
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

PHD THESIS

Brno, 2023 Ing. Gabriela Nečasová

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

PARALLEL NUMERIC SOLUTION OF DIFFERENTIAL
EQUATIONS
PARALELNÍ NUMERICKÉ ŘEŠENÍ DIFERENCIÁLNÍCH ROVNIC

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. GABRIELA NEČASOVÁ
AUTOR PRÁCE

SUPERVISOR Ing. VÁCLAV ŠÁTEK, Ph.D.
ŠKOLITEL

BRNO 2023

Abstract
Differential equations have been studied for over 300 years. Partial differential equations
were first used by the Swiss mathematician and lawyer Nicolaus Bernoulli in the 18th
century. Second-order partial differential equations are used to model a wide range of phe-
nomena in science, engineering, and mathematics, such as the propagation of light and
sound waves, the motion of fluids, and the diffusion of heat. The thesis deals with the par-
allel numerical solution of partial differential equations. Second-order partial differential
equations are transformed into large systems of ordinary differential equations using the
method of lines. The spatial derivatives in the partial differential equation are replaced
by various types of finite differences. The resulting large systems of ordinary differential
equations (initial value problem) are solved in parallel using Runge-Kutta methods and the
newly proposed higher-order method based on Taylor series. The numerical experiments of
the selected problems are calculated using a supercomputer with different numbers of com-
pute nodes. The results show that the Taylor series-based numerical method significantly
overperforms the state-of-the-art Runge-Kutta methods.

Abstrakt
Diferenciální rovnice se studují již vice než 300 let. Poprvé parciální diferenciální rovnice
použil švýcarský matematik a právník Nicolaus Bernoulli v 18. století. Parciální difer-
enciální rovnice druhého řádu se používají k modelování široké škály jevů ve vědě, tech-
nice a matematice, například šíření světelných a zvukových vln, pohybu tekutin a šíření
tepla. Práce se zabývá paralelním numerickým řešením parciálních diferenciálních rovnic.
Parciální diferenciální rovnice druhého řádu jsou pomocí metody přímek převedeny na
rozsáhlé soustavy obyčejných diferenciálních rovnic. Prostorové derivace v parciální difer-
enciální rovnici jsou nahrazeny různými typy konečných diferencí. Výsledné soustavy obyče-
jných diferenciálních rovnic (problémy počátečních hodnot) jsou řešeny paralelně pomocí
Runge-Kutta metod a nově navržené metody vyššího řádu založené na Taylorově řadě.
Numerické experimenty vybraných problémů jsou realizovány na superpočítači s různým
počtem výpočetních uzlů. Výsledky ukazují, že metoda založená na Taylorově řadě výrazně
překonává standardní Runge-Kutta metody.

Keywords
partial differential equations, ordinary differential equations, initial value problems, Taylor
series, Runge-Kutta, method of lines, finite differences, parallel computations, supercom-
puters

Klíčová slova
parcilální diferenciální rovnice, obyčejné diferenciální rovnice, problémy počátečních hod-
not, Taylorova řada, Runge-Kutta, metoda přímek, konečné diference, paralelní výpočty,
superpočítače

Reference
NEČASOVÁ, Gabriela. Parallel numeric solution of differential equations. Brno, 2023.
PhD thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Václav Šátek, Ph.D.

Rozšířený abstrakt
Parciální diferenciální rovnice jsou nezbytným nástrojem matematického modelování prob-
lémů reálného světa. Matematickým modelem je soustava rovnic anebo jiných matematic-
kých vztahů, které zachycují podstatné vlastnosti systémů nezbytné k jejich popisu či před-
povědi jejich chování. Parciální diferenciální rovnice druhého řádu se vyskytují v mnoha
matematických, fyzikálních i technických problémech. Umožňují modelování a analýzu jevů,
jako například přenos tepla, šíření vln, dynamika tekutin, elektromagnetické pole, a jiné.
Diferenciální rovnice za sebou mají přibližně 300letý vývoj. Poprvé parciální diferenciální
rovnice použil švýcarský matematik a právník Nicolaus Bernoulli v 18. století. Rozkvět
v této oblasti je spojen se slavnými jmény jako například Leonard Euler, Joseph-Louis
Lagrange, Adrien-Marie Legendre, Pierre-Simon Laplace nebo Joseph Fourier.

Matematické modely sestávající z parciálních diferenciálních rovnic obvykle nelze vyřešit
analyticky a jejich řešení je potřeba aproximovat numerickými metodami, například metodou
přímek, metodou konečných diferencí, metodou konečných prvků nebo metodou konečných
objemů.

V této práci byla využita semidiskretizační metoda přímek, která diskretizuje derivace
pouze v prostorové doméně a danou parciální diferenciální rovnici tudíž převádí na soustavu
obyčejných diferenciálních rovnic. Vzniklá soustava obyčejných diferenciálních rovnic je
řešena pomocí Runge-Kutta metod a navržené metody vyššího řádu založené na Taylorově
rozvoji. Tato metoda používá proměnný integrační krok a řád a je založena na rekurentním
výpočtu členů Taylorovy řady v každém časovém intervalu. Důležitou vlastností metody
je automatická volba řádu v závislosti na velikosti integračního kroku, což znamená, že je
využito tolik členů Taylorovy řadu, kolik vyžaduje zadaná přesnost výpočtu.

Paralelní řešení diferenciálních rovnic metodami založenými na Taylorově řadě není příliš
rozšířené. Jedním z důvodů je výpočetní závislost mezi členy Taylorovy řady. Několik pub-
likací pojednává o paralelních implementacích založených na Taylorově řadě, avšak žádná z
nich se nezabývá řešením rozsáhlých soustav obyčejných diferenciálních rovnic vznikajících
z parciálních diferenciálních rovnic.

Cílem práce je ukázat, že rozsáhlé soustavy obyčejných diferenciálních rovnic vznika-
jících z parciálních diferenciálních rovnic pomocí metody přímek, lze vyřešit efektivněji
pomocí paralelní metody založené na Taylorově rozvoji než běžnými numerickými meto-
dami. V práci byly provedeny numerické experimenty na vybrané třídě úloh modelovanými
parciálními diferenciálními rovnicemi druhého řádu. Konkrétně se jednalo o rovnici ve-
dení tepla, vlnovou rovnici a telegrafní rovnici. V prostorové doméně byly využity tří-
bodové a pětibodové centrální konečné diference. Velikosti soustav obyčejných diferenciál-
ních rovnic byly 128000, 256000, 512000, 1024000 a 2048000 rovnic. K řešení těchto soustav
byly požity metody založené na Taylorově řadě a Runge-Kutta metody. MTSM metoda
je založena na rekurentním výpočtu členů Taylorovy řady v každém integračním kroku.
MTSM_PRECALC metoda přepočítává členy Taylorovy řady před začátkem výpočtu.
Díky tomuto přístupu dochází k eliminaci závislostí mezi členy. Mezi zástupce Runge-
Kutta metod byla zvolena Dormand-Prince metoda čtvrtého a pátého řádu (známá jako
ode45 v MATLABu), zde označena jako TSRK5DP a Vernerova metoda sedmého a osmého
řádu označena TSRK8VR. Finální numerické experimenty byly realizovány na superpočí-
tači Barbora (IT4Innovations národní superpočítačové centrum), s využitím 32 výpočetních
uzlů (36 procesů na 1 uzel), celkem tedy 1152 MPI procesů.

Bylo sledováno několik výkonnostních metrik jako jsou průměrný čas výpočtu, paralelní
efektivita, zrychlení a zrychlení vůči TSRK5DP metodě. Mezi metriky zaměřené na cenu
výpočtu patří zejména poměr zrychlení k ceně výpočtu.

Výsledky ukázaly, že MTSM_PRECALC metoda je vždy nejrychlejší ze všech metod.
Přestože MTSM trpí výpočetními závislostmi mezi členy Taylorovy řady, může poskytnout
výsledky srovnatelné nebo dokonce lepší než TSRK5DP nebo TSRK8VR, zejména pro
vlnovou a telegrafní rovnici. Chování metod TSRK5DP a TSRK8VR je většinou velice
podobné, v některých případech je TSRK5DP mírně rychlejší. Co se týče poměru zrychlení
k ceně výpočtu, pro MTSM_PRECALC se vyplatí alokovat všech 32 výpočetních uzlů pro
rovnici vedení tepla a telegrafní rovnici. Naopak pro vlnovou rovnici má smysl 32 uzlů
alokovat pro úlohy větší nebo rovno 512000 rovnic. Pro MTSM se alokace 32 uzlů vyplatí
pouze u telegrafní rovnice. Pro TSRK5DP pouze pro telegrafní rovnici s 2048000 rovnicemi
a pro TSRK8VR pro rovnici vedení tepla diskretizovanou tříbodovými centrálními vzorci
pro 1024000 rovnic a v případě diskretizace pětibodovými centrálními vzorci pro 512000 a
1024000 rovnic.

Mezi možná rozšíření této práce můžeme zmínit například analýzu ukončovací podmínky
integračního kroku, redukci výpočetního času monitorováním hodnot členů Taylorovy řady,
vylepšení volby integračního kroku, zaměření na vícedimenzionální parciální diferenciální
rovnice, podporu rozšířené aritmetiky nebo paralelizaci nelineárních problémů.

Parallel numeric solution of differential equations

Declaration
Hereby, I declare that this dissertation thesis was prepared as an original author’s work
under the supervision of Ing. Václav Šátek, Ph.D. All the relevant information sources,
which were used during preparation of this thesis, are properly cited and included in the
list of references.

. .
Gabriela Nečasová
February 27, 2023

Acknowledgements
I would like to thank my supervisor Ing. Václav Šátek, Ph.D., for his very kind, valuable,
and insightful advice, which helped me to create this thesis. I would also like to express my
gratitude to doc. Ing. Jiří Kunovský, CSc. even he is not unfortunately with us anymore.
His thoughts, his positive energy, and "fluidum" will be here forever. I am very grateful to
doc. Ing. Jiří Jaroš, Ph.D., for his consultations and feedback.

Special thanks to the extraordinary people, my boyfriend Martin Sakin, my friend and
colleague Petr Veigend, for their amazing support, advises and giving me the courage all
the time. I want to thank to my friends Marta Jaroš, Ondra Olšák, Janka Puterová, and
Dominika Regéciová for their unconditional mental support, enthusiasm, and positive vibes.

Many thanks belong to my family and friends who supported me throughout my studies.
I want to thank my mother, Dana Nečasová, my father, Vladimír Nečas, and my sister
Klára Nečasová for their unlimited support and patience with me.

This work was supported by the Ministry of Education, Youth and Sports of the Czech
Republic through the e-INFRA CZ (ID:90140), internal BUT FIT projects FIT-S-14-24861,
FIT-S-17-40142 and FIT-S-20-64273 and international project Aktion-76p114.

1https://www.fit.vut.cz/research/project/750/.en
2https://www.fit.vut.cz/research/project/1132/.en
3https://www.fit.vut.cz/research/project/1421/.en
4https://www.fit.vut.cz/research/project/1103/.en

https://www.fit.vut.cz/research/project/750/.en
https://www.fit.vut.cz/research/project/1132/.en
https://www.fit.vut.cz/research/project/1421/.en
https://www.fit.vut.cz/research/project/1103/.en

Contents

1 Introduction 17
1.1 Motivation . 18
1.2 Research objectives . 19
1.3 Thesis outline . 19

2 Numerical solution of differential equations 20
2.1 Adaptive-step-size numerical methods . 22

2.1.1 Adapting the step size . 23
2.2 Taylor series methods . 24
2.3 Euler method . 26
2.4 Runge-Kutta methods . 27

2.4.1 Embedded methods . 29
2.5 Multistep methods . 31

2.5.1 Adams–Bashforth methods . 31
2.5.2 Adams–Moulton methods . 32
2.5.3 Predictor-corrector methods . 32
2.5.4 Backward differentiation methods . 33

3 Partial differential equations 34
3.1 Types of partial differential equations . 35
3.2 Numerical solution of PDEs . 38
3.3 Taylor series based finite difference approximations 38

3.3.1 Derivation of truncation errors . 39
3.3.2 Higher-order finite difference formulas 42
3.3.3 Parameters affecting the accuracy of finite difference formulas 48

3.4 Method of lines . 55
3.5 von Neumann stability analysis . 57
3.6 Numerical stability of method of lines . 59

3.6.1 Notation . 60
3.6.2 Regions of stability . 61
3.6.3 Stability regions of the selected methods 61
3.6.4 Stability analysis of the parabolic equation 64
3.6.5 Stability analysis of the hyperbolic equation 65

3.7 Higher-order differential equations . 67
3.7.1 Method of derivation order reduction 67
3.7.2 Method of derivation order reduction with an additional variable . . 67
3.7.3 Method of continuous integration . 68

1

4 Higher-order Taylor series method 69
4.1 State of the art . 70
4.2 Motivational example . 71

4.2.1 Experiment 1 . 72
4.2.2 Experiment 2 . 74
4.2.3 Experiment 3 . 75
4.2.4 Experiment 4 . 76
4.2.5 Experiment 5 . 77

4.3 Recurrent calculation of Taylor series terms 78
4.4 Automatic integration order setting . 80
4.5 Automatic transformation . 80
4.6 Linear MTSM . 82
4.7 Nonlinear MTSM . 82
4.8 Practical examples . 83
4.9 General parallelization of the linear system of ODEs 83

5 Parallel and distributed computing 85
5.1 Motivating parallelism . 86

5.1.1 Computational power argument . 86
5.1.2 Memory/disk argument . 89
5.1.3 Data communication argument . 89

5.2 Areas of parallel computing . 90
5.3 Types of parallel methods . 91
5.4 Types of parallel architectures . 92

5.4.1 Flynn’s classification of parallel architectures 93
5.4.2 Johnson’s classification of parallel architectures 95

5.5 Supercomputers . 96
5.5.1 Interconnection networks and topologies 97
5.5.2 Classification of high-performance interconnection networks 97
5.5.3 Challenges of current high-performance ICNs 104

5.6 Parallel performance metrics and laws . 105
5.6.1 Execution time . 105
5.6.2 Scalability . 105
5.6.3 Strong scaling . 105
5.6.4 Weak scaling . 107

5.7 Berkeley Roofline model for multicore architectures 108
5.7.1 Roofline ceilings . 109

6 Results 111
6.1 Technical specifications of supercomputers 111
6.2 Tools for scientific computing . 113

6.2.1 MATLAB . 113
6.2.2 PETSc . 114
6.2.3 Intel Advisor Roofline model . 116

6.3 Performance metrics . 117
6.4 Characteristics of selected problems . 118

6.4.1 Data sizes and solvers . 118
6.4.2 Cluster settings . 118

2

6.4.3 General parameters . 119
6.5 Heat equation – three-point central difference 119

6.5.1 Results overview – three-point central difference formula 121
6.5.2 𝑆 = 128000, three-point central difference formula 123
6.5.3 𝑆 = 512000, three-point central difference formula 126
6.5.4 𝑆 = 2048000, three-point central difference formula 128

6.6 Heat equation – five-point central difference formula 130
6.6.1 Results overview – five-point central difference formula 130
6.6.2 𝑆 = 128000, five-point central difference formula 133
6.6.3 𝑆 = 512000, five-point central difference formula 135
6.6.4 𝑆 = 2048000, five-point central difference formula 137

6.7 Wave equation – three-point central difference formula 139
6.7.1 Results overview – three-point central difference formula 140
6.7.2 𝑆 = 64000, three-point central difference formula 143
6.7.3 𝑆 = 256000, three-point central difference formula 145
6.7.4 𝑆 = 1024000, three-point central difference formula 147

6.8 Wave equation – five-point central difference formula 149
6.8.1 Results overview – five-point central difference formula 149
6.8.2 𝑆 = 64000, five-point central difference formula 152
6.8.3 𝑆 = 256000, five-point central difference formula 154
6.8.4 𝑆 = 1024000, five-point central difference formula 156

6.9 Telegraph equation . 158
6.9.1 Lossy telegraph line . 158
6.9.2 Lossy telegraph equation model . 159
6.9.3 Lossless telegraph line . 159
6.9.4 Lossless telegraph equation model 160
6.9.5 Results overview . 163
6.9.6 𝑆 = 512000 . 165
6.9.7 𝑆 = 1024000 . 167

6.10 Parallel performance analysis . 168

7 Conclusion 172
7.1 Future work . 176

Bibliography 176

List of publications 191

Appendices 195

A Finite difference coefficients 196

B Higher-order Taylor series method 198

C Results 202
C.1 Heat equation – three-point central difference formula 203

C.1.1 𝑆 = 128000, three-point central difference formula 203
C.1.2 𝑆 = 256000, three-point central difference formula 205
C.1.3 𝑆 = 512000, three-point central difference formula 210

3

C.1.4 𝑆 = 1024000, three-point central difference formula 212
C.1.5 𝑆 = 2048000, three-point central difference formula 216

C.2 Heat equation – five-point central difference formula 218
C.2.1 𝑆 = 128000, five-point central difference formula 218
C.2.2 𝑆 = 256000, five-point central difference formula 220
C.2.3 𝑆 = 521000, five-point central difference formula 225
C.2.4 𝑆 = 1024000, five-point central difference formula 227
C.2.5 𝑆 = 2048000, five-point central difference formula 231

C.3 Wave equation – three-point central difference formula 233
C.3.1 𝑆 = 64000, three-point central difference formula 233
C.3.2 𝑆 = 128000, three-point central difference formula 236
C.3.3 𝑆 = 256000, three-point central difference formula 240
C.3.4 𝑆 = 512000, three-point central difference formula 242
C.3.5 𝑆 = 1024000, three-point central difference formula 246

C.4 Wave equation – five-point central difference formula 247
C.4.1 𝑆 = 64000, five-point central difference formula 247
C.4.2 𝑆 = 128000, five-point central difference formula 249
C.4.3 𝑆 = 256000, five-point central difference formula 254
C.4.4 𝑆 = 512000, five-point central difference formula 256
C.4.5 𝑆 = 1024000, five-point central difference formula 260

C.5 Telegraph equation . 262
C.5.1 𝑆 = 512000 . 262
C.5.2 𝑆 = 1024000 . 264

C.6 Open Access Grant Competitions of IT4Innovations 267
C.6.1 24th Open Access Grant Competition OPEN-22-47 267
C.6.2 25th Open Access Grant Competition OPEN-25-51 268

4

List of Figures

2.1 Local and global errors in a numerical approximation [52]. 23

3.1 Five-point finite difference stencil for the fourth-order central finite differ-
ence formula. 43

3.2 Five-point finite difference stencil for the fourth-order forward finite differ-
ence formula. 46

3.3 Five-point finite difference stencil for fourth-order backward finite difference
formula . 47

3.4 Central (left) and forward (right) difference formulas (spatial domain). . . 50
3.5 The absolute error between numerical and analytical solution for different

(time domain). 50
3.6 Forward (left) and central (right) difference formula, order 𝑂 = 20. 51
3.7 Forward (left) and central (right) difference formula, order 𝑂 = 40. 52
3.8 Forward (left) and central (right) difference formula, order 𝑛 = 60. 52
3.9 The principle of MOL. 56
3.10 The illustration of the CFL condition [140]. 59
3.11 Stability regions of MTSM – orders 1–25. 62
3.12 Stability regions of Dormand-Prince 5(4) and Fehlberg methods. 62
3.13 Stability regions of Verner Runge Kutta 8(7) method [167], [168]. 63
3.14 Stability regions for orders 1–4. The 𝑂𝑅𝐷 = 1 corresponds to the explicit

Euler method, 𝑂𝑅𝐷 = 4 to the classical fourth-order Runge-Kutta method. 63

4.1 Results for 𝜔 = 1, 𝑡𝑜𝑙 = 1𝑒−3, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−3, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−6 (default
settings). 72

4.2 Results for 𝜔 = 1, 𝑡𝑜𝑙 = 1𝑒−3, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−7, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−7. 74
4.3 Order of the MTSM. 75
4.4 Results for 𝜔 = 100, 𝑡𝑜𝑙 = 1𝑒−3, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−3, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−6 (default

settings). 77
4.5 Order of MTSM . 78

5.1 Differences between parallel and distributed computing. 85
5.2 Moore’s Law 1970-2020: transistor counts in microchips [142]. 88
5.3 50 years of Microprocessor Trend Data. 89
5.4 Flynn’s classification of computer architectures [131]. 92
5.5 Johnson’s classification of computer architectures [131]. 93
5.6 Performance development of the TOP500 supercomputers [156]. 97
5.7 The various 𝑘-ary 𝑛-cube (a) a simple 3x3 regular mesh (b) a 3-ary 2-cube

(2-D torus), and (c) a 3-ary 3-cube (3-D torus) [92]. 98
5.8 Hypercubes: (a) 2-ary 1-cube, (b) 2-ary 2-cube, (c) 2-ary 3-cube, and (d)

2-ary 4-cube [162]. 99

5

5.9 Examples 2-level Dragonfly variants with different parameters 𝑎, 𝑔, and ℎ.
The required number of routers 𝑆 = 42. Purple links denote inter-group
optical links, and blue links denote intra-group electrical links [157]. . . . 100

5.10 TOP500 list statistics: Interconnect family [156]. 101
5.11 TOP500 list statistics: Application areas and market segments [156]. . . . 101
5.12 TOP500 list statistics: Vendors and countries [156]. 102
5.13 Distribution map of ICNs in the TOP500 list over last year [156]. 103
5.14 Strong scaling: execution time and strong speedup [171]. 106
5.15 Strong scaling: execution time and strong speedup [171]. 108
5.16 The roofline model for AMD Opteron X2 [174]. 109
5.17 Roofline model example [174] with computational and bandwidth ceilings

and its optimization regions. 110

6.1 Average times for the telegraph equation problem. 113
6.2 Components of the PETSc software package [10]. 114
6.3 PETSc: parallel matrix layout [79]. 115
6.4 Illustration of the CSR format [112]. 115
6.5 The example of Intel Advisor Roofline model [147]. 116
6.6 Sparsity patterns of input matrices, heat equation, three-point central dif-

ference formula, 𝑆 = 100. 120
6.7 Numerical solution and order of MTSM, heat equation, three-point central

difference formula, 𝑆 = 100, ℎ = 2𝑒−4, 𝑡𝑚𝑎𝑥 = 1000 · ℎ. 120
6.8 Average time, parallel efficiency, parallel speedup, speedup against the

TSRK5DP solver, 𝑆 = 128000, heat equation, three-point central differ-
ence formula. 124

6.9 Parallel cost ratio and speedup-cost ratio, 𝑆 = 128000, heat equation,
three-point central difference formula. 125

6.10 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 512000, heat equation, three-point central differ-
ence formula. 126

6.11 Parallel cost ratio and speedup-cost ratio, 𝑆 = 512000, heat equation,
three-point central difference formula. 127

6.12 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 2048000, heat equation, three-point central dif-
ference formula. 128

6.13 Parallel cost ratio and speedup-cost ratio, 𝑆 = 2048000, heat equation,
three-point central difference formula. 129

6.14 Sparsity patterns of input matrices, heat equation, five-point central differ-
ence formula, 𝑆 = 100. 130

6.15 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 128000, heat equation, five-point central difference
formula. 133

6.16 Parallel cost ratio and speedup-cost ratio, 𝑆 = 128000, heat equation, five-
point central difference formula. 134

6.17 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 512000, heat equation, five-point central difference
formula. 135

6

6.18 Parallel cost ratio and speedup-cost ratio, 𝑆 = 512000, heat equation, five-
point central difference formula. 136

6.19 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 2048000, heat equation, five-point central differ-
ence formula. 137

6.20 Parallel cost ratio and speedup-cost ratio, 𝑆 = 2048000, heat equation,
five-point central difference formula. 138

6.21 Sparsity patterns of input matrices, wave equation, three-point central dif-
ference formula, 𝑆 = 100. 140

6.22 Numerical solution and order of MTSM, wave equation, three-point finite
difference approximation, 𝑆 = 100, ℎ = 4𝑒−1, 𝑡𝑚𝑎𝑥 = 1000 · ℎ. 140

6.23 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 64000, wave equation, three-point central differ-
ence formula. 143

6.24 Parallel cost ratio and speedup-cost ratio, 𝑆 = 64000, wave equation, three-
point central difference formula. 144

6.25 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 256000, wave equation, three-point central differ-
ence formula. 145

6.26 Parallel cost ratio and speedup-cost ratio, 𝑆 = 256000, wave equation,
three-point central difference formula. 146

6.27 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 1024000, wave equation, three-point central dif-
ference formula. 147

6.28 Parallel cost ratio and speedup-cost ratio, 𝑆 = 1024000, wave equation,
three-point central difference formula. 148

6.29 Sparsity patterns of input matrices, wave equation, five-point central dif-
ference formula, 𝑆 = 100. 149

6.30 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 64000, wave equation, five-point central difference
formula. 152

6.31 Parallel cost ratio and speedup-cost ratio, 𝑆 = 64000, wave equation, five-
point central difference formula. 153

6.32 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 256000, wave equation, five-point central difference
formula. 154

6.33 Parallel cost ratio and speedup-cost ratio, 𝑆 = 256000, wave equation,
five-point central difference formula. 155

6.34 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 1024000, wave equation, five-point central differ-
ence formula. 156

6.35 Parallel cost ratio and speedup-cost ratio, 𝑆 = 1024000, wave equation,
five-point central difference formula. 157

6.36 Lossy model of the telegraph equation – a segment of the wire. 158
6.37 Lossy model of the telegraph equation – series of 𝑆 segments. 159
6.38 Lossy model of the line – a segment of the wire. 159
6.39 Lossless model of the line – series of 𝑆 segments. 160
6.40 Sparsity patterns of input matrices, telegraph equation, 𝑆 = 100. 162

7

6.41 Numerical solution and order of MTSM, telegraph equation, 𝑆 = 100,
ℎ = 1𝑒−10, 𝑡𝑚𝑎𝑥 = 2𝑒−8. 162

6.42 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 512000, telegraph equation. 165

6.43 Parallel cost ratio and speedup-cost ratio, 𝑆 = 512000, telegraph equation. 166
6.44 Average time, parallel efficiency, parallel speedup, speedup against the

TSRK5DP solver, 𝑆 = 1024000, telegraph equation. 167
6.45 Parallel cost ratio and speedup-cost ratio, 𝑆 = 1024000, telegraph equation. 168
6.46 Roofline models. 169

C.1 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 256000, heat equation, three-point central differ-
ence formula. 208

C.2 Parallel cost ratio and speedup-cost ratio, 𝑆 = 256000, heat equation,
three-point central difference formula. 209

C.3 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 1024000, heat equation, three-point central dif-
ference formula. 214

C.4 Parallel cost ratio and speedup-cost ratio, 𝑆 = 1024000, heat equation,
three-point central difference formula. 215

C.5 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 256000, heat equation, five-point central difference
formula. 223

C.6 Parallel cost ratio and speedup-cost ratio, 𝑆 = 256000, heat equation, five-
point central difference formula. 224

C.7 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 1024000, heat equation, five-point central differ-
ence formula. 229

C.8 Parallel cost ratio and speedup-cost ratio, 𝑆 = 1024000, heat equation,
five-point central difference formula. 230

C.9 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 128000, wave equation, three-point central differ-
ence formula. 238

C.10 Parallel cost ratio and speedup-cost ratio, 𝑆 = 128000, wave equation,
three-point central difference formula. 239

C.11 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 512000, wave equation, three-point central differ-
ence formula. 244

C.12 Parallel cost ratio and speedup-cost ratio, 𝑆 = 512000, wave equation,
three-point central difference formula. 245

C.13 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 128000, wave equation, five-point central difference
formula. 252

C.14 Parallel cost ratio and speedup-cost ratio, 𝑆 = 128000, wave equation,
five-point central difference formula. 253

C.15 Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 512000, wave equation, five-point central difference
formula. 258

8

C.16 Parallel cost ratio and speedup-cost ratio, 𝑆 = 512000, wave equation,
five-point central difference formula. 259

9

List of Tables

2.1 Coefficients of the Adams-Bashfort method. 32
2.2 Coefficients of the Adams-Moulton method. 32
2.3 Coefficients of backward differentiation methods. 33

3.1 Table of coefficients for central difference formulas. 45
3.2 Coefficients for central finite difference formulas, 𝑀 = 4, 𝑁 = 8, 𝑥0 = 0. . 45
3.3 Table of coefficients for forward difference formulas. 47
3.4 Table of coefficients for backward difference formulas. 48
3.5 Values of derivatives, 8B arithmetic. 53
3.6 Values of derivatives, 16B arithmetic. 54
3.7 Values of derivatives, 32B arithmetic. 54
3.8 Values of derivatives, 64B arithmetic. 55
3.9 𝑆𝑅 and 𝑆𝐼 intersections of MTSM for orders 1–25. 64
3.10 𝑆𝑅 and 𝑆𝐼 intersections of selected Runge-Kutta methods. 64
3.11 Conditions of numerical stability for the one-dimensional heat equation,

discretized in space using second-order central differences and integrated in
time by different methods. 65

3.12 Conditions of numerical stability for the one-dimensional wave equation,
discretized in space using second-order central differences and integrated in
time by different methods. 66

4.1 Results for 𝜔 = 1, 𝑡𝑜𝑙 = 1𝑒−3, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−3, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−6 (default
settings) . 73

4.2 Results for 𝜔 = 1, 𝑡𝑜𝑙 = 1𝑒−3, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−7, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−7. 75
4.3 Results for 𝜔 = 1, 𝑡𝑜𝑙 = 1𝑒−5, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−7, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−7, ℎ = 10. . . 75
4.4 Results for 𝜔 = 100, 𝑡𝑜𝑙 = 1𝑒−3, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−3, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−6 (default

settings). 77
4.5 Results for 𝜔 = 100, 𝑡𝑜𝑙 = 1𝑒−6, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−9, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−9 78

5.1 Top 10 supercomputers of the TOP500 list [156]. 103

6.1 Parameters of the Barbora and ICS clusters. 112
6.2 Data sizes for different problems. 118
6.3 Number of integration steps and average step sizes, heat equation, three-

point central difference formula. 121
6.4 Average efficiency (6.4) comparison for 1–32 nodes, heat equation, three-

point central difference formula. 121
6.5 Average speedup against TSRK5DP (6.3) comparison for 1–32 nodes,

heat equation, three-point central difference formula. 121
6.6 Yes/No table, heat equation, three-point central difference formula. 122

10

6.7 Maximum number of nodes where efficiency 𝐸 ≥ 50%, heat equation, three-
point central difference formula. 122

6.8 Parallel cost for all problem sizes and solvers, heat equation, three-point
central difference formula. 122

6.9 Number of integration steps and average step sizes, heat equation, five-
point central difference formula. 130

6.10 Average efficiency (6.4) comparison for 1–32 nodes, heat equation, five-
point central difference formula. 131

6.11 Average speedup against TSRK5DP (6.3) comparison for 1–32 nodes,
heat equation, five-point central difference formula. 131

6.12 Yes/No table, heat equation, five-point central difference formula. 131
6.13 Maximum number of nodes where efficiency 𝐸 ≥ 50%, heat equation, five-

point central difference formula. 132
6.14 Parallel cost for all problem sizes and solvers, heat equation, five-point

central difference formula. 132
6.15 Number of integration steps and average step sizes, wave equation, three-

point central difference formula . 141
6.16 Average efficiency (6.4) comparison for 1–32 nodes, wave equation, three-

point central difference formula. 141
6.17 Average speedup against TSRK5DP (6.3) comparison for 1–32 nodes,

wave equation, three-point central difference formula. 141
6.18 Yes/No table, wave equation, three-point central difference formula. 142
6.19 Maximum number of nodes where efficiency 𝐸 ≥ 50%, wave equation,

three-point central difference formula. 142
6.20 Parallel cost for all problem sizes and solvers, wave equation, three-point

central difference formula. 142
6.21 Number of integration steps and average step sizes, wave equation, five-

point central difference formula. 149
6.22 Average efficiency (6.4) comparison for 1–32 nodes, wave equation, five-

point central difference formula. 150
6.23 Average speedup against TSRK5DP (6.3) comparison for 1–32 nodes,

wave equation, five-point central difference formula. 150
6.24 Yes/No table, wave equation, five-point central difference formula. 150
6.25 Maximum number of nodes where efficiency 𝐸 ≥ 50%, wave equation, five-

point central difference formula. 151
6.26 Parallel cost for all problem sizes and solvers, wave equation, five-point

central difference formula. 151
6.27 Number of integration steps and average step sizes, telegraph equation. . . 163
6.28 Average efficiency (6.4) comparison for 1–32 nodes, telegraph equation. . 163
6.29 Average speedup against TSRK5DP (6.3) comparison for 1–32 nodes,

telegraph equation. 163
6.30 Yes/No table, telegraph equation. 164
6.31 Maximum number of nodes where efficiency 𝐸 ≥ 50%, telegraph equation. 164
6.32 Parallel cost for all problem sizes and solvers, telegraph equation. 164
6.33 Average time, 36 processes per node, 32 nodes, 1152 processes in total. . . 170
6.34 Roofline model data, 36 processes per node. 170
6.35 Performance reports, eight nodes, eight processes per one node, 64 processes

in total. 171

11

6.36 Performance reports, eight nodes, eight processes per one node, 64 processes
in total, 𝑅𝑎𝑡𝑖𝑜 = solver/MTSM_PRECALC 171

A.1 Coefficients for forward finite difference formulas, 𝑀 = 4, 𝑁 = 8, 𝑥0 = 0. . 196
A.2 Coefficients for backward finite difference formulas, 𝑀 = 4, 𝑁 = 8, 𝑥0 = 0. 197

B.1 𝑆𝑅 and 𝑆𝐼 intersections of MTSM for orders 26–45. 198
B.2 𝑆𝑅 and 𝑆𝐼 intersections of MTSM for orders 46–64. 199
B.3 Tables of generating system of ODEs. 200
B.4 Continued: Tables of generating system of ODEs. 201

C.1 Average time, 𝑆 = 128000, heat equation, three-point central difference
formula. 203

C.2 Efficiency, 𝑆 = 128000, heat equation, three-point central difference formula.204
C.3 Speedup, 𝑆 = 128000, heat equation, three-point central difference formula. 204
C.4 Speedup against TSRK5DP, 𝑆 = 128000, heat equation, three-point central

difference formula. 205
C.5 Characteristics of input data, 𝑆 = 128000, heat equation, three-point cen-

tral difference formula. 205
C.6 Average time, 𝑆 = 256000, heat equation, three-point central difference

formula. 205
C.7 Efficiency, 𝑆 = 256000, heat equation, three-point central difference formula.206
C.8 Speedup, 𝑆 = 256000, heat equation, three-point central difference formula. 206
C.9 Speedup against TSRK5DP, 𝑆 = 256000, heat equation, three-point central

difference formula. 207
C.10 Characteristics of input data, 𝑆 = 256000, heat equation, three-point cen-

tral difference formula. 207
C.11 Average time, 𝑆 = 512000, heat equation, three-point central difference

formula. 210
C.12 Efficiency, 𝑆 = 512000, heat equation, three-point central difference formula.210
C.13 Speedup, 𝑆 = 512000, heat equation, three-point central difference formula. 211
C.14 Speedup against TSRK5DP, 𝑆 = 512000, heat equation, three-point central

difference formula. 211
C.15 Characteristics of input data, 𝑆 = 512000, heat equation, three-point cen-

tral difference formula. 211
C.16 Average time, 𝑆 = 1024000, heat equation, three-point central difference

formula . 212
C.17 Efficiency, 𝑆 = 1024000, heat equation, three-point central difference formula212
C.18 Speedup, 𝑆 = 1024000, heat equation, three-point central difference formula 213
C.19 Speedup against TSRK5DP, 𝑆 = 1024000, heat equation, three-point cen-

tral difference formula . 213
C.20 Characteristics of input data, 𝑆 = 1024000, heat equation, three-point

central difference formula . 214
C.21 Average time, 𝑆 = 2048000, heat equation, three-point central difference

formula. 216
C.22 Efficiency, 𝑆 = 2048000, heat equation, three-point central difference formula.216
C.23 Speedup, 𝑆 = 2048000, heat equation, three-point central difference formula.217
C.24 Speedup against TSRK5DP, 𝑆 = 2048000, heat equation, three-point cen-

tral difference formula. 217

12

C.25 Characteristics of input data, 𝑆 = 2048000, heat equation, three-point
central difference formula . 217

C.26 Average time, 𝑆 = 128000, heat equation, five-point central difference for-
mula. 218

C.27 Efficiency, 𝑆 = 128000, heat equation, five-point central difference formula. 219
C.28 Speedup, 𝑆 = 128000, heat equation, five-point central difference formula. 219
C.29 Speedup against TSRK5DP, 𝑆 = 128000, heat equation, five-point central

difference formula. 220
C.30 Characteristics of input data, 𝑆 = 128000, heat equation, five-point central

difference formula. 220
C.31 Average time, 𝑆 = 256000, heat equation, five-point central difference for-

mula. 220
C.32 Efficiency, 𝑆 = 256000, heat equation, five-point central difference formula. 221
C.33 Speedup, 𝑆 = 256000, heat equation, five-point central difference formula. 221
C.34 Speedup against TSRK5DP, 𝑆 = 256000, heat equation, five-point central

difference formula. 222
C.35 Characteristics of input data, 𝑆 = 256000, heat equation, five-point central

difference formula. 222
C.36 Average time, 𝑆 = 512000, heat equation, five-point central difference for-

mula. 225
C.37 Efficiency, 𝑆 = 512000, heat equation, five-point central difference formula. 225
C.38 Speedup, 𝑆 = 512000, heat equation, five-point central difference formula. 226
C.39 Speedup against TSRK5DP, 𝑆 = 512000, heat equation, five-point central

difference formula. 226
C.40 Characteristics of input data, 𝑆 = 512000, heat equation, five-point central

difference formula. 226
C.41 Average time, 𝑆 = 1024000, heat equation, five-point central difference

formula. 227
C.42 Efficiency, 𝑆 = 1024000, heat equation, five-point central difference formula. 227
C.43 Speedup, 𝑆 = 1024000, heat equation, five-point central difference formula. 228
C.44 Speedup against TSRK5DP, 𝑆 = 1024000, heat equation, five-point central

difference formula. 228
C.45 Characteristics of input data, 𝑆 = 1024000, heat equation, five-point cen-

tral difference formula. 228
C.46 Average time, 𝑆 = 2048000, heat equation, five-point central difference

formula. 231
C.47 Efficiency, 𝑆 = 2048000, heat equation, five-point central difference formula. 231
C.48 Speedup, 𝑆 = 2048000, heat equation, five-point central difference formula. 232
C.49 Speedup against TSRK5DP, 𝑆 = 2048000, heat equation, five-point central

difference formula. 232
C.50 Characteristics of input data, 𝑆 = 2048000, heat equation, five-point cen-

tral difference formula. 232
C.51 Average time, 𝑆 = 64000, wave equation, three-point central difference

formula. 233
C.52 Efficiency, 𝑆 = 64000, wave equation, three-point central difference formula. 234
C.53 Speedup, 𝑆 = 64000, wave equation, three-point central difference formula. 234
C.54 Speedup against TSRK5DP, 𝑆 = 64000, wave equation, three-point central

difference formula. 235

13

C.55 Characteristics of input data, 𝑆 = 64000, wave equation, three-point central
difference formula. 235

C.56 Average time, 𝑆 = 128000, wave equation, three-point central difference
formula. 236

C.57 Efficiency, 𝑆 = 128000, wave equation, three-point central difference formula.236
C.58 Speedup, 𝑆 = 128000, wave equation, three-point central difference formula. 237
C.59 Speedup against TSRK5DP, 𝑆 = 128000, wave equation, three-point cen-

tral difference formula. 237
C.60 Characteristics of input data, 𝑆 = 128000, wave equation, three-point cen-

tral difference formula. 237
C.61 Average time, 𝑆 = 256000, wave equation, three-point central difference

formula. 240
C.62 Efficiency, 𝑆 = 256000, wave equation, three-point central difference formula.240
C.63 Speedup, 𝑆 = 256000, wave equation, three-point central difference formula. 241
C.64 Speedup against TSRK5DP, 𝑆 = 256000, wave equation, three-point cen-

tral difference formula. 241
C.65 Characteristics of input data, 𝑆 = 256000, wave equation, three-point cen-

tral difference formula. 241
C.66 Average time, 𝑆 = 512000, wave equation, three-point central difference

formula. 242
C.67 Efficiency, 𝑆 = 512000, wave equation, three-point central difference formula.242
C.68 Speedup, 𝑆 = 512000, wave equation, three-point central difference formula. 243
C.69 Speedup against TSRK5DP, 𝑆 = 512000, wave equation, three-point cen-

tral difference formula. 243
C.70 Characteristics of input data, 𝑆 = 512000, wave equation, three-point cen-

tral difference formula. 243
C.71 Average time, 𝑆 = 1024000, wave equation, three-point central difference

formula. 246
C.72 Efficiency, 𝑆 = 1024000, wave equation, three-point central difference for-

mula. 246
C.73 Speedup, 𝑆 = 1024000, wave equation, three-point central difference formula.246
C.74 Characteristics of input data, 𝑆 = 1024000, wave equation, three-point

central difference formula. 247
C.75 Average time, 𝑆 = 64000, wave equation, five-point central difference formula.247
C.76 Efficiency, 𝑆 = 64000, wave equation, five-point central difference formula. 248
C.77 Speedup, 𝑆 = 64000, wave equation, five-point central difference formula. . 248
C.78 Speedup against TSRK5DP, 𝑆 = 64000, wave equation, five-point central

difference formula. 249
C.79 Characteristics of input data, 𝑆 = 64000, wave equation, five-point central

difference formula. 249
C.80 Average time, 𝑆 = 128000, wave equation, five-point central difference

formula. 249
C.81 Efficiency, 𝑆 = 128000, wave equation, five-point central difference formula. 250
C.82 Speedup, 𝑆 = 128000, wave equation, five-point central difference formula. 250
C.83 Speedup against TSRK5DP, 𝑆 = 128000, wave equation, five-point central

difference formula. 251
C.84 Characteristics of input data, 𝑆 = 128000, wave equation, five-point central

difference formula. 251

14

C.85 Average time, 𝑆 = 256000, wave equation, five-point central difference
formula. 254

C.86 Efficiency, 𝑆 = 256000, wave equation, five-point central difference formula. 254
C.87 Speedup, 𝑆 = 256000, wave equation, five-point central difference formula. 255
C.88 Speedup against TSRK5DP, 𝑆 = 256000, wave equation, five-point central

difference formula. 255
C.89 Characteristics of input data, 𝑆 = 256000, wave equation, five-point central

difference formula. 255
C.90 Average time, 𝑆 = 512000, wave equation, five-point central difference

formula. 256
C.91 Efficiency, 𝑆 = 512000, wave equation, five-point central difference formula. 256
C.92 Speedup, 𝑆 = 512000, wave equation, five-point central difference formula. 257
C.93 Speedup against TSRK5DP, 𝑆 = 512000, wave equation, five-point central

difference formula. 257
C.94 Characteristics of input data, 𝑆 = 512000, wave equation, five-point central

difference formula. 257
C.95 Average time, 𝑆 = 1024000, wave equation, five-point central difference

formula. 260
C.96 Efficiency, 𝑆 = 1024000, wave equation, five-point central difference formula.260
C.97 Speedup, 𝑆 = 1024000, wave equation, five-point central difference formula. 261
C.98 Characteristics of input data, 𝑆 = 1024000, wave equation, five-point cen-

tral difference formula. 261
C.99 Average time, 𝑆 = 512000, telegraph equation. 262
C.100 Efficiency, 𝑆 = 512000, telegraph equation. 263
C.101 Speedup, 𝑆 = 512000, telegraph equation. 263
C.102 Speedup against TSRK5DP, 𝑆 = 512000, telegraph equation. 264
C.103 Characteristics of input data, 𝑆 = 512000, telegraph equation. 264
C.104 Average time, 𝑆 = 1024000, telegraph equation. 264
C.105 Efficiency, 𝑆 = 1024000, telegraph equation. 265
C.106 Speedup, 𝑆 = 1024000, telegraph equation. 265
C.107 Speedup against TSRK5DP, 𝑆 = 1024000, telegraph equation. 266
C.108 Characteristics of input data, 𝑆 = 1024000, telegraph equation. 266

15

List of symbols and abbreviations

IVP Initial Value Problem

MOL Method of Lines

MTSM Modern Taylor Series Method

MPI Message Passing Interface

ODE Ordinary Differential Equation

PDE Partial Differential Equation

𝐴𝑏𝑠𝑇𝑜𝑙 Absolute tolerance

𝑅𝑒𝑙𝑇𝑜𝑙 Relative tolerance

ℎ Step size in the time domain

Δ𝑥 Step size in the spatial domain

𝑚𝑎𝑥𝑂𝑅𝐷 Maximum order of Modern Taylor Series
Method

𝑡𝑚𝑎𝑥 Maximum simulation time

𝑆 Number of segments in the spatial domain

16

Chapter 1

Introduction

Differential equations have been studied for over 300 years, dating back to the work of
Isaac Newton (1643–1727) and Gottfried Wilhelm von Leibniz (1646–1716) in the 17th
century. They developed calculus, which includes techniques for solving and manipulating
differential equations. The development of calculus was a significant turning point in the
history of mathematics and physics, as it allowed scientists and engineers to model and
understand the behavior of physical systems.

In the 18th century, Leonhard Euler (1707–1783) and Joseph-Louis Lagrange (1736–
1813) made significant contributions to the study of ordinary differential equations (ODEs),
which describe the behavior of systems that change with time. They developed techniques
for solving ODEs and applied them to problems in physics and engineering.

In the 19th century, the study of partial differential equations (PDEs) began to take
shape. PDEs involve derivatives of multiple variables and describe more complex physical
phenomena, such as the flow of heat and fluids. Mathematicians such as Augustin-Louis
Cauchy (1789–1857), Jean-Baptiste Joseph Fourier (1768–1830), and Pierre-Simon Laplace
(1749–1827) made valuable contributions to the study of PDEs, developing techniques for
solving and analyzing these equations.

In the 20th century, the theory of differential equations advanced rapidly, with many
new techniques being developed for solving ODEs and PDEs. Mathematicians such as
Henri Poincaré (1854–1912), George David Birkhoff (1884–1944), Paul Duhamel (1838–
1920), and David Hilbert (1862–1943), made important contributions to the field. Today,
differential equations are a fundamental tool in many areas of science and engineering,
including physics, engineering, finance, and biology. Many techniques and software are
available to solve differential equations, and research in the field continues to uncover new
applications and solutions.

This thesis deals with the parallel solution of second-order PDEs. Second-order PDEs
are important because they are widely used to model many physical and mathematical
phenomena. Some examples of second-order PDEs follow. The wave equation describes
the behavior of mechanical waves, such as sound and water waves, and is used in acoustics
and seismology fields. The heat equation describes how heat is diffused through a material.
It plays a crucial role in many areas of physics and engineering, such as thermal analysis,
heat transfer, and combustion. The Laplace equation describes the behavior of various
phenomena, such as electrostatic potential, fluid flow, and temperature distribution. The
Schrödinger equation is fundamental in quantum mechanics, and it is used to describe the
time evolution of a quantum mechanical system.

17

Several techniques can be used to solve PDEs. For example, analytical methods find an
exact solution to the PDE using mathematical techniques such as the separation of variables
or eigenfunction expansion. These methods are not always possible to apply, especially for
more complex PDEs. Numerical methods approximate the solution of PDE using a finite
set of discrete values. Widely used numerical methods include, for example, the finite differ-
ence method, the finite element method, or the finite volume method. These methods are
generally more versatile and applicable to a wider range of PDEs than analytical methods.

In this work, the second-order PDEs are solved using the method of lines (MOL).
The MOL is a technique for solving PDEs by converting them into a system of ODEs by
discretizing spatial variables. The first references to the MOL are from the turn of the 19th
and 20th century, and since then, it has become a standard technique in the numerical
solution of PDEs.

The resulting system of ODEs can then be solved using standard numerical methods.
The Euler, Runge-Kutta, Adams-Bashforth, and Adams-Moulton methods are the most
widely used. This thesis presents the numerical method based on the Taylor series that
automatically changes the integration step and the order of a method during the calculation
to achieve defined accuracy. It differs from the conventional methods by the possibility of
calculating higher-order derivatives and their subsequent use in the calculation.

1.1 Motivation
The parallel implementation of the Taylor series method is rare. One of the reasons is that
it typically requires a sequential process to compute the terms of the series. Parallelization
of this method can be challenging due to the dependencies between the terms of the series.
The parallel high-precision numerical solution of ODEs using high-order Taylor methods is
discussed in [14]. The Arenstorf orbits and galactic dynamics problems were tested on a Sun
UltraSPARC-II with four processors of 480 MHz using the Message Passing Interface (MPI)
and the multiple-precision Fortran library mpf90. The authors noted that this approach
is useful only for high-precision demands because there is a high number of inter-process
communications. The specialized FPGA-based parallel system for numerical integration is
discussed in [98] and [97].

The parallel implementation of the Taylor series method is described in the article [41]
focusing on the OpenMP parallelization of the multiple precision Taylor series method using
one computational node. The model problem is the chaotic dynamic system – the classical
Lorenz system. The article also briefly introduces a CNS (Clean Numerical Simulation)
originally published by Shijun Liao [109]. Article [81] introduces a hybrid MPI+OpenMP
parallelization strategy for a multiple-precision Taylor series method with fixed step size
and fixed order. The authors used up to six nodes (32 cores per node). Finally, the article
[82] is based on the previous article [81] and modifies CNS with variable step size and fixed
order modification of the method. The optimal integration steps are based on the approach
published in [89].

None of those mentioned above articles deals with large-scale systems of ODEs arising
from PDEs. Therefore, a parallel higher-order Taylor-series-based algorithm was proposed
and implemented.

18

1.2 Research objectives
The following hypothesis was formulated:
Large-scale systems of ordinary differential equations arising from the second-order linear
partial differential equations using the method of lines can be solved more efficiently by the
parallel higher-order Taylor series-based numerical method than by conventional numerical
methods.
The main objectives of the presented thesis can be summarized as follows:

1. To analyze and evaluate the suitability of the higher-order Taylor series-based method
for the solution of ordinary and partial differential equations.

2. To propose, implement and deploy the Taylor series-based parallel method on an HPC
cluster.

3. To experimentally evaluate the proposed method using the selected class of the second-
order linear partial differential equations discretized in the spatial domain by finite
difference formulas of different orders. Compare obtained results with the state-of-
the-art numerical methods.

4. Discuss the achieved results and suggest possible extensions.

1.3 Thesis outline
The thesis is organized as follows. Chapter 1 introduces the research area, motivation,
and research objectives. Chapter 2 provides an overview of numerical integration methods,
including the Euler method, Runge-Kutta methods, Taylor series method, and multistep
methods. Chapter 3 is focused on partial differential equations. Types of PDEs are dis-
cussed with the methods for solving PDEs. This chapter also provides an overview of the
Taylor series-based finite difference formulas and analyzes their accuracy. The next part of
this chapter introduces the MOL and its numerical stability. Finally, the transformation
methods of higher-order ODEs into a system of first-order ODEs are presented. Chapter 4
introduces the Modern Taylor Series Method (MTSM) and provides the state-of-the-art of
the Taylor series method. Recurrent calculation of Taylor series terms, automatic integra-
tion order setting, and automatic transformation are discussed. This chapter also presents
a linear and nonlinear form of the MTSM, together with practical examples. Finally, a gen-
eral parallelization method for the linear systems of ODEs is proposed. Chapter 5 is focused
on the interconnection networks and topologies used in supercomputers and the challenges
of current high-performance interconnection networks. It also summarizes parallel perfor-
mance metrics and introduces the Berkeley Roofline model. Chapter 6 and Appendix C
summarize achieved results. Finally, Chapter 7 includes concluding remarks and discusses
possible future work.

19

Chapter 2

Numerical solution of differential
equations

The exact solution of large ODE systems exists only for a few real-world problems. There-
fore, the numerical solution is used to obtain approximate solutions. This chapter summa-
rizes the basic knowledge of ODEs and the numerical methods of their solution. In general,
it is not possible to select the best method, but it is possible to select the most appropriate
methods for a particular class of problems with similar properties. For more details, refer
to [30, 69, 74, 75].

An equation containing the derivatives of one or more unknown functions (or dependent
variables), with respect to one or more independent variables, is said to be a differential
equation. A common solution of the differential equation contains an integration constant
that may have any value. To specify a unique solution, the value of the function must be
defined at a certain point. This value is called an initial condition. The formal definition
of the initial value problem follows.
Definition 2.0.1. Initial value problem. A first-order initial value problem (IVP) in
ordinary differential equations consists of two parts:

1. An ordinary form of a first-order differential equation is formulated by

𝐹 (𝑡, 𝑦(𝑡), 𝑦′(𝑡)) = 0 . (2.1)

Equation (2.1) can be written in an explicit form

𝑦′ = 𝑓(𝑡, 𝑦(𝑡)) , (2.2)

where 𝑓 is continuous in some open set Ω in the (𝑡, 𝑦) plane.

2. An initial condition that determines the value of 𝑦(𝑡) at a certain point 𝑡 = 𝑡0

𝑦(𝑡0) = 𝑦0 , (2.3)

where (𝑡0, 𝑦0) ∈ Ω.
A numerical solution to the initial value problem means finding approximate values of

the function 𝑦(𝑡) at a finite number of points 𝑎 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑘 = 𝑏. These points are
called interpolation points or net points, and the set 𝐼ℎ = {𝑡0, 𝑡1, . . . , 𝑡𝑘} is called a net or
grid. The distance between two neighboring points ℎ𝑖 = 𝑡𝑖+1 − 𝑡𝑖 is called a net step length
at the point 𝑡𝑖, or integration step. If the step between individual net points is constant,
the net is called equidistant and ℎ = 𝑏−𝑎

𝑛 .

20

Definition 2.0.2. Grid (net), integration step size. A grid (or net) is a decomposition
𝐼ℎ of the interval 𝐼 = ⟨𝑡0, 𝑡𝑘⟩

𝐼ℎ = {𝑡0, 𝑡1, . . . , 𝑡𝑘},
with the points 𝑡0 < 𝑡1 < . . . < 𝑡𝑘 called interpolation points or grid points or net points.
Differences between neighboring points ℎ𝑖 = 𝑡𝑖+1− 𝑡𝑖, 𝑖 = 0, . . . , 𝑘− 1 are called integration
step sizes. If the step between individual net points is constant, the net is called equidistant
and ℎ = 𝑏−𝑎

𝑛 .

Definition 2.0.3. An nth order differential equation. The 𝑛𝑡ℎ-order differential equa-
tion is expressed in the explicit form

𝑦(𝑛)(𝑡) = 𝐹 (𝑡, 𝑦(𝑡), 𝑦′(𝑡), . . . , 𝑦(𝑛−1)) , (2.4)

the initial conditions are

𝑦(𝑡0) = 𝑦1,0, 𝑦′(𝑡0) = 𝑦2,0, . . . , 𝑦
(𝑛−1)(𝑡0) = 𝑦𝑛,0 . (2.5)

The 𝑛𝑡ℎ-order differential equation (2.4) can be transformed into a system of first-order
differential equations (2.6) with initial conditions (2.7). When 𝑦1 = 𝑦, 𝑦2 = 𝑦′, . . . , 𝑦𝑛 =
𝑦(𝑛−1), then 𝑓𝑗 = 𝑦𝑗+1, 𝑗 = 1, 2, . . . , 𝑛− 1 and 𝑓𝑛 = 𝐹 (𝑡, 𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡)).

Definition 2.0.4. System of the first-order differential equations. The system of
first-order differential equations consists of 𝑛 equations with 𝑛 unknown functions
𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡) expressed in the form

𝑦′𝑗(𝑡) = 𝑓𝑗(𝑡, 𝑦1(𝑡), 𝑦2(𝑡) , . . . , 𝑦𝑛(𝑡)), 𝑗 = 1, 2, . . . , 𝑛 , (2.6)

with initial conditions
𝑦𝑗(𝑡0) = 𝑦𝑗,0, 𝑗 = 1, 2, . . . , 𝑛 . (2.7)

Let us assume that each initial value problem, the numeric solution that will be con-
sidered, has the only solution. It is known that this precondition of existence and the
uniqueness of the solution will be met if the function 𝑓(𝑡, 𝑦(𝑡)) is continuous, bounded, and
satisfies the Lipschitz condition.

Definition 2.0.5. Lipschitz condition. A function 𝑓(𝑡, 𝑦) satisfies a Lipschitz condition
in the variable 𝑦 on a set 𝐷 ⊂ R2 if a constant 𝐿 > 0 exists with

|𝑓(𝑡, 𝑦1)− 𝑓(𝑡, 𝑦2)| ≤ 𝐿 |𝑦1 − 𝑦2| ,

whenever (𝑡, 𝑦1), (𝑡, 𝑦2) are in 𝐷 and 𝐿 is the Lipschitz constant.

Analytical solution of large systems of ordinary differential equations is complex and,
in many cases, impossible. Therefore, a numerical solution is even more used in practice.
Numerical method for solving the initial value problem (2.0.1) is a formula for the gradual
calculation of the approximations 𝑦1, 𝑦2, . . . , 𝑦𝑘, 𝑦0 = 𝑐𝑜𝑛𝑠𝑡. The methods for the numerical
solution of differential equations can be divided according to the manner of calculation:
into one-step and multistep, explicit and implicit methods.

Definition 2.0.6. One-step method. A one-step method for the calculation of an ap-
proximation 𝑦𝑖+1 of the solution of the initial value problem (2.0.1) has the form

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑖Φ(𝑡𝑖, 𝑦𝑖, 𝑦𝑖+1, ℎ𝑖; 𝑓) ,

where Φ is the so-called incremental function of four variables 𝑡𝑖, 𝑦𝑖, 𝑦𝑖+1, ℎ𝑖 and depends
on the function 𝑓(𝑡, 𝑦).

21

Definition 2.0.7. Multistep method. Multistep methods (𝑚-step methods) use the
previously calculated values 𝑦𝑖, 𝑦𝑖−1, . . . , 𝑦𝑖+1−𝑘 to calculate the approximation 𝑦𝑖+1. The
general formula is

𝑦𝑖+1 = ℎ

𝑚∑︁
𝑗=0

𝑏𝑗𝑓(𝑡𝑖+1−𝑘, 𝑦𝑖+1−𝑘)−
𝑚∑︁
𝑗=1

𝑎𝑗𝑦𝑖+1−𝑗 .

If the coefficient is 𝑏0 = 0, the method is explicit. If 𝑏0 ̸= 0, the method is implicit, and
we have to solve equation (2.8) to calculate the value of 𝑦𝑖+1:

𝑦𝑖+1 = 𝜙(𝑦𝑖+1), where 𝜙(𝑧) = ℎ𝑏0𝑓(𝑡𝑖+1, 𝑧)+
𝑚∑︁
𝑗=1

(ℎ𝑏𝑗𝑓(𝑡𝑖+1−𝑗 , 𝑦𝑖+1−𝑗)− 𝑎𝑗𝑦𝑖+1−𝑗) . (2.8)

Definition 2.0.8. Explicit and implicit methods. Let us 𝑦(𝑡𝑖) denote the solution of
IVP (2.0.1) at the node 𝑡𝑖 and 𝑦𝑖 a numerical approximation of 𝑦(𝑡𝑖). A numerical method
for the solution of IVP on a grid 𝐼ℎ is called explicit, if an approximation 𝑦𝑖+1 in 𝑡𝑖+1 can
be calculated directly from already computed values 𝑦𝑗 , 𝑗 ≤ 𝑖. Otherwise, the method is
called implicit.

Definition 2.0.9. Linear differential equation of the order 𝑛. A linear differential
equation of order 𝑛 is an equation of the form

𝑃𝑛(𝑡)𝑦
(𝑛) + 𝑃𝑛−1(𝑡)𝑦

(𝑛−1) + . . .+ 𝑃1(𝑡)𝑦
′ + 𝑃0(𝑡)𝑦 = 𝑄(𝑡) ,

where each 𝑃𝑘 and 𝑄 is a function of the independent variable 𝑡, and 𝑦(𝑘) denotes the 𝑘𝑡ℎ

derivative of 𝑦 with respect to 𝑡.

Definition 2.0.10. Homogeneous linear differential equation of order 𝑛. A homo-
geneous linear differential equation of order 𝑛 is an equation of the form

𝑃𝑛(𝑡)𝑦
(𝑛) + 𝑃𝑛−1(𝑡)𝑦

(𝑛−1) + . . .+ 𝑃1(𝑡)𝑦
′ + 𝑃0(𝑡)𝑦 = 0 .

2.1 Adaptive-step-size numerical methods
To approximate continuous behavior with rapid changes, the fixed-step-size numerical meth-
ods must choose a small step size to maintain predefined accuracy and obtain satisfying
results. The disadvantage is that the small step size results in a very high computational
cost. In contrast, the adaptive-step-size numerical methods can use larger step sizes to ob-
tain approximations more efficiently. The idea of adaptive step-size techniques is to adapt
the trajectory of the approximation by estimating and controlling the error at each step.
These error estimates are used to dynamically increase or decrease the step size [52, 71].
The main advantage of adaptive-steps-size numerical methods is the possibility of defining
a user’s error tolerance to balance desired precision and computational efficiency.

Let us assume that the IVP 2.0.1 is used to define the approximation errors. Consider
that we have computed the values of the solution 𝑦1, 𝑦2, . . . , 𝑦𝑖 at the points 𝑡1, 𝑡2, . . . , 𝑡𝑘, 𝑡𝑖 =
𝑇 , respectively, to approximate 𝑦(𝑇) for 𝑇 > 0. The exact values are denoted as 𝑦(𝑡1), 𝑦(𝑡2),
. . ., 𝑦(𝑡𝑖). For one-step methods, the computation of 𝑦𝑖+1 is based on the value of 𝑦𝑖. For
fixed-step-size methods, the step size (see definition 2.0.2) ℎ𝑖 = 𝑡𝑖+1 − 𝑡𝑖 is equal for all ℎ𝑖,
𝑖 = 0, . . . , 𝑖− 1, for adaptive-step-size methods, the step size can differ.

22

Two sources of errors must be considered when using adaptive-step-size methods. Firstly,
round-off errors, caused by the limited length of the word on the computer where the value
of the number is stored.

Secondly, approximation errors caused by deviations between the approximations 𝑦1,
𝑦2, . . . , 𝑦𝑖 and the exact values 𝑦(𝑡1), 𝑦(𝑡2), . . . , 𝑦(𝑡𝑖). If we omit round-off errors, the global
error is the total error in the computed solution at a certain point and shows how far the
computed solution is from the original solution curve. The global error has two components,
the global error at 𝑡𝑖 and its propagation to 𝑡𝑖+1 and the approximation error of the last
step called local error. Let us denote the local solution 𝑢 as 𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)) with the initial
value 𝑢(𝑡𝑖) = 𝑦𝑖.

Definition 2.1.1. Global error. The global error at 𝑡𝑖+1 can be defined as

𝜖𝑔𝑖+1 = 𝑦(𝑡𝑖+1)− 𝑦𝑖+1

= (𝑦(𝑡𝑖+1)− 𝑢(𝑡𝑖+1)) + (𝑢(𝑡𝑖+1)− 𝑦𝑖+1) .

Definition 2.1.2. Local error. The local error at 𝑡𝑖+1 can be defined as

𝜖𝑙𝑖+1 = 𝑢(𝑡𝑖+1)− 𝑦𝑖+1 .

Figure 2.1: Local and global errors in a numerical approximation [52].

2.1.1 Adapting the step size

It is impossible to control the global error directly, but we can indirectly control the local
error in each time step. The local in each time step is bound by the user-defined error
tolerance 𝜏 . There are two common definitions error per step, where |𝜖𝑙𝑖+1| ≤ 𝜏 and error
per unit step, where |𝜖𝑙𝑖+1| ≤ 𝜏 · ℎ𝑖, for each 𝑖 ≥ 0.

The local error depends on the order of the numerical method, which determines how
fast a sequence of approximations generated by a method converges toward the expected
solution. The higher the order, the better the approximation [52].

Consistency is the study of local error. A numerical method is called consistent if the
local error decays sufficiently fast as ℎ −→ 0.

Definition 2.1.3. Consistency. The numerical method is said to be consistent with the
differential equation it approximates if

lim
ℎ−→0

|𝜖𝑙𝑖(ℎ)| = 0 ,

23

where 𝜖𝑙𝑖 is the difference between the numerical method and the differential equation at 𝑡𝑖.

A numerical method is called convergent if the absolute error between the numerical
and analytical solution decreases with decreasing ℎ.

Definition 2.1.4. Convergence. The numerical method is said to be convergent with
respect to the differential equation if

lim
ℎ−→0

|𝑦𝑖 − 𝑦(𝑡𝑖)| = 0 ,

where 𝑦(𝑡𝑖) is the exact solution evaluated at 𝑡𝑖 and 𝑦𝑖 is the approximation at the same
point.

Definition 2.1.5. Stability. The numerical method is stable if small changes in the initial
condition produce correspondingly small changes in the resulting approximations.

Stability considerations are important because, in each step after the first step of a
numerical technique, we start over again with a new initial-value problem, where the initial
condition is the approximate solution value computed in the preceding step. This value
will almost certainly vary at least slightly from the true value of the solution because of the
presence of round-off errors. Another common source of error occurs in the initial condition
itself. In physical applications, data are often obtained by imprecise measurements. For
more details, see [57, 181].

Definition 2.1.6. Autonomous differential equation. A differential equation of the
form (2.2) is called autonomous if the right-hand side 𝑓 is not explicitly dependent on 𝑡,
that is,

𝑦′ = 𝐹 (𝑦) .

Each differential equation can be transformed into an autonomous differential equation.
This is called autonomization

𝑌 =

(︂
𝑦

𝑡

)︂
, 𝐹 (𝑌) =

(︂
𝑓(𝑡, 𝑦)

1

)︂
, 𝑌 ′ = 𝐹 (𝑌) .

A method which provides the same solution for the autonomous differential equation as for
the original IVP, is called invariant under autonomization.

2.2 Taylor series methods
First, the terms such as the Taylor polynomial and Taylor series will be introduced.

Definition 2.2.1. Taylor polynomial. Let the function 𝑓 have all derivatives up to the
𝑛𝑡ℎ order at point 𝑥0. Then, the 𝑛𝑡ℎ Taylor polynomial for 𝑓 of the 𝑛𝑡ℎ degree with center
𝑥0 can be defined as follows:

𝑃𝑛(𝑡) = 𝑓(𝑥0)+𝑓 ′(𝑥0)(𝑡−𝑥0)+
𝑓 ′′(𝑥0)

2!
(𝑡−𝑥0)

2+· · ·+𝑓 (𝑛)𝑥0
𝑛!

(𝑡−𝑥0)
𝑛 =

𝑛∑︁
𝑘=0

𝑓 (𝑘)(𝑥0)

𝑘!
(𝑡−𝑥0)

𝑘 .

(2.9)

If we plug 𝑡 = 𝑡𝑖 + ℎ = 𝑡𝑖+1 and 𝑥0 = 𝑡𝑖 into (2.9), we obtain (explicit) Taylor series.

24

Definition 2.2.2. Taylor series. Taylor series can be defined as follows:

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑦′𝑖 +
ℎ2

2!
𝑦′′𝑖 + · · ·+ ℎ𝑛

𝑛!
𝑦
(𝑛)
𝑖 , (2.10)

where ℎ ∈ R is an integration step and 𝑛 ∈ N is the order of the method.

Taylor polynomial (2.9) is the basis of one-step numerical methods and provides the
most accurate approximation of the function. The problem is to obtain a higher derivative,
but if Taylor series methods are effectively implemented, they can be used to solve general
problems. Local truncation error due to neglecting of higher terms of Taylor series, is the
error made by the numerical method in one step. For more information, see [29].

Definition 2.2.3. Local discretization error. General differential method

𝑦0 = 𝑦(𝑡0) , (2.11)
𝑦𝑖+1 = 𝑦𝑖 + ℎ𝜙(𝑡𝑖, 𝑦𝑖), 𝑖 = 0, 1, . . . , 𝑘 , (2.12)

where 𝜙(𝑡𝑖, 𝑦𝑖) is the function that depends on the particular differential method, the func-
tion has the local discretization error at each step:

𝜏𝑖+1(ℎ) =
𝑦𝑖+1 − (𝑦𝑖 + ℎ𝜙(𝑡𝑖, 𝑦𝑖))

ℎ
=

𝑦𝑖+1 − 𝑦𝑖
ℎ

− 𝜙(𝑡𝑖, 𝑦𝑖), 𝑖 = 0, 1, . . . , 𝑘 , (2.13)

where 𝑦𝑖 = 𝑦(𝑡𝑖) is the analytical solution.

Derivation of higher-order Taylor series methods
Consider the IVP

𝑦′(𝑡) = 𝑓(𝑡, 𝑦), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦(𝑎) = 𝛼 . (2.14)

Expand 𝑦(𝑡) in the 𝑛𝑡ℎ Taylor polynomial about 𝑡𝑖 and evaluate at 𝑡𝑖+1:

𝑦(𝑡𝑖+1) = 𝑦(𝑡𝑖) + ℎ𝑦′(𝑡𝑖) +
ℎ2

2
𝑦′′(𝑡𝑖) + · · ·+ ℎ𝑛

𝑛!
𝑦(𝑛)(𝑡𝑖) +

ℎ𝑛+1

(𝑛+ 1)!
𝑦(𝑛+1)(𝜉𝑖) , (2.15)

where 𝜉𝑖 ∈ (𝑡𝑖, 𝑡𝑖+1). By deriving the solution of 𝑦(𝑡) we get 𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), 𝑦′′(𝑡) =
𝑓 ′(𝑡, 𝑦(𝑡)), . . . , 𝑦(𝑛)(𝑡) = 𝑓 (𝑛−1)(𝑡, 𝑦(𝑡)) . Substituting into equation (2.15), we get:

𝑦(𝑡𝑖+1) = 𝑦(𝑡𝑖) + ℎ𝑓(𝑡𝑖, 𝑦(𝑡𝑖)) + · · ·+ ℎ𝑛

𝑛!
𝑓 (𝑛−1)(𝑡𝑖, 𝑦(𝑡𝑖)) +

ℎ𝑛+1

(𝑛+ 1)!
𝑓 (𝑛)(𝜉𝑖, 𝑦(𝜉𝑖)) . (2.16)

The 𝑛𝑡ℎ order Taylor series method is obtained by omitting the remainder term.

Definition 2.2.4. Taylor method of order 𝑛. Taylor series method of order 𝑛 is defined
as:

𝑦0 = 𝛼 , (2.17)
𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑇 (𝑛)(𝑡𝑖, 𝑦𝑖), 𝑖 = 0, 1, . . . , 𝑘 , (2.18)

where
𝑇 (𝑛)(𝑡𝑖, 𝑦𝑖) = 𝑓(𝑡𝑖, 𝑦𝑖) +

ℎ

2
𝑓 ′(𝑡𝑖, 𝑦𝑖) + · · ·+ ℎ𝑛−1

𝑛!
𝑓 (𝑛−1)(𝑡𝑖, 𝑦𝑖) . (2.19)

Remark 2.2.1. The Euler method is the Taylor method of order one.

25

Lemma 2.2.1. Taylor’s Theorem. Suppose 𝑓 ∈ 𝐶𝑛[𝑎, 𝑏], that 𝑓 (𝑛+1) exists in [𝑎, 𝑏] and
𝑥0 ∈ [𝑎, 𝑏]. For every 𝑥 ∈ [𝑎, 𝑏], there exists a number 𝜉(𝑥) between 𝑥 and 𝑥0 with

𝑓(𝑥) = 𝑃𝑛(𝑥) +𝑅𝑛(𝑥) , (2.20)
and

𝑅𝑛(𝑥) =
𝑓 (𝑛+1)(𝜉(𝑥))

(𝑛+ 1)!
(𝑥− 𝑥0)

(𝑛+1) , (2.21)

where 𝑃𝑛(𝑥) is the Taylor polynomial (2.9) for 𝑓 about 𝑥0 and 𝑅𝑛(𝑥) is called the remainder
term (or truncation error) associated with 𝑃𝑛(𝑥).
Proof. See [87].

Lemma 2.2.2. If the Taylor series method of order 𝑛 is used for the approximation of the
IVP 2.0.1 with the integration step ℎ and if 𝑦 ∈ 𝐶𝑛+1[𝑎, 𝑏], then the local discretization
error is 𝑂(ℎ𝑛).
Proof. Equation (2.9) can be rewritten in the form

𝑦𝑖+1 − 𝑦𝑖 − ℎ𝑓(𝑡𝑖, 𝑦𝑖)−
ℎ2

2
𝑓 ′(𝑡𝑖, 𝑦𝑖)− · · · − ℎ𝑛

𝑛!
𝑓 (𝑛−1)(𝑡𝑖, 𝑦𝑖) =

ℎ𝑛+1

(𝑛+ 1)!
𝑓 (𝑛)(𝜉𝑖, 𝑦(𝜉𝑖)) , (2.22)

where 𝜉 ∈ (𝑡𝑖, 𝑡𝑖+1). Because 𝑦 ∈ 𝐶𝑛+1[𝑎, 𝑏], we have 𝑦(𝑛+1)(𝑡) = 𝑓 (𝑛)(𝑡, 𝑦(𝑡)) in the interval
[𝑎, 𝑏] and 𝜏𝑖+1 = 𝑂(ℎ𝑛) for 𝑖 = 1, 2, · · · , 𝑘 + 1. Local discretization error is

𝜏𝑖+1(ℎ) =
𝑦𝑖+1 − 𝑦𝑖

ℎ
− 𝑇 (𝑛)(𝑡𝑖, 𝑦𝑖) =

ℎ𝑛

(𝑛+ 1)!
𝑓 (𝑛)(𝜉𝑖, 𝑦(𝜉𝑖)), 𝑖 = 0, 1, . . . , 𝑘 . (2.23)

2.3 Euler method
Let us assume the initial value problem with an equidistant net {𝑡0, 𝑡1, . . . , 𝑡𝑘} and step
ℎ = 𝑡𝑖+1 − 𝑡𝑖, where 𝑖 = 0, . . . , 𝑘 − 1. In all net points hold that

𝑦′(𝑡𝑖) = 𝑓(𝑡𝑖, 𝑦(𝑡𝑖)) . (2.24)
The derivative on the left side of equation (2.24) can be expressed as

𝑦(𝑡𝑖+1)− 𝑦(𝑡𝑖)

ℎ

.
= 𝑓(𝑡𝑖, 𝑦(𝑡𝑖)) . (2.25)

By replacing 𝑦(𝑡𝑖) with the approximate value 𝑦𝑖, it is possible to express an approximate
value 𝑦(𝑡𝑖+1) and we obtain the explicit Euler method:

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓(𝑡𝑖, 𝑦𝑖) . (2.26)
The approximate solution at the next net point is calculated using the value of the previous.
The implicit Euler method is defined as:

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓(𝑡𝑖+1, 𝑦𝑖+1) . (2.27)
Because the unknown 𝑦𝑖+1 is the argument of the function 𝑓(𝑡, 𝑦), it is not possible to
obtain the explicit formula. Therefore, we have to solve the following equation:

𝑔(𝑧) := 𝑧 − 𝑦𝑖 − ℎ𝑓(𝑡𝑖+1, 𝑧) = 0 , (2.28)
where the solution 𝑧 is 𝑦𝑖+1. Equation (2.28) can be solved using iterative methods (for
example, the Newton method).

26

2.4 Runge-Kutta methods
Runge-Kutta methods are an important group of one-step methods. The general form of
the implicit Runge-Kutta method is

𝑦𝑖+1 = 𝑦𝑖 + ℎ
𝑠∑︁

𝑗=1

𝑏𝑗𝑘𝑗 , (2.29)

where coefficients 𝑘𝑗 are defined as

𝑘𝑗 = 𝑓(𝑡𝑖 + ℎ𝑐𝑗 , 𝑦𝑖 + ℎ
𝑠∑︁

𝑙=1

𝑎𝑗𝑙𝑘𝑙), 𝑗 = 1, 2, . . . , 𝑠 , (2.30)

and 𝑏𝑗 , 𝑐𝑗 , and 𝑎𝑗𝑙 are constants determined to reach the maximal order of the method. For
explicit Runge-Kutta methods hold, 𝑎𝑗𝑙 = 0 for 𝑙 ≥ 𝑗, therefore, the coefficients 𝑘𝑗 can be
calculated as

𝑘1 = 𝑓(𝑡𝑖, 𝑦𝑖) , (2.31)

𝑘𝑗 = 𝑓(𝑡𝑖 + ℎ𝑐𝑗 , 𝑦𝑖 + ℎ

𝑗−1∑︁
𝑙=1

𝑎𝑗,𝑙𝑘𝑙), 𝑗 = 2, 3, . . . , 𝑠 . (2.32)

Definition 2.4.1. Butcher tableau. The Runge-Kutta scheme can be written in the
general form of a tableau, the so-called Butcher tableau [30]

𝑐1 𝑎1,1 𝑎1,2 · · · 𝑎1,𝑠
𝑐2 𝑎2,1 𝑎2,2 · · · 𝑎2,𝑠 =⇒ c A
...

...
... b𝑇

𝑐𝑠 𝑎𝑠,1 𝑎𝑠,2 · · · 𝑎𝑠,𝑠
𝑏1 𝑏2 · · · 𝑏𝑠

(2.33)

where c are the nodes, A is the matrix of the method, and b are weights.

Explicit Runge-Kutta methods are characterized by a strictly lower triangular matrix
A, i.e., 𝑎𝑖𝑗 = 0 if 𝑗 ≥ 𝑖. Moreover, the following condition holds

𝑐𝑖 =
𝑠∑︁

𝑗=1

𝑎𝑖,𝑗 , 𝑖 = 1, 2, . . . , 𝑠 . (2.34)

The maximal order 𝑝(𝑠) of the Runge-Kutta method with 𝑠 stages depends on 𝑠 as follows:

𝑝(𝑠) = 𝑠, for 𝑠 = 1, 2, 3, 4,

𝑝(𝑠) = 𝑠− 1, for 𝑠 = 5, 6, 7,

𝑝(𝑠) = 𝑠− 2, for 𝑠 = 8, 9,

𝑝(𝑠) ≤ 𝑠− 2, for 𝑠 = 10, 11,

(2.35)

An overview of the well-known Runge-Kutta methods follows.

27

Runge-Kutta method 𝑝 = 𝑠 = 1

The Runge-Kutta method of the first order is the explicit Euler method. In this case, the
Butcher tableau is of the form

0 0

1
𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓(𝑡𝑖, 𝑦𝑖) . (2.36)

Runge-Kutta method 𝑝 = 𝑠 = 2

There are three variants of the Runge-Kutta method of second order. The first is the explicit
midpoint method

0
1
2

1
2

0 1

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑘2 ,

𝑘1 = 𝑓(𝑡𝑖, 𝑦𝑖) ,

𝑘2 = 𝑓(𝑡𝑖 +
1
2ℎ, 𝑦𝑖 +

1
2ℎ𝑘1) .

(2.37)

The second variant is known as the modified Euler’s method or Heun’s method

0

1 1
1
2

1
2

𝑦𝑖+1 = 𝑦𝑖 +
1
2ℎ(𝑘1 + 𝑘2) ,

𝑘1 = 𝑓(𝑡𝑖, 𝑦𝑖) ,

𝑘2 = 𝑓(𝑡𝑖 + ℎ, 𝑦𝑖 + ℎ𝑘1) .

(2.38)

The third one is the Ralston’s method with a minimum local error bound

0
2
3

2
3
1
4

3
4

𝑦𝑖+1 = 𝑦𝑖 + ℎ
(︀
1
4𝑘1 +

3
4𝑘2

)︀
,

𝑘1 = 𝑓(𝑡𝑖, 𝑦𝑖) ,

𝑘2 = 𝑓(𝑡𝑖 +
2
3ℎ, 𝑦𝑖 +

2
3ℎ𝑘1) .

(2.39)

Runge-Kutta method 𝑝 = 𝑠 = 3

The Butcher table for Runge-Kutta with three stages is

0
𝑐2 𝑐2
𝑐3 𝑐3 − 𝑎3,2 𝑎3,2

𝑏1 𝑏2 𝑏3

(2.40)

Different variants of Runge-Kutta methods of the third order exist. One of the most popular
is the Ralston’s third-order method, used in the embedded Bogacki–Shampine method

0
1
2

1
2

3
4 0 3

4
2
9

1
3

4
9

𝑦𝑖+1 = 𝑦𝑖 +
1
9ℎ(2𝑘1 + 3𝑘2 + 4𝑘3) ,

𝑘1 = 𝑓(𝑡𝑖, 𝑦𝑖) ,

𝑘2 = 𝑓(𝑡𝑖 +
1
2ℎ, 𝑦𝑖 +

1
2ℎ𝑘1) ,

𝑘3 = 𝑓(𝑡𝑖 +
3
4ℎ, 𝑦𝑖 +

3
4ℎ𝑘2) .

(2.41)

28

Runge-Kutta method 𝑝 = 𝑠 = 4

The most widely used Runge-Kutta method of the fourth order is classic Runge-Kutta
method

0
1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

𝑦𝑖+1 = 𝑦𝑖 +
1
6ℎ(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) ,

𝑘1 = 𝑓(𝑡𝑖, 𝑦𝑖) ,

𝑘2 = 𝑓(𝑡𝑖 +
1
2ℎ, 𝑦𝑖 +

1
2ℎ𝑘1) ,

𝑘3 = 𝑓(𝑡𝑖 +
1
2ℎ, 𝑦𝑖 +

1
2ℎ𝑘2) ,

𝑘4 = 𝑓(𝑡𝑖 + ℎ, 𝑦𝑖 + ℎ𝑘3) .

(2.42)

2.4.1 Embedded methods

The idea of embedded methods is to combine two Runge-Kutta methods of different order
but with the same stages. The first method is of order 𝑝, and the second is of order
𝑝+ 1. Both methods use the same coefficients 𝑎𝑖𝑗 and 𝑐𝑖, but the coefficients 𝑏𝑖 differ. The
coefficients can be written in the extended Butcher’s tableau.

The local truncation error can be estimated as the difference between an approximation
of order 𝑝 and one of order 𝑝 (usually 𝑝 = 𝑝 + 1). This estimation can then be used for
automatic step size selection. The Butcher tableau is extended as follows,

𝑐1 𝑎1,1 𝑎1,2 · · · 𝑎1,𝑠
𝑐2 𝑎2,1 𝑎2,2 · · · 𝑎2,𝑠 =⇒ c A
...

...
... b𝑇

...
...

... b̂𝑇

𝑐𝑠 𝑎𝑠,1 𝑎𝑠,2 · · · 𝑎𝑠,𝑠
𝑏1 𝑏2 · · · 𝑏𝑠
𝑏̂1 𝑏̂2 · · · 𝑏̂𝑠

(2.43)

where b̂ are the coefficients for the higher-order method. The common stages are

𝑘𝑗 = 𝑓(𝑡𝑖 + ℎ𝑐𝑗 , 𝑦𝑖 + ℎ

𝑠∑︁
𝑙=1

𝑎𝑗,𝑙𝑘𝑙), 𝑗 = 1, 2, . . . , 𝑠 , (2.44)

the first method of order 𝑝

𝑦𝑖+1 = 𝑦𝑖 + ℎ

𝑠∑︁
𝑗=1

𝑏𝑗𝑘𝑗 , (2.45)

the second method of order 𝑝 = 𝑝+ 1

𝑦𝑖+1 = 𝑦𝑖 + ℎ

𝑠∑︁
𝑗=1

𝑏̂𝑗𝑘𝑗 , (2.46)

the local error estimation, which is used for automatic step size selection, is

𝜀𝑖 = |𝑦𝑖+1 − 𝑦𝑖+1| = ℎ

𝑠∑︁
𝑗=1

(𝑏̂𝑗 − 𝑏𝑗)𝑘𝑗 , 𝑗 = 1, 2, . . . , 𝑠 . (2.47)

29

The first method is Runge-Kutta-Fehlberg 5(4), a fifth-order scheme with a fourth-order
embedded scheme with six stages. The method is defined by the following tableau [56]

0
1
4

1
4

3
8

3
32

9
21

12
13

1932
2197 −7200

2197 −7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 −3544
2565

1859
4104 −11

40
25
216 0 1408

2565
2197
4104 −1

5 0

16
135 0 6656

12825
28561
5630 − 9

50
2
55

(2.48)

Dormand and Prince Runge-Kutta method of order 5(4), fifth-order scheme with a fourth-
order embedded scheme [44] and seven stages follows

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561

−25360
2187

64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

35
384 0 500

1113
125
192 −2187

6784
11
84 0

(2.49)

The higher-order approximation 𝑦𝑖+1 is usually used as an approximation of the solu-
tion. The value 𝑦𝑖 is used in (2.45) and (2.46) instead of 𝑦𝑖. This approach is called local
extrapolation.

Notice that the last row of A in Butcher’s table 2.49 is the same as the 𝑏̂𝑖 coefficients.
This property is called First Same As Last (FSAL). This means that the last stage 𝑘7 used
in the error estimation can be reused in the next time step as stage 𝑘1. Therefore, the
number of function evaluations of the Runge-Kutta-Fehlberg method is identical, although
the Dormand and Prince method has one more stage.

Bogacki-Shampine Runge-Kutta method of order 3(2), third-order scheme with a second-
order embedded scheme, and it has four stages [26]

0
1
2

1
2

3
4 0 3

4

1 2
9

1
3

4
9

2
9

1
3

4
9 0

7
24

1
4

1
3

1
8

𝑦𝑖+1 = 𝑦𝑖 +
2
9ℎ𝑘1 +

1
3ℎ𝑘2 +

4
9ℎ𝑘3 ,

𝑘1 = 𝑓(𝑡𝑖, 𝑦𝑖) ,

𝑘2 = 𝑓(𝑡𝑖 +
1
2ℎ, 𝑦𝑖 +

1
2ℎ𝑘1) ,

𝑘3 = 𝑓(𝑡𝑖 +
3
4ℎ, 𝑦𝑖 +

3
4ℎ𝑘2) ,

𝑘4 = 𝑓(𝑡𝑖 + ℎ, 𝑦𝑖+1) ,

𝑧𝑖+1 = 𝑦𝑖 +
7
24ℎ𝑘1 +

1
4ℎ𝑘2 +

1
3𝑘ℎ3 +

1
4ℎ𝑘4 ,

(2.50)

30

where 𝑧𝑖+1 is a second-order approximation of the exact solution. The value of 𝑦𝑖+1 is
calculated according to Ralston’s method (see Butcher’s table 2.41), and it is a third-order
approximation. The difference between values 𝑧𝑖+1 and 𝑦𝑖+1 can be used to adapt the step
size. Thanks to the FSAL property, only three function evaluations have to be performed
per step in this case.

Another Runge-Kutta method is Bogacki-Shampine Runge-Kutta method of order 5(4)
[25], a fifth-order scheme with a fourth-order embedded scheme, and it has eight stages.

Other embedded Runge-Kutta methods are methods by J. Verner [167]. For example,
Verner Runge-Kutta method of order 6(5), a sixth-order scheme with fifth-order embedded
scheme and nine stages, Verner Runge-Kutta method of order 7(6), a seventh-order scheme
with sixth-order embedded scheme and ten stages, Verner Runge-Kutta method of order
8(7), an eighth-order scheme with seventh-order embedded scheme and thirteen stages.

Many tools use embedded methods with automatic step size control to solve ODEs. For
example, MATLAB software [158] provides two embedded Runge-Kutta methods, namely,
ode23 is the implementation of the Bogacki-Shampine 3(2) method and ode45 is the imple-
mentation of the Dormand-Prince 5(4) method.

Portable, Extensible Toolkit for Scientific Computation (PETSc) library [2, 10, 11,
13] provides embedded methods similar to MATLAB, TSRK3BS implements Bogacki-
Shampine 3(2) method, and TSRK5DP implements Dormand-Prince 5(4) method. Fur-
thermore, the PETSc library offers implementations of the Bogacki-Shampine Runge-Kutta
method of order 5(4) (TSRK5BS) [25]. Verner Runge-Kutta methods of orders 6(5), 7(6)
and 8(7) are implemented as TSRK6VR, TSRK7VR, and TSRK8VR respectively.

Trapezoidal methods are one-step implicit Runge-Kutta methods of the second order
defined as

𝑦𝑖+1 = 𝑦𝑖 +
1

2
ℎ[𝑓(𝑡𝑖, 𝑦𝑖) + 𝑓(𝑡𝑖+1, 𝑦𝑖+1)] . (2.51)

In MATLAB, this method is the basis for the ode23t function. Another method is ode23tb,
an implicit Runge-Kutta formula with a trapezoidal rule step as its first stage and a back-
ward differentiation formula of order two as its second stage.

2.5 Multistep methods
As mentioned above, multi-step methods (𝑚-step methods) use previously calculated values
𝑦𝑖, 𝑦𝑖−1, . . . , 𝑦𝑖+1−𝑚 to calculate the approximation 𝑦𝑖+1. The well-known families of linear
multistep methods are the Adams-Bashforth methods, the Adams-Moulton methods, and
the backward differentiation formulas (BDFs).

2.5.1 Adams–Bashforth methods

The general form of the Adams–Bashforth methods is

𝑦𝑖+1 = 𝑦𝑖 + ℎ

𝑚∑︁
𝑗=1

𝑏𝑗𝑓(𝑡𝑖+1−𝑗 , 𝑦𝑖+1−𝑗) . (2.52)

The coefficients for the number of steps 𝑚 = 1, . . . , 6 and the fixed step size ℎ are in
Table 2.1. For 𝑚 = 1, we obtain the explicit Euler method (2.26), for 𝑚 = 2, we obtain
the multistep method:

𝑦𝑖+1 = 𝑦𝑖 + ℎ
3

2
𝑓(𝑡𝑖, 𝑦𝑖)−

1

2
𝑓(𝑡𝑖−1, 𝑦𝑖−1) . (2.53)

31

𝑚 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6

1 1
2 3

2 −1
2

3 23
12 −16

12
5
12

4 55
24 −59

24
37
24 − 9

24

5 1901
720 −2774

720
2616
720 −1274

720
251
720

6 4277
1440 −7923

1440
9982
1440 −7298

1440
2877
1440 − 475

1440

Table 2.1: Coefficients of the Adams-Bashfort method.

2.5.2 Adams–Moulton methods

The general form of Adams–Moulton methods is

𝑦𝑖+1 = 𝑦𝑖 + ℎ
𝑚∑︁
𝑗=0

𝑏𝑗𝑓(𝑡𝑖+1−𝑗 , 𝑦𝑖+1−𝑗) . (2.54)

Because the term ℎ𝑏0𝑓(𝑡𝑖+1, 𝑦𝑖+1) appears on the right-hand side of (2.54), these methods
are called implicit Adams-Moulton methods. The coefficients for the number of steps 𝑚 =
1, . . . , 6 and the fixed step size ℎ are in Table 2.2. For 𝑚 = 1, we obtain the implicit Euler
method (2.27), and for 𝑚 = 2, we obtain the trapezoidal method. For 𝑚 ≥ 3, the multistep
method is obtained.

𝑚 𝑏0 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5

1 1
2 1

2
1
2

3 5
12

8
12 − 1

12

4 9
24

19
24 − 5

24
1
24

5 251
720

646
720 −264

720
106
720 − 19

720

6 475
1440

1427
1440 − 798

1440
482
1440 − 173

1440
27

1440

Table 2.2: Coefficients of the Adams-Moulton method.

The problem of a multistep method with obtaining 𝑚 starting values 𝑦0, 𝑦1, . . . , 𝑦𝑚−1

can be solved using self-starting algorithms. For example, for 𝑚-step Adams-Bashfort
methods, the values 𝑦1, 𝑦2, . . . , 𝑦𝑚−1 are calculated using Adams-Bashfort methods with
steps 1, 2, . . .𝑚− 1. The combination of Adams-Bashfort and Adams-Moulton methods is
often known as predictor-corrector methods.

2.5.3 Predictor-corrector methods

The predictor-corrector method uses a combination of explicit and implicit methods. Typi-
cally, the explicit method is used for the predictor step, and the implicit method for the cor-
rector step. This scheme is also called PECE (Predict-Evaluate-Correct-Evaluate) scheme.
For example, the PECE scheme can be constructed from the explicit Adams-Bashfort and

32

implicit Adams-Moulton methods. The PECE scheme of the second order is defined as
follows:

𝑦𝑖+1 = 𝑦𝑖 +
1
2ℎ(3𝑓𝑖 − 𝑓𝑖−1) (P) Adams-Bashfort 2𝑛𝑑 order ,

𝑓𝑖+1 = 𝑓(𝑡𝑖+1, 𝑦𝑖+1) (E) Adams-Bashfort 2𝑛𝑑 order ,
𝑦𝑖+1 = 𝑦𝑖 +

1
2ℎ(𝑓𝑖+1 + 𝑓𝑖) (C) Adams-Moulton 2𝑛𝑑 order ,

𝑓𝑖+1 = 𝑓(𝑡𝑖+1, 𝑦𝑖+1) (E) Adams-Moulton 2𝑛𝑑 order .

(2.55)

The PECE scheme (2.55) is implemented in MATLAB as the ode113 function. The al-
gorithms based on predictor-corrector methods often use variable step and variable order
(VSVO) during the computation.

2.5.4 Backward differentiation methods

The general formula for the 𝑚-step backward differentiation method is:

𝛼𝑚,0𝑦𝑖+1 + 𝛼𝑚,1𝑦𝑖 + · · ·+ 𝛼𝑚,𝑚𝑦𝑖+1−𝑚 = ℎ𝑓(𝑡𝑖+1, 𝑦𝑖+1) ,

𝛼𝑚,𝑗 = ℎ𝑙′𝑗(𝑡𝑖+1) ,

𝑙𝑗(𝑡) =
𝑘∏︁

𝑛=1,𝑛 ̸=𝑗

𝑡− 𝑡𝑖+1−𝑛

𝑡𝑖+1−𝑗 − 𝑡𝑖+1−𝑛
.

(2.56)

The coefficients for the number of steps 𝑚 = 1, . . . , 6 and the fixed step size ℎ are in
Table 2.3. The backward differentiation methods are 𝑚-step implicit methods. For 𝑚 = 1,
we obtain the implicit Euler method (2.27).

𝑚 𝛼𝑘,0 𝛼𝑘,1 𝛼𝑘,2 𝛼𝑘,3 𝛼𝑘,4 𝛼𝑘,5 𝛼𝑘,6

1 1 -1
2 3

2 −2 1
2

3 11
6 −3 3

2 −1
3

4 25
12 −4 3 −4

3
1
4

5 137
60 −5 5 −10

3
5
4 −1

5

6 147
60 −6 15

12 −20
3

15
4 −6

5
1
6

Table 2.3: Coefficients of backward differentiation methods.

Backward differentiation methods for 𝑚 = 1, . . . , 5 are implemented in MATLAB as a
function ode15s. It is the VSVO method.

33

Chapter 3

Partial differential equations

Partial differential equations can be encountered when solving various technical and phys-
ical problems. Therefore, some partial differential equations are referred to as equations of
mathematical physics. These equations describe some physical phenomena (with a certain
extent and accuracy). Depending on the dimension of the space in which the investigated
process takes place, the function 𝑢(𝑥, 𝑡), 𝑢(𝑥, 𝑦, 𝑡), 𝑢(𝑥, 𝑦, 𝑧, 𝑡), or 𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑁 , 𝑡) in the
case of higher dimensions, if appropriate, will be considered as unknown. Other significant
areas of the application of partial differential equations include, for example, electrodynam-
ics, dynamics of fluids, cosmology, unbalanced static mechanics, quantum mechanics, and
others. Basic types of second-order PDEs include parabolic, hyperbolic, and elliptic PDE.

A solution to a partial differential equation is any function defined in the given domain,
including its partial derivatives, up to the order of the equation and satisfying the given
equation in the specified domain. Partial differential equations are discussed in publications
[50, 55, 106].

Partial differential equations were discovered in the 18th century, as ordinary differential
equations failed to describe the studied physical principles. Many famous mathematicians
developed the subject of partial differential equations. Leonard Euler and Joseph-Louis
Lagrange studied the waves on strings. Daniel Bernoulli, Leonard Euler, Adrien-Marie
Legendre, and Pierre-Simon Laplace focused on potential theory and Joseph Fourier on
series expansions for the heat equation. The discovery of fundamental partial differential
equations for a given process has contributed significantly to advances in modern science.
For example, James Clerk Maxwell’s equations for electromagnetic theory provide a solution
for problems in radio wave propagation and the diffraction of light, and Erwin Schrodinger’s
equation for quantum mechanical processes at the atomic level, which changed atomic
physics and chemistry in the 20th century. Navier-Stokes equations describe the motion
of viscous fluid substances and form a basis for widely disparate topics such as weather
forecasting and the design of supersonic aircrafts. The study of partial differential equations
is extensive and belongs to several areas of mathematics [7, 27, 49].

This chapter deals with partial differential equations, especially second-order PDEs.
The method of lines is introduced to solve time-dependent PDEs. The spatial derivatives
are replaced by finite differences, and a PDE is transformed into a system of ODEs [146].

34

3.1 Types of partial differential equations
Definition 3.1.1. Partial differential equations of 𝑛𝑡ℎ order. Partial differential
equations of 𝑛𝑡ℎ order are equations of the following form:

𝐹

(︂
𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑢,

𝜕𝑢

𝜕𝑥1
, . . . ,

𝜕𝑢

𝜕𝑥𝑛
,
𝜕2𝑢

𝜕𝑥21
,

𝜕2𝑢

𝜕𝑥1𝜕𝑥2
, . . . ,

𝜕2𝑢

𝜕𝑥1𝜕𝑥𝑛
,
𝜕2𝑢

𝜕𝑥22
, . . . ,

𝜕𝑘𝑢

𝜕𝑥𝑘𝑛

)︂
= 0 , (3.1)

where 𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑛) is a sought function of independent 𝑛 variables. The order of a
partial differential equation is given by the order of the highest derivative contained in such
an equation.

Definition 3.1.2. Linear partial differential equations. If equation (3.1) is linear with
respect to the sought function and its derivatives, it is called a linear partial differential
equation.

Definition 3.1.3. Homogeneous linear partial differential equations. A linear par-
tial differential equation is called homogeneous if it contains no dependent variable and its
partial derivatives. Otherwise, the PDE is called non-homogeneous.

Definition 3.1.4. Second-order partial differential equations. The equation in the
form

𝐹

(︂
𝑥, 𝑦, 𝑢,

𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
,
𝜕2𝑢

𝜕𝑥2
,
𝜕2𝑢

𝜕𝑥𝜕𝑦
,
𝜕2𝑢

𝜕𝑦2

)︂
= 0 (3.2)

is called the second-order partial differential equation for the unknown function 𝑢 = 𝑢(𝑥, 𝑦).

Definition 3.1.5. Solution of a partial differential equation. The solution to PDE
(3.1) in domain Ω ⊂ R𝑁 is any function that possesses all partial derivatives of continuous
type and which, after having been substituted together with the derivatives to (3.1), is
satisfactory for all (𝑥1, . . . , 𝑥𝑛) ∈ Ω in this equation.

Let us assume a common homogeneous linear PDE of second order in a plane (i.e.,
𝑢 = 𝑢(𝑥, 𝑦)) where 𝐴, . . . , 𝐹 are real numbers (these are constant coefficients)

𝐴
𝜕2𝑢

𝜕𝑥2
+𝐵

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

𝜕𝑦2
+𝐷

𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑦
+ 𝐹𝑢 = 0 , (3.3)

depending on the values of the coefficients 𝐴, . . . , 𝐹 , these equations are elliptic, hyperbolic,
and parabolic:

• elliptic if 𝐵2 − 4𝐴𝐶 < 0,

• parabolic if 𝐵2 − 4𝐴𝐶 = 0,

• hyperbolic if 𝐵2 − 4𝐴𝐶 > 0.

The following text deals with partial equations of the second order (see Definition 3.1.4).

35

Parabolic PDE

The parabolic partial differential equation describes heat transfer. Let us assume an isolated
rod with a length of 𝐿, and its cross section is neglected. The rod is placed along the axis
𝑥 so that its left end merges with the beginning. The variable 𝑢 = 𝑢(𝑥, 𝑡) describes the
temperature of the rod at the point 𝑥 and at time 𝑡. We can show that this function satisfies
the partial differential equation (3.4)

𝜕𝑢

𝜕𝑡
= 𝑎2

𝜕2𝑢

𝜕𝑥2
+ 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ (0, 𝐿)× (0, 𝑇) , (3.4)

where 𝑎2 = 𝑘
𝜌𝑐 is the thermal diffusivity, 𝑘 is the thermal conductivity coefficient, 𝜌 is the

specific mass and 𝑐 is the specific heat. The function 𝑓(𝑥, 𝑡) characterizes the intensity
of internal sources (if, for example, the rod is under voltage, it produces heat), and 𝑇
is the time duration of the investigated process. There are infinitely many solutions to
equation (3.4). If we want to unambiguously determine the rod temperature at any time
and location, one initial condition and two boundary conditions must be added to the
equation. The initial condition (3.5) describes the rod temperature at the beginning of the
process

𝑢(𝑥, 0) = 𝑔(𝑥), 0 < 𝑥 < 𝐿 . (3.5)
The boundary conditions (3.6) and (3.7) characterize the situation at both ends of the rod
throughout the process. They describe the situation where the left end of the rod is kept
at temperature ℎ1 and the right end of the bar is kept at temperature ℎ2. The function
𝑔(𝑥) describes the temperature of the rod at the beginning of the process (3.5)

𝑢(0, 𝑡) = ℎ1(𝑡), 0 < 𝑡 < 𝑇, (3.6)
𝑢(𝐿, 𝑡) = ℎ2(𝑡), 0 < 𝑡 < 𝑇. (3.7)

Hyperbolic PDE

The hyperbolic partial differential equation describes the propagation of waves. It is applied
in various fields such as mechanics (description of strings or fluids), acoustics, optics, or
electromagnetism. Let us assume a perfectly flexible string of length 𝐿. This string is
anchored to the axis 𝑥 and tensioned with force 𝐹 . Equation (3.8) describes a vibrating
string

𝜕2𝑢

𝜕𝑡2
= 𝑎2

𝜕2𝑢

𝜕𝑥2
+ 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ (0, 𝐿)× (0, 𝑇) , (3.8)

where 𝑎2 = 𝐹
𝜌 , and 𝜌 is a specific mass of the string per unit length, 𝐹 is the tension force,

𝑢(𝑥, 𝑡) is a vertical deflection from the balance position of the string at point 𝑥, and at
time 𝑡 and 𝑓(𝑥, 𝑡) expresses the other external load, if any (e.g., gravitation). Naturally,
initial conditions (3.9) that describe an initial deflection and an initial string velocity must
be considered in the equation (3.8)

𝑢(𝑥, 0) = 𝑔1(𝑥),
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑔2(𝑥), 0 < 𝑥 < 𝐿 . (3.9)

The boundary conditions that reflect the behavior of the string at its anchor points can
also be described using equations (3.6) a (3.7). Depending on the dimension, the heat

36

conduction equations, and the wave equation can be expressed in the form (3.10)

𝜕𝑢

𝜕𝑡
= 𝑎2Δ𝑢+ 𝑓, (3.10)

𝜕2𝑢

𝜕𝑡2
= 𝑎2Δ𝑢+ 𝑓 .

The symbol Δ is called the Laplace operator defined below.

Definition 3.1.6. Hence, in the region of variables 𝑥1, . . . , 𝑥𝑛, in general, the Laplace
operator has the following form

Δ =
𝜕2

𝜕𝑥21
+ · · ·+ 𝜕2

𝜕𝑥2𝑛
. (3.11)

Elliptic PDE

For time-stable models, the heat conduction equations and the wave equation formally have
the same form:

−Δ𝑢 = 𝑓 , (3.12)

where 𝑓 is a function of variables 𝑥1, . . . , 𝑥𝑛. Equation (3.12) is called Poisson equation. In
a two-dimensional space where 𝑛 = 2, the equation can be expressed in the form (3.13)

−𝜕2𝑢

𝜕𝑥2
− 𝜕2𝑢

𝜕𝑦2
= 𝑓(𝑥, 𝑦) . (3.13)

Laplace equation is a special case of Poisson equation (3.12)

−Δ𝑢 = 0 . (3.14)

Equation (3.14) can be written in a two-dimensional space in the form (3.15)

−𝜕2𝑢

𝜕𝑥2
− 𝜕2𝑢

𝜕𝑦2
= 0 . (3.15)

There are many other interpretations of Laplace and Poisson equations. For example,
Poisson equation describes the fluid flow potential through a layer with variable width,
where 𝑢 denotes the potential of the velocity vector, and 𝑓 denotes a variable thickness of
the fluid layer. If the layer has a constant width, the function 𝑓 also equals zero, and the
given problem can be described using Laplace equation.

Analytical solving of partial differential equations is difficult and, in many cases, practi-
cally impossible, particularly when solving boundary value problems in higher-order equa-
tions. In some special cases, the partial differential equations can be solved using the
Fourier method, which assumes that such a solution can be obtained using separated vari-
ables. That is why this method is also called the method of separation of variables. The
method can be applied when solving many linear partial differential equations with an ini-
tial condition, e.g., heat conduction, wave, and Laplace equations. The following sections
focus on the numerical solution of partial differential equations.

37

3.2 Numerical solution of PDEs
Various methods exist in the literature for the solution of partial differential equations. The
most well-known methods are the finite difference method (FDM), finite element method
(FEM), finite volume method (FVM), method of lines (MOL), and boundary element
method (BEM).

The basic idea of the finite difference method (method of grids) is to discretize the con-
tinuous domain into a discrete finite-difference grid. The individual partial derivatives in
the partial differential equations are approximated by algebraic finite difference approxi-
mations, which are substituted into the partial differential equations to obtain an algebraic
finite difference equation. The algebraic finite difference equations are solved for the de-
pendent variable. For more details on the finite difference method, see [55, 106, 153].

The finite volume method represents and evaluates partial differential equations in the
form of algebraic equations. Similarly to FDM, the values are calculated at discrete places
on a meshed geometry. The finite volume method converts volume integrals in a partial
differential equation containing divergence terms to surface integrals using the divergence
theorem. The divergence terms are evaluated as fluxes at the surfaces of each finite vol-
ume. The method is used in many fluid dynamics or problems with body-fitted coordinate
systems. For more information on the finite volume method, refer to [51, 107, 172].

The finite element method divides a given domain into the collection of subdomains,
the so-called finite element mesh, and the solution in each element is constructed from the
basis functions. The actual equations that are solved are typically obtained by restating the
conservation equation in the weak form: the field variables are written in terms of the basis
functions, the equation is multiplied by appropriate test functions, and then integrated over
an element. For more information on the finite element method, see [83, 100, 138, 139, 180].

The boundary element method is an efficient alternative to FDM and FEM to solve
PDEs. This method incorporates a mesh that is located only on the boundaries of the
domain. The advantage of BEM over the FEM is that there is no need for discretizing the
domain under consideration into the elements. This method only requires the boundary
data as input, resulting in smaller system matrices. The disadvantage over the FEM is that
the BEM matrices are fully populated with complex and frequency-dependent coefficients,
which deteriorate the efficiency of the solution. Moreover, singularities may arise in the
solution. For more details, see [47, 178].

The method of lines is a general procedure for solving time-dependent PDEs, and the
method consists of two steps. The first step includes approximating the spatial derivatives
using FDM, FVM, or FEM (or any other technique). In the second step, the time integration
of the resulting semi-discrete ODEs (discrete in space, continuous in time) is performed
[175]. The MOL is described in more detail in Section 3.4. The following section deals with
the Taylor series-based finite difference approximations.

3.3 Taylor series based finite difference approximations
Finite difference formulas can approximate derivatives of any order at any point using a
sufficient number of surrounding points. The derivative is calculated as the slope at a given
point using the values and relative locations of the surrounding points. The locations of the
sample points are called finite difference stencil. There are three types of finite differential
formulas, and they can differ in the derivative approximated, stencil type, and size:

38

• forward difference formulas,

• backward difference formulas, and

• central difference formulas.

The finite differential formulas can be obtained from the Taylor series expansion of the
derivatives around the node of interest. Let us assume that the derivative of the function
𝑓 at the point 𝑥 is defined as the limit of a difference quotient:

𝑓 ′(𝑥) = lim
Δ𝑥−→0

𝑓(𝑥+Δ𝑥)− 𝑓(𝑥)

Δ𝑥
. (3.16)

The finite difference equation 𝑓(𝑥+Δ𝑥)−𝑓(𝑥)
Δ𝑥 is an approximation of the derivative 𝑓 ′(𝑥). The

expression 𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥) is the finite difference, and Δ𝑥 denotes the spacing between
the points. If Δ𝑥 > 0, where Δ𝑥 is a finite positive number, then

𝑓 ′(𝑥) =
𝑓(𝑥+Δ𝑥)− 𝑓(𝑥)

Δ𝑥
+𝑂(Δ𝑥) (3.17)

is called first-order forward finite difference formula and corresponds to the finite difference
stencil {0, 1}. Similarly, if Δ𝑥 < 0, where Δ𝑥 > 0, then:

𝑓 ′(𝑥) =
𝑓(𝑥)− 𝑓(𝑥−Δ𝑥)

Δ𝑥
+𝑂(Δ𝑥) (3.18)

is called first-order backward finite difference formula and corresponds to the finite difference
stencil {−1, 0}. By the combination of forward and backward finite difference formulas,
the second-order central difference formula can be derived and corresponds to the finite
difference stencil {−1, 0, 1}

𝑓 ′(𝑥) =
𝑓(𝑥+Δ𝑥)− 𝑓(𝑥−Δ𝑥)

2Δ𝑥
+𝑂(Δ𝑥2) . (3.19)

The smaller spatial step Δ𝑥 results in a better approximation. The error of the approxima-
tion depends on Δ𝑥. The finite difference formulas mentioned above and the corresponding
truncation errors are derived in Section 3.3.1.

3.3.1 Derivation of truncation errors

Truncation errors rare the errors resulting from using an approximation instead of an exact
mathematical procedure. It is known that the 𝑛-times continuously differentiable function
𝑓(𝑥) can be replaced by the Taylor polynomial 𝑇𝑛(𝑥) in the neighborhood 𝑈(𝑎) of point 𝑎,
with a reminder 𝑅𝑛(𝑥) as follows:

𝑓(𝑥) = 𝑇𝑛(𝑥) +𝑅𝑛(𝑥) ∀𝑥 ∈ 𝑈(𝑎) , (3.20)

where 𝑇𝑛(𝑥) is the Taylor polynomial defined in (3.21):

𝑇𝑛(𝑥) = 𝑓(𝑎)+𝑓 ′(𝑎)(𝑥−𝑎)+
𝑓 ′′(𝑎)

2!
(𝑥−𝑎)2+· · ·+𝑓 (𝑛)𝑎

𝑛!
(𝑥−𝑎)𝑛 =

𝑛∑︁
𝑘=0

𝑓 (𝑘)(𝑎)

𝑘!
(𝑥−𝑎)𝑘 . (3.21)

39

From the above relationship, the condition for the equality of the Taylor series of function
𝑓(𝑥) and function 𝑓(𝑥) is derived. Let the function 𝑓(𝑥) have derivatives of all orders in the
interval 𝐼 and let 𝑎 ∈ 𝐼 be an internal point of the interval 𝐼. Then the following applies
to this interval

𝑓(𝑥) =

𝑛∑︁
𝑘=0

𝑓 (𝑘)(𝑎)

𝑘!
(𝑥− 𝑎)𝑘 , (3.22)

if and only if
lim
𝑛→∞

𝑅𝑛(𝑥) = 0 ∀𝑥 ∈ 𝐼 . (3.23)

To verify the relationship (3.23), the Lagrange form of remainder 𝑅𝑛(𝑥) is used as follows:

𝑅𝑛(𝑥) =
𝑓 (𝑛+1)(𝜉)

(𝑛+ 1)!
(𝑥− 𝑎)𝑛+1 . (3.24)

The subscript 𝑛 of 𝑅𝑛 denotes that the remainder is for the 𝑛𝑡ℎ-order approximation and 𝜉
is an unspecified value of 𝑥, and it applies to 𝜉 ∈ (𝑎;𝑥). The Lagrange form of the remainder
can be used for the analysis of the truncation errors. It is convenient to write the Taylor
series in the following form by defining a step size ℎ = 𝑥− 𝑎:

𝑓(𝑥) =

𝑛∑︁
𝑘=0

𝑓 (𝑘)(𝑎)

𝑘!
ℎ𝑘 +𝑅𝑛 , (3.25)

where the remainder term 𝑅𝑛 is

𝑅𝑛 =
𝑓 (𝑛+1)(𝜉)

(𝑛+ 1)!
ℎ𝑛+1 . (3.26)

An error term can also be expressed using the Omikron (Big O) notation. The higher
the power of ℎ in the error term, the smaller the error because ℎ ≪ 1. For such numbers,
the following applies: ℎ > ℎ2 > ℎ3 > Equation (3.25) can be written in the form (3.27):

𝑓(𝑥) =
𝑛∑︁

𝑘=0

𝑓 (𝑘)(𝑎)

𝑘!
ℎ𝑘 +𝑂(ℎ𝑛+1) . (3.27)

Similarly, truncation errors for any difference formulas can be derived. The following text
describes the derivation of the backward, forward, and central finite difference formulas in
detail.

Backward and forward finite difference formulas

First, the first-order backward finite difference formula is derived. The finite difference
stencil {−1, 0} corresponds to the points 𝑥 − Δ𝑥 and 𝑥. The node of interest is point 𝑥.
The following Taylor series (3.28) is obtained:

𝑓(𝑥−Δ𝑥) = 𝑓(𝑥)− 𝑓 ′(𝑥)Δ𝑥+
𝑓 ′′(𝑥)

2!
Δ𝑥2 − 𝑓 ′′′(𝑥)

3!
Δ𝑥3 + · · · . (3.28)

After moving the first term expression 𝑓 ′(𝑥)Δ𝑥 to the left-hand side of the equation,

𝑓 ′(𝑥) =
1

Δ𝑥

[︂
𝑓(𝑥)− 𝑓(𝑥−Δ𝑥) +

𝑓 ′′(𝑥)

2!
Δ𝑥2 − 𝑓 ′′′(𝑥)

3!
Δ𝑥3 + · · ·

]︂
, (3.29)

40

and
𝑓 ′(𝑥) =

1

Δ𝑥
𝑓(𝑥)− 1

Δ𝑥
𝑓(𝑥−Δ𝑥) +

𝑓 ′′(𝑥)

2!
Δ𝑥− 𝑓 ′′′(𝑥)

3!
Δ𝑥2 + · · · . (3.30)

Neglecting the terms
[︁
𝑓 ′′(𝑥)
2! Δ𝑥− 𝑓 ′′′(𝑥)

3! Δ𝑥2 + · · ·
]︁

results in a truncation error, caused by
neglecting a certain number in terms of the Taylor series. To obtain an error term 𝑂(Δ𝑥),
the greatest term of the expression is taken, which is the term 𝑓 ′′(𝑥𝑖)

2! Δ𝑥. Note that the
truncation error is proportional to Δ𝑥 to the power of 1. Therefore, 𝑓(𝑥)−𝑓(𝑥−Δ𝑥)

Δ𝑥 is called
the first-order backward finite difference approximation of 𝑓 ′(𝑥). Equation (3.30) can be
rewritten in the form with the remainder as stated in (3.26):

𝑓 ′(𝑥) =
1

Δ𝑥
𝑓(𝑥)− 1

Δ𝑥
𝑓(𝑥−Δ𝑥) +

𝑓 ′′(𝜉)

2!
Δ𝑥 , 𝜉 ∈ (𝑥−Δ𝑥;𝑥) . (3.31)

The resulting relationship is expressed by (3.32)

𝑓 ′(𝑥) =
𝑓(𝑥)− 𝑓(𝑥−Δ𝑥)

Δ𝑥
+𝑂(Δ𝑥) . (3.32)

Similarly, a first-order forward finite difference formula can be derived. In this case, the
finite difference stencil {0, 1} corresponds to the points 𝑥, 𝑥+Δ𝑥. The resulting relationship
is expressed by (3.33)

𝑓 ′(𝑥) =
𝑓(𝑥+Δ𝑥)− 𝑓(𝑥)

Δ𝑥
+𝑂(Δ𝑥) . (3.33)

Central difference formulas

Finally, a central finite difference formula is derived. The finite difference stencil is {−1, 0, 1},
corresponding to the points 𝑥−Δ𝑥, 𝑥, 𝑥+Δ𝑥. At first, Taylor series for the points 𝑥−Δ𝑥
(3.34) and 𝑥+Δ𝑥 (3.35) are constructed

𝑓(𝑥−Δ𝑥) = 𝑓(𝑥)− 𝑓 ′(𝑥)Δ𝑥+
𝑓 ′′(𝑥)

2!
Δ𝑥2 − 𝑓 ′′′(𝑥)

3!
Δ𝑥3 + · · · (3.34)

𝑓(𝑥+Δ𝑥) = 𝑓(𝑥) + 𝑓 ′(𝑥)Δ𝑥+
𝑓 ′′(𝑥)

2!
Δ𝑥2 +

𝑓 ′′′(𝑥)

3!
Δ𝑥3 + · · · . (3.35)

Based on the above equations, the term −𝑓(𝑥) is expressed as

−𝑓(𝑥) = −𝑓(𝑥𝑖−1)− 𝑓 ′(𝑥)Δ𝑥+
𝑓 ′′(𝑥)

2!
Δ𝑥2 − 𝑓 ′′′(𝑥)

3!
Δ𝑥3 + · · · (3.36)

−𝑓(𝑥) = −𝑓(𝑥𝑖+1) + 𝑓 ′(𝑥)Δ𝑥+
𝑓 ′′(𝑥)

2!
Δ𝑥2 +

𝑓 ′′′(𝑥)

3!
Δ𝑥3 + · · · . (3.37)

By subtracting (3.36) from (3.37), equation (3.38) is obtained

0 = −𝑓(𝑥+Δ𝑥) + 𝑓(𝑥−Δ𝑥) + 2𝑓 ′(𝑥)Δ𝑥+ 2
𝑓 ′′′(𝑥)

3!
Δ𝑥3 + · · · . (3.38)

After solving the equation for −𝑓(𝑥), we obtain (3.39)

−𝑓 ′(𝑥) =
1

2Δ𝑥

[︂
𝑓(𝑥−Δ𝑥)− 𝑓(𝑥+Δ𝑥) + 2

𝑓 ′′′(𝑥)

3!
Δ𝑥3 + · · ·

]︂
, (3.39)

41

and

𝑓 ′(𝑥) =
𝑓(𝑥+Δ𝑥)− 𝑓(𝑥−Δ𝑥)

2Δ𝑥
+

𝑓 ′′′(𝑥)

3!
Δ𝑥2 + · · · . (3.40)

Equation (3.40) can be rewritten in the form with the remainder according to (3.26):

𝑓 ′(𝑥) =
𝑓(𝑥+Δ𝑥)− 𝑓(𝑥−Δ𝑥)

2Δ𝑥
+

𝑓 ′′′(𝜉)

3!
Δ𝑥2 . (3.41)

The error term is 𝑂(Δ𝑥2) is derived from the remainder term 𝑓 ′′′(𝜉)
3! Δ𝑥2 and the trunca-

tion error is proportional to Δ𝑥 to the power of 2 and, therefore, (3.42) is called second-order
central finite difference formula

𝑓 ′(𝑥) =
𝑓(𝑥+Δ𝑥)− 𝑓(𝑥−Δ𝑥)

2Δ𝑥
+𝑂(Δ𝑥2) . (3.42)

3.3.2 Higher-order finite difference formulas

In the following text, the fourth-order finite difference formulas are derived. For each point
of interest, four Taylor series are constructed, and four neighboring points are used for the
calculation. It is possible to obtain derivatives of the first to fourth order at each point.
The matrix-vector notation to calculate finite difference coefficients is:

x = A−1b . (3.43)

The matrix A represents the matrix of coefficients obtained from the Taylor series. The
vector b represents the values of differences between known samples. Let the samples be
𝑓−𝑙, . . . , 𝑓−1, 𝑓0, 𝑓1, 𝑓𝑘 at the points −𝑙Δ𝑥, . . . ,−Δ𝑥, 0, . . . , 𝑘Δ𝑥, and 𝑛 = 𝑙+𝑘+1 is the total
number of stencil points. For given parameters (𝑙, 𝑘), the matrix A−1 remains constant,
and the vector b changes. Then, the following Taylor series polynomials can be used:

∀𝑖 ∈ −𝑙,−𝑙 + 1, . . . ,−1, 0, 1, . . . , 𝑘 − 1, 𝑘 : 𝑓𝑖 = 𝑓0 +
𝑛∑︁

𝑚=1

𝑖𝑚(Δ𝑥)𝑚

𝑚!
𝑓 (𝑚)(0). (3.44)

Equation (3.44) can be written in matrix form:

b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓−𝑙 − 𝑓0
𝑓−𝑙+1 − 𝑓0

. . .
𝑓−1 − 𝑓0
𝑓1 − 𝑓0
. . .

𝑓𝑘−1 − 𝑓0
𝑓𝑘 − 𝑓0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.45)

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−𝑙)1 (−𝑙)2 . . . (−𝑙)𝑛

(−𝑙 + 1)1 (−𝑙 + 1)2 . . . (−𝑙 + 1)𝑛

.
(−1)1 (−1)2 . . . (−1)𝑛

(1)1 (1)2 . . . (1)𝑛

.
(𝑘 − 1)1 (𝑘 − 1)2 . . . (𝑘 − 1)𝑛

(𝑘)1 (𝑘)2 . . . (𝑘)𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.46)

42

x =

⎛⎜⎜⎜⎝
𝑓 (1)(0)

𝑓 (2)(0)
...

𝑓 (𝑛)(0)

⎞⎟⎟⎟⎠ . (3.47)

Note that the finite difference coefficients in Tables 3.2, A.1, and A.2 correspond to the grid
spacing Δ𝑥 = 1. For other values of Δ𝑥, the coefficients must be divided by (Δ𝑥)𝑚, where
𝑚 is the order of the derivative [60].

Central difference formulas

The fourth-order central difference formula corresponds to the finite difference stencil
{−2,−1, 0, 1, 2} and the points 𝑥− 2Δ𝑥, 𝑥−Δ𝑥, 𝑥, 𝑥+Δ𝑥, 𝑥+ 2Δ𝑥. To approximate the
derivatives at point 𝑥, four Taylor series have to be constructed. Figure 3.1 illustrates the
five-point finite difference stencil. The point of interest 𝑥𝑖 is marked in black, and the
neighboring points are marked in red. For simplification, the points 𝑥−2Δ𝑥, 𝑥−Δ𝑥, 𝑥, 𝑥+
Δ𝑥, 𝑥+ 2Δ𝑥 are denoted as 𝑥𝑖−2, 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2.

𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2

Figure 3.1: Five-point finite difference stencil for the fourth-order central finite difference
formula.

Taylor series (3.48), (3.49), (3.50), and (3.51) for the neighborhood of point 𝑥𝑖 follows:

𝑓(𝑥𝑖−2) = 𝑓(𝑥𝑖) + (−2Δ𝑥𝑖)𝑓(𝑥𝑖)
′ +

(−2Δ𝑥𝑖)
2

2!
𝑓(𝑥𝑖)

′′ +
(−2Δ𝑥𝑖)

3

3!
𝑓(𝑥𝑖)

′′′ +

+
(−2Δ𝑥𝑖)

4

4!
𝑓(𝑥𝑖)

(4) +
(−2Δ𝑥𝑖)

5

5!
𝑓 (5)(𝜉1) (3.48)

𝑓(𝑥𝑖−1) = 𝑓(𝑥𝑖) + (−Δ𝑥𝑖)𝑓(𝑥𝑖)
′ +

(−Δ𝑥𝑖)
2

2!
𝑓(𝑥𝑖)

′′ +
(−Δ𝑥𝑖)

3

3!
𝑓(𝑥𝑖)

′′′ +

+
(−Δ𝑥𝑖)

4

4!
𝑓(𝑥𝑖)

(4) +
(−Δ𝑥𝑖)

5

5!
𝑓 (5)(𝜉2) (3.49)

𝑓(𝑥𝑖+1) = 𝑓(𝑥𝑖) + Δ𝑥𝑖𝑓(𝑥𝑖)
′ +

Δ𝑥2𝑖
2!

𝑓(𝑥𝑖)
′′ +

Δ𝑥3𝑖
3!

𝑓(𝑥𝑖)
′′′ +

+
Δ𝑥4𝑖
4!

𝑓(𝑥𝑖)
(4) +

(Δ𝑥𝑖)
5

5!
𝑓 (5)(𝜉3) (3.50)

𝑓(𝑥𝑖+2) = 𝑓(𝑥𝑖) + 2Δ𝑥𝑖𝑓(𝑥𝑖)
′ +

(2Δ𝑥𝑖)
2

2!
𝑓(𝑥𝑖)

′′ +
(2Δ𝑥𝑖)

3

3!
𝑓(𝑥𝑖)

′′′ +

+
(2Δ𝑥𝑖)

4

4!
𝑓(𝑥𝑖)

(4) +
(2Δ𝑥𝑖)

5

5!
𝑓 (5)(𝜉4) . (3.51)

The system of equations can be expressed in the matrix vector notation (3.52). Subse-
quently, we obtain the first four terms of the Taylor series denoted as 𝐷𝑋1, 𝐷𝑋2, 𝐷𝑋3, 𝐷𝑋4

43

⎛⎜⎜⎝
𝐷𝑋1
𝐷𝑋2
𝐷𝑋3
𝐷𝑋4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−2 (−2)2 (−2)3 (−2)4

−1 (−1)2 (−1)3 (−1)4

1 12 13 14

2 22 23 24

⎞⎟⎟⎠
−1

·

⎛⎜⎜⎝
𝑥𝑖−2 − 𝑥𝑖
𝑥𝑖−1 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖
𝑥𝑖+2 − 𝑥𝑖

⎞⎟⎟⎠ , (3.52)

therefore, ⎛⎜⎜⎝
𝐷𝑋1
𝐷𝑋2
𝐷𝑋3
𝐷𝑋4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
12 −2

3
2
3 − 1

12
− 1

24
2
3

2
3 − 1

24
− 1

12
1
6 −1

6
1
12

1
24 −1

6 −1
6

1
24

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
𝑥𝑖−2 − 𝑥𝑖
𝑥𝑖−1 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖
𝑥𝑖+2 − 𝑥𝑖

⎞⎟⎟⎠ . (3.53)

To obtain the values of derivatives 𝑥′𝑖, 𝑥
′′
𝑖 , 𝑥

′′′
𝑖 a 𝑥

(4)
𝑖 , the relationships (3.54), (3.55), (3.56),

and (3.57) are used

𝑥′𝑖 =
𝐷𝑋1

ℎ
(3.54)

𝑥′′𝑖 =
𝐷𝑋2
ℎ2

2!

(3.55)

𝑥′′′𝑖 =
𝐷𝑋3
ℎ3

3!

(3.56)

𝑥
(4)
𝑖 =

𝐷𝑋4
ℎ4

4!

. (3.57)

To approximate the first derivative 𝑓 ′(𝑥):

𝑓 ′(𝑥) ≈
1
12𝑥𝑖−2 − 2

3𝑥𝑖−1 +
2
3𝑥𝑖+1 − 1

12𝑥𝑖+2

Δ𝑥
+𝑂(Δ𝑥4) . (3.58)

To approximate the second derivative 𝑓 ′′(𝑥):

𝑓 ′′(𝑥) ≈
− 1

12𝑥𝑖−2 +
4
3𝑥𝑖−1 − 5

2𝑥𝑖 +
4
3𝑥𝑖+1 − 1

12𝑥𝑖+2

Δ𝑥2
+𝑂(Δ𝑥4) . (3.59)

To approximate the third derivative 𝑓 ′′′(𝑥):

𝑓 ′′′(𝑥) ≈
−1

2𝑥𝑖−2 + 1𝑥𝑖−1 − 1𝑥𝑖+1 − 1
2𝑥𝑖+2

Δ𝑥3
+𝑂(Δ𝑥2) . (3.60)

To approximate the fourth derivative 𝑓 (4)(𝑥):

𝑓 (4)(𝑥) ≈ 𝑥𝑖−2 − 4𝑥𝑖−1 + 6𝑥𝑖 − 4𝑥𝑖+1 − 𝑥𝑖+2

Δ𝑥4
+𝑂(Δ𝑥2) . (3.61)

For the given 𝑛-point stencil and type of difference formula, the inverse matrix in equa-
tion (3.52) is constant. The coefficients of the central difference formulas for five-point
approximation are in Table 3.1.

The coefficients of the central difference formulas are shown in Table 3.2. The M ≥ 0
denotes the order of the derivative to approximate, and 𝑁 is the number of grid points at
𝑥-coordinates, O denotes the order of accuracy, the node of interest 𝑥 = 0. Note that the

44

coefficients are symmetric around the point 𝑥 = 0. The coefficients have the opposite sign
for odd derivatives, whereas the signs are the same for even derivatives. Recall that the
coefficients in Tables 3.1 and 3.2 correspond to the grid spacing Δ𝑥 = 1. For other values
of Δ𝑥, the coefficients have to be divided by (Δ𝑥)𝑚, where 𝑚 is the order of the derivative.
An error term determines the order of accuracy.

M O
stencil x-coordinates

−2 −1 0 1 2

1 4 1
12 −2

3 0 2
3 − 1

12

2 4 − 1
12

4
3 −5

2
4
3 − 1

12

3 2 −1
2 1 0 −1 1

2

4 2 1 −4 6 −4 1

Table 3.1: Table of coefficients for central difference formulas.

M O
stencil x-coordinates

−4 −3 −2 −1 0 1 2 3 4

1

2 −1
2 0 1

2

4 1
12 −2

3 0 2
3 − 1

12

6 − 1
60

3
20 −3

4 0 3
4 − 3

20
1
60

8 1
280 − 4

105
1
5 −4

5 0 4
5 −1

5
4

105 − 1
280

2

2 1 −2 1

4 − 1
12

4
3 −5

2
4
3 − 1

12

6 1
90 − 3

20
3
2 −49

18
3
2 − 3

20
1
90

8 − 1
560

8
315 −1

5
8
5 −205

72
8
5 −1

5
8

315 − 1
560

3
2 −1

2 1 0 −1 −1
2

4 1
8 −1 13

8 0 −13
8 1 −1

8

6 − 7
240

3
10 −169

120
61
30 0 −61

30
169
120 − 3

10
7

240

4
2 1 −4 6 −4 1

4 −1
6 2 −13

2
28
3 −13

2 2 −1
6

6 7
240 −2

5
169
60 −122

15
91
8 −122

15
169
60 −2

5
7

240

Table 3.2: Coefficients for central finite difference formulas, 𝑀 = 4, 𝑁 = 8, 𝑥0 = 0.

Forward difference formulas

The fourth-order forward difference formula corresponds to the finite difference stencil
{0, 1, 2, 3, 4} and the points 𝑥, 𝑥 + Δ𝑥, 𝑥 + 2Δ𝑥, 𝑥 + 3Δ𝑥, 𝑥 + 4Δ𝑥. To approximate the
derivatives at point 𝑥, four Taylor series have to be constructed. Figure 3.2 illustrates the
five-point finite difference stencil. The point of interest 𝑥𝑖 is marked in black, and the

45

neighboring points are marked in red. For simplification, the points 𝑥, 𝑥+Δ𝑥, 𝑥+2Δ𝑥, 𝑥+
3Δ𝑥, 𝑥+ 4Δ𝑥 are denoted as 𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2, 𝑥𝑖+3, 𝑥𝑖+4.

𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 𝑥𝑖+3 𝑥𝑖+4

Figure 3.2: Five-point finite difference stencil for the fourth-order forward finite difference
formula.

Taylor series (3.62), (3.63), (3.64), and (3.65) for the neighborhood of point 𝑥𝑖 follows:

𝑓(𝑥𝑖+1) = 𝑓(𝑥𝑖) + Δ𝑥𝑖𝑓(𝑥𝑖)
′ +

Δ𝑥2𝑖
2!

𝑓(𝑥𝑖)
′′ +

Δ𝑥3𝑖
3!

𝑓(𝑥𝑖)
′′′ +

+
Δ𝑥4𝑖
4!

𝑓(𝑥𝑖)
(4) +

(Δ𝑥𝑖)
5

5!
𝑓 (5)(𝜉1) (3.62)

𝑓(𝑥𝑖+2) = 𝑓(𝑥𝑖) + 2Δ𝑥𝑖𝑓(𝑥𝑖)
′ +

(2Δ𝑥𝑖)
2

2!
𝑓(𝑥𝑖)

′′ +
(2Δ𝑥𝑖)

3

3!
𝑓(𝑥𝑖)

′′′ +

+
(2Δ𝑥𝑖)

4

4!
𝑓(𝑥𝑖)

(4) +
(2Δ𝑥𝑖)

5

5!
𝑓 (5)(𝜉2) (3.63)

𝑓(𝑥𝑖+3) = 𝑓(𝑥𝑖) + 3Δ𝑥𝑖𝑓(𝑥𝑖)
′ +

(3Δ𝑥𝑖)
2

2!
𝑓(𝑥𝑖)

′′ +
(3Δ𝑥𝑖)

3

3!
𝑓(𝑥𝑖)

′′′ +

+
(3Δ𝑥𝑖)

4

4!
𝑓(𝑥𝑖)

(4) +
(3Δ𝑥𝑖)

5

5!
𝑓 (5)(𝜉3) (3.64)

𝑓(𝑥𝑖+4) = 𝑓(𝑥𝑖) + 4Δ𝑥𝑖𝑓(𝑥𝑖)
′ +

(4Δ𝑥𝑖)
2

2!
𝑓(𝑥𝑖)

′′ +
(4Δ𝑥𝑖)

3

3!
𝑓(𝑥𝑖)

′′′ +

+
(2Δ𝑥𝑖)

4

4!
𝑓(𝑥𝑖)

(4) +
(4Δ𝑥𝑖)

5

5!
𝑓 (5)(𝜉4) . (3.65)

Equation (3.66) represents the matrix-vector notation:⎛⎜⎜⎝
𝐷𝑋1
𝐷𝑋2
𝐷𝑋3
𝐷𝑋4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 12 13 14

2 22 23 24

3 32 33 34

4 42 43 44

⎞⎟⎟⎠
−1

·

⎛⎜⎜⎝
𝑥𝑖+1 − 𝑥𝑖
𝑥𝑖+2 − 𝑥𝑖
𝑦𝑘+3 − 𝑥𝑖
𝑦𝑘+4 − 𝑥𝑖

⎞⎟⎟⎠ , (3.66)

hence, ⎛⎜⎜⎝
𝐷𝑋1
𝐷𝑋2
𝐷𝑋3
𝐷𝑋4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
4 −3 4

3 −1
4

−13
3

19
4 −7

3
11
24

3
2 −2 7

6 −1
4

−1
6

1
4 −1

6
1
24

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
𝑥𝑖+1 − 𝑥𝑖
𝑥𝑖+2 − 𝑥𝑖
𝑥𝑖+3 − 𝑥𝑖
𝑥𝑖+4 − 𝑥𝑖

⎞⎟⎟⎠ . (3.67)

To approximate the first derivative 𝑓 ′(𝑥):

𝑓 ′(𝑥) ≈
−25

12𝑥𝑖 + 4𝑥𝑖+1 − 3𝑥𝑖+2 +
4
3𝑥𝑖+3 − 1

4𝑥𝑖+4

Δ𝑥
+𝑂(Δ𝑥4) . (3.68)

To approximate the second derivative 𝑓 ′′(𝑥):

𝑓 ′′(𝑥) ≈
35
12𝑥𝑖 −

26
3 𝑥𝑖+1 +

19
2 𝑥𝑖+2 − 14

3 𝑥𝑖+3 +
11
12𝑥𝑖+4

Δ𝑥2
+𝑂(Δ𝑥3) . (3.69)

46

To approximate the third derivative 𝑓 ′′′(𝑥):

𝑓 ′′′(𝑥) ≈
−5

2𝑥𝑖 + 9𝑥𝑖+1 − 12𝑥𝑖+2 + 7𝑥𝑖+3 − 3
2𝑥𝑖+4

Δ𝑥3
+𝑂(Δ𝑥2) . (3.70)

To approximate the fourth derivative 𝑓 (4)(𝑥):

𝑓 (4)(𝑥) ≈ 1𝑥𝑖 − 4𝑥𝑖+1 + 6𝑥𝑖+2 − 4𝑥𝑖+3 + 1𝑥𝑖+4

Δ𝑥4
+𝑂(Δ𝑥) . (3.71)

The coefficients of the forward difference formulas for five-point approximation are in Ta-
ble 3.3.

M O
stencil x-coordinates

0 1 2 3 4

1 4 −25
12 4 −3 4

3 −1
4

2 3 35
12 −26

3
19
2 −14

3
11
12

3 2 −5
2 9 −12 7 −3

2

4 1 1 −4 6 −4 1

Table 3.3: Table of coefficients for forward difference formulas.

The coefficients of the forward difference formulas for different stencils are in Table A.1 in
Appendix A.

Backward difference formulas

The fourth-order backward difference formula corresponds to the finite difference stencil
{−4,−3,−2,−1, 0}, and the points 𝑥, 𝑥−Δ𝑥, 𝑥− 2Δ𝑥, 𝑥− 3Δ𝑥, 𝑥− 4Δ𝑥. To approximate
the derivatives at point 𝑥, four Taylor series have to be constructed. Figure 3.3 illustrates
the five-point finite difference stencil. The point of interest 𝑥𝑖 is marked in black, and the
neighboring points are marked in red. For simplification, the points 𝑥, 𝑥−Δ𝑥, 𝑥−2Δ𝑥, 𝑥−
3Δ𝑥, 𝑥− 4Δ𝑥 are denoted as 𝑥𝑖, 𝑥𝑖−1, 𝑥𝑖−2, 𝑥𝑖−3, 𝑥𝑖−4.

𝑥𝑖−4 𝑥𝑖−3 𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖

Figure 3.3: Five-point finite difference stencil for fourth-order backward finite difference
formula

The resulting matrix-vector notation (3.72) to obtain the first four terms of the Taylor
series follows:⎛⎜⎜⎝

𝐷𝑋1
𝐷𝑋2
𝐷𝑋3
𝐷𝑋4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−4 (−4)2 (−4)3 (−4)4

−3 (−3)2 (−3)3 (−3)4

−2 (−2)2 (−2)3 (−2)4

−1 (−1)2 (−1)3 (−1)4

⎞⎟⎟⎠
−1

·

⎛⎜⎜⎝
𝑥𝑖−4 − 𝑥𝑖
𝑥𝑖−3 − 𝑥𝑖
𝑥𝑖−2 − 𝑥𝑖
𝑥𝑖−1 − 𝑥𝑖

⎞⎟⎟⎠ , (3.72)

47

therefore, ⎛⎜⎜⎝
𝐷𝑋1
𝐷𝑋2
𝐷𝑋3
𝐷𝑋4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1
4 −4

3 3 −4
11
24 −7

3
19
4 −13

3
1
4 −7

6 2 −3
2

1
24 −1

6
1
4 −1

6

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
𝑥𝑖−4 − 𝑥𝑖
𝑥𝑖−3 − 𝑥𝑖
𝑥𝑖−2 − 𝑥𝑖
𝑥𝑖−1 − 𝑥𝑖

⎞⎟⎟⎠ . (3.73)

To approximate the first derivative 𝑓 ′(𝑥):

𝑓 ′(𝑥) ≈
1
4𝑥𝑖−4 − 4

3𝑥𝑖−3 + 3𝑥𝑖−2 − 4𝑥𝑖−1 +
25
12𝑥𝑖

Δ𝑥
+𝑂(Δ𝑥4) . (3.74)

To approximate the second derivative 𝑓 ′′(𝑥):

𝑓 ′′(𝑥) ≈
11
12𝑥𝑖−4 − 14

3 𝑥𝑖−3 +
19
2 𝑥𝑖−2 − 26

3 𝑥𝑖−1 +
35
12𝑥𝑖

Δ𝑥2
+𝑂(Δ𝑥3) . (3.75)

To approximate the third derivative 𝑓 ′′′(𝑥):

𝑓 ′′′(𝑥) ≈
3
2𝑥𝑖−4 − 7𝑥𝑖−3 + 12𝑥𝑖−2 − 9𝑥𝑖−1 +

5
2𝑥𝑖

Δ𝑥3
+𝑂(Δ𝑥2) . (3.76)

To approximate the fourth derivative 𝑓 (4)(𝑥):

𝑓 (4)(𝑥) ≈ 𝑥𝑖−4 − 4𝑥𝑖−3 + 6𝑥𝑖−2 − 4𝑥𝑖−1 + 𝑥𝑖
Δ𝑥4

+𝑂(Δ𝑥) . (3.77)

The coefficients of the backward difference formulas for five-point approximation are in
Table 3.4.

M O
stencil x-coordinates

−4 −3 −2 −1 0

1 4 1
4 −4

3 3 −4 25
12

2 3 11
12 −14

3
19
2 −26

3
35
12

3 2 3
2 −7 12 −9 5

2

4 1 1 −4 6 −4 1

Table 3.4: Table of coefficients for backward difference formulas.

The coefficients for the finite difference formulas are in Table A.2 in Appendix A and can
be obtained from Table A.1 for forward finite difference formulas. The coefficients have the
opposite sign for odd derivatives, whereas the signs are the same for even derivatives.

3.3.3 Parameters affecting the accuracy of finite difference formulas

There are several parameters affecting the accuracy. The first parameter is the spatial step-
size (denoted as Δ𝑥), which depends on the number of grid points (denoted as 𝑆) and the
length of the spatial domain (denoted as 𝐿). Therefore, the spatial step size is defined as
Δ𝑥 = 𝐿/𝑆. If the smaller step is used, the resulting solution is more accurate. If the step
is too small, the calculation time may increase considerably. On the other hand, when the
selected step is too large, the solution may not be accurate.

48

The second parameter is the order of the finite difference formulas (denoted as 𝑂).
The higher order is used, the more accurate solution is obtained. The selection of the
difference formula depends on the order of derivatives that can be obtained. Consider a
finite difference formula of 𝑂𝑡ℎ-order, then derivatives up to 𝑂 − 1 order can be obtained
at each grid point. The selection of the order of the method is related to the selection of
the step of the spatial variable.

There are also differences between types of finite difference formulas. If the forward or
backward difference formulas are used, the same calculation error is obtained because both
of these formulas are asymmetrical, which causes the error accumulation. On the other
hand, the symmetrical difference formula uses the same number of points on both sides,
and this formula has a smaller calculation error [pp8, pp9, pp18].

Let us demonstrate the behavior of finite difference on the one-dimensional wave equa-
tion. The wave equation (3.78) is an important hyperbolic partial differential equation,
and it is widely used in many technical problems (vibration of the string, AC circuits,
electromagnetism, etc.)

𝜕2𝑢

𝜕𝑥2
=

𝜕2𝑢

𝜕𝑡2
. (3.78)

Let Ω be a domain of PDE (𝑥, 𝑡) = ⟨0, 𝜋⟩×⟨0, 𝑡𝑚𝑎𝑥⟩, where 𝑡𝑚𝑎𝑥 is the maximum simulation
time, and homogeneous Dirichlet boundary conditions on 𝜕Ω are defined as follows:

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 . (3.79)

Cauchy initial values follow:

𝑢(𝑥, 0) = sin(𝜋𝑥) ,
𝜕𝑢(𝑥, 0)

𝜕𝑡
= 0 . (3.80)

The wave equation describes a vibration of an ideal string of specified length. The string
is modeled by a sine function. The string is fixed at both ends to the 𝑥-axis (see boundary
values (3.79)). The string is released at time 𝑡 = 0, and the initial velocity of the string is
zero. The analytical solution is in the form:

𝑦 = cos(𝜋𝑡) sin(𝜋𝑥) . (3.81)

First, we discuss the accuracy of the calculation in the space domain and then in the
time domain. The absolute error between numerical and analytical solutions for the central
difference formulas in the spatial domain is shown in Figure 3.4 (left). Note that the spatial
step size is (Δ𝑥 = 𝜋/𝑆). The coefficients for the central difference formulas for parameters
second-order derivative 𝑀 = 2 and different orders of accuracy 𝑂 = are summarized in
Table 3.2. The red function shows the absolute error for the finite difference formula of
order 𝑂 = 4 and Δ𝑥 ≈ 0.1 (𝑆 = 32 segments). The average absolute error is 5.7𝑒−5. The
blue function shows this error for 𝑂 = 8 and Δ𝑥 ≈ 0.01 (𝑆 = 315 segments), where the
average absolute error is 4.2𝑒−17. Note that these functions mostly remain at the same
level. The higher deviation between numerical and analytical solutions at the boundary of
the spatial domain is caused by using asymmetrical difference formulas.

Figure 3.4 (right) shows the absolute error for the forward difference formulas. The
settings are the same as the settings for the central difference formulas. In this case, the
red function shows the absolute error of the finite difference formula for the parameters
𝑂 = 4 and Δ𝑥 ≈ 0.1 (𝑆 = 32 segments), the average absolute error is 5.4𝑒−4. The blue
function shows the absolute error for 𝑂 = 8 and 𝑆 = 315 Δ𝑥 ≈ 0.01 (𝑆 = 315 segments),

49

the average absolute error is 3.9𝑒−15. We can see that the absolute errors of the central
difference formulas are lower than those of the forward difference formulas.

0 0.5 1 1.5 2 2.5 3 3.5

x

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

a
b

s
o

lu
te

 e
rr

o
r

0 0.5 1 1.5 2 2.5 3 3.5

x

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

a
b

s
o

lu
te

 e
rr

o
r

Figure 3.4: Central (left) and forward (right) difference formulas (spatial domain).

The absolute error in the time domain is shown in Figure 3.5 and is calculated as
𝑒𝑟𝑟𝑜𝑟𝑡𝑖𝑚𝑒 = |𝑢𝑚𝑖𝑑𝑑𝑙𝑒 − cos(𝜋𝑡)|, where 𝑢𝑚𝑖𝑑𝑑𝑙𝑒 denotes the value of the function 𝑢(𝐿/2, 𝑡) at
the middle point of the string. The upper red function shows the absolute error for 𝑂 = 2
and 𝑆 = 10 (Δ𝑥 ≈ 0.3). One option to reduce the absolute error is to use more segments
𝑆 and, therefore, smaller spatial step-size Δ𝑥. The lower red function shows the absolute
error for 𝑂 = 2 and 𝑆 = 100 (Δ𝑥 ≈ 0.03). The absolute error can also be reduced by using
a higher-order difference formula. The upper blue function shows the error for 𝑂 = 4 and
𝑆 = 12 (Δ𝑥 ≈ 0.26), and the lower blue function shows the error for 0 = 4 and 𝑆 = 100.

Figure 3.5: The absolute error between numerical and analytical solution for different (time
domain).

50

Influence of arithmetic to finite difference formulas

The following experiments show the impact of arithmetic on the values of computed deriva-
tives. The function 𝑦 = sin(𝑥) is used for these experiments [pp9, pp11]. The derivatives
of the function are computed at the point 𝑥 = 0, and the spatial step size is Δ𝑥 = 0.01.

The experiments were performed using MATLAB software, which allows the use of
variable precision arithmetic (function vpa(), for more details, see [159]). Equation (3.82)
was used to convert significant digits to bits and vice versa. Let us denote significant digits
as SD and number of bits as BITS

𝑆𝐷 =
𝐵𝐼𝑇𝑆

log2 10
, 𝐵𝐼𝑇𝑆 = 𝑆𝐷 · log2 10 . (3.82)

The experiments were performed using forward and central difference formulas of different
orders. The arithmetic was set to 8B, 16B, 32B, and 64B. Notice that the arithmetic does
not influence lower orders of finite difference formulas in contrast with higher orders. The
following graphs show the absolute difference between numerical and analytical solutions
(𝑦-axis). The order of the derivative is shown on the 𝑥-axis. Only odd orders of derivatives
of the function 𝑦 = sin(𝑥) are considered. Even derivatives equal zero and only reflect the
variable precision arithmetic setting, so they are omitted. The analytical solution of the
derivatives of the function 𝑦 = sin(𝑥), where 𝑥 = 0, follows:

𝑦′ = cos(𝑥) = 1 𝑦′′ = − sin(𝑥) = 0

𝑦′′′ = − cos(𝑥) = −1 𝑦′′′′ = sin(𝑥) = 0 .
(3.83)

The sequence repeats. Figures 3.6, 3.7 (left) always show the absolute error for forward
difference formulas of the given order, Figures 3.6, 3.7 (right) for central difference formulas.

1 3 5 7 9 11 13 15 17 19

order of derivative

10
-40

10
-30

10
-20

10
-10

10
0

10
10

10
20

a
b

s
o

lu
te

 e
rr

o
r

left = 0, right = 20, h = 0.01

8B

16B

32B

64B

1 3 5 7 9 11 13 15 17 19

order of derivative

10
-40

10
-30

10
-20

10
-10

10
0

10
10

10
20

a
b

s
o

lu
te

 e
rr

o
r

left = 10, right = 10, h = 0.01

8B

16B

32B

64B

Figure 3.6: Forward (left) and central (right) difference formula, order 𝑂 = 20.

51

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

order of derivative

10
-40

10
-20

10
0

10
20

10
40

10
60

a
b

s
o

lu
te

 e
rr

o
r

left = 0, right = 40, h = 0.01

8B

16B

32B

64B

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

order of derivative

10
-40

10
-30

10
-20

10
-10

10
0

10
10

10
20

10
30

a
b

s
o

lu
te

 e
rr

o
r

left = 20, right = 20, h =

8B

16B

32B

64B

Figure 3.7: Forward (left) and central (right) difference formula, order 𝑂 = 40.

1 3 5 7 9 11131517192123252729313335373941434547495153555759

order of derivative

10
-50

10
0

10
50

10
100

10
150

a
b
s
o
lu

te
 e

rr
o
r

left = 0, right = 60, h = 0.01

8B

16B

32B

64B

1 3 5 7 9 11131517192123252729313335373941434547495153555759

order of derivative

10
-50

10
0

10
50

10
100

10
150

a
b
s
o
lu

te
 e

rr
o
r

left = 30, right = 30, h = 0.01

8B

16B

32B

64B

Figure 3.8: Forward (left) and central (right) difference formula, order 𝑛 = 60.

Let 𝑙 be a number of points to the left of the current point of the calculation, and 𝑟 be
a number of points to the right (see (3.44)). Figure 3.6 (left) shows the forward difference
formula (parameters 𝑙 = 0, 𝑟 = 20), Figure 3.6 (right) shows the central difference formula
(parameters 𝑙 = 10, 𝑟 = 10). The order of difference formulas is set to 𝑂 = 20. Figure 3.7
(left) shows the forward difference formula (parameters 𝑙 = 0, 𝑟 = 40), Figure 3.6 (right)
shows the central difference formula (parameters 𝑙 = 20, 𝑟 = 20). The order of the difference
formulas is set to 𝑂 = 40. Figure 3.8 (left) shows the forward difference formula (parameters
𝑙 = 0, 𝑟 = 60), Figure 3.8 (right) shows the central difference formula (parameters 𝑙 = 30,
𝑟 = 30). The order of difference formulas is set to 𝑛 = 60.

Differences between various lengths of arithmetic occur when higher orders of differential
formulas are used. The upper red function shows the absolute error for 8B arithmetic,
the black, blue, and magenta for 16B, 32B and 64B arithmetic, respectively. Notice that
derivatives computed using higher orders of finite difference formulas are more accurate than
lower orders. There are also differences between types of finite difference formulas. The
central difference formulas (right) are more accurate than the forward difference formulas
(left) because the error accumulation is less significant than the forward difference formulas.

The selection of arithmetic has an essential influence on the accuracy of calculating
derivatives’ values. The following Tables 3.5, 3.6, 3.7, and 3.8 contain the values of deriva-

52

tives for function 𝑦 = sin(𝑥) at point 𝑥 = 0, with a spatial step-size Δ𝑥 = 0.001, and pa-
rameters 𝑙 = 10, 𝑟 = 10. Expected solutions of individual derivatives 𝑦′(0) = 0, 𝑦′′(0) = −1,
𝑦′′′(0) = 0, · · · are shown in the Analytical columns, numerical solutions in the Numerical
columns, and the absolute error in the Absolute error columns.

Table 3.5 implies that an accumulated calculation error starts showing up on the 8B
arithmetic from the derivative of 1st order. On the other hand, in Tables 3.6, 3.7, and 3.8,
an accumulated calculation error starts showing up on the 16B, 32B, 64B arithmetic from
the 3rd, 7th, and 17th-order derivative, respectively.

Derivation Numerical Analytical Absolute error
1 1.00e00 1 4.77e−06

2 4.68𝑒−04 0 4.68𝑒−04

3 −8.25𝑒−01 −1 1.75𝑒−01

4 −1.36𝑒01 0 1.36𝑒01

5 −8.25𝑒03 1 8.25𝑒03

6 5.55𝑒05 0 5.55𝑒05

7 3.41𝑒08 −1 3.41𝑒08

8 −2.08𝑒10 0 2.08𝑒10

9 −1.22𝑒13 1 1.22𝑒13

10 6.24𝑒14 0 6.24𝑒14

11 3.66𝑒17 −1 3.66𝑒17

12 −1.23𝑒19 0 1.23𝑒19

13 −8.97𝑒21 1 8.97𝑒21

14 2.48𝑒22 0 2.48𝑒22

15 1.67𝑒26 −1 1.67𝑒26

16 8.43𝑒27 0 8.43𝑒27

17 −2.10𝑒30 1 2.10𝑒30

18 −2.97𝑒32 0 2.97𝑒32

19 1.31𝑒34 −1 1.31𝑒34

20 3.96𝑒36 0 3.96𝑒36

Table 3.5: Values of derivatives, 8B arithmetic.

53

Derivation Numerical Analytical Absolute error
1 1.00𝑒00 1 3.64𝑒−12

2 0.00𝑒00 0 1.97𝑒−10

3 −1.00e00 −1 3.63e−07

4 −3.40𝑒−05 0 3.39𝑒−05

5 1.03𝑒00 1 2.63𝑒−02

6 3.50𝑒00 0 3.50𝑒00

7 −1.45𝑒03 −1 1.45𝑒03

8 −2.51𝑒05 0 2.51𝑒05

9 6.70𝑒07 1 6.70𝑒07

10 1.44𝑒10 0 1.44𝑒10

11 −2.62𝑒12 −1 2.62𝑒12

12 −6.72𝑒14 0 6.72𝑒14

13 8.48𝑒16 1 8.48𝑒16

14 2.54𝑒19 0 2.54𝑒19

15 −2.13𝑒21 −1 2.13𝑒21

16 −7.31𝑒23 0 7.31𝑒23

17 3.71𝑒25 1 3.71𝑒25

18 1.43𝑒28 0 1.43𝑒28

19 −3.34𝑒29 −1 3.34𝑒29

20 −1.44𝑒32 0 1.44𝑒32

Table 3.6: Values of derivatives, 16B arithmetic.

Derivation Numerical Analytical Absolute error
1 1.00𝑒00 1 0.00𝑒00

2 0.00𝑒00 0 2.73𝑒−28

3 −1.00𝑒00 −1 4.55𝑒−19

4 0.00𝑒00 0 1.70𝑒−23

5 1.00𝑒00 1 2.75𝑒−14

6 0.00𝑒00 0 8.01𝑒−19

7 −1.00e00 −1 1.39e−09

8 0.00𝑒00 0 3.22𝑒−14

9 1.00𝑒00 1 6.10𝑒−05

10 0.00𝑒00 0 1.10𝑒−09

11 −3.32𝑒00 −1 2.32𝑒00

12 −3.00𝑒−05 0 3.04𝑒−05

13 7.35𝑒04 1 7.35𝑒04

14 6.23𝑒−01 0 6.23𝑒−01

15 −1.82𝑒09 −1 1.82𝑒09

16 −7.40𝑒03 0 7.40𝑒03

17 3.12𝑒13 1 3.12𝑒13

18 −3.77𝑒06 0 3.77𝑒06

19 −2.77𝑒17 −1 2.77𝑒17

. 20 1.14𝑒12 0 1.14𝑒12

Table 3.7: Values of derivatives, 32B arithmetic.

54

Derivation Numerical Analytical Absolute error
1 1.00𝑒00 1 4.38𝑒−47

2 0.00𝑒00 0 1.85𝑒−52

3 −1.00𝑒00 −1 2.86𝑒−42

4 0.00𝑒00 0 2.06𝑒−47

5 1.00𝑒00 1 2.37𝑒−37

6 0.00𝑒00 0 2.28𝑒−42

7 −1.00𝑒00 −1 1.80𝑒−32

8 0.00𝑒00 0 1.60𝑒−37

9 1.00𝑒00 1 1.21𝑒−27

10 0.00𝑒00 0 8.92𝑒−33

11 −1.00𝑒00 −1 7.07𝑒−23

12 0.00𝑒00 0 4.09𝑒−28

13 1.00𝑒00 1 3.50𝑒−18

14 0.00𝑒00 0 1.52𝑒−23

15 −1.00𝑒00 −1 1.42𝑒−13

16 0.00𝑒00 0 4.32𝑒−19

17 1.00e00 1 4.39e−09

18 0.00𝑒00 0 8.38𝑒−15

19 −1.00𝑒00 −1 9.28𝑒−05

20 0.00𝑒00 0 8.32𝑒−11

Table 3.8: Values of derivatives, 64B arithmetic.

3.4 Method of lines
The problems described by PDEs differ in various aspects, for example, geometric classifi-
cation (parabolic, hyperbolic, elliptic), linearity, types of coefficients, number of dependent
variables (number of simultaneous PDEs), number of independent variables (number of
dimensions), type of boundary conditions, and so on [78].

The method of lines is a general technique for solving PDEs, which discretizes one dimen-
sion and then integrates the semi-discrete problem as a system of ODEs. Spatial derivatives
are often discretized, and the time variable remains continuous. The resulting system of
ODEs can be solved using standard numerical methods for initial value ODEs to calculate
the approximate numerical solution of the original PDE problem [70, 77, 113, 146, 145, 99].
One of the main advantages of MOL is that it can use existing and well-established numer-
ical methods for a numerical solution to the PDE. In addition, the important advantages
of MOL are the simplicity of the explicit methods. Higher-order approximations can be
achieved in the discretization of spatial derivatives without significant increases in compu-
tational complexity [80]. This technique has broad applicability to physical and chemical
systems modeled by PDEs [78, 146, 150].

Let us consider the linear advection equation

𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑥
= 0 . (3.84)

In physical applications, 𝑣 denotes a linear or flow velocity. First, the spatial derivative 𝜕𝑢
𝜕𝑥

is replaced by a finite difference (FD)

𝜕𝑢

𝜕𝑥
≈ 𝑢𝑗 − 𝑢𝑗−1

Δ𝑥
. (3.85)

55

where 𝑗 is an index that indicates a position along a grid and Δ𝑥 is the spatial step size
along the grid. Assume that the grid has 𝑁 points. The left end value of 𝑥 has an index
𝑥 = 1, and the right end value of 𝑥 has an index 𝑥 = 𝑁 . The spatial domain of (3.84) is
discretized using MOL, resulting in a system of 𝑁 ODEs:

𝜕𝑢𝑖
𝜕𝑡

= −𝑣
𝑢𝑗 − 𝑢𝑗−1

Δ𝑥
, 1 ≤ 𝑗 ≤ 𝑁 . (3.86)

The (3.84) is of first order in 𝑡 and 𝑥. To complete the specification of the PDE problem
(3.84), one initial condition (IC) and one boundary condition (BC) are required. The initial
condition is

𝑢(𝑥, 𝑡 = 0) = 𝑓(𝑥) . (3.87)

The boundary condition is
𝑢(𝑥 = 0, 𝑡) = 𝑔(𝑥) . (3.88)

Since (3.86) consists of 𝑁 ODEs, 𝑁 initial conditions must be specified:

𝑢(𝑥𝑗 , 𝑡 = 0) = 𝑓(𝑥𝑖) , 1 ≤ 𝑗 ≤ 𝑁 . (3.89)

The resulting MOL approximation of (3.84) consists of (3.86), (3.89), and (3.88). The
solution of the system of ODEs is 𝑁 functions 𝑢1(𝑡), 𝑢2(𝑡), . . . , 𝑢𝑁−1(𝑡), 𝑢𝑁 (𝑡), an approxi-
mation to 𝑢(𝑥, 𝑡) at grid points 𝑗 = 1, 2, . . . , 𝑁 . The principle of MOL is shown in Figure 3.9.

Figure 3.9: The principle of MOL.

The FD approximation can be written in the form

𝜕𝑢

𝜕𝑥
≈ 𝑢𝑗 − 𝑢𝑗−1

Δ𝑥
+𝑂(Δ𝑥) , (3.90)

where 𝑂(Δ𝑥) is the truncation error of the approximation of (3.86), and is derived from a
truncated Taylor series). Since Δ𝑥 appears in the truncation error term to the first power,
(3.90) is called first order FD. The name finite difference is derived as follows. Note that
the numerator of (3.90) 𝑢𝑗 − 𝑢𝑗−1 is a difference of two values of 𝑢. The denominator Δ𝑥
is nonzero – finite. There are two main aspects to consider when using MOL:

• choice of the approximation of the spatial derivatives,

56

• choice of the numerical integration method for solving systems of ODEs.

The advantages of MOL are as follows:

• separating the problem of space and time allows establishing stability and convergence
for a wide range of problems,

• numerical VSVO techniques can be directly applied to maintain the accuracy and
stability of the solution.

A possible disadvantage is the more difficult optimization of MOL by decoupling the analysis
of space and time discretizations [84].

3.5 von Neumann stability analysis
The prediction of numerical stability has great importance in practice. The von Neumann
stability analysis [35] is a tool for validating a given numerical scheme based on Fourier
analysis. There are several assumptions for the von Neumann stability analysis. First,
it does not consider boundary effects, and second, it assumes that the finite difference
coefficients vary slowly and can be considered constant in time and space. Therefore, the
equations are linear. The von Neumann analysis defines an error in the solution and studies
its amplification over time. If a solution is stable, any perturbation in the input remains
bounded, whereas, for an unstable solution, the perturbations grow over time [150].

The solution can be written as the sum of eigenvalues in the following form:

𝑢𝑛𝑗 = 𝜉𝑛𝑒𝑖𝑘𝑥𝑗 , (3.91)

where 𝑘 is the spatial wave number and 𝜉(𝑘) is a complex number. We can express the
finite difference equation as:

𝑢𝑛+1
𝑗 = 𝑇 (Δ𝑡𝑝,Δ𝑥𝑞)𝑢𝑛𝑗 , (3.92)

where 𝑇 (Δ𝑡𝑝,Δ𝑥𝑞) is the evolution operator of order 𝑝 in time and 𝑞 in space. From
equations (3.91) and (3.92), we can see that the time evolution of a single eigenmode is
a succession integer powers of the complex number 𝜉, which is called amplification factor.
For the stability criterion, the modulus of the amplification factor is less than or equal to
1, therefore:

|𝜉|2 = 𝜉𝜉* ≤ 1 . (3.93)

Hence, if |𝜉| > 1 for any value of wavenumber 𝑘, then the scheme is unstable. Note that
von Neumann stability is a necessary but not sufficient condition for stability. That means
a numerical scheme that appears stable with respect to von Neumann stability analysis
might still be unstable [140].

Let us consider the one-dimensional linear convection equation:

𝜕𝑢

𝜕𝑡
= 𝑐

𝜕𝑢

𝜕𝑥
. (3.94)

Consider the finite difference approximation of equation (3.94):

𝑢𝑛+1
𝑗 − 𝑢𝑛𝑗

Δ𝑡
= −𝑣

𝑢𝑛𝑗 − 𝑢𝑛𝑗−1

Δ𝑥
, (3.95)

57

for 𝑢𝑛+1
𝑖 we have:

𝑢𝑛+1
𝑗 = 𝑢𝑛𝑗 − 𝑣Δ𝑡

Δ𝑥
(𝑢𝑛𝑗 − 𝑢𝑛𝑗−1) , 𝑗 = 1, 2, . . . , 𝑁 , (3.96)

where 𝑁 is the number of ODEs, 𝑛 is the index of the time variable 𝑡, and 𝑗 is the index of
the spatial variable 𝑥. Equation (3.96) is the basic ODE integration method called forward
Euler method. This method is explicit because we can solve the solution at point 𝑡𝑛+1 from
the solution at point 𝑡𝑛. The numerical scheme (3.96) has a limitation. If the time step Δ𝑡 is
above a critical value, the calculation becomes unstable, which means that Δ𝑢 = 𝑢𝑛+1

𝑗 −𝑢𝑛𝑗
becomes larger and potentially unbounded as time moves forward. The numerical solution
of (3.94) using (3.96) is stable if the expression 𝑣Δ𝑡

Δ𝑥 called Courant-Friedrichs-Lewy (CFL)
number (also called Courant number) remains below the critical value [78].

Richard Courant, Kurt Friedrichs, and Hans Lewy described in their paper in 1928
[34] that a numerical scheme is stable only when its numerical domain of dependence at
any point in space and time includes the mathematical/analytical domain of dependence.
If a numerical scheme violates this condition, the scheme does not consider all the data
necessary to advance the solution in time. On the other hand, if the numerical domain is
much larger than the analytical domain, this causes extraneous data to be included in the
solution [150]. The von Neumann analysis constrains the CFL number, which limits the
mesh size and the timestep size, which are required for the stability of a numerical solution.
The Courant number is dimensionless.

The CFL number in one-dimensional case for (3.94) is:

𝐶 =
𝑐Δ𝑡

Δ𝑥
, (3.97)

where 𝑐 is the characteristic wave speed of the system, Δ𝑡 is the time step of the numerical
method, and Δ𝑥 is the spatial step of the system.

The CFL condition defines a relation between two velocities: the physical velocity 𝑐 in
the medium where the waves are propagated, and the grid velocity Δ𝑥

Δ𝑡 relating the grid
increment Δ𝑥 divided to the time increment Δ𝑡. The CFL condition for explicit problems
has the following form:

𝐶 =
𝑐Δ𝑡

Δ𝑥
≤ 𝐶𝑚𝑎𝑥 , (3.98)

where the 𝐶𝑚𝑎𝑥 value depends on the dimensionality of the problem and on the specific
numerical method. The CFL condition is illustrated in Figure 3.10. The schematic diagram
shows stable and unstable choices of time step Δ𝑡. The dashed lines limit the numerical
domain of dependence of the solution at 𝑥𝑛+1

𝑗 , and the shaded area represents the physical
domain of dependence. To achieve numerical stability, the numerical domain has to be
larger than the physical domain.

58

Figure 3.10: The illustration of the CFL condition [140].

To increase the accuracy of (3.96), a smaller Δ𝑥 has to be chosen, which results in
a larger number of grid points in the spatial domain 𝑥 and, therefore, a larger number
of ODEs. At the same time, a smaller value of Δ𝑡 is required to keep the CFL number
below the critical value. This results in a conflicting requirement: improving accuracy while
maintaining numerical stability.

Although the Method of Lines does not need the explicit CFL condition, the CFL
condition still applies to the time-stepping techniques. The Method of Lines transforms the
given PDE into a semi-discrete system of ODEs without any time discretization. The CFL
condition is important only if the system is discretized in time and space. But we can see
that if we use, for example, the forward Euler method (3.96) to solve the ODE system, the
standard CFL condition is required to guarantee uniform stability [80].

3.6 Numerical stability of method of lines
Let us consider the partial differential equation of the initial or boundary value type:

𝜕𝑢

𝜕𝑡
= 𝑋(𝑢) , (3.99)

where 𝑢 = 𝑢(𝑥, 𝑡) is a function of one or several spatial variables 𝑥 and of time 𝑡. The 𝑋(·)
is a linear partial differential operator with derivatives to one or more variables 𝑥. The
number of initial and boundary conditions depends on the form of equation (3.99). Let
𝑥𝑗 = {𝑗 ·Δ𝑥, 𝑗 = 1, 2, · · · , 𝑁} be a grid of equidistant points along the 𝑥 axis and let 𝑢𝑗(𝑡)
denote the approximation of 𝑢(𝑥𝑗 , 𝑡). The operator 𝑋(·) can be replaced by finite difference
approximations in the following form:

[𝑋(𝑢)]𝑗 =
∑︁
𝛽

𝐴𝛽𝑢𝑗+𝛽 , (3.100)

where 𝐴𝛽 are constant coefficients. Equation (3.99) is approximated along the lines 𝑥 = 𝑥𝑗 ,
which are parallel to the time axis using the system of ODEs:

𝜕𝑢𝑗
𝜕𝑡

=
∑︁
𝛽

= 𝐴𝛽𝑢𝑗+𝛽 , (3.101)

The initial value problem (3.101) can then be solved by standard algorithms for ODEs.
Similarly, discretization of time 𝑡 in equal intervals yields in 𝑡𝑛 = 𝑛 ·Δ𝑡, 𝑛 = 0, 1, 2, · · · , 𝑇 ,

59

and 𝑢𝑛𝑗 is the approximation of 𝑢𝑗(𝑡𝑛). Analysis of numerical stability in integration of PDEs
(3.99) results in analysis of numerical stability in integration of ODEs (3.101), consisting
of these aspects [169]:

• specific classes of PDEs – define specific properties of the system of ODEs (including
the discretization in the spatial domain).

• specific algorithms for the integration in time – define conditions of numerical sta-
bility of these algorithms.

3.6.1 Notation

Let us define the space-shift operator 𝐸:

𝑢𝑛𝑗+1 = 𝐸 · 𝑢𝑗𝑛 (3.102)

and time-shift operator 𝑧:
𝑢𝑛+1
𝑗 = 𝑧 · 𝑢𝑗𝑛 . (3.103)

The finite difference approximation (3.100) can be rewritten using the operator 𝐸 as:

[𝑋(𝑢)]𝑗 = 𝐴 · 𝑢𝑗 , 𝐴 =
∑︁
𝛽

𝐴𝛽𝐸
𝛽 , (3.104)

and (3.101) becomes:
𝜕𝑢𝑗
𝜕𝑡

= 𝐴 · 𝑢𝑗 . (3.105)

The general form of common numerical integration algorithms for the system of ODEs can
be expressed using the time-shift operator 𝑧:

𝑢𝑛+1
𝑗 = 𝑀(Δ𝑡 ·𝐴, 𝑧) · 𝑢𝑛𝑗 , (3.106)

where the operator 𝑀(Δ𝑡·𝐴, 𝑧) contains integer powers of Δ𝑡·𝐴. For the numerical stability
of (3.106), the solution must be of the form:

𝑢𝑛𝑗 = 𝑎𝑛𝑒𝑖𝜔𝑥𝑗 , (3.107)

where 𝑒𝑖𝜔𝑥𝑗 is the eigenfunction of the operator 𝐴

𝐴 · 𝑒𝑖𝜔𝑥𝑗 = 𝐴(𝜔)𝑒𝑖𝜔𝑥𝑗 , (3.108)

and 𝐴(𝜔) is a (complex) scalar function defined as:

𝐴(𝜔) =
∑︁
𝛽

𝐴𝛽𝑒
𝑖𝜔𝛽Δ𝑥 , (3.109)

the scalar function 𝐴(𝜔) is a spectral representation of the operator 𝐴, therefore, it is called
the spectral function of 𝐴.

Since the operator 𝑀(Δ𝑡 · 𝐴, 𝑧) contains integer powers of Δ𝑡 · 𝐴, and 𝑒𝑖𝜔𝑥𝑗 is the
eigenfunction of the operator 𝐴, then 𝑒𝑖𝜔𝑥𝑗 are also eigenfunctions of the operator 𝑀(Δ𝑡 ·
𝐴, 𝑧), hence:

𝑀(Δ𝑡 ·𝐴, 𝑧) · 𝑒𝑖𝜔𝑥𝑗 = 𝑀(Δ𝑡 ·𝐴(𝜔), 𝑧) · 𝑒𝑖𝜔𝑥𝑗 , (3.110)

60

where the space-shift operator 𝐸 is eliminated in the operator 𝑀(Δ𝑡 ·𝐴(𝜔), 𝑧). By substi-
tution (3.107) into (3.103), and elimination of 𝑒𝑖𝜔𝑥𝑗 , the relation between 𝑎𝑛+1 and 𝑎𝑛 is
obtained:

𝑎𝑛+1

𝑎𝑛
= 𝑧 , (3.111)

and 𝑧 is a constant scalar number. By substituting (3.111) into (3.110), we can see that 𝑧
is the solution of the characteristic equation:

𝑧 −𝑀(Δ𝑡 ·𝐴(𝜔), 𝑧) = 0 . (3.112)

If there exist solutions 𝑧 of (3.112) that |𝑧| > 1, then there exists a corresponding sequence
𝑎𝑛 that is unbounded for 𝑛 −→ ∞, because 𝑎𝑛 = 𝑎0 · 𝑧𝑛.

Therefore, the stability theorem is as follows: A necessary condition for the numerical
stability of the method of lines (3.101) is that all 𝑧 solutions of the characteristic equation
(3.112) satisfy the condition:

∀𝜔 : |𝑧| ≤ 1 . (3.113)

Note that the condition (3.113) is equivalent to the von Neumann condition for the finite
difference method (see (3.93)). The eigenvalues 𝑧 of (3.112) are equivalent to the amplifi-
cation factors (see (3.92)).

3.6.2 Regions of stability

The characteristic equation (3.112) can be transformed from a region 𝑆 in the Δ𝑡 · 𝐴(𝜔)
complex plane to the |𝑧| ≤ 1 in the complex plane. The region 𝑆 is then called the stability
region of the integration method, and 𝑆𝐵 denotes the stability boundary. Let us denote
𝑆𝑅, the intersection of the stability boundary 𝑆𝐵 with the real negative axis, and 𝑆𝐼 , the
intersection of the stability boundary 𝑆𝐵 with the imaginary axis.

The function 𝐴(𝜔) depends only on the operator 𝐴, which means that it depends only
on the operator 𝑋(·) (3.99). In other words, it depend on the finite differences, which
include the order of the finite difference formula (corresponds to the 𝐴𝛽 coefficients), and
on the spatial step Δ𝑥.

In summary, the numerical stability analysis depends on the spectral function 𝐴(𝜔) of
the analyzed equation and the stability region 𝑆 specific to the integration-in-time method.

3.6.3 Stability regions of the selected methods

Figures 3.11 show the stability regions for the higher-order Taylor series method for orders
1–25. The higher-order Taylor series method is referred to as Modern Taylor Series Method
(MTSM) and is described in detail in Chapter 4.

61

-1
2
.5

-1
1
.5

-1
0
.5

-9
.5

-8
.5

-7
.5

-6
.5

-5
.5

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5

0
.5

1
.5

2
.5

3
.5

4
.5

5
.5

6
.5

7
.5

8
.5

9
.5

1
0
.5

1
1
.5

1
2
.5

Re(z)

-10

-5

0

5

10
Im

(z
)

ORD=1

ORD=2

ORD=3

ORD=4

ORD=5

ORD=6

ORD=7

ORD=8

ORD=9

ORD=10

ORD=11

ORD=12

ORD=13

ORD=14

ORD=15

ORD=16

ORD=17

ORD=18

ORD=19

ORD=20

ORD=21

ORD=22

ORD=23

ORD=24

ORD=25

Figure 3.11: Stability regions of MTSM – orders 1–25.

The stability regions for the Dormand-Prince 5(4) method (denoted RK45) [44, 151] and the
Verner Runge-Kutta method of order 8(7) (denoted RK8VR) [166] are shown in Figures 3.12
and 3.13, respectively.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Re(z)

-5

-4

-3

-2

-1

0

1

2

3

4

5

Im
(z

)

Fehlberg

Dormand-Prince

Figure 3.12: Stability regions of Dormand-Prince 5(4) and Fehlberg methods.

62

Figure 3.13: Stability regions of Verner Runge Kutta 8(7) method [167], [168].

-4 -3 -2 -1 0 1 2 3 4

Re(z)

-4

-3

-2

-1

0

1

2

3

4

Im
(z

)

ORD=1

ORD=2

ORD=3

ORD=4

Figure 3.14: Stability regions for orders 1–4. The 𝑂𝑅𝐷 = 1 corresponds to the explicit
Euler method, 𝑂𝑅𝐷 = 4 to the classical fourth-order Runge-Kutta method.

The 𝑆𝑅 and 𝑆𝐼 intersections of MTSM for orders 1–25 are summarized in Table 3.9. The
intersections of MTSM for orders 26–64 are in Tables B.1 and B.2 in Appendix B.

63

Order |SR| |SI|
1 −2.00 ±0.00

2 −2.00 ±0.00

3 −2.51 ±1.73

4 −2.79 ±2.83

5 −3.22 ±3.40

6 −3.55 ±0.00

7 −3.95 ±1.76

8 −4.31 ±3.40

9 −4.70 ±4.57

10 −5.07 ±5.26

11 −5.45 ±1.70

12 −5.82 ±3.38

13 −6.20 ±5.00

14 −6.57 ±6.30

15 −6.95 ±7.10

16 −7.32 ±7.24

17 −7.70 ±4.97

18 −8.07 ±6.59

19 −8.45 ±8.00

20 −8.82 ±8.90

21 −9.20 ±9.32

22 −9.57 ±6.55

23 −9.94 ±8.17

24 −10.32 ±9.66

25 −10.69 ±10.68

Table 3.9: 𝑆𝑅 and 𝑆𝐼 intersections of MTSM for orders 1–25.

The 𝑆𝑅 and 𝑆𝐼 intersections of the selected Runge-Kutta methods are shown in Table 3.10.

Method |SR| |SI|
RK45 −3.27 0

RK8VR −4.82 ±4.51

Table 3.10: 𝑆𝑅 and 𝑆𝐼 intersections of selected Runge-Kutta methods.

3.6.4 Stability analysis of the parabolic equation

First, let us examine the numerical stability of the one-dimensional heat equation:

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
(3.114)

The (3.114) is discretized in space using second-order central differences:

𝜕𝑢

𝜕𝑡
= 𝛼

(︂
𝑢𝑗−1 − 2𝑢𝑗 + 𝑢𝑗+1

Δ𝑥2

)︂
, (3.115)

64

where the coefficients 𝐴𝛽 from (3.101) are:

𝐴−1 = 𝐴1 =
𝛼

Δ𝑥2
, 𝐴0 =

−2𝛼

Δ𝑥2
. (3.116)

The spectral function 𝐴(𝜔) is:

𝐴(𝜔) =
𝛼

Δ𝑥2
(︀
−2 + 1𝑒𝑖𝜔Δ𝑥 + 1𝑒𝑖𝜔Δ𝑥

)︀
. (3.117)

Because 2 cos(𝜔) = 𝑒𝑖𝜔 + 𝑒−𝑖𝜔, we have:

𝐴(𝜔) =
𝛼

Δ𝑥2
(−2 + 2 cos(𝜔Δ𝑥)) (3.118)

and
𝐴(𝜔) =

−2𝛼

Δ𝑥2
(1− cos(𝜔Δ𝑥)) . (3.119)

The spectral function 𝐴(𝜔) is real-negative for all values of 𝜔. The stability condition is:

|Δ𝑡 ·𝐴(𝜔)|max =
4𝛼Δ𝑡

Δ𝑥2
≤ |𝑆𝑅| . (3.120)

Note that most common integration methods 𝑀 enclose at least a portion of the real-
negative axis. The stability condition for these algorithms is that the portion of the real-
negative axis contains (3.119) for all values of 𝜔. From (3.120) we can express Δ𝑡 to obtain
the maximum integration step size for the given integration method:

Δ𝑡 ≤ |𝑆𝑅|Δ𝑥2

4𝛼
. (3.121)

Table 3.11 summarizes the stability conditions for different numerical methods.

Method |SR| |SI| Stability condition
4𝛼Δ𝑡
Δ𝑥2 ≤ |𝑆𝑅|

MTSM (𝑂𝑅𝐷 = 25) −10.7 ±10.7 𝛼Δ𝑡
Δ𝑥2 ≤ 2.68

RK45 −3.27 0 𝛼Δ𝑡
Δ𝑥2 ≤ 0.81

RK8VR −4.82 ±4.51 𝛼Δ𝑡
Δ𝑥2 ≤ 1.21

Table 3.11: Conditions of numerical stability for the one-dimensional heat equation, dis-
cretized in space using second-order central differences and integrated in time by different
methods.

3.6.5 Stability analysis of the hyperbolic equation

The one-dimensional hyperbolic equation can be written as follows:

𝜕2𝑢

𝜕𝑡2
= 𝛼

𝜕2𝑢

𝜕𝑥2
. (3.122)

The spatial domain of (3.122) is discretized in space using second-order central differences:

𝜕2𝑢

𝜕𝑡2
= 𝛼

(︂
𝑢𝑗−1 − 2𝑢𝑗 + 𝑢𝑗+1

Δ𝑥2

)︂
, (3.123)

65

the coefficients 𝐴𝛽 from (3.101) are:

𝐴−1 = 𝐴1 =
𝛼

Δ𝑥2
, 𝐴0 =

−2𝛼

Δ𝑥2
. (3.124)

The spectral function 𝐴(𝜔) is:

𝐴(𝜔) =
𝛼

Δ𝑥2
(︀
−2 + 1𝑒𝑖𝜔Δ𝑥 + 1𝑒𝑖𝜔Δ𝑥

)︀
. (3.125)

Because 2 cos(𝜔) = 𝑒𝑖𝜔 + 𝑒−𝑖𝜔, we have:

𝐴(𝜔) =
𝛼

Δ𝑥2
(−2 + 2 cos(𝜔Δ𝑥)) (3.126)

and
𝐴(𝜔) =

−2𝛼

Δ𝑥2
(1− cos(𝜔Δ𝑥)) . (3.127)

Also, 1− cos(𝜔) = 2 sin2(𝜔Δ𝑥/2), therefore:

𝐴(𝜔) =
−2𝛼

Δ𝑥2
(︀
2 sin2(𝜔Δ𝑥/2)

)︀
(3.128)

𝐴(𝜔) =
−4𝛼

Δ𝑥2
(︀
sin2(𝜔Δ𝑥/2)

)︀
. (3.129)

Due to the second derivative in 𝑡, it is necessary to construct a first-order system:(︂
𝑢̂(𝜔, 𝑡)
𝑣(𝜔, 𝑡)

)︂
=

2𝛼 sin(𝜔Δ𝑥/2)Δ𝑡

Δ𝑥

(︂
0 1
1 0

)︂(︂
𝑢(𝜔, 𝑡)
𝑣(𝜔, 𝑡)

)︂
, (3.130)

where 𝑢̂(𝜔, 𝑡) is the Fourier series of spatial discretization. The spectral function 𝐴(𝜔) is
pure-imaginary for all values of 𝜔. Some numerical integration methods do not enclose
any portion of the imaginary axis, which means that they are unstable, for example, the
first-order Euler method or the second-order Runge-Kutta method; see Figure 3.14. The
stability condition is:

|Δ𝑡 ·𝐴(𝜔)|max =
2𝛼Δ𝑡

Δ𝑥
≤ |𝑆𝐼 | . (3.131)

From (3.131) we can express Δ𝑡 to obtain the maximum integration step size for a given
integration method:

Δ𝑡 ≤ |𝑆𝐼 |Δ𝑥

2𝛼
. (3.132)

Table 3.12 summarizes the stability conditions for different numerical methods.

Method |SR| |SI| Stability condition
2𝛼Δ𝑡
Δ𝑥 ≤ |𝑆𝐼 |

MTSM (𝑂𝑅𝐷 = 25) −10.7 ±10.7 𝛼Δ𝑡
Δ𝑥2 ≤ 5.35

RK45 −3.27 0 𝛼Δ𝑡
Δ𝑥2 ≤ 0

RK8VR −4.82 ±4.51 𝛼Δ𝑡
Δ𝑥2 ≤ 2.26

Table 3.12: Conditions of numerical stability for the one-dimensional wave equation, dis-
cretized in space using second-order central differences and integrated in time by different
methods.

66

3.7 Higher-order differential equations
The MTSM can only solve the first-order ODEs and systems of first-order ODEs. Any
higher-order ODE can be transformed into the corresponding system of the first-order
ODEs using the methods discussed in the following subsections. Note that the results of
the methods are equivalent [pp4].

3.7.1 Method of derivation order reduction

On the right side, the coercive function 𝑧 cannot have a derivative. Consider the following
equation (3.133)

𝑦′′′′ + 𝑎3𝑦
′′′ + 𝑎2𝑦

′′ + 𝑎1𝑦
′ + 𝑎0𝑦 = 𝑏0𝑧 (3.133)

𝑦(0) = 𝑦′(0) = 𝑦′′(0) = 𝑦′′′(0) = 0 .

We rewrite (3.133) using the Laplace transform to obtain (3.134)

𝑠4𝑦 + 𝑎3𝑠
3𝑦 + 𝑎2𝑠

2𝑦 + 𝑎1𝑠𝑦 + 𝑎0𝑦 = 𝑏0𝑧 . (3.134)

It is possible to rewrite (3.134) to the system of ODEs (3.135). Elements 1
𝑠 denote numerical

integrators

𝑠4𝑦 = 𝑏0𝑧 − 𝑎3𝑠
3𝑦 − 𝑎2𝑠

2𝑦 − 𝑎1𝑠𝑦 − 𝑎0𝑦

𝑠3𝑦 =
1

𝑠
𝑠4𝑦 𝑠3𝑦(0) = 0

𝑠2𝑦 =
1

𝑠
𝑠3𝑦 𝑠2𝑦(0) = 0

𝑠𝑦 =
1

𝑠
𝑠2𝑦 𝑠𝑦(0) = 0

𝑦 =
1

𝑠
𝑠𝑦 𝑦(0) = 0 .

(3.135)

3.7.2 Method of derivation order reduction with an additional variable

The standard order reduction method cannot be used if the differential equation contains the
derivative of the coercive function 𝑧. Let us consider the higher-order ordinary differential
equation (3.136)

𝑦′′′′ + 𝑎3𝑦
′′′ + 𝑎2𝑦

′′ + 𝑎1𝑦
′ + 𝑎0𝑦 = 𝑏4𝑧′′′′ + 𝑏3𝑧

′′′ + 𝑏2𝑧
′′ + 𝑏1𝑧

′ + 𝑏0𝑧

𝑦(0) = 𝑦′(0) = 𝑦′′(0) = 𝑦′′′(0) = 0

𝑧(0) = 1, 𝑧′(0) = 𝑧′′(0) = 𝑧′′′(0) = 𝑧′′′′(0) = 0 .

(3.136)

Equation (3.136) can be simplified using the Laplace operator

𝑠4𝑦 + 𝑎3𝑠
3𝑦 + 𝑎2𝑠

2𝑦 + 𝑎1𝑠𝑦 + 𝑎0𝑦 = 𝑏4𝑠
4𝑧 + 𝑏3𝑠

3𝑧 + 𝑏2𝑠
2𝑧 + 𝑏1𝑠𝑧 + 𝑏0𝑧

𝑦(𝑠4 + 𝑎3𝑠
3 + 𝑎2𝑠

2 + 𝑎1𝑠+ 𝑎0) = 𝑧(𝑏4𝑠
4 + 𝑏3𝑠

3 + 𝑏2𝑠
2 + 𝑏1𝑠+ 𝑏0) .

(3.137)

The equation for output 𝑦 follows

𝑦 =
𝑏4𝑠

4 + 𝑏3𝑠
3 + 𝑏2𝑠

2 + 𝑏1𝑠+ 𝑏0
𝑠4 + 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠+ 𝑎0

𝑧 . (3.138)

67

The additional variable 𝑣 can be defined as

𝑣 =
𝑧

𝑠4 + 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠+ 𝑎0
. (3.139)

Using the substitution of additional variable (3.139) to (3.138), we obtain

𝑦 = (𝑏4𝑠
4 + 𝑏3𝑠

3 + 𝑏2𝑠
2 + 𝑏1𝑠+ 𝑏0)𝑣 . (3.140)

The order of the additional variable can be reduced using the standard order reduction
method (see Section 3.7.1)

𝑠4𝑣 + 𝑎3𝑠
3𝑣 + 𝑎2𝑠

2𝑣 + 𝑎1𝑠𝑣 + 𝑎0𝑣 = 𝑧

𝑠4𝑣 = 𝑧 − 𝑎3𝑠
3𝑣 − 𝑎2𝑠

2𝑣 − 𝑎1𝑠𝑣 − 𝑎0𝑣

𝑠3𝑣 =
1

𝑠
𝑠4𝑣 𝑠3𝑣(0) = 0

𝑠2𝑣 =
1

𝑠
𝑠3𝑣 𝑠2𝑣(0) = 0

𝑠𝑣 =
1

𝑠
𝑠2𝑣 𝑠𝑣(0) = 0

𝑣 =
1

𝑠
𝑠𝑣 𝑣(0) = 0 .

(3.141)

3.7.3 Method of continuous integration

Again, the coercive function 𝑧 has a derivative. Consider the following equation (3.142),
initial conditions are 𝑦(0) = 0, 𝑧(0) = 1, all others are zero

𝑦′′′′ + 𝑎3𝑦
′′′ + 𝑎2𝑦

′′ + 𝑎1𝑦
′ + 𝑎0𝑦 = 𝑏4𝑧

′′′′ + 𝑏3𝑧
′′′ + 𝑏2𝑧

′′ + 𝑏1𝑧
′ + 𝑏0𝑧 . (3.142)

Equation (3.142) is rewritten using Laplace transform (3.143)

𝑠4𝑦 + 𝑎3𝑠
3𝑦 + 𝑎2𝑠

2𝑦 + 𝑎1𝑠𝑦 + 𝑎0𝑦 = 𝑏4𝑠
4𝑧 + 𝑏3𝑠

3𝑧 + 𝑏2𝑠
2𝑧 + 𝑏1𝑠𝑧 + 𝑏0𝑧 . (3.143)

It is possible to rewrite (3.143) in the following form. The derivatives of the same order are
grouped in parentheses

𝑠4𝑦 = 𝑏4𝑠
4𝑧 + 𝑠3(𝑏3𝑧 − 𝑎3𝑦) + 𝑠2(𝑏2𝑧 − 𝑎2𝑦) + 𝑠(𝑏1𝑧 − 𝑎1𝑦) + (𝑏0𝑧 − 𝑎0𝑦)

𝑠3𝑦 = 𝑏4𝑠
3𝑧 + 𝑠2(𝑏3𝑧 − 𝑎3𝑦) + 𝑠(𝑏2𝑧 − 𝑎2𝑦) + (𝑏1𝑧 − 𝑎1𝑦) + 𝑣1

𝑠2𝑦 = 𝑏4𝑠
2𝑧 + 𝑠(𝑏3𝑧 − 𝑎3𝑦) + (𝑏2𝑧 − 𝑎2𝑦) + 𝑣2

𝑠𝑦 = 𝑏4𝑠𝑧 + (𝑏3𝑧 − 𝑎3𝑦) + 𝑣3

𝑦 = 𝑏4𝑧 + 𝑣4 .

(3.144)

The variables 𝑣1, 𝑣2, 𝑣3 and 𝑣4 can be calculated using the system (3.145)

𝑣1 =
1

𝑠
(𝑏0𝑧 − 𝑎0𝑦) 𝑣1(0) = 0

𝑣2 =
1

𝑠
(𝑏1𝑧 − 𝑎1𝑦 + 𝑣1) 𝑣2(0) = 0

𝑣3 =
1

𝑠
(𝑏2𝑧 − 𝑎2𝑦 + 𝑣2) 𝑣3(0) = 0

𝑣4 =
1

𝑠
(𝑏3𝑧 − 𝑎3𝑦 + 𝑣3) 𝑣4(0) = 0 .

(3.145)

68

Chapter 4

Higher-order Taylor series method

This chapter introduces the developed method, the Modern Taylor Series Method (MTSM).
It is based on previously published works, mainly [103] and [pp8, pp13, pp28, pp21, pp22]
and other works cited throughout. The Modern Taylor Series Method is a variable step,
variable order method for solving differential equations using the Taylor series. The ex-
perimental calculations verified that the speed of calculation, accuracy, and stability of the
method could exceed commonly used algorithms for numerical solutions of differential equa-
tions. The speedup of the calculation is significant, especially when solving large systems
of differential equations.

The Modern Taylor Series Method is based on the recurrent calculation of the Taylor
series terms for each time interval. Therefore, the complicated calculation of higher-order
derivatives (much criticized in the literature) need not be performed, but rather the value
of each Taylor series term is numerically calculated [103].

An important part of the method is the automatic integration order setting, using
as many Taylor series terms as defined accuracy requires. Usually, the computation uses
different numbers of Taylor series terms for different steps of constant length. On the other
hand, for a pre-set integration order, the integration step length may be selected. This fact
positively affects the stability and speed of computation.

A necessary part of the Modern Taylor Series Method is automatic transformation
of the original problem. The original system of differential equations is automatically trans-
formed to a polynomial form, that is, to a form suitable for calculating the Taylor series
terms using recurrent formulas [118]. The Modern Taylor Series Method also has some
favorable properties for parallel processing. Many calculation operations are independent,
and calculations can be performed independently using separate processors of parallel com-
puting systems. After the automatic transformation of the task, only basic mathematical
operations (addition, subtraction, multiplication, division) can be performed during the
calculation of the transformed system. It is possible to design simple specialized elemen-
tary processors and obtain a parallel computing system with a relatively simple architecture
[97, 98]. The characteristic property of the Modern Taylor Series Method is that using more
Taylor series terms during the computation results in higher computation accuracy for a
given step size. Of course, the increase in accuracy is limited. The saturated computation
error for a given step size depends on the word length of the arithmetic unit. Sometimes,
the saturation error can be reduced by decreasing the integration step size or extending the
word length of the arithmetic unit [95].

69

4.1 State of the art
The Taylor Series Method is an integration method with a rich history. Among the first
authors to outline the recurrent calculation of the Taylor series term in canonical form were
Gibbons [65], and Moore [137]. Taylor coefficients of a function can be obtained by using
rules for automatic differentiation of elementary functions. The automatic differentiation
technique is described in [19, 20, 33, 68, 105, 136, 165]. The variable step size variable order
scheme is described in [15, 18, 121]. The approach based on an approximate formulation of
the Taylor methods can be found in [9]. Numerical calculations of higher-order derivatives
up to the fourth order are shown in [119, 122]. The Taylor series method can successfully
solve some problems that other schemes cannot solve [16, 141].

The first attempts to program the recurrent Taylor series were performed in FOR-
TRAN [76]. For example, ATOMF [31] written in Fortran 77, and several C/C++ packages,
TADIFF [22], COSY INFINITY [116], TIDES software [1, 17], and TAYLOR [89]. Other
implementations based on the Taylor series include DAETS [126, 127, 128]. The first im-
plementation of MTSM was TKSL/386 [102]. Currently, MTSM has been implemented
and tested in MATLAB software1, in C/C++ languages (FOS [94] and TKSL/C software2).
Additionally, the method can be implemented effectively on the hardware [pp4].

The parallel high-precision numerical solution of ODEs using high-order Taylor methods
is discussed in [14]. Selected problems are Arenstorf orbits and a galactic dynamics model.
The numerical tests were performed on a Sun UltraSPARC-II with four processors of 480
MHz using the MPI and the multiple-precision Fortran library mpf90. The authors noted
that the number of inter-process communications is high; therefore, this approach is useful
only for high-precision demands.

The article [41] focuses on the OpenMP parallelization of multiple precision Taylor
series method using one computational node. The model problem is the chaotic dynamic
system – the classical Lorenz system. The application is written in C programming language
with the GMP library (The GNU Multiple Precision Arithmetic Library3). The paper also
briefly mentions the concept of CNS (Clean Numerical Simulation) originally published
by Shijun Liao [109]. Chaotic dynamic systems have a sensitive dependence on initial
conditions (SDIC); therefore, accurate long-term prediction of chaotic dynamic systems is
almost impossible. The CNS provides reliable chaotic trajectories in a long enough interval
of time. The paper presents a simulation for 1–28 cores on one CPU node, in the interval
[0, 5000], using the 𝑁 = 2000 order of the Taylor series method and precision of 8000 bits
(approximately 2412 decimal digits) and five integration steps were performed. The results
show that the parallel efficiency for 28 cores is ≈ 75%. The experiment took approximately
nine days and 14 hours.

A hybrid MPI+OpenMP parallelization strategy for the multiple-precision Taylor series
method with fixed step size and fixed order is discussed in [81]. Again, the libraries for
multiple precision arithmetics are used. Namely, GMP and MPIGMP4 [96]. The hybrid
strategy was used because OpenMP scalability is slightly better than MPI when using one
computational node. The speedup depends on the order of the Taylor series method and
the hardware properties of the HPC cluster. The authors claimed that this hybrid strategy
could be applied to a large class of chaotic dynamical systems.

1https://www.mathworks.com/help/matlab
2https://www.fit.vutbr.cz/~satek/MTSM/tkslc.html
3http://gmplib.org
4https://na-inet.jp/na/bnc

70

https://www.mathworks.com/help/matlab
https://www.fit.vutbr.cz/~satek/MTSM/tkslc.html
http://gmplib.org
https://na-inet.jp/na/bnc

The article [82] is based on the previous article [81] and introduces a modification of
the CNS with variable step size and fixed order. The source code is similar to that in
[81]. It only adds one OpenMP section to compute the optimal integration step. The
optimal integration steps are based on the approach published in [89], where the last two
terms of the Taylor series determine the optimal step size. The authors found out that the
order of the Taylor series method is higher in comparison with the fixed-order approach.
However, the larger integration step size reduces the number of integration steps. Also, the
higher-order method increases parallel efficiency. The model problem is again a classical
Lorenz system, and the simulation experiments are performed on 256 CPUs in the long
time interval [0,11000]. Compared to the fixed step size approach, the variable step size
strategy has 2.1 speedup. There are two reasons why the variable step size strategy has a
higher speedup than the fixed step size strategy. The first is less overall work. Although
the computational work per integration step increases by ≈ 80%, the average step size was
≈ 0.034 compared to the fixed step size strategy ≈ 0.01. Thus, the overall work decreases
to ≈ 53%.

For the first experiment, the parallel efficiency increases from 55.5% to 63.6%, and for
the second, from 56.2% to 64.3%. The reason is that using the higher-order Taylor series
method increases the amount of parallel work. This ensures a lower impact on the serial
amount of work and the parallel overhead.

4.2 Motivational example
Let us consider the following functions

𝑢 = sin(𝜔𝑡)

𝑣 = cos(𝜔𝑡) .
(4.1)

The system (4.1) can be represented using the following system of ODEs

𝑢′ = 𝜔𝑣, 𝑢(0) = 0

𝑣′ = −𝜔𝑢, 𝑣(0) = 1 .
(4.2)

The matrix-vector representation of the problem (4.2) is y′ = Ay+b , y(𝑡0) = y0, where

A =

(︂
0 𝜔
−𝜔 0

)︂
, y0 = (𝑢, 𝑣)𝑇 = (0, 1)𝑇 , b = (0, 0)𝑇 . (4.3)

The behavior of the system of ODEs (4.2) strongly depends on the parameter 𝜔. The
results are calculated using the MTSM solver, implemented in MATLAB software using
vectorization, and state-of-the-art non-stiff MATLAB solvers ode23, ode45, and ode113
[158].

All experiments were performed using MATLAB software. For all experiments, the
maximum simulation time is 𝑡𝑚𝑎𝑥 = 50, and the maximal order of MTSM is 𝑚𝑎𝑥𝑂𝑅𝐷 = 64.
Unless otherwise specified, the integration step of the MTSM is ℎ = 0.1. The numerical
results are compared with the analytic solution (4.1). The error (denoted as ||error||) is
defined as

||error||∞ = max(𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒_𝑒𝑟𝑟𝑜𝑟_𝑠𝑖𝑛+ 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒_𝑒𝑟𝑟𝑜𝑟_𝑐𝑜𝑠) . (4.4)

Ratios of computation times (denoted as ratio), 𝑟𝑎𝑡𝑖𝑜 = 𝑠𝑜𝑙𝑣𝑒𝑟/𝑀𝑇𝑆𝑀 ≫ 1 indicates
significantly faster computation using the MTSM.

71

4.2.1 Experiment 1

For the first experiment, 𝜔 = 1, the tolerances for all ode solvers are 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−3

and 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−6 (default MATLAB settings), and the tolerance for the MTSM solver
is 𝑡𝑜𝑙 = 1𝑒−3. In the phase plane, the expected solution of (4.3) should form a circle.
Figure 4.1 shows the results calculated by ode23, ode45, ode113, and MTSM, respectively.
The average order of MTSM is 6.

-1 -0.5 0 0.5 1

sin(t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c
o
s
(

t)

(a) Phase plane ode23

-1 -0.5 0 0.5 1

sin(t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c
o
s
(

t)

(b) Phase plane ode45

-1 -0.5 0 0.5 1

sin(t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c
o
s
(

t)

(c) Phase plane ode113

-1 -0.5 0 0.5 1

sin(t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c
o
s
(

t)

(d) Phase plane MTSM

0 10 20 30 40 50

time [s]

0

1

2

3

4

5

6

7

O
R

D

(e) Order of the MTSM.

Figure 4.1: Results for 𝜔 = 1, 𝑡𝑜𝑙 = 1𝑒−3, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−3, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−6 (default settings).

72

The results in Table 4.1 show that the MTSM solver is the slowest of the selected ode
solvers. The MTSM is approximately six times faster than the ode15s solver due to the low
stiffness of the system. However, we can notice that due to the stopping rule, the accuracy
of the MTSM solver is ||𝑒𝑟𝑟𝑜𝑟|| = 7.59𝑒−6, which is much higher than the required accuracy
𝑡𝑜𝑙 = 1𝑒−3.

solver # steps time [s] ||error|| ratio
MTSM 500 2.89𝑒−02 7.59𝑒−06 –
ode23 244 1.10𝑒−02 3.66𝑒−02 0.38
ode45 276 5.98𝑒−03 7.31𝑒−03 0.21
ode113 133 6.33𝑒−03 1.11𝑒−02 0.22
ode15s 185 1.72𝑒−01 5.71𝑒−02 5.97

Table 4.1: Results for 𝜔 = 1, 𝑡𝑜𝑙 = 1𝑒−3, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−3, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−6 (default settings)

The following experiment sets the same level of accuracy for the ode solvers and MTSM
solvers. This is achieved by setting the relative and absolute tolerances of the ode solvers
to 𝑅𝑒𝑙𝑇𝑜𝑙 = 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−7.

73

4.2.2 Experiment 2

As mentioned above, consider 𝜔 = 1 and tolerances of the ode solvers 𝑅𝑒𝑙𝑇𝑜𝑙 = 𝐴𝑏𝑠𝑇𝑜𝑙 =
1𝑒−7, the tolerance of the MTSM solver remains the same as in the previous experiment;
thus 𝑡𝑜𝑙 = 1𝑒−3. Numerical results are plotted in Figure 4.2 and summarized in Table 4.2.

-1 -0.5 0 0.5 1

sin(t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c
o
s
(

t)

(a) Phase plane ode23

-1 -0.5 0 0.5 1

sin(t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c
o
s
(

t)

(b) Phase plane ode45

-1 -0.5 0 0.5 1

sin(t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c
o

s
(

t)

(c) Phase plane ode113

-1 -0.5 0 0.5 1

sin(t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c
o

s
(

t)

(d) Phase plane MTSM

0 10 20 30 40 50

time [s]

0

1

2

3

4

5

6

7

O
R

D

(e) Order of the MTSM.

Figure 4.2: Results for 𝜔 = 1, 𝑡𝑜𝑙 = 1𝑒−3, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−7, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−7.

The results in Table 4.2 show that the MTSM method is comparable to ode113. The MTSM
is almost two times faster than the ode45 and seven times faster than the ode23 solver.

74

solver # steps time [s] ||error|| ratio
MTSM 500 3.04𝑒−02 7.59𝑒−06 –
ode23 3574 2.13𝑒−01 8.04𝑒−06 7.01
ode45 1484 5.34𝑒−02 8.95𝑒−07 1.75
ode113 259 3.20𝑒−02 2.56𝑒−06 1.05
ode15s 644 1.53𝑒−01 3.85𝑒−05 5.04

Table 4.2: Results for 𝜔 = 1, 𝑡𝑜𝑙 = 1𝑒−3, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−7, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−7.

The MTSM solver can be even faster than the ode solvers by increasing the integration
step to ℎ = 10. In this case, the tolerance of the MTSM solver is increased to 𝑡𝑜𝑙 = 1𝑒−5

to maintain the required accuracy.

4.2.3 Experiment 3

For this experiment, the 𝜔 = 1, tolerance of MTSM is 𝑡𝑜𝑙 = 1𝑒−5 and for ode solvers
𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−7, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−7. The integration step of the MTSM is set to ℎ = 10. The
results in Table 4.3 show that MTSM is much faster than all selected state-of-the-art ode
solvers. Because we increased the integration step ℎ, the number of Taylor series terms also
increased. The average order of the MTSM is 38, see Figure 4.3.

solver # steps time [s] ||error|| ratio
MTSM 5 1.71𝑒−03 1.23𝑒−06 –
ode23 3574 1.57𝑒−01 8.04𝑒−06 91.60
ode45 1484 3.92𝑒−02 8.95𝑒−07 22.90
ode113 259 1.70𝑒−02 2.56𝑒−06 9.92
ode15s 644 9.23𝑒−02 3.85𝑒−05 53.90

Table 4.3: Results for 𝜔 = 1, 𝑡𝑜𝑙 = 1𝑒−5, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−7, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−7, ℎ = 10.

0 10 20 30 40 50

time [s]

0

5

10

15

20

25

30

35

O
R

D

Figure 4.3: Order of the MTSM.

75

4.2.4 Experiment 4

This experiment shows the behavior of the system for 𝜔 = 100. The higher value of 𝜔
increases the stiffness of the system. First, let us consider the default tolerance settings
for ode solvers. Therefore, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−3, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−6, the tolerance of the MTSM is
𝑡𝑜𝑙 = 1𝑒−3 and ℎ = 0.1.

Only MTSM provides a stable numerical solution, but the numerical solution calculated
by other ode solvers diverges. Figure 4.4 shows the results calculated by ode23, ode45,
ode113, and MTSM, respectively. Note that the average order of MTSM is 33.

-1 -0.5 0 0.5 1

sin(t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c
o

s
(

t)

(a) Phase plane ode23

-1 -0.5 0 0.5 1

sin(t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c
o

s
(

t)

(b) Phase plane ode45

-1 -0.5 0 0.5 1

sin(t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c
o

s
(

t)

(c) Phase plane ode113

-1 -0.5 0 0.5 1

sin(t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c
o

s
(

t)

(d) Phase plane MTSM

76

0 10 20 30 40 50

time [s]

0

5

10

15

20

25

30

35

O
R

D

(e) Order of the MTSM.

Figure 4.4: Results for 𝜔 = 100, 𝑡𝑜𝑙 = 1𝑒−3, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−3, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−6 (default
settings).

Results of the calculation are in Table 4.4. Only the MTSM can maintain the predefined
accuracy. The accuracy of the ode solvers is not acceptable.

solver # steps time [s] ||error|| ratio
MTSM 500 9.60𝑒−02 1.22𝑒−02 –
ode23 23915 1.19 1.32 12.40
ode45 25488 6.67𝑒−01 6.59𝑒−01 6.95
ode113 12634 7.64𝑒−01 5.19𝑒−01 7.95
ode15s 17531 2.84 6.43 29.60

Table 4.4: Results for 𝜔 = 100, 𝑡𝑜𝑙 = 1𝑒−3, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−3, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−6 (default
settings).

4.2.5 Experiment 5

In this experiment, we increase the tolerance of all solvers to maintain accuracy at the
same level as in Experiment 1. Therefore, 𝜔 = 100, ℎ = 0.1, the tolerance of the MTSM
is increased to 𝑡𝑜𝑙 = 1𝑒−6, and the tolerances for the ode solvers are set to 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−9,
𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−9.

Figure 4.5 shows that the order of MTSM is 40, which is close to the upper limit for
double arithmetic. Therefore, we cannot increase the integration step size 𝑑𝑡; this would
lead to a halving of the step size because the maximum order of MTSM 𝑚𝑎𝑥𝑂𝑅𝐷 = 64
will be reached. The MTSM can be calculated with an arbitrary tolerance and step size if
variable precision arithmetic is used.

77

0 10 20 30 40 50

time [s]

0

5

10

15

20

25

30

35

40

O
R

D

Figure 4.5: Order of MTSM

Results are summarized in Table 4.5. The MTSM is significantly faster than all state-of-
the-art ode solvers.

solver # steps time [s] ||error|| ratio
MTSM 500 1.91𝑒−01 6.48𝑒−06 –
ode23 1658768 7.99𝑒01 8.12𝑒−06 417
ode45 371524 9.17 8.94𝑒−07 47.90
ode113 38623 1.90 2.88𝑒−07 9.94
ode15s 132897 1.91𝑒+01 8.89𝑒−05 99.60

Table 4.5: Results for 𝜔 = 100, 𝑡𝑜𝑙 = 1𝑒−6, 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−9, 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−9

4.3 Recurrent calculation of Taylor series terms
An ODE

𝑦′ = 𝑓(𝑡, 𝑦) , (4.5)

with initial condition
𝑦(𝑡0) = 𝑦0 , (4.6)

The best known and most accurate method for calculating a new value of the numerical
solution of an ODE is to construct the Taylor series in the form

𝑦𝑖+1 = 𝑦𝑖 + ℎ · 𝑓(𝑡𝑖, 𝑦𝑖) +
ℎ2

2!
· 𝑓 ′(𝑡𝑖, 𝑦𝑖) + · · ·+ ℎ𝑛

𝑛!
· 𝑓 [𝑛−1](𝑡𝑖, 𝑦𝑖), (4.7)

where ℎ is the integration step, 𝑦𝑖 = 𝑦(𝑡𝑖) is the previous value and 𝑦𝑖+1 = 𝑦(𝑡𝑖 + ℎ) is the
next value of the function 𝑦(𝑡) [74].

The MTSM effectively implements the variable step size, variable order numerical cal-
culation of differential equations using the Taylor series [103]. It is based on a recurrent
calculation of the Taylor series terms for each integration step. Therefore, it is not neces-
sary to perform a complicated calculation of higher order derivatives, but instead the value
of each Taylor series term can be numerically calculated [103]. Equation (4.7) can then be
rewritten in the form

𝑦𝑖+1 = 𝐷𝑌𝑖0 +𝐷𝑌𝑖1 +𝐷𝑌𝑖2 + · · ·+𝐷𝑌𝑖𝑛 , (4.8)

78

where 𝐷𝑌𝑖 denotes the Taylor series terms in simulation time 𝑡 = 𝑖. The MTSM trans-
forms the input problem into a system of autonomous ODEs, which allows the recurrent
calculation of terms of the Taylor series.

To demonstrate the recurrent calculation of Taylor series terms, let us assume the system
of ODEs in the following form:

𝑦′ = 𝑎11 · 𝑦 + 𝑎12 · 𝑧 + · · ·+ 𝑎1𝑚 · 𝑤 + 𝑏1 𝑦(0) = 𝑦0

𝑧′ = 𝑎21 · 𝑦 + 𝑎22 · 𝑧 + · · ·+ 𝑎2𝑚 · 𝑤 + 𝑏2 𝑧(0) = 𝑧0
...

𝑤′ = 𝑎𝑚1 · 𝑦 + 𝑎𝑚2 · 𝑧 + · · ·+ 𝑎𝑚𝑚 · 𝑤 + 𝑏𝑚 𝑤(0) = 𝑤0 .

(4.9)

The system of ODEs (4.9) consists of equations 𝑚 with constant coefficients 𝑎𝑘𝑙, where 𝑘
denotes the index of the equation, and 𝑙 is the index of the term, and 𝑘, 𝑙 ∈ ⟨1,𝑚⟩. Each
equation has one constant 𝑏𝑘 and an initial condition (𝑦(0), 𝑧(0), . . . , 𝑤(0)). The system of
ODEs (4.9) can be rewritten to (4.10). The first terms of the Taylor series are denoted as
𝐷𝑌𝑖1, 𝐷𝑍𝑖1, . . . , 𝐷𝑊𝑖1:

𝐷𝑌𝑖1 = ℎ · 𝑦′𝑛 = ℎ · (𝑎11 · 𝑦 + 𝑎12 · 𝑧 + · · ·+ 𝑎1𝑚 · 𝑤 + 𝑏1)

𝐷𝑍𝑖1 = ℎ · 𝑧′𝑛 = ℎ · (𝑎21 · 𝑦 + 𝑎22 · 𝑧 + · · ·+ 𝑎2𝑚 · 𝑤 + 𝑏2)

...
𝐷𝑊𝑖1 = ℎ · 𝑤′

𝑛 = ℎ · (𝑎𝑚1 · 𝑦 + 𝑎𝑚2 · 𝑧 + · · ·+ 𝑎𝑚𝑚 · 𝑤 + 𝑏𝑚) .

(4.10)

The second terms of the Taylor series 𝐷𝑌𝑖2, 𝐷𝑍𝑖2, . . . , 𝐷𝑊𝑖2 can be calculated as follows:

𝐷𝑌𝑖2 =
ℎ

2
·𝐷𝑌 ′

𝑖1 =
ℎ

2
· (𝑎11 ·𝐷𝑌𝑖1 + 𝑎12 ·𝐷𝑍𝑖1 + · · ·+ 𝑎1𝑚 ·𝐷𝑊𝑖1 + 𝑏1)

𝐷𝑍𝑖2 =
ℎ

2
·𝐷𝑍 ′

𝑖1 =
ℎ

2
· (𝑎21 ·𝐷𝑌𝑖1 + 𝑎22 ·𝐷𝑍𝑖1 + · · ·+ 𝑎2𝑚 ·𝐷𝑊𝑖1 + 𝑏2)

...

𝐷𝑊𝑖2 =
ℎ

2
·𝐷𝑊 ′

𝑖1 =
ℎ

2
· (𝑎𝑚1 ·𝐷𝑌𝑖1 + 𝑎𝑚2 ·𝐷𝑍𝑖1 + · · ·+ 𝑎𝑚𝑚 ·𝐷𝑊𝑖1 + 𝑏𝑚) .

(4.11)

The higher-order Taylor series terms can be calculated analogously. If the stopping rule
(4.13) is met, the result in the current integration step can be calculated as a sum of Taylor
series terms and the initial condition of the integration step:

𝑦𝑖+1 = 𝑦𝑖 +𝐷𝑌𝑖1 +𝐷𝑌𝑖2 + · · ·+𝐷𝑌𝑖𝑂𝑅𝐷𝑖

𝑧𝑖+1 = 𝑧𝑖 +𝐷𝑍𝑖1 +𝐷𝑍𝑖2 + · · ·+𝐷𝑍𝑖𝑂𝑅𝐷𝑖

...
𝑤𝑖+1 = 𝑤𝑖 +𝐷𝑊𝑖1 +𝐷𝑊𝑖2 + · · ·+𝐷𝑊𝑖𝑂𝑅𝐷𝑖 .

(4.12)

The results in the following integration steps can be calculated similarly. The results of
(4.12) are used as an initial condition in the next time step. More information can be found
in [103], [pp28].

79

4.4 Automatic integration order setting
An important part of the method is an automatic integration order setting, using as many
Taylor series terms as the defined accuracy requires. Let us denote as 𝑂𝑅𝐷 the function
that changes during the computation and defines the number of Taylor series terms used in
the current integration step (𝑂𝑅𝐷𝑖+1 = 𝑛). The MTSM allows computation with arbitrary
accuracy and step size if variable-precision arithmetic and higher-order of method are used.
The Taylor series terms can be used in error control [pp28]. The current integration step
is completed when the following stopping rule is met:

||𝑚𝑎𝑥(𝑎𝑏𝑠(DY𝑗))|| ≤ 𝑡𝑜𝑙 , 𝑗 = 𝑛− 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔, · · · , 𝑛, (4.13)

where DY𝑗 is a vector of three successive terms of the Taylor series, 𝑡𝑜𝑙 is the error per
step, 𝑛 is the index of currently calculated Taylor series term, and 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 denotes the
number of successive terms of the Taylor series that have met the stopping rule (4.13). In
this work, 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 is set to three. For more information, see [103].

4.5 Automatic transformation
The general form of linear non-homogeneous system of ODEs is defined as

y′ = Ay + f(𝑡) , y(𝑡0) = y0 , (4.14)

where A is the constant Jacobian matrix and f(𝑡, 𝑦) is the right-hand side (the forcing
function).

Automatic transformation is an important part of the MTSM. Basic differentiation
rules can be used to derive the recurrent calculation of higher-order derivatives for basic
arithmetic functions, for example, sin, cos, log, exp, and basic arithmetic operations. For the
automatic recurrent calculation of Taylor series terms, several rules have to be followed:

• The functions fi(𝑡, 𝑦1, 𝑦2, . . . , 𝑦𝑛) of the right sides of the system of 𝑛 ordinary differ-
ential equations are composed of a finite number of elementary functions and a finite
number of simple arithmetic operations.

• All intermediate calculations and all generating functions lead to auxiliary variables.

• Operands of intercomputing operations and generating functions use auxiliary vari-
ables, 𝑡, 𝑦1, 𝑦2, . . . , 𝑦𝑛, and constants.

The function f(𝑡, 𝑦) can be transformed into the system of generating ODEs. As a
result, the non-homogeneous system of ODEs (4.14) is transformed into the homogeneous
linear system of ODEs based on the definition (2.1.6):

z′ = F(z) , z(𝑡0) = z0 , (4.15)

where the right-hand side F(z) is in a special form suitable for calculating higher-order
derivatives. Equation (4.15) must meet the condition (4.16):

𝑧𝑖(𝑡) = 𝑦𝑖(𝑡), 𝑖 = 1, . . . ,𝑚 , (4.16)

80

where y(𝑡) = (𝑦1(𝑡), . . . , 𝑦𝑚(𝑡)) is the original solution of system of ODEs (4.30). The
automatic transformation process will be demonstrated using the system of two ODEs

𝑦′1 = 𝑎11 · 𝑦1 + 𝑎12 · 𝑦2 + 𝑓1(𝑡) 𝑦1(0) = 𝑦1,0

𝑦′2 = 𝑎21 · 𝑦1 + 𝑎22 · 𝑦2 + 𝑓2(𝑡) 𝑦2(0) = 𝑦2,0 .
(4.17)

Let us assume that 𝑓1(𝑡) and 𝑓2(𝑡) in the system of ODEs (4.17) are

𝑓1(𝑡) = 𝑒−𝑡 = 𝑦3 (4.18)
𝑓2(𝑡) = sin 𝑡 = 𝑦4 . (4.19)

By deriving a system of ODEs for (4.18) and (4.19), the system of generating ODEs can
be obtained. For the equation (4.18):

𝑦3 = 𝑒−𝑡 𝑦3(0) = 𝑦3,0 = 1 (4.20)
𝑦′3 = −𝑒−𝑡 (4.21)
𝑦′3 = −𝑦3 . (4.22)

For equation (4.19):

𝑦4 = sin 𝑡 𝑦4(0) = 𝑦4,0 = 0 (4.23)
𝑦′4 = cos 𝑡 . (4.24)

After denoting

𝑦5 = cos 𝑡 (4.25)
𝑦′5 = − sin 𝑡 (4.26)

the system of two ODEs is obtained

𝑦′4 = 𝑦5 (4.27)
𝑦′5 = −𝑦4 . (4.28)

As a result, the original system of ODEs (4.17) can be rewritten in the form (4.29)

𝑦′1 = 𝑎11 · 𝑦1 + 𝑎12 · 𝑦2 + 𝑦3 𝑦1(0) = 𝑦1,0

𝑦′2 = 𝑎21 · 𝑦1 + 𝑎22 · 𝑦2 + 𝑦4 𝑦2(0) = 𝑦2,0

𝑦′3 = −𝑦3 𝑦3(0) = 𝑦3,0 = 1

𝑦′4 = 𝑦5 𝑦4(0) = 𝑦4,0 = 0

𝑦′5 = −𝑦4 𝑦5(0) = 𝑦5,0 = 1 .

(4.29)

Tables of the generating system of ODEs B.3 and B.4 are in Appendix B.

81

4.6 Linear MTSM
The general form of linear homogeneous systems of ODEs is

y′ = Ay + b , y(𝑡0) = y0 , (4.30)

the Taylor series (4.7) can be rewritten in matrix-vector notation as

y𝑖+1 = y𝑖 + ℎ(Ay𝑖 + b) +
ℎ2

2!
A(Ay𝑖 + b) + · · ·+ ℎ𝑛

𝑛!
A(𝑛−1)(Ay𝑖 + b) , (4.31)

where A is the constant Jacobian matrix of size 𝑚×𝑚, and b is the right-hand side constant
vector of size 𝑚× 1. Moreover, Taylor series terms DY (4.8) can be computed recurrently
using

DY0 = y𝑖 , DY1 = ℎ(Ay𝑖 + b),

DY𝑗 =
ℎ

𝑗
ADY𝑗−1 , 𝑗 = 2, . . . , 𝑛 .

(4.32)

4.7 Nonlinear MTSM
The effective solution of nonlinear systems of ODEs is described [pp21]. For such a system,
the Taylor series-based numerical method can be implemented very effectively. Equation
(4.5) for nonlinear systems of ODEs can be rewritten as

y′ = Ay +B1y𝑗𝑘 +B2y𝑗𝑘𝑙 + . . .+ b , y(0) = y0 , (4.33)

where A ∈ R𝑛𝑒×𝑛𝑒 is the matrix for the linear part of the system and B1 ∈ R𝑛𝑒×𝑛𝑚𝑗𝑘 ,
B2 ∈ R𝑛𝑒×𝑛𝑚𝑗𝑘𝑙 are the matrices for the nonlinear part of the system, b ∈ R𝑛𝑒 is the
right-hand side for the forces incoming to the system, y0 is a vector of initial conditions,
the symbol 𝑛𝑒 stands for the number of equations of the system of ODEs and the symbols
𝑛𝑚𝑗𝑘, 𝑛𝑚𝑗𝑘𝑙 mean the number of multiplications. The unknown function y𝑗𝑘 ∈ R𝑛𝑚𝑗𝑘

represents the vector of multiplications y𝑗 . * y𝑘 and similarly y𝑗𝑘𝑙 ∈ R𝑛𝑚𝑗𝑘𝑙 represents the
vector of multiplications y𝑗𝑗 . * y𝑘𝑘. * y𝑙𝑙, where the indices 𝑗, 𝑘, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙 ∈ (1, . . . , 𝑛𝑒) come
from the multiplications terms in the system (4.33). The operation ‘.*’ stands for element-
by-element multiplication, i.e. y𝑗 . * y𝑘 is a vector (𝑦𝑗1𝑦𝑘1 , 𝑦𝑗2𝑦𝑘2 , . . . , 𝑦𝑗𝑛𝑚𝑗𝑘

𝑦𝑘𝑛𝑚𝑗𝑘
)𝑇 .

For simplification, the matrices A,B1,B2 and the vector b are constant. The higher
derivatives of the terms B1y𝑗𝑘,B2y𝑗𝑘𝑙 in (4.33) can be included in a recurrent calculation
of the Taylor series terms DY𝐵1 and DY𝐵2

DY𝐵11 = ℎ(B1y𝑗𝑘) ,DY𝐵21 = ℎ(B2y𝑗𝑘𝑙) ,

DY𝐵1𝑟 =
ℎ

𝑟

⎛⎝B1

𝑟∑︁
𝑝=1

DY𝑗,𝑟−𝑝. *DY𝑘,𝑝−1

⎞⎠ ,

DY𝐵2𝑟 =
ℎ

𝑟
B2

𝑟−1∑︁
𝑞=0

DY𝑗𝑗,𝑞. *

⎛⎝ 𝑟∑︁
𝑝=1

DY𝑘𝑘,𝑟−𝑝−𝑞. *DY𝑙𝑙,𝑝−1

⎞⎠ ,

DY𝑟 = DY𝐴𝑟−1 +DY𝐵1𝑟−1 +DY𝐵2𝑟−1 , 𝑟 = 2, . . . , 𝑛 ,

(4.34)

where the linear term DY𝐴𝑟−1 is calculated using (4.32). Higher-order multiplication terms
in the Taylor series DY𝐵3,DY𝐵4, . . . can be calculated recurrently in a similar way.

82

4.8 Practical examples
This section introduces several linear and nonlinear problems solved using the MTSM, and
state-of-the-art non-stiff solvers in MATLAB, specifically ode23, ode45, and ode113 [158].
The MTSM solver was implemented in MATLAB software using vectorization.

Linear problems include the movement of the charged particle in the electromagnetic
and electrostatic field [pp21, pp22], and the linearized pendulum [pp21]. Nonlinear problems
are Lorenz system [pp13], numerical calculation of Fourier coefficients [pp21, pp22], Kepler
problem [pp22], nonlinear pendulum [pp21], Van der Pol oscillator and forced van der Pol
oscillator [pp28].

4.9 General parallelization of the linear system of ODEs
The Modern Taylor Series Method is the variable step size, variable order method. For more
information, see [pp14, pp16, pp17, pp24]. The best-known and most accurate method to
calculate a new value of the numerical solution of the ODE

𝑦′ = 𝑓(𝑡, 𝑦) , 𝑦(𝑡0) = 𝑦0 (4.35)

is to construct the Taylor series in the form

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓(𝑡𝑖, 𝑦𝑖) +
ℎ2

2!
𝑓 ′(𝑡𝑖, 𝑦𝑖) + . . .+

ℎ𝑛

𝑛!
𝑓 [𝑛−1](𝑡𝑖, 𝑦𝑖) , (4.36)

where ℎ is the integration step, 𝑦𝑖 and 𝑦𝑖+1 are the next approximations of the value of the
function 𝑦(𝑡), 𝑦(𝑡𝑖+ℎ), respectively [74]. Let 𝑂𝑅𝐷 denote the function that changes during
the computation and define the number of Taylor series terms in the current integration
step (𝑂𝑅𝐷𝑖+1 = 𝑛). For linear systems of ODEs y′ = Ay + b, where A is the constant
Jacobian matrix, and b is the constant right-hand side, equation (4.36) can be rewritten in
matrix-vector notation

y𝑖+1 = y𝑖 + ℎ(Ay𝑖 + b) + ℎ2

2! A(Ay𝑖 + b) + · · ·+ ℎ𝑛

𝑛! A
𝑛−1(Ay𝑖 + b) . (4.37)

Equation (4.37) can be rewritten in the form

y𝑖+1 = DY0 +DY1 +DY2 + · · ·+DY𝑛 , (4.38)

where individual Taylor series terms can be computed recurrently [pp21]. The integration
step is completed when the stopping rule is met (4.13). The resulting system can be
effectively solved sequentially or in parallel. Equation (4.37) can be rewritten as follows:

y𝑖+1 = A𝑦y𝑖 +A𝑏b , (4.39)

where the matrices A𝑦 and A𝑏 are defined as:

A𝑦 =
𝑛∑︁

𝑘=0

ℎ𝑘

𝑘!
A𝑘 , A𝑏 =

𝑛∑︁
𝑘=1

ℎ𝑘

𝑘!
A𝑘−1 . (4.40)

When calculating the matrices A𝑦 and A𝑏, the fixed integration step size can be approxi-
mated using (4.41):

ℎ < 𝑛

√︃
𝑡𝑜𝑙 · 𝑛
||A𝑛||

, (4.41)

83

where || · || denotes the Euclidean norm.
Let A𝐷𝑖 denote the submatrix of the matrix A decomposed by rows, where 𝑖 =

{1, 2, · · · , 𝑝} and 𝑝 is the number of processes. Let A be a matrix of size 𝑚 × 𝑚. Each
process owns 𝑚/𝑝 rows of the matrix A. The matrices A𝑦 and A𝑏 are constant, and the
matrices are precalculated only once at the beginning of the calculation:

Â𝑦𝐷𝑖 =
𝑛∑︁

𝑘=0

ℎ𝑘

𝑘!
A𝑘

𝐷𝑖
, Â𝑏𝐷𝑖

=
𝑛∑︁

𝑘=1

ℎ𝑘

𝑘!
A𝑘−1

𝐷𝑖
, 𝑖 = 1, 2, · · · , 𝑝 . (4.42)

Therefore, each process calculates the Taylor series terms recurrently:

A𝐷1 = ℎI𝐷 , A𝐷𝑗 =
ℎ

𝑗
A𝐷𝑗−1A , 𝑗 = 2 . . . 𝑛 , and Â𝐷 =

𝑛∑︁
𝑘=1

A𝐷𝑘
. (4.43)

After the parallel precalculation, the matrix Â𝑦𝐺 is obtained by gathering individual ma-
trices Â𝑦𝐷𝑖 . Similarly, the matrix Â𝑏𝐺:

Â𝑦𝐺 =
(︁
Â𝑦𝐷1 , Â𝑦𝐷2 , · · · , Â𝑦𝐷𝑝

)︁𝑇
, Â𝑏𝐺 =

(︁
Â𝑏𝐷1 , Â𝑏𝐷2 , · · · , Â𝑏𝐷𝑝

)︁𝑇
. (4.44)

The final matrix Â and the vector b̂ are calculated afterwards, I𝐷 is the identity matrix

Â = Â𝑦𝐺A+ I , b̂ = Â𝑏𝐺b . (4.45)

Using (4.45), we can rewrite (4.39) and solve it in parallel using the row-wise decomposition
of matrix Â

y𝑖+1 = Ây𝑖 + b̂ . (4.46)

84

Chapter 5

Parallel and distributed computing

This chapter provides an overview of parallel and distributed computing. The key dif-
ference between parallel and distributed computing is that parallel computing executes
multiple tasks using multiple processors simultaneously. In contrast, in distributed com-
puting, multiple computers are interconnected via a network to communicate and collab-
orate to achieve a common goal (see Figure 5.1). For important information, refer to
[5, 24, 46, 67, 73, 135, 148].

(a) Parallel computing (b) Distributed computing

Figure 5.1: Differences between parallel and distributed computing.

Parallel computing (parallel processing) is the process of decomposing larger problems into
smaller, independent, often similar parts that can be executed simultaneously by multiple
processors communicating using shared memory. The main goal of parallel computing is
to increase the available computation power for faster application processing and problem
solving. We distinguish three main levels of parallelism (or types): bit, instruction, and
task.

• Bit-level parallelism is based on increasing processor word size. Increasing the word
size reduces the number of instructions that the processor must execute to perform
an operation on variables whose sizes are greater than the length of the word. For
example, the addition of two 16-bit integers on the 8-bit processor requires two in-
structions to complete a single operation. On the contrary, the same operation on the
16-bit processor requires only one instruction.

85

• Instruction-level parallelism means the simultaneous execution of multiple instruc-
tions in a program. For example, we can mention pipelining or connecting more
functional units of the same type.

• Task-level parallelism means concurrent execution of the different tasks on multiple
computing cores.

Distributed computing (distributed processing is the technique of connecting multiple
computers over a network to a cluster (called a distributed system) to share data and
coordinate processing power. Distributed computing offers advantages in scalability, per-
formance, resilience, and cost-effectiveness.

The first parallel computers appeared in the late 1950s. In 1955, IBM introduced the
IBM-704. The principal architect was Gene Amdahl, the first commercial machine with
floating-point hardware, and it is capable of approximately five kFLOPS. Researchers and
computer scientists have published papers on the need for parallel processing to improve
computing speed and efficiency.

The 1960s and 1970s brought the first supercomputers, the first computers to use mul-
tiple processors. Supercomputers were initially presented in 1964 by Seymour Roger Cray
– an American electrical engineer and supercomputer architect credited with creating the
supercomputer industry. He designed the first commercially successful supercomputer –
Control Data Corporation (CDC) 6600 supercomputer. The CDC 6600 had a single CPU
that cost 8 million dollars, could handle 3 million FLOPS, and used vector processors.

In the mid-1980s, researchers at the California Institute of Technology started using
massively parallel processors (MPPs) to create a supercomputer for scientific applications.
MPP (massively parallel processing) [21, 132] is the coordinated processing of a program
by multiple processors that work on different parts of the program. Each processor uses its
operating system and memory. MPP processors typically communicate using a messaging
interface.

Multi-core processors are the most widespread today. Parallel processing has become
even more important because of the emphasis on energy efficiency. Increasing performance
through parallel processing is much more energy efficient than increasing the clock frequen-
cies of microprocessors. For more details, see [101, 161].

5.1 Motivating parallelism
The role of parallelism in the acceleration of computing speeds has been recognized for
several decades. Its role in providing a multiplicity of data paths and increased access to
storage elements has been significant in commercial applications. The scalable performance
and lower cost of parallel platforms are reflected in the wide variety of applications. Some
unmistakable trends in hardware design indicate that uniprocessor (or implicitly parallel)
architectures may not be able to sustain the rate of realizable performance increments in the
future because of a number of fundamental physical and computational limitations. This
has led to the emergence of standardized parallel programming environments. Libraries
and hardware have significantly reduced the time for (parallel) solutions.

5.1.1 Computational power argument

In 1965 Gordon Moore, co-founder and CEO of Intel, made the following observation re-
garding the transistor density [124]: Moores’s Law: The number of transistors on a chip

86

doubles approximately every 1.5 years (later revised to every 2 years), though the cost
of computers is halved. Figure 5.2 shows microchip transistor counts from 1970 to 2020.
Another principle derived from Moore’s Law is that the growth of microprocessors is ex-
ponential. Moore’s law directly impacts the progress of computing power. Transistors in
integrated circuits contain carbon and silicon molecules and can conduct electricity. The
faster the circuit conducts electricity, the faster the computer operates.

The limits of Moore’s law have been debated in the past few years. The key architectural
issue is using transistors to achieve increasing computational rates. The logical solution is
to rely on parallelism (both implicit and explicit). In a 2015 interview, Moore describes a
couple of potential obstacles associated with miniaturization: the speed of light, the atomic
nature of materials, and growing costs. Moore’s law is becoming obsolete.

The first factor is the speed of light, which is finite and constant and represents a
limitation on the number of computations that can be performed on a single transistor.
Bits are modeled by electrons traveling through transistors. Both wires and transistors are
characterized by capacitance and resistance. Capacitance 𝐶 denotes the capacity to store
electrons, and resistance 𝑅 denotes how much the electrons resist the flow of the current.
When miniaturizing chips, the resistance 𝑅 increases, while the capacitance 𝐶 decreases.
Therefore, it is more difficult to perform the correct calculations. James R. Powell predicted
that Moore’s law would be obsolete in 2036 [133].

Regarding the atomic nature of materials, Robert Colwell, director of the Microsystems
Technology Office at the Defense Advanced Research Projects Agency, said that in 2020,
7 nm could be the last process technology node, and even if the industry push to 5 nm
sizes, there are not many advantages over 7 nm. Therefore, computers will reach their
limits because transistors cannot operate within smaller circuits due to increasingly higher
temperatures. Cooling the transistors will require more energy than the energy for the
transistor itself.

A possible solution might be quantum computing. Quantum computers are based on
qubits (quantum bits) and use superposition and entanglement techniques to overcome the
miniaturization problems of classical computing approaches. The most discussed issue is
the scalability of quantum computers up to millions of qubits. Another possibility is to use
specialized architectures designed for particular algorithms. This area is growing rapidly
due to increasing interest in machine learning. Many companies focused on artificial intel-
ligence, such as Google (Tensor Processing Unit – TPUs), Graphcore, Horizon Robotics,
etc. Another option is to use FPGA (Field Programmable Gate Array), which Intel and
Microsoft use in data centers to accelerate binary search. Similarly to FPGAs, ASIC (Ap-
plication Specific Integrated Circuit) is another option, recently used in cryptocurrency
mining.

There are several other alternatives to classical computing, for example, spintronics.
This area is still in the research phase and uses the spin of electrons. Optical computing uses
light to perform calculations. Several experiments with non-silicon materials were recently
made, including compounded semiconductors (a combination of two or more elements from
the periodic table) or biological computing (which uses cells or DNA as the integrated
circuit).

87

Figure 5.2: Moore’s Law 1970-2020: transistor counts in microchips [142].

Figure 5.31 shows 50 years of microprocessor trends – transistor density (orange), per-
formance (blue), frequency (green) and number of cores (black). The figure is based on
known transistor counts published by Intel, AMD, and IBM’s Power processors. It can be
observed that the transistor count and power consumption increase, while the frequency
and number of logical cores have decreased.

The growth of computing power over the first 25 years was based on the increase in
single-thread exponential performance. Many simulation codes were implemented using
MPI, released in 1994, allowing computations on clusters and supercomputers to be dis-
tributed. MPI became a standard for parallel computations. The codes scaled well, and so
no major changes from developers or architects needed to be made.

Although Moore’s law was still valid, the Dennard scaling (MOSFET scaling) [39] was
not. In 1974, Robert H. Dennard introduced the idea that as the dimension of transistors
decreases, so does power consumption. Smaller transistors can run faster, use less power,
and cost less. But this scaling has a limit. In 2005, Dennard scaling ended around 2004
because it ignored the leakage current and threshold voltage, establishing a power baseline
per transistor. The end of Dennard scaling resulted in a situation where Moore’s law
still holds, but the performances are not as significant as before. Therefore, the industry
focused on new hardware architectures and code paradigms to keep trends on track. For
more information, see [125, 143].

1https://github.com/karlrupp/microprocessor-trend-data

88

https://github.com/karlrupp/microprocessor-trend-data

Figure 5.3: 50 years of Microprocessor Trend Data.

5.1.2 Memory/disk argument

The clock rates of high-end processors have increased to approximately 40% per year over
the past decade, but the access times of DRAM have only improved to approximately 10%
per year over this interval. The growing mismatch between the speed of the processor and
memory and the effective net bandwidth between the DRAM and the processor causes
significant performance bottlenecks. Parallel platforms provide the memory system with
higher aggregate caches and higher aggregate bandwidth. The principles of parallel algo-
rithms, such as data reference locality and bulk access, also apply to memory optimization.
Some of the fastest-growing parallel computing applications utilize their ability to pump
data to memory and disk faster than their raw computational speed.

5.1.3 Data communication argument

As the network evolves, the vision of the Internet as one large parallel/distributed comput-
ing environment has emerged. Many applications naturally use this computing paradigm.
For example, SETI@Home (Search for Extra-Terrestrial Intelligence) was a project (1999–
2020) of the Berkeley SETI Research Center to analyze radio signals, searching for signs of
extraterrestrial intelligence2. Another project, Folding@Home3 simulates how proteins from
SARS-CoV-2 (the virus that causes COVID-19) work and how they interact with human
cells. The project uses the idle processing resources of thousands of personal computers

2https://setiathome.berkeley.edu
3https://foldingathome.org

89

https://setiathome.berkeley.edu
https://foldingathome.org

owned by volunteers who have installed the software on their systems. In many other ap-
plications, typically databases and data mining, there are constraints on the data location
and resources across the Internet. Therefore, parallel interface techniques have to be used
to perform analyses of this data.

5.2 Areas of parallel computing
Parallel computing greatly impacts many areas, such as computational simulations for scien-
tific and engineering applications, commercial applications in data mining and transaction
processing, etc.

• Design of airfoils (optimizing lift, drag, stability), internal combustion engines (op-
timizing charge distribution, burn), high-speed circuits (layouts for delays and ca-
pacitive and inductive effects) and structures (optimizing structural integrity, design
parameters, cost, etc.).

• Design and simulation of micro- and nano-scale systems.

• Process optimization, operations research.

Scientific applications

• Functional and structural characterization of genes and proteins to understand and
influence biological processes.

• Advances in computational physics and chemistry have explored new materials, an
understanding of chemical pathways, and more efficient processes.

• Applications in astrophysics have explored the evolution of galaxies, thermonuclear
processes, and the analysis of extremely large datasets from telescopes.

• Weather modeling, mineral prospecting, flood prediction, etc.

• Bioinformatics and astrophysics present some of the most challenging problems with
respect to the analysis of huge datasets.

Commercial applications

• Emphasis on cost-effective servers capable of providing scalable performance.

• Some of the largest supercomputing networks power Wall Street.

• Data mining and analysis to optimize business and marketing decisions.

Applications in computer systems

• Network intrusion detection, cryptography, and multiparty computation require ef-
fective parallel and distributed algorithms.

• Embedded systems increasingly rely on distributed control algorithms.

• A modern automobile consists of tens of processors communicating to perform com-
plex tasks to optimize handling and performance.

90

5.3 Types of parallel methods
According to Gear’s classification [63], the parallel methods for IVPs can be divided into
two main classes:

1. parallelism across the space (parallelism across the system),

2. parallelism across the time (parallelism across the method).
Parallelism across the space is effective only for systems with regular structure. Such

problems arise from a direct discretization of a PDE via MOL. The original system is divided
into several subsystems, processed concurrently by separated computing nodes with inter-
process communications at the end of each integration step [154]. Parallel across space is
suitable only for large-scale parallelism [63].

Parallelism across time is appropriate for small-scale parallelism and multi-core pro-
cessors or computers with a few processors with fast inter-processor communication using
shared memory. These methods are also known as parallel-in-time methods. They allow to
search solutions for multiple steps simultaneously and can be classified into four groups:

1. methods based on multiple shooting,

2. methods based on domain decomposition and waveform relaxation,

3. space-time multigrid methods,

4. direct time parallel method.
For more information on parallel-in-time methods, see [48, 62].

For linear PDEs, the choice of method depends on the type of system of ODEs. Many
solvers are designed for a particular type of system. The selection of general-purpose
distributed-memory iterative-solution implementations is limited [91]. The known general-
purpose packages are PETSc [10], hypre45 (The Parallel High-Performance Preconditioners)
[53, 54], and pARMS6 (parallel Algebraic Recursive Multilevel Solvers) [108]. All mentioned
libraries are based on the domain decomposition method [42, 152, 160] and MPI commu-
nication. The domain decomposition method is based on partitioning computational work
among multiple processors by distributing the computational domain of a problem. Domain
decomposition solves PDEs by iteratively solving subproblems corresponding to smaller sub-
domains [129]. The hypre and pARMS libraries both offer solvers for solving large, sparse
linear systems of algebraic equations on massively parallel computers. Two main types of
iterative methods for solving large linear systems of algebraic equations are Krylov sub-
space, and multigrid methods [108, 179]. The hypre library offers parallel multigrid solvers
for structured and unstructured grid problems. On the other hand, the pARMS library
offers parallel Krylov subspace solvers.

The PETSc library is the only one of the three mentioned libraries that offers solvers
for large sparse systems of ODEs. PETSc library provides interfaces to various external
packages. Therefore, it is possible to use solvers available in both pARMS and hypre
libraries [10]. The list of external software supported by PETSc can be found in [12].

Since the work aimed to compare the MTSM method with commonly available meth-
ods for solving large systems of ODEs, the PETSc library was chosen for the numerical
experiments.

4https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
5https://hypre.readthedocs.io/en/latest
6https://www-users.cse.umn.edu/~saad/software/pARMS

91

https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
https://hypre.readthedocs.io/en/latest
https://www-users.cse.umn.edu/~saad/software/pARMS

5.4 Types of parallel architectures
There are two famous classifications of parallel computer architectures: Flynn’s and John-
son’s. Flynn’s classification (see Figure 5.4) was developed in 1966 [59] and extended in
1972 [58] and distinguishes multiprocessor computer architectures according to how they
can be classified along the two independent dimensions of Instruction Stream and Data
Stream. A stream is a sequence of objects or actions. Each of these dimensions can have
only one of two possible states: Single or Multiple. This results in four classes [129]:

1. SISD (single instruction, single data),

2. SIMD (single instruction, multiple data),

3. MISD (multiple instruction, single data),

4. MIMD (multiple instruction, multiple data).

These classes are described in Subsection 5.4.1.

Figure 5.4: Flynn’s classification of computer architectures [131].

In 1988, E. E. Johnson published an article Completing an MIMD multiprocessor taxon-
omy [88]. Johnson’s classification is based on the memory structure (global or distributed)
and the communication/synchronization mechanism (shared variable or message passing).
This approach is much more practical than Flynn’s classification because almost everything
except the MIMD class of Flynn is not currently used. The resulting MIMD taxonomy con-
tains four classes:

1. GMSV (Global Memory, Shared Variables) – the shared memory machines,

2. DMSV (Distributed Memory, Shared Variables) – the hybrid machines,

92

3. DMMP (Distributed Memory, Message Passing) – the message passing machines,

4. GMMP (Global Memory, Message Passing) machines.

This taxonomy omits the GMMP architectures, since they are not commonly used. As a
result, computer architectures are divided into the following three classes:

1. UMA (Uniform Memory Access),

2. NUMA (Non-Uniform Memory Access),

3. NORMA (No Remote Memory Access).

These classes are described in subsection 5.4.2.

Figure 5.5: Johnson’s classification of computer architectures [131].

5.4.1 Flynn’s classification of parallel architectures

Flynn’s classification defines four categories based on instruction and data: SISD, SIMD,
MISD, and MIMD.
Single Instruction Single Data (SISD) – it is a traditional uniprocessor.

• Single Instruction: The CPU acted on only one instruction stream during any one
clock cycle.

• Single Data: Only one data stream is being used as input during any one clock cycle.

The SISD class includes pipelined, superscalar, and VLIW (Very Long Instruction Word)
processors. Pipelining is a process of arrangement of hardware elements of the CPU such
that its overall performance is increased. Pipelined processors execute one or more instruc-
tions simultaneously.

The instruction stream consists of a sequence of instruction words. The instruction
word represents the smallest executable packet visible to the programmer and executed by
the processor. An SISD processor executes one or more operations per clock cycle from the
instruction stream.

Scalar processors execute one single instruction per clock cycle. In contrast to a scalar
processor, a superscalar processor can execute more than one instruction during a clock
cycle by simultaneously dispatching multiple instructions to different execution units on

93

the processor. Both scalar and superscalar processors execute one or more instructions
per cycle, where each instruction contains a single operation. On the other hand, VLIW
processors execute a single instruction word per cycle, where this instruction word contains
multiple operations.
Single Instruction Multiple Data (SIMD) – it is a type of parallel computer.

• Single Instruction: All processing units execute the same instruction at any clock
cycle.

• Multiple Data: Each processing unit can operate on a different data element.

The SIMD class of processors includes array processors and vector processors. They are
suited for specialized problems characterized by high regularity, such as graphics or image
processing. An array processor consists of interconnected processor elements; each element
has its local memory. On the contrary, a vector processor consists of a single processor
that references a single global memory space and has special functional units that operate
specifically on vectors.
Multiple Instruction Single Data (MISD) – it is a type of parallel computer.

• Multiple Instruction: Each processing unit operates on the data independently via
separate instruction streams.

• Single Data: A single data stream is fed into multiple processing units.

Data are streamed through the pipeline and forwards results from one function unit (stage)
to the next. The MISD are not commonly used, but some MISD processors are commonly
available, for example, GPGPUs (general purpose GPU) with an operational set at the
individual stage in the pipeline. Another example is dataflow machines. The source program
is converted to a data flow graph, where each node represents an operation. Data is streamed
across the graph. Each path through the graph is an MISD implementation. Dataflow
machines can be realized in FPGA implementations.
Multiple Instruction Multiple Data (MIMD) – it is a type of parallel computer.

• Multiple Instruction: Every processor may execute a different instruction stream.

• Multiple Data: Every processor may work with a different data stream.

In the MIMD class of processors, multiple processors of any type are interconnected. Most
often, MIMD configurations are homogeneous. Heterogeneous MIMD configurations are
usually used for special-purpose applications. The MIMD class includes multi-threaded
and multi-core processors.

The multi-threaded processors consist of a single processor extended of multiple sets
of program and data registers. Individual threads use each register set, and they are
independent. If resources are available, then the threads continue execution.

The multi-core processors communicate results through the interconnection network
and coordinate task control. The multi-core multiprocessor systems can be classified into
two classes based on the nature of the memory address space.

• Systems with distributed memory: Each processor element has its own address space,
and communication between processor elements is done through message passing.

• Systems with shared memory: The address space is shared, and communication is via
the memory system.

94

There are two main problems when using shared-memory systems. The first problem is
maintaining memory consistency. It is necessary to deal with the ordering effects on memory
references within a processor element and also between different processor elements. This
is solved using a combination of software and hardware techniques. The second problem is
cache coherency, which means that it has to be ensured that all processor elements have the
same value for a given memory location. This issue is solved using hardware techniques.
Implementing a shared memory system is more difficult than implementing a distributed
one because of memory consistency and cache coherency. On the other hand, distributed
systems can be more difficult to program than shared memory systems. Recently, large-scale
multiprocessors with distributed memory have been used.

5.4.2 Johnson’s classification of parallel architectures

There are three main categories of parallel computer memory architectures, depending on
the coupling of the processors and memory (see Figure 5.5): Shared memory: Multiple
processors share a common memory and are fully connected to buses or switches. The
CPUs have equal access to the physical memory and communicate using the shared memory
model. If one processor changes a memory location, then this change is visible to all other
processors. Shared memory parallel computers can be further classified into:

• Uniform Memory Access (UMA) – the access time to shared memory is the same
for all processors. Nowadays, the most common form of UMA architecture is the
Symmetric Multiprocessor (SMP) machine. The SMP includes two or more identical
processors sharing a single main memory consisting of multiple identical processors
with equal access and access time to the shared memory.

• Non-uniform Memory Access (NUMA) – many SMPs are linked, and one SMP can
directly access the memory of another SMP. The access time to the memories of SMPs
is not equal. In addition, the access to memory across the link is slower.

• No Remote Memory Access (NORMA) – a processor cannot access another pro-
cessor’s memory. Therefore, inter-processor communication is done by explicitly ex-
changing messages between processors. Each processor has its local memory.

Distributed memory: All processors have their local memory and can access it indepen-
dently. All computers are connected through a network and can request data from other
computers. The processors communicate with each other using message passing. The speed
of data transmission is affected by the type of network used to connect computers.
Hybrid memory: A hybrid type of memory architecture combines shared and distributed
memory architectures. All processors on a machine can share memory and request data
from other computers. Modern supercomputers use hybrid memory architecture.

95

5.5 Supercomputers
Supercomputers are large systems specifically designed to solve complex scientific and indus-
trial challenges. They have been used for highly compute-intensive tasks such as quantum
physics, weather forecasting, climate research, oil and gas exploration, molecular modeling,
and physical simulations.

Current supercomputers consist of many compute nodes interconnected through a high-
speed network. Each compute node features one or more multicore or multithreaded pro-
cessor chips, several memory modules, one or two network adapters, and possibly some local
storage disks [66]. Supercomputer processing speed is measured in PFLOPS (petaflops),
the quadrillion floating point operations per second.

The TOP500 project7 ranks and details the 500 most powerful general-purpose super-
computers in the world based on the LINPACK Benchmark8 introduced by Jack Dongarra
[155]. The project was started in 1993 and published an updated list of supercomputers
twice a year.

Figure 5.6 shows the development of the 500 fastest supercomputers in the world. It
can be observed that in the last seventeen years, the performance of the computation has
increased by a factor of one million. The frequency of processors increased until the 2000s.
Since then, it has stagnated at approximately 2GHz due to high power consumption and
overheating at higher frequencies. Thus, parallelism is the only way to increase performance.
Other challenges in HPC are the high power consumption of the overall system on the
scale of megawatts and fault tolerance. The more components included, the greater the
probability of failure.

As of June 2022, the Frontier system was the world’s first exascale machine with an
HPL9 score of 1.102 Exaflop/s. The Frontier system at the US Department of Energy’s
(DOE’s) Oak Ridge National Laboratory (ORNL) Oak Ridge National Laboratory (ORNL)
in the US [32, 104] has 8 730 112 total cores, and Gigabit Ethernet for data transfer [156].
The IT4I Karolina supercomputer is also included in the TOP500 List. The Karolina
CPU partition is at the 202nd position, and the GPU partition is at the 79th position.
The Green500 project10 evaluates the most energy-efficient supercomputers in the world.
Karolina has reached the 14th place in the Green500 list (GPU partition) and the 65th
place (CPU partition).

7https://www.top500.org
8https://www.top500.org/project/linpack
9A parallel implementation of the Linpack benchmark (HPL): http://www.netlib.org/benchmark/hpl/

10https://www.top500.org/lists/green500

96

https://www.top500.org
https://www.top500.org/project/linpack
 http://www.netlib.org/benchmark/hpl/
https://www.top500.org/lists/green500

Figure 5.6: Performance development of the TOP500 supercomputers [156].

5.5.1 Interconnection networks and topologies

An important part of a high-performance computer system (HPC) is a high-performance
interconnection network (ICN). The performance of ICN has a significant impact on the effi-
ciency of parallel applications on HPCs. The performance of supercomputers increases, the
number of computing cores increases, and the performance of computing nodes increases.
The network scale of the HPC interconnection network also expands. For this reason, the
overall performance of HPCs will be limited by the scalability of large-scale interconnection
networks. As Moore’s Law is slowing down, adopting new packaging design technologies to
implement ICNs for high-performance computing is necessary. For more information, refer
to articles [114, 123, 162], and books [37, 45].

5.5.2 Classification of high-performance interconnection networks

ICNs can be classified in different ways and according to different parameters. The main
performance properties are bandwidth, latency, switch radix, and network topology. Band-
width is the amount of data that can be transferred in a certain amount of time required
for a packet to travel from a source node to a destination node. Latency measures the time

97

it takes for a packet to travel from a source node to a destination node. Switch radix is the
number of switch ports through which it connects to other nodes.

ICNs can be classified into static (direct) and dynamic (indirect) networks. The net-
work is static when a node is directly connected to its neighbors. For example, a fully
interconnected network has direct links between any two nodes. Since the complexity of
fully connected direct networks is quadratic (𝑂(𝑁2), where 𝑁 is the number of nodes), it is
not suitable for building large systems. Consequently, a node is directly connected to only
a subset of other nodes. Communication with the remaining nodes is realized using routing
messages through intermediate nodes (e.g., mesh, hypercube). To minimize the network
diameter, high-radix routers are employed; from 8 ports, it has increased to 16, 24, 36, 48
ports, and even 64 ports. Note that the diameter of a network is the maximum length of
any shortest path between an input and an output.

A dynamic network connects the nodes through one or more levels of switches. The
crossbar enables a connection from any input to any output port if the output port is not
already in use. A fully-connected network is ideal for keeping low-latency transfers, but
unrealistic because of its complexity. Instead, smaller crossbars are used inside routers and
switches. Switches are usually organized into stages using a regular connection pattern
between stages (multistage ICNs).

The choice of ICN topology is influenced by the performance of the node and the
interconnection technology [114]. The most frequently-used ICN topologies in the TOP500
list are direct k-ary n-cubes [36], fat tree, torus, mesh, and dragonfly.

Static topologies

The 𝑘-ary 𝑛-cube is an 𝑛-dimensional grid structure with 𝑘 nodes accommodated in each
dimension, where 𝑘 denotes the radix, and 𝑛 denotes the dimension. Each node can be
identified by an 𝑛-digit radix 𝑘 address [120]. Various types of 𝑘-ary 𝑛-cubes are depicted
in Figure 5.7. Circles denote the communication nodes, and curves or lines denote the
communication links.

Figure 5.7: The various 𝑘-ary 𝑛-cube (a) a simple 3x3 regular mesh (b) a 3-ary 2-cube (2-D
torus), and (c) a 3-ary 3-cube (3-D torus) [92].

Torus and meshes are 𝑛–dimensional grids with 𝑘 nodes in each dimension and a total
number of nodes 𝑁 = 𝑘𝑛. If the border links in the grid are wrapped around each other,
they form a torus [162]. Torus topologies directly interconnect a host with several neighbors
in a k-dimensional lattice. The 3D torus topology is popular. One reason is that it has ex-
cellent packaging properties with uniformly short links for both the logical and the physical
distances. The second reason is that many scientific problems are three-dimensional, and a
large portion of the communication is between adjacent nodes. Finally, the node degree is

98

independent of the number of nodes. [162] The disadvantage of torus topologies is the low
network throughput for adversary traffic patterns.

Hypercubes are another grid-based topologies. The number of nodes is fixed (𝑘 = 2),
and the number of dimensions varies (see Figure 5.8). A 1D hypercube is a pair of two
connected nodes, a 2D hypercube is a square with four nodes, a 3D hypercube is a cube, etc.
A great advantage of the hypercube over the 3D torus was its lower hop count, consequently
lower latency, and very good bandwidth scaling. [36, 162].

Figure 5.8: Hypercubes: (a) 2-ary 1-cube, (b) 2-ary 2-cube, (c) 2-ary 3-cube, and (d) 2-ary
4-cube [162].

Dynamic topologies

Fat-Tree is one of the most widely used topologies. It provides low latency and maximizes
data throughput for a variety of traffic patterns. In large-scale networks, this topology is
expensive because it requires a large number of switches. The Fat-Tree topology consists
of a tree of switches with the processing nodes as leaves. All components of the network
are connected with links of the same speed. Communication progresses from the leaves to
the root, and links closer to the root represent a bottleneck. To overcome this problem,
faster links closer to the root are required, which also introduces a disadvantage. Another
solution can be using multiple links between two levels of switches. The resulting tree has
multiple roots, so faster root switches are not required. The level of the tree depends on
the designer and a number of parameters. In practice, the Fat-Tree level is usually from
two to four. [134, 162]

The Dragonfly topology was introduced by Kim John et al. [93]. Dragonfly provides
good performance for various applications compared to the other topologies and reduces
network costs by reducing the number of long links. [149] Every router contains a set of
terminal connections leading to the end points and a set of topological connections leading
to other routers. A collection of routers that belong to the same group is connected with
intra-group connections, while router pairs belonging to different groups are connected
with inter-group connections. In practice, routers and associated end-points that belong to
a group are placed in a limited number of chassis or cabinets. This allows to implement

99

intra-group and terminal connections with short-distance, lower-cost electrical transmission
links. [157]

The Dragonfly is comprised of 𝑔 groups with 𝑎 routers in each group, therefore a total
number of routers is 𝑆 = 𝑎𝑔. Each router contains 𝑝 terminal connections to endpoints.
Considering Dragonflies with fully-meshed intra-group connectivity, each router has 𝑎 − 1
intra-group connections to the other 𝑎− 1 routers in the group. Finally, each router has ℎ
inter-group connections to routers located in other groups [93].

Figure 5.9: Examples 2-level Dragonfly variants with different parameters 𝑎, 𝑔, and ℎ. The
required number of routers 𝑆 = 42. Purple links denote inter-group optical links, and blue
links denote intra-group electrical links [157].

Typical ICNs in the TOP500 list

Typical ICNs in the Top500 are the InfiniBand interconnection [86], the Slingshot/Aries
interconnection [38], Sunway [43], Tofu [3, 4], TH Express [110, 130, 170], BXI [40], and
other custom or proprietary interconnections.

Figure 5.10a shows the interconnection distribution of the TOP500 systems from June
2022. It can be seen that Ethernet Interconnects take the largest share (45.6%), Infini-
band (39%), Omnipath (7.8%), custom interconnect (6.4%) and other proprietary networks
(1.2%). Figure 5.10b shows that Gigabit Ethernet contributes 45.1% performance share, In-
finiband (32.4%), proprietary network (11.2%), custom interconnect (7.6%) and Omnipath
(3.7%).

Ethernet Interconnects takes the largest share (50.8%) of the TOP500 systems, while it
only contributes 19.6% performance share (i.e., Rmax) compared to IB interconnects that
contribute 40% performance share with 31% system share.

100

(a) Interconnect Family (System Share) (b) Interconnect Family (Performance Share)

Figure 5.10: TOP500 list statistics: Interconnect family [156].

Figure 5.11a shows that the most widespread application area is Research with 26.1%.
The second position in the ranking is shared by IT services and Cloud Services, both with
13 %. Next, Software, Energy, and Weather and Climate Research share the third position
with 8.7%. The rest of the pie chart is divided into Aerospace, Benchmarking, Information
Service, and Semiconductors (4.3%).

Figure 5.11b depicts the market segments. Almost half of the market segment is Indus-
try, with 47%. Research, with 23.2% is in the second position, Academic segment in the
third position 17.2%. The rest are Government 6.6%, Vendor 3.4%, and Others 2.6%.

(a) Application area (system share) (b) Market segments (system share)

Figure 5.11: TOP500 list statistics: Application areas and market segments [156].

Figure 5.12a illustrates the ICN vendors, including Lenovo (China) 32.2%, Hewlett
Packard Enterprise (HPE) in USA 19.2%, Inspur (China) 10%, Atos (France) 8.4%, Sugon
(China) 7.2%, DELL EMC (USA) 3.4%, Nvidia (USA) 2.8%, Fujitsu (Japan) 2.6%, NEC
(Japan) 2%, Huawei Technologies Co., Ldt. (China) 1.4%, and others.

The countries hosting the TOP500 supercomputers are shown in Figure 5.12b. China
occupies the top spot on the list with 34.6%, followed by the United States (25.6%), Japan
(6.6%), Germany (6.2%), France (3.8%), Canada (2.8%), the United Kingdom (2.4%), and
others.

101

(a) Vendors (system share) (b) Countries (system share)

Figure 5.12: TOP500 list statistics: Vendors and countries [156].

Figure 5.13 shows the evolution of the system-level interconnection technology used by
supercomputers in the last year. It can be seen that Ethernet is still widely used. In the
list from June 2022, the 228 (45.6%) supercomputers employ an Ethernet interconnection
network. Many academic and industrial HPC systems cannot afford InfiniBand or are
unwilling to give up Ethernet [114]. Compared to the list of June 2021, 247 (49.4%)
supercomputers employed Ethernet. That means that Ethernet decreases by 7.7%. The
portion of Infiniband increased; in the list from June 2022, the number of supercomputers
interconnected with InfiniBand is 195 (39.0%), while in the list from June 2021, it is 168
(33.6%). Therefore, InfiniBand grew 16.07% year-over-year.

102

Figure 5.13: Distribution map of ICNs in the TOP500 list over last year [156].

Table 5.1 summarizes the selected properties on the Top10 list in June 2022, including
manufacturer, country, market segment, Rmax (Maximal LINPACK performance achieved),
interconnect family, and interconnect.

Rank System Manufacturer Country Segment Rmax
[TFLOP/s]

Interconnect Family Interconnect Topology Power (MW)

1 Frontier HPE United States Research 1 102 000 Gigabit
Ethernet Slingshot-11 Dragonfly 21.10

2 Fugaku Fujitsu Japan Research 442 010 Proprietary
Network Tofu D 6D-Torus 29.90

3 LUMI HPE Finland Research 151 900 Gigabit
Ethernet Slingshot-11 Star 2.94

4 Summit IBM United States Research 148 600 Infiniband EDR
Infiniband Fat-tree 10.10

5 Sierra
IBM/

NVIDIA/
Mellanox

United States Research 94 640 Infiniband EDR
Infiniband Fat-tree 7.44

6 Sunway
TaihuLight NRCPC China Research 93 014 Custom

Interconnect Sunway Fat-tree 15.37

7 Perlmutter HPE United States Research 70 870 Gigabit
Ethernet Slingshot-10 Dragonfly 2.59

8 Selene Nvidia United States Vendor 63 460 Infiniband HDR
Infiniband Fat-tree 2.65

9 Tianhe-2A NUDT China Research 61 444.5 Custom
Interconnect TH Express-2 Fat-tree 18.48

10 Adastra HPE France Academic 46 100 Gigabit
Ethernet Slingshot-11 – 0.92

79 Karolina
GPU partition HPE Czechia Academic 6 752 Infiniband Infiniband

HDR200 Fat-tree 0.31

Table 5.1: Top 10 supercomputers of the TOP500 list [156].

103

5.5.3 Challenges of current high-performance ICNs

The performance improvement of high-performance computers mainly depends on increas-
ing the number of computing nodes and improving single-node computing performance.
With increasing computing power of a single node, the communication bandwidth should
also increase to maximize the computing performance of the node. The requirements for
network bandwidth in the exascale HPC computer systems are high and represent a great
technology challenge. Also, the diameter of the network is larger, resulting in increased
node communication delay [111, 115]. The main challenges in the exascale era include
power consumption, density, reliability, and cost, among other issues [114].

In 2008, the report [23] showed that the main four challenges of exascale supercomput-
ers are power consumption, data movement, fault tolerance, and extreme parallelism. In
2021, a CTO for the Exascale Computing Project11 and the Oak Ridge Leadership Com-
puting Facility at ORNL, Al Geist, presented a seminar and explain how the Frontier12

supercomputer overcomes the challenges mentioned above [64]. For more information, see
[163].

Power consumption

Power consumption was the main challenge. The analysis presented in [23] shows that
building a one exaflop system using current technologies results in a power consumption
of more than 600MW. The US Department of Energy’s (DOE’s) Oak Ridge National
Laboratory (ORNL) developed a chip that reduces the power consumption to 20MW per
exaflop. This chip is installed in the Frontier supercomputer.

Speed and energy of data movement

The time and energy required to move a byte of data from memory to processors and
from processors back to storage is orders of magnitude greater than the time and energy
required to perform a floating-point operation on those data [163]. The rate of improvement
in processor performance far exceeds the rate of improvement in DRAM memory speed.
This situation is called the memory wall problem, first described by Wulf and McKee in
1995 [176]: ”The memory wall is defined as a situation where the much faster improvement
of processor speed as compared with dynamic random access memory (DRAM) speed will
eventually result in processor speed improvements being masked by the relatively slow
improvements to DRAM speed.“ Frontier reduces the memory problem by stacked, high-
bandwidth memory soldered directly onto its GPUs, increasing the data moving by order
of magnitude.

Fault tolerance

The computer fault rates increase because exascale systems are huge and complex. The
US Department of Energy’s (DOEs’) invests in projects to develop failure-tolerant chips.
Furthermore, the checkpoint times on Frontier on-node non-volatile memory have been
reduced from minutes to seconds. Due to this solution, the checkpoint times are still much
shorter than the mean time to failure.

11https://www.exascaleproject.org
12https://www.olcf.ornl.gov/frontier

104

https://www.exascaleproject.org
https://www.olcf.ornl.gov/frontier

Extreme parallelism

Exascale supercomputers must calculate = 1𝑒18 (one quintillion) FLOPs. In other words,
one exaflop requires 1 billion floating point units, each of which has to perform 1 billion
calculations per second. Exascale applications may require the problem to be decomposed
into billion parallel threads [163].

Frontier uses large multi-GPU nodes, each hiding between 1000–10 000-way concurrency
inside their pipelines. Thanks to this solution, users do not have to think about parallelism
so much. Instead, they have to choose the appropriate number of GPUs or the number
of nodes on the computer. The system software of Frontier deals only with thousands of
nodes and not a million. Frontier has 9472 computing nodes.

5.6 Parallel performance metrics and laws
There are many ways to measure the performance of a parallel algorithm running on a par-
allel processor. The most widely used measurements are the computation time, price/per-
formance, speed-up, and efficiency [90, 144].

5.6.1 Execution time

The execution time of a serial program is the time elapsed between the beginning and the
end of its execution on a sequential computer. The execution time of a parallel program
is the time elapsed from the moment the first processor starts to the moment the last
processor finishes execution.

5.6.2 Scalability

Scalability is defined as the measure of a parallel system’s capacity to increase speedup
in proportion to the number of processors. For hardware (clusters), this means that the
capacity of the system can be proportionally increased by adding more hardware. For
software, scalability can be defined as parallel efficiency, i.e., the ratio between the actual
speedup and the ideal speedup obtained by a certain number of processors.

The main challenge of parallel computing is to decide how to divide a problem into
individual parts that can be computed independently. To avoid high resource usage and high
time consumption, large applications are not developed and tested using the full problem
size and a number of processors. For this reason, it is desirable to decrease these factors and
estimate the required resources for the full run more accurately using resource planning.

Scalability testing measures the performance of a system when the problem sizes and the
number of processors vary. It tests the system’s ability to meet growing needs. It does not
test the general functionality of an application or its correctness. Systems can be divided
into strong scaling and weak scaling systems. For more information, refer to [61, 73].

5.6.3 Strong scaling

In the case of strong scaling, the number of processors increases while the problem size
remains constant. Strong scaling is defined as how the calculation time varies with the
number of processors for a fixed total problem size, resulting in a reduced workload per
processor. The workload per processor should be kept at a reasonable level to keep all
processors occupied. The speedup typically decreases continuously. In the ideal case, the

105

problem scales linearly. That means the problem speeds up by a factor of 𝑁 , where 𝑁
denotes the number of parallel execution units.

Amdahl’s law

At the AFIPS Spring Joint Computer Conference in 1967, the computer scientist Gene
Amdahl pointed out that the speedup of a program using multiple processors is limited
by the time needed for the sequential fraction of the program [6]. Amdahl’s law can be
formulated as follows:

𝑆(𝑝) =
1

𝑓 + (1−𝑓)
𝑝

, (5.1)

where 𝑓 is the serial fraction of the code, (1− 𝑓) is the parallel fraction of the code, and 𝑝
denotes the number of processors. For a fixed problem size, the upper limit of speedup is
determined by the serial fraction of the code:

lim
𝑁−→∞

𝑆(𝑝) =
1

𝑓
. (5.2)

This analysis neglects other potential bottlenecks in computing systems, such as memory
bandwidth and I/O bandwidth, and the performance cost associated with creating and
managing threads.

Strong scaling speedup

Strong scaling speedup is defined as:

𝑆 =
𝑡1
𝑡𝑝

, (5.3)

where 𝑡1 is the calculation time of a single processor and 𝑡𝑝 is the calculation time for 𝑝
processors. Strong scaling data representation is in Figures 5.14a and 5.14b.

(a) Strong scaling: execution time (b) Strong scaling: strong speedup

Figure 5.14: Strong scaling: execution time and strong speedup [171].

106

Strong parallel efficiency

Parallel efficiency is defined as:

𝐸 =
𝑆

𝑝
, (5.4)

where 𝑆 is the strong scaling speedup and 𝑝 is the number of processes.

5.6.4 Weak scaling

In weak scaling, both the number of processors and the problem size increase, resulting in
a constant workload per processor. Amdahl’s law defines the upper limit of speedup for
fixed-size problems. This is a bottleneck for parallel computing. In practice, the sizes of
problems scale with the number of available resources. If a problem requires a small amount
of resources, it is not beneficial to use a large amount of resources for the computation.
It is better to use a small amount of resources for small problems and a larger amount of
resources for large problems.

Gustafson’s law

In 1988 John L. Gustafson published the article Reevaluation Amdahl’s Law [72] based on
the approximations that the parallel part scales linearly with the amount of resources. The
serial part does not increase with respect to the size of the problem.

Weak scaling speedup

Weak scaling speedup (scaled speedup) is defined as:

𝑆(𝑝) = 𝑓 + 𝑝 · (1− 𝑓) , (5.5)

where 𝑝 and 𝑓 have the same meaning as in Amdahl’s law. The scaled speedup increases
linearly with respect to the number of processors with a slope smaller than one, and there
is no upper limit for the scaled speedup. In contrast to Amdahl’s law, where the problem
size is fixed, the scaled speedup is calculated based on the amount of work done for a scaled
problem size.

Weak parallel efficiency

Weak scaling efficiency is commonly defined as speedup 𝑆𝑝 (5.5) divided by the number of
units of execution 𝑝

𝐸𝑤 =
𝑆(𝑝)

𝑝
=

𝑡1
𝑡𝑁

. (5.6)

Weak scaling data representation is in Figures 5.15a and 5.15b.

107

(a) Weak scaling: execution time (b) Weak scaling: weak efficiency

Figure 5.15: Strong scaling: execution time and strong speedup [171].

5.7 Berkeley Roofline model for multicore architectures
Multicore architectures can be complicated and very different. For example, some offer
many simple processors, whereas others offer fewer complex processors, and some depend
on multithreading. This diversity makes it difficult for programmers, compiler writers,
and even architects [174]. Multicore architecture does not guarantee good scalability or
performance, and it is crucial to understand the limits to both scalability and efficiency.

The roofline model is based on the simplified model of the CPU and hides most of
the architecture-specific complexity. The roofline model was first proposed in 2009 by S.
Williams [174], and it can be used not only on the most common architecture x86_64, but
also on other architectures such as ARM, GPU accelerators, Intel Xeon Phi or FPGA. The
roofline model analyzes bottlenecks during execution on a given hardware. The prerequisites
for the roofline model are that the data transfer and the computation overlap perfectly,
latency effects are ignored, and steady-state code execution (no wind-up/down effects).
The hardware is viewed as two units. The execution unit which operates at the peak
performance 𝑃𝑝𝑒𝑎𝑘 measured in [FLOPs/s], where 𝐹𝐿𝑂𝑃𝑠 is the number of floating-point
operations, and the data unit, which can store or deliver data at a maximum bandwidth 𝑏𝑠
measured in [B/s].

Let us denote the size of data read or written to memory as 𝑉 and the number of
floating point operations as 𝐹 . The processor needs 𝐹/𝑃𝑝𝑒𝑎𝑘s to finish all calculations and
it needs 𝑉/𝑏𝑠s to perform memory transfer. The arithmetic (computational) intensity (AI)
can be calculated as a ratio 𝐼 = 𝐹/𝑉 in [FLOPs/B], and it is the number of operations
per one byte of memory transfer. Both numbers 𝑃𝑝𝑒𝑎𝑘 and 𝐼 · 𝑏𝑠 are upper limits of the
expected computational performance, and it can be written as:

𝑃 = min(𝑃𝑝𝑒𝑎𝑘, 𝐼 · 𝑏𝑠) . (5.7)

From (5.7), we can see that the basic roofline model bounds performance as a function of
machine peak performance, machine peak bandwidth, and arithmetic intensity [164].

The graphical representation of the roofline model is shown in Figure 5.16. The x-axis
represents the arithmetic (operational) intensity [FLOPs/B], it is a linear function with
a slope of 𝑏𝑠, and the y-axis shows the performance [FLOPs/s], it is a constant function.
Both axes of the graph have a logarithmic scale. The intersection of the diagonal and

108

horizontal roof is called ridge (knee) point. The x-coordinate of the ridge point is the
minimum arithmetic (operational) intensity required to achieve peak performance. The
least arithmetic intensity needed by the application to reach the ridge point is called machine
balance 𝐵𝑚 and is defined as 𝐵𝑚 = 𝑏𝑠/𝑃𝑝𝑒𝑎𝑘. The ridge point divides the area of the roofline
model into two regions. If the arithmetic intensity of the application is smaller than the
ridge point value, the application is referred to as memory bound. On the other hand, if
the arithmetic of the application is higher than the ridge point, the application is referred
to as compute bound. Figure 5.16 shows two kernels. The kernel with arithmetic intensity
𝐴𝐼 = 1/2 is memory bound, and the kernel with arithmetic intensity 𝐴𝐼 = 2 is compute
bound.

Figure 5.16: The roofline model for AMD Opteron X2 [174].

Since different architectures have different values for both the memory bandwidth and
the peak performance, the application can be memory bound on one architecture and
compute-bound on the other.

5.7.1 Roofline ceilings

The roofline ceilings are shown in Figure 5.17. The first subfigure 5.17 a) shows the compu-
tational ceilings. The ceiling labeled as TLP only reflects missing optimizations to increase
ILP (Instruction Level Parallelism) or SIMD; the TLP stands for Thread Level Parallelism.
The second ceiling is labeled ILP or SIMD and reflects when the floating-point operation
mix is not balanced. The second subfigure 5.17 b) depicts the memory bandwidth ceil-
ings without software prefetching, without affinity optimizations, and with only unit stride
optimizations.

109

The last subfigure 5.17 c) combines two previously-mentioned subfigures into a single
graph. The arithmetic intensity of the computational kernel determines the optimization
region. Only computational optimizations are suggested if the kernel falls in the blue
region (Kernel 2). The yellow region means that only memory optimizations are applicable.
Finally, the green regions suggest both types of optimizations (Kernel 1). Two optimizations
can be used to reduce computational bottlenecks:

1. Improve instruction level parallelism (ILP) and apply SIMD.

2. Balance floating-point operation mix.

Three optimizations can be used to reduce memory bottlenecks:

1. Restructure loops for unit stride access.

2. Ensure memory affinity.

3. Use software prefetching.

For more details on optimizations, see [173, 174, 177].

Figure 5.17: Roofline model example [174] with computational and bandwidth ceilings and
its optimization regions.

110

Chapter 6

Results

This chapter focuses on the solution of the second-order PDEs, especially linear ones (ellip-
tic, hyperbolic, and parabolic), which are very important in practical applications [50, 55].
The PDEs are solved using the MOL (see Section 3.4). The large systems of ODEs arising
from the method of lines are solved in parallel using the higher-order MTSM and Runge-
Kutta methods. To show the suitability of the MTSM to solve these kinds of problems and
its advantages over the other commonly used methods, the set of experiments is performed,
and the results are analyzed.

This chapter consists of several sections. Section 6.1 summarizes the technical specifica-
tions of the supercomputers used in numerical experiments. Tools for scientific computing
are introduced in Section 6.2. Section 6.3 describes performance metrics to evaluate and
characterize numerical results. Characteristics of the selected problems are summarized
in Section 6.4. Sections 6.5 and 6.6 deal with the heat equation discretized in the spatial
domain using a three-point and five-point difference formula, respectively. The wave equa-
tion discretized in the spatial domain by three-point and five-point difference formula is
presented in Sections 6.7 and 6.8 respectively. Section 6.9 focuses on the numerical solution
of the telegraph equation. Parallel performance analysis is presented in Section 6.10.

6.1 Technical specifications of supercomputers
Barbora supercomputer cluster1, IT4Innovations National Supercomputing Center2, Os-
trava, Czech Republic, consists of 201 compute nodes, totaling 7232 compute cores with
44 544GB RAM, giving over 848TFLOP/s theoretical peak performance3. The compute
nodes without accelerators have the following parameters: 192 nodes, 6912 cores in total, 2×
Intel Cascade Lake 62404, 18-core, 2.60GHz processors per node, 192GB DDR4 2933MT/s
of physical memory per node (12× 16GB), L1 Cache: 576KiB, L2 Cache: 18MiB, L3
Cache: 24.75MiB, BullSequana X1120 blade servers, 2995.2GFLOP/s per compute node,
1× 1GB Ethernet, 1× HDR100 IB port, 3 computes nodes per X1120 blade server, PBS
Professional scheduler, version 19.1.35, PETSc version 3.14.4, GCC version 10.2.0.

1https://docs.it4i.cz/barbora
2https://www.it4i.cz/en
3https://docs.it4i.cz/barbora/introduction
4https://docs.it4i.cz/barbora/compute-nodes
5https://www.altair.com/pbs-works-documentation

111

https://docs.it4i.cz/barbora
https://www.it4i.cz/en
https://docs.it4i.cz/barbora/introduction
https://docs.it4i.cz/barbora/compute-nodes
https://www.altair.com/pbs-works-documentation

The first experiments were also performed on the ICS cluster6, Institute of Computa-
tional Science7, Università della Svizzera italiana, Lugano, Switzerland. The ICS cluster
has the following parameters. CPU: 2×Intel Xeon E5-2650 v3 @ 2.3GHz, 20 (2×10) cores,
RAM: 64GB DDR4 @ 2133MHz, HDD: 1 × 1TB SATA 6Gb, Infiniband Adapter: Intel
40Gbps QDR, MATLAB version R2020, PETSc version 3.13.5, GCC version 10.1.0, Slurm
workload manager8 version 20.11. Operating system: CentOS 8.2.2004.x86_64. The ex-
periments were performed with different numbers of MPI processes. For 1–16 processes,
one compute node was used; for 32 processes, two compute nodes; for 64 processes, four
compute nodes; and for 128 processes, eight compute nodes. For more information, see
[pp14] and [pp16]. Table 6.1 shows the parameters of the Barbora and ICS clusters.

Parameter Barbora ICS
Architecture x86-64 x86-64
Operating system Linux Linux
Scheduler PBS Slurm
Total number of nodes 201 41
Number of nodes
(without accelerators) 189 22

Processor cores 36 20

CPU
2× Intel Cascade Lake 6240,
18-core,
2.6GHz processors per node

2× Intel Xeon E5-2650 v3
@ 2.3GHz,
20 (2× 10) cores

RAM min. 6GB 64GB

HDD
192GB DDR4 2933MT/s of
physical memory per node
(12× 16GB)

1× TB SATA 6Gb

Compute network InfiniBand HDR InfiniBand 40Gbps QDR

Table 6.1: Parameters of the Barbora and ICS clusters.

Figure 6.1 shows the average computation times for the telegraph equation (see Sec-
tion 6.9) calculated on the ICS cluster (see Figure 6.1a) and on the Barbora cluster (see
Figure 6.1b). As mentioned above, the experiments performed on the ICS cluster use 1–16
processes for one compute node, then 32 processes for two compute nodes, etc. The aver-
age computation time increases significantly between 16 (one node) and 32 processes (two
nodes). This increase is probably caused by TCP communication among compute nodes.
For this reason, the Barbora cluster was used for further experiments.

6https://intranet.ics.usi.ch/HPC
7https://www.ics.usi.ch
8https://slurm.schedmd.com

112

https://intranet.ics.usi.ch/HPC
https://www.ics.usi.ch
https://slurm.schedmd.com

20 40 60 80 100 120

Number of processes

10
2

10
3

10
4

10
5

A
v
e
ra

g
e
 t
im

e
 [
s
] MTSM

MTSM ideal

MTSM-PRECALC

MTSM-PRECALC ideal

MTSM-O2

MTSM-O2 ideal

TSRK8VR

TSRK8VR ideal

(a) Average time for 𝑆 = 256000, ICS cluster

200 400 600 800 1000

Number of processes

10
-2

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

MTSM

MTSM ideal

MTSM-O2

MTSM-O2 ideal

MTSM-PRECALC

MTSM-PRECALC ideal

TSRK5DP (ode45)

TSRK5DP (ode45) ideal

TSRK8VR

TSRK8VR ideal

(b) Average time for 𝑆 = 512000, Barbora cluster

Figure 6.1: Average times for the telegraph equation problem.

6.2 Tools for scientific computing
MATLAB software was mainly used for benchmarking, data visualization, and initial ex-
periments. The PETSc framework was used for parallel implementation.

6.2.1 MATLAB

MATLAB is the language of scientific computing. It contains a full suite of tools that can be
used to solve various engineering and mathematical problems. The numerical experiments
in this work use the MATLAB ODE suite.

The MATLAB ODE suite contains three explicit methods for nonstiff problems: ode23,
ode45, and ode113 solvers. The ode23 solver is an implementation of an explicit Runge-
Kutta (2,3) formula (Bogacki-Shampine), a third-order scheme with a second-order embed-
ded scheme, four stages; it is a single-step solver (see (2.50)). The ode45 solver is based
on an explicit Runge-Kutta (4,5) formula (Dormand-Prince), a fifth-order scheme with a
fourth-order embedded scheme, seven stages; it is a single-step solver (see (2.49)). The
ode113 solver is a variable-step variable-order (VSVO) Adams-Bashforth-Moulton PECE
solver of orders 1 to 13. The highest order used appears to be 12. However, a formula of
order 13 is used to form the error estimate, and the function performs local extrapolation
to advance the integration at order 13 (see (2.55)).

The MATLAB ODE suite also contains implicit methods for stiff systems [8, 151]:
ode15s and ode23s solvers. The ode23s solver is the second-order scheme with the third-
order embedded scheme, and it is based on modified Rosenbrock methods of orders 3 and
2 with error control. It is a single-step solver. Solver ode15s is a multistep VSVO solver
based on the numerical differentiation formulas (NDFs) of orders 1 to 5.

Vectorized MATLAB code of explicit MTSM with variable order and variable step size
scheme for linear systems of ODEs has been implemented. The MTSM was compared with
vectorized MATLAB explicit ode solvers. Numerical experiments are carefully described in
[pp10, pp22, pp26, pp28].

113

6.2.2 PETSc

The Portable Extensible Toolkit for Scientific Computation (PETSc) is a software frame-
work [2, 10, 11, 13] for the scalable numerical solution of complex problems in science
and engineering. PETSc was designed primarily for typical computations connected with
PDEs. PETSc is written in C but can also be employed, e.g., in C++, Fortran, and Python
programs.

PETSc provides implementations of distributed sparse, dense, unassembled matrices,
linear algebra, linear or non-linear system solvers, time integrators, mathematical opti-
mization, discretization, and more. PETSc uses the message-passing model for parallel
programming and employs MPI for all interprocessor communication. Figure 6.2 shows the
components of the PETSc software package.

Figure 6.2: Components of the PETSc software package [10].

The parallel layout of the matrix is shown in Figure 6.3. Each process owns a certain
number of matrix rows.

114

Figure 6.3: PETSc: parallel matrix layout [79].

The sparse parallel matrices are stored in compressed row storage (CRS), compressed
sparse row (CSR), or Yale format as shown in Figure 6.4. The CRS format allows fast
row access and matrix-vector multiplications and was published in 1967 [28]. This format
represents the matrix A by three one-dimensional arrays: row_ptr, col_idx, and val. The
row_ptr array contains the start and end pointers of the nonzeroes of the rows; the size
of this array is 𝑚 + 1, where 𝑚 is the number of rows of the matrix. The col_idx array
contains column indices of the nonzeros. The size of this array is 𝑛𝑛𝑧, where 𝑛𝑛𝑧 denotes
the number of nonzeros of the matrix. Finally, the V array of size 𝑛𝑛𝑧 contains values of
nonzeros.

Figure 6.4: Illustration of the CSR format [112].

The library provides several methods with automatic step size control for solving ODEs.
The error in each time step is calculated using the Runge-Kutta method and its embedded
method. TSRK3BS implements the third-order Bogacki-Shampine 3(2) method with a
second-order embedded method (known as ode23 in MATLAB, see (2.50)); the method has
four stages with the First Same As Last (FSAL) property. The TSRK5DP implements the
fifth-order Dormand-Prince 5(4) method with a fourth-order embedded method (known
as ode45 in MATLAB, (2.49)); the method has seven stages with FSAL property. The
TSRK5BS implements the fifth-order Bogacki-Shampine Runge-Kutta 5(4) method with
a fourth-order embedded method, and it has eight stages and FSAL property. Robust
Verner Runge-Kutta methods of orders 6(5), 7(6), and 8(7) are implemented as TSRK6VR,
TSRK7VR and TSRK8VR, respectively. The TSRK6VR is the sixth-order robust Verner
scheme with a fifth-order embedded method, nine stages, and the FSAL property. The
TSRK7VR is the seventh-order robust Verner scheme with a sixth-order embedded method

115

and ten stages. Finally, the TSRK8VR is the eighth-order robust Verner scheme with a
seventh-order embedded method with thirteen stages. For more information, see [10].

6.2.3 Intel Advisor Roofline model

Intel Advisor implements the cache-aware roofline model, which provides additional insight
by addressing all memory/cache hierarchy levels. Sloped rooflines illustrate peak perfor-
mance levels if all the data fit into the respective cache. Horizontal lines show the peak
achievable performance levels if vectorization and other CPU resources are used effectively.
Intel Advisor automatically runs quick benchmarks to measure the hardware limitations of
a given machine.

Each dot in the roofline plot represents a loop or a function (see Figure 6.5). The
size and color of the dots denote the relative execution time. The small green dots take
relatively little time, while the red dots take the most time. According to Amdahl’s law,
loops that take the largest portion of the program’s total run time lead to greater speedups
than loops that take a smaller portion of the run time.

Note that in the classic roofline model, the arithmetic intensity of a kernel changes
with the size of the problem or the optimization of the cache usage because the byte count
was based only on DRAM traffic. On the contrary, in the cache-aware roofline model, the
arithmetic intensity is fixed and tied to the algorithm. It only changes when the algorithm
is changed. For more details, see Section 5.7.

Figure 6.5: The example of Intel Advisor Roofline model [147].

116

6.3 Performance metrics
The performance metrics are used to evaluate, characterize, diagnose, and tune parallel
performance [117]. Numerical results are presented using the following performance met-
rics: average time, speedup, speedup against the TSRK5DP solver, parallel efficiency, and
parallel cost metrics.
The average computation time is defined as:

avgtime [s] =
∑︀𝑛𝑢𝑚𝑅𝑢𝑛𝑠

𝑖=1 𝑡

numRuns , (6.1)

where numRuns denotes the total number of runs.
The speedup of the solver is defined as:

speedup =
𝑡1
𝑡𝑃

, (6.2)

where 𝑡1 denotes the serial computation time of one compute node, and 𝑡𝑃 denotes the
parallel computation time of 𝑃 compute nodes. When 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 > 1, the speedup metric
conveys performance improvement. On the contrary, when 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 < 1, the speedup
metric conveys performance degradation. The ideal speedup (ideal scaling) is defined as
𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑃 . The superlinear speedup is achieved when 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 > 𝑃 .
The speedup-against ratio of the solver is defined as:

speedupAgainst = solverRef
solver , (6.3)

where solverRef denotes the solver against which the speedup is calculated.
The speedupAgainst ≫ 1 indicates a significantly faster computation using the given 𝑠𝑜𝑙𝑣𝑒𝑟.
The parallel efficiency is defined as:

efficiency [%] =
speedup

numProcs · 100 =

𝑡𝑆
𝑡𝑃

numProcs · 100 , (6.4)

where numProcs denotes the number of processes.
The parallel cost of an algorithm is defined as:

cost [node-hours] = avgtime · numNodes , (6.5)

where avgtime is the average time in hours and numNodes denotes the number of compute
nodes.
The parallel cost ratio is defined as:

cost ratio =
𝑐𝑜𝑠𝑡𝑃
𝑐𝑜𝑠𝑡1

, (6.6)

where 𝑐𝑜𝑠𝑡1 is the parallel cost for one compute node and 𝑐𝑜𝑠𝑡𝑃 is the parallel cost for more
than one compute node. Parallel cost is calculated using (6.5).
The parallel speedup-cost ratio is defined as:

speedup-cost ratio =
speedup

cost ratio , (6.7)

where speedup is calculated by (6.2) and cost ratio by (6.6).

117

6.4 Characteristics of selected problems
The following text presents simulation results for different types of linear PDEs, namely,
heat equation, wave equation, and telegraph equation. The PDEs are solved using the
method of lines (see Section 3.4). The heat equation and the wave equation are discretized
in the spatial domain using three- and five-point central difference formulas (see Table 3.2).
The resulting large systems of ODEs are solved in parallel using the MTSM and Runge-
Kutta methods.

The matrix-vector notation of the linear systems of ODEs is

y′ = Ay + b , y(𝑡0) = y0 , (6.8)

where A is the constant Jacobian matrix of size 𝑚×𝑚, and b is the right-hand-side vector
of size 𝑚× 1.

First, the experiments were performed in MATLAB for smaller problem sizes. The
systems of ODEs were solved by the MTSM methods and standard methods such as ode45,
ode23, and ode113.

6.4.1 Data sizes and solvers

Typical data sizes (denoted as 𝑆) are 128000, 256000, 512000, 1024000 and 2048000 ODEs.
For each data size, four selected solvers compute the problem, namely, MTSM (classi-
cal implementation of MTSM), MTSM_PRECALC (parallel precalculation of MTSM),
TSRK5DP (Dormand-Prince method 5(4)) [44] and TSRK8VR (Verner Runge-Kutta method
of orders 8(7)) [166]. All Taylor series-based solvers were implemented using PETSc library
routines. The MTSM implements the MTSM method (see Section 4.6). The MTSM_PREC
implements the MTSM method with the precalculation of matrix A (see Section 4.9). The
real data sizes for each problem differ. Table 6.2 shows the real data sizes for the matrix
and vectors, and 𝑆 denotes the number of segments in the spatial domain.

problem name matrix size 𝑚×𝑚 vector size 𝑚× 1

heat equation (𝑆 − 1)× (𝑆 − 1) (𝑆 − 1)× 1

wave equation (2𝑆 − 2)× (2𝑆 − 2) (2𝑆 − 2)× 1

telegraph equation (2𝑆 + 2)× (2𝑆 + 2) (2𝑆 + 2)× 1

Table 6.2: Data sizes for different problems.

6.4.2 Cluster settings

The numerical experiments were performed on the Barbora supercomputer cluster,
IT4Innovations National Supercomputing Center, Ostrava, Czech Republic using a various
number of MPI processes, 36 processes per compute node. In total, 32 compute nodes
were used; therefore, 1152 MPI processes were used. This research was supported by
projects OPEN-22-47 and OPEN-25-51. All experiments were carried out in the production
queue (qprod9) with the walltime set to 15 minutes. More details about the estimation of
computation resources can be found in Appendix C.6. The execution priority of the job
is determined by these job properties (in order of importance): queue priority, fair-share
priority, and eligible time10.

9https://docs.it4i.cz/general/resources-allocation-policy
10https://docs.it4i.cz/general/job-priority

118

https://docs.it4i.cz/general/resources-allocation-policy
https://docs.it4i.cz/general/job-priority

6.4.3 General parameters

The general parameters for all simulation experiments are the following. The tolerances for
all ode solvers are 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−10 and 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−10, the tolerance for MTSM solvers is
𝑡𝑜𝑙 = 1𝑒−10. The maximum order of the MTSM is 𝑚𝑎𝑥𝑂𝑅𝐷 = 64. The maximum order
for the MTSM_PRECALC method is 𝑚𝑎𝑥𝑂𝑅𝐷 = 25, which means that the matrix Â is
precalculated to the order 25 (see (4.42)). Maximum simulation time 𝑡𝑚𝑎𝑥 = 10000 · ℎ.

Note that for the heat equation (Sections 6.5 and 6.6) and the wave equation (Sections
6.7 and 6.8), the spatial step-size is always Δ𝑥 = 𝐿/𝑆 = 0.1. Therefore, the size of the
spatial domain 𝐿 and the number of segments 𝑆 are always set accordingly to meet this
requirement. The coefficients of the central difference formulas are in Table 3.2. Problem-
dependent parameters are further specified in the corresponding sections.

6.5 Heat equation – three-point central difference
The heat equation is the parabolic PDE that describes the distribution of heat in a given
spatial domain 𝑥 and time domain 𝑡. The one-dimensional heat equation is defined as

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
+ 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ (0, 𝐿)× ⟨0, 𝑡𝑚𝑎𝑥⟩ , (6.9)

where 𝛼 is thermal diffusivity and 𝐿 denotes the length of the rod. The function 𝑓(𝑥, 𝑡)
characterizes the intensity of internal sources and 𝑡𝑚𝑎𝑥 denotes the maximum simulation
time. The variable 𝑢 = 𝑢(𝑥, 𝑡) describes the temperature of the rod at the point 𝑥 and at
time 𝑡.
The initial conditions are

𝑢(𝑥, 0) = 25, 0 < 𝑥 < 𝐿 . (6.10)

Dirichlet boundary conditions are

𝑢(0, 𝑡) = 100, 𝑢(𝐿, 𝑡) = 25, 0 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥 . (6.11)

The resulting system of ODEs y′ = Ay + b ,y(𝑡0) = y0 arising from MOL is in the form:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 · · · · · · · · · · · · 0

1 −2 1 0
...

0 1 −2 1
.

... 0
.

... 0
...

... . . . 1 −2 1 0

... 0 1 −2 1
0 · · · · · · · · · · · · 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, y = 𝑢(𝑥, 0) , b =

⎛⎜⎝ 𝛼𝑢(0, 𝑡)
...

𝛼𝑢(𝐿, 𝑡)

⎞⎟⎠ ,

(6.12)
The sparsity patterns of the matrices A and Â precalculated using (4.46) for 𝑆 = 100
segments are in Figure 6.6.

119

0 20 40 60 80 100

nonzeros = 295 (3.010%)

0

10

20

30

40

50

60

70

80

90

100

(a) Matrix A

0 20 40 60 80 100

nonzeros = 4399 (44.883%)

0

10

20

30

40

50

60

70

80

90

100

(b) Matrix Â precalculated using (4.46)

Figure 6.6: Sparsity patterns of input matrices, heat equation, three-point central difference
formula, 𝑆 = 100.

The numerical solution of the heat equation discretized in the spatial domain by the three-
point central finite difference formula and the order of the MTSM for the segments 𝑆 = 100
are shown in Figure 6.7.

0 0.05 0.1 0.15 0.2

time [s]

20

30

40

50

60

70

80

90

100

te
m

p
e

ra
tu

re
 [

°C
]

x1

x10

x20

x30

x40

x50

x60

x70

x80

x90

x99

(a) Numerical solution (temperature profile)

0 0.05 0.1 0.15 0.2

time [s]

0

5

10

15

20

O
R

D

(b) Order of the MTSM

Figure 6.7: Numerical solution and order of MTSM, heat equation, three-point central
difference formula, 𝑆 = 100, ℎ = 2𝑒−4, 𝑡𝑚𝑎𝑥 = 1000 · ℎ.

The parameters for the simulation experiments are as follows. The tolerances for all
ode solvers are 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−10 and 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−10, the tolerance for MTSM solvers is
𝑡𝑜𝑙 = 1𝑒−10, and the maximum simulation time 𝑡𝑚𝑎𝑥 = 10000 · ℎ. The thermal diffusivity
is 𝛼 = 113mm/s.

120

6.5.1 Results overview – three-point central difference formula

Table 6.3 shows the number of integration steps and the average step sizes for each solver.
The MTSM uses a step size approximately 2.7 times larger than the TSRK5DP solver and
approximately 1.9 times larger than the TSRK8VR solver. The average order of the MTSM
for the three-point central difference formulas is 20.6.

solver # steps average ℎ

MTSM_PRECALC 10000 2.00𝑒−04

MTSM 10000 2.00𝑒−04

TSRK5DP 27377 7.30𝑒−05

TSRK8VR 18740 1.07𝑒−04

Table 6.3: Number of integration steps and average step sizes, heat equation, three-point
central difference formula.

Tables 6.4 and 6.5 summarize the average parallel efficiency (6.4) and speedup against
the TSRK5DP (6.3) for each problem size. These results are averages of values for 1–32
compute nodes. Table cells where the parallel efficiency is greater than or equal to 50%
are marked in green. The cells in the table showing the speedup ratio with respect to the
TSRK5DP solver are also marked in green. Notice that for the problem size 𝑆 = 2048000,
the TSRK8VR solver did not calculate the result because the maximum walltime was
exceeded.

Table 6.4 shows the average parallel efficiency. The MTSM_PRECALC solver offers an
efficiency greater than 50% for all problem sizes. The MTSM_PRECAL solver is always
faster than the TSRK5DP solver, as shown in Table 6.5. Finally, the MTSM_PRECALC
is the fastest of all solvers for all problem sizes.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 91.93 198.46 188.85 189.95 148.34
MTSM 17.49 23.85 34.12 49.22 80.43
TSRK5DP 34.52 50.48 89.63 155.11 204.84
TSRK8VR 40.02 60.50 113.46 171.13 –

Table 6.4: Average efficiency (6.4) comparison for 1–32 nodes, heat equation, three-point
central difference formula.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 7.93 6.43 5.27 4.23 2.88
MTSM 0.29 0.35 0.44 0.57 0.72
TSRK8VR 0.75 0.74 0.69 0.68 –

Table 6.5: Average speedup against TSRK5DP (6.3) comparison for 1–32 nodes, heat
equation, three-point central difference formula.

121

Table 6.6 indicates whether a solver calculates the result for 1–32 nodes for a given
problem size. The letter “Y” means “Yes”, and the letter “N” means “No”. The notation “N
(Xn)” implies that a given solver calculated the result for the maximum number of compute
nodes denoted as “(Xn)”. For the three-point central difference formula and 𝑆 = 2048000,
only the TSRK8VR solver did not compute the result for all 32 compute nodes and was
able to use eight compute nodes at most.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC Y Y Y Y Y
MTSM Y Y Y Y Y
TSRK5DP Y Y Y Y Y
TSRK8VR Y Y Y Y N (8 n)

Table 6.6: Yes/No table, heat equation, three-point central difference formula.

Table 6.7 shows, for each problem size, the number of compute nodes where the parallel
efficiency is 𝐸 ≥ 50%. Notice that for the MTSM_PRECALC solver 𝐸 ≥ 50% for 1–
32 compute nodes and all problem sizes. For the MTSM, the number of nodes, where
𝐸 ≥ 50%, gradually increases with each problem size up to 26 nodes. The TSRK5DP
solver reaches efficiency 𝐸 ≥ 50% for 1–32 compute nodes for problem sizes 𝑆 ≥ 512000
equations. Finally, the TSRK8VR solver provides efficiency 𝐸 ≥ 50% for all 32 compute
nodes when the problem sizes are 𝑆 = 512000 and 𝑆 = 1024000. For 𝑆 = 2048000, it drops
to eight nodes.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 32 32 32 32 32
MTSM 3 4 9 12 26
TSRK5DP 7 12 32 32 32
TSRK8VR 8 18 32 32 8

Table 6.7: Maximum number of nodes where efficiency 𝐸 ≥ 50%, heat equation, three-point
central difference formula.

Table 6.8 shows the maximum number of nodes to use for the calculation with respect to
the speedup-cost ratio, i.e., where the speedup-cost tradeoff curve reaches a maximum.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 32 32 32 32 32
MTSM 1 4 4 4 16
TSRK5DP 4 4 8 32 32
TSRK8VR 8 8 16 32 8

Table 6.8: Parallel cost for all problem sizes and solvers, heat equation, three-point central
difference formula.

122

The numerical results for the three-point central difference formula and different problem
sizes follow. Detailed results, including results for 𝑆 = 256000 and 𝑆 = 1024000, can be
found in Appendix C.1.

6.5.2 𝑆 = 128000, three-point central difference formula

Two quadruple graphs are presented for each problem size. Both visualize the metrics
mentioned in Section 6.3. The first quadruple is depicted in Figure 6.8. The upper left
subfigure shows the average computation time (6.1) where the dashed lines show the ideal
average times for the given number of processes. The parallel efficiency (6.4) is shown in
the upper right subfigure. The lower left subfigure depicts the speedup for each solver (6.2),
and the dashed line shows the ideal speedup for the given number of processes. The last
one shows the speedup ratio with respect to the TSRK5DP solver (ode45 in MATLAB)
(6.3), the speedup=TSRK5DP/solver ≫ 1 indicates significantly faster computation using
the given solver.

The second quadruple (Figure 6.9) shows the parallel cost metrics for each solver. Each
subfigure contains three curves. The curve labeled with the solver’s name shows the parallel
speedup of a given solver (6.2). The magenta curve represents the parallel cost ratio (6.6),
and the cyan curve shows the parallel speedup-cost tradeoff (6.7).

We can see that the ideal number of nodes for the MTSM_PRECALC solver is 32
because the speedup (red curve) increases proportionally with the parallel cost ratio (ma-
genta curve). Therefore, the speedup-cost ratio (cyan curve) also increases. For the MTSM
solver, it is not beneficial to use more than 1 compute node. Note that for the number of
nodes greater than one, the speedup is almost constant while the cost ratio grows almost
linearly. In the case of the TSRK5DP solver, it is ideal to use four compute nodes, and for
TSRK8VR, eight nodes.

123

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure 6.8: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 128000, heat equation, three-point central difference formula.

124

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure 6.9: Parallel cost ratio and speedup-cost ratio, 𝑆 = 128000, heat equation, three-
point central difference formula.

125

6.5.3 𝑆 = 512000, three-point central difference formula

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure 6.10: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 512000, heat equation, three-point central difference formula.

126

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure 6.11: Parallel cost ratio and speedup-cost ratio, 𝑆 = 512000, heat equation, three-
point central difference formula.

127

6.5.4 𝑆 = 2048000, three-point central difference formula

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure 6.12: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 2048000, heat equation, three-point central difference formula.

128

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure 6.13: Parallel cost ratio and speedup-cost ratio, 𝑆 = 2048000, heat equation, three-
point central difference formula.

129

6.6 Heat equation – five-point central difference formula
The definition of the problem and the simulation parameters are the same as for the heat
equation discretized with the three-point central difference formulas (see Section 6.5). The
sparsity patterns of the matrices A and Â precalculated using (4.46) for 𝑆 = 100 segments
are shown in Figure 6.14.

0 20 40 60 80 100

nonzeros = 491 (5.010%)

0

10

20

30

40

50

60

70

80

90

100

(a) Matrix A

0 20 40 60 80 100

nonzeros = 7451 (76.023%)

0

10

20

30

40

50

60

70

80

90

100

(b) Matrix Â precalculated using (4.46)

Figure 6.14: Sparsity patterns of input matrices, heat equation, five-point central difference
formula, 𝑆 = 100.

6.6.1 Results overview – five-point central difference formula

Table 6.9 shows the number of integration steps and average step sizes for each solver. The
step size of the MTSM solvers is approximately 2.1 times larger than that of the TSRK5DP
solver and approximately 1.4 times larger than that of the TSRK8VR solver. The average
order of the MTSM for the five-point central difference formulas is 20.6.

solver # steps average ℎ

MTSM_PRECALC 10000 1.50𝑒−04

MTSM 10000 1.50𝑒−04

TSRK5DP 20542 7.30𝑒−05

TSRK8VR 14059 1.07𝑒−04

Table 6.9: Number of integration steps and average step sizes, heat equation, five-point
central difference formula.

Tables 6.10 and 6.11 summarize the average efficiency and speedup against the TSRK5DP
for each problem size.

130

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 94.95 152.95 184.74 191.74 120.50
MTSM 17.65 24.18 36.37 49.93 110.33
TSRK5DP 34.28 50.35 106.18 162.89 224.19
TSRK8VR 41.36 61.69 129.36 176.25 –

Table 6.10: Average efficiency (6.4) comparison for 1–32 nodes, heat equation, five-point
central difference formula.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 6.05 5.17 2.60 3.08 1.28
MTSM 0.31 0.39 0.45 0.60 0.75
TSRK8VR 0.79 0.73 0.70 0.66 –

Table 6.11: Average speedup against TSRK5DP (6.3) comparison for 1–32 nodes, heat
equation, five-point central difference formula.

Table 6.12 shows that for the five-point central difference formula, only the TSRK8VR
solver did not compute the result for all 32 compute nodes, and it was able to use six
compute nodes at most.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC Y Y Y Y Y
MTSM Y Y Y Y Y
TSRK5DP Y Y Y Y Y
TSRK8VR Y Y Y Y N (6 n)

Table 6.12: Yes/No table, heat equation, five-point central difference formula.

Table 6.13 shows, for each problem size (denoted as 𝑆), the number of compute nodes
where the parallel efficiency 𝐸 ≥ 50%. The parallel efficiency of the MTSM_PRECALC
solver is always greater than 50% for 1–32 compute nodes for all problem sizes. The
efficiency of the MTSM solver increases with each problem size, and for 𝑆 = 2048000 it
reaches the parallel efficiency 𝐸 ≥ 50% for all 32 compute nodes. The TSRK5DP solver
offers efficiency 𝐸 ≥ 50% for all 32 compute nodes for problem sizes 𝑆 ≥ 512000 equations.
Finally, the TSRK8VR solver offers efficiency 𝐸 ≥ 50% for all 32 compute nodes when the
problem sizes are 𝑆 = 512000 and 𝑆 = 1024000. For 𝑆 = 2048000, it drops to 6 nodes.

131

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 32 32 32 32 32
MTSM 3 4 8 13 32
TSRK5DP 7 15 32 32 32
TSRK8VR 8 19 32 32 6

Table 6.13: Maximum number of nodes where efficiency 𝐸 ≥ 50%, heat equation, five-point
central difference formula.

Table 6.14 shows the maximum number of nodes to use for the calculation with respect to
the speedup-cost ratio, i.e., where the speedup-cost tradeoff curve reaches a maximum.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 32 32 32 32 32
MTSM 2 4 4 16 8
TSRK5DP 8 8 32 32 32
TSRK8VR 8 16 32 32 4

Table 6.14: Parallel cost for all problem sizes and solvers, heat equation, five-point central
difference formula.

The numerical results for the five-point central difference formula and different number of
ODEs follow. Detailed results, including results for 𝑆 = 256000 and 𝑆 = 1024000, can be
found in Appendix C.2.

132

6.6.2 𝑆 = 128000, five-point central difference formula

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure 6.15: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 128000, heat equation, five-point central difference formula.

133

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure 6.16: Parallel cost ratio and speedup-cost ratio, 𝑆 = 128000, heat equation, five-
point central difference formula.

134

6.6.3 𝑆 = 512000, five-point central difference formula

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure 6.17: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 512000, heat equation, five-point central difference formula.

135

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure 6.18: Parallel cost ratio and speedup-cost ratio, 𝑆 = 512000, heat equation, five-
point central difference formula.

136

6.6.4 𝑆 = 2048000, five-point central difference formula

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure 6.19: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 2048000, heat equation, five-point central difference formula.

137

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure 6.20: Parallel cost ratio and speedup-cost ratio, 𝑆 = 2048000, heat equation, five-
point central difference formula.

138

6.7 Wave equation – three-point central difference formula
The wave equation is the hyperbolic PDE [153] of the second order (6.13).

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
=

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
(𝑥, 𝑡) ∈ (0, 𝐿)× ⟨0, 𝑡𝑚𝑎𝑥⟩ . (6.13)

The homogeneous Dirichlet boundary conditions are defined as follows:

𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥 . (6.14)

where 𝐿 is the length of the string and 𝑡𝑚𝑎𝑥 is the maximum simulation time. The Cauchy
initial values follow:

𝑢(𝑥, 0) = sin(𝜋𝑥) , (6.15)
𝜕𝑢(𝑥, 0)

𝜕𝑡
= 0 , 0 < 𝑥 < 𝐿 . (6.16)

The wave equation describes the oscillations of an ideal string of a specified length. Both
ends of the string are fixed in time (see the boundary conditions (6.14)). The initial velocity
of the string is zero (see equation (6.16)). The initial position of the string is modelled as
a sine function (see equation (6.15)). The analytical solution of the wave equation follows:

𝑢 = cos(𝜋𝑡) sin(𝜋𝑥). (6.17)

Partial derivatives with respect to time and space are

𝜕𝑢

𝜕𝑡
= −𝜋 sin(𝜋𝑡) sin(𝜋𝑥),

𝜕2𝑢

𝜕𝑡2
= −𝜋2 cos(𝜋𝑡) sin(𝜋𝑥) , (6.18)

and
𝜕𝑢

𝜕𝑥
= 𝜋 cos(𝜋𝑥) cos(𝜋𝑡) ,

𝜕2𝑢

𝜕𝑥2
= −𝜋2 sin(𝜋𝑥) cos(𝜋𝑡) , (6.19)

respectively. The resulting system of ODEs y′ = Ay + b ,y(𝑡0) = y0 arising from MOL is
in the form:

A =

(︂
A11 A12

A21 A22

)︂
, y0 =

(︂
sin(𝜋𝑥)

0

)︂
, b = 0 . (6.20)

where A12 is the discretiazion matrix, A21 is the identity matrix, and matrices A11 and
A22 are zero matrices. The sparsity patterns of the matrices A and Â precalculated using
(4.46) for 𝑆 = 100 segments are in Figure 6.21.

139

0 50 100 150

nonzeros = 394 (1.005%)

0

20

40

60

80

100

120

140

160

180

(a) Matrix A

0 50 100 150

nonzeros = 9448 (24.100%)

0

20

40

60

80

100

120

140

160

180

(b) Matrix Â precalculated using (4.46)

Figure 6.21: Sparsity patterns of input matrices, wave equation, three-point central differ-
ence formula, 𝑆 = 100.

The numerical solution of the wave equation discretized in the spatial domain by the three-
point central finite difference formula and the order of the MTSM for 𝑆 = 100 segments
are shown in Figure 6.22.

0 50 100 150 200 250 300 350 400

time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

p
o
s
it
io

n

x1

x10

x20

x30

x40

x50

x60

x70

x80

x90

x99

(a) Numerical solution

0 50 100 150 200 250 300 350 400

time [s]

0

2

4

6

8

10

12

14

16

18

20

22

O
R

D

(b) Order of the MTSM

Figure 6.22: Numerical solution and order of MTSM, wave equation, three-point finite
difference approximation, 𝑆 = 100, ℎ = 4𝑒−1, 𝑡𝑚𝑎𝑥 = 1000 · ℎ.

6.7.1 Results overview – three-point central difference formula

The number of integration steps and the average step sizes for each solver is shown in
Table 6.15. The MTSM uses a step size approximately 7.8 times larger than the TSRK5DP

140

solver and approximately 3.2 times larger than the TSRK8VR solver. The average order
of the MTSM for the three-point central difference formulas is 19.

solver # steps average ℎ

MTSM_PRECALC 10000 4.00𝑒−01

MTSM 10000 4.00𝑒−01

TSRK5DP 78238 5.11𝑒−02

TSRK8VR 32000 1.26𝑒−01

Table 6.15: Number of integration steps and average step sizes, wave equation, three-point
central difference formula

Tables 6.16 and 6.17 summarize the average efficiency and speedup against the TSRK5DP
for each problem size. These results are averages of values for 1–32 compute nodes. Table
cells where the parallel efficiency 𝐸 ≥ 50% are marked in green. The cells of the table
showing the speedup ratio with respect to the TSRK5DP solver are also marked in green.
The average parallel efficiency is shown in Table 6.16; the MTSM_PRECALC solver offers
the parallel efficiency 𝐸 ≥ 50% for all problem sizes. The MTSM_PRECAL and MTSM
solvers are always faster than the TSRK5DP solver, as shown in Table 6.17. Finally, the
MTSM_PRECALC is the fastest of all solvers for all problem sizes.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 51.10 77.41 127.64 136.43 119.31
MTSM 15.30 19.77 25.62 33.67 –
TSRK5DP 25.91 29.86 – – –
TSRK8VR 29.76 40.24 – – –

Table 6.16: Average efficiency (6.4) comparison for 1–32 nodes, wave equation, three-point
central difference formula.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 16.04 20.90 – – –
MTSM 1.04 1.63 – – –
TSRK8VR 0.97 1.23 – – –

Table 6.17: Average speedup against TSRK5DP (6.3) comparison for 1–32 nodes, wave
equation, three-point central difference formula.

Table 6.18 indicates whether the solver calculates the result for a given problem size.
For 𝑆 ≥ 512000, the TSRK5DP and TSRK8VR solvers did not provide results because
the maximum walltime was exceeded. The MTSM solver did not calculate the results for
𝑆 = 2048000 segments. Finally, the MTSM_PRECALC computes the result for all 32
nodes.

141

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC Y Y Y Y Y
MTSM Y Y Y Y N (6 n)
TSRK5DP Y Y N (27 n) N (4 n) –
TSRK8VR Y Y N (21 n) N (2 n) –

Table 6.18: Yes/No table, wave equation, three-point central difference formula.

Table 6.19 shows, for each problem size, the number of compute nodes where parallel
efficiency 𝐸 ≥ 50%. Notice that the parallel efficiency of the MTSM_PRECALC solver
𝐸 ≥ 50% for 1–32 compute nodes for problem sizes greater than or equal to 𝑆 = 512000.
The efficiency of the MTSM solver stagnates and increases only for 𝑆 = 2048000, but the
solver cannot reach parallel efficiency for all 32 compute nodes. For the TSRK5DP and
TSRK8VR solvers, the efficiency increases up to 𝑆 = 512000, for 𝑆 = 1024000, it drops to
four and two nodes, respectively.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 10 26 32 32 32
MTSM 1 1 1 1 6
TSRK5DP 1 2 16 4 –
TSRK8VR 1 4 21 2 –

Table 6.19: Maximum number of nodes where efficiency 𝐸 ≥ 50%, wave equation, three-
point central difference formula.

Table 6.20 shows the maximum number of nodes to use for the calculation with respect to
the speedup-cost ratio, i.e., where the speedup-cost tradeoff curve reaches a maximum.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 4 8 32 32 32
MTSM 1 1 16 16 4
TSRK5DP 8 8 16 4 –
TSRK8VR 8 16 16 2 –

Table 6.20: Parallel cost for all problem sizes and solvers, wave equation, three-point central
difference formula.

The numerical results for the three-point central difference formula and different problem
sizes follow. Detailed results, including results for 𝑆 = 128000 and 𝑆 = 512000, can be
found in Appendix C.3.

142

6.7.2 𝑆 = 64000, three-point central difference formula

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure 6.23: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 64000, wave equation, three-point central difference formula.

143

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure 6.24: Parallel cost ratio and speedup-cost ratio, 𝑆 = 64000, wave equation, three-
point central difference formula.

144

6.7.3 𝑆 = 256000, three-point central difference formula

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure 6.25: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 256000, wave equation, three-point central difference formula.

145

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure 6.26: Parallel cost ratio and speedup-cost ratio, 𝑆 = 256000, wave equation, three-
point central difference formula.

146

6.7.4 𝑆 = 1024000, three-point central difference formula

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

 MTSM-PRECALC MTSM

Figure 6.27: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 1024000, wave equation, three-point central difference formula.

147

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a

ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a

ti
o

MTSM
cost

speedup-cost

Figure 6.28: Parallel cost ratio and speedup-cost ratio, 𝑆 = 1024000, wave equation, three-
point central difference formula.

148

6.8 Wave equation – five-point central difference formula
The definition of the problem and simulation parameters are the same as for wave equation
discretized with the three-point central difference formulas (see Section 6.7). The sparsity
patterns of the matrices A and Â precalculated using (4.46) for 𝑆 = 100 segments are in
Figure 6.29.

0 50 100 150

nonzeros = 590 (1.505%)

0

20

40

60

80

100

120

140

160

180

(a) Matrix A

0 50 100 150

nonzeros = 17306 (44.143%)

0

20

40

60

80

100

120

140

160

180

(b) Matrix Â precalculated using (4.46)

Figure 6.29: Sparsity patterns of input matrices, wave equation, five-point central difference
formula, 𝑆 = 100.

6.8.1 Results overview – five-point central difference formula

Table 6.21 shows the number of integration steps and the average step sizes for each solver.
Taylor series-based solvers use a step size approximately 8.4 times larger than the TSRK5DP
solver and approximately 3.4 times larger than the TSRK8VR solver. The average order
of the MTSM for the five-point central difference formulas is 19.5.

solver # steps average ℎ

MTSM_PRECALC 10000 3.70𝑒−01

MTSM 10000 3.70𝑒−01

TSRK5DP 26030 4.42𝑒−02

TSRK8VR 10775 1.10𝑒−01

Table 6.21: Number of integration steps and average step sizes, wave equation, five-point
central difference formula.

Tables 6.22 and 6.23 summarize the average efficiency, and speedup against the TSRK5DP
for each problem size.

149

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 96.82 137.98 144.77 130.29 132.39
MTSM 14.94 19.97 23.10 – –
TSRK5DP 25.91 35.20 – – –
TSRK8VR 29.36 46.10 – – –

Table 6.22: Average efficiency (6.4) comparison for 1–32 nodes, wave equation, five-point
central difference formula.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 15.87 18.54 – – –
MTSM 1.10 1.49 – – –
TSRK8VR 0.96 1.09 – – –

Table 6.23: Average speedup against TSRK5DP (6.3) comparison for 1–32 nodes, wave
equation, five-point central difference formula.

Table 6.24 indicates whether or not the solver calculates the result for a given problem
size. For the five-point central difference formula, the TSRK5DP and TSRK8VR solvers
did not compute the result for all 32 compute nodes for the problem size 𝑆 = 2048000. The
MTSM_PRECALC calculates results for all 1–32 nodes for all problem sizes.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC Y Y Y Y Y
MTSM Y Y Y N (20 n) N (5 n)
TSRK5DP Y Y N (19 n) N (3 n) –
TSRK8VR Y Y N (15 n) N (2 n) –

Table 6.24: Yes/No table, wave equation, five-point central difference formula.

Table 6.25 shows, for each problem size, the number of compute nodes where parallel
efficiency 𝐸 ≥ 50%. Notice that the parallel efficiency of the MTSM_PRECALC solver
is greater than 50% for 1–32 compute nodes for problem sizes greater than or equal to
𝑆 = 256000. The efficiency of the MTSM solver stagnates for the first three problem sizes
and increases for 𝑆 = 1024000 and 𝑆 = 2048000, the solver can reach parallel efficiency
for all 32 compute nodes for 𝑆 = 2048000. For the TSRK5DP and TSRK8VR solvers, the
efficiency increases up to 𝑆 = 1024000, for 𝑆 = 2048000, it drops to one and three nodes,
respectively.

150

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 26 32 32 32 32
MTSM 1 1 1 8 5
TSRK5DP 1 4 18 3 –
TSRK8VR 1 8 15 2 –

Table 6.25: Maximum number of nodes where efficiency 𝐸 ≥ 50%, wave equation, five-point
central difference formula.

Table 6.26 shows the maximum number of nodes to use for the calculation with respect to
the speedup-cost ratio, i.e., where the speedup-cost tradeoff curve reaches a maximum.

solver problem size
128000 256000 512000 1024000 2048000

MTSM_PRECALC 16 16 32 32 32
MTSM 1 1 16 16 4
TSRK5DP 8 16 16 2 –
TSRK8VR 8 16 8 2 –

Table 6.26: Parallel cost for all problem sizes and solvers, wave equation, five-point central
difference formula.

The numerical results for the five-point central difference formula and different number of
ODEs follows. Detailed results, including results for 𝑆 = 128000 and 𝑆 = 512000, can be
found in Appendix C.4.

151

6.8.2 𝑆 = 64000, five-point central difference formula

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure 6.30: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 64000, wave equation, five-point central difference formula.

152

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure 6.31: Parallel cost ratio and speedup-cost ratio, 𝑆 = 64000, wave equation, five-point
central difference formula.

153

6.8.3 𝑆 = 256000, five-point central difference formula

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure 6.32: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 256000, wave equation, five-point central difference formula.

154

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure 6.33: Parallel cost ratio and speedup-cost ratio, 𝑆 = 256000, wave equation, five-
point central difference formula.

155

6.8.4 𝑆 = 1024000, five-point central difference formula

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

 MTSM-PRECALC MTSM

Figure 6.34: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 1024000, wave equation, five-point central difference formula.

156

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a

ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a

ti
o

MTSM
cost

speedup-cost

Figure 6.35: Parallel cost ratio and speedup-cost ratio, 𝑆 = 1024000, wave equation, five-
point central difference formula.

157

6.9 Telegraph equation
The telegraph equation is a second-order PDE that describes a telegraph line – a long wire
that serves as a transmission medium for a signal. The PDE can describe the behavior of
the signal. However, this description does not contain any specific information about the
conditions of the wire, which is complicated. The numerical model of the telegraph line
presented in this section consists only of ODEs, it is relatively simple and easy to configure,
and the results match the real output precisely [pp10, pp26, pp28].

Equations 𝑢 = 𝑢(𝑥, 𝑡) and 𝑖 = 𝑖(𝑥, 𝑡) express the voltage and current changes along the
telegraph line, where 𝑥 is the distance from the beginning of the line and 𝑡 is the time. The
voltage and current in the distance 𝑥 + d𝑥 can be expressed using the Taylor series with
the second and higher derivatives omitted.

𝑢(𝑥+ d𝑥) = 𝑢(𝑥, 𝑡) +
𝜕𝑢

𝜕𝑥
d𝑥 , (6.21)

𝑖(𝑥+ d𝑥) = 𝑖(𝑥, 𝑡) +
𝜕𝑖

𝜕𝑥
d𝑥 . (6.22)

Basic Line Equations (6.23), (6.24) describe the change of voltage and current on the line

−𝜕𝑢

𝜕𝑥
= 𝑅𝑖+ 𝐿

𝜕𝑖

𝜕𝑡
, (6.23)

− 𝜕𝑖

𝜕𝑥
= 𝐺𝑢+ 𝐶

𝜕𝑢

𝜕𝑡
, (6.24)

where constants 𝑅, 𝐺, 𝐿, 𝐶 are parameters of the line: 𝑅 [Ω/m] the resistance of the wire,
𝐺 [S/m] the conductance between wires, 𝐿 [H/m] inductance of the wire (e.g., due to the
magnetic field around the wires) and 𝐶 [F/m] capacitance between two wires, respectively.

6.9.1 Lossy telegraph line

The lossy telegraph line can be described by partial differential equations for voltage (6.25)
and current (6.26):

𝐿 · 𝐶𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
+ (𝐿 ·𝐺+ 𝐶 ·𝑅)

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+𝑅 ·𝐺 · 𝑢(𝑥, 𝑡)− 𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
= 0 , (6.25)

𝐿 · 𝐶𝜕2𝑖(𝑥, 𝑡)

𝜕𝑡2
+ (𝐿 ·𝐺+ 𝐶 ·𝑅)

𝜕𝑖(𝑥, 𝑡)

𝜕𝑡
+𝑅 ·𝐺 · 𝑖(𝑥, 𝑡)− 𝜕2𝑖(𝑥, 𝑡)

𝜕𝑥2
= 0 . (6.26)

Using (6.23) and (6.24) it is possible to construct a model of the segment (see Figure 6.36).

𝐿(𝑥)

𝑖(𝑥)

𝑅(𝑥) 𝑖(𝑥+ 𝑑𝑥)

𝐺(𝑥)𝐶(𝑥)𝑢(𝑥) 𝑢(𝑥+ 𝑑𝑥)

Figure 6.36: Lossy model of the telegraph equation – a segment of the wire.

158

6.9.2 Lossy telegraph equation model

The model of the lossy telegraph line (Figure 6.37) consists of an infinite number of con-
nected segments (Figure 6.36). Let us denote the number of segments of the telegraph line
as 𝑆.

𝑢0

𝑅1

Segment 1

𝐿1𝑖1
𝑅𝑠1

𝐶1 𝐺1

𝑖𝑆−1
𝐿𝑆𝑖𝑆

𝑅𝑠𝑆

𝐶𝑆 𝐺𝑆

Segment S

𝑅2

𝑖𝑆+1

Figure 6.37: Lossy model of the telegraph equation – series of 𝑆 segments.

The equations describing the model are below. For the first segment,

𝑢′𝐶1
=

1

𝐶1
(𝑖1 −𝐺1 · 𝑢𝐶1 − 𝑖2),

𝑖′1 =
1

𝐿1
(𝑢0 − 𝑢𝐶1 −𝑅1 · 𝑖1 −𝑅𝑠1 · 𝑖1) ,

(6.27)

where 𝑢0 is the input voltage of the system, 𝑢𝐶1 is the voltage on the first capacitor and 𝑖1
is the current flowing through the first inductor. The resistor 𝑅1 represents an input load
of the transmission line. The resistors 𝑅𝑠1, . . . , 𝑅𝑠𝑆 denote the resistances of the wire, and
𝐺1, . . . , 𝐺𝑆 denote the conductances of the wire. For the next segments

𝑢′𝐶𝑘
=

1

𝐶𝑘
(𝑖𝑘 −𝐺𝑘 · 𝑢𝐶𝑘

− 𝑖𝑘+1),

𝑖′𝑘 =
1

𝐿𝑘
(𝑢𝐶𝑘−1

− 𝑢𝐶𝑘
−𝑅𝑠𝑆 · 𝑖𝑘) ,

(6.28)

where 𝑘 ∈ ⟨2, 𝑆⟩. The last segment of the line ends with an output load, simulated by the
resistor 𝑅2

𝑖𝑆+1 =
1

𝑅2
𝑢𝐶𝑆

. (6.29)

Note that all differential equations have initial conditions equal to zero.

6.9.3 Lossless telegraph line

The model in Figure 6.36 can be simplified by omitting the terms 𝑅(𝑥) = 𝐺(𝑥) = 0. The
simplified model is in Figure 6.38. The line then becomes lossless.

𝐿(𝑥)

𝑖(𝑥)

𝑖(𝑥+ 𝑑𝑥)

𝐶(𝑥)𝑢(𝑥) 𝑢(𝑥+ 𝑑𝑥)

Figure 6.38: Lossy model of the line – a segment of the wire.

159

Based on the simplified model, partial differential equations (6.30) and (6.31) for voltage
and current can be derived using (6.25) and (6.26):

𝐿 · 𝐶𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
− 𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
= 0 , (6.30)

𝐿 · 𝐶𝜕2𝑖(𝑥, 𝑡)

𝜕𝑡2
− 𝜕2𝑖(𝑥, 𝑡)

𝜕𝑥2
= 0 . (6.31)

6.9.4 Lossless telegraph equation model

The model of the lossless telegraph line (Figure 6.39) consists of an infinite number of
connected segments (Figure 6.38). The number of segments of the telegraph line is denoted
as 𝑆.

𝑢0

𝑅1 𝐿1𝑖1

𝐶1𝑢𝐶1

Segment 1

𝑖2 𝑖𝑆−1

𝐶𝑆−1𝑢𝐶𝑆−1

𝐿𝑆𝑖𝑆

𝐶𝑆𝑢𝐶𝑆

Segment S

𝑖𝑆+1

𝑅2

Figure 6.39: Lossless model of the line – series of 𝑆 segments.

The model can be described using the equations below. For the first segment,

𝑢′𝐶1
=

1

𝐶1
(𝑖1 − 𝑖2) ,

𝑖′1 =
1

𝐿1
(𝑢0 − 𝑢𝐶1 −𝑅1 · 𝑖1) ,

(6.32)

where 𝑢0 is the input voltage of the system, 𝑢𝐶1 is the voltage on the first capacitor and
𝑖1 is the current that flows through the first inductor. The resistor 𝑅1 represents the input
load of the transmission line. Equations for the following segments are very similar to each
other. For the next segments

𝑢′𝐶𝑘
=

1

𝐶𝑘
(𝑖𝑘 − 𝑖𝑘+1) ,

𝑖′𝑘 =
1

𝐿𝑘
(𝑢𝐶𝑘−1

− 𝑢𝐶𝑘
) ,

(6.33)

where 𝑘 ∈ ⟨2, 𝑆⟩. The last segment of the line ends with an output load, simulated by the
resistor 𝑅2

𝑖𝑆+1 =
1

𝑅2
𝑢𝐶𝑆

. (6.34)

Note that all differential equations have initial conditions equal to zero.
The model can be represented as the linear system of ODEs in the matrix-vector nota-

tion,
y′ = Ay + b, y(0) = y0 , (6.35)

160

where A is the sparse matrix, y is the vector of voltages and currents, and b is the right-
hand-side vector. The block structure of the matrix A, vectors y and b is

A =

(︂
A11 A12

A21 A22

)︂
, y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝐶1

...
𝑢𝐶𝑆

𝑖1
...
𝑖𝑆

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
𝑢0
𝐿1...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.36)

where A11, A12, A21 and A22 are individual block matrices of size 𝑆 × 𝑆

A11 =

⎛⎜⎝0 0 · · · 0
...

...
...

...
0 0 · · · −1

𝑅2𝐶𝑆

⎞⎟⎠

A12 =

⎛⎜⎜⎜⎜⎝
1
𝐶1

−1
𝐶1

0 · · · · · · 0

0 1
𝐶2

−1
𝐶2

0 · · ·
...

...
...

...
...

...
...

0 · · · · · · · · · · · · 1
𝐶𝑆

⎞⎟⎟⎟⎟⎠

A21 =

⎛⎜⎜⎜⎜⎝
−1
𝐿1

0 0 · · · · · · 0

1
𝐿2

−1
𝐿2

0 0 · · ·
...

0 1
𝐿3

−1
𝐿3

0 · · ·
...

0 · · · · · · · · · 1
𝐿𝑆

−1
𝐿𝑆

⎞⎟⎟⎟⎟⎠

A22 =

⎛⎜⎝
−𝑅1
𝐿1

0 · · · 0
...

...
...

...
0 0 · · · 0

⎞⎟⎠ .

The input voltage 𝑢0 can generally be a constant (DC) or harmonic (AC) signal. In the
case of a DC circuit, the input voltage 𝑢0 is hidden in constant right-hand side b see (6.36).
In the case of an AC circuit, the input voltage 𝑢0 = 𝑈0 sin(𝜔𝑡) can be computed using an
auxiliary system of coupled linear ODEs

𝑢′0 = 𝜔𝑥 , 𝑢0(0) = 0
𝑥′ = −𝜔𝑢0 , 𝑥(0) = 𝑈0 .

(6.37)

For simulation experiments, the parameters are the same: 𝐶1 = 𝐶2 = · · · = 𝐶𝑆 = 1pF,
𝐿1 = 𝐿2 = · · · = 𝐿𝑆 = 10nH (homogeneous lossy telegraph line). The behavior of the
transmission on the line is based on the values of the input (𝑅1) and the output (𝑅2) loads.
If the condition

𝑅1 = 𝑅2 =

√︂
𝐿

𝐶
(6.38)

is satisfied, the line is adjusted. For simulation experiments, the line is adjusted for 𝑅1 =
𝑅2 = 100Ω. The propagation constant per unit length of one segment for the used model
is known 𝑡𝐿𝐶 =

√
𝐿𝐶. Then the total delay of the input signal can be computed as

𝑡𝑑𝑒𝑙𝑎𝑦 = 𝑆 𝑡𝐿𝐶 . The simulation time for all experiments was set 𝑡𝑚𝑎𝑥 = 2 𝑡𝑑𝑒𝑙𝑎𝑦.

161

Tolerances for all ode solvers are 𝑅𝑒𝑙𝑇𝑜𝑙 = 1𝑒−10 and 𝐴𝑏𝑠𝑇𝑜𝑙 = 1𝑒−10, the tolerance for
MTSM solvers is 𝑡𝑜𝑙 = 1𝑒−10, integration step ℎ =

√
𝐿𝐶, 𝑚𝑎𝑥𝑂𝑅𝐷 = 64.

Figure 6.40 shows the sparsity pattern of the matrix A and the precalculated matrix
Â. The behavior of the signal for the harmonic input on the line consisting of 100 segments
(𝑆 = 100) and the order of the MTSM are depicted in Figure 6.41.

0 50 100 150 200

nonzeros = 403 (0.988%)

0

20

40

60

80

100

120

140

160

180

200

(a) Matrix A with auxiliary system of ODE

0 50 100 150 200

nonzeros = 21771 (53.355%)

0

20

40

60

80

100

120

140

160

180

200

(b) Matrix Â precalculated using (4.46)

Figure 6.40: Sparsity patterns of input matrices, telegraph equation, 𝑆 = 100.

0 0.5 1 1.5 2

10
-8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

UC1

UC100

(a) Adjusted line – output delayed

0 0.5 1 1.5 2

time [s] 10
-8

0

2

4

6

8

10

12

14

16

O
R

D

(b) Order of the MTSM

Figure 6.41: Numerical solution and order of MTSM, telegraph equation, 𝑆 = 100, ℎ =
1𝑒−10, 𝑡𝑚𝑎𝑥 = 2𝑒−8.

162

6.9.5 Results overview

Table 6.27 shows the number of integration steps and average step sizes for each solver.
The MTSM uses a step size approximately 5 times larger than the TSRK5DP solver and
approximately 1.5 times larger than the TSRK8VR solver. The average order of the MTSM
is 17.

solver # steps average ℎ

MTSM_PRECALC 10000 1.00𝑒−10

MTSM 10000 1.00𝑒−10

TSRK5DP 49720 2.01𝑒−11

TSRK8VR 15141 6.60𝑒−11

Table 6.27: Number of integration steps and average step sizes, telegraph equation.

Tables 6.28 and 6.29 summarize the average efficiency and speedup against the TSRK5DP
for each problem size. The average parallel efficiency is shown in Table 6.28. All solvers,
except the MTSM (for 𝑆 = 1024000), offer an efficiency greater than 50% for all problem
sizes. All solvers are always faster than the TSRK5DP solver, as shown in Table 6.29.
Finally, the MTSM_PRECALC is the fastest of all solvers for all problem sizes.

solver problem size
1024000 2048000

MTSM_PRECALC 115.21 62.15
MTSM 38.59 60.43
TSRK5DP 81.06 109.50
TSRK8VR 91.98 101.77

Table 6.28: Average efficiency (6.4) comparison for 1–32 nodes, telegraph equation.

solver problem size
1024000 2048000

MTSM_PRECALC 4.41 3.57
MTSM 1.26 1.30
TSRK8VR 1.61 1.32

Table 6.29: Average speedup against TSRK5DP (6.3) comparison for 1–32 nodes, tele-
graph equation.

Table 6.30 indicates whether or not the solver calculates the result for a given problem size.
All solvers computed results for all 32 compute nodes for all problem sizes.

163

solver problem size
1024000 2048000

MTSM_PRECALC Y Y
MTSM Y Y
TSRK5DP Y Y
TSRK8VR Y Y

Table 6.30: Yes/No table, telegraph equation.

Table 6.31 shows, for each problem size, the number of compute nodes where an effi-
ciency 𝐸 ≥ 50% was achieved. Notice that the parallel efficiency of the MTSM_PRECALC,
TSRK5DP and TSRK8VR solvers is greater than 50% for 1–32 compute nodes for all se-
lected problem sizes. The efficiency of the MTSM solver increases, but cannot reach parallel
efficiency 𝐸 ≥ 50% for all 32 compute nodes.

solver problem size
1024000 2048000

MTSM_PRECALC 32 32
MTSM 6 25
TSRK5DP 32 32
TSRK8VR 32 32

Table 6.31: Maximum number of nodes where efficiency 𝐸 ≥ 50%, telegraph equation.

Table 6.32 shows the maximum number of nodes to use for the calculation with respect to
the speedup-cost ratio, i.e., where the speedup-cost tradeoff curve reaches a maximum.

solver problem size
1024000 2048000

MTSM_PRECALC 32 32
MTSM 32 32
TSRK5DP 16 32
TSRK8VR 16 16

Table 6.32: Parallel cost for all problem sizes and solvers, telegraph equation.

The numerical results for different numbers of ODEs follow. Detailed results can be found
in Appendix C.5.

164

6.9.6 𝑆 = 512000

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure 6.42: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 512000, telegraph equation.

165

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure 6.43: Parallel cost ratio and speedup-cost ratio, 𝑆 = 512000, telegraph equation.

166

6.9.7 𝑆 = 1024000

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure 6.44: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 1024000, telegraph equation.

167

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure 6.45: Parallel cost ratio and speedup-cost ratio, 𝑆 = 1024000, telegraph equation.

6.10 Parallel performance analysis
The roofline model is based on the simplified model of the CPU and hides most of the
architecture-specific complexity and provides insight into architectural bottlenecks and po-
tential application optimizations. The roofline model was first proposed by S. Williams
[174] and then expanded to provide additional insight by addressing all levels of memory/-
cache hierarchy [85]. The model shows the performance of the executed code against its
arithmetic (operational) intensity 𝐴𝐼 = 𝐹/𝑉 [FLOP/B], where 𝐹 is the number of floating
point operations, and 𝑉 is the size of data read or written to memory.

The hardware is viewed as two units. The execution unit that operates at peak perfor-
mance 𝑃𝑝𝑒𝑎𝑘 measured in [FLOPS], which represents the number of floating-point opera-
tions per second, and the data unit, which can store or deliver data at maximum bandwidth
𝑏𝑠 measured in [B/s]. Peak performance and maximum bandwidth are two performance
bottlenecks.

168

In the graphical representation of the roofline model, the x-axis represents the arithmetic
(operational) intensity [FLOP/B], and it is a linear function with a slope of 𝑏𝑠. The y-axis
shows the performance [FLOPS]. Both axes have a logarithmic scale.

Fig. 6.46 shows the roofline models of each solver for the heat equation described by
𝑆 = 1024000 ODEs (C.1.4). Roofline models were obtained using Intel Advisor11. In all
cases, the code is memory-bound and compute-bound. It means kernels in that area are
fundamentally compute-bound but have upper memory roofs. The size and color of the
dots in the roofline graph indicate how much of the total program time a loop or function
takes. Small, green dots take up relatively little time, while large, red dots take up the most
time. The red dots in the roofline plots for the MTSM_PREC, TSRK5DP, and TSRK8VR
solvers correspond to the MatMultAdd kernel, and the red dot for MTSM corresponds to the
MatMult kernel. The average computation time is shown in Table 6.33; the MTSM_PREC
solver is the fastest of all solvers.

(a) MTSM (b) MTSM_PREC

(c) TSRK5DP (d) TSRK8VR

Figure 6.46: Roofline models.

Table 6.34 summarizes the results of the performance analysis obtained from the roofline
model for each solver. Measurements were made on one compute node with 36 MPI pro-
cesses. Each roofline model consists of different types and numbers of computational kernels.
In this article, we focus on matrix-vector and matrix-matrix operations with performance
𝑃 ≥ 0.1GFLOPS. The column performance denotes the percentage of the total num-
ber of floating point operations per second with respect to the DP Vector FMA (Fused
Multiply-Add) Peak. The FMA instruction can execute two operations – multiplication,
and addition in one cycle. The average DP Vector FMA Peak is 79.44GFLOPS.

The column bandwidth represents the percentage of DRAM memory bandwidth on a
given machine. The average DRAM bandwidth is 15.23 [GB/s]. Notice that the bandwidth
of the MatMultAdd kernels for TSRK5DP, and TSRK8VR solvers is 76.43% and 80.89%
of DRAM and corresponds to the evaluation of y′ = Ay + b. The bandwidth of the

11https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html

169

https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html

MatMatMult kernel for MTSM_PREC solver is 96.6% and represents the precalculation of
the matrix Â (4.45). The bandwidth of the MatMult kernel for the MTSM solver is 101.44%
and represents the calculation of Taylor series terms (4.32). The size of the sparse matrix
A is 40MB, and the size of each vector b and y0 is 8MB. The matrix A does not fit in
the cache. Therefore, the kernels are bounded by DRAM bandwidth.

The AI stands for Arithmetic Intensity [FLOP/B]. The typical arithmetic intensity for
stencils arising from PDEs is very low, typically 0.1–1.0FLOP/B. The number of nonzeroes
of the sparse matrix A is 0.0003%, and for the sparse matrix Â is 0.005%. The application
is compute bound when 𝐴𝐼 = 5.21FLOP/B. The AI of compute kernels listed in Table 6.34
is an order of magnitude lower than 5.21FLOP/B.

Table 6.35 shows the total computation time, time spent running application code
(columns denoted as CPU) and time spent in MPI calls (columns denoted as MPI). The
results were measured using the Allinea Performance Reports12 on eight nodes, eight
MPI processes per node, therefore 64 processes in total. Note that the amount of time
spent in CPU and MPI varies between solvers. Taylor-series-based solvers MTSM and
MTSM_PREC spend an average of 72% on CPU and 28% on MPI. In contrast, Runge-
Kutta solvers TSRK5DP and TSRK8VR spend, on average, 82% on CPU and 18% on
MPI. The MTSM_PREC solver spends more time on MPI communication than Runge-
Kutta solvers but is still the fastest of all solvers.

solver # processes (avgtime) [s]
36 144 288 432 576 720 864 1008 1152

MTSM_PREC 30.80 6.83 2.95 1.51 1.02 0.63 0.52 0.45 0.43
MTSM 63.15 17.59 11.21 9.09 8.74 9.51 8.34 8.74 8.76
TSRK5DP 102.29 12.01 6.20 4.46 3.70 4.15 3.05 2.81 2.43
TSRK8VR 166.29 21.08 10.05 6.81 5.48 4.80 4.07 3.88 3.65

Table 6.33: Average time, 36 processes per node, 32 nodes, 1152 processes in total.

Solver Name Kernel Performance
[% of FMA peak]

Bandwidth
[% of DRAM]

AI
[FLOP/B]

MTSM MatMult y = A · 𝑥 6.03 101.44 0.31
MatMultAdd y = 𝑥2 +A · 𝑥1 4.83 87.66 0.29

MTSM_PREC

MatMultAdd (calc) y = 𝑥2 +A · 𝑥1 5.75 35.18 0.19
MatAXPY (precalc) A = 𝑐 ·B+A 2.40 3.03 0.05
MatMatMult (precalc) C = A ·B 5.72 96.6 0.05
MatMult (precalc) y = A · 𝑥 1.39 23.31 0.31

TSRK5DP MatMultAdd y = 𝑥2 +A · 𝑥1 4.21 76.43 0.29
TSRK8VR MatMultAdd y = 𝑥2 +A · 𝑥1 4.45 80.89 0.29

Table 6.34: Roofline model data, 36 processes per node.

Table 6.36 shows the ratios with respect to the MTSM_PRECALC solver. MTSM and
TSRK8VR use approximately four times more computation time than the MTSM_PRECALC
method. The TSRK5DP method requires approximately three times more computation
time than MTSM_PRECALC.

12https://docs.it4i.cz/software/debuggers/allinea-performance-reports

170

https://docs.it4i.cz/software/debuggers/allinea-performance-reports

Solver Time [s] CPU [s] CPU [%] MPI [s] MPI [%]
MTSM 46 31.28 68.00 14.67 31.90
MTSM_PREC 12 9.16 76.30 2.82 23.50
TSRK5DP 32 25.86 80.80 6.14 19.20
TSRK8VR 48 40.22 83.80 7.73 16.10

Table 6.35: Performance reports, eight nodes, eight processes per one node, 64 processes in
total.

Solver Time
(Ratio)

CPU [s]
(Ratio)

CPU [%]
(Ratio)

MPI [s]
(Ratio)

MPI [%]
(Ratio)

MTSM 3.83 3.41 0.89 5.20 1.36
TSRK5DP 2.66 2.82 1.06 2.18 0.82
TSRK8VR 4.00 4.39 1.10 2.74 0.69

Table 6.36: Performance reports, eight nodes, eight processes per one node, 64 processes in
total, 𝑅𝑎𝑡𝑖𝑜 = solver/MTSM_PRECALC .

171

Chapter 7

Conclusion

This thesis dealt with the parallel numeric solution of partial differential equations. All the
objectives of the work were fulfilled.

1. To analyze and evaluate the suitability of the higher-order Taylor series-based method
for the solution of ordinary and partial differential equations.

• The higher-order Taylor series-based method (MTSM) was introduced and de-
scribed in Chapter 4 The stability boundaries of the MTSM and other state-of-
the-art methods are analyzed in Chapter 3 and Appendix B.

• The suitability of the MTSM for solving ordinary differential equations is clearly
demonstrated in research articles, for example [pp2, pp13, pp21, pp22, pp28].
All numerical experiments are solved using the MTSM and the state-of-the-
art MATLAB solvers, namely, ode23 (Bogacki-Shampine 3(2) method), ode45
(Dormand-Prince 5(4)), and ode113 (VSVO Adams-Bashforth-Moulton PECE
solver of orders 1 to 13).

– Publication [pp22] deals with linear and nonlinear MTSM and presents a
set of practical examples such as the movement of the charged particle, the
calculation of Fourier coefficients, and the Kepler problem. This publication
extends [pp21].

– Publication [pp28] focuses on linear and nonlinear (quadratic) ODEs solved
by MTSM and carefully analyzes the van der Pol oscillator.

– Publication [pp13] presents the solution to linear and nonlinear problems.
The telegraph line represents a linear problem, whereas the Lorenz system
is the nonlinear one.

– Publication [pp2] analyzes the hardware representation for the solution of
ODEs and compares the number of operations of Runge-Kutta and MTSM
methods.

• The suitability of the MTSM for solving partial differential equations is demon-
strated in the following research articles:

– Publications [pp2, pp8, pp18] show the experiments with wave equation
implemented in MATLAB and focus on different types of finite difference
formulas derived from the Taylor series, namely, backward, forward, and
central. The spatial step size and the order of the finite difference formula
influence the accuracy of the calculation. The publications show several

172

experiments with different types and orders of finite difference formulas to-
gether with errors in spatial and time domains.

– Publications [pp11, pp18] demonstrate MATLAB experiments with wave
equation discretized using seven-point difference formula in the spatial do-
main and different precision settings.

– Publication [pp9] discusses the influence of arithmetic (8B, 16B, 32B, and
64B) on the accuracy of forward and central finite difference formulas.

– Publications [pp3, pp4] introduce the hardware representation of the wave
equation.

– Publications [pp13, pp26] deal with the different sizes of the telegraph equa-
tion and compare the simulation results of MTSM with fixed integration
step or fixed number of steps with the state-of-the-art Runge-Kutta solvers,
namely, ode23, ode45, and ode113.

– Publications [pp10, pp26] compare simulation results not only with the state-
of-the-art Runge Kutta solvers, but also with the second-order implicit in-
tegration methods in LTSpice such as Gear, the trapezoidal method, and
modified trapezoidal methods.

– Publication [pp8] shows the first experiments with a telegraph equation with
100 segments using TKSL.

2. To propose, implement and deploy the Taylor series-based parallel method on an HPC
cluster.

• The parallel implementation approach of the MTSM is described in Section 4.9
and publications [pp14, pp16, pp17, pp24]. The matrix Â is precalculated only
once before the calculation starts. This approach considerably eliminates the
dependency between the terms of the Taylor series.

• The MTSM is a VSVO method and allows the use of a larger integration step
for the calculation than the state-of-the-art methods.

3. To experimentally evaluate the proposed method using the selected class of the second-
order linear partial differential equations discretized in the spatial domain by finite
difference formulas of different orders. Compare obtained results with the state-of-
the-art numerical methods.

• During my internship at Università della Svizzera italiana in Switzerland, the
first experiments on the ICS cluster were carried out. When computing on
multiple compute nodes, there was a significant increase in computation time
compared to computing on a single node. The increase was probably due to the
TCP communication between the nodes. Therefore, the Barbora supercomputer
cluster was used for further experiments. The results are published in papers
[pp14] and [pp16].

• The parallel higher-order Taylor series-based method was implemented using the
PETSc library and tested on the Barbora supercomputer cluster (IT4Innovations
National Supercomputing Center, Ostrava, Czech Republic) using 32 compute
nodes (36 MPI processes per node) as described in Chapter 6.

• Numerical experiments were performed on a selected class of the second-order
linear PDE. Note that the heat and wave equations were discretized in the spatial

173

domain by finite difference formulas of different orders. The analyzed problems
are the following:

– Heat-3 – heat equation discretized with the three-point central difference
formula (Sections 6.5 and C.1),

– Heat-5 – heat equation discretized with the five-point central difference
formula (Sections 6.6 and C.2),

– Wave-3 – wave equation discretized with the three-point central difference
formula (Sections 6.7 and C.3),

– Wave-5 – wave equation discretized with the three-point central difference
formula (Sections 6.8 and C.4),

– Telegraph – telegraph equation that represents a telegraph line (Sections 6.9
and C.5).

• Several numerical experiments were performed with different input data sizes
for each selected problem type. Typical data sizes were 128000, 256000, 512000,
1024000 and 2048000 ODEs.

• For each size of the input data, four solvers compute the given problem type.
Namely, MTSM (classical implementation of MTSM), MTSM_PRECALC (MTSM
with precalculation of Tayor series terms), TSRK5DP (Dormand-Prince 5(4)
method, ode45 in MATLAB) and TSRK8VR (Verner Runge-Kutta method of
orders 8(7).

• For each numerical experiment, parallel performance metrics and parallel-cost
metrics were evaluated (see Section 5.6). Performance metrics are average com-
putation time, parallel efficiency, parallel speedup, and speedup against the state-
of-the-art Dormand-Prince 5(4) Runge-Kutta method (TSRK5DP solver). The
parallel cost metrics are parallel cost, parallel cost ratio, and parallel speedup-cost
ratio.

• The performance analysis results obtained from the roofline model for each solver
are summarized in Section 6.10.

• Publication [pp24] focuses on the heat equation discretized in the spatial domain
with the three-point central difference formula. The problem size is 1024000
ODEs. Parallel performance metrics are analyzed, together with roofline models
for all selected solvers and performance reports.

• Publication [pp17] shows the experiments with a heat equation with 256000
ODEs and analyzes its parallel performance metrics. The numerical experiments
are performed on the Barbora supercomputer cluster, IT4Innovations National
Supercomputing Center, using 32 compute nodes (36 MPI processes per node).
The numerical results are compared with the TSRK5DP and TSRK8VR Runge-
Kutta solvers.
The results can be summarized with respect to several aspects:

• Given the average computation time:
– The MTSM_PRECALC is the fastest solver for all selected problem types.
– Although MTSM suffers from computational dependencies between the terms

of the Taylor series, it can provide results comparable or even better than
TSRK5DP or TSRKVR, especially for Wave-3, Wave-5, and Telegraph.

174

– The behavior of the TSRK5DP and TSRK8VR solvers is comparable, al-
though, in some cases, the TSRK8VR solver is slightly slower than TSRK5DP.

• Given the ability to provide results for all 1–32 compute nodes:
– The MTSM_PRECALC solver always computed results for all 32 compute

nodes for all selected problem types.
– The MTSM solver always provided results for Heat-3, Heat-5, and Telegraph.

For the Wave-3, it did not calculate results for all 32 nodes for 𝑆 = 2048000.
For Wave-5, for 𝑆 ≥ 1024000.

– The TSRK5DP and TSRK8VR solvers always provided results for all 32
compute nodes forHeat-3, Heat-5, and Telegraph. In the case of Wave-3 and
Wave-5, they did not calculate the results for all 32 nodes for problem sizes
𝑆 ≥ 512000.

• Given the maximum number of compute nodes where parallel efficiency 𝐸 ≥ 50%
for all 32 compute nodes:

– The MTSM_PRECALC solver provides 𝐸 ≥ 50% for Heat-3 and Heat-5.
For Wave-3, 𝐸 ≥ 50% is for problem sizes 𝑆 ≥ 512000, for Wave-5, for
𝑆 ≥ 256000.

– The MTSM solver provides 𝐸 ≥ 50% for Heat-5 for 𝑆 = 2048000.
– The TSRK5DP solver provides 𝐸 ≥ 50% for Heat-3 and Heat-5 for 𝑆 ≥

512000 and for Telegraph.
– The TSRK5DP solver provides 𝐸 ≥ 50% for Heat-3 and Heat-5 for 𝑆 =

512000 and 𝑆 = 1024000, and for Telegraph.
• Given the speedup-cost curve reaches 32 compute nodes (i.e., it is worth allocat-

ing 32 compute nodes):
– The MTSM_PRECALC solver: for Heat-3, Heat-5, and Telegraph for all

problem sizes. For Wave-3 and Wave-5 for problem sizes 𝑆 ≥ 512000.
– The MTSM solver: for Telegraph for all problem sizes.
– The TSRK5DP solver: for Telegraph, 𝑆 = 2048000.
– The TSRK8VR solver: for Heat-3, where 𝑆 = 1024000, and for Heat-5,

where 𝑆 = 512000 and 𝑆 = 1024000.

4. Discuss the achieved results and suggest possible extensions.

• The results are discussed and carefully described in Chapter 6 and Appendix C,
and summarized in this chapter.

• Future work and possible extensions are outlined in Section 7.1.

175

7.1 Future work
There are several directions on how to develop further the research results, mainly related
to the MTSM for solving systems of ODEs:

• Stopping-rule analysis. In the current implementation, the calculation of the current
integration step is terminated if the norm of the absolute value of the last three con-
secutive Taylor series terms is less than or equal to the required accuracy 𝜀 (4.13). An
interesting experiment could be to use more or fewer Taylor series terms in the ter-
mination condition of the integration step and observe how the order and integration
step of the method change.

• Reducing computation time by monitoring Taylor series terms. In some problems,
the last Taylor series terms can be omitted. If the absolute value of the currently
calculated term of the Taylor series is less than the required accuracy, then the value
of this term is considered to be zero. In the next integration step, this term is not
included in the calculation. The calculation of the integration step ends if all terms
of the Taylor series have zero value. This approach promises to reduce the order of
the method.

• Improving the integration stepsize control. In the current implementation, the step is
halved during the calculation if the maximum order of the method is exceeded. The
three following approaches to finer control of the integration step size can include:

1. Define 𝑚𝑖𝑛𝑂𝑅𝐷 and 𝑚𝑎𝑥𝑂𝑅𝐷 thresholds. If the order of the method in the
currently calculated integration step is less than the required lower threshold
𝑚𝑖𝑛𝑂𝑅𝐷, then the integration step is increased by a factor of 𝑓 . Analogously,
if the order of the method is greater than the upper threshold 𝑚𝑎𝑥𝑂𝑅𝐷, the
integration step is decreased by a factor of 𝑓 .

2. Maintaining the halving-stepsize history. If the integration step size in the cur-
rent time step is not halved, this information is stored. If an integration step is
not halved during several consecutive integration steps, the integration step can
be increased by the selected factor (e.g., doubled).

3. Combination of approaches mentioned above. That means defining the 𝑚𝑖𝑛𝑂𝑅𝐷
and 𝑚𝑎𝑥𝑂𝑅𝐷 thresholds and maintaining the history of halving the integration
step.

• Support variable-precision arithmetic. The variable-precision arithmetic can be ben-
eficial in problems requiring long-term integration or extremely accurate numerical
simulations.

• Two- and three-dimensional PDEs. The two and three-dimensional PDEs can be
analyzed. Two- and three-dimensional PDEs can model systems with more complex
spatial relationships and interactions than one-dimensional PDEs.

• Parallelization of nonlinear problems. Detailed analysis of computational dependen-
cies will be required.

176

Bibliography

[1] Abad, A., Barrio, R., Blesa, F. and Rodríguez, M. Algorithm 924: TIDES, a
Taylor series integrator for differential equations. ACM Transactions on Mathematical
Software (TOMS). Association for Computing Machinery. November 2012, vol. 39,
no. 1, p. 1–28. DOI: 10.1145/2382585.2382590. ISSN 0098-3500.

[2] Abhyankar, S., Brown, J., Constantinescu, E. M., Ghosh, D., Smith, B. F. et al.
PETSc/TS: A Modern Scalable ODE/DAE Solver Library. arXiv, June 2018. DOI:
10.48550/arXiv.1806.01437.

[3] Ajima, Y., Inoue, T., Hiramoto, S., Uno, S., Sumimoto, S. et al. Tofu Interconnect
2: System-on-Chip Integration of High-Performance Interconnect. In: Supercomputing.
Cham: Springer International Publishing, 2014, p. 498–507. ISBN 9783319075181.

[4] Ajima, Y., Kawashima, T., Okamoto, T., Shida, N., Hirai, K. et al. The Tofu
Interconnect D. In: IEEE. 2018 IEEE International Conference on Cluster Com-
puting (CLUSTER). 2018, p. 646–654. DOI: 10.1109/CLUSTER.2018.00090. ISBN
9781538683200.

[5] Almasi, G. S. and Gottlieb, A. Highly parallel computing. Benjamin-Cummings
Publishing Co., Inc., 1994. ISBN 9780805304435.

[6] Amdahl, G. M. Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities. In: Proceedings of the April 18-20, 1967, Spring Joint Com-
puter Conference. New York, NY, USA: Association for Computing Machinery, 1967,
p. 483—-485. DOI: 10.1145/1465482.1465560. ISBN 9781450378956.

[7] Archibald, T., Fraser, C. and Grattan Guinness, I. The History of Differen-
tial Equations, 1670–1950. Oberwolfach Reports. European Mathematical Society -
EMS - Publishing House GmbH. September 2005, vol. 1, no. 4, p. 2729–2794. DOI:
10.4171/owr/2004/51. ISSN 1660-8941.

[8] Ashino, R., Nagase, M. and Vaillancourt, R. Behind and beyond the MATLAB
ODE suite. Computers & Mathematics with Applications. Elsevier. September 2000,
vol. 40, no. 4, p. 491–512. DOI: 10.1016/S0898-1221(00)00175-9. ISSN 0898-1221.

[9] Baeza, A., Boscarino, S., Mulet, P., Russo, G. and Zorío, D. Approximate Taylor
methods for ODEs. Computers & Fluids. Elsevier. 2017, vol. 159, p. 156–166. DOI:
10.1016/j.compfluid.2017.10.001. ISSN 0045-7930.

[10] Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J. et al. PETSc/-
TAO Users Manual. ANL-21/39 - Revision 3.18. Argonne National Laboratory, 2022.

177

[11] Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J. et al. PETSc
Web page. 2022. Available at: https://petsc.org/.

[12] Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J. et al. Sup-
ported External Software. 2022. Available at: https://petsc.org/release/install/
external_software/.

[13] Balay, S., Gropp, W. D., McInnes, L. C. and Smith, B. F. Efficient Management of
Parallelism in Object-Oriented Numerical Software Libraries. In: Arge, E., Bruaset,
A. M. and Langtangen, H. P., ed. Boston, MA: Birkhäuser Boston, 1997, p. 163–202.
ISBN 9781461219866.

[14] Barrio, R., Blesa, F. and Lara, M. High-precision numerical solution of ODE with
high-order Taylor methods in parallel. Monografías de la Real Academia de Ciencias de
Zaragoza. January 2003, vol. 22, p. 67–74. ISSN 1132-6360.

[15] Barrio, R., Blesa, F. and Lara, M. VSVO formulation of the taylor method for
the numerical solution of ODEs. Computers & Mathematics with Applications. 2005,
vol. 50, no. 1, p. 93–111. DOI: 10.1016/j.camwa.2005.02.010. ISSN 0898-1221.

[16] Barrio, R., Rodríguez, M., Abad, A. and Blesa, F. Breaking the limits: The
Taylor series method. Applied Mathematics and Computation. Elsevier. 2011, vol. 217,
p. 7940–7954. DOI: 10.1016/j.amc.2011.02.080. ISSN 0096-3003.

[17] Barrio, R., Rodríguez, M., Abad, A. and Blesa, F. TIDES: A free software based
on the Taylor series method. Monografías de la Real Academia de Ciencias de Zaragoza.
Elsevier. 2011, vol. 35, p. 83–95. ISSN 1132-6360.

[18] Barrio, R. Performance of the Taylor series method for ODEs/DAEs. Ap-
plied Mathematics and Computation. 2005, vol. 163, no. 2, p. 525–545. DOI:
10.1016/j.amc.2004.02.015. ISSN 0096-3003.

[19] Barrio, R. Sensitivity analysis of ODEs/DAEs using the Taylor series method. SIAM
Journal on Scientific Computing. SIAM. 2006, vol. 27, no. 6, p. 1929–1947. DOI:
10.1137/030601892. ISSN 1095-7197.

[20] Barton, D., Willers, I. and Zahar, R. The automatic solution of systems of
ordinary differential equations by the method of Taylor series. The Computer Jour-
nal. Oxford University Press. January 1971, vol. 14, no. 3, p. 243–248. DOI:
10.1093/comjnl/14.3.243. ISSN 0010-4620.

[21] Batcher, K. Design of a Massively Parallel Processor. IEEE Transactions on Comput-
ers. Los Alamitos, CA, USA: IEEE Computer Society. 1980, vol. 29, no. 09, p. 836–840.
DOI: 10.1109/TC.1980.1675684. ISSN 1557-9956.

[22] Bendtsen, C. and Stauning, O. TADIFF, a flexible C++ package for automatic
differentiation. Lyngby, Denmark, 1997.

[23] Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W. et al. Exas-
cale computing study: Technology challenges in achieving exascale systems. Defense
Advanced Research Projects Agency Information Processing Techniques Office (DARPA
IPTO), Technical Representative. 2008, vol. 15, p. 181.

178

https://petsc.org/
https://petsc.org/release/install/external_software/
https://petsc.org/release/install/external_software/

[24] Bertsekas, D. and Tsitsiklis, J. Parallel and distributed computation: numerical
methods. Athena Scientific, 2015. ISBN 9781886529151.

[25] Bogacki, P. and Shampine, L. F. An Efficient Runge-Kutta (4,5) Pair. Computers
& Mathematics with Applications. 1996, vol. 32, no. 6, p. 15–28. DOI: 10.1016/0898-
1221(96)00141-1. ISSN 0898-1221.

[26] Bogacki, P. and Shampine, L. F. A 3 (2) pair of Runge-Kutta formulas. Applied
Mathematics Letters. 1989, vol. 2, no. 4, p. 321–325. DOI: 10.1016/0893-9659(89)90079-
7. ISSN 0893-9659.

[27] Brezis, H. and Browder, F. Partial Differential Equations in the 20th Century. Ad-
vances in Mathematics. 1998, vol. 135, no. 1, p. 76–144. DOI: 10.1006/aima.1997.1713.
ISSN 0001-8708.

[28] Buluç, A., Fineman, J. T., Frigo, M., Gilbert, J. R. and Leiserson, C. E. Parallel
Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication Using Compressed
Sparse Blocks. In: Proceedings of the Twenty-First Annual Symposium on Parallelism in
Algorithms and Architectures. New York, NY, USA: Association for Computing Machin-
ery, 2009, p. 233–244. SPAA ’09. DOI: 10.1145/1583991.1584053. ISBN 9781605586069.

[29] Burden, R. L. and Faires, J. D. Numerical Analysis. 8th ed. Brooks-Cole Publishing,
2004. ISBN 0-534-39200-8.

[30] Butcher, J. C. Numerical Methods for Ordinary Differential Equations. Second
Edition, John Wiley & Sons Ltd., 2008. ISBN 9780-470-72335-7.

[31] Chang, Y. and Corliss, G. ATOMFT: solving ODEs and DAEs using Taylor series.
Computers & Mathematics with Applications. 1994, vol. 28, no. 10, p. 209–233. DOI:
10.1016/0898-1221(94)00193-6. ISSN 0898-1221.

[32] Choi, C. Q. The Beating Heart of the World’s First Exascale Supercomputer, 24. June
2022. Available at: https://spectrum.ieee.org/frontier-exascale-supercomputer.

[33] Corliss, G. and Chang, Y. Solving ordinary differential equations using Taylor
series. ACM Transactions on Mathematical Software (TOMS). ACM New York, NY,
USA. 1982, vol. 8, no. 2, p. 114–144. DOI: 10.1145/355993.355995. ISSN 1557-7295.

[34] Courant, R., Friedrichs, K. and Lewy, H. Über die partiellen Differenzengleichun-
gen der mathematischen Physik. Mathematische annalen. Springer. 1928, vol. 100, no. 1,
p. 32–74. DOI: 10.1007/BF01448839.

[35] Crank, J. and Nicolson, P. A practical method for numerical evaluation of solutions
of partial differential equations of the heat-conduction type. Mathematical Proceedings
of the Cambridge Philosophical Society. Cambridge University Press. 1947, vol. 43,
no. 1, p. 50–67. DOI: 10.1017/S0305004100023197. ISSN 1469-8064.

[36] Dally, W. J. Performance analysis of k-ary n-cube interconnection networks.
IEEE transactions on Computers. IEEE. 1990, vol. 39, no. 6, p. 775–785. DOI:
10.1109/12.53599.

[37] Dally, W. J. and Towles, B. P. Principles and practices of interconnection networks.
1st ed. Morgan Kaufmann, 2004. ISBN 9780122007514.

179

https://spectrum.ieee.org/frontier-exascale-supercomputer

[38] De Sensi, D., Di Girolamo, S., McMahon, K. H., Roweth, D. and Hoefler, T.
An In-Depth Analysis of the Slingshot Interconnect. In: SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis. 2020, p. 1–14.
DOI: 10.1109/SC41405.2020.00039. ISSN 2167-4337.

[39] Dennard, R., Gaensslen, F., Yu, H.-N., Rideout, V., Bassous, E. et al. Design
of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of
Solid-State Circuits. 1974, vol. 9, no. 5, p. 256–268. DOI: 10.1109/JSSC.1974.1050511.
ISSN 0018-9200.

[40] Derradji, S., Palfer Sollier, T., Panziera, J.-P., Poudes, A. and Atos, F. W.
The BXI interconnect architecture. In: IEEE. 2015 IEEE 23rd Annual Symposium on
High-Performance Interconnects. 2015, p. 18–25. DOI: 10.1109/HOTI.2015.15. ISBN
9781467391603.

[41] Dimova, S., Hristov, I., Hristova, R., Puzynin, I., Puzynina, T. et al.
OpenMP parallelization of multiple precision Taylor series method. arXiv, 2019. DOI:
10.48550/ARXIV.1908.09301.

[42] Dolean, V., Jolivet, P. and Nataf, F. An introduction to domain decomposition
methods: algorithms, theory, and parallel implementation. Society for Industrial and
Applied Mathematics, 2016. ISBN 9781611974058.

[43] Dongarra, J. Sunway TaihuLight supercomputer makes its appearance. National
Science Review. september 2016, vol. 3, p. 265–266. DOI: 10.1093/nsr/nww044. ISSN
2095-5138.

[44] Dormand, J. and Prince, P. A family of embedded Runge-Kutta formulae. Jour-
nal of Computational and Applied Mathematics. 1980, vol. 6, no. 1, p. 19–26. DOI:
10.1016/0771-050X(80)90013-3. ISSN 0377-0427.

[45] Duato, J., Yalamanchili, S. and Ni, L. Interconnection networks. Morgan Kauf-
mann, 2011. ISBN 9780123991805.

[46] Duncan, R. A survey of parallel computer architectures. Computer. 1990, vol. 23,
no. 2, p. 5–16. DOI: 10.1109/2.44900. ISSN 1558-0814.

[47] Egab, L. Chapter 10 - Computer-aided engineering findings on the physics of tire/road
noise. In: Wang, X., ed. Automotive Tire Noise and Vibrations. Butterworth-
Heinemann, 2020, p. 217–243. DOI: https://doi.org/10.1016/B978-0-12-818409-7.00010-
6. ISBN 978-0-12-818409-7.

[48] Emmett, M. and Minion, M. Toward an efficient parallel in time method for partial
differential equations. Communications in Applied Mathematics and Computational
Science. MSP. 2012, vol. 7, no. 1, p. 105–132. DOI: 10.2140/camcos.2012.7.105. ISSN
2157-5452.

[49] Evans, G., Blackledge, J. and Yardley, P. Analytic methods for partial differential
equations. Springer Science & Business Media, 2012. ISBN 9783540761242.

[50] Evans, L. C. Partial differential equations. Providence, RI: American Mathematical
Society, 2022. ISBN 9781470469429.

180

[51] Eymard, R., Gallouët, T. and Herbin, R. Finite volume methods. In: Solution
of Equation in Rn (Part 3), Techniques of Scientific Computing (Part 3). Elsevier,
2000, vol. 7, p. 713–1018. Handbook of Numerical Analysis. DOI: 10.1016/S1570-
8659(00)07005-8. ISSN 1570-8659.

[52] Fadlisyah, M., Ölveczky, P. C. and Ábrahám, E. Adaptive-Step-Size Numeri-
cal Methods in Rewriting-Logic-Based Formal Analysis of Interacting Hybrid Systems.
Electronic Notes in Theoretical Computer Science. 2011, vol. 274, p. 17–32. DOI:
https://doi.org/10.1016/j.entcs.2011.07.004. ISSN 1571-0661. 4th International Work-
shop on Harnessing Theories for Tool Support in Software (TTSS).

[53] Falgout, R. D., Jones, J. E. and Yang, U. M. The Design and Implementation of
hypre, a Library of Parallel High Performance Preconditioners. In: Numerical Solution
of Partial Differential Equations on Parallel Computers. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, p. 267–294. DOI: 10.1007/3-540-31619-1_8. ISBN 978-3-540-
31619-0.

[54] Falgout, R. D. and Yang, U. M. Hypre: A Library of High Performance Precondi-
tioners. In: Sloot, P. M. A., Hoekstra, A. G., Tan, C. J. K. and Dongarra, J. J.,
ed. Computational Science — ICCS 2002. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2002, p. 632–641. DOI: 10.1007/3-540-47789-6_66. ISBN 978-3-540-47789-1.

[55] Farlow, S. J. Partial differential equations for scientists and engineers. Courier
Corporation, 2012. ISBN 860-1234581253.

[56] Fehlberg, E. Low-order classical Runge-Kutta formulas with stepsize control and
their application to some heat transfer problems. Computing. 1970, vol. 6. DOI:
doi:10.1007/BF02241732. ISSN 1436-5057.

[57] Ferziger, J. H., Perić, M. and Street, R. L. Computational methods for fluid
dynamics. 3rd ed. Springer, 2002. ISBN 9783-642-56026-2.

[58] Flynn, M. J. Some Computer Organizations and Their Effectiveness. IEEE Trans-
actions on Computers. 1972, C-21, no. 9, p. 948–960. DOI: 10.1109/TC.1972.5009071.
ISSN 1557-9956.

[59] Flynn, M. Very high-speed computing systems. Proceedings of the IEEE. 1966,
vol. 54, no. 12, p. 1901–1909. DOI: 10.1109/PROC.1966.5273. ISSN 1558-2256.

[60] Fornberg, B. Fast generation of weights in finite difference formulas. In: Recent
Developments in Numerical Methods and Software for ODEs/DAEs/PDEs. World Sci-
entific, 1992, p. 97–123. DOI: 10.1142/9789814335867_0006. ISBN 9789814506397.

[61] Foster, I. Designing and building parallel programs: Concepts and Tools for Parallel
Software Engineering. Addison-Wesley Longman Publishing Co., Inc., 1995. ISBN
9780201575941.

[62] Gander, M. J. 50 years of time parallel time integration. In: Multiple shooting and
time domain decomposition methods. Springer International Publishing, 2015, p. 69–113.
DOI: 10.1007/978-3-319-23321-5_3. ISBN 978-3-319-23321-5.

[63] Gear, C. W. Parallel methods for ordinary differential equations. Calcolo. Springer.
1988, vol. 25, 1-2, p. 1–20. DOI: 10.1007/BF02575744. ISSN 1126-5434.

181

[64] Geist, A. A Decade of Design To Reach Exascale for ModSim. 2022. ModSim 2022:
Workshop on Modeling & Simulation of Systems and Applications. Available at: https:
//www.bnl.gov/modsim2022/files/talks/al-geist.pdf.

[65] Gibbons, A. A Program for the Automatic Integration of Differential Equations using
the Method of Taylor Series. The Computer Journal. Oxford University Press. 1960,
vol. 3, no. 2, p. 108–111. DOI: 10.1093/comjnl/3.2.108. ISSN 0010-4620.

[66] Gioiosa, R. Chapter 5 - Resilience for extreme scale computing. In: Vega, A.,
Bose, P. and Buyuktosunoglu, A., ed. Rugged Embedded Systems. Boston: Morgan
Kaufmann, 2017, p. 123–148. DOI: https://doi.org/10.1016/B978-0-12-802459-1.00005-
1. ISBN 9780-12-802459-1.

[67] Grama, A., Kumar, V., Gupta, A. and Karypis, G. Introduction to parallel com-
puting. 2nd ed. Addison-Wesley, 2003. ISBN 9780201648652.

[68] Griewank, A. and Walther, A. Evaluating derivatives: principles and techniques
of algorithmic differentiation. Society for Industrial and Applied Mathematics, 2008.
ISBN 9780898716597.

[69] Griffiths, D. F. and Higham, D. J. Numerical Methods for Ordinary Differential
Equations: Initial Value Problems. Springer Science & Business Media, 2010. ISBN
9780857291479.

[70] Griffiths, G. and Schiesser, W. E. Traveling wave analysis of partial differential
equations: numerical and analytical methods with MATLAB and Maple. Academic
Press, 2011. ISBN 9780123846525.

[71] Gupta, G. K., Sacks Davis, R. and Tescher, P. E. A Review of Recent Develop-
ments in Solving ODEs. ACM Comput. Surv. New York, NY, USA: Association for
Computing Machinery. March 1985, vol. 17, no. 1, p. 5–47. DOI: 10.1145/4078.4079.
ISSN 0360-0300.

[72] Gustafson, J. L. Reevaluating Amdahl’s law. Communications of the ACM. New
York, USA: Association for Computing Machinery. 1988, vol. 31, no. 5, p. 532–533.
DOI: 10.1145/42411.42415. ISSN 0001-0782.

[73] Hager, G. and Wellein, G. Introduction to High Performance Computing for Sci-
entists and Engineers. 1st ed. CRC Press, 2010. ISBN 9781439811924.

[74] Hairer, E., Nørsett, S. P. and Wanner, G. Solving Ordinary Differential Equations
I: Nonstiff Problems. Springer-Verlag, 1993. ISBN 9783540566700.

[75] Hairer, E. and Wanner, G. Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems. Springer-Verlag, 1996. ISBN 9783642052217.

[76] Halin, H. The applicability of Taylor series methods in simulation. In: SummerSim
’15: Proceedings of the Conference on Summer Computer Simulation. 1983, p. 1032–
1076. DOI: 10.5555/2874916. ISBN 9781510810594.

[77] Hall, G. and Watt, J. M. Modern numerical methods for ordinary differential equa-
tions. Oxford University Press, 1976. ISBN 9780198533481.

182

https://www.bnl.gov/modsim2022/files/talks/al-geist.pdf
https://www.bnl.gov/modsim2022/files/talks/al-geist.pdf

[78] Hamdi, S., Schiesser, W. E. and Griffiths, G. W. Method of lines. Scholarpedia.
2007, vol. 2, no. 7, p. 1–11. DOI: 10.4249/scholarpedia.2859.

[79] Hapla, V. Scalable Parallel Computations with PETSc @ CSC. May 2019. Helsinki,
Finland. Available at: https://events.prace-ri.eu/event/871/attachments/888/1299/
petsc_04_matrices.pdf.

[80] Hon, Y., Schaback, R. and Zhong, M. The meshless Kernel-based method of lines
for parabolic equations. Computers & Mathematics with Applications. 2014, vol. 68, 12,
Part A, p. 2057–2067. DOI: 10.1016/j.camwa.2014.09.015. ISSN 0898-1221.

[81] Hristov, I., Hristova, R., Dimova, S., Armyanov, P., Shegunov, N. et al. Paral-
lelizing Multiple Precision Taylor Series Method for Integrating the Lorenz System. In:
Georgiev, I., Kostadinov, H. and Lilkova, E., ed. Advanced Computing in Industrial
Mathematics. Springer International Publishing, 2023, p. 56–66. DOI: 10.1007/978-3-
031-20951-2_6. ISBN 978-3-031-20951-2.

[82] Hristov, I., Hristova, R., Dimova, S., Armyanov, P., Shegunov, N. et al. On
the efficient parallel computing of long term reliable trajectories for the Lorenz system.
In:. 2021, vol. 2933, p. 78–88. DOI: 10.18287/1613-0073-2019. ISSN 1613-0073.

[83] Hutton, D. V. Fundamentals of Finite Element Analysis. 1st ed. McGraw-Hill
Science, 2004. ISBN 9780072395365.

[84] Hyman, J. The method of lines solution of partial differential equations. 1976. ISBN
9781330357095.

[85] Ilic, A., Pratas, F. and Sousa, L. Cache-aware Roofline model: Upgrading the loft.
IEEE Computer Architecture Letters. 2014, vol. 13, no. 1, p. 21–24. DOI: 10.1109/L-
CA.2013.6. ISSN 1556-6064.

[86] InfiniBand Trade Association. InfiniBandTM Architecture Specification. Available
at: https://www.infinibandta.org/ibta-specification/.

[87] Jeffreys, H., Jeffreys, B. and Swirles, B. Methods of mathematical physics. 3rd
ed. Cambridge University Press, 2000. ISBN 9780521664028.

[88] Johnson, E. E. Completing an MIMD Multiprocessor Taxonomy. SIGARCH Comput.
Archit. News. New York, NY, USA: Association for Computing Machinery. 1988, vol. 16,
no. 3, p. 44––47. DOI: 10.1145/48675.48682. ISSN 0163-5964.

[89] Jorba, A. and Zou, M. A Software Package for the Numerical Integration of ODEs
by Means of High-Order Taylor Methods. Experimental Mathematics. A K Peters, Ltd.
2005, vol. 14, no. 1, p. 99–117. DOI: em/1120145574. ISSN 1944-950X.

[90] Karp, A. H. and Flatt, H. P. Measuring Parallel Processor Performance. Commun.
ACM. New York, NY, USA: Association for Computing Machinery. May 1990, vol. 33,
no. 5, p. 539––543. DOI: 10.1145/78607.78614. ISSN 0001-0782.

[91] Kendall, R., Sosonkina, M., Gropp, W., Numrich, R. and Sterling, T. Parallel
Programming Models Applicable to Cluster Computing and Beyond. In:. January 2006,
vol. 51, p. 3–54. DOI: 10.1007/3-540-31619-1_1. ISBN 3-540-29076-1.

183

https://events.prace-ri.eu/event/871/attachments/888/1299/petsc_04_matrices.pdf
https://events.prace-ri.eu/event/871/attachments/888/1299/petsc_04_matrices.pdf
https://www.infinibandta.org/ibta-specification/

[92] Kianrad, A., Khonsari, A., Yazdani, N. and Dadlani, A. Performance Analysis of
Optical Packet-Switched Meshes: Metrics and Modeling. The CSI Journal on Computer
Science and Engineering. January 2007. ISSN 2676-542X.

[93] Kim, J., Dally, W. J., Scott, S. and Abts, D. Technology-Driven, Highly-Scalable
Dragonfly Topology. In: 2008 International Symposium on Computer Architecture. 2008,
p. 77–88. DOI: 10.1109/ISCA.2008.19. ISBN 9780769531748.

[94] Kocina, F. FOS: Fast ODE Solver. 2017. Faculty of Information Technology, Brno
University of Technology. Available at: https://www.fit.vut.cz/research/product/518/
.en.

[95] Kopriva, J., Kraus, M., Kunovsky, J. and Satek, V. Semi-Analytical Com-
putations Based on TKSL. In: 2008 Second UKSIM European Symposium on Com-
puter Modeling and Simulation. 2008, p. 159–164. DOI: 10.1109/EMS.2008.39. ISBN
9780769533254.

[96] Kouya, T. A Brief Introduction to MPIGMP & MPIBNCpack. April 2008. Available
at: https://na-inet.jp/na/bnc/brief_intro_mpibncpack.pdf.

[97] Kraus, M., Kunovský, J. and Šátek, V. Taylor Series Numerical Integrator. In: 2008
Second UKSIM European Symposium on Computer Modeling and Simulation. 2008,
p. 177–180. DOI: 10.1109/EMS.2008.40. ISBN 9780769533254.

[98] Kraus, M., Vlastimil, K., Kunovský, J. and Šátek, V. Parallel Computations
Based on Analogue Principles. In: 2009 11th International Conference on Computer
Modelling and Simulation. 2009, p. 111–116. DOI: 10.1109/UKSIM.2009.15. ISBN
9780769535937.

[99] Kreiss, H.-O. and Scherer, G. Method of lines for hyperbolic differential equations.
SIAM Journal on Numerical Analysis. SIAM. 1992, vol. 29, no. 3, p. 640–646. ISSN
0036-1429.

[100] Kumar, M. and Kumar, P. A finite element approach for finding positive solutions
of semilinear elliptic Dirichlet problems. Numerical Methods for Partial Differential
Equations. 2009, vol. 25, no. 5, p. 1119–1128. DOI: https://doi.org/10.1002/num.20390.
ISSN 0749159X.

[101] Kumar, V. Parallel Algorithm and Computation. Khanna Publishing, 2013. ISBN
9789381068861.

[102] Kunovský, J. TKSL: Taylor-Kunovský Simulation Language. 2005. Taylor Series
based simulation language for continuous systems simulations. Faculty of Information Tech-
nology, Brno University of Technology. Available at: https://www.fit.vut.cz/research/
product/51/.en.

[103] Kunovský, J. Modern Taylor Series Method. 1994. Habilitation. Faculty of Electrical
Engineering and Computer Science, Brno University of Technology.

[104] Laboratory, O. R. N. Frontier supercomputer debuts as world’s fastest, breaking
exascale barrier, 30. May 2022. Available at: https://www.ornl.gov/news/frontier-
supercomputer-debuts-worlds-fastest-breaking-exascale-barrier/.

184

https://www.fit.vut.cz/research/product/518/.en
https://www.fit.vut.cz/research/product/518/.en
https://na-inet.jp/na/bnc/brief_intro_mpibncpack.pdf
https://www.fit.vut.cz/research/product/51/.en
https://www.fit.vut.cz/research/product/51/.en
https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier/
https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier/

[105] Lara, M., Elipe, A. and Palacios, M. Automatic programming of recurrent power
series. Mathematics and Computers in Simulation. 1999, vol. 49, no. 4, p. 351–362.
DOI: https://doi.org/10.1016/S0378-4754(99)00087-7. ISSN 0378-4754.

[106] LeVeque, R. J. Finite difference methods for ordinary and partial differential equa-
tions: steady-state and time-dependent problems. Society for Industrial and Applied
MAthematics, 2007. ISBN 9780898716290.

[107] LeVeque, R. J. et al. Finite volume methods for hyperbolic problems. Cambridge
University Press, 2002. ISBN 9780511791253.

[108] Li, Z., Saad, Y. and Sosonkina, M. PARMS: a parallel version of the algebraic
recursive multilevel solver. Numerical Linear Algebra with Applications. 2003, vol. 10,
5-6, p. 485–509. DOI: https://doi.org/10.1002/nla.325. ISSN 1099-1506.

[109] Liao, S. On the reliability of computed chaotic solutions of non-linear differential
equations. Tellus A: Dynamic Meteorology and Oceanography. Taylor & Francis. 2008,
vol. 61, no. 4, p. 550–564.

[110] Liao, X.-K., Pang, Z.-B., Wang, K.-F., Lu, Y.-T., Xie, M. et al. High performance
interconnect network for Tianhe system. Journal of Computer Science and Technology.
Springer. 2015, vol. 30, no. 2, p. 259–272. DOI: 10.1111/j.1600-0870.2009.00402.x. ISSN
1600-0870.

[111] Liao, X., Lu, K., Yang, C., Li, J. wen, Yuan, Y. et al. Moving from exascale
to zettascale computing: challenges and techniques. Frontiers of Information Technol-
ogy & Electronic Engineering. 2018, vol. 19, no. 10, p. 1236–1244. DOI: 10.1631/FI-
TEE.1800494. ISSN 2095-9184.

[112] Liu, W. and Vinter, B. CSR5: An Efficient Storage Format for Cross-Platform
Sparse Matrix-Vector Multiplication. In: Proceedings of the 29th ACM on Interna-
tional Conference on Supercomputing. New York, NY, USA: Association for Comput-
ing Machinery, 2015, p. 339—-350. ICS ’15. DOI: 10.1145/2751205.2751209. ISBN
9781450335591.

[113] Loeb, A. M. and Schiesser, W. E. Stiffness and Accuracy in the Method of Lines
Integration of Partial Differential Equations. In: Stiff Differential Systems. Boston, MA:
Springer US, 1974, p. 229–243. DOI: 10.1007/978-1-4684-2100-2_18. ISBN 978-1-4684-
2100-2.

[114] Lu, P.-J., Lai, M.-C. and Chang, J.-S. A Survey of High-Performance Interconnec-
tion Networks in High-Performance Computer Systems. Electronics. Multidisciplinary
Digital Publishing Institute. 2022, vol. 11, no. 9. DOI: 10.3390/electronics11091369.
ISSN 2079-9292.

[115] Lu, Y. Paving the way for China exascale computing. CCF Transactions on High
Performance Computing. august 2019, vol. 1, p. 63–72. DOI: 10.1007/s42514-019-00010-
y. ISSN 2524-4922.

[116] Makino, K. and Berz, M. COSY INFINITY Version 9. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and As-
sociated Equipment. 2006, vol. 558, no. 1, p. 346–350. DOI: 10.1016/j.nima.2005.11.109.

185

ISSN 0168-9002. Proceedings of the 8th International Computational Accelerator
Physics Conference.

[117] Malony, A. D. Metrics. In: Padua, D., ed. Encyclopedia of Parallel Computing.
Boston, MA: Springer US, 2011, p. 1124–1130. DOI: 10.1007/978-0-387-09766-4_69.
ISBN 9780-387-09766-4.

[118] Mikulášek, K. Polynomial Transformations of Systems of Differential Equations
and Their Applications. Brno, Czech Republic, 2000. Dissertation. Faculty of Electrical
Engineering and Computer Science, Brno University of Technology.

[119] Miletics, E. and Molnárka, G. Taylor Series Method with Numerical Derivatives
for numerical solution of ODE initial values problems. Hungarian Electronic Journal of
Sciences, Section Applied and Numerical Mathematics. Citeseer. 2003, p. 1–16. DOI:
10.3233/JCM-2004-41-213.

[120] Min, G. Performance modelling and analysis of multicomputer interconnection net-
works. Glasgow, United Kingdom, 2003. Dissertation. University of Glasgow, Faculty
of Information and Mathematical Science.

[121] Mohazzabi, P. and L. Becker, J. Numerical Solution of Differential Equations by
Direct Taylor Expansion. Journal of Applied Mathematics and Physics. 2017, vol. 05,
no. 03, p. 623–630. DOI: 10.4236/jamp.2017.53053. ISSN 2327-4352.

[122] Molnárka, G. and Miletics, E. Implicit Extension of Taylor Series Method with
Numerical Derivatives. In: Wiley Online Library. PAMM: Proceedings in Applied Math-
ematics and Mechanics. 2003, vol. 3, no. 1, p. 569–570. DOI: 10.1002/pamm.200310552.
ISSN 617-7061.

[123] Mondigo, A., Ueno, T., Sano, K. and Takizawa, H. Comparison of Direct and In-
direct Networks for High-Performance FPGA Clusters. In: Applied Reconfigurable Com-
puting. Architectures, Tools, and Applications: 16th International Symposium, ARC
2020, Toledo, Spain, April 1–3, 2020, Proceedings. Berlin, Heidelberg: Springer-Verlag,
2020, p. 314––329. DOI: 10.1007/9783030445348_24. ISBN 978-3-030-44533-1.

[124] Moore, G. E. Cramming more components onto integrated circuits, Reprinted from
Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits
Society Newsletter. 2006, vol. 11, no. 3, p. 33–35. DOI: 10.1109/N-SSC.2006.4785860.
ISSN 1098-4232.

[125] Muralidhar, R., Borovica Gajic, R. and Buyya, R. Energy efficient computing
systems: Architectures, abstractions and modeling to techniques and standards. ACM
Computing Surveys (CSUR). ACM New York, NY. 2022, vol. 54, 11s, p. 1–37. DOI:
10.1145/3511094. ISSN 0360-0300.

[126] Nedialkov, N. S. and Pryce, J. Solving Differential-Algebraic Equations by Taylor
Series (III): the DAETS Code. Journal of Numerical Analysis, Industrial and Applied
Mathematics. Elsevier. 2008, vol. 3, p. 61–80. ISSN 1790-8140.

[127] Nedialkov, N. S. and Pryce, J. D. Solving differential-algebraic equations by Taylor
series (I): Computing Taylor coefficients. BIT Numerical Mathematics. Springer. 2005,
vol. 45, no. 3, p. 561–591. DOI: 10.1007/s10543-005-0019-y. ISSN 1572-9125.

186

[128] Nedialkov, N. S. and Pryce, J. D. Solving differential-algebraic equations by Taylor
series (II): Computing the System Jacobian. BIT Numerical Mathematics. Springer.
2006, vol. 47, no. 1, p. 121–135. DOI: 10.1007/s10543-006-0106-8. ISSN 1572-9125.

[129] Padua, D. Encyclopedia of parallel computing. 1st ed. Springer Science & Business
Media, 2011. ISBN 9780387097664.

[130] Pang, Z., Xie, M., Zhang, J., Zheng, Y., Wang, G. et al. The TH Express high
performance interconnect networks. Frontiers of Computer Science. Springer. 2014,
vol. 8, no. 3, p. 357–366. DOI: 0.1007/s11704-014-3500-9. ISSN 2095-2236.

[131] Ploskas, N. and Samaras, N. GPU programming in MATLAB. Morgan Kaufmann,
2016. ISBN 9780128051320.

[132] Potter, J. L. The massively parallel processor. The MIT Press, 1985. ISBN
9780262661799.

[133] Powell, J. The Quantum Limit to Moore’s Law. Proceedings of the IEEE. september
2008, vol. 96, p. 1247–1248. DOI: 10.1109/JPROC.2008.925411. ISSN 1558-2256.

[134] Qiao, P., Wang, X., Yang, X., Fan, Y. and Lan, Z. Preliminary Interference
Study About Job Placement and Routing Algorithms in the Fat-Tree Topology for
HPC Applications. In: 2017 IEEE International Conference on Cluster Computing
(CLUSTER). 2017, p. 641–642. DOI: 10.1109/CLUSTER.2017.90. ISSN 1552-5244.

[135] Quinn, M. J. Parallel computing theory and practice. McGraw-Hill College, 1994.
ISBN 9780070512948.

[136] Rall, L. B. Automatic Differentiation: Techniques and Applications. Springer, 1981.
Lecture Notes in Computer Science. ISBN 9783540108610.

[137] R.A.Moore. Interval Analysis. New York, USA: Prentice-Hall, 1966. ISSN 2577-
9435.

[138] Rao, S. S. The finite element method in engineering. Butterworth-Heinemann, 2018.
ISBN 9781856176613.

[139] Reddy, J. N. An introduction to the finite element method. 3rd ed. McGraw-Hill
Education, 2005. ISBN 9780072466850.

[140] Rezzolla, L. Numerical Methods for the Solution of Hyperbolic Partial Differential
Equations Lecture Notes. June 2005.

[141] Rodríguez, M. and Barrio, R. Reducing rounding errors and achieving Brouwer’s
law with Taylor Series Method. Applied Numerical Mathematics. Elsevier. 2012, vol. 62,
p. 1014–1024. DOI: 10.1016/j.apnum.2012.03.008. ISSN 0168-9274.

[142] Roser, M., Ritchie, H. and Mathieu, E. Technological Change. Our World in
Data. 2013. Available at: https://ourworldindata.org/technological-change.

[143] Rusanovsky, M., Harel, R., Alon, L.-o., Mosseri, I., Levin, H. et al. BACKUS:
Comprehensive High-Performance Research Software Engineering Approach for Simu-
lations in Supercomputing Systems. arXiv, 2019. DOI: 10.48550/arXiv.1910.06415.

187

https://ourworldindata.org/technological-change

[144] Sahni, S. and Thanvantri, V. Parallel computing: Performance metrics and models.
IEEE Parallel and Distributed Technology. Citeseer. 1996, vol. 4, no. 1, p. 43–56. ISSN
1063-6552.

[145] Schiesser, W. E. The numerical method of lines: integration of Partial Differential
Equations. Elsevier, 2012. ISBN 9780126241303.

[146] Schiesser, W. E. and Griffiths, G. W. A compendium of partial differential equa-
tion models: method of lines analysis with Matlab. Cambridge University Press, 2009.
ISBN 9780511576270.

[147] Schinsel, A. M. What is a Roofline Model?, 3. February 2017. Avail-
able at: https://www.intel.com/content/www/us/en/developer/articles/guide/intel-
advisor-roofline.html.

[148] Scott, L. R., Clark, T. and Bagheri, B. Scientific parallel computing. Princeton
University Press, 2021. ISBN 9780691119359.

[149] Shainer, G. Super-Connecting the Supercomputers – Innovations Through Network
Topologies, 15. July 2019. Available at: https://www.hpcwire.com/2019/07/15/super-
connecting-the-supercomputers-innovations-through-network-topologies/.

[150] Shakeri, F. and Dehghan, M. The method of lines for solution of the one-
dimensional wave equation subject to an integral conservation condition. Computers
& Mathematics with Applications. Elsevier. 2008, vol. 56, no. 9, p. 2175–2188. DOI:
https://doi.org/10.1016/j.camwa.2008.03.055. ISSN 0898-1221.

[151] Shampine, L. F. and Reichelt, M. W. The MATLAB ODE Suite. SIAM
journal on scientific computing. SIAM. 1997, vol. 18, no. 1, p. 1–22. DOI:
10.1137/S1064827594276424. ISSN 1095-7197.

[152] Smith, B. F. Domain Decomposition Methods for Partial Differential Equations.
In: Parallel Numerical Algorithms. Springer Netherlands, 1997, p. 225–243. DOI:
10.1007/978-94-011-5412-3_8. ISBN 978-94-011-5412-3.

[153] Smith, G. D. Numerical Solution of Partial Differential Equations: Finite Difference
Methods. Oxford university press, 1985. ISBN 9780-19859-650-9.

[154] Solodushkin, S. I. and Iumanova, I. F. Parallel numerical methods for ordinary
differential equations: a survey. In: CEUR-WS. CEUR Workshop Proceedings. 2016,
vol. 1729, p. 1–10. ISSN 1613-0073.

[155] Strohmaier, E., Dongarra, J., Simon, H. and Meuer, M. TOP500: The List:
The Linpack Benchmark. Available at: https://www.top500.org/project/linpack/.

[156] Strohmaier, E., Dongarra, J., Simon, H. and Meuer, M. TOP500: The List:
June 2022. 2022. Available at: https://www.top500.org/lists/top500/2022/06/.

[157] Teh, M. Y., Wilke, J. J., Bergman, K. and Rumley, S. Design Space Exploration
of the Dragonfly Topology. In: Kunkel, J. M., Yokota, R., Taufer, M. and Shalf,
J., ed. High Performance Computing. Cham: Springer International Publishing, 2017,
p. 57–74. ISBN 978-3-319-67630-2.

188

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-advisor-roofline.html
https://www.hpcwire.com/2019/07/15/super-connecting-the-supercomputers-innovations-through-network-topologies/
https://www.hpcwire.com/2019/07/15/super-connecting-the-supercomputers-innovations-through-network-topologies/
https://www.top500.org/project/linpack/
https://www.top500.org/lists/top500/2022/06/

[158] The MathWorks Inc. MATLAB: Choose an ODE Solver. [cit. 2021-02-04]. Natick
Massachusetts United States. Available at: https://www.mathworks.com/help/matlab/math/
choose-an-ode-solver.html.

[159] The MathWorks Inc. MATLAB: Variable-precision arithmetic. [cit. 2021-03-
06]. Natick Massachusetts United States. Available at: https://www.mathworks.com/help/
symbolic/vpa.html.

[160] Toselli, A. and Widlund, O. Domain decomposition methods-algorithms and the-
ory. Springer Science & Business Media, 2004. ISBN 9783540266624.

[161] Trew, A. and Wilson, G. Past, present, parallel: a survey of available parallel
computer systems. Springer Science & Business Media, 2012. ISBN 9781447118428.

[162] Trobec, R., Vasiljević, R., Tomašević, M., Milutinović, V., Beivide, R. et al.
Interconnection networks in petascale computer systems: A survey. ACM Computing
Surveys (CSUR). ACM New York, NY, USA. 2016, vol. 49, no. 3, p. 1–24. DOI:
10.1145/2983387. ISSN 0360-0300.

[163] Turczyn, C. Exascale Computing’S Four Biggest Challenges and How They Were
Overcome, 18. October 2021. Available at: https://www.olcf.ornl.gov/2021/10/18/
exascale-computings-four-biggest-challenges-and-how-they-were-overcome.

[164] U.S. Department of Energy National Laboratory Operated by the Uni-
versity of California. Performance and Algorithms Research. 2022. Avail-
able at: https://crd.lbl.gov/divisions/amcr/computer-science-amcr/par/research/
roofline/introduction/.

[165] Verma, A. An introduction to automatic differentiation. Current Science. JSTOR.
2000, p. 804–807. ISSN 2795-8639.

[166] Verner, J. Numerically optimal Runge-Kutta pairs with interpolants. Numerical
Algorithms. march 2010, vol. 53, p. 383–396. DOI: 10.1007/s11075-009-9290-3. ISSN
1017-1398.

[167] Verner, J. H. Explicit Runge–Kutta Methods with Estimates of the Local Trun-
cation Error. SIAM Journal on Numerical Analysis. SIAM. 1978, vol. 15, no. 4,
p. 772–790. DOI: 10.1137/0715051. ISSN 1095-7170.

[168] Verner, J. Jim Verner’s Refuge for Runge-Kutta Pairs. Available at: https:
//www.sfu.ca/~jverner/.

[169] Vichnevetsky, R. Numerical stability of methods of lines for partial differential
equations. Rutgers University, 1971. DOI: 10.7282/t3-85rg-4q53.

[170] Wang, R., Lu, K., Chen, J., Zhang, W., Li, J. et al. Brief introduction of TianHe
exascale prototype system. Tsinghua Science and Technology. TUP. 2020, vol. 26, no. 3,
p. 361–369. DOI: 10.26599/TST.2020.9010009. ISSN 1007-0214.

[171] Wermelinger, F. High Performance Computing for Science and Engineer-
ing I: Strong and Weak Scaling. Computational Science & Engineering Labora-
tory, 2020. Available at: https://www.cse-lab.ethz.ch/wp-content/uploads/2018/11/
amdahl_gustafson.pdf.

189

https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html
https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html
https://www.mathworks.com/help/symbolic/vpa.html
https://www.mathworks.com/help/symbolic/vpa.html
https://www.olcf.ornl.gov/2021/10/18/exascale-computings-four-biggest-challenges-and-how-they-were-overcome
https://www.olcf.ornl.gov/2021/10/18/exascale-computings-four-biggest-challenges-and-how-they-were-overcome
https://crd.lbl.gov/divisions/amcr/computer-science-amcr/par/research/roofline/introduction/
https://crd.lbl.gov/divisions/amcr/computer-science-amcr/par/research/roofline/introduction/
https://www.sfu.ca/~jverner/
https://www.sfu.ca/~jverner/
https://www.cse-lab.ethz.ch/wp-content/uploads/2018/11/amdahl_gustafson.pdf
https://www.cse-lab.ethz.ch/wp-content/uploads/2018/11/amdahl_gustafson.pdf

[172] Wesseling, P. Principles of computational fluid dynamics. Springer Science &
Business Media, 2009. ISBN 9783642051463.

[173] Williams, S., Datta, K., Carter, J., Oliker, L., Shalf, J. et al. PERI - Auto-
tuning memory-Intensive kernels for multicore - art. no. 012038. Journal of Physics:
Conference Series. august 2008, vol. 125. DOI: 10.1088/1742-6596/125/1/012038. ISSN
1742-6596.

[174] Williams, S., Waterman, A. and Patterson, D. Roofline: an insightful visual
performance model for multicore architectures. Communications of the ACM. ACM
New York, NY, USA. 2009, vol. 52, no. 4, p. 65–76. DOI: 10.1145/1498765.1498785.
ISSN 1557-7317.

[175] Wouwer, A. V., Saucez, P. and Vilas, C. Simulation of ODE/PDE Models with
MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications. Springer,
2014. ISBN 9783319067902.

[176] Wulf, W. and McKee, S. Hitting the Memory Wall: Implications of the
Obvious. Computer Architecture News. january 1996, vol. 23, p. 20–24. DOI:
10.1145/216585.216588. ISSN 0163-5964.

[177] Yang, C. Introduction to the Roofline Model. June 2019. ISC High Performance 2019,
Frankfurt, Germany. Available at: https://www.nersc.gov/assets/Uploads/Tutorial-
ISC2019-Intro-v2.pdf.

[178] Zeneli, M., Nikolopoulos, A., Karellas, S. and Nikolopoulos, N. Chap-
ter 7 - Numerical methods for solid-liquid phase-change problems. In: Datas, A.,
ed. Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion. Wood-
head Publishing, 2021, p. 165–199. Woodhead Publishing Series in Energy. DOI:
https://doi.org/10.1016/B978-0-12-819955-8.00007-7. ISBN 978-0-12-819955-8.

[179] Zeng, C. V. P. W. S. Krylov subspace and multigrid methods applied to the in-
compressible Navier-Stokes equations. In: Seventh Copper Mountain Conference on
Multigrid Methods. 1995. ISSN 0191-7811.

[180] Zienkiewicz, O. C. and Morice, P. The finite element method in engineering sci-
ence. McGraw-Hill London, 1971. ISBN 978-0070941380.

[181] Zill, D. G. A first course in differential equations with modeling applications. 10th
ed. Cengage Learning, 2012. ISBN 9781111827052.

190

https://www.nersc.gov/assets/Uploads/Tutorial-ISC2019-Intro-v2.pdf
https://www.nersc.gov/assets/Uploads/Tutorial-ISC2019-Intro-v2.pdf

List of publications

[pp1] Chaloupka, J., Kocina, F., Veigend, P., Nečasová, G., Šátek, V. et al.
Multiple Integral Computations. In: 14th International Conference of Numer-
ical Analysis and Applied Mathematics. American Institute of Physics, 2017,
no. 1863, p. 1–4. DOI: 10.1063/1.4992650. ISSN 0094-243X. Available at:
https://www.fit.vut.cz/research/publication/11226.

[pp2] Chaloupka, J., Nečasová, G., Veigend, P., Kunovský, J. and Šátek, V.
Modern Taylor series method in numerical integration: PART 1. In: 16th Czech-
Polish Conference Modern Mathematical Methods in Engineering (3mi). 2017,
vol. 6, no. 4, p. 263–273. ISBN 978-83-65265-14-2. Available at: https:
//www.fit.vut.cz/research/publication/11354.

[pp3] Kocina, F., Kunovský, J., Marek, M., Nečasová, G., Schirrer, A. et al. New
Trends in Taylor Series Based Computations. In: 12th International Conference
of Numerical Analysis and Applied Mathematics. American Institute of Physics,
2015, vol. 2015, no. 1648, p. 1–4. DOI: 10.1063/1.4913136. ISBN 978-0-7354-1287-3.
Available at: https://www.fit.vut.cz/research/publication/10496.

[pp4] Kocina, F., Kunovský, J., Nečasová, G., Šátek, V. and Veigend, P. Par-
allel solution of higher order differential equations. In: Proceedings of the 2016
International Conference on High Performance Computing & Simulation (HPCS
2016). Institute of Electrical and Electronics Engineers, 2016, p. 302–309. DOI:
10.1109/HPCSim.2016.7568350. ISBN 978-1-5090-2088-1. Available at: https:
//www.fit.vut.cz/research/publication/11116.

[pp5] Kocina, F., Nečasová, G., Veigend, P., Chaloupka, J., Šátek, V. et al.
Modelling VLSI Circuits Using Taylor Series. In: 14th International Conference
of Numerical Analysis and Applied Mathematics. American Institute of Physics,
2017, no. 1863, p. 1–4. DOI: 10.1063/1.4992513. ISSN 0094-243X. Available at:
https://www.fit.vut.cz/research/publication/11228.

[pp6] Kocina, F., Veigend, P., Nečasová, G. and Kunovský, J. Parallel Compu-
tations of Differential Equations. In: Proceedings of the 10th Doctoral Workshop
on Mathematical and Engineering Methods in Computer Science. Ing. Vladislav
Pokorný - Litera, 2015, p. 28–35. ISBN 978-80-214-5254-1. Available at: https:
//www.fit.vut.cz/research/publication/10925.

[pp7] Kocina, F., Šátek, V., Veigend, P., Nečasová, G., Valenta, V. et al. New
Trends in Taylor Series Based Applications. In: 13rd International Conference
of Numerical Analysis and Applied Mathematics. American Institute of Physics,

191

https://www.fit.vut.cz/research/publication/11226
https://www.fit.vut.cz/research/publication/11354
https://www.fit.vut.cz/research/publication/11354
https://www.fit.vut.cz/research/publication/10496
https://www.fit.vut.cz/research/publication/11116
https://www.fit.vut.cz/research/publication/11116
https://www.fit.vut.cz/research/publication/11228
https://www.fit.vut.cz/research/publication/10925
https://www.fit.vut.cz/research/publication/10925

2015, vol. 2016, no. 1648, p. 1–4. DOI: 10.1063/1.4952173. ISBN 978-0-7354-1287-3.
Available at: https://www.fit.vut.cz/research/publication/10856.

[pp8] Kunovský, J., Šátek, V., Nečasová, G., Veigend, P. and Kocina, F. The Pos-
itive Properties of Taylor Series Method. In: Proceedings of the 13th International
Conference Informatics’ 2015. Institute of Electrical and Electronics Engineers,
2015, p. 156–160. DOI: 10.1109/Informatics.2015.7377825. ISBN 978-1-4673-9867-
1. Available at: https://www.fit.vut.cz/research/publication/10923.

[pp9] Nečasová, G., Kocina, F., Veigend, P., Chaloupka, J., Šátek, V. et al.
Solving Wave Equation Using Finite Differences and Taylor Series. In: 14th Inter-
national Conference of Numerical Analysis and Applied Mathematics. American
Institute of Physics, 2017, no. 1863, p. 1–4. DOI: 10.1063/1.4992649. ISSN 0094-
243X. Available at: https://www.fit.vut.cz/research/publication/11229.

[pp10] Nečasová, G., Kocina, F., Veigend, P., Šátek, V. and Kunovský, J. Model of
the Telegraph Line. In: Informatics 2017 - 14th International Scientific Conference
on Informatics. Institute of Electrical and Electronics Engineers, 2017, p. 271–275.
DOI: 10.1109/INFORMATICS.2017.8327259. ISBN 978-1-5386-0888-3. Available
at: https://www.fit.vut.cz/research/publication/11305.

[pp11] Nečasová, G., Kunovský, J. and Šátek, V. Numerical Solution of Wave
Equation Using Higher Order Methods. In: 15th International Conference of
Numerical Analysis and Applied Mathematics. American Institute of Physics,
2017, p. 1–4. DOI: 10.1063/1.5043964. ISBN 978-0-7354-1690-1. Available at:
https://www.fit.vut.cz/research/publication/11417.

[pp12] Nečasová, G., Kunovský, J., Šátek, V., Chaloupka, J. and Veigend, P.
Taylor Series Based Differential Formulas. In: MATHMOD VIENNA 2015 - 8th
Vienna Conference on Mathematical Modelling. ARGE Simulation News, 2015,
p. 705–706. ARGESIM REPORT No. 44. DOI: 10.1016/j.ifacol.2015.05.209. ISBN
978-3-901608-46-9. Available at: https://www.fit.vut.cz/research/publication/
10746.

[pp13] Nečasová, G., Veigend, P. and Šátek, V. Modern Taylor series method in
numerical integration: PART 2. In: 17th Czech-Polish Conference Modern Math-
ematical Methods in Engineering (3mi). VŠB - Technical University of Ostrava,
2018, p. 211–220. ISBN 978-80-248-4135-9. Available at: https://www.fit.vut.cz/
research/publication/11639.

[pp14] Nečasová, G., Veigend, P. and Šátek, V. Parallel Solution of Partial Differ-
ential Equations Using Taylor Series Method. In: 18th International Conference
of Numerical Analysis and Applied Mathematics. American Institute of Physics,
2022, vol. 2425, no. 3, p. 1–4. DOI: 10.1063/5.0082209. ISSN 0094-243X. Available
at: https://www.fit.vut.cz/research/publication/12296.

[pp15] Nečasová, G. and Šátek, V. Parallel Solution of Telegraph Line. In: 16th Inter-
national Conference of Numerical Analysis and Applied Mathematics. American
Institute of Physics, 2019, vol. 2019, no. 7, p. 1–4. DOI: 10.1063/1.5114333. ISSN
0094-243X. Available at: https://www.fit.vut.cz/research/publication/11751.

192

https://www.fit.vut.cz/research/publication/10856
https://www.fit.vut.cz/research/publication/10923
https://www.fit.vut.cz/research/publication/11229
https://www.fit.vut.cz/research/publication/11305
https://www.fit.vut.cz/research/publication/11417
https://www.fit.vut.cz/research/publication/10746
https://www.fit.vut.cz/research/publication/10746
https://www.fit.vut.cz/research/publication/11639
https://www.fit.vut.cz/research/publication/11639
https://www.fit.vut.cz/research/publication/12296
https://www.fit.vut.cz/research/publication/11751

[pp16] Nečasová, G. and Šátek, V. Taylor series based parallel numerical solution
of partial differential equations. In:. 2021. In press. Available at: https://
www.fit.vut.cz/research/publication/12510.

[pp17] Nečasová, G. and Šátek, V. Parallel solution of parabolic partial differential
equation using higher-order method. In:. 2022. In press. Available at: https:
//www.fit.vut.cz/research/publication/12780.

[pp18] Valenta, V., Nečasová, G., Kunovský, J., Šátek, V. and Kocina, F. Adaptive
Solution of the Wave Equation. In: Proceedings of the 5th International Confer-
ence on Simulation and Modeling Methodologies, Technologies and Applications.
SciTePress - Science and Technology Publications, 2015, p. 154–162. ISBN 978-
989-758-120-5. Available at: https://www.fit.vut.cz/research/publication/10822.

[pp19] Veigend, P., Kunovský, J., Kocina, F., Nečasová, G., Šátek, V. et al. Elec-
tronic Representation of Wave Equation. In: 13rd International Conference of Nu-
merical Analysis and Applied Mathematics. American Institute of Physics, 2015,
no. 1738, p. 1–4. DOI: 10.1063/1.4952174. ISBN 978-0-7354-1392-4. Available at:
https://www.fit.vut.cz/research/publication/10857.

[pp20] Veigend, P., Nečasová, G., Kocina, F., Chaloupka, J., Šátek, V. et al.
Real Time Simulation of Transport Delay. In: 14th International Conference of
Numerical Analysis and Applied Mathematics. American Institute of Physics, 2017,
no. 1863, p. 1–4. DOI: 10.1063/1.4992523. ISSN 0094-243X. Available at: https:
//www.fit.vut.cz/research/publication/11227.

[pp21] Veigend, P., Nečasová, G. and Šátek, V. High Order Numerical Integra-
tion Method and its Applications - The First 36 Years of MTSM. In: 2019
IEEE 15th International Scientific Conference on Informatics. Institute of
Electrical and Electronics Engineers, 2019, p. 25–30. DOI: 10.1109/Infor-
matics47936.2019.9119258. ISBN 978-1-7281-3179-5. Available at: https://
www.fit.vut.cz/research/publication/12004.

[pp22] Veigend, P., Nečasová, G. and Šátek, V. Taylor Series Based Numerical
Integration Method. Open Computer Science. 2021, vol. 11, no. 1, p. 60–
69. DOI: 10.1515/comp-2020-0163. ISSN 2299-1093. Available at: https:
//www.fit.vut.cz/research/publication/12193.

[pp23] Veigend, P., Nečasová, G. and Šátek, V. System control using high order
numerical method. In: 18th International Conference of Numerical Analysis and
Applied Mathematics. American Institute of Physics, 2022, vol. 2425, no. 3, p. 1–4.
DOI: 10.1063/5.0082205. ISSN 0094-243X. Available at: https://www.fit.vut.cz/
research/publication/12295.

[pp24] Veigend, P., Nečasová, G. and Šátek, V. Taylor Series Method in Numerical
Integration: Linear and Nonlinear problems. In:. 2022. In press. Available at:
https://www.fit.vut.cz/research/publication/12754.

[pp25] Veigend, P., Raffai, P., Nečasová, G., Šátek, V. and Kunovský, J. Gas
flow through the piston ring pack. In: 15rd International Conference of Numerical

193

https://www.fit.vut.cz/research/publication/12510
https://www.fit.vut.cz/research/publication/12510
https://www.fit.vut.cz/research/publication/12780
https://www.fit.vut.cz/research/publication/12780
https://www.fit.vut.cz/research/publication/10822
https://www.fit.vut.cz/research/publication/10857
https://www.fit.vut.cz/research/publication/11227
https://www.fit.vut.cz/research/publication/11227
https://www.fit.vut.cz/research/publication/12004
https://www.fit.vut.cz/research/publication/12004
https://www.fit.vut.cz/research/publication/12193
https://www.fit.vut.cz/research/publication/12193
https://www.fit.vut.cz/research/publication/12295
https://www.fit.vut.cz/research/publication/12295
https://www.fit.vut.cz/research/publication/12754

Analysis and Applied Mathematics. American Institute of Physics, 2018, p. 1–
4. DOI: 10.1063/1.5043967. ISBN 978-0-7354-1690-1. Available at: https://
www.fit.vut.cz/research/publication/11084.

[pp26] Veigend, P., Šátek, V. and Nečasová, G. Model of the Telegraph line and its
Numerical Solution. Open Computer Science. 2018, vol. 8, no. 1, p. 10–17. DOI:
10.1515/comp-2018-0002. ISSN 2299-1093. Available at: https://www.fit.vut.cz/
research/publication/11666.

[pp27] Šátek, V., Veigend, P. and Nečasová, G. Taylor Series Based Solution of
Nonlinear-quadratic ODE Systems. In: MATHMOD VIENNA 2018 - 9th Vienna
International Conference on Mathematical Modelling. ARGE Simulation News,
2018, p. 99–100. DOI: 10.11128/arep.55. ISBN 978-3-901608-91-9. Available at:
https://www.fit.vut.cz/research/publication/11544.

[pp28] Šátek, V., Veigend, P. and Nečasová, G. Taylor Series Based Integration in
Electric Circuits Simulations. Advances in Electrical and Electronic Engineering.
2019, vol. 17, no. 3, p. 352–359. DOI: 10.15598/aeee.v17i3.3369. ISSN 1804-3119.
Available at: https://www.fit.vut.cz/research/publication/11732.

194

https://www.fit.vut.cz/research/publication/11084
https://www.fit.vut.cz/research/publication/11084
https://www.fit.vut.cz/research/publication/11666
https://www.fit.vut.cz/research/publication/11666
https://www.fit.vut.cz/research/publication/11544
https://www.fit.vut.cz/research/publication/11732

Appendices

195

Appendix A

Finite difference coefficients

The finite difference coefficients for the forward and backward finite difference formulas are
in Tables A.1 and A.2, respectively.

M O stencil x-coordinates
0 1 2 3 4 5 6 7 8

1

1 −1 1
2 −3

2 2 −1
2

3 −11
6 3 −3

2
1
3

4 −25
12 4 −3 4

3 −1
4

5 −137
60 5 −5 10

3 −5
4

1
5

6 −49
20 6 −15

2
20
3 −15

4
6
5 −1

6
7 −363

140 7 −21
2

35
3 −35

4
21
5 −7

6
1
7

8 −761
280 8 −14 56

3 −35
2

56
5 −14

3
8
7 −1

8

2

1 1 −2 1
2 2 −5 4 −1
3 35

12 −26
3

19
2 −14

3
11
12

4 15
4 −77

6
107
6 −13 61

12 −5
6

5 203
45 −87

5
117
4 −254

9
33
2 −27

5
137
180

6 469
90 −223

10
879
20 −949

18 41 −201
10

1019
180 − 7

10
7 1916

327 −962
35

621
10 −4006

45
691
8 −282

5
2143
90 −206

35
363
560

3

1 −1 3 −3 1
2 −5

2 9 −12 7 −3
2

3 −17
4

71
4 −59

2
49
2 −41

4
7
4

4 −49
8 29 −461

8 62 −307
8 13 −15

8
5 −967

120
638
15 −3929

40
389
3 −2545

24
268
5 −1849

120
29
15

6 −801
80

349
6 −18353

120
2391
10 −1457

6
4891
30 −561

8
527
30 −469

240

4

1 1 −4 6 −4 1
2 3 −14 26 −24 11 −2
3 35

6 −31 137
2 −242

3
107
2 −19 17

6
4 28

3 −111
2 142 −1219

6 176 −185
2

82
3 −7

2
5 1069

80 −1316
15

15289
60 −2144

5
10993
24 −4772

15
2803
20 −536

15
967
240

Table A.1: Coefficients for forward finite difference formulas, 𝑀 = 4, 𝑁 = 8, 𝑥0 = 0.

196

M O stencil x-coordinates
−8 −7 −6 −5 −4 −3 −2 −1 0

1

1 −1 1
2 1

2 −2 3
2

3 −1
3

3
2 −3 11

6
4 1

4 −4
3 3 −4 25

12
5 −1

5
5
4 −10

3 5 −5 137
60

6 1
6 −6

5
15
4 −20

3
15
2 −6 49

20
7 −1

7
7
6 −21

5
35
4 −35

3
21
2 −7 363

140
8 1

8 −8
7

14
3 −56

5
35
2 −56

3 14 −8 761
280

2

1 1 −2 1
2 −1 4 −5 2
3 11

12 −14
3

19
2 −26

3
35
12

4 −5
6

61
12 −13 107

6 −77
6

15
4

5 137
180 −27

5
33
2 −254

9
117
4 −87

5
203
45

6 − 7
10

1019
180 −201

10 41 −949
18

879
20 −223

10
469
90

7 363
560 −206

35
2143
90 −282

5
691
8 −4006

45
621
10 −962

35
1916
327

3

1 1 −3 3 −1
2 3

2 −7 12 −9 5
2

3 −7
4

41
4 −49

2
59
2 −71

4
17
4

4 15
8 −13 307

8 −62 461
8 −29 49

8
5 −29

15
1849
120 −268

5
2545
24 −389

3
3929
40 −638

15
967
120

6 469
240 −527

30
561
8 −4891

30
1457
6 −2391

10
18353
120 −349

6
801
80

4

1 1 −4 6 −4 1
2 −2 11 −24 26 −14 3
3 17

6 −19 107
2 −242

3
137
2 −31 35

6
4 −7

2
82
3 −185

2 176 −1219
6 142 −111

2
28
3

5 967
240 −536

15
2803
20 −4772

15
10993
24 −2144

5
15289
60 −1316

15
1069
80

Table A.2: Coefficients for backward finite difference formulas, 𝑀 = 4, 𝑁 = 8, 𝑥0 = 0.

197

Appendix B

Higher-order Taylor series method

Tables B.1 and B.2 show the intersections of MTSM for orders 26–45 and 46–64, respectively.

Order |SR| |SI|
26 −11.06 ±11.23

27 −11.43 ±8.13

28 −11.81 ±9.74

29 −12.18 ±11.28

30 −12.55 ±12.43

31 −12.92 ±13.09

32 −13.30 ±9.70

33 −13.67 ±11.31

34 −14.04 ±12.88

35 −14.41 ±14.16

36 −14.78 ±14.92

37 −15.16 ±15.09

38 −15.53 ±12.88

39 −15.90 ±14.46

40 −16.27 ±15.85

41 −16.63 ±16.72

42 −17.05 ±17.13

43 −17.39 ±14.45

44 −17.73 ±16.04

45 −18.22 ±17.51

Table B.1: 𝑆𝑅 and 𝑆𝐼 intersections of MTSM for orders 26–45.

198

Order |SR| |SI|
46 −18.37 ±18.50

47 −18.00 ±19.03

48 −19.05 ±16.02

49 −18.48 ±17.61

50 −21.21 ±19.13

51 −21.77 ±20.26

52 −22.57 ±20.89

53 −23.01 ±17.59

54 −18.60 ±19.18

55 −24.51 ±20.73

56 −21.82 ±21.98

57 −25.54 ±22.72

58 −17.77 ±19.16

59 −26.89 ±20.75

60 −27.12 ±22.32

61 −27.18 ±23.68

62 −28.73 ±24.52

63 −28.63 ±24.89

64 −30.28 ±22.32

Table B.2: 𝑆𝑅 and 𝑆𝐼 intersections of MTSM for orders 46–64.

Tables B.3 and B.4 of generating system of ODEs follow.

199

Generated function Generating ODEs Initial conditions
1. 𝑦1 = 𝑡 𝑦′1 = 1 𝑦1(0) = 0

2. 𝑦1 = 𝑡+ 𝑎 𝑦′1 = 1 𝑦1(0) = 𝑎

3. 𝑦1 = 𝑡2
𝑦′1 = 𝑦2
𝑦′2 = 2

𝑦1(0) = 0
𝑦2(0) = 0

𝑦1 = 𝑦2
𝑦′1 = 𝑦2𝑦

′

𝑦′2 = 2𝑦′
𝑦1(0) = 𝑦20
𝑦2(0) = 2𝑦0

4. 𝑦1 = 𝑡3
𝑦′1 = 𝑦2
𝑦′2 = 𝑦3
𝑦3′ = 6

𝑦1(0) = 0
𝑦2(0) = 0
𝑦3(0) = 0

𝑦1 = 𝑦3
𝑦′1 = 𝑦2𝑦

′

𝑦′2 = 𝑦3𝑦
′

𝑦′3 = 6𝑦′

𝑦1(0) = 𝑦30
𝑦2(0) = 3𝑦20
𝑦3(0) = 6𝑦0

5.
𝑦1 = 𝑡𝑛

𝑛 ∈ N

𝑦′1 = 𝑦2
𝑦′2 = 𝑦3
...
𝑦′𝑛 = 𝑛!

𝑦1(0) = 0
𝑦2(0) = 0
...
𝑦𝑛(0) = 0

𝑦1 = 𝑦𝑛

𝑦′1 = 𝑦2𝑦
′

𝑦′2 = 𝑦3𝑦
′

...
𝑦′𝑛 = 𝑛!𝑦′

𝑦1(0) = 𝑦𝑛0
𝑦2(0) = 𝑛𝑦𝑛−1

0
...
𝑦𝑛(0) = 𝑛!𝑦0

6. 𝑦1 = 𝑒𝑎𝑡 𝑦′1 = 𝑎𝑦1 𝑦1(0) = 1
𝑦1 = 𝑒𝑎𝑦 𝑦′1 = 𝑎𝑦1𝑦

′ 𝑦1(0) = 𝑒𝑎𝑦0

7. 𝑦1 = sin 𝑡
𝑦′1 = 𝑦2
𝑦′2 = −𝑦1

𝑦1(0) = 0
𝑦2(0) = 1

𝑦1 = sin 𝑦
𝑦′1 = 𝑦2𝑦

′

𝑦′2 = −𝑦1𝑦
′

𝑦1(0) = sin 𝑦0
𝑦2(0) = cos 𝑦0

8. 𝑦1 = cos 𝑡
𝑦′1 = 𝑦2
𝑦′2 = −𝑦1

𝑦1(0) = 1
𝑦2(0) = 0

𝑦1 = cos 𝑦
𝑦′1 = 𝑦2𝑦

′

𝑦′2 = −𝑦1𝑦
′

𝑦1(0) = cos 𝑦0
𝑦2(0) = − sin 𝑦0

9. 𝑦1 = tan 𝑡 𝑦′1 = 𝑦′ + 𝑦1𝑦1 𝑦1(0) = 0
𝑦1 = tan 𝑦 𝑦′1 = 𝑦′ + 𝑦1𝑦1𝑦

′ 𝑦1(0) = tan 𝑦0

10. 𝑦1 = cot (𝑡+ 𝑎) 𝑦′1 = −(1 + 𝑦1𝑦1) 𝑦1(0) = cot 𝑎
𝑦1 = cot (𝑦 + 𝑎) 𝑦′1 = −(𝑦′ + 𝑦1𝑦1𝑦

′) 𝑦1(0) = cot (𝑦0 + 𝑎)

Table B.3: Tables of generating system of ODEs.

200

Generated function Generating ODEs Initial conditions

11. 𝑦1 =
√
𝑡+ 𝑎 𝑦′1 =

1
2

1
𝑦1

𝑦1(0) =
√
𝑎

𝑦1 =
√
𝑦 + 𝑎 𝑦′1 =

1
2

1
𝑦1
𝑦′ 𝑦1(0) =

√
𝑦0 + 𝑎

12. 𝑦1 =
3
√
𝑡+ 𝑎

𝑦′1 =
1
3

1
𝑦2

𝑦′2 = 𝑦3𝑦
′
1

𝑦′3 = 2𝑦′1

𝑦1(0) = 3
√
𝑎

𝑦2(0) = (𝑦0 + 𝑎)
2
3

𝑦3(0) = 2 3
√
𝑦0 + 𝑎

𝑦1 = 3
√
𝑦 + 𝑎

𝑦′1 =
1
3

1
𝑦2
𝑦′

𝑦′2 = 𝑦3𝑦
′
1

𝑦′3 = 2𝑦′1

𝑦1(0) = 3
√
𝑦0 + 𝑎

𝑦2(0) = (𝑦0 + 𝑎)
2
3

𝑦3(0) = 2 3
√
𝑦0 + 𝑎

13. 𝑦1 =
𝑛
√
𝑡+ 𝑎

𝑦′1 =
1
𝑛

1
𝑦2

𝑦′2 = 𝑦3𝑦
′
1

𝑦′3 = 𝑦4𝑦
′
1

...
𝑦′𝑛 = (𝑛− 1)!𝑦′1

𝑦1(0) = 𝑛
√
𝑎

𝑦2(0) = 𝑎
𝑛−1
𝑛

𝑦3(0) = (𝑛− 1)𝑎
𝑛−2
𝑛

...
𝑦𝑛(0) = (𝑛− 1)!𝑎

1
𝑛

𝑦1 = 𝑛
√
𝑦 + 𝑎

𝑦′1 =
1
𝑛

1
𝑦2
𝑦′

𝑦′2 = 𝑦3𝑦
′
1

𝑦′3 = 𝑦4𝑦
′
1

...
𝑦′𝑛 = (𝑛− 1)!𝑦′1

𝑦1(0) = 𝑛
√
𝑦0 + 𝑎

𝑦2(0) = (𝑦0 + 𝑎)
𝑛−1
𝑛

𝑦3(0) = (𝑛− 1)(𝑦0 + 𝑎)
𝑛−1
𝑛

...
𝑦𝑛(0) = (𝑛− 1)!(𝑦0 + 𝑎)

1
𝑛

14.
𝑦1 = (𝑡+ 𝑎)2

𝑛 ∈ R
𝑦′1 = 𝑛𝑦2𝑦1
𝑦′2 = −𝑦2𝑦2

𝑦1(0) = 𝑎𝑛

𝑦2(0) =
1
𝑎

𝑦1 = (𝑦 + 𝑎)2
𝑦′1 = 𝑛𝑦2𝑦1𝑦

′

𝑦′2 = −𝑦2𝑦2𝑦
′

𝑦1(0) = (𝑦0 + 𝑎)𝑛

𝑦2(0) =
1

𝑦0+𝑎

15. 𝑦1 = ln(𝑡+ 𝑎)
𝑦′1 = 𝑦2
𝑦′2 = −𝑦2𝑦2

𝑦1(0) = ln 𝑎
𝑦2(0) =

1
𝑎

𝑦1 = ln(𝑦 + 𝑎) 𝑦′1 =
𝑦′

𝑦 𝑦1(0) = ln(𝑦0 + 𝑎)

Table B.4: Continued: Tables of generating system of ODEs.

201

Appendix C

Results

This chapter contains tables for each numerical experiment, specifically tables for the av-
erage time, parallel efficiency, speedup, speedup against the TSRK5DP solver, and for
information about the input data.

Table cells where the parallel efficiency is greater than or equal to 50% are marked in
bold. Also, the cells of the table showing the speedup ratio with respect to the TSRK5DP
solver where 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = TSRK5DP/solver ≫ 1 indicates significantly faster computation
using the given solver, are marked in bold.

202

C.1 Heat equation – three-point central difference formula
Subsections C.1.1–C.1.5 provide numerical results for 𝑆 = 128000, 𝑆 = 256000, 𝑆 = 512000,
𝑆 = 1024000, and 𝑆 = 2048000, respectively.

C.1.1 𝑆 = 128000, three-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 2.32 0.81 0.53 0.41 0.35 0.30 0.28 0.26
MTSM 7.49 5.33 4.42 4.23 4.01 4.26 4.29 4.82
TSRK5DP 5.59 3.21 2.37 2.05 1.84 1.74 1.55 1.57
TSRK8VR 9.04 4.87 3.59 3.29 2.71 2.33 2.19 2.09

324 360 396 432 468 504 540 576
MTSM_PRECALC 0.24 0.24 0.28 0.21 0.20 0.27 0.19 0.19
MTSM 4.76 5.09 5.00 4.51 4.90 5.10 5.13 4.80
TSRK5DP 1.58 1.63 1.36 1.35 1.29 1.23 1.25 1.25
TSRK8VR 2.04 1.90 1.78 1.80 1.75 1.91 1.66 1.77

612 648 684 720 756 792 828 864
MTSM_PRECALC 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.11
MTSM 5.70 5.98 7.21 8.91 8.70 7.94 7.13 6.82
TSRK5DP 1.40 1.16 1.29 1.38 1.15 1.23 1.29 1.24
TSRK8VR 1.78 1.60 1.60 1.55 1.66 1.64 1.51 1.60

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.17 0.11 0.11 0.16 0.16 0.11 0.11 0.11
MTSM 7.63 6.53 5.80 5.69 6.48 5.89 6.16 5.23
TSRK5DP 1.38 1.23 1.24 1.42 1.45 1.38 1.47 1.29
TSRK8VR 1.81 2.24 1.86 1.73 1.70 1.74 1.64 1.63

Table C.1: Average time, 𝑆 = 128000, heat equation, three-point central difference formula.

203

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 144.06 146.86 141.65 133.78 126.94 118.04 111.95
MTSM 100.00 70.25 56.53 44.25 37.33 29.28 24.96 19.42
TSRK5DP 100.00 87.14 78.65 68.21 60.67 53.40 51.59 44.43
TSRK8VR 100.00 92.89 83.86 68.73 66.64 64.78 58.97 54.21

324 360 396 432 468 504 540 576
MTSM_PRECALC 105.77 95.91 74.47 91.39 87.37 60.55 80.00 75.90
MTSM 17.48 14.72 13.61 13.85 11.76 10.49 9.72 9.75
TSRK5DP 39.28 34.34 37.28 34.59 33.38 32.47 29.71 28.03
TSRK8VR 49.33 47.67 46.09 41.91 39.79 33.78 36.35 32.00

612 648 684 720 756 792 828 864
MTSM_PRECALC 102.39 99.81 93.64 89.07 84.08 89.98 81.21 85.98
MTSM 7.72 6.96 5.47 4.20 4.10 4.29 4.57 4.58
TSRK5DP 23.53 26.67 22.77 20.29 23.09 20.61 18.79 18.74
TSRK8VR 29.84 31.41 29.83 29.16 25.88 25.04 25.98 23.56

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 53.22 82.25 78.84 52.67 49.98 70.18 69.39 64.31
MTSM 3.93 4.41 4.78 4.70 3.98 4.24 3.92 4.47
TSRK5DP 16.19 17.46 16.65 14.04 13.28 13.45 12.29 13.49
TSRK8VR 19.98 15.56 18.04 18.67 18.33 17.29 17.81 17.38

Table C.2: Efficiency, 𝑆 = 128000, heat equation, three-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.88 4.41 5.67 6.69 7.62 8.26 8.96
MTSM 1.00 1.41 1.70 1.77 1.87 1.76 1.75 1.55
TSRK5DP 1.00 1.74 2.36 2.73 3.03 3.20 3.61 3.55
TSRK8VR 1.00 1.86 2.52 2.75 3.33 3.89 4.13 4.34

324 360 396 432 468 504 540 576
MTSM_PRECALC 9.52 9.59 8.19 10.97 11.36 8.48 12.00 12.14
MTSM 1.57 1.47 1.50 1.66 1.53 1.47 1.46 1.56
TSRK5DP 3.54 3.43 4.10 4.15 4.34 4.55 4.46 4.48
TSRK8VR 4.44 4.77 5.07 5.03 5.17 4.73 5.45 5.12

612 648 684 720 756 792 828 864
MTSM_PRECALC 17.41 17.97 17.79 17.81 17.66 19.80 18.68 20.64
MTSM 1.31 1.25 1.04 0.84 0.86 0.94 1.05 1.10
TSRK5DP 4.00 4.80 4.33 4.06 4.85 4.54 4.32 4.50
TSRK8VR 5.07 5.65 5.67 5.83 5.43 5.51 5.98 5.65

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 13.30 21.39 21.29 14.75 14.49 21.05 21.51 20.58
MTSM 0.98 1.15 1.29 1.32 1.16 1.27 1.22 1.43
TSRK5DP 4.05 4.54 4.50 3.93 3.85 4.03 3.81 4.32
TSRK8VR 4.99 4.04 4.87 5.23 5.31 5.19 5.52 5.56

Table C.3: Speedup, 𝑆 = 128000, heat equation, three-point central difference formula.

204

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 2.41 3.98 4.50 5.00 5.31 5.72 5.51 6.07
MTSM 0.75 0.60 0.54 0.48 0.46 0.41 0.36 0.33
TSRK8VR 0.62 0.66 0.66 0.62 0.68 0.75 0.71 0.75

324 360 396 432 468 504 540 576
MTSM_PRECALC 6.48 6.72 4.81 6.36 6.30 4.49 6.48 6.52
MTSM 0.33 0.32 0.27 0.30 0.26 0.24 0.24 0.26
TSRK8VR 0.78 0.86 0.76 0.75 0.74 0.64 0.76 0.71

612 648 684 720 756 792 828 864
MTSM_PRECALC 10.48 9.01 9.90 10.57 8.77 10.51 10.41 11.05
MTSM 0.24 0.19 0.18 0.15 0.13 0.16 0.18 0.18
TSRK8VR 0.78 0.73 0.81 0.89 0.69 0.75 0.85 0.78

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 7.91 11.34 11.40 9.03 9.06 12.56 13.59 11.48
MTSM 0.18 0.19 0.21 0.25 0.22 0.24 0.24 0.25
TSRK8VR 0.76 0.55 0.67 0.82 0.85 0.79 0.89 0.80

Table C.4: Speedup against TSRK5DP, 𝑆 = 128000, heat equation, three-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
5.12 1.02 1.02 383995 2.34𝑒−03 6527299 3.98𝑒−02

Table C.5: Characteristics of input data, 𝑆 = 128000, heat equation, three-point central
difference formula.

C.1.2 𝑆 = 256000, three-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 8.27 2.42 1.45 0.91 0.66 0.54 0.51 0.43
MTSM 13.17 8.46 6.45 5.76 5.36 5.05 5.29 5.18
TSRK5DP 11.63 5.83 4.13 3.40 2.85 2.53 2.30 2.31
TSRK8VR 19.50 9.61 6.54 5.01 4.17 3.71 3.28 3.07

324 360 396 432 468 504 540 576
MTSM_PRECALC 0.39 0.36 0.34 0.35 0.31 0.29 0.28 0.27
MTSM 5.79 5.55 5.62 5.09 5.38 5.95 5.73 5.43
TSRK5DP 2.09 1.92 1.87 1.83 1.84 1.80 1.61 1.55
TSRK8VR 2.92 2.80 2.57 2.48 2.41 2.42 2.36 2.14

612 648 684 720 756 792 828 864
MTSM_PRECALC 0.21 0.25 0.19 0.25 0.18 0.23 0.18 0.21
MTSM 5.78 5.87 5.92 5.85 6.70 6.43 6.18 5.49
TSRK5DP 1.72 1.62 1.60 1.55 1.52 1.52 1.67 1.46
TSRK8VR 2.06 2.06 2.15 2.13 1.99 1.93 2.01 1.97

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.16 0.16 0.19 0.15 0.15 0.17 0.15 0.15
MTSM 5.91 7.11 6.35 6.47 6.24 6.35 8.90 6.49
TSRK5DP 1.42 1.44 1.38 1.35 1.47 1.45 1.40 1.49
TSRK8VR 2.04 1.86 1.85 1.74 1.73 1.89 1.70 1.66

Table C.6: Average time, 𝑆 = 256000, heat equation, three-point central difference formula.

205

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 170.99 190.49 227.43 252.08 254.99 230.85 241.36
MTSM 100.00 77.81 68.12 57.22 49.15 43.48 35.56 31.80
TSRK5DP 100.00 99.79 93.93 85.54 81.49 76.66 72.25 62.81
TSRK8VR 100.00 101.41 99.33 97.36 93.50 87.50 85.05 79.29

324 360 396 432 468 504 540 576
MTSM_PRECALC 238.06 228.55 220.09 195.49 205.44 203.59 199.15 191.99
MTSM 25.26 23.74 21.30 21.56 18.85 15.81 15.33 15.17
TSRK5DP 61.76 60.48 56.40 52.91 48.64 46.15 48.27 47.03
TSRK8VR 74.21 69.64 69.01 65.64 62.17 57.50 55.05 56.82

612 648 684 720 756 792 828 864
MTSM_PRECALC 230.36 185.14 224.17 164.56 214.90 160.58 205.24 161.05
MTSM 13.40 12.47 11.72 11.26 9.36 9.31 9.26 10.00
TSRK5DP 39.84 39.93 38.19 37.60 36.45 34.87 30.31 33.19
TSRK8VR 55.60 52.50 47.76 45.78 46.71 46.04 42.24 41.28

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 201.64 199.06 157.33 191.19 186.90 163.83 177.14 176.99
MTSM 8.92 7.12 7.68 7.27 7.28 6.92 4.77 6.34
TSRK5DP 32.67 30.95 31.31 30.79 27.19 26.66 26.77 24.44
TSRK8VR 38.30 40.36 39.09 39.97 38.94 34.36 36.99 36.70

Table C.7: Efficiency, 𝑆 = 256000, heat equation, three-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 3.42 5.71 9.10 12.60 15.30 16.16 19.31
MTSM 1.00 1.56 2.04 2.29 2.46 2.61 2.49 2.54
TSRK5DP 1.00 2.00 2.82 3.42 4.07 4.60 5.06 5.02
TSRK8VR 1.00 2.03 2.98 3.89 4.67 5.25 5.95 6.34

324 360 396 432 468 504 540 576
MTSM_PRECALC 21.43 22.86 24.21 23.46 26.71 28.50 29.87 30.72
MTSM 2.27 2.37 2.34 2.59 2.45 2.21 2.30 2.43
TSRK5DP 5.56 6.05 6.20 6.35 6.32 6.46 7.24 7.52
TSRK8VR 6.68 6.96 7.59 7.88 8.08 8.05 8.26 9.09

612 648 684 720 756 792 828 864
MTSM_PRECALC 39.16 33.32 42.59 32.91 45.13 35.33 47.21 38.65
MTSM 2.28 2.24 2.23 2.25 1.97 2.05 2.13 2.40
TSRK5DP 6.77 7.19 7.26 7.52 7.65 7.67 6.97 7.96
TSRK8VR 9.45 9.45 9.07 9.16 9.81 10.13 9.72 9.91

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 50.41 51.76 42.48 53.53 54.20 49.15 54.91 56.64
MTSM 2.23 1.85 2.07 2.03 2.11 2.08 1.48 2.03
TSRK5DP 8.17 8.05 8.45 8.62 7.89 8.00 8.30 7.82
TSRK8VR 9.58 10.49 10.55 11.19 11.29 10.31 11.47 11.74

Table C.8: Speedup, 𝑆 = 256000, heat equation, three-point central difference formula.

206

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.41 2.41 2.85 3.74 4.35 4.68 4.49 5.40
MTSM 0.88 0.69 0.64 0.59 0.53 0.50 0.43 0.45
TSRK8VR 0.60 0.61 0.63 0.68 0.68 0.68 0.70 0.75

324 360 396 432 468 504 540 576
MTSM_PRECALC 5.42 5.31 5.49 5.19 5.94 6.20 5.80 5.74
MTSM 0.36 0.35 0.33 0.36 0.34 0.30 0.28 0.28
TSRK8VR 0.72 0.69 0.73 0.74 0.76 0.74 0.68 0.72

612 648 684 720 756 792 828 864
MTSM_PRECALC 8.13 6.52 8.25 6.15 8.29 6.47 9.52 6.82
MTSM 0.30 0.28 0.27 0.26 0.23 0.24 0.27 0.27
TSRK8VR 0.83 0.78 0.75 0.73 0.76 0.79 0.83 0.74

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 8.68 9.04 7.06 8.73 9.66 8.64 9.30 10.18
MTSM 0.24 0.20 0.22 0.21 0.24 0.23 0.16 0.23
TSRK8VR 0.70 0.78 0.74 0.77 0.85 0.77 0.82 0.90

Table C.9: Speedup against TSRK5DP, 𝑆 = 256000, heat equation, three-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
10.24 2.05 2.05 767995 1.17𝑒−03 13055299 1.99𝑒−02

Table C.10: Characteristics of input data, 𝑆 = 256000, heat equation, three-point central
difference formula.

207

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure C.1: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 256000, heat equation, three-point central difference formula.

208

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure C.2: Parallel cost ratio and speedup-cost ratio, 𝑆 = 256000, heat equation, three-
point central difference formula.

209

C.1.3 𝑆 = 512000, three-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 14.12 6.38 3.74 2.51 1.84 1.41 1.14 0.88
MTSM 25.30 13.93 10.26 8.98 7.57 7.05 6.67 6.65
TSRK5DP 32.04 11.53 7.57 6.21 5.22 4.32 3.73 3.37
TSRK8VR 59.47 20.29 12.42 9.52 8.28 6.69 5.67 5.07

324 360 396 432 468 504 540 576
MTSM_PRECALC 0.76 0.66 0.61 0.59 0.51 0.54 0.46 0.47
MTSM 6.97 6.88 6.59 6.05 6.01 6.37 6.75 5.95
TSRK5DP 3.13 3.01 2.92 2.92 2.58 2.40 2.41 2.34
TSRK8VR 4.66 4.37 4.12 3.76 3.62 3.41 3.33 3.31

612 648 684 720 756 792 828 864
MTSM_PRECALC 0.37 0.35 0.34 0.32 0.32 0.35 0.29 0.28
MTSM 6.40 6.34 6.23 6.59 6.81 7.40 6.49 6.02
TSRK5DP 2.08 2.11 2.21 2.09 2.01 2.00 2.13 2.05
TSRK8VR 3.19 3.07 2.92 2.77 2.87 2.85 2.76 2.51

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.28 0.27 0.25 0.25 0.24 0.34 0.23 0.23
MTSM 6.31 6.98 6.59 6.61 6.52 6.87 7.34 6.40
TSRK5DP 1.99 2.05 1.82 1.94 1.80 1.74 1.78 1.72
TSRK8VR 2.52 2.57 3.27 2.54 2.51 2.56 2.50 2.69

Table C.11: Average time, 𝑆 = 512000, heat equation, three-point central difference for-
mula.

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 110.59 125.79 140.84 153.73 166.81 176.70 200.27
MTSM 100.00 90.83 82.19 70.45 66.81 59.79 54.19 47.56
TSRK5DP 100.00 138.98 141.02 128.99 122.67 123.72 122.78 118.75
TSRK8VR 100.00 146.52 159.56 156.22 143.62 148.07 149.94 146.60

324 360 396 432 468 504 540 576
MTSM_PRECALC 207.40 212.57 209.68 199.22 211.02 185.17 205.93 189.67
MTSM 40.33 36.80 34.88 34.87 32.37 28.39 24.99 26.58
TSRK5DP 113.90 106.48 99.83 91.28 95.54 95.25 88.51 85.74
TSRK8VR 141.85 136.19 131.10 131.64 126.42 124.62 119.12 112.17

612 648 684 720 756 792 828 864
MTSM_PRECALC 223.75 223.94 218.97 219.38 209.74 180.97 214.62 212.78
MTSM 23.26 22.17 21.37 19.20 17.68 15.54 16.95 17.50
TSRK5DP 90.80 84.31 76.17 76.59 76.04 72.93 65.47 65.24
TSRK8VR 109.60 107.68 107.08 107.40 98.65 94.79 93.61 98.78

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 204.06 204.38 205.76 202.58 199.64 137.57 197.13 192.54
MTSM 16.04 13.94 14.23 13.66 13.37 12.28 11.12 12.36
TSRK5DP 64.26 60.16 65.02 58.91 61.24 61.40 58.06 58.08
TSRK8VR 94.47 89.13 67.38 83.65 81.61 77.55 76.68 69.02

Table C.12: Efficiency, 𝑆 = 512000, heat equation, three-point central difference formula.

210

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.21 3.77 5.63 7.69 10.01 12.37 16.02
MTSM 1.00 1.82 2.47 2.82 3.34 3.59 3.79 3.80
TSRK5DP 1.00 2.78 4.23 5.16 6.13 7.42 8.59 9.50
TSRK8VR 1.00 2.93 4.79 6.25 7.18 8.88 10.50 11.73

324 360 396 432 468 504 540 576
MTSM_PRECALC 18.67 21.26 23.07 23.91 27.43 25.92 30.89 30.35
MTSM 3.63 3.68 3.84 4.18 4.21 3.97 3.75 4.25
TSRK5DP 10.25 10.65 10.98 10.95 12.42 13.33 13.28 13.72
TSRK8VR 12.77 13.62 14.42 15.80 16.43 17.45 17.87 17.95

612 648 684 720 756 792 828 864
MTSM_PRECALC 38.04 40.31 41.60 43.88 44.05 39.81 49.36 51.07
MTSM 3.95 3.99 4.06 3.84 3.71 3.42 3.90 4.20
TSRK5DP 15.44 15.18 14.47 15.32 15.97 16.05 15.06 15.66
TSRK8VR 18.63 19.38 20.35 21.48 20.72 20.85 21.53 23.71

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 51.02 53.14 55.55 56.72 57.90 41.27 61.11 61.61
MTSM 4.01 3.62 3.84 3.83 3.88 3.68 3.45 3.96
TSRK5DP 16.07 15.64 17.56 16.49 17.76 18.42 18.00 18.59
TSRK8VR 23.62 23.17 18.19 23.42 23.67 23.27 23.77 22.09

Table C.13: Speedup, 𝑆 = 512000, heat equation, three-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 2.27 1.81 2.02 2.48 2.84 3.06 3.26 3.83
MTSM 1.27 0.83 0.74 0.69 0.69 0.61 0.56 0.51
TSRK8VR 0.54 0.57 0.61 0.65 0.63 0.64 0.66 0.67

324 360 396 432 468 504 540 576
MTSM_PRECALC 4.13 4.53 4.76 4.95 5.01 4.41 5.28 5.02
MTSM 0.45 0.44 0.44 0.48 0.43 0.38 0.36 0.39
TSRK8VR 0.67 0.69 0.71 0.78 0.71 0.70 0.73 0.70

612 648 684 720 756 792 828 864
MTSM_PRECALC 5.59 6.03 6.52 6.50 6.26 5.63 7.44 7.40
MTSM 0.32 0.33 0.36 0.32 0.29 0.27 0.33 0.34
TSRK8VR 0.65 0.69 0.76 0.76 0.70 0.70 0.77 0.82

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 7.20 7.71 7.18 7.80 7.40 5.08 7.70 7.52
MTSM 0.32 0.29 0.28 0.29 0.28 0.25 0.24 0.27
TSRK8VR 0.79 0.80 0.56 0.76 0.72 0.68 0.71 0.64

Table C.14: Speedup against TSRK5DP, 𝑆 = 512000, heat equation, three-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
20.48 4.10 4.10 1535995 5.86𝑒−04 26111299 9.96𝑒−03

Table C.15: Characteristics of input data, 𝑆 = 512000, heat equation, three-point central
difference formula.

211

C.1.4 𝑆 = 1024000, three-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 30.51 14.49 9.01 6.35 4.77 3.78 3.10 2.51
MTSM 53.73 26.45 18.15 14.27 12.37 11.10 10.35 9.52
TSRK5DP 97.70 33.48 17.22 12.40 9.36 7.77 6.98 6.15
TSRK8VR 163.04 62.33 34.23 20.95 15.59 13.48 11.11 9.91

324 360 396 432 468 504 540 576
MTSM_PRECALC 2.13 1.86 1.74 1.49 1.38 1.15 1.02 0.94
MTSM 9.69 10.11 9.24 8.05 8.29 8.68 8.11 7.57
TSRK5DP 6.11 5.29 4.84 4.39 4.25 3.98 5.65 3.67
TSRK8VR 9.79 9.22 7.69 6.76 6.30 6.02 6.17 5.47

612 648 684 720 756 792 828 864
MTSM_PRECALC 0.75 0.72 0.68 0.80 0.61 0.62 0.59 0.52
MTSM 7.92 7.87 8.39 7.95 8.00 7.85 7.82 7.47
TSRK5DP 3.61 3.29 3.28 3.13 3.14 3.70 2.97 3.07
TSRK8VR 5.32 4.90 7.24 4.66 4.49 4.48 4.21 3.93

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.49 0.47 0.46 0.57 0.44 0.43 0.47 0.44
MTSM 7.90 7.93 7.69 8.18 8.04 7.66 7.84 7.29
TSRK5DP 2.82 2.86 2.82 2.73 3.39 3.46 2.66 2.34
TSRK8VR 4.06 4.04 4.55 3.53 3.70 3.56 3.54 3.37

Table C.16: Average time, 𝑆 = 1024000, heat equation, three-point central difference for-
mula

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 105.32 112.87 120.16 127.88 134.46 140.79 151.70
MTSM 100.00 101.55 98.66 94.09 86.88 80.69 74.19 70.56
TSRK5DP 100.00 145.91 189.13 197.04 208.65 209.65 199.86 198.63
TSRK8VR 100.00 130.78 158.76 194.52 209.16 201.52 209.71 205.57

324 360 396 432 468 504 540 576
MTSM_PRECALC 159.27 163.68 158.99 170.76 170.60 189.40 198.99 202.25
MTSM 61.62 53.16 52.89 55.64 49.85 44.23 44.19 44.34
TSRK5DP 177.61 184.79 183.69 185.38 176.82 175.14 115.22 166.60
TSRK8VR 185.06 176.92 192.62 201.05 198.92 193.43 176.24 186.28

612 648 684 720 756 792 828 864
MTSM_PRECALC 238.39 235.29 235.51 191.76 238.54 225.05 223.24 244.83
MTSM 39.92 37.93 33.71 33.81 31.99 31.11 29.88 29.97
TSRK5DP 159.28 164.96 156.73 156.16 148.07 119.98 142.96 132.70
TSRK8VR 180.16 184.97 118.44 174.91 172.83 165.55 168.26 173.08

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 247.77 247.32 246.18 190.11 240.78 236.56 210.94 219.01
MTSM 27.22 26.07 25.89 23.47 23.03 23.38 22.10 23.03
TSRK5DP 138.58 131.36 128.46 127.74 99.49 94.10 118.37 130.39
TSRK8VR 160.45 155.24 132.60 164.91 151.92 152.76 148.54 150.97

Table C.17: Efficiency, 𝑆 = 1024000, heat equation, three-point central difference formula

212

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.11 3.39 4.81 6.39 8.07 9.86 12.14
MTSM 1.00 2.03 2.96 3.76 4.34 4.84 5.19 5.64
TSRK5DP 1.00 2.92 5.67 7.88 10.43 12.58 13.99 15.89
TSRK8VR 1.00 2.62 4.76 7.78 10.46 12.09 14.68 16.45

324 360 396 432 468 504 540 576
MTSM_PRECALC 14.33 16.37 17.49 20.49 22.18 26.52 29.85 32.36
MTSM 5.55 5.32 5.82 6.68 6.48 6.19 6.63 7.09
TSRK5DP 15.98 18.48 20.21 22.25 22.99 24.52 17.28 26.66
TSRK8VR 16.66 17.69 21.19 24.13 25.86 27.08 26.44 29.81

612 648 684 720 756 792 828 864
MTSM_PRECALC 40.53 42.35 44.75 38.35 50.09 49.51 51.34 58.76
MTSM 6.79 6.83 6.40 6.76 6.72 6.84 6.87 7.19
TSRK5DP 27.08 29.69 29.78 31.23 31.09 26.40 32.88 31.85
TSRK8VR 30.63 33.29 22.50 34.98 36.29 36.42 38.70 41.54

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 61.94 64.30 66.47 53.23 69.83 70.97 65.39 70.08
MTSM 6.80 6.78 6.99 6.57 6.68 7.01 6.85 7.37
TSRK5DP 34.64 34.15 34.69 35.77 28.85 28.23 36.70 41.73
TSRK8VR 40.11 40.36 35.80 46.18 44.06 45.83 46.05 48.31

Table C.18: Speedup, 𝑆 = 1024000, heat equation, three-point central difference formula

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 3.20 2.31 1.91 1.95 1.96 2.05 2.26 2.45
MTSM 1.82 1.27 0.95 0.87 0.76 0.70 0.68 0.65
TSRK5DP - - - - - - - -
TSRK8VR 0.60 0.54 0.50 0.59 0.60 0.58 0.63 0.62

324 360 396 432 468 504 540 576
MTSM_PRECALC 2.87 2.84 2.77 2.95 3.09 3.46 5.53 3.89
MTSM 0.63 0.52 0.52 0.55 0.51 0.46 0.70 0.48
TSRK5DP - - - - - - - -
TSRK8VR 0.62 0.57 0.63 0.65 0.67 0.66 0.92 0.67

612 648 684 720 756 792 828 864
MTSM_PRECALC 4.79 4.57 4.81 3.93 5.16 6.01 5.00 5.91
MTSM 0.46 0.42 0.39 0.39 0.39 0.47 0.38 0.41
TSRK5DP - - - - - - - -
TSRK8VR 0.68 0.67 0.45 0.67 0.70 0.83 0.71 0.78

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 5.72 6.03 6.14 4.77 7.75 8.05 5.71 5.38
MTSM 0.36 0.36 0.37 0.33 0.42 0.45 0.34 0.32
TSRK5DP - - - - - - - -
TSRK8VR 0.69 0.71 0.62 0.77 0.92 0.97 0.75 0.69

Table C.19: Speedup against TSRK5DP, 𝑆 = 1024000, heat equation, three-point central
difference formula

213

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
40.96 8.19 8.19 3071995 2.93𝑒−04 52223299 4.98𝑒−03

Table C.20: Characteristics of input data, 𝑆 = 1024000, heat equation, three-point central
difference formula

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure C.3: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 1024000, heat equation, three-point central difference formula.

214

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure C.4: Parallel cost ratio and speedup-cost ratio, 𝑆 = 1024000, heat equation, three-
point central difference formula.

215

C.1.5 𝑆 = 2048000, three-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 62.53 30.74 19.68 14.60 11.13 9.05 7.55 6.45
MTSM 137.94 55.48 36.29 27.46 21.93 19.52 16.94 15.89
TSRK5DP 240.86 100.26 52.41 33.35 23.43 17.63 14.74 12.57
TSRK8VR 389.80 166.96 94.19 62.15 46.00 35.27 26.74 22.42

324 360 396 432 468 504 540 576
MTSM_PRECALC 5.72 4.95 4.47 3.90 3.72 3.29 2.90 2.62
MTSM 15.30 14.01 13.27 12.73 12.05 11.90 11.69 10.40
TSRK5DP 10.92 9.72 9.37 8.35 7.76 7.36 7.17 6.73
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 2.42 2.18 2.00 1.98 1.79 1.67 1.60 1.58
MTSM 10.87 11.26 10.86 10.19 10.47 10.34 9.83 9.55
TSRK5DP 6.29 5.92 6.36 5.73 5.07 5.17 4.88 5.74
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 1.44 1.59 1.32 1.29 1.08 1.05 0.94 0.94
MTSM 10.45 9.79 11.68 9.68 9.76 9.28 9.55 9.65
TSRK5DP 4.95 4.53 4.32 4.21 4.98 5.09 3.93 4.02
TSRK8VR - - - - - - - -

Table C.21: Average time, 𝑆 = 2048000, heat equation, three-point central difference for-
mula.

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 101.71 105.92 107.09 112.36 115.11 118.30 121.11
MTSM 100.00 124.32 126.70 125.59 125.79 117.78 116.35 108.48
TSRK5DP 100.00 120.12 153.20 180.57 205.57 227.73 233.45 239.59
TSRK8VR 100.00 116.73 137.94 156.80 169.47 184.18 208.26 217.31

324 360 396 432 468 504 540 576
MTSM_PRECALC 121.46 126.33 127.20 133.56 129.38 135.91 143.64 149.06
MTSM 100.15 98.44 94.51 90.31 88.06 82.81 78.65 82.87
TSRK5DP 245.11 247.82 233.79 240.52 238.88 233.64 224.07 223.62
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 152.18 159.45 164.56 157.86 166.68 170.28 169.85 164.67
MTSM 74.62 68.05 66.83 67.69 62.74 60.63 60.99 60.20
TSRK5DP 225.28 225.91 199.41 210.18 226.15 211.66 214.76 174.93
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 173.96 150.88 175.20 173.31 199.50 198.77 214.62 207.10
MTSM 52.78 54.18 43.74 50.90 48.74 49.53 46.59 44.68
TSRK5DP 194.56 204.38 206.49 204.23 166.65 157.61 197.93 187.16
TSRK8VR - - - - - - - -

Table C.22: Efficiency, 𝑆 = 2048000, heat equation, three-point central difference formula.

216

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.03 3.18 4.28 5.62 6.91 8.28 9.69
MTSM 1.00 2.49 3.80 5.02 6.29 7.07 8.14 8.68
TSRK5DP 1.00 2.40 4.60 7.22 10.28 13.66 16.34 19.17
TSRK8VR 1.00 2.33 4.14 6.27 8.47 11.05 14.58 17.38

324 360 396 432 468 504 540 576
MTSM_PRECALC 10.93 12.63 13.99 16.03 16.82 19.03 21.55 23.85
MTSM 9.01 9.84 10.40 10.84 11.45 11.59 11.80 13.26
TSRK5DP 22.06 24.78 25.72 28.86 31.05 32.71 33.61 35.78
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 25.87 28.70 31.27 31.57 35.00 37.46 39.07 39.52
MTSM 12.69 12.25 12.70 13.54 13.18 13.34 14.03 14.45
TSRK5DP 38.30 40.66 37.89 42.04 47.49 46.57 49.39 41.98
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 43.49 39.23 47.30 48.53 57.85 59.63 66.53 66.27
MTSM 13.19 14.09 11.81 14.25 14.14 14.86 14.44 14.30
TSRK5DP 48.64 53.14 55.75 57.18 48.33 47.28 61.36 59.89
TSRK8VR - - - - - - - -

Table C.23: Speedup, 𝑆 = 2048000, heat equation, three-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 3.85 3.26 2.66 2.28 2.11 1.95 1.95 1.95
MTSM 1.75 1.81 1.44 1.21 1.07 0.90 0.87 0.79
TSRK8VR 0.62 0.60 0.56 0.54 0.51 0.50 0.55 0.56

324 360 396 432 468 504 540 576
MTSM_PRECALC 1.91 1.96 2.10 2.14 2.09 2.24 2.47 2.57
MTSM 0.71 0.69 0.71 0.66 0.64 0.62 0.61 0.65
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 2.60 2.72 3.18 2.89 2.84 3.10 3.05 3.63
MTSM 0.58 0.53 0.59 0.56 0.48 0.50 0.50 0.60
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 3.44 2.84 3.27 3.27 4.61 4.86 4.18 4.26
MTSM 0.47 0.46 0.37 0.44 0.51 0.55 0.41 0.42
TSRK8VR - - - - - - - -

Table C.24: Speedup against TSRK5DP, 𝑆 = 2048000, heat equation, three-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
81.92 16.38 16.38 6143995 1.46𝑒−04 104447299 2.49𝑒−03

Table C.25: Characteristics of input data, 𝑆 = 2048000, heat equation, three-point central
difference formula

217

C.2 Heat equation – five-point central difference formula
Subsections C.2.1–C.2.5 show numerical results for 𝑆 = 128000, 𝑆 = 256000, 𝑆 = 512000,
𝑆 = 1024000, and 𝑆 = 2048000, respectively.

C.2.1 𝑆 = 128000, five-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 2.35 0.80 0.53 0.41 0.37 0.31 0.28 0.26
MTSM 5.34 3.74 3.18 2.92 3.10 2.80 2.98 3.09
TSRK5DP 4.17 2.39 1.79 1.49 1.42 1.24 1.40 1.08
TSRK8VR 6.78 3.61 2.72 2.21 1.91 1.95 1.61 1.54

324 360 396 432 468 504 540 576
MTSM_PRECALC 0.24 0.27 0.22 0.21 0.21 0.21 0.21 0.22
MTSM 3.51 3.48 3.57 3.05 3.31 3.42 3.90 3.53
TSRK5DP 1.27 1.09 1.22 1.09 0.96 0.93 0.93 1.04
TSRK8VR 1.60 1.43 1.44 1.36 1.34 1.33 1.26 1.22

612 648 684 720 756 792 828 864
MTSM_PRECALC 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12
MTSM 3.90 4.32 5.15 6.24 6.31 5.78 5.28 4.64
TSRK5DP 0.93 0.89 0.95 0.90 0.99 1.08 1.01 1.01
TSRK8VR 1.22 1.16 1.29 1.19 1.13 1.11 1.15 1.08

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.12 0.11 0.11 0.14 0.11 0.11 0.11 0.12
MTSM 5.09 4.60 4.51 4.50 4.75 4.44 4.25 4.06
TSRK5DP 0.86 0.96 0.93 0.87 1.05 0.87 0.95 0.97
TSRK8VR 1.19 1.21 1.10 1.07 1.19 1.08 1.05 1.05

Table C.26: Average time, 𝑆 = 128000, heat equation, five-point central difference formula.

218

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 147.68 148.80 144.28 128.08 125.71 119.78 113.49
MTSM 100.00 71.42 56.06 45.73 34.52 31.84 25.66 21.60
TSRK5DP 100.00 87.41 77.78 69.79 58.77 55.90 42.53 48.25
TSRK8VR 100.00 93.97 83.07 76.75 71.12 58.02 60.21 55.00

324 360 396 432 468 504 540 576
MTSM_PRECALC 107.95 85.99 97.11 92.40 87.75 79.69 74.20 68.09
MTSM 16.93 15.35 13.59 14.60 12.43 11.15 9.14 9.45
TSRK5DP 36.63 38.26 30.97 32.00 33.44 32.05 29.75 24.97
TSRK8VR 47.19 47.29 42.83 41.58 38.82 36.37 35.86 34.85

612 648 684 720 756 792 828 864
MTSM_PRECALC 102.70 99.72 97.59 95.18 93.19 88.15 88.70 80.65
MTSM 8.06 6.87 5.46 4.28 4.03 4.20 4.40 4.80
TSRK5DP 26.25 26.15 23.08 23.18 20.15 17.57 17.95 17.13
TSRK8VR 32.69 32.35 27.71 28.39 28.45 27.65 25.71 26.23

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 79.68 83.51 77.78 58.14 74.41 69.18 68.74 60.07
MTSM 4.20 4.47 4.39 4.24 3.88 4.01 4.06 4.11
TSRK5DP 19.33 16.72 16.53 17.03 13.75 16.07 14.20 13.44
TSRK8VR 22.77 21.55 22.84 22.64 19.66 20.84 20.80 20.22

Table C.27: Efficiency, 𝑆 = 128000, heat equation, five-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.95 4.46 5.77 6.40 7.54 8.38 9.08
MTSM 1.00 1.43 1.68 1.83 1.73 1.91 1.80 1.73
TSRK5DP 1.00 1.75 2.33 2.79 2.94 3.35 2.98 3.86
TSRK8VR 1.00 1.88 2.49 3.07 3.56 3.48 4.21 4.40

324 360 396 432 468 504 540 576
MTSM_PRECALC 9.72 8.60 10.68 11.09 11.41 11.16 11.13 10.89
MTSM 1.52 1.53 1.50 1.75 1.62 1.56 1.37 1.51
TSRK5DP 3.30 3.83 3.41 3.84 4.35 4.49 4.46 4.00
TSRK8VR 4.25 4.73 4.71 4.99 5.05 5.09 5.38 5.58

612 648 684 720 756 792 828 864
MTSM_PRECALC 17.46 17.95 18.54 19.04 19.57 19.39 20.40 19.36
MTSM 1.37 1.24 1.04 0.86 0.85 0.92 1.01 1.15
TSRK5DP 4.46 4.71 4.39 4.64 4.23 3.87 4.13 4.11
TSRK8VR 5.56 5.82 5.27 5.68 5.97 6.08 5.91 6.30

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 19.92 21.71 21.00 16.28 21.58 20.75 21.31 19.22
MTSM 1.05 1.16 1.19 1.19 1.13 1.20 1.26 1.31
TSRK5DP 4.83 4.35 4.46 4.77 3.99 4.82 4.40 4.30
TSRK8VR 5.69 5.60 6.17 6.34 5.70 6.25 6.45 6.47

Table C.28: Speedup, 𝑆 = 128000, heat equation, five-point central difference formula.

219

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.78 3.00 3.40 3.67 3.87 3.99 5.00 4.18
MTSM 0.78 0.64 0.56 0.51 0.46 0.44 0.47 0.35
TSRK8VR 0.62 0.66 0.66 0.68 0.74 0.64 0.87 0.70

324 360 396 432 468 504 540 576
MTSM_PRECALC 5.23 3.99 5.57 5.13 4.66 4.41 4.43 4.84
MTSM 0.36 0.31 0.34 0.36 0.29 0.27 0.24 0.30
TSRK8VR 0.79 0.76 0.85 0.80 0.71 0.70 0.74 0.86

612 648 684 720 756 792 828 864
MTSM_PRECALC 6.95 6.77 7.51 7.29 8.21 8.91 8.77 8.36
MTSM 0.24 0.21 0.18 0.14 0.16 0.19 0.19 0.22
TSRK8VR 0.77 0.76 0.74 0.75 0.87 0.97 0.88 0.94

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 7.32 8.87 8.36 6.06 9.61 7.64 8.59 7.93
MTSM 0.17 0.21 0.21 0.19 0.22 0.19 0.22 0.24
TSRK8VR 0.72 0.79 0.85 0.82 0.88 0.80 0.90 0.93

Table C.29: Speedup against TSRK5DP, 𝑆 = 128000, heat equation, five-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
5.12 1.02 1.02 383995 2.34𝑒−03 6527299 3.98𝑒−02

Table C.30: Characteristics of input data, 𝑆 = 128000, heat equation, five-point central
difference formula.

C.2.2 𝑆 = 256000, five-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 6.22 2.34 1.38 0.83 0.65 0.55 0.47 0.42
MTSM 9.23 5.86 4.81 3.96 3.92 3.60 3.51 3.48
TSRK5DP 8.83 4.46 3.25 2.56 2.08 1.87 1.70 1.55
TSRK8VR 15.27 7.25 4.68 3.69 3.12 2.84 2.54 2.28

324 360 396 432 468 504 540 576
MTSM_PRECALC 0.39 0.38 0.35 0.44 0.31 0.41 0.35 0.32
MTSM 3.85 3.79 3.76 3.48 3.94 4.09 3.88 3.44
TSRK5DP 1.50 1.58 1.39 1.30 1.61 1.39 1.16 1.29
TSRK8VR 2.12 2.18 1.95 1.79 1.90 1.74 1.63 1.60

612 648 684 720 756 792 828 864
MTSM_PRECALC 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.17
MTSM 3.97 4.02 4.06 4.11 3.94 4.30 4.23 3.79
TSRK5DP 1.13 1.24 1.15 1.17 1.12 1.23 1.19 1.03
TSRK8VR 1.54 1.65 1.50 1.54 2.16 1.56 1.45 1.55

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.14
MTSM 4.35 4.29 4.48 4.20 4.67 4.29 4.41 4.29
TSRK5DP 1.17 1.42 1.32 1.43 1.16 1.04 1.05 1.09
TSRK8VR 1.41 2.04 1.42 1.40 1.41 1.42 1.94 1.44

Table C.31: Average time, 𝑆 = 256000, heat equation, five-point central difference formula.

220

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 132.90 150.90 186.73 192.52 189.79 190.89 185.08
MTSM 100.00 78.83 64.03 58.21 47.13 42.79 37.59 33.15
TSRK5DP 100.00 99.00 90.66 86.19 84.98 78.65 74.12 71.02
TSRK8VR 100.00 105.30 108.81 103.44 97.95 89.70 85.97 83.82

324 360 396 432 468 504 540 576
MTSM_PRECALC 177.53 165.66 163.11 118.32 156.89 108.44 117.06 123.02
MTSM 26.63 24.34 22.32 22.09 18.02 16.13 15.84 16.77
TSRK5DP 65.59 55.86 57.81 56.40 42.26 45.41 50.72 42.94
TSRK8VR 79.88 70.18 71.03 70.99 61.95 62.87 62.44 59.64

612 648 684 720 756 792 828 864
MTSM_PRECALC 171.13 171.41 168.48 162.72 161.08 157.65 156.37 150.97
MTSM 13.66 12.74 11.96 11.23 11.17 9.76 9.50 10.15
TSRK5DP 46.03 39.42 40.24 37.83 37.39 32.73 32.27 35.65
TSRK8VR 58.53 51.49 53.47 49.43 33.64 44.57 45.74 41.08

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 152.15 148.23 145.81 142.58 139.30 137.81 135.73 134.17
MTSM 8.50 8.28 7.63 7.85 6.82 7.18 6.76 6.73
TSRK5DP 30.16 23.90 24.70 22.06 26.17 28.40 27.24 25.40
TSRK8VR 43.18 28.80 39.70 39.01 37.27 35.83 25.45 33.06

Table C.32: Efficiency, 𝑆 = 256000, heat equation, five-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.66 4.53 7.47 9.63 11.39 13.36 14.81
MTSM 1.00 1.58 1.92 2.33 2.36 2.57 2.63 2.65
TSRK5DP 1.00 1.98 2.72 3.45 4.25 4.72 5.19 5.68
TSRK8VR 1.00 2.11 3.26 4.14 4.90 5.38 6.02 6.71

324 360 396 432 468 504 540 576
MTSM_PRECALC 15.98 16.57 17.94 14.20 20.40 15.18 17.56 19.68
MTSM 2.40 2.43 2.45 2.65 2.34 2.26 2.38 2.68
TSRK5DP 5.90 5.59 6.36 6.77 5.49 6.36 7.61 6.87
TSRK8VR 7.19 7.02 7.81 8.52 8.05 8.80 9.37 9.54

612 648 684 720 756 792 828 864
MTSM_PRECALC 29.09 30.85 32.01 32.54 33.83 34.68 35.96 36.23
MTSM 2.32 2.29 2.27 2.25 2.35 2.15 2.18 2.44
TSRK5DP 7.83 7.10 7.65 7.57 7.85 7.20 7.42 8.56
TSRK8VR 9.95 9.27 10.16 9.89 7.06 9.80 10.52 9.86

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 38.04 38.54 39.37 39.92 40.40 41.34 42.07 42.93
MTSM 2.12 2.15 2.06 2.20 1.98 2.15 2.10 2.15
TSRK5DP 7.54 6.21 6.67 6.18 7.59 8.52 8.45 8.13
TSRK8VR 10.79 7.49 10.72 10.92 10.81 10.75 7.89 10.58

Table C.33: Speedup, 𝑆 = 256000, heat equation, five-point central difference formula.

221

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.42 1.90 2.36 3.07 3.21 3.42 3.65 3.70
MTSM 0.96 0.76 0.68 0.65 0.53 0.52 0.49 0.45
TSRK8VR 0.58 0.61 0.69 0.69 0.67 0.66 0.67 0.68

324 360 396 432 468 504 540 576
MTSM_PRECALC 3.84 4.21 4.00 2.98 5.27 3.39 3.27 4.06
MTSM 0.39 0.42 0.37 0.37 0.41 0.34 0.30 0.37
TSRK8VR 0.70 0.73 0.71 0.73 0.85 0.80 0.71 0.80

612 648 684 720 756 792 828 864
MTSM_PRECALC 5.27 6.17 5.94 6.10 6.11 6.83 6.87 6.01
MTSM 0.28 0.31 0.28 0.28 0.29 0.29 0.28 0.27
TSRK8VR 0.73 0.76 0.77 0.76 0.52 0.79 0.82 0.67

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 7.15 8.80 8.37 9.17 7.55 6.88 7.07 7.49
MTSM 0.27 0.33 0.30 0.34 0.25 0.24 0.24 0.25
TSRK8VR 0.83 0.70 0.93 1.02 0.82 0.73 0.54 0.75

Table C.34: Speedup against TSRK5DP, 𝑆 = 256000, heat equation, five-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
10.24 2.05 2.05 767995 1.17𝑒−03 13055299 1.99𝑒−02

Table C.35: Characteristics of input data, 𝑆 = 256000, heat equation, five-point central
difference formula.

222

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure C.5: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 256000, heat equation, five-point central difference formula.

223

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure C.6: Parallel cost ratio and speedup-cost ratio, 𝑆 = 256000, heat equation, five-point
central difference formula.

224

C.2.3 𝑆 = 521000, five-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 29.84 14.00 8.78 6.15 4.82 3.93 3.11 2.61
MTSM 27.21 14.13 10.29 8.72 7.98 7.02 6.65 6.52
TSRK5DP 38.83 12.50 8.03 5.96 5.02 4.22 3.97 3.45
TSRK8VR 69.24 23.85 12.74 9.76 8.11 6.77 5.91 5.15

324 360 396 432 468 504 540 576
MTSM_PRECALC 2.22 1.98 1.73 1.56 1.35 1.21 1.05 0.92
MTSM 6.73 6.91 7.14 5.92 6.20 6.26 6.38 5.88
TSRK5DP 3.17 3.06 2.76 2.63 2.48 2.53 2.36 2.74
TSRK8VR 4.64 4.31 4.12 3.89 4.37 3.56 3.37 3.30

612 648 684 720 756 792 828 864
MTSM_PRECALC 0.84 0.81 0.66 0.68 0.62 0.58 0.55 0.53
MTSM 6.48 6.45 6.35 6.47 6.67 6.98 6.77 6.11
TSRK5DP 2.40 2.29 2.15 2.01 2.10 2.03 2.10 1.98
TSRK8VR 3.13 3.13 2.96 2.84 2.92 2.89 2.71 2.67

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.50 0.53 0.58 0.46 0.46 0.45 0.43 0.42
MTSM 6.29 6.63 6.63 6.95 6.97 7.55 6.85 6.45
TSRK5DP 2.13 2.16 1.96 1.93 1.87 1.87 1.82 1.68
TSRK8VR 2.54 2.69 2.61 2.74 2.55 2.55 2.36 2.42

Table C.36: Average time, 𝑆 = 512000, heat equation, five-point central difference formula.

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 106.58 113.31 121.28 123.79 126.49 137.20 142.80
MTSM 100.00 96.31 88.16 78.01 68.24 64.57 58.42 52.13
TSRK5DP 100.00 155.31 161.14 162.80 154.66 153.18 139.88 140.88
TSRK8VR 100.00 145.14 181.18 177.38 170.81 170.35 167.37 167.91

324 360 396 432 468 504 540 576
MTSM_PRECALC 149.58 150.71 156.61 159.75 169.56 176.41 188.92 202.11
MTSM 44.94 39.37 34.65 38.28 33.77 31.05 28.44 28.92
TSRK5DP 136.23 126.80 127.70 123.18 120.43 109.77 109.53 88.64
TSRK8VR 165.78 160.67 152.92 148.47 121.75 138.80 136.79 131.08

612 648 684 720 756 792 828 864
MTSM_PRECALC 208.65 205.37 238.98 220.90 229.47 235.73 237.61 234.61
MTSM 24.71 23.43 22.55 21.04 19.44 17.71 17.49 18.57
TSRK5DP 95.29 94.03 94.88 96.56 88.09 86.96 80.27 81.67
TSRK8VR 129.97 122.74 122.93 121.92 112.81 108.74 111.00 107.98

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 238.41 216.59 189.13 233.18 225.28 223.42 225.53 223.85
MTSM 17.29 15.79 15.20 13.99 13.45 12.02 12.81 13.19
TSRK5DP 72.90 69.21 73.56 72.01 71.67 69.34 68.81 72.29
TSRK8VR 108.93 99.03 98.23 90.37 93.61 90.50 94.73 89.47

Table C.37: Efficiency, 𝑆 = 512000, heat equation, five-point central difference formula.

225

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.13 3.40 4.85 6.19 7.59 9.60 11.42
MTSM 1.00 1.93 2.64 3.12 3.41 3.87 4.09 4.17
TSRK5DP 1.00 3.11 4.83 6.51 7.73 9.19 9.79 11.27
TSRK8VR 1.00 2.90 5.44 7.10 8.54 10.22 11.72 13.43

324 360 396 432 468 504 540 576
MTSM_PRECALC 13.46 15.07 17.23 19.17 22.04 24.70 28.34 32.34
MTSM 4.04 3.94 3.81 4.59 4.39 4.35 4.27 4.63
TSRK5DP 12.26 12.68 14.05 14.78 15.66 15.37 16.43 14.18
TSRK8VR 14.92 16.07 16.82 17.82 15.83 19.43 20.52 20.97

612 648 684 720 756 792 828 864
MTSM_PRECALC 35.47 36.97 45.41 44.18 48.19 51.86 54.65 56.31
MTSM 4.20 4.22 4.28 4.21 4.08 3.90 4.02 4.46
TSRK5DP 16.20 16.93 18.03 19.31 18.50 19.13 18.46 19.60
TSRK8VR 22.10 22.09 23.36 24.38 23.69 23.92 25.53 25.92

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 59.60 56.31 51.07 65.29 65.33 67.03 69.91 71.63
MTSM 4.32 4.11 4.10 3.92 3.90 3.61 3.97 4.22
TSRK5DP 18.22 17.99 19.86 20.16 20.78 20.80 21.33 23.13
TSRK8VR 27.23 25.75 26.52 25.30 27.15 27.15 29.37 28.63

Table C.38: Speedup, 𝑆 = 512000, heat equation, five-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.30 0.89 0.92 0.97 1.04 1.07 1.28 1.32
MTSM 1.43 0.88 0.78 0.68 0.63 0.60 0.60 0.53
TSRK8VR 0.56 0.52 0.63 0.61 0.62 0.62 0.67 0.67

324 360 396 432 468 504 540 576
MTSM_PRECALC 1.43 1.55 1.60 1.69 1.83 2.09 2.24 2.97
MTSM 0.47 0.44 0.39 0.44 0.40 0.40 0.37 0.47
TSRK8VR 0.68 0.71 0.67 0.68 0.57 0.71 0.70 0.83

612 648 684 720 756 792 828 864
MTSM_PRECALC 2.85 2.84 3.28 2.98 3.39 3.53 3.85 3.74
MTSM 0.37 0.36 0.34 0.31 0.31 0.29 0.31 0.32
TSRK8VR 0.76 0.73 0.73 0.71 0.72 0.70 0.78 0.74

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 4.26 4.07 3.35 4.21 4.09 4.19 4.26 4.03
MTSM 0.34 0.33 0.29 0.28 0.27 0.25 0.27 0.26
TSRK8VR 0.84 0.80 0.75 0.70 0.73 0.73 0.77 0.69

Table C.39: Speedup against TSRK5DP, 𝑆 = 512000, heat equation, five-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
20.48 4.10 4.10 2559991 9.77𝑒−04 51709351 1.97𝑒−02

Table C.40: Characteristics of input data, 𝑆 = 512000, heat equation, five-point central
difference formula.

226

C.2.4 𝑆 = 1024000, five-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 30.66 14.27 9.09 6.51 4.93 3.84 3.11 2.58
MTSM 38.17 18.71 12.97 10.11 8.65 7.66 7.18 7.17
TSRK5DP 75.62 25.76 13.17 9.14 7.10 5.92 5.14 4.59
TSRK8VR 125.42 48.18 26.51 16.40 11.99 9.79 8.28 7.71

324 360 396 432 468 504 540 576
MTSM_PRECALC 2.23 1.99 1.78 1.61 1.40 1.20 1.02 0.91
MTSM 7.02 6.43 6.21 5.79 5.74 5.78 5.77 5.16
TSRK5DP 4.16 3.98 3.62 3.30 3.18 2.91 3.63 2.77
TSRK8VR 7.05 6.33 5.48 5.11 5.24 4.69 4.40 4.17

612 648 684 720 756 792 828 864
MTSM_PRECALC 0.76 0.79 0.66 0.62 0.59 0.60 0.59 0.52
MTSM 5.41 5.67 5.91 5.58 5.43 5.32 5.63 5.10
TSRK5DP 3.24 2.64 2.67 2.29 2.23 2.32 2.38 2.18
TSRK8VR 3.80 3.95 3.42 3.50 3.46 3.19 3.08 3.16

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.50 0.49 0.48 0.48 0.49 0.42 0.45 0.40
MTSM 5.36 5.54 5.39 6.31 5.35 5.26 5.84 5.03
TSRK5DP 2.13 1.97 2.14 2.05 2.00 2.00 1.79 1.86
TSRK8VR 3.04 2.87 3.13 3.05 2.79 2.82 2.77 2.76

Table C.41: Average time, 𝑆 = 1024000, heat equation, five-point central difference formula.

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 107.41 112.42 117.73 124.27 132.97 140.74 148.70
MTSM 100.00 101.99 98.11 94.38 88.24 83.03 75.96 66.58
TSRK5DP 100.00 146.75 191.38 206.84 213.00 212.83 210.09 205.97
TSRK8VR 100.00 130.16 157.73 191.16 209.29 213.62 216.28 203.39

324 360 396 432 468 504 540 576
MTSM_PRECALC 152.77 154.07 156.98 158.65 168.63 183.22 200.10 210.09
MTSM 60.44 59.33 55.91 54.95 51.16 47.18 44.08 46.20
TSRK5DP 201.79 190.09 189.75 190.78 183.04 185.39 138.82 170.39
TSRK8VR 197.60 198.24 208.07 204.39 184.10 191.21 190.22 187.85

612 648 684 720 756 792 828 864
MTSM_PRECALC 237.59 214.63 243.38 246.88 246.53 230.44 225.87 247.71
MTSM 41.53 37.42 34.00 34.21 33.50 32.62 29.46 31.20
TSRK5DP 137.08 159.24 149.09 165.12 161.23 148.31 138.10 144.57
TSRK8VR 194.16 176.48 193.12 179.08 172.72 178.76 176.88 165.36

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 245.14 241.71 236.83 227.67 216.31 245.12 222.12 239.04
MTSM 28.49 26.49 26.22 21.59 24.59 24.18 21.09 23.72
TSRK5DP 142.03 147.78 131.15 131.71 130.49 126.00 136.46 127.21
TSRK8VR 165.29 167.90 148.32 147.05 155.27 148.32 146.06 141.98

Table C.42: Efficiency, 𝑆 = 1024000, heat equation, five-point central difference formula.

227

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.15 3.37 4.71 6.21 7.98 9.85 11.90
MTSM 1.00 2.04 2.94 3.78 4.41 4.98 5.32 5.33
TSRK5DP 1.00 2.93 5.74 8.27 10.65 12.77 14.71 16.48
TSRK8VR 1.00 2.60 4.73 7.65 10.46 12.82 15.14 16.27

324 360 396 432 468 504 540 576
MTSM_PRECALC 13.75 15.41 17.27 19.04 21.92 25.65 30.02 33.61
MTSM 5.44 5.93 6.15 6.59 6.65 6.60 6.61 7.39
TSRK5DP 18.16 19.01 20.87 22.89 23.80 25.95 20.82 27.26
TSRK8VR 17.78 19.82 22.89 24.53 23.93 26.77 28.53 30.06

612 648 684 720 756 792 828 864
MTSM_PRECALC 40.39 38.63 46.24 49.38 51.77 50.70 51.95 59.45
MTSM 7.06 6.74 6.46 6.84 7.03 7.18 6.77 7.49
TSRK5DP 23.30 28.66 28.33 33.02 33.86 32.63 31.76 34.70
TSRK8VR 33.01 31.77 36.69 35.82 36.27 39.33 40.68 39.69

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 61.29 62.85 63.94 63.75 62.73 73.54 68.86 76.49
MTSM 7.12 6.89 7.08 6.04 7.13 7.25 6.54 7.59
TSRK5DP 35.51 38.42 35.41 36.88 37.84 37.80 42.30 40.71
TSRK8VR 41.32 43.65 40.05 41.17 45.03 44.50 45.28 45.43

Table C.43: Speedup, 𝑆 = 1024000, heat equation, five-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 2.47 1.81 1.45 1.40 1.44 1.54 1.65 1.78
MTSM 1.98 1.38 1.02 0.90 0.82 0.77 0.72 0.64
TSRK8VR 0.60 0.53 0.50 0.56 0.59 0.61 0.62 0.60

324 360 396 432 468 504 540 576
MTSM_PRECALC 1.87 2.00 2.04 2.05 2.27 2.44 3.56 3.04
MTSM 0.59 0.62 0.58 0.57 0.55 0.50 0.63 0.54
TSRK8VR 0.59 0.63 0.66 0.65 0.61 0.62 0.83 0.66

612 648 684 720 756 792 828 864
MTSM_PRECALC 4.28 3.32 4.03 3.69 3.77 3.83 4.03 4.23
MTSM 0.60 0.47 0.45 0.41 0.41 0.44 0.42 0.43
TSRK8VR 0.85 0.67 0.78 0.65 0.65 0.73 0.77 0.69

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 4.26 4.03 4.45 4.26 4.09 4.80 4.02 4.63
MTSM 0.40 0.36 0.40 0.32 0.37 0.38 0.31 0.37
TSRK8VR 0.70 0.68 0.68 0.67 0.72 0.71 0.65 0.67

Table C.44: Speedup against TSRK5DP, 𝑆 = 1024000, heat equation, five-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
40.96 8.19 8.19 3071995 2.93𝑒−04 52223299 4.98𝑒−03

Table C.45: Characteristics of input data, 𝑆 = 1024000, heat equation, five-point central
difference formula.

228

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure C.7: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 1024000, heat equation, five-point central difference formula.

229

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure C.8: Parallel cost ratio and speedup-cost ratio, 𝑆 = 1024000, heat equation, five-
point central difference formula.

230

C.2.5 𝑆 = 2048000, five-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 122.41 61.31 40.82 30.17 23.85 19.66 16.88 14.28
MTSM 195.56 71.39 40.81 29.17 23.55 19.64 18.06 15.76
TSRK5DP 277.92 120.10 68.08 41.81 29.29 20.82 16.83 13.34
TSRK8VR 444.61 195.01 113.36 73.83 53.05 40.53 - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 14.82 11.13 10.00 8.98 8.39 7.48 6.90 6.38
MTSM 15.90 14.31 13.25 12.27 12.51 11.56 12.15 11.02
TSRK5DP 11.42 11.02 9.29 8.27 8.91 7.81 7.00 6.43
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 5.97 5.48 5.15 4.76 4.53 4.34 4.34 3.81
MTSM 10.96 10.50 10.68 10.61 10.04 10.33 10.40 9.57
TSRK5DP 6.43 6.01 6.08 5.92 5.19 5.42 5.54 4.95
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 3.66 3.46 3.29 3.04 2.96 2.85 2.68 2.59
MTSM 9.45 9.63 9.61 9.35 9.37 10.04 9.82 8.74
TSRK5DP 4.83 4.57 4.70 4.52 4.39 6.02 4.15 3.83
TSRK8VR - - - - - - - -

Table C.46: Average time, 𝑆 = 2048000, heat equation, five-point central difference formula.

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 99.83 99.95 101.43 102.64 103.76 103.62 107.13
MTSM 100.00 136.97 159.72 167.63 166.11 165.97 154.65 155.16
TSRK5DP 100.00 115.70 136.08 166.18 189.77 222.49 235.90 260.42
TSRK8VR 100.00 113.99 130.74 150.56 167.61 182.83 - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 91.77 109.97 111.32 113.55 112.22 116.89 118.23 119.94
MTSM 136.63 136.67 134.21 132.81 120.26 120.88 107.34 110.94
TSRK5DP 270.30 252.21 271.89 280.15 239.87 254.30 264.82 270.31
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 120.60 124.08 125.06 128.61 128.81 128.16 122.56 133.73
MTSM 104.95 103.44 96.38 92.13 92.76 86.02 81.73 85.11
TSRK5DP 254.16 256.91 240.53 234.79 254.76 232.95 218.19 233.76
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 133.74 136.12 137.94 143.68 142.54 142.98 147.42 147.72
MTSM 82.82 78.09 75.33 74.71 71.98 64.93 64.22 69.93
TSRK5DP 230.38 233.77 218.95 219.52 218.50 153.94 216.04 226.68
TSRK8VR - - - - - - - -

Table C.47: Efficiency, 𝑆 = 2048000, heat equation, five-point central difference formula.

231

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.00 3.00 4.06 5.13 6.23 7.25 8.57
MTSM 1.00 2.74 4.79 6.71 8.31 9.96 10.83 12.41
TSRK5DP 1.00 2.31 4.08 6.65 9.49 13.35 16.51 20.83
TSRK8VR 1.00 2.28 3.92 6.02 8.38 10.97 - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 8.26 11.00 12.24 13.63 14.59 16.37 17.73 19.19
MTSM 12.30 13.67 14.76 15.94 15.63 16.92 16.10 17.75
TSRK5DP 24.33 25.22 29.91 33.62 31.18 35.60 39.72 43.25
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 20.50 22.33 23.76 25.72 27.05 28.19 28.19 32.10
MTSM 17.84 18.62 18.31 18.43 19.48 18.92 18.80 20.43
TSRK5DP 43.21 46.24 45.70 46.96 53.50 51.25 50.18 56.10
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 33.44 35.39 37.24 40.23 41.34 42.89 45.70 47.27
MTSM 20.70 20.30 20.34 20.92 20.88 19.48 19.91 22.38
TSRK5DP 57.59 60.78 59.12 61.47 63.37 46.18 66.97 72.54
TSRK8VR - - - - - - - -

Table C.48: Speedup, 𝑆 = 2048000, heat equation, five-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 2.27 1.96 1.67 1.39 1.23 1.06 1.00 0.93
MTSM 1.42 1.68 1.67 1.43 1.24 1.06 0.93 0.85
TSRK8VR 0.63 0.62 0.60 0.57 0.55 0.51 - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 0.77 0.99 0.93 0.92 1.06 1.04 1.01 1.01
MTSM 0.72 0.77 0.70 0.67 0.71 0.68 0.58 0.58
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 1.08 1.10 1.18 1.24 1.15 1.25 1.28 1.30
MTSM 0.59 0.57 0.57 0.56 0.52 0.52 0.53 0.52
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 1.32 1.32 1.43 1.49 1.48 2.11 1.55 1.48
MTSM 0.51 0.47 0.49 0.48 0.47 0.60 0.42 0.44
TSRK8VR - - - - - - - -

Table C.49: Speedup against TSRK5DP, 𝑆 = 2048000, heat equation, five-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
81.92 16.38 16.38 10239991 2.44𝑒−04 206845351 4.93𝑒−03

Table C.50: Characteristics of input data, 𝑆 = 2048000, heat equation, five-point central
difference formula.

232

C.3 Wave equation – three-point central difference formula
Subsections C.3.1–C.3.5 present numerical results for 𝑆 = 64000, 𝑆 = 128000, 𝑆 = 256000,
𝑆 = 512000, and 𝑆 = 1024000, respectively.

C.3.1 𝑆 = 64000, three-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 2.88 1.17 0.80 0.66 0.61 0.62 0.51 0.57
MTSM 11.10 13.90 10.98 9.37 8.58 7.85 7.45 7.01
TSRK5DP 23.38 26.70 19.84 15.51 13.63 12.53 9.18 8.54
TSRK8VR 28.41 29.21 21.74 17.14 15.33 13.09 9.84 9.16

324 360 396 432 468 504 540 576
MTSM_PRECALC 0.48 0.49 0.57 0.51 0.51 0.46 0.41 0.59
MTSM 7.23 7.43 7.60 6.36 6.70 6.97 7.14 6.56
TSRK5DP 8.03 7.80 8.10 7.11 6.95 6.92 6.54 6.60
TSRK8VR 8.79 8.40 7.84 7.69 7.21 7.19 6.78 6.46

612 648 684 720 756 792 828 864
MTSM_PRECALC 0.39 0.46 0.39 0.39 0.39 0.40 0.41 0.43
MTSM 7.00 7.30 9.15 10.98 11.06 10.97 9.42 9.24
TSRK5DP 6.51 6.31 6.16 5.97 6.19 6.37 5.93 6.05
TSRK8VR 6.60 6.57 6.39 6.18 5.96 5.93 5.83 6.32

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.50 0.37 0.42 0.32 0.38 0.40 0.45 0.37
MTSM 8.52 8.13 8.24 7.54 6.91 6.84 6.72 6.79
TSRK5DP 5.90 5.95 6.28 6.36 5.49 5.75 5.96 5.88
TSRK8VR 5.96 5.51 5.98 5.78 5.79 5.92 5.78 5.91

Table C.51: Average time, 𝑆 = 64000, wave equation, three-point central difference formula.

233

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 123.11 119.85 108.60 94.60 77.76 79.92 62.96
MTSM 100.00 39.93 33.70 29.61 25.86 23.56 21.30 19.81
TSRK5DP 100.00 43.78 39.27 37.69 34.30 31.10 36.39 34.23
TSRK8VR 100.00 48.63 43.57 41.45 37.08 36.17 41.26 38.77

324 360 396 432 468 504 540 576
MTSM_PRECALC 66.25 58.28 46.01 47.16 43.07 44.24 46.56 30.66
MTSM 17.06 14.95 13.28 14.54 12.75 11.37 10.36 10.58
TSRK5DP 32.37 29.96 26.23 27.39 25.87 24.14 23.84 22.13
TSRK8VR 35.92 33.82 32.95 30.78 30.30 28.24 27.93 27.49

612 648 684 720 756 792 828 864
MTSM_PRECALC 43.90 35.10 38.41 37.15 34.88 32.68 30.76 28.05
MTSM 9.33 8.45 6.39 5.06 4.78 4.60 5.12 5.00
TSRK5DP 21.14 20.58 19.99 19.56 17.99 16.69 17.13 16.10
TSRK8VR 25.34 24.02 23.40 23.00 22.69 21.78 21.20 18.74

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 23.20 29.91 25.45 31.92 26.22 23.89 20.57 24.02
MTSM 5.21 5.25 4.99 5.26 5.54 5.41 5.33 5.11
TSRK5DP 15.86 15.12 13.79 13.12 14.69 13.55 12.65 12.42
TSRK8VR 19.07 19.83 17.59 17.57 16.91 16.00 15.85 15.03

Table C.52: Efficiency, 𝑆 = 64000, wave equation, three-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.46 3.60 4.34 4.73 4.67 5.59 5.04
MTSM 1.00 0.80 1.01 1.18 1.29 1.41 1.49 1.58
TSRK5DP 1.00 0.88 1.18 1.51 1.71 1.87 2.55 2.74
TSRK8VR 1.00 0.97 1.31 1.66 1.85 2.17 2.89 3.10

324 360 396 432 468 504 540 576
MTSM_PRECALC 5.96 5.83 5.06 5.66 5.60 6.19 6.98 4.91
MTSM 1.54 1.49 1.46 1.74 1.66 1.59 1.55 1.69
TSRK5DP 2.91 3.00 2.89 3.29 3.36 3.38 3.58 3.54
TSRK8VR 3.23 3.38 3.62 3.69 3.94 3.95 4.19 4.40

612 648 684 720 756 792 828 864
MTSM_PRECALC 7.46 6.32 7.30 7.43 7.32 7.19 7.07 6.73
MTSM 1.59 1.52 1.21 1.01 1.00 1.01 1.18 1.20
TSRK5DP 3.59 3.70 3.80 3.91 3.78 3.67 3.94 3.86
TSRK8VR 4.31 4.32 4.45 4.60 4.76 4.79 4.88 4.50

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 5.80 7.78 6.87 8.94 7.61 7.17 6.38 7.69
MTSM 1.30 1.37 1.35 1.47 1.61 1.62 1.65 1.63
TSRK5DP 3.96 3.93 3.72 3.67 4.26 4.07 3.92 3.97
TSRK8VR 4.77 5.16 4.75 4.92 4.90 4.80 4.91 4.81

Table C.53: Speedup, 𝑆 = 64000, wave equation, three-point central difference formula.

234

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 8.12 22.83 24.78 23.40 22.40 20.30 17.83 14.94
MTSM 2.11 1.92 1.81 1.65 1.59 1.59 1.23 1.22
TSRK8VR 0.82 0.91 0.91 0.90 0.89 0.96 0.93 0.93

324 360 396 432 468 504 540 576
MTSM_PRECALC 16.62 15.80 14.24 13.98 13.52 14.88 15.86 11.25
MTSM 1.11 1.05 1.07 1.12 1.04 0.99 0.92 1.01
TSRK8VR 0.91 0.93 1.03 0.92 0.96 0.96 0.96 1.02

612 648 684 720 756 792 828 864
MTSM_PRECALC 16.86 13.85 15.60 15.42 15.74 15.90 14.58 14.15
MTSM 0.93 0.86 0.67 0.54 0.56 0.58 0.63 0.65
TSRK8VR 0.99 0.96 0.96 0.97 1.04 1.07 1.02 0.96

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 11.88 16.06 14.99 19.75 14.50 14.31 13.21 15.71
MTSM 0.69 0.73 0.76 0.84 0.79 0.84 0.89 0.87
TSRK8VR 0.99 1.08 1.05 1.10 0.95 0.97 1.03 1.00

Table C.54: Speedup against TSRK5DP, 𝑆 = 64000, wave equation, three-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
3.58 1.02 1.02 255994 1.56𝑒−03 6527248 3.98𝑒−02

Table C.55: Characteristics of input data, 𝑆 = 64000, wave equation, three-point central
difference formula.

235

C.3.2 𝑆 = 128000, three-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 7.03 3.62 2.15 1.58 0.98 0.94 0.77 0.73
MTSM 20.35 24.96 19.44 14.73 13.23 11.22 11.05 10.11
TSRK5DP 51.75 48.24 38.42 27.64 24.56 20.56 18.54 16.24
TSRK8VR 64.26 54.38 44.48 30.44 27.10 22.49 19.93 17.36

324 360 396 432 468 504 540 576
MTSM_PRECALC 0.72 0.68 0.64 0.59 0.63 0.77 0.77 0.75
MTSM 12.84 9.55 9.79 8.77 9.19 9.03 8.28 7.88
TSRK5DP 15.76 14.56 14.14 12.83 23.57 21.01 18.89 19.29
TSRK8VR 17.44 15.33 14.76 13.37 13.62 10.71 9.91 9.46

612 648 684 720 756 792 828 864
MTSM_PRECALC 0.60 0.58 0.58 0.56 0.59 0.53 0.57 0.54
MTSM 8.36 8.29 8.14 8.37 8.25 8.56 8.76 7.39
TSRK5DP 17.46 17.84 18.01 16.43 14.35 13.96 8.93 8.62
TSRK8VR 9.83 9.16 9.23 8.90 9.33 8.66 8.75 8.13

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.54 0.53 0.62 0.57 0.51 0.49 0.49 0.55
MTSM 7.82 8.25 8.33 7.71 8.04 8.63 8.77 8.70
TSRK5DP 8.76 8.00 8.02 7.93 6.99 7.31 7.23 7.58
TSRK8VR 8.41 8.47 7.67 8.31 7.48 7.21 7.51 7.67

Table C.56: Average time, 𝑆 = 128000, wave equation, three-point central difference for-
mula.

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 97.26 109.14 110.96 144.05 124.96 131.00 119.78
MTSM 100.00 40.77 34.89 34.53 30.76 30.22 26.32 25.16
TSRK5DP 100.00 53.64 44.90 46.80 42.14 41.95 39.87 39.83
TSRK8VR 100.00 59.08 48.15 52.77 47.43 47.62 46.06 46.27

324 360 396 432 468 504 540 576
MTSM_PRECALC 108.52 103.66 100.30 99.44 85.58 65.28 60.99 58.48
MTSM 17.61 21.31 18.90 19.33 17.02 16.10 16.38 16.13
TSRK5DP 36.49 35.55 33.27 33.62 16.89 17.60 18.26 16.77
TSRK8VR 40.93 41.91 39.58 40.04 36.28 42.83 43.23 42.45

612 648 684 720 756 792 828 864
MTSM_PRECALC 68.69 66.88 63.76 62.59 56.47 60.36 53.76 53.99
MTSM 14.31 13.63 13.16 12.16 11.74 10.80 10.10 11.47
TSRK5DP 17.44 16.12 15.12 15.75 17.17 16.85 25.20 25.02
TSRK8VR 38.45 38.95 36.65 36.12 32.80 33.71 31.93 32.95

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 51.85 51.00 41.91 44.33 47.77 47.98 46.07 40.20
MTSM 10.41 9.49 9.05 9.42 8.73 7.86 7.49 7.31
TSRK5DP 23.63 24.88 23.90 23.30 25.55 23.61 23.08 21.33
TSRK8VR 30.56 29.18 31.03 27.61 29.61 29.70 27.60 26.17

Table C.57: Efficiency, 𝑆 = 128000, wave equation, three-point central difference formula.

236

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 1.95 3.27 4.44 7.20 7.50 9.17 9.58
MTSM 1.00 0.82 1.05 1.38 1.54 1.81 1.84 2.01
TSRK5DP 1.00 1.07 1.35 1.87 2.11 2.52 2.79 3.19
TSRK8VR 1.00 1.18 1.44 2.11 2.37 2.86 3.22 3.70

324 360 396 432 468 504 540 576
MTSM_PRECALC 9.77 10.37 11.03 11.93 11.12 9.14 9.15 9.36
MTSM 1.59 2.13 2.08 2.32 2.21 2.25 2.46 2.58
TSRK5DP 3.28 3.56 3.66 4.03 2.20 2.46 2.74 2.68
TSRK8VR 3.68 4.19 4.35 4.80 4.72 6.00 6.48 6.79

612 648 684 720 756 792 828 864
MTSM_PRECALC 11.68 12.04 12.11 12.52 11.86 13.28 12.36 12.96
MTSM 2.43 2.45 2.50 2.43 2.47 2.38 2.32 2.75
TSRK5DP 2.96 2.90 2.87 3.15 3.61 3.71 5.80 6.00
TSRK8VR 6.54 7.01 6.96 7.22 6.89 7.42 7.34 7.91

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 12.96 13.26 11.31 12.41 13.85 14.39 14.28 12.86
MTSM 2.60 2.47 2.44 2.64 2.53 2.36 2.32 2.34
TSRK5DP 5.91 6.47 6.45 6.52 7.41 7.08 7.15 6.83
TSRK8VR 7.64 7.59 8.38 7.73 8.59 8.91 8.55 8.37

Table C.58: Speedup, 𝑆 = 128000, wave equation, three-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 7.36 13.34 17.88 17.44 25.15 21.92 24.17 22.13
MTSM 2.54 1.93 1.98 1.88 1.86 1.83 1.68 1.61
TSRK8VR 0.81 0.89 0.86 0.91 0.91 0.91 0.93 0.94

324 360 396 432 468 504 540 576
MTSM_PRECALC 21.88 21.45 22.18 21.76 37.27 27.29 24.57 25.66
MTSM 1.23 1.52 1.44 1.46 2.56 2.33 2.28 2.45
TSRK8VR 0.90 0.95 0.96 0.96 1.73 1.96 1.91 2.04

612 648 684 720 756 792 828 864
MTSM_PRECALC 28.99 30.53 31.02 29.23 24.20 26.36 15.69 15.88
MTSM 2.09 2.15 2.21 1.96 1.74 1.63 1.02 1.17
TSRK8VR 1.78 1.95 1.95 1.85 1.54 1.61 1.02 1.06

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 16.14 15.08 12.90 14.00 13.76 14.95 14.69 13.86
MTSM 1.12 0.97 0.96 1.03 0.87 0.85 0.82 0.87
TSRK8VR 1.04 0.94 1.05 0.95 0.93 1.01 0.96 0.99

Table C.59: Speedup against TSRK5DP, 𝑆 = 128000, wave equation, three-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
7.17 2.05 2.05 511994 7.81𝑒−04 13055248 1.99𝑒−02

Table C.60: Characteristics of input data, 𝑆 = 128000, wave equation, three-point central
difference formula.

237

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure C.9: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 128000, wave equation, three-point central difference formula.

238

1 2 4 8 16 32

Number of nodes

10-1

100

101

102

R
a
ti
o

MTSM-PRECALC

price

speedup-cost

1 2 4 8 16 32

Number of nodes

10-1

100

101

102

R
a
ti
o

MTSM

price

speedup-cost

1 2 4 8 16 32

Number of nodes

10-1

100

101

102

R
a
ti
o

TSRK5DP (ode45)

price

speedup-cost

1 2 4 8 16 32

Number of nodes

10-1

100

101

102

R
a
ti
o

TSRK8VR

price

speedup-cost

Figure C.10: Parallel cost ratio and speedup-cost ratio, 𝑆 = 128000, wave equation, three-
point central difference formula.

239

C.3.3 𝑆 = 256000, three-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 16.78 7.98 4.86 3.49 2.77 2.61 1.97 1.67
MTSM 40.96 46.17 34.92 25.58 23.90 19.04 18.20 16.19
TSRK5DP 141.11 98.01 76.16 52.95 48.14 37.45 35.07 29.36
TSRK8VR 189.06 111.45 88.76 59.53 55.89 42.13 38.24 32.87

324 360 396 432 468 504 540 576
MTSM_PRECALC 1.37 1.09 0.93 0.88 0.69 0.81 0.78 0.78
MTSM 15.76 14.51 14.41 12.82 12.65 12.23 12.73 11.05
TSRK5DP 28.35 24.67 23.79 21.63 20.96 19.59 18.79 17.36
TSRK8VR 32.18 26.42 25.94 23.51 23.28 20.27 20.04 18.81

612 648 684 720 756 792 828 864
MTSM_PRECALC 0.63 0.73 0.71 0.77 0.58 0.59 0.56 0.62
MTSM 11.80 11.33 11.39 10.75 11.01 10.97 11.26 9.83
TSRK5DP 17.39 16.48 15.85 15.74 15.15 15.43 14.43 13.64
TSRK8VR 18.11 16.86 17.60 15.98 16.21 - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.56 0.50 0.52 0.52 0.51 0.51 0.50 0.53
MTSM 10.33 10.62 10.32 10.13 10.72 10.72 9.81 9.19
TSRK5DP 14.29 13.27 12.14 - - - - -
TSRK8VR - - - - - - - -

Table C.61: Average time, 𝑆 = 256000, wave equation, three-point central difference for-
mula.

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 105.20 115.14 120.15 121.33 107.22 121.93 125.26
MTSM 100.00 44.35 39.09 40.02 34.27 35.85 32.14 31.62
TSRK5DP 100.00 71.99 61.76 66.62 58.63 62.80 57.48 60.07
TSRK8VR 100.00 84.82 71.00 79.40 67.65 74.79 70.63 71.89

324 360 396 432 468 504 540 576
MTSM_PRECALC 135.64 154.47 163.56 158.94 186.60 148.17 143.57 134.77
MTSM 28.87 28.23 25.83 26.62 24.90 23.91 21.44 23.17
TSRK5DP 55.30 57.20 53.93 54.35 51.79 51.46 50.06 50.80
TSRK8VR 65.28 71.55 66.27 67.02 62.47 66.61 62.89 62.82

612 648 684 720 756 792 828 864
MTSM_PRECALC 156.90 127.95 125.21 108.61 136.75 128.22 129.84 112.51
MTSM 20.42 20.08 18.93 19.05 17.72 16.97 15.81 17.35
TSRK5DP 47.73 47.57 46.85 44.82 44.36 41.58 42.51 43.11
TSRK8VR 61.43 62.29 56.53 59.16 55.53 - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 120.93 130.12 120.22 114.21 113.73 108.67 109.24 99.35
MTSM 15.86 14.83 14.69 14.44 13.17 12.73 13.47 13.92
TSRK5DP 39.50 40.89 43.05 - - - - -
TSRK8VR - - - - - - - -

Table C.62: Efficiency, 𝑆 = 256000, wave equation, three-point central difference formula.

240

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.10 3.45 4.81 6.07 6.43 8.54 10.02
MTSM 1.00 0.89 1.17 1.60 1.71 2.15 2.25 2.53
TSRK5DP 1.00 1.44 1.85 2.66 2.93 3.77 4.02 4.81
TSRK8VR 1.00 1.70 2.13 3.18 3.38 4.49 4.94 5.75

324 360 396 432 468 504 540 576
MTSM_PRECALC 12.21 15.45 17.99 19.07 24.26 20.74 21.54 21.56
MTSM 2.60 2.82 2.84 3.19 3.24 3.35 3.22 3.71
TSRK5DP 4.98 5.72 5.93 6.52 6.73 7.20 7.51 8.13
TSRK8VR 5.88 7.15 7.29 8.04 8.12 9.33 9.43 10.05

612 648 684 720 756 792 828 864
MTSM_PRECALC 26.67 23.03 23.79 21.72 28.72 28.21 29.86 27.00
MTSM 3.47 3.61 3.60 3.81 3.72 3.73 3.64 4.16
TSRK5DP 8.11 8.56 8.90 8.96 9.32 9.15 9.78 10.35
TSRK8VR 10.44 11.21 10.74 11.83 11.66 - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 30.23 33.83 32.46 31.98 32.98 32.60 33.86 31.79
MTSM 3.96 3.86 3.97 4.04 3.82 3.82 4.18 4.46
TSRK5DP 9.87 10.63 11.62 - - - - -
TSRK8VR - - - - - - - -

Table C.63: Speedup, 𝑆 = 256000, wave equation, three-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 8.41 12.29 15.68 15.16 17.40 14.36 17.83 17.53
MTSM 3.45 2.12 2.18 2.07 2.01 1.97 1.93 1.81
TSRK8VR 0.75 0.88 0.86 0.89 0.86 0.89 0.92 0.89

324 360 396 432 468 504 540 576
MTSM_PRECALC 20.62 22.71 25.50 24.59 30.29 24.21 24.12 22.31
MTSM 1.80 1.70 1.65 1.69 1.66 1.60 1.48 1.57
TSRK8VR 0.88 0.93 0.92 0.92 0.90 0.97 0.94 0.92

612 648 684 720 756 792 828 864
MTSM_PRECALC 27.64 22.61 22.47 20.38 25.92 25.93 25.68 21.94
MTSM 1.47 1.45 1.39 1.46 1.38 1.41 1.28 1.39
TSRK8VR 0.96 0.98 0.90 0.99 0.93 - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 25.74 26.76 23.48 - - - - -
MTSM 1.38 1.25 1.18 - - - - -
TSRK8VR - - - - - - - -

Table C.64: Speedup against TSRK5DP, 𝑆 = 256000, wave equation, three-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
14.34 4.10 4.10 1023994 3.91𝑒−04 26111248 9.96𝑒−03

Table C.65: Characteristics of input data, 𝑆 = 256000, wave equation, three-point central
difference formula.

241

C.3.4 𝑆 = 512000, three-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 35.36 17.76 11.32 8.05 6.35 4.93 5.17 4.38
MTSM 90.54 90.76 68.21 47.24 42.99 33.92 33.15 27.70
TSRK5DP 411.04 217.75 160.53 101.99 - - - -
TSRK8VR 539.66 260.22 - - - - - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 3.06 2.83 2.66 2.80 2.41 1.94 1.66 1.88
MTSM 26.90 23.46 23.45 23.41 21.09 18.95 19.72 17.42
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 1.52 1.15 0.99 1.15 1.03 0.89 0.96 0.90
MTSM 17.83 17.02 17.09 18.40 16.30 15.54 15.73 15.23
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.85 0.78 0.98 0.76 0.79 0.75 0.76 0.90
MTSM 14.92 14.72 14.45 13.59 14.44 14.45 13.39 13.19
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

Table C.66: Average time, 𝑆 = 512000, wave equation, three-point central difference for-
mula.

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 99.57 104.11 109.81 111.35 119.43 97.62 101.02
MTSM 100.00 49.88 44.25 47.92 42.12 44.49 39.02 40.86
TSRK5DP 100.00 94.38 85.35 100.76 - - - -
TSRK8VR 100.00 103.69 - - - - - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 128.46 125.00 120.86 105.24 112.74 129.87 141.73 117.67
MTSM 37.40 38.60 35.10 32.24 33.03 34.13 30.61 32.48
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 136.72 170.38 187.76 154.18 163.93 179.62 160.80 164.38
MTSM 29.86 29.55 27.89 24.60 26.45 26.49 25.02 24.78
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 165.63 173.36 134.18 165.53 154.93 156.71 150.91 122.29
MTSM 24.27 23.66 23.20 23.80 21.62 20.88 21.82 21.46
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

Table C.67: Efficiency, 𝑆 = 512000, wave equation, three-point central difference formula.

242

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 1.99 3.12 4.39 5.57 7.17 6.83 8.08
MTSM 1.00 1.00 1.33 1.92 2.11 2.67 2.73 3.27
TSRK5DP 1.00 1.89 2.56 4.03 - - - -
TSRK8VR 1.00 2.07 - - - - - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 11.56 12.50 13.29 12.63 14.66 18.18 21.26 18.83
MTSM 3.37 3.86 3.86 3.87 4.29 4.78 4.59 5.20
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 23.24 30.67 35.67 30.84 34.43 39.52 36.98 39.45
MTSM 5.08 5.32 5.30 4.92 5.55 5.83 5.75 5.95
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 41.41 45.07 36.23 46.35 44.93 47.01 46.78 39.13
MTSM 6.07 6.15 6.27 6.67 6.27 6.26 6.76 6.87
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

Table C.68: Speedup, 𝑆 = 512000, wave equation, three-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 11.63 12.26 14.18 12.67 - - - -
MTSM 4.54 2.40 2.35 2.16 - - - -
TSRK8VR 0.76 0.84 - - - - - -

324 360 396 432 468 504 540 576
MTSM_PRECALC - - - - - - - -
MTSM - - - - - - - -
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC - - - - - - - -
MTSM - - - - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC - - - - - - - -
MTSM - - - - - - - -
TSRK8VR - - - - - - - -

Table C.69: Speedup against TSRK5DP, 𝑆 = 512000, wave equation, three-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
28.67 8.19 8.19 2047994 1.95𝑒−04 52223248 4.98𝑒−03

Table C.70: Characteristics of input data, 𝑆 = 512000, wave equation, three-point central
difference formula.

243

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure C.11: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 512000, wave equation, three-point central difference formula.

244

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure C.12: Parallel cost ratio and speedup-cost ratio, 𝑆 = 512000, wave equation, three-
point central difference formula.

245

C.3.5 𝑆 = 1024000, three-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 72.68 35.68 23.75 17.78 14.43 11.32 9.31 8.43
MTSM 264.94 245.92 201.78 92.97 88.35 63.93 - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 7.31 6.25 5.75 5.12 5.17 4.57 3.96 4.08
MTSM - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 3.58 3.08 3.29 3.83 2.38 2.58 2.44 2.56
MTSM - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 2.13 2.33 1.95 1.98 1.97 1.86 1.58 1.48
MTSM - - - - - - - -

Table C.71: Average time, 𝑆 = 1024000, wave equation, three-point central difference
formula.

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 101.85 102.03 102.19 100.76 107.01 111.52 107.73
MTSM 100.00 53.87 43.77 71.25 59.98 69.07 - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 110.50 116.32 114.99 118.27 108.09 113.69 122.39 111.35
MTSM - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 119.52 131.10 116.39 94.84 145.52 128.04 129.34 118.30
MTSM - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 136.58 120.19 138.23 131.27 127.53 130.59 148.10 153.63
MTSM - - - - - - - -

Table C.72: Efficiency, 𝑆 = 1024000, wave equation, three-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.04 3.06 4.09 5.04 6.42 7.81 8.62
MTSM 1.00 1.08 1.31 2.85 3.00 4.14 - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 9.95 11.63 12.65 14.19 14.05 15.92 18.36 17.82
MTSM - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 20.32 23.60 22.11 18.97 30.56 28.17 29.75 28.39
MTSM - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 34.14 31.25 37.32 36.76 36.98 39.18 45.91 49.16
MTSM - - - - - - - -

Table C.73: Speedup, 𝑆 = 1024000, wave equation, three-point central difference formula.

246

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
57.34 16.38 16.38 4095994 9.80𝑒−05 104447248 2.49𝑒−03

Table C.74: Characteristics of input data, 𝑆 = 1024000, wave equation, three-point central
difference formula.

C.4 Wave equation – five-point central difference formula
Subsections C.4.1–C.4.5 show numerical results for 𝑆 = 64000, 𝑆 = 128000, 𝑆 = 256000,
𝑆 = 512000, and 𝑆 = 1024000, respectively.

C.4.1 𝑆 = 64000, five-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 6.44 2.69 1.64 0.99 0.77 0.71 0.67 0.64
MTSM 11.11 14.53 11.33 9.74 8.67 8.16 7.73 7.38
TSRK5DP 25.31 28.30 21.13 16.75 14.86 13.46 10.27 9.00
TSRK8VR 30.71 31.58 23.66 18.11 16.53 14.53 10.97 9.93

324 360 396 432 468 504 540 576
MTSM_PRECALC 0.48 0.53 0.54 0.53 0.47 0.37 0.36 0.42
MTSM 7.69 7.44 7.31 6.67 6.97 7.33 7.19 6.33
TSRK5DP 9.46 8.80 8.10 8.31 7.35 7.47 7.33 6.63
TSRK8VR 9.91 8.94 8.85 8.07 8.10 7.96 7.44 7.47

612 648 684 720 756 792 828 864
MTSM_PRECALC 0.43 0.35 0.35 0.35 0.34 0.43 0.45 0.50
MTSM 7.30 7.27 9.88 10.52 11.63 10.96 10.35 9.19
TSRK5DP 6.76 6.64 6.67 6.81 6.59 6.47 6.73 6.12
TSRK8VR 7.14 6.88 6.64 6.85 6.95 6.85 6.46 6.47

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.36 0.34 0.51 0.45 0.49 0.46 0.55 0.38
MTSM 8.48 9.01 7.66 7.87 7.35 7.45 6.90 7.26
TSRK5DP 6.33 7.08 6.57 6.44 5.99 6.64 6.55 6.78
TSRK8VR 7.07 6.64 6.37 6.26 6.21 6.46 6.53 6.44

Table C.75: Average time, 𝑆 = 64000, wave equation, five-point central difference formula.

247

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 119.59 131.07 162.78 168.22 151.47 138.22 126.55
MTSM 100.00 38.22 32.67 28.52 25.61 22.70 20.52 18.83
TSRK5DP 100.00 44.73 39.93 37.79 34.08 31.34 35.21 35.14
TSRK8VR 100.00 48.62 43.26 42.39 37.17 35.23 39.98 38.66

324 360 396 432 468 504 540 576
MTSM_PRECALC 148.04 122.42 108.63 100.71 105.14 124.20 117.97 94.83
MTSM 16.06 14.92 13.81 13.87 12.25 10.82 10.30 10.97
TSRK5DP 29.75 28.78 28.42 25.40 26.50 24.19 23.02 23.87
TSRK8VR 34.43 34.36 31.54 31.72 29.16 27.56 27.50 25.69

612 648 684 720 756 792 828 864
MTSM_PRECALC 89.05 101.66 96.49 92.16 90.13 68.29 61.93 53.87
MTSM 8.95 8.49 5.91 5.28 4.55 4.61 4.67 5.04
TSRK5DP 22.01 21.19 19.96 18.59 18.29 17.79 16.35 17.22
TSRK8VR 25.30 24.79 24.33 22.41 21.05 20.38 20.67 19.78

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 71.70 73.06 46.62 50.56 45.76 46.25 38.00 52.87
MTSM 5.24 4.74 5.37 5.04 5.21 4.97 5.20 4.78
TSRK5DP 15.99 13.75 14.28 14.04 14.58 12.71 12.47 11.67
TSRK8VR 17.37 17.79 17.87 17.51 17.06 15.85 15.17 14.90

Table C.76: Efficiency, 𝑆 = 64000, wave equation, five-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.39 3.93 6.51 8.41 9.09 9.68 10.12
MTSM 1.00 0.76 0.98 1.14 1.28 1.36 1.44 1.51
TSRK5DP 1.00 0.89 1.20 1.51 1.70 1.88 2.46 2.81
TSRK8VR 1.00 0.97 1.30 1.70 1.86 2.11 2.80 3.09

324 360 396 432 468 504 540 576
MTSM_PRECALC 13.32 12.24 11.95 12.09 13.67 17.39 17.70 15.17
MTSM 1.45 1.49 1.52 1.66 1.59 1.51 1.55 1.75
TSRK5DP 2.68 2.88 3.13 3.05 3.45 3.39 3.45 3.82
TSRK8VR 3.10 3.44 3.47 3.81 3.79 3.86 4.13 4.11

612 648 684 720 756 792 828 864
MTSM_PRECALC 15.14 18.30 18.33 18.43 18.93 15.02 14.24 12.93
MTSM 1.52 1.53 1.12 1.06 0.95 1.01 1.07 1.21
TSRK5DP 3.74 3.81 3.79 3.72 3.84 3.91 3.76 4.13
TSRK8VR 4.30 4.46 4.62 4.48 4.42 4.48 4.75 4.75

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 17.93 18.99 12.59 14.16 13.27 13.87 11.78 16.92
MTSM 1.31 1.23 1.45 1.41 1.51 1.49 1.61 1.53
TSRK5DP 4.00 3.58 3.86 3.93 4.23 3.81 3.87 3.73
TSRK8VR 4.34 4.62 4.82 4.90 4.95 4.75 4.70 4.77

Table C.77: Speedup, 𝑆 = 64000, wave equation, five-point central difference formula.

248

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 3.93 10.51 12.91 16.94 19.41 19.01 15.44 14.16
MTSM 2.28 1.95 1.87 1.72 1.71 1.65 1.33 1.22
TSRK8VR 0.82 0.90 0.89 0.92 0.90 0.93 0.94 0.91

324 360 396 432 468 504 540 576
MTSM_PRECALC 19.57 16.73 15.03 15.59 15.60 20.19 20.15 15.62
MTSM 1.23 1.18 1.11 1.24 1.05 1.02 1.02 1.05
TSRK8VR 0.95 0.98 0.91 1.03 0.91 0.94 0.98 0.89

612 648 684 720 756 792 828 864
MTSM_PRECALC 15.91 18.86 19.01 19.49 19.38 15.10 14.90 12.30
MTSM 0.93 0.91 0.68 0.65 0.57 0.59 0.65 0.67
TSRK8VR 0.95 0.96 1.00 0.99 0.95 0.94 1.04 0.95

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 17.64 20.89 12.84 14.16 12.34 14.31 11.98 17.82
MTSM 0.75 0.79 0.86 0.82 0.81 0.89 0.95 0.93
TSRK8VR 0.90 1.07 1.03 1.03 0.96 1.03 1.00 1.05

Table C.78: Speedup against TSRK5DP, 𝑆 = 64000, wave equation, five-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
5.12 1.02 1.02 383990 2.34𝑒−03 12797306 7.81𝑒−02

Table C.79: Characteristics of input data, 𝑆 = 64000, wave equation, five-point central
difference formula.

C.4.2 𝑆 = 128000, five-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 14.70 6.91 4.14 2.69 2.02 1.77 1.37 1.06
MTSM 21.37 25.69 20.59 15.10 14.11 11.66 11.53 10.67
TSRK5DP 59.67 52.21 40.67 29.81 25.68 21.40 20.01 17.30
TSRK8VR 80.54 58.69 48.22 33.63 28.69 24.27 20.71 18.65

324 360 396 432 468 504 540 576
MTSM_PRECALC 1.04 0.81 0.83 0.73 0.56 0.61 0.67 0.61
MTSM 10.91 9.74 10.13 9.06 9.77 9.29 9.08 7.86
TSRK5DP 16.88 15.18 14.78 13.75 13.73 10.37 10.06 10.03
TSRK8VR 18.39 16.39 16.47 14.80 14.46 11.61 10.73 10.75

612 648 684 720 756 792 828 864
MTSM_PRECALC 0.55 0.51 0.50 0.48 0.47 0.46 0.49 0.43
MTSM 8.89 8.97 8.70 8.73 8.46 8.96 8.53 8.48
TSRK5DP 10.20 9.28 9.42 9.37 9.39 8.94 9.19 8.08
TSRK8VR 10.58 10.23 9.70 9.63 9.50 9.70 9.50 9.06

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.43 0.51 0.60 0.51 0.58 0.49 0.55 0.47
MTSM 7.86 8.67 8.70 8.60 8.25 9.18 9.54 8.79
TSRK5DP 8.48 9.01 17.19 14.76 15.22 14.34 16.30 13.50
TSRK8VR 8.51 9.04 8.55 8.84 7.66 8.60 8.52 8.53

Table C.80: Average time, 𝑆 = 128000, wave equation, five-point central difference formula.

249

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 106.31 118.46 136.57 145.22 138.20 153.68 174.13
MTSM 100.00 41.58 34.60 35.37 30.29 30.54 26.48 25.04
TSRK5DP 100.00 57.15 48.91 50.04 46.48 46.47 42.61 43.12
TSRK8VR 100.00 68.61 55.68 59.87 56.14 55.31 55.56 53.99

324 360 396 432 468 504 540 576
MTSM_PRECALC 157.37 182.13 161.79 168.79 201.55 173.46 146.00 149.80
MTSM 21.77 21.94 19.18 19.66 16.83 16.43 15.69 16.99
TSRK5DP 39.29 39.31 36.70 36.15 33.43 41.10 39.54 37.17
TSRK8VR 48.66 49.14 44.45 45.33 42.85 49.53 50.03 46.82

612 648 684 720 756 792 828 864
MTSM_PRECALC 157.82 160.37 155.80 152.10 147.61 145.12 130.50 142.40
MTSM 14.14 13.23 12.93 12.23 12.03 10.85 10.89 10.50
TSRK5DP 34.41 35.74 33.32 31.84 30.26 30.32 28.22 30.79
TSRK8VR 44.79 43.75 43.69 41.80 40.38 37.76 36.86 37.05

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 136.13 111.45 90.57 102.77 87.27 99.76 85.53 96.74
MTSM 10.88 9.48 9.10 8.87 8.94 7.76 7.22 7.59
TSRK5DP 28.15 25.47 12.86 14.44 13.52 13.87 11.81 13.81
TSRK8VR 37.85 34.28 34.87 32.54 36.27 31.20 30.50 29.50

Table C.81: Efficiency, 𝑆 = 128000, wave equation, five-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.13 3.55 5.46 7.26 8.29 10.76 13.93
MTSM 1.00 0.83 1.04 1.41 1.51 1.83 1.85 2.00
TSRK5DP 1.00 1.14 1.47 2.00 2.32 2.79 2.98 3.45
TSRK8VR 1.00 1.37 1.67 2.39 2.81 3.32 3.89 4.32

324 360 396 432 468 504 540 576
MTSM_PRECALC 14.16 18.21 17.80 20.25 26.20 24.28 21.90 23.97
MTSM 1.96 2.19 2.11 2.36 2.19 2.30 2.35 2.72
TSRK5DP 3.54 3.93 4.04 4.34 4.35 5.75 5.93 5.95
TSRK8VR 4.38 4.91 4.89 5.44 5.57 6.93 7.50 7.49

612 648 684 720 756 792 828 864
MTSM_PRECALC 26.83 28.87 29.60 30.42 31.00 31.93 30.02 34.18
MTSM 2.40 2.38 2.46 2.45 2.53 2.39 2.50 2.52
TSRK5DP 5.85 6.43 6.33 6.37 6.35 6.67 6.49 7.39
TSRK8VR 7.62 7.87 8.30 8.36 8.48 8.31 8.48 8.89

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 34.03 28.98 24.45 28.78 25.31 29.93 26.51 30.96
MTSM 2.72 2.47 2.46 2.48 2.59 2.33 2.24 2.43
TSRK5DP 7.04 6.62 3.47 4.04 3.92 4.16 3.66 4.42
TSRK8VR 9.46 8.91 9.42 9.11 10.52 9.36 9.45 9.44

Table C.82: Speedup, 𝑆 = 128000, wave equation, five-point central difference formula.

250

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 4.06 7.55 9.83 11.08 12.68 12.07 14.64 16.39
MTSM 2.79 2.03 1.98 1.97 1.82 1.84 1.74 1.62
TSRK8VR 0.74 0.89 0.84 0.89 0.89 0.88 0.97 0.93

324 360 396 432 468 504 540 576
MTSM_PRECALC 16.26 18.81 17.90 18.95 24.47 17.13 14.99 16.36
MTSM 1.55 1.56 1.46 1.52 1.41 1.12 1.11 1.28
TSRK8VR 0.92 0.93 0.90 0.93 0.95 0.89 0.94 0.93

612 648 684 720 756 792 828 864
MTSM_PRECALC 18.62 18.21 18.98 19.39 19.80 19.43 18.77 18.78
MTSM 1.15 1.03 1.08 1.07 1.11 1.00 1.08 0.95
TSRK8VR 0.96 0.91 0.97 0.97 0.99 0.92 0.97 0.89

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 19.63 17.76 28.60 28.90 26.20 29.20 29.40 28.43
MTSM 1.08 1.04 1.98 1.72 1.85 1.56 1.71 1.54
TSRK8VR 1.00 1.00 2.01 1.67 1.99 1.67 1.91 1.58

Table C.83: Speedup against TSRK5DP, 𝑆 = 128000, wave equation, five-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
10.24 2.05 2.05 767990 1.17𝑒−03 25597306 3.91𝑒−02

Table C.84: Characteristics of input data, 𝑆 = 128000, wave equation, five-point central
difference formula.

251

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10-1

100

101

102

103

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10-1

100

101

102

103

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10-1

100

101

102

103

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure C.13: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 128000, wave equation, five-point central difference formula.

252

1 2 4 8 16 32

Number of nodes

10-1

100

101

102

103

R
a
ti
o

MTSM-PRECALC

cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10-1

100

101

102

103

R
a
ti
o

MTSM

cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10-1

100

101

102

103

R
a
ti
o

TSRK5DP (ode45)

cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10-1

100

101

102

103

R
a
ti
o

TSRK8VR

cost

speedup-cost

Figure C.14: Parallel cost ratio and speedup-cost ratio, 𝑆 = 128000, wave equation, five-
point central difference formula.

253

C.4.3 𝑆 = 256000, five-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 31.61 15.40 9.83 6.92 5.38 4.19 3.44 2.80
MTSM 43.80 48.09 36.07 26.70 24.32 19.96 19.02 16.64
TSRK5DP 169.60 104.01 85.03 55.26 52.74 39.65 38.25 31.14
TSRK8VR 227.85 122.39 95.51 63.50 60.57 44.75 41.58 34.23

324 360 396 432 468 504 540 576
MTSM_PRECALC 2.51 2.06 1.88 1.86 1.49 1.60 1.25 1.16
MTSM 17.27 14.84 15.30 13.45 13.14 13.17 13.13 11.60
TSRK5DP 31.30 25.97 25.71 23.24 23.20 20.57 20.57 18.83
TSRK8VR 34.09 28.09 28.08 24.86 25.11 21.33 22.34 -

612 648 684 720 756 792 828 864
MTSM_PRECALC 0.94 1.03 0.89 1.04 0.91 0.86 0.84 0.88
MTSM 12.94 12.20 11.99 24.80 21.32 20.71 20.53 20.15
TSRK5DP 18.47 17.92 18.04 - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 0.91 0.82 0.84 0.73 0.78 0.81 0.78 0.76
MTSM 23.48 20.01 22.33 19.71 20.62 19.00 18.87 16.58
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

Table C.85: Average time, 𝑆 = 256000, wave equation, five-point central difference formula.

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 102.65 107.19 114.15 117.57 125.87 131.17 140.98
MTSM 100.00 45.55 40.48 41.01 36.02 36.58 32.89 32.90
TSRK5DP 100.00 81.53 66.49 76.73 64.31 71.28 63.35 68.08
TSRK8VR 100.00 93.08 79.52 89.70 75.24 84.86 78.28 83.21

324 360 396 432 468 504 540 576
MTSM_PRECALC 139.76 153.23 152.68 141.56 163.20 140.73 168.81 170.66
MTSM 28.19 29.52 26.02 27.15 25.64 23.76 22.24 23.61
TSRK5DP 60.21 65.30 59.98 60.82 56.22 58.89 54.96 56.29
TSRK8VR 74.27 81.13 73.78 76.38 69.80 76.29 68.01 -

612 648 684 720 756 792 828 864
MTSM_PRECALC 198.72 170.23 187.82 151.35 165.54 166.78 162.83 149.49
MTSM 19.91 19.94 19.22 8.83 9.78 9.61 9.28 9.06
TSRK5DP 54.01 52.58 49.49 - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 138.98 147.58 138.59 154.45 139.80 129.55 130.72 129.98
MTSM 7.46 8.42 7.26 7.94 7.33 7.69 7.49 8.26
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

Table C.86: Efficiency, 𝑆 = 256000, wave equation, five-point central difference formula.

254

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.05 3.22 4.57 5.88 7.55 9.18 11.28
MTSM 1.00 0.91 1.21 1.64 1.80 2.19 2.30 2.63
TSRK5DP 1.00 1.63 1.99 3.07 3.22 4.28 4.43 5.45
TSRK8VR 1.00 1.86 2.39 3.59 3.76 5.09 5.48 6.66

324 360 396 432 468 504 540 576
MTSM_PRECALC 12.58 15.32 16.79 16.99 21.22 19.70 25.32 27.31
MTSM 2.54 2.95 2.86 3.26 3.33 3.33 3.34 3.78
TSRK5DP 5.42 6.53 6.60 7.30 7.31 8.25 8.24 9.01
TSRK8VR 6.68 8.11 8.12 9.17 9.07 10.68 10.20 -

612 648 684 720 756 792 828 864
MTSM_PRECALC 33.78 30.64 35.69 30.27 34.76 36.69 37.45 35.88
MTSM 3.38 3.59 3.65 1.77 2.05 2.11 2.13 2.17
TSRK5DP 9.18 9.46 9.40 - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 34.75 38.37 37.42 43.25 40.54 38.87 40.52 41.59
MTSM 1.87 2.19 1.96 2.22 2.12 2.31 2.32 2.64
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

Table C.87: Speedup, 𝑆 = 256000, wave equation, five-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 5.36 6.75 8.65 7.98 9.81 9.47 11.11 11.11
MTSM 3.87 2.16 2.36 2.07 2.17 1.99 2.01 1.87
TSRK8VR 0.74 0.85 0.89 0.87 0.87 0.89 0.92 0.91

324 360 396 432 468 504 540 576
MTSM_PRECALC 12.45 12.59 13.66 12.49 15.57 12.82 16.48 16.26
MTSM 1.81 1.75 1.68 1.73 1.77 1.56 1.57 1.62
TSRK8VR 0.92 0.92 0.92 0.93 0.92 0.96 0.92 -

612 648 684 720 756 792 828 864
MTSM_PRECALC 19.74 17.37 20.36 - - - - -
MTSM 1.43 1.47 1.50 - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC - - - - - - - -
MTSM - - - - - - - -
TSRK8VR - - - - - - - -

Table C.88: Speedup against TSRK5DP, 𝑆 = 256000, wave equation, five-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
20.48 4.10 4.10 1535990 5.86𝑒−04 51197306 1.95𝑒−02

Table C.89: Characteristics of input data, 𝑆 = 256000, wave equation, five-point central
difference formula.

255

C.4.4 𝑆 = 512000, five-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 64.69 32.69 21.49 15.47 12.13 9.91 8.31 7.18
MTSM 114.01 95.65 69.87 49.58 43.82 35.40 34.23 28.34
TSRK5DP 506.32 243.82 170.10 - - - - -
TSRK8VR 621.15 291.84 - - - - - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 6.32 5.52 5.08 4.42 3.95 3.63 3.26 3.09
MTSM 28.87 24.53 25.38 21.69 21.59 20.18 19.82 18.71
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 2.69 2.53 2.59 2.37 2.31 2.22 1.95 1.85
MTSM 20.44 35.05 36.67 30.84 - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 1.73 1.67 1.60 1.52 1.48 1.50 1.20 1.22
MTSM - - - - - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

Table C.90: Average time, 𝑆 = 512000, wave equation, five-point central difference formula.

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 98.94 100.34 104.57 106.64 108.82 111.16 112.56
MTSM 100.00 59.60 54.39 57.49 52.04 53.68 47.58 50.29
TSRK5DP 100.00 103.83 99.22 - - - - -
TSRK8VR 100.00 106.42 - - - - - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 113.79 117.28 115.79 121.85 125.99 127.37 132.20 130.89
MTSM 43.87 46.49 40.84 43.80 40.63 40.37 38.36 38.08
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 141.48 142.12 131.42 136.75 133.51 132.16 144.16 145.57
MTSM 32.82 18.07 16.37 18.49 - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 149.64 149.07 149.81 151.57 150.76 143.78 173.81 165.41
MTSM - - - - - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

Table C.91: Efficiency, 𝑆 = 512000, wave equation, five-point central difference formula.

256

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 1.98 3.01 4.18 5.33 6.53 7.78 9.00
MTSM 1.00 1.19 1.63 2.30 2.60 3.22 3.33 4.02
TSRK5DP 1.00 2.08 2.98 - - - - -
TSRK8VR 1.00 2.13 - - - - - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 10.24 11.73 12.74 14.62 16.38 17.83 19.83 20.94
MTSM 3.95 4.65 4.49 5.26 5.28 5.65 5.75 6.09
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 24.05 25.58 24.97 27.35 28.04 29.07 33.16 34.94
MTSM 5.58 3.25 3.11 3.70 - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 37.41 38.76 40.45 42.44 43.72 43.13 53.88 52.93
MTSM - - - - - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

Table C.92: Speedup, 𝑆 = 512000, wave equation, five-point central difference formula.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 7.83 7.46 7.92 - - - - -
MTSM 4.44 2.55 2.43 - - - - -
TSRK8VR 0.82 0.84 - - - - - -

324 360 396 432 468 504 540 576
MTSM_PRECALC - - - - - - - -
MTSM - - - - - - - -
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC - - - - - - - -
MTSM - - - - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC - - - - - - - -
MTSM - - - - - - - -
TSRK8VR - - - - - - - -

Table C.93: Speedup against TSRK5DP, 𝑆 = 512000, wave equation, five-point central
difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
40.96 8.19 8.19 3071990 2.93𝑒−04 102397306 9.76𝑒−03

Table C.94: Characteristics of input data, 𝑆 = 512000, wave equation, five-point central
difference formula.

257

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e
 t
im

e
 [
s
]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

0

25

50

75

100

125

150

175

200

225

250

275

300

E
ff
ic

ie
n
c
y
 [
%

]

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0
10

00
11

00

Number of processes

10
-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p
 a

g
a
in

s
t
T

S
R

K
5
D

P

 MTSM-PRECALC MTSM TSRK5DP (ode45) TSRK8VR

Figure C.15: Average time, parallel efficiency, parallel speedup, speedup against the
TSRK5DP solver, 𝑆 = 512000, wave equation, five-point central difference formula.

258

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM-PRECALC
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

MTSM
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK5DP (ode45)
cost

speedup-cost

1 2 4 8 16 32

Number of nodes

10
-1

10
0

10
1

10
2

10
3

R
a
ti
o

TSRK8VR
cost

speedup-cost

Figure C.16: Parallel cost ratio and speedup-cost ratio, 𝑆 = 512000, wave equation, five-
point central difference formula.

259

C.4.5 𝑆 = 1024000, five-point central difference formula

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 72.44 35.63 23.19 17.60 13.74 11.18 9.25 8.05
MTSM 254.89 240.55 193.09 91.40 81.92 - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 8.84 6.04 5.39 4.90 4.38 4.21 3.79 3.40
MTSM - - - - - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 3.09 3.05 2.57 2.44 2.25 2.15 2.01 1.93
MTSM - - - - - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 1.88 1.92 1.76 1.69 1.80 1.47 1.51 1.31
MTSM - - - - - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

Table C.95: Average time, 𝑆 = 1024000, wave equation, five-point central difference for-
mula.

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 101.66 104.14 102.89 105.41 107.97 111.91 112.52
MTSM 100.00 52.98 44.00 69.72 62.23 - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 91.09 119.85 122.13 123.23 127.23 122.83 127.35 133.13
MTSM - - - - - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 138.07 132.05 148.16 148.35 153.60 153.45 156.73 156.79
MTSM - - - - - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 154.02 145.13 152.81 153.03 138.73 164.53 154.34 173.30
MTSM - - - - - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

Table C.96: Efficiency, 𝑆 = 1024000, wave equation, five-point central difference formula.

260

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 2.03 3.12 4.12 5.27 6.48 7.83 9.00
MTSM 1.00 1.06 1.32 2.79 3.11 - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

324 360 396 432 468 504 540 576
MTSM_PRECALC 8.20 11.99 13.43 14.79 16.54 17.20 19.10 21.30
MTSM - - - - - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

612 648 684 720 756 792 828 864
MTSM_PRECALC 23.47 23.77 28.15 29.67 32.26 33.76 36.05 37.63
MTSM - - - - - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 38.51 37.73 41.26 42.85 40.23 49.36 47.85 55.45
MTSM - - - - - - - -
TSRK5DP - - - - - - - -
TSRK8VR - - - - - - - -

Table C.97: Speedup, 𝑆 = 1024000, wave equation, five-point central difference formula.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
57.34 16.38 16.38 4095994 9.80𝑒−05 104447248 2.49𝑒−03

Table C.98: Characteristics of input data, 𝑆 = 1024000, wave equation, five-point central
difference formula.

261

C.5 Telegraph equation
Subsections C.5.1 and C.5.2 present numerical results for 𝑆 = 512000, and 𝑆 = 1024000,
respectively.

C.5.1 𝑆 = 512000

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM 98.42 81.63 62.67 42.00 39.69 31.87 30.12 25.94
MTSM_PRECALC 89.21 45.29 30.10 22.11 17.59 14.32 12.06 10.32
TSRK5DP 265.34 135.59 97.49 61.05 59.81 43.61 43.76 32.97
TSRK8VR 187.69 87.64 62.89 38.49 38.73 26.61 23.80 19.82

324 360 396 432 468 504 540 576
MTSM 25.87 23.43 21.76 20.67 19.75 19.49 18.16 16.87
MTSM_PRECALC 9.33 8.17 7.29 6.51 5.94 5.59 5.16 5.04
TSRK5DP 35.36 28.20 29.92 24.38 25.47 21.64 22.12 19.70
TSRK8VR 22.33 16.95 18.63 14.45 16.04 13.23 13.21 12.00

612 648 684 720 756 792 828 864
MTSM 16.70 16.68 16.55 16.16 15.16 15.12 14.87 14.29
MTSM_PRECALC 4.53 4.16 3.97 3.71 3.42 3.25 3.11 3.02
TSRK5DP 19.37 18.10 17.66 16.70 16.19 15.84 15.15 14.36
TSRK8VR 12.03 10.59 10.58 9.97 9.30 10.79 10.35 9.70

900 936 972 1008 1044 1080 1116 1152
MTSM 14.51 13.41 13.08 13.40 13.20 13.63 12.60 12.33
MTSM_PRECALC 2.90 2.68 2.61 2.54 2.59 2.44 2.22 2.15
TSRK5DP 14.23 12.76 13.18 16.68 15.81 15.75 14.93 15.51
TSRK8VR 10.08 8.92 9.47 9.03 8.88 8.83 9.25 10.26

Table C.99: Average time, 𝑆 = 512000, telegraph equation.

262

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM 100.00 60.28 52.35 58.59 49.59 51.47 46.68 47.43
MTSM_PRECALC 100.00 98.49 98.79 100.87 101.43 103.83 105.67 108.05
TSRK5DP 100.00 97.85 90.72 108.66 88.73 101.41 86.62 100.60
TSRK8VR 100.00 107.08 99.48 121.91 96.92 117.54 112.67 118.38

324 360 396 432 468 504 540 576
MTSM 42.27 42.01 41.12 39.68 38.33 36.07 36.13 36.46
MTSM_PRECALC 106.24 109.19 111.25 114.20 115.53 113.99 115.26 110.63
TSRK5DP 83.38 94.09 80.62 90.70 80.14 87.58 79.97 84.18
TSRK8VR 93.41 110.76 91.60 108.22 90.01 101.36 94.69 97.79

612 648 684 720 756 792 828 864
MTSM 34.67 32.78 31.30 30.45 30.91 29.59 28.78 28.70
MTSM_PRECALC 115.84 119.14 118.27 120.23 124.21 124.77 124.72 123.08
TSRK5DP 80.58 81.44 79.08 79.44 78.04 76.14 76.15 76.99
TSRK8VR 91.76 98.45 93.35 94.11 96.09 79.09 78.87 80.59

900 936 972 1008 1044 1080 1116 1152
MTSM 27.13 28.23 27.87 26.23 25.71 24.07 25.20 24.94
MTSM_PRECALC 123.05 128.03 126.59 125.44 118.77 121.87 129.63 129.67
TSRK5DP 74.59 79.98 74.56 56.81 57.87 56.16 57.33 53.46
TSRK8VR 74.47 80.92 73.38 74.25 72.88 70.86 65.45 57.16

Table C.100: Efficiency, 𝑆 = 512000, telegraph equation.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM 1.00 1.21 1.57 2.34 2.48 3.09 3.27 3.79
MTSM_PRECALC 1.00 1.97 2.96 4.03 5.07 6.23 7.40 8.64
TSRK5DP 1.00 1.96 2.72 4.35 4.44 6.08 6.06 8.05
TSRK8VR 1.00 2.14 2.98 4.88 4.85 7.05 7.89 9.47

324 360 396 432 468 504 540 576
MTSM 3.80 4.20 4.52 4.76 4.98 5.05 5.42 5.83
MTSM_PRECALC 9.56 10.92 12.24 13.70 15.02 15.96 17.29 17.70
TSRK5DP 7.50 9.41 8.87 10.88 10.42 12.26 12.00 13.47
TSRK8VR 8.41 11.08 10.08 12.99 11.70 14.19 14.20 15.65

612 648 684 720 756 792 828 864
MTSM 5.89 5.90 5.95 6.09 6.49 6.51 6.62 6.89
MTSM_PRECALC 19.69 21.44 22.47 24.05 26.08 27.45 28.68 29.54
TSRK5DP 13.70 14.66 15.02 15.89 16.39 16.75 17.51 18.48
TSRK8VR 15.60 17.72 17.74 18.82 20.18 17.40 18.14 19.34

900 936 972 1008 1044 1080 1116 1152
MTSM 6.78 7.34 7.52 7.34 7.46 7.22 7.81 7.98
MTSM_PRECALC 30.76 33.29 34.18 35.12 34.44 36.56 40.18 41.49
TSRK5DP 18.65 20.79 20.13 15.91 16.78 16.85 17.77 17.11
TSRK8VR 18.62 21.04 19.81 20.79 21.14 21.26 20.29 18.29

Table C.101: Speedup, 𝑆 = 512000, telegraph equation.

263

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM 2.70 1.66 1.56 1.45 1.51 1.37 1.45 1.27
MTSM_PRECALC 2.97 2.99 3.24 2.76 3.40 3.05 3.63 3.19
TSRK8VR 1.41 1.55 1.55 1.59 1.54 1.64 1.84 1.66

324 360 396 432 468 504 540 576
MTSM 1.37 1.20 1.38 1.18 1.29 1.11 1.22 1.17
MTSM_PRECALC 3.79 3.45 4.10 3.75 4.29 3.87 4.29 3.91
TSRK8VR 1.58 1.66 1.61 1.69 1.59 1.64 1.67 1.64

612 648 684 720 756 792 828 864
MTSM 1.16 1.09 1.07 1.03 1.07 1.05 1.02 1.00
MTSM_PRECALC 4.28 4.35 4.45 4.50 4.73 4.87 4.87 4.75
TSRK8VR 1.61 1.71 1.67 1.67 1.74 1.47 1.46 1.48

900 936 972 1008 1044 1080 1116 1152
MTSM 0.98 0.95 1.01 1.24 1.20 1.16 1.18 1.26
MTSM_PRECALC 4.91 4.76 5.05 6.57 6.10 6.45 6.73 7.21
TSRK8VR 1.41 1.43 1.39 1.85 1.78 1.78 1.61 1.51

Table C.102: Speedup against TSRK5DP, 𝑆 = 512000, telegraph equation.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
28.67 8.19 8.19 2048003 1.95𝑒−04 132091971 1.26𝑒−02

Table C.103: Characteristics of input data, 𝑆 = 512000, telegraph equation.

C.5.2 𝑆 = 1024000

solver # processes (avgtime) [s]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 89.60 59.03 45.40 36.47 30.32 25.88 22.03
MTSM 262.97 222.88 177.82 83.04 77.04 54.98 53.36 42.69
TSRK5DP 616.89 348.31 231.40 124.85 113.21 77.27 76.99 57.96
TSRK8VR 430.33 224.96 152.10 85.13 72.87 50.79 52.13 36.78

324 360 396 432 468 504 540 576
MTSM_PRECALC 19.91 17.35 15.86 14.56 13.26 12.29 11.33 10.60
MTSM 43.39 37.74 36.49 33.32 32.09 30.16 29.18 26.48
TSRK5DP 63.06 47.51 52.26 39.88 43.09 34.13 38.85 30.53
TSRK8VR 40.35 29.65 32.17 25.46 27.27 21.30 23.41 19.09

612 648 684 720 756 792 828 864
MTSM_PRECALC 9.97 9.04 8.65 8.15 7.43 7.03 6.80 6.40
MTSM 25.82 25.12 24.54 23.81 22.18 22.13 21.59 21.03
TSRK5DP 34.30 29.03 29.25 26.64 26.59 25.51 25.05 24.04
TSRK8VR 21.11 17.77 29.25 26.64 26.59 25.51 25.05 24.04

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 6.12 5.80 5.48 5.30 5.21 4.92 4.72 4.55
MTSM 20.20 20.25 19.50 18.92 19.07 19.46 18.20 16.71
TSRK5DP 23.63 21.94 21.52 24.52 22.57 21.97 21.40 20.73
TSRK8VR 23.63 21.94 21.52 24.52 22.57 21.97 21.40 20.73

Table C.104: Average time, 𝑆 = 1024000, telegraph equation.

264

solver # processes (efficiency) [%]
36 72 108 144 180 216 252 288

MTSM_PRECALC 100.00 55.81 56.47 55.07 54.84 54.97 55.19 56.73
MTSM 100.00 58.99 49.30 79.17 68.27 79.72 70.41 76.99
TSRK5DP 100.00 88.56 88.86 123.53 108.98 133.06 114.47 133.04
TSRK8VR 100.00 95.65 94.31 126.37 118.12 141.21 117.93 146.25

324 360 396 432 468 504 540 576
MTSM_PRECALC 55.79 57.65 57.31 57.24 58.02 58.11 58.82 58.94
MTSM 67.35 69.68 65.52 65.77 63.05 62.27 60.08 62.06
TSRK5DP 108.69 129.84 107.32 128.90 110.13 129.10 105.86 126.27
TSRK8VR 118.51 145.13 121.62 140.84 121.38 144.33 122.53 140.90

612 648 684 720 756 792 828 864
MTSM_PRECALC 59.00 61.45 60.81 61.32 64.08 64.70 63.90 65.07
MTSM 59.91 58.16 56.41 55.21 56.45 54.01 52.95 52.11
TSRK5DP 105.79 118.05 111.02 115.77 110.47 109.90 107.07 106.93
TSRK8VR 119.89 134.57 77.44 80.76 77.06 76.67 74.69 74.59

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 65.32 66.28 67.63 67.32 66.14 67.81 68.29 68.73
MTSM 52.08 49.94 49.95 49.65 47.55 45.04 46.61 49.18
TSRK5DP 104.41 108.15 106.16 89.84 94.25 93.60 92.98 93.00
TSRK8VR 72.84 75.44 74.06 62.67 65.75 65.30 64.86 64.88

Table C.105: Efficiency, 𝑆 = 1024000, telegraph equation.

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 1.00 1.12 1.69 2.20 2.74 3.30 3.86 4.54
MTSM 1.00 1.18 1.48 3.17 3.41 4.78 4.93 6.16
TSRK5DP 1.00 1.77 2.67 4.94 5.45 7.98 8.01 10.64
TSRK8VR 1.00 1.91 2.83 5.05 5.91 8.47 8.26 11.70

324 360 396 432 468 504 540 576
MTSM_PRECALC 5.02 5.77 6.30 6.87 7.54 8.14 8.82 9.43
MTSM 6.06 6.97 7.21 7.89 8.20 8.72 9.01 9.93
TSRK5DP 9.78 12.98 11.81 15.47 14.32 18.07 15.88 20.20
TSRK8VR 10.67 14.51 13.38 16.90 15.78 20.21 18.38 22.54

612 648 684 720 756 792 828 864
MTSM_PRECALC 10.03 11.06 11.55 12.26 13.46 14.23 14.70 15.62
MTSM 10.18 10.47 10.72 11.04 11.85 11.88 12.18 12.51
TSRK5DP 17.98 21.25 21.09 23.15 23.20 24.18 24.62 25.66
TSRK8VR 20.38 24.22 14.71 16.15 16.18 16.87 17.18 17.90

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 16.33 17.23 18.26 18.85 19.18 20.34 21.17 21.99
MTSM 13.02 12.98 13.49 13.90 13.79 13.51 14.45 15.74
TSRK5DP 26.10 28.12 28.66 25.16 27.33 28.08 28.82 29.76
TSRK8VR 18.21 19.61 20.00 17.55 19.07 19.59 20.11 20.76

Table C.106: Speedup, 𝑆 = 1024000, telegraph equation.

265

solver # processes (ratio)
36 72 108 144 180 216 252 288

MTSM_PRECALC 6.17 3.89 3.92 2.75 3.10 2.55 2.97 2.63
MTSM 2.35 1.56 1.30 1.50 1.47 1.41 1.44 1.36
TSRK8VR 1.43 1.55 1.52 1.47 1.55 1.52 1.48 1.58

324 360 396 432 468 504 540 576
MTSM_PRECALC 3.17 2.74 3.29 2.74 3.25 2.78 3.43 2.88
MTSM 1.45 1.26 1.43 1.20 1.34 1.13 1.33 1.15
TSRK8VR 1.56 1.60 1.62 1.57 1.58 1.60 1.66 1.60

612 648 684 720 756 792 828 864
MTSM_PRECALC 3.44 3.21 3.38 3.27 3.58 3.63 3.68 3.75
MTSM 1.33 1.16 1.19 1.12 1.20 1.15 1.16 1.14
TSRK8VR 1.62 1.63 1.00 1.00 1.00 1.00 1.00 1.00

900 936 972 1008 1044 1080 1116 1152
MTSM_PRECALC 3.86 3.78 3.93 4.62 4.33 4.47 4.53 4.56
MTSM 1.17 1.08 1.10 1.30 1.18 1.13 1.18 1.24
TSRK8VR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table C.107: Speedup against TSRK5DP, 𝑆 = 1024000, telegraph equation.

A [MB] ic [MB] b [MB] A nnz A nnz [%] APRECALC nnz APRECALC nnz [%]
57.34 16.38 16.38 4096003 9.80𝑒−05 264187971 6.30𝑒−03

Table C.108: Characteristics of input data, 𝑆 = 1024000, telegraph equation.

266

C.6 Open Access Grant Competitions of IT4Innovations
This section provides detailed information on the Open Access Grant Competitions of
IT4Innovations1 (see Subsections C.6.1 and C.6.2).

C.6.1 24th Open Access Grant Competition OPEN-22-47

The large systems of ODEs (matrix-vector representation) will be tested from the size ap-
proximately from 100 thousands up to 2 million. The linear partial differential equations
(PDEs) – telegraph equation, wave equation 1D, heat equation, and Heat equation 2D will
be transformed into the system of ODEs. The MPI code will run on 1–32 nodes, most
often 36 processes per one node. Typical data sizes are 128 000, 256 000, 512 000, 1 024 000,
2 048 000 ODEs. For each data size, five selected solvers will compute the problem, namely,
are MTSM (classical implementation of MTSM), MTSM_O2 (MTSM with modified stop-
ping rule), MTSM_PRECALC (parallel precalculation of MTSM), TSRK5DP (Dormand-
Prince 5(4) method), and TSRK8VR (Verner Runge-Kutta methods of orders 8(7)). Each
test is expected to take about 15 minutes of the wall-clock time. 50 000 core hours are
estimated to be required.

• Nodes: 32

• Processes per node: 36

• Total number of processes: 32 · 36 = 1152

• Wall-Clock Core-Hours (WCH): 0.25 hours (15 min)

• Normalized Core-Hours (NCH), CPU, Barbora: 𝐹 = 1.4

• Estimated number of experiments: 20 (4problems · 5data sizes)

• Number of solvers: 5

• Number of wall-clock hours: 32 · 36 · 0.25 · 1.4 · 20 · 5 = 40320

• Number of node hours: 40320/1.4/36 = 800

• Number of estimated core hours: 50 000

• Number of node hours: 50000/1.4/36 ≈ 992=̇1000

1https://www.it4i.cz/en/for-users/open-access-competition

267

https://www.it4i.cz/en/for-users/open-access-competition

C.6.2 25th Open Access Grant Competition OPEN-25-51

The large systems of ODEs (matrix-vector representation) will be tested from approximately
100 thousand up to 2 million equations. The linear partial differential equations (PDEs)
– for example, telegraph equation, wave equation 1D/2D, heat equation 1D/2D, will be
transformed into the system of ODEs. The MPI code will run on 1–32 nodes, most often 36
processes per one node. Typical data sizes are 128 000, 256 000, 512 000, 1 024 000, 2 048 000
ODEs. For each data size,five selected solvers will compute the problem, namely, the
MTSM (classical implementation of MTSM), MTSM_O2 (MTSM with modified stopping
rule), MTSM_PRECALC (parallel precalculation of MTSM), TSRK5DP (Dormand-Prince
5(4) method), and TSRK8VR (Verner Runge-Kutta method of orders 8(7)). Each test is
expected to take about 15 minutes of the wall-clock time. 1400 node hours are estimated
to be required.

• Nodes: 32

• Wall-Clock Core-Hours (WCH): 0.25 hours (15 min)

• Estimated number of experiments: 35 (7problems · 5data sizes)

• Number of solvers: 5

• Number of node hours: 32 · 0.25 · 35 · 5 = 1400

268

	Introduction
	Motivation
	Research objectives
	Thesis outline

	Numerical solution of differential equations
	Adaptive-step-size numerical methods
	Adapting the step size

	Taylor series methods
	Euler method
	Runge-Kutta methods
	Embedded methods

	Multistep methods
	Adams–Bashforth methods
	Adams–Moulton methods
	Predictor-corrector methods
	Backward differentiation methods

	Partial differential equations
	Types of partial differential equations
	Numerical solution of PDEs
	Taylor series based finite difference approximations
	Derivation of truncation errors
	Higher-order finite difference formulas
	Parameters affecting the accuracy of finite difference formulas

	Method of lines
	von Neumann stability analysis
	Numerical stability of method of lines
	Notation
	Regions of stability
	Stability regions of the selected methods
	Stability analysis of the parabolic equation
	Stability analysis of the hyperbolic equation

	Higher-order differential equations
	Method of derivation order reduction
	Method of derivation order reduction with an additional variable
	Method of continuous integration

	Higher-order Taylor series method
	State of the art
	Motivational example
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5

	Recurrent calculation of Taylor series terms
	Automatic integration order setting
	Automatic transformation
	Linear MTSM
	Nonlinear MTSM
	Practical examples
	General parallelization of the linear system of ODEs

	Parallel and distributed computing
	Motivating parallelism
	Computational power argument
	Memory/disk argument
	Data communication argument

	Areas of parallel computing
	Types of parallel methods
	Types of parallel architectures
	Flynn's classification of parallel architectures
	Johnson's classification of parallel architectures

	Supercomputers
	Interconnection networks and topologies
	Classification of high-performance interconnection networks
	Challenges of current high-performance ICNs

	Parallel performance metrics and laws
	Execution time
	Scalability
	Strong scaling
	Weak scaling

	Berkeley Roofline model for multicore architectures
	Roofline ceilings

	Results
	Technical specifications of supercomputers
	Tools for scientific computing
	MATLAB
	PETSc
	Intel Advisor Roofline model

	Performance metrics
	Characteristics of selected problems
	Data sizes and solvers
	Cluster settings
	General parameters

	Heat equation – three-point central difference
	Results overview – three-point central difference formula
	S=128000, three-point central difference formula
	S=512000, three-point central difference formula
	S=2048000, three-point central difference formula

	Heat equation – five-point central difference formula
	Results overview – five-point central difference formula
	S=128000, five-point central difference formula
	S=512000, five-point central difference formula
	S=2048000, five-point central difference formula

	Wave equation – three-point central difference formula
	Results overview – three-point central difference formula
	S=64000, three-point central difference formula
	S=256000, three-point central difference formula
	S=1024000, three-point central difference formula

	Wave equation – five-point central difference formula
	Results overview – five-point central difference formula
	S=64000, five-point central difference formula
	S=256000, five-point central difference formula
	S=1024000, five-point central difference formula

	Telegraph equation
	Lossy telegraph line
	Lossy telegraph equation model
	Lossless telegraph line
	Lossless telegraph equation model
	Results overview
	S=512000
	S=1024000

	Parallel performance analysis

	Conclusion
	Future work

	Bibliography
	List of publications
	Appendices
	Finite difference coefficients
	Higher-order Taylor series method
	Results
	Heat equation – three-point central difference formula
	S=128000, three-point central difference formula
	S=256000, three-point central difference formula
	S=512000, three-point central difference formula
	S=1024000, three-point central difference formula
	S=2048000, three-point central difference formula

	Heat equation – five-point central difference formula
	S=128000, five-point central difference formula
	S=256000, five-point central difference formula
	S=521000, five-point central difference formula
	S=1024000, five-point central difference formula
	S=2048000, five-point central difference formula

	Wave equation – three-point central difference formula
	S=64000, three-point central difference formula
	S=128000, three-point central difference formula
	S=256000, three-point central difference formula
	S=512000, three-point central difference formula
	S=1024000, three-point central difference formula

	Wave equation – five-point central difference formula
	S=64000, five-point central difference formula
	S=128000, five-point central difference formula
	S=256000, five-point central difference formula
	S=512000, five-point central difference formula
	S=1024000, five-point central difference formula

	Telegraph equation
	S=512000
	S=1024000

	Open Access Grant Competitions of IT4Innovations
	24th Open Access Grant Competition OPEN-22-47
	25th Open Access Grant Competition OPEN-25-51

