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Abstract
We focus our work on camera position and orientation estimation given a query photo-

graph; we call this problem visual geo-localization. Specifically, we focus on photographs

captured in natural, mountainous environments. We introduce a thorough review of

state-of-the-art computer vision methods, datasets, and evaluation practices for visual

geo-localization problems. The survey revealed that researchers usually cast visual geo-

localization in natural environments as a similarity or a correspondence search between an

input photograph and a terrain model; we call this problem the cross-domain matching. We

identified three main goals to improve over the state of the art in visual geo-localization in

mountainous environments using cross-domain matching: (I) the need for new datasets

for training, validation, and evaluation of cross-domain visual geo-localization algorithms,

(II) the need to verify whether the cross-domain matching algorithms may benefit from

using different features—horizon lines, edge maps, semantic segmentation, and satellite

imagery, (III) the need to illustrate the usefulness of visual geo-localization methods by

developing novel applications.

In this thesis, we thoroughly describe our research studies to illustrate how we ex-

amined particular goals. We introduce several novel datasets for evaluation and training

of cross-domain matching methods. These novel datasets allowed us to propose a novel

method for cross-domain photo-to-terrain matching using a combination of semantic seg-

ments and classic edge-based features. We illustrate the benefits of our novel approach

over the state of the art on camera orientation estimation. Furthermore, we propose a

meta-algorithm based on a cross-domain Structure from Motion for a weakly supervised ac-

quisition of cameras aligned with the synthetic terrain. This novel cross-domain data ac-

quisition scheme allowed us to train a compact cross-domain keypoint descriptor. We il-

lustrate the descriptor performance by estimating full camera pose by matching the query

photograph to the rendered terrain model.

Finally, we demonstrate a practical usability of outdoor visual geo-localization by de-

signing a novel application of photography presentation on a computer screen or in vir-

tual reality. Moreover, we illustrate that our novel presentation method helps the user

with complex outdoor scene understanding and improves self-localization in unvisited

outdoor environments.



Abstrakt
V této práci se zabýváme odhadem pozice a orientace kamery z dané fotografie. Tento

problém nazýváme vizuální geo-lokalizace. Konkrétně se zabýváme fotografiemi pořízenými

v přírodních horských prostředích. Představujeme podrobný průzkum aktuálního stavu

poznání algoritmů, datových sad a přístupů k vyhodnocování problému vizuální geo-

lokalizace. Náš průzkum odhalil, že vizuální geo-lokalizace v přírodních prostředích je

často řešena pomocí vyhledávání podobností nebo korespondencí mezi vstupní fotografií

a terénním modelem. Problém nacházení korespondencí mezi fotografií a terénním mod-

elem nazýváme porovnávání napříč doménami (cross-domain matching). Na základě našeho

průzkumu jsme stanovili tři hlavní cíle, jejichž dosažení nám umožňuje překonat aktuální

stav poznání vizuální geo-lokalizace v horských prostředích s využitím porovnávání napříč

doménami: (I) potřeba nových datových sad které umožní trénovat, vyhodnocovat a porov-

návat algoritmy vizuální geo-lokalizace, (II) potřeba ověřit, zda využití různých příznaků

– křivek horizontu, hranových map, sémantické segmentace a satelitních snímků pomůže

vylepšit algoritmy pro porovnávání napříč doménami, (III) potřeba ilustrovat využitelnost

metod vizuální geo-lokalizace pomocí vývoje jejich nových aplikací.

V této práci podrobně popisujeme naše výzkumné studie, které objasňují, jakým způ-

sobem jsme postupovali ve výzkumu jednotlivých cílů. Představujeme několik nových

datových sad pro účely vyhodnocování, porovnávání a trénování jednotlivých metod.

S využitím těchto nových datových sad jsme vyvinuli novou metodu pro zarovnání fo-

tografií s terénním modelem na základě sémantické segmentace kombinované s běžnými

hranovými příznaky. Pomocí experimentálního vyhodnocení objasňujeme výhody našeho

nového přístupu oproti aktuálnímu stavu poznání. Dále navrhujeme meta algoritmus

umožňující automatickou kalibraci více kamer, který je založen na odhadu struktury z

pohybu (Structure from Motion) napříč doménami. Tento nový přístup pro automatické

zarovnávání fotografií s terénním modelem nám umožňuje natrénovat kompaktní deskrip-

tor klíčových bodů pomocí hlubokého učení. V rámci našeho výzkumu ukazujeme funkč-

nost tohoto deskriptoru při odhadu externích parametrů kamery (pozice a orientace) po-

mocí porovnávání vstupní fotografie s terénním modelem.

V závěru práce ukazujeme praktickou využitelnost našich metod pro automatickou

kalibraci externích parametrů kamery. Navrhujeme nový přístup k prezentaci fotografií,

který je vhodný jak pro prezentaci na monitoru či jiné projekční ploše, tak pro virtuální re-

alitu. Pomocí experimentálního vyhodnocení ukazujeme, že naše nová metoda prezentace

fotografií pomáhá uživatelům s orientací v neznámých komplexních přírodních scénách.
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Chapter 1

Introduction

Billions of images and videos on the Internet comprise a large amount of valuable infor-

mation covering ever-growing geographic areas. However, despite the proliferation of

cameras and mobile devices equipped with Global Positioning System (GPS) sensor, the

majority of available media still lack the geo-tag information; according to Flatow et al. [56]

(2015), there was around 2% of geo-tagged media on Twitter and 25% on Instagram.

The location gives the context, and it is essential for image and video recognition. Es-

sential applications are crucially dependent on the location knowledge, e.g., model-based

image enhancement [99], augmented reality [125, 143, 15], self-driving vehicles [28, 111],

and more. Additionally, visual geo-localization could help existing non-visual localiza-

tion systems to achieve higher precision and robustness. These facts motivate our work

to build new algorithms that would localize visual documents, such as photographs and

videos. Let us first review some definitions of visual localization given by various authors

in the literature.

1.1 What is Visual Geo-localization?

Hays and Efros [77] introduce visual geo-localization as “. . . estimating a distribution over

geographic locations from single image. . . ” Zamir and Shah [224] define the problem as

“. . . estimating the geo-location of a query image by finding its matching reference im-

ages.”1 Bansal et al. [18] say, “Given a ground-level street-view image in an urban area, we

want to determine the geo-location of the camera in the absence of any metadata (GPS or

camera parameters).” In summary, we define visual geo-localization as searching for the

geographic coordinates (and possibly the camera orientation), which captured the query

image or the video frame. We will use the term geo-localization instead of localization since

it is more accurate in our context. Whenever we use the term geo-localization, it is clear

that we are searching across geographical locations.

The problem has several variants—with known GPS position estimate or coarse region

of interest, the task is to find the precise position of the camera. An example of an existing

1Author’s note: in a reference database of geo-tagged images.
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method dealing with this problem is PoseNET [95], where the authors estimate the precise

location and camera orientation with a convolutional neural network (CNN) inside a small

area in Cambridge. Without a known GPS position estimate, the task is to localize the

camera on a large scale. Researchers already approached large scale geo-localization at

the scale of the whole Earth [77, 213, 207, 173]. However, such global approaches still

provide only coarse geo-localization (with reasonable uncertainty at the country level, as

reported by PlaNET [213]). Large scale geo-localization was therefore approached from

other perspectives as well—at the region level [116], city-scale level [7, 166, 202, 149, 114,

159, 13], and at the level of natural environments, particularly mountains [69, 14, 163, 37].

Usually, there is an assumption that the camera intrinsics such as field of view (FOV) is

known, but this information may not be available in many practical scenarios, making the

geo-localization task even harder. The geo-localization in natural environments is a less

studied variant compared to the visual geo-localization in urban areas. While methods

dealing with visual geo-localization in the urban environment are precise (up to meters in

the best scenarios), the resolution of the state-of-the-art visual geo-localization method in

the outdoor environment [163] is one kilometer.

1.2 Selected Problems

Already being said, visual geo-localization in outdoor natural environments is a less stud-

ied problem than visual geo-localization in urban areas. Moreover, urban areas cover ap-

proximately 1% of the Earth’s surface [151]. These facts motivate us to focus our work

on visual geo-localization in natural environments. Outdoor natural environments bring

their unique challenges, compared to the ones posed at urban and city-scale. These chal-

lenges include but are not limited to weather and seasonal changes, terrain self-similarity,

and low coverage of ground-level imagery (e.g., Google StreetView is available only in

most visited outdoor areas). To overcome the issue of limited ground-level imagery, we

chose to pursue the goal of cross-domain matching—comparing real photographs with a

synthetically rendered terrain counterpart. To render a synthetic terrain, we use DEMs,

which are publicly available for the whole Earth2. Visual localization based on DEM makes

sense only in non-flat environments. Therefore, we confine us to the mountainous envi-

ronments, where distinctive features (e.g., mountain peaks) are available. In this thesis,

we work with a plain DEM, with a DEM overlaid with natural semantic segmentation, or

with a DEM overlaid with a satellite orthophoto map; see the illustration in Fig 1.1.

One of the fundamental problems is the lack of datasets with photographs precisely

aligned with the terrain model. The low number and diversity of such datasets make

2http://viewfinderpanoramas.org
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semantic segmentation DEM satellite orthophoto

rendered segmentation rendered silhouettes rendered satellite texture

Figure 1.1: Illustration of DEM and additional overlays. Left: natural semantic segmenta-

tion (green: forests, light blue: glaciers, dark blue: water bodies); middle: the source DEM;

right: satellite orthophoto texture; bottom: corresponding rendered views of Matterhorn,

at the borders of Switzerland and Italy.

the development and evaluation of novel methods difficult. To foster the research in this

area, we studied how to build large scale datasets for image-to-terrain matching, either

automatically or with manual annotation.

The camera orientation estimation is the second problem we focus on in this thesis.

With a known position and the query image, the goal is to estimate three angles of camera

orientation. Estimating camera orientation is beneficial if we precisely know its position—

usually using a precise GPS sensor. This thesis proposes a novel method based on com-

paring edges and semantic segments from the query image with synthetically rendered

silhouettes (Fig. 1.1-middle) and semantic segmentation (Fig. 1.1-left).

However, the precise position of the photograph is often unknown. In this case, we

need a full camera pose estimation method, which jointly estimates camera position and

orientation. We focused on camera pose estimation using the Perspective-n-Point (PnP)

algorithm. The critical problem is finding the cross-domain correspondences between the

keypoints detected in the query and rendered images. To solve this problem, we trained a

CNN to produce a cross-domain descriptor, a vector of numbers similar for corresponding

keypoints and dissimilar for non-corresponding keypoints.
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The human (in)ability to estimate a photograph’s location [207] from visual data is also

a related problem. Users’ orienteering and localization capabilities are essential to under-

stand image-based navigation instructions. We studied this problem on the application of

photography presentation, where our goal was to help users understand the link between

the presented material and its location in an enjoyable way.

1.3 Contributions

In summary, in this thesis, we present the following contributions:

1. We created an in-depth survey of existing approaches, datasets, and evaluation meth-

ods in the field of visual geo-localization [A2]. This thesis further updates this survey

to contain more complete sets of methods relevant to our following contributions.

2. We introduced a novel cross-domain dataset, GeoPose3K [A1], for training and eval-

uating visual geo-localization methods in outdoor environments. GeoPose3K con-

tains more than three thousand photographs aligned with a terrain model, accompa-

nied by various metadata rendered from a terrain model, such as depth and normal

maps, synthetic silhouette edges, and simulation of illumination throughout the day.

3. We examined structure from motion (SfM) methods to reconstruct and align un-

sorted photograph collections with the terrain model [A4]. We proposed a novel

method structure from motion with terrain reference. Our SfM with terrain reference uses

a terrain model to initialize the scene reconstruction, which avoids drift of the real

photographs [A5].

4. We proposed a method to make camera orientation estimation by matching photo-

graph to terrain model more robust. We jointly use the semantic segmentation with

edge-based features to allow three degrees of freedom (DOF) camera orientation es-

timation with the apriori known camera position [A3].

5. We proposed a novel cross-domain descriptor based on a convolutional neural net-

work (CNN) [A5]. Our novel descriptor allowed us to employ keypoint-based tech-

niques to directly localize an input photograph relative to a rendered terrain model.

6. We proposed a novel application of visual geo-localization in outdoor environments.

Our method allows users to automatically generate a fly through a virtual terrain

with their photographs aligned [A4, A6]. This way, the user can re-create his hike

inside a virtual reality or on a computer screen. We also experimentally show that

our new mode of presentation helps users self-localize better in previously unknown

environments.
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Part I

State-of-the-art in Visual Geo-localization

We can instantiate visual geo-localization in many different variants. We can categorize

it according to the area: small-scale, large-scale, or around the whole planet, according

to the environment, e.g., urbanized areas, countryside, or mountains. Even though the

approaches vary and we can see the geo-localization from many different viewpoints, the

ultimate goal is the same for all of them: recovering the camera location given the visual

document the camera captured. Although we focus on visual geo-localization in natural

environments, let us review the visual camera geo-localization and place recognition as a

whole. While geo-localization in natural environments is not in researchers’ main focus

yet, geo-localization (or place recognition) in other environments, particularly cities, has

recently gained attention from many researchers. Besides the works dealing with visual

geo-localization, we also review existing datasets and evaluation methods.

15



16



Chapter 2

A Survey of Visual Geo-localization Methods

(a) Category: global1 (b) Category: city-scale2 (c) Category: natural3

Figure 2.1: Illustration of visual geo-localization categories.

2.1 Classification of Visual Geo-localization Methods

We classify the works in this survey by two main criteria. The first criterion is the type of

input data. We recognize two main classes of methods concerning the type of input data:

image-based methods and methods utilizing data of multiple modalities. Image-based meth-

ods use large GPS-tagged image databases to infer the location of the query image. These

methods can locate (up to several centimeters in some cases) images, mainly in highly

urbanized areas, with a high density of ground-level imagery available online. Methods

utilizing data of multiple modalities use more information than image-based methods, be-

yond a simple image database. Mostly, the methods make use of DEMs [14, 15, 143, 200],

orthophoto maps, attribute maps [116], or satellite imagery [85]. Such methods were de-

veloped mainly for areas where coverage by ground-level imagery is sparse, e.g., moun-

tain areas, deserts, and other places with low population density.

1Credit: N. Palmer (CIAT)—Amazonia, M. Pazzani—Caribbean Island, T. Pintaric—Los Angeles Dowtown
2Credit: Myrabella—Paris from Notre Dame, Diliff—Les Invalides
3Credit: Felix Lamouroux—Zermatt Panorama, Marcel Wiesweg—Matterhorn
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Categorization based only on the type of data would not be enough, since the cate-

gories may overlap. To distinguish between the methods better, we add a second clas-

sification criterion—the particular method’s environment for which it was designed. We

divide the environment criterion into three classes:

• global—unrestricted geo-localization at the planet scale (Fig. 2.1(a)),

• city-scale—geo-localization in urban environments (Fig. 2.1(b)),

• natural—geo-localization in natural (non-urban) environments—e.g., in the moun-

tains (Fig. 2.1(c)).

The goal of global methods is to localize query image without a prior assumption about

the environment type. Localizing a single image in the whole world is an appealing idea,

but the existing methods provide low accuracy. Existing works consider the localization

successful if the method localizes the query image within 200 km from the ground truth

position [77].

City-scale methods deliver higher localization accuracy, assuming the query image re-

sides in a specific urban area. Natural methods are specialized as well—the published

methods target specific kinds of natural environments, such as deserts or mountains.

There are principal differences between urban and natural environments that determine

the complexity of the respective geo-localization problem:

Data Availability. Dozens of photos of attractive places and landmarks in highly pop-

ulated areas—Flickr API returns more than 200,000 photographs containing the tag

“Eiffel Tower” and more than 100,000 photographs containing the tag “Statue of Lib-

erty” (2016). Such an abundance of data enables an image to image search with Bag

of Words (BOW), feature-based techniques, and SfM model matching.

Well Defined Objects. Human-made objects with distinctive and stable appearance, such

as buildings, bridges, or road signs, can be well recognized and matched. Moreover,

such objects’ mutual arrangement in space is often unique, which we can use for

localization. On the other hand, in natural environments, objects are relatively diffi-

cult to match-—e.g., mountains, foliage, and clouds. Those are difficult to recognize

because of inconsistent appearance (weather and illumination changes, vegetation

growth) and frequent occlusion of such objects in the real world.

Repetitive and Self-Similar Patterns. Urban environments contain repetitive objects like

windows, lamps, and logos. In natural environments, we can see a lot of fractal and

self-similar patterns. All these aspects make the visual geo-localization a problematic

task.
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Such specific issues narrow down the options for solutions of geo-localization in a

particular environment. This chapter presents a broad overview of visual geo-localization

methods in connection with the introduced classification. We summarize all reviewed

localization methods in Tab. 2.1.

method class environ. test area localiation success max. err.

Robertson 04 [152]

im
ag

e-
ba

se
d,

re
tr

ie
va

l

city single street 95% N/A

Zhang 06 [228] city city part 72% on ICCV 2005 Cont. 16 m

Schindler 07 [166] city single city 70% 10 m

Zamir 10 [225] city 240 km of street-view 78%, vs. 39% [166] 250 m

Chen 11 [34] city single city 65% N/A

Johns 11 [87] city landmark N/A N/A

Zamir 14 [226] city several cities N/A N/A

Zamir 14a [224] city several cities 44% 100 m

Arandjelovic 15 [7] city Pittsburgh250k 86.0% top-1 candidates 25 m

Liu 19 [119] city Pittsburgh250k 89.0% top-1 candidates 25 m

Ge 20 [58] city Pittsburgh250k 90.7% top-1 candidates 25 m

Hays 08 [77] global Earth 16% on IM2GPS [77] 200 km

Zheng 09 [230] global Earth landmarks accuracy 80.8% N/A

Hays 15 [78] global Earth 32.1% on IM2GPS [77] 200 km

Vo 17 [207] global Earth 47.7% on IM2GPS [77] 200 km

Li 09 [112] global Earth landmarks 40.58% visual&tags 1 of 500 landm.

Mishkin 15 [127] global place P/R: 0.821
0.825 1 frame

Irschara 09 [83]

im
ag

e-
ba

se
d,

Sf
M

city landmark 39% within top-10 candidates N/A

Li 10 [114] city several cities 92.4% (Rome) 400 m

Sattler 11 [158] city several cities 97.6% (Rome) 400 m

Sattler 12 [159] city several cities 99.1% (Rome) 400 m

Sattler 12a [161] city Aachen [161], Vienna [83] 74-83% N/A

Li 12 [113] city 1 K of landm.
73% on Quad [42]

90%, images under 10 m
N/A

Hao 12 [70] city landmark N/A N/A

Bergamo 13 [23] city landmark
95% on Lan.-3D [70]

63% on Lan.-620 [23]
N/A

Svärm 14 [188] city Dubrovnik [114] 0.9975% (Dubrovnik) 400 m

Sattler 15[157] city San Fr. [113] Landmarks 62.5% (San Fr.) N/A

Zeisl 15 [227] city San Fr. [34], Dubrovnik [114] 0.9975% (Dubrovnik) 400 m

Kendall 15 [95]

cl
as

s.
,r

eg
re

ss
.

city, indoor Cambridge Landmarks 2 m, 3° outd. 0.5 m, 5° ind. N/A

Brachmann 17 [26] city, indoor 7 scenes [177] indoor 62.5% 5 cm; and 5°

Brachmann 18 [25] city, indoor
7 scenes [177]

Cambridge Landmarks
76.1% 5 cm; and 5°

Weyand 16 [213] global Earth 37.6% on IM2GPS [77] 200 km

Seo 18 [173] global Earth 46.4% on IM2GPS [77] 200 km

Müller-Budack 18 [131] global Earth 51.9% on IM2GPS [77] 200 km

Izbicki 20 [84] global Earth 39.4% on IM2GPS [77] 200 km

Talluri 92 [190]

m
ul

.D
EM natural 148 km2 N/A N/A

Stein 95 [186] natural 298 km2 N/A N/A

Naval 97 [146] natural N/A N/A N/A

continued on the next page. . .
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. . . continued from the previous page

method class environ. test area localiation success max. err.

Naval 98 [133] natural 900 km2 avg. err. 393 m N/A

Woo 07 [215]

m
ul

ti
.D

EM

aerial, natur. 2.28 km2 N/A N/A

Baatz 10 [13] city single city 35%, or 85% N/A

Ramalingam 10 [150] city single city avg. err. 2.8 m N/A

Baatz 12 [14] natural 40 000 km2 88% 1 km

Tzeng 13 [200] natural 10 000 km2 N/A N/A

Baboud 11 [15] natural
28 photos in the Alps,

Rocky Mnts.
86% <0.2°

Porzi 14 [143] natural 100 places in the Alps avg. err. 1.87° 5.22°

Hammoud 13 [69] natural 20 000 km2 49% 14 km

Chen 15 [37] natural 10 000 km2 (America, Asia) 60% 4.5 km

Hakeem 06 [67]

m
ul

ti
.S

LA
M

city campus
avg. err 6 m

ICCV Cont. 2005
N/A

Conte 09 [40] natural N/A (S. Sweden) N/A N/A

Larnaout 12 [108] city city-center N/A N/A

Larnaout 13 [109] rural, city rural, city N/A N/A

Middelberg 14 [125] city 40 km2 <1 m N/A

Jacobs 07 [85]

m
ul

ti
.o

th
er

global Pennsylv., Maryland avg. err. 71.8 km N/A

Gallagher 09 [57] global Earth 33% on IM2GPS[77] 200 km

Kalogerakis 09 [89] global Earth 58% on IM2GPS [77] 400 km

Baatz 10 [13] city single city Earthmine 85% Navteq 35% N/A

Kelm 11 [94] global Earth 10% 1 km

Kelm 11a [93] global Earth 35% 1 km

Lin 13 [116] global 1 600 km2 17.37% N/A

Aubry 14 [10] city landmark 55% good matches 18% no match

Viswanathan 14 [206] aerial, natur. approx. 0.1 km2 31% matches

for top 10% cand.
N/A

Ardeshir 14 [8] city 10 km2 Washington DC 60% for top 20% cand. N/A

Lin 15 [117] city several cities 80% 20% of cand.

Workman 15 [216] global 40 000km2 22.7% N/A

Table 2.1: Overview and properties of geo-localization methods. Test area defines the

area on which the method has been tested in the original publication, localization success

(local. succ.) denotes the best result achieved with given method, and maximum error

denotes the maximum distance from the ground truth position which is considered to be

correct localization. Abbreviations: multi. = methods using data of multiple modalities,

cont. = contest, cand. = candidates, P/R = precision/recall, landm. = landmarks, mnts.

= mountains, tags = method uses also user defined tags for localization, San Fr. = San

Fransisco.
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2.2 Image-based Methods

Image-based methods are used when sufficient amount of reference images is available.

Image retrieval uses big databases of GPS-tagged images to infer a query image’s location

by retrieving similar images using various matching algorithms. Localization by regression

uses machine learning to learn a model to directly predict the camera parameters (position

and/or orientation). Alternatively, localization approaches using classification discretize the

space of camera parameters into a set of disjoint classes and learn a model to predict a

class given an input image. Structure from Motion (SfM) localization methods use a 3D

reference model constructed using geometrical relationships between many overlapping

images. Thanks to this fact, not all images need to contain explicit GPS tags.

2.2.1 Image Retrieval

Image retrieval is a set of methods to search for similar images in an extensive image

database. Usually, the query image location is inferred based on the location of the most

similar database images [152, 228, 166, 87, 225, 226, 224, 127].

Robertson and Cipolla [152] published one of the first attempts to image localization

by image retrieval. They created a database of two hundred photographs of rectified fa-

cades in Cambridge city center. For rectification, they used vanishing points estimation

by Kosecka and Zhang [100]. They manually annotated facade positions using the 2D

map to connect each facade with meaningful coordinates. For matching, the authors used

the sum of squared differences between patches centered around Harris key-points. The

method does not scale well, since it matches the query image against all the database im-

ages, which would lead to prohibitive run times on more extensive image databases.

Zhang and Kosecka [228] extended the former approach using a database of SIFT

feature descriptors [122] detected on GPS-tagged images. The authors implemented the

coarse matching stage as simple voting to every document in the database causing high

computational complexity. Their method verifies the best five candidates and sorts them

using RANSAC [55]. The method finds the final location by triangulating the best candi-

dates.

Schindler et al. [166] developed another city-scale image localization method based on

image retrieval. Their publicly available test dataset includes 20 km of street-side imagery.

Johns and Yang [87] studied the problem of place recognition. They improved the

BOW technique [180] by clustering the image database of 200,000 images to visually sim-

ilar scene models (landmarks). However, their results show only marginal improvement

compared to the standard BOW technique.
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Zamir and Shah [225] used a dataset of 100,000 geo-tagged images downloaded from

Google Street View. They used a nearest-neighbor tree search with additional steps of

pruning and smoothing for better accuracy. Furthermore, they developed a Confidence

of Localization measure, which quantifies the reliability of the localization of a particular

query image using Kurtosis of a normalized voting space.

Zamir et al. [226] proposed a robust method operating on an image database with

noisy GPS tags. For each query image, the method finds several matches from the im-

age database to form triplets. With the assumption of noise-free GPS tags, the method can

estimate the query image’s geo-location directly from the triplet. To allow robust estima-

tions under noisy data, the authors propose to use random walks.

Zamir and Shah [224] aimed to further improve nearest-neighbor matching by pruning

outliers and incorporating approximate feature matching using a Generalized Minimum

Clique Problem (GMCP). The authors compare their method to Schindler et al. [166] and

their previous work [225]. They show that the new method has lower localization error; it

was able to localize more than 55% of the query images within the error of 250 m, whereas

their previous method [225] localized 50% and Schindler et al. [166] localized only 46%

within the same error.

Arandjelovic et al. [7] proposed a novel neural network layer called NetVLAD to pro-

duce a global feature descriptor for a given image. They casted the city-scale place recog-

nition problem as image retrieval by searching nearest neigbors in the database of global

descriptors. The NetVLAD correctly localized around 86% of top-1 candidate images of

the Pittsburgh250k dataset.

More recent approach by Liu et al. [119] builds on the NetVLAD and proposes a novel

Stochastic Attraction and Repulsion Embedding loss function (SARE). The SARE loss func-

tion aims to minimize similarities among inter-place images while maximizing similarities

among intra-place images. This approach correctly localized almost 89% of top-1 candi-

cates of the Pittsburgh250k dataset.

A self-supervised approach for learning global descriptors was proposed by Ge et

al. [58]. The authors propose a method to gradually increase the difficulty of the pos-

itive and negative training samples by self-supervising the image-to-region similarities.

This method achieves state-of-the-art accuracy on both Pittsburgh250k and Tokyo 24/7

datasets. On the Pittsburgh250k this method localized 90.7% of top-1 candidates.

An interesting problem of place recognition in changing conditions, such as changes

between day and night or winter and summer, was explored by Mishkin et al. [127]. They

adopted a BOW method with multiple detectors, descriptors, view synthesis, and adaptive

thresholding to cope with extensive visual changes in the environment.
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Hays and Efros [77, 78] published the first global visual geo-localization method. They

created a database of various features from 6 million images distributed around the whole

Earth. To estimate a query image’s location, the authors used the retrieved nearest neigh-

bors’ density using various handcrafted features. At the threshold of 200 km from the

ground truth the former approach [77] localized 15% of images, and the latter approach [78]

localized 32.1% of images on the IM2GPS test set.

The follow-up work by Vo et al. [207] revisited the IM2GPS approach by using features

from deep neural networks for image retrieval at the global scale. Similarly to PlaNet [213],

they trained a CNN for classification, however, at the inference they used the network acti-

vations as features for image retrieval, instead of classification. They show their approach

needs lower amount of training data and is able to achieve more accurate results compared

to PlaNet [213]. Their approach localized 14.4% of images within the 1 km and 47.7% of

images within the 200 km distance from the ground truth.

Since landmark recognition techniques lie at the border of our interest, let us review

them only briefly. Li et al. [112] use the BOW technique combined with multiclass Sup-

port Vector Machine (SVM) to learn landmark classification. Similarly, Avrithis et al. [11]

used an improved BOW method to study the problem of separating landmark and non-

landmark images. Zheng et al. [230] combine GPS-tagged images from online services and

a textual tour guide with unsupervised learning to build a world-scale landmark database.

Chen et al. [34] studied landmark detection on mobile devices using on-board GPS esti-

mates. The authors also published a dataset for landmark recognition and localization.

2.2.2 Localization by Regression and Classification

Recently, researchers proposed deep learning to directly predict the camera location from

scene observations using a forward pass through a CNN [95, 213, 26, 25]. Once trained,

the regressor function can estimate the camera parameters directly given the query im-

age. This approach’s advantage resides in learning a relatively compact representation of

the whole scene, unlike the image retrieval or SfM methods, which need to operate on a

database of real images and their descriptors with a large memory footprint. On the other

hand, for each scene, a specific regressor is needed, and training the regressor could be

quite expensive.

Kendall et al. [95] used an SfM model to train a convolutional neural network called

PoseNet for camera localization. Their experiments operate on 50 000 m2, with the re-

ported errors 2 m and 3° in outdoor areas, and 0.5 m and 5° in indoor areas.

DSAC and DSAC++ [26, 25] use a neural network to predict each image’s 3D rep-

resentation, so-called scene coordinates. The Perspective-n-Point (PnP) algorithm in a

RANSAC loop [55] uses the estimated 3D coordinates to estimate the camera’s absolute
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pose. DSAC++ can achieve accurate results on a known scene—translation error is in mil-

limeters, and rotation error is in the order of tenths of a degree.

PlaNet [213] aims to localize images across the whole Earth (at the global scale) by

clustering the whole Earth into a large number of cells of variable size. The authors trained

a neural network to classify a query image into the database of cells using 126 million

training images. Although this approach works at the global scale around the whole Earth,

it is relatively inaccurate—on the IM2GPS test set it was able to localize 8.4% of images

within 1 km, and 37.6% of images within 200 km from the ground truth.

A follow-up work, CPlaNet [173] introduces a method to tackle the problem of the

trade-off between cell size and number of training images within a cell. The basic idea

is to partition a world into several coarse partitionings; for each partitioning a separate

classifier is trained. The paper proposes a novel combinatorial partitioning method, which

merges separate classifier outputs into a fine-grained classification. Especially for fine-

grained scales its accuracy is almost doubled compared to the original PlaNet [213]: on

the IM2GPS test set it localized 16.5% of images within 1 km and 46.4% of images within

200 km.

A paper aimed at global geo-localization exploiting the hierarchical nature of the clas-

sification in combination with photo’s scene content (i.e., indoor, natural, or urban) was

introduced by Müller-Budack et al. [131]. The performance of this method is better com-

pared to CPlaNet [173], and it needs just 4.7 million images for training, while CPlaNet

consumed 30.3 million of images. This approach currently delivers state-of-the-art results

in global geo-localization: on the IM2GPS test set it localized 16.9% of images within 1 km

and 51.9% of images within 200 km.

Izbicki et al. [84] approached the global geo-localization by introducing the Mixture

of von-Mises Fisher loss function, which is similar to a Gaussian Mixture Model adapted

to a Spherical surface. This approach could be used in a hybrid mode, which combines

classification and retrieval approaches together. This approach is able to deliver signifi-

cantly better results on coarser scales compared to CPlaNet [173] and the revisited version

of IM2GPS [207].

A recent study [162] suggests that direct regression of camera parameters, such as

PoseNet [95] or PlaNet [213], behaves and performs similar to image retrieval, which is

less accurate than methods leveraging the 3D structure. On the other hand, DSAC++ [25]

operates by scene coordinate regression and performs precisely on a small scale, but it

seems it cannot generalize to large-scale scenes [162].
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2.2.3 Structure from Motion

Structure from motion (SfM) is a set of reconstruction methods and strategies for comput-

ing a 3D scene from an unordered set of photographs. The core of SfM involves comput-

ing a relative pose between two cameras observing the same scene, by solving the 5-point

problem [134]. Additional photographs can be added to the reconstruction by comput-

ing absolute pose between camera images and a known set of 3D points, typically by

solving the Perspective-n-Point (PnP) [55] algorithm. These algorithms are usually used

iteratively to incrementally add new photographs to the reconstruction, further refined

by non-linear optimization of the camera parameters and 3D points called global Bundle

Adjustment [199].

Tens of million images available online can be used to create large SfM [72, 27, 184, 185,

1, 65, 42, 80] models. For instance, Heinly et al. [80] automatically created models of many

places worldwide from 100 million photos from the Yahoo image dataset [191] in six days

on a single computer.

SfM models are usable in highly urbanized areas and near dominant landmarks. Irscha-

ra et al. [83] used several hundreds of photographs to create SfM models of Vienna’s most

famous landmarks. They search for relevant photographs in the SfM model by the stan-

dard image retrieval (BOW) approach. They successfully registered the majority of frames

of four test videos and test images. The authors also presented a compression technique

to reduce the number of images needed to cover the 3D scene.

Li et al. [114] developed a location recognition approach that prioritizes features from

an SfM model and matches them against query features. They show that defining priori-

ties based on properties of features in the SfM model and application of Feature-to-Point

(2D-to-3D) matching play a vital role in the improvement of matching performance.

Sattler et al. [158] propose a technique of direct 2D-to-3D matching. They assign a

feature descriptor to each visual word and match query feature descriptors directly to de-

scriptors in relevant visual words. They show an improvement in matching performance

while keeping reasonable response times (fractions of a second). In follow-up work by

Sattler et al. [159], the ideas of 2D-to-3D and 3D-to-2D were combined and formulated into

an Active Correspondence Search, which improved both the time and the matching perfor-

mance.

Furthermore, Sattler et al. [161] studied problems of image retrieval methods connected

to localization. Algorithms using direct feature descriptor matching outperform classical

image retrieval approach by 15%. The authors identified and addressed the image retrieval

approach’s performance problems by introducing selective voting. This method slightly

outperformed the direct descriptor matching.
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Among the first works addressing large-scale localization based on an SfM model was

Li et al. [113]. They presented a method able to cope with hundreds of thousands of images

using a co-occurence prior for RANSAC and a bidirectional matching of image features with 3D

points, which is a similar idea to the Active Correspondence Search presented by Sattler et

al. [159].

Bergamo et al. [23] used an SfM model to learn a random forest codebook for Landmark

classification. Other authors also approached the problem of landmark classification [148,

70], but it is out of this survey’s scope.

Swärm et al. [188] incorporated the knowledge about gravity direction in the query

image obtained from gravitational sensors. Their method can handle a large amount (up

to 99%) of outliers.

Localization on large datasets (hundreds of thousands of images in the SfM model)

poses new problems, namely a large memory footprint of the model and the Scale In-

variant Feature Transform (SIFT) descriptor ratio test’s strictness. These problems are ap-

proached by Sattler et al. [157] by quantizing descriptors to reduce the search space while

incorporating a new voting strategy to remove ambiguous matches.

The work by Zeisl et al. [227] on large scale geo-localization using the SfM model also

tackles the problem of a large fraction of outlier matches. The authors build on Svärm et

al. [188], utilizing geometric constraint of gravity direction on camera and incorporate

them with additional constraints into the camera pose voting.

2.3 Methods Using Data of Multiple Modalities

Unlike image-based methods, methods leveraging multiple modalities use additional in-

put data to find camera location for a query image. A popular choice is a cross-domain

matching of a query image and a terrain model, with the utilization of features like horizon

lines, ridges, and edge maps. Simultaneous Localization and Mapping aims to create a map

of an unknown environment and simultaneously localize a camera in that environment.

Researchers also proposed methods using other input data like orthophoto maps combined

with attribute maps, bird’s eye, or satellite weather imagery. In this domain, we consider

outdoor, non-urban environments due to areas with a lower population density.

2.3.1 Methods Using Terrain Models

The first visual geo-localization works’ primary motivation was mobile robots’ and plan-

etary rovers localization in outdoor environments. Talluri and Aggarwal presented an

early work [190, 189] covering this topic. They use a DEM model and a robot equipped

with a digital compass, an altimeter, and a monocular camera, that can be panned and
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tilted. They propose to localize by matching horizon lines extracted from a query image

with those rendered from DEM. The authors conducted experiments on 1.41 km2, with the

area sampled uniformly with the distance of samples of 30 m.

Stein and Medioni [186] use horizon lines for localization as well. They create a database

of synthetically rendered 360° horizon lines using a DEM. They approximate horizon lines

by polygons, from which they create a database. They extract the horizon from an input

query image semi-automatically and encode it into the same format as horizons in the

database. Finally, they match the query horizon line with the database and geometrically

verify the best candidates.

Naval et al. [146, 133] further studied the localization using horizon lines. In these

works, they extract the skyline from a query image by a multilayer perceptron. They use

the peaks as local feature points, which they detect in both the query image and the DEM.

The authors calculate the query image’s pose using three feature points from the database

via minimization of error function using non-linear least squares.

Woo et al. [215] studied unmanned areal vehicle (UAV) navigation in mountain areas

using DEM and infrared (IR) images with known altitude using an altimeter. They used

the infrared spectrum to tackle the visibility problems during the night and bad weather

conditions. The authors extracted the peaks from a series of frames and used a factor-

ization method to reconstruct a spatial configuration of peaks in 3D. Next, the authors

proposed matching the 3D positions of peaks extracted from the query image to peaks ex-

tracted from DEM, and hypothesizing the pose. Finally, they rendered an artificial horizon

from the DEM at the hypothesized location and aligned it with the query horizon line to

confirm or reject the estimated location.

Ramalingam et al. [150] published a city-scale visual geo-localization method based on

fisheye images of the urban canyons. The method takes an omni-skyline image, extracts

the skyline defined by buildings, and matches this skyline with a database of synthetically

rendered skylines. The method is usable in cities which have very tall buildings, like New

York.

Produit et al. [145] developed a method to estimate a full camera pose from point cor-

respondences between the rendered DEM covered with an orthophoto texture. For match-

ing pixel patches located at the corners of salient edges they used a cross-correlation. They

estimate a full camera pose using the matches filtered with Random Sample Consensus

(RANSAC).

Hammoud et al. [69] extend the extracted horizon line from a query image by LIDAR

and Hyper-Spectral Land Use/Cover imagery. They match the inputs separately and com-

bine them by linear fusion into a single probability map. The authors validated their ap-

proach on 100 query images on two world regions, having 10,000 km2 each.
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Baatz et al. [14, 163] were the first to develop factually large-scale visual localization

solution outdoors (on an area of 40,000 km2). The method uses an extensive database

of extracted features from horizon lines, called contourlets. The contourlets are dense

representations of normalized and smoothed horizon lines stored as a single integer. For

localization, they use a BOW approach to retrieve the best 1000 candidates, which are

geometrically verified to find the best matching locations. Thanks to direction & location

voting strategy and geometrical verification of horizon lines, the method can estimate both

camera’s location and coarse heading.

Tzeng et al. [200] presented a similar work to Baatz et al. [14]. The idea of using a

database of horizon features generated from a rendered DEM and searching for horizon

features from a query image is the same. The difference is that they use concavities of

horizon line parts as local features.

Chen et al. [37] presented an advanced approach based on horizon lines. The authors

build on the approach presented by Saurer et al. [163], and they extend the local feature

descriptor utilizing multiple ridgelines, not only the horizon line. The feature extraction is

the same as in Saurer et al. [163]. The crucial difference is in the voting stage of BOW, where

the documents are voting not only for the horizontal but also for the vertical direction. The

authors tested their method on 10,000 km2 and showed that their results were better than

in Saurer et al. [163].

2.3.2 Simultaneous Localization and Mapping

Visual Simultaneous Localization and Mapping (V-SLAM) is also relevant to the topic of

visual geo-localization when performed outdoors. Generally, SLAM methods make use

of various inputs, like RGB image combined with depth, stereo, lidar sensors, or GPS. We

focus on the works relevant to visual geo-localization, surveying the works utilizing only

the single-camera input. Since SLAM methods focus on continuous localization in time,

we separated these methods from visual geo-localization of a single image.

An approach by Middelberg et al. [125] for six-degrees-of-freedom (6-DOF) localization

on mobile devices uses a large offline SfM point cloud at the server and a small keyframe-

based SLAM [97] model on the mobile device. The keyframes are matched with the offline

SfM model to avoid drift, while intermediate frames are processed on the device to esti-

mate the motion frame-by-frame.

Hakeem et al. [67] proposed an offline method for estimating a moving camera trajec-

tory. They match keyframes with a GPS-tagged photographs database, and from the best

matches they calculate essential and fundamental matrices to recover the camera pose.

They use a triangulation step to disambiguate the scale. Next, they interpolate the ob-

tained locations using B-splines to obtain a smooth trajectory.
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Conte and Doherty [40] used a GPS-tagged image database in combination with a KLT

feature tracker [194] to address the problem of GPS signal outages of an UAV. The visually

tracked position was fused with the inertial measurement via on-board sensors through a

Bayesian framework.

Vaca-Castano et al. [202] built a method on top of the localization method by Zamir

and Shah [225] for trajectory estimation in a city. Each keyframe is localized using the

discussed method, and Bayesian filtering enforcing temporal coherency is used. As the

results are often noisy and exhibit false loops, they construct the final trajectory using a

minimum spanning tree (MST) algorithm.

Larnaout et al. [108, 109] combine classical SLAM methods with an elevation constraint

taken from a DEM, because SLAM vehicle’s height is constant. They also add 3D building

models as a constraint to the reconstructed 3D point cloud.

2.3.3 Methods Using Other Input Data

Baatz et al. [13] researched a method for localization in the urban environment. They use

panoramic street-view images and extruded floorplans of buildings to build a rectified

image database (mapping the facades onto the extruded 3D models). A query image is

also rectified based on vanishing points, which reduces the matching problem to the 2D

homothety.

Data-driven solutions aim to learn the relationship between a photograph and the land

cover appearance based on a geo-tagged ground-truth dataset. Lin et al. [116] create a geo-

database from several corresponding data sources and match an input query photograph

with the triplets of ground-level images, an aerial orthophoto map, and an attribute map.

The idea of cross-view matching was researched by Workman et al. [216], who ap-

proached the problem by adapting a CNN (pre-trained on Places [232] dataset) to extract

similar features from ground-level photographs and aerial orthophoto maps. They used

nearest neighbors as candidates ranked by calculating the euclidean distance between the

ground level and aerial features. The authors also developed a large dataset containing

over 1.5 million geo-tagged matching pairs. The authors claim their method is state-of-

the-art in cross-view geo-localization, supported by a 6% improvement compared to the

previous work by Lin et al. [116].

Lin et al. [117] presented similar work to Workman et al. [216]. They use a CNN for

the cross-view matching, but they use Google Street View and aerial “bird’s eye” imagery,

which is captured tilted compared to classical aerial orthophoto imagery taken orthogo-

nally to the terrain. They used a CNN pre-trained on ImageNet and Places [232] databases.

The results are currently far from the practical application; 20% of top candidates contain

80% of correctly localized queries.
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Castaldo et al. [32] approached the cross-view matching problem from a different per-

spective. From a query image they extract a semantic segmentation and generate a recti-

fied top-down view using vanishing line of the ground plane. From both rectified query

semantic segmentation and the GIS map a local descriptors encoding the layout of seman-

tic regions is computed. The location is retrieved by matching the query descriptors with

the descriptors extracted from the map. The authors experimented on the area of 159 km2

of the District of Columbia, USA. According to the experiments, 20% of top condidates

contain roughly 77% percent of correctly localized queries.

Aubry et al. [10] developed a method to register an artistic painting with a 3D model,

which also implies the camera’s pose. For matching, they mention the possibility of us-

ing exemplar-based SVM classification introduced by Shrivastava [178]. Based on this

approach, they developed a new method to avoid training SVM classifiers. They tested

the method on various historical paintings, which they successfully registered with the

3D model.

Viswanathan et al. [206] developed a robot localization method by matching Google

Street View panorama to an aerial orthophoto map. They warp the street view panorama

to the bird’s eye view (top-down) and use standard matching techniques using various fea-

tures like SIFT, Speeded-Up Robust Features (SURF), and Fast Retina Keypoint (FREAK).

In their scenario, SIFT proved to have a stable performance throughout the test set.

Ardeshir et al. [8] exploit semantic information from a geographic information system

(GIS) database, such as locations of fire hydrants, traffic signals, road signs, and other ob-

jects to improve object detection. Image metadata as GPS location, FOV, and heading are

used as a hypothesis to match the objects in the query image against the objects obtained

from the GIS database under a given viewpoint. Based on object detection, the authors also

developed a method of camera localization. The method generates location hypotheses on

a uniformly sampled grid, excluding the areas covered by buildings. For each hypothesis,

the method detects the objects and calculates a location-orientation score.

Senlet et al. [172] proposed an approach for localization of aerial query images. They

use semantic segmentation to detect buildings in orthophoto satellite images. The authors

use the Geometrical Hashing of the spatial relations between the segmented buildings to

create a geospatial database. Hashes computed from building segmentation of the aerial

orthophoto query image are used to search the database. The authors conduct their exper-

iments on an area of 16 km2 of a city map densely covered with more than 7,000 buildings.

Armagan et al. [9] researched an iterative method to fine-tune camera pose based on

alignment of semantic areas of buildings. They use untextured 2.5D model of buildings

to render a synthetic image from an initial camera pose estimate. To detect semantic seg-

mentation related to the building class in the query image, they use Fully Convolutional
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Networks (FCN) [120]. They trained a CNN to predict a best direction to improve cam-

era pose based on the query image segmentation and the rendered 2.5D buildings’ model.

The authors use the estimated direction to improve the camera pose, render a novel view

and iterate until convergence. The experiments illustrate that the method is consistently

able to improve the initial imprecise camera pose, which can be off by 25 meters and 50

degrees.

The geographic coherence in image sequences may also be used for camera localiza-

tion. Jacobs et al. [85] exploit sequences of frames from static outdoor cameras correlated

with satellite imagery for location estimation. Kalogerakis et al. [89] learn human travel

priors from a 6 million database of images from the Flickr web service. Their approach can

geo-localize image sequences from the user gallery, using timestamps to calculate proba-

ble locations based on the learned prior. Kelm et al. [94, 93] use video keyframes combined

with textual features to find the most probable regions of origin.

Multimodal approaches exploiting textual tags or other information exist as well. The

global geo-localization method by Gallagher et al. [57] used a database containing over

million of geo-tagged images and user-defined textual tags. They used user tags from

a query image in the matching process in parallel with several other visual features like

GIST, color histograms, tiny images, and a bag of textons.

2.4 Camera Orientation Estimation

Camera orientation estimation problem is also related to visual geo-localization. Some

visual geo-localization methods are designed to retrieve the camera orientation, especially

SfM [83, 113, 188, 125, 95], or horizon-based and DEM matching approaches [145, 69, 200,

37, 163]. However, some methods, like image-based and cross-view visual geo-localization

methods, estimate 3-degrees of freedom (DOF) position only and cannot deliver camera

orientation [77, 116, 117, 213]. In such cases, the geo-localization and camera orientation

methods could be used together in order to retrieve full 6-DOF pose.

Kosecka and Zhang [100] presented algorithm for camera orientation estimation based

on vanishing points. This method is suitable for urban indoor and outdoor scenes, as the

detection of vanishing points is based on line segments. The line segments can be detected

in urban scenes easily, while in natural scenes they are present sparsely.

Several approaches for camera orientation estimation for natural scenes exist. Behrin-

ger [22] matches synthetic panoramic horizon line to horizon line detected in query image.

This approach was extended by Baboud et al. [15], who presented an algorithm for robust

silhouette matching. Since it matches the synthetic and the query edge maps, it is much

more robust to occlusion than methods using horizon line only. Baatz et al. [14] published
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camera orientation algorithm based on matching sematnic areas in the image, like forests

or rivers. Efficient camera orientation refinement was approached by Porzi et al. [142].

They use smartphone sensors as an initial estimate, which is refined by silhouette match-

ing algorithm similar to [15].

2.5 Applications of Visual Geo-localization

Several of works suggest many exciting applications of visual geo-localization. Let us

briefly review the most intriguing applications related to our work. Visual geo-localization

is a high-level problem and it is itself an application of many computer vision algorithms;

from a query image or a video, we obtain a geographic location. However, this information

can be further processed and used.

In online applications, people can try their visual geo-localization abilities. GeoGuessr4

site uses Google Street View panoramas as query images, and people are supposed to

guess the location. View From Your Window Contest5 is a similar website, where challenging

sets of images are to be geo-localized by people. Weyand et al. [213] has recently published

an evaluation of their geo-localization system, which was able to beat geo-localization

estimations made by people systematically.

Various methods for digital photo enhancement were presented in Deep Photo [99].

The knowledge of location and orientation is crucial for methods like model-based haze

removal. We can also attain other tricks — as Kopf et al. [99] showed, we can alter illumi-

nation in the original image with the synthetic one, and we can also augment the image

by labels or artificial segments like paths or motorways. With a collection of precisely

aligned photographs, we may also leverage photo un-cropping methods to create a pho-

tograph with a larger field of view [175], or to faithfully complete missing regions of a

photograph [234]

Kendall et al. [95] published a nice demo of their relocalization framework6. This online

application can estimate the exact pose of the query image in the trained area. With such

an application, people can localize themselves using their smartphones even without GPS.

Like Junior [128] or UAV’s, autonomous vehicles are indeed another application of

visual geo-localization. Such devices use several inputs, like LIDAR, GPS, video, and more

to preserve location recognition’s robustness. The vehicles need to solve many problems

aimed by state-of-the-art in computer vision, like pedestrian and traffic sign detection,

self-localization, localization of other cars in traffic, reference speed measuring, and more.

4https://www.geoguessr.com/
5http://dish.andrewsullivan.com/vfyw-contest/
6http://mi.eng.cam.ac.uk/projects/relocalisation
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Google Lens (formally Goggles) is a mobile application from Google. It can recognize

objects and identify landmarks, as pointed out by Chen et al. [34].

2.5.1 Photography Presentation

Knowing a photograph position can also be utilized by methods aiming at photography

presentation. Previous research has found that we can facilitate users’ spatial under-

standing by incorporating animation [21], spatial context [212, 211], interaction [102], and

panoramas [43].

Chippendale et al. [38] summarized possible future geo-localized photography appli-

cations like automatic creation of PhotoOverlays in Google Earth, or photographs aug-

mented with peak names and GPS tracks. Snavely et al. explored presenting photographs

in a 3D environment in their PhotoTourism paper [184], which uses SfM to reconstruct

3D point clouds for famous landmarks. They also designed automatic path planning and

photo exploration in the reconstructed environment [183]. Subsequent work uses similar

techniques for automatic path planning [104] and effective photo acquisition of a site of

interest [182]. Hyper-lapse videos [98, 209] yield a similar visual experience by smoothing

and stitching egocentric videos.

Exploring spatially positioned photographs without 3D reconstruction has been pro-

posed as well. Kaneva et al. [90] use image retrieval to find similar images, stitch them

together, and create a fictitious photorealistic virtual space. Tompkin et al. [195] com-

bine videos with a panoramic image, so the user better understands the mutual orien-

tation and temporal relationship of different videos taken from the roughly same place.

Veas et al. [203] studied spatial understanding and navigation in outdoor environments

using video streams from several cameras. Video presentation in a 3D space has also been

used to improve medical responses [124].

2.6 Chapter Summary

We classified the surveyed methods according to the type of input data, into image-based

methods and methods using data of multiple modalities. Moreover, we introduced a second cat-

egorization based on environment, for which the geo-localization method was designed:

global, city-scale, and natural. The image-based methods were used mainly for urban areas,

while methods utilizing multiple modalities were used mainly for localization outside city

borders—in natural environments.

For image-based methods, we identified three main geo-localization approaches. The first

is image geo-localization using image retrieval, which retrieves the most similar image to

the query image from a geo-tagged database. The second approach uses the 3D SfM model
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of the scene or a geo-tagged database of images to train a classifier or regressor, which esti-

mates the query image’s location directly. Finally, the third is geo-localization by querying

a 3D model created from many overlapping images using structure from motion (SfM) and

calculating a camera pose relatively to the 3D model. Please note that since this approach

leverages geometrical correspondences between the 3D scene images, we don’t necessarily

need to know the real-world position for all the images contained in the 3D model.

For methods using data of multiple modalities, the approach of horizon line matching is a

widespread technique [190, 189, 186, 146, 133, 14, 163, 37]. Another popular technique is

a cross-view matching approach introduced by Lin et al. [116] and further studied in other

variants [216, 117, 32].

While image-based solutions are well established and achieve precise results, their use

is limited. Researchers proposed algorithms for fast and precise geo-localization for urban-

ized areas without the need for a GPS sensor [125]. When we travel outside the borders of

a city, the situation is different. In natural environments, we still lack fast and, more im-

portantly, precise algorithms. Still, the researchers need to spend much work to get similar

precision as in the urbanized areas. For example, Saurer et al. [163] consider the query im-

age as correctly localized if the found location is up to 1 km from the ground truth. This is

is still far from the results obtained by Middelberg et al. [125], who report the localization

error in meters. In the case of horizon-based localization proposed by Saurer et al. [163],

40% of query images need user interaction to discover the horizon line, mainly due to tree

occlusions that arise in real-world photos quite often. Furthermore, it is difficult to address

the horizon occlusion by fog or clouds in this scenario. We need more robust features such

as edges or semantic segments, like areas of forests, glaciers, or bodies of water for such

situations.

Finally, we showed popular applications of visual geo-localization methods. The ap-

plications range from autonomous vehicles [128] through photography enhancement [99]

to photography presentation [184, 183] and visualization [38].
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Chapter 3

Evaluation Practices in Visual Geo-localization

Existing and coming methods solving visual geo-localization tasks need appropriate eval-

uation methods to illustrate their strengths and weaknesses. Datasets for these tasks are

nowadays used not only for evaluation purposes—with the advent of parametric trainable

methods (usually neural networks)—they are also used to optimize model parameters us-

ing the training set. In this chapter, we review existing datasets relevant to our work

(Sec. 3.1). Next, we review evaluation metrics for visual geo-localization and introduce

evaluation metrics we use throughout this thesis (Sec. 3.2).

3.1 Datasets for Visual Geo-localization

In the following text, we review existing datasets for visual geo-localization and catego-

rize them according to their content. Image-based datasets presented in Sec. 3.1.1 contain

images coupled with their position. Geometry-based datasets (Sec. 3.1.2) contain also ge-

ometric relationships between images and are usually acquired using photogrammetric

methods, such as SfM, or with the help of laser scanning methods, such as Light Detection

And Ranging (LIDAR). Visual geo-localization datasets of images with multiple modali-

ties (Sec. 3.1.3) contain also additional metadata, such as semantic segmentation, depth,

silhouettes, etc. The datasets mentioned in this survey are summarized in Tab. 3.1.

3.1.1 Image-based Datasets

Datasets of this kind are relatively easy to collect—researchers usually use ground-level

imagery with GPS tags downloaded from various internet services, like Google Street

View or Flickr. The easiness of acquisition is, however, outweighed by relatively low reli-

ability of position annotations. For Google Street View (created by a single company with

quality equipment), Torii et al. reported accuracy around 7–15 meters [197]. However,

Google Street View restricts the images’ locations to streets in cities or the countryside

pathways. On the other hand, GPS annotations of images from Flickr and other internet

services are unrestricted, but highly unreliable since many different users can manually
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annotate them. Furthermore, many users shoot their photographs with a diverse spec-

trum of devices in various uncontrolled conditions.

datset name class type # images contents access

Pittsburgh [224] image all 62,058 pos + α download

Pittsburgh250K [197] image all 254,064 pos + α + β request

Tokyo TM [7] image db 98,160 pos + α request

Tokyo 24/7 [196] image
db 374,676

pos + α + β request
query 1,125

IM2GPS small [77] image query 237 pos download

IM2GPS2K [77] image query 2,000 pos download

IM2GPS uniform [77] image query 955 pos download

IM2GPS human [77] image query 64 pos download

IM2GPS3K [207] image query 3000 pos download

YFCC100M [191] image all 48,366,323 pos download

San Francisco [34] image
db 1,700,000

pos + α + β download
query 803

VPRiCE 2015 image all 7,778 match pairs download

Alps100K [31] image all 98,136 pos download

Quad6K [42] geometry all 6,514 pose download

Dubrovnik6K [114] geometry all 6,844 pose download

Rome16K [114] geometry all 16,179 pose download

Landmark 3D [70] geometry all 45,180 pose download

Cambridge [95] geometry all 12,000 pose download

Landmarks10k [113] geometry all 205,162 pose download

Aachen Day-Night [161] geometry
db 6,697 pose download

query 1,015 N/A online eval

CMU Seasons [160] geometry
db 60,937 pose download

query 56,613 N/A online eval

RobotCar Seasons [123] geometry
db 26,121 pose download

query 11,934 N/A online eval

Symphony Lake [64] geometry
db 1,409 pose download

query 135,966 N/A online eval

MegaDepth [115] geometry all 130,000 pose + depth download

CH1 [14] multimodal all 203 pos + sky download

CH2 [163] multimodal all 948 pos download

continued on the next page. . .
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. . . continued from the previous page

datset name class type # images contents access

Venturi [142] multimodal all 3,117 pose + profile download

CVUSA [216] multimodal all 1,500,000 pos + SOP request

CityScapes [41] multimodal all 25,000 pos + seg download

Kitti [59] multimodal all N/A pos + var download

ApolloScape [210] multimodal all N/A pos + var download

BDD100K [223] multimodal all †100,000 pos + var download
† Key frames extracted from 100,000 videos.

Table 3.1: Overview of the visual geo-localization datasets. Abbreviations: query—query

images; pos—position; α—yaw, heading angle (around vertical axis); β—pitch, eleva-

tion angle (around horizontal axis perpendicular to optical axis); pose—full camera pose

(6-DOF); match pairs—matching pairs of images; sky—segmentation of the sky; seg—

semantic segmentation annotations; profile—mountain terrain profiles (synthetic terrain

silhouettes from DEM); SOP—satellite orthophoto images; var—various annotations are

available, usually depth, LIDAR scan, semantic segmentation, street lane segmentation,

car instances, etc.; N/A—not available, we were not able to find a valid value.

Pittsburgh datasets. There are several image-based datasets available in the city of Pitts-

burgh. Google Street View dataset introduced by Zamir and Shah [224] contains 62,058

images acquired automatically from the Google Street View web site, from Pittsburgh, PA,

and Orlando, FL. The dataset1 contains full 360° panoramic images with a distance of

about 12 m between consecutive locations. This dataset is suitable for precise localization

and camera orientation estimation in urban areas.

Pittsburgh250k, often abbreviated as Pitts250k introduced by Torii et al. [197], consists

of 250,000 perspective images generated from 10,000 Google Street View panoramas from

the Pittsburgh area and is available on request.

Tokyo datasets. For Tokyo, the Time Machine dataset has been collected by Arand-

jelović et al. [7] from Google Street View. The authors collected images from various lo-

cations in Tokyo throughout the years to leverage the city’s changes in appearance. The

complete train and validation set contain approximately 100,000 photographs, and the

dataset is available on request. Another dataset, Tokyo 24/7, has been created by Torii et

al. [196]. The authors propose a method to automatically synthesize novel views from

Google Street View, given the approximate depth map and panorama segmentation to

1https://www.crcv.ucf.edu/projects/GMCP_Geolocalization/
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scene planes. The authors synthesized more than two million of views from two hundred

thousand street view panoramas. Query images for this dataset were captured manually

for 125 locations across Tokyo. Each place has been captured at three different viewing

directions and three different times throughout the day, making the query set challenging

due to rapid illumination changes.

IM2GPS test sets. In total, three versions of the IM2GPS [77] test set are available. The

smallest contains 237 images, the middle one contains 2,000 images, and both are available

online2. The largest variant of this dataset contains 3,000 images and was also released to

public3 with the revisited version if IM2GPS [207].

YFCC100M: The New Data in Multimedia Research. Thomee et al. [191] published one

hundred million images in a Yahoo Flickr dataset4. The images and videos in this dataset

are licensed under Creative Commons, making the data easily usable for anyone. The

compressed dataset’s metadata consists of 13 GB and contains GPS locations (for 48 million

photos and 100,000 videos), tags, timespan, and camera information.

San Francisco Landmark Dataset. Chen et al. [34] provided a dataset of 1.7 million street-

level images5 with ground truth labels, geo-tags, and calibration data. Furthermore, a few

months after the first part of the dataset, the authors recorded a challenging query set of

803 cellular phone images.

Visual Place Recognition in Changing Environments. VPRiCE dataset6 for changing

environments from VPRiCE challenge 2015 consists of 7,778 images from various outdoor

environments and various viewing conditions.

Alps100K dataset. Čadík et al. [31] composed a dataset called Alps100K7. The dataset

contains GPS-tagged images from the area of European Alps collected by querying peak

names from Flickr.

2http://graphics.cs.cmu.edu/projects/im2gps/
3https://github.com/lugiavn/revisiting-im2gps
4http://projects.dfki.uni-kl.de/yfcc100m/
5https://purl.stanford.edu/vn158kj2087
6https://roboticvision.atlassian.net/wiki/pages/viewpage.action?pageId=14188617
7http://cphoto.fit.vutbr.cz/elevation/
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3.1.2 Geometry-based Datasets

Datasets for large scale SfM and location recognition/pose estimation. Several datasets

by Li et al. [114] for SfM problems are publicly available online8. The largest is the Rome16K

and Dubrovnik6K, covering the most famous parts and landmarks of these cities. Also,

various smaller datasets for famous landmarks, like Notre Dame Cathedral, Tower of Lon-

don, Trafalgar Square, Vienna Cathedral, are available.

Quad dataset. Crandall et al. [42] also provide SfM datasets. The Quad dataset9 consists

of 6,514 images, about 5,000 images which originate from iPhone 3G contain GPS informa-

tion, and 348 images contain almost exact GPS coordinates (accuracy about 10 cm.)

Landmark 3D. Hao et al. [70] introduced a dataset called Landmark 3D10, which contains

45,000 images of 25 landmarks collected from the Flickr web service. Besides the landmark

photos, the dataset also contains reconstructed 3D landmark models. It is suited mainly

for landmark recognition.

Cambridge Landmarks dataset. Kendall et al. [95] recently published their dataset for 6-

DOF camera relocalization using CNN. Train and test images are available online11, with

SfM models used for the camera pose training. The dataset consists of 12,000 images with

full 6-DOF camera poses.

Landmarks10k dataset. Another dataset of landmarks and corresponding point clouds

reconstructed using SfM has been published by Li et al. [113]. It contains more than ten

thousand images of famous urban and natural landmarks throughout the world, including

the Eiffel Tower in Paris, and the Matterhorn mountain in the European Alps; it is publicly

available online12.

Long-term visual localization. A collection of datasets across varying daytime or sea-

sonal conditions is publicly available13. The datasets are collected in urbanized areas and

the ground truth is obtained by reconstructing the scenes using SfM approach. Aachen

Day-Night dataset [161] captures the differences between day and night at the city of

Aachen, Germany. The CMU seasons dataset [160] depicts the urban, suburban, and park

scenes in the Pittsburgh, USA, across various seasons. The RobotCar Seasons is a subset

8http://www.cs.cornell.edu/projects/bigsfm/
9http://vision.soic.indiana.edu/projects/disco/

10https://landmark3d.codeplex.com/
11http://mi.eng.cam.ac.uk/projects/relocalisation
12http://landmark.cs.cornell.edu
13https://www.visuallocalization.net/datasets/
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of Oxford RobotCar Dataset [123] for autonomous driving collected during one and half

year period in a central Oxford, UK using a robotic car equipped with LIDAR, GPS, and

Inertial Navigation System (INS) sensors. The Symphony Seasons Dataset was derived

by running a SfM reconstruction on a subset of the Symphony Lake Dataset [64], which

surveys of a lakeshore over more than three years in Metz, France.

MegaDepth dataset. Li and Snavely [115] created the MegaDepth dataset14, which con-

tains 100,000 images with reconstructed Euclidean depth data and 30,000 images con-

taining ordinal depth annotations. The authors used modern SfM and multi-view stereo

(MVS) [170, 169] methods to reconstruct 3D scenes from the Landmarks10k dataset [113].

In addition to these reconstructions, the authors also propose a series of post-processing

steps to prepare the dense depth data for use in deep learning.

3.1.3 Datasets for Methods Using Data of Multiple Modalities

Datasets for horizon-based localization (CH1, CH2). Two datasets for horizon-based

localization were published online15 by Saurer et al. [163]. The two datasets contain over

1,000 images with verified GPS position and FOV for every image. For 203 images (CH1

dataset), the horizon segmentation is available.

Venturi Mountain Dataset. Venturi Mountain Dataset [142] is a publicly available16 data-

set of 12 videos from the European Alps region with known ground-truth position and

orientation. In total, it consists of 3,117 precisely annotated frames aligned with the ter-

rain model. It is a benchmark suitable for camera orientation estimation algorithms since

the dataset contains rotations in all three possible angles (yaw, pitch, roll). However, this

dataset is not suitable as a camera localization benchmark because of the small variability

of locations (12 unique locations only).

Cross-view dataset. Workman et al. [216] introduced CVUSA dataset. It comprises 1.5

million geo-tagged matched pairs of ground level images and an aerial orthophoto map.

The authors collected the dataset from Flickr photos and Google Street View, and it can be

obtained directly from the authors17, but it is not available online.

Datasets for city-scale visual geo-localization and scene understanding. Datasets for

autonomous driving also gained a lot of popularity in the computer vision research com-

14http://www.cs.cornell.edu/projects/megadepth/
15http://cvg.ethz.ch/research/mountain-localization/
16https://tev.fbk.eu/technologies/venturi-mountain-dataset
17http://cs.uky.edu/~scott/research/deeplyfound/
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munity. Algorithms for autonomous driving need to solve complex tasks including scene

understanding, self-localization and navigation. Datasets developed to tackle these prob-

lems usually contain not only camera positions recorded with accurate GPS module, but

often include also LIDAR scans of the scene, object detections, semantic segmentation,

and stereo images. Acquisition of such datasets is straightforward, since a car equipped

with appropriate hardware can easily record hours of the footage while driving in real

traffic. One of the first datasets in this category is the Kitti Vision Benchmark Suite [59]

recorded in Karlsruhe, Germany. CityScapes dataset added more German cities [41]. Apol-

loScape [210] recorded in Beijing, China includes also a 3D semantic map of the whole

dataset area. One of the largest datasets for autonomous driving, BDD100K [223], has

been collected by a crowdsourced platform in the city of New York and the San Francisco

bay area, US.

Raw mapping data. Raw mapping multiple modality data are available through USGS18,

where various mapping data like topo maps, aerial photographs, or satellite images are

available. The DEM data are available [62] as well. NLCD provides data19 like land cover

attribute maps or tree canopy maps. Maps containing the change between consecutive

published versions of land cover maps are available as well.

3.2 Evaluation Methods for Visual Geo-localization

Visual geo-localization methods estimate at least the camera position, and in some in-

stances they also estimate camera orientation or additional parameters, such as focal leng-

th [29]. This section introduces the camera pose parametrizations used in this thesis and

reviews existing evaluation protocols for visual geo-localization methods that estimate

camera position and orientation.

3.2.1 Camera Pose Parametrizations

In this thesis, we use two different camera pose parametrizations. Let us briefly introduce

both parametrizations with respective conversions between each other.

18http://nationalmap.gov/elevation.html
19https://www.mrlc.gov/data
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Pinhole camera model in Euclidean space. The first parametrization is a pinhole camera

model [72] defined in Euclidean space:

P = K[R|t] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f 0 cx

0 f cy

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
tx

R3×3 ty

tz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.1)

where K is the intrinsics matrix, R is the rotation matrix, and t is the translation of the

camera. Camera center C (position) is defined as C = −R−1t, and we use earth-centerd,

earth-fixed (ECEF) coordinate system.

Pinhole camera model parametrized by angles The second parametrization is similar

to the first one, but instead of rotation matrices and translation in Euclidean space it uses

rotation angles:

Ĉ = (φ, λ, h), R̂ = (α, β, γ), P̂ = (θ, Ĉ, R̂). (3.2)

Ĉ is the camera position defined by latitude φ, longitude λ, and elevation h on an Earth

ellipsoid defined by World Geodetic System (WGS84), R̂ is the camera orientation defined

as a rotation around local axes: yaw α, pitch β, and roll γ. The field of view of the camera

is denoted by θ. The camera pose parametrized by θ, Ĉ, R̂ is denoted by P̂.

We can convert one parametrization to the other. To convert from the WGS84 position

Ĉ = (φ, λ, h) to the position C = (x, y, z) in ECEF coordinate system, we use the following

closed-form formula:

x = [N(φ) + h] cos(φ) cos(λ), (3.3)

y = [N(φ) + h] cos(φ) sin(λ), (3.4)

z = [
b2

a2 N(φ) + h] sin(φ), (3.5)

N =
a√︁

1 − e2 sin2(φ)
, (3.6)

e2 = 1 −
b2

a2 , (3.7)

where a is the semi-major axis, and b is the semi-minor axis defined by the WGS84 ellip-

soid. The backward conversion from ECEF to WGS84 is more complicated, and several

algorithms exist [24, 233, 222]. The three rotation angles R̂ are converted to the rotation

matrix R as follows:

R = Rz(−γ) · Rx(−β) · Ry(−α) · Rl2w(φ, λ), (3.8)
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where Rz, Rx, and Ry are basic rotation matrices around respective axis:

Rz(φ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.9)

Ry(φ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(φ) 0 sin(φ)

0 1 0

− sin(φ) 0 cos(φ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.10)

Rx(φ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.11)

and Rl2w is the rotation matrix transforming the local coordinate space to the world coor-

dinate space at the position given by latitude φ and longitude λ:

Rl2w(φ, λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
~e(λ)

~u(λ, φ) ⊗ ~e(λ)

~u(λ, φ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.12)

~u(λ, φ) =

[︃
cos(λ) cos(φ) sin(λ) cos(φ) sin(φ)

]︃
(3.13)

~e(λ) =

[︃
− sin(λ) cos(λ) 0

]︃
, (3.14)

where ⊗ is the outer vector product. Finally, we compute intrinsic parameters K. With the

image width Iw, and height Ih, we set cx =
Iw
2 , cy =

Ih
2 , and calculate the focal length f from

the field of view θ:

f =
w

2 tan( θ2 )
. (3.15)

3.2.2 Evaluation Protocols for Visual Geo-localization

Position error. For short distances with positions defined as three dimensional real vec-

tors in the Euclidean space it is enough to measure the position error ep using the Eu-

clidean distance between the ground truth Cgt ∈ R
3 and the estimated position C ∈ R3:

ep(Cgt,C) = ||Cgt −C||2. (3.16)
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For larger distances across the Earth we parametrize the camera position in WGS84 el-

lipsoidal geodesic coordinates Ĉ = (φ, λ, h). The distance between positions on the geodesic

ellipsoid needs to be calculated using the Vincenty geodesic distance [204].

Orientation error. We choose to measure the orientation error er the same way as the

related work [142]:

er(Rgt,R) = arccos

⎛⎜⎜⎜⎜⎜⎜⎝ tr
[︁
RᵀgtR

]︁
− 1

2

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.17)

where Rgt is the ground-truth rotation matrix, and R is the estimated rotation matrix. This

measures the magnitude of the smallest rotation between the ground truth and the esti-

mated rotation.

The visual geo-localization literature builds on these measures and uses the following

methods to plot their systems’ overall performance.

3.2.3 Top-k Candidates / Percentage of Localized Images

A popular evaluation technique used by state-of-the-art geo-localization methods is the

plot of the number of the candidates (horizontal axis) against the fraction of query images

from the evaluation set that were localized within the given number of candidates below

defined position error [14, 116, 8, 163, 216]. In other words, when the method returns

a list of candidate locations, we count how many query images were localized correctly

using a fixed number of candidates. We consider the image as correctly localized if at

least one candidate out of top-k candidates is located within the defined distance ε from

the ground truth. The curve has ROC-like, non decreasing shape. More formally, with

the m candidate positions Cx(I j) for query image I j, number N of query images, ground

truth position Cgt(I j) of the query image I j, and the distance threshold ε, we calculate the

fraction of query images qm as follows:

∀m ∈ {1, ..., k} : qm =
1
N

N−1∑︁
j=0

l(I j,m), (3.18)

l(I j,m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 ⇔ ∃x ∈ {1, ...,m} : ep

[︁
Cgt(I j),Cx(I j)

]︁
< ε,

0 otherwise.
(3.19)

This method clearly shows how many candidates we must inspect to find at least given

fraction of correctly localized query photos. It also illustrates that precise geo-localization

is challenging since the methods are often unable to provide adequate localization accu-

racy for the top-1 candidate. However, the practical usability of this metric is limited. Usu-

ally, the user is interested in the top-1 candidate, since it is not practical to verify several
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candidates of possible locations. We can use the following evaluation method to address

this problem.

3.2.4 Percentage of Images / Localization (Orientation) Error

Another option is to plot the localization error threshold t (on the horizontal axis) against

the fraction qt of N images from the query set (on the vertical axis) with the same or lower

localization error (distance between the estimated position C(I j) of the image I j and the

ground truth position Cgt(I j)) than the threshold t:

∀t ∈ [0,Dp] : qt =
1
N

N−1∑︁
j=0

dp(I j, t), (3.20)

dp(I j, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 ⇔ ep

[︁
Cgt(I j),C(I j)

]︁
≤ t,

0 otherwise,
(3.21)

where Dp is the maximum localization error. This method was used mainly by global geo-

localization methods [77, 213], which retrieve the most probable location (1 candidate) and

measure the number of localized queries with the error of the given threshold. Advantage

of this evaluation protocol is that we directly observe how accurate is the method for a

given fraction of query images from the evaluation set.

Analogically, we can also use this protocol to plot the orientation error. We just change

the indicator function d to calculate the orientation error instead of the position error:

∀t ∈ [0,Dr] : qt =
1
N

N−1∑︁
j=0

dr(I j, t), (3.22)

dr(I j, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 ⇔ er

[︁
Rgt(I j),R(I j)

]︁
≤ t,

0 otherwise,
(3.23)

where Dr is the maximum orientation error in degrees.

3.2.5 Position and Orientation Error per Video Frame

Visual geo-localization methods based on the SfM technique [125, 114, 158, 161], and re-

viewed Simultaneous Localization and Mapping (SLAM) methods [125, 67, 202, 109] usu-

ally evaluate their methods on a per-frame basis. The authors usually present the number

of correctly matching query images/frames in the form of a table. Camera position and

camera error can be calculated and plotted per video frame. Formally, for each frame I f of

N video frames on the horizontal axis we plot the position (Eq. 3.24) or orientation error

(Eq. 3.25) on the vertical axis:
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∀ f ∈ {0, ...,N − 1} : ep
[︁
Cgt(I f ),C(I f )

]︁
, (3.24)

∀ f ∈ {1, ...,N} : er
[︁
Rgt(I f ),R(I f )

]︁
. (3.25)

Alternatively, average position error (Eq. 3.26) and average orientation error (Eq. 3.27)

is also often used as a measure of accuracy:

1
N

N∑︁
f =1

ep
[︁
Cgt(I f ),C(I f )

]︁
, (3.26)

1
N

N∑︁
f =1

er
[︁
Rgt(I f ),R(I f )

]︁
. (3.27)

Since methods using this evaluation technique are usually verified on the same datasets,

it is effortless to compare competitors’ method performance. Furthermore, as the methods

aim to localize in real-time, the computation time is also a related metric.

3.2.6 Geolocalization Area / Region of Interest

A similar measure to top-k candidates (Section 3.2.3) is the measure of geo-localization area

(GA) over the region of interest (ROI, the total area of the search space) [200, 37]. Candidate

positions in the search space have assigned their area (which is usually uniform for all the

candidates). The candidates are sorted according to the method’s confidence. For each

query, the GA is calculated as a sum of areas preceding the candidate that contains the

ground truth and divided by |ROI|. The graph is plotted for changing GA/|ROI|measure.

Formally, the whole region of interest ROI consists of M particular regions mi, i ∈

{0, . . . ,M − 1} with the area denoted as |mi|. The area of the region of interest |ROI| is equal

to the sum of particular areas |ROI| =
∑︀M

i=1 |mi|. Let mgt(I j) be the ground truth region of

image I j. The method under evaluation assigns a confidence c(I j,mi) ∈ [0, 1] to each image

I j and geolocalization region mi. For the GA/|ROI| threshold t on the vertical axis we plot

the fraction of images qt. We calculate the fraction qt of N query images by adding 1/N for

each image that have the sum of the areas lower or equal than the threshold t consider-

ing only those regions mi that have the confidence c(mi) higher than the confidence of the

ground truth region c(I j,mgt(I j)):

∀t ∈ [0, 1] : qt =
1
N

N−1∑︁
j=0

d(I j, t), (3.28)

d(I j, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 ⇔ 1

|ROI|
∑︀

i |mi| ≤ t,
{︁

i ∈ {0, . . . ,M − 1}
⃒⃒⃒

c(I j,mi) > c[I j,mgt(I j)]
}︁
,

0 otherwise.
(3.29)
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In the case all the candidates have an equal area, this method is the same as top-k

candidates. The method would be more informative for a non-uniform sampling of the

search space since it would penalize wrong estimations with a large area.

3.2.7 Precision / Recall

Precision/recall is a measure of relevance used for the evaluation of classification, place

recognition, and retrieval methods [8, 127]. We avoid using precision/recall in this thesis,

since distance based measures are more suitable for evaluation of geo-localization meth-

ods, but we include it in this survey for completeness. Researchers usually plot the recall

on the horizontal axis and the precision on the vertical axis. Formally, a retrieval system

retrieves M ∈ N documents from a database containing N ∈ N relevant documents. We

define a precision P and recall R as follows:

P =
N ∩ M

M
, R =

N ∩ M
N

. (3.30)

3.3 Chapter Summary

We presented an overview of datasets and evaluation practices in visual geo-localization.

We divided the datasets based on the acquisition technique. Image-based datasets are com-

posed of visual material containing location metadata, e.g., GPS position stored in EXIF,

which could be acquired using hardware solutions or annotated manually. Geometry-based

datasets add further processing of such raw data and use photogrammetry methods to

estimate relative camera motions to deliver 3D scene reconstruction and full camera pose

information. Alternatively, geometry-based datasets may be also collected using specialty

hardware, e.g., laser scanners, such as LIDAR. While image-based datasets merely contain a

rough estimate of the camera rotation, geometry-based datasets usually contain fairly accu-

rate camera rotation information.

We reviewed several datasets targeted on a cross-domain scenario, which we called

datasets of multiple modalities. Datasets of multiple modalities do not have any unified ac-

quisition technique. Urban datasets focused at solving problems for autonomous driving

are usually collected relatively easily in real traffic using a vehicle equipped with GPS,

INS, LIDAR, and 360°cameras, or calibrated camera rigs. On the other hand, datasets for

outdoor natural environments, such as mountains, are much more difficult to collect. Ac-

cessing mountainous areas is difficult—majority of mountainous areas cannot be simply

accessed by a car, but need to be visited by passionate tourists and hikers. The challenge

also resides in the significant appearance gap between different modalities, e.g., between

the photograph and rendered DEM model; correspondences between such modalities are
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often tricky to annotate manually, even for human experts. These difficulties may explain

the small number of datasets for cross-domain visual geo-localization in natural environ-

ments. From all the reviewed datasets, only a small handful contains images of natural

environments. Specifically, images relevant to our work may be found only in CH1 [14],

CH2 [163], Venturi Mountain dataset [142], and in a part of the MegaDepth [115] dataset.

In the second part of this chapter, we introduced two camera pose parametrizations

we use in this thesis and reviewed standard evaluation methods in the context of visual

geo-localization. Usually, errors in position and rotation estimates are measured and ag-

gregated based on the number of allowed candidate solutions, or distance from the ground

truth position.
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Part II

Datasets for Visual Geo-localization in Outdoor

Environments

Developing novel computer vision methods depends on datasets, which we use for method

evaluation and comparison. Moreover, in the last decade, the training data is also in-

dispensable for optimizing methods’ parameters using deep learning. However, as we

showed in the state-of-the-art overview, a limited selection of datasets is appropriate for

solving single image localization based on comparing an input photograph and a synthet-

ically rendered terrain. In this part, we present methods and datasets we developed to

overcome this issue.
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Chapter 4

GeoPose3K: Mountain Landscape Dataset for Camera

Pose Estimation in Outdoor Environments

Visual geo-localization in outdoor environments is often based on the comparison of a

query photograph with a DEM model. Comparing such different modalities is challenging

and has been the subject of several studies in the last two decades [190, 189, 186, 146, 133,

14, 69, 200, 37, 163]. These studies often build their algorithms with handcrafted features,

e.g., horizon lines, silhouette edges, keypoints, and semantic segmentation. In the last

decade, researchers focused on developing more complex data-driven predictive models

for feature extraction, which significantly improved almost every area of computer vision.

To allow predictive model training for our specific domains—photographs and rendered

DEMs, we introduce a novel dataset of photographs precisely aligned with the terrain.

Our dataset contains full camera poses (positions and orientations) and various metadata

rendered directly from the terrain model.

Contributions. We present a new dataset GeoPose3K which addresses three main issues

with existing datasets for camera pose estimation in natural, mountainous environments:

(I) a small number of images with verified ground truth position, (II) an absence of full

camera orientation and (III) an absence of metadata for the training and evaluation of

feature detectors and further applications outdoors. The proposed dataset GeoPose3K con-

sists of more than three thousand photographs collected mainly from the photo sharing

site Flickr.com. All photographs originate in the Alps region, which is the highest moun-

tain range in Europe. For each image all camera pose parameters (GPS position, FOV, full

orientation) are provided. The camera pose parameters were assessed with an image-to-

model matching technique [15] and manually verified. In order to enable the training and

development of future approaches for outdoor environments, we provide various syn-

thetic data per image: depth map, normal map, simulation of illumination during the day,

and semantic labels. One sample image from our dataset with corresponding synthetic

data is shown in Fig. 4.1.
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Figure 4.1: GeoPose3K dataset: for each mountain landscape photograph, the dataset con-

tains (in reading order) its GPS coordinate and camera orientation, distance from the cam-

era in meters, normals w.r.t. camera, normals w.r.t. cardinal direction, semantic labels and

approximate illumination during the day (here shown at 5am, 12pm and 8pm).

4.1 Related Work

Geo-localization datasets for natural environments Porzi et al. published the Venturi

Mountain Dataset [143] with annotated camera poses for video frames. It contains 3,117

video frames from 12 video sequences. For this reason the Venturi dataset contains a lot of

similar images: while it is suitable as a benchmark for camera orientation estimation, it is

not a suitable benchmark for geo-localization problems. An image-based dataset from the

Alps region called Alps100K was collected by Čadík et al. [31]. It was downloaded from

Flickr by querying hill names and filtering out evident outliers using CNN. The photos

in this dataset contain a GPS position, elevation and FOV. However, the dataset does not

provide camera pose parameters and the provided ground truth geo-locations were not ver-

ified and thus might be noisy. Datasets for visual geo-localization called CH1 and CH2

were provided by Saurer et al. [163]. Both datasets contain in total a thousand images

with known ground truth GPS location and FOV, but camera orientation is not provided.

Segmentation of the sky and foreground terrain is provided for 203 images in the CH1

dataset.

RGB-D datasets Since we provide additional synthetic metadata as depth and semantic

labels, etc. (see Fig. 4.1), we also briefly overview works introducing existing datasets con-

taining similar data. Thanks to the ease of RGB-D images acquisition using devices such as

Microsoft Kinect, many indoor RGB-D datasets exist [54]. Acquisition of outdoor RGB-D

datasets is more challenging, because the depth range and resolution of depth sensors is

limited. Saxena et al. [164, 165] used a laser depth scanner with a maximum depth of 81 m
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and resolution 55 × 305; Kitti dataset [59] contains 3D point clouds collected by a LIDAR

sensor. However, such approaches are unusable for mountainous environments, where

the depth of the scene varies from several meters to hundreds of kilometers. An option

suitable for mountainous environments would be to calculate depth from two stereo im-

ages, but the disparity needed to obtain viable results would be prohibitive for practical

scenarios. We solve these problems by rendering the corresponding depth for each image

from a DEM.

Semantic segmentation datasets Several standard datasets for semantic segmentation

exist [50, 179, 129, 118]. The methods and datasets for semantic segmentation are usually

generic—they contain a number of classes that are supposed to cover various kinds of

content. While existing datasets, such as Pascal-Context dataset [129] contain relevant

classes for mountainous areas—mountain, rock, tree, grass, water, road, snow or sky, it does

not provide mountain specific classes—forest, glacier, cliff or moor. With this motivation,

we include synthetic semantic labels into GeoPose3K dataset. We overlay the DEM with

the 13 most relevant OpenStreetMap natural features1 and for each image in the dataset

render a corresponding synthetic view containing the semantic labels (see Fig. 4.1).

An approach to camera orientation estimation in outdoor scenes based on semantic

segments was published by Baatz et al. [12]. However, they used only four classes – resi-

dential area, bodies of water, sky, and “everything else”. Also, their dataset seems to only

contain several images and is not publicly available.

4.2 Dataset Acquisition

We introduce GeoPose3K, a dataset of images with known parameters—camera field of

view θ, camera position Ĉ = (φ, λ, h) (latitude, longitude, elevation), and camera orienta-

tion R̂ = (α, β, γ) (yaw, pitch, roll, see Eq. 3.2). The dataset consists of two main parts. The

first part contains 339 images captured and annotated manually (over 10% of the whole

dataset). For each image the GPS position was recorded by its authors using a GPS sen-

sor. We found camera orientation ground truth by selecting correct correspondences of

the image and the DEM similarly to Kopf et al. [99]. However, such manual collection and

annotation is a lengthy and tedious task. Therefore, we processed the second part of the

dataset (2,772 images) using a semi-automatic algorithm outlined in Sec. 4.2.1. The whole

dataset consists mainly of images from an online photo service. We also assessed orienta-

tions for the CH1 dataset images which initially contained only the camera position and

field-of-view.

1http://wiki.openstreetmap.org/wiki/Key:natural
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We used photographs with a known FOV θ and GPS position Ĉ = (φ, λ, h) from the

Alps100K dataset by Čadík et al. [31], who originally acquired the images from the Flickr

online sharing service. Therefore, we assume the parameters θ, Ĉ to be known but noisy.

Our goals were: (I) for each image I, recover a correct position and estimate camera ori-

entation R̂ = (α, β, γ) so that we can assemble the complete camera pose P̂(I) = (θ, Ĉ, R̂);

(II) classify each recovered camera pose as viable or incorrect; and (III) refine parameters of

each viable camera pose P̂. We assume the camera pose of a given image to be viable if a hu-

man user observes apparent correspondence between the query image and the synthetic

image rendered from DEM with given camera pose parameters (see Fig. 4.2). We should

note that this does not necessarily mean the camera pose is 100% correct; for this reason,

we pass viable images to the refinement process. An incorrect camera pose means there

is no apparent correspondence to the DEM; we discard images with an incorrect camera

pose. We included images that passed the refinement process into the dataset with the

best camera pose we found.

4.2.1 Method Outline

Since we know the camera position (φ, λ) for each image, we recover the elevation h by

querying the DEM at the position. For camera orientation estimation, we used an ap-

proach based on the Alignment Metric proposed by Baboud et al. [15]. We propose an

improvement of their Alignment Metric for camera orientation estimation and show that it

performs better than the baseline. We have used the improved Weighted Alignment Metric

to automatically estimate the camera pose of 30,000 photos from the Alps100K dataset. We

manually verified the estimated camera pose of each photo. In case the found camera pose

was viable, we added the photo into a list of candidates.

For each photo in the list, which consisted of more than 3,000 candidates, we sampled

several hypotheses of the FOV and their position around the original FOV θ and position

(φ, λ). We sample the position to mitigate the positional error introduced by an impre-

cise GPS tag; we sample the FOV to eliminate possible inaccuracies of the recorded focal

length or camera sensor size. The FOV might be incorrect due to several factors. First,

the image might be cropped (many images in the Alps100K dataset contained artistic bor-

ders, which were cropped automatically). Secondly, the FOV might be wrongly calculated

due to an incomplete list of cameras and their sensor sizes. Finally, users and third-party

software might manipulate values stored in EXIF before online sharing. One should note

that moving the camera while keeping the original FOV fixed is not equivalent to adjust-

ing the FOV with a fixed position. According to Hartley and Zisserman [72], 3D scenes

containing objects near the camera are perspectively distorted. Hence moving the cam-
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Figure 4.2: Example of a viable, but contaminated camera pose (left), refined camera pose

(middle) and incorrect camera pose (right). Synthetic mountain silhouettes are overlaid

with the aligned image. Image credit: left and middle image—Flickr.com user Michael

Holtrop: https://www.flickr.com/photos/bartje_assen/2851555201/, right image—

Flickr.com user Bossi: https://www.flickr.com/photos/thisisbossi/2973222425/

era towards/backward a nearby mountain will change the perspective distortion, while a

decrease/increase of FOV (zoom in/out) does not affect it.

We reran the camera orientation estimation method for each sampled hypothesis and

manually chose the camera pose that visually matched the DEM best. Only if the resulting

camera pose matched the DEM precisely (we tolerate error up to several pixels), we added

it into the dataset.

4.2.2 Alignment Metric

For each possible camera orientation (α, β, γ), the original method by Baboud et al. [15]

calculates the image-to-DEM matching score using edges from a query image and silhou-

ettes extracted from the panoramic rendering of a digital terrain model. This score was

designed for calculating a precise camera orientation given a known position. Using this

score to verify more (possibly incorrect) position candidates is difficult, since the absolute

value of the score varies between positions due to differences in detected edges (different

lengths and shapes). The found camera pose has to be visually inspected by a human user

to recognize a viable or incorrect result. Let us briefly review the Original Alignment Metric

and then propose our improved version, Weighted Alignment Metric.

Original Alignment Metric

We reformulate the problem of matching as introduced by Baboud et al. [15], who pro-

posed a matching score per edge es (4.1):

es(e,D) =

|e|∑︁
j∈e

|c(e j,D)|
(︃
1 + c(e j,D)

2
d(e j)p +

1 − c(e j,D)
2

m
)︃
, (4.1)
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and the final matching score s(Q,D) =
∑︀

e∈Q es(e,D), where Q denotes the set of edges

extracted from a query image, and D denotes the set of synthetic silhouettes with which

the query image is matched. The term d(e j) measures the length of the edge segment e j,

p and m are constant parameters. The parameter p defines non-linear weighting of edges

based on their length, and the negative parameter m defines the cost of edge crossings.

The term c(e j,D) measures the spatial configuration of a query edge segment e j con-

cerning a synthetic silhouette segment ei. In case the edge segment e j is parallel with

silhouette segment ei, the term is equal to 1, and in case the edge segments are crossing

each other, the term c(e j,D) is equal to -1, and to 0 in other cases. Two edge segments are

parallel if all points of the query edge segment e j are in the ℰ neighborhood of the synthetic

silhouette segment ei. In summary, the score s(Q,D) sums up the lengths of edges parallel

with some synthetic silhouettes and penalizes edges crossing the synthetic silhouettes.

Weighted Alignment Metric

In the original alignment metric (4.1), all edges were assigned the same importance re-

gardless of their visual appearance, even though their appearance can correlate with their

importance for matching. To improve the original method’s matching performance, we

propose to weight image edges based on their strength. We implemented edge strength as

a weight of the edge segment w(e j) ∈ ⟨0, 1⟩. Weight w is multiplied with terms d(e j) and m

in (4.1) respectively, so we get:

es(e,D) =

|e|∑︁
j∈e

|c(e j,D)|
(︃
1 + c(e j,D)

2
w(e j)d(e j)p +

1 − c(e j,D)
2

w(e j)m
)︃
. (4.2)

Weighted Edge Detector

To detect edges from query images with meaningful weights, we adopt the edge detection

framework by Dollár and Zitnick [45]. Their approach predicts a 16×16 edge map from

a larger 32×32 image patch. Individual predictions are averaged to produce a soft edge

map for the whole input image. The learning problem is solved using structured random

forests. In order to use standard node splitting criteria, the structured space of labels 𝒴

is mapped to a discrete set of labels 𝒞 by a two-stage mapping via an intermediate space

𝒵 at each node. The authors assume segmentation maps being available for training.

Instead, we use our synthetic depth maps. To use depth maps as labels, we redefine the

intermediate mapping Π : 𝒴 →𝒵 to produce a vector that encodes depth difference y( j1)−

y( j2) for every unique pair of indices j1 , j2 within a label patch y ∈ 𝒴. In practice, we

sample m = 256 dimensions of𝒵, resulting in a node-specific reduced mapping ΠΦ, further

discretized as in the original paper [45].
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4.2.3 Candidate Refinement

We added images for which the Weighted Alignment Metric recovered a viable camera pose

into a list of candidates. The camera pose could be contaminated due to a combination of

many factors: an imprecise GPS tag, imprecise FOV, imprecise DEM, and the distortion of

a query image. Since we obtained a high number of images with viable, but contaminated

camera pose after the camera pose estimation process, we further refined contaminated

camera poses.

We hypothesized a position with eight samples regularly placed around the original

position (φ, λ). We placed four samples in the corners of a smaller square with a side of

500 m, and four samples in the corners of a larger square with a side of 1,000 m. The

original position (φ, λ) is the center of both nested squares. For each new position, we have

also sampled FOV θ of the camera. The minimum value of FOV was θ−0.1θ, the maximum

θ + 0.1θ, and there were in total four steps sampled linearly between the minimal and

maximal value. We ran our Weighted Alignment Metric on each sampled position. In this

way, we obtained thirty-two new camera poses for each candidate. Finally, an expert user

manually verified these camera poses. In case the best camera pose of the candidate was

precise enough (the alignment error was not greater than several pixels, see the middle

image in Fig. 4.2), the new refined camera pose was added into the dataset.

The process of candidate refinement was very demanding on computational resources

and time. The alignment of all sampled positions and FOV’s took three weeks on seven

computers equipped with Intel Core i3-4360 CPU and NVidia GTX 980 GPU. In addition,

it took one person-month to assess the estimated camera poses manually.

4.3 Synthetic Data

Each image I in the dataset is provided with a camera pose P̂(I) = (θ, φ, λ, h, α, β, γ). This

camera pose allowed us to support the dataset with additional synthetic data rendered

from DEM.

Depth. We acquired a depth map by pixel-wise raycasting and measuring the distance

from the camera to the first intersection with scene geometry. The depth map accuracy

depends on the DEM resolution; our DEM consists of samples spaced by 24 meters, and

we obtained it from the viewfinderpanoramas website2.

Normals. We produced two types of normals. We calculated normals w.r.t. the camera

relative to the camera position and orientation; we calculated normals w.r.t. cardinal direc-

2http://viewfinderpanoramas.org
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Figure 4.3: Example of OpenStreetMap semantic segments provided per dataset image.

Left: original photograph. Middle: terrain metadata from OpenStreetMap [68] rendered

on the digital elevation model. Right: original image overlaid with terrain metadata from

OpenStreetMap. Color coding: sky, water, forest, glacier, rock, other.

tion relative to the world coordinate system. Original normals of the surface n ∈ R3, where

nx, ny, nz ∈ ⟨−1, 1⟩, are encoded into the RGB image n′rgb = 0.5+0.5 ·n, where n′r, n
′
g, n
′
b ∈ ⟨0, 1⟩.

Illumination. Illumination approximation was simulated hour by hour from 4 am till

9 pm on 21st June, when the days are the longest during a year. We calculated the illu-

mination simulation using a local illumination model, so that it does not contain casted

shadows.

Semantic Segments We use publicly available metadata from OpenStreetMap [68]; how-

ever, other sources (e.g., NASA Visible Earth3 or USGS Land Cover4) are usable, too. More

specifically, we render 13 natural and physical land features from OpenStreetMap natural

feature set5: bare rock, cliff, fell, forest = wood, glacier, grassland, moor, scree, shingle,

sinkhole, and water. We map each feature on one color layer in a geo-referenced texture.

Subsequently, we drape the texture on our 3D terrain model (see Fig. 4.3, middle). Assum-

ing the image (e.g., Fig. 4.3, left) is correctly aligned with the model, we can project the

texture onto the image using the virtual camera while correctly accounting for the visibil-

ity thanks to the 3D terrain model. This procedure results in the final pixel-wise semantic

labels (Fig. 4.3, right).

4.4 Dataset Properties

The GeoPose3K dataset consists of two main parts, collected manually and semi-automatically.

The first part contains 339 images, which were collected and annotated manually. Since

this was a tedious task, collecting more dataset samples in this way was unfeasible. The

3http://visibleearth.nasa.gov/view.php?id=61004
4http://www.usgs.gov
5http://wiki.openstreetmap.org/wiki/Key:natural
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second part of the dataset contains 2,772 images for which we optimized the camera pa-

rameters using Weighted Alignment Metric combined with hypotheses sampling and man-

ual selection of the best candidate, as was described in Sec. 4.2.3.

4.4.1 Potential Bias for Evaluation of Camera Orientation Estimation Methods

We gathered the second part of the dataset semi-automatically, with the help of a method

by Baboud et al. [15]. For this reason, methods based on edge features might be poten-

tially privileged over algorithms based on different principles. This bias must be taken

into account when using GeoPose3K for the evaluation of orientation estimation methods.

However, for evaluating problems based on different features, the usage of the dataset

is valid. We illustrate this property in a benchmark evaluating a state-of-the-art horizon-

based geo-localization method by Saurer et al. [163] in Sec. 4.5. Our evaluation shows

that the dataset difficulty on the localization task is on-par with datasets collected solely

manually (CH1, CH2).

For evaluating methods similar to the method by Baboud et al. [15], a manually collected

part of the dataset (339 images) shall be used. Since selecting the images in this part was

not affected by any algorithm, there is no limitation on which methods can be evaluated

using this part of the dataset.

4.4.2 Statistics

The majority of images in the GeoPose3K dataset originate from the Alps100K dataset.

The GeoPose3K dataset consists of images containing an accurate GPS tag and a reason-

able portion of the mountain scene allowing the registration with the terrain model. This

definition restricts the set of images in which we can generalize our conclusions. How-

ever, the GeoPose3K dataset has adequate coverage by users—two thousand users have a

single photograph in the dataset, around a hundred and fifty users have two photographs,

and only a single user has twelve photographs in the dataset, which is the largest num-

ber of photographs created by a single user. The majority of images in the dataset were

taken between 2007 and 2014. The user and year distributions exhibit some degree of

similarity to the Yahoo Flickr Creative Commons 100 Million dataset (YFCC100M) [191].

We employed a two-sample Kolmogorov-Smirnov hypothesis test with a null hypothe-

sis: the GeoPose3K and YFCC100M distributions do not differ significantly. For the user

distribution, the two-sample Kolmogorov-Smirnov test failed to reject the null hypothesis

(D(6487, 12) = 0.3042, p = 0.18). For yearly distribution, the same test clearly rejected the

null hypothesis (D(35, 35) = 1, p < 0.001). From this we can conclude that year’s distribu-

tions differ significantly, but we could not prove the same for the user distribution. This
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fact illustrates that the GeoPose3K and YFCC100M share some degree of similarity, but

GeoPose3K is a more specific subset than YFCC100M.

Despite of the above-defined restrictions, the GeoPose3K dataset enables us to spec-

ulate about the following questions. What cameras are the most common in the moun-

tain environment, and which of them are the best candidates for visual geo-localization?

Which focal lengths are the most successful for matching mountain images? Are people

taking photographs with a zero roll angle? Which orientation at what time is the most fa-

vorite? To answer these questions and to illustrate the properties of the GeoPose3K dataset,

we measured several statistics.

Geographical Distribution. We visualized the distribution of geo-locations of photographs

in the GeoPose3K dataset in Fig. 4.4 (left). We built the dataset from Alps100K images, and

hence, the photos are distributed over the whole Alps region. However, the photos are not

distributed uniformly—the areas of tourist interest like Switzerland and northern Austria

contain more images than other areas.

Cameras. Due to its excessive size, we attached a full list of cameras in the Appendix,

in Table A.1. The most frequent camera in the dataset is Canon DIGITAL IXUS 860 IS

(around 8% of dataset images). Interestingly, the first and third most frequent cameras in

our dataset are not equipped with a built-in GPS sensor; according to this fact, at least 10%

of the dataset images obtained their original GPS coordinates by a third-party logger or

were geo-tagged manually.

Focal Lengths. A histogram of focal lengths recalculated to 35mm equivalent is visual-

ized in Fig. 4.4 (middle). Shorter focal lengths are typical for mountain landscape images

(Alps100K), and the measured distribution of GeoPose3K shows this bias as well.
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Figure 4.4: Dataset statistics. Left: distribution of photo locations in GeoPose3K dataset.

Middle: histogram of focal lengths in the dataset. Right: average camera roll.
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Average roll. People usually aim to level their photos with the horizon line. Accordingly,

the histogram of roll angles in Fig. 4.4 is centered around zero. However, keeping the

camera level may be difficult in the mountains, and some shots are rotated. This fact

justifies that the geo-localization methods need to be optimized for a camera roll as well.

Time-Orientation Correlation. According to Fig. 4.5 (right), photos in the GeoPose3K

dataset were taken most frequently around 2 pm with a heading of 90°. In general, photos

were photographed mainly between 10 am, and 4 pm and the favorite headings ranges are

between 0°-120° and 170°-300°.
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Figure 4.5: Dataset statistics. Left: histogram of GPS error distribution. Center: histogram

of FOV error distribution. Positions and FOV’s refined using our semi-automatic method

are drawn in brown, and the positions and FOV’s refined manually are in blue. Right:

time/orientation correlation visualization.

GPS and FOV error. We measured GPS and FOV errors of manually and automatically

(Sec. 4.2.3) refined dataset images. We measured geo-distance between the original and

the refined GPS position for each image using the Vincenty algorithm [204] and plotted a

histogram of these errors (see Fig. 4.5 on the left). We measured a similar histogram of FOV

errors (Fig. 4.5 in the middle), based on the angular distance between the original and the

refined FOV. According to our measurements, there are discovered discrepancies in GPS

values. The images sometimes exhibit noisy GPS tags, probably due to manually edited

geo-tags, lousy reception of a GPS sensor, or the fact that cameras have their GPS refresh

rate set to a long time interval. The FOV error histogram peak is near zero, reflecting

that the original fileds-of-view of photos in the dataset were nearly correct. Imperfections

in FOV up to 1°–2° discovered by the manual annotation are probably caused by tiny

inaccuracies of the digital elevation model or by a tiny GPS error. Therefore, the FOV

error within a small margin of 1°–2° is assumed to be correct.

Edge accumulation. The GeoPose3K dataset allows us to analyze properties of the query

edges and discover their importance. For the following experiment, we sampled a grid

around each query image, with the query image located at the center of the grid. The

61



grid had 9×9 samples and the distance between the consecutive samples was 0.001° in

both North-South and West-East directions. We rendered the synthetic silhouettes from

each grid location and matched them to the query image edges. We incremented 1 to all

pixels in the accumulator containing a synthetic silhouette, which contributed positively

to the matching score. Finally, we ran such an evaluation for every position in the grid and

summed up the accumulators to obtain one accumulated image for a query. We visualized

an example of such an accumulated image in Fig. 4.7.

To analyze the importance of edges in all images in the dataset, we have created the

average accumulated edge map (Fig. 4.6, left). The most populated one is the central area

of an image with a slight bias towards the frame’s bottom. Similarly, we have created

an average accumulated cylindric panoramic image, where we accumulated each image

according to its original camera orientation (Fig. 4.6, right). As one would expect, the area

around the horizon is the most populated; however, the silhouettes off ±10° seem to be

of a similar importance. The image further exhibits a good GeoPose3K dataset coverage of

camera orientations.

0°

31°

0° 90° 180° 270° 360°

Figure 4.6: Edge accumulation. Left: Normalized average from all accumulated images.

Right: Accumulated panorama image.

Figure 4.7: Accumulation of matched edges for a single query image. We split the area

around the GPS location of the query image uniformly into a grid of 9×9 cells (resolution

of 0.001° in both N-S and W-E directions). From each cell we render synthetic silhouettes

(left) and match them to edges in the query image. In the accumulated image, we increase

the value of all pixels containing a synthetic silhouette, which contributed positively to

the matching score. We run such an evaluation for every cell in the grid and sum up the

accumulators to obtain one accumulated image for a query (right).
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4.5 Experiments

We evaluate the performance of the Original and the Weighted Alignment metric in Sec. 4.5.2.

We show that the Weighted Alignment metric outperforms the Original Alignment metric by

a large margin, which allowed us to build the dataset more efficiently.

Furthermore, we use the GeoPose3K dataset to extensively evaluate the state-of-the-art

method by Saurer et al. [163] for horizon-based visual geo-localization in the mountains

in Sec. 4.5.4. By this evaluation, we bring more profound insight into the dataset proper-

ties; according to our measurements, the difficulty of the new GeoPose3K dataset for visual

geo-localization is higher than the difficulty of the original CH1 [14] dataset, and is similar

to the difficulty of the CH2 [163] dataset. GeoPose3K allows us to evaluate the baseline us-

ing more photos covering a larger area than the original datasets. For this evaluation, we

issued the vastest area ever—our most massive experiment deals with an area more than

twice the size of the original area reported by Saurer et al. [163]. Additionally, GeoPose3K

also allows us to evaluate the camera heading accuracy. The evaluated method [163] is

capable of camera heading estimation; however, the original paper [163] did not evalu-

ate it quantitatively, because there was no suitable dataset containing camera orientations.

Furthermore, we evaluated geo-localization performance using three fully automatic hori-

zon line extraction methods to illustrate that the automatic horizon line extraction is still

challenging.

4.5.1 Setup

The performance of the Original and the Weighted Alignment Metric was evaluated by man-

ually counting correctly registered images. As a test set, we randomly selected 400 images

from the Alps100K test set [31]. The number of selected images is based on the fact that

the alignment metric is demanding on computational time and validation demands many

human resources, and testing several variants of edge maps would be too expensive with

a broader test set.

For experiments with camera localization and orientation estimation, we reimplemented

the state-of-the-art method by Saurer et al. [163] and measured its performance on Geo-

Pose3K. The method utilizes a database of densely sampled horizon lines from a DEM to

retrieve locations given a query horizon line. We extracted a database of synthetic hori-

zon lines that covers 86,000 km2 (red area in Fig. 4.8(a)—GP1), which is more than twice

the size of the area used in the original paper [163] (40,000 km2). We sampled the area of

interest in both N-S and W-E directions with a resolution of 0.001°. Samples in N-S and

W-E directions are 111 m and 78 m far from each other, respectively.
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Scenario Thresholded Weighted

Compass 2.75% 2.75%

CannyDM 6.20% 0.01%

Silhouette 7.25% 9.75%

Table 4.1: Image registration experiments: The table shows a fraction of successfully reg-

istered images from 400 randomly selected images from Alps100K [31] test set.

The original method facilitates the bag-of-words retrieval adapted to horizon line con-

tours. The approach allows us to retrieve the approximate heading and position of the

camera using a voting scheme. We used voting for location and direction with 2.5° and

10° descriptors and 3° directional bin size, which seemed to be the best choice according to

the original paper’s results. We used the evaluation method proposed by Baatz et al. [14];

we measured the distance between a candidate and a ground truth location, assuming the

location is correct if the distance is smaller than 1 km. Finally, we plotted the cumulative

percentage of correctly localized images given top-k candidates.

4.5.2 Performance of the Alignment Metric

Both the Original and the new Weighted Alignment Metric (Sec. 4.2.2) assume edge maps

on their input. We experimented with several edge map acquisition methods, including

novel depth-based approaches (described below), to find the best possible settings. We

summarize the results in Table 4.1 and show that the weighted variant of the silhouette

detector is by far the best.

Thresholded edge maps. We used a Compass edge detector [156] in the baseline met-

ric [15]. Similarly to the authors, we thresholded the edge map (τ = 0.7) to keep only

significant edges. In Tab. 4.1 we denote this edge detector as Compass|Thresholded. We

also experimented with an alternative approach: the thresholded Canny detector applied

on the depth map estimate (see CannyDM|Thresholded in Tab. 4.1). We estimated the depth

map using a dark channel prior directly from an input image [79]. The edges were then

obtained from this depth map using a thresholded Canny edge detector (τ = 0.25), rep-

resenting depth discontinuities. The resulting edge map often exhibits more distinctive

edges, especially the more distant ones, compared to the edges detected directly from the

original query image. Additionally we used a thresholded variant of the Weighted edge

detector described in Sec. 4.2.2. We kept only edges with weight exceeding the threshold

τ = 0.1, to detect the strong edges and neglect the background noise. In the Tab. 4.1 we
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denote this variant as Sihouette|Thresholded. All thresholded variants have all edges with

a unit weight.

Weighted edge maps. We have included weighted versions of both methods (Compass

and CannyDM) described above, where the raw edge strength was linearly rescaled into

edge weights w ∈ ⟨0, 1⟩ (see Compass|Weighted and CannyDM|Weighted in Tab. 4.1). Fi-

nally, we experimented with the Weighted edge detector described in Sec. 4.2.2, see Silhou-

ette|Weighted in Tab. 4.1. Our measurements show that the weighted variant of our match-

ing metric produces significantly better results, and the new weighted silhouette detector

is the preferred edge map construction method.

4.5.3 Automatic Horizon Line Detection

The baseline localization method requires a horizon line as a query input. To measure

the method’s performance on the GeoPose3K dataset, we experimented with several algo-

rithms for the automatic detection of horizon lines.

Automatic Labeling Environment (ALE) [106]. ALE is an energy minimization-based

semantic segmentation framework adopted for sky extraction by Saurer et al. [163]. Specif-

ically, the energy is predicted by a pixel-wise classifier trained on contextual and super-

pixel feature representations. The method uses multiple bag-of-words representations

over the random set of 200 rectangles and superpixels for the contextual and superpixel

parts, respectively. The method minimizes the energy using dynamic programming (DP)

to estimate the semantic segmentation. We have implemented the algorithm [163] into the

Automatic Labeling Environment (ALE), with the personal advice of the authors [106].

As with the original paper [163], we set the number of bag-of-words clusters to 512 and

trained ALE using the CH1 dataset [163].

An Edge-Less Approach to Horizon Line Detection [5]. This approach also uses ma-

chine learning and DP to extract the horizon line from an image. The method assigns a

classification score to each pixel, expressing the likelihood that the pixel belongs to the

horizon line. As suggested by the authors, we used the SVM classifier trained by their

training set [5]. Assuming that the horizon line extends from left to right (not top to bot-

tom), the horizon line is extracted using DP, maximizing the sum of classification scores.

Fully Convolutional Networks (FCN) [120]. FCN achieve state-of-the-art results in se-

mantic segmentation. For the given input image, the fully convolutional network pro-

duces a correspondingly-sized semantic segmentation image. We experimented with sev-
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eral semantic segmentation models (FCN-Xs) and selected the FCN-8s (three-stream, 8-

pixel prediction stride), which gave us the best results, for further evaluation. We used a

model trained for the 21-class (including background) PASCAL VOC segmentation task

and finetuned for sky-foreground segmentation using the CH1 dataset [14].

4.5.4 Localization Performance

We evaluated the localization performance using several scenarios. In order to illustrate

the performance of our implementation of the baseline method, we measured the perfor-

mance on the original CH1 dataset using the original CH1 horizon lines (CH1 area, CH1

data, 4.8(b)). Since the CH2 dataset does not contain horizon lines segmentations, we

measured the performance of the CH2 dataset using query horizon lines obtained by au-

tomatic segmentation of query images using three different methods (CH2 area, CH2 data,

4.9(a)). To study the difficulty of the CH1, CH2, and GeoPose3K datasets, we also evaluated

the method on the CH1 and CH2 areas using GeoPose3K data (CH1 area, GeoPose3K data,

4.8(c); CH2 area, GeoPose3K data, 4.9(b), respectively). We also studied the method’s total

performance using the GeoPose3K images inside the largest GP1 area, 4.9(c).
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Figure 4.8: (a) trained localization areas: CH1 dataset area, CH2 dataset area , our GP1

area (largest); results of horizon-based localization on (b) CH1 dataset: red—2.5° features,

blue—10° features, green—combination of both 2.5° and 10° features; (c) GeoPose3K data in

the CH1 dataset area (yellow rectangle) using three automatic segmentation techniques—

ALE (green), FCN (blue), Edge-Less (red).

CH1 area, CH1 data (Fig. 4.8(b)). We evaluated the performance of our implementation

on the original CH1 dataset [163] and used a database of horizons inside the yellow rect-

angle (Fig. 4.8(a)) and 203 query images from the CH1 dataset. Like the authors of the

baseline method [163], we visualized performance for 2.5° features, 10° features, and a

combination of both. The obtained performance is a bit worse than in the original publica-
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tion. We hypothesize that the main reason is in the data we use—the original method uses

non-free DEM from the Federal Office of Topography swisstopo6, which contains one sam-

ple per 2 m2. We use publicly available DEM from viewfinderpanoramas 7, which contains

one sample per 576 m2.

CH1 area, GeoPose3K data (Fig. 4.8(c)). This experiment used 865 query images from

GeoPose3K located inside the CH1 area—yellow box (Fig. 4.8(a)). The fraction of correctly

localized images is lower than in Fig. 4.8(b). This result might be caused by the lower ac-

curacy of the horizon extraction algorithms (ALE, FCN-8s, Edge-Less) compared to those

used in the original CH1 dataset (ALE, guided by user). The CH2 area with CH2 and Geo-

Pose3K data (Fig. 4.9(a) and 4.9(b)) also supports this assumption; the results look similar

in both cases.

CH2 area, CH2 data (Fig. 4.9(a)). We used 949 query images from the CH2 dataset located

inside the CH2 area—blue box in Fig. 4.8(a). The performance of this experiment can

be directly compared to the CH2 area—GeoPose3K experiment (Fig. 4.9(b)), since query

horizon lines for both sets were extracted by the same (automatic) techniques. According

to the results, the method performed a little bit worse on the CH2 dataset.

CH2 area, GeoPose3K data (Fig. 4.9(b)). For this experiment, we used 791 images from

the GeoPose3K dataset, located inside the CH2 area—blue box in Fig. 4.8(a). The results

agree with other experiments—the performance of the segmentation techniques is consis-

tent with other experiments. ALE seems to be the best method for horizon line segmenta-

tion, FCN, and the EdgeLess approach scored similarly.

GP1 area, GeoPose3K data (Fig. 4.9(c)). The GeoPose3K dataset covers almost the whole

Alps (Fig. 4.4). However, training such a large area for the horizon-based localization was

not feasible due to hardware limitations. For this reason, we trained the GP1 area (red

area on (Fig. 4.8(a)), which is the largest area used for horizon-based localization so far

(86,000 km2). In this area, we evaluated the method using a subset of 1,151 images from

GeoPose3K, which fit into the GP1 area. The results of this experiment are in Fig. 4.9(c). The

performance is slightly worse than in previous experiments (CH1, CH2 areas, GeoPose3K

data). We expected the performance drop since the geo-localization area is more than twice

the size of the CH1 and CH2 areas. From this result, it seems that the geo-localization per-

formance of the horizon line-based localization method [163] decreases only marginally

with the increasing size of the geo-localization area.

6https://www.swisstopo.admin.ch
7http://www.viewfinderpanoramas.org
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Figure 4.9: results of horizon-based localization using three automatic segmentation

algorithms—ALE (green), FCN (blue), Edge-Less (red); (a) CH2 dataset using automatic

segmentation; (b) CH2 dataset area, using GeoPose3K images, (c) largest GP1 area using

GeoPose3K images.

4.5.5 Orientation Performance

Since GeoPose3K also contains camera orientation for each image, we evaluated the esti-

mated heading (Fig. 4.10). To our knowledge, this is the first evaluation of heading esti-

mated by the method of Saurer et al. [163]. We measured the difference between the ground

truth heading and the estimated heading for each correct candidate. From Fig. 4.10, we can

see that the orientation error peaks around 0°, and errors larger than several degrees are

negligible. This result supports our expectations: for a correct location, the algorithm finds

a correct heading estimate up to a small error of several degrees. We present a more in-

depth analysis of the heading estimation error in Table 4.2. We measured the heading error

on all three geolocalization areas – CH1, CH2, and GP1, using GeoPose3K data and cal-

culated mean, standard deviation, and quantiles at 5% and 95%. The statistics correspond

with Fig. 4.10. In the CH1 area, the Edge-less segmentation method achieved the best re-

sult; however, this is not consistent across other areas. CH2 and GP1 area likely contain

more challenging images since the standard deviation is worse on CH2 than on CH1. In

the largest GP1 area, the FCN8-s segmentation method has the lowest heading error ac-

cording to the reported mean and standard deviation. On average, the lowest mean error

in heading accuracy was achieved by ALE, which has other average statistics slightly devi-

ated from the lowest observed values; however, the difference is not significantly different

from other methods.

4.5.6 Experiments Summary

This section provided experimental results of the state-of-the-art horizon-based visual lo-

calization technique by Saurer et al. [163]. We evaluated both localization and heading
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CH1 area, GeoPose3K, 865 images

method mean std median q = 0.95 q = 0.05
Edge-less 7.89 22.39 -0.76 6.62 -8.78

FCN8-s 9.92 26.73 -1.66 15.74 -8.77

ALE 16.10 36.36 -0.80 80.36 -25.54

CH2 area, GeoPose3K, 791 images

Edge-less 36.28 51.88 0.39 124.48 -120.18

FCN8-s 25.68 43.62 -1.80 107.84 -122.17

ALE 11.76 32.04 -0.79 29.23 -9.08

GP1 area, GeoPose3K, 1151 images

Edge-less 14.76 34.89 -0.18 105.22 -7.35

FCN8-s 13.00 33.97 -1.24 106.21 -7.53

ALE 18.26 36.10 -0.61 98.61 -20.38

Average

Edge-less 19.64 36.39 -0.18 78.77 -45.44

FCN8-s 16.20 34.77 -1.57 76.60 -46.16

ALE 15.37 34.83 -0.73 69.40 -18.33

Table 4.2: Statistics of the camera orientation error in degrees for a localization experiment

on GeoPose3K data using three automatic segmentation techniques. Symbol q = 0.95

denotes quantile at 0.95.
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Figure 4.10: Normalized histograms of camera orientation error (in degrees) for localiza-

tion experiment on CH1 area and GeoPose3K dataset using three automatic segmentation

techniques—ALE (green), FCN (blue), Edge-Less (red).

estimation performance. For evaluation, we used the original CH1 and CH2 datasets and

compared the achieved performance with our GeoPose3K dataset. We also conducted the

largest horizon-based localization performance experiment ever, with the use of the Geo-

Pose3K dataset and a GP1 area of 86,000 km2. We identified a large performance gap be-

tween automatically estimated horizon lines and manually corrected ones provided with

the CH1 dataset. Usually, the method could localize around 15% of top-1 candiates with

a localization error below 1 km using our dataset. The performance was two times better

with the original CH1 dataset: the method localized around 30% of top-1 candidates with

a localization error below 1 km. The best method for automatic horizon line extraction

is, according to our experiments, Automatic Labeling Environment (ALE) [106] (which
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scored best in 3 out of 4 experiments), and the second is the Fully Connected Networks

(FCN-8s) approach (which scored best in 1 out of 4 experiments).

For the first time, we evaluated the heading estimation performance of the horizon-

based localization method by Saurer et al. [163]. Through our experiment, we illustrated

that candidates located up to a distance of 1 km from the ground truth showed a heading

error of around a few degrees, and more significant discrepancies from the ground truth

heading are rare. In other words, a correctly localized image also implies a correctly esti-

mated heading. However, such an estimated heading is only an approximate estimation,

since the mean error varies between 7.89° and 36.28° across various scenarios.

4.6 Future Applications

GeoPose3K dataset is a rich source of information for solving geo-localization, camera ori-

entation, and other computer vision and image processing problems. Besides geographic

location and the camera orientation, it contains additional synthetic data to train, evalu-

ate, and compare existing and future algorithms. Let us briefly summarize possible future

applications of this dataset.

Depth Estimation from a Single Image. Depth is an essential cue for image processing

algorithms, like single image haze removal [79, 51]. Depth estimation from a single image

is an ill-posed problem since there is no unique mapping from a single RGB image to RGB-

D. We must take prior and contextual information into account in order to obtain feasible

estimates. The prior is usually chosen arbitrarily, such as a dark channel [79]. However,

we can train the prior or the whole end-to-end estimation process, given our synthetic

depth and normals.

Sun Position from Illumination. Sun position is a viable feature for location recogni-

tion [107]. Previous work estimates the sun’s position given a set of temporal images. We

might train the sun’s position estimation from a single image using our synthetic illumi-

nation data in an end-to-end manner in future work.

Semantic Segmentation. Semantic segments proved to be usable for camera orientation

assessment [12, A3]. In Chapter 6, we used semantic labels from the GeoPose3K dataset to

fine-tune a semantic segmentation method to estimate semantic segmentation similar to

the rendered ones.

70



4.7 Chapter Summary

In this chapter, we presented the GeoPose3K dataset. We showed that the dataset is unique

and valuable for the training and evaluation of methods in the context of visual geo-

localization and camera pose estimation. We demonstrated an approach to semi-automatic

dataset acquisition using an improved camera orientation estimation algorithm. We per-

formed an in-depth analysis of dataset properties and provided the most extensive base-

line evaluation on a geo-localization task using a state-of-the-art visual geo-localization

algorithm. Our experiments demonstrated that the GeoPose3K is usable for camera orien-

tation and geo-localization evaluation, and the difficulty is on par with original CH1 [14]

and CH2 [163] datasets. Additionally, we proposed several unconventional future appli-

cations which the dataset enables us to develop.
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Chapter 5

Building Large-scale Cross-domain Datasets Using SfM

Structure from motion (SfM) techniques for 3D reconstruction and camera pose estimation

are frequently used to recover 3D geometry of the scene [42, 113, 70, 95, 115]. The datasets

reconstructed using SfM contain camera parameters relative to each other and are de-

fined up to the rotation and scale. The recent computer vision trend uses large amounts

of images for which the camera parameters were estimated using SfM and use them to

learn solutions for various problems directly from data. Problems which were addressed

with the help of large scale datasets reconstructed using SfM include camera pose estima-

tion [95, 26], depth estimation [115] or keypoint detection and description [126, 48]. This

chapter presents our research towards a precise alignment of unsorted photography col-

lections with the terrain model, which allowed us to build large datasets of photographs

and their precisely aligned counterparts synthetically rendered from the terrain model.

Contributions. We present two approaches to align unsorted collections of photographs

with a terrain model using SfM technique. We show, that although SfM reconstruction

is challenging in outdoor environments, it can be used to build extensive datasets of im-

ages precisely aligned with the terrain model. The first approach uses SfM to reconstruct

a 3D scene represented as a point cloud which is subsequently aligned with the terrain

using GPS tags from the input photographs. The initial alignment is further refined by

precise registration of the 3D point cloud with the terrain model. Second, we propose a

novel approach to Structure-from-Motion using terrain reference which reconstructs the

3D scene jointly from photographs and rendered images. The rendered images, for which

we know exact camera parameters, help fixing the reconstruction to avoid drift. Using

both methods, we automatically reconstructed several scenes containing more than 20,000

photographs precisely aligned with the terrain.

5.1 Related Work

The goal of our work is to align unstructured collections of real photographs with a ren-

dered terrain. However, the existing SfM approaches [185, 1, 218, 217, 130, 80, 170] alone
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cannot recover the scene in absolute world coordinates, which would allow the alignment

with existing terrain models, e.g., geo-tagged DEMs. Wang et al. [208] used the SfM tech-

nique in a two-step process to first reconstruct a 3D scene from photographs and then align

it with the terrain. To align the reconstructed 3D scene with a city model, the authors use

GPS positions of cameras for initial geo-localization. In the next step, they apply a rigid

fine-tuning of the scene with 3D building models using Iterative Closest Points (ICP). As

they use vanishing points to estimate the reconstructed scene up vector, the method is lim-

ited to urban scenes with linear features. In contrast, we need a method independent of

linear features that are usually not available in outdoor mountain sceneries. This chapter

introduces two different approaches to overcome this problem and shows that we can use

SfM methods in the cross-domain scenario to align a photograph with the rendered terrain

model.

Section 5.2 introduces our first approach that leverages a two-step reconstruct-then-

align approach. Similarly to Wang et al. [208], we use SfM to reconstruct the scene, which

we subsequently align with the terrain model [A4]. In contrast to Wang et al. [208], our

method does not estimate the up vector using vanishing points. We demonstrate that with

proper processing, Flickr images’ noisy GPS positions provide sufficiently precise initial

geo-registration to enable further refinement with the terrain model.

The second approach, introduced in Section 5.3, completely removes the alignment

step—we directly match photographs with the terrain model to reconstruct a scene with

absolute coordinates [A5]. To our knowledge, our method is the first to propose a 3D SfM

reconstruction jointly using real photographs and rendered imagery to achieve an implicit

geo-registration.

5.2 Scene Reconstruction and Alignment

To reconstruct a dataset, we collect images from a specific area of interest. We obtain

ground-level images through the Flickr API, querying for the specific geo-extent covering

the area of interest, which we additionally restrict to a specific time interval. Restricting

the time interval ensures that the downloaded photographs are taken during roughly the

same season, improving matching and reconstruction by eliminating seasonal changes.

Some of the images retrieved with a location filter may contain irrelevant data instead

of natural outdoor scenes (e.g., indoor images, pets, close-ups of vegetation, or portraits

of hikers). We filter them to improve the efficiency of our algorithm. To select only rele-

vant images, we apply a scene understanding neural network (ResNet18) trained on the

Places365 dataset [231] to find images that are most likely both outdoor and natural.
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Given an input image, the network estimates matching scores for a list of semantic

categories defined in the Places365 database. The semantic category is a high-level rep-

resentation of a place, e.g., bedroom, beach, or mountain. For each semantic category, the

Places365 dataset defines whether it is indoor or outdoor. Per-image, we select the seman-

tic categories with the ten highest scores; if most of them are indoor, the image is classified

as indoor and otherwise outdoor.

To implement the natural/unnatural classification, we use the image attributes from

the SUN attribute dataset [136]. Semantically overlapping image attributes describe scenes

with fine granularity. We cluster the attributes as either natural (non-urban images) or

unnatural (everything else). Examples of natural attributes include foliage, leaves, or hiking;

examples of unnatural attributes are pavement, carpet, or stressful. The CNN estimates per-

attribute correlations for an input image. We sum all correlations for natural attributes and

subtract correlations for the unnatural attributes. If the outcome is greater than zero, then

we classify the image as natural.

5.2.1 Scene Reconstruction

We tested several publicly available Structure from Motion pipelines [218, 217, 130, 185,

170] for scene reconstruction. We obtained the best results using the publicly available

COLMAP implementation [170]. We found important to use approximate matching with

a vocabulary tree and an enhanced voting strategy for fast spatial verification [168] since

exhaustive matching is significantly slower. We use a 256k vocabulary tree provided by

the COLMAP authors1. The typical reconstruction time of a dataset of 4k photographs

was several hours on a desktop PC with NVIDIA 970 GTX GPU.

For geo-registration using GPS from Flickr images, we use a robust least median of

squares (LMeds) combined with RANSAC [229] using the Euclidean distance of the re-

constructed camera position and the corresponding GPS position (residual). Instead of

minimizing the sum of squared residuals, we minimize their median, which is more ro-

bust towards outliers. Using this minimization approach, we estimate a similarity trans-

formation to transform (translate, rotate, and scale) the scene into world coordinates.

5.2.2 Fine-tuning

Because of uncertainties in camera configuration, GPS location, and other parameters,

there is no guarantee that the initial geo-registration matches the known terrain. To rem-

edy this, we refine the initial geo-registration by minimizing the Euclidean distance be-

tween the reconstructed 3D point cloud and the DEM terrain data. We segment the point

1https://demuc.de/colmap/
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Figure 5.1: Alignment of input (red) point cloud with the reference (green) point cloud

sampled from the terrain using Iterative Closest Points. The blue point cloud is the result.

Map data © Mapbox, © OpenStreetMap.

cloud into disjoint clusters so that two points in the same cluster are at most 1 km apart

from each other. We calculate a bounding box for each cluster and sample the terrain on a

grid with 10 m spacing. We align the reconstructed 3D point cloud and the sampled terrain

using ICP with the Libpointmatcher library [141] with default parameters. The algorithm

first reduces the input and reference point clouds (see Figure 5.1) by random sampling,

keeping 75% of all points. Next, the algorithm iteratively performs a series of steps:

1. Each point is matched to its nearest neighbors in the Euclidean space.

2. Points too far from the reference point cloud (outliers) are removed (85% of points

with the smallest distance are kept).

3. Minimization of point-to-plane distance is performed [220].

4. Check if convergence or the maximum number of iterations (40) has been reached.

After registering the model, we are often left with mismatches between the photo con-

tent and the virtual terrain, mostly due to wrong information about camera configuration

(e.g., focal length, or exact GPS position). Furthermore, because of the DEM’s limited sam-

pling rate, some cameras may end up below the virtual terrain after the ICP alignment,

which we solve by moving them vertically to the terrain height. However, both of these

problems introduce errors in camera orientation parameters.

To correct the registration errors, we leverage our knowledge of the correspondences

between 2D points oi observed in the photographs and the point cloud 3D points pi aligned

with the virtual terrain. We use these correspondences to optimize the orientation param-

eters using the Kabsch Algorithm [88]. We project the 2D observations oi using camera
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Figure 5.2: Examples of images before (left) and after point-cloud to terrain alignment

using ICP (right). Top row: Yosemite Waterfall, CA, USA, middle row: Jakes Peak at the

Lake Tahoe, CA, USA, bottom row: Mount Everest, Nepal. Map data © 2018 Google.

dataset Im Imr Me(ep) [m] Me(ep)-ICP [m] µre [px]

Nepal 2401 901 1624.62 819.98 0.41

Tahoe 302 78 2814.24 72.82 0.88

Tatras 4146 297 2908.59 2410.21 0.47

Yosemite 4173 2094 14041.70 348.33 0.50

Matterhorn 33829 9018 836.89 440.48 0.51

Table 5.1: Number of input images before reconstruction (Im), number of reconstructed

images (Imr), median alignment error (Me(ep)) of the point cloud and the terrain before and

after ICP, and mean RMSE of the reprojection (µre). The median alignment error Me(ep) is

significantly lower after alignment using ICP.

77



parameters into 3D points pi based on the Euclidean distance between the camera center

and the corresponding 3D point pi from the point cloud. We subtract centroids from both

sets and calculate the rotation matrix using the Kabsch algorithm R = K(pi, pi). We show

the results of the fine-tuning in Figure 5.2. The implementation of our method is publicly

available2.

Using this approach, we reconstructed five datasets from five different locations across

the globe. We captured the Nepal dataset at the Himalaya mountains in Nepal; the Tahoe

dataset comes from the Lake Tahoe in California, USA; the Tatras dataset consists of pho-

tographs from the High Tatra mountains in Slovakia; the Yosemite dataset comes from the

Yosemite National Park in California, USA; and the Matterhorn dataset comes from the

European Alps. Table 5.1 illustrates the matching accuracy of the reconstructed 3D point

cloud with the sampled terrain. Because a reconstructed model usually contains a small

number of outliers, we report the median euclidean distance Me(ep) between each 3D point

pi from the point cloud and its closest point from the sampled terrain n(pi):

Me(ep) = Me
{︁
∀i ∈ {1, . . . ,N} : ep[pi, n(pi)]

}︁
, (5.1)

where ep has been defined in Eq. 3.16, and Me denotes the median.

To illustrate the reconstruction’s accuracy, we also include the mean of the reprojection

root mean squared error (RMSE) µre across all cameras in the given dataset:

µre =
1

Nc

Nc−1∑︁
i=0

⎯⎸⎸⎷
1

Np(Pi)

Np(Pi)−1∑︁
j=0

||Γ(p j, Pi) − o j||
2
2, (5.2)

where Nc is the number of cameras in the dataset, Np(Pi) is the number of points observed

by camera pose Pi, Γ(p j, Pi) is the projection function which projects 3D point p j into the

image plane using camera pose Pi, and o j is the 2D observation corresponding to the 3D

point p j.

5.3 Direct Cross-domain Reconstruction

Existing methods reconstruct a sparse 3D model from photographs [218, 217, 130, 185,

170] and then align it with the terrain model [208] using point cloud alignment methods.

These methods generally work well for areas with a dense coverage of ground-level pho-

tographs. However, sometimes the coverage density is too low, and we need an alternative

approach which makes the reconstruction more robust and stable.

To this end, we propose a registration method that aligns photographs via a DEM-

guided structure-from-motion, in which the known camera parameters and geometry of

2https://github.com/brejchajan/itr
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Figure 5.3: Structure-from-motion with a terrain reference for automatic cross-domain
dataset generation. In the area of interest, camera positions are sampled on a regular
grid (red markers). At each position, 6 views covering the full panorama are rendered.
A sparse 3D model is created from the synthetic data using known camera poses and
scene geometry. Each photograph is then localized to the synthetic sparse 3D model. Im-

age credit, photographs left to right: John Bohlmeyer (https://flic.kr/p/gm3zRQ), Tony Tsang

(https://flic.kr/p/gWmPbU), distantranges (https://flic.kr/p/gJCPui).

the DEM domain help overcome ambiguous matches and lack of data in the photo do-

main. As input, we use photographs from an online service (Fig. 5.3-1.), such as Flickr.com,

and download all photos within a given radius. The radius may vary between 10 km to

30 km. For the same area, we also render panoramic images sampled 1 km apart on a

regular grid (Fig. 5.3-2.). Specifically, we experimented with six areas from the European

Alps, and with one area from the South American Andes. We illustrate the number of

rendered images Ir for each area in Tab. 5.2. We render six images with 60° field-of-view,

each rotated by 60° around the vertical axis for each sampled position. For each rendered

image, we store a depth map, full camera pose, and detected keypoints and descriptors

using D2Net [48]. For rendered images, we calculate matches directly from the terrain ge-

ometry using the stored camera poses and depth maps—no descriptor matching between

rendered images is needed (Fig. 5.3-3.). We reproject each keypoint from a rendered pair

of images to 3D based on the rendered camera pose and the depth of the keypoint from

the depth map. We find keypoint correspondences by searching for the nearest neighbor,

far away at most M meters. With the DEM resolution of 30 m/pixel, we used M = 40 m.

We can then obtain an initial sparse 3D model by triangulating the respective matches

(Fig. 5.3-4.).
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dataset Ir Im Imr µre [px]

Alps Eiger 3072 12280 2281 1.32

Alps Grande Casse 2700 12849 1347 1.29

Alps Gran Paradiso 2700 3728 592 1.28

Alps Chamonix 4926 6248 1908 1.34

Alps Ortler 2700 10436 2103 1.29

Alps Wildspitze 2700 9882 1011 1.27

Andes Huascaran 5664 3008 184 1.31

Table 5.2: Number of input renders (Ir), number of input images before reconstruction (Im),

number of reconstructed images (Imr), and mean RMSE of the reprojection (µre).

In the next step, we extract keypoints and descriptors from the input photographs

using D2Net. We match the input photographs to every other photograph and synthetic

render using descriptor matching (Fig. 5.3-5.) and localize them to the terrain model using

SfM (Fig. 5.3-6.). We use global bundle adjustment to refine camera parameters belonging

to photographs and 3D points, while the rendered cameras have fixed all parameters since

they are known precisely.

Notably, while existing single-domain feature descriptors are not robust to the photo-

DEM domain gap, we can overcome this limitation by the sheer volume of synthetic data.

Most of the matches will be within the same domain (e.g., photo to photo), and only a small

handful need to successfully match to DEM images for the entire photo domain model to

be accurately registered. Finally, we check each reconstructed photograph’s location with

the terrain model and prune photographs below, or more than 100 m above the terrain

since they are unlikely to be localized precisely.

This approach successfully geo-registered photographs in every tested area. Impor-

tantly, this approach was successful even for areas with low density of photographs—in

Gran Paradiso (Alps) and in Huascaran (Andes) areas we had only between 3-4 pho-

tographs per square kilometer. In total, we localized 9,426 photographs using this ap-

proach; our implementation and reconstructed datasets are publicly available3. We present

the numbers of reconstructed images per dataset and mean reprojection error in Tab. 5.2.

We also show some qualitative results in Fig. 5.4. According to visual inspection, the align-

ment is reasonably precise and consistent across the majority of the results. Our method

can localize and align images captured at challenging lighting conditions, such as night

photographs (Fig. 5.4, middle-right), or horizon line occlusions (Fig. 5.4, bottom line). Fail-

3https://github.com/brejchajan/LandscapeAR
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Figure 5.4: Examples of alignment generated by finding camera pose using SfM with

terrain reference. The synthetic terrain rendered from DEM is overlaid over the pho-

tographs and highlighted with red color. Top row: Chamonix, European Alps, image

credit (left to right): Kenneth Berger (https://flic.kr/p/khHgkc, Owen Richard (https:

//flic.kr/p/krFqWM); middle row: Eiger, Europen Alps, image credit (left to right):

distantranges (https://flic.kr/p/gJBZZv), Tom Fear (https://flic.kr/p/gLPF1w); bot-

tom row: Grande Casse, European Alps, image credit (left to right): antoine.pardigon

(https://flic.kr/p/nKV3hh), Jean-Marie Zanoni (https://flic.kr/p/p18rDc).
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ure cases are sparse and are usually caused by the insufficient resolution of the rendered

DEM foreground.

5.4 Chapter Summary

We presented two SfM-based approaches for the acquisition of photographs precisely align-

ed with a terrain model. First, we introduced our modification of the reconstruct-then-

align approach, initially used in urban areas [208]. We showed that using GPS information

from downloaded internet photographs is enough to align the reconstructed scene with

the terrain model in outdoor environments [A4]. In contrast to the original approach [208],

our method does not need to detect vanishing points, which is difficult due to the lack of

straight segments in outdoor sceneries. However, many outdoor scenes are almost impos-

sible to reconstruct using photographs solely due to the following issues. Some outdoor

areas are covered by internet imagery only sparsely, and the scene’s appearance varies sig-

nificantly across individual photographs. Furthermore, internet imagery’s internal camera

parameters are usually unknown and vary significantly due to a broad range of consumer

devices. Because of these shortcomings, the SfM reconstruction often drifts, effectively

disallowing subsequent alignment with the terrain model.

We solved this by introducing a novel method, which aligns outdoor photographs

with a sparse 3D terrain model implicitly during the reconstruction [A5]. Our novel

approach uses real photographs and synthetic renders of the terrain with fixed camera

parameters. We estimate camera parameters for photographs during the reconstruction

by matching the photographs with each other and with the renders. Photo-to-photo and

photo-to-render matching allow us to constrain the reconstruction with the known cam-

era parameters (coupled with synthetically rendered images) and optimize parameters of

the real cameras (coupled with the photographs) and parts of the scene depicted on the

photographs, but missing from the terrain model. Using both methods, we automatically

reconstructed several datasets and presented quantitative and qualitative results of the

image-to-terrain alignment.
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Part III

Visual Localization by Photo-to-terrain Matching

and its Application

In this part, we propose two novel methods for calibrating extrinsic camera parameters.

The first method uses the combination of features based on edges and semantic segmen-

tation to match a query image with a synthetic panorama rendered at a known position.

The second method studies the full camera pose estimation by proposing a novel cross-

domain descriptor for matching keypoints between the query photograph and a rendered

terrain model covered with a satellite texture. Finally, we propose a novel application

that uses visual localization to present photographs in an immersive virtual environment.

The application allows users to easily re-visit the places from their vacation or perform

a photographs’ showcase in a virtual environment to familiarize others with a novel yet

unvisited location.
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Chapter 6

Camera Orientation Estimation in Natural Scenes Us-

ing Semantic Cues

A variety of works approached the camera orientation estimation [146, 133, 15, 100, 12, 143,

142, 39]. With the knowledge of camera orientation and position in the world, we can infer

answers to questions such as: “Is it possible to move forward?” or “What are we looking

at?” While state-of-the-art data-driven methods [95, 7] can answer such questions, they

are focused mainly on urban areas. In contrast, this chapter focuses on camera orientation

estimation in mountainous areas. Knowledge of camera orientation may be valuable for

scene understanding and organizing large databases of photographs. Furthermore, cam-

era orientation may augment other sensors in robots, UAVs, or helicopters for automatic

navigation. Several works on camera orientation estimation in mountainous areas were

developed [15, 12, 142, 52, 132]. However, the problem remains challenging for real-world

images, as illustrated by our experiments.

While the position of a photograph is often recorded with the GPS sensor, personal

photographs and internet images often lack information about the camera orientation.

The knowledge of accurate camera orientation opens up interesting applications and facil-

itates difficult image recognition tasks. For example, images with known camera pose can

be augmented with information from geospatial databases and used in augmented and

virtual reality applications. Existing solutions to camera orientation estimation in moun-

tainous scenes rely on matching a query image with a terrain model [15, 12, 142]. In gen-

eral, these methods are based on aligning query image features (edge maps) with synthetic

edges generated from the terrain model. While we also use a terrain model as a reference,

we do not rely solely on the edge information. In contrast to previous works, we align

areal features that complement edge information. Specifically, the development of seman-

tic segmentation methods allows us to employ matching based on semantic segments. We

map terrain features, such as forests, bodies of water, and glaciers from a geospatial (GIS)

database to a digital elevation model (DEM) and render into a panorama image contain-

ing semantic segments (Fig. 6.1(a)). From the query image, we extract semantic segments

(Fig. 6.1(b)) using recent semantic segmentation methods [106, 120, 36]. We match the
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Figure 6.1: Overview of the proposed method. (a) Synthetic semantic segments are ren-

dered using terrain model and geospatial database. (b) Query image is segmented via se-

mantic segmentation method. (c) Semantic segments from query image are aligned with

synthetic semantic segments and camera orientation (α, β, γ) is recovered.

query and the panorama (Fig. 6.1(c)) to estimate camera orientation. We estimate a corre-

spondence between the query image and the synthetic panorama based on the similarity

of the same class’s semantic segments. Intuitively, spatial relationships between different

semantic classes disambiguate in-plane rotations. To exploit these spatial relationships, we

introduce confidence fusion (CF), which prefers camera orientations with the highest con-

fidence agreement across all semantic classes. The benefit of the proposed technique is the

possibility to naturally fuse confidence estimates of different modalities, such as different

segment classes and edge maps.

Contributions. We propose a novel method for aligning a single image to a digital terrain

model. To our knowledge, we are the first to consider a joint combination of semantic

segments and edges to match an image with a rendered panorama of the terrain. We

train semantic segmentation on a synthetically rendered dataset and show that synthetic

data is needed to achieve reasonable accuracies when used for orientation estimation in a

mountainous environment. To enable matching of several semantic segment classes and

an edge map with the rendered panorama, we propose a novel confidence fusion (CF)

method that fuses individual beliefs to achieve better accuracy. Our experiments show

that the proposed method outperforms state of the art on publicly available test sets—

GeoPose3K [A1], Venturi Mountain dataset [142], and CH1 dataset [163].
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6.1 Related Work

Works dealing with natural scenes have shown that the horizon line is a distinctive and

relatively stable feature for camera orientation and position estimation [69, 200, 37, 163].

However, relying solely on the horizon line can be misleading, since there are many situ-

ations when the horizon line is ill-defined, non-descriptive, or completely invisible:

1. View from an elevated location to a flat landscape implies a flat horizon line.

2. Foreground objects, like trees, often contaminate the horizon line.

3. The horizon line is not visible due to camera pitch (images without the sky).

Recent works dealing with camera orientation estimation with a fixed position for

outdoor and mountainous scenes are based on a query image’s alignment with a terrain

model [22, 15, 145, 12, 142]. Instead of using a single horizon line, Baboud et al. [15] and

Porzi et al. [142] used edge maps to align a query image to a synthetically rendered ter-

rain silhouettes. In this chapter we show that it is beneficial to combine edge features

with other modalities, such as low-frequency semantic segments, which complement the

high-frequency edges.

Most closely to our semantic segmentation-based approach presented in this chapter,

Baatz et al. [12] used semantic segments for the image alignment. They extracted binary de-

scriptors capturing the spatial relationships between different classes of segments. How-

ever, the descriptors encode local changes between neighboring segments, meaning that

this technique exploits only segment boundaries. The boundaries are usually inaccurate

for real-world cases, rendering the method unstable. We address this issue by proposing

a method for areal matching of semantic segments. The main idea is that segment areas

should match well, unlike potentially imprecise segment boundaries.

Several approaches for camera position and orientation estimation based on semantic

segments were also developed for urban environments. Senlet et al. [172] and Castaldo

et al. [32] used semantic segments for matching an input image with a GIS map to estimate

a camera position, but their approach cannot recover the camera orientation precisely.

Armagan et al. [9] proposed an iterative approach to fine-tune camera position and ori-

entation based on semantic segmentation with known camera position and orientation

estimate. In contrast to their work, our approach is more general as it does not need any

initial camera orientation estimate.
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6.2 Orientation Estimation Using Semantic Cues

We aim to estimate camera orientation using a digital terrain model for a given query

image. Similarly to Baboud et al. [15] the basic idea is to project the query image onto the

sphere and align it with the spherical panorama rendered from the model. The correct

alignment then defines the searched camera orientation. We assume that the position Ĉ =

(φ, λ, h) parametrized by latitude, longitude, and elevation, and the horizontal field-of-

view θ of the query image I are known. The goal is to find a rotation R̂ ∈ SO(3) of the

camera frame relative to the frame of the digital terrain. We render the terrain model with

synthetic semantic segments as a spherical 360°×180° panorama (see Fig. 6.1(a)), with Ĉ as

the unit sphere center. A projective query image containing estimated semantic segments

is projected on the unit sphere as well. The query image is scaled to cover the part of the

unit sphere corresponding to its field-of-view by a factor s = θ
2πIw

, where Iw is the query

image’s width.

6.2.1 Cross-correlation as a Measure of Confidence

To estimate the camera orientation R̂ = (α, β, γ), we compute a matching confidence c(α, β, γ)

over all possible combinations of rotations α ∈ ⟨0°, 360°⟩, β ∈ ⟨0°, 180°⟩, γ ∈ ⟨0°, 360°⟩ (see

Fig. 6.1(a) for respective rotations). We also define a confidence ck > 0 for semantic seg-

ment class k and later fuse all confidences into the total confidence c. The combination

of parameters maximizing the total confidence defines the camera orientation estimate

R̂ = arg maxα,β,γ(c(α, β, γ)).

We propose the confidence ck to be a cross-correlation of the query and panorama on

SO(3), containing semantic segments of class k. Similarly to Baboud et al. [15], we exploit

the cross-correlation theorem for efficient computation of cross-correlation in the Fourier

domain. Cross-correlation of two real-valued functions f and p on SO(3) is similar to

ordinary 2D cross-correlation, but we are integrating over a sphere (S 2):

∀R̂ ∈ SO(3) : f ? p(R̂) =

∫︁
S 2

f (ω)p(R̂−1ω)dω. (6.1)

For each class k, we construct two spherical functions pk (query segments) and fk (syn-

thetic segments) as follows. To obtain strictly positive confidence, we need the spherical

functions to be strictly positive as well. We sample both query segments and synthetic

segments of class k on a unit sphere, where we assign one to pixels containing the segment

of class k and ε → 0+ to pixels that contain other segment classes, where ε is a small posi-

tive constant. However, calculating cross-correlation for a single segment class k using pk

and fk may not be sufficient for correct alignment (see the top line in Fig. 6.2). In this case,

the cross-correlation is maximized for all rotations, where pk(R̂) ≤ fk. This way, segments
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Figure 6.2: Illustration of the cross-correlation behavior for two functions pk > 0 and fk > 0,

which are, without loss of generality, defined on R2 for this example. White color de-

notes ε → 0+, darker color denotes a higher value. In the first line, the cross-correlation is

maximized even for translations, where surroundings of the pattern are not in agreement

with the signal. The inverted pattern and signal on the second line create a complemen-

tary cross-correlation map. When the two cross-correlations are combined, the maximum

value is correctly in place where both the pattern and its surroundings overlap the largest

areas.

from the query image tend to “hide” inside larger synthetic segments of the panorama

image. In other words, there are large areas with the maximum cross-correlation value. To

alleviate this problem, we divide the computation of class confidence ck into two steps, as

illustrated in Fig. 6.2. The first step is the cross-correlation ∀R̂ ∈ SO(3) : fk ? pk(R̂), given

the class k. The second step is a complementary cross-correlation with inverted spherical

functions f ′k = 1 + ε − fk, p′k = 1 + ε − pk. The combined cross-correlation, which equals to

class confidence ck across all rotations R̂ ∈ SO(3) is then calculated as:

∀R̂ ∈ SO(3) : ck(R̂) = ( fk ? pk(R̂))( f ′k ? pk(R̂)′). (6.2)

Intuitively, the first cross-correlation maximizes rotations where query segments over-

lap the synthetic segments, while the second cross-correlation maximizes rotations where

the surroundings of query segments overlap the surroundings of the synthetic segments.

By multiplying the two cross-correlation results, we robustly enforce rotations where the

overlap of both the segment area and its surroundings is maximized.

Please note that the two-step cross-correlation is necessary and cannot be replaced by

+1 and -1 encoding for the segment and the background, respectively. Consider the situ-

ation in Fig. 6.3, where we compare our two-step correlation to a single-step version. The

leftmost pixel matches background, the second pixel matches the foreground, and two

pixels on the right do not match (background on the foreground). Since two of four pixels
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legend:

fk

pk

1 + ε − fk

pk

fk

pk

Figure 6.3: Two-pass cross-correlation is not equivalent to a single-pass using negative val-

ues. Our two-pass approach calculates number of correct pixels and disregards the wrong

pixels if both the foreground and the background are matched. In contrast, the single-

pass penalizes the wrong pixels, which leads to result incompatible with our definition of

confidence.

match the foreground or background, we expect the confidence to be greater than ε. Our

two-step approach maximizes the correct overlap of segments (and returns 1) while the

single-step method is biased by non-matching regions (and returns 0).

6.2.2 Confidence Fusion

So far, we have considered the confidence of a single segment class. A single segment class

k is usually not sufficiently descriptive to constrain the correct rotation since the semantic

segment areas are often similar for many rotations. Mutual spatial relationships between

different segment classes help to disambiguate the correct rotation. While a single segment

class does not disambiguate the roll angle (see Fig. 6.4), the combination of two segments

gives a single precise maximum, located at the desired rotation (see Fig. 6.4, combined c).

With the assumption that the segments are correctly detected in the query image, and

no segments are missing from the rendered panorama, the highest confidence across all

fused classes would determine the correct rotation. To calculate it, we would simply cal-

culate the product of confidences across all classes:

∀R̂ ∈ SO(3) : c(R̂) =
∏︁

k

(ck(R̂)). (6.3)

However, the assumption of correct detection and complete model cannot be fully satisfied

in real-world applications. In this case, the wrongly detected segment could cause drift

from the correct solution. To compensate mistakes in the detection or missing parts in

the model, we propose to compute the Confidence Fusion (CF framework) as a weighted
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Figure 6.4: Synthetic experiment illustrating the confidence fusion. Cross-correlations are

visualized as a heatmap over orientations (α, β, γ), which form a cube. The query image

contains two circles, each circle represents one semantic segment (classes of the segments

are different). In this case, cross-correlation of a single segment class does not disam-

biguate the roll angle (γ). On contrary, the fusion of confidence maps maximizes at a

single orientation, as visualized in the rightmost cube.

geometric mean:

∀R̂ ∈ SO(3) : c(R̂) =
∏︁

k

(ck(R̂))wk . (6.4)

The importance of the segment class k can now be tuned by the weight wk ∈ ⟨0, 1⟩: the

weight should be small for wrongly detected segment classes and high for classes that are

detected and rendered correctly.

6.2.3 Weight Estimation for Confidence Fusion

We can estimate the weights in many ways. We tried to regress them directly based on

the GeoPose3K training set, but this approach has not proved to be robust across different

datasets. We can borrow the robust estimation of the weights for a fusion of multiple den-

sities from Ajgl and Šimandl [6] (Theorem 2), where the authors derive the computation

of weights in the sense of minimization of maximal Kullback-Leibler divergence between

the fused confidence c and the class confidences ck. The method needs to be used carefully

in order to keep the computational complexity reasonably low and to allow suppression

of wrongly detected class confidences. In theory, we want to estimate the weights wk ∈ w:

w = arg max
ωk:0≤ωk≤1,∑︀

k ωk=1

−lnk(ω), (6.5)
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where

k(ω) =

∫︁
SO(3)

∏︁
k

(ck(R̂))ωk dR̂. (6.6)

The R̂ ∈ SO(3) defines a rotation on 3D rotation group, wk ∈ w is the estimated weight of

a segment class k, and ωk ∈ ω represents the space of all possible weights for a segment

class k. This method finds the “best average” between the segment class confidences.

However, according to our experience, this one-shot fusion does not assign low values to

wrongly detected class confidences, and its computational complexity rises exponentially

with the number of classes. According to our observation, segment classes with smaller

segment areas tend to be imprecise more often than classes with larger segment areas.

The matched area of a segment class k directly corresponds to the integral 𝒮k of the class

confidence ck over all rotations R̂: 𝒮k =
∫︀

SO(3) ck(R̂)dR̂. If the segment class k matches a

smaller area, 𝒮k is smaller; if the segment class k matches a larger area, 𝒮k is larger. We use

this property to suppress the confidences with lower integral and to reduce computational

complexity. We fuse the confidences with the iterative pairwise fusion. This approach

provides the best results in our application, but in general, it is suboptimal in terms of

Kullback-Leibler divergence [6]. We sort the class confidences ck according to their integral

𝒮k starting with the lowest one. We begin the fusion with c(R̂) being a uniform distribution

over all possible rotations, and calculate updated c(R̂) by fusing it with class confidence ck

one at a time:

∀R̂ ∈ SO(3) : c(R̂) =
1

k(wk)
ck(R̂)wk c(R̂)1−wk , (6.7)

k(ω) =

∫︁
SO(3)

1
k(ω)

ck(R̂)ωc(R̂)1−ωdR̂, (6.8)

where the weight wk for current segment k is calculated as

wk = arg min
ω

k(ω). (6.9)

We repeat this process for each class’s confidence ck. The impact of class confidence ck is

lower for confidences fused earlier, thus reducing the classes’ impact with smaller segment

area.

However, we can avoid the expensive calculation of weights altogether. We observed

that class confidences ck are potentially incorrect for segments covering small areas, as

small segments may be wrongly detected or occluded. We solved this problem by set-

ting the weights empirically. If the area covered by the segment class k in the query or

panorama image is lower than a threshold t1, we simply turn off the segment class k by

setting its value wk = 0. For the remaining segment classes, we set wk = 1. This simple ap-

1We use t = 0.1% of the total image area (found experimentally).
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Figure 6.5: Geographical distribution of GeoPose3K train, validation and test sets. Map

source credit: Google Maps.

proach significantly outperforms non-weighted fusion (eq. 6.3) and provides comparable

results to the approach of Ajgl and Šimandl [6] in our application.

Semantic segments and edge features. Our Confidence Fusion framework (CF, eq. 6.4)

can use any nonnegative result based on spherical cross-correlation; it is not limited to se-

mantic segments only. Most methods employ edge features to match a real image with a

terrain model [15, 14, 163, 200, 37, 53]. Our goal is to show that it is highly beneficial to

combine edge features with other cues, such as the semantic segments. We use edge detec-

tor trained to estimate silhouette edges similar to the rendered ones [A1] (see Sec. 4.2.2). To

calculate confidence based on edge features, we use a cross-correlation metric developed

exclusively for edges, VCC-2011 [15], for which we replace negative values with ε → 0+.

6.2.4 Semantic Segmentation

To match a query image with rendered semantic segments, we need a segmentation method

to estimate semantic segments that are visually similar to the rendered counterparts. To

achieve this, we fine-tune several state-of-the-art semantic segmentation models. Please

note that the fine-tuning using a synthetic dataset is a crucial step in the whole CF frame-

work, and it is one of the contributions of this work.

We consider two state-of-the-art CNN architectures: FCN [120] and Deeplab-v2-VGG-

16 [36], and one non-CNN method which we use as a reference: Automatic Labeling En-

vironment (ALE) [106]. We start with SiftFlow and Pascal-Context models for FCN8s, and

similarly, for training DeepLab-v2, we use VGG-16 as an initial model. We fine-tuned all

models on the GeoPose3K dataset [A1], which contains synthetic semantic labels for more
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than 3,000 images registered into the 3D terrain model. We split GeoPose3K into the train

(1927 images), validation (472 images), and test sets (516 images), so that these three sets

are geographically disjoint, see Fig. 6.5. This way, we ensure there are no similar images

across the train, validation, and test sets. We optimize the geographical distribution of

images, so the sets contain a similar amount of semantic segments per class (measured in

pixels). The definition of our train/validation/test splits is available on our project web-

page2.

The GeoPose3K dataset contains, in total, 14 classes for semantic segmentation, in-

cluding the sky. Unfortunately, many segment classes, such as sinkhole or bare-rock are

available only for a limited subset of images. Segments of these classes often span a small

area of the image, which reduces their descriptivity. Motivated by this observation, we se-

lected the following subset of semantic segment classes, which cover a sufficient number

of images: mountain, sky, forest, water bodies, and glacier. To fine-tune these classes using

FCN8s and DeepLab-v2, we replaced the last classification neural network layer with a

layer containing our own five classes.

6.3 Experiments

In this section, we provide an in-depth evaluation of the proposed camera orientation

estimation. We use three publicly available data sets—GeoPose3K test set (516 test pho-

tos), CH1 dataset (203 photos) [163], and Venturi Mountain Dataset [142] (12 videos). The

original CH1 dataset [163] does not contain camera orientation ground truths. However,

the GeoPose3K contains images from the CH1 dataset and provides camera orientation

ground truth [A1] (see Sec. 4.2). We held out the GeoPose3K, the CH1 test set, and the

Venturi dataset from semantic segmentation training and used it only for testing. The pre-

sented evaluation is the most extensive analysis of camera orientation estimation methods

in a natural environment without device sensors (compass, accelerometer, gyroscope). We

compare our work directly with Baboud et al. [15], Porzi et al. [142], and our implementa-

tion of Saurer et al. [163]. Since Baatz et al. [12] and previous methods [146, 133, 145] use a

limited number of private images for their evaluation, we could not directy compare our

approach with these methods.

Evaluation metric. To compare our approach with the recent work of Porzi et al. [142],

we use the orientation error measure as defined in Eq. 3.17 in Chapter 3. We calculate and

plot a cumulative distribution of the orientation error, where fractions of images have the

orientation error equal to or lower than the given threshold. A random baseline illustrates

2http://cphoto.fit.vutbr.cz/semantic-orientation/
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Figure 6.6: Comparison of the performance

between the framework using iterative pair-

wise fusion based on KL divergence CF-KL-

opti (see Eq. 6.7), and our approximate solu-

tion based on empirically found weights CF.
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Figure 6.7: Performance of CF framework

with different segmentation methods. The

best—Deeplab with CRF (AUC: 0.71); other

methods scored similarly (AUC: 0.70).

what the probability of guessing an orientation is. For better clarity, we also give a measure

of Area Under Curve (AUC), where AUC = 1 is, in theory, the best possible result.

6.3.1 Weight Estimation Assessment

First, we compare two approaches to finding weights for the Confidence Fusion frame-

work. In Fig. 6.6, we plot the results of semantic segment fusion CF-KL-opti using weights

found by iterative pairwise fusion based on KL divergence (see Eq. 6.7) measure as pro-

posed by Ajgl and Šimandl [6]. However, as this approach is relatively slow, we developed

an approximate solution described in Sec. 6.2.3, denoted as CF in Fig. 6.6. On the one hand,

both approaches give relatively similar results, and our approximation does not hurt the

performance much. On the other hand, our approximation is much faster, and we use it in

all the following experiments. Please note that Fig. 6.6 is a plot for the whole 180°search

space, making it difficult to discern tiny differences close to zero. In the following experi-

ments, we zoom-in to the range of [0°, 20°] to ease readability.

6.3.2 Evaluation of Semantic Segmentation Methods

We select a semantic segmentation method for our orientation estimation framework us-

ing standard semantic segmentation metrics, namely mean accuracy and mean Intersection

over Union (mIU). These metrics, shown in Tab. 6.1, illustrate that both Deeplab with and

without Conditional Random Fields (CRF), are the methods of choice. Since the metrics
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DeepLab-v2
VGG16

DeepLab-v2
VGG16 + CRF

FCN8s
SiftFlow

FCN8s
Pascal-Context

ALE Naive baseline

mACC 0.63 0.62 0.59 0.54 0.61 0.20

mIU 0.53 0.52 0.46 0.38 0.46 0.07

IU ACC IU ACC IU ACC IU ACC IU ACC IU ACC

mountain 0.60 0.78 0.60 0.79 0.56 0.77 0.44 0.60 0.49 0.60 0.00 0.00

sky 0.89 0.93 0.89 0.93 0.89 0.93 0.82 0.89 0.79 0.91 0.35 1.00

forest 0.38 0.53 0.37 0.52 0.34 0.48 0.32 0.57 0.33 0.56 0.00 0.00

water 0.44 0.55 0.44 0.54 0.31 0.51 0.17 0.43 0.30 0.47 0.00 0.00

glacier 0.36 0.37 0.31 0.32 0.21 0.24 0.14 0.19 0.40 0.49 0.00 0.00

Table 6.1: Results of semantic segmentation methods trained with GeoPose3K. Results are

measured on GeoPose3K test set; accuracy (ACC) and intersection over union (IU) are mea-

sured per class independently, mean pixel accuracy over all classes is denoted by mACC,

and mean intersection over union over all classes is denoted as mIU. Last column repre-

sents a naive segmentation into a single class (sky), which has the largest prior probability

in the GeoPose3K dataset.

are based on the ratio of correctly classified pixels, we expect that the best method based

on these metrics is also the best for our camera orientation estimation framework. We

verified this expectation by testing our orientation estimation framework with the seman-

tic segmentation methods listed in Tab. 6.1. We show the results of this experiment in

Fig. 6.7. Deeplab with CRF (Deeplab-seg-crf, AUC: 0.71) achieved the best result, but

other segmentation methods—Deeplab without CRF, FCN8s, and ALE scored almost the

same (AUC: 0.70). According to visual inspection (see Fig. 6.8), CNNs are slightly more

successful in ignoring objects not present in the digital terrain model. We use DeepLab

for all following experiments with our Confidence Fusion (CF) framework. In Fig. 6.8, we

may also notice visual differences between original and fine-tuned models. We can see

that the fine-tuned model Fig. 6.8(f) generates segmentations much more similar to the

synthetic render Fig. 6.8(b) compared to the initial model Fig. 6.8(e).

6.3.3 The Impact of Cross-correlation Resolution

For calculating cross-correlation in SO(3) using Fourier transform (FFT), we use publicly

available SOFT package [101]. The precision of the cross-correlation and computation

time and memory footprint are driven by two factors—the input resolution of the spheri-

cal functions and the cross-correlation output resolution. Higher input resolution implies

a more precise sampling of input spherical functions. The resolution of the output drives

sampling of the resulting cross-correlation. Please, note that lower input and output reso-

lutions do not restrict the search space to any particular orientation—we search a full 3D

rotation, no matter what resolutions are selected.
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(a) Query photo. (b) Synthetic GIS ground truth.

(c) Fine-tuned DeepLab-v2-VGG16 on Geo-

Pose3K, without CRF.

(d) Fine-tuned DeepLab-v2-VGG16 on Geo-

Pose3K, with CRF.

(e) Original SiftFlow FCN8s. (f) Fine-tuned SiftFlow FCN8s on GeoPose3K.

(g) ALE trained on GeoPose3K. (h) Original Pascal-Context

FCN8s.

(i) Fine-tuned Pascal-Context

FCN8s on GeoPose3K.

Figure 6.8: Illustration of mountain scene semantic segmentation using DeepLab-v2 based

on VGG-16 model, FCN8s, and ALE, before and after fine-tuning on the GeoPose3K

dataset. Photo credit: Allie Caulfield https://flic.kr/p/9VryJg.
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Figure 6.9: Comparison our CF framework

using semantic segments with edge-based

VCC-2011 [15] on high (solid curves) and

low (dashed curves) resolutions.
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Figure 6.10: Original semantic segments

were smoothed by gaussian blur using three

different kernel radii 10 px (b10), 15 px (b15)

and 20 px (b20).

In general, we expect that lower resolution (coarser sampling) of the functions would

decrease the method’s precision. Intuitively, coarser sampling might negatively affect

high-frequency functions more than low-frequency functions. Semantic segments encode

low-frequency information, while edge features encode mainly high frequencies. Accord-

ing to this observation, we expect that using lower input and output resolution affects

the precision of cross-correlation of semantic segments much less than cross-correlation of

edges.

To verify this hypothesis, we run an experiment to compare the effect of input and

output resolutions on the achieved accuracy (see Fig. 6.9). We consider two versions of

input and output resolution. The first version is a low resolution, with the input resolution

of 1024 samples and the output resolution of 128 samples (see dashed curves in Fig. 6.9).

The low resolution yields fast evaluation (about 1.5 seconds per cross-correlation), and

the orientation estimation of a single query lasts at most 30 seconds (depending on the

number of segment classes). However, the result confidence is stored in a cube of size

(128)3, yielding almost 3° per bin, which may increase the orientation error. The second

version is a high resolution one, where we set the input resolution to 4096 and the output

to 512 samples (see solid curves in Fig. 6.9).

The experiment confirmed our expectation that using a lower resolution for cross-

correlating semantic segments does not dramatically increase the orientation error (see

cyan solid, vs. cyan dashed curve in Fig. 6.9). A lower resolution extensively reduces the

time and memory footprint (from 45 seconds per cross-correlation to just 1.5 seconds, and

from 12GB of memory to just 247MB on high and low resolution, respectively). Com-
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pared to semantic segments, the edges contain higher frequencies, which are more af-

fected by subsampling. In the case of edge-based cross-correlation (VCC-2011 [15]), the

high-resolution variant brings a decent improvement in terms of accuracy over the low

resolution (see Fig. 6.9 red solid vs. red dashed curve). This result is in agreement with

our expectations as well. The relative indifference to subsampling is an advantage of using

segments over the edges.

6.3.4 Importance of Segment Boundaries

To ensure that our approach factually does not boil down to matching boundary edges of

semantic segments, we conducted an experiment in which we suppressed the importance

of segment boundaries by gaussian blur. We blurred the original query and synthetic

segments with three different kernel radii—10 px (0.43°), 15 px (0.65°) and 20 px (0.86°).

The blur removes the hard boundaries of semantic segments and reduces their impact.

Since segment areas’ boundaries tend to be imprecise, we expect that suppressing their

importance should not negatively affect the result. We show the achieved performance in

Fig. 6.10. We achieved the best performance using a non-blurred and 10 px kernel radius

(AUC: 0.70). For larger kernel radii the accuracy dropped only slightly, having AUC: 0.69

and 0.68 in the case of 15 px and 20 px radius, respectively. We see that the blur does not

affect the results significantly, which illustrates that potentially inaccurate segment bound-

aries are not very informative for camera orientation estimation using our CF method. The

main information resides in segment areas and rough shapes.

6.3.5 Are Edges and Semantic Areas Complementary?

The previous experiment suggests that segment areas encode the primary information,

unlike the segment boundaries. Intuitively, segment areas correspond to low-frequency

information, while edge features encode high frequencies. This property should allow

combining both types of features to increase orientation estimation accuracy. We calculate

two confidences: one using VCC-2011, and the second one using semantic segments. We

obtain the final result by fusion of both confidences with our CF framework. Since VCC-

2011 penalizes query and silhouette edge crossings, the result of VCC-2011 may contain

negative values. To use the VCC-2011 result in our CF framework, we clamp negative

values with ε → 0+ before fusion.

The following experiment confirmed our expectation that the combination of edges

and semantic segments improves the orientation estimation result. We used the Geo-

Pose3K test set to measure the orientation error of VCC-2011 [15] (Fig. 6.11—red curve,

AUC: 0.52). The cyan curve in Fig. 6.11 denotes the result obtained by our CF frame-
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Figure 6.11: Comparison of the edge-based

VCC-2011 [15], our CF framework using se-

mantic segments, and combination of both

approaches. We use our CF framework

to fuse semantic segments and edges (CF-

VCC-2011), which gives the best result.
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Figure 6.12: Our CF compared to HLoc [163]

on GeoPose3K test set. CF (blue) using au-

tomatic segmentation and HLoc using syn-

thetic sky segmentation (dashed) perform

similarly; HLoc using automatic sky seg-

mentation (green) performs worse.

work using semantic segments only—AUC: 0.70. We can see that our method using se-

mantic segments yields better performance than edge-based VCC-2011. Using our CF

framework, the combination of both (VCC-2011 and segments) scored the best perfor-

mance (Fig. 6.11—blue curve, AUC: 0.78). The difference between using edges and se-

mantic segments is 18%. Furthermore, the combined result brings an improvement of 26%

over the VCC-2011. We recorded similar results on the CH1 dataset [163], and the Ven-

turi Mountain dataset [142] see Fig. 6.14 and Tab. B.1, CF-VCC-2011 vs. VCC-2011 vs. CF.

We conclude that according to this experiment, the semantic and edge features are com-

plementary. Combining both approaches improves the camera orientation performance

significantly.

6.3.6 Comparison with State-of-the-art

This section presents a series of experiments showing that our CF framework produces

more accurate results than existing state-of-the-art methods. With the authors’ personal

advice, we have reimplemented a horizon line-based localization method (abbreviated as

HLoc3) by Saurer et al. [163] into the same DEM rendering pipeline as CF and evaluated its

ability to find correct camera orientation with known camera position. We used the best

dir&loc [163] scheme to calculate a heading estimate of a given query and a panorama

horizon line, followed by ICP, to obtain the full 3D camera rotation.

3The source code and experiment data are available at: http://cphoto.fit.vutbr.cz/semantic-orientation.
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Figure 6.13: Results on CH1 dataset. Our

CF framework using automatic segments +

edges has superior accuracy compared to

HLoc with original, manually refined hori-

zon line from CH1 dataset (HLoc-CH1).
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Figure 6.14: CH1 dataset: Comparison of

the edge-based VCC-2011, our CF frame-

work using semantic segments, and combi-

nation of both approaches. We use our CF

framework to fuse semantic segments and

edges together (CF-VCC-2011), which gives

the best result.

We report the results on the GeoPose3K test set (Fig. 6.12), CH1 dataset [14] (Fig. 6.13),

and Venturi Mountain dataset [142] (Tab. 6.2). First, we provide an upper bound of our

HLoc implementation. We measure results with horizon lines rendered from the DEM with

perspective projection (HLoc-synthetic). Second, we measure HLoc performance on queries

with automatically segmented sky class using Deeplab (HLoc-Deeplab). Third, on the CH1

dataset, we use queries from the original publication [163], segmented with the help of

the user (HLoc-CH1). According to our experiments, HLoc is quite sensitive to the quality

of the segmentation – HLoc-Deeplab provides poor results compared to the HLoc-synthetic

and HLoc-CH1. Our CF framework’s performance is similar to HLoc-synthetic and is higher

by a large margin compared to HLoc-CH1. Please note that our CF framework uses only

automatically detected segments and edges. Compared to the HLoc-Deeplab, it scored sig-

nificantly better on all three datasets. We conclude that the HLoc method depends on fine-

grained horizon line segmentation, and it is not suitable for fully automatic processing.

Our CF framework is much more robust to imprecisions in feature detection and achieves

significantly better results compared to HLoc for automatically detected segment classes.

We further compare our method with the Robust silhouette map matching metric

(m3D-2011) by Baboud et al. [15]. This non-linear metric penalizes crossings of query edges

with synthetic depth discontinuities. The metric is accurate; however, it needs a reason-

ably small subset of candidate rotations since its computation time is enormous (hours
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Resolution Method Avg. mean Avg. stddev F1 F2 F3 F4 F5 F6 J1 J2 J3 J4 J5 J6

low

CF-VCC-2011-m3D (ours) 5.93 21.82 1.82 3.50 30.26 4.15 13.92 4.02 3.51 1.20 1.31 1.20 5.93 2.41

VCC-2011-m3D 21.06 44.20 1.00 6.01 21.27 116.87 41.30 1.69 132.92 0.71 0.55 1.20 41.04 4.46

CF-VCC-2011 (ours) 34.19 41.75 6.67 5.00 100.11 132.06 51.42 39.95 7.41 6.75 23.87 8.85 55.39 19.01

high

CF-VCC-2011-m3D (ours) 1.92 10.62 2.57 3.68 1.06 1.57 2.68 0.61 4.54 1.26 0.50 1.18 5.24 0.47

VCC-2011-m3D 2.88 14.72 1.49 8.94 1.27 6.25 4.42 1.18 5.17 1.08 0.50 1.18 6.29 0.66

CF-VCC-2011 (ours) 12.42 32.44 0.93 0.67 85.68 1.09 21.18 2.45 1.85 0.93 8.32 1.42 41.65 0.75

- HLoc-synthetic 28.0 50.54 52.73 1.84 11.54 36.08 4.17 10.21 115.54 86.08 6.01 4.11 3.84 40.85

- HLoc-Deeplab 98.76 61.24 133.69 47.52 85.66 128.47 54.48 120.4 115.23 134.89 28.61 100.1 57.67 155.35

- RFNh − HOR [142] 1.23 1.24 - - - - - - - - - - - -

- SENSORS [142] 9.43 4.16 - - - - - - - - - - - -

Table 6.2: Mean orientation error (in degrees) of the proposed method and its variants on

Venturi Mountain dataset (video sequences F1 – F6, and J1 – J6). The last two rows refer to

the reference results obtained with the help of device inertial sensors by Porzi et al. [142].

per query on the whole SO(3)). One can look at this metric as a geometric verification step;

once the subset of candidate rotations is known, we can use this metric to verify and re-

rank the best candidates. Tab. 6.2 illustrates that our CF-VCC-2011 framework (segments +

edges) already outperforms more complex Robust silhouette map matching metric (VCC-

2011-m3D) on several Venturi sequences (F1, F2, F4, J1, and J2) on high resolution. On the

other hand, our method’s mean error is considerably higher than VCC-2011-m3D for the

sequences F3, F5, and J5. These sequences are sparsely populated with synthetic semantic

segment descriptions, which is attributed to the inaccuracy of the GIS database (Open-

StreetMap). Additionally, in these sequences, the horizon line is often straight, which

rapidly reduces its descriptivity.

However, when we use CF-VCC-2011 as an initial estimate (search space reduction)

for m3D-2011 [15], we improve the state-of-the-art result of m3D-2011, since it searches

through the smaller number of outlier candidates. Considerable improvement has been

achieved, especially at low resolution. The combination of m3D-2011 and our CF method

(CF-VCC-2011-m3D) achieves a mean error of 5.93°, which is smaller by more than 70%

compared to the original VCC-2011-m3D method (see Tab. 6.2, CF-VCC-2011-m3D vs.

VCC-2011-m3D). Such an improvement is an important result since the proposed method

is fast on low resolution (seconds per query). CF-VCC-2011-m3D achieved the most ac-

curate result (1.92°) at high resolution. The improvement over the original method VCC-

2011-m3D (2.88°) is 33%.

6.4 Chapter Summary

We proposed a novel method for camera orientation estimation in natural scenes based on

semantic segmentation cues. To extract semantic segments from the query image, we uti-

lized three state-of-the-art semantic segmentation methods and evaluated their suitability

for the orientation estimation task. We used an extensive synthetic dataset, GeoPose3K,

102



to train semantic segmentation methods to extract natural segments like forested areas,

water bodies, sky segments, or glaciers.

Our experiments indicate that the semantic segments’ boundaries are less informative

than their areas, therefore complementing the information stored in edge maps. Using

the proposed confidence-based fusion framework, we measured that semantic segments

are more informative than edges. However, as the edges add complementary information

to the estimation process, the combination of semantic segments and edges achieves the

state-of-the-art result in camera orientation estimation on natural scenes.
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Chapter 7

Matching Photographs with DEM Using Learned Cross-

domain Descriptors

Augmented reality (AR) systems rely on approximate knowledge of physical geometry

to facilitate the interaction of virtual objects with the physical scene, and tracking of the

camera pose in order to render the virtual content correctly. In practice, a suitable scene

approximation such as one or multiple planes, is tracked with the help of active depth

sensors, stereo cameras, or multiview geometry from monocular video (e.g., SLAM). All of

these approaches are limited in their operational range, due to constraints related to light

falloff for active illumination, and stereo baselines and camera parallax for multiview

methods.

In this chapter, we propose a solution for outdoor landscape-scale augmented reality ap-

plications by registering the user’s camera feed to large scale DEMs overlaid with a satel-

lite orthophoto texture, see Fig. 7.1. As there is significant appearance variation between

the DEM and the camera feed, we train a data-driven cross-domain feature descriptor that

allows us to perform efficient and accurate feature matching. Using this approach, we

can localize photos based on long-distance cues, allowing us to display large scale aug-

mented reality overlays such as altitude contour lines, map features (roads and trails), or

3D created content, such as educational geographic-focused features. We can also aug-

ment long-distance scene content in images with DEM derived features, such as semantic

segmentation labels, depth values, and normals.

Since modern mobile devices and many cameras come with built-in GPS, compass, and

accelerometer, we could attempt to compute alignment from this data. Unfortunately, all

of these sensors are subject to various sources of imprecision; e.g., the compass suffers from

magnetic variation (irregularities of the terrestrial magnetic field) as well as deviation (un-

predictable irregularities caused by deposits of ferrous minerals, or even by random small

metal objects around the sensor itself). This means that while the computed alignment

is usually close enough for rough localization, the accumulated error over geographical

distances results in visible mismatches in places such as the horizon line.
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c)Photograph DEM Augmented photograph

Figure 7.1: Our method matches a query photograph to a rendered digital elevation model

(DEM). For clarity, we visualize only four matches (dashed orange). The matches pro-

duced by our system can then be used for localization, which is a key component for aug-

mented reality applications. In the right image (zoomed-in for clarity), we render countour

lines (white), gravel roads (red), and trails (black) using the estimated camera pose.

The key insight of our approach is that we can take advantage of a robust and read-

ily available source of data, with near-global coverage, that is DEM models, in order to

compute camera location using reliable, 3D feature matching based methods. However,

registering photographs to DEMs is challenging, as both domains are substantially differ-

ent. For example, even high-quality DEMs tend to have resolution too rough to capture

local high-frequency features like mountain peaks, leading to horizon mismatches. Addi-

tionally, photographs have (often) unknown camera intrinsics such as focal length, exhibit

seasonal and weather variations, foreground occluders like trees or people, and objects

not present in the DEM itself, like buildings.

Our method works by learning a data-driven cross-domain feature embedding. We

first use structure from motion (SfM) to reconstruct a robust 3D model from internet pho-

tographs, aligning it to a known terrain model. For reconstruction, we use our novel ap-

proach based on a direct matching of photographs with images rendered from the terrain

model described in Section 5.3. We then render views at similar poses as photographs,

which lets us extract cross-domain patches in correspondence, which we use as supervi-

sion for training. No 3D reconstruction is needed at test time, and features from the query

image can be matched directly to renderings of the DEM.

Registration to DEMs only makes sense for images that observe a significant amount of

content farther away than ca 100 meters. For this reason, we focus on mountainous regions,

where distant terrain is often visible. While buildings would also provide a reasonable

source for registration, we do not test on buildings, as building geometry is diverse, and

3D data and textures for urban areas are not freely available.

Our method is efficient and runs on a mobile device. As a demonstration, we de-

veloped a mobile application that performs large-scale visual localization to landscape

features locally on a recent iPhone. We show that our approach can be used to refine

localization when embedded device sensors are inaccurate.
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Contributions. We propose a novel data-driven cross-domain embedding technique suit-

able for computing similarity between patches from photographs and a textured terrain

model. To train our cross-domain descriptor based on a CNN, we propose a novel weakly

supervised training scheme for positive/negative patch generation from the SfM recon-

struction aligned with a DEM. We show that our novel embedding can be used for match-

ing photographs to the terrain model to estimate respective camera position and orien-

tation.1 We also implement our system on the iPhone, showing that mobile large scale

localization is possible on-device.

7.1 Related Work

7.1.1 Local descriptors

Most classical solutions to correspondence search involve using descriptors computed

from local windows around feature points. These descriptors can be either hand-designed,

e.g., SIFT [121], SURF [20], ORB [155], or learned end-to-end [221, 126, 192, 60, 48]. The key

difference between our method and these is that we train our method in a cross-domain

scenario, in which we match two images with different appearance, e.g., the photograph

and the outdoor image rendered using digital elevation model. While our method is also

a local descriptor, it is designed to deal with additional appearance and geometry differ-

ences, which is not the case for these methods.

Of these, HardNet++ [126] and D2Net [48] have been trained on outdoor images (Hard-

Net on Brown dataset and HPatches, D2Net on Megadepth [115] which contains 3D recon-

structed models in the European Alps and Yosemite). Since it is possible that a powerful

enough single-domain method might be able to bridge the domain gap (as demonstrated

for D2Net and sketches), and these two methods are compatible with our use-case, we

chose them as baselines to compare with our method.

7.1.2 Cross-domain matching

A large body of research work has been devoted to alignment of multi-sensor images [205,

82, 92] and to modality-invariant descriptors [176, 35, 74, 174, 105]. These efforts often fo-

cus on optical image alignment with e.g., its infra-red counterpart. However, our scenario

is much more challenging, because we are matching an image with a rendered DEM where

the change in appearance is considerable.

With the advent of deep-learning, several CNN-based works on matching multimodal

patches emerged and outperformed previous multimodal descriptors [2, 3, 49, 61, 19].

1Code & data are available at: http://cphoto.fit.vutbr.cz/LandscapeAR
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However, cross-spectral approaches [2, 3, 49, 19] need to account only for rapid visual

appearance change, compared to our scenario, which needs to cover also the differences

in scene geometry, caused by limited DEM resolution. On the other hand, RGB to depth

matching approaches, such as Georgakis et al. [61] lack the texture information and need

to focus only on geometry, which is not our case.

7.2 Camera Pose Estimation Using Cross-domain Descriptor

Our goal is to estimate the camera pose of a single query image with respect to the syn-

thetic globe, which can be cast as a standard Perspective-n-Point problem [55] given ac-

curate correspondences. The main challenge is to establish correspondences between key-

points in the query photograph and a rendered synthetic frame, two domains very differ-

ent appearance-wise. We bridge this appearance gap by training an embedding function

that projects local neighborhoods of keypoints from either domain into a unified descrip-

tor space. Two cross-domain keypoints are assumed to correspond if the L2 distance of

their descriptors is mutually closest.

7.2.1 Weakly Supervised Cross-domain Patch Sampling

While the rendered image is assumed to contain a similar view as the photograph, it is

not exact. Therefore, our embedding function should be robust to slight geometric de-

formations caused by viewpoint change, weather and seasonal changes, and different il-

lumination. Note that these phenomena do not occur only in the photograph, but also

in the orthophoto textures. Previous work on wide baseline stereo matching, patch ver-

ification, and instance retrieval illustrate that these properties could be learned directly

from data [7, 126, 153, 48]. For efficient training process, an automatic selection of cor-

responding (positive) and negative examples is crucial. In contrast with other methods,

which rely on the reconstructed 3D points [126, 48] dependent on a keypoint detector, we

instead propose a weakly supervised patch sampling method completely independent of

a preexisting keypoint detector to avoid any bias that might incur. Being independent on a

keypoint detector is an important and desirable property for our cross-domain approach,

since (I) the accuracy of existing keypoint detectors in the cross-domain matching task is

unknown, (II) our embedding function may be used with any keypoint detector in the

future without the need for re-training.
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Figure 7.2: A method for sampling corresponding pairs of cross-domain patches. 1. For
a pair of images Ir1 (render), Ip2 (photograph), 2D image points are un-projected into 3D
using the rendered depth maps D1, D2, and the ground truth camera poses P1, P2, respec-
tively. 2. Only points visible from both views are kept. 3. A randomly selected subset of
3D points is used to form patch centers, and corresponding patches are extracted. Image

credit: John Bohlmeyer (https://flic.kr/p/gm3xwP).

Each photograph in our dataset contains ground truth camera pose P = K[R|t] trans-

forming the synthetic world coordinates into the camera space. For each photograph Ip1,

we render a synthetic image Ir1 and a depth map D1, see Fig. 7.2. We pick all pairs of

cameras with at least 30 corresponding 3D points in the SfM reconstruction. For each pair,

the camera pose and depth map are used to un-project all image pixels into a dense 3D

model (Fig. 7.2-1.). Next, for each domain, we keep only the 3D points visible in both

views (Fig. 7.2-2.). Finally, we uniformly sample N random correspondences (Fig. 7.2-3.),

each defining the center of a local image patch.

7.2.2 Architecture

To account for the appearance gap between our domains, we employ a branched network

with one branch for each of the input domains followed by a shared trunk. A description

of the architecture is shown in Fig. 7.3. The proposed architecture is fully convolutional

and has a receptive field of 63 px. To get a single descriptor, we use an input patch of

size 64 × 64 px. We use neither pooling nor batch normalization layers. Similarly to Hard-

Net [126], we normalize each input patch by subtracting its mean and dividing by its

standard deviation. Thanks to the structure of our task formulation and the simplicity of

the chosen architecture, our network is quite compact and contains only 358,976 trainable

parameters, compared to D2Net [48], which contains more than 7.6 million of trainable pa-

rameters. The small size allows our architecture to be easily deployed to a mobile device

like the iPhone, enabling a broader scale of applications.
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Figure 7.3: Architecture of our two branch network with partially shared weights for cross-
domain descriptor extraction. Photo and render branches contain four 3x3 2D convolu-
tions with stride 2; weights are not shared between branches. The last two convolutions
form a trunk of the network with shared weights to embed both domains into a single
space. Output is 128-d descriptor. Either one or the other branch is used, each branch is
specific for its own domain. Image credit: John Bohlmeyer (https://flic.kr/p/gm3xwP).

7.2.3 Training

We use a standard triplet loss function adjusted to our cross-domain scenario:

L(ah, pr, nr) =
∑︁

i

max(||ahi − p
r
i ||2 − ||a

h
i − n

r
i ||2 + α, 0)), (7.1)

where a, p, n denotes a mini-batch of anchor, positive, and negative descriptors, respec-

tively. The superscript denotes the modality from which the descriptor was calculated:

photograph (h) calculated using the photograph branch of the network, or render (r) cal-

culated using the render branch of the network. The α denotes the margin.

Previous work on descriptor learning using the triplet loss function [126] illustrated the

importance of sampling strategy for selecting negative examples. In this solution, for each

patch in a mini-batch, we know its 3D coordinate in an euclidean world space x(p j) ∈ R3.

Given a mini-batch of anchor and positive descriptors ahi , p
r
i , i ∈ [0,N] where N is a batch

size, we first select subset of possible negatives nr from all positive samples within a current

batch, which are farther than m meters from the anchor:

nr =
{︁
p

r
j

⃒⃒⃒⃒ [︁
||x(pr

j) − x(ahi )||2
]︁
> m

}︁
. (7.2)

In HardNet [126], for each positive only a hardest negative from the subset of possible

negatives should be selected. However, we found that this strategy led the embedding

function to collapse into a singular point. Therefore, we propose an adaptive variant of

hard negative sampling inspired by a prior off-line mining strategy [73], modified to op-

erate on-line.
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We introduce a curriculum to increase the difficulty of the randomly sampled nega-

tives during training. In classic hard negative mining, for each anchor descriptor ai we

randomly choose a possible negative descriptor n j as a negative example n j, if and only if

the triplet loss criterion is violated:

||ai − n j||2 < ||ai − pi||2 + α, (7.3)

where we denote ai = ahi as an anchor descriptor calculated from a photo patch using

the photo encoder, and similarly for n j = nr
j, and pi = pr

i encoded by the render encoder.

We build on this, and for each anchor descriptor ai, randomly choose a possible negative

descriptor n j as a negative example n j iff:

||ai − n j||2 < d+ − (d+ − (nmin + ε)) · λ, (7.4)

where λ is a parameter in [0, 1] defining the difficulty of the negative mining, ε → 0+ is a

small positive constant, d+ is the distance between anchor and positive plus margin:

d+ = ||ai − pi||2 + α, (7.5)

and nmin is the distance between the anchor and the hardest negative:

nmin = min
j
||ai − n j||2. (7.6)

Intuitively, when λ = 0, Eq. 7.4 is reduced to random hard negative sampling defined in

Eq. 7.3, and when λ = 1, the Eq. 7.4 is forced to select n j as a negative only if it is equal to

the hardest negative nmin, reducing the sampling method to HardNet [126].

The parameter λ allows us to select harder negatives throughout the training. We start

training with the λ = 0 and increase λ by 0.05 with each 10,000 steps up to a maximum

hardness. Once maximum hardness is reached, we keep it constant until the end of the

training. We experimentally found that a maximum of λ = 0.23 worked well for our data,

with the margin set to α = 0.2, and minimum distance in 3D was set to m = 50 m. We

used minibatch size of 300 patches, learning rate 10−5, and ADAM optimizer. To prevent

overfitting we used early stopping using validation set; the network was trained for 21

epochs using 1.2 million training steps.

So far, we defined our loss function to be a cross-domain triplet loss, having an an-

chor as a photograph, and the positive and negative patches as renders. However, this loss

function optimizes only the distance between the photograph and render descriptors. As a

result, we use a variant with auxiliary loss functions optimizing also the distances between

photo-photo and render-render descriptors:

Laux = L(ah, pr, nr) + L(ah, ph, nh) + L(ar, pr, nr). (7.7)

As we illustrate by our experiments, this variant performs the best in the cross-domain

matching scenario.
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7.2.4 Pose Estimation

We illustrate the performance of our descriptor on a camera pose estimation task from a

single query image. For each query image, we render a fan of 12 images with field-of-

view FOV=60° rotated by 30° around the vertical axis, similarly to Fig. 5.3-2. The input

photograph is scaled by a scale factor s proportional to its FOV θ: s = (θ ·M)/(π · Iw), where

M is the maximum resolution corresponding to FOV=180° and Iw is the width of the image.

We use the SIFT keypoint detector (although any detector could be used), take a 64× 64 px

patch around each keypoint, and calculate a descriptor using our method.

We start by finding top-3 candidates between images of the rendered fan. For this pur-

pose, we use a simple voting strategy: for each rendered image we calculate the number

of mutual nearest neighbor matches with the input photograph. We use top-3 candidates,

since the photograph is unlikely to span over more than three consecutive renders, cover-

ing a FOV of 120°. For each top candidate, we un-project the 2D points from the rendered

image to 3D using rendered camera parameters and a depth map; then we compute the

full camera pose of the photograph with respect to the 3D coordinates using OpenCV im-

plementation of the EPnP [110] algorithm with RANSAC. From the three output camera

poses, we select the best pose, which minimizes the reprojection error while having a rea-

sonable number of inliers; if any candidate poses have more than N = 60 inliers, we select

the one with the lowest reprojection error. If none are found, we lower the threshold N

and check for the best pose in a new iteration. If there is no candidate pose with at least

N = 20 inliers, we end the algorithm as unsuccessful.

Finally, we reproject all the matched 3D points—not only inliers—into the camera

plane using the best pose, and select those within the frame. We match the 2D image

keypoints with the selected 3D points and calculate the refined pose using EPnP inside a

RANSAC loop.

7.3 Experiments

In this section, we introduce the experiments based on our pose estimation pipeline utiliz-

ing our cross-domain descriptor to compute the camera pose relative to the terrain model.

We present majority of the results as cumulative error plots, where we count the fraction of

images localized below the distance or rotation error threshold; for the detailed descrip-

tion of the evaluation protocol, see Sec. 3.2.4. An ideal system is located at the top-left

corner, where all the images are localized with zero distance and rotation errors. Through-

out the experiments section, we denote our architecture and its variants trained on our

training dataset as Ours-*. In addition, we report results for a larger single-branch archi-

tecture based on VGG-16 fine-tuned on our data (denoted as VGG-16-D2-FT). Similarly
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to D2Net, we cut the VGG-16 at conv 4-3, load the D2Net weights, and add two more con-

volutional layers to subsample the result descriptor to 128 dimensions. The newly added

layers as well as the conv 4-3 were fine-tuned using our training method and data.

We compare our methods with state-of-the-art deep local descriptors or matchers:

HardNet++ [126], D2Net [48], and NCNet [153], which we use with original weights. Ini-

tially, we tried to train the HardNet and D2Net methods on our training dataset using

their original training algorithms, but the results did not exhibit any improvements. We

did not try to train the NCNet, since this method outputs directly matches and consumes

many computational resources, which is undesirable with our target applications capable

of running on a mobile device.

7.3.1 Test Datasets

To evaluate our method in a cross-domain scenario, we use the publicly available dataset

GeoPose3K [A1] spanning an area of the European Alps. We used the standard publicly

available test split of 516 images [A3]. We note that we were very careful while construct-

ing our training dataset not to overlap with the test area of the GeoPose3K dataset. To illus-

trate that our method generalizes over the borders of the European Alps, on which it was

trained, we also introduce three more test sets: Nepal (244 images), Andes Huascaran (126

images), and Yosemite (644 images). We constructed the Nepal and Yosemite datasets using

SfM reconstruction using SIFT keypoints aligned to the terrain model with the iterative

closest points algorithm described in Sec 5.2. The Huascaran dataset has been constructed

using the direct cross-domain reconstruction algorithm described in Sec. 5.3. Please note

that this particular dataset may therefore be biased towards D2Net [48] matchable points,

while Nepal and Yosemite datasets might be biased towards SIFT matchable points. Unlike

the training images, camera poses in the test sets were manually inspected, and outliers

were removed.

7.3.2 Ablation Studies

Best Pose and Refined Pose. We study the behavior of our cross-domain pose estimation

approach on the GeoPose3K dataset, on which we evaluate the best pose (solid) and the

refined pose (dashed) for three different embedding algorithms, as illustrated in Fig. 7.4. In

the left plot, we can see that the refined pose improves over the best pose for both HardNet++

and our method for well-registered images (up to distance error around 300 m), whereas

it decreases result quality with D2Net. We hypothesize that this is because in the pose

refinement step, the descriptor needs to disambiguate between more distractors compared

to the case of the best pose, where a single photograph is matched with a single rendered
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Figure 7.4: Comparison of the best pose (bp) and the refined pose (rp) using different de-

scriptors on GeoPose3K using cross-domain matches between the query photograph and

synthetically rendered panorama. Left: translation error, right: rotation error.

Position error [m] Rotation error [°]

Method 100 300 500 700 900 1 3 5 7 9

Cumulative fraction of photographs

Ours-RSH 0.29 0.53 0.61 0.65 0.67 0.34 0.56 0.60 0.63 0.64

Ours-ASH 0.30 0.54 0.63 0.67 0.70 0.39 0.60 0.65 0.68 0.69

Table 7.1: Comparison of two training strategies of our cross-domain network on the pose

estimation task on GeoPose3K dataset using cross-domain matches between the query pho-

tograph and the rendered panorama. The higher number the better. Adaptive semihard

(ASH) performs better than random semihard (RSH).

image, and D2Net seems to be more sensitive to these distractors than other approaches.

Furthermore, the right plot in Fig. 7.4 shows that the rotation error is improved on the

refined pose for all three methods up to the threshold of 5°. Since points from multiple

rendered views are already matched, the subsequent matching step covers a wider FOV,

and thus a more reliable rotation can be found. For the following experiments, we use

the refined pose, which seems to estimate camera poses with slightly better accuracy in the

low-error regime.

Random Semi-hard and Adaptive Semi-hard Negative Mining. We analyze the differ-

ence between the baseline random semi-hard negative mining and adaptive semi-hard

negative mining in Tab. 7.1. The experiment illustrates that adaptive semi-hard negative

mining improves the random semi-hard negative mining baseline in both position and

orientation errors, so we use it in all experiments.
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Figure 7.5: Comparison of variants of our network with HardNet++ and D2Net for pose

estimation task on GeoPose3K using cross-domain matches between query photograph and

synthetically rendered panorama. Left: translation error, right: rotation error.

Auxiliary Loss. Our network trained with the auxiliary loss function performs the best

in the cross-domain scenario evaluated on the GeoPose3K dataset (Fig. 7.5, see Ours-aux).

On this task, it outperforms the cross-domain variant of our network trained with the

basic loss function (Ours). We also report our network’s result using a single encoder for

both domains (Ours-render) which is consistently worse than the cross-domain variant.

Furthermore, we see here that our network significantly outperforms both D2Net and

HardNet++ in this task.

Stability With Respect to DEM Sampling Density. One question is how close does our

DEM render has to be to the true photo location for us to still find a correct pose estimate.

To evaluate this, for each query photograph (with known ground truth location), we ren-

der a synthetic reference panorama offset from the photo location by a random amount

(the “baseline”), sampled from a Gaussian distribution with parameters 𝒩(0 m, 1000 m).

We then estimate the pose of the query photograph by registering it with the render and

compare the predicted location to the known ground truth location. In Fig. 7.6-left, we

show the percentage of cases where the distance from ground truth to the predicted lo-

cation was predicted to be less than the baseline. This gives us a measure, for example,

of how incorrect the GPS signal from a photo could be such that our approach improves

localization. With low baselines, we see that the geometry mismatch to the DEM domi-

nates, and the position is difficult to improve on. With baselines over 200 m, we are able

to register the photo, and then performance slowly degrades with increased baselines as

matching becomes difficult. Fig. 7.6-right shows that the cross-over point where the posi-

tion no longer improves over reference is around 700 m.
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Figure 7.6: Evaluation of robustness to the baseline. Left: Fraction of improved (green),

worsen (yellow), and failed (red) positions when matching query photo to a synthetic

panorama as a function of the baseline. The baseline is the distance between the ground

truth position and a reference position generated by adding a Gaussian noise𝒩(0 m, 1000 m)

to the ground truth position. We consider the position improved when the estimated dis-

tance to ground truth is less than the baseline. The numbers at the bottom of each bar give

the total number of images within each bar. Right: Cumulative fraction of query photos

with an estimated position less than a given distance from ground truth (Ours-aux in pink)

versus the cumulative fraction of reference positions within a given distance of ground truth

(sp-gt in yellow). The pink line above the yellow line means our method improves over

the sampled reference position at that baseline.

7.3.3 Comparison with State-of-the-Art

We compare our two-branch method and single-branch method based on VGG-16 with

three state-of-the-art descriptors and matchers: HardNet [126], D2Net [48], and NCNet

[153] in four different locations across the Earth. According to the results in Fig. 7.7, our

two-branch method trained with auxiliary loss function (Ours-aux) exhibits the best per-

formance on GeoPose3K, Nepal, and Yosemite datasets. The only dataset where our two-

branch architecture is on-par with D2Net is Andes Huascaran (where the ground truth was

created by D2Net matching) and where the single-branch VGG-16 architecture trained us-

ing our method and data performs the best. This result is probably due to differences in

the orthophoto texture used to render synthetic images. The larger, pre-trained VGG-16

backbone has most likely learned more general filters than our two-branch network, which

was trained solely on our dataset.

Additionally, we add a comparison with respect to the number of inliers given its

month in the year, shown in Fig. 7.8. We may observe that more photographs across

all datasets are usually captured during the summer and early autumn months (June–
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Figure 7.7: Comparison of our method with state-of-the-art descriptors in four different

locations across the Earth. Our method (dashed red and blue) outperforms HardNet [126]

on all datasets and D2Net [48] on GeoPose3K, Nepal and Yosemite. Our method seems

to be on par with D2Net on Andes Huascaran dataset which has significantly less precise

textures (from ESA RapidEye satellite) in comparison to other datasets.

October), see the dashed blue line. This observation correlates with the counts of inliers of

all methods in the comparison—higher amounts of inliers are more likely in the summer

photographs. On GeoPose3K and Nepal, our method trained with auxiliary loss functions

(see red line) typically produces more inliers than D2Net and HardNet++. On Andes

Huascaran and Yosemite, D2Net and HardNet++ are generally able to find more inliers

than our method. This fact illustrates that images from the Nepal dataset are likely to

have features similar to the Alps training set, which is less the case for Yosemite and An-

des Huascaran. Moreover, Andes Huascaran is rendered using a different orthophoto

texture (RapidEye satellite) and was created using D2Net matches, giving an advantage to

this method.

Mean and median counts of inliers for each method and dataset are illustrated in

Tab. 7.2. Similarly to the per-month number of inliers, we see that our method retrieves
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Figure 7.8: Comparison of our method with state-of-the-art with respect to number of

inliers given the month in four different locations across the Earth. Higher is better.

GeoPose3K Nepal Andes Huascaran Yosemite

Mean Median Mean Median Mean Median Mean Median

D2Net 175.72 69.50 55.41 33.00 134.01 101.00 142.84 21.00

NCNet 110.81 94.50 124.71 103.00 113.17 94.00 103.13 83.00

HardNet++ 64.27 0.00 29.97 16.50 107.56 54.00 207.66 18.00

VGG-16-D2-FT 144.73 69.50 51.95 22.00 71.89 63.50 91.66 19.00

Ours 166.53 83.00 84.52 49.50 63.33 48.00 121.34 22.50

Ours-aux 178.85 86.50 80.14 43.50 86.79 80.00 137.70 24.00

Table 7.2: Comparison of our method with state-of-the-art with respect to number of

inliers in four different locations across the Earth. The larger number the better, best per-

forming algorithms are in bold. Although NCNet is able to get many inliers compared

to other algorithms, we measured low amount of correctly localized images (see Fig 7.7–

NCNet), and therefore we removed it from this comparison.
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Method Verification Matching Retrieval 20k

* _ * _ * _

Easy Hard Tough Easy Hard Tough Easy Hard Tough

HardNet++ 0.986 0.979 0.974 0.962 0.939 0.919 0.730 0.582 0.401 0.792 0.677 0.492

D2Net 0.810 0.788 0.721 0.700 0.666 0.646 0.387 0.172 0.075 0.545 0.312 0.179

VGG-16-D2-FT 0.866 0.834 0.770 0.734 0.706 0.671 0.168 0.459 0.017 0.292 0.122 0.062

Ours-photo 0.906 0.877 0.812 0.776 0.738 0.701 0.278 0.094 0.037 0.421 0.193 0.101

Ours-render 0.899 0.868 0.811 0.774 0.740 0.703 0.222 0.070 0.026 0.375 0.173 0.089

Ours-aux-photo 0.925 0.902 0.828 0.796 0.747 0.713 0.382 0.152 0.065 0.508 0.255 0.135

Ours-aux-render 0.956 0.942 0.915 0.892 0.857 0.830 0.453 0.231 0.112 0.556 0.326 0.181

Table 7.3: Comparison of variants of our network to HardNet++ and D2Net on the full

HPatches dataset [17] (single domain). For D2Net, we used the dense feature extractor

which results in 15x15 descriptors per 65px2 patch, from which only the central descriptor

was used. Higher is better in all tasks. HardNet++ perform the best, from our methods

the render branch trained with auxiliary loss gives second best result (see bottom line).

* DiffSeq; _ SameSeq [17].

the most inliers on GeoPose3K and Nepal datasets, while D2Net and HardNet++ retrieve

more inliers on Andes Huascaran and Yosemite, respectively. However, it seems that the

inlier increase of HardNet++ on the Yosemite dataset is caused by few images with a large

number of inliers, since the mean of HardNet++ is the largest, but the median is not—in

fact, our method was able to get the largest median in the number of inliers on this dataset.

7.3.4 Auxiliary Loss Functions in Single-domain Scenario

According to our experiment, the auxiliary loss function defined in Eq. 7.7 brings further

improvement over the basic variant of the cross-domain triplet loss defined in Eq. 7.1. To

illustrate this, we evaluated each branch of our network on the single domain HPatches

dataset [17] and compared it with HardNet++ and D2Net in Tab. 7.3 on three tasks—

patch verification, matching, and instance retrieval. The symbols * and _ denote DiffSeq

(negative pairs are formed by patches from different sequences) and SameSeq (negative

pairs are formed by patches from the same sequence), respectively—for its exact defini-

tion, please see the HPatches paper [17]. Please note that the HPatches benchmark is a

single domain dataset containing only photographs, which is not compatible with the de-

sign of our architecture; moreover, our architecture was trained for a much more specific

task than the competitors. Therefore, we needed to evaluate our network twice—once for

each branch. HardNet++ exhibits superior performance over other methods on HPatches

(see the first line in bold in Tab. 7.3), while on our cross-domain scenario it exhibits worse

performance than our method (see Fig. 7.7). This illustrates that our cross-domain sce-

nario is different from the single-domain one. On HPatches, the variant of our network
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trained with auxiliary loss function outperforms the variant trained with basic triplet loss,

which is consistent with the comparison on our cross-domain datasets. Interestingly, the

best performing variant of our method is the render branch trained with auxiliary loss

functions (see the last line of Tab. 7.3 in bold). This result is most probably caused by the

fact that in our train dataset, the rendered images are always aligned perfectly, unlike the

photographs, which eventually can contain outliers.
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Figure 7.9: Comparison on the task of camera orientation estimation using our keypoint-

based method (Ours, dashed dark blue) with horizon-line localization (HLoc, our reimple-

mentation of [163], in orange and green) and our method based on semantic segments and

edges (CF-VCC-2011, light blue, presented in Chapter 6) on GeoPose3K (left), and CH1

(right) dataset.

7.3.5 Comparison with Camera Orientation Estimation Methods

In Chapter 6, we proposed a novel method for 3-DOF camera orientation estimation based

on a combination of edges and semantic segmentation called Confidence Fusion (CF). We

compared it with an approach based on a horizon line, HLoc [163]. Let us now compare

those 3-DOF camera orientation approaches with our novel 6-DOF, keypoint-based cam-

era pose estimation method. Please note that the CF and HLoc methods which estimate

camera orientation use the ground truth position as an input. Our keypoint-based camera

pose estimation method solves a more complex task since it estimates both camera posi-

tion and rotation. Therefore it is at a slight disadvantage in this comparison. On the other

hand, the CF and HLoc methods use the rendered DEM without the satellite texture, which

is needed for our keypoint-based camera pose estimation method.

In Fig. 7.9, we compare our keypoint-based camera pose estimation method with a

Confidence Fusion method combining semantic segmentation and edge features (CF-VCC-

2011) using a spherical cross-correlation described in Chap. 6, denoted in light blue. We
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Method Avg. mean Avg. stddev F1 F2 F3 F4 F5 F6 J1 J2 J3 J4 J5 J6

Ours 19.2 41.86 0.62 40.92 104.53 1.03 23.01 3.79 0.85 0.84 19.21 1.41 54.62 0.8

CF-VCC-2011-m3D 1.92 10.62 2.57 3.68 1.06 1.57 2.68 0.61 4.54 1.26 0.50 1.18 5.24 0.47

CF-VCC-2011 12.42 32.44 0.93 0.67 85.68 1.09 21.18 2.45 1.85 0.93 8.32 1.42 41.65 0.75

VCC-2011-m3D [15] 2.88 14.72 1.49 8.94 1.27 6.25 4.42 1.18 5.17 1.08 0.50 1.18 6.29 0.66

HLoc-synthetic 28.0 50.54 52.73 1.84 11.54 36.08 4.17 10.21 115.54 86.08 6.01 4.11 3.84 40.85

HLoc-Deeplab 98.76 61.24 133.69 47.52 85.66 128.47 54.48 120.4 115.23 134.89 28.61 100.1 57.67 155.35

RFNh − HOR [142] 1.23 1.24 - - - - - - - - - - - -

SENSORS [142] 9.43 4.16 - - - - - - - - - - - -

Table 7.4: Comparison of our keypoint-based method with camera orientation estimation

methods based on edges and semantic-segmentation on Venturi Mountain dataset [142]

(video sequences F1–F6, and J1–J6). The last two rows refer to the reference results ob-

tained with the help of device inertial sensors by Porzi et al. [142].

may also see the performance of a horizon-based localization method HLoc [163], which

we implemented (see Chap. 4, 6), denoted in orange and green colors. HLoc-synthetic

(dashed orange) uses a synthetically rendered horizon line (effectively illustrating the up-

per bound of the method); HLoc-CH1 (solid orange) uses horizon line segmentation from

the CH1 dataset (refined manually [163]), and HLoc-Deeplab uses the horizon line seg-

mented automatically using DeepLab semantic segmentation trained on GeoPose3K train-

ing set. Please note that we cannot use GeoPose3K or CH1 datasets for a fair comparison

with the edge-based non-linear metric originally proposed by Baboud et al. [15] since the

camera orientation ground truth has been set with the help of this method. To compare

our keypoint-based approach with this non-linear edge-based metric, we use the Venturi

Mountain dataset [142].

Our keypoint-based method is a clear winner on the GeoPose3K dataset (Fig. 7.9-left)

and is on-par with the Confidence Fusion method on the CH1 dataset (Fig. 7.9-right). We

hypothesize that the main reason is that GeoPose3K is a more diverse test which contains

images in which distinct keypoints can be detected. CH1 dataset, on the other hand, has

been composed as a benchmark for a horizon-line based method, and it often contains

photographs with a distinct horizon line, but no distinct keypoints. This is illustrated by

the fact that methods which use horizon line as a feature, Hloc-synthetic (dashed orange),

and CF-VCC-2011 (solid blue) perform better on the CH1 dataset than on the GeoPose3K

dataset. Although CH1 dataset therefore seems to be a bit easier for horizon line-based

methods, our keypoint-based method performs similarly on both GeoPose3K and CH1

dataset in absolute numbers.

Finally, we use the Venturi Mountain dataset [142] to compare our keypoint-based

method with the Confidence Fusion method (CF-VCC-2011) combined with the edge-

based non-linear metric (CF-VCC-2011-m3D)—both presented in Chap. 6, original edge-
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based non-linear metric VCC-2011-m3D (proposed by Baboud et al. [15]), and the horizon-

line based HLoc method. Same as with other methods, we evaluate our keypoint-based

method independently frame-by-frame without any constraints in the temporal domain.

The results are shown in the Tab. 7.4.

Our keypoint-based method fails (at least partly) on sequences F2, F3, F5, J3, and J5.

The failure is caused by a predominant high-frequency foreground forcing the used key-

point detector (SIFT) to detect non-descriptive keypoints. Another difficulty is a low reso-

lution of the input frames, which is 640x480 px—we designed our method for input images

of almost double resolution, 1024x768 px. We believe that the failure cases could be com-

pensated by a more specialized keypoint detector, which would discard non-informative

foreground keypoints and detect more descriptive keypoints on more distant (and there-

fore more stable) objects. On the other hand, our method delivers the best results on se-

quences F1, F4, J1, and J2 (see the first line in Tab. 7.4). In these sequences, there are enough

keypoint features to be matched easily. This result illustrates that for inputs with distinc-

tive and descriptive keypoint features, our method can easily surpass methods based on

edges or semantic segments, even though it estimates not only the camera orientation but

also the position.

7.4 Qualitative Evaluation

We illustrate several qualitative results of our method in Fig. 7.10. In the top row, we

see that our keypoint-based approach, unlike the horizon line-based methods [163], can

precisely estimate camera pose even for images where no horizon line is visible. Addi-

tionally, we expect our approach to work well if around 100 inliers distributed all over the

photograph are available.

We found that our approach most likely fails on images fully covered by snow (see the

top row of Fig. 7.11), containing lots of high-frequency noise in the foreground (usually

caused by foliage or trees), or when the photograph contains mostly flat terrain (see the

bottom row of Fig. 7.11), where the amount of overlapping keypoints with the rendered

image is low.

7.5 Applications

Mobile Application. To demonstrate the practicality of our method, we implemented

it in an iPhone application. The application takes a camera stream, an initial rotation,

and position derived from on-board device sensors, and renders synthetic views from

the local DEM and orthophoto textures. It then computes SIFT keypoints on both a still

image from the camera stream and the synthetically rendered image and uses our trained
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Figure 7.10: Illustration of successful results obtained by pose estimation using our cross-

domain matching method. Left: terrain rendered with the estimated camera postion and

rotation, right: the rendered image overlaid by the photograph. First line: Yosemite Val-

ley (image credit Kirk Northrop, https://flic.kr/p/22MAjoC), second line: Nepal—view

from Gorakshep.

Figure 7.11: Illustration of inaccurate results. Left: terrain rendered with the estimated

camera postion and rotation, right: the rendered image overlaid by the photograph. First

line: Mount Everest and Nuptse, second line: view from Alexandrovka—an observation

tower near Babice nad Svitavou, Czech Republic.
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Figure 7.12: An iPhone application (in the left) is used to capture the photograph (in the

middle) for which precise camera pose is estimated using our method. The estimated

camera pose (in the right) is used to augment the query photograph with contour lines

(white) and rivers (blue).

CNN to extract local features on the detected keypoints. These features are matched across

domains and are then unprojected from the rendered image using the camera parameters

and the depth map. Finally, matches between the 2D still keypoints and 3D rendered

keypoints are used to estimate the camera pose using the PnP method with RANSAC.

This estimated camera pose is used to update the camera position and rotation to improve

the alignment of the input camera stream with the terrain model (see Fig. 7.12).

Automatic Photo Augmentation. Furthermore, we demonstrate another use-case of our

camera pose estimation approach by augmenting pictures from the internet for which the

prior orientation is unknown and GPS position imprecise (see Fig. 7.10). Please note that

many further applications of our method are possible, e.g., image annotation [99, 15], de-

hazing, relighting [99], or refocusing and depth-of-field simulation [30].

7.6 Chapter Summary

We have presented a method for photo-to-terrain alignment for use in augmented reality

applications. By training a network on a cross-domain feature embedding, we bridged the

domain gap between rendered and real images. This embedding allows accurate align-

ment of a photo or camera view to the terrain for mobile augmented reality (AR) and

photo augmentation applications.

Our approach compares favorably to the state-of-art in alignment accuracy and is

much smaller and more performant, facilitating mobile applications. We see this method

as especially applicable when virtual information is to be visually aligned with real ter-

rain, e.g., for educational purposes in scenarios where sensor data is not sufficiently accu-

rate for the purpose. Looking forward, we expect that our method could be made more

performant and robust by developing a dedicated keypoint detector capable of judging

which real and synthetic points are more likely to map across the domain gap.
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Chapter 8

Immersive Trip Reports

The human desire to travel dates back to before written history. So does, it would seem,

the desire of travelers to share the experiences from their journeys. Travel literature is

known to us since antiquity, and was a staple of medieval and early modern writing [187,

137, 138]. More recently, as photography became widespread, it started to be widely used

to record and share impressions from travels and vacations, indicating a desire to convey

these experiences in a more engaging and immersive way.

Previous research has explored putting the photographs in a spatial context by man-

ually registering them to a topographic map represented as a DEM through tools such as

PhotoOverlay in Google Earth [38]. Photo un-cropping methods [175, 234] mine collec-

tions of external photographs for visual data to extend the field-of-view of the user’s own

photos. Structure from motion (SfM) methods register large collections of photographs

of an artifact to create a 3D model, allowing a structured exploration of the photo collec-

tion [184, 185, 183, 104]. An extension of a structured exploration based on a SfM recon-

struction uses accurate 3D models of urban environments to align the reconstructed scene

and photographs with the physical geometry [208].

In this chapter, we utilize recent advances in computer vision and virtual reality to

increase the immersiveness of a photo presentation. Specifically, we have developed a

process, illustrated in Figure 8.1, to extract 3D location and orientation information from

collections of photographs taken on hiking trips, which we further use to align the pho-

tographs to a virtual representation of the actual terrain. We use this information to enrich

the presentation with supplementary geographic data and replay the experience from a

first-person perspective. We show that this pipeline works in general landscapes and re-

quires only rough DEM data. By using the recovered information to automatically place

the photos in the virtual terrain, we facilitate a rich first-person exploration experience

that supplements the aesthetic and informational value of the photographs with contextu-

alized spatial information.

We might divide our method’s target audience into two groups: (1) hikers who wish

to share the experience of a hike, and (2) viewers who wish to learn more about hikes at

locations they have not yet visited. Users from the second group who enjoy the presen-
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Figure 8.1: Our virtual trip creation pipeline: 1. User takes photographs during a hike;

2. We augment the input collection with images downloaded from Flickr.com; 3. Camera

positions and sparse 3D point cloud reconstruction using Structure from Motion; 4. Scene

alignment with the terrain using ICP; 5. Fly-through generation from the input pho-

tographs from the hike; 6. We export the fly-through to Google Earth or to our virtual

reality viewer. Map data © 2018 Google, © Mapbox, © OpenStreetMap.

tation may then re-create the hike themselves. Therefore, the purpose of sharing travel

photographs is not just to enjoy the scenery, but to convey the entire experience of visiting

the remote location.

Our goal is that our enhanced photo presentation will assist viewers to gain spatial ori-

entation, better understand the scene, and enjoy the viewing experience. To evaluate these

effects, we conduct a user study comparing four different modes of presentation (illus-

trated in Figure 8.2) on four datasets from different locations. The tested modes consist of

a traditional slideshow, a slideshow with GPS markers shown on a map (GPS slideshow),

and two modes produced by our method. A fly-through from photo to photo precisely

aligned with a virtual terrain model was in one mode viewed passively as a rendered

video (passive fly-through), and in the other interactively in virtual reality (interactive

fly-through).

Contributions. We automatically generate new modes of immersive first-person presen-

tation of photographs, specifically a passive fly-through, renderable as video and com-

patible with tools like Google Earth, and an interactive fly-through which presents the

trip in virtual reality. We also conducted experiments demonstrating that these immersive

presentation modes help users understand the spatial relations in the region significantly

better than a traditional slideshow and that the interactive virtual reality (VR) experience

is enjoyable.
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1. slideshow 2. GPS slideshow

3. passive �y-through 4. interactive �y-through

Figure 8.2: Visualization of four modes of presentation. 1. slideshow: photographs are

presented sequentially. 2. GPS slideshow: the slideshow with a map showing the position

of currently shown photograph. 3. passive fly-through (ours): photographs aligned with

the terrain are presented in a passive fly-through. 4. interactive fly-through (ours): the

user can freely look around during the fly-through. Map data © 2018 Google, © Mapbox,

© OpenStreetMap.

8.1 Related Work

8.1.1 Photography Presentation

Previous research has explored alternative presentations of photographs, often based on

3D scene reconstruction using SfM [184, 183, 104, 182]. However, 3D point clouds used by

PhotoTourism and others [104, 183, 184] are not suitable for visualization of a re-created

trip. For example, in natural environments, usually only front facing parts of mountains

are reconstructed leading to incomplete point clouds. Since a tour can traverse widely

spaced viewpoints, the partial model reconstruction may result in poor visuals between

photographs. Our method solves this problem by using the terrain model, which is more

suitable for presentation of the whole trip.

Visualization of images with geographical information is available commercially via

online services such as Flickr and Google Maps. Researchers have explored visualizing
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photographs in a map online [201] or in virtual reality [135]. Geo-tagged social media en-

ables spatial navigation interfaces for photo albums [198], even composited atop panora-

mas from Google Street View [47]. Note that these interfaces are not designed to convey

a virtual hike experience. VR BBS [135] is for sharing photographs and messages in a vir-

tual environment, with users plotting their course through a flat map with 3D sprites of

photographs. In contrast, our system leads the user automatically through virtual terrain

containing the sequence of photographs of a re-created trip. Additionally, these previous

works do not precisely align image content with the environment. Precisely aligned image

with the virtual environment is vital in the seamless in-situ visualization implemented in

our method.

The work most similar to ours is Kuchelmeister et al.’s [103] presentation of an im-

mersive visualization of photographs taken by SenseCam jointly with a virtual model of

a 3D outdoor scene. Their work intends to study the effect of browsing photographs in

this virtual environment as a memory-prosthesis for patients suffering from amnesia. In

contrast, our work does not use any specific device for collecting photographs, and our

experiments are focused on the orientation of users in the presented space and enjoyment

of such a visualization.

In summary, previous methods are not designed to re-create a virtual hike experi-

ence. Specifically, we focus on the single-user-multiple-landmarks scenario, whereas Pho-

toTourism [184] addresses the multiple-user-single-landmark scenario. The selection of

the single-user-multiple-landmarks scenario has algorithm implications, so e.g., Photo-

Tourism and VR BBS [135] require much more elaborate capture processes. Our key idea

is to download additional imagery to help the reconstruction (see Figure 8.1), but use only

user-generated photographs for the presentation.

8.1.2 Photography Management and Categorization

Our immersive presentation is related to photo browsing and management systems. The

rapidly growing number of photographs being taken has motivated research into effective

searching [91] and clustering of photographs [139, 140], which can also be based on space

and time [63, 219]. The difficulty of browsing, sorting, and clustering photographs manu-

ally has led to novel interfaces such as Photohelix [81]. Rodden and Wood [154] show that

users tend to use simple features of photo management software, and also that managing

photographs digitally is easier than managing printed photos. Harada et al. [71] designed

an automatic searching and browsing tool for photographs on mobile devices. Schoeff-

mann et al. [167] show that photographs organized into a 3D cylinder or globe help users

with faster visual search.
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8.1.3 Related Applications

Researchers have explored narrative storytelling with mobile photos [16] or photo blogs [96],

or even writing fictional stories [147], as alternate ways of facilitating user engagement.

Chelaramani et al. used photos of a historical site to create a multimedia tour guide for

cultural heritage [33]. Another work for cultural heritage has combined photos with ani-

mations [182]. Immersive presentations such as virtual reality [76] and mobile augmented

reality [75] have been found to improve appreciation of historical sites [44].

For productivity applications, PhotoScope [219] combines photo albums and building

floor plans to aid construction management. Immersive presentations of many video feeds

have been used to support video surveillance tasks, with desktop spatial navigation [66],

desktop 3D environments [171], or full immersive virtual reality presentation [46]. Taken

together, these related applications all support the notion that presenting photo albums of

a remote location in virtual reality can improve users’ engagement with the presentation

and their resulting understanding of the experience.

8.2 Automatic Generation of Photography Presentations

The pipeline we use in our method is visually summarized in Figure 8.1; a more detailed

flowchart of the pipeline can be found in Figure 8.3. Our goal is to reconstruct from pho-

tographs a real hike in a virtual model of the real terrain. The input to our method is a

collection of photographs taken on a hike Ih, together with the geo-rectangle designating

their rough geographical extent, which can be read from embedded GPS information if

available. We take the user photographs Ih as-is, we do not consider color enhancement

as a part of our pipeline. We augment this collection with additional photographs from

the same geo-extent I f , which can be harvested from online repositories such as Flickr,

to improve coverage of the terrain for better reconstruction. We jointly mine the merged

photoset for both GPS metadata and visual features, which we use to obtain a rough geo-

registration through a SfM pipeline. We align the result of the reconstruction with known

DEM terrain data to fine-tune the camera estimation. Finally, we construct a virtual pre-

sentation that shows selected photographs and renders fly-throughs from one camera pose

to the next as a transition between the consecutive photographs.

8.2.1 Imageset Augmentation and Scene Reconstruction

We conducted initial experiments with datasets from the authors’ personal collections in

a variety of locations. Although these datasets were uncurated (i.e., contained all the pho-

tographs taken, including those that would not be selected for presentation), we found
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Figure 8.3: Flowchart illustrating complete process of our virtual trip creation pipeline.
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that a single user does not usually provide sufficient coverage of the space for a reliable

3D reconstruction. Coverage density may be tested by running the matching stage of the

SfM reconstruction on the set of user photographs Ih. If the number of matching images

with strong matches is low, we perform imageset augmentation. We augment each of the

original collections Ih with images downloaded from Flickr I f . The augmentation has the

additional advantage that the original dataset Ih need not contain GPS information, since

we may use GPS from the downloaded photographs I f . However, in the absence of any

GPS information in user photos Ih, we need the user to provide the rough extent of the vis-

ited area, specified as e.g., center and radius. The detailed description of downloading the

Flickr photographs I f , processing, and reconstruction of the mixed collection Im = Ih ∪ I f

is described in Section 5.2.

8.2.2 Fly-through Creation

For the fly-through presentation, the user selects a curated subset of photographs Ic ⊆ Ih

based on their aesthetic preference. Although we know the camera pose for each pho-

tograph from the registration, we still need to estimate the actual hiking path from one

camera position to the next. We generate a smooth camera path by constructing a Catmull-

Rom spline with the camera positions from Ih as control points. Alternatively, if a full GPS

track is available, it may be used as the camera path instead, to ensure that the presentation

follows the trail between photographs. Please note that the selection of the curated subset

of photographs Ic only affects which photographs will be presented; the reconstructed path

is the same for different subsets of Ic.

We initialize the set of control points Pc with the positions of the curated photographs

Ic. We add the remaining positions from the reconstructed photos Ih in a greedy way—we

add a point only if it is further than 100 m from all points in Pc. We sort the control points

Pc according to the time of capture of the corresponding photograph parsed from EXIF.

We generate the Catmull-Rom spline from the selected control points Pc. In case any point

of the spline is located below the terrain, we project it above the terrain level by a fixed

margin. We smooth the generated spline using a low-pass box filter.

A part of the spline between consecutive control points is called a segment. In passive

mode, as the camera moves along a segment, we smoothly interpolate camera parame-

ters. Field of view is interpolated linearly between photographs of consecutive control

points; the camera orientation is interpolated to look in the direction of the next control

point. For transitions from one photo to the next, we use spherical interpolation between

the two orientations, with the camera located at the center of the sphere to achieve near-

constant angular speed. We calculate the speed of the camera automatically—for more

distant control points the camera flies faster, accelerating and decelerating at the start/end
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of the segment, respectively. In the interactive mode, the field of view and orientation are

defined by the output device (e.g., the headset), and the speed of the flight is controlled di-

rectly by the user. Also, in interactive mode, the user can move in a small neighborhood of

the current position on the spline. In passive mode, the position of the camera is restricted

to the generated spline.

We combine the fly-through with the photographs rendered with appropriate camera

parameters over the virtual landscape to generate the actual presentation. In the passive

case, we cross-fade from the end of a fly-through segment to the photo we wish to display

and then cross-fade to the next segment. In the interactive mode, the cross-fade for leav-

ing the photograph is triggered by the user. In both cases, accurate estimation of camera

parameters ensures the transitions are smooth.

8.3 Experiments

The goal of our method is to create an enjoyable presentation that helps the viewer under-

stand the physical layout of the place where the photographs were taken. We conducted

a user study that compares four modes of presentation of photographs; two traditional

and two based on our method. We evaluate these methods on viewer enjoyment, sense of

presence, and a quantitative task that measures how well the user can localize previously

unseen photos from the same space after viewing the presentation. First, measuring en-

joyment is important to understand if users want to use our method. Second, we measure

the sense of presence to determine how immersed users become on a virtual hiking trip.

Third, we assess users’ orienteering capability conditioned on the presentation method to

determine if our method measurably impacts users’ spatial understanding of the environ-

ment. We use four datasets processed with our pipeline, and from each dataset, we select

one subset of photographs for presentation and a disjoint subset for evaluation.

8.3.1 Datasets

Out of the four datasets we used in our experiment, three were captured manually at the

Lake Tahoe, CA, USA, Yosemite Valley, CA, USA, and the Himalaya mountains in Sagar-

matha National Park, Nepal. The fourth dataset from the High Tatra mountains in Slo-

vakia was collected from Flickr. Each dataset was captured by a different photographer.

The Lake Tahoe dataset was reconstructed directly without any additional photographs,

while Yosemite and Nepal were augmented using Flickr images. The statistics on the num-

ber of captured photographs Ih, photographs downloaded from Flickr I f , successfully reg-

istered user photographs Ihr, and total successfully registered photographs Imr are shown

in Table 8.1. All four datasets were processed with our geo-registration pipeline and ex-
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dataset Ih I f Im Ihr Imr

Nepal 1586 815 2401 412 901

Tahoe 302 (36) 0 302 78 (7) 78 (7)

Tatras 0 4146 4146 297 297

Yosemite 543 (117) 4173 4716 167 (33) 2094

Table 8.1: Number of photographs in our datasets. Ih—input hike photographs captured

by user, I f —number of downloaded Flickr images, Im—number of mixed photographs en-

tering the reconstruction, Ihr—number of hike photographs that were successfully recon-

structed, Imr—number of all reconstructed photographs. Panoramic images are included

and denoted by numbers in brackets.

ported to Google Earth through KML for the passive mode and to our implementation of

a VR viewer in Unity with the terrain loaded from Mapbox for the interactive mode.

8.3.2 Modes and Setup

For evaluation, we use four datasets created by the reconstruct-then-align approach de-

scribed in Sec. 5.2. We compared four modes of presentation, shown in Figure 8.2. The

baseline mode, slideshow, is a standard photo slideshow without any additional informa-

tion. The second mode, GPS slideshow, is a slideshow with camera positions marked on a

map presented in Adobe Lightroom. For each photograph, the user can explore a Google

“terrain” map with contour lines in a fixed zoom level, where all the photographs in the

presentation are localized, and the current one is highlighted. The third mode, passive fly-

through, is the passive version of our method: a fly-through in Google Earth generated by

our geo-registration pipeline. The user is first shown the path of the tour in a top-down

view. The view then transitions to the camera position and orientation of the first pho-

tograph, with the photograph drawn over the terrain. As the user presses a button, the

view flies to the next camera position and shows the next photograph in the same fashion.

Once the fly-through is finished, the presentation returns to the initial top-down view.

The final mode, interactive fly-through, is the interactive version of our method, with the

fly-through presented in VR. The user is first allowed to familiarize themselves with the

region’s terrain from a bird’s-eye view several kilometers up. They are next teleported to

the fly-through, which proceeds in a similar fashion to the passive mode, except the user

has the opportunity to look around freely and can control the speed of movement along

the camera path in order to reduce the risk of motion sickness.
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dataset positional error heading error

Tahoe discr. 0/6 0/6

Tahoe cont. 353.61 ± 230.29m 32.05 ± 28.39°

Yosemite discr. 0/4 3/4

Yosemite cont. 1189.33 ± 748.61m 23.81 ± 20.44°

Nepal cont. 4710.74 ± 2833.38m 75.14 ± 53.34°

Table 8.2: Pilot study data. For discrete version the numbers denote a fraction of wrong

answers. For continuous measurements the mean and standard deviation is reported.

In all modes, the user sees each photo only once without the option to go back. All

modes and datasets were presented on a calibrated1 15′′ MacBook Pro Retina display in

native resolution 2880 × 1800 pixels under office lighting, except the interactive fly-through

mode, which was presented using an HTC Vive. Each participant tested all four modes,

each with a different dataset to avoid learning effects. The mode-dataset pairing and the

mode order were randomized for each participant.

8.3.3 Pilot Study

To help design the main study, we performed an initial experiment with one participant.

The female participant was a co-author of the Tahoe dataset and familiar with the terrain in

the Yosemite dataset, with extensive experience in using maps for navigation. The purpose

of this test was to determine whether the task is better evaluated using discrete or contin-

uous questions. The participant was first shown a presentation of at most 20 photographs

and afterward was asked to complete a task with a selection of photographs from the same

dataset but disjoint from that shown in the presentation.

In the discrete scenario, the participant answered binary questions about camera head-

ing and position. For position, she was shown a query photograph taken chronologi-

cally between two consecutive photographs from the presentation, and asked to identify

whether the viewpoint of the novel photograph is closer to that of the earlier photograph

or that of the later photograph. For heading, she was shown a query photograph and

a reference photograph from the presentation and asked to identify whether the query

photograph camera orientation is to the left or right of that of the reference photograph.

In the continuous scenario, we asked the participant to mark two points in an online

map for each photograph. The first corresponds to the camera viewpoint of the query

photograph. For the second, the participant could pick an arbitrary reference point in the

1The calibration was performed by X-Rite GretagMacbeth Eye-One Display colorimeter to D65, 120 cd/m2,

and colorimetrically characterized by measured ICC profiles.
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query photograph and then select a point on the map that corresponds to the location

marked in the photograph (see Figure 8.4).

Initially, we tested the Tahoe dataset in the slideshow mode, and the Yosemite dataset

in the passive fly-through with both discrete and continuous variants. For each variant, we

tested 4–6 different photographs. Since the participant visited both areas earlier, we added

a test on the Nepal dataset in a passive fly-through with a continuous variant. We show the

results in Table 8.2. The discrete and continuous variants are consistent on the Yosemite

dataset; the participant could estimate heading more accurately than the position for both

task sets on this dataset. Conversely, even though the participant achieved perfect success

on the discrete heading task for both Tahoe and Yosemite, the continuous heading error

is higher on the former. The continuous errors are notably higher on the Nepal dataset,

suggesting a significant difference in difficulty between datasets, possibly related to the

spatial extent and complexity of the terrain. The participant expressed her preference for

the continuous tasks, describing them as an exciting puzzle instead of the discrete tasks

that she tended to answer randomly when in doubt. Another issue in the discrete task is

that when the rotation is close to 180° compared to the reference, it is extremely difficult

for the participant to correctly answer, as the difference between “left” and “right” is only

a few degrees. Based on these observations, we selected the continuous task set as the

evaluation method for the full user study. We expected it to give us more information with

less variance, even with a small number of participants, which was limited by each test’s

long duration (up to 1 hour for all four modes with each participant). We also expected the

continuous task set to be more engaging for the users and thus keep them more focused.

Finally, we realized the necessity of normalizing errors per-dataset due to high observed

variation in dataset difficulty.

We also performed a field-type experiment where we presented photographs from the

Nepal dataset in the slideshow and the passive fly-through presentation modes to a broader

audience of approximately 40 people. After the presentation, the audience completed a

short questionnaire asking which of the two methods they preferred more and whether

the terrain model helped them better understand the positions and orientations of the pho-

tographs compared to the slideshow. Out of 40 participants, 22 completed the question-

naire. Regarding the first question, 8 participants replied that they liked the fly-through

more than the slideshow, 10 participants liked both roughly the same, and 4 participants

liked the slideshow mode more. Responses for the second question were even more opti-

mistic: 14 participants agreed that the fly-through helped them, 2 participants replied that

both modes helped them roughly the same, and 4 participants replied that the slideshow

helped them more. A final question asked participants to write what they liked or dis-

liked. Participants disliked the abrupt speed of camera rotations during transitions in the
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Figure 8.4: Example task from Lake Tahoe. The participant marks a position on the map

(right image #1) of the query photo (left image) and the reference point (left image, red

star) and corresponding position of the reference point on the map (right image #2). Map

data © Mapy.cz.

fly-through. We identified this as the main reason why 14 out of 22 participants preferred

the slideshow or had no preference in the first question. Due to this finding, we adjusted

the angular velocity to ensure smooth camera rotations. Furthermore, subsequent experi-

ments were designed based on the experience from this field experiment.

8.3.4 Evaluation Methodology

Each participant was instructed about the purpose of the experiment and completed a

screener questionnaire. Before the first experiment, we explained the task with a dummy

example. The procedure was as follows: a presentation of at most 20 photographs was

shown to the participant. The participant viewed one picture at a time, as determined by

the presentation mode. The participant was not allowed to return to previously viewed

photographs. After the presentation, the participant viewed 6–7 photographs not present

in the presentation but taken on the same dataset. For each photograph, we performed

the continuous task variant, as determined by the pilot study, in which the participant

indicated the position and heading of the camera by marking a map. The participant was

not allowed to move already placed marks once they continued to the next photo, or to

return to a previous photo during the test. The participant was allowed to zoom in to the

online map during the task, and to move around within the area of the dataset. If they

moved out of the area, the moderator would reset the map to the initial view. The initial

zoom level was chosen so that the area of the whole dataset would fit inside the window.

The digital map featured a top-down view with only the names of points of interest (POI),

tourist pathways, and contour lines showing elevation.
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8.3.5 User Study

Participants. We assembled 21 volunteers, predominantly bachelor and master students

of informatics (17) and law (4); 3 women and 18 men. One participant had been to Lake

Tahoe, 4 to Yosemite, 13 to High Tatra Mountains, and 1 to Nepal. Fourteen participants

had some experience with virtual reality. Each participant had at least basic knowledge on

how to use a map: one participant used maps several times in his life, 5 participants used

maps at least once a year, 10 participants used maps at least once a month, and 5 used

maps at least once a week. Where possible, we correct our experimental data for the bias

introduced by these factors.

Error measures. We report two error measures per test photograph: the positional error

ep (Eq. 3.16), and the heading error eh. The heading error is the smallest absolute difference

between the ground truth heading hg ∈ [0, 360] and the measured heading hm ∈ [0, 360] (in

degrees): eh = min (|hg − hm|, 360 − |hg − hm|).

Positional error model. We use different datasets for each test to avoid learning effects,

but this introduces the possibility that performance may be correlated with dataset diffi-

culty. To compensate for dataset and user differences, we model the positional error as a

normal random variable ep ∼ 𝒩(sdm, σ2), where s is a factor of the subject’s ability, d is

a factor of the dataset difficulty, m is a factor of the mode properties, and σ2 models mea-

surement noise. Since we want to compare modes based on the positional error, we need

to mitigate the effects of dataset factor d and subject’s ability factor s.

We expect that Nepal and Tatras are more difficult than Tahoe and Yosemite because the

trips made in Nepal and Tatras are much longer, and the terrain profile is more compli-

cated. Figure 8.5(left) confirms this, but the positional error ep has a different scale for

each dataset due to different geographic extents. One-way ANOVA clearly rejected the

null hypothesis (F(3, 542) = 149.85, p < 0.001), that the means of positional errors ep do

not vary significantly across datasets. Further inspection reveals that the Nepal dataset

has significantly higher positional error than other datasets across all methods. We at-

tempted to normalize the errors by dividing it by the dataset extent. This normalization

moved the scale between datasets closer, but the null hypothesis was still clearly rejected

(F(3, 542) = 10.85, p < 0.001). In this case, the Tahoe dataset was shown to have a signifi-

cantly lower mean error than other datasets. Instead, we use the baseline mode slideshow

as a dataset calibration measure. We calculate the normalized positional error enp(d) for

each dataset d by dividing by the mean of the positional error ep(d,ms) for the slideshow
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Figure 8.5: Differences between datasets before normalization of mean positional error µep

(left) and after normalization µenp (right). The central red mark indicates the median, the

green diamond denotes the mean, the bottom and top edges of the box indicate the 25th

and 75th percentiles, respectively. The whiskers extend to the most extreme positional er-

rors not considered outliers, and the outliers are plotted individually using the ‘+’ symbol

mode ms and the dataset d:

enp(d) =
Ndep(d)∑︀
ep(d,ms)

, (8.1)

where Nd is the number of measurements for dataset d. This yields the lowest F-score com-

pared to other normalization methods (F(3, 542) = 6.98, p = 0.0001). The null hypothesis

is still rejected, due to the fact that the baseline slideshow mode has been tested by different

users on different datasets. However, the error distributions have almost the same scale,

and the result still matches our initial expectations: the Tahoe and Yosemite datasets exhibit

lower mean error than the Nepal and Tatras (see Figure 8.5 right).

Subject’s ability factor. We tested the per-subject mean differences using one-way ANO-

VA. The test was unable to reject the null hypothesis that the means of positional error ep

do not vary significantly between users (F(20, 525) = 1.13, p = 0.31), which also hold for

the normalized positional error enp(F(20, 525) = 1.75, p = 0.23). We further inspected the

importance of factors that the subject visited the place before, map proficiency, and map

usage frequency. None of them showed a significant effect on positional or heading error.

In summary, we could not prove any significant differences between users in terms of

positional and heading error.

Position evaluation. Having normalized results for dataset difficulty, we can formulate

the comparison of presentation modes as one-way repeated measures ANOVA with the

presentation mode as a within-subject variable with four conditions. This way, the test can
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Figure 8.6: Repeated measures scenario comparing differences between normalized posi-

tional error enp on different modes of presentation (S = slideshow, GS = GPS slideshow, PF =

passive fly-through, VR = immersive fly-through). The mean value for each method is denoted

by green diamond.

account for performance differences between subjects. As the numbers of photographs

differ between datasets, we first calculate a mean per-subject and method. This way, we

have one measurement per subject and method. We formulate the null hypothesis that

means of normalized positional error enp do not differ significantly between methods. The

null hypothesis was clearly rejected (F(3, 375) = 8.13, p < 0.001). Post-hoc analysis reveals

that the baseline presentation mode has significantly larger mean normalized positional

error enp, than GPS slideshow (p < 0.001), interactive fly-through (p = 0.034), and passive fly-

through modes (p = 0.009, see Figure 8.6). There is no significant difference between the

GPS slideshow, passive fly-through, and interactive fly-through according to our data and this

test (p >= 0.434) for all remaining combinations). In summary, it seems the positional in-

formation contained in GPS slideshow, interactive fly-through, and passive fly-through modes

help users with location estimation.

Heading evaluation. We were not able to find any significant differences between pre-

sentation modes for heading error eh. We found a significant difference between the Tahoe

and Nepal datasets using one-way ANOVA (F(3, 542) = 4.23, p = 0.0057), supporting our

expectation that the Tahoe dataset is easier than Nepal (and according to Figure 8.7 left

probably the easiest among all datasets). Our data suggest it is fairly difficult to under-
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Figure 8.7: Left: comparison of dataset difficulty with respect to heading error eh. Right:

comparison of heading errors achieved by presentation modes (S = slideshow, GS = GPS

slideshow, PF = passive fly-through, VR = immersive fly-through) on the easiest Tahoe dataset.

stand what the camera is looking at in a photo and then mark it on a map. The only

dataset where the orientation exhibits some tendency is the easiest Tahoe dataset. The

passive fly-through has the lowest mean heading error, and interactive fly-through has the

second-lowest (see Figure 8.7 right); however, these differences are not statistically signif-

icant. Other datasets seemed to be too difficult for heading estimation as all the methods

exhibited similar variance and mean across the remaining datasets, probably due to large

random error. In summary, on the easiest Tahoe dataset, the passive fly-through and the in-

teractive fly-through seem to have marginally lower orientation error than the remaining

two presentation modes.

Presence evaluation. We included a presence questionnaire to evaluate how successfully

the user is immersed by each presentation mode. To reduce the time of the experiment, we

tested just two modes of presentation—the GPS slideshow and the interactive fly-through on

a randomly selected half of our participants. For this evaluation, we use the SUS presence

questionnaire [181] because of its relative compactness. As a first measure, we calculate the

number of high responses (6, 7) for each presentation mode—7 for interactive fly-through—

and 6 for GPS slideshow (higher is better). We also calculate the mean and standard de-

viation of scores for both methods: the interactive fly-through is 3.94 ± 1.40, and the GPS

slideshow is 3.29 ± 1.68. We can see that the interactive fly-through is better than the GPS

slideshow; however, one-way ANOVA does not find significance. In summary, the interac-

tive fly-through seems to exhibit slightly better scores in terms of presence compared to the

GPS slideshow.
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In the post-test questionnaire, we asked users whether they think that the terrain model

(passive fly-through or interactive fly-through modes) helped them create a better idea about

the dataset area. The terrain model was helpful for 7 participants, 8 participants thought

the terrain model helped them roughly the same as the GPS slideshow, and 6 participants

replied that the GPS slideshow helped them more.

Enjoyment. We asked users to identify which method was the most enjoyable. Seven-

teen participants preferred the interactive fly-through the most. They liked being able to

look in the direction they were interested in and control flight speed using the controller.

Two participants preferred passive fly-through the most. The reason was that the VR did

not suit their taste, and they felt a little bit disorientated after the task in VR, but they liked

the possibility of seeing the pictures aligned in the virtual terrain model. Two respon-

dents preferred GPS slideshow the most since they felt it had been the most helpful to fulfill

their task. In summary, interactive fly-through is the most enjoyable mode of presentation

according to our evaluation.

8.3.6 Discussion

We have measured the subjects’ ability to estimate camera position and orientation of a

previously unseen photograph based on what they learned from the presentation. We

further evaluated the subjects’ enjoyment of different presentation modes and the sense of

presence they confer. The use of four datasets of different difficulty posed a challenge in

the evaluation since we needed to normalize positional errors to compare the differences

between the presentation modes.

The results suggest that GPS slideshow is likely the best mode for the position estimation

task. We suspect that this is because the mode of presentation—markers on a map—is so

close to the evaluation task that the effect of recall may dominate that of the genuine sense

of spatial orientation. The use of the same modality then leads to marginally better results

over passive fly-through and interactive fly-through.

According to our measurements, it seems that the length of the fly-through and ter-

rain complexity affect the learning effect of the interactive fly-through. For a short and easy

trip, such as in the Tahoe dataset, the interactive fly-through scored slightly better than GPS

slideshow in terms of position and heading, but on more complicated datasets, such as

Nepal, the GPS slideshow performed better. This observation suggests that users get con-

fused when watching large, complicated presentations.

In terms of enjoyment, the interactive fly-through mode was preferred by 17 out of 21

participants. The main listed reason was the possibility of looking around freely. The
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presence evaluation also suggests that the users feel more immersion in this mode than in

the GPS slideshow.

Based on these results, we believe that while the GPS slideshow is somewhat better for

the quantitative tasks, as it can directly display the queried information, the immersive

modes convey an experience closer to that of actually doing the hike in the real-world

space. We suspect that if we had included a real-world hike as a mode of presentation,

the users would face similar issues in the evaluation as they did with the interactive fly-

through, as the sense of spatial proprioception acquired by the first-hand experience may

not necessarily map to an accurate knowledge of the spatial layout. It would be possible

to verify this analogy with an experiment where we would have participants view an

immersive fly-through and then ask them to retrace the same path in real-life without the

use of navigation aids, but an experiment such as this would be difficult to perform and

ethically problematic.

8.4 Chapter Summary

We present an automatic method for creation of immersive photo fly-through presenta-

tions where the images are overlaid on a virtual model of the terrain. We generate these

presentations for four datasets from different geographical areas, with both a passive vari-

ant based on viewing these images in Google Earth and an interactive variant in a VR

viewer.

Further improvements of our pipeline—e.g., optimization of the photo augmentation

step by estimating how many and which photographs to download—could be exciting

future work. Moreover, projecting the photograph texture onto the terrain during the fly-

through is another direction worth exploring.

We compared our immersive presentation modes with two more traditional ones—a

slideshow and a slideshow accompanied by a map—in a user study, where we measured

user enjoyment, feeling of presence in the outdoor space, and the ability to understand the

location and orientation of images in space. We found that in terms of spatial understand-

ing, our modes performed significantly better than a pure slideshow and are on par with

the GPS slideshow, while the VR-based interactive fly-through conveyed a superior sense of

presence and was preferred as the most enjoyable by the majority of users.

We hope our immersive trip reports can be useful both in private settings, to share the

experience of a trip, and in public, where they could be used to share e.g., trip instructions

from users familiar with the area to the users who have yet to visit.

142



Chapter 9

Conclusions

9.1 Thesis Summary

In this thesis, we focused on visual geo-localization in natural environments. We started

with a broad literature review and presented a survey of visual geo-localization meth-

ods in Chapter 2. Our survey categorized the visual geo-localization methods into three

main categories based on the environment—global, city-scale, and natural. According to

our survey, visual geo-localization in the natural environment was the least studied cate-

gory. Although natural environments include various scene types—plains, deserts, moun-

tains, oceans, forests, taiga and tundra, and many others, previous work focused mainly

on mountains. According to our survey, visual geo-localization in mountainous environ-

ments was, however, far from being solved. In light of these facts, we narrowed down

this thesis’s focus to visual geo-localization in mountainous scenes. Specifically, we focus

on estimating camera orientation and position to allow precise alignment of photographs

with the terrain model.

We also reviewed the most common datasets and evaluation practices relevant to vi-

sual geo-localization in Chapter 3. From this literature review, we concluded that although

there are many datasets for visual localization in urbanized areas, datasets with images

precisely aligned to the terrain model in mountainous environments are sparse. The only

publicly available dataset of this kind was the Venturi Mountain Dataset [142].

9.1.1 Datasets

We created a novel dataset, GeoPose3K, which we presented in Chapter 4. Since all pho-

tographs in this dataset are precisely aligned with the terrain model and were manually

verified, this dataset was an essential resource for training, evaluating, and comparing our

novel methods. To foster the future research of visual geo-localization in natural areas, we

also provided a baseline evaluation of a horizon line-based localization method by Saurer

et al. [163], denoted in this thesis as HLoc.
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However, a single dataset was not enough to convey the greedy nature of deep learn-

ing approaches. To build large-scale image-based datasets precisely aligned with the ter-

rain model, we experimented with two SfM-based approaches. The reconstruct-then-align

approach first reconstructs the 3D scene which is subsequently aligned with the terrain

model (Sec. 5.2). Although this approach reconstructed some areas frequently visited by

tourists, such as the Matterhorn in the European Alps and Yosemite Valley in the USA, it

failed to reconstruct many, not so often photographed scenes. Usually, we could not fully

reconstruct a scene due to drift, which was difficult to avoid in complex outdoor scenes

with unknown camera intrinsics, varying camera models, frequent occlusions, seasonal,

weather, and illumination changes.

To address this issue, we developed a novel method presented in Sec. 5.3, SfM with ter-

rain reference, which uses synthetically rendered ground-level images with known cam-

era parameters to restrict the reconstruction. To our knowledge this method is the first to

combine SfM reconstruction with rendered images and was a crucial step to get enough

training images to train our camera pose estimation method. In general, when the den-

sity and quality of the photographs is high (at least 10 photographs which see the same

scene from different viewpoints per square kilometer), it might be easier to use the two-

step reconstruct-then-align approach. With lower densities it is unlikely the scene will be

reconstructed properly, and our novel SfM with terrain reference shall be used.

9.1.2 Camera orientation estimation

In Chapter 6, we introduced an improved camera orientation estimation framework called

Confidence Fusion (CF). Confidence Fusion is based on a spherical cross-correlation of in-

dividual inputs that are fused to obtain a single estimate. Confidence Fusion takes features

(like edges or semantic segmentation) extracted from an input photograph and a synthet-

ically rendered spherical panorama. We used Confidence Fusion to illustrate that using

semantic segmentation of natural features—like forests, glaciers, water bodies, and sky—

for cross-domain outdoor scenes is complementary to using edges. We also compared our

CF method with the horizon line-based approach HLoc by Saurer et al. [163]. We found

out, that using our CF method which leverages jointly the edge and semantic segmen-

tation features is much more robust compared to matching only the horizon line. The

robustness of our CF method resides mainly in combination of high-frequency edges, and

low-frequency semantic segmentation information.

It is advantageous, that our CF method does not require the satellite orthophoto im-

agery. It requires only the DEM and the semantic segmentation map which is publicly

available worldwide, from the open source OpenStreetMap project. On the other hand,

the precision and completness of the semantic segmentation map may vary across differ-
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ent parts of the world. According to our experience, the data are fairly complete in the

European Alps, but in the US territory some parts of the map are missing, e.g., forested

areas are too sparse in Yosemite Valley, USA.

9.1.3 Camera pose estimation

In Chapter 7 we introduced our approach to camera pose estimation with the use of

cross-domain keypoint descriptors. In this work, we covered the DEM with a satellite

orthophoto texture. Our goal was to find a full camera pose for a single image relative to

the terrain using Perspective-n-Point (PnP). We trained a cross-domain descriptor based

on two branch CNN with a shared trunk to address the cross-domain feature matching

problem using the datasets we built in Chapters 4 and 5. Our experiments illustrate that

training using our cross-domain data is important for achieving state-of-the-art perfor-

mance on the task of camera pose estimation using the terrain model. Furthermore, our

tiny and mobile friendly architecture performs similarly to much deeper state-of-the-art

CNNs, despite that both were trained with the same procedure and data.

Our camera pose estimation method also performs favorably on the task of camera ori-

entation estimation. We compared it to our Confidence Fusion method, which estimates

camera orientation by comparing the photograph’s edges and semantic segmentation with

synthetically rendered silhouettes and semantic segments from the terrain model. Accord-

ing to our experiments, our keypoint-based method estimates the same or better camera

orientation than our CF method.

A slight disadvantage of our keypoint-based approach is that it needs the satellite or-

thophoto texture, which contains essential cues for comparing local regions between the

photograph and the terrain. Although the satellite orthophoto textures are available for

the whole Earth’s surface, they might be costly in the resolution of 5 m/px with which we

obtained the best results. According to our experience, the cross-domain descriptor could

also be trained to use only the depth map, normal map and silhouettes. However, in this

case the number of successfully matched keypoints is significantly lower, since the de-

scriptive regions are located only in the neighborhood of edges and depth discontinuities,

which cover the image sparsely unlike the satellite texture.

9.1.4 Photography presentation

In Chapter 8 we proposed an approach to generate presentations of photographs aligned

with a terrain model. We proposed two modes of presentation, a passive mode for com-

puter screens, and an interactive mode for virtual reality presentations. Using our method,

users may easily create virtual hikes in the form of a fly-through and showcase their pho-
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tographs in the context of the virtual terrain to others. Our user study indicates that our

approach is more enjoyable compared to classical slideshows. Our analysis also shows

that our presentation method helps users to self-localize and better understand yet unvis-

ited scenes.

Originally, our method for automatic fly-through generation used the SfM to first re-

construct a sparse point cloud of the scene which was subsequently aligned with the

terrain model. Using this process, we were able to align a reasonable number of user’s

photographs with the terrain under the assumption that the scene was densely covered

with the photographs and contained enough distinctive landmarks. An example of such

a scene might be the Yosemite Valley in the USA. However, such SfM reconstruction is

expensive and prone to drift, especially in the mountainous areas. Both our camera ori-

entation estimation (Sec. 6), and our keypoint-based camera pose estimation (Sec. 7) are

drop-in replacements for precise photo-to-terrain alignment which avoid the computa-

tionally expensive SfM reconstruction.

9.2 Suggestions for Future Work

In this thesis we contributed towards a reproducible research of visual geo-localization

based on the comparison and matching of the photograph with the terrain model. We col-

lected large datasets of automatically aligned photographs with the terrain model, which

are suitable for training novel machine and deep learning models. With a lot of manual ef-

fort, we carefully created the GeoPose3K dataset suitable for method evaluation. We con-

tributed in-depth evaluations of existing method for horizon-based localization (HLoc)

by Saurer et al. [163]. We proposed a novel Confidence Fusion (CF) method for camera

orientation estimation based on fusing confidences estimated by matching semantic seg-

mentations and edges. To estimate position and orientation of the camera, we devised

a novel cross-domain descriptor powered by a compact CNN architecture. All our pro-

posed methods were carefully evaluated using the GeoPose3K dataset, which allowed us

to compare our approaches. We also illustrated, that our methods can be applied to create

novel immersive experiences by browsing photographs in virtual reality.

We believe that these contributions will stimulate a reproducible research of visual

geo-localization in outdoor, natural environments in the future. However, some problems

in visual geo-localization based on terrain models remain unsolved and we keep them as

a future work. Let us briefly introduce few examples.

Depth and normals estimation. Our datasets we created throughout this thesis, the Geo-

Pose3K and the SfM-based datasets, contain pixel-level annotations of the absolute depth
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and direction of surface normals. Ahmad et al. [4] already used the GeoPose3K dataset for

training horizon line detection, and we used it in Chapter 6 for training semantic segmen-

tation. Therefore we anticipate that these datasets are readily usable for training depth and

surface normal predictors. Once trained to estimate a metric depth or surface normals sim-

ilar to the terrain model, we could subsequently use such estimators for photography en-

hancement in computational photography applications [99, 30], or visual geo-localization.

Large scale localization. This thesis proposed a novel method for 3-DOF camera orien-

tation estimation with a known camera position (Chapter 6) and a novel cross-domain de-

scriptor allowing full 6-DOF camera pose estimation using the Perspective-n-Point (PnP)

method (Chapter 7). However, large scale position estimation in outdoor environments

still awaits in-depth research. According to our literature review in Chapter 2, outdoor

visual geo-localization is problematic due to sparse coverage by photographs. The pho-

tographs are clustered at locations frequently visited by tourists; however, large not so

popular areas are covered by photographs only sporadically. The sparse coverage is why

we need to find other solutions to create visual databases. Researchers solved this problem

by rendering a terrain from a DEM and using horizon-line features to create geospatial vi-

sual databases [190, 189, 186, 214, 200, 37, 163]. According to the results of HLoc, our

implementation of Saurer et al. [163] in Chapter 4, localization based on the horizon line

feature is dependent on the horizon line detection precision. However, a precise and fully

automatic detection of the horizon line is a challenge on its own [5, 4, 144].

On the other hand, in Chapter 6, we illustrated that semantic segmentation helps cam-

era orientation estimation and adds information complementary to edge-based features.

A promising future research direction would be to incorporate the semantic segmentation

to a large scale visual localization approach to complement the horizon line features. The

DEM texture with a satellite orthophoto map could be, in theory, used for large scale visual

localization as well. Either training a global descriptor for image retrieval or utilizing our

existing local descriptor presented in Chapter 7 with quantization-based methods such

as Bag of Words (BOW) [180], Vector of Locally Agreggated Descriptors (VLAD) [86], or

Aggregated Selective Match Kernel (ASMK) [193] could be an interesting future research

direction.

Crowd-sourced enhancement of terrain textures. In Chapters 5, 6, and 7, we proposed

algorithms for the precise alignment of photographs with a terrain model. We believe that

an interesting future application could improve the terrain texture using the ground-level

photos aligned with the terrain. We could collect photographs from many users, align,

and re-project them on the terrain surface to improve the terrain visualization quality.
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Such an approach could significantly help overcome low resolution of orthophoto imagery

at locations with a steep terrain slope. However, developing such an application brings

further research challenges, such as choosing images with a similar season, weather, and

illumination so that they could be color mapped and blended into a single texture.
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Appendix A

Cameras in GeoPose3K

We present a complete list of cameras from the GeoPose3K dataset in Tab. A.1.

Camera model # Camera model #

Canon DIGITAL IXUS 860 IS 253 Canon EOS 650D 2

Canon EOS 6D 112 Canon EOS DIGITAL REBEL XTi 2

COOLPIX L5 109 Canon EOS-1D Mark II N 2

Canon PowerShot G9 90 Canon EOS-1D Mark III 2

iPhone 5 89 Canon PowerShot A530 2

NIKON D300 76 Canon PowerShot S3 IS 2

iPhone 4 72 Canon PowerShot S60 2

NIKON D80 63 Canon PowerShot SX120 IS 2

NIKON D7000 60 Canon PowerShot SX200 IS 2

DMC-TZ5 59 Canon PowerShot SX260 HS 2

NIKON D90 59 DMC-FS10 2

Canon EOS 400D DIGITAL 54 DMC-FT1 2

Canon PowerShot D10 52 DMC-FZ28 2

EX-S600 46 DMC-FZ62 2

Canon DIGITAL IXUS 870 IS 45 DMC-GF1 2

NIKON D700 45 DMC-GF2 2

Canon EOS 450D 42 DMC-TS2 2

Canon EOS 7D 39 DMC-TZ4 2

SLT-A55V 37 DMC-TZ41 2

Canon DIGITAL IXUS 970 IS 36 DSLR-A700 2

SLT-A77V 34 DiMAGE A1 2

Canon EOS 60D 30 DiMAGE A2 2

Canon PowerShot G11 30 DiMAGE Z1 2

NIKON D800 30 Digimax V5 / Kenox V5 2

NIKON D3X 29 E5900 2

Canon EOS 350D DIGITAL 28 E7900 2

Canon PowerShot S95 27 EX-Z120 2

Canon EOS 5D Mark II 26 EX-Z5 2

DMC-TZ10 26 EX-Z700 2

NIKON D40 26 FinePix S2000HD 2

Canon EOS 40D 25 KODAK DX4530 ZOOM DIGITAL CAMERA 2

NIKON D5000 25 KODAK EASYSHARE V1273 DIGITAL CAMERA 2

NIKON D60 25 KODAK Z612 ZOOM DIGITAL CAMERA 2

DSC-RX100 23 NEX-5 2

Canon EOS 500D 22 NIKON D3200 2

DSLR-A290 22 NIKON D3S 2

Canon DIGITAL IXUS 40 21 PENTAX DL 2

Canon EOS 5D Mark III 21 PENTAX K-7 2

Canon PowerShot S100 20 PENTAX Optio VS20 2

iPhone 4S 20 TG-1 2

Canon PowerShot A710 IS 19 iPad 2

E-P3 18 iPhone 2

M9 Digital Camera 18 iPhone 3GS 2

NEX-7 18 Digimax U-CA 5, Kenox U-CA 5 / Kenox U-CA 50 1

Canon EOS 50D 17 KENOX S860 / Samsung S860 1

Canon EOS REBEL T3 17 C-5000Z 1

Canon PowerShot G10 17 C40Z,D40Z 1

PENTAX K100D 17 C720UZ 1

Canon DIGITAL IXUS 800 IS 15 COOLPIX AW110 1

Canon EOS 1000D 15 COOLPIX L1 1
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Canon EOS 550D 15 COOLPIX L27 1

Canon PowerShot A640 15 COOLPIX P1 1

COOLPIX AW100 14 COOLPIX P300 1

KODAK EASYSHARE Z950 DIGITAL CAMERA 13 COOLPIX P510 1

NIKON D200 13 COOLPIX P7000 1

NIKON D800E 13 COOLPIX P7700 1

DMC-FZ38 12 COOLPIX P80 1

DiMAGE 7i 12 COOLPIX S10 1

SLT-A65V 12 COOLPIX S230 1

Canon EOS 20D 11 COOLPIX S500 1

DiMAGE A200 11 COOLPIX S610 1

DiMAGE Z5 11 Canon DIGITAL IXUS 330 1

DMC-LX3 10 Canon DIGITAL IXUS 500 1

DSLR-A550 10 Canon DIGITAL IXUS 700 1

E4500 10 Canon DIGITAL IXUS 750 1

NEX-3 10 Canon DIGITAL IXUS 90 IS 1

NIKON D3100 10 Canon EOS REBEL T2i 1

Canon EOS 30D 9 Canon EOS-1Ds Mark II 1

DMC-TZ35 9 Canon IXY DIGITAL 25 IS 1

DSLR-A350 9 Canon PowerShot A3200 IS 1

NIKON D5100 9 Canon PowerShot A4000 IS 1

NIKON D70 9 Canon PowerShot A470 1

PENTAX K200D 9 Canon PowerShot A590 IS 1

COOLPIX P520 8 Canon PowerShot A610 1

DSLR-A900 8 Canon PowerShot A700 1

PENTAX K-3 8 Canon PowerShot A80 1

PENTAX K10D 8 Canon PowerShot A95 1

PENTAX Optio 33L 8 Canon PowerShot G1 X 1

S1 8 Canon PowerShot G5 1

Canon EOS 300D DIGITAL 7 Canon PowerShot G7 1

Canon PowerShot G12 7 Canon PowerShot Pro1 1

DMC-FZ18 7 Canon PowerShot S30 1

DMC-TZ20 7 Canon PowerShot S50 1

DYNAX 7D 7 Canon PowerShot S80 1

NEX-6 7 Canon PowerShot SD1000 1

X-E1 7 Canon PowerShot SD700 IS 1

COOLPIX S9100 6 Canon PowerShot SX100 IS 1

Canon DIGITAL IXUS 55 6 Canon PowerShot SX220 HS 1

Canon EOS 600D 6 D40 1

Canon PowerShot A650 IS 6 D700 1

FinePix S5600 6 DMC-FX37 1

NIKON D4 6 DMC-FX40 1

NIKON D7100 6 DMC-FX8 1

Digimax S1000 / Kenox S1000 5 DMC-FZ30 1

COOLPIX L22 5 DMC-FZ5 1

COOLPIX P5000 5 DMC-FZ50 1

COOLPIX P6000 5 DMC-FZ7 1

COOLPIX S620 5 DMC-G2 1

Canon EOS 5D 5 DMC-LS75 1

Canon EOS DIGITAL REBEL XSi 5 DMC-LX5 1

Canon PowerShot A720 IS 5 DMC-TZ15 1

DMC-GH2 5 DMC-TZ3 1

DMC-TZ18 5 DMC-TZ7 1

DSLR-A500 5 DSC-W120 1

E-M5 5 DSLR-A230 1

PENTAX K-5 5 DSLR-A580 1

PENTAX Optio W20 5 DiMAGE G500 1

VSCOcam 5 DiMAGE X1 1

iPhone 5s 5 E-510 1

Canon DIGITAL IXUS 850 IS 4 E3100 1

Canon EOS REBEL T1i 4 E3500 1

Canon PowerShot S2 IS 4 E4600 1

DMC-FT3 4 E5200 1

DMC-FX01 4 EOS 40D 1

DSLR-A200 4 EX-FH20 1

FinePix F31fd 4 EX-H20G 1

FinePix2800ZOOM 4 EX-Z110 1
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KODAK EASYSHARE C613 ZOOM DIGITAL
CAMERA

4 EX-Z4 1

N97 4 EX-Z40 1

NIKON D300S 4 EX-Z55 1

NIKON D50 4 EX-Z60 1

NIKON D70s 4 EX-Z750 1

PENTAX DS 4 FinePix A800 1

SAMSUNG WB550, WB560 / VLUU WB550 /
SAMSUNG HZ15W

4 FinePix F30 1

Digimax S830 / Kenox S830 3 FinePix F450 1

COOLPIX P5100 3 FinePix J150W 1

COOLPIX S4 3 FinePix S200EXR 1

Canon DIGITAL IXUS 65 3 FinePix S5000 1

Canon DIGITAL IXUS 950 IS 3 FinePix S6500fd 1

Canon EOS 1100D 3 FinePix S7000 1

Canon PowerShot A620 3 HP PhotoSmart C945 (V01.46) 1

Canon PowerShot A70 3 HP PhotoSmart R707 (V01.00) 1

Canon PowerShot S5 IS 3 KODAK CX7530 ZOOM DIGITAL CAMERA 1

Canon PowerShot SX230 HS 3 KODAK DX7440 ZOOM DIGITAL CAMERA 1

DC P500 3 KODAK EASYSHARE C195 Digital Camera 1

DMC-FX35 3 KODAK EASYSHARE ZD710 ZOOM DIGITAL
CAMERA

1

DMC-FZ200 3 KODAK V610 DUAL LENS DIGITAL CAMERA 1

DMC-G3 3 Konica Digital Camera KD-400Z 1

DMC-TZ30 3 LEICA X1 1

DMC-TZ31 3 NEX-3N 1

DMC-TZ6 3 NIKON D100 1

DSLR-A100 3 NIKON D1X 1

DSLR-A300 3 NIKON D2Xs 1

E-PL3 3 NIKON D3000 1

EX-Z75 3 NV20, VLUU NV20 1

FinePix JZ500 3 PENTAX DL2 1

Hasselblad H3D 3 PENTAX K-r 1

KODAK Z740 ZOOM DIGITAL CAMERA 3 PENTAX K100D Super 1

NIKON D3 3 PENTAX Optio S4 1

NIKON D40X 3 PENTAX Optio S7 1

NIKON D600 3 PENTAX Optio WPi 1

PENTAX K-x 3 QV-R52 1

VR330,D730 3 SAMSUNG ES15 / VLUU ES15 / SAMSUNG SL30 1

WB2000 3 SAMSUNG ES55,ES57 / VLUU ES55 / SAMSUNG
SL102

1

C750UZ 2 SAMSUNG ES74,ES75,ES78 / VLUU ES75,ES78 1

COOLPIX S9500 2 SAMSUNG WB850F/WB855F 1

Canon DIGITAL IXUS 50 2 SLT-A35 1

Canon DIGITAL IXUS 70 2 SLT-A57 1

Canon DIGITAL IXUS 80 IS 2 SLT-A99V 1

Canon DIGITAL IXUS 85 IS 2 SP560UZ 1

Canon EOS 100D 2 X-Pro1 1

Table A.1: Number of images per camera model in the GeoPose3K dataset.
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Appendix B

Additional Experiments on Venturi Mountain Dataset

We provide complete results on Venturi Mountain dataset [142] generated by our method

using Confidence Fusion (CF) with semantic segments discussed in Chapter 6. We plot

camera orientation error per frame, on both low (Fig. B.1) and high (Fig. B.2) resolution.

We also present results for all discussed variants of our CF method and keypoint-based

method for camera pose estimation (LSAR-Ours) presented in Chapter 7 on Venturi moun-

tain dataset in Tab. B.1, including mean and median of the orientation error for each se-

quence.
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(a) Venturi F1, low resolution
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(b) Venturi F2, low resolution
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(c) Venturi F3, low resolution
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(d) Venturi F4, low resolution
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(e) Venturi F5, low resolution
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(f) Venturi F6, low resolution
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(g) Venturi J1, low resolution
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(h) Venturi J2, low resolution
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(i) Venturi J3, low resolution
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(j) Venturi J4, low resolution
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(k) Venturi J5, low resolution
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(l) Venturi J6, low resolution

Figure B.1: Per-frame orientation error on Venturi mountain dataset (low resolution).

186



0 50 100 150 200 250
# frame

0.1

1.0

10.0

50.0

180.0

or
ie

nt
at

io
n

er
ro

r
[◦

] CF-VCC-2011

CF-VCC-2011-m3D

LSAR-Ours

VCC-2011

VCC-2011-m3D

(a) Venturi F1, high resolution
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(b) Venturi F2, high resolution

0 50 100 150 200
# frame

0.1

1.0

10.0

50.0

180.0

or
ie

nt
at

io
n

er
ro

r
[◦

] CF-VCC-2011

CF-VCC-2011-m3D

LSAR-Ours

VCC-2011

VCC-2011-m3D

(c) Venturi F3, high resolution
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(d) Venturi F4, high resolution
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(e) Venturi F5, high resolution

0 100 200 300 400 500
# frame

0.1

1.0

10.0

50.0

180.0

or
ie

nt
at

io
n

er
ro

r
[◦

] CF-VCC-2011

CF-VCC-2011-m3D

LSAR-Ours

VCC-2011

VCC-2011-m3D

(f) Venturi F6, high resolution
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(g) Venturi J1, high resolution
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(h) Venturi J2, high resolution
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(i) Venturi J3, high resolution
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(j) Venturi J4, high resolution
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(k) Venturi J5, high resolution
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(l) Venturi J6, high resolution

Figure B.2: Per-frame orientation error on Venturi mountain dataset (high resolution).
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89.11
128.47

141.65
54.48

20.21
120.40

128.22

-
LSA

R
-O

urs
19.2

41.86
0.62

0.44
40.92

17.08
104.53

110.48
1.03

0.59
23.01

1.18
3.79

0.56

R
esolution

M
ethod

J1
J2

J3
J4

J5
J6

m
ean

m
ed.

m
ean

m
ed.

m
ean

m
ed.

m
ean

m
ed.

m
ean

m
ed.

m
ean

m
ed.

low

C
F-V

C
C

-2011-m
3D

3.51
0.33

1.20
0.57

1.31
0.51

1.20
0.86

5.93
0.46

2.41
0.47

V
C

C
-2011-m

3D
132.92

162.81
0.71

0.53
0.55

0.54
1.20

0.81
41.04

36.50
4.46

0.47

C
F-V

C
C

-2011
7.41

7.17
6.75

4.57
23.87

8.54
8.85

4.68
55.39

68.35
19.01

5.41

V
C

C
-2011

165.12
164.99

34.25
28.30

15.96
8.53

131.28
169.19

86.24
87.79

81.79
67.31

C
F

4.71
4.57

12.64
4.67

92.17
139.49

55.97
55.36

128.39
123.76

45.01
29.43

high

C
F-V

C
C

-2011-m
3D

4.54
0.26

1.26
0.54

0.50
0.47

1.18
0.80

5.24
0.47

0.47
0.47

V
C

C
-2011-m

3D
5.17

0.26
1.08

0.53
0.50

0.47
1.18

0.80
6.29

0.47
0.66

0.47

C
F-V

C
C

-2011
1.85

1.05
0.93

0.93
8.32

1.13
1.42

1.02
41.65

1.29
0.75

0.76

V
C

C
-2011

158.06
160.73

27.77
25.93

8.75
6.90

132.92
169.56

79.56
85.01

0.78
0.78

C
F

2.68
2.67

7.14
1.48

79.02
138.09

57.24
51.70

132.40
128.91

9.60
3.73

-
H

Loc-synthetic
115.54

116.50
86.08

114.19
6.01

1.83
4.11

1.13
3.84

1.54
40.85

0.48

-
H

Loc-deeplab
115.23

116.59
134.89

142.98
28.61

3.10
100.10

161.00
57.67

14.72
155.35

155.07

-
LSA

R
-O

urs
0.85

0.64
0.84

0.61
19.21

1.61
1.41

0.9
54.62

50.24
0.8

0.42

Table
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ean
and

m
edian

orientation
error

(in
degrees)ofthe

C
onfidence

Fusion
(C

F)proposed
in

C
hapter

6,and
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keypoint-based

cam
era

pose
estim

ation
m

ethod
(LSA

R
-O

urs)introduced
in

C
hapter

7
on

VenturiM
ountain

dataset.
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