional verification.

Probabilistic Constrained Grammar

Production Rules Constraints

Generator Core

Stimulus

Selection Application Modification

Fig. 1: The architecture of universal stimuli generation.

3. Related Work

The current trend in stimulus generation focuses

primarily on more complex circuits (e.g. processors),

because it is not trivial to construct a valid stimulus

(working program). Simpler stimuli, including test

vectors, can be generated directly in the simulation

environment where verification takes place (e.g.

Modelsim tool from Mentor Graphics [8]) or an

external tool.

A number of specific stimuli generators exists for

application-specific processors (ASICs) [9], digital

signal processors (DSPs) [10], protocol interfaces, field

programmable gate array (FPGA) converters [11], and

more. These tools and their approaches are complex

and their use is limited to the particular system.

As a universal stimuli generator, MicroGP tool [12]

can be mentioned which does not only generate stimuli

but it also finds the most optimal solution of hard

problems.

In this paper, we use test stimuli which can be

obtained directly from the verification environment

from Modelsim tool for comparison with our approach.

4. Probabilistic Constrained Grammar

A probabilistic constrained grammar is a pair G:

G = (H,C); where:

H is a probabilistic context-free grammar.

C is an ordered list of constraints for the grammar H.

A probabilistic context-free grammar is a 5-tuple H:

H = (N,T,R,S,P); where:

N is a finite set of non-terminal symbols.

T is a finite set of terminal symbols, N∩T = 0.

R is a finite set of production rules with form A→α,

where AϵN and α ϵ (NυT)*.

S is the starting non-terminal.

P is a finite set of probabilities for production rules.

Constraints restrict the grammar in the application

of production rules. The constraint is a 5-tuple C:

C = (RS,RD,P,[RE],[O]); where:

RS is the activation rule the application of which sets

this constraint.

RD is the target rule which probability is modified.

P is the new probability value.

RE (optional) is the stop rule which application cancels

this constraint.

O (optional) is the count of application of the rule RE

before canceling this constraint.

The constraints limit the application of production

rules for a given non-terminal through probabilities

which can be modified throughout the generation

process, and therefore, we are able to control the

resultant stimulus.

5. Arithmetic-Logic Unit

In general, this paper focuses on the principles of

random stimuli generation which can be used for many

simple circuits. It is not just generating input values for

these circuits, as in our previous work, but we would

like to show the expressive power of PCG and the

ability to simultaneously generate as input values as

output values that will be part of the resultant stimulus.

Thanks to this, it is possible to check quickly the

correctness of the output in case of circuit testing or

functional verification.

The arithmetic-logic unit (ALU) [13] is our test case

for which we show the random generation of input

stimuli and their result for the selected operation. An

arithmetic logic unit performs arithmetic and bitwise

operations on integer binary numbers. The symbolic

representation of ALU is shown in Fig. 2.

332 IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018

R

OP

A B

ALU

Fig. 2: The symbolic representation of ALU.

ALU has typically two input operands A and B

which are N bits long. Its operation is selected by OP

input bits. The R output represents the result of the

operation over the operands. ALU can be variously

complex, therefore, it can contain more input and

output bits (e.g. status and control bits), and its

supported operations can be also different in various

versions.

In this paper, we limit only to inputs and outputs as

shown in the figure. Among the operations under

consideration, we include two arithmetic operations –

addition with carry (ADD) and subtraction (SUB), and

four bitwise operations - AND, OR, XOR and NOT.

However, the principles that we use for the generation

are applicable to other operations.

5.1.1. Arithmetic operations. In this paper, we show

the generating of stimuli for the arithmetic addition

with carry operation. We can divide the process of

creating production rules into several sections - Input

values, Logic, and Result. Each section includes

specific rules that are applied during the generation.

The most complex section is Logic the production rules

of which must ensure the correct procedure for

calculating the result of this operation. The schematic

representation of these sections is shown in Fig. 3

which shows also the parts of resultant stimulus.

Stimulus

Input values

OPERATION

OPERAND A

LOGIC

CONSTRAINTS

OPERAND B

RESULT R

Fig. 3: The schematic representation of arithmetic

operation in our framework.

As can be seen in the figure, stimulus is composed

of four lines which are represented by integer binary

numbers. The lines are generated sequentially as

outlined, therefore, it is important to keep the context

in which the rules were applied. The first line is the

operation code followed by two operands (the numbers

which are summed up) and the last line is a final result.

The bit widths of inputs can be entered arbitrarily

based on used ALU, e.g. for our ALU 1 bit can be long

operation, 8 bits long operands, and 8 bits long result.

The constraints are also shown in the figure,

because they are involved in the selection of production

rules. Based on the random generation of input

operands, certain constraints are set, and therefore, the

logic is modified – the probabilities of production rules

are deterministically set to produce an unambiguous

result.

In the definition of production rules, each operand is

divided into N non-terminals (N is equal to operand bit

width). In our case, the operand A is divided into eight

bit non-terminals A7-A0, where A7 is the most

significant bit (MSB) and A0 is the least significant bit

(LSB). The same applies for the operand B. The rules

are as follows:

A -> A7 A6 A5 A4 A3 A2 A1 A0

B -> B7 B6 B5 B4 B3 B2 B1 B0

Each bit non-terminal A7-A0 can be zero or one,

therefore, it can take one of the following two terminals

(comma represents OR, terminals are in quotes):

A7 -> '0', '1'

A6 -> '0', '1'

…

A0 -> '0', '1'

Using these production rules, we have random value

in the first operand. At the moment, we have not

information about a carry bit propagation. The carry bit

is determined during the generation of the operand B.

For these purposes, it is necessary to keep the value of

operand A. Therefore, each bit non-terminal B7-B0 can

be replaced for non-terminal BiA0 (if Ai were zero),

BiA1 (if Ai were one), BiA0C (if Ai were zero and a

carry bit was set) or BiA1C (if Ai were one and a carry

bit was set). These possibilities have to be reflected in

production rules:

B7 -> B7A0, B7A1, B7A0C, B7A1C

B7A0, B7A1, B7A0C, B7A1C -> '0','1'

…
B0 -> B0A0, B0A1, B0A0C, B0A1C

B0A0, B0A1, B0A0C, B0A1C -> '0','1'

IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018 333

It remains to add production rules that will generate

the final result:

R -> R7 R6 R5 R4 R3 R2 R1 R0

R8, R7, …, R0 -> '0', '1'

Now it is known which values the input operands

have and whether the carry bits have been propagated.

These rules without any control would generate random

non-terminals and the result would not reflect the

operation addition with carry. Therefore, constraints

have to be utilized. The framework performs the right

derivations (substitution of the rightmost non-

terminals) for the both operands and result, therefore,

the substitution will start with the bit A0 to A7, then

with B0 to B7, and then R0 to R7.

The B0 does not have a carry bit, therefore, we

change the probability to zero for two rules with carry

on the start of generation (S is the default starting non-

terminal):

cons(->S, B0->B0A0C, 0);

cons(->S, B0->B0A1C, 0);

The context of the application of the rules for

operand A have to be stored in operand B, therefore,

we keep the context by limiting the selection of rules

for operand B and its corresponding bit:

cons(A0->'0', B0->B0A1, 0);

cons(A0->'0', B0->B0A1C, 0);

cons(A0->'1', B0->B0A0, 0);

cons(A0->'1', B0->B0A0C, 0);

...

cons(A7->'0', B7->B7A1, 0);

cons(A7->'0', B7->B7A1C, 0);

cons(A7->'1', B7->B7A0, 0);

cons(A7->'1', B7->B7A0C, 0);

After this limitation, we have two rules for each bit

B7-B1 which can be used after the generation of the

operand A. The bit B0 have only one deterministic rule

without the carry bit. After the generation of operand A

and the bit B0, we are able to determine the carry bit

(rule) for the following bit B1 and the result for bit R0.

The same applies for the other bits B2-B6:

cons(B0A0->'0', R0->'0', 100);

cons(B0A0->'0', B1->B1A0C, 0);

cons(B0A0->'0', B1->B1A1C, 0);

cons(B0A0->'1', R0->'1', 100);

cons(B0A0->'1', B1->B1A0C, 0);

cons(B0A0->'1', B1->B1A1C, 0);

cons(B0A1->'0', R0->'1', 100);

cons(B0A1->'0', B1->B1A0C, 0);

cons(B0A1->'0', B1->B1A1C, 0);

cons(B0A1->'1', R0->'0', 100);

cons(B0A1->'1', B1->B1A0, 0);

cons(B0A1->'1', B1->B1A1, 0);

...

In this logic, constraints for rules BiA0C and BiA1C

can be easily completed to obtain the correct result.

The selection of result bit after applying the rules is

based on the following Tab. 1 which defines the

classical addition with carry operation.

Tab. 1: Grammar truth table of addition with carry C.

Ai bit Bi bit Ri Ci+1

Ai->'0' BiA0->'0' Ri->'0' 0

Ai->'0' BiA0->'1' Ri->'1' 0

Ai->'0' BiA0C->'0' Ri->'1' 0

Ai->'0' BiA0C->'1' Ri->'0' 1

Ai->'1' BiA1->'0' Ri->'1' 0

Ai->'1' BiA1->'1' Ri->'0' 1

Ai->'1' BiA1C->'0' Ri->'0' 1

Ai->'1' BiA1C->'1' Ri->'1' 1

The final real result can be seen as in the following

example:

0 #OP

01101001 #A

10001011 #B

11110100 #R

This process of creation is useful and usable for

other arithmetic and bitwise operations. The main

condition is to cover all possible cases (creation of

corresponding production rules) which are then used or

disabled by means of constraints during generation.

The use of the constraints causes a fact that the defined

grammar is more deterministic and the output is valid.

5.1.2. Bitwise operations. The process of creation

grammar for the bitwise operations is very similar as in

the previous subsection in the case of arithmetic

operations. The basis is again to maintain the context

through several production rules and their non-

terminals. The difference is only in the generation of

results, respectively the limitation of the rules for

generating the partial bit of the result so that the output

is correct for the given operation.

334 IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018

6. Experimental Results

We performed an experiment in functional

verification in which we examined the highest coverage

of the key functions of the presented ALU. Functional

verification is the process of checking the correctness

of a system based on comparing its inputs and outputs

with reference model which implements the same

specification. We had implemented verification

environment in which we investigate the valid result of

the ALU and the code coverage. The code coverage

measures the system source code through typical

metrics like statements, branches, expressions,

conditions, and states. Through this information, we are

able to determine, when the ALU is sufficiently

verified. It is a percentage value suitable for

comparison or different generators.

The result of our experiment can be seen in Fig. 4.

From the experiment, it can be seen that there is a

difference between our generator (USG) and the Build-

in generator of test stimuli in verification environment.

The both of the generators work on random stimuli

construction but in our approach we are able to drive

the generation process to direct the convergence to the

better results. Verification environment checks also

corner cases for input data (e.g. all ones or zeros in

operands and result) and through probability values, we

are able to increase the ability to generate this

combinations. Therefore, the USG can hit this coverage

points faster than only with clean random generation.

The coverage was 94.91% for USG and 91.63% for

Built-in generator for 100 stimuli. For 200 stimuli, the

coverage was balanced for both generators on 94.91%.

60

70

80

90

100

0 50 100

C
O

D
E

C
O

V
ER

A
G

E
[%

]

NUMBER OF STIMULI

USG Build-in

Fig. 4: The code coverage in functional verification.

7. Conclusions and Future Research

The aim of this paper was to show the possibility of

generating as input as expected output. Automatic

generation of random stimuli facilitates the work and

time to test or verify a designed circuit. We showed on

an arithmetic logic unit the generation of input and

output together for which we defined our probabilistic

constrained grammar. The output stimulus was

composed of as randomly generated input operands as

the expected result for this unit. The introduced

mechanism has been shown on addition with carry

operation, however, the defined principles are general

and can be used for other arithmetic or bitwise

operations, cyclic redundancy check generation, and so

on. The experiment in functional verification showed

that this principle is ductile to get better results than

other ones.

This work is one of the partial goals for checking

fault tolerance in Field Programmable Gate Array

(FPGA). The main goal is to verify the correctness of

affected system under a fault and to determine the

importance of each of the configuration memory bits in

FPGA. The future research will address this topic.

8. Acknowledgements

This research was supported by The Ministry of

Education, Youth and Sports from the National

Programme of Sustainability (NPU II); JU ECSEL

Project SECREDAS (Product Security for Cross

Domain Reliable Dependable Automated Systems),

Grant agreement No. 783119; project IT4Innovations

excellence in science - LQ1602 and BUT project FIT-

S-17-3994.

9. References

[1] A. Meyer. Principles of Functional Verification. Elsevier

Science, 2003.

[2] N. Kitchen and A. Kuehlmann. Stimulus generation for

constrained random simulation. In 2007 IEEE/ACM

International Conference on Computer-Aided Design, pages

258-265, Nov 2007.

[3] R. Giegerich. Introduction to Stochastic Context Free

Grammars. Humana Press, Totowa, NJ, 2014.

[4] O. Cekan,, J. Podivinsky, and Z. Kotasek. Program

Generation Through a Probabilistic Constrained Grammar. In

2018 Euromicro Conference on Digital System Design

(DSD), accepted to conference, 8 pages, Aug 2018.

IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018 335

[5] J. Podivinsky, O. Cekan, J. Lojda, M. Zachariasova, M.

Krcma, and Z. Kotasek. Functional verification based

platform for evaluating fault tolerance properties.

Microprocessors and Microsystems, 52:145-159, 2017.

[6] D. A. Patterson. Reduced instruction set computers.

Commun. ACM, 28(1):8-21, January 1985.

[7] S. Tasiran and K. Keutzer. Coverage metrics for

functional validation of hardware designs. Design and Test of

Computers, IEEE, 18(4):36-45, May 2001.

[8] M. Graphics. Verification academy - the most

comprehensive resource for verification training, [Online]

(2013). Available: www.verificationacademy.com.

[9] J. Hudec. An efficient technique for processor automatic

functional test generation based on evolutionary strategies. In

Proceedings of the ITI, 33rd International Conference

on Information Technology Interfaces, 527-532, May 2011.

[10] B. Wess. Automatic code generation for integrated

digital signal processors. In 1991., IEEE International

Sympoisum on Circuits and Systems, pages 33-36 vol.1, Jun

1991.

[11] A. M. Amiri, A. Khouas, and M. Boukadoum.

Pseudorandom stimuli generation for testing time-to-digital

converters on an fpga. IEEE Transactions on

Instrumentation and Measurement, 58(7):2209-2215, July

2009.

[12] G. Squillero. Microgp-an evolutionary assembly

program generator. Genetic Programming and Evolvable

Machines, 6(3):247-263, 2005.

[13] J. G. Bartkowiak and M. A. Nix. Arithmetic logic unit,

Jan. 25 1994. US Patent 5,282,153.

336 IEEE EWDTS, Kazan, Russia, September 14 - 17, 2018

	Introduction
	Goals of the thesis
	Organization of the Thesis

	State of the Art
	Verification of Digital Systems
	Formal Verification
	Functional Verification

	Principles of Functional Verification
	Random Stimuli Generation
	Random Stimuli Generation Based on Constraints
	Coverage-driven Stimuli Generation

	Constraint Satisfaction Problem
	Test Stimuli Generation Based on Constraints
	Current Research in the Field of Test Stimuli Generation

	Formal Grammar

	Summary of Research Activities
	Research Process
	Architecture of Universal Stimuli Generation
	Specific Structures and Processor Verification
	Evaluation of Software Fault Tolerance
	Verification of the Robot Controller in the Maze
	Generalization Using Formal Grammar
	Principles of Creating Stimuli for Various Systems Using the Grammar

	List of Publications Included in the Thesis
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI
	Author’s contributions to selected papers

	List of Other Publications
	Participation in Research Projects and Grants

	Discussion and Conclusions
	Contributions
	Future Work

	Bibliography
	Appendices
	Publications cited by other authors
	Related Papers
	The Evaluation Platform for Testing Fault-Tolerance Methodologies in Electro-mechanical Applications
	Software Fault Tolerance: the Evaluation by Functional Verification
	Verification of Robot Controller for Evaluating Impacts of Faults in Electro-mechanical Systems
	A Probabilistic Context-Free Grammar Based Random Test Program Generation
	Program Generation Through a Probabilistic Constrained Grammar
	Input and Output Generation for the Verification of ALU: A Use Case

