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Abstract
This dissertation is a collection of the author’s peer-reviewed papers, with a common topic
of computer network forensic analysis, published in journals and conferences in computer
science, digital forensics. In contrast to understanding network forensics as a discipline
of network security monitoring, this work’s merit is to aid law enforcement agency (LEA)
officers in conducting network forensic investigations. The distinction lies in putting em-
phasis on extracting evidence from illicit activities rather than detecting network attacks
or security incidents.

This work revisits methods used for the forensic investigation of captured network traf-
fic by critically analyzing tools commonly used by LEA investigators. The objective is to
identify weaknesses, design solutions, and propose new approaches. Particular interest is
given to processing incomplete network communication that typically occurs in low-quality
interception provided by Internet Service Providers (ISPs). The proposed method involves
omitting missing parts and intelligently rewinding the protocol parsers to pass the missing
segments using information from transport and internet layers. This process allowed the cre-
ation of novel features for the application protocol identification, thus additionally enabling
application protocol identification and finer-grained application identification. Subsequent
research analyzed the performance characteristics of single-machine captured network com-
munication and designed, implemented, and evaluated a linearly scalable architecture for
distributed computation. Lastly, the problem of overlay and tunneled communication was
tackled by thoroughly analyzing Generic Stream Encapsulation (GSE).

The presented research is publicly available, except for the limitations enforced by the
publishing houses. When applicable, methods have been implemented into the open source
network forensic investigation and analysis tool, Netfox Detective, and verified using en-
closed datasets. All data sets and results are available and referenced in their respective
publications.
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Rozšířený abstrakt
Tato disertační práce je souborem vybraných recenzovaných prací autora spojených té-

matem forenzní analýzy počítačových sítí. Práce byly publikovány v posledním desetiletí
v časopisech a konferencích zaměřujících se na oblast informatiky se specializací na dig-
itální forenzní analýzu. Tato práce se nedívá na síťovou forenzní analýzu jako disciplínu
monitorování síťové bezpečnosti, ale zajímá se o pomoc při forenzním vyšetřování kriminal-
isty z policejních složek (LEA). Rozdíl spočívá spíše v zaměření se na získávání důkazů o
nezákonných činnostech než na odhalování síťových útoků nebo bezpečnostních incidentů.

Následující text uvádí přehled přiložených článků (v chronologickém pořadí) v této práci.
Článek VII popisuje první iteraci našeho síťového forenzního nástroje Netfox Detective.
Je uvedena prezentace jeho architektury určené pro jedno uživatelské prostředí pracovní
stanice. Dokument popisuje výzvy a problémy, které bylo nutné pro úspěšný návrh a im-
plementaci síťového forenzního nástroje vyřešit. Nejdůležitějším přínosem tohoto výzkumu
bylo zjištění, že kvalita vstupních dat je mnohdy nízká a je třeba, aby byl tento fakt zohled-
něn již v počátku návrhu síťového forenzního systému.

Z tohoto důvodu jsme se zaměřili na problematiku zpracování neúplných dat a naše
závěry publikovali v článku VI. Neúplnost zachycené síťové komunikace může být způsobena
několika vlivy. Nejčastějšími jsou zahození packetu z důvodu přetečení vyrovnávací paměti
sondy, odposlech na lince, kde je aplikováno asymetrické směrování, vyrovnávání zátěže
mezi několik serverů (load balancing). Naším řešením je postavit heuristiky s využitím
informací ze síťové a transportní vrstvy a provést aproximaci určení aplikačních zpráv.

Navržené heuristiky pro detekci začátku a konce aplikační zprávy je možné využít i pro
zpřesnění identifikace aplikačních protokolů. Článek V popisuje náš výzkum z této oblasti,
kde jsme porovnali tři ML algoritmy využívající náš framework pro zpracování síťové ko-
munikace spolu s extraktory vlastností založených jak na standardních identifikátorech, tak
na námi nově navržených identifikátorech s využitím výše zmíněných heuristik. Zkoumali
jsme vzájemné závislosti vlastností, které jsou odlišné pro jednotlivé aplikační protokoly,
a navrhli využít eliminaci takto korelovaných vlastností. Výzkum jsme uzavřeli návrhem
statistické metody, která zakomponovala výše zmíněné poznatky.

Článek IV je zaměřený na vyšetřovatele, kteří působí v terénu a získávají důkazy přímým
přístupem do zabezpečených Wi-Fi sítí. Tímto způsobem je možné odhalit přímo připo-
jená zařízení, interagovat s nimi a obstarat data, která jsou detailnější nežli běžný záchyt na
úrovni poskytovatele připojení. Cílem uvedeného článku je prozkoumat možnosti provedení
automatizované penetrace bezdrátové sítě a zprostředkování přímého přístupu ke komu-
nikaci (Man-in-the-Middle) i pro vyšetřovatele, kteří nemají dostatečné technické vzdělání
v IT oboru.

Rostoucí množství dat přenášených po síti zvyšuje výpočetní nároky na výpočetní
prvky analyzující zachycenou komunikaci. Vzhledem k tomu, že vertikální škálování není
udržitelný proces, může být na čase zaměřit se na změnu přístupu a prozkoumat možnosti
škálování do šířky, tedy provedení analýzy zachycené komunikace na více výpočetních
prvcích než jeden pracovní stroj vyšetřovatele. V článku III jsme se zaměřili na návrh
takového systému, který respektuje dříve zmíněné způsoby zpracování poškození komu-
nikace a zároveň umožňuje zpracovat síťovou komunikaci na clusteru výpočetních prvků.

Poslední identifikovanou výzvou, na kterou se v této práci zaměříme, je zpracování
tunelovaného provozu. Článek II popisuje tunelovací protokoly, se kterými se mohou LEA
vyšetřovatelé běžně setkat. Vybrali jsme jeden z komplexnější protokolů, Generic Stream
Encapsulation (GSE,) na kterém ukazujeme možnosti integrace podpory zpracování do
našeho síťového forenzního nástroje.



Poslední přiložený článek I shrnuje tuto disertační práci popisem našeho síťového foren-
zního nástroje Netfox Detective, jakožto demonstračního prostředí metod a konceptů, které
tato práce a přiložené články popisují. S využitím tohoto nástroje ověřujeme představené
metody v praxi.

Prezentovaný výzkum je volně dostupný vyjma článků s omezeným přístupem. Tam, kde
to bylo možné, byly metody implementovány do našeho nástroje pro forenzní vyšetřování
a analýzu sítě s otevřeným zdrojovým kódem a jsou plně dostupné komunitě. Metody
byly ověřeny pomocí přiložených datových sad. Všechny datové sady a výsledky jsou volně
dostupné a odkazované v příslušných publikacích.



Methods for Intelligent Network Forensics

Declaration
I hereby declare that this PhD thesis was prepared as an original work by the author under
the supervision of doc. Ing. Onřej Ryšavý, Ph.D. I have listed all the literary sources,
publications, and other sources, which were used during the preparation of this thesis.

. . . . . . . . . . . . . . . . . . . . . . .
Jan Pluskal

August 15, 2022

Acknowledgments
I want to express my deepest thanks to my supervisor Ondřej, thank you for the opportunity
to become part of the NES@FIT research group, to study and work under your supervision,
and to my colleagues – the members of our research group – guys, it has been my pleasure
to work with you!

My gratitude belongs to my lifelong love and companion, whom I respect deeply, Galina;
thank you for your support and willingness to stand by my side and always take care of
everything that is needed when I am not there to support you and help you out. Clara,
our daughter, even though you don’t realize it yet, you are my inspiration to overcome all
hardships, to finish my duties just to get back home to you, and overall to become a better
version of myself. If you ever happen to read this, let me know how I managed it.

My parents and grandparents, thank you for raising me this way and supporting me
throughout my life. Even though not all of you are with me today, your wisdom guided me
throughout my life, and your support was and continues to be invaluable to me.

Vladimir, here goes my third recipe for your students’ cookbook. I hope you will really
publish it! This one is for muffins, which are Clara’s favorite.

Muffins

• 400 g plain flour
• 2 pcs baking powder
• 250 ml semi-skimmed milk
• 250 g sugar
• 200 g chocolatey, both dark and white combined
• 2 pcs banana
• 250 g roast fat

The instructions are simple – mix all ingredients, fill the pucks, bake it for 45 minutes
on 200 °C and enjoy!



Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research Goal and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Structure of the Dissertation Thesis . . . . . . . . . . . . . . . . . . . . . . 6

2 State of the Art 7
2.1 Network Forensics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Network Forensic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Capturing and Processing of In/complete Network Data . . . . . . . . . . . 13
2.4 Application Protocol Identification . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Overlay and Tunneling Network Protocols . . . . . . . . . . . . . . . . . . . 16
2.6 Network Forensics of Big Data . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Research Summary 18
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Papers Included in this Dissertation . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.5 Paper V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.6 Paper VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.7 Paper VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Relevant Publications not Included in this Dissertation . . . . . . . . . . . . 29
3.4 Research Projects and Grants . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Software and Specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Invited Speeches, Presentations and Posters . . . . . . . . . . . . . . . . . . 31
3.7 Selected Relevant Supervised Theses . . . . . . . . . . . . . . . . . . . . . . 32
3.8 Other Supervised Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Conclusions 36
4.1 The Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Final Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 39

1



A Included Papers 45
A.1 Netfox detective: A novel open-source network forensics analysis tool . . . . 45
A.2 Network Forensic Investigations of Tunneled Traffic: A Case Study . . . . . 59
A.3 Network Forensics in GSE Overlay Networks . . . . . . . . . . . . . . . . . 66
A.4 Network Forensic Analysis for Lawful Enforcement on Steroids, Distributed

and Scalable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.5 A Scalable Architecture for Network Traffic Forensics . . . . . . . . . . . . . 87
A.6 Automated Man-in-the-MiddleAttack Against Wi-Fi Networks . . . . . . . 93
A.7 Automation of MitM Attack on Wi-Fi Networks . . . . . . . . . . . . . . . 118
A.8 Traffic Classification and Application Identification in Network Forensics . . 133
A.9 Advanced Techniques for Reconstruction of Incomplete Network Data . . . 156
A.10 Netfox Detective: A Tool for Advanced Network Forensics Analysis . . . . . 173

2



Chapter 1

Introduction

The presented dissertation is a collection of peer-reviewed papers with a common topic of
computer network forensics. The paper’s target audience are law enforcement investigators,
specialists, and programmers of network forensic tools. These papers reflect the author’s
journey of gaining experience in computer network forensics, forensic investigation, and
law enforcement investigators’ daily work. Struggling to improve the current state, I was
looking for solutions to the open questions proposed by the Law Enforcement Agencies
(LEA) practitioners.

1.1 Motivation

Traditional Network Forensics, as the state-of-the-art Chapter 2 indicates, is focused on in-
cident detection and response (i.e., IDS/IPS system) in the scope of network administration
intended for small businesses, corporations, and critical infrastructure networks.

This thesis aims to address the problem from the point of view of LEA investigators
whose modus operandi differs from those of network administrators. Of course, there is
related work focused on the LEA investigators’ needs, but, as it appears, the current state
does not meet their demands, suggested by the constant innovation supported by national
grants such as VG20102015022, VI20172020062, VH20192021043.

This research dates back to 2014 (and continues onward), just after Snowden’s leak,
when penetration of encryption on the public Internet services was not considered a "big
issue." As history proves, eight years after, we can still encounter some services that do
not use encryption, e.g., some email transfer services, low-energy IoT communication, and
plain DNS. Some of them may leak metadata even when the actual content is encrypted
(like pre-TLS 1.3 leaked service name identifiers (SNI)).

Network forensic tools are becoming, as is usually the fate of an open source when it is
no longer maintained, inadequate for the task. That is because, more often than not, they
are developed as academic research and supported by a grant project. After the project
ends and the tool has not been mass-publicized, not at the science conferences but among
the actual end-users, the project tends to be abandoned and no longer maintained. Due to
the rapid evolution of communication, it is adrift and no longer entirely usable. Addition-
ally, these tools require expert knowledge because, in the majority, they are single-purpose
solutions controlled by a command-line interface or a simple graphical user interface. LEA
officers without adequate training and deep domain knowledge will likely not use them
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or miss crucial evidence. Also, there is the issue of visibility of such tools because LEA
investigators tend to "do the job," not the research of methodologies and tools.

In contrast, commercial products developed by teams of hundreds of employees with
proper founding can keep up with the evolution and keep the tools entirely usable and
production ready. They typically use a user-friendly interface to process data sources and
provide the investigator with an easily understandable reports. Because of that, commercial
tools are de facto becoming standards admissible in a court of law. These tools are intended
to be massively used by LEA, but because they are closed source, ever-suspicious investiga-
tors are wary of using them. Therefore, there is pressure for applied academic research to
produce open source, customizable, and reliable tools. An additional motivation to create
open source network forensic tools is that LEA investigators have approaches that need to
be kept confidential. Revealing them to a private company that supplied a commercial tool
is either inconceivable, or the cost for customization of such tool is economically unrea-
sonable. Therefore, the open source nature allows for such approaches’ easy extendability
while maintaining the low cost of such modifications. Furthermore, these changes can be
rebased on the tool mainstream, thus allowing for almost effortless tool upgrades.

Here we are, between open source single-purpose tools that are trustworthy but hard to
use and commercial ones "to fit all them easily usable tools" that are not customizable and
may not be trusted by some LEA investigators.

This research tries to help LEA investigators combat cybercrime by providing advanced
state-of-the-art methods for network forensic investigation packed in a graphical application
that validates the results and allows practical applications.

In simple terms, this dissertation can be considered a cookbook on how to write your
network forensic investigation tool that is customizable to fit various use cases, the chal-
lenges you will face, and the approach you can take to conquer them.

1.2 Problem Statement
The connection speed to the Internet in households, small businesses, and virtual private
servers (VPS) rentable in data centers is experiencing unprecedented growth. Illegal ac-
tivities carried out on devices connected to the Internet pose various challenges to LEA
investigations.

First, the amount of criminal activities conducted over the network increases with the
penetration of new digital technologies amongst the population, implicating the increase of
cases for digital forensic investigators to solve. This fact creates a problem because there
is a shortage of IT specialists in the LEA officers’ lines.

Second, the increase in communication speed generates more data to be processed by
forensic specialists, which requires increased computing power to process the data and,
furthermore, the introduction of appropriate methods to utilize the added resources to
scale well.

Due to the expert shortage, the solution seems to be the research of novel approaches, the
use of more sophisticated methodologies, and modern tools to be used by the investigators;
otherwise, processing the ever-increasing amount of data appears to be unsustainable.
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1.3 Research Goal and Objectives

The goal is to revisit network forensic methods to improve their capabilities
and reliability for processing network communication and extracting evidence,
enabling the implementation of efficient tools for LEA investigators.

Therefore, the incentive of this dissertation is to help LEA investigators deal with Net-
work Forensic investigations in their daily work.

During the past eight years, I have been in contact with multiple LEA investigators,
LEA executives, and commercial vendors during private meetings, scientific conferences, or
closed business conferences organized directly for LEAs. During this time, I realized that as
long as there is demand, there is a vendor that has a solution to LEA problems. But LEAs
are bureaucratic organizations with a fixed budget that requires planning, and adaptation
to novel problems occurs slowly.

To mitigate this conundrum, this dissertation states the following research objectives to
collect, update, or propose novel approaches to problems of network forensic investigation;
see the following description and Figure 1.1 for the visual representation of the linkage
between the objectives and the selected papers.

Capturing and processing in/complete network data is a fundamental step for
network forensic investigation. Without the ability to robustly deal with missing parts
of the communication, application protocol parsers must stop on the first occurrence
of a missing piece of the communication, no matter how small or significant it is for
the investigation.

Application protocol and finer-grained application identification are necessary
steps before using an application protocol parser to dissect the communication. The
decision must be made to identify which application protocol is used in the particular
application flow. Taking the identification further, we may also deduce some valuable
meta-information, such as which application was used by the user. Furthermore, the
classifier should not expect that the communication is entirely captured.

What should be the architecture of a network forensic tool / scale or not to
scale are questions many ask. Is it better to run the tool on a single machine /
workstation environment, be centralized on dedicated server(s), or scale up past a
single computation unit and utilize spare resources on a cluster? Is the achievable
speed improvement worth the cost of the computation hardware?

Tunneled and overlay networks have been used to interconnect geographically sep-
arated networks or computer systems to allow end-to-end connectivity and possibly
add a security layer using encryption. For forensic investigators, such technology is
a significant factor, even though the data transported may not be fully read due to
encryption.
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Revisit methods used in network forensics tools to improve
their capabilities of processing captured network

communication and extraction of evidence in order to relax
requirements on the technical expertise of LEA

investigators.

Capturing and
processing of
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applications
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network forensic

tool/scale or not to
scale

Tunnelled and overlay
networks

Paper I: 
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analysis tool

Paper II:  
Network Forensic
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Tunneled Traffic: A
Case Study

Paper III: 
Network Forensic
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Enforcement on

Steroids, Distributed
and Scalable 

Paper IV:  
Automated Man-in-
the-Middle Attack
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Paper V:  
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and Application
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Network Forensics

Paper VI: 
Advanced

Techniques for
Reconstruction of

Incomplete Network
Data 

Paper VII:   
Netfox Detective: A
tool for advanced
network forensics

analysis

Figure 1.1: This figure depicts relations between research goal, objectives and selected
papers.

These objectives and their solutions are implemented primarily in the Netfox Detective
network forensic tool, which demonstrates the validity and verifies the usability of this
research in real-world applications.

1.4 Structure of the Dissertation Thesis
The dissertation is a composition of the selected conference and journal publications of
the author accompanied by a rational introduction part. The seven selected peer-reviewed
papers summarize the contribution of this dissertation. All papers are attached in their
original publicized form.

The dissertation is organized as follows. The first chapter provides an introduction,
including motivation, a problem statement, and a brief description of the goal and research
objectives. The second chapter places the research in its appropriate place by defining the
related work. The third chapter summarizes the author’s research and contributions. The
last chapter discusses the results, highlights contributions, and concludes this thesis.
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Chapter 2

State of the Art

Related work is a fundamental part of every research, so let us define the context for this
dissertation. This chapter is divided into six sections concerning the research objective
stated in Section 1.3.

First, let us clarify the meaning of network forensics and designate this dissertation
in this subdiscipline of computer forensics. Section 2.1 brings a broader introduction to
network forensics, as seen by various renowned authors in this field. Multiple theoretical
frameworks are discussed to describe the recommended forensic approaches.

To develop advanced methods for forensic investigation of networks, it is necessary to
study existing tools, identify weaknesses, and design improvements. Section 2.2 provides
a brief overview of these tools. The distinction between multiple categories is made, and
various taxonomies are presented. Notice that taxonomies classify tools into numerous
categories that may not correspond to each other. In other words, the authors may not
agree on the classification.

To do the advanced, we need to define the basics. Section 2.3 covers the approach to
processing network data. Distinctions are made between Network Security and Monitoring
(NSM) tools and Network Forensic and Analysis Tools (NFAT). The crucial role of packet
loss intercepting is underscored by some suggestions for achieving it.

Before we can parse the network traffic, knowing which application protocol carried
the data is crucial. Section 2.4 covers related research for the identification of application
protocols. This information is essential because we need to know the application protocol
used to apply an appropriate parser to extract valuable information. In some cases, when
data are encrypted, extraction of metadata, such as SNI 1 in the case of TLS/SSL, or
categorization of application and content types, such as voice or text, could be essential.

Not all communication is encapsulated in the traditional way (Ethernet | Wi-Fi) / (IPv4
| IPv6) / (TCP | UDP), but a significant amount of it is tunneled in overlay protocols such
as 6in4, Teredo, GSE, etc. Section 2.5 describes the processing capabilities of overlay
networks, mainly used in NFATs.

Lastly, because the amount of communication required for forensic investigations today
increases, Section 2.6 introduces related research on parallel processing, scalability, and
distributability of network forensic tools.

1Service Name Identifier reveals service hostname
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2.1 Network Forensics

Let’s assume that the term network forensics might be slightly confusing. The common un-
derstanding is that network forensics is a cross-over between digital forensics and computer
security [65]. It is concerned with the capture, recording, and analysis of network commu-
nication for for detecting and investigating incidents [53]. For simplicity, network forensics
deals with data traces acquired by passive or active network devices. The main goal of net-
work forensics is to investigate network evidence to determine whether there was a security
incident or other anomaly, provide evidence, and document their investigation [31].

According to Palmer, network forensics is the use of scientifically proven techniques
to collect, fuse, identify, examine, correlate, analyze, and document digital evidence from
multiple digital sources. The objective is to uncover facts related to planned intent or
successful measurement of unauthorized activities that are intended to disrupt, corrupt, or
compromise system components. Information gained during the investigation can be used
to respond to or recover from these illicit activities [52].

Network forensics can be described using various process models. The first, proposed
by Palmer [52] in DFRWS 2001, is a linear model that contains these steps: identification,
preservation, collection, examination, analysis, presentation, and decision. Emanuel Pilli
has updated this waterfall-like model with fast iteration shortcuts and called it a generic
process model [53]. The alternative to this model is the OSCAR process model, which
contains these steps: obtain information, strategize, collect evidence, analyze, and report.
Davidoff, who proposed it in his book "Network forensics: tracking hackers through cy-
berspace" [15], simplified it and made it linear again.

An inherent part of network forensics is its techniques (NFT). We can study them
based on forensic process models, forensic tools, and forensic frameworks. Khan, in his
"Network forensics: Review, taxonomy, and open challenges" [34], reviews fundamentals
such as traceback-based NFT, converge network-based NFT, attack graph-based NFT,
distributive-based NFT, and NFT using IDS.

2.2 Network Forensic Tools

Network forensics aims to make sense of volatile network communication. Interpreting low-
level network protocols requires expert knowledge to see the bigger picture [10]. Specific
network forensic tools can be used to relax the requirement of expert knowledge and make
the network forensic investigation accessible to more investigators [22, 25]. These tools
should support the summarization, clustering, and highlighting of relevant information [7],
such as extracting the content of transmitted files and user credentials or performing ad-
ditional analysis and visualization in an easily understandable form. Many single-purpose
network forensic tools are available (see more in the upcoming sections), but their capabil-
ities, functionality, and usability are lacking behind traditional forensic toolkits [10] such
as EnCase or Autopsy.

Network forensic tools are best described using taxonomies that categorize them accord-
ing to their properties. By studying multiple taxonomies, we can observe that authors may
disagree on the tool classification, i.e., one author classifies a tool as network monitoring
and another as forensic analysis.

One of the first taxonomies [23] proposed in 2002 by Simon Garfinkel is based on mon-
itoring and recording network data; see Table 2.1. The first approach, catch it as you can,
tries to capture all data that pass through the network in real-time and analyze them in
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batches later. This approach requires a large amount of data storage [42] but may produce
better results because multiple tools can be used to analyze these captured data. The
second approach, stop, look and listen, uses filtration to limit the amount of data captured
to deal with situations where it is not legal to record information unless for some specific
reason, such as a court order [23].

“catch it as you can”
Commercial NetVCR

NetIntercept
Open source tcpdump

windump

“stop, look, and listen”
Network Flight Recorder (NFR)
SillentRunner
snort intrusion detection system
NetWitness
"Carnivore" Internet wiretapping system

Table 2.1: Taxonomy of network forensic tools according to Simson Garfinkel, 2002, Table
source [77].

Meghanathan et al. in 2009 proposed in their taxonomy [45] to divide tools according
to their focus, emphasizing the growing interest in domain-specific tools; see Table 2.2. The
authors claim that the essential categories are email, web forensics, and packet sniffers.

Email forensics
emailTrackerPro
SmartWhoIs

Packet sniffers
AirPcap
Ethereal
WinPcap

Web forensics
Index.dat analyzer
Web Historian

Table 2.2: Taxonomy of network forensic tools according to Meghanathan et al., 2009,
Table source [77].
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One of the most complex taxonomies was indisputably proposed by Pilli and Joshi [53]
in 2010 in the Digital Investigation journal; see Table 2.3. They introduce the term Network
Forensic Analytical Tools as opposed to Network Security Monitoring tools. This distinction
is crucial in distinguishing tools designed for forensic investigators (NFAT) from those
intended for network administrators (NSM). This taxonomy was updated in 2016 by the
same authors [30]; see Table 2.4, resulting in more up-to-date categorization. Note that
the subcategories have changed slightly and that proprietary/commercial NFATs have been
reduced. This reduction in commercial tools is probably due to the increased secrecy around
them2.

NFATs
Open source NetworkMiner

PyFlag
Xplico

Proprietary DeepSee
InfiniStream
Iris
NetDetector
NetIntercept
NetWitness
OmniPeek
SilentRunner

NSM tools
Fingerprinting Nmap

P0f
IDS Bro

Snort
Manipulation TCPReplay

SiLK
Packet capture Argus

flow-tools
NfDump
Nessus
PADS
Sebek
TCPDump
TCPFlow
Wireshark

Pattern matching Ngrep
TCPXtract

Statistic NetFlow
Ntop
TCPDstat
TCPStat
TCPTrace

Table 2.3: Taxonomy of network forensic tools according to Pilli and Joshi, 2010, Table
source [77].

2Authors observation obtained while discussing the problem with tool vendors on ISS World conference
during the past decade.
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NFATs
Open source PyFlag

Xplico
Proprietary NetDetector

NetIntercept
OmniPeek

NSM tools
Intrusion detection Bro
systems (IDS) Snort
Network monitoring IPTraf
tools Ntop

TCPStat
VisualRoute

Network scanning Angry IP Scanner
tools Nmap

Wireless Network Watcher
Network sniffers and Aircrack-ng
packet analyzing eMailTrackerPro
tools Kismet

NetworkMiner
ngrep
WebScarab
Wireshark

Vulnerability Acunetix WVS
assessment tools Metasploit

Nessus
Nikto
Yersinia
Wikto

Table 2.4: Network forensic tools updated taxonomy according to Pilli and Joshi, 2016,
Table source [77].
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Davidoff and Ham proposed a taxonomy [15] in 2012 based on the tool’s functionality
and the investigation phase in which the tool can be used; see Table 2.5.

WAP discovery tools
Open source KisMAC

Kismet
NetStumbler

Proprietary Skyhook

IDS/IPS
Open source Bro

Snort
Proprietary CheckPoint IPS-1

Cisco IPS
Corero Network Security
Enterasys IPS
HP TippingPoint IPS
IBM Security NIPS
Sourcefire 3D System

Traffic acquisition
dumpcap
libpcap
tcpdump
tshark
winpcap
Wireshark

Packet analysis
Protocol analysis tshark
tools Wireshark
Packet analysis Bless
tools ngrep

tshark
Wireshark

Flow analysis pcapcat
tools tcpflow

tcpXtract
tshark
Wireshark

Higher-layer traffic findsmtpinfo.py
analysis tools NetworkMiner

oftcat
smtpdump

Statistical flow analysis
Sensors Argus

softflowd
yaf

Flow record IPFIX
export protocols NetFlow

sFlow
Collection systems Argus

flow-tools
nfdump
NfSen
SiLK (flowcap, rwflowpack)

Flow record Argus Client Tools (ra, racluster,
analysis tools ragraph, ragrep, rahisto, rasort)

EtherApe
FlowTraq
flow-tools
nfdump
NfSen
SiLK (PySiLK, rwcount, rwcut,
rwfilter, rwidsquery, rwpmatch,
rwstats, rwuniq)

Table 2.5: Taxonomy of network forensic tools according to Davidoff and Ham, 2012, Table source [77].
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Complementary categorization can also be based on how the investigator interacts with
the tool. Lubis and Siahaan proposed to divide tools into console and GUI categories;
see Table 2.6.

Console-based tools
ARP
Gnetcast - GNU
ifconfig
Network Mapper (Nmap)
ping
snoop
TCP dump
Xplico

GUI-based tools
E-detective
Netcat
Wireshark/Ethereal

Table 2.6: Taxonomy of network forensic tools according to Lubis and Siahaan, 2016, Table
source [77].

The European Union Cyber Security Agency (ENISA) developed a handbook [17] —
Introduction to Network Forensics based on the experience of the CSIRT community. Their
categorization is similar to Davidoff and Ham [15] based on the intended tool usage; see Ta-
ble 2.7.

Flow capture & analysis tools
Argus

Full-state analysis tools
WireShark

IDS
Snort

Packet capturing tools
tcpdump
dumpcap

Pattern matching tools
ngrep

Table 2.7: Taxonomy of network forensic tools according to ENISA, 2019, Table source [77].

Studying the taxonomies, we may observe that each author group focused on different
aspects. Garfinkel [23] concentrated on the volatility of the data and the granularity that
can be achieved with limited computation resources. In contrast, Meghanathan et al. [45]
showed concern for the application domain. Pilli and Joshi [53, 30] extended categorization
by focusing on forensic investigators and network administrators. Davidoff and Ham [15]
created detailed categorization of NSM tools. Lubis and Siahaan [40] and ENISA [17] also
focused on NSM tools. Based on the presented taxonomies, we may conclude that the
development of generally usable open source NFAT tools have been put aside.

2.3 Capturing and Processing of In/complete Network Data

Network traffic is the most common data source for NFATs [10, 22, 25, 66]. Although
there are tools, mainly NSM, allowing online analysis, like Wireshark and TCPDump, this
approach is generally discouraged for forensics [12, 8] because of its bottom-up approach
that requires a large amount of manual labor. Forensic science involves repeatability of
the investigation process [12], thus rendering these live NSM tools usable in preliminary
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investigation phases as a control mechanism functional for validation of deployment of
Lawful Interception (LI) probes.

Capturing data using LI probes is a complex problem. Due to the volatility of network
data, what is not captured is lost forever. This fact poses a challenge for the capturing.
The capturing appliances are software [4] or hardware [49, 32, 59] based.

Software-based appliances utilize the kernel functionality of the operating system to
capture packets not intended for the particular interface that the interception is running
on (e.g., using promiscuous mode [4]). A naive approach may be to use plain TCPDump,
or Wireshark to capture the network traffic. As several studies have shown [4, 16, 37, 3,
61, 5], this approach leads to severe packet loss. A sophisticated approach is to use a kernel
module-based tool, e.g., TCPDump compiled with PF_RING, or a commercial solution
like ntop’s n2diskTM that is optimized for the task and is already based on PF_RING3.
Empirical experience has shown that, as the vendor claim, n2diskTM can store network
traffic up to 10 Gbps. Additionally, using FPGA-based NIC, n2diskTM can store up to
40 Gbps4.

Hardware-based appliances are typically advanced solutions developed in general by pri-
vate companies. Their detailed specification and additional functionalities are not publicly
available. Some vendors publish the specification in the form of white paper, e.g., NetQuest
that announces up to 100 Gbps capabilities [49]. Another rare occurrence is research done
by Czech’s NREN CESNET on hardware-accelerated traffic processing on 100 Gbps net-
works [32, 59]. Other major players on the market providing not only packet interception
but also deep packet inspection (DPI) for LEA are Sandvine, ENEA Cosmos Division, and
XCI, according to the ISS World Training conference [50].

Regarding the state-of-the-art interception appliances, empirical observation shows that
not a negligible portion of intercepted network traffic provided to the LEA by ISPs is not
without packet loss. A commonly used approach is to utilize port mirroring, i.e., SPAN
port on a switch that may introduce packet loss under a load [78]. Determination of packet
loss on capturing probe is challenging by itself. The TCP reassembling can be used to
prove that some part of data transmitted over a network was missing from the packet
trace. Still, it does not necessarily prove that the capturing appliance is at fault because
of other possibilities like asymmetrical routing. To determine packet loss of protocols on
UDP, additional analysis and understanding of application protocol are required (providing
that application protocol carries identifiers that can be used).

The practice has shown that network forensic practitioners need tools tolerant of packet
loss. These tools have to use application protocol parsers that do not stop on the first invalid
data but contain a robust parsing engine that allows for rewinding the invalid portion of
data streams.

2.4 Application Protocol Identification

The application protocol identification is an inherent part of network forensics. Without the
precise knowledge of the application protocol in question, the NFAT or NSM tool cannot
extract crucial information carried by the protocol because the tool would not know which
application protocol parser to use.

3https://www.ntop.org/products/packet-capture/pf_ring/
4https://www.ntop.org/products/traffic-recording-replay/n2disk/
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In digital forensics, particularly storage device or mobile device forensics, the artifacts
are identified by matching the hashes of investigated files to well-known ones stored in
databases like VirusTotal5. This approach filters the system or otherwise uninteresting files
and allows the investigator to focus only on individual files that most likely contain the
digital evidence.

This approach works very well for static / constant files but is not directly applicable
to computer networks because of their entropy. Transferring the same static file using the
same application protocol may result in data streams with different characteristics. The
data stream checksum would differ because of variable internet, transport, and applica-
tion protocol fields. Additionally, external aspects dependent on the transfer media type,
network utilization, and quality of the service (retransmissions) may also differ.

The most straightforward method of application protocol identification is to use well-
known protocol port numbers. This method utilizes port numbers present in the transport
protocols, either TCP or UDP. The accuracy of this method is about 60–80 % [47, 6] and
hugely depends on a particular sample of applications in question. Services may use random
protocol ports usually defined by a service administrator or used implicitly for services like
multimedia streaming, multiplayer games, or various types of traffic tunneling.

Because LEA is traditionally focused on extracting as much information/meta informa-
tion as possible, we need to go deeper and improve the accuracy. Traditionally, there are
several directions we may take [51, 33, 48, 71, 76, 64].

Supervised machine learning [28] tackles the problem with learning by example. The clas-
sification model is created using annotated data sets. Usually, application protocols
contained in the data set are classified with reasonable accuracy. Protocols that were
not part of the training set are often miss-classified into one of the known categories.

Unsupervised machine learning [19] is a technique that implicitly expects that there are
unknown application protocols in the data set. This method does not require a data
set to be trained on. Categorization is done on the data during the classification
process. Similar samples of application protocols are assigned to the same category.

Semi-supervised machine learning [18] is a combination of the approaches above. The
sample application communication is categorized using the clustering/unsupervised
methods, and by applying the supervised method/s, we may infer a correct label for
otherwise unclassified samples.

Machine learning methods require data preprocessing that is concluded with feature
extraction. In this domain, we recognize the following feature categories with respective
extraction methods [51, 33, 48, 71, 48]:

Payload analysis extracts features from the packet contents (payload/s). This method
works well for unencrypted / plain-text application protocols but poorly for encrypted
ones.

Statistical methods [28, 35, 24] do not look into the data but use metadata, such as
information about packet size, inter-packet delays, etc. This method also works for
encrypted application protocols.

5https://www.virustotal.com/
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Hybrid methods combine payload analysis with statistical models. Utilized features may
be a combination of the methods mentioned above. These methods work well for
encrypted and unencrypted application protocols [9, 41].

Additional sources summarising advances in application protocol identification / classi-
fication are surveys by Nguyen and Armitage [51], Namdev et al. [48], and Velan et al. [71],
who focused on encrypted traffic. Recently, JA3 emerged as a defacto standard for finger-
printing clients and JA3S for fingerprinting service providers (servers) [1]. The best results
were achieved by pairing JA3 and JA3S to identify client and server applications / services.
Note that this identifies particular implementation of client/service that may change in
time due to service updates [2]. Mercury by McGrew et al. (Cisco) [44] is similar, based on
a broader feature set. Even though it may seem that fingerprinting of SSL/TLS has been
solved (using JA3 or Mercury), Hejcman’s bachelor thesis [26] shows that it may be further
refined.

The contribution of this thesis is based on the previous work of the following authors.
Erik Hjelmvik’s SPID [27, 28] statistical-based algorithm, further improved by Kohnen [36],
is a very lightweight algorithm capable of application protocol identification on the fly from
the beginning of the flows. Foroushani and Zincir-Heywood [20] have shown in graphical
details possibilities of separation of different encrypted application protocols using statis-
tical information extracted from the flows. Dai et al. [14] and Miskovic et al. [46] studied
communication-based fingerprinting of mobile applications. Erman et al. [18] described
a flow-based semi-supervised classification method that can accommodate known and un-
known applications.

Due to a significant investment required to create and maintain traditional application
protocol identification methods, current research is exploring additional paths. A survey
done by Wang et al. [75], who summarized possibilities achievable by applying Deep Learn-
ing, shows promising results. Compared to the aforementioned traditional methods, Deep
Learning may ease maintainability and overcome limitations posed by time-consuming,
costly handcrafted features and frequent feature updates.

Nowadays, a need for fine-grained classification arises. Fu et al. [21] evaluated their
system CUMMA for classifying mobile messaging app service usage by jointly modeling
user behavioral patterns, network traffic characteristics, and temporal dependencies. Using
a statistical-based approach, they can segregate messages into classes such as text, audio
notes, pictures, stream voice calls, location sharing, and short videos. They showed that
this segregation is possible without decryption keys and deep packet inspection of contents.

2.5 Overlay and Tunneling Network Protocols

Overlay networks are becoming popular for creating virtual / logical networks over physical
infrastructure. Overlays are no longer a domain of traditional VPN protocols like PPTP,
GRE, L2TP, and OpenVPN. Novel, encrypted by design, protocols such as Hamachi, Ze-
roTier, and WireGuard are increasing their popularity. Additionally, the rise of anonymiza-
tion networks like Freenet6, the Tor Project7, and the Internet Invisibility Project (I2P)8

complicated forensic investigation even further.

6https://github.com/freenet/fred
7https://www.torproject.org/
8https://geti2p.net/en/
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Support for some overlay or tunneling protocols in NFAT tools is rare. Pyflag does
not have any support. Xplico supports L2TP, VLAN, and PPP. More comprehensive sup-
port for encapsulation is implemented in NSM tools, particularly Wireshark and TShark.
NetworkMiner supports GRE, 802.1Q, PPPoE, VXLAN, OpenFlow, SOCKS, MPLS, EoM-
PLS, and ERSPAN.

The reason is most likely that NFATs dissect protocols to extract information. En-
crypted overlay networks are not particularly interesting in this regard. On the other hand,
their presence may be a piece of helpful information for the investigator [67]. Their detec-
tion and meta-information about an encapsulated content extraction extend the topic of
application protocol identification; see Section 2.4. This lack of overlay protocol support in
NFATs opens up novel research opportunities in this field.

2.6 Network Forensics of Big Data
Network forensic investigation is no longer a domain that deals with small packet traces
of a few hundred megabytes [34]. The penetration of high-speed internet connection for
small businesses, residents, and even mobile devices is more significant than ever. The
boom of multimedia consumerism in teen generations [11] pushes network infrastructures
to unprecedented growth, and naturally, we would expect NFATs to keep up.

Contradictory, the scientific community’s interest in developing parallel or even better
scalable and distributed (so as not to confuse with cloud forensics) NFATs has not in-
creased in the last decade or so. Vallentin has done thorough state-of-the-art research in
this area in his dissertation [69] under the supervision of Vern Paxson, who covered the years
2005-2015. Duplicating a detailed overview of this period in this work would be wasteful.
Vallentin concludes that "The academic treatment of large-scale network forensics is strik-
ingly thin." and that "The last decade of research on network forensics paints a fragmented
picture: only occasional interest, even in security-centric venues." Vallentin concluded his
research in the publication called "{VAST}: A Unified Platform for Interactive Network
Forensics" [70]. Recently, VAST was used by other research groups [60] as a backend for
distributed computation.

Since Vallentin’s time, several other authors have researched the acceleration possibili-
ties of distributed network forensics. D’Alessandro investigated options of scalable network
traffic classification using distributed support vector machines [13] which are a crossover
with Section 2.4. Ryšavý, Rychlý and Jeřábek [63, 29, 62] used Apache based technolo-
gies, namely Hadoop, Spark, Kafka, Ignite. Their research focused on identification and
clustering in big data network flow traces.

17



Chapter 3

Research Summary

This chapter summarizes the research included in this dissertation and the related contri-
butions of mine. The research presented can be commonly classified into computer science,
computer security, digital forensics, and network forensics. Section 3.1 summarizes the
work and highlights motivations and contributions for the presented research. For better
navigation, see Figure 1.1, which shows the relationships between research objectives and
selected papers.

Section 3.2 compose a list of seven selected papers included in this dissertation. A brief
overview of each publication is provided in a summary form containing motivation and
related contributions. Additional information is included as abstract, original citation form,
and references to publications that cited the paper. In case other publications preceded the
paper, its citations are also referenced.

Section 3.3 contains a list of my other publications related to this dissertation but not
included. The list consists of technical reports and student conference publications that
were published before my doctoral studies but bear witness to my interest in this field since
I was an undergraduate student.

Section 3.4 lists national and international projects in which I have participated. Sec-
tion 3.5 enumerates the software and specimens that I have contributed. Section 3.6 con-
tains a list of presentations, posters, and invited speeches I have given in the last decade
concerning the research covered by this dissertation. Section 3.7 and Section 3.8 list related
/ unrelated bachelor and master theses I have supervised.

3.1 Overview

This dissertation aims to help law enforcement agency (LEA) investigators conducting a
criminal investigation to be more efficient in their work and lower the requirements for their
preliminary understanding of technical details, allowing them to focus on the investigative
side. Using Network Forensic and Analysis Tools along the lines of regular investigators
provides them with the means to process captured network communication directly and
extract information instead of waiting for dedicated IT professionals to preprocess the data
for them. To achieve this goal, I have participated in several grant projects that focused
on the needs of network forensic investigators, researched various problems, and helped
develop the tools mentioned earlier.

Along the way, we have faced several difficulties that posed exciting research challenges
beyond engineering and required a rigorous scientific approach to be solved. We were asked
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to develop a network forensic investigation tool to consume the captured network commu-
nication and extract information from the application messages. With this information, the
investigator can build a case.

The first challenge was to design the application architecture. The paper VII, describes
the first iteration of the Netfox Detective application. We tried to separate it into layers with
well-defined interfaces focusing only on their respective concerns. This paper elaborates on
several challenges that we have encountered in this implementation. The most severe one
was a recognition that the quality of the input data varies, and forensic application needs
to incorporate this into their design.

Therefore, paper VI investigates the steps to take to fully overcome Internet service
providers’ inability to capture network communication without packet loss. Or face other
factors like asymmetric routing, load-balancing, etc., that causes the captured data to be
incomplete. We have developed several heuristics that utilize information from lower than
application protocol layers to create abstractions of application messages that application
protocol parsers can parse to extract the contents to form the evidence.

Furthermore, we realized that these heuristics and application protocol abstractions
might contribute to more precise application protocol identification and maybe allow us to
identify the exact applications that generated the communication. Paper V describes our
achievements in this regard. The result was an implementation of a framework that could
extract features from application data flow and conversations to allow us to benchmark sev-
eral approaches and machine learning algorithms. Once again, all of this was implemented
in the Netfox Detective NFAT application.

Paper IV targets in-field LEA operatives that need to gather evidence directly from
a wireless local area network (WLAN). Allowing the investigator to access the LAN directly,
compared with an investigation of captured network communication on the Internet service
provider level, introduces several benefits discussed in the paper. Automating this kind of
Man-in-the-Middle attack complies with our goal of allowing regular investigators to obtain
the needed evidence without waiting for an IT specialist to get it for them.

The increasing amount of data transmitted over the network required investigating new
processing methods. The clear choice to increase the performance of something embarrass-
ingly parallel is to scale up the computation. Paper III describes our attempts to design
and implement a scalable framework for network forensics. Previous papers VII, VI, and
V show our approach to network data processing in a single process on a single machine.
This paper investigates these methods and scales the processing linearly while maintaining
the same robust incomplete data processing.

The last challenge we identified was the processing of tunneled traffic. Paper II describes
the common tunneling protocols that LEA investigators can encounter. We chose one of the
most complex protocols, the Generic Stream Encapsulation, to demonstrate how a complex
tunneling protocol can be dissected by our processing framework while maintaining its
properties of robustness for incomplete data processing.

The final Paper I concludes this dissertation. This paper describes all the methods and
principles we have designed to overcome the challenges posed by the incomplete data pro-
cessing for network forensic analysis on a single machine. This paper introduces the final
version of the Netfox Detective tool as a Proof-of-concept platform to demonstrate the
correctness and usability of the methods designed for network forensic investigation. Ad-
ditionally, a crossover to Network Security Monitoring is shown by using the platform to
visualize SIP Fraud attacks in cooperation with Czech NREN CESNET.
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3.2 Papers Included in this Dissertation
This section provides an overview of selected papers included in this dissertation. An expla-
nation of its motivation is included in each paper, and direct contributions are mentioned.
The author’s participation in creating the publication is noted with the conference / journal
ranking or impact factor.

3.2.1 Paper I

Jan Pluskal, Frank Breitinger, and Ondřej Ryšavý. “Netfox detective: A novel open-source
network forensics analysis tool”. In: Forensic Science International: Digital Investigation
35 (2020), p. 301019. issn: 2666-2817

Author’s participation: 50 %1

Impact factor: 1.805 (Q1)

Motivation and contributions

This is the most recently published paper that summarizes my research in the area of
network forensics and the development of an open source network forensics and analysis tool
— Netfox Detective2. This tool served as a Proof-of-Concept platform that demonstrated
the functionality of each feature described in the previous papers (except for scalability and
research related to WiFi) and therefore demonstrated its correctness.

This paper described Netfox Detective, a novel, easy-to-use, powerful network forensic
platform for top-down investigations. The tool covered the forensic model’s examination,
analysis, and investigation phases as defined by Pilli [55]. The following contributions are
provided in detail:

1. Introduction of the investigation profiles that contained all necessary data for sharing
the case between multiple investigators.

2. The new method to reassemble the TCP stream based on heuristics (the method itself
was previously published [45], but the tool contains an improved version).

3. Improved identification of application-level sessions within TCP streams; the system
could identify more application sessions compared to other tools.

4. Support for analysis of traffic encapsulated in the GSE protocol; to the best of my
knowledge, Netfox Detective had been the only open source NFAT that supported
GSE.

5. A novel web page reconstruction approach; compared to other tools, the tool not
only extracted objects from HTTP communication but also reconstructed the page
entirely (rewriting sources of all intercepted objects like CSS, pictures, video streams,
etc.). Pages were stored as MAFF archives, including snapshots showing how the
page changed over time. JavaScript was interpreted, and particular API calls were
mocked to be injected with intercepted ones, like REST API calls. The reconstruction
of a web page required analysis and correlation of multiple L7 conversations because
a page usually references (includes) data from various domains.

1Author participation states the contribution index used for publication submission into the Czech na-
tional database of research, development and innovations (RIV).

2https://github.com/nesfit/NetfoxDetective
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The paper has been cited in:

• Kousik Barik, Saptarshi Das, Karabi Konar, Bipasha Chakrabarti Banik, and Ar-
chita Banerjee. “Exploring user requirements of network forensic tools”. In: Global
Transitions Proceedings 2.2 (2021), pp. 350–354

Abstract

Network forensics is a significant sub-discipline of digital forensics, which has become in-
creasingly important in an age where everything is connected. To deal with the amounts of
data and other network challenges, practitioners require powerful tools that support them.
This paper highlights a novel open source network forensic tool named Netfox Detective
that outperforms existing tools such as Wireshark or NetworkMiner in certain areas. For
instance, it provides a heuristically based engine for traffic processing that can be easily ex-
tended. Our application tolerates malformed or missing conversation segments using robust
parsers (we rely not solely on the RFC description but heuristics). Besides outlining the
tool’s architecture and basic processing concepts, we also explain how it can be extended.
Lastly, a comparison with similar tools is presented, and a real-world scenario is discussed.

3.2.2 Paper II

Jan Pluskal, Michal Koutenský, Martin Vondráček, and Ondřej Ryšavý. “Network Foren-
sic Investigations of Tunneled Traffic: A Case Study”. In: Revue roumaine des sciences
techniques. Série Électrotechnique et Énergétique 64.4 (2019), pp. 429–434. issn: 0035-4066

Author’s participation: 25 %
Impact factor: 0.76 (Q3)

Motivation and contributions

The present paper provided an overview of the expected points in the network topology that
law enforcement agencies (LEA) can use to conduct lawful interception. We summarized
the most used tunneling protocols and discussed their features concerning digital forensic
analysis. For each protocol, the possibility of content extraction was explained. Also, a brief
overview of methods for encapsulated traffic classification was provided. The problem
of connection recovery from tunneled communication was demonstrated using the GSE
protocol as an example.

Abstract

The increasing importance of network forensics in the investigations conducted by Law
Enforcement Agencies is indisputable. Today’s Internet does not carry ordinary TCP/IP
traffic but utilizes many other encapsulations and tunneling protocols. This paper provides
an overview of the most used tunneling protocols and their features with regard to digital
forensic analysis. A generic stream encapsulation case study describes how the investigator
can obtain encapsulated application data from within.
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Preceding related paper: Jan Pluskal, Martin Vondráček, and Ondřej Ryšavý. “Net-
work Forensics in GSE Overlay Networks”. In: Proceedings of the 6th Conference on the
Engineering of Computer Based Systems. ACM. 2019. isbn: 9781450376365

Author’s participation: 60 %
Conference ranking: N/A

3.2.3 Paper III

Viliam Letavay, Jan Pluskal, and Ondřej Ryšavý. “Network Forensic Analysis for Lawful
Enforcement on Steroids, Distributed and Scalable”. In: Proceedings of the 6th Conference
on the Engineering of Computer Based Systems. ACM. 2019. isbn: 9781450376365

Author’s participation: 30 %
Conference ranking: N/A

Motivation and contributions

This paper described a scalable architecture design for processing network packet traces
at that time work in progress. According to our previous research, the processing speed
of Netfox Detective, which was around 100 Mbps, seemed too slow, and we were looking
for acceleration possibilities. Because the task of conversation tracking and consequence
transport protocol processing (creating abstractions of application messages, possibly using
TCP reassembling and heuristics) is embarrassingly parallel, we realized that we could scale
the job on multiple devices instead of one processing unit.

The contribution of this paper lies in the design, performance, and properties discussion
of a new Network Forensic and Analysis Tool (NFAT) – Network Traffic Processing &
Analysis Cluster (NTPAC). This specimen utilizes distributed computing architecture to
improve the performance of network traffic analysis while being less demanding on hardware
requirements than related systems.

To extract evidence from network packets, we must thoroughly analyze them, perform-
ing several consecutive operations such as packet dissecting, flow identification, network
stream composition, application protocol identification, and message parsing and artifact
extraction. Unlike the other NFAT tools, NTPAC could correctly process captured mal-
formed traffic without yielding misleading evidence. NTPAC performed a forensic analysis
of network traffic in high-speed networks. The system design used a scalable approach to
run the tool on a single machine and a computing cluster. Compared to other NFAT tools,
NTPAC was an order of magnitude faster and was scaling linearly.

The paper has been cited in:

• Daniel Gustavsson. Molnforensik: En litteraturstudie om tekniska utmaningar och
möjligheter inom IT-forensik mot molnet. 2020

Abstract

Forensic analysis of intercepted network traffic focuses on finding and extracting commu-
nication evidence, such as instant messaging, email, VoIP calls, localization information,
documents, and images. Due to the amount of data captured, this process is time-consuming
and complicated. Most commonly used forensic network analysis tools have limited capa-
bilities for extensive data processing. In this paper, we are introducing a new tool that
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achieves better data processing performance using available computing resources through
distributed processing. Thanks to the technology used, this tool can be used on commodity
hardware in a local area network, in a dedicated computing cluster, or cloud environment.

Preceding related paper: Viliam Letavay, Jan Pluskal, and Ondřej Ryšavý. “A Scal-
able Architecture for Network Traffic Forensics”. In: The Fifteenth International Confer-
ence on Networking and Services ICNS 2019. Athens, GR: The International Academy,
Research and Industry Association, 2019, pp. 32–36. isbn: 9781612087115

Author’s participation: 30 %
Conference ranking: B3 (Qualis)

The paper has been cited in:

• Kousik Barik, Saptarshi Das, Karabi Konar, Bipasha Chakrabarti Banik, and Ar-
chita Banerjee. “Exploring user requirements of network forensic tools”. In: Global
Transitions Proceedings 2.2 (2021), pp. 350–354

3.2.4 Paper IV

Martin Vondráček, Jan Pluskal, and Ondřej Ryšavý. “Automated Man-in-the-Middle At-
tack Against Wi-Fi Networks”. In: The Journal of Digital Forensics, Security and Law:
JDFSL 13.1 (2018), pp. 59–80. issn: 1558-7215

Author’s participation: 30 %
Impact factor: N/A

Motivation and contributions

This paper is based on Martin Vondracek’s bachelor thesis [105], deals with the automation
of MitM attack on Wi-Fi networks and is also supported by software [42]. Due to its wireless
nature, Wi-Fi networks constitute an ideal data source for LEA investigation. Capturing
traces from local Wi-Fi may bring new information because local services (non-routable on
the public internet) tend to be poorly secured. The additional benefit of being connected
to the local network is the more offensive possibility of conducting MitM attacks. Various
commercial vendors developed and sold tactical solutions to support this use case.

The contribution of this research was gathering state-of-the-art tools and approaches
for penetration of wireless networks and developing an overlay application that allowed for
a regular, non-technical person to operate it. In this way, field LEA operators could gather
evidence from wireless networks without the complex knowledge of an IT professional.

Additionally, we focused on the detection possibilities of wireless attacks on devices
intended for home use. The analysis showed that even without enterprise-level monitoring
and logging, an attack on these low-power devices introduces a noticeable increase in latency
that can be monitored, and an alert can be raised.
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The paper has been cited in:

• Tina Wu, Frank Breitinger, and Stephen O’Shaughnessy. “Digital forensic tools:
Recent advances and enhancing the status quo”. In: Forensic Science International:
Digital Investigation 34 (2020), p. 300999

• Mohamed Amine Khelif, Jordane Lorandel, Olivier Romain, Matthieu Regnery, Denis
Baheux, and Guillaume Barbu. “Toward a Hardware Man-in-the-Middle Attack on
PCIe Bus for Smart Data Replay”. In: 2019 22nd Euromicro Conference on Digital
System Design (DSD). IEEE. 2019, pp. 230–237

• Mohamed Amine Khelif, Jordane Lorandel, Olivier Romain, Matthieu Regnery, Denis
Baheux, and Guillaume Barbu. “Toward a hardware man-in-the-middle attack on pcie
bus”. In: Microprocessors and Microsystems 77 (2020), p. 103198

• Crispin R Jose. “Exploring Security Process Improvements for Integrating Security
Tools within a Software Application Development Methodology”. PhD thesis. Col-
orado Technical University, 2020

• Cynthia Valeria Maza Gonzalez and Fabián Gustavo Rochina Manobanda. “Estado
del arte utilizando mapeo sistemático de seguridad de redes domésticas WIFI en
familias ecuatorianas”. B.S. thesis. 2021

Abstract

Currently used wireless communication technologies suffer security weaknesses that can
be exploited, allowing eavesdropping or spoofing of network communication. This paper
presents a practical tool that can automate the attack on wireless security. The package
developed, wifimitm, provides functionality to automate MitM attacks in a wireless en-
vironment. The package combines several existing tools and attack strategies to bypass
wireless security mechanisms, such as WEP, WPA, and WPS. The tool presented can be
integrated into a solution for automated penetration testing. Also, a popularization of the
fact that such attacks can be easily automated should raise public awareness of the state
of wireless security.

Preceding related paper: Martin Vondráček, Jan Pluskal, and Ondřej Ryšavý. “Au-
tomation of MitM Attack on Wi-Fi Networks”. In: 9th International Conference on Digital
Forensics & Cyber Crime. Vol. 2018. 216. Springer International Publishing, 2017, pp. 207–
220. isbn: 9783319736969

Author’s participation: 30 %
Conference ranking: N/A

The paper has been cited in:

• Tina Wu. “Digital forensic investigation of IoT devices: tools and methods”. PhD
thesis. University of Oxford, 2020

• Duc Le Tran, Thong Trung Tran, Khanh Quoc Dang, Reem Alkanhel, and Ammar
Muthanna. “Malware Spreading Model for Routers in Wi-Fi Networks”. In: IEEE
Access 10 (2022). All Open Access, Gold Open Access, pp. 61873–61891. doi: 10.
1109/ACCESS.2022.3182243
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3.2.5 Paper V

Jan Pluskal, Ondrej Lichtner, and Ondřej Ryšavý. “Traffic Classification and Application
Identification in Network Forensics”. In: Fourteenth Annual IFIP WG 11.9 International
Conference on Digital Forensics. Ed. by Gilbert Peterson and Sujeet Shenoi. New Delhi,
IN: Springer International Publishing, 2018, pp. 161–181. isbn: 9783319992778

Author’s participation: 40 %
Conference ranking: B5 (Qualis)

Motivation and contributions

This paper introduced a novel approach to application protocol identification and appli-
cation (that generated the communication) classification. The identification/classification
of the application protocol is necessary for any Network Security Monitoring tool or Net-
work Forensic Analysis Tool to extract any useful information from the application layer.
Tools use application parsers to extract this information, but without the knowledge of
the application protocol, the tool is unaware of which application parser to use. Vari-
ous application protocol parsers may consume any data; therefore, their acceptance of the
application data stream cannot be used for identification purposes. The ability to also iden-
tify an application that generated the communication yields additional value to a forensic
investigator.

The contributions of this paper are presented in the following points:

Testbed that implemented three classification methods, namely Bayesian Network, Ran-
dom Forests, and Enhanced Statistical Probability Identification, was presented. Ad-
ditionally, feature extraction was implemented as a modular framework allowing users
to create and experiment with new features. The entire testbed used GUI for ex-
perimenting with feature elimination, classification, and visual result analysis. The
analysis allowed for various feature comparisons and visualization of the feature cor-
relation matrix. The user could iterate and experiment with the testbed to proceed
with the hyperparameter tuning.

Dataset created in laboratory environment in cooperation with various students simulat-
ing real activity / work on staged computers, over multiple days containing 19,5 GB
of annotated captured network communication in the form of enhanced PCAP files.
Capturing traffic using Namon3 [115, 23], we have created a unique, annotated, cap-
tured network trace dataset that has been publicly available since publication.

Feature elimination as an automated process that allowed us to create optimal classi-
fiers that omit correlated features for a particular application protocol or application
communication.

Classification of applications as a finer-grained complement to the identification of the
application protocol was described.

Bayesian Network classifier enhanced with automated feature elimination was created
and trained on the aforementioned dataset.

Random Forests classifier enhanced with automated feature elimination was created and
trained on the aforementioned dataset.

3https://jzlka.github.io/namon/
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Enhanced Statistical Probability Identification method was developed, benchmark-
ed, and compared to a baseline formed by Bayesian Network and Random Forests
classifiers. In comparison, this method did not embed explicit feature elimination
because it is an inherent part of it.

The paper has been cited in:

• Hilmand Khan, Sarmad Hanif, and Bakht Muhammad. “A survey of machine learning
applications in digital forensics”. In: Trends in Computer Science and Information
Technology 6.1 (2021), pp. 020–024

• Kousik Barik, A Abirami, Karabi Konar, and Saptarshi Das. “Research Perspective
on Digital Forensic Tools and Investigation Process”. In: Illumination of Artificial
Intelligence in Cybersecurity and Forensics. Springer, 2022, pp. 71–95

Abstract

Network traffic classification is essential for network monitoring, security analyses, and
digital forensics. Without an accurate traffic classification, the computational demands
imposed by analyzing all IP traffic flows are enormous. Classification can also reduce the
number of flows that must be examined and prioritized for analysis in forensic investigations.

This chapter presents an automated feature elimination method based on a feature
correlation matrix. Additionally, it proposes an enhanced statistical protocol identification
method compared to Bayesian network and random forests classification methods that
offer high accuracy and acceptable performance. Each classification method is used with
a subset of features that best suit the method. Methods are evaluated based on their ability
to identify the application layer protocols and the applications themselves. Experiments
demonstrate that the random forests classifier yields the most promising results, while the
proposed enhanced statistical protocol identification method provides an interesting trade-
off between higher performance and slightly lower accuracy.

3.2.6 Paper VI

Petr Matoušek, Jan Pluskal, Ondřej Ryšavý, Vladimír Veselý, Martin Kmeť, Filip Karpíšek,
and Martin Vymlátil. “Advanced Techniques for Reconstruction of Incomplete Network
Data”. In: Digital Forensics and Cyber Crime. Ed. by Joshua I. James and Frank Bre-
itinger. Cham: Springer International Publishing, 2015, pp. 69–84. isbn: 9783319255125

Author’s participation: 20 %
Conference ranking: N/A

Motivation and contributions

This paper deals with the reconstruction of incomplete network data and thus answers
the research question proposed by the previous publication [72]. Because network data is
volatile and what is not captured is lost forever, we need to create a robust framework
supporting these robust application protocol parsers to extract as much information as
possible from the application conversation. This paper advances Netfox Framework, orig-
inally developed as a part of my master thesis [60], and adds additional functionalities,
namely support for the processing of encrypted communication implemented by Miroslav
Slivka [92], and improved by Viliam Letavay [34].
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The main contribution of this paper is the robust algorithm for reassembling potentially
incomplete network data, its heuristics, and its ability to signal this information to the
application protocol parsers. This way, conversation tracking is not only using data from
Internet (L3) and Transport (L4) layers but also embeds the L4 reassembling. L7PDUs are
introduced as abstractions of application messages.

The analysis showed that without this incorporation of reassembling into the conversa-
tion tracking, the other NFATs provided incorrect conversation tracking in case particular
parts of TCP signaling were missing, thus giving the investigators incorrect results. The
possibility of joining multiple TCP flows into one may lead to false evidence.

Furthermore, this paper presented a novel approach to Web Mail analysis. It used mul-
tiple HTTP decoders to process webmail communication and search for patterns commonly
used in that communication. Using this approach, we were able to extract the contents of
webmails from captured traces of several online email services.

The precondition for this webmail and other analyses was implementing SSL/TLS de-
cryption support into the tool. With this module activated, it was possible to run appli-
cation protocol parsing modules (Snoopers) on decrypted traffic under one of the following
conditions. Either a private server key was included with the packet traces in case RSA
(non-ephemeral) key negotiation was used. Or pre-master secrets from MITM proxy were
included.

Lastly, the paper discussed the possibilities of Bitcoin traffic detection and metadata ex-
traction. This functionality was tested in a real-world investigation and helped provide
evidence for a criminal investigation of foreign (EU) LEA.

The paper has been cited in:

• Yanchao Wang, Zhongqian Su, and Dayi Song. “File Fragment Type Identification
with Convolutional Neural Networks”. In: Proceedings of the 2018 International
Conference on Machine Learning Technologies. ACM. 2018, pp. 41–47

• David Muelas, Jorge E López de Vergara, Javier Ramos, José Luis García-Dorado, and
Javier Aracil. “On the impact of TCP segmentation: Experience in VoIP monitoring”.
In: 2017 IFIP/IEEE Symposium on Integrated Network and Service Management
(IM). IEEE. 2017, pp. 708–713

• Haidong Ge, Ning Zheng, Lin Cai, Ming Xu, Tong Qiao, Tao Yang, Jinkai Sun, and
Sudeng Hu. “Adaptive Carving Method for Live FLV Streaming”. In: International
Conference on Collaborative Computing: Networking, Applications and Worksharing.
Springer. 2017, pp. 554–566

• David Muelas Recuenco. “Flexible Network Monitoring and Traffic Analysis Tech-
niques for the Future Internet”. PhD thesis. Universidad Autonoma de Madrid,
2019

Abstract

Network forensics is a method of obtaining and analyzing digital evidence from network
sources. Network forensics includes data acquisition, selection, processing, analysis and
presentation to investigators. Due to the large volumes of transmitted data, acquired
information can be incomplete, corrupted, or disordered, making further reconstruction
difficult. In this paper, we address the issue of advanced parsing and reconstruction of
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incomplete, corrupted, or disordered data packets. We introduce a technique that recovers
TCP or UDP conversations so that application parsers can further analyze them. The
presented method is implemented in a new network forensic tool called Netfox Detective.
We also discuss current challenges in parsing webmail communication, SSL decryption, and
Bitcoin detection.

3.2.7 Paper VII

Jan Pluskal, Petr Matoušek, Ondřej Ryšavý, Martin Kmeť, Vladimir Veselý, Filip Karpíšek,
and Martin Vymlátil. “Netfox Detective: A tool for advanced network forensics analysis”.
In: Proceedings of Security and Protection of Information (SPI) 2015. Brno, CZ: Brno
University of Defence, 2015, pp. 147–163. isbn: 9788072319978

Author’s participation: 15 %
Conference ranking: N/A

Motivation and contributions

This paper describes the first iteration of the implementation of the Netfox Detective tool.
The focus is given on the Netfox Framework’s architecture, that is, the implementation of
business logic and Netfox Detective, which stood for the implementation of the GUI.

The contribution of this work was the composition of several diploma theses and related
research projects. My master thesis [60] produced the Netfox Framework, supported by
publications at student conferences [73, 65], which also contained a re-implementation of
my bachelor thesis [56], supported by publication at student conferences [57]. Martin
Mares’s master thesis [41] developed the GUI – Netfox Detective. Martin Kmet’s master
thesis [28] dealt with detecting of RTP traffic without signaling information obtained from
SIP. Vladimir Vesely’s PmLib [98] implemented logic to open PCAP files and parsed packets
up to the transport layer.

This paper proposed a research question regarding the importance of correct processing
of incomplete network data. The concrete method that allows the extraction of VoIP
communication without signaling from SIP [28], even when a portion of the communication
is missing, is presented with a more generic solution described in the following paper [45].

The paper has been cited in:

• Beatriz Parra de Gallo. “Advances in the application of Ontologies in the area of
Digital Forensic Electronic Mail”. In: IEEE Latin America Transactions 17.10 (2019),
pp. 1694–1705

• Caroline Wanjira Macharia. “Maintaining a bitcoin address repository through fo-
cused web crawling”. MA thesis. Strathmore University, 2017

Abstract

Network forensics is a process of capturing, collecting, and analyzing network data for infor-
mation gathering, legal evidence, or intrusion detection. The new Internet generation opens
novel opportunities for cybercrime activities and security incidents using network applica-
tions. Security administrators and LEA (Law Enforcement Agency) officers are challenged
to use advanced tools and techniques to detect unlawful or unauthorized activities. In case
of grave suspicion of criminal activity, network forensic tools and techniques are used to find
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legal evidence in a captured network communication that proves or disproves the suspect’s
participation in that activity.

Today, various commercial or free tools for network forensic analysis are available, e.g.,
Wireshark, Network Miner, NetWitness, Xplico, NetIntercept, or PacketScan. Many of
these tools fail to successfully reconstruct communication when using incomplete, dupli-
cated, or corrupted input data. Investigators also require advanced automatic processing
of application data that helps them to see the actual content of the conversation, including
chats, VoIP talks, file transmission, email exchange, etc.

Our research focuses on designing and implementing a modular framework for network
forensics with advanced possibilities for application reconstruction. The proposed archi-
tecture consists of (i) input packet processing, (ii) an advanced reconstruction of L7 con-
versations, and (iii) application-based analysis and presentation of L7 conversations. Our
approach employs various advanced reconstruction techniques and heuristics that work even
with corrupted or incomplete data, e.g., one-directional flows, missing synchronization, un-
bounded conversations, etc.

The proposed framework was implemented in a tool called Netfox Detective developed
by our research group. This paper shows its architecture from a functional and logical
point of view and its application in the reconstruction of webmail traffic, VoIP, and RTP
transmissions.

3.3 Relevant Publications not Included in this Dissertation

1. Jan Pluskal. Netfox Detective 2.0 - Nástroj pro síťovou forenzní analýzu. Czech.
Tech. rep. FIT-TR-2017-06, CZ, 2017, p. 16

Author’s participation: 100 %

2. Jan Pluskal, Ondrej Lichtner, and Ondřej Ryšavý. Netfox Detective - Identifikace
aplikačních protokolů pomocí algoritmů strojového učení. Czech. Tech. rep. FIT-TR-
2017-05, CZ, 2017, p. 19

Author’s participation: 90 %

3. Jan Pluskal, Ondřej Ryšavý, and Vladimir Veselý. “NetFox - The network forensic
extandable analysis tool”. In: 6th AFCEA Student Conference Future of Information
and Communication Technology. Bucharest, RO: University Politehnica of Bucharest,
2014, pp. 68–71. isbn: 9786065510470

Author’s participation: 90 %

4. Jan Pluskal. “NetFox.Framework - The network forensic extandable analysis tool”.
In: Proceedings of the 20th Conference STUDENT EEICT 2014 Volume 2. Brno, CZ:
Brno University of Technology, 2014, pp. 280–282. isbn: 9788021449237

Author’s participation: 100 %

5. Jan Pluskal. “Analýza a rekonstrukce komunikace typu instant messaging (YMSG a
ICQ)”. Czech. In: Proceedings of the 18th Conference Student EEICT 2012 Volume
1. Brno, CZ: Faculty of Information Technology BUT, 2012, pp. 176–178. isbn:
9788021444607

Author’s participation: 100 %
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3.4 Research Projects and Grants

1. TENACITy: Travelling intelligENce Against CrIme and Terrorism, team
member, EC EU - HORIZON EUROPE, 101074048, 2022-2025

2. Development of Decoder for IP Traffic, deputy team leader, team member,
VH20192021043, Ministry of the interior of the Czech Republic, 2019-2021

3. Modern and Open Study Techniques, team member, OP VVV PO2 ESF, Min-
istry of Education, Youth and Sports Czech Republic, 2015-2020

4. Integrated Platform for Analysis of Digital Data from Security Incidents,
team member, VI20172020062, Ministry of the interior of the Czech Republic, 2017-
2018

5. Using Network Analysis Techniques to Prevent Data Loss, research leader,
Safetica, MPO, 2017

6. Research and application of advanced methods in ICT, team member, FIT-
S-14-2299, Brno University of Technology, 2014-2016

7. Modern tools for detection and mitigation of cyber criminality on the New
Generation Internet, team member, VG20102015022, Ministry of the interior of
the Czech Republic, 2010-2015

3.5 Software and Specimen

1. Letavay Viliam, Pluskal Jan, Veselý Vladimír, and Grégr Matěj. HTTP Keylogger -
tool for web activity monitoring, [Computer Software]. 2019

2. Letavay Viliam, Pluskal Jan, and Jeřábek Kamil. Banana Pi BPI-R2 Cluster Proto-
type. [Specimen]. 2018

3. Pluskal Jan. SupportApp. [Computer Software]. 2018

4. Pluskal Jan. Netfox Detective 2.0 - Nástroj pro síťovou forenzní analýzu. [Computer
Software]. 2017

5. Zuzelka Josef, Pluskal Jan, Ryšavý Ondřej, and Matoušek Petr. Modul pro zpracování
zapouzdřeného síťového provozu. [Computer Software]. 2017

6. Janeček Vít, Pluskal Jan, Ryšavý Ondřej, and Matoušek Petr. Modul pro zpracování
zapouzdřeného síťového provozu. [Computer Software]. 2017

7. Pluskal Jan. AppIdent - Tool for Network Application Protocols Identification. [Com-
puter Software]. 2017

8. Vondráček Martin, Pluskal Jan, Ryšavý Ondřej, and Matoušek Petr. Automation of
MitM Attack on WiFi Networks. [Computer Software]. 2016

9. Marušic Marek, Pluskal Jan, Ryšavý Ondřej, and Matoušek Petr. Automatization of
MitM Attack for SSL/TLS Decryption, software. [Computer Software]. 2016
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10. Hvězda Matěj, Pluskal Jan, Ryšavý Ondřej, and Matoušek Petr. Network Forensics
Distrubuted Platform. [Computer Software]. 2016

11. Letavay Viliam, Pluskal Jan, Ryšavý Ondřej, and Matoušek Petr. Reconstruction of
Captured Communication on iOS Platform. [Computer Software]. 2016

12. Janeček Vít, Pluskal Jan, Ryšavý Ondřej, and Matoušek Petr. Web Traffic Data
Export to MAFF. [Computer Software]. 2016

13. Pluskal Jan, Kmeť Martin, Karpíšek Filip, Ryšavý Ondřej, Veselý Vladimír, and
Matoušek Petr. Netfox Detective - a network forensics tool for analyzing network
traffic. [Computer Software]. 2015

14. Pluskal Jan, Veselý Vladimír, Ryšavý Ondřej, and Matoušek Petr. Netfox.Framework
- Network traffic decoder and content analyzer. [Computer Software]. 2013

3.6 Invited Speeches, Presentations and Posters
1. Jan Pluskal. Workshop on Correlating Blockchain Activity with Real-Life Events and

Users. [Invited speech]. ISS World Asia, Dubai, United Arab Emirates, 2022

2. Jan Pluskal. Intercepting and Collecting Web Evidence in the Times of TLS1.3 and
HTTP 3.0. [Invited speech]. ISS World Asia, Dubai, United Arab Emirates, 2022

3. Jan Pluskal. Intercepting and Collecting Web Evidence in the Times of TLS1.3 and
HTTP 3.0. [Invited speech]. ISS World Europe, Prague, Czech Republic, 2021

4. Jan Pluskal and Veselý Vladimír. Intercepting and Collecting Web Evidence in the
Times of TLS1.3 and HTTP 3.0. [Invited speech]. ISS World Asia, Dubai, United
Arab Emirates, 2021

5. Jan Pluskal. Cryptocurrency Investigation Workshop. [Invited speech]. ISS World
Asia, Dubai, United Arab Emirates, 2020

6. Jan Pluskal. Towards Fully Automated Infinitely Scalable and Maximally Effective
Password Cracking of Encrypted Documents. [Invited speech]. ISS World Asia, Dubai,
United Arab Emirates, 2020

7. Jan Pluskal. ISS MEA 2020 - SSL/TLS Interception Workshop (TLS 1.3 Edition).
[Invited speech]. ISS World MEA, Dubai, United Arab Emirates, 2020

8. Jan Pluskal and Veselý Vladimír. TLS/SSL Decryption Workshop. [Invited speech].
ISS World Asia, Kuala Lumpur, Malaysia, 2019

9. Jan Pluskal and Veselý Vladimír. TLS/SSL Decryption Workshop. [Invited speech].
ISS World MEA, Dubai, United Arab Emirates, 2019

10. Jan Pluskal and Veselý Vladimír. TLS/SSL Decryption Workshop. [Invited speech].
ISS World Europe, Prague, Czech Republic, 2019

11. Jan Pluskal and Veselý Vladimír. TLS/SSL Decryption Workshop. [Invited speech].
ISS World Asia, Kuala Lumpur, Malaysia, 2018
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12. Jan Pluskal and Veselý Vladimír. TLS/SSL Decryption Workshop. [Invited speech].
ISS World Europe, Prague, Czech Republic, 2018

13. Jan Pluskal, Ondřej Ryšavý, and Matoušek Petr. Detection, and Analysis of SIP
Fraud Attack on 100Gb Ethernet with NEMEA System. [Invited speech]. Cybersecu-
rity and Privacy, Pristina, Kosovo, 2017

14. Jan Pluskal. Detection, and Analysis of SIP Fraud Attack on 100Gb Ethernet with
NEMEA System. [Presentation]. IRTF NMGR Workshop, Berlin, 2016

15. Jan Pluskal, Ondřej Ryšavý, and Petr Matoušek. “On the Identification of Applica-
tions from Captured Network Traffic”. In: 8th International Conference on Digital
Forensics & Cyber Crime. [Poster]. New York, 2016. url: https://prezi.com/
wnxlghgkocti

16. Jan Pluskal and Ondřej Ryšavý. Network Forensic Tool Netfox Detective. [Invited
speech]. Cybersecurity and Privacy, Pristina, Kosovo, 2016

17. Jan Pluskal, Vladimír Veselý, Matěj Grégr, and Ondřej Ryšavý. TLS/SSL Decryption
Workshop. [Invited speech]. ISS World Europe, Prague, Czech Republic, 2016

18. Jan Pluskal and Ondřej Ryšavý. Concepts of Intercepted Communication Processing
with Netfox Detective. [Invited speech]. ISS World Europe, Prague, Czech Republic,
2015

3.7 Selected Relevant Supervised Theses
1. Šimon Pokorný. “Migrace a refaktorizace Netfox Detective na .NET 5”. Czech.

Master’s thesis. Brno, CZ: Brno University of Technology, Faculty of Information
Technology, 2021. url: https://www.fit.vut.cz/study/thesis/22857/

2. Richard Stehlík. “Útok na WiFi síť s využitím ESP32/8266”. Czech. Master’s thesis.
Brno, CZ: Brno University of Technology, Faculty of Information Technology, 2021.
url: https://www.fit.vut.cz/study/thesis/23435/

3. Martina Zembjaková. “Network Forensics Tools Survey and Taxonomy”. Master’s
thesis. Brno, CZ: Brno University of Technology, Faculty of Information Technology,
2021. url: https://www.fit.vut.cz/study/thesis/23022/

4. Tomáš Čikel. “Bezpečnostní analýza domácí IoT sítě”. Slovak. Bachelor’s thesis.
Brno, CZ: Brno University of Technology, Faculty of Information Technology, 2020.
url: https://www.fit.vut.cz/study/thesis/23135/

5. Juraj Kubiš. “SS7 Honeypoty - proaktivní ochrana proti podvodům v mobilních
sítích”. Czech. Master’s thesis. Brno, CZ: Brno University of Technology, Faculty
of Information Technology, 2020. url: https://www.fit.vut.cz/study/thesis/
23130/

6. Jozef Zuzelka. “Control of External Devices on macOS to Prevent Data Leaks”.
Master’s thesis. Brno, CZ: Brno University of Technology, Faculty of Information
Technology, 2020. url: https://www.fit.vut.cz/study/thesis/22637/
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7. Tomáš Ambrož. “Analytické webové prostředí pro zpracování síťové komunikace”.
Czech. Master’s thesis. Brno, CZ: Brno University of Technology, Faculty of Infor-
mation Technology, 2019. url: https://www.fit.vut.cz/study/thesis/22049/
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Chapter 4

Conclusions

This chapter summarizes the research presented in this dissertation. The approach followed
is outlined, and the results obtained are discussed. Future research directions are proposed
based on the experience gained.

4.1 The Research Approach

This dissertation does not consist of basic research as is customary but describes the ad-
vances in my applied research.

My research began around 2012, with my bachelor thesis focused on the reconstruction
of YMSG and OSCAR instant communication protocols. I have realized that creating
single-purpose tools may bring unnecessary overhead considering its maintainability and
extensibility to cover additional network protocols. In my master thesis, I developed a
framework for reconstructing captured network communication that required abstracted
data preprocessing steps and provided a unified interface for application protocol parsers
to improve this state. To my shame, I realized that I had not conducted rigorous state-of-
the-art research to compare the capabilities of existing network forensic tools, identify their
weaknesses, choose the research area, and improve the state-of-the-art.

At the beginning of my doctoral studies, in 2014, I started to experiment with the most
advanced open source network forensic and analysis tools and network security monitoring
tools (according to Pilli and Joshi [53]; see Table 2.3) at that time, namely Wireshark,
Network Monitor, Xplico, Network Miner, and PyFlag. With these experiments, I gained
an understanding of the usability of these tools and also their capabilities. Using these
experiments combined with the experience gained in my previous work, I created a list
containing the four primary research objectives (see Section 1.3) I wanted to improve.

During the literature review, I realized that not a negligible number of research papers
do not allow for reproducibility of their results by lacking either a description or better
concrete implementation of the methods they describe. This observation has convinced
me to explain my experiments, input data, and results precisely and to attach a concrete
implementation with the datasets I used. Furthermore, my long-term goal was to create a
tool to help LEA investigators in their daily work. I have used this opportunity to utilize
this tool as a base framework for my research experiments and have extended it to most of
my research results.
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4.2 Contributions

This section summarizes my research contributions, while a complete and detailed de-
scription is provided along with the attached papers in Section 3.2. The most significant
contribution of this work was the identification of research objectives, see Section 1.3, which
could enrich the state-of-the-art.

Contributions to the capturing and processing of in/complete network data
consist of identifying suboptimal mechanisms used in several NFAT and NSM tools [43,
54]. This may result in inaccurate L4 and application conversation tracking, which yields
fewer conversations than actually occurred. This applies only in the case where the cap-
tured communication was incomplete. Consequently, these tools will extract artifacts from
the contents of the application protocol and assign them to these inaccurately tracked
conversations. Each L4 and application protocol conversation is assigned to an entity /
identity responsible for the communication. Inaccurate conversation tracking merges mul-
tiple conversations into one, which may assign artifacts from the missed conversation to
the previously identified one, resulting in the creation of false evidence. Furthermore, we
have determined that some NFAT and NSM tools [43, 54] are not fully implementing TCP
reassembling and cannot extract the content of an application message if the TCP sequence
number overflows. Furthermore, concerning reassembling incomplete TCP conversations,
some tools [43, 54] stop the artifact extraction process after the first missing data occurs.
This approach may omit crucial evidence of activity that occurred in the communication
after the first missing data. In the publications mentioned above, we proposed a method to
remedy this situation using heuristics based on information from transport protocols. As a
preliminary step, we have considered the possibility of capturing local network traffic using
MitM proxies that are intrusively deployed on Wi-Fi networks [73, 74].

Contributions to application protocol and finer-grained application identifica-
tion are described in detail in the enclosed papers [56, 54]. The major contribution of this
research is to show that not only can application protocols be identified using ML algo-
rithms, but we can also identify, with a lower probability, applications that were used to
generate that communication. Secondary contributions are open source publicly available
datasets for research verification and open source implementations of multiple classification
algorithms that may serve as a playground for further research related to feature engi-
neering and hyperparameter tuning. Additionally, we revisited commonly used features for
application protocol classification and proposed adding new features based on information
gained by reassembling application messages. This approach may eliminate certain noise
introduced by IP fragmentation and TCP segmentation. Our additional contribution to
feature engineering for traditional ML algorithms was the introduction of automated fea-
ture elimination based on feature correlation computed from our annotated dataset. The
last contribution was the proposition of a novel statistical-based method that inherently
contained feature elimination and did not require this additional pre-training step.

Contributions to what should be the architecture of network forensic tool / scale
or not to scale research questions were addressed in the publications [39, 38]. In this
research, we were looking for possibilities to increase the throughput of capture traffic
network processing using horizontal scalability. Inspired by Valentin’s [70] usage of the
actor model, we have designed and implemented a framework capable of linear scalability
while respecting advanced processing features for heuristical handling of incomplete data
described in other enclosed publications [43, 56]. The overall contribution is a practical
demonstration supported by rigorous measurements that show the feasibility of horizontal
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scalability for increasing the performance of NFATs. The secondary contribution is the
creation of a PoC specimen [72] composed of low-cost / low-power computers on a single
board.

Contributions to the processing of tunneled and overlay networks in network foren-
sic analysis lie in identifying the need to address the underlying network encapsulation [55,
58, 54] correctly. Omitting, for example, VLAN tags may mix up unrelated flows, sim-
ilarly to incorrect TCP reassembling of incomplete communication. Our contribution to
this topic is the analysis of Generic Stream Encapsulation (GSE) and the creation of its
PoC processing unit incorporated into our NFAT Netfox Detective tool, while being the
only NFAT tool that supports it.

This work laid the theoretical ground for a research project sponsored by the Czech
Ministry of Interior (VH20192021043).

4.3 Future Work
Considering the experience gained in the field of Network Forensic Analysis, I would like
to outline future research directions that seem promising:

• Investigation of possible data sources for forensic investigation. A lawful interception
at the Internet Service Provider level is de facto standard, but additional points in
the network infrastructure may also be beneficial. Richard Stehlik’s master thesis [68]
introduces one of the promising directions.

• A deeper analysis of application communication patterns and metadata extraction is
the key to fighting omnipresent encryption. Identifying not only an application pro-
tocol but also an application and type of communication such as text, voice message,
interactive call, etc., may allow the use of standardized analytical approaches for Call
Detail Records (CDRs) from the telecommunication world in the network forensic
investigation.

• A correlation of patterns observed from network traffic captured on multiple points
in the network to prove that entities were in contact, e.g., VoIP call routed through a
third-party proxy may have the same characteristics on both sides of a broker; thus,
the correlation may identify calling parties.

4.4 Final Notes
The presented dissertation outlined research conducted in the Networks and Distributed
Systems Research Group (NES@FIT), at the Faculty of Information Technology, under
the Brno University of Technology in the field of Network Forensic Analysis, which I have
participated in in the last decade. The goal of this research is consistent with the needs
of the Czech Law Enforcement Agencies that supported the selected research objectives
presented in this work. The results of this research have been given to end users along the
lines of LEA investigators. To the best of my knowledge, they are being used or considered
for practical applications.
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a b s t r a c t

Network forensics is a major sub-discipline of digital forensics which becomes more and more important
in an age where everything is connected. In order to cope with the amounts of data and other challenges
within networks, practitioners require powerful tools that support them. In this paper, we highlight a
novel open-source network forensic tool named e Netfox Detective e that outperforms existing tools
such as Wireshark or NetworkMiner in certain areas. For instance, it provides a heuristically based engine
for traffic processing that can be easily extended. Using robust parsers (we are not solely relying on the
RFC description but use heuristics), our application tolerates malformed or missing conversation seg-
ments. Besides outlining the tool's architecture and basic processing concepts, we also explain how it can
be extended. Lastly, a comparison with other similar tools is presented as well as a real-world scenario is
discussed.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Network forensics aims to understand/reconstruct events from
network communication, which often requires expert knowledge
(interpreting the low-level network protocols in order to see the big
picture) (Casey, 2004). To eliminate some of the complexity,
adequate tools are essential (Garfinkel, 2010; Harichandran et al.,
2016). Specifically, tools should support investigators by summa-
rizing, clustering and highlighting relevant information (Beebe,
2009), e.g., provide contents of transmitted files, extract user cre-
dentials or perform analysis and visualize the data in an easily
understandable form. While there are many different network
forensic analysis tools (Pilli et al., 2010) out there (details discussed
in the upcoming sections), their functionalities, capabilities, and
usability are not keeping up with traditional forensics toolkits
(Casey, 2004) such as EnCase, 2020 or The Sleuth Kit (TSK) &
Autopsy, 2020.

Thematic classification: While network forensics and cloud fo-
rensics are related, the latter one is usually more complex, e.g., it
may involve Software Defined Networking (SDN (McKeown et al.,
2008)) which comes with additional evidence such as Logfiles
from the SDN controller, compute nodes or cloud controller

(Spiekermann et al., 2017). These networks also use state-of-the-art
networking technology (100e400 Gbps) that cannot be monitored
without hardware acceleration (typically FPGA), and even then,
only selected flows can be fully captured (Kekely et al., 2016) and
used for further, detailed examination. Netfox Detective is intended
for network forensic analysis and visualization on a PC and does not
compete with these tools, but uses them to filter and capture data.

Terms and definition: For readers not completely familiar with
the network terminology, we included an overview in Appendix A.

1.1. Analysis of network communication

Two of the most popular tools for Network Security Monitoring
(NSM) are Wireshark and TCPDUMP, 2020, which are commonly
used by network administrators to identify problems or security
incidents (Pilli et al., 2010). Wireshark provides a large number of
protocol parsers, can extract the content of the communication for
several application protocols and offers a detailed view of the
network communication.While it is one of themost powerful tools,
its bottom-up analysis approach means that finding and extracting
evidence often requires (intensive) labor and expert domain
knowledge. Nevertheless, Wireshark is continuously optimized,

* Corresponding author.
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and usage of analyzers and LUA plugins eases up the investigation.
Netfox Detective partially addresses this by implementing
advanced features such as heuristical TCP reassembling or L7
conversation tracking or reconstruction of forensic artifacts
extracted from the communication. Furthermore, Wireshark does
not scale well above hundreds of megabytes of source data, and
thus, data preprocessing is necessary for large inputs. TCPDUMP,
2020, on the other hand, has only a command line interface that
allows admins to inspect incoming and outgoing network traffic.

There are also more specialized tools that can extract valuable
forensic information, for instance, ngrep, 2020, ssldump, 2020, or
tcpxtract, 2020. These tools were created to solve specific problems
such as searching for a phrase in network communication, decod-
ing encrypted communication if a private key is known, or
extracting transferred files from network communication, respec-
tively. To take advantage of all tools, an investigator is required to
combine them. For repeating tasks, one may write scripts to speed
up the process and thus, reduce the amount of manual labor.

Without question, there are many practitioners who prefer
featureful open-source tools (Beebe, 2009; Farmer and Venema,
2009) although there is a risk that they are poorly documented,
out-of-date, and even abandoned (Garfinkel, 2010).

1.2. Expected properties for network forensic tools

According to Cohen (2008), a network forensic analysis tool
(NFAT) should provide a certain set of general features (listed as
items 1e3 below). We further analyzed the demands and identified
some more specific features yielding the following list of
requirements:

1. Efficient processing of large capture files: Current investigations
deal with a big amount of data that needs to be analyzed. Tools
are required to provide at least partial results quickly.

2. Extraction of high-level information: Network communication
can be analyzed at different levels but for digital investigation
extracting artifacts from data sources is a priority.

3. Validation of results: Applying reliable procedures and the pos-
sibility to validate the integrity of results is a crucial requirement
on all forensic tools including NFATs.

4. Process non-standard or incomplete traffic: Network communi-
cation should be correctly processed regardless of the accept-
able deviations from the specification.

5. Robust data decapsulation: Even in the presence of IP fragmen-
tation and data stream multiplexing, the tool should be able to
identify and compose unique application level conversations.

6. Support for overlay networks: Network communication may be
encapsulated using tunneling techniques, e.g., Virtual Private
Networks. If possible, detection and extraction are then fol-
lowed by the analysis of the encapsulated messages.

7. Application protocol identification: Services communicating on
non-standard or dynamic ports require advanced methods for
application identification. Without the correctly identified type
of communicating application, it is difficult to extract any high-
level information.

8. Investigation process: The tool should support the top-bottom
investigative process and guide the user. It is essential that
even non-expert personnel can operate NFAT and extract evi-
dence to support their cases.

The presented list is not exhaustive and stems from our expe-
rience in network traffic analysis and evaluation of existing NFATs.
Some requirements are conflicting, for instance, processing of large
data sources and in-depth analysis of conversations to extract high-
level artifacts.

1.3. Network forensic tools

Besides Network Security Monitoring (NSM) tools that are
intended for packet capturing, fingerprinting, or intrusion detec-
tion, there are some network forensic analysis tools (NFAT) spe-
cifically designed to support investigators. These aim to ease
analysis by automating artifacts extraction and providing intuitive
user interfaces. Usually, these tools have a top-down approach
which makes the analysis simpler and saves time. In the following
we briefly summarize the five prominent tools (numbers in
brackets related to Sec. 1.2 and show missing properties):

� NetIntercept was one of the first NFATs (Corey et al., 2002). It
accepts PCAP files (no live captures), reassembles TCP flows and
extracts artifacts from protocols running even on non-standard
ports. Note: NetIntercept is closed source and to the best of our
knowledge no longer available for download. Thus, we were
unable to perform a more detailed evaluation.

� PyFlag, 2020 [1, 3, 4, 6, 7, 8] “is a general purpose, open source,
forensic package which merges disk forensics, memory foren-
sics, and network forensics” (Cohen, 2008). By using specialized
scanners, PyFlag can understand several application protocols
and extract the communicated contents. However, according to
Forensics Wiki, the tool is deprecated.1

� XPlico, 2020 [1, 3, 4, 5] is open source NFAT that is preinstalled
on major digital forensics distribution such as DEFT, Security
Onion and even Kali. It understands about 30 application pro-
tocols and can extract the content of emails, Session Initiation
Protocol (SIP) or web communication.

� NetworkMiner, 2020 [1, 3, 4, 8] is a passive network sniffer/
packet capturing tool that can detect operating systems, ses-
sions, hostnames, open ports, and more. It also allows extracting
files from about a dozen commonly used application protocols.
In the professional version, NetworkMinor also extracts VoIP
calls, supports Geo IP localization, performs port-independent
protocol identification, OS fingerprinting, and web browser
tracing.

� TCPFlow, 2020 [2, 3, 4, 5, 6, 8] “captures data transmitted as part
of TCP connections (flows), and stores the data in a way that is
convenient for protocol analysis and debugging. Each TCP flow is
stored in its own file. Thus, the typical TCP flow will be stored in
two files, one for each direction. TCPFlow can also process stored
‘tcpdump’ packet flows”. It is important to note that TCPflow
does not recognize IP fragments; therefore, reassembling of
such conversations will be malformed.

While these tools have different strengths, our tool provides
some unique features which are pointed out in Sec. 5.

1.4. Problem description

Although many tools have been developed/exist, several tools
are outdated, abandoned, or do not meet all expected properties
(see Sec. 1.2). Additionally, current tools are not intuitive (require
training), not (easily) expandable or can handle network traffic
captures in the order of magnitude of gigabytes which were re-
quirements/statements from the Lawful Enforcement Agency (LEA)
officers. Last, existing tools are not structured along the investiga-
tive process; commonly there is no case management, the linkage
between investigations, and verification of results which can be
helpful during investigations.

1 https://www.forensicswiki.org/wiki/PyFlag%20 (last accessed 2019-08-17).
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1.5. Notes on legal requirements

Possible real-world usage of Netfox Detective, as well as other
NFAT tools, needs to be under the frame of legal requirements and
restrictions. Then conditions of the legal use of NFAT tools cannot
be stated world-wide. EU countries and even states of a single
country, e.g., the USA or Germany, have different laws about col-
lecting digital traces related to user activities (see ENISA (2019),
section 2.6). Network forensics necessary requires to gather IP ad-
dresses, packet captures, or log files that may contain all kinds of
private data, including passwords, usernames, credit card numbers,
etc. Specific laws regarding online services, protection of critical
infrastructures, and cybercrime or computer crime may apply to
the practice of digital investigation. Commonly they limit what data
can be acquired or the way in which data can be processed. The
presented tool is only technical equipment able to process captured
communication. Same as in the case for other NFAT, the tool is able
to extract various artifacts from network communication and it is
required that investigators have to abide by the law, especially since
matters may be taken to court. Often knowing what law applies to
the situation may be challenging and the advice of trained legal
experts is needed.

1.6. Contribution and paper structure

This paper provides Netfox Detective; a novel, easy-to-use,
powerful network forensic platform for top-down investigations.
Our tool covers examination, analysis, and investigation phases of
the forensic model as defined by Pilli et al. (2010). In detail, we
provide the following contributions:

1. Introduction of investigation profiles that contain all necessary
data for sharing the case by just copying the investigation folder
d Sec 3.3.

2. The new method of TCP stream reassembling based on heuris-
tics (method itself was previously published (Matou�sek et al.,
2015), but the tool contains an improved version of it) d Sec
3.4 and Appendix E.

3. Improved identification of application-level sessions within TCP
streams; the system can identify more application sessions
compared to other tools (see Table 1) d Sec 3.4, Appendix E.

4. Seamless analysis across boundaries of multiple capture files
that ensures correct processing of long-running conversations
(i.e., overlapping conversations are processed correctly) d Sec
3.4. To the best of our knowledge, no NFATor NSM tool currently
has this functionality which is crucial for LEA forensic

investigation. Data sources in form of PCAP files are typically
split due to time or space constraints.

5. Support for analysis of traffic encapsulated in GSE protocol; to
the best our knowledge, Netfox Detective is the only open-
source NFAT that supports GSE d Sec 5.3.

6. Novel approach for web page reconstruction; in comparison to
other tools, we do not only extract objects from HTTP commu-
nication, but we also reconstruct the page entirely (rewriting
sources of all intercepted objects like CSS, pictures, video
streams, etc.). Pages are stored as a MAFF, 2020 archive
including snapshots that show how the page changed over time.
The JavaScript is interpreted, and particular API calls are mocked
to be injected with intercepted ones, like REST API calls d Sec
6.2. The reconstruction of a web-page requires analysis and
correlation of multiple L7 conversations, because a page usually
references (includes) data from multiple domains.

Note, the system has a modular architecture where processing
engine, data-access component, and visualization subsystem can
be used separately. The function related to packet capture file
processing, namely, file parsing, conversation tracking, application
protocol identification, application data extraction, and analysis can
also be used as a standalone console tool and integrated to auto-
mated investigation procedures and combined with other existing
tools.

The source code2 is released on GitHub and under the Apache
Licence 2.0. Additional information can be found on Netfox
Detective's YouTube channel: https://goo.gl/fKM8Vs.

The remainder of this paper is organized as follows: Sec. 2 de-
scribes the system architecture, illustrates the frontend, and ex-
plains possibilities on how to extend Netfox Detective. Sec. 5
highlights some of the unique features of our tool as well as con-
tains a comparison with other prominent network forensics/secu-
rity tools. The last section concludes the paper.

2. Netfox Detective

Netfox Detective is a network forensic tool that was developed
to support digital forensic practitioners to analyze network cap-
tures and to extract evidence from packet traces quickly. The
development started off as PoC (Pluskal et al., 2015) with slower
processing pipeline and storage, a limited set of application pro-
tocol support, and capabilities in general. It allows to correctly

Table 1
Performance of selected operations using the M57 case PCAP files. Machine configuration: CPU i7-4790, 4.00 GHz, 64 GB DDR4, Crucial MX100 SSD, Windows 10. Experiments
were repeated 10-times, measured by time and Perfmon utilities.

Operation BackendH Frontend þ BackendH Wiresharky NetworkMinery tcpflowy,D

1 Total time 6m 14s, sz 15:23 s 9m 36s, s z 30:12 s 8m 48s, sz 17:34 s 41m 23s, s z 124:43 s 13m 39s, s z 64:21 s
2 Max RAM usage 8.3GB 8.5GB 7.1GB 20GB 243MB
3 Avg CPU usage 76%, sz8 % 66%, sz18 % 12%, sz3 % 15%, sz2 % 3%, sz1 %
4 Sessions (TCP þ UDP) 118,709 118,709 98,084 49,865 93,619
5 TCP - missing 3.9%* 3.9%* 0.6%* N/A N/A
6 DNS - records 238,531 238,531 150,426 183,527 N/A
7 Emails 28 28 N/A 39 N/A
8 FTP 16 16 N/A 1 N/A
9 Complete Web pages 6 6 N/A N/A N/A
10 Speed 101.8Mbps 66.1Mbps 72.1Mbps 15.3Mbps 46.5Mbps

(y) To measure comparable results, in-memory database has been used.
(y) The tool was downloaded as a binary release.
(D) The tcpflow 1.4.4 was ran with parameters -r file.pcap -a -Fm to do ALL post-processing and split output in 1M directories.
(*) Netfox Detective computes TCP loss based on lost segment size (see Eq. (2)). ForWireshark, we computed it by applying the tcp.analysis.lost_segment filter and then utilized
Eq. (1). This does not mean that the tool lost the data but they were not present in the capture, i.e., the capturing probe lost them.

2 https://github.com/nesfit/NetfoxDetective.
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identify network conversations, parse common Internet protocols,
and extract metadata as well as content from the end-to-end
communication. Additionally, it is possible to extend the tool
with new functionality through a well-documented API.

The tool is a Windows application relying on the.NET Platform
and is available as an installation package that performs necessary
deployment steps. Our implementation exploits many advantages
of this platform like the rich graphical user interface provided by
Windows Presentation Foundation (WPF), short development
times due to a high abstraction language (C#), and availability of
many libraries provided through NuGet packages. Furthermore, the
implementation utilizes the Task Parallel Library (TPL) for parallel
processing.

The software consists of over 140,000 lines of code3 organized in
about 110 projects. While it currently does not support live analysis,
it accepts a variety of different network capture formats such as
libPcap, 2020, Pcap-NG, 2020, and Network Monitor (MNM)
format.

Fig. 1 describes the architecture, which is composed of twomain
components:

Frontend is primarily a rich visual user interface (GUI, see Fig. 2)
that is built on top of the backend and contains analysis capabilities
(Sharafaldin et al., 2019). Analyzers are frontend interfaces that
allow adding new functionality. Details are outlined in Sec. 3.2.

Backend is a network traffic processing engine that performs:
capture file processing, protocol parsing, traffic analysis, and met-
adata extraction. It is independent of the frontend (GUI) and comes
with its own CLI which allows to integrate it in automated pro-
cessing pipelines or to use it as a single-purpose tool. Snoopers are
backend interfaces that allow adding new functionality. Details are
outlined in Sec. 3.4.

2.1. Analyzers vs. snoopers

The tool can be extended through the implementation of
snoopers or analyzers. Analyzers have more advanced functionality
and different purpose than snoopers. The Analyzer API provides
access to data storage as well as the user interface. An analyzer can
be bound either to application or investigation scope. Thus, it is
possible to integrate highly specialized analyzers for specific cases.

Analyzers can create investigations, add capture files, or run any
operation supported by Netfox Detective or access any data.

On the other hand, snoopers can access information from the
processing pipeline through the database (metadata storage).
Snoopers can extract objects from the source data but may also
utilize other data such as flow records, log files, etc. Snoopers are
intended to parse the application conversation protocols (L7, listed
below) and extract data such as files, videos, or HTTP headers. More
details about analyzers and snoopers are provided in Appendix C
and Appendix B, respectively.

Note, Netfox Detective is too complex to explain every detail in
this paper, and thus, we focus on some important design decisions
in the next section. We plan on releasing more information/details
over the years.

3. Design decisions

While we made many decisions along the way, the following
subsections discuss the most important ones: GUI design, investi-
gative process workflow, and packet processing pipeline.

3.1. No live captures

Netfox Detective does not support live captures but accepts
several input formats, which had several reasons. First, lawful
interception deployment contains one or more capturing probes
that store data on drives locally, or on remote storage (Invea, 2020).
Secondly, the analysis is often performed on more powerful
equipment rather than the capturing probe. Third, this was not a
requirement by LEA.

3.2. GUI design

The GUI follows the principles of Master/Detail screen layout
(Microsoft Corporation, 2017) supported by the navigator panels as
shown in Fig. 2. This organization is ideal for creating an efficient
user experience (Scott and Neil, 2009) when the user needs to
navigate between linked items (Beebe, 2009). The user interface
provides a high degree of customization, utilizing a grid layout of
dockable views. The application has three main areas, namely, left-
hand side, upper right and lower right, that host basic visual
components:

� Investigation Explorer is the main navigation panel of the appli-
cation. It organizes Captures, Logs, Detected Events and Expor-
ted objects (see the left blue box in Fig. 2). More details about the
structure are given in Fig. 3, and discussed in the Investigation
Explorer paragraph.

� Conversation View provides a list of all tracked conversations in
source capture files (see left red box).

� Conversation Detail provides information for the selected con-
versation. The presented content may contain links for addi-
tional data and detailed information on the target object (see
right red box).

� Detail View, e.g., Export Detail, provides additional information
for specific object types. The content uses links to navigate via
multiple views (see the black box at the bottom).

� Conversation Explorer contains a list of conversations that were
associated with investigated objects, e.g., conversation or export
object (see right blue box).

� Output Window contains a list of events generated during the
processing. These events may be informative, warnings or errors
raised during source data processing (see the green box, only
partially shown).

Fig. 1. The overview of Netfox Detective Architecture.

3 Calculated by Visual Studio (code metrics) on the complete implementation;
excludes white spaces, comments, usings, and third-party libraries.
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3.3. Investigative process workflow

The application was designed according to already well-
established concepts known from Integrated Development Environ-
ments that programmers use to organize complex software designs
(Microsoft Corporation, 2017). With respect to digital forensics, we
consider an Investigation to be an equivalent to a project; In-
vestigations are combined into a Workspace that is equivalent to a
Solution. An investigator can choose on which Investigation(s) s/he
wants towork on and add data in the form of PCAP files or logs. Data
is processed, and all gathered information is stored in an Inves-
tigation's scope; nothing is shared beyond that. In case several

PCAPs are added (e.g., cause they have been split previously), across
analysis is conducted (they will be treated as one PCAP internally
for tracking and reconstruction of events).While data is never
shared between investigations, we allow opening multiple in-
vestigations (in separate docked panes) which allow comparing
data from multiple sources.

3.4. Packet processing pipeline

Tomaster the challenges of parsing and to polish all information
gathered, it consists of several interconnected implementation
blocks which compose a packet processing pipeline. The pipeline
(lower right-hand side of Fig. 1) performs (i) packet file loading and
processing, (ii) conversation tracking, (iii) application recognition
and (iv) extracted (meta)data storing. Thus, the processing pipeline
handles the identification of protocols for each packet, performs
defragmentation, and does stream reassembly for TCP communi-
cation (L7 Tracker). A detailed view is provided in Fig. 4. Note, the
snoopers allow to extend the backend and will be discussed in Sec.
Appendix C.

Packet file loading and processing. (i.e., components Packet Cap-
ture Source, Packet Capture Processor, L3-L7 Trackers, and AppI-
dent): Source packet capture files are processed by the
corresponding packet file loader depending on their file type. The
processing of the frames is sequentially where each loaded frame is
dissected into the low-level protocols to identify its key properties,
such as a physical address, network address, or ports. The dissected
packet is forwarded to the next component (i.e., L3 Tracker) which
performs further processing.

Conversation Tracking. Conversation tracking is a critical
component of the system as it examines each dissected packet and
associates it with the corresponding conversation.4 A conversation
is considered as the basic data object for further analysis. The
system identifies conversations at different network layers:

Fig. 2. A screenshot of the UI design of Netfox Detective with highlighted dockable locations. Each pane can be moved and docked to any dockable location inside the Netfox
Detective window, or drag & dropped outside the window to materialize a new one with the same dockable properties. This way, an investigator split the application across
multiple screens.

Fig. 3. The structure of an investigation folder. All workspaces are stored under the
user's profile folder. Each workspace and each investigation has its name d suffixed
with GUID for uniqueness. Each investigation contains a database, exports (extracted
data from traffic), logs, settings, sources (copies of source data, e.g., PCAPs), and temp
(for temporary data generated by snoopers and analyzers). Metadata about the
workspace and investigation is stored in *.nfw, *.nfi files, respectively.

4 Note, conversations are also called bi-flows in some literature.
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� Packets sharing the same source and destination addresses
belong to the same network layer conversation (L3). Every pair
of devices shares a single L3 conversation.

� Packets with the same network source and destination ad-
dresses, transport layer source and destination ports and a
specific transport protocol belong to the same transport layer
conversation (L4). At this layer, the conversation mostly corre-
sponds to a pair of TCP streams or UDP data exchanges.

� Lastly, application layer conversations (L7) are identified using
various TCP heuristics we have developed previously (Matou�sek
et al., 2015) and improved for this article. The difference is in the
handling of corner cases in TCP reassembling, namely the
computationwith seq. numbers, order of processing of colliding
TCP sequences, and remaining sequences without introductory,
or conclusive TCP flags, for details, compare Appendix E
2.e.(iidiii), 2.h, 4, 5 and original paper. The heuristics solve the
problem when dealing with incomplete data or multiple ses-
sions that are merged into a single transport layer conversation.
L7 conversations reflect a single session between a client and a
server application.

Correct identification of conversations from source packets is a
challenging task as several issues may arise, e.g., out of sequence
packets, missing packets, fragmented packets, or missing termi-
nation packets. To succeed, we use several heuristics to identify and
collect as many conversations as possible, even in corrupted or
incomplete data sources. Additionally, the tool addresses the need
for fast processing by using available processor cores, implement-
ing concurrent conversations processing.

Metadata Storage (database). Extracted information, e.g., con-
versations at different layers, application layer data units, and other
relevant information, is stored in a SQL database. The bulk insert
method is used to obtain better performance. Thus integrity is not
guaranteed until all data is inserted. The user interface is aware of
this and handles temporally incomplete data correctly. The data-
base is accessed through persistence providers that allow to easily
add support for different databases.5

3.5. Security considerations

Netfox Detective is intended for a single-user environment, i.e.,
it runs on an investigator's desktop. Therefore, the system does not
include user management, authentication, or authorization. The
designated way to share investigation between multiple in-
vestigators is to export/import the workspace. This decision allows
to enable the more extensive use of our tool by investigators that
prefer disconnected systems to protect sensitive data against

misuse. Netfox Detective, therefore, does not require a certification
process to be usable inside LEA.

4. Testing

Given the complexity of our application, testing was (is) an
essential part throughout the development process, where we
followed a Test-Driven Development (TDD) methodology. TDD re-
quires writing tests first, then production code that passes the tests
and lastly to refactor the code to improve its structure. We utilized
unit tests, which then also ensures integration/regression testing
and ensures the correctness of new versions. Because our focus is
very specific (network data parsing and analysis), mocking the data
would be tedious (Osherove, 2015). Therefore, we omit the unit
tests in favor of integration/system tests that use data loaded from
PCAP files processed (in-time of the test) by our processing
pipeline.

To develop and test modules (snoopers/analyzers), we started
by collecting testing data first, where we either downloaded
available PCAPs or created our ground of truth utilizing our private
networks. In the latter case, we then filtered the captured data
using Wireshark, which ensured that we only deal with one
application message, action, or scenario at a time. If Wireshark
supported the application protocol, we compared both results (ours
and Wireshark's).

In the beginning, we also usedMicrosoft NetworkMonitor, 2020
(MNM), which allowed us to develop parsers written in Network
Parsing Language (NPL). In other words, we created parsers for two
different frameworks and compared results. Given that MNM is
outdated, and this is not the most reliable method for testing, we
abandoned MNM.

After carving basic events from the protocol messages worked
correctly (single packet), we created more complex scenarios (e.g.,
a login scenario which has multiple packets) and manually verified
the results. Lastly, we created a comprehensive dataset and
extracted key data (e.g., the summary of extracted events) which
we then used as benchmark data for new version testing to prevent
regression bugs. Currently, Netfox Detective contains 1000þ tests
that are automatically executed whenever new code is committed
and run approximately 46min. In case that a regression bug is
found, the merge is denied until the bug is fixed.

5. Evaluation

The rest of this section discusses the efficiency (see Sec. 5.1)
followed by a summary of carving capabilities. In Sec. 5.3 we
compare Netfox Detective to other exiting tools beforewe provide a
real-world example. The last section explains the sec:web; a very
unique feature of our application.

Fig. 4. Abstract capture file processing scheme with a sequential passage. Data dependencies between models are omitted. The ultimate goal is to identify and collect application
level conversations. In order to accomplish this, communication at low levels need to be properly identified, messages parsed, relevant data extracted, and packet composed. This is
achieved by conversation trackers.

5 Currently, the tool supports Microsoft SQL and in-memory data storage.
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5.1. Efficiency assessment

Although Netfox Detective is an offline analysis tool, runtime/
memory footprint are essential aspects. Thus, this section discusses
the runtime efficiency in comparison with Wireshark and Net-
workMiner. To measure the efficiency, we used theM57, 2020M57-
Patent scenario6 PCAP files which consist of several PCAP files with
a total size of 4.8GB and 5;707;845 frames (we combined them into
a single PCAP). Note, given that each tool performs very different
tasks, this is only a rough comparison.

The results are provided in Table 1. As can be seen, Netfox
Framework is slightly faster than Wireshark despite the TCP reas-
sembling of all sessions. Note, when opening the case the 2nd time,
all data is extracted from the database which is completed in a
matter of seconds. However, we require more memory footprint
(RAM). Netfox Detective is slightly slower than Netfox Framework
as it visualizes the information. NetworkMiner is about 4e7 times
slower than the other tools. The average CPU usage is not reaching
100% with Netfox Framework and Netfox Detective because of the
thread synchronization, I/O operations, Garbage Collection, and
back pressure in the processing pipeline that balances overall
performance and resource utilization. Overall, the Mbps per tool
vary between 15 and 100.

Additional efficiency indicators are given in Table 2, where we
focus on rows 12 and 13 (processing speed and parallel processing;
remaining rows are discussed in Sec. 5.3). As shown, Netfox De-
tective allows parallel processing, which should make it faster than
the deprecated PyFlag. On the other hand, Cohen (2008) points out
that PyFlag is not intended for high-speed. Concerning XPlico, more
research is needed as it also processes data in parallel, and we did
not find information on processing speed.

5.2. Event carving capabilities

The next important aspect for forensics is event carving, i.e.,
restoring particular events such as an FTP Login, a DNS query or
sending emails from a comprehensive stream. This section pri-
marily focuses on NetworkMiner (NM) and Netfox Framework and
their capabilities; Wireshark does not incorporate advanced
forensic features such as emails or web page reconstruction as it is
intended for Network Security Monitoring (Sira, 2003; Pilli et al.,
2010).

For comparison, we decided to focus on detected sessions, TCP
reassembling, and DNS records where the results are shown in
Table 1. These properties strongly depend on how a tool was
implemented. Higher numbers reflect finer granularity (this does
not mean that higher (or lower) numbers are better).

Sessions: the number of TCP and UDP sessions recognized by
each tool. This feature strongly depended on the mechanism
handling missing fragments, see Appendix E. Ithere is no packet
loss; the tools should report the same number of TCP sessions; UDP
sessions can differ in case the tool uses an inactivity timeout
threshold to split UDP sessions (the UDP protocol does not carry
any signaling information that can be used to determine the end of
a session).

TCPmissing: signifies howmuch information is lost and cannot
be recovered, e.g., capturing problems, packet loss, or storage is-
sues. All issues are related to actions that occurred before pro-
cessing of the capture file, i.e., they are not caused by Netfox
Detective. There are different ways to calculate the loss as shown in
Eq. (1) or Eq. (2):

lost packets
�
all packets½%� (1)

lost bytes = all bytes½%� (2)

Netfox Detective uses the Eq. (2) as we believe that if a sequence
of packets is lost, their count is unknown and can be approximated
using a heuristic based approach on MTU or previously observed
segment sizes. However, we had to utilize Eq. (1) asWireshark does
not explicitly count lost_bytes.

DNS records: the number of events carved from DNS traffic.
Netfox Detective extracts much more events compared to NM that
only considers DNS response packets (Mockapetris, 1987b) and
ignores query packets (Mockapetris, 1987a). NM also ignores some
other record types such as PTR, SRV or MX that may carry valuable
forensic information, e.g., a mapping of IP address to the domain
name (PTR), a definition of the service location (the hostname and
port number (SRV)), or domain names of mailing servers (MX). This
additional information may be useful in case of DNS spoofing at-
tacks/investigations (Huber et al., 2010). Lastly, NM only shows the
first record from an answer section. In contrast, Netfox Framework
processes all, i.e., all records from Question, Answer, Authority,
Additional from both packet types (not only response).

Emails and errors: reflects the number of extracted emails. NM
identifies more emails as Netfox Framework currently only con-
siders emails sent through the SMTP protocol; NM also processes
emails sent through webmail.7

FTP: the number of events identified in the FTP session. While
NM extracts only transferred files, Netfox Detective and Wireshark
show other related (meta-)information about the FTP sessions such
as the login or list-command.

Web pages: the number of reconstructed web pages using our
module. In total, 182 HTTP objects were found which created six
MAFFArchives containing full offline web page snapshots including
CSS and other downloaded objects. For additional details we refer
to Sec. 6.2.

In summary: each of the tools has its strengths andweaknesses,
and one has to choose the best tool for the job. For instance, Netfox
Detective has focused on carving capabilities from conversations
containing missing data.

5.3. Comparison to existing tools

This section compares Netfox Detective against other applica-
tions concerning capabilities, functionality, and features. A sum-
marized overviewwith is provided in Table 2 and is discussed in the
upcoming paragraphs.

In its current version, Netfox Detective does not allow live data
capture or PCAP-over-IP and thus is not as flexible as NetworkMiner,
2020 or XPlico, 2020. However, it supports various capture file
types. Note, this was a design decision: wework under the premise
that data is gathered on capturing probes and uploaded for analysis
after the capture ends (or parts of the ongoing capture are
provided).

In terms of support for encapsulation protocols, NetworkMinor
has a wide variety of supported protocols. However, to the best of
our knowledge, Netfox Detective, and Wireshark are currently the
only applications that support Generic Stream Encapsulation (GSE).
In comparison to other protocols, GSE frequently uses multiple
encapsulations, whereas other protocols usually do not. That re-
quires a significant change in the tool's architecture.

6 https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario%20 (last
accessed 2019-08-17).

7 This was a scenario we have not considered. We will update our module in the
near future.
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Rows 6e8 deal with application and their protocols. While
Netfox Detective uses a variety of different algorithms to identify
the protocol, NetworkMiner and XPlico rely on SPID and PIPI.
Furthermore, Netfox Detective tries to identify applications as well
as application protocols, e.g., HTTPS-Firefox, HTTPS-Chrome
(Pluskal et al., 2018). However, further testing is required to make a
qualified decision which tool works the most reliable. Concerning
supported application protocols, our tool supports a wide variety of
different ones, including some unique protocols like Facebook
Messenger, Hangouts, Twitter, or Warcraft. Note, since those are
implemented using snoopers, there will be more in the future.

OS fingerprint (row 9) is supported by NetworkMiner and Net-
fox Detective. While we rely on the AppIdent analyzer, NM uses
statistical based SPID algorithm (Hjelmvik and John, 2009).

In case that user credentials are observed in a communication,
Netfox Detective, and NetworkMiner allow to extract them where
the two tools focus on different protocols. Another major feature is
the handling of malformed, incomplete network traffic. This is
based on our previous work (Matou�sek et al., 2015) where we
showed that the risks of undesired association of the unrelated
conversation fragments yielding twisted evidence. We could not
find information for NetworkMiner; however, as shown in Table 1,
NetworkMiner identifies significantly fewer sessions (maybe due to
combining unrelated conversations). Advanced analytical views
address visualization capabilities where Netfox Detective is very
flexible due to the Analyzer API (see Sec. B), which ensures that the
tool can be extended with pluggable modules. In terms of XPlico,
we were unable to find detailed information; besides a reference to
a PHP Framework named cake-php.8

Row 16 addresses the querying/filtering capabilities of the cor-
responding tools. NetworkMiner, 2020, Wireshark, 2020 and
PyFlag, 2020 include basic query functionality (e.g., keyword
searches), XPlico and Netfox Detective require third-party tools
(e.g., one may query the database using analytical third-party ap-
plications or write a new snooper). If support for hitherto appli-
cation protocol is required, the advanced investigator can create a
new snooper module that will be dynamically be loaded without a
need of recompilation of the Netfox Detective. In comparison to
Wireshark, creation of a new snooper is straightforward imperative
programming based on an enriched API of a data stream that
handles several types of application protocol behaviors, like
request-response, asynchronous message exchange, etc., that helps
to handle missing/not-captured data.

To sum it up: While there are aspects where other applications
like NetworkMiner are superior, Netfox Detective has a lot of
unique functionality/features and is under active development d
new features can be expected. Especially the number of supported
application protocols, the incomplete or malformed communica-
tion handling make and the expandability, make it a great forensics
tool. Additionally, we believe that one of the major difference is
usability and the amount of expertise needed (especially compared
with Wireshark).

6. Example features

This section presents two of the many advanced features of
Netfox Detective and have been chosen as they make Netfox De-
tective unique. These features have been tested in real deployments
and helped LEA investigators to solve cases. Given their complexity,
we also provide brief video summaries at the beginning of the
corresponding sections. More videos about its capabilities can be

Table 2
Netfox Detective in comparison to major open-source network forensic tools. The provided information was gathered from official sources provided by the tool authors. N/A
indicates that we could not find any details regarding the particular feature. We deliberately do not add any information that is not stated by authors, such as processing speed.

Tool Netfox Detective NetworkMiner XPlico PyFlag

Feature

1 Live data capture NO YES YES NO
2 PCAP-over-IP NO YES YES NO
3 Supported file

types
libPcap, Pcap-NG, MNM libPcap, Pcap-NG libPcap libPcap

4 IPv6 YES YES YES NO
5 Encapsulation

protocols
GRE, 802.1Q, GSE GRE, 802.1Q, PPPoE, LLMNR,

VXLAN, OpenFlow, SOCKS,
MPLS and EoMPLS

L2TP, VLAN, PPP NO

6 Application
Protocol
Identification

SPID, NBAR, ESPI, Bayessian, Random Forests SPID, PIPI PIPI NO

7 Supported
application
protocols

HTTP, SSL/TLS, MAFF. XMPP, YMSG, OSCAR, Facebook Messenger,
Hangouts, Twitter, XChat, IMAP, POP3, SMTP, Gmail, Yahoo, RTP, SIP,
Minecraft, Warcraft, Facebook, Stratum, DNS, FTP, SPDY, MQTT

FTP, TFTP, HTTP, SMB, SMB2,
SMTP, POP3, IMAP, YouTube

HTTP, POP3, SMTP, IMAP, SIP,
RTP, SDP, FTP, DNS, IRC, IPP,
PJL, MMS, SLL

DNS,
HTTP,
MSN,
Gmail

8 Applications
Identification

YES NO NO NO

9 OS Fingerprinting YES (using typical applications) YES NO NO
10 Credentials

Extraction
Facebook, IMAP, SMTP, POP3 SMTP, HTTP Digest

Authentication
NO NO

11 Incomplete or
malformed
communication

TCP data loss, IPv4 fragmentation N/A NO NO

12 Processing speed 100Mbps 11.92e18.49Mbps N/A N/A
13 Parallel

processing
YES NO YES NO

14 Advanced
analytical views

YES NO YES NO

15 Persistent
storage

MSSQL, in-memory CSV/Excel/XML/CASE/JSON-LD SQLite, MySQL or PostgreSQL VFS

16 Querying/
filtering

3-rd party tools on SQL DB keyword search 3-rd party tools on SQL DB YES

8 http://wiki.xplico.org/doku.php?id ¼ interface (last accessed 2019-08-17).
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found on Netfox Detective's YouTube channel.9

6.1. An example: SIP fraud analysis

This section reviews Netfox Detective in use based on a simu-
lated SIP (Session Initiation Protocol) Fraud case. The SIP Fraud
attack exploits a misconfiguration of the SIP server where the
attacker tries to guess a secret prefix that is used to initiate a call
from a VoIP network to PSTN (public switched telephone network).
If the attacker finds the correct prefix, the Gateway (Callee) replies
with a 200 OK SIP message. The attacker then uses the discovered
prefix to initiate a call on a premium number. The costs of the call
are charged to the owner and will profit the attacker. A visual
summary can be found here: http://y2u.be/P2W9uANYKyI.

To tackle the challenge, we developed the SIP Fraud Analyzer
that can perform a postmortem analysis of possible SIP fraud at-
tacks in given PCAPs. The exact procedure is best explained by
Fig. 5. The upper part is an interactive animation that reflects the
actual state of the system (commodity server with hardware-
accelerated network card), the IPFIX collector and NEMEA system
(Cejka et al., 2016) (note, this is not part of Netfox Detective but
external equipment/software). In a nutshell, the hardware (left-
hand side) captures information and forwards it to NEMEA. Once an
attack (or false-positive thereof) is identified (Jansky et al., 2017),
NEMEA notifies the appliance, which then captures all evidence
(generates a PCAP) and stores it on the hard drive. This file then
serves as input for Netfox Detective.

Knowing the workflow, we now focus on the analyzer and its
responsibilities. First, NEMEA can notify Netfox Detective about its
current statewhich allows us to update the view (e.g., the red arrow
pointing from NEMEA to FPGA). Thus, an investigator can see (live)
the current processing. Second, NEMEA can notify Netfox Detective
when capturing is completed and trigger the analyzer to download
and visualize the PCAP (the bottom pane in the figure).

Fig. 5 shows the SIP Fraud Analyzer main view that visualizes
the attack pattern. The evidence has the form of prefix guessing
activity represented by several SIP INVITE messages that differ by
the prefix of the callee number (here it is the number 031 …

@65518…. and a lot of seemingly random prefixes which reflect the
attacker guessing them). In other words, if the analyzer shows a
graph like this, one knows an attack occurred; if we find 200 OK
message, we know that the attack was successful.

The system was tested/developed with a confidential dataset
from the National Research and Education Network (NREN). During
the experimental deployment of this system, we were able to
successfully extract evidence, and based on that we informed vic-
tims about their misconfiguration in SIP's PBX.10

6.2. Reconstruction of web pages

Another feature of the Netfox Detective is web page recon-
struction which can be viewed here: http://y2u.be/CPO2rhe5Xs8.
First, the SnooperHTTP extracts all HTTP objects and stores the

Fig. 5. This figure describes SIP Fraud Analyzer. The view is an interactive animation that reflects the actual state of the deployed 100GE hardware-accelerated network card with the
IPFIX collector and the NEMEA system that detects network incidents based on IPFIX records. SIP Fraud is visualized on the upper right side with a count currently analyzed
messages, i.e., 6200. At the bottom, a tree-like structure visualizes a prefix tree that is an interpretation of the attack. The root node in an interconnection between the same roots of
telephone number attacked from different IP addresses. The path from a leaf node to the root aggregate node represents a prefix combined with a PSTN number that was tried to be
called. Sensitive information, as a part of called number and IP addresses, was omitted.

9 https://goo.gl/fKM8Vs

10 PBX e Private branch exchange used to relay VoIP communication to the PSTN
e public switched telephone network.
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contents on disk. Second, SnooperMAFF iterates through the HTTP
objects to identify all HTML documents. Subsequent analysis of
these documents yields all linked objects, e.g., CSS files, JavaScript
scripts, media streams, and so on. Lastly, all references to web re-
sources are rewritten (e.g., <a href ¼ “http://… /photo.png”will be
replaced by <a href ¼ “./photo.png”), and then the HTML docu-
ments including all resources are packed into Mozilla Archive
Format (MAFF) archive.

The self-contained MAFF archive11 contains all data that is
related to each web page that was viewed. Experimentally, in case
of the dynamic web that loads data continuously, we try to create
multiple so-called snapshots that approximate how the web page
may have looked. The snapshot is created with each significant
change to the web page. The investigator is warned that this is
experimental approximation and not an accurate replica. We do
this approximation by interpreting JavaScript scripts and supplying
it with resources previously extracted. Hence, we can reconstruct
some dynamic pages like webmails, chats, or video streaming ser-
vices. These approximations are stored inside the MAFF archive as
additional tabs.

Note, web page reconstruction is only possible if the session is
established using plain HTTP. Otherwise, it requires the investigator
to get into the middle of the communication using a MitM proxy
like SSLSplit, 2020 that can capture unencrypted traffic or store SSL/
TLS session keys (Rescorla, 2018).

7. Conclusions

The amount of data sent over networks increases daily, and so
does the number of devices connected to it. Additionally, analyzing
the data becomes more complex due to encryption, the large
number of different protocols or tunneling. As a consequence,
forensic investigators are overwhelmed with data (possible evi-
dence), and traditional workflows are outdated (i.e., manually
combing several specialized tools like SSLSplit, 2020, TShark, 2020,
or Wireshark, 2020). To cope with these challenges, it requires
automated, extendable tools that support practitioners by sum-
marizing data and providing visualization, which allows easy
comprehension of the information (Beebe, 2009).

In this article, we presented Netfox Detective which is a
comprehensive open-source network forensic analysis tool (NFAT)
available under the Apache 2.0 License. By design, our application
can be expanded by implementing newmodules; backendmodules
are called snoopers and frontend modules (which allow more
complexity) are named analyzers. To enable researchers to create
new modules, we have a well-documented API including several
examples. The GUI follows the principles of a Master/Detail screen
layout and uses dockable views, which makes it intuitive and easy-
to-use. We achieve better performance than comparable tools
because of the parallel pipeline processing. As a side note: it was
used by CESNET12 for SIP Fraud Detection as mentioned in Sec. 6.1.

The evaluation and comparison with existing tools show that
Netfox Detective has a good efficiency as it makes use of all cores.
Additionally, it has some unique features, that cannot be found in
any other NFAT, e.g., a large number of supported application pro-
tocols as listed in Table 2, support for GSE tunneling, or heuristic
extraction from malformed data.

For the future, we plan on expanding Netfox Detective by

creating new modules (features), e.g., finding similarities using
approximate matching (Breitinger et al., 2014). We also plan on
changing themechanisms for data processing to allow computation
on clusters. In terms of interoperability, we intend to add exporting
capabilities into standard formats, e.g., Advanced Forensic Format
(Cohen et al., 2009) or CybOX (Casey et al., 2015). Lastly, wewant to
create training sessions and material which will allow practitioners
to become familiar with our tool.
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Appendix A. Terminology and definition

There are several definitions in the community regarding flow,
conversation, etc. For this work, we used the Microsoft Network
Monitor (MNM) terminology13 which is very close to the well
established terminology used by Kurose and Ross (2016).

Frame is a data link layer (L2) protocol data unit.
Packet is an internet layer (L3) protocol data unit.
Datagram is a transport layer (L4) protocol data unit.
Protocol/application message is a application layer (L7) proto-

col data unit (PDU). A message is a collection of one or more L7
PDUs.

L3 flow is a sequence of packets having the same source and
destination IP addresses. It represents an uni-directional transmission
of packets between two network nodes.

L3 conversation is a pair of L3 flows with mutually transposed
source and destination IP addresses. It represents bi-directional
transmission between two network nodes.

L4 flow is a sequence of packets with the same source and desti-
nation IP addresses and ports, and an L4 protocol number. It represents
uni-directional communication between processes, e.g., data sent by
an HTTP client to an HTTP server, possibly in several L4 half sessions.
An L4 flow consists of one or more L7 flows.

L4 conversation is a pair of L4 flows with mutually transposed
L3 and L4 identifiers (src/dst IP addresses and src/dst ports). It
represents bi-directional communication between processes, e.g.,
requests and responses between an HTTP client and server. The L4
conversation may contain several L4 sessions (L7 conversations)
between the same network nodes using the identical src/dst ports
and the L4 protocol.

L7 flow is a part of the L4 flow that represents a transport session,
e.g., one UDP or TCP session. For TCP, an L7 flow is bounded by its initial
SYN packet and its closing FIN or RST packet. For UDP, an L7 flow
corresponds to an L4 flow. One L4 flow may include several L7 flows
that are logically independent, e.g., several TCP sessions (HTTP re-
quests) with the same src/dst ports and IP addresses may compose one
L4 flow. A TCP L7 flow also includes starting SYN and ACK packets
without any L7 payload, if present.

L7 PDU represents an approximation of an application message,
e.g., HTTP request. L7 PDU is a logical object that contains an L7
payload of one or more packets belonging to the same L7 flow. It is11 Note, Mozilla discontinued MAFF support in newer Firefox versions. We advise

using SeaMonkey with MAFF plugin https://addons.thunderbird.net/en-us/
seamonkey/addon/mozilla-archive-format/.
12 CESNET is a developer and operator of national e-infrastructure for science,
research, development, and education in Czech Republic.

13 The terminology was determined by study of MNMmanual, and blogd https://
blogs.technet.microsoft.com/netmon/(last accessed 2019-08-17).
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created using TCP reassembling. L7 PDU objects are processed by
application parsers called L7 Snoopers. In a case of UDP, an L7 PDU
is created for every L4 payload, i.e., there is an 1:1 relation between
UDP payload and application message.

L7 conversation is a pair of L7 flows. It represents logical appli-
cation data that are subjected to the forensic analysis. L7 flows are
interconnected to the conversation according to SYN and SYN þ ACK
sequence numbers in TCP. An L7 conversation includes meta data such
as timestamps of the first and last PDUd selected from both directions
whichever is prior and posterior, number of frames of L7 conversation,
collection of virtual frames representing missing (expected) frames,
type of encryption, cipher keys (for TLS decryption), collection of
probable application tags (types of L7 protocol, e.g., HTTP, SMTP, etc.).

L7 Snooper is an application data analyzer (application parser,
dissector). Snooper reads L7 PDUs from L7 conversations and per-
forms L7 processing, analysis, and visualization. L7 snoopers can
co-operate with each other, e.g., SIP snooper co-operates with RTP
snooper, WebMail snoopers with HTTP snooper, etc.

L7 Analyzer is a less strict abstraction, module that encapsulates
predefined behavior that applies to processed data or directly controls
data processing. L7 Analyzers have full access to Netfox Detective
platform and can change, extend any functionality used for processing
or analysis.

Appendix B. Analyzers (Frontend Modules)

Analyzers extend Netfox Detective with more advanced func-
tionality that cannot be implemented as snoopers. The Analyzer API
provides access to data storage as well as the user interface. An
analyzer can be bound either to application or investigation scope.
Thus, it is possible to integrate highly specialized analyzers for
specific cases. In order to grasp the concept of analyzers, we discuss
their capabilities based on the AppIdent d an application identifi-
cation analyzer. AppIdent assigns an application protocol (or even
network application) to every flow in the source data. The goal of
the analyzer is to recognize applications (e.g., Google Drive, iTunes,
or OneDrive) in network traffic instead of just the application layer
protocol used (e.g., HTTPS).

The analyzer is implemented using machine-learning
(Christodorescu et al., 2015) and statistical methods, in particular,
Bayesian belief network, Random Forests, and Enhanced Statistical
Probability Identification, to make the decision. Because supervised
learning methods are used, there are two running modes:

The learning mode is used to build the models which required
annotated data. To generate the data, we produced local network
traffic and captured the communication using Microsoft Network
Monitor, which automatically enriches the capture with

information about the running processes.14 Note, the training data
was annotated with the application process instead of the appli-
cation protocol. On the other hand, our backend engine was
extended to extract the process information for learning purposes.
The feature vector characterizing the application protocol was
specified according to the work by Moore et al. (2013), and
customized for L7 conversation-based approach instead of packet-
based.

The classification mode of the analyzer is used for annotating
conversation with recognized protocols and applications. It is not
an easy task, and the precision varies for the classification methods
and the target set of applications. For more details see Pluskal et al.
(2018) who demonstrated that it is possible to distinguish between
communications traces of OneDrive, Skype, iTunes, Spotify, Steam
and mTorrent clients, although all of them use HTTPS.

Usually, traffic classification is a black box (e.g., in security
software/hardware like IDS/IPS) and depends on the model. How-
ever, for practitioners, it may be helpful to get more insight and
therefore AppIdent can provide additional computed results in a
visual manner. In other words, we implemented views allowing the
comparison of the classification results of different methods, clas-
sifier performance analysis, and hyper-parameter tuning.

Appendix C. Snoopers (Backend Modules)

The backend supports modules, called snoopers, that can access
information from the processing pipeline through the database
(metadata storage). Snoopers extract objects from the source data
but may also utilize other data such as regular log files. Therefore,
snoopers parse the application conversation protocols (L7, listed
below) and extract data such as files, videos, or HTTP headers.
These extracted objects are then either stored in the database or
pushed to the Investigation Explorer (grouped by a protocol) or can
be accessed from the special Export Overview pane where they are
grouped by event type, e.g., emails, images, chat messages. The
following protocols for metadata and/or content extraction are
supported:

� Common internet protocols: DNS, SPDY, and SSL/TLS.
� Selected application protocols: HTTP(S), IMAP, POP3, SMTP, and
FTP.

� Email services: Gmail, Yahoo, and other webmails.
� Instant messaging: XMPP, YMSG, OSCAR, Facebook Messenger,
Hangouts, and XChat.

Fig. A.6. Figure describes relations between encapsulations on various levels of networking stack reflected by object hierarchy serving as containers. Data is segregated into a
particular container based on common identifiers described in Section Appendix A. One L3 Conversation can contain frames from multiple capture files and have a relation one to
many with L4 Conversations. The rest of graph is read similarly.

14 In detail, MNM creates a Process Info table that stores information on the socket
and the process that created it.

J. Pluskal et al. / Forensic Science International: Digital Investigation 35 (2020) 301019 11

56



� Social networks and gaming: Twitter, Facebook, Minecraft, and
Warcraft.

� Bitcoin communication: Stratum.
� Voice over IP systems: RTP and SIP.
� Internet of Things communication: MQTT.

If the communication is not encrypted (or the server's private
key is provided, and the server's configuration allows it), the
snoopers can extract the communication content, e.g., transmitted
files. For secured communication, only traffic metadata is available.

In order to create new snoopers, there are three abstract classes
that need to be inherited:

SnooperBase can be seen as the extractor that will handle the
identification of objects. The registration of a new snooper and its
integration is automated as long as the snooper's DLL resides in the
root directory of the application. Details about the snooperBase are
provided at the end of this subsection.

SnooperExportObjectBase stores the actual objects. For
instance, an application protocol parser will dissect the commu-
nication and create instances of domain objects. Those objects
might also implement various interfaces like IChatMessage, ICall,
IEMail, IPhotoMessage, etc. to automatically integrate exported
objects in generic views.

SnooperExportBase encapsulates (meta-)information about
the export process. For instance, the source of an L7 conversation.
Additionally, it contains all extracted objects SnooperExport- Ob-
ject Base.

SnooperBase. To create a new snooper, a new class that inherits
from the abstract class SnooperBase including the class members,

such as Name, Description, KnownApplicationPorts, CreateSno-
oper Export, and ProcessConversation, needs to be implemented.
Additionally, the class defines multiple abstract methods that
represent callback functions executed during conversation pro-
cessing. An example is given in Appendix D. The functionality has to
be implemented in the following methods:

� On Conversation Processing Begin e any relevant activity for
creating a new object to be populated by the module.

� On Conversation Processing End e any required processing
before the new object is stored in the database.

� On Before Protocol Parsing and On After Protocol Parsinge takes
care of the internal state of an object and handles exceptional
cases that are assigned to ‘parsing state’.

� On Before Data Exporting and On After Data Exporting e takes
care of the internal state of an object and handles exceptional
cases that are assigned to information ‘extraction state’.

Each snooper is executed on-demand, on the selected PCAP or a
collection of them, according to the tool configuration. While
modules can use the information provided by other modules, their
basic use case is to implement extraction capabilities for applica-
tion protocols. For more complex analysis, we use analyzers.

Appendix D. Abstract code for an Example Protocol snooper
creation
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Appendix E. Simplified reassembling algorithm implemented
in Netfox Detective.

1. Select L4 flows and sort packets using their sequence numbers.
2. Process each L4 flow accordingly:
(a) Start following iteration with a SYN packet, i.e., Pi .
(b) Increment Seqi , i.e., Seqiþ ¼ 1.
(c) Create a new L7 Flow to be a collection of L7 PDUs for following algorithm.

Set Pinit ¼ Pi .
(d) Create a new L7 PDU if does not exist or if a previous L7 PDUwas closed. (e) If

SeqisSeqi�1 þ jPi�1j (the expected packet is missing, check timestamps TS
and sequence numbers Seq as follows:

i. If TSi � TSi�1 � MaxTime and Seqi � Seqi�1 � MaxLost then a virtual packet will
be created to replace the missing packet.

ii. If TSi � TSi�1 � MaxTime and Seqi � Seqi�1 � MaxLost then there is an
overlapping of TCP sessions because i packet, i.e., this packet, belongs to a
different L7 flow. Skip this packet and proceed with the next one.

iii. If Seqi � Seqi�1 � MaxLost then there are too many missing data. The flow
cannot be fully restored. Close it and proceed with next SYN packet.

(f) If Seqi ¼¼ Seqi�1 þ jPi�1j the Pi packet is expected, i.e., Pi contains following
data segment, add it into the L7 PDU created in 2 d.

(g) If FIN/RST/PSH flag is found or jPj ¼ ¼ MaxPayload, close the L7 PDU.
(h) If Pinit ¼ ¼ Pi , break iteration.
(i) Increment i, i.e., iþ ¼ 1 and GOTO 2 d.
3. If there remains any SYN packet in the current L4 flow, GOTO 2a
4. If the L4 flow contains any unprocessed packet, i.e., captured communication

is incomplete and heuristic methods (2e) have to be applied.
5. Select packet Pi that has maximal Seqi � Seqi�1 and GOTO 2c
6. Combine opposite L7 flows into an L7 conversation using corresponding SYN

and ACK numbers.

Pi d represents the packet on the i-th index
jPijd represents a payload size obtained from the packet header
Seqi d represents sequence number of packet on i-th index
Pinit d stores the reference to the packet that the reassembling
algorithm started with
TSi d represents time stamp of the packet on the i-th index
MaxTime d variable, empirically set to 600 s
MaxLost d variable, empirically set to 3800 B
MaxPayload d variable, empirically set to maximal expected
MTU
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The increasing importance of network forensics in the investigations conducted by Law Enforcement Agencies is indisputable. 
Today's Internet does not carry ordinary TCP/IP traffic but utilizes many other encapsulations and tunneling protocols. In this 
paper, we overview the most used tunneling protocols and their features concerning digital forensic analysis. A case study of 
generic stream encapsulation describes how the investigator can obtain encapsulated application data from within.  
 

1. INTRODUCTION 

Internet applications use different communication 
protocols to exchange content. Most of network forensic 
analysis tools can correctly identify the communicating 
application and extract the content communication if 
encryption is not used. However, encryption is not the only 
obstacle for network forensic tools. Application 
communication can be also encapsulated in other protocols 
that provide an extra network layer in addition to the 
Internet’s TCP/IP stack. These tunneling protocols are 
supposed to protect the encapsulated communication. It 
may be because the carried protocol is not compatible with 
the transport network technology or the additional security 
is necessary. Tunneling protocols are the basis for building 
virtual private networks. The local traffic needs to be sent 
over the Internet, which opens various possibilities for 
attackers. By using tunneling protocols, it is possible to 
protect the encapsulated communication with strong 
encryption to avoid eavesdropping and communication 
alteration. However, this benefit of network security 
represents a challenge for network forensics. 

This publication extends the original paper “Network 
forensics in generic stream encapsulation (GSE) overlay 
networks” published in In 6th Conference on the 
Engineering of Computer Based Systems (ECBS ’19), 
September 2–3, 2019, Bucharest, Romania [1]. 

1.1. PROBLEM DESCRIPTION 

Network data acquisition faces many challenges. One of 
the complications for evidence recovery from captured 
network data is the use of encryption and tunneling. When 
end-to-end encryption was used the content of messages is 
protected but it is still possible to identify individual 
connections. In the case of tunneling protocols, multiple 
connections are multiplexed in the tunnel. The original 
design goal of tunneling protocols was to interconnect 
networks through possible incompatible network 
technology. The captured content of the tunnel can be 
easily extracted, and individual connections recovered. 
However, modern tunneling protocols include security 
measures by applying encryption to transferred content. 
Therefore, connections can only be recovered at exit points 
of the tunnel. 

1.2. CONTRIBUTION AND PAPER STRUCTURE 

The present paper provides an overview the common 

points in the network topology that can be used by law 
enforcement agencies (LEA) to conduct lawful interception. 
We provide a summary of most used tunneling protocols 
and discuss their features with respect to digital forensic 
analysis. For each protocol, the possibility of content 
extraction is explained. Also, a brief overview of methods 
for the classification of encapsulated traffic is provided. 
The issue of connection recovery from tunneled 
communication is demonstrated using the GSE protocol as 
an example. 

2. LAWFUL INTERCEPTION POINTS IN 
NETWORK TOPOLOGY 

The goal of lawful network data acquisition is to collect 
enough information for evidence extraction. As most of the 
Internet traffic is encrypted, the analysis of metadata 
represents the most important approach. There are many 
possible locations in the network topology that may be used 
for lawful interception and their selection depends on 
various circumstances. This section describes the locations 
and adequate techniques used to collect digital evidence out 
of network devices.  

The end-user machine is the place where any kind of 
data is presented to the user, or stored. If encryption is used 
to protect data in transfer, this is the place where it happens. 
If the device can be accessed by an investigator, several 
techniques for obtaining the evidence via the installation of 
agent software that can intercept API hooks [2], capture 
network traffic [3], capture screen [4] or maliciously 
modify [5]. 

Internet service provider (ISP) The most typical lawful 
interception probe deployment occurs in the ISP 
network [6]. The LEA possessing a search warrant can [7] 
compel the ISP to reveal the retained data [6] or to intercept 
the suspect’s communication [8] using LEA’s deployed 
network probes [6]. Technically, there are several types of 
interception or traffic manipulation that can be done.  

Network layer defines a physical connection between 
devices connected to a shared segment identified by MAC 
addresses that are resolved by ARP protocol. ARP can be 
misused to redirect the communication to an interception 
device [9], but it can also be error-prone [10]. The common 
encapsulation and tunneling protocols are VLAN, L2TP 
described in Section 3.  

Internet layer The majority of traffic interception probes 
assume that traffic is redirected into them. Interception 
rules that are typically based on the IP address of the 
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suspect, defines which IP flows should be intercepted, i.e., 
captured for future analysis. Interception up to 1 Gbps 
speeds can be done on regular PCs without additional 
configuration. Speeds up to 10 Gbps require that data are 
not copied between the kernel and userspace, e.g., usage 
pf_ring [11], or n2disk [11]. Speeds past the 10 Gbps [12] 
requires custom kernel optimizations, e.g., pf_ring and CPU 
core to NIC queue mapping. Typical encapsulations are 
IPsec, PPTP, IPIP, 6in4 described in Section 3.  

Transport & application layer On the transport layer, 
we may utilize "policy-based-routing" to define rules that 
describe communication we are interested in to capture, or 
redirect to capturing probe. Typical encapsulation protocols 
are GRE, SSTP, Ayiya described in Section 3. On the 
application layer, we can go deeper and manipulate 
communication, e.g., conduct SSL/TLS inspection, 
filtering, or capturing [13, 14].  

Datacenter accommodates the complexity of network 
architecture to their size [15]. Smaller providers [16] use 
from common network design segmenting a network into 
smaller subsets on Internet layer. mid to large 
providers [17, 18], and cloud providers commonly use 
software defined networking (SDN) [19] to create virtual 
networks over well-designed base network layer. 
Customers can usually define network typologies 
dynamically as they create their visualized 
infrastructures [18]. All protocols described in Section 3 
can be used. 

3. ENCAPSULATION AND TUNNELING 
PROTOCOLS 

The structure of the TCP/IP networking stack used on the 
Internet is quite rigid. There is a fixed number of layers, 
each providing certain functionality. This setup works fine 
for common scenarios, but occasionally the need to use a 
different configuration arises. 

Encapsulation is a core concept for computer networks 
and is the basis for the layer model. As data moves 
downwards through the stack, from application to the 
physical medium, the contents get wrapped–encapsulated–
at each layer in additional protocol information. When 
processing received data, each layer interprets its own 
information and forwards the encapsulated payload to the 
layer above.  

Tunneling and encapsulation are likewise strongly 
related concepts. While common protocols encapsulate data 
of higher layer protocols, tunneling protocols may also 
encapsulate data of protocols of the same or lower layers.  

Table 1 

Summary of tunneling protocol features 

Protocol Authentication Encryption 
IPSec Built-in Built-in 
GRE No No 
PPTP Using PPP Using PPP 
L2TP Using PPP Using PPP 
SSTP Using SSL Using SSL 
IPIP No No 
6in4 No No 
Ayiya No No 

This effectively allows extending the stack, repeating 
some layers multiple times, and can be considered a form of 
recursion. 

Common use-cases for tunneling include transporting 
data over network segments with an unsupported network 

or data-link layer protocols or providing the illusion of 
being connected to a remote LAN via VPN. 

3.1. COMMON TUNNELING PROTOCOLS 

There exist a number of tunneling protocols varying in 
their application and scope. Some have very narrowly 
defined capabilities while others attempt to be general and 
extensible, see Table 1 for comparison. 

IPsec is a suite of protocols that work with the IP family 
to provide confidentiality and integrity of transmitted 
data [20]. While not strictly a tunneling protocol, it can 
operate in a tunneling mode where the secured IP packet is 
encapsulated in a new packet. The operation of IPsec 
roughly consists of three components: security association 
(SA), authentication header (AH) [21] and encapsulating 
security payload (ESP) [22]. When a party is interested in 
communicating securely, it negotiates a SA which holds the 
necessary cryptographic parameters. Afterward, the 
communicating parties can include AH in their packets, 
which can be used to verify the integrity of the received 
data. AH achieves this by computing a hash from the fields 
of the IP header as well as the included payload and the SA. 
It is the last property that differentiates AH from a basic 
checksum and protects the data from being modified in 
transit. As AH protects parts of the IP header in addition to 
the payload, it also provides a form of authentication. The 
ESP can provide integrity as well as confidentiality using 
encryption. In transport mode, ESP only encrypts the 
payload; in the aforementioned tunneling mode, ESP 
encrypts both the IP header and the payload and 
encapsulates them in a new IP header. 

GRE is an encapsulation protocol developed by Cisco to 
allow for encapsulation of link and network protocols in a 
generic way [23]. The protocol itself is very simple and 
provides no security features such as encryption or 
authentication. The payload packet is encapsulated in the 
GRE header, which is then encapsulated in the delivery 
protocol. The GRE header contains a protocol number 
identifying the encapsulated protocol. Additionally, a 
checksum might be present. Earlier RFCs included several 
other fields that specified, e.g., the number of allowed 
recursions of encapsulation or routing information [23]. 
Their use has been deprecated [24]. 

PPTP is a tunneling protocol originally designed to carry 
PPP traffic over IP networks [25]. It operates on the link 
layer and uses a client/server model, where the server is 
called the PPTP network server and the client PPTP access 
concentrator. For encapsulation of the payload, PPTP uses 
an enhanced version of GRE. Each PAC-PNS pair 
establishes a tunnel and a control connection which runs 
over TCP. This control connection is used to manage both 
the tunnel and any user sessions using it. PPTP uses 
security mechanisms from PPP for authentication and 
encryption; the most commonly known are Password 
Authentication Protocol and Challenge-Handshake 
Authentication Protocol. 

L2TP aims to tunnel PPP packets in a way that is as 
transparent as possible [26]. It decouples the layer 2 and 
PPP endpoints, allowing them to exist at different devices 
connected by a packet-switched network. The overall 
design is reminiscent of that of PPTP. The two endpoints 
are called the L2TP Network Server and L2TP Access 
Concentrator, filling similar roles as their PPTP 
equivalents. These two endpoints establish a tunnel which 
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consists of a control connection and zero or more sessions. 
The control channel is reliable, while the channel used for 
transmitting data messages is not. In IP networks, the 
transport protocol to carry the L2TP messages is UDP, 
which avoids the issues brought by stacking several TCP 
connections on top of each other. L2TP supports the 
CHAP-like tunnel authentication mechanism but provides 
no integrity or confidentiality, leveraging features provided 
by PPP instead. However, it is commonly used in 
combination with IPsec to encrypt the payload via ESP 
and/or AH. 

SSTP tunnels PPP frames over SSL/TLS, using TCP as 
its transport protocol [27]. In this case, security is provided 
by SSL using encryption and integrity checking. The 
structure of the SSTP header is quite simple, with the only 
interesting field being the C flag. When set, the 
encapsulated payload contains an SSTP control message; 
otherwise the higher-layer protocol. 

IPIP is a protocol meant to alter the normal routing 
process by encapsulating the IPv4 packet in another IPv4 
packet and sending it to an intermediate node [28]. The 
entry point of the tunnel wraps the IPv4 packet in another 
IPv4 header destined to the tunnel endpoint. After 
traversing the tunnel, the inner IPv4 packet is decapsulated 
and processed normally, routed and forwarded to its true 
destination. The protocol is simple, using no additional 
headers, as it is limited to one type of outer-inner protocol; 
most of the complexity lies in rules on how to properly 
handle ICMP messages. On its own, it provides no 
additional security features over basic IPv4. 

6in4 is a transition mechanism allowing IPv6 traffic to 
traverse networks with only IPv4 support [29]. A tunnel is 
established between two devices, and the IPv6 traffic is 
transported by encapsulating it in IPv4. A special IP 
protocol number is defined for this purpose. 6in4 itself 
provides no security-related features such as authentication 
or integrity. 

Ayiya attempts to solve some of the issues that 
transition protocols such as 6in4 have with establishing 
tunnels that travel through NATs. [30] These NATs need 
to be manually reconfigured to properly handle 6in4, 
which in some cases is not possible. Ayiya solves this by 
tunneling IP traffic not directly over IP, as is the case with 
6in4 or IPIP, but over a transport layer protocol such as 
TCP or UDP. It aims to be general, independent of both 
the payload protocol and the transport protocol being 
used, thus the name Anything in Anything. It is even 
possible to tunnel the payload protocol directly over the 
network protocol, in the vein of IPIP, for IP over IP 
tunnels with minimal overhead where possible. Ayiya 
defines a custom header that is placed between the 
payload and the delivery protocol. The header contains an 
identity field to help determine which sender the packet 
has originated from, as the source port number and IP 
address may change arbitrarily during the connection, due 
to NAT, DHCP, IPv6 privacy extensions etc. An operation 
code field may specify special handling of the received 
packet, such as echoing it back to the sender. In addition, 
it contains an optional signature and authentication, 
providing some security features out of the box. A 
heartbeat message is used to keep the tunnel open, as not 
receiving any packets for a certain period of time results 
in closing the tunnel. 

3.2. IDENTIFICATION OF ENCAPSULATION 
PROTOCOLS 

To properly parse a protocol and extract information 
from it, it is necessary to correctly identify it. As there is 
no field identifying the application protocol in common 
transport protocol headers (TCP, UDP), and port numbers 
alone aren’t sufficient to identify the protocol being used, 
several approaches have been developed to solve this 
issue. 

Deep packet inspection (DPI) is a content-based 
method that attempts to identify protocols by looking 
inside the payload [31]. It looks for known signatures in 
the transmitted data to identify the data flow as a 
particular protocol. The signature matching process can be 
as simple as looking for a value in the first few bytes of 
the payload (application header) or complex heuristics 
requiring access to whole flows. DPI achieves high 
accuracy; the chief downside of this approach is that it 
needs to be able to access the data being transmitted to 
function properly, and it needs to inspect every packet 
passing through the interface. If the application uses 
encryption, DPI fails to provide meaningful results. 

Connection patterns can be used to classify traffic into 
categories without inspecting the payload [32]. Sequences 
of flows are matched against heuristics using a set of 
rules. As different types of traffic (such as web or P2P) 
display different connection patterns over time, this 
information is sufficient to categorize the observed flows. 
While significantly simpler and less computationally 
intensive than DPI, this method only achieves rough 
categorization; it does not identify specific protocols. 

Statistical methods are based on flow properties such 
as duration, packet size or arrival times [33]. 
Measurements of various protocol attributes are taken, and 
these are compared to existing models. It is possible to 
include some DPI attributes and treat them as statistical 
properties, resulting in a hybrid approach. Creating 
models by extracting fingerprints can be done manually; 
however, this is a very time-consuming process. Available 
algorithms, therefore, try to automate the process of 
creating new protocol models, requiring only pre-
classified training data instead, utilizing machine 
learning [34]. 

As tunneling protocols work above the network or 
transport layer, these approaches can be used to detect 
encapsulated traffic as well. Few of the protocols 
described in the previous section provide encryption by 
themselves, and most offer some kind of signature 
available in the header that can be matched. Moreover, the 
accuracy of identification is of high priority, as we don’t 
want to simply categorize the traffic to gather statistics but 
identify the encapsulated traffic as well. For this we need 
to correctly identify the protocol being used; DPI, 
therefore, appears to be a reasonable choice for 
encapsulation identification. The problem is further 
complicated by the possibility of IPsec being used to 
secure the tunneled traffic independent of the protocol 
being used; this is, in fact, the recommended approach by 
L2TP [26]. Additionally, tunneling protocols can tunnel 
other tunneling protocols, recursively extending the 
number of layers; to properly extract the application data, 
it is necessary to identify and decapsulate each of those 
protocols in turn properly. 
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4. GENERIC STREAM ENCAPSULATION (GSE) 
CASE STUDY 

Network protocol generic stream encapsulation (GSE) 
was defined by the digital video broadcasting project 
(DVB), and it offers a way to transport IP traffic over a 
generic physical layer, usually over DVB physical 
infrastructure [35, p. 6]. GSE, as a native IP encapsulation 
protocol on DVB bearers, was introduced with the second-
generation satellite transmission system called DVB-S2 
(Fig. 1). Generic data transmission on the first generation of 
DVB standards was formerly possible using the multi-
protocol encapsulation (MPE) on MPEGTS packets. 
However, MPE suffered significant overhead. GSE is also 
included in the Satlabs System Recommendations for DVB-
RCS terminals [36]. 

Outline of GSE procedures operation of GSE allows 
transmission of variable size generic data encapsulated into 
baseband frames. GSE can encapsulate not only IPv4 traffic 
but a wide range of other protocols including IPv6, 
Ethernet, ATM, MPEG, and others. It supports addressing 
using 6-Byte MAC addresses, 3-Byte addresses, and even a 
MAC address-less mode [35, p. 6]. Encapsulation and 
decapsulation procedures performed by the DVB broadcast 
bearers are transparent to the rest of the network topology 
and the carried traffic. Shall a network layer PDU be 
transmitted over a satellite connection, GSE packets serve 
as a data link layer (Fig. 1). 

  
This GSE layer provides encapsulation, fragmentation, and 
slicing. Created GSE packets are then carried in baseband 
frames, e.g., DVB-S2, on the physical layer (Fig. 2). The 
receiving side performs a reassembly process, integrity 
check, and a final decapsulation of transmitted PDUs [38].  

Moreover, it is also possible to transport GSE packets 
over, for example, standard IP network infrastructure. In 
this case, the DVB-S2 traffic can be carried like a generic 
payload on the application layer with the use of the UDP as 
a transport layer. Therefore, given UDP datagrams carry 
DVB-S2 baseband frames, which further carry GSE packets 
encapsulating selected protocol communication. This 
approach effectively establishes an overlay network 
infrastructure, because IP traffic can practically carry GSE 
packets, which can carry another layer of IP traffic. At this 
point, the UDP/IP layer below GSE can be considered the 
carrier (encapsulating) traffic whereas, for example, the IP 
layer above GSE can be described as the carried 
(encapsulated) traffic. This approach is presented in Fig. 3. 

According to specifications and recommendations 
published by SatLabs, the implementation of a receiver 
with an Ethernet interface can be divided into a 
demodulation/decoding device, and a device focused on 
baseband processing. In such a case, the L3 Mode 
Adaptation Receiver Header can be prepended to received 
data [39, p. 10]. The receiving device would then process 
DVB-S2 L3 Mode Adaptation Receiver Header, DVBS2 
baseband frame, and GSE packets to analyze transmitted 
communication. 

 Fragmentation, slicing, padding and reassembly 
process As noted earlier, GSE procedures can encapsulate 
different protocol data units in one or more GSE packets. In 
general, GSE packets have variable lengths, and they can be 
sent in different baseband frames individually or in a group. 
Therefore, fragmentation, slicing, padding and 
reassembling can occur. In this context, fragmentation 
refers to a situation when a PDU and extension header is 
fragmented into multiple GSE packets (Fig. 2). Slicing 
indicates a case when a GSE packet itself is divided into 
several contiguous baseband frames [35, p. 8]. Noted 
slicing, therefore, refers to physical layer fragmentation, 
which shall be transparent to the GSE layer [37, p. 27]. 
Concerning DVB-S2 applications, GSE slicing does not 
occur [37, p. 31].  

Shall a single PDU be fragmented into several GSE 
packets, each packet is assigned a fragmentation identifier 
(Frag ID) label in the GSE header [35, p. 17]. Frag ID is 
used to match fragments belonging to the same original 

 

Fig. 1 – This example scenario is presenting a professional application 
of DVB-S2 and GSE. This architecture offers point-to-point or point-
to-multipoint connections over a satellite link in both directions. 
Traffic between site A and site B is carried using generic stream 
encapsulation. The figure is based on the GSE implementation 
guidelines [37]. 

 

Fig. 2 – The figure shows the encapsulation of network layer PDUs 
into GSE packets and transmission of GSE packets inside physical 

layer baseband frames. GSE packets and baseband frames consist of a 
header (shown as a grey block) and a data field (shown as white space). 
GSE packet carrying the last fragment also contains CRC-32 (shown as 

a block with pattern). The figure is based on GSE protocol 
specification [35, p. 10]. 

 

Fig. 3 –  Example of IP traffic encapsulated in the GSE layer, which is 
carried by another IP traffic. The resulting virtual topology can be 

characterized as an established overlay network. 
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PDU. This approach enables the simultaneous transmission 
of fragments from up to 256 different original PDUs. GSE 
packets carrying a complete PDU and GSE packets with 
PDU fragments can be distinguished using start and end 
flags in the GSE header. The protocol of carried PDU is 
indicated by protocol type/extension field in the GSE 
header of the first fragmented packet and every not 
fragmented packet. The packet with the last PDU fragment 
further carries a CRC-32 field used to check integrity after 
the reassembly process (Fig. 2). It is important to note that 
for example, DVB-S2 allows multiplexed transmission of 
multiple streams, each identified by its input stream 
identifier (ISI) [37, p. 32] in baseband header [40, p. 20]. 
The reassembly process has to be carried out independently 
for each received stream [35, p. 21]. Some of the possible 
GSE packet formats are presented in the technical 
specification [35, pp. 31–32]. 

 
Concerning GSE addressing modes noted earlier, an 

additional fourth mode called label re-use can be used 
when multiple GSE packets are carried in a single baseband 
frame. Shall label re-use be indicated, current GSE packet 
without address belongs to the same address as the last 
previously processed GSE packet. A more detailed analysis 
of GSE protocol is beyond this paper’s scope. GSE packet 
format is defined in the protocol specification [35, p. 12]. 
Further information can be found in standards, 
recommendations, and guidelines covering GSE and DVB-
S2 [35, 41, 42, 37, 43]. 

4.1. EVALUATION 

Every layer of decapsulated traffic is subject to further 
network forensic analysis performed by the Netfox 
Detective1. The information is presented in the GUI. The 
view informs the user whether the current frame in 
encapsulated or not. It is also possible to navigate between 
views showing individual encapsulating frames (Fig. 4) and 
encapsulated frames. The implementation has been 
evaluated on publicly available dataset 2 , and results 
(amount of correctly identified and extracted GSE 
communications) were comparable to the reference 
Wireshark implementation. A set of integration tests was 
implemented that verify the correct processing of GSE 
traffic in future releases and prohibit regression bugs from 
being introduced. 
                                                           
1 https://github.com/nesfit/NetfoxDetective 
2 https://wiki.wireshark.org/DVB-S2 (last accessed 2019-12-12). 

5. CONCLUSIONS 

Network forensic analysis currently faces many 
challengesthat stems from the fact that most of the Internet 
traffic is encrypted. Thus, the analysis relies on the 
metadata of messages and the behavioral characteristics of 
the communication. In this paper, we have considered 
another issue for network forensics, namely, the use of 
tunneling protocols. We have identified the problem that 
tunneling represents for evidence extraction. Then we have 
presented an overview of different existing tunneling 
protocols and their characteristics with respect to digital 
forensics. Finally, we have demonstrated the case study 
using the GSE protocol, which allows transporting IP traffic 
via satellite connections. The experimental GSE protocol 
analyzer implements the method for full content extraction. 
Thus it can be used to preprocess the data for network 
forensic analysis tools that are unable to directly cope with 
tunneled communication. If tunneling protocols apply 
encryption to protect the encapsulated traffic, the content 
extraction is not possible in general. However, several 
approaches were proposed for the detection of the 
application class of encapsulated communication. The 
paper provides a brief overview. Their adaptation for 
different tunneling protocols belongs to the intentions of 
our future work. 
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Abstract
The importance of captured network traffic as a data-source
for law enforcement crime investigation has increased be-
cause many devices are Internet-enabled and the data com-
munication might yield crucial evidence for an investigation.
There are many points in the Internet Service Provider’s
infrastructure where the network traffic might be captured.
One of them is a satellite connection, DVB-S2, which use
Generic Stream Encapsulation (GSE) protocol that carries
IP traffic. Current tools for network traffic forensic analysis
do not support GSE. In this paper, we describe principles
of GSE, methods for GSE traffic analysis and the extension for
an existing network forensic tool that performs GSE traffic
processing and extraction of encapsulated communication.

CCSConcepts •Applied computing→Network foren-
sics; • Networks→ Network monitoring; Network protocols;
Transport protocols; Application layer protocols; • Social
and professional topics→ Computer crime.

Keywords network traffic forensics, generic streaming en-
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1 Introduction
The digital forensics is becoming a domain of skilled oper-
atives employed in Law Enforcement Agencies (LEA) that
are tasked to investigate crimes. Their data-sources might
vary, like seized mobile phones, computers, or other storage
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devices. Several cases use a lawfully intercepted network
traffic as a valued data-source [2].
Although the analysis of network communication was

not considered the primary area of digital forensics, its im-
portance has increased as most of the devices are Internet-
enabled. Performing network forensic analysis requires ade-
quate tool support [13, 14]. A typical network forensics anal-
ysis tool provides features that aid an investigator to reveal
evidence in network communication [1]. Instead of provid-
ing network protocol details, the forensic tool is expected
to extract contents of transmitted files, perform a keyword
search, identify user credentials, and more [2, 19].
Many complex and functionally rich network analysis

tools require expert knowledge of operators necessary to cor-
rectly pre-process the data to suit the tool. The field oper-
atives are experienced criminal investigators but usually
not computer experts. Therefore, tools they use need to be
straight-forward, provide top-to-bottom analysis, and re-
quire as few expert knowledge as possible.

The overlay networks are becoming widely used by Inter-
net Service Providers (ISPs) that are interconnecting various
public places, businesses, campuses, or regular home inter-
net connections. Technologies can be fiber-optic, metallic
ethernet, 3G, 4G, 5G or satellite connection DVB-S2 that uses
GSE to encapsulate IP traffic [6, 8–11].
Our motivation behind the implementation of GSE ana-

lyzer stems from the interest expressed by LEA investigators
that seek a tool capable of analysis Internet communica-
tion encapsulated in various tunneling protocols. The offi-
cers prefer open-source network forensic and analysis tools
(NFATs) [1, 12], even though they might be poorly docu-
mented, out-of-date, and even abandoned [13].

1.1 Problem Description
The GSE is nowadays commonly used for Internet traffic
encapsulation in satellite networks. As its name suggests, it
is a generic method of encapsulation and can occur on Data
Link, or Application layer even recursively. The LEAs strug-
gle to perform network forensics on data captured with GSE
encapsulation, but because commonly used tools for network
forensics do not process it, it is a difficult task.

1.2 Contribution and Paper Structure
This paper introduces the issues and methods of forensic
analysis of the GSE protocol. In the next section, we list
the most used Network Forensic Analysis Tools (NFAT) and
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Network Security Monitoring (NSM) tools and their capa-
bilities in processing tunneling traffic, in particular, GSE
protocol. It is interesting that to our knowledge, none of the
NFATs support GSE. Next, we provide a detailed description
of Netfox Detective architecture, and atop of it, we describe
the principles of GSE processing. The goal of the present
work is to provide advanced information for network foren-
sic practitioners that need to deal with GSE communication.
We also implemented the GSE processing as an extension
to our own NFAT making it available to the wider body
of digital investigators.

2 Related Work
Network forensic practitioners commonly use two types
of tools — the NSM and the NFAT [13]. This section mainly
focuses on tunneling protocols support in related tools and
their usability for network forensic investigation conducted
by LEA officers.

NSM tools are intended for a high-level insight into the net-
work communication. Such tools are usually fast and scal-
able; thus can process high volumes of network data on high-
speed networks up to hundreds of gigabits per second. These
tools provide information typically from lower layers, i.e.,
Internet and Transport, and only partially from Application,
where they parse only well-known protocols; rarely they sup-
port overlay networks. Also, these tools are guided strictly
by standards and usually do not include heuristics or more
in-depth analysis to extract additional content. They operate
online, and most cannot process malformed or incomplete
communication. The incomplete communication is a typical
case when interception is done on commodity hardware in-
side ISP infrastructure. Therefore, these tools are used mostly
by network operators for measurements, accounting, and in-
cident detection. NSM tools provide the bottom-up approach
showing dissected packets and letting the investigator con-
duct expert analysis.
The most commonly known NSM tool is Wireshark [27]

that supports the following encapsulation protocols: GSE,
GRE, Ayiya, GTPv1, L2TP, SSTP, PPTP, IPIP, IPsec, 6in4, etc.
It supports the broadest range of network and application
protocols. Wireshark defines an API that can be used to ex-
tend its functionality by a new protocol dissector. Note that
it is the only tool supporting GSE!

Some NSM tools can be integrated, and more sophisticated
analysis can be done programmatically, like TShark [27],
TCPDump [24], TCPFlow [26], NfDump [18], Suricata [23]
(Teredo, GRE), Zeek [29] (Ayiya, Teredo, GTPv1, GRE), Mo-
loch [16] (GRE) that can analyze live or intercepted com-
munication. They can be parts of scripts that can do one or
more tasks, but still can not be compared to NFAT carving
and analytical capabilities.

NFAT Our focus is to provide a tool for LEA operatives
to extract forensically important information mostly from
the application layer of communication. This intent perfectly
fits into the category of NFATs that is intended for in-depth
traffic analysis, that is mainly performed offline on captured
communication. NFATs provide the same amount of informa-
tion as NSM tools but also add extra information extracted
from the application layer. They conduct a thoughtful analy-
sis of the traffic and use the extracted data to infer informa-
tion that helps the investigator. The information is usually
provided in a synoptic, easily navigable user interface be-
cause NFATs are intended to be used even by field operatives
without specialized training.

Popular NFATs are NetworkMiner [17] (GRE, 802.1Q, PP-
PoE, VXLAN, OpenFlow, SOCKS, MPLS, and EoMPLS), Py-
Flag [3, 20], XPlico [28] (L2TP, VLAN, PPP), NetIntercept [5].
No NFAT supports GSE as far as we know.

3 Netfox Detective in Depths
In this section, we present Netfox Detective, a network ana-
lysis desktop application created for the Windows platform.
We discuss the low-level network traffic processing parts
to be able to explain the extension of GSE decapsulation
support. The tool is composed of two parts:

Netfox Framework (backend, details see Sec. 3.1) is net-
work traffic processing engine that provides all kinds
of functionality starting from capture file loading, go-
ing through traffic processing, extraction and ending
with traffic analysis.

Netfox Detective (frontend, details see Figs. 10, 11)
is a visualization tool that depends on the backend
for processing part but extending it with analytic ca-
pabilities to interpret extracted data.

For a high-level overview of the tool architecture see Fig. 1.
Note, Netfox Framework is a separate set of .NET assemblies
that have no dependency on Netfox Detective and can oper-
ate separately. However, the framework does not have any
CLI and therefore has to be incorporated into an application.
On the other hand,Netfox Detective has a direct dependency
on theNetfox Framework and is compiled with it, e.g., it uses
types that are defined in Netfox Framework.

3.1 Netfox Framework
Netfox Framework is the backend, and it is responsible for
parsing and preparing all information gathered. For instance,
it identifies used protocols, to overcome fragmentation (L3)
and segmentation (L4). In its current version, it does not sup-
port live capture but can process standard input file formats
such: libPCAP, Microsoft Network Monitor cap, and PCAP-ng.

Link Layer Once an input file is loaded, it is processed
frame by frame (L2). The lowest used protocols type (e.g.,
LINKTYPE_ETHERNET (IEEE 802.3), LINKTYPE_IEEE802_11
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Figure 1. The figure describes the abstraction of Netfox Detective and Netfox Framework architecture. The upper part of the
diagram above the line represents visual parts of the tool. Below the line, components of Netfox Framework are drawn in
a hierarchical view.

(IEEE 802.11), LINKTYPE_PPP, etc.) is stored in the ‘pcap_fi-
le_header’ structure, and we use it to load the first protocol
parser. A good overview of the Link-Layer header type values
is provided by [25].
Next, we utilize the frame header and its Logical Link

Controller header (LLC) where the main field is a unique
identifier of the L3 protocol (e.g., IPv4, IPv6).
Notice that sometimes it might not be stored in the cap-

ture file. Link layer usually does not carry any forensically
significant information; thus it is generally omitted and LINK-
TYPE_RAW, LINKTYPE_NULL link layer types are used.

Internet Layer Similarly, both IPv4 and IPv6 contain an
identification of an upper layer. (Note, IPv4 names the field
‘protocol’; IPv6 names it ‘Next Header’) which allows us
to choose an appropriate L4 parser. As long as the proto-
col/next header is present, we can parse the communication
deterministically, usually up-to the transport layer.

Transport Layer The transport layer carries no informa-
tion about the subsequent protocol; therefore, the continu-
ing application layer needs to be identified by other means
to be correctly processed. We can do this identification using
several methods (e.g., port-based classification, deep-packet
inspection, probabilistic and statistical methods based on ma-
chine learning). Typical encapsulation with protocol exam-
ples is presented in Fig. 2.

3.2 Conversation Tracking
This section provides a comparison of ISO/OSI and TCP/IP
models with denoted layer names and samples of typical
protocols used on particular layers. The logical approach
to process network data is to create a forest of trees with
roots based on identifiers extracted from the lowest layer
of the network encapsulation model and continue with upper
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Figure 2. This figure provides the comparison of ISO/OSI
and TCP/IP models with denoted layer names and samples
of typical protocols used on particular layers. Netfox De-
tective supports all protocols that are enumerated on this
figure.

encapsulation levels. This way, conversations on all levels
are created, which also sets boundaries, and specific traffic
can be targeted for analysis and information extraction.

Besides, each layer has its specifics that need to be taken
into account before processing ongoing layer.

IPv4 (L3) fragmentation can occur, and packets need
to be defragmented before further processing. Frag-
ments are identified by Fragment Offset and bit More
Fragments (MF) set in the Flags field. As long as MF bit
is set, defragmentation process has to buffer packets
and further process them in bulk, because fragments
do not carry headers from upper layers, thus cannot
be processed separately and in parallel.

TCP (L4) segmentation occurs regularly. Segments are
agnostic to processing mechanisms, carry all required
headers and can be processed in parallel. The posi-
tion of a segment in transmission buffer is defined by
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the difference of initial sequence number (SYN packet’s
SEQ) and the particular segment’s SEQ.

Application messages are not implicitly denoted be-
cause each application protocol has its structure and
is not parsed on this level of processing. To obtain at
least some level of abstraction, we can deduce bound-
aries of application messages from the transport layer.
E.g., TCP’s field Flags contains the PSH bit that is set
when the last segment of a particular application mes-
sage is created. In other words, when flush() is called
on network socket which is typically done to notify
the kernel that message is to be dispatch right away.

Our unique mechanism of processing network commu-
nication [15], mainly L4 segregation shown that even mal-
formed or corrupted captures could be used as data-source
and carving modules can extract otherwise lost information.
We accomplish this during the last processing step, that cre-
ates L7PDUs, which are the approximations of application
messages.

3.3 Netfox Detective Architecture
Netfox Detective was designed to be modular and modules
to be inter-operable, but also to work as self-contained li-
braries to be used by other tools. This way, we have created
a framework for network forensics and analytic application
supporting the forensic investigation.
Fig. 1 describes the decomposition of the tool to small

interconnected building blocks/modules. In the bottom part,
the architecture of Netfox Framework processing network
communication that is interconnected withNetfox Detective
byNetfoxFrameworkAPI. This API enables easy incorporation
of Netfox Framework with any additional software that may
use it as a platform. Furthermore, this part is divided into
two groups, the execution and model parts.
Execution part, on the left-bottom side of NetfoxFrame-

workAPI, consists of modules that by their composition en-
sures polymorphic behavior and extensibility. Each new net-
working protocol that is to be supported requires the creation
of its tracking building block and connection into the process-
ing pipeline. The communication interface between building
blocks is defined by their interfaces that buffer inputs and
outputs that encapsulates data in models.
Model part consists of blocks below DbContext. Models

serve as data carriers for parsed, extracted state information,
e.g., for L3 conversation it is the source and destination IP
addresswith a collection of othermodels representing Frames.
Models are persisted with DbContext and also accessible
through it to higher layers.
To ensure fast parallel processing on a single computa-

tion node with shared memory, i.e., an application running
a single process, we used Task Parallel Library (TPL). This ap-
proach enables the creation of functional blocks that improve
modularity. Each block processes immutable data; thus, all

blocks might run in parallel and together create an oriented
graph, a Data Flow1. TheNetfox Framework combines buffer-
ing blocks that interconnect execution blocks to maximize
the utilization of resources due to different time complexities
of data processing in the functional blocks. Also, this intro-
duces a back-pressure mechanism that is used as memory
management to slow down faster blocks that might other-
wise overwhelm the system and cause resource depletion
and consequently, a disk swapping or an application crash.

3.4 Capture File Processing
In Netfox Framework, capture file processing is initiated by
a method call of AddCapture in NetfoxFrameworkAPI. In the
current implementation, the tool processes captured traffic
in formats libPCAP, PCAP-ng and MNM Cap (Microsoft Net-
work Monitor). Fig. 3 describes a sequence of execution calls
and model passing through execution pipeline, a layer by
layer to describe logical processing in an abstracted manner.
Modules are designed to ensure concurrent processing

thus they do process immutable data only. Majority of mod-
ules also do run in parallel instances to increase a degree
of parallelism further. This design also enables with some
modifications of processing pipeline to scale up and run
the data flow graph in a distributed environment. That is
achieved with TPL Data Flow which also enables to change
interconnection of execution block to extend the process-
ing of capabilities to process new network encapsulations
(tunneling protocols).

The rest of this section describes processing blocks and
their interconnections denoted on Fig. 4.

ControllerCaptureProcessor
ControllerCaptureProcessor block is used to oversee captured
traffic processing. This module interconnects particular func-
tional and buffering block to a processing pipeline reflecting
typical network layered encapsulation. A new processing
data flow pipeline is created for each job. That leads to segre-
gation of data potentially originated from multiple cases and
guarantees that no data might be reconstructed into false
evidence. The processing has two reading phases.

Firstly, a path to file or files with captured communication
is passed to the CaptureProcessorBlock that takes care of pars-
ing of particular PCAP file format and retrieving raw frames.
The output of this block is PmCapture object collection meta
information about the capture file and frames encapsulated
in objects of PmFrame. PmFrame is obtained in the sequential
streamed one-way passage of capture file and contains only
information about its position in the capture file.

Secondly, additional meta information used in further pro-
cessing without actual payload is filled in the second read
by IndexMetaFramesBlock. This segregation is due to a way
how frames are stored in various PCAP file formats. Some

1https://msdn.microsoft.com/cs-cz/library/hh228603(v=vs.110).aspx
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formats (e.g., MNM) contains a frame table with this meta-
information in place and spares the first PCAP read. Execu-
tion of IndexMetaFramesBlock block, which is a non-blocking
read from PCAPfilewith parsing of (L2), L3, L4 layers, is done
with the maximal level of parallelism. Layer 2 might be omit-
ted in case that PCAP is captured without it.

L3L4ConversationTracker
L3L4ConversationTracker takes care of the creation of con-
versations on particular levels inside the ProcessPacketBlock.
A PmFrame(s) (packets) with the same IP source and destina-
tion address compose an L3Conversation. This L4 conversa-
tion if furthermore a collection of smaller L4 conversations
that composes PmFrame(s) (datagrams) with the same IP
source and destination address and TCP or UDP source and
destination ports and L4 protocol type (i.e., UDP or TCP).
In the time when conversations on layer L3 and L4 are

created, meta-information in the form of PmFrames is still
kept in memory. Because of that, complementary to the con-
versation creation, conversation statistics are generated as
well. Statistics on both levels are updated by data processed
from each PmFrame passing through ProcessPacketBlock.

Because the processingmodel inNetfox Framework is based
on IP communication, all non-IP communication is tracked
in special aggregation conversations. These conversations
have invalid IP addresses as identifiers, i.e., 0.0.0.0 and [::]
on L3 level, and invalid endpoints on L4, i.e., 0.0.0.0:0 and [::]:0
as both source and destination. Similarly, L3 conversations
containing an unknown transport protocol are aggregated
into first L4 conversation with valid IP addresses but invalid
transport ports, i.e., 0 port number.

L7ConversationTracker
L7ConversationTracker is a core of our reassembling engine
currently supporting TCP and UDP transport protocols. Vari-
ous TCP heuristics [15] are used to separated IP flow commu-
nication, i.e., L4 conversations to finer-grained units based
on application session. We call them L7 conversations.
This module processes incoming datagrams in parallel

respecting the following scheme. For each newly processed
L4 conversation it creates a new Task and stores it into
a dictionary keyed by an L4 conversation key. All conse-
quently processed datagrams will be forwarded into this
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task. Tasks run in parallel on multiple cores and are sched-
uled by the TaskScheduler inside Common Language Run-
time (CLR), which makes them much lighter than regular OS
threads because they are running on existing threads stored
in the ThreadPool. After a task is done or paused, the thread
is returned into the ThreadPool, and a new task is immedi-
ately executed on it. This way, the overhead is minimal, and
parallel processing improves performance rapidly.

Based on the transport protocol type, appropriate reassem-
bler is selected, and the datagram is passed to it for the pro-
cessing. Reassemblers incorporate heuristics [15] for ad-
vanced network traffic processing capable of accurate pro-
cessing of even malformed, or missing frames.

UDP reassembler uses timeouts to separate consequen-
tial UDP sessions. Because of a lack of information
from UDP protocol, application messages are created
as an ordered sequence of L7 PDUs. Each L7 PDU con-
tains only one datagram.

TCP reassembler is more complex and uses properties
of TCP protocol like sequence numbers, flags (mainly
SYN, FIN, RST, PSH) in combination with timeouts.
Based on TCP properties, approximations of applica-
tion messages are created in the form of the ordered
sequence of L7 PDUs. Each L7 PDU contains one or
more datagrams composing the application message.

TCP Reassembler This solves an issue with the ambiguity
of L4 conversations captured in one or many simultaneously
processed captures. Typically this happens when static ports
are used at server and client side. In a case when a packet loss
corrupts capture, it may happen that multiple TCP sessions
would be merged into one because from a network point
of view, communication would match the regular schema.
A TCP finite state machine would process this merged com-
munication and report missing data but would lack further
information. That would result in ambiguity in determina-
tion who was communicating, whether there were one or
more identities involved.
Both reassemblers (TCP and UDP) produce L7 Conversa-

tions that contain collections of data and non-data frames.
Non-data frames are frames without payloads that serve
for signaling purposes like TCP ACKs, or frames with pay-
loads that are malformed, or retransmitted. These frames do
not participate in final stream creation, but their presence
is either way recorded for auxiliary forensic intents.

L7PDUs Data frames are stored inside L7 PDUs. One L7
PDU represents a data stream that is an approximation of an
application message. An application message is considered
to be a sequence of datagrams containing one user action,
e.g., the user sends a message on online chat, or an email,
or downloads a picture, etc. Although, one application mes-
sage can span across multiple L7 PDUs, scarcely, one L7
PDU would contain multiple application messages. This also

serves as a check-pointingmechanism in case that module ex-
tracting data from the application protocol is unable to parse
the data stream due to corruption or unknown content cor-
rectly. We observed that this happens a lot when proprietary
application protocols are involved because of their volatile
nature and closed specification.

Storage Blocks
Storage blocks are used to assure asynchronous persistence
of gathered meta-information in the form of outputs of all
functional blocks, i.e., L3, L4, L7 Conversations with statis-
tics, L7 PDUs and Frames. Data is stored in SQL database in
bulk operations to achieve higher performance with a cost
of delay introduced with buffering. Buffering and database
storing operations run in separate tasks. This way, both ser-
vices run in parallel and do not block one-another under
ideal circumstances. Storage buffering is highly memory
consumptive; therefore, in case that database is slower then
processing, back-pressure mechanism protects processing
pipeline against memory deprivation lowering its perfor-
mance.

4 Decapsulation of Overlay Network
Communication

Available network technologies provide ways to encapsu-
late various network protocols inside carrier traffic. This
approach practically establishes an overlay network on top
of an existing network infrastructure. The virtual topology
of such an overlay network is usually different than the phys-
ical topology. Encapsulation methods can aim to maintain
security Confidentiality, Integrity, and Availability (CIA) triad.
As already explained, the goal of Netfox Detective is to offer
an extensive forensic analysis of captured traffic. To fulfill
this goal and provide a broader range of use-cases, our re-
search and development further focused on the processing
of encapsulated traffic. This section, therefore, outlines sev-
eral encountered challenges and explains how the analysis
of encapsulated satellite traffic was solved.

4.1 Generic Stream Encapsulation
Network protocol Generic Stream Encapsulation (GSE) was
defined by the Digital Video Broadcasting Project (DVB), and
it offers a way to transport IP traffic over generic physical
layer, usually over DVB physical infrastructure [8, p. 6]. GSE,
as a native IP encapsulation protocol on DVB bearers, was
introduced with the second-generation satellite transmission
system called DVB-S2 (Figure 5). Generic data transmission
on the first generation of DVB standards was formerly pos-
sible using theMulti-Protocol Encapsulation (MPE) on MPEG-
TS packets. However, MPE suffered significant overhead.
GSE is also included in Satlabs System Recommendations
for DVB-RCS terminals [22].
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DVB-S2, GSE

Site A Site B

Figure 5. This example scenario is presenting a profes-
sional application of DVB-S2 and GSE. This architecture
offers point-to-point or point-to-multipoint connections over
a satellite link in both directions. Traffic between Site A and
Site B is carried using Generic Stream Encapsulation. The
figure is based on the GSE implementation guidelines [6].

Outline ofGSEProcedures Operation of GSE allows trans-
mission of variable size generic data encapsulated into base-
band frames. GSE can encapsulate not only IPv4 traffic but
a wide range of other protocols including IPv6, Ethernet,
ATM, MPEG, and others. It supports addressing using 6-Byte
MAC addresses, 3-Byte addresses, and even a MAC address-
less mode [8, p. 6]. Encapsulation and decapsulation proce-
dures performed by the DVB broadcast bearers are transpar-
ent to the rest of the network topology and the carried traffic.
Shall a network layer PDU be transmitted over a satellite
connection, GSE packets serve as a data link layer (Figure 5).
This GSE layer provides encapsulation, fragmentation, and
slicing. Created GSE packets are then carried in baseband
frames, e.g. DVB-S2, on the physical layer (Figure 6). The re-
ceiving side performs a reassembly process, integrity check,
and a final decapsulation of transmitted PDUs [4].

Moreover, it is also possible to transport GSE packets over,
for example, standard IP network infrastructure. In this case,
the DVB-S2 traffic can be carried like a generic payload
on the application layer with the use of User Datagram Pro-
tocol (UDP) as a transport layer. Therefore, given UDP data-
grams carry DVB-S2 baseband frames, which further carry
GSE packets encapsulating selected protocol communica-
tion. This approach effectively establishes an overlay net-
work infrastructure, because IP traffic can practically carry
GSE packets, which can carry another layer of IP traffic. At
this point, the UDP/IP layer below GSE can be considered
the carrier (encapsulating) traffic while, for example, the IP

PDU

DVB-S2 
baseband 
frames

GSE 
packets

PDUs PDU PDU

Figure 6. The figure shows the encapsulation of network
layer PDUs into GSE packets and transmission of GSE pack-
ets inside physical layer baseband frames. GSE packets and
baseband frames consist of a header (shown as a grey block)
and a data field (shown as white space). GSE packet carrying
the last fragment also contains CRC-32 (shown as a block
with pattern). The figure is based on GSE protocol specifica-
tion [8, p. 10].

ICMP

GSE

IPv4

DVB-S2

UDP

IPv4

Ethernet

Lower IP 
network

Upper IP 
network

Overlay 
technology

Data link 
layer

Figure 7. Example of IP traffic encapsulated in GSE layer,
which is carried by another IP traffic. The resulting virtual
topology can be characterized as an established overlay net-
work.

layer above GSE can be described as the carried (encapsulated)
traffic. This approach is presented in Figure 7.
According to specifications and recommendations pub-

lished by SatLabs, implementation of a receiver with Eth-
ernet interface can be divided into demodulation/decoding
device, and a device focused on baseband processing. In such
case, L3 Mode Adaptation Receiver Header can be prepended
to received data [21, p. 10]. The receiving device would then
process DVB-S2 L3 Mode Adaptation Receiver Header, DVB-
S2 baseband frame, and GSE packets to analyze transmitted
communication.

Fragmentation, Slicing, Padding and Reassembly Pro-
cess As noted earlier, GSE procedures can encapsulate dif-
ferent protocol data units in one or more GSE packets. In gen-
eral, GSE packets have variable length, and they can be sent
in different baseband frames individually or in a group. There-
fore, fragmentation, slicing, padding and reassembling can
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occur. In this context, fragmentation refers to a situation
when a PDU and Extension Header is fragmented into mul-
tiple GSE packets (Figure 6). Slicing indicates a case when
a GSE packet itself is divided into several contiguous base-
band frames [8, p. 8]. Noted slicing, therefore, refers to phys-
ical layer fragmentation, which shall be transparent to the
GSE layer [6, p. 27]. Concerning DVB-S2 applications, GSE
slicing (fragmentation into baseband frames) does not oc-
cur [6, p. 31].

Shall a single PDU be fragmented into several GSE packets,
each packet is assigned a Fragmentation Identifier (Frag ID)
label in the GSE header [8, p. 17]. Frag ID is used to match
fragments belonging to the same original PDU. This ap-
proach enables the simultaneous transmission of fragments
from up to 256 different original PDUs. GSE packets carry-
ing a complete PDU and GSE packets with PDU fragments
can be distinguished using start and end flags in the GSE
header. The protocol of carried PDU is indicated by Pro-
tocol Type/Extension field in the GSE header of the first
fragmented packet and every not fragmented packet. The
packet with the last PDU fragment further carries a CRC-32
field used to check integrity after the reassembly process
(Figure 6). It is important to note that for example, DVB-S2
allows multiplexed transmission of multiple streams, each
identified by its Input Stream Identifier (ISI ) [6, p. 32] in base-
band header [7, p. 20]. The reassembly process has to be
carried out independently for each received stream [8, p. 21].
Some of the possible GSE packet formats are presented in
the technical specification [8, pp. 31–32].
Concerning GSE addressing modes noted earlier, an ad-

ditional fourth mode called label re-use can be used when
multiple GSE packets are carried in a single baseband frame.
Shall label re-use be indicated, current GSE packet without
address belongs to the same address as the last previously
processed GSE packet. More detailed analysis of GSE proto-
col is beyond this paper’s scope. GSE packet format is defined
in the protocol specification [8, p. 12]. Further information
can be found in standards, recommendations, and guidelines
covering GSE and DVB-S2 [8], [9], [10], [6], [11].

Implementation Outline Our main goal was to success-
fully decapsulate and process GSE protocol used as an over-
lay network technology (Figure 7). Main challenges were
represented by correct decapsulation of fragmented traffic
including timeout detection and also including support for
recursive encapsulation. As outlined earlier, this approach
represents the transmission of following protocols layered
on top of each other:

• upper IP as an overlay network layer,
• GSE packets transmitted inside a DVB-S2 baseband
frame with Mode Adaptation Header,
• lower IP and UDP as a network and a transport layer,
• Ethernet as a data link layer.

BaseBandHeaderModeAdaptationHeaderL3 GsePacket

<<Interface>>

IFragment

GseHeader

PmFrameEncapsulated

PmFrameBase

1..*Fragments

BaseBandFrame

0..*
UserPackets

0..* DecapsulatedFromFrames

EncapsulatedFrames

0..*

PDU

Figure 8. Extension of object model focused on the process-
ing of GSE-encapsulated frames (simplified).

Design of the extension of the object model concerning
the processing of encapsulated communication (Figure 8)
is quite straightforward and reflects above-described pro-
tocol layers. Instance of BaseBandFrame composes of Mod-
eAdaptationHeaderL3, BaseBandHeader, and several user pack-
ets. These user packets are, in this case, GSE packets. The
instance of GsePacket includes GseHeader and carries the en-
capsulated PDU. Properties of these instances store values
of specific protocol fields from the processed frame, e.g.,
address label, length, fragment ID, encapsulated protocol
type, checksum, etc. All designed model classes make use
of factory methods for parsing corresponding instances from
network traffic. These Parse methods, therefore, take an in-
stance of PDUStreamReader, which is responsible for provid-
ing a correct sequence of bytes belonging to the lower PDU,
as described above.
Because GSE packets can represent fragments of the en-

capsulated PDU, GsePacket class implements IFragment in-
terface utilized during reassembly procedures. With the chal-
lenge of correct reassembly and decapsulation, a new type
of network traffic frame was introduced. Class PmFrameEn-
capsulated inheriting from PmFrameBase represents a frame
encapsulated in one or more carrier datagrams. Carrier data-
grams can be either baseband frames or encapsulation pack-
ets. The instance of PmFrameEncapsulated has references
to individual fragments which form the given frame.
Processing of GSE-encapsulated communication is man-

aged by L7DvbS2GseDecapsulatorBlock (Figure 9) dynami-
cally connected to the frame processing pipeline, which was
described in Figure 4. This TPL block aims to decapsulate
frames fromGSE packets used as an overlay network technol-
ogy. Connection to the pipeline is established using Broad-
castBlock, which is capable of forwarding L7Conversations
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from the L7ConversationTrackerBlock to the StoreL7Conver-
sationBlock (as in the standard pipeline topology presented
in Figure 4) and also to the noted L7DvbS2GseDecapsulator-
Block (Figure 9). Due to the possible amount of false positive
detections of GSE layer, decapsulation procedures are op-
tional. Main Netfox Detective application settings include
such option to enableDecapsulation during capture file import
for communication of Generic Stream Encapsulation (GSE)
inside DVB-S2 baseband frames with Mode Adaptation Header
L3 sent as Layer 7 PDU. Shall this option be enabled, Con-
trollerCaptureProcessor instantiates and connects L7DvbS2-
GseDecapsulatorBlock to the pipeline.

L7ConversationBroadcaster

L7DvbS2GseDecapsulator

DecapsulatedFrames

StoreL7ConversationBlock

L7ConversationTrackerBlock

L7Conversation

L7Conversation L7Conversation

PmFrameEncapsulated

Database

L7Conversation

Figure 9. Scheme illustrating the connection
of L7DvbS2GseDecapsulatorBlock to the frame pro-
cessing pipeline using BroadcastBlock placed between
L7ConversationTrackerBlock and StoreL7ConversationBlock.
Standard pipeline topology is shown in Figure 4.

Because GSE packets, which can encapsulate IP traffic, can
be transmitted inside another UDP/IP, recursive encapsula-
tion can happen. In such an edge case, several GSE overlay
networks could be created on top of each other. That implies
that a frame decapsulated from GSE packets must be sepa-
rately processed and analyzed for the presence of another
GSE layer. The challenge of recursive encapsulation is han-
dled by ControllerCaptureProcessor, as well. Shall the frame
processing pipeline finishwith some decapsulated frames, an-
other pipeline is established, and these decapsulated frames
are further processed.
The decapsulation procedure performed by L7DvbS2Gse-

DecapsulatorBlock is following. Instantiated PDUStreamReader
handles reading bytes of the input conversation and then
parsing of a GSE layer is attempted. Upon successful de-
tection of GSE layer, DVB-S2 baseband frames are passed
to the GseReassemblingDecapsulator. It outputs frames which
have type PmFrameEncapsulated and are ready for further
processing by consequential blocks.

The GseReassemblingDecapsulator manages decapsulation
of frames encapsulated inside GSE packets, which are car-
ried in baseband frames. The decapsulator is capable of re-
assembly procedure according to the specification [8, p. 21].

Reassembling distinguishes single input stream and multiple
input streams based on ISI explained earlier. The reassembly
procedure utilizes GseReassemblyBuffer for each fragment ID
and for each stream identifier processed. The decapsulator,
therefore, decapsulates frames from GSE packets in base-
band frames. In the case of GSE fragmentation, given GSE
packet (fragment) is added to the corresponding reassembly
buffer. Upon successful reassembly, the carried frame is then
decapsulated, too. Each GseReassemblyBuffer holds a counter
of processed baseband frames, which is used to detect a PDU
reassembly time-out error, as defined in the specification [8].

4.2 Evaluation
Every layer of decapsulated traffic is subject to further net-
work forensic analysis performed by the Netfox Detective.
The information is presented in the GUI. The view informs
the user whether the current frame in encapsulated or not. It
is also possible to navigate between views showing individ-
ual encapsulating frames (see Figure 10) and encapsulated
frames (see Figure 11).

The implementation has been evaluated on publicly avail-
able datasets 2, and results (amount of correctly identified
and extracted GSE communications) were comparable to the
reference Wireshark implementation. A set of integration
tests was implemented that verify the correct processing
of GSE traffic in future releases and prohibit regression bugs
from being introduced.

Figure 10.View of the frame content of theNetfox Detective
presenting a frame carrying eight other encapsulated frames.
It is possible to navigate between encapsulated frames using
shown links labeled with GUID of the target frame.

The main goal was to process GSE traffic used as the tun-
neling protocol in satellite communication networks. The
current implementation of GSE processing module does not
support for DVB-S2 baseband frames that can be used as
the physical layer. The decapsulation procedure also does
not handle GSE labels, because of the limitation of the Net-
fox Framework tool that does not support tracking multiple
L1 conversations. Stream ID and fragment ID is correctly
2https://wiki.wireshark.org/DVB-S2 (last accessed 2019-04-17).
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Figure 11. Frame content view of Netfox Detective (as in Fig-
ure 10) analyzing a frame that was decapsulated from another
frame of the lower layer.

utilized during GSE reassembling. However, the stream ID
value is not used to separate L1 conversations.

5 Conclusion
Network traffic analysis is often conducted as a part of dig-
ital investigation. In most cases, Internet communication
is analyzed, but sometimes the interesting communication
is encapsulated in some tunneling protocol because of the
network technology used. In this paper, we have presented
the analysis of GSE protocol and the implementation of foren-
sic data extraction enabling to access the encapsulated In-
ternet traffic. The proposed implementation was evaluated
against the Wireshark tool, the only available implementa-
tion of GSE analysis module in common NSM tools. The
forensics tool Netfox Detective is publicly available (https:
//github.com/nesfit/NetfoxDetective) for all network foren-
sic practitioners to use, including open-source source codes
that can be freely modified, or integrated into other newly
implemented tools.
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Abstract
Forensic analysis of intercepted network traffic focuses on
finding and extracting communication evidence, such as in-
stant messaging, email, VoIP calls, localization information,
documents, images. Due to the amount of data captured, this
process is time-consuming and complicated. Most commonly
used forensic network analysis tools have limited capabilities
for large data processing. In this paper, we are introducing
a new tool that achieves better data processing performance
using available computing resources through distributed
processing. Thanks to the technology used, this tool can
be used on commodity hardware in a local area network,
in a dedicated computing cluster or cloud environment.

CCSConcepts •Applied computing→Network foren-
sics; • Networks→ Network monitoring; Network protocols;
Transport protocols; Application layer protocols; • Social
and professional topics→ Computer crime.
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1 Introduction
Network administrators, cyber-security analysts, and digital
forensic investigators capture and analyze network com-
munication to reveal the attack patterns or recover digital
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evidence. The traditional tools used to process captured com-
munication have limited scalability. For instance, Wireshark
is an excellent tool for troubleshooting and security analysis.
However, performing analysis of captured files of several
gigabytes is cumbersome. Current computing platforms of-
fer tremendous computation power. It is mainly because
of its multi-core architecture. The number of cores available
per CPU constantly grows1, contrary to the CPU frequency
that is essential for single threaded applications.

However, modifying commonly used single-threaded net-
work forensic tools, e.g., PyFlag, NetworkMiner, to utilize
the full potential of modern processors is a complex task
which would require extensive modification of their code
base. Therefore, new tools for network forensic analysis are
in high demand [9, 14].

Even more computing power can be obtained by distribut-
ing the workload among a cluster of machines. Availability
of industrial strength technology for distributed data process-
ing and scalable storage led to the emergence of distributed
network security analysis systems, e.g., Moloch2, Apache
Spot3, or Apache Metron4. Academic research also yields
to implementations of scalable network security monitoring
systems [26].
Regardless of the technology used, these systems aim

to provide a high performance distributed computing envi-
ronment for network security monitoring (NSM). These tools
are especially useful for real-time data processing and com-
plement other systems to defend against cyber threats such
as IDS, firewalls, or SIEM. While these tools are also useful
for network forensic analysis, forensic investigation favors
the depth, accuracy, and reliability of processing over the fast
response time. When investigating, it is necessary to reliably
analyze any artifact that can be extracted, even though the
source data may be corrupted and may not be complete.

1.1 Contribution
This paper discusses the design, performance, and proper-
ties of a new Network Forensic and Analysis Tool (NFAT) —

1Example of the state-of-the-art CPU available on the market — AMD
EPYC Rome 64 cores 128 threads, 2.35 GHz; Intel© Xeon Phi™ 7290F, 72 cores,
1.5 GHz; Intel© Xeon© Platinum 8180M 28 cores, 56 threads, 2.5 GHz
2https://molo.ch/ (last accessed 2019-07-03).
3http://spot.incubator.apache.org/ (last accessed 2019-07-03).
4http://metron.apache.org/ (last accessed 2019-07-03).
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Network Traffic Processing & Analysis Cluster (NTPAC) —
that utilizes distributed computing architecture to improve
the performance of network traffic analysis while being
less demanding on hardware requirements than related sys-
tems. To extract the evidence from network packets, we need
to thoroughly analyze them which means to perform several
consecutive operations such as packet dissecting, flow iden-
tification, network stream composition, application protocol
identification, and message parsing and artifact extraction
(see Section 3). Contrary to the other NFAT tools (see Sec-
tion 2.4), NTPAC is able to correctly process captured traffic
that is malformed without yielding misleading evidence (see
Section 4.2). NTPAC performs forensic network traffic analy-
sis at high-speed networks. The system design uses a scalable
approach that enables to run the tool on a single machine
as well as on a computing cluster. in comparison with other
NFATs tools, NTPAC is an order of magnitude faster and
scales (see Section 3).

1.2 Paper Structure
Initially, background and related work are discussed pre-
senting an overview of current network forensic and secu-
rity monitoring tools. The architecture of NTPAC is intro-
duced, and the major architectural components are outlined.
The paper then provides a preliminary evaluation of the per-
formance that focuses on demonstrating the throughput
and scalability of the tool. Finally, we discuss limitations
and future work.

2 Background and Related Work
This section provides a background for the paper and lists
the related work. First, the actor model and network packet
capture analysis are presented. Then we overview existing
network forensic tools and frameworks.

2.1 Actor Model
Actor model offers to solve the problems related to parallel
and distributed computing elegantly and efficiently. The ac-
tor model was first introduced as a theoretical computation
model highly influenced by Lisp, Simula and packet switch-
ing in computer networks [7]. It defines a fundamental con-
cept called actor system that is composed of tiny building
blocks called actors that execute independently and mas-
sively in parallel. The actor is in the distributed world an
abstraction of what is an object in Object-Oriented Program-
ming; in other words, it bounds data with computation.

Actors communicate asynchronously via message passing.
Actor system guarantees at most one delivery, which means
that any message can get lost at any time but cannot be deliv-
ered twice or more. Actor’s state changes only as a reaction
on a received message. Actor’s behavior determines how
to process the incoming message by creating another actor,
sending a message to another actor, changing its state.

The composition of actors in the actor system is hierarchi-
cal. Each actor is responsible for any other actor it creates,
i.e., the creation of a parent-child relationship. AnActor is de-
signed to be as simple as possible, typically without complex
inner integrity checks, exception handling, etc. Thus, it can
crash at any time. Parent actor is responsible for its children
and knows how to deal with children’s failures. This con-
cept greatly simplifies the computation model and allows
a programmer to focus only on the most important part that
is the core application’s functionality and frees him/her from
the need of use of synchronization tools (such as mutexes).

2.2 Packet Capture Analysis
Network traffic analysis aims to reveal traces of network
attacks and find answers to questions about the incident
investigation. Packet analysis starts with dissecting network
traffic which performs the following steps: i) loading PCAP
files, parsing the PCAP file, and extracting individual packets,
ii) dissecting packets with low-level protocol parsers, including
Ethernet, IP, IPv6, TCP or UDP, iii) collecting TCP packets
into streams, and iv) applying higher level protocol parsers
to get the required information or extract artifacts.

However, in many cases, it is not possible to obtain plain
content from communication because of encryption. Then
at least some form of valuable forensic information can
be identified, for instance, identities of users [1, 18], de-
vices [17] or applications [16] based on extracted metadata.

Depending on the goal and available tools there are nu-
merous analytic approaches to network packet analysis:

• The bottom-up approach is a prevalent method used
by Network Security Monitoring (NSM) [24] oriented
analysis that supports several tools, most notablyWire-
shark. All packets are parsed and presented to the in-
vestigator who uses filtering, querying and reassem-
bling to identify and extract required artifacts.
• The top-down approach assumes that the Network
Forensic and Analysis Tool (NFAT) [15], e.g., Network-
Miner, Xplico, PyFlag, NetfoxDetective, can extract in-
formation from packets into conversations or other
higher level artifacts. These applications visualize this
high-level information to the investigator that can then
drill down into details if necessary.
• Search based approach considers network communica-
tion being just another data format in which it is pos-
sible to search for keywords or patterns [11, 20].

2.3 Network Security Monitoring Tools
Network forensic methods were implemented in various
NSM tools, e.g., Wireshark, TCP dump, IDS systems (Snort,
Zeek), fingerprinting tools (Nmap, p0f), and tools to identify
and analyze security threats. As [15] observes, NSM tools are
primarily used by network administrators and are intended
for detailed bottom-up analysis that requires advanced skills.
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Lukashin [12] presented a scalable internet traffic analysis
system, which can process multi-terabytes libpcap dump
files. It utilizes Apache Spark for data processing to ana-
lyze captured packets. The system performs basic analy-
sis and lacks some advanced features required by network
forensics. Other approaches to the big data network security
analysis were presented by various researchers [2, 19, 30].
Currently, Apache Metron and Apache Spot projects are
the most vital. They are frameworks for security analysis
of IT threats, enabling to process also firewall and appli-
cation logs, emails, intrusion-detection reports, and so on.
Although they are primarily focusing on network security,
they can be valuable as sources of forensic data.

Additionally, there are special appliances for network se-
curity monitoring based on custom made FPGA chips that
can perform up to 100Gbps deep packet analysis and ex-
port NetFlow with additional information extracted from
application protocols [8].

2.4 Network Forensic Analysis Tools
The investigators of Law Enforcement Agencies deal with the
enormous number of cases. They require specialized tools
that perform top-down analysis and save valuable time [3].
The following list is a selection of notable open-source tools
that were designed to support the investigators:
PyFlag is full-fledged NFAT which is intended for disk,

memory, and network forensics. PyFlag’s design in-
corporates the concept of a Virtual File System [4].
It implements a specific loader for each supported
data source. PyFlag enables to reassemble the content
of the communication, e.g., web pages, email conver-
sation.

NetworkMiner is an open source tool that integrates packet
sniffing and higher-layer protocol analyzing capabili-
ties into a tool for passive network forensic analysis.

Xplico is a modular NFAT. It consists of the input mod-
ule handling the loading source data, decoding mod-
ule equipped with protocol dissectors for decoding
the traffic and exporting the content, and the output
module organizing decoded data and presenting them
to the user. Xplico is a client-server application that
can analyze PCAP files as large as several gigabytes.

While all these tools are very useful for investigators
as they offer a variety of advanced features, their scalability
is limited because they run on either a single computer or in
a traditional client-server architecture.

2.5 Big Data Forensics
As distributed frameworks matured, new tools for big data
security analysis and digital forensics were designed. Such
tools are usually intended for the forensic investigation con-
ducted by network administrators on corporate networks.

They usually serve as a complement to Intrusion Detection
Systems enabling to capture and analyze hi-speed communi-
cation at scale.

Agent-based systems for digital forensics were considered
in the literature [21, 22, 29]. These models are more suit-
able for real-time network forensic analysis from multiple
sources, such as logs and captured communication. In these
systems, numerous agents perform data collection tasks.
The extracted information is then sent to the forensic server
and analyzed on this single node only [10], which makes this
node to be the bottleneck of the whole system.
The VAST system builds upon Vallentin’s previous work

— The NIDS Cluster [28] which distributes the workload
across multiple workers running Zeek to investigate online
network traffic and extract Zeek events. The VAST system
itself goes further and distributes Zeek events to workers
running in a computing cluster which allows for on-line
analysis and interactive queries. Distribution of raw packets
is also supported as a 4-tuple with payload up to the speed
of 3.1Gb/s (the libpcap reading speed). According to Val-
lentin [27] the system does not guarantee that the storage
will be able to keep up with the incoming traffic of this speed.

3 Traffic Processing
The goal of NTPAC is to capture and analyze network com-
munication enabling to extract available information. De-
pending on the case, the forensic investigator may be inter-
ested in the content or metadata of application messages.
NTPAC handles captured packets according to the following
procedure in order to reassemble application messages:

• NTPAC organizes captured packets into separate net-
work layer conversations based on their source and
destination IP addresses, providing IP conversation.
• NTPAC then splits IP conversations into TCP/UDP
conversations based on the source and destination port
numbers and the transport protocol type, as shown
in figure 2.
• NTPAC reassembles application conversations from
packets separated into individual TCP/UDP conversa-
tions. This method utilizes heuristics [13] to recognize
multiple application communication multiplexed into
a stream of packets of one TCP/UDP conversation
caused for example by port reuse.

Because application message extraction is a computation-
ally challenging task, it is a good candidate to run on a com-
puter cluster to improve overall system performance.
Extraction of the artifacts from application messages as-

sumes that we correctly identified the application protocols.
Methods based on known port numbers, characteristics pat-
terns in the payload of packets, using statistical methods
or machine learning [16] approach can be applied.
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However, in many cases, application information cannot
be extracted because the content is encrypted. In fact, ap-
proximately 76% of HTTP traffic (at the time of writing
this paper) is transmitted by SSL/TLS 5. In this situation,
we cannot extract application messages, but it is possible
to get metadata from the SSL/TLS protocol itself, for exam-
ple, cryptographic information, certificate data, etc. The only
exception is two possible situations in which we can decrypt
encrypted application data [5]:

1. We have access to the server’s private key used in the ini-
tialization of an SSL/TLS session, we want to decrypt,
and cipher-suites not supporting forward secrecy is used.

2. We can perform a Man-In-The-Middle attack with an
SSL/TLS proxy [23] and store session keys.

Most agencies cannot use these techniques because of legal
restrictions. For this reason, we did not consider implement-
ing SSL/TLS encryption techniques in our tool.

4 System architecture
The architecture consists of multiple modules that form the
processing pipeline (see Figure1). At the highest level, the
NTPAC workflow can be divided into two main phases:
Data pre-processing reconstructs application layer con-

versations (L7 conversation). Each of these conversa-
tions is made up of source and destination endpoints,
timestamps, and other information that is needed for
subsequent processing.

Data analysis identifies application protocols in recon-
structed conversations and uses an appropriate ap-
plication protocol decoder to reconstruct application
events from given conversations, such as visited web
pages, sent emails, queried domains, etc. The output
of this phase is a set of forensic artifacts.

These phases correspond to low-level analysis and high-
level analysis. The separation of data pre-processing from the
data analysis enables to use the actor-based computational
model and offer the ability to distribute the computation.
In the rest of the section, details will be given for eachmodule
of the processing pipeline.

4.1 Load balancing
The job of the Load Balancer nodes is to split the input packet
stream, i.e., PCAP file or live traffic, into sub-streams that are
then delivered to the reassembling nodes. To avoid the prob-
lem of sending packets from the same conversation to dif-
ferent reassemble nodes, the Load Balancer calculates the
key used to select the destination node from the appropriate
protocol fields.

The Eq. 1 calculates the routing key based on communica-
tion endpoints (EP_A and EP_B) and the transport protocol
used. Value n represents the number of active Reassembler

5https://letsencrypt.org/stats/

nodes.
Hash(EPA · EPB · Protocol) mod n (1)

Since all packets from the same conversation (i.e. in both
directions of the conversation) should produce the same rout-
ing key, we defined an ordering relation ≤ for the endpoints6
and ensured that EPA ≤ EPB by swapping them if necessary.
While the Load Balancers process each packet individu-

ally, the data is delivered to Reassemblers in batches. This
technique helps to decrease network and processing cost of
the data distribution.

Back pressure mechanism is used to control the data flow
between the nodes. To increase throughput, a Load Balancer
can submit multiple batches in parallel to the target Reassem-
blers.

IPv4 fragmentation is a challenge for Load Balancers. Frag-
mentation splits one IP packet into multiple IP packets so
that the encapsulated transport layer segment header only
occurs in the first IP fragment. The Load Balancer must,
therefore, rebuild the IP fragments to identify the routing
key for all fragments of a segment, before it can send them
to an appropriate Reassembler.

4.2 Conversation Reassembling
Reassembler reconstructs conversations, i.e., two-way traffic
layer flows, in batches of packets received from Load Bal-
ancers. The reassembly process is designed to reconstruct
incomplete and corrupted data, using various heuristic tech-
niques [13]. Reassembling is done in several steps until
two corresponding flows are assembled, which is illustrated
in Figure 2. The entire processing is mapped to actors per-
forming individual steps. Individual L3 and L4 conversations
are represented by corresponding actors, which form an ac-
tor hierarchy as shown in figure 3. L3 Conversation actors
are managed by Capture actors, which stands for a source
capture being analyzed. To enable an analysis of multiple
captures at the same time, multiple Capture actors can be ini-
tiated. The Captures Controller actor manages all capture
actors.
The packet blocks are first received by the Captures Con-

troller actor, which passes them to the appropriate Capture
actor. The Capture actor identifies affiliation of packets to L3
conversations by extracting the IP addresses of the packets
and forwards them to appropriate L3 Conversation actors
which, after identifying affiliation of packets to L4 conver-
sation by extracting the transport protocol and port num-
bers, forwards the packets to appropriate L4 Conversation
actors. At these actors, the process of reassembling depends
on the transport protocol of the conversation and is per-
formed by either UDP Conversation Tracker or TCP Conver-
sation Tracker.

6The endpoint is a pair of IP address and port number. We consider that
there is a suitable lexicographic ordering on a set of endpoints.
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UDP Protocol Reassembling
UDP is transferring application data as they are, without
the use of any additional control packets which implement
mechanisms such as flow control or reliable data delivery.
UDP Conversation Tracker, therefore, treats every transmit-
ted datagram inside given L4 conversation as an individ-
ual L7 PDU (Protocol Data Unit). Another important aspect
of the UDP protocol is that it is connection-less — it does
not establish connections between communicating parties.
To distinguish individual L7 Conversations (composed of a pair
of Upflow and Downflow) inside single L4 conversation, UDP
Conversation Tracker uses a simple heuristic based on a time
delay between individual L7 PDUs. L7 PDUs in a given di-
rection are considered to be part of a single flow if the time
difference between their transmission and last recorded ac-
tivity (timestamp of the last L7 PDU) of a given flow is less

than a defined value. Experimentally we set this value to 10
minutes, but we are planning to further study UDP behavior
of multiple protocols and define this threshold on application
protocol bases.

TCP Protocol Reassembling
Processing of TCP protocol is different from handling UDP
flows because we can use control information carried along
with the data. TCP Conversation Tracker is capable of iden-
tifying connection initialization and its termination, han-
dling data retransmission and reordering. In the same way
as a UDP Conversation Tracker, TCP Conversation Tracker also
processes segments (TCP PDUs) in separate flows, which
are later paired to form L7 conversations. To create this
flows, it first stores segments in the so-called reassembling
collection, in which segments are stored and ordered by their
TCP sequence number. Both directions of communication
have designated their reassembling collection. Before a seg-
ment is stored in reassembling collection, its sequence number
is normalized by incrementing it by a count of detected se-
quence number overflows × 232 (space of TCP sequence num-
bers). Sequence number overflows can be caused by a natural
overflow of a 32-bit integer sequence number or by estab-
lishing a new TCP connection, with ISN (Initial Sequence
Number) lower as that of a previous connection. By storing
segments in reassembling collection and ordering them by
their normalized sequence numbers, we achieve that:
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1. individual segments inside L7 conversation are or-
dered;

2. we detect data retransmissions by comparing payloads
of segments of which normalized sequence numbers
are overlapping;

3. individual L7 conversations inside L4 conversation are
ordered by the time they were transmitted.

Algorithm tcp_flow_reassembling()
forall segment in reassembling_collection do

if SYN flag is set then
close_flow()

flow ← create new flow

else if FIN flag is set then
close_flow()

else if flow is nil then
flow ← create new flow

add_segment_to_pdu()

else
add_segment_to_pdu()

end
return flows

Procedure close_flow()
if flow is nil then

return
if pdu is not nil then

add_pdu_to_flow()

flows.insert(flow)

flow ← nil

return
Procedure add_segment_to_pdu()

if segment is retransmission then
return

if pdu is nil then
pdu ← create new pdu

pdu.segments.insert(segment)

if PSH flag is set then
add_pdu_to_flow()

return
Procedure add_pdu_to_flow()

flow.pdus.insert(pdu)

pdu ← nil

return
Algorithm 1: TCP flow reassembling.

After all segments of L4 conversation have been stored
in an appropriate reassembling collection (for Up and Down
direction), TCP Conversation Tracker iterates through both
of them sequentially in order to reconstructUpflows andDown-
flows. Simplified flow reassembling algorithm is shown in Al-
gorithm 1. For each segment containing application data,
it appends it to current L7 PDU (creates it at first, if it is not

already created). After it encounters packet with TCP PSH
flag set, it completes current L7 PDU and adds it to the cur-
rent flow. Segments which do not contain application data,
such as packets of TCP handshake or connection termina-
tion are used to differentiate individual TCP connections by
creating appropriate flows with assigned created L7 PDUs.
Created Upflows and Downflows are paired by their ISNs (Ini-
tial Sequence Numbers) or based on their overlap on time
axis in case an ISN of a particular flow could not be deter-
mined (missing TCP handshake).

L7 Conversation storage
L7 conversations reconstructed by L4 Conversation actors are
passed to L7 Conversation Storage actor. This actor saves con-
tents (series of reconstructed L7 PDUs), as well as metadata
(timestamps, endpoints and transport protocols) of these
L7 conversations in a distributed database. Our tool uses
an abstract data access layer that eliminates any dependence
on one database technology. Currently, our solution is pri-
marily based on the use of the Cassandra database engine7,
which has the appropriate features — it has a distributed
design, configurable replication factor per keyspace and con-
sistency factor per query.

4.3 Application protocol parsing
In the second stage, a subset of reconstructed L7 conversa-
tions is retrieved from the database and further processed
to identify and extract interesting application messages:

• First, Application protocol classifier block identifies
an application protocol of the conversation. Our so-
lution currently implements a simple application pro-
tocol classifier based on the database of known ports.
However, a more advanced classifier can be used to uti-
lize pattern recognition or statistical methods [6, 16].
• Based on the recognized application protocol, the con-
versation is consumed by parsing module designed
to the processing of a single application protocol such
as HTTP, SMTP or DNS. The parsing module pro-
cesses the entire conversation by extracting individual
application protocol messages and storing them back
to the distributed database.

The current implementation includes only HTTP and DNS
parsers. Adding support for other application protocols re-
quires creating an application protocol parser. Implementing
the parser is time-consuming and error-prone. Another op-
tion is to generate a parser using a suitable parser generator.
Depending on whether the protocol is text or binary, differ-
ent types of generators can be used, for example, Spicy [25],
Kaitai Struct8, etc.

7Note that also MSSQL and ArangoDB are supported.
8https://kaitai.io/
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5 Performance evaluation
We focused our preliminary assessment on determining
the performance parameters of the created tool. During
the experiments, we considered both the data storage sce-
nario in the distributed database and the case where data
analysis uses the output from the previous step directly.
The goal is to demonstrate the scalability of the proposed so-
lution and show the available throughput in various possible
configurations. We have considered two major test scenarios:
Standalone processing tests how fast is captured traffic

processed on a single machine inside one process. This
test-case shows total throughput of our processing
algorithms (especially reassembling and application
protocol parsing) on given machine type. Because
the whole processing is running under one Common
Language Runtime (CLR), it is expected to be faster
than distributed processing with a low number of pro-
cessing nodes. This experiment provides a baseline
to which other results are compared.

Cluster Processing shows the scalability of our solution
in a computing cluster. We tested it in a distributed en-
vironment with a different number of nodes. The test
scenarios considered (i) processing with a single Load
Balancer and different numbers of Reassembler nodes
and (ii) a different number of Load Balancer and Re-
assembler nodes.

For our test purposes, we have chosen multiple different
computing environments described in Table 1. The E.1 envi-
ronment consists of 14 workstations that are all connected
to the same local network. Environment E.2 is a cluster-
integrated Google Cloud Platform consisting of 12 virtual
machines. E.3 is a mini-cluster of four server boards in a sin-
gle chassis. Finally, E.4 is a single powerful workstation.

Table 1. Testing environments used for performance evalu-
ation.

E.1 E.2 E.3 E.4

Machine Type Desktop
computers

Google Cloud
Platform (*)

Mini-cluster Workstation

Machines count 14 12 4 1
CPU Type Intel i5-

3570K
Intel Xeon E5 Intel Xeon

E5520
Intel
i7-5930K

Physical Cores 4 2 4 6
Logical Cores 4 4 8 12
CPU Frequency 3.40GHz 2.60GHz 2.26GHz 3.50GHz
CPU Frequency
Turbo — 1 core

3.80GHz 2.80GHz 3.53GHz 4.30GHz

RAM 8GB 7GB 48GB 64GB
Sequential disk
read/write

73/67MB/s 120/118MB/s 282/265MB/s 490/430MB/s

Network Card 1Gbps 10Gbps 1Gbps 1Gbps
(*) n1-highcpu-4

As the source packet capture, we used 4.7GB file from
a well known M57-Patents Scenario9. It captures real-world
9https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario (last
accessed 2019-07-03).

corporate network traffic over one month, consisting of
5,707,845 frames. The size of the capture file is large enough
to limit the overhead to a negligible part in the initialization
phase but allows us to run all test cases in a reasonable time.
To reduce the memory consumption of tracking of all

processed conversations by the Reassembler nodes, its actors
detect and remove inactive (timed out) conversations. Thus,
the memory allocation corresponds to the number of active
concurrent network flows within a particular time window.
Each experiment was repeated 10 times. The calculated

standard deviation was in the range of 5 − 10 %. Such a high
value is due to the inherent non-deterministic behavior of the
distributed system, including the effect of network commu-
nication, the garbage collection, and other operating system
processes.

5.1 Single-node Environments
We measured the individual processing stages in the stan-
dalone test scenario in environments E.3 and E.4. Table 2
represents the performance achieved for each phase. Pre-
liminary results show that it is possible to read and decode
packets from a file at approximately 3.8 Gbps and 1.7Gbps
in test environments E.4 and E.3 respectively (second row of
the table). The process of extracting conversations requires
much more effort and therefore performance dropped to
972Gbps and 380Gbps respectively what represents about
75% decrease compared to the previous phase. It suggests
that this resource-intensive part could be most accelerated
by distributed calculation. The last phase is the analysis
of HTTP and DNS protocols, which resulted in a decrease
in throughput of about 8 % compared to the previous phase.
For comparison, Table 3 shows the results achieved by several
commonly used network forensic tools (Wireshark, Network-
Miner) in the E.4 test environment.

Table 2. Processing speeds of individual network capture
processing phases in standalone test scenario performed
on test environments E.4 and E.3.

Workstation E.4 [Mbps] Server E.3 [Mbps]

PCAP file reading 5103 5719
Packet parsing 3853 1679
L7 Conversation reassembling 942 380
Application protocols parsing 880 358

Table 3. Processing speeds of commonly used network foren-
sic tools measured on test environment Workstation E.4.

NTPAC Netfox Wireshark NetworkMiner
[Mbps] [Mbps] [Mbps] [Mbps]

M57 Analysis 880 65.6 73.4 15.8
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5.2 Clustered Environments
Next, we compare the performance and scalability of our
tool in a clustered test scenario executed in the test environ-
ment E.1. We have performed a series of experiments with
the varying number of active Load Balancer and Reassembler
nodes.

Additionally, we have tested configuration in which the re-
sults were persisted in a distributed database10, as well as the
configuration, where these results were discarded so we mea-
sured performance without the overhead associated with
database operations.

Table 4. Performance measurements of clustered processing
conducted in test environment E.1.

Reassemblers S
[Mbps]

1
[Mbps]

2
[Mbps]

4
[Mbps]

6
[Mbps]

8
[Mbps]

10
[Mbps]

Load Balancers Without Persistence

1 513 380 670 768 778 797 815
2 310 574 1093 1370 1508 1542
3 290 602 1136 1713 1945 2070
4 269 660 1258 1971 2252 2580

Load Balancers With Persistence

1 343 273 478 729 734 740 742
2 247 482 801 1009 1123 1254
3 * 501 930 1131 1326 1438
4 * 503 949 1135 1375 1710

Table 4 shows how the performance depends on the num-
ber of Reassembler nodes. Columns labeled 1 to 10 represent
a number of participating Reassembler nodes. For compar-
ison, the column labeled S represents system performance
in a stand-alone mode of the processing. First set of rows (la-
beled Load Balancers Without persistence) denote a varying
number of participating Load Balancer nodes without the
results being stored in a database. Similarly, the second set
of rows (labeled Load Balancers With Persistence) denote
a varying number of participating Load Balancer nodes but
with results being stored in a database.

In the test results, we see that performance increases
to the point where one Load Balancer cannot provide enough
data for available Reassembler nodes. Adding additional Load
Balancer nodes increases the throughput of the entire system
until all Reassemblers are fully saturated, and the processing
speed reaches its limit again. Increasing a number of both
Load Balancer and Reassembler nodes allows a further in-
crease in overall throughput until the available hardware
resources are exhausted. Data points marked with asterisks
(*) represent incapability to complete the test run due to the
overload of the Reassembler nodes in a given configuration
(total number of active nodes).

With the knowledge of the characteristics of the distributed
system obtained from experiments in the E.1 environment,
10The number of Cassandra nodes was equal to the number of active Re-
assembler nodes.

we repeated the same set of experiments in E.2 (using up to
8 Reassemblers and up to 4 Load Balancers) and E.3 (using
up to 3 Reassemblers and single Load Balancer). The results
shown in tables 5 and 6 show a similar trend in the rate of
processing per number of individual modules. Note, that we
are limited by the total number of instances that we can
create in environment E.2.

Table 5. Performance measurements of clustered processing
conducted in test environment E.2.

Reassemblers S
[Mbps]

1
[Mbps]

2
[Mbps]

4
[Mbps]

6
[Mbps]

8
[Mbps]

Load Balancers Without Persistence

1 427 223 370 560 573 585
2 170 334 706 916 994
3 126 352 734 826 1016
4 104 271 580 618 920

Load Balancers With Persistence

1 248 171 255 459 497 498
2 * 219 420 459 675
3 * * 383 452 558
4 * * * * *

Table 6. Performance measurements of clustered processing
conducted in test environment E.3.

Reassemblers S [Mbps] 1 [Mbps] 2 [Mbps] 3 [Mbps]

1 — Without Persistence 358 233 407 453

1 — With Persistence 210 158 301 388

When comparing results from different environments,
it is interesting that the highest performance was achieved
in the local network, although the Google Cloud Platform
seems to have more powerful computing nodes and a faster
network. This may be because GCP is a virtualized environ-
ment with shared hardware resources.

6 Conclusion
We have designed and implemented a system for forensic
network analysis that can be used in high-speed networks
for near real-time analysis. The distributed system is based
on an actor model that, thanks to its good scalability, can
run on a single machine as well as a computing cluster.

The proposed distributed system is comprised of different
classes of cooperating nodes capable of distributing inter-
cepted network traffic, processing identified network flows
and storing reconstructed data into a distributed database.
The resulting data consists of a description of network con-
versations and information from the extracted application
communication. At this point, DNS and HTTP are supported.
The main goal of the system is to provide a scalable plat-

form for network communication processing that is primar-
ily designed to support a digital investigation. Experiments
have demonstrated the feasibility of the proposed approach.
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Processing throughput is scalable by adding additional pro-
cessing nodes. Experiments have also shown that the pro-
posed tool running on only one node can effectively use
available resources and can offer the same or better perfor-
mance than existing tools.

The NTPAC is open source, and available at https://github.
com/nesfit/NTPAC under the MIT license.
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Abstract—The availability of high-speed Internet enables new
opportunities for various cybercrime activities. Security admin-
istrators and Law Enforcement Agency (LEA) officers call for
powerful tools capable of providing network communication
analysis of an enormous amount of network traffic as well
as capable of analyzing an incomplete network data. Big data
technologies were considered to implement tools for capturing,
processing and storing packet traces representing network com-
munication. Often, these systems are resource intensive requiring
a significant amount of memory, computing power, and disk
space. The presented paper describes a novel approach to real-
time network traffic processing implemented in a distributed
environment. The key difference to most existing systems is that
the system is based on a light-weight actor model. The whole
processing pipeline is represented in terms of actor nodes that
can run in parallel. Also, the actor-model offers a solution that
is highly configurable and scalable. The preliminary evaluation
of a prototype implementation supports these general statements.

Keywords–Network forensic analysis; Network traffic process-
ing; Actor model.

I. INTRODUCTION

The expansion of computer networks and Internet avail-
ability opens new opportunities for cybercrime activities and
increases the number of security incidents associated with
network applications. The number of connected devices grows,
and traffic speed increases. Security administrators and Law
Enforcement Agency (LEA) officers call for powerful tools
that enable them to extract useful information from network
communication [1]. The network forensics that is responsible
for capturing, collecting and network data analyzing is becom-
ing more important [2].

In the forensic investigation, the network traffic is con-
tinuously captured from multiple sources. The captured net-
work data has a form of packet traces that have to be pro-
cessed and analyzed up to the application layer. The network
forensic tool has to decode protocols at different network
layers of the Transmission Control Protocol/Internet Proto-
col (TCP/IP) model and various encapsulations. For LEA offi-
cers, interesting information lies in application messages, such
as instant messaging, emails, voice, localizable information,
documents, pictures, etc. The form and relevance of extracted
artifacts may differ from case to case. Often, communication
is encrypted. In this case, meta-data can be the only piece
of information available. In all cases, the network forensic
processing system has to be able to extract artifacts from

the network traffic reliably, even if the packet capture is cor-
rupted, for instance, some connections are incomplete, packets
are malformed, or chunks of packets were not recorded because
of capturing device issues.

The amount of data that needs to be processed to extract
evidence from the network communication depends on the kind
of a case that is investigated but usually gets large. It is very
difficult to decode, extract and store the immense mass of in-
formation for further processing. We propose a distributed
network forensic framework based on the actor model that
is computation effective and capable of linear scalability.
Scalable properties of actor model design for network forensics
are promising, as shown by the Visibility Across Space and
Time (VAST) platform [3]. Similarly to VAST, our solution
provides real-time data ingestion and interactive data analysis,
but in addition to VAST, we consider the full artifact extraction
up to the application layer. Although it requires more compu-
tation resources, we demonstrate that it can still be achieved
in a more straightforward and less resource consuming en-
vironment compared to Apache Hadoop technology, which
is the norm for big data processing.

In Section II, we describe tools used by network forensics
practitioners. Section III addresses issues faced by investiga-
tors and our proposed solution, which architecture is broadly
discussed in Section IV. Section V evaluates preliminary
performance results, and Section VI concludes the paper.

II. BACKGROUND & RELATED WORK

Network forensics is a process that identifies, captures
and analyzes network traffic. Network forensic techniques
are used by several network forensic frameworks [4]–[9]
and tools intended for intrusion detection (Zeek, VAST,
Moloch) [10]–[12], network security monitoring (Microsoft
Network Monitor, TShark, Wireshark, tcpdump) [13]–[16],
and network forensic investigation for LEAs (Netfox De-
tective, PyFlag, NetworkMiner, EnCase, XPlico) [17]–[21].
Commonly available forensics tools are implemented either
as a classic desktop or command line application or a tradi-
tional client-server solution.

To overcome the limitations of traditional tools, we pro-
pose to use distributed computing. The models for distributed
processing [22][23] are more suitable for real-time network
forensic analysis from multiple sources, such as logs and cap-
tured communication. The models are based on an agent
system, where numerous agents perform the collection task.
The extracted information is sent to the forensic network server
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and analyzed on this single node [24] only. The forensic server
is the bottleneck that has to process all the data. To avoid this
bottleneck, the Google Rapid Response (GRR) [25], a live
forensic system, utilizes a cluster of servers. The system
deploys agents running on users’ computers that provide access
to forensic information, e.g., remote raw disk and memory
access. Processing of forensic data is done as flows. Each flow
is maintained on the server. Server nodes run workers that
process the active flows. Adding more server nodes enables
to run more workers and thus it is possible to handle more
clients simultaneously.

Elimination of bottlenecks in the architecture offers scal-
ability and improved reliability. The actor model [26] is one
of the attractive solutions that address the problem elegantly
and efficiently. It comes with a separate unit called an actor.
Actors execute independently and in parallel. They commu-
nicate with each other asynchronously via message passing,
and their state is otherwise immutable. Actors are capable
of spawning new actors, forming a parent-child relationship,
allowing the creation of a tree-like structure of actors. Actor’s
current behavior determines how it processes the incoming
messages. Every actor in an actor system is uniquely iden-
tified by an address which other actors use as destinations
of the messages they want to send out. This address can
identify actors at the local machine and also the ones at
the remote machines, allowing easy means of communication
between nodes of a cluster. Compared to another similar
programming model, the Communicating Sequential Processes
(CSP) [27], elementary units of computation – processes are
anonymous and communicate with each other via established
communication channels. The actor system is the key en-
abler for the VAST system [3]. In VAST, actors implement
importing, archiving, indexing and exporting processed data.
Actors live in nodes that map to system processes. The system
scales by creating more nodes either on the single machine
or a cluster of computers.

Moloch is another tool, worth to mention, that uses princi-
ples of distributed computing for massive scale network traffic
monitoring, full packet capturing and indexing [12]. Moloch
system consists of sensors that capture the communication
and Elasticsearch database that is a distributed search and ana-
lytics engine. The system scales by adding new nodes running
Elasticsearch instances.

III. PROBLEM STATEMENT AND SOLUTION

Our goal is to design and create a system capable of long-
term, high-speed, real-time network traffic filtering and pro-
cessing up to the application layer. The software solution
should be scalable and hardware independent. To achieve this,
we have to deal with the challenges elaborated in the rest of
this section.

A. Architectural Design
How to create a system for packet filtering and analysis

of communication that can identify application protocols, gets
forensics artifacts and searches through them?

Network forensics is a tedious work that strictly relies
on completeness and precision of all undertaken steps to gain
a piece of a puzzle that fits together as a shred of evidence.
Considering the current speeds of regular users’ home network

connection(s), a comprehensive classical analysis on a sin-
gle machine would require enormous computation resources.
Try to imagine, that each network packet would be analyzed
by many protocol dissectors with a goal to extract, for ex-
ample, an acknowledgment of email delivery. To achieve this
goal, with optimal computational resources, we must revisit
currently utilized methods and redesign them to work in a dis-
tributed environment which brings new challenges to architec-
ture design, application of algorithms, data synchronization,
and so on.

B. Scalability on Commodity Hardware
How can the solution be scalable and hardware indepen-

dent despite the hardware limitations?
Let us consider this imaginary demonstration. The math

is simple, one computer with 1Gbps Network Interface
Card (NIC) that has a relatively simple task to capture traffic
during full line load would be required to write to a disk under
the constant speed of 1000Mbps ≈ 125MB/s. Our system
has to guarantee that no data loss occurs during the capture.
A suspect can simultaneously download and upload data
which means that the monitoring device cannot have only one
1 ∗ 1Gbps NIC, but it needs 2 ∗ 1Gbps cards, one for uplink,
one for downlink. Thus, the required speed of continuous
disk writing would be 2 ∗ 125MB/s ≈ 250MB/s. Now,
if the requirement is to store the communication for one day,
the disk capacity has to be 250MB/s ∗ 86 400 s ≈ 21.6TB.
This is achievable with commodity hardware, e.g., 2 ∗ 12TB
drives with Redundant Array of Inexpensive Disks (RAID) 0
or 4 ∗ 12TB with RAID 1+0 — assuming higher write/read
speed than 250MB/s. However, what if only one day is not
enough? For a typical forensic case, capturing period spawns
through weeks or months.

From our previous experiments, we know that a sin-
gle computation node is limited and commodity hardware
is hardly sufficient to perform all required operations in real-
time and over long periods. Separation of frames into a conver-
sation which requires a dissection of the network protocols up
to the application layer, which speed is roughly 300Mbps [28,
pp. 45-51] is not sufficient. On the other hand, we are confident
that the application created and optimized for this singular pur-
pose can do the processing faster and breach the 1Gbps line
speed. Nevertheless, we do not believe that a single machine
solution with commodity hardware is capable of doing overall
analysis and extraction of information from the application
layer. We have to design our solution as a distributed system
across multiple machines.

C. Overall Performance
What scalability and acceleration of data processing

can be achieved?
The proposed solution is based on the actor model. Each

actor represents an independent processing unit. The com-
munication between actors is managed by messaging. Actors
have no shared state; thus all of them can work in parallel.
If actors run on the same node, the message passing has little
additional overhead compared to a function call or a loop.
However, if actors scale over multiple nodes, messages need
to be serialized. This process introduces latency and consumes
part of the processing power. The scalability of the actor model
is linear [3].
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IV. ARCHITECTURAL DESIGN

Incomplete data provided by unreliable traffic intercep-
tion can lead to inaccurate results; some information may
be lost, some fabricated by reconstruction process [29]. Keep-
ing the above facts in mind, the processing cannot strictly
follow Requests for Comments (RFCs) and behave like a ker-
nel network stack implementation, but it has to incorporate
several heuristics. For example, to fill missing gaps in data,
and to consider these fillings during application protocol
processing, or never to join multiple frames into a single
conversation unless it passes more advanced heuristic-based
checks. Network forensic tools that we have worked with
do mostly respect RFCs and thus may produce misleading
results, as shown by Matousek et al. [29].

We propose a distributed architecture composed of com-
modity hardware that will be capable of linear scalability,
and capable of efficient resource utilization. The overall ar-
chitecture is shown in Figure 1.

At the top level, we have divided the entire process into
the two main stages:

• Data preprocessing — The reconstruction of conver-
sations at the application layer (L7) of the TCP/IP
model. This process consists of consecutive segre-
gation of captured communication into the internet
(L3) and transport (L4) conversations and deploying
a reassembling heuristics [29] to recognize individual
L7 conversations inside a parent L4 conversations and
to reassemble their payloads with respect to data loss,
reordering or duplication. Every L7 conversation holds
information about the source and destination endpoints
(IP addresses, ports), timestamps, type of transport
protocol (UDP or TCP) and reassembled payloads
of exchanged application messages.

• Data analysis — The analysis of each application
conversation consists of the identification of the appli-
cation protocol, and extraction of application events,
e.g., visited web pages, exchanged emails, domain
name queries, etc., with proper application protocol
dissector that yields sets of forensic artifacts.

A. Data Prepossessing
The First stage is executed on a set of independent Re-

assembler nodes. These reconstruct L7 conversations from
the stream of captured packets which can originate from Packet
Capture (PCAP) files or can be captured from the live network
interface.

In the most common use-case, we have one source stream
(i.e., one PCAP file) which we want to analyze. Therefore,
to utilize multiple Reassembler instances, we have to split
packets from this stream into smaller sub-streams, which will
be distributed among available Reassembler instances. For this
split, we cannot use a naive method such as Round Robin,
because Reassembler nodes operate independently of each
other and to fully reconstruct L7 conversation a particular Re-
assembler has to obtain all the pieces of that particular L7 con-
versation. In case we would use Round Robin, a situation
could occur when half the packets from one L7 conversation
would end up in one Reassembler node and the second half
in another; both nodes would have incomplete data and none
of them would be able to reconstruct the conversation entirely.

Our proposed solution to this problem is another type
of node – L4 Load Balancer, which will be positioned in front
of the Reassembler nodes and which, as a name suggests,
distributes packets based on their associations to L4 conversa-
tions each of which can consist of multiple L7 conversations.
L4 Load Balancer extracts source and destination IP addresses
and ports and transport protocol from each packet of the source
stream and uses this information to decide to which instance
from the available Reassemblers should it forward to. This
way, all packets of a particular L7 conversation will always
be forwarded to only one Reassembler instance.

Reassemblers build a tree-like structure of L3 and L4
conversations which are represented by the actors. Each re-
ceived packet is first forwarded to an appropriate L3 con-
versation actor, which in turn forwards it further down to
an appropriate L4 conversation actor which reassembles L7
conversations. This segregation of packets into the individual
L4 conversations before actual L7 conversation reassembling
is required, as implemented reassembling heuristics expect to
operate on packets from a single L4 conversation at the time.
The use of a hierarchical actor design allows us to perform
independent portions of the processing in parallel and also
to easily implement management strategies such as passing
management messages to a particular L3 conversation actor
and its children L4 conversation actors. The reconstructed
L7 conversations are stored in a distributed database, ready
to be retrieved in the second stage of the execution.

B. Data Analysis
In the second stage, a subset of reconstructed L7 conver-

sations is retrieved from the distributed database and deliv-
ered to the Application protocol dissector nodes. For every
L7 conversation, Application protocol dissector nodes identify
the used application protocol and use a proper dissector module
dedicated to the processing of a single application protocol,
such as Hypertext Transfer Protocol (HTTP), Simple Mail
Transfer Protocol (SMTP) or Domain Name System (DNS),
to extract application protocol messages from this L7 con-
versation. Obtained data are stored back into the distributed
database. Processing of application messages is under normal
circumstances possible only with unencrypted network com-
munication. From Secure Sockets Layer/Transport Layer Secu-
rity (SSL/TLS) communication which encapsulates application
protocols, such as HTTP, we can extract only unencrypted por-
tions of this data such as the server’s cryptographic certificate.
Possible ways to decrypt and subsequently, parse the SSL/TLS
communication is to own a private key of a given SSL/TLS
server or to deploy an SSL/TLS intercepting proxy [30].

V. PRELIMINARY EVALUATION

Our prototype implementation is based on C# actor system
library Akka.NET. For testing and performance benchmarking,
we have implemented two modes of operation:

1) Offline — isolated execution which combines
the functionality of a single L4 Load Balancer and
Reassembler node inside a single system’s process.
No inter-actor message serialization is therefore re-
quired.

2) Online — distributed execution spanning across mul-
tiple cluster nodes. The inter-actor message serial-
ization is required as messages destined to remote
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Figure 1: Architecture diagram showing the proposed system nodes with information flow between them.

actors (nodes) have to leave an originating system’s
process and be transmitted over a computer network
in a serialized format. This introduces additional
latency and performance overhead.

Additionally, for proof-of-concept benchmarking, the func-
tionality of Application protocol dissector nodes was included
inside Reassembler nodes to eliminate distributed database
as a middleman between them. In the following measurements,
we focus on a raw network capture’s processing performance
of the so-far naive implementation. Currently, our prototype
implementation supports the dissection of two application
protocols (DNS and HTTP).

We have measured the preliminary performance of the im-
plementation on two different hardware configurations:

• Workstation — Intel i7-5930K 4.3 GHz, 12 cores,
64 GB RAM, 512 GB SSD

• Mini-cluster — 4x servers with Intel Xeon E5520,
2.26 GHz, 8 cores, 48 GB RAM, 1 TB SSD, 1 Gbps
network

We used a public data set of M57-Patents Scenario [31],
that consists of real-world data captured over a month.
We merged all network traces into one PCAP file of roughly
4.8 GB and 5,707,845 frames. One large PCAP file simu-
lates our use-case of streamed-in communication that needs
to be load-balanced from a single node.

We started with measurements in an offline mode on a sin-
gle machine, firstly with a PCAP file parsing operation and
incrementally added consequent operations and measured pro-
cessing speeds, as Table 1 describes. Preliminary evaluation
suggests that the raw speed of roughly 3.8 Gbps, for PCAP file
reading and packet parsing is sufficient. The process of recon-
structing L7 conversations that segregates IP flows by packet
source and destination IP addresses, ports and transport proto-
col type with additional heuristics [29], that also reassembles
TCP/UDP streams, is computationally heavier, reaching ”only”
942 Mbps, and is about 4x slower than only read and parsing.
With added HTTP & DNS dissection, performance slightly
decreased further down to 880 Mbps.

TABLE 1. PROCESSING SPEEDS OF OUR OFFLINE TEST
SCENARIO ON A SINGLE MACHINE

Workstation
[Mbps]

Mini-cluster
node [Mbps]

PCAP file reading 5103 5719
Packet parsing 3853 1679
L7 Conversation tracking 942 380
HTTP & DNS extraction 880 358

The CPU frequency (performance per CPU core) plays
a very important part in overall performance, that can be ob-
served if we compare our Workstation with node from Mini-

cluster — 880 Mbps vs. 358 Mbps. All other components
except CPUs are otherwise roughly comparable as we can see
by comparing the speed of ”PCAP file reading”.

The scalability is described in Table 2 that shows perfor-
mance in online mode. The solution was deployed on Mini-
cluster. The first node was reading the captured communication
from a PCAP file and load-balancing it to the rest that reassem-
bled L7 conversations and extracted HTTP and DNS artifacts.
In the measurements, we can see an increase in the perfor-
mance with each added Reassembler. When compared with the
results in Table 1, the performance of a distributed processing
at the Mini-cluster exceeded that of a single node running in
an offline mode. Nevertheless, further optimization is required
to achieve linear scalability as a single L4 Load Balancer
fails to fully saturate available Reassemblers by distributing
the packets fast enough. We have observed that serialization of
messages containing the packets to process heavily contributes
to the overall computational complexity and easily becomes
a bottleneck of our solution.

TABLE 2. PROCESSING SPEEDS OF OUR ONLINE TEST
SCENARIO MEASURED ON MINI-CLUSTER

Reassemblers count One [Mbps] Two [Mbps] Three [Mbps]

HTTP & DNS extraction 233 407 453

We compare our solution, called Network Traffic Pro-
cessing & Analysis Cluster (NTPAC), running in the offline
mode at the Workstation with commonly used network forensic
tools in Table 3. Our solution is an order of magnitude faster
while delivering a comparable amount of results in terms of
reconstructing L7 conversations and extracting HTTP and DNS
artifacts.

TABLE 3. PROCESSING SPEEDS OF COMMONLY USED NET-
WORK FORENSIC TOOLS MEASURED ON WORKSTATION

NTPAC Netfox Wireshark NetworkMiner
[Mbps] [Mbps] [Mbps] [Mbps]

880 65.6 73.4 15.8

VI. CONCLUSION

In this research, we proposed a system for distributed real-
time forensic network traffic analysis up to the application
layer capable of large-scale communication processing. We in-
tend to create a system based on the actor model that scales
linearly and is hardware independent. The implementation
environment of the .NET Core framework and C# language
enables rapid development compared to C/C++ that is used
by VAST and Moloch. Also, our solution is multiplatform
and easily staged with Docker Swarm. Therefore, the deploy-
ment of the entire distributed application at the computation
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cluster is reduced to one command. The solution is distributed
under the MIT License and hosted as an open-source project
on GitHub here [32].

In the near future, we plan to measure the performance
of our solution using data from real-world cases. Because
of legal reasons, deployment to public cloud infrastructure
is out of the question. Therefore, we need to build a private
one that consists of nodes with high CPU frequencies and
10 Gbps network interfaces. Additionally, we need to profile
and optimize processing and distribution mechanisms, to ex-
pand the set of protocols supported by application protocol
dissectors and to add support for tunneling mechanisms.
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ABSTRACT

Currently used wireless communication technologies suffer security weaknesses that can be
exploited allowing to eavesdrop or to spoof network communication. In this paper, we present
a practical tool that can automate the attack on wireless security. The developed package
called wifimitm provides functionality for the automation of MitM attacks in the wireless
environment. The package combines several existing tools and attack strategies to bypass
the wireless security mechanisms, such as WEP, WPA, and WPS. The presented tool can
be integrated into a solution for automated penetration testing. Also, a popularization of
the fact that such attacks can be easily automated should raise public awareness about the
state of wireless security.

Keywords: Man-in-the-Middle attack, accessing secured wireless networks, password crack-
ing, dictionary personalization, tampering network topology, impersonation, phishing

1. INTRODUCTION

Recent enhancements to wireless technology
strengthen the benefits of wireless commu-
nication. It is convenient to access the net-
work from any location within the network
coverage area. For most of the portable de-
vices, this is the only way to connect to the
network. Installation and network setup are
easy, and the network is further expandable.
The main benefit of Wi-Fi, its accessibility,
makes this technology a suitable target of at-
tacks. A potential attacker needs to be in the
physical proximity of a Wi-Fi network. The

1This paper is an extended version of the original
paper that has been presented at the 9th EAI Inter-
national Conference on Digital Forensics and Cyber
Crime (Vondráček, Pluskal, & Ryšavý, 2018).

proposed wireless security standards aim at
prevention of such unauthorized access. Un-
fortunately, the first standard called WEP is
so weak that it is possible to crack the pass-
word in a few seconds using a conventional
laptop computer. The answer was the intro-
duction of stronger standard WPA and later
even stronger WPA2. In 2017, Mathy Van-
hoef announced that he discovered a vulner-
ability in security mechanisms that use the
four-way handshake (WPA and WPA2) and
demonstrated how easily this vulnerability
can be exploited.

The main focus of this paper is security
of wireless networks. It provides a study of
widely used network technologies and mech-
anisms of wireless security. Analyzed tech-
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nologies and security algorithms suffer weak-
nesses that can be exploited to perform Man-
in-the-Middle attacks. A successful realiza-
tion of this kind of attack allows not only
to eavesdrop on all the victim’s network
traffic but also to spoof his communication
(Prowell, Kraus, & Borkin, 2010, pp. 101–
120; Callegati, Cerroni, & Ramilli, 2009).

In an example scenario (Figure 1), the
victim is a suspect conducting illegal activ-
ity on a target network. The attacker is
a law-enforcement agency investigator with
appropriate legal authorization to intercept
the suspect’s communication and to perform
a direct attack on the network. In some
cases, the suspect may be aware that his
communication can be intercepted by the In-
ternet Service Provider and harden his net-
work. For example, he could use an over-
lay network technology, e.g., VPN (imple-
mented by L2TP, IPsec (Kent & Seo, 2005,
pp. 09–10), PPTP) or anonymization net-
works (Tor, I2P, etc.) to create an encrypted
tunnel configured on his gateway, for all
his external communication. This concept
is easy to implement and does not require
any additional configuration on endpoint de-
vices. Generally, this would not be con-
sidered a properly secured network (Godber
& Dasgupta, 2003, pp. 425-431), but this
scheme, or similar, is often used by large ven-
dors like Cisco (Deal & Cisco Systems, 2006)
or Microsoft (Thomas, 2017) for branch of-
fice deployment and can also be seen in home
routers1. In such cases, intercepting traffic
on the ISP level would not yield meaning-
ful results, because all the communication is
encrypted by the hardening. On the other
hand, direct attack on the suspect’s LAN
will intercept plain communication. But,
even when an investigator is legally permit-
ted to carry out such an attack to acquire

1Asus RT-AC5300 – Merlin WRT has an option
to tunnel all traffic thought Tor.

evidence, it is scarcely used, because it re-
quires expert domain knowledge. Thus, this
process of evidence collection is very expen-
sive and human resource demanding.

Suspect Investigator

Internet

AP

ISP

Figure 1. Example forensics scenario where
the suspect has hardened his network and
uses an encrypted tunnel from the gate-
way (AP).

The aim of this research is to design, im-
plement and test a tool able to automate
the process of accessing a secured WLAN
and to perform data interception. Further-
more, this tool should be able to tamper with
the network to collect more evidence by redi-
recting traffic to place itself in the middle
of the communication and tamper with it,
to access otherwise encrypted data in plain
form. Using the automated tool should not
require any expert knowledge from the in-
vestigator.

We designed a generic framework, see Fig-
ure 3, capable of accessing and acquiring
evidence from a wireless network regardless
of used security mechanisms. This frame-
work can be split into several steps. First,
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it is necessary for an investigator to ob-
tain access to the WLAN used by the sus-
pect. Therefore, this research focuses on
exploitable weaknesses of particular secu-
rity mechanisms, see Section 2 for more de-
tails. Upon successful connection to the net-
work, the investigator needs to tamper with
the network topology. For this purpose,
weaknesses of several network technologies
can be exploited. From this point on, the in-
vestigator can start to capture and break the
encryption on the suspect’s communication.

Specialized tools focused on exploiting in-
dividual weaknesses in security mechanisms
currently used by WLAN s are already avail-
able. There are also specialized tools focused
on individual steps of MitM attacks. Tools
that were analyzed and used in implemen-
tation of the wifimitm package are outlined
in Section 2.

Based on the acquired knowledge, refer-
enced studies and practical experience from
manual experiments, authors were able to
create an attack strategy which is composed
of a suitable set of available tools. The strat-
egy is then able to select and manage in-
dividual steps for a successful MitM at-
tack tailored to a specific WLAN configura-
tion. This strategy also includes options for
impersonation and phishing for situations,
when the network is properly secured, and
the weakest part of the overall security is
the suspect.

The created software can perform a fully
automated attack and requires zero knowl-
edge. We tested the implementation on
carefully devised experiments, with available
equipment. The tool is open source and can
be easily incorporated into other software.
The main use cases of this tool are found in
automated penetration testing, forensic in-
vestigation, and education.

2. SECURITY

WEAKNESSES IN

WLAN TECHNOLOGIES

Following network technologies (Sec-
tions 2.1, 2.2), which find a significant
utilization, unfortunately, suffer from
security weaknesses in their protocols.
These flaws can be used in the process of
the MitM attack.

2.1 Wireless Security

Wired Equivalent Privacy (WEP) is a se-
curity algorithm introduced as a part of
the IEEE 802.11 standard (Halsall, 2005,
p. 665; IEEE-SA, 2012, pp. 1167–1169). To-
day, WEP is deprecated and superseded by
subsequent algorithms, but is still sometimes
used, as can be seen from Table 1 avail-
able from Wifileaks.cz 2. Fluhrer, Mantin,
and Shamir (2001) presented that WEP is
broken. There are tools that provide access
to wireless networks secured by WEP avail-
able (Tews, Weinmann, & Pyshkin, 2007).
Regarding WEP secured WLAN s, authenti-
cation can be either Open System Authenti-
cation (OSA) or Shared Key Authentication
(SKA) (IEEE-SA, 2012, pp. 1170–1174). In
the case of WEP OSA, any station (STA)
can successfully authenticate to the Access
Point (AP) (Robyns, 2014, pp. 4–10). WEP
SKA provides authentication and security of
transferred communication using a shared
key. Confidentiality of transferred data is en-
sured by encryption using the RC4 stream
cipher. Methods used for cracking access to
WEP secured networks are based on anal-
ysis of transferred data with corresponding
Initialization Vectors (IV s).

Wi-Fi Protected Access R© (WPATM, a sub-
set of 802.11i) was developed by the Wi-Fi
Alliance R© as a reaction to increasing number
of security flaws in WEP. The WPA is de-

2http://www.wifileaks.cz/statistika/
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signed to be backward hardware compatible
with devices that used WEP, and vendors
were expected to provide a firmware update
to remedy the catastrophic situation with
WEP. Therefore, for data confidentiality and
integrity was chosen Temporal Key Integrity
Protocol (TKIP). The main flaw of WPA se-
curity algorithm is associated with the TKIP
and a four-way handshake. It can be identi-
fied at the beginning of client device’s com-
munication, where an unsecured exchange of
confidential information is performed during
the handshake. An investigator can obtain
this unsecured communication and use it for
consecutive cracking of the Pairwise Master
Key (PMK ) that is derived from Pre-Shared
Key (PSK ) or negotiated using an 802.1x
authentication stage in case of enterprise au-
thentication.

Wi-Fi Protected Access R© 2 (WPA2TM,
full implementation of 802.11i) is a suc-
cessor of WPA, but security flaws of
the WPA algorithm remain significant also
for the WPA2. Besides TKIP, WPA2
has mandatory support of Counter Mode
CBC-MAC Protocol (CCMP). Both TKIP
and CCMP ensure data confidentiality, au-
thentication, and access control. IEEE
802.11ad adds and 802.11ac extends a
new confidentiality protocol Galois/Counter
Mode Protocol (GCMP). Information ex-
posed during the handshake can be once
again used for the dictionary attack, which
can be further improved by precomputing
the PMKs (Kumkar, Tiwari, Tiwari, Gupta,
& Shrawne, 2012, pp. 37–38; Liu, Jin, &
Wang, 2010, p. 3). Precomputed lookup ta-
bles are already available online3.

A critical security flaw in wireless net-
works secured by WPA or WPA2 is the func-
tionality called Wi-Fi Protected SetupTM

(WPS ). This technology provides a comfort-

3https://www.renderlab.net/projects/

WPA-tables/

Table 1. Following table summarizes WLAN
statistics provided by Wifileaks.cz. Users of
this service voluntarily scan and publish de-
tails about WLAN s in the Czech Republic.
Information in the table show that a signifi-
cant number of WLAN s still use deprecated
security algorithms. The statistics consist-
ing of 97 192 922 measurements of 2 548 054
WLAN s were published on May 26, 2017.

Security Count Ratio
WPA2 1 429 518 56 %
WEP 393 579 15 %
WPA 375 984 15 %
open 67 388 3 %
other 281 585 11 %

Table 2. Results of wardriving in Bratislava
and Brno focused on UPC vulnerabili-
ties concerning default WPA2 PSK pass-
words (Klinec & Sv́ıtok, 2016b). Detailed
article about these security flaws is available
online (Klinec & Sv́ıtok, 2016a).

Bratislava,
Slovakia,
2016-10-01

Count Ratio

Total networks 22 172
UPC networks 3 092 13.95 %
Vulnerable
UPC networks

1 327 42.92 % UPC

Brno,
Czech Republic,
2016-02-10

Count Ratio

Total networks 17 516
UPC networks 2 868 16.37 %
Vulnerable
UPC networks

1 835 63.98 % UPC
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Server GatewayInternet ClientAttacker

Figure 2. In an example network topology suitable for realization of MitM attack, the
attacker’s device acts towards the victim as a default gateway. All the communication routed
outside the local network from the victim is sent to the default gateway, in this case to the
attacker’s device. From the attacker’s device, the communication can be further routed to
the real default gateway (Callegati et al., 2009). For the successful execution of this scenario,
the attacker needs to be connected to the targeted local network.

able and supposedly secure way of connect-
ing to the network. For a connection to
the WLAN with WPS enabled, it is possible
to use an individual PIN. However, the pro-
cess of connecting to the properly secured
network by providing PIN is very prone
to brute-force attacks (Heffner, 2011). Be-
cause WPS is a usual feature in today’s ac-
cess points and that WPS is usually turned
on by default, WPS can be a very com-
mon security flaw even in networks secured
by WPA2 with a strong password. Cur-
rently, there are already available automated
tools for exploiting WPS weaknesses, e.g.,
Reaver Open Source4.

Recently, a critical vulnerability, Key Re-
installation Attacks (KRACKs), was discov-
ered by Vanhoef & Piessens, 2017 revealing
a flaw in 801.11i and related specifications,
more precisely, in the description of the four-
way handshake. A security of CCMP and
GCMP encryption methods expects that no
Initialization Vector (IV ) repeats under the
same key. Authors showed that abusing this
vulnerability, they can reinstall a Pairwise
Transient Key (PTK ) used for generation of
Key Confirmation Key (KCK ), Key Encryp-
tion Key (KEK ), and Temporal Key (TK ).

4https://code.google.com/archive/p/

reaver-wps/

KCK and KEK are used for handshake pro-
tection and TK for data encryption. The re-
installation resets the incremental transmit
packet number (nonce) and receiver packet
number (replay counter) to the initial value.
Therefore, the reinstallation violates the ex-
pectation of non reusable IV, which conse-
quently breaks TKIP, CCMP or GCMP pro-
tocols. As Vanhoef & Piessens, 2017 show,
this also occasionally happens in regular con-
ditions, without an adversary.

Newly purchased access points usually use
WPA2 security by default. Currently, many
access points can be found using default
passwords not only for wireless network ac-
cess, but even for AP ’s web administra-
tion. With access to the AP ’s administra-
tion, the investigator could focus on chang-
ing the network topology by tampering the
network configuration. Access to the net-
work management further allows the investi-
gator to lower security levels, disable attack
detections, reconfigure DHCP together with
DNS and also clear AP ’s logs. There are
already implemented tools, which exploit re-
lations between SSIDs and default network
passwords, e.g., upc keys5 by Peter Geissler.6

5https://haxx.in/upc-wifi/
6UPC company is a major ISP in the Czech Re-

public, URL: https://www.upc.cz
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These tools could be used in an attack on
the network with default SSID to improve
dictionary attack using possible passwords.
High severity of these security flaws is also
proven by the fact that a significant amount
of WLAN s was found using unchanged pass-
words, as it is shown in Table 2.

2.2 Network Technologies
vulnerable to MitM

Man-in-the-middle attacks are possible be-
cause of the very nature of existing network
protocols. No designed for providing secu-
rity per see, the common network protocols
lack strong authentication capabilities that
would prevent their misuse by an attacker.
Man-in-the-middle attacks assume that the
attacker can divert legitimate communica-
tion. Switched Ethernet and secured wire-
less transmission separates the communica-
tion between two endpoints thus no other de-
vice should be able to see the conversation.
Fortunately for the attacker, the insecurity
of existing widely deployed protocols can be
used. At the minimum, the following proto-
cols can be considered as suitable targets:

1. DHCP automates network device con-
figuration without a user’s intervention
(Droms, 1997).

2. ARP translates an IPv4 address to a
destination MAC address of the next-
hop device in the local area net-
work (Plummer, 1982).

3. IPv6 networks utilize ICMPv6 Neighbor
Discovery functionality to achieve sim-
ilar functionality to ARP in IPv4 net-
works.

Because of the lack of authentication and
integrity checking, these protocols are vul-
nerable to spoofing attacks:

1. DHCP Spoofing generates fake DHCP
communication. This attack can also
be referred to as Rogue DHCP. An in-
vestigator can perform this kind of at-
tack to provide devices in the network
with malicious configuration, most of-
ten a fake default gateway address or
DNS address.

2. ARP Spoofing provides the network de-
vices with fake ARP messages. This
persuades the suspect’s device to be-
lieve that the attacking device’s MAC
address is the default gateway’s MAC
address.

3. IPv6 Neighbor Spoofing is a similar con-
cept to ARP Spoofing.

From the available spoofing attacks, the
ARP Spoofing technique was implemented in
our tool. This method proved itself with rea-
sonable performance during experiments and
it is simple to implement.

Of course, there are counter-measures to
spoofing attacks. The defense against spoof-
ing lies in implementing some extra function-
ality to network devices:

1. DHCP Snooping is a countermeasure
against DHCP Spoofing. This technique
focuses on detection of forged DHCP
communication. Network device acting
as a DHCP snooper accepts only DHCP
messages which are coming from con-
nections to the genuine DHCP server,
others are discarded. This way, individ-
ual connections are classified as either
trusted or untrusted. If the network
contains an unknown DHCP server be-
hind an untrusted connection, it is re-
ferred to as Spurious DHCP Server
(Cisco Systems, Inc., 2013, p. 54-2).

2. Dynamic ARP Inspection (DAI ) is
based on analysis of ARP messages
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transmitted over the network with aim
to detect ARP Spoofing. Similarly, de-
vice performing DAI can have its con-
nections classified as trusted or un-
trusted. ARP messages from trusted
connections are not checked. Analyz-
ing device maintains a trusted database
of mapping of IP and MAC addresses
in the corresponding LAN. ARP mes-
sages from untrusted connections can
be verified against this trusted map-
ping database (Cisco Systems, Inc.,
2013, p. 56-2).

3. Neighbor Discovery Inspection (NDI )
uses similar approach as above-
mentioned DAI, but to detect IPv6
Neighbor Spoofing. Analyzing device
verifies information transferred in
Neighbor Discovery messages against
its database of IP and MAC ad-
dress mappings.

Although the mitigation techniques are
known, they are applied mostly in the enter-
prise environments. In SOHO networks the
devices either lack this feature or the protec-
tion is not enabled by the administrator.

2.3 Man-in-the-Middle Attack

The MitM refers to the situation, where
the attacker’s device is located in the net-
work topology between two participants of
the communication (Figure 2). The attacker
then acts as an intermediary and the net-
work traffic is routed through the attack-
ing device. This state of unauthorized and
intentionally changed network topology en-
ables the attacker to eavesdrop on passed
communication. The attacker is also able to
focus on decryption of data and on changing
the content of passed communication. That
means that the attacker can inject harm-
ful content. The attacker’s prioritized in-
tention is not only to take control over the

traffic but also to perform this attack with-
out anyone noticing it. This way, Man-in-
the-Middle Attack is endangers maintaining
confidentiality and integrity, key parts of the
CIA triad.

HTTPS uses asymmetric cryptography
with private and public keys to provide se-
cure HTTP communication. If the victim
is communicating using HTTPS, successful
realization of MitM attack is more diffi-
cult. During communication of web browser
on client’s device with a web server, these
two parties exchange a certificate contain-
ing a public key for providing a secure data
transfer. MitM attack, in this case, cap-
tures transferred certificate and replaces it
with a forged one (Callegati et al., 2009).
The forged certificate is at this point a self-
signed certificate. Upon reception of the
self-signed certificate, victim’s web browser
can show some warning concerning possi-
ble risk. If the victim is not aware of the
possible consequences, the victim can accept
the certificate. In the case of success, both
communicating devices are convinced of se-
cured HTTPS communication, but the at-
tacking device has the ongoing communica-
tion available.

DNS Spoofing focuses on possibilities
of forging DNS communication used for res-
olution of domain names and IP addresses.
For the successful realization of this attack,
the attacker needs to detect and intercept
DNS messages in the network. The aim of
this attack is to direct the victim to a differ-
ent device by providing a fake mapping of in-
quired domain name to a special IP address.
The attacker is able to imitate the inquired
service by running a similar rogue service on
the provided spoofed IP address. If the vic-
tim is convinced that the inquired service is
genuine, the attacker can then focus on cap-
turing confidential information and creden-
tials. The attacker can also use DNS Spoof-
ing for providing the real service, but with
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Accessing wireless network

Man-in-the-Middle attack

Scan Crack

Connect

Tampering network topology
stop

Capturing network traffic
stop

Impersonate

(phishing)

Figure 3. During the first phase – Accessing wireless network, the tool is capable of an at-
tack on WEP OSA, WEP SKA, WPA PSK and WPA2 PSK secured WLAN s. In a case of
the dictionary attack on the device deployed by the UPC company, used dictionaries are per-
sonalized by the implicit passwords. In the case of properly secured WLAN, impersonation
(phishing) can be employed. Using this method, an investigator impersonates the legitimate
network to obtain the WLAN credentials from the user. During the second phase – Tamper-
ing network topology, the tool needs to continuously work on keeping the network stations
(STAs) persuaded that the spoofed topology is the correct one. An investigator is now able
to capture or modify the traffic. The successful MitM attack is established.
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enclosed harmful content. DNS Spoofing can
be effectively applied for spoofing fake web-
sites (Prowell et al., 2010, p. 112). If the
attacker detects a DNS message, he inter-
cepts it and forges a reply for the victim.
The victim receives forged mapping of do-
main name to IP address and starts commu-
nication with the fake device without notic-
ing the attack. The attacker then acts as
the inquired service and therefore performs
a MitM attack.

2.4 Available Tools for
Specific Phases of the

MitM Attack on
Wireless Networks

From perspective of the intended functional-
ity of the implemented tool, the whole pro-
cess of MitM attack on wireless networks
can be divided into three main phases: Ac-
cessing wireless network, Tampering network
topology and Capturing network traffic, as
explained in Figure 3.

To access secured wireless networks,
Aircrack-ng suite7 is considered a reliable
software solution. Considering the phase Ac-
cessing wireless network (Figure 3), follow-
ing tools were utilized. Airmon-ng can man-
age modes of a wireless interface. Airodump-
ng can be used to scan and detect attacked
AP. Aircrack-ng together with aireplay-ng,
airodump-ng and upc keys can be utilized for
cracking WEP OSA, WEP SKA, WPA PSK
and WPA2 PSK. The tool wifiphisher 8 can
be used to perform impersonation and phish-
ing. Connection to the wireless network can
be established by netctl9.

MITMf 10 with its Spoof plugin can be
used during the Tampering network topology

7http://www.aircrack-ng.org/
8https://github.com/sophron/wifiphisher
9https://www.archlinux.org/packages/

core/any/netctl/
10https://github.com/byt3bl33d3r/MITMf

phase. For the realization of DNS Spoofing,
it is possible to use tool dnsspoof, which is
a part of dsniff collection (Song, 2001). This
collection of network auditing and penetra-
tion testing tools contains several advanced
programs, which could be used for tamper-
ing network topology.

Capturing traffic can be done by the tool
dumpcap11, which is part of the Wireshark 12

distribution. Behaviour, usage and success
rate of individual tools, as well as possibili-
ties of controlling them by the implemented
tool, were analyzed. The software selected
for individual tasks of the automated MitM
attack were chosen from the researched va-
riety of available tools based on performed
manual experiments, further described in
the thesis (Vondráček, 2016).

3. ATTACK

AUTOMATION USING

WIFIMITM PACKAGE

AND WIFIMITMCLI

TOOL
The implemented tool is currently intended
to run on Arch Linux 13, but it could be used
on other platforms which would satisfy spec-
ified dependencies. This distribution was
selected because it is very flexible and
lightweight. Python 3.5 was selected as a pri-
mary implementation language for the auto-
mated tool and Bash was chosen for support-
ing tasks, e.g., installation of dependencies
on Arch Linux and software wrappers.

The functionality implemented in
the wifimitm package could be directly
incorporated into other software products
based on Python language. This way

11https://www.wireshark.org/docs/

man-pages/dumpcap.html
12https://www.wireshark.org/
13https://www.archlinux.org/
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requirements

access

wep

wpa2

commonimpersonation

capture model

topology

updatableProcess

wifimitmcli

Captured 
Traffic

Attack Data

Dictionaries

Figure 4. This figure shows the basic structure of the developed application. The tool
wifimitmcli uses a functionality offered by the package wifimitm. The package is also able to
manipulate attack data useful for repeated attacks and capture files with intercepted traffic.
Detailed structure of the package is described in section 3.
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Start
Capture IVs

Start
Fake 

Authentication

Needs to 
capture PRGA 

XOR?
Yes

Repeatedly deauthenticate 
stations one by one, until 
PRGA XOR is captured.

Start
ARP Replay

Start
WEP PSK 

Crack

Cracked?

No
Check process

and wait.

Yes
Stop
All

No

Figure 5. The figure shows a simplified flowchart of cracking WEP OSA or WEP SKA secured
wireless network. Cracking procedure is a part of the first phase Accessing wireless network
as described in Figure 3. If the given WLAN has already been successfully attacked, Attack
Data (Section 3.1) contains the correct key. In such cases, repetitive cracking is unnecessary
and is therefore skipped.

the package would work as a software
library. Schema of the wifimitm package is
in Figure 4.

The wifimitm package consists of following
modules. The access module offers an au-
tomated process of cracking selected WLAN.
It uses modules wep and wpa2, which imple-
ment attacks and cracking based on the used
security algorithm. The wep module is ca-
pable of fake authentication with the AP,
ARP replay attack (to speed up gather-
ing of IV s) and cracking the key based on
IV s. In the case of WPA2 secured net-
work, the wpa2 module can perform a dic-
tionary attack, personalize used dictionary
and verify a password obtained by phish-
ing (Figure 4). Verification of the password
and dictionary attacks are done with a pre-
viously captured handshake. The common

module contains functionality which could
be used in various parts of the process for

scanning and capturing wireless communi-
cation in monitor mode. The common mod-
ule also offers a way to deauthenticate STAs
from selected AP.

If a dictionary attack against a correctly
secured network fails, a phishing attack can
be managed by the impersonation14 mod-
ule. The topology module can be used to
change network topology. It provides func-
tionality for ARP Spoofing. The capture

module focuses on capturing network traf-
fic (Figure 4). It is intended to be used after
the tool is successfully connected to the at-
tacked network and network topology was
successfully changed into the one suitable for
MitM attack.

14For details concerning individual phishing sce-
narios, please see wifiphisher ’s website. https://

github.com/sophron/wifiphisher
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Needs to capture 
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Yes Repeatedly deauthenticate 
stations one by one, until 
handshake is captured.
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dictionary attack

Cracked?

No
Check process

and wait.

Yes
Stop
All

Personalize 
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No
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Figure 6. This simplified flowchart illustrates cracking WPA PSK or WPA2 PSK secured
network. Similarly as cracking in Figure 5, this procedure is also a part of the first phase
Accessing wireless network (Figure 3). Cracking can also be skipped if the key is already
known. As already described, impersonation (phishing) can be used in a case of unsuccessful
cracking.

3.1 Attack Data

Various attacks executed against the selected
AP require some information to be cap-
tured first. ARP request replay attack on
WEP secured networks requires an ARP re-
quest to be obtained in order to start an at-
tacking procedure. Fake authentication in
WEP SKA secured network needs PRGA
XOR15 obtained from a detected authenti-
cation. Dictionary attack against WPA PSK
and WPA2 PSK secured networks requires
a captured handshake. Finally, for the suc-
cessful connection to a network, a correct key
is required. When the required information
is obtained, it can be saved for a later us-
age to speed up following or repetitive at-
tacks. Data from successful attacks could
be even shared between users of the imple-
mented tool.

15Stream of Pseudo Random Generation Algo-
rithm generated bits.

3.2 Dictionary Personalization

Weaknesses in default network passwords
could be exploited to improve dictionary at-
tacks against WPA PSK and WPA2 PSK
security algorithms. The implemented tool
incorporates upc keys for generation of pos-
sible default passwords if the selected net-
work matches the criteria. The upc keys tool
generates passwords, which are transferred
to the cracking tool using pipes. With this
approach, the implemented tool could be fur-
ther improved for example to support local-
ized dictionaries.

3.3 Requirements

The implemented automated tool depends
on several other tools, which are being con-
trolled. The Python package can be au-
tomatically installed by its setup includ-
ing Python dependencies. Non-Python de-
pendencies can be satisfied by installation
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ARP Replay

Process just started.

Waiting for a beacon frame.

Waiting for an ARP request.

Got ARP request, sending packets.

Process has
been terminated.

Flags

deauthenticated

read
ACKs
ARPs
sent
pps

Files

replay_arp.cap

Figure 7. This figure presents the information model of a process controlled by wifimitm.
In this example, the incorporated tool is aireplay-ng from Aircrack-ng suite executing ARP
replay attack to speed up gathering of IV s. State of the process is modeled using a FSM
consisting of 5 states. In a case that the attacking device receives at least one deauthenti-
cation packet, the deauthenticated flag is set. Statistics contain overall information about
processed packets. Useful file created by aireplay-ng during this procedure is a capture file
containing ARP request. This file is part of the Attack Data, as outlined in Section 3.1.
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Internet

STA 1 wifimitm

AP

R1

Figure 8. This figure presents the network
topology used for the first performance test-
ing (Section 4.1) and success rate measure-
ments (Section 4.2). Results of this perfor-
mance testing are in Figure 10.

scripts and wrappers, which are currently de-
veloped for Arch Linux.

MITMf has a number of dependencies.
Therefore, the installation script also cre-
ates a virtual environment dedicated to
MITMf. After installation, MITMf can be
easily run encapsulated in its environment.
Wifiphisher is also installed in a virtual-
ized environment and run using a wrap-
per. Tool upc keys is compiled during in-
stallation. Some changes in wifiphisher ’s
source code were implemented, the installa-
tion script therefore applies a software patch.
Other software dependencies are installed
using a package manager.

Due to the nature of concrete steps of
the attack, a special hardware equipment
is required. During the scanning and cap-

STA 1

Internet

R1

STA 2

STA 3

STA 4

STA 5

STA 6

STA 7

STA 8

AP

wifimitm

Figure 9. This figure shows the network
topology consisting of 8 STAs and 1 AP
which was used for the second performance
testing (Section 4.1). Results of this perfor-
mance testing are in Figure 11.

turing of network traffic without being con-
nected to the network, an attacking device
needs a wireless network interface in monitor
mode. For sending forged packets, the wire-
less network interface also needs to be ca-
pable of packet injection. To be able to
perform a phishing attack, a second wire-
less interface capable of master (AP) mode
has to be available. The user can check
whether his hardware is capable of packet
injection using the aireplay-ng tool. Man-
aging monitor mode of interface is possible
with the airmon-ng tool.

3.4 Incorporation of tools

The implemented tool needs to interact with
other software tools in order to automate
attack procedures. Incorporated tools com-
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municate using Standard output stream (std-
out), Standard error stream (stderr) and
optionally using generated files. Wifimitm
needs to continuously analyze all these out-
puts to be aware of current state of the
controlled tool. Information contained in
the output can be a summary of current
progress, a notification that some event oc-
curred or a result of an intended action.

To meet requirements for efficient incor-
poration of other tools so that the wifimitm
package could interact with them, the up-
datableProcess module was developed. This
module contains an abstract base class
UpdatableProcess. Individual incorporated
tools have dedicated classes inherited from
the UpdatableProcess which are used for
managing these tools from wifimitm. When
a process is spawned, using an instance of
class inherited from UpdatableProcess, it is
assigned a temporary directory for its out-
puts. The running process is continuously
writing to stdout and stderr. The outputs
are periodically analyzed. Classes inherited
from UpdatableProcess can implement a sig-
nalization of process’ state using a Finite
State Machine (FSM ). Process’ output can
include notifications of events. Upon detec-
tion of such event, appropriate flags can be
set. Some processes also output summary
information, which can be used to update
statistics. Continuously updated informa-
tion about the process can therefore consist
of state, flags, statistics and created files as
presented in Figure 7.

4. EVALUATION
The capabilities of the implemented tool
were evaluated. Because the tool deploys
man-in-the-middle type of attack, the tool
necessary modifies the target environment.
Thus we evaluated the footprint of the tool
and the possibility to detect the running at-
tack by the victim. The next set of experi-

ments were conducted to show how easy it is
to gain the network communication for dif-
ferent wireless configurations.

4.1 Attack’s Performance
Impact

The first experiment examines wheathe the
attack is observable from end-user perspec-
tive or disrupts regular communication on
the network. A scheme of the networks
used for this experiment is shown in Fig-
ures 8 and 9, modeling SOHO16 environ-
ment. The STAs were correctly connected to
the AP, and they were successfully commu-
nicating with the Internet. The implemented
wifimitmcli tool was then started and auto-
matically attacked the network, as described
in Section 3 and Figure 3.

The performance impact of the wifimitm
was compared using typologies presented in
Figures 8 and 9. As the observed metric was
selected a Round-Trip Time (RTT ) value
describing a delay that end-user might expe-
rience when the load on the R1 is increased.

For the first case, only one client is con-
nected at the time. The Figure 10 plots
RTT values measured between STA1 and
its Internet gateway R1. The x axe de-
notes each measurement, and on the y axe is
shown corresponding delay in ms in a loga-
rithmic scale.

The second case shows eight STAs con-
nected to R1 simultaneously, in Figure 9.
Figure 11 shows an increase of RTT mea-
sured between each of STAx and R1.

Both cases were evaluated on the fact,
whether the attack being performed was re-
vealed or whether the users had any suspi-
cion about the malicious transformation of
their WLAN. By results comparison of both
test cases, presented in Figures 10 and 11,
can be concluded that regular user has no
way of knowing whether the increase of la-

16small office/home office
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usual communication MitM

Figure 10. The first WLAN for perfor-
mance testing was the same as for the suc-
cess rate measurements described in Sec-
tion 4.2. Figure shows comparison of
the measured RTT between STA1 and R1
during usual communication and during
successful MitM attack. The results show
the performance impact is not critical. Dis-
cussion with the users of the attacked net-
work proved this attack unrecognizable.
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10 ms

100 ms

1000 ms

10000 ms

0 200 400

RTT STA1 – R1

usual communication MitM

Figure 11. The second performance testing
consisted of 8 STAs and 1 AP connected
to the Internet – streaming videos, down-
loading large files, etc. The figure com-
pares the RTT between STA1 and R1 sim-
ilarly. The performance impact is more se-
vere than in Figure 10. Despite the perfor-
mance impact, the users had no suspicion
that they were under MitM attack. In-
stead, they blamed the amount of devices
for network congestion.
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tency is caused by an attack, or by a new
device connecting to the network, massive
data transfer, or any other interference from
the physical world.

On the other hand, there is apparent lin-
ear segregation between measurements with
and without attack in Figure 11. This obser-
vation submits a future challenge, whether
this condition might be used as a feature for
a wireless network diagnostic without direct
access to R1 or any of STAs.

4.2 Experiments Concerning
Various Network Devices

and Configurations

The second experiment observes applicabil-
ity of the wifimitmcli tool in different SOHO
environments based on multiple AP devices
with a variety of commonly used security
settings in combination with numerous end-
user devices. The experiment was considered
successful if the wifimitmcli was able to per-
form all phases of MitM attack, Figure 3,
and place itself in the middle of communica-
tion to capture network traffic according to
the concept of MitM, Section 2.3 and Fig-
ure 2. For the test case to be correct, no
help from the investigator was allowed dur-
ing the attack performed by wifimitmcli.

The first use-case was to test all combina-
tions of available AP devices with all avail-
able client ones. Figure 8 shows network
topology used in this controlled laboratory
experiment. Results of the success rate mea-
surements are shown in Tables 3 and 4.

The second use-case was to test suc-
cess rate of the wifimitmcli tool in a non-
laboratory environment beyond our control
on the end-user part. Figure 8 shows once
again testing topology withLinksys WRP400
device as an AP. Table 4 shows measure-
ments and success rate of observations of this
use-case. The experiment was conducted
during the author’s presentation at the Brno

University of Technology, Faculty of Infor-
mation Technology where visitors were in-
vited to let their devices be attacked.

Results of experiments present in Ta-
bles 3, 4 and the thesis (Vondráček, 2016,
pp. 42–43) reveal the following conclusions:

• Open – networks can be very easily at-
tacked.

• WEP OSA and WEP SKA – secured
networks can be successfully attacked
even if they use a random password.

• WPA PSK and WPA2 PSK – secured
networks suffer from weak passwords
(dictionary attack), default passwords
and mistakes of users (impersonation
and phishing).

Consequently, results reveal feasibility
and ease of MitM attack using the wifim-
itm, and its success rate in the target
SOHO environments.

5. CONCLUSIONS

The goal of this research was to implement
a tool that would be able to automate all
the necessary steps to perform MitM attacks
on WLAN s. The authors searched for and
analyzed a range of software and methods
focused on penetration testing, communica-
tion sniffing and spoofing, password crack-
ing and hacking in general. To be able to
design, implement and test the tool capa-
ble of such attacks, knowledge of different
widespread security approaches was essen-
tial. The authors further focused on possibil-
ities of MitM attacks even in cases where the
target WLAN is secured correctly. There-
fore, methods and tools for impersonation
and phishing were also analyzed.

The authors’ work and research resulted
in creation of the wifimitm Python package.
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Table 3. This table presents results of the success rate measurements. A successful attack is
marked using a checkmark symbol (X) and unsuccessful attack is marked using a times sym-
bol (×). In the case when the attack was not fully successful, the question mark (?) is used.
Such partially successful test (? symbol) can for example happen in situation where the sus-
pect is sending only a portion of his traffic through the investigator. Some of the used STAs
lack WEP SKA settings (� symbol). Testing WPA PSK and WPA2 PSK networks were
configured with password ”12345678” and WEP secured networks used password ”A b#1”.
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Linksys
WRT610N

open X X X X X
WEP OSA X X X X X
WEP SKA � � X X X
WPA PSK X X X X X
WPA2 PSK X X X X X

Linksys
WRT54G

open X X X X X
WEP OSA X X X X X
WEP SKA � � X X X
WPA PSK X X X X X
WPA2 PSK X X X X X

Linksys
WRP400

open X X X X X
WEP OSA X X X X X
WEP SKA � � X X X
WPA PSK X X X X X
WPA2 PSK X X X X X

TP-LINK
TL-WR841N

open ? × X X X
WEP OSA ? × X X ×
WEP SKA � � X X ×
WPA PSK ? × X X ×
WPA2 PSK ? × X X ×

D-Link
DVA-G3671B

open X X X X X
WEP OSA X X X X X
WEP SKA � � X X X
WPA PSK X X X X X
WPA2 PSK X X X X X
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Table 4. The following table shows the re-
sults of public experiments. Testing network
utilized Linksys WRP400 as an AP and end-
user devices of random people that agreed
to participate in the experiment. A success-
ful attack is marked using a checkmark sym-
bol (X).

Model OS Attack
HTC Desire 500 Android 4.1.2 X
HTC Desire 820 Android 6.0.1 X
Apple iPhone 6 iOS 10.3.1 X
Apple iPhone 5s iOS 10.2.1 X
Apple iPhone 5 iOS 10.3.1 X
Apple iPhone 5c iOS 9.2.1 X
Apple iPhone 4 iOS 7.1.2 X

This package serves as a library which pro-
vides functionality for automation of MitM
attacks on target WLAN s. The developed
package can also be easily incorporated into
other tools. Another product of this re-
search is the wifimitmcli tool which incor-
porates the functionality of the wifimitm
package. This tool automates the individ-
ual steps of a MitM attack and can be
used from a CLI. The implemented software
comes with a range of additions for conve-
nient usage, e.g., a script that checks and in-
stalls dependencies on Arch Linux, a Python
setuptools setup script and of course a man-
ual page.

The wifimitmcli tool, and therefore wifim-
itm as well, was tested during experiments
with an available set of equipment. As
the results show, the implemented software
product is able to perform an automated
MitM attack on WLAN s successfully.

Upon successful deployment and execu-
tion of the implemented tool, an investigator
can eavesdrop or spoof the passing communi-
cation. The goal of the tool was to automate
MitM attacks on PSK secured WLANs. It
does not focus on dissecting further traffic

protections. This means that it does not
interfere with SSL/TLS, VPN, or other en-
capsulations. Thanks to the tool’s design, it
can be easily used together with other soft-
ware specialized on interception of encapsu-
lated traffic. Traffic encapsulation is a suf-
ficient protection against this tool. From
the WLAN administrators point of view,
available defense mechanisms are outlined
in Section 2.2.

As explained earlier, all the suspect’s net-
work traffic is passing through the attacking
device during a successful MitM attack. Un-
fortunately, there could be users on the net-
work other than the ones that are subject
to a court order. Making sure that only ap-
propriate traffic is being captured may be
important depending on the nature of the
court order or the legislation. This challenge
may be solved by setting corresponding filter
rules for traffic capture software.

This research and its products can be uti-
lized in combination with other security re-
search carried out at the Brno University
of Technology, Faculty of Information Tech-
nology. It can serve in investigations done
by forensic researchers (Pluskal et al., 2015).
It can also be used in automated penetration
testing of WLANs.

In the future iterations of the develop-
ment, the product could focus on exploit-
ing the weaknesses of the widely used WPS
technology, incorporating techniques to per-
form KRACKs, or focus on detection of at-
tacks themselves. Concerning the current
state of the product, it does not focus on
enterprise WLAN s, which also suffer from
their weaknesses.

ACKNOWLEDGEMENTS
This work was supported by Ministry of In-
terior of the Czech Republic project “Inte-
grated platform for analysis of digital data

c© 2018 ADFSL Page 77

114



JDFSL V13N1 Automated Man-in-the-Middle Attack Against . . .

from security incidents” VI20172020062;
Ministry of Education, Youth and Sports
of the Czech Republic from the National
Programme of Sustainability (NPU II)
project “IT4Innovations excellence in sci-
ence” LQ1602; and by BUT internal project
“ICT tools, methods and technologies for
smart cities” FIT-S-17-3964.

AUTHOR

BIOGRAPHIES
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Ondřej Ryšavý received the Ph.D. degree
in computer science from the Brno Univer-
sity of Technology, Brno, Czech Republic, in
2005. He is an Associate Professor with the
Department of Information Systems, Brno
University of Technology, Brno. His research
interests include computer networking and,
in particular, network monitoring, network

security and forensics, and network architec-
tures. His work is focused on improving net-
work security through data analysis by ap-
plication of data mining, statistics, and dis-
tributed computing.

REFERENCES
Callegati, F., Cerroni, W., & Ramilli, M.

(2009, Jan). Man-in-the-middle
attack to the HTTPS protocol.
Security Privacy, IEEE , 78–81. doi:
10.1109/MSP.2009.12

Cisco Systems, Inc. (2013). Catalyst 6500
release 12.2sx software configuration
guide. Retrieved on January 29, 2018,
from http://www.cisco.com/c/en/

us/td/docs/switches/lan/

catalyst6500/ios/12-2SX/

configuration/guide/book.html

Deal, R., & Cisco Systems, I. (2006). The
complete cisco vpn configuration
guide. Cisco Press. Retrieved on
January 30, 2018, from
https://books.google.cz/

books?id=ms-8AAAACAAJ

Droms, R. (1997, March). Dynamic Host
Configuration Protocol (RFC No.
2131). Internet Engineering Task
Force. RFC 2131 (DRAFT
STANDARD). Retrieved on January
30, 2018, from http://

www.ietf.org/rfc/rfc2131.txt

Fluhrer, S., Mantin, I., & Shamir, A.
(2001). Weaknesses in the key
scheduling algorithm of RC4. In
S. Vaudenay & A. Youssef (Eds.),
Selected areas in cryptography (pp.
1–24). Springer Berlin Heidelberg.
Retrieved on January 30, 2018, from
http://dx.doi.org/10.1007/

3-540-45537-X 1 doi:
10.1007/3-540-45537-X 1

Godber, A., & Dasgupta, P. (2003).
Countering rogues in wireless

Page 78 c© 2018 ADFSL

115



Automated Man-in-the-Middle Attack Against . . . JDFSL V13N1

networks. In Proceedings of the
international conference on parallel
processing workshops (Vol.
2003-January, pp. 425–431). Institute
of Electrical and Electronics
Engineers Inc. doi:
10.1109/ICPPW.2003.1240398

Halsall, F. (2005). Computer networking
and the internet. Addison-Wesley.
Retrieved on January 22, 2016, from
https://books.google.cz/

books?id=QadX5XErZ9IC

Heffner, C. (2011). Cracking WPA in 10
hours or less – /dev/ttys0. Retrieved
on April 4, 2016, from
http://www.devttys0.com/2011/

12/cracking-wpa-in-10-hours-or

-less/

IEEE-SA. (2012, March). IEEE standard
for information
technology–telecommunications and
information exchange between
systems local and metropolitan area
networks–specific requirements part
11: Wireless LAN medium access
control (MAC) and physical layer
(PHY) specifications. IEEE Std
802.11-2012 (Revision of IEEE Std
802.11-2007), 1–2793. doi:
10.1109/IEEESTD.2012.6178212

Kent, S., & Seo, K. (2005, December).
Security Architecture for the Internet
Protocol (RFC No. 4301). Internet
Engineering Task Force. RFC 4301
(PROPOSED STANDARD).
Retrieved on January 30, 2018, from
https://www.ietf.org/rfc/

rfc4301.txt

Klinec, D., & Sv́ıtok, M. (2016a). UPC
UBEE EVW3226 WPA2 password
reverse engineering, rev 3. Retrieved
on January 30, 2018, from
https://deadcode.me/blog/2016/

07/01/UPC-UBEE-EVW3226-WPA2

-Reversing.html

Klinec, D., & Sv́ıtok, M. (2016b).
Wardriving Bratislava 10/2016.
Retrieved on January 30, 2018, from
https://deadcode.me/blog/2016/

11/05/Wardriving-Bratislava-10

-2016.html

Kumkar, V., Tiwari, A., Tiwari, P., Gupta,
A., & Shrawne, S. (2012).
Vulnerabilities of wireless security
protocols (WEP and WPA2).
International Journal of Advanced
Research in Computer Engineering &
Technology (IJARCET), 1 (2), 34–38.
Retrieved on January 30, 2018, from
http://ijarcet.org/wp-content/

uploads/

IJARCET-VOL-1-ISSUE-2-34-38.pdf

Liu, Y., Jin, Z., & Wang, Y. (2010, Sept).
Survey on security scheme and
attacking methods of WPA/WPA2.
In 2010 6th international conference
on wireless communications
networking and mobile computing
(wicom) (pp. 1–4). doi:
10.1109/WICOM.2010.5601275

Plummer, D. (1982, November). Ethernet
Address Resolution Protocol: Or
Converting Network Protocol
Addresses to 48.bit Ethernet Address
for Transmission on Ethernet
Hardware (RFC No. 826). Internet
Engineering Task Force. RFC 826
(INTERNET STANDARD).
Retrieved on January 30, 2018, from
http://www.ietf.org/rfc/

rfc826.txt

Pluskal, J., Matoušek, P., Ryšavý, O.,
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Abstract. Security mechanisms of wireless technologies often suffer
weaknesses that can be exploited to perform Man-in-the-Middle attacks,
allowing to eavesdrop or to spoof network communication. This paper
focuses on possibilities of automation of these types of attacks using
already available tools for specific tasks. Outputs of this research are
the wifimitm Python package and the wifimitmcli CLI tool, both imple-
mented in Python. The package provides functionality for automation of
MitM attacks and can be used by other software. The wifimitmcli tool
is an example of such software that can automatically perform multiple
MitM attack scenarios without any intervention from an investigator.

The results of this research are intended to be used for automated pen-
etration testing and to help with forensic investigation. Finally, a pop-
ularization of the fact that such severe attacks can be easily automated
can be used to raise public awareness about information security.

Keywords: Man-in-the-Middle attack
Accessing secured wireless networks · Password cracking
Dictionary personalization · Tampering network topology
Impersonation · Phishing

1 Introduction

The main focus of this paper is security of wireless networks. It provides
a study of widely used network technologies and mechanisms of wireless secu-
rity. Analyzed technologies and security algorithms suffer weaknesses that can be
exploited to perform Man-in-the-Middle attacks. A successful realization of this
kind of attack allows not only to eavesdrop on all the victim’s network traffic
but also to spoof his communication [1], [16, pp. 101–120].

In an example scenario, the victim is a suspect conducting illegal activity
on a target network. The attacker is a law-enforcement agency investigator with
appropriate legal authorization to intercept the suspect’s communication and to
perform a direct attack on the network. In some cases, the suspect may be aware
that his communication can be intercepted by the ISP1 and harden his network.

1 Internet Service Provider

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

P. Matoušek and M. Schmiedecker (Eds.): ICDF2C 2017, LNICST 216, pp. 207–220, 2018.
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For example, he could use an overlay network technology, e.g., VPN (imple-
mented by L2TP, IPsec [9, pp. 09–10], PPTP) or anonymization networks (Tor,
I2P, etc.) to create an encrypted tunnel configured on his gateway, for all his
external communication. This concept is easy to implement and does not require
any additional configuration on endpoint devices. Generally, this would not be
considered a properly secured network [5, pp. 425–431], but this scheme, or simi-
lar, is often used by large vendors like Cisco [2] or Microsoft [19] for branch office
deployment and can also be seen in home routers2. In such cases, intercepting
traffic on the ISP level would not yield meaningful results, because all the com-
munication is encrypted by the hardening. On the other hand, direct attack on
the suspect’s LAN will intercept plain communication. But, even when an inves-
tigator is legally permitted to carry out such an attack to acquire evidence, it is
scarcely used, because it requires expert domain knowledge. Thus, this process
of evidence collection is very expensive and human resource demanding.

The aim of this research is to design, implement and test a tool able to auto-
mate the process of accessing a secured WLAN and to perform data interception.
Furthermore, this tool should be able to tamper with the network to collect
more evidence by redirecting traffic to place itself in the middle of the com-
munication and tamper with it, to access otherwise encrypted data in plain
form. Using the automated tool should not require any expert knowledge from
the investigator.

We designed a generic framework, see Fig. 1, capable of accessing and acquir-
ing evidence from a wireless network regardless of used security mechanisms. This
framework can be split into several steps. First, it is necessary for an investiga-
tor to obtain access to the WLAN used by the suspect. Therefore, this research
focuses on exploitable weaknesses of particular security mechanisms. Upon suc-
cessful connection to the network, the investigator needs to tamper with the net-
work topology. For this purpose, weaknesses of several network technologies can
be exploited. From this point on, the investigator can start to capture and break
the encryption on the suspect’s communication.

Specialized tools focused on exploiting individual weaknesses in security
mechanisms currently used by WLAN s are already available. There are also
specialized tools focused on individual steps of MitM attacks. Tools that were
analyzed and used in implementation of the wifimitm package are outlined
in Sect. 2.

Based on the acquired knowledge, referenced studies and practical experience
from manual experiments, authors were able to create an attack strategy which
is composed of a suitable set of available tools. The strategy is then able to
select and manage individual steps for a successful MitM attack tailored to
a specific WLAN. This strategy also includes options for impersonation and
phishing for situations, when the network is properly secured, and the weakest
part of the overall security is the suspect.

The created software can perform a fully automated attack and requires zero
knowledge. We tested the final implementation on carefully devised experiments,

2 Asus RT-AC5300 – Merlin WRT has an option to tunnel all traffic thought Tor.
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Accessing wireless network

Man-in-the-Middle attack

Scan Crack

Connect

Tampering network topology
stop

Capturing network traffic
stop

Impersonate

(phishing)

Fig. 1. During the first phase – Accessing wireless network, the tool is capable of
an attack on WEP OSA, WEP SKA, WPA PSK and WPA2 PSK secured WLAN s.
In a case of the dictionary attack on the device deployed by the UPC company, used
dictionaries are personalized by the implicit passwords. In the case of properly secured
WLAN, impersonation (phishing) can be employed. Using this method, an investigator
impersonates the legitimate network to obtain the WLAN credentials from the user.
During the second phase – Tampering network topology, the tool needs to continuously
work on keeping the network stations (STAs) persuaded that the spoofed topology is
the correct one. An investigator is now able to capture or modify the traffic. The suc-
cessful MitM attack is established.

with available equipment. The tool is open source and can be easily incorporated
into other software. The main use cases of this tool are found in automated
penetration testing, forensic investigation, and education.

2 Security Weaknesses in WLAN Technologies

Following network technologies (Sects. 2.1 and 2.2), which find a significant uti-
lization, unfortunately, suffer from security weaknesses in their protocols. These
flaws can be used in the process of the MitM attack.

2.1 Wireless Security

Wired Equivalent Privacy (WEP) is a security algorithm introduced as a part of
the IEEE 802.11 standard [6, p. 665], [8, pp. 1167–1169]. At this point, WEP is
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deprecated and superseded by subsequent algorithms, but is still sometimes used,
as can be seen from Table 1 available from Wifileaks.cz 3. WEP suffers from weak-
nesses and, therefore, it has been broken [4]. There are already implemented tools
to provide access to wireless networks secured by WEP available [18]. Regarding
WEP secured WLAN s, authentication can be either Open System Authentica-
tion (OSA) or Shared Key Authentication (SKA) [8, pp. 1170–1174]. In the case
of WEP OSA, any station (STA) can successfully authenticate to the Access
Point (AP) [17, pp. 4–10]. WEP SKA provides authentication and security of
transferred communication using a shared key. Confidentiality of transferred
data is ensured by encryption using the RC4 stream cipher. Methods used for
cracking access to WEP secured networks are based on analysis of transferred
data with corresponding Initialization Vectors (IV s).

Table 1. Following table summarizes WLAN statistics provided by Wifileaks.cz. Users
of this service voluntarily scan and publish details about WLAN s in the Czech Repub-
lic. Information in the table show that a significant number of WLAN s still use dep-
recated security algorithms. The statistics consisting of 97 192 922 measurements of
2 548 054 WLAN s were published on May 26, 2017.

Security Count Ratio

WPA2 1 429 518 56%

WEP 393 579 15%

WPA 375 984 15%

open 67 388 3%

other 281 585 11%

Wi-Fi Protected Access R© (WPA) was developed by the Wi-Fi Alliance R© as
a reaction to increasing number of security flaws in WEP. The main flaw of WPA
security algorithm can be identified at the beginning of client device’s commu-
nication, where an unsecured exchange of confidential information is performed
during the four-way handshake. An investigator can obtain this unsecured com-
munication and use it for consecutive cracking of the Pre-Shared Key (PSK ).

Wi-Fi Protected Access R© 2 (WPA2TM) is a successor of WPA, but secu-
rity flaws of the WPA PSK algorithm remain significant also for the WPA2
PSK. Information exposed during the handshake can be used for the dictionary
attack, which can be further improved by precomputing the Pairwise Master
Keys (PMKs) [12, pp. 37–38], [13, p. 3]. Precomputed lookup tables are already
available online4.

A critical security flaw in wireless networks secured by WPA or WPA2 is
the functionality called Wi-Fi Protected SetupTM (WPS ). This technology was
introduced with an aim to provide a comfortable and secure way of connecting

3 http://www.wifileaks.cz/statistika/
4 https://www.renderlab.net/projects/WPA-tables/
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to the network. For a connection to the WLAN with WPS enabled, it is possi-
ble to use an individual PIN. However, the process of connecting to the prop-
erly secured network by providing PIN is very prone to brute-force attacks [7].
Because WPS is a usual feature in today’s access points and that WPS is usually
turned on by default, WPS can be a very common security flaw even in networks
secured by WPA2 with a strong password. Currently, there are already available
automated tools for exploiting WPS weaknesses, e.g., Reaver Open Source5.

Newly purchased access points usually use WPA2 security by default. Cur-
rently, many access points can be found using default passwords not only for
wireless network access, but even for AP ’s web administration. In a case of pos-
sible access to the AP ’s administration, the investigator could focus on chang-
ing the network topology by tampering the network configuration. Access to
the network management further allows the investigator to lower security levels,
disable attack detections, reconfigure DHCP together with DNS and also clear
AP ’s logs. There are already implemented tools, which exploit relations between
SSIDs and default network passwords, e.g., upc keys6 by Peter Geissler.7 These
tools could be used in an attack on the network with default SSID to improve
dictionary attack using possible passwords. High severity of these security flaws
is also proven by the fact that a significant amount of WLAN s was found using
unchanged passwords, as it is shown in Table 2.

Table 2. Results of wardriving in Bratislava and Brno focused on UPC vulnerabilities
concerning default WPA2 PSK passwords [11]. Detailed article about these security
flaws is available online [10].

Bratislava (capital of Slovakia) 2016-10-01 Count Ratio

Total networks 22 172

UPC networks 3 092 13.95%

UPC networks, vulnerable 1 327 42.92% UPC

Brno (city in the Czech Republic) 2016-02-10 Count Ratio

Total networks 17 516

UPC networks 2 868 16.37%

UPC networks, vulnerable 1 835 63.98% UPC

2.2 Network Technologies Used in WLANs

In the context of a MitM attack on a WLAN, we are targeting some common
network protocols:

– DHCP automates network device configuration without a user’s interven-
tion [3].

5 https://code.google.com/archive/p/reaver-wps/
6 https://haxx.in/upc-wifi/
7 UPC company is a major ISP in the Czech Republic, URL: https://www.upc.cz
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– ARP translates an IPv4 address to a destination MAC address of the next-
hop device in the local area network [14].

– IPv6 networks utilize ICMPv6 Neighbor Discovery functionality to achieve
similar functionality to ARP in IPv4 networks.

These network protocols are vulnerable and a MitM attack is a coordinated
attack on each of these protocols, effectively changing the network topology.

– DHCP Spoofing generates fake DHCP communication. This attack can also
be referred to as Rogue DHCP. An investigator can perform this kind of
attack to provide devices in the network with malicious configuration, most
often a fake default gateway address or DNS address

– ARP Spoofing provides the network devices with fake ARP messages. This
persuades the suspect’s device to believe that the attacking device’s MAC
address is the default gateway’s MAC address.

– IPv6 Neighbor Spoofing is a similar concept to ARP Spoofing.

ARP Spoofing technique was selected from the researched methods. This method
proved itself with reasonable performance during experiments. Possible counter-
measures to these attacks are further described in the thesis [20].

2.3 Available Tools for Specific Phases of the MitM Attack
on Wireless Networks

From perspective of the intended functionality of the implemented tool,
the whole process of MitM attack on wireless networks can be divided into
three main phases: Accessing wireless network, Tampering network topology and
Capturing network traffic, as explained in Fig. 1.

To access secured wireless networks, Aircrack-ng suite8 is considered a reli-
able software solution. Considering the phase Accessing wireless network (Fig. 1),
following tools were utilized. Airmon-ng can manage modes of a wireless inter-
face. Airodump-ng can be used to scan and detect attacked AP. Aircrack-ng
together with aireplay-ng, airodump-ng and upc keys can be utilized for crack-
ing WEP OSA, WEP SKA, WPA PSK and WPA2 PSK. The tool wifiphisher9

can be used to perform impersonation and phishing. Connection to the wireless
network can be established by netctl10. MITMf 11 with its Spoof plugin can be
used during the Tampering network topology phase. Capturing traffic can be done
by the tool dumpcap12, which is part of the Wireshark13 distribution. Behaviour,
usage and success rate of individual tools, as well as possibilities of controlling
them by the implemented tool, were analyzed. The software selected for individ-
ual tasks of the automated MitM attack were chosen from the researched variety

8 http://www.aircrack-ng.org/
9 https://github.com/sophron/wifiphisher

10 https://www.archlinux.org/packages/core/any/netctl/
11 https://github.com/byt3bl33d3r/MITMf
12 https://www.wireshark.org/docs/man-pages/dumpcap.html
13 https://www.wireshark.org/
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of available tools based on performed manual experiments, further described in
the thesis [20].

3 Attack Automation Using Developed wifimitm Package
and wifimitmcli Tool

The implemented tool is currently intended to run on Arch Linux 14, but it could
be used on other platforms which would satisfy specified dependencies. This
distribution was selected because it is very flexible and lightweight. Python 3.5
was selected as a primary implementation language for the automated tool and
Bash was chosen for supporting tasks, e.g., installation of dependencies on Arch
Linux and software wrappers.

The functionality implemented in the wifimitm package could be directly
incorporated into other software products based on Python language. This way
the package would work as a software library. Schema of the wifimitm package
is in Fig. 2.

Entry points

wifimitmcli

wifimitm

Attack data Capture

Fig. 2. This figure shows the basic structure of the developed application. The tool
wifimitmcli uses a functionality offered by the package wifimitm. The package is also
able to manipulate attack data useful for repeated attacks and capture files with inter-
cepted traffic. Detailed structure of the package is described in Sect. 3.

The wifimitm package consists of following modules. The access module
offers an automated process of cracking selected WLAN. It uses modules wep

14 https://www.archlinux.org/
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and wpa2, which implement attacks and cracking based on the used security
algorithm. The wep module is capable of fake authentication with the AP, ARP
replay attack (to speed up gathering of IV s) and cracking the key based on IV s.
In the case of WPA2 secured network, the wpa2 module can perform a dictionary
attack, personalize used dictionary and verify a password obtained by phishing.
Verification of the password and dictionary attacks are done with a previously
captured handshake. The common module contains functionality which could be
used in various parts of the process for scanning and capturing wireless communi-
cation in monitor mode. The common module also offers a way to deauthenticate
STAs from selected AP.

If a dictionary attack against a correctly secured network fails, a phishing
attack can be managed by the impersonation15 module. The topology module
can be used to change network topology. It provides functionality for ARP Spoof-
ing. The capture module focuses on capturing network traffic. It is intended to
be used after the tool is successfully connected to the attacked network and net-
work topology was successfully changed into the one suitable for MitM attack.

3.1 Attack Data

Various attacks executed against the selected AP require some information to
be captured first. ARP request replay attack on WEP secured networks requires
an ARP request to be obtained in order to start an attacking procedure. Fake
authentication in WEP SKA secured network needs PRGA XOR16 obtained
from a detected authentication. Dictionary attack against WPA PSK and WPA2
PSK secured networks requires a captured handshake. Finally, for the successful
connection to a network, a correct key is required. When the required information
is obtained, it can be saved for a later usage to speed up following or repetitive
attacks. Data from successful attacks could be even shared between users of
the implemented tool.

3.2 Dictionary Personalization

Weaknesses in default network passwords could be exploited to improve dictio-
nary attacks against WPA PSK and WPA2 PSK security algorithms. The imple-
mented tool incorporates upc keys for generation of possible default passwords
if the selected network matches the criteria. The upc keys tool generates pass-
words, which are transferred to the cracking tool using pipes. With this app-
roach, the implemented tool could be further improved for example to support
localized dictionaries.

15 For details concerning individual phishing scenarios, please see wifiphisher ’s website.
https://github.com/sophron/wifiphisher

16 Stream of Pseudo Random Generation Algorithm generated bits.
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3.3 Requirements

The implemented automated tool depends on several other tools, which are
being controlled. The Python package can be automatically installed by its setup
including Python dependencies. Non-Python dependencies can be satisfied by
installation scripts and wrappers, which are currently developed for Arch Linux.

MITMf has a number of dependencies. Therefore, the installation script also
creates a virtual environment dedicated to MITMf. After installation, MITMf
can be easily run encapsulated in its environment. Wifiphisher is also installed
in a virtualized environment and run using a wrapper. Tool upc keys is compiled
during installation. Some changes in wifiphisher ’s source code were implemented,
the installation script therefore applies a software patch. Other software depen-
dencies are installed using a package manager.

Due to the nature of concrete steps of the attack, a special hardware equip-
ment is required. During the scanning and capturing of network traffic without
being connected to the network, an attacking device needs a wireless network
interface in monitor mode. For sending forged packets, the wireless network inter-
face also needs to be capable of packet injection. To be able to perform a phishing
attack, a second wireless interface capable of master (AP) mode has to be avail-
able. The user can check whether his hardware is capable of packet injection

Internet

STA 1 wifimitm

AP

R1

Fig. 3. This figure shows the network
topology used for the first performance
testing (Sect. 4) and success rate mea-
surements (Sect. 5). Results of this per-
formance testing are in Fig. 5.

STA 1

Internet

R1

STA 2

STA 3

STA 4

STA 5

STA 6

STA 7

STA 8

AP

wifimitm

Fig. 4. This figure shows the network
topology consisting of 8 STAs and 1 AP
which was used for the second perfor-
mance testing (Sect. 4). Results of this
performance testing are in Fig. 6.
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using the aireplay-ng tool. Managing monitor mode of interface is possible with
the airmon-ng tool.

4 Attack’s Performance Impact

A scheme of the networks used for the experiments is shown in Figs. 3 and 4.
The STAs were correctly connected to the AP and they were successfully
communicating with the Internet. The implemented wifimitmcli tool was then
started and automatically attacked the network.

1 ms

10 ms

100 ms

1000 ms

10000 ms

0 200 400

RTT STA1 – R1

usual communication MitM

Fig. 5. The first WLAN for performance
testing was the same as for the success rate
measurements described in Sect. 5. Figure
shows comparison of the measured RTT
between STA1 and R1 during usual com-
munication and during successful MitM
attack. The results show the performance
impact is not critical. Discussion with
the users of the attacked network proved
this attack unrecognizable.

1 ms

10 ms

100 ms

1000 ms

10000 ms

0 200 400

RTT STA1 – R1

usual communication MitM

Fig. 6. The second performance test-
ing consisted of 8 STAs and 1 AP
connected to the Internet – stream-
ing videos, downloading large files, etc.
The figure compares the RTT between
STA1 and R1 similarly. The perfor-
mance impact is more severe than in
Fig. 5. Despite the performance impact,
the users had no suspicion that they
were under MitM attack. Instead, they
blamed the amount of devices for net-
work congestion.
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The performance impact of the wifimitm was compared using setups based on
SOHO17 environment. Both experiments were also evaluated based on the fact,
whether the attack being performed was revealed or whether the users had any
suspicion about the malicious transformation of their WLAN. Results of the test-
ing are presented in Figs. 5 and 6.

Table 3. This table presents results of the success rate measurements. A successful
attack is marked using a checkmark symbol (�) and unsuccessful attack is marked
using a times symbol (×). In the case when the attack was not fully successful, the
question mark (?) is used. Such partially successful test (? symbol) can for example
happen in situation where the suspect is sending only a portion of his traffic through
the investigator. Some of the used STAs lack WEP SKA settings (� symbol). Testing
WPA PSK and WPA2 PSK networks were configured with password “12345678” and
WEP secured networks used password “A b#1”.

Lenovo

G580,

Windows

10

Lenovo

G505s,

Windows

8.1

Dell

Latitude E6500,

Ubuntu

17.04

HTC

Desire 500,

Android

4.1.2

Apple

iPhone 4,

iOS

7.1.2

Linksys

WRT610N

open � � � � �
WEP OSA � � � � �
WEP SKA � � � � �
WPA PSK � � � � �
WPA2 PSK � � � � �

Linksys

WRT54G

open � � � � �
WEP OSA � � � � �
WEP SKA � � � � �
WPA PSK � � � � �
WPA2 PSK � � � � �

Linksys

WRP400

open � � � � �
WEP OSA � � � � �
WEP SKA � � � � �
WPA PSK � � � � �
WPA2 PSK � � � � �

TP-LINK

TL-WR841N

open ? × � � �
WEP OSA ? × � � ×
WEP SKA � � � � ×
WPA PSK ? × � � ×
WPA2 PSK ? × � � ×

D-Link

DVA-G3671B

open � � � � �
WEP OSA � � � � �
WEP SKA � � � � �
WPA PSK � � � � �
WPA2 PSK � � � � �

17 Small office/home office.
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5 Experiments Concerning Various Network
Configurations and Devices

The test was considered successful if the wifimitmcli was able to capture net-
work traffic according to the concept of MitM. For the test to be correct, no
intervention (help) from the investigator was allowed during the attack per-
formed by wifimitmcli. Results of the success rate measurements are shown
in Tables 3 and 4.

Table 4. The following table shows the results of public experiments. Visitors
of the Brno University of Technology, Faculty of Information Technology were invited
to let their devices be attacked. Testing network utilized Linksys WRP400 device
as an AP. A successful attack is marked using a checkmark symbol (�).

Model OS Attack

HTC Desire 500 Android 4.1.2 �
HTC Desire 820 Android 6.0.1 �
Apple iPhone 6 iOS 10.3.1 �
Apple iPhone 5s iOS 10.2.1 �
Apple iPhone 5 iOS 10.3.1 �
Apple iPhone 5c iOS 9.2.1 �
Apple iPhone 4 iOS 7.1.2 �

Results of experiments (Tables 3 and 4 and the thesis [20, pp. 42–43]) show,
that open networks can be very easily attacked. WEP OSA and WEP SKA
secured networks can be successfully attacked even if they use a random pass-
word. WPA PSK and WPA2 PSK secured networks suffer from weak passwords
(dictionary attack), default passwords and mistakes of users (impersonation and
phishing). As Figs. 5, 6 and Tables 3, 4 show, MitM attack using the wifimitm
is successfully feasible in the target environments.

6 Conclusions

The goal of this research was to implement a tool that would be able to auto-
mate all the necessary steps to perform MitM attacks on WLAN s. The authors
searched for and analyzed a range of software and methods focused on pen-
etration testing, communication sniffing and spoofing, password cracking and
hacking in general. To be able to design, implement and test the tool capable of
such attacks, knowledge of different widespread security approaches was essen-
tial. The authors further focused on possibilities of MitM attacks even in cases
where the target WLAN is secured correctly. Therefore, methods and tools for
impersonation and phishing were also analyzed.
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The authors’ work and research resulted in creation of the wifimitm Python
package. This package serves as a library which provides functionality for
automation of MitM attacks on target WLAN s. The developed package can
also be easily incorporated into other tools. Another product of this research is
the wifimitmcli tool which incorporates the functionality of the wifimitm pack-
age. This tool automates the individual steps of a MitM attack and can be used
from a CLI. The implemented software comes with a range of additions for con-
venient usage, e.g., a script that checks and installs dependencies on Arch Linux,
a Python setuptools setup script and of course a manual page.

The wifimitmcli tool, and therefore wifimitm as well, was tested during exper-
iments with an available set of equipment. As the results show, the imple-
mented software product is able to perform an automated MitM attack on
WLAN s successfully.

Upon successful deployment and execution of the implemented tool, an inves-
tigator can eavesdrop or spoof the passing communication. The goal of the tool
was to automate MitM attacks on WLANs. It does not focus on dissecting fur-
ther traffic protections. This means that it does not interfere with SSL/TLS,
VPN, or other encapsulations. Thanks to the tool’s design, it can be easily
used together with other software specialized on interception of encapsulated
traffic. Traffic encapsulation is a sufficient protection against this tool. From
the WLAN administrators point of view, available defense mechanisms are out-
lined in Sect. 2.2.

As explained earlier, all the suspect’s network traffic is passing through
the attacking device during a successful MitM attack. Unfortunately, there could
be users on the network other than the ones that are subject to a court order.
Making sure that only appropriate traffic is being captured may be important
depending on the nature of the court order or the legislation. This challenge may
be solved by setting corresponding filter rules for traffic capture software.

This research and its products can be utilized in combination with other
security research carried out at the Brno University of Technology, Faculty
of Information Technology. It can serve in investigations done by forensic
researchers [15]. It can also be used in automated penetration testing of WLANs.

In the future iterations of the development, the product could focus on
exploiting the weaknesses of the widely used WPS technology. Concerning
the current state of the product, it does not focus on enterprise WLAN s, which
also suffer from their own weaknesses.

The authors disclaim any use of this research for any unlawful activities.
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Chapter 10

TRAFFIC CLASSIFICATION AND
APPLICATION IDENTIFICATION
IN NETWORK FORENSICS

Jan Pluskal, Ondrej Lichtner and Ondrej Rysavy

Abstract Network traffic classification is an absolute necessity for network moni-
toring, security analyses and digital forensics. Without accurate traffic
classification, the computational demands imposed by analyzing all the
IP traffic flows are enormous. Classification can also reduce the number
of flows that need to be examined and prioritized for analysis in forensic
investigations.

This chapter presents an automated feature elimination method based
on a feature correlation matrix. Additionally, it proposes an enhanced
statistical protocol identification method, which is compared against
Bayesian network and random forests classification methods that offer
high accuracy and acceptable performance. Each classification method
is used with a subset of features that best suit the method. The methods
are evaluated based on their ability to identify the application layer pro-
tocols and the applications themselves. Experiments demonstrate that
the random forests classifier yields the most promising results whereas
the proposed enhanced statistical protocol identification method pro-
vides an interesting trade-off between higher performance and slightly
lower accuracy.

Keywords: Protocol identification, application identification, machine learning

1. Introduction
Network traffic classification is an important technique used in net-

work monitoring, security analyses and digital forensics. In digital foren-
sics, file types can be identified by file extensions or by searching for
magic numbers at the beginning of files; known files can be identified us-
ing databases of hash values. The identification of file types and filtering
of known files reduce the amount of data that needs to be analyzed. Do-
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ing the same with network traffic is much more complicated because each
data transfer contains specific and temporary characteristics that depend
on the network state, network utilization and locations of communica-
tions endpoints. The correct classification of network traffic enables an
automated analyzer to determine which application protocol parser to
use to extract information carried by an IP flow (a packet sequence
identified by the same source and destination IP addresses, transport
protocol ports and transport protocol type). This, in turn, helps speed
up a forensic investigation by reducing the number of unclassified IP
flows.

Traditional traffic classification methods identify applications based
on the TCP or UDP ports that are used. This provides only limited ac-
curacy (60–80%) because many applications use random or non-standard
ports [3, 24], for example, peer-to-peer applications, multimedia stream-
ing applications, computer games and tunneled traffic. Advanced traf-
fic classification utilizes supervised machine learning methods based on
payload analysis, statistical methods and hybrid approaches [17, 19, 26,
27, 29]. Each technique has its advantages and disadvantages. For ex-
ample, payload analysis of encrypted communications is unacceptably
inaccurate. Statistical and hybrid approaches demonstrate that it is
not necessary to rely exclusively on packet content [5, 12, 21], but that
it is possible to combine structural and behavioral features to increase
detection accuracy [16].

Unsupervised machine learning methods can classify unknown net-
work traffic [9] into unlabeled clusters based on their similarity. An
expert investigator, upon inspection of a few samples of a cluster, can
label the entire cluster.

Several researchers have investigated machine learning approaches for
traffic classification. Most of the research has focused on classifying net-
work traffic to identify the application layer protocol in order to support
intelligent network filtering and security monitoring. While traffic classi-
fication for network forensics stems from the same ideas, there are some
notable differences. Network forensics analysis can be performed off-line
on captured data. In this case, accuracy is more important than speed.
Thus, a combination of several methods or applications that are slower,
but more accurate, can be considered.

In network forensics, an investigator can compensate for incorrect
results by performing additional manual inspections of results. For ex-
ample, some methods return a probability vector that can be inspected
to consider different results.

Additionally, in network forensics, classification must be determin-
istic because forensic principles require that all results be verifiable.
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Also, classification methods can be tuned by an investigator and can
be repeated with different parameter sets to increase sensitivity while
decreasing specificity.

Machine learning algorithms for network traffic classification have
been studied since the 1990s. The most common algorithms include
support vector machines [12], decision tree algorithms [21] and proba-
bilistic [5] and statistical methods [16, 19], all of which involve supervised
learning. The unsupervised k-means clustering algorithm [9] groups traf-
fic based on its significant features. If the feature set is selected properly,
a machine learning method can exceed 90% accuracy [26].

Surveys of classification methods by Nguyen and Armitage [27] and
Namdev et al. [26] discuss protocol identification. Classification meth-
ods for encrypted traffic are reviewed in [29]. Al Khater and Overill [2]
have proposed the use of machine learning algorithms to improve traf-
fic classification methods for digital forensic applications. Foroushani
and Zincir-Heywood [10] have demonstrated the possibility of identi-
fying high-level application behaviors from encrypted network service
communications. Dai et al. [6] and Miskovic et al. [23] have described
methods for fingerprinting mobile applications based on their communi-
cations. Erman et al. [8] have explored flow-based classification and have
proposed a semi-supervised classification method that can accommodate
known and unknown applications.

While traffic classification has been applied extensively to network
monitoring and security analysis, significantly less research has focused
on traffic discrimination for network forensics. This research makes some
key contributions to the field of network forensics. The first is the cre-
ation of a dataset that provides a means to reliably acquire ground
truth for experiments. Typical datasets use information inferred from
l7-filter [28] or nmap [1] and, therefore, offer only approximations of
the real information. Shang and Huang [28] have shown that the preci-
sion of these techniques is always one (no false positives), but the recall
varies between 0.67 and 0.87. This means that 13–33% of the samples
are not labeled and the researchers would have excluded them from the
datasets because they lacked labels [1, 12]. Therefore, the remaining
dataset is already classifiable via deep packet inspection and is less rele-
vant to finding better classification methods. In other cases, researchers
do not include information about the data used in their experiments,
or the descriptions are vague and not reproducible [28], or they do not
describe how to annotate data with labels without errors [5].

For these reasons, this research captured one week’s worth of packet
data in an environment with eight hosts, which translates to roughly
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20 GB. The data was automatically tagged with complete information
about the origin application.

This research has also developed an enhanced statistical protocol iden-
tification (ESPI) method that leverages a machine-learning-based clas-
sifier. Upon evaluating the results of related studies, two additional
classifiers, a Bayesian network classifier and a random forests classifier,
were selected for comparison. This chapter describes all three methods
and shows that they can be used to identify application layer protocols
and even the applications that used the protocols. This is important
because application identification provides more information about net-
work traffic compared with what can be gleaned from the identified ap-
plication layer protocols. Consider a situation where HTTPS is used to
create an encrypted tunnel. A tool capable of recognizing applications
(e.g., Google Drive, iTunes and OneDrive) in network traffic instead of
merely the application layer protocol (e.g., HTTPS) is useful in several
domains. Notably, in forensic analysis, application identification could
significantly reduce the amount of data to be analyzed compared with
conventional approaches.

2. Data Collection and Preprocessing
Network traffic classification takes a network traffic capture file as in-

put, typically in the PCAP format. The captured traffic is then split into
a collection of layer 4 conversations represented by one or two IP flows
for one-way or two-way communications, respectively. The experiments
described in this chapter employed an annotated dataset captured by Mi-
crosoft Network Monitor, which provides application labels for almost
all conversations. The dataset contains regular network traffic generated
by eight user workstations running the Windows operating system. The
final capture file has the following characteristics:

PCAP File Size: 19.5 GB.
PCAP Format: Microsoft NetMon 2.x.
Capture Duration: 119 hours.

Number of Packets: 27,616,138.
Number of Layer 7 Conversations: 269,459.
Number of Application Protocols: 58.
Number of Communicating Applications: 93.

Information about the dataset is available at pluskal.github.io/
AppIdent and the dataset itself can be downloaded from nes.fit.
vutbr.cz/AppIdent.
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Before the capture file could be used, additional post-processing steps
from previous work [22] were applied to enhance data extraction. The
final post-processing step used a round of experiments with the enhanced
statistical protocol identification method. Based on these initial results,
a second instance of the dataset was created that contained ground truth
about the application protocols. The ground truth supported manual
hierarchical clustering analysis of the results.

The post-processing steps improved the traffic classification accuracy
by reducing the noise in the extracted features caused by the following
items:

Important TCP session control information, such as synchroniza-
tion segments and finalization segments, may be missing.

Sequence numbers may overflow in long-running TCP conversa-
tions. This can result in incorrect interpretation, causing single
conversations to be split or two unrelated IP flows to be joined
into a single conversation.

The joining of capture files from multiple probes must address is-
sues related to possible packet duplication and the proper ordering
of packets belonging to the same conversation.

Some IP packets may be missing or be duplicated (e.g., in the case
of TCP retransmission).

Finally, associated IP flows in bidirectional conversations must be
paired correctly.

Matousek et al. [22] have shown that other network forensic solu-
tions do not effectively address these issues. This implies that adopting
the proposed additional steps would also be beneficial in the context
of network traffic classification. To address these issues, Netfox Detec-
tive (github.com/nesfit/NetfoxDetective), a custom tool created for
these use cases, was used to process the captured PCAP files.

2.1 Application Conversations and Messages
In addition to addressing the basic issues related to processing layer 4

conversations, Netfox Detective also enabled the dataset to be processed
to track layer 7 conversations and to approximate individual application
messages. This increased the classification accuracy by identifying appli-
cation communications patterns. It also eliminated remnants of network
packet fragmentation in the Internet layer and TCP retransmission in
the transport layer. Packet fragmentation and TCP retransmission are
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independent of application communications patterns and, thus, can neg-
atively impact classification.

An application message was identified in the reassembled stream based
on the transport protocol. The following rules were used for identifica-
tion:

If a stream uses the UDP transport protocol, then the entire pay-
load of each UDP datagram is considered to be a single application
message.

In the case of the TCP transport protocol, segments are separated
into application messages based on packets with PSH, RST or FIN
flags, or based on timeouts.

These rules are simple to implement and yield accurate approximations
of application messages in most cases.

3. Classification Methods
Using machine learning algorithms to classify traffic is by no means a

new concept in the field of network forensics. However, the typical use
case is to identify the application protocol [27, 29]. In this research, the
approach was expanded to also identify the application that created the
traffic. This provides more information that can be used by a forensic
investigator for easier and more precise analysis.

This section describes revisions to the commonly-used feature sets [16,
19, 25] to address the task at hand and presents a feature elimination
method based on feature correlation to improve the accuracy of the
created classifiers. Finally, the proposed enhanced statistical protocol
identification method is described along with two other classification
methods from the literature that have yielded promising traffic identifi-
cation results.

3.1 Feature Set
The quality of a feature set directly influences classification accu-

racy [32]. Common features used for traffic classification are related to
key aspects of packet communications and network architecture. These
include port numbers, transport protocol type, starting sequence of pay-
load bytes, pattern occurrence, message length and message timing. Re-
searchers have identified a list of possible features comprising 92 items
that are invariant to network line characteristics [16, 19, 25]. The list is
available at github.com/pluskal/AppIdent.

Machine learning algorithms achieve the best performance when the
selected features are orthogonal (i.e., no correlation exists between the
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features) [14]. Several approaches have been proposed for calculating
feature correlations, including the Pearson, Spearman, Kendall correla-
tion formulas [31] and covariance matrix [13]. This research opted for
the covariance matrix method due to its ease of implementation.

The covariance matrix provides a correlation value for each pair of
features. This matrix was used to design an automated two-step pro-
cedure for eliminating features. In the first step, a covariance matrix
was calculated based on a chosen ratio of training data to verification
data (t/v). In the second step, based on a maximum allowed correla-
tion value, feature pairs with higher correlation values were identified
and features that were, on average, more correlated with all the other
features, were iteratively removed from the feature set. The resulting
feature set was used by the selected classification method and could be
evaluated to find the optimal set.

In the experiments, more than 80% of the feature pairs had corre-
lation values of 0.5 or higher. Table 1 lists the features that remained
after feature elimination was performed on sample data with training to
verification ratios of 0.1 and 0.2, based on accepted correlation values
up to 0.5. Note that the correlation column shows the maximal-allowed
correlation values of features listed on the corresponding line and higher.
These feature sets were used by the Bayesian network and random forests
classifiers.

Most of the features describe flow characteristics instead of individual
packet characteristics. This confirms the assumption that relying on
a signature or some pattern in packet content gives better results for
encrypted or less-structured traffic.

3.2 Enhanced Statistical Protocol Identification
Hjelmvik [16] developed the statistical protocol identification (SPID)

method for use with the NetworkMiner tool. The learning phase of
the method creates a database of protocol fingerprints for identifying
application protocols. The features utilized by the statistical protocol
identification method are called “protocol attribute meters,” each con-
veying different information. Some items are scalar values representing
payload data size, number of packets in a session or port number. Other
items are composite values, such as a tuple comprising packet direction,
packet ordering, packet size and byte value frequency.

The original implementation uses about 35 protocol attribute me-
ters and extracts information from the first few packets of IP flows to
achieve better speed compared with other classification methods that
analyze entire IP flows. The distance between the analyzed data to a
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Table 1. Features remaining after elimination based on t/v ratios of 0.1 and 0.2.

Correlation Feature (t/v = 0.1) Feature (t/v = 0.2)

BytePairsReoccuringDownFlow
DirectionChanges
First3BytesEqualDownFlow First3BytesEqualDownFlow
FirstBitPositionUpFlow FirstBitPositionUpFlow
FirstPayloadSize
MinInterArrivalTimeDownFlow
MinInterArrivalTimePackets MinInterArrivalTimePackets
UpAndDownFlow UpAndDownFlow
MinPacketLengthDownFlow MinPacketLengthDownFlow
NumberOfBytesDownFlow
NumberOfPacketsUpFlow
PacketLengthDistribution PacketLengthDistribution
DownFlow DownFlow
PacketLengthDistribution
UpFlow

ThirdQuartileInterArrival
TimeUp
ByteFrequencyUpFlow
MaxSegmentSizeDown
MaxSegmentSizeUp
MinInterArrivalTimePackets
UpFlow
NumberOfBytesUpFlow
ThirdQuartileInterArrival
TimeDown

<0.25 PUSHPacketsDown PUSHPacketsDown
ThirdQuartileInterArrival
TimeDown

NumberOfBytesUpFlow

<0.3 FirstPayloadSize
ByteFrequencyUpFlow
MinPacketLengthUpFlow MinPacketLengthUpFlow
NumberOfPacketsPerTimeUp

DirectionChanges
BytePairsReoccuringDownFlow

<0.4 MeanPacketLengthUpFlow

<0.5 MeanPacketLengthUpFlow

known protocol fingerprint is computed using the Kullback-Leibler di-
vergence and the best matching protocol fingerprint has the smallest
sum of Kullback-Leibler divergences over all the attributes. Kohnen et
al. [19] have developed a new version of the statistical protocol iden-
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tification method by adding support for UDP and handling streaming
protocols using a different set of protocol attribute meters.

The research described here has drawn on this work in creating the
enhanced statistical protocol identification method. The research was
motivated by the fact that a forensic investigator is more interested in
the precision of identification than its speed (although quicker identi-
fication is important); therefore, completed conversations are analyzed
instead of just the first few packets. Additionally, as mentioned above,
the intent is to identify application protocols as well as the applications
themselves; therefore, approximated application messages instead of in-
dividual packets are analyzed. The enhanced statistical protocol identi-
fication method also uses a different set of features (92 features selected
as described in Section 3.1) and a different method for computing the
distances between measured values and learned protocol fingerprints.

The following three functions are employed:

Function f computes the divergence of a measured value to a fin-
gerprint value.

Function g returns a normalized feature value for an actual mea-
sured value.

Function w returns the weight of a feature for a protocol finger-
print.

The divergence from a learned fingerprint is computed as the Eu-
clidean distance [7] of the weighted divergences for individual features:

dx,c =

√√√√ n∑
i=0

(wi(c)·fi(gi(xi), ci))
2 (1)

where x1, . . . , xn denote the current flow protocol feature values; c1, ..., cn

denote the normalized feature values in the protocol fingerprint; and
wi(c) denotes the weight of the ith feature in protocol fingerprint c.

Equation (1) is used to compute the difference dx,cj for each protocol
fingerprint cj . The identified protocol or application k is the one such
that dx,ck = min(dx,c1 . . . dx,cm).

Compared with other machine learning methods, the enhanced sta-
tistical protocol identification method does not suffer from overfitting
due to the use of correlated features because it assigns weights on a
per-feature basis. This property renders the enhanced statistical proto-
col identification method readily extensible to classifying new protocols
and incorporating features unique to the new protocols, which could be
correlated with features of other protocols.
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3.3 Bayesian Network Classifier
The Bayesian network classifier [11] relies on Bayes’ theorem, which

defines the probability of an event based on prior knowledge about the
conditions related to the occurrence of the event. The classifier incorpo-
rates Bayesian belief networks that are constructed during the learning
phase. A Bayesian network is a directed acyclic graph and a set of
conditional probability tables. Nodes in the network represent feature
variables and edges represent conditional dependencies. The probability
tables provide probability functions for the nodes.

A Bayesian network classifier identifies the application protocol by
determining the node (or set of nodes) with the highest probability for
the given input feature values. The advantage of the Bayesian network
classifier is that it also computes the probability that the conversation
belongs to the identified protocol. This information enables a forensic
investigator to decide whether or not to analyze the conversation.

3.4 Random Forests Classifier
Random forests is an ensemble method that constructs multiple C4.5

decision trees during the training phase; the trees are used for classifi-
cation in the verification phase, where the mode of the partial results
is selected as the resulting class [4]. This makes the random forests
classifier prone to overfitting [15]. Random forests are parametrized by
multiple variables such as the forest count, join, and training to ver-
ification ratio. Optimal values for the parameters are determined by
cross-validation and computation of an out-of-bag error that estimates
the performance of specific parameter combinations. Because the classi-
fier computes the out-of-bag error, there is no need to employ a separate
data verification phase. Therefore, the random forests classifier can be
trained on the entire dataset, although this approach can be computa-
tionally expensive.

4. Experimental Procedures and Results
This section presents the experimental procedures and the results ob-

tained using the three classification methods. The experiments were
designed with three goals in mind. The first goal was to compare re-
sults yielded by machine learning and statistical methods that share the
same base feature set, but involve fundamentally-different approaches
to classification. The second goal was to observe how the training set
size and feature elimination ratio impact the accuracy of application
protocol and application classification. The third goal was to prove (or
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disprove) that application classifiers can identify network traffic based
on the applications that generated the traffic.

The Netfox Detective tool was employed as middleware for parsing
and processing the captured traffic into application conversations and
messages. The feature elimination algorithm and classification methods
were implemented as modules in Netfox Detective for easy integration
with input data. A standalone application was used to automate the
experimental procedure with different parameters. The enhanced statis-
tical protocol identification method was implemented from scratch. The
Bayesian network and random forests classifiers were implemented using
the Accord.NET library of machine learning algorithms.

4.1 Experimental Procedures
As mentioned above, Netfox Detective was used to parse and process

the captured traffic and to extract the full set of feature values for the
resulting conversations (feature vectors). Each feature vector was an-
notated with a label that identified the level of classification using the
ground truth from the original capture file. The following labels were
used:

Application Protocol: Each application protocol was labeled
using a tuple with the components: (i) transport protocol type;
and (ii) destination transport layer port or manually assigned label
(e.g., TCP http).

Application: Each application was labeled using a tuple with the
components: (i) transport protocol type; (ii) destination transport
layer port or manually assigned label; and (iii) application process
information (e.g., tcp http skypeexe).

Because this task was time-intensive, but only had to be done once,
the results were saved in a separate binary file. A custom application was
developed to automatically execute the same experiment, but with dif-
ferent configuration parameter values (classification method, training to
verification ratio and accepted correlation value for feature elimination).

All the experiments involved the following five steps:

Step 1 (Dataset Generation): The available data was split
into two disjoint datasets based on the training to verification ra-
tio. The first dataset was used for training and the second for
verification.

Step 2: (Feature Elimination): The experiments using the
Bayesian network and random forests classifiers used the training
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dataset created in Step 1 with the feature elimination algorithm
described in Section 3.1. The experiments using the enhanced
statistical protocol identification method employed the accepted
correlation value of one to include all the features; this is because,
as explained in Section 3.2, the enhanced statistical protocol iden-
tification method does not require feature elimination.

Step 3: (Training): The training dataset created in Step 1 was
used to train the three classifiers:

– Bayesian Network Classifier: A classifier was trained for
each group of feature vectors with the same label.

– Random Forests: The optimal parameters specified in Sec-
tion 3.4 corresponded to the most accurate classifier.

– Enhanced Statistical Protocol Identification Classi-
fier: For each group of feature vectors with the same label, an
application protocol fingerprint was computed using function
g.

Step 4 (Verification): A cross-validation phase was used to de-
termine the best classifiers created in Step 3. Specifically, the
classifiers were used to classify each conversation from the verifi-
cation dataset. They returned either: (i) multiple labels; or (ii)
single labels:

– Multiple Labels: Multiple labels were returned as a set
of probabilities or distances. The set was ordered and the
label with the highest probability or shortest distance was
selected. In the case of the Bayesian network classifier, each
Bayesian classifier yielded a probability of the current conver-
sation belonging to the class of interest (application protocol
or application) represented by the classifier. In the case of
the enhanced statistical protocol identification classifier, the
Euclidean distance between the specific conversation to each
application protocol or application fingerprint was returned.

– Single Label: The random forests classifier returned a single
label.

Step 5 (Label Comparison): In each case, the label was com-
pared against the annotation and the statistical properties of each
classification method were computed.

145



Pluskal, Lichtner & Rysavy 173

Table 2. Configurations of the classification methods.

Classification Experiment Training to Highest Feature
Method ID Verification Ratio Correlation Used

Bayesian Network

B1 0.1 0.3
B2 0.2 0.5
B3 0.5 0.5
B4 0.1 0.2
B5 0.2 0.25
B6 0.5 0.25

ESPI
ESPI1 0.7 1
ESPI2 0.2 1

Random Forests
RF1 0.1 0.4
RF2 0.2 0.4
RF3 0.1 0.5
RF4 0.2 0.5

4.2 Experimental Results
The automated application ran many experiments with various con-

figurations of parameters with the goal of identifying the configurations
that yielded the best results. The experiments were organized based on
the classification methods. For better comparisons, the most successful
experiments for each method with various training to verification ratios
were employed.

Table 2 lists the configurations of the classification methods with the
best results. The last column specifies the highest feature correlation val-
ues used for feature elimination. The experiments were split into two cat-
egories. Experiments B1, B2, B3, ESPI1, RF1 and RF2 used classifiers
for application protocol identification, for which the complete dataset
contained 58 application protocol tags. The remaining experiments B4,
B5, B6, ESPI2, RF3 and RF4 used classifiers for application identifica-
tion, for which the complete dataset contained 93 application tags. All
the experimental results are available at pluskal.github.io/AppIdent.
The figures and tables in this section show the truncated results of the
experiments. The truncation was performed by selecting the best exper-
iment in each category as a baseline. The 20 most accurately identified
labels are shown for all the experiments in a category.

The labels returned by the classification methods were compared with
the ground truth from the original captured data and separated into four
categories defined by the confusion matrix in Table 3. Note that a classi-
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Table 3. Confusion matrix for a single label (application protocol or application).

Classification Result Positive Negative Total
Ground Truth

Positive True Positive (TP ) False Positive (FP ) P
Negative False Negative (FN) True Negative (TN) N

Total P ′ N ′ P + N

fication result is positive when the classifier returns that the conversation
can be labeled with the label and negative when it cannot. The ground
truth is positive when the conversation in the dataset is actually labeled
with the label and negative when it is not.

The F-measure, also referred to as the balanced F-score [14], was used
to compare the classification methods. This single score is computed as
the harmonic mean of the precision and recall using the equation:

F = 2 × precision × recall

precision + recall
(2)

where the precision and recall are computed from the corresponding
confusion matrix values using the equations:

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
=

TP

P
(4)

Figure 1 presents the visualization of the application protocol identi-
fication results. The two random forest classifiers (RF1 and RF2) were
very accurate. The Bayesian network classifier (B3) also performed very
well, but it required a larger training set, a training to verification ratio
of 0.5 and more features (see Table 2).

Figure 2 presents the visualization of the application identification
results. The two random forest classifiers again yielded the best results.
However, in this case, the Bayesian network classifiers were outperformed
by the enhanced statistical protocol identification classifier, which also
provided the best trade-off between performance and accuracy.

Figure 3 provides the aggregate statistics for all the classes. The num-
ber in each cell corresponds to the number of labels that were classified
with F-measures greater than or equal to the F-measure value. Note
that the size of the shaded area in a cell is proportional to the number
of labels classified in the cell.
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Figure 4 presents the results of the performance comparison of ap-
plication protocol classifiers. The first row shows the times required to
complete all the steps involved in the experiments. The remaining rows
show the F-measure scores of each evaluated method for the top 20 labels
based on the most successful experiment in the category.

Figure 5 presents the results of the performance comparison of ap-
plication classifiers. Once again, the first row shows the times required
to complete all the steps involved in the experiments. The remaining
rows show the F-measure scores of each evaluated method for the top
20 labels based on the most successful experiment in the category.
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complete all the steps involved in the experiments. The remaining rows
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based on the most successful experiment in the category.

Figure 5 presents the results of the performance comparison of ap-
plication classifiers. Once again, the first row shows the times required
to complete all the steps involved in the experiments. The remaining
rows show the F-measure scores of each evaluated method for the top
20 labels based on the most successful experiment in the category.
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GreaterOrEqual 
F-Measure

B1 B2 B3 ESPI1 RF1 RF2 B4 B5 B6 ESPI2 RF3 RF4

0.0 58 58 58 58 58 58 93 93 93 93 93 93
0.1 21 19 23 33 47 51 22 25 36 43 83 83
0.2 16 18 23 31 45 47 22 23 34 40 77 77
0.3 14 18 22 29 41 45 20 22 34 37 74 75
0.4 14 16 22 29 40 43 19 22 30 36 68 70
0.5 14 14 22 28 37 41 19 22 29 31 63 63
0.6 13 14 22 26 36 39 16 20 27 27 54 58
0.7 12 13 21 24 34 37 15 17 26 22 45 47
0.8 11 12 19 21 32 36 13 13 26 20 38 41
0.9 8 12 18 17 26 31 7 12 15 17 25 28

Figure 3. Summary of classification method performance.

AppProtocol B1 B2 B3 ESPI1 RF1 RF2
Time [h] 1:01 1:08 1:13 0:50 2:41 13:21
tcp_pop3tlsssl 0.00 0.00 0.00 0.00 0.92 0.97
tcp_teamviewer 0.10 0.49 0.94 0.94 0.94 0.97
tcp_icslap 0.29 0.97 0.99 0.27 0.96 0.98
udp_spotify 0.99 0.99 1.00 0.15 0.99 0.99
tcp_netbiosss 0.00 0.00 1.00 0.97 0.99 0.99
udp_wsd 0.00 0.08 0.98 0.98 0.99 0.99
udp_mdns 0.00 0.00 0.91 0.92 1.00 0.99
udp_https 0.88 0.95 0.95 0.92 0.99 0.99
udp_dhcps 0.83 0.91 0.98 0.99 0.99 0.99
udp_teamviewer 0.00 0.00 0.00 0.66 0.93 0.99
udp_onlinegames 0.98 0.98 0.99 0.04 0.99 0.99
udp_stun 0.00 0.39 0.99 0.96 1.00 1.00
tcp_http 0.97 0.99 1.00 0.96 1.00 1.00
udp_dns 0.99 0.99 0.99 0.93 1.00 1.00
tcp_https 1.00 1.00 1.00 0.99 1.00 1.00
udp_ssdp 0.96 0.97 0.98 0.00 1.00 1.00
udp_llmnr 0.99 0.99 0.99 1.00 1.00 1.00
udp_natpmp 0.00 0.00 0.00 0.96 0.88 1.00
udp_netbiosdgm 0.98 0.98 0.95 0.94 1.00 1.00
udp_sapv1 0.00 0.00 0.00 0.75 1.00 1.00

Figure 4. Performance comparison of application protocol classifiers.

5. Conclusions
This research has focused on the important network forensics problem

of identifying network applications in addition to just application proto-
cols in network traffic flows. It has studied various aspects of applying
machine learning methods and the selection of features that character-
ize application behavior, such as message timing, content length and
TCP flags instead of features related to network line characteristics. An
automated feature elimination method based on the feature correlation
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AppProtocol B4 B5 B6 ESPI 2 RF3 RF4
Time [h] 0:53 1:03 2:00 1:11 20:13 23:20
tcp_smtptlsssl-thunderbirdexe 0.00 0.00 0.00 0.03 0.89 0.75
tcp_https-firefoxexe 0.88 0.93 0.91 0.41 0.71 0.77
tcp_https-svchostexe 0.00 0.00 0.00 0.00 0.71 0.77
tcp_http-steamwebhelperexe 0.00 0.00 0.38 0.52 0.72 0.79
tcp_icslap-system 0.00 0.00 0.00 0.00 0.70 0.81
tcp_https-onedriveexe 0.00 0.03 0.82 0.00 0.72 0.81
tcp_https-skypeexe 0.86 0.99 0.87 0.53 0.78 0.82
tcp_http-utorrentexe 0.01 0.11 0.32 0.01 0.84 0.83
tcp_http-teamviewer_serviceexe 0.00 0.00 0.00 0.87 0.88 0.86
tcp_skype-skypeexe 0.27 0.24 0.00 0.96 0.51 0.87
tcp_https-itunesexe 0.86 0.89 0.89 0.65 0.86 0.87
tcp_https-utorrentexe 0.00 0.00 0.00 0.00 0.92 0.89
tcp_dns-system 0.00 0.00 0.00 0.97 1.00 0.89
tcp_ssh-winscpexe 0.00 0.00 0.00 0.51 0.65 0.91
tcp_pop3tlsssl-thunderbirdexe 0.00 0.00 0.00 0.00 0.98 0.92
tcp_http-spotifyexe 0.93 0.91 0.93 0.90 0.93 0.93
tcp_tripe-spotifyexe 0.00 0.00 0.92 0.91 0.94 0.94
tcp_jabberssl-apsdaemonexe 0.00 0.72 0.81 0.91 0.94 0.95
tcp_jabber-pidginexe 0.00 0.00 0.00 0.97 0.94 0.97
tcp_netbiosss-system 0.00 0.00 0.90 0.44 0.98 0.99

Figure 5. Performance comparison of application classifiers.

matrix was employed to improve the classification results. Additionally,
this research has developed the enhanced statistical protocol identifica-
tion method, which was compared against the Bayesian network and
random forests classification methods from the literature that offer high
accuracy and acceptable performance.

The experimental results confirm that application protocols as well
as the applications that generate network traffic can be classified with
high confidence. For example, NetBIOS service and DNS were identi-
fied accurately and several common applications that use the HTTP(S)
application protocol were identified with high accuracy. Similarly, it
was possible to distinguish between communications traces of OneDrive,
Skype, iTunes, Spotify, Steam and μTorrent clients, although all of them
use the same application protocol (HTTPS).

The random forests classifier achieved the best results, confirming the
results obtained by other researchers [20, 30] who experimented with
machine learning approaches for traffic classification. The enhanced sta-
tistical protocol identification classifier yielded better results than the
Bayesian network classifier and was much faster than the Bayesian net-
work and random forests classifiers.
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Classification accuracy is mainly determined by the quality of the se-
lected features. This research has employed features based on previous
observations and intuition. Future research should focus on the system-
atic analysis and selection of feature sets that could improve classification
accuracy and robustness.

To improve the identification of applications that employ the same
application protocol (e.g., removing errors when tcp http skypeexe is
classified as tcp http firefoxexe, or vice-versa), future research should
focus on hierarchical classification methods. An example is hierarchical
clustering based on enhanced statistical protocol identification finger-
prints. A forensic investigator could then infer the actual application
classes by visual cluster analysis. This approach could also be extended
to other levels such as application message level.

Future research should also consider combining multiple classifiers [18]
to increase the confidence in the results. Research should also focus on
semi-supervised classification methods [8] that enable the creation of
models from partially-labeled data.

Finally, experiments should be conducted to extend the classification
models and evaluate the properties of other datasets. The classifica-
tion methods considered in this work require accurate models. Creating
such models requires the analysis of large numbers of traffic samples.
Experimenting with different datasets could provide more accurate clas-
sification models and valuable insights into the properties of individual
classification methods.

A reference implementation is available under an MIT license from
GitHub at pluskal.github.io/AppIdent. This includes the framework
for parsing captured data, extracting features and eliminating features,
along with the three classifiers described in this chapter and the stan-
dalone application that automated the experiments. The dataset is avail-
able at nes.fit.vutbr.cz/AppIdent to facilitate the reproducibility of
the experiments and to serve as a benchmarking platform for testing
other machine-learning-based application identification methods.
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Abstract. Network forensics is a method of obtaining and analyzing
digital evidences from network sources. Network forensics includes data
acquisition, selection, processing, analysis and presentation to investi-
gators. Due to high volumes of transmitted data the acquired informa-
tion can be incomplete, corrupted, or disordered which makes further
reconstruction difficult. In this paper, we address the issue of advanced
parsing and reconstruction of incomplete, corrupted, or disordered data
packets. We introduce a technique that recovers TCP or UDP conversa-
tions so they could be further analyzed by application parsers. Presented
technique is implemented in a new network forensic tool called Netfox
Detective. We also discuss current challenges in parsing web mail com-
munication, SSL decryption and Bitcoins detection.

Keywords: Network forensic tools · TCP reassembling · Traffic recon-
struction · Web mail · Bitcoin · SSL encryption

1 Introduction

Network forensics is an emerging area of digital forensics connected with the
rapid network development. Many services and digital transactions are trans-
mitted over the Internet where criminal activities and security incidents also
occur. Network forensics provides post-mortem investigation of unlawful behav-
ior using special tools that reconstruct a sequence of events occurred at the time
of the attack. This reconstruction depends only on a captured network data.
In some cases, these data are incomplete, corrupted, or out of order. In order
to analyze the original communication using an incompletely captured data,
advanced techniques of reconstruction and communication recovery are needed.
Reconstruction of TCP streams is essential for any network forensic tool [1]. If
the TCP reassembling fails, application data cannot be properly analyzed.
Recovery of incomplete data in network forensics is a similar task to data

recovery from damaged media, e.g., hard drives, CDs, or DVDs. If some data
are missing, it can be either replaced by empty data units or approximated
c� Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J.I. James and F. Breitinger (Eds.): ICDF2C 2015, LNICST 157, pp. 69–84, 2015.
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from known data. The goal is to provide enough data enabling reconstruction
of the original content. To guarantee an admissibility of forensic results newly
introduced data must be unambiguously distinguished from the original ones.
In this work, we deal with the analysis and reconstruction of incomplete

or damaged network data. Our research includes the development of heuristic
techniques that can detect incomplete or corrupted data on network and trans-
port layer and restore original sessions that can be further analyzed using usual
application parsers. The proposed technique was implemented in a new network
forensic tool Netfox Detective.

1.1 Contribution

The main contribution of this paper addresses practical issues connected with
network data reconstruction and proposes advanced techniques for parsing and
recovery of network conversations. These techniques in combination with
advanced application recognition methods increase the accuracy of content recon-
struction. We also explain several issues connected with application analysis,
especially with web mail services, SSL communication and Bitcoin transactions.
We evaluate the implementation of proposed methods and compare them with
other tools.
The paper is organized as follows: section two surveys current approaches

and results in the domain of network forensic tools; section three examines issues
related to network data parsing and reconstruction with focus on TCP reassem-
bling and Layer 7 (L7, application) data reconstruction; section four deals with
application detection and content analysis, which is demonstrated using exam-
ples of reconstruction of web mail, SSL traffic, and bitcoin transactions.

2 Related Work

There is a wide range of tools for network monitoring and forensics, i.e., Net-
work Security and Monitoring tools (NSMs) and Network Forensic Analysis
Tools (NFATs). NSMs include network analyzers (Wireshark, tcpdump), IDS
systems (snort, Bro), fingerprinting tools (nmap, p0f), and others [2]. NFATs
have similar functionality as NSMs, in addition, they also assist in a network
crime investigation. They capture an entire network traffic and allow an inves-
tigator to analyze it and reconstruct the original communication. Most of the
NFAT tools are proprietary, nevertheless, open source NFATs also exist, e.g.,
PyFlag, Network Miner, or Xplico.
In theory, parsing the network communication is straightforward. However,

incompleteness and corruption of communication requires new methods involv-
ing robust parsers and complex recovery procedures. Surveys of different net-
work forensic frameworks can be found in [2,3]. These papers discuss various
approaches to network forensics, major challenges, and list available tools. In
our paper, we mostly focus on techniques of network data parsing and recovery.
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There are not many published works describing techniques incorporated in
NFAT implementations, partly due to the protection of intellectual properties of
the tools. An exception is Cohen [1] that describes several challenges connected
with the stream reassembling (termination of streams, out of sequence packets,
missed packets) and the combination of streams into conversations. In our work,
we deeply examine issues that are essential for every network forensic tool. In
addition to [1], we present an algorithm that deals with these issues, and also
works with sequence number overflow, which is not discussed by other authors.
A detailed description of TCP reassembling is analyzed by Paxson in [4]. How-
ever, Paxson focuses on robustness of TCP reassembling in the presence of
adversaries that is out of the interest of this paper.

3 Data Parsing and Reconstruction

NFATs are designed to parse captured data, process packet headers and recon-
struct high-level protocol units. Application data are regularly transmitted using
TCP or UDP protocols over IP networks. By definition, IP communication does
not provide reliable data exchange [5]. Application data are segmented into TCP
packets and encapsulated into IP datagrams. Furthermore, IP datagrams can be
fragmented into smaller IP datagrams when required by an underlying link-layer
technology. The main goal of an NFAT is to extract and reconstruct original
application data from possibly incomplete captured collection of IP datagrams.
The method for assembling IP packet-based communications into conversations
is based on the following assumptions:

– An application conversation is distinguished by a pair of IP addresses, trans-
port ports and a protocol type. The conversation consists of a pair of flows
because the most of sessions are bi-directional.
– The beginning of a TCP session is identified by a synchronization TCP seg-
ment (SYN flag). A TCP segment with FIN/PSH/RST flag closes the session.
– A TCP session consists of a collection of TCP segments each associated with
a sequence number. A sequence number determines an offset of the segment
content in the TCP stream [6].
– An application message can be transmitted in one or more TCP segments.
Receiver must reassemble several TCP segments to obtain the original mes-
sage.
– The IP fragmentation happens independently on the TCP segmentation. The
IP defragmentation has to be accomplished before the application content
reassembling.

3.1 Challenges in TCP Reassembling

During our research of network data analysis, following challenges connected
with reassembling of TCP sessions have been identified:

159



72 P. Matoušek et al.

– Missing FIN packets or overlapping of TCP conversations.
Regularly, ephemeral source ports are dynamically assigned by OS to clients
whenever a communication socket is created [7, p. 99]. It helps to distinguish
several TCP sessions originating from the same node and targeting the same
remote process. When the client finishes communication, these ports can be
reused. Usually, the port number is not reused until the pool of ephemeral
ports is exhausted. NFAT can exploit this behavior to recognize different
TCP sessions safely. However, if there is a NAT translation along the com-
munication path observable port numbers can be reused quickly. In such case,
different TCP sessions can receive the same key fields within a relatively short
period. While end systems and NAT can accurately track the use of port num-
bers, for NFAT system it may pose a problem as there is a very short interval
between two TCP sessions with the same identification. NFAT can proceed
as follows:
1. FIN segment can determine closing of the first session segment while SYN
segment defines a new TCP session;

2. if these segments are missing in a captured collection, a flow needs to be
detected by analyzing sequence numbers;

3. if sequence numbers of two sessions overlap, the analysis of timestamps of
expected L4 packets have to be carried out.

– Combination of two L7 flows into a L7 conversation.
NFATs try to reconstruct original bi-directional communication between appli-
cations. If more TCP conversations use the same IP addresses and ports (see
NAT problem above), these ports are not sufficient to unambiguously combine
corresponding L7 flows into a whole L7 conversation. The proposed solution
suggests considering initial TCP sequence numbers. TCP three-way hand-
shake starts with sending three synchronization segments between a sender
and a receiver. The sender sends a SYN segment with his initial, randomly
chosen, sequence number. The receiver replies with an SYN+ACK segment
transmitting receiver’s initial sequence number and sender’s next sequence
number. Based on hand-shake analysis, we can match initial TCP sequence
numbers of every L7 flow and its opposite L7 flow, which is necessary to create
bi-directional L7 conversation based on L4 header data only. If the hand-shake
is not captured, L7 flows are considered as one-directional L7 conversations.
– TCP sequence number overflow.
Network data parsing and analysis is mostly based on a chronological order of
packets in the flow using their sequence numbers. According to RFC 793 [6],
sequence numbers occupy space up to 232 − 1 Bytes, which gives possibil-
ity to transmit maximum 4.29 GB data. This value seems large enough to
avoid sequence number overflow. However, since initial sequence numbers are
generated randomly, maximum data size is lower than this theoretical value.
Figure 1 shows a snapshot of the distribution of maximum TCP message sizes
based on randomly generated initial sequence numbers as observed on 14,000
TCP sessions. The picture does not show full distribution range. TCP ses-
sions with possible payload greater than 500 MB are excluded, because of
their irrelevance for our study. However, these data show that TCP sequence
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number overflow should be taken seriously. For example, we can see that the
sequence number would overflow in 0,12% of TCP sessions with payload up to
5 MB. This situation can be solved by multi-pass processing of an L4 con-
versation and matching incomplete TCP sessions without SYNs when their
initial sequence numbers are closed to 232.

Fig. 1. Probability of TCP Seq numbers overflow related to maximal L7 payload size.

3.2 Building L7 PDUs from the PCAP File

The process of network data parsing starts with the tracking of L3 conversations
based on sender’s and receiver’s IP addresses, see Fig. 2. Further, L4 conversa-
tions are identified using port numbers and L4 protocol type, than L7 conversa-
tions are created. In case of UDP protocol, two UDP sessions running between
the same pair of ports cannot be distinguished. For example, SIP applications
regularly employ the same source and destination ports, e.g., 5060, for all SIP
conversations. Therefore, a L4 UDP conversation is considered to be a L7 con-
versation.
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Fig. 2. Extraction of L7 PDUs from input packets.
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In case of TCP protocol, the TCP reassembling is the key element in recon-
struction. If all data have been properly captured, TCP reassembling is a simple
task that involves port numbers, TCP sequence and acknowledgment numbers.
If some packets are missing, a following procedure implementing our heuristic
method can be applied to any network data. The procedure uses three heuris-
tic parameters: MaxLost, which represents the maximal length of missing data
that can be restored, MaxTime, describing the maximal permitted time delay
between two consequent packets using timestamps, and MaxPayload, represent-
ing the maximum payload size in a TCP packet. Based on our experience, we
use MaxLost = 4kB and MaxTime = 600 sec1. MaxPayload is computed on-
the-fly as the length of the TCP packet with the maximal size of a payload in
the L7 flow. Thus, application messages are built from captured data using the
following steps:

1. Select L4 flows and sort packets using their sequence numbers.
2. Process each L4 flow and create L7 flows using TCP handshake. Start with
the first SYN packet.
(a) Create a new L7 PDU if does not exist or if a previous L7 PDU was
closed.

(b) Check packet sequence number Seqi+1.
(c) If Seqi+1 = Seqi + PSi (PS stands for a payload size obtained from the
packet header), i.e., the expected packet is missing, check timestamps
TS and sequence numbers Seq as follows:
i. If TSi+1 − TSi ≤ MaxTime and Seqi+1 − Seqi ≤MaxLost then a
virtual packet will be created to replace the missing packet.

ii. If TSi+1 − TSi ≥ MaxTime and Seqi+1 − Seqi ≤ MaxLost then
there is an overlapping of TCP sessions because i+1 packet belongs
to a different L7 flow. Skip this packet and proceed with the next
one.

iii. If Seqi+1 − Seqi ≥MaxLost then there are too many missing data.
The flow cannot be fully restored. Close it and proceed with next
SYN packet.

(d) If Seqi+1 = Seqi + PSi the expected packet is present, add it into the
L7 PDU.

(e) If FIN/RST/PSH flag is found or PS = MaxPayload, close the L7
PDU.

(f) GOTO 2a.
3. Process remaining packets without SYNs. Create new L7 flows using
timestamps and sequence numbers only.

4. Process every L7 flow and create L7 PDUs using TCP reassembling
1 MaxLost was experimentally set to 4 kB, which is more than two times greater than
maximal Ethernet PDU size, i.e., 1500 Bytes. MaxTime is six times greater than
recommended TCP connection failure timeout as defined in RFC 1122. These values
say that packet loss longer than 600 secs or missing 4 kB cannot be successfully
recovered.
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– Add every packet of the L7 flow into the L7 PDU until FIN/RST/PSH or
PS =MaxPayload. Then close the L7 PDU and create new one for new
packets.

5. Combine opposite L7 flows into a L7 conversation using corresponding SYN
and ACK numbers.

The main benefit of this approach is the reconstruction of original UDP/TCP
sessions even if some important packets are missing. Based on TCP initial Seq
numbers, the algorithm combines two flows into a conversation. The algorithm
deals with missing SYNs, FINs, overlapping sessions, or TCP numbers overflow-
ing. As the result, we have L7 PDU objects that can be processed on L7.
Table 1 compares our approach with a few available NSMs or NFATs. For our

study, we have chosen Wireshark, Microsoft Network Monitor, NetWitness and
Network Miner. In the first test we used an artificially arranged dataset with
(i) one FIN packet missing, (ii) one SYN packet missing, and (iii) two SYNs
missing. Original 650 kB PCAP file contained 19 conversions. Further analysis
showed that in case of missing SYNs and the same port numbers, Wireshark
joins two conversations into one. MS Network Monitor works well with missing
SYNs, but it is not able to properly close communication if a FIN is missing.
In such case, it combines two conversations into one. NetWitness also joins two
conversations into one. Network Miner works similarly to Wireshark.

Table 1. Detection of network conversation when missing SYN/FIN packets.

File NFX Det Wireshark MS Monitor NetWitness Net Miner

One FIN missing 19 19 18 17 19

One SYN missing 19 18 19 17 18

Two SYNs missing 19 17 19 17 17

The second test used 8 MB PCAP file with some packets randomly deleted.
Table 2 shows results when 0%, 1%, 5%, or 10% of packets were removed.
Original file contained 126 conversations. Netfox Detective shows number of L7
conversations.

Table 2. Detection of network conversations when some data are deleted.

File NFX Det Wireshark MS Monitor NetWitness Net Miner

0% missing 126 126 132 128 76

1% missing 126 126 132 128 75

5% missing 129 125 129 127 71

10% missing 131 125 129 127 66
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The table shows that Netfox Detective finds more L7 conversations than
originally stored in the in-corrupted file. The reason is that when some packets
are missing, a corrupted L7 conversation is divided into several L7 conversation
due to the large number of missing packets or large timestamp difference, see
Fig. 3. Wireshark and NetWitness also miss a conversation. However, since they
consider all packets between the same src/dst ports as one conversation, missing
packets usually did not reduce number of all conversations. MS Network Monitor
also shows stable results. The results of Network Miner are very different but we
are not able to say why.

Resp

L4 conversation

L7 conversation

HTTP client <−> server

HTTP Req/Resp

L7 conversation
Corrupted

L7 conversation
Recovered

Req

HTTP Req/Resp

HTTP Req/Resp

HTTP Req/Resp

HTTP Req/Resp

HTTP Req/Resp

HTTP Req/Resp

Fig. 3. Recovery of corrupted conversations.

3.3 Application Protocol Identification

The result of previously described reconstruction methods are L7 PDUs that
represent L7 objects (payloads) prepared for L7 parsing. Before L7 parsing,
L7 protocol should be identified in order to choose the right L7 parser. There
are many methods for application protocol identification. The easiest method
is based on well-known port numbers assigned by Internet Assigned Numbers
Authority (IANA). Unfortunately, this method does not work well with appli-
cations using dynamic ports, peer-to-peer communication, video streaming, etc.
More advanced methods use payload inspection that is suitable for protocols
that can be recognized by some characteristic patterns either in a header or
payload. There are also methods based on protocol fingerprinting or statisti-
cal data. In our approach, we combine several methods for application protocol
identification.

1. Identification using extended IANA database.
The first algorithm matches port numbers with extended IANA database of
well-known ports. Our database extends IANA data by similarities, i.e., one
input port number can match more applications. For example, Dropbox file
hosting service can work on ports 80, 443, or 17500. Based on given application
tags, L7 parser is chosen. Currently, our database can identify 1058 different
application protocols.
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2. RTP Fingerprinting.
If there is no match on input ports, RTP fingerprinting method is applied [8].
This method uses a multi-stage classifier that observes minimal RTP header
length, RTP version number, and RTP payload type number. If a packet
successfully passes this filtering, per-flow checking is applied using minimal
number of packets in an RTP flow to reduce false positives.

3. Statistical Protocol Identification (SPID).
This method developed by Erik Hjelmvik [9] is based on supervised learn-
ing using pre-classified samples of captured network traffic where application
protocols are correctly annotated. The algorithm generates protocol model
database that stores application fingerprints. Currently, our database can
identify 20 protocols with an ability to add new protocols.

4 Application Parsing

After building L7 PDUs and successful L7 protocol identification, application
data can be processed by L7 parsers. As mentioned in Chap. 3, TCP/UDP
streams are reconstructed without any knowledge of higher layers. This helps
in case when an application parser is not implemented for a specific protocol. In
that case application data can also be extracted from communication.
Main goal of our approach is to augment the reconstruction process when

some data are missing. As mentioned earlier if only a few data is missing, lost
packets can be replaced by new packets with empty payload. If more packets are
lost, an original stream will be recovered as a collection of shorter streams that
formed the original stream.
In this section, we will discuss how data reconstruction influences L7 process-

ing and data presentation in case of incomplete data. For demonstration, we
choose three areas that build challenges for common network parsers: web mail
communication, SSL/TLS encrypted traffic, and bitcoin transactions.

4.1 Web Mail Analysis

Web mail communication is very popular today. Web mail servers employ HTTP
protocol to encapsulate transactions between a user web browser and a web
mail server. Mail exchange between web mail servers is mostly provided using
SMTP protocol. Forensic analysis of web mail services is different from com-
mon web browsing. Many web mail servers utilize advanced web technologies
like JavaScript, AJAX, JSON that dynamically create web pages. Analysis and
interpretation of captured web mail data are limited due to the usage of web
browser caches that store frequently used HTTP objects. These objects are not
present in captured traffic, therefore, they are unavailable for forensic analysis.
The web mail analysis includes two phases: (i) the identification of web mail

data between other HTTP traffic and (ii) the analysis of captured web mail
data. In addition, most of web mail transmissions are SSL/TLS encrypted, so
SSL/TLS decryption is required if possible (see Sect. 4.2). If encrypted, web
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mail traffic can be identified using a name or IP address of a particular web
mail server, see Table 3. If not encrypted, a pattern matching on URLs can be
applied.

Table 3. Identification of web mail services during SSL/TLS handshake.

Web mail service Server name Encoding

seznam.cz, email.cz email.seznam.cz FastRPC

Gmail mail-
attachment.googleuser
content.com

application/x-www-form-urlencoded
;charset=utf-8

Yahoo mail.yahoo.cz application/json
multipart/form-data-incl JSON

MS Live various application/x-www-form-urlencoded

Centrum/Atlas mail.centrum.cz application/x-www-form-urlencoded

Roundcube private service hostname application/x-www-form-urlencoded

Horde private service hostname multipart/form-data

For processing of a captured web mail data, following observations were made:

– Web mail messages transmitted over HTTP can be detected using URL pat-
terns: /mail/.* for Gmail, o1/mail.fpp for MS Live Mail, appid=YahooMailNeo
for Yahoo, etc. However, these patterns usually change with a new version of
the server.
– The communication from a user towards the server is transmitted via POST
method of HTTP protocol [10]. GET method is employed for listing mail
folders.
– Web mail messages are mostly encoded using simple key=value pairs in the
URL. There are several types of actions that can be identified in a key field:
compose-message, send-message, save-draft, get-inbox, delete-message. Each
web mail service uses different names for these actions, so data analysis should
be performed for every new web mail protocol.
– Some web mail objects can be transmitted as JSON objects in MIME struc-
ture, XML-RPC objects, etc.
– Because of dynamic web programming and client-based technologies (i.e.,
JavaScript), forensic page rendering of web mail is difficult and cannot be
fully accomplished without having contents of web caches. Practically, inves-
tigator’s view is limited to a simple textual form of analyzed data.

4.2 SSL/TLS Detection and Encryption

The SSL/TLS encryption is a big challenge for current NFAT tools because it
completely hides the contents of the network communication. It forms a modular
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framework that combines various cryptography mechanisms defined by a cipher
suite [11]. Clients and servers can negotiate cipher suites to meet specific security
and administrative policies during initial SSL/TLS handshake. The cipher suite
defines following mechanisms:

– A key exchange algorithm. General goal of the key exchange process is to
create a pre-master secret known to the communicating parties that is used
to generate the master secret. Using master secret encryption keys and MAC
keys are generated. Most common key exchange algorithms are RSA, Diffie-
Hellman, ECDH, etc.
– A peer authentication. TLS supports authentication of both peers, the server
authentication with an unauthenticated client, and total anonymity. When-
ever the server is authenticated, the channel is secure against man-in-the-
middle attacks. Server authentication mostly requires a RSA or DSA certifi-
cate to prove an authenticity of the server side.
– Message integrity. Message integrity is ensured using Message Authentication
Code (MAC) algorithms like MD5, SHA1, or SHA256. A cryptographic hash
(often called message digest) is computed using these algorithms and added
to the end of each block.
– A bulk cipher algorithm. This algorithm is used for a message encryption.
The specification includes the cipher type (stream, block, AEAD [12]), the
key size, the block size of the cipher (applied only to block ciphers), and the
length of initialization vectors (or nonces). Common bulk ciphers are RC4,
3DES, AES, IDEA, or Camellia.

There are two basic approaches for SSL/TLS decryption [13]:

– A getting server private key. This key can be used to calculate a session key
that have encrypted the conversation. The session key is generated during the
key exchange.
– A MitM attack on SSL/TLS connection. Another method to get decrypted
contents is to use man-in-the-middle (MitM) attack employing a special proxy
server to track the communication between the client and server. At the same
time, the communication with the user node employs different TLS keys gen-
erated by the proxy server. In this case, proxy server should offer a fake
certificate in order to impersonate the original server. There are several tools
implementing this proxy, e.g., SSLsplit, Fidler, etc.

Bulk cipher algorithms incorporate methods of a block cipher or stream
cipher encryption that defines how a block or stream of a plain text will be
encrypted and how the encryption key is generated for each data block, e.g.
CBC (Cipher Block Chaining), GCM (Galois/Counter).

– The Cipher Block Chaining requires complete data for successful reconstruc-
tion because of data dependency, see Fig. 4A. If data are corrupted, successful
analysis can be provided until the first error occurs in the stream. In such
case, only meta information about the conversation are available, e.g. TCP
completeness, probable conversation length, duration, etc.
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Fig. 4. CBC and GSM encryption.

– The Galois/Counter mode can be reconstructed even if some data are missing
because cipher blocks are independent, see Fig. 4B.

Currently, our tool Netfox Detective supports analysis and decryption of
various cipher suites, see Table 4.

Table 4. Cipher suites supported Netfox Detective.

TlsRSAWithAes128CbsSha TlsRSAWithAes256CbsSha

TlsRSAWithAes128CbsSha256 TlsRSAWithAes256CbsSha256

TlsRSAWithAes128GcmSha256 TlsRSAWithAes256GcmSha384

TlsRSAWithRc4128Md5 TlsRSAWithRc4128Sha

If a server key is available, this communication can be decrypted as presented
in Fig. 5. This picture shows a successful decryption of web mail communication
encrypted using TLS.

4.3 Bitcoin Detection

Bitcoins as currency (BTC) are getting more and more popular since 2008,
especially because of their anonymity. Bitcoin network is secure by design against
correlating transactions with individual users. However, forensic tools can at
least detect bitcoin traffic within a network.
Bitcoin operates over peer-to-peer (P2P) network consisting of two node

kinds: (i) clients, which send, receive, or relay BTC transactions; and (ii) miners,
which verify transactions using a special proof-of-work algorithm.
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Fig. 5. Reconstruction of encrypted web mail data.

BTC uses three different protocols for its functionality where each protocol
has a different value for the forensic investigation. These protocols are as follows:

1. Bitcoin v.1 protocol2 is employed for P2P communication between peers (con-
nected nodes). For forensic analysis, its detection can help to identify the end
stations running Bitcoin client software. The protocol runs over TCP, port
8333. It transmits messages required for both a node discovery and Bitcoin
transactions.

Node discovery is provided twice in Bitcoin network:

– Upon software start-up, a client looks for special domain names (e.g., bit-
coin.sipa.be, dnsseed.bluematt.me) in DNS in order to discover initial set of
peers to get connected. Usually, the client uses a list of pre-configured stable
nodes of the Bitcoin network.
– Upon successful connection to a node, the client may request a list of neigh-
boring peers to expand its connectivity graph.

The protocol messages that helps us to detect a communication within Bit-
coin P2P network area as follows: version and verack (useful for connection
initiation), address (to detect a communication graph and provide informa-
tion of known nodes), and ping-pong (a keep-alive mechanism). For forensic
purposes, also messages inv, tx, and block are important since they transmit
valuable information about processed transactions. The list of all Bitcoin v.1
messages is shown in Table 5.
2 See https://bitcoint.org/en/developer-documenation, June, 2015.
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Table 5. Bitcoin v.1 protocol.

Messages Description Message Description

version, verack Opening messages tx, notfound Responses to getdata

getaddr, addr List of known peers ping, pong Keepalive messages

inv A new object announcement alert Broadcast notification

getdata Request for object value mempool Retrieving a transaction

getblocks, blocks Retrieval of a block filterload/add Bloom filter operations

getheaders, headers Retrieval of a header reject Negative response

2. Another group of protocols (e.g., Getwork, Getworktemplate, Stratum) is
used for work distribution for miners cooperating in the pool. The detection
of these protocols implies an existence of bitcoin miner in the local network.

3. The last protocol group involves remote procedure call (RPC) messages that
are employed for remote control of various Bitcoin related services (e.g.,
remote wallets controlled by a smart phone, on-line trading on Bitcoin
exchanges, etc.).

Netfox Detective currently supports decoding of Bitcoin v1 protocol that
helps to detect devices that run Bitcoin clients, work as Bitcoin miners, or access
Bitcoin related services, see Fig. 6.

Fig. 6. Bitcoin analysis using Netfox Detective.

Based on these information, it is possible to create Bitcoin communication
graphs and correlate the pool member and mining rig owner.

170



Advanced Techniques for Reconstruction of Incomplete Network Data 83

Captured network data can be used to provide an evidence that the seized
server really conducted Bitcoin transactions, see Fig. 7.

Fig. 7. Digital investigation of Bitcoin transactions.

5 Conclusion

Network forensics represent several challenges for security analysts. Network
data are volatile what causes that communication traces are not captured com-
pletely. In addition, plenty of protocols are utilized in the current network com-
munication. Many network applications also employ application-level protocol
HTTP only as a data channel offering end-to-end connection. With the increased
amount of traffic being encrypted, it is even complicated to recognize classes of
applications in the captured communication.
In this paper, an overview of issues related to a recovery of the application

content from captured traffic was presented. For identified problems, proposed
methods were tested by implementing them in a novel network forensic tool.
Based on the comparison to related tools, achieved results are promising for the
further development of our NFAT tool.
Future work is delineated by the stated facts. Because of widely used traffic

encryption, NFAT tools have to analyze meta-information associated with the
traffic, e.g., recognizing events from communication, identifying end users, or
approximate the meaning of information hidden in the encrypted communica-
tion. Also, the amount of communication requires NFATs to handle big data
from various sources. Finally, NFATs should be extensible to deal with various
classes of applications, e.g., web mail or Bitcoin traffic.
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Abstract

Network forensics is a process of capturing, collecting and analysing network data
for the purposes of information gathering, legal evidence, or intrusion detection.
The new generation internet opens novel opportunities for cybercrime activities
and security incidents using network applications. Security administrators and LEA
(Law Enforcement Agency) officers are challenged to employ advanced tools and
techniques in order to detect unlawful or unauthorized activities. In case of serious
suspicion of crime activity, network forensics tools and techniques are used to find
out legal evidences in a captured network communication that prove or disprove
suspect’s participation on that activity.

Today, there are various commercial or free tools for network forensics analysis
available, e.g., Wireshark, Network Miner, NetWitness, Xplico, NetIntercept, or
PacketScan. Many of these tools lack the ability of successful reconstruction of
communication when using incomplete, duplicated or corrupted input data.
Investigators also require an advanced automatic processing of application data that
helps them to see real contents of conversation that include chats, VoIP talks, file
transmission, email exchange etc.

Our research is focused on design and implementation of a modular framework for
network forensics with advanced possibilities of application reconstruction. The
proposed architecture consists of (i) input packet processing, (ii) an advanced
reconstruction of L7 conversations, and (iii) application-based analysis and
presentation of L7 conversations. Our approach employs various advanced
reconstruction techniques and heuristics that enable to work even with corrupted
or incomplete data, e.g. one-directional flows, missing synchronization, unbounded
conversations, etc.

174



The proposed framework was implemented in a tool Netfox Detective developed
by our research group. This paper shows its architecture from functional and
logical point of view and its application on reconstruction of web mail traffic, VoIP
and RTP transmissions.

Keywords: network forensics, forensic tools, network traffic analysis, Web mail,
SIP, RTP

1 Introduction

Network forensics is a discipline that deals with obtaining and analysing digital
evidences from network sources. It is an extended phase of network security where
the main goal of network forensics is to track and analyse network data in order to
detect security incidents and present evidences of these incidents to security
administrators or investigators. Network forensics use different supporting tools
and devices that (i) obtain and collect data (firewalls, IDS systems, capturing tools),
and (ii) process, analyse and reconstruct captured data.  Network forensic tools are
mostly used by security administrators and LEA officers that try to search network
data for legal evidences of unlawful behaviour. The aim of the analysis is to
establish high level facts such as attribution, intent, identity, timelines and other
information which may be relevant to the security incident.

Tools for network forensics can be classified into two main groups: Network
Forensic Analysis Tools (NAFTs) that allow administrators to monitor network,
gather all information about the traffic and assist in network crime investigation,
and Network Security and Monitoring (NSM) tools that are focused more on
network monitoring and management. There is a wide range of commercial and
open-source NFATs and NSM tools [1]. The primary motivation behind NSM
tools is network security from perspective of system administration. NSM tools are
very useful in processing large amount of data in short time with limited
functionality concerning application protocol dissection. NMS tools include
(i) IDS/IPS systems for detection or prevention of malicious activity on network,
(ii) statistical tools used for data retention to store meta-information about the
traffic, (iii) packet capture and analyses tools that capture communication on local
networks and analysing it. The most common NSMs focused on packet capturing
and analyses are Wireshark, TCPdump, or Microsoft Network Monitor. These
tools are also used for basic network forensic analysis. However, they are mostly
oriented on simple analysis of internet and transport layers of TCP/IP model. Some
of them even contain an application layer protocol dissector, but the provided
information is a context-free parsed internal protocol structure.
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In this work, we focus on NFATs. NFATs offer a wide range of research challenges
in domain of analysis and reconstruction of captured traffic. Research challenges
cover (i) network stream reassembling that include detection of TCP/UDP streams,
dealing with out of sequence data, missing or corrupted packets, timestamps
overflow, combing streams into bi-directional conversations etc. [2]; (ii) advanced
identification of L7 applications using AI techniques, data mining or statistical
methods [3]; (iii) processing and analysis of L7 application using application
dissectors, (iv) identification and statistical processing of encrypted or tunnelled
traffic, (v) efficient storage of big network data with parallel computation,
(vi) correlation of different input data, etc.

This paper describes architecture and implementation of a network forensic tool
Netfox Detective developed by our team in frame of security research supported by
Ministry of Interior of the Czech Republic. The tool is designed for advanced
reconstruction and analysis of captured network data with focus on emails
(including web mails), HTTP reconstruction and intelligent detection and
reconstruction of Voice over IP. Our framework combines advanced techniques
and heuristics for assembling captured data, identification of L7 traffic,
reconstruction of original conversations, and presentation of L7 objects to an
investigator. The proposed framework uses modular programming environment
with well-defined API so new modules (application dissectors, processing engines)
can be added without a need to re-build the entire application. It also supports
parallel processing with efficient data storage.

2 Related Work

Network forensics was formally defined in 2001 on the First Digital Forensic
Research Workshop [4] where also major issues were identified: (i) time, i.e.,
synchronization and integrity of data and time associated with events being
analysed; (ii) performance, i.e., speed and effectiveness of processing and
computation; (iii) complexity, i.e., general environment with multiple operating
systems, network devices, different data formats, and (iv) collection, i.e., who will
collect data, when, and what to be collected?

After a decade of innovations and research, general process model for the network
forensic analysis has been introduced [1]. General model was composed of blocks
with separated functions and was divided into two layers: (i) lower layer that
included preparation, detection, collection, and preservation; and (ii) upper layer
containing examination, analysis, investigation, and presentation.
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Overview of different frameworks based on distributed systems, soft computing,
honeypots, graphs, formal methods, or aggregation can be found in [1]. In that
paper, Pilli et al. present a survey of current network forensic frameworks. Most of
discussed frameworks were designed to as research tools to prove advanced
approaches and techniques in the area of network forensics. Our tool presented in
this paper employs some of these ideas but its development is driven by practical
usability and deployment.

On the field of free tools, there are several applications that were observed.
NetWitness filters captured traffic by processing frames and creating a lexicon of
identifiers found in different L3-L7 layers, e.g., IP addresses, email addresses, URIs,
etc. An investigator searches this lexicon to filter interesting captured content. The
result can be stored as filtered captured traffic or analysed by another NFAT.
Another popular tool is NetworkMiner1 developed by Erik Hjelmvik, an author of
Statistical Protocol Identifier (SPID) algorithm for application protocol detection
[3]. NetworkMiner processes captured or online communication with an
instantaneous analysis of application protocol. The analysed content is grouped
into categories based on its characteristics, e.g. images, messages, credentials, files,
frames, hosts, sessions. The tool lacks detailed views of captured data and is not
able to backtrack objects to its original representation in captured packets. Xplico2

is an open source NFAT platform composed of functional blocks. Application data
are prepared by traffic decoder and then processed by manipulators. Xplico
supports various application protocols, e.g., HTTP, SIP, IMAP/POP3/SMTP,
FTP, etc. with ability to provide congruent investigation for multiple investigators
at once. The tool provides a user interface via a web browser which is simple to use,
but it is not suitable for advance analysis, e.g., advance filtering, getting data
integrity statistics, etc. Nevertheless, Xplico is the most advanced open source
NFAT available.

3 Netfox Detective Architecture

By testing available NFATs we discovered that none of these tools is sufficient to
accurately extract incomplete network data. In addition, advanced processing of
application protocols with user-friendly presentation was mostly missing and
limited large deployment of these tools for investigators. To overcome these
limitations, a new network forensics framework was proposed with advanced
parsing features.

1 See http://www.netresec.com/?page=NetworkMiner.
2 See http://www.xplico.org.
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Netfox (NETwork FOrensiCS) Detective is a NFAT framework operating upon
four upper layers of generic process model of NFATs as described in [1]. The tool
processes input network data stored in different PCAP formats3 using a generic
algorithm that respects L2-L7 encapsulation of PDUs. As described in [2],
advanced heuristics is employed to extract maximal amount of information from
PDU headers.
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Figure 1: Functional architecture and data model of Netfox Detective.

Netfox Detective has been designed to be used on Windows 7+ platform. To
ensure proper behaviour and modular architecture as shown in Fig.1, the Model-
View-Viewmodel (MVVM)4 design pattern has been chosen with asynchronous
programing provided by .NET 4.5.2 and C# 6. When launching the tool, a new
workspace is created or a recently used workspace is re-loaded. The workspace
represents a directory structure in a file system where all data related to the
workspace are stored. The workspace contains one or more investigations that can
consists of one or more PCAP files, see Fig. 2. Data processing is controlled by
Core Controller that communicates with PmLib module, Conversation trackers and
Snoopers. Application Recognizers use different techniques to identify L7
applications, see below. Application analysis and presentation of the results is
implemented using L7 Snoopers over HTTP, Emails, IMs, Web mails, or SIP.

3 E.g., see LibPCAP and PCAP NG at https://wiki.wireshark.org/Development/LibpcapFileFormat (PcapNg),
or MS Network Monitor PCAP at http://blogs.technet.com/b/netmon/p/downloads.aspx.
4 See https://msdn.microsoft.com/en-us/library/hh848246.aspx.
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Figure 2: Logical interactions of presentation model.

NFATs usually require flexible design with extensibility that allows addition of new
features and propagation of these updates throughout the modular architecture
without changing internal data structures. This can be implemented using
document-oriented database that processes dynamic semi-structured data types in
contrast to pre-defined types in relational databases where relations between data
are fixed and must be defined in advance. Netfox Detective framework employs
document-oriented database system MongoDB5. This approach ensures persistence
across the entire framework using only one implementation for each data model.
Basic data models Workspace, Investigation, Capture, and InvestigationInfo are listed
in Fig. 3.

Figure 3: Database models used in Netfox Detective to ensure
persistence of workspaces and investigations.

5 See http://www.mongodb.org/about/.
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Captured network data are processed using a pipeline that extracts crucial
information for further analysis, see Fig. 4. At first, a PCAP file is added to an
investigation and parsed in PmLib module that builds a frame collection. Each
module LxConversationTracker asynchronously processes every new frame and
creates an appropriate PersistenceCollection for X-th level conversation, e.g., for L3,
L4, or L7 layer. The L7ConversationTracker builds application layer conversations
over TCP or UDP sessions, and creates application protocol messages called
L7PDUs without any syntactical knowledge of the particular application protocol.
Conversation tracking and reconstruction uses port numbers and TCP sequence
numbers to detect missing data or unclosed sessions. It also employs timestamps to
increase accuracy of reconstruction. Detailed description of packet reassembling is
described in [2].
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Packet
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Parse frame
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Frame

L7Conv
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L7 conversation
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L7Conv
Tracker

Application
Recognizer

Recognize

Add Capture

Figure 4: Asynchronous capture file processing pipeline.

The key issue for successful L7 analysis provided by application extractors (snoopers)
is a correct identification of L7Conversations. Identification is provided by the
Recognizer that assigns one or more application tags to a L7Conversation. The
algorithm uses extended IANA database of well-known ports, RTP recognizer for
dynamic RTP streams [5], or SPID algorithm [3] using statistical based
identification.

Snooper modules are dynamically loaded to Netfox Detective, therefore, no
recompilation is needed when a new application parser (snooper) is added. The
snooper is a reconstruction engine of the application protocol. Outputs of one
snooper can be chained into another snooper for further reconstruction, e.g., outputs
of HTTP analysis can become inputs of web mail snooper. Snoopers export the
contents of conversations with corresponding meta-data obtained during the
application protocol processing into a current investigation.
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Figure 5: SIP application protocol data extraction using the SIP Snooper module.

Each snooper defines its own models, views and view-models to provide a detailed
presentation of reconstructed data, e.g, HTTP snooper shows reconstructed web
pages, an email snooper lists reconstructed emails, VoIP snooper describes VoIP
session with RTP streams to be replayed, etc. Example of SIP snooper processing is
at Fig. 5.

As mentioned above, snoopers provide a syntactical analysis of communication.
Until this point, data processing has been based purely upon information obtained
from layers L3 and L4. The snooper analyses a particular application protocol, i.e., it
parses application messages. The snooper communicates with low level modules as
PDUStreamReader, or PDUProvider that deal with missing or overlapping
segments, TCP sequence number overflow, missing SYN and FIN packets, IP
defragmentation, etc. The snooper processes logical L7PDUs as soon as all
conversations have been successfully restored over L4. It receives data from the
PDUStreamReader module. PDUProvider prepares input data for PDUStream-
Reader using one of four strategies shown on following example, see also Fig. 6:

1. Broken Interlay – The first application message consists at maximum of
PDU1 and PDU2 transmitted in Frame 1, 2, 3. The arrival of Frame 4 on
client side signals that the application message has ended. This is typical
for request/response protocols. The second application message is
contained only in PDU3 and the third in PDU4.

2. Continued Interlay – The first application message consists at maximum of
PDU1, PDU2, and PDU4 without taking into account frames arriving in
opposite direction.
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Figure 6: Processing PDUs.

3. Mixed Interlay – The first application message might consist of PDU1,
PDU2, PDU3, and PDU4. This mode mixes PDUs from both directions
into one bi-directional stream.

4. Single Message Interlay – Every application message consists only of one
single PDU.

Generally, one application message can be composed of one or more PDUs. When
some frames are missing, a virtual frame is created in order to complete proper
PDU processing by a snooper. Using this approach, succeeding un-corrupted
message will be properly reassembled in contrast to MS Monitor that might
misinterpret succeeding messages.

4 Extracting Application Data

Application protocol data extraction is a process of analysing application layer data
streams, i.e., payloads of L7 conversations.  This analysis requires knowledge of
application protocol syntax as well as semantics to extract significant information
for forensic analysis. Following examples of application processing demonstrate
how L7 parsing is implemented in NetFox Detective. They also describe advanced
techniques for reconstruction of incomplete or corrupted application data.

4.1 Web mail

Communication using emails is necessity for everyone today. A majority of users
uses web browser to access their mail boxes and to operate with their mail accounts.
Therefore, HTTP protocol is mostly used to tunnel web mail communication.
Traditional email protocols like POP3, IMAP, and SMTP have been mostly put
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aside from the end user perspective, even though they are still used among email
providers.

In this study, we have focused on web mail traffic analysis in order to create
a general model that would be able to process web mail independently on particular
service used. As it is seen in Table 1, following operations similar for all analysed
web mail services can be identified despite the fact that general structure of web
mail is not standardised and web mail providers implement various transmission
methods how to deliver web mail contents, e.g., using RPC sessions, JSON
applications, etc. Table 1 shows how basic web mail operations can be identified in
URL or HTTP header payload using simple pattern matching.

Operation Web mail patterns used in URL or HTTP header

New Message Keywords: from, to, subject, cc, bcc, content/body,
SendMessage.

Message
manipulation

URL request/HTTP header: move, delete,
MoveMessageToFolder.

Email header request URL request/HTTP header: list, search, GetInboxData.

Table 1: Common operations and methods of their detection.

Web mail services can be divided based on data privacy protection into three
groups: (i) web mail service with unencrypted authentication and mail
transmission, e.g. zoznam.sk, tiscali.cz (ii) web mail services with encrypted
authentication and unencrypted mail transmission, e.g., centrum.cz, atlas.cz and
mujmail.cz (iii) web mail services with encrypted authentication and encrypted mail
transmission, e.g., seznam.cz, gmail.com, email.cz.

When web mail authentication is encrypted, web mail communication cannot be
identified using standard URL analysis but other techniques can be employed. One
possibility is to use client’s header extension in SSL/TLS handshake where Hello
message contains the server name. The server name might indicate that following
SSL/TLS communication transmits web mail. Also, DNS resolution can be
employed to detect web mail service, see Table 2.

Web mail Server name Encoding

seznam.cz,
email.cz

email.seznam.cz FastRPC
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Gmail mail-
attachment.googleusercontent.com

application/x-www-form-
urlencoded;charset=utf-8

Yahoo mail.yahoo.cz application/json
multipart/form-data – incl JSON

MS Live application/x-www-form-
urlencoded

Centrum
/Atlas/Mujmail

mail.centrum.cz application/x-www-form-
urlencoded

Roundcube <private service hostname> application/x-www-form-
urlencoded

Horde <private service hostname> multipart/form-data;

Table 2: Identification of particular web mail service.

4.2 Voice over IP

Voice over IP (VoIP) is a technology for transmission of phone calls over IP
infrastructure Main advantage of VoIP is that uses the same infrastructure for both
data and voice transfers which save money but also reduce maintenance
requirements. From point of view of network forensics, VoIP creates a new
challenge for detection and interception of suspect’s calls. Traditional call
interception on telecommunication networks was subjected to strict and well-
known rules. VoIP works in flexible environment of IP networks with a large
variety of application protocols and codecs. The most common VoIP technologies
are SIP [6] for call signalling and RTP [7] for media transmission. Following
section describes how SIP and RTP protocols can analysed.

4.2.1 Signalling protocols

Session Initiation Protocol (SIP) is an application layer protocol for signalling and
controlling multimedia sessions over IP networks. It is mostly used for voice/video
calls and instant messaging. It defines messages that establish, modify and terminate
sessions between end points. SIP is a text-based protocol with some similarities to
HTTP or SMTP. It serves mainly for user registration and establishing VoIP
connection. Media streams (voice or video) are transmitted using RTP protocol [7]
or its secured version SRTP [8]. Description of transmitted media stream is
encoded using Session Description Protocol, SDP [9].
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SIP communication is independent on transport protocols and may use TCP,
UDP or SCTP transport. The protocol utilizes a transaction based communication.
Each transaction is represented by a request and at least one response. SIP protocol
usually communicates on TCP/UDP ports 5060 or 5061 (encrypted sessions).

4.2.2 SIP analysis

The extraction algorithm iterates over L7 conversations identified by an application
recognizer. Whenever a valid SIP message is obtained, it is processed by SIP
snooper that extracts meta-data related to the call. SIP messages with the same Call-
ID form a SIP event. Generally, SIP snooper uses two basic methods INVITE for
call establishment and REGISTER for authentication. However, this trivial
processing is not sufficient when some messages are corrupted or missing.

1 INVITE sip:10.10.10.109 SIP/2.0

2 Call-ID: D99151DA-1DD1-11B2-B23A-BC0375BD6E00@10.10.10.214

3 From: "unknown"<sip:10.10.10.214>;tag=30652209562016038532

4 To: <sip:10.10.10.109>

5

...
c=IN IP4 10.10.10.214

...
m=audio 49152 RTP/AVP 3 97 98 110 8 0 101

...

Table 3: Example of data transmitted in a SIP message.

Table 3 shows what kind of information can be obtained from SIP protocol:
1. Request method or response code – this can be used to recognize a call.
2. Call-ID – a unique identifier used for grouping corresponding messages.
3. From header – identifies caller party.
4. To header – identifies calling party.
5. SDP body – identifies media stream, codecs, RTP ports, etc.

For network forensic purposes, several SIP message are interesting to get meta-data
about call exchange, e.g, INVITE, BYE, and REFER as requests and 100 (Trying)
and 180 (Ringing) as responses. Using these requests and responses, we are able to
extract SIP calls even if captured signalling is incomplete. As depicted on example
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in Fig. 7, even if INVITE message is lost, the same information can be obtained
from related messages (marked by red dot).

Endpoint
1

Endpoint
2

INVITE
100 Trying
180 Ringing

200 OK
ACK

RTP media stream
BYE

200 OK

Figure 7: Typical message exchange during a SIP call.

Another issue is pairing incomplete signalling data with media streams. Network
Detective implements heuristic based on RTP and TCP timestamps that result in
probabilistic correlation of reconstructed VoIP calls. Utilizing these strategies, we
are able to provide better reconstruction in comparison with other tools, see
Table 4.

file NFX
Detective

Wireshark NetWitness PacketScan

Complete PCAP 2 2 2 2

PCAP without INVITE 2 0 2 0

PCAP without 200 OK 2 2 2 2

Table 4: Detection of VoIP calls when INVITE or 200 OK messages are missing.

4.2.3 Real-time Transport Protocol (RTP)

RTP [7] is a stateless application protocol used to transfer media streams over the
network. The RTP also provides simple detection of lost packets and multiple
streams synchronisation with minimal overhead. It is usually transferred over UDP
due to minimal overhead and stateless behaviour. RTP does not retransmit lost
packets because even if they had eventually arrived, they would have not been
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needed any longer. RTP detection is not easy due to the dynamic port assignment.
As a part of RTP standard is description of RTP Control Protocol (RTCP)
messages that are used to deliver additional control session data, e.g., stream source
description, sent data size counter, packet loose, jitter, etc.

4.2.4 Detecting RTP without signalling protocols

Common VoIP concepts separate signalling data (SIP/SDP) from media streams
(RTP). Both protocols use their own PDUs and paths through the internet. When
signalling data are missing, it is generally not easy to detect RTP stream with
dynamic UDP ports and identify what kind of codec is used for voice or video data
transmitted. Netfox Detective uses advanced detection algorithm to identify RTP
as follows. For full algorithm, see [5]:

1. RTP header contains a fixed version 2.

2. Mostly all current VoIP applications use only UDP transport protocol with
ports greater than 1024.

3. Observed packets should have a minimal packet length as required by the
standard unless extension flag is set.

4. Typical RTP stream is collection of large number of small packets with the
same SSRC identifier.

RTP header contains Payload type (PT) for codec identification. This field is mostly
used for statically mapped codecs like G.711, GSM, G.722, or G.729, see [10].
Dynamically assigned codecs like Speex, G.726, AMR, or Silk require
identification information transmitted in signalling protocols. If signalling
protocols are not present in a captured file, it is hard to identify the codec. In such
case, it is possible to use an identification method based on ratio between payload
size of RTP packets and timestamp differences between two successive packets.
Since this ratio usually does not change, this method is sufficient for codecs
identification without signalling data [5].

4.2.5 Incomplete RTP streams

In case of incomplete or corrupted RTP packets, advanced reconstruction
techniques have to be applied. Following case studies present some solutions how
to reconstruct such data.

The first case study (see Fig. 8) shows communication between Alice and Bob
where a link towards Bob is lossy. In this case, Bob’s phone will miss two RTP
packets 2 and 4. When naïve approach to decode a received audio stream is
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applied, audio tracks would not be synchronized, see Fig. 9. This will complicate
further reconstruction and forensics analysis.

1 2 3 4 5

1 2 3 4 5
Alice Bob

Figure 8: Incomplete RTP streams.

1 3 5

1 2 3 4 5
Alice Bob

Figure 9: Naïve RTP Reconstruction.

For advanced RTP reconstruction, a following procedure is proposed:

1. Compute the number of lost samples.

Using RTP timestamps a difference between the last received packet and the
next one after the loss can be calculated. Then, correlation between real-time
and timestamp difference indicates how many packets were lost. Although this
correlation is codec dependent it can be used for reconstruction. For example,
if the last received packet had timestamp 1000 and the next received packet had
timestamp 9000, we may assume that 8000 audio samples were lost.

2. Reconstruction of missing samples.

The knowledge of a codec used is important to encode raw audio data since the
codec specifies the sampling rate that has been used. For example, codec G.711
uses sample rate 8000 Hz. In case of 8000 lost samples with sampling rate
8000 Hz one second audio is missing. Therefore, lost packet can be substitute
with silence audio or white noise right after decoding to fill the specified gap
and synchronize bi-directional audio steams.

Example of RTP streams after reconstruction is depicted in Fig. 10. As it is seen
now, timeline of both RTP streams is properly aligned that is important for proper
forensic analysis.
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Alice Bob

silence silence

Figure 10: Reconstructed RTP streams.

5 Conclusions

This paper presented a new framework for network forensics analysis developed
during security research. This framework has modular architecture with focus on
two important areas: stream reassembling and application reconstruction. Stream
reassembling is an important part of the tool. If not done properly, some packets
can be skipped without proper analysis. On the other hand, some streams can be
reconstructed incorrectly and include frames that do not belong to the
reconstructed stream. The main benefit of our study is proposal of different
heuristics and techniques that are able to build streams from captured packets even
if some packets are missing without a need to parsing application protocol.
Proposed heuristics are used to detect missing SYN and FIN packets, to identify
lost packets within a stream, to detect overlapped conversations, etc., so that TCP
and UDP streams are properly reconstructed for further network forensics analysis.

Following application reconstruction is provided by independent application
snoopers that parse reconstructed L7 streams, extract application based meta-data,
and visualize results to an investigator or security administrator.  Application
snoopers also implements advance techniques for proper reconstruction of
incomplete application data as presented on web mails and VoIP communication.
At the moment, Netfox Detective is able to work with any IP, TCP or UDP
streams. It supports reconstruction of web pages, web mails, emails using SMTP,
POP, or IMAP protocols, instant messaging protocols (XMPP, ICQ, Yahoo), and
VoIP (SIP, RTP). The user interface allows an investigator to filter required
conversations and expert interesting data for further analysis.

In this research, we concentrated more on accurate data reassembling, parsing and
reconstruction. Future research will be focused on efficient analysis of big data,
distributed parsing and employment of advanced detection methods using machine
learning, statistical based detection, etc.

189



6 Acknowledgment

Presented research results were supported by project “Modern Tools for Detection
and Mitigation of Cyber Criminality on the New Generation Internet”, no.
VG20102015022 granted by Ministry of the Interior of the Czech Republic and by
project “Research and application of advanced methods in ICT”, no. FIT-S-14-
2299 granted by Brno University of Technology.

References

[ 1 ] S. E. Pilli, R. Joshi and R. Niyogi, “Network forensic frameworks: Survey
and research challenges.,” Digital Investigation, pp. 14-27, 2010.

[ 2 ] P. Matoušek, J. Pluskal, O. Ryšavý, V. Veselý, M. Kmeť, F. Karpíšek and M.
Vymlátil, "Advanced Techniques for Reconstruction of Incompleted
Network Data," in International Conference on Digital Forensics & Cyber
Crime, Seoul, 2015.

[ 3 ] E. Hjelmvik and W. John, “Statistical protocol identification with SPID:
preliminary results.,” in Sweedish National Computer Networking Workshop.,
2009.

[ 4 ] G. Palmer, “A Road Map For Digitial Forensic Research,” in First Digital
Forensic Research Workshop (DFRWS), Utica, New York, 2001.

[ 5 ] P. Matoušek, O. Ryšavý and M. Kmeť, “Fast RTP Detection and Codecs
Classification in Internet Traffic.,” Journal of Digital Forensics, Security and
Law, pp. 99-110, 2014.

[ 6 ] H. Schulzrinne, J. Rosenberg, G. Camarillo, A. Johnston, J. Peterson, R.
Sparks, M. Handley and E. Schooler, SIP: Session Initiation Protocol, IETF
RFC 3261, 2002.

[ 7 ] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, RTP: A Transport
Protocol for Real-Time Applications, IETF RFC 3550, 2003.

[ 8 ] M. Baugher, D. McGrew, M. Naslund, E. Carrara and K. Norrman, The
Secure Real-time Transport Protocol (SRTP), IETF RFC 3711, 2004.

[ 9 ] M. Handley and V. P. C. Jacobson, SDP: Session Description Protocol, IETF
RFC 4566, 2006.

[ 10 ] H. Schulzrinne and S. Casner, RTP Profile for Audio and Video Conferences,
IETF RFC 3551, 2003.

190


	Introduction
	Motivation
	Problem Statement
	Research Goal and Objectives
	Structure of the Dissertation Thesis

	State of the Art
	Network Forensics
	Network Forensic Tools
	Capturing and Processing of In/complete Network Data
	Application Protocol Identification
	Overlay and Tunneling Network Protocols
	Network Forensics of Big Data

	Research Summary
	Overview
	Papers Included in this Dissertation
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI
	Paper VII

	Relevant Publications not Included in this Dissertation
	Research Projects and Grants
	Software and Specimen
	Invited Speeches, Presentations and Posters
	Selected Relevant Supervised Theses
	Other Supervised Theses

	Conclusions
	The Research Approach
	Contributions
	Future Work
	Final Notes

	Bibliography
	Included Papers
	Netfox detective: A novel open-source network forensics analysis tool
	Network Forensic Investigations of Tunneled Traffic: A Case Study
	Network Forensics in GSE Overlay Networks
	Network Forensic Analysis for Lawful Enforcement on Steroids, Distributed and Scalable
	A Scalable Architecture for Network Traffic Forensics
	Automated Man-in-the-MiddleAttack Against Wi-Fi Networks
	Automation of MitM Attack on Wi-Fi Networks
	Traffic Classification and Application Identification in Network Forensics
	Advanced Techniques for Reconstruction of Incomplete Network Data
	Netfox Detective: A Tool for Advanced Network Forensics Analysis


