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Abstract
Enzymes are proteins accelerating chemical reactions, which makes them attractive targets
for both pharmaceutical and industrial applications. The enzyme function is mediated by
several essential amino acids which form the optimal chemical environment to catalyse the
reaction. In this work, two integrated bioinformatics tools for mining and rational selection
of novel soluble enzymes, EnzymeMiner and SoluProt, are presented.

EnzymeMiner uses one or more enzyme sequences as input along with a description of
essential residues to search the protein database. The description of essential amino acids
is used to increase the probability of similar enzymatic function. EnzymeMiner output
is a set of annotated database hits. EnzymeMiner integrates taxonomic, environmental,
and protein domain annotations to facilitate selection of promising targets for experiments.
The main prioritization criterion is solubility predicted by the second tool being presented,
SoluProt.

SoluProt is a machine-learning method for the prediction of soluble protein expression
in Escherichia coli. The input is a protein sequence and the output is the probability of
such protein to be soluble. SoluProt exploits a gradient boosting machine to decide on the
output prediction class. The tool was trained on TargetTrack database. When evaluated
against a balanced independent test set derived from the NESG database, SoluProt accuracy
was 58.5% and its AUC 0.62, slightly exceeding those of a suite of alternative solubility
prediction tools. Both EnzymeMiner and SoluProt are frequently used by the protein
engineering community to find novel soluble biocatalysts for chemical reactions. These
have a great potential to decrease energetic consumption and environmental burden of
many industrial chemical processes.



Abstrakt
Enzymy jsou proteiny urychlující chemické reakce s velkým potenciálem pro farmaceutický a
obecně chemický průmysl. Enzymatická funkce je obvykle zajištěna několika nepostradatel-
nými aminokyselinami, které tvoří tzv. aktivní místo, kde se odehrává chemická reakce.
V této práci jsou prezentovány dva integrované softwarové nástroje pro dolování a racionální
výběr nových rozpustných enzymů – EnzymeMiner a SoluProt.

EnzymeMiner slouží k hledání nových enzymů. Na vstupu vyžaduje jednu nebo více
sekvencí zvoleného enzymu spolu se seznamem klíčových aminokyselin. Tento seznam slouží
k zvýšení pravděpodobnosti, že nalezený enzym bude mít podobnou funkci jako vstupní
enzym. Výstupem EnzymeMineru je množina anotovaných sekvencí nalezených v databázi.
Za účelem ulehčení výběru několika málo kandidátů pro experimentální ověření v laboratoři
integruje EnzymeMiner anotace z dostupných databází – informaci o zdrojovém organismu
a prostředí, ve kterém se vyskytuje, a informaci o proteinových doménách, ze kterých se
enzym skládá. Hlavním kritériem pro výběr kandidátů je rozpustnost predikovaná druhým
prezentovaným nástrojem, SoluProtem.

SoluProt je metoda založená na strojovém učení, která predikuje heterologní rozpust-
nou expresi proteinu v organismu Escherichia coli. Vstupem je sekvence a výstupem je
pravděpodobnost, že protein bude exprimován v rozpustné formě. SoluProt využívá model
gradient boosting machine a byl trénován na datové sadě odvozené od databáze Target-
Track. Při srovnání na vyvážené nezávislé datové sadě odvozené z databáze NESG dosáhl
SoluProt přesnosti 58,5% a hodnoty AUC 0,62, čímž lehce převyšuje ostatní existující
nástroje. Nástroje EnzymeMiner i SoluProt jsou často využívány řadou uživatelů z oblasti
proteinového inženýrství za účelem hledání nových rozpustných biokatalyzátorů chemických
reakcí. Ty mají velký potenciál snížit energetickou náročnost a ekologickou zátěž mnoha
průmyslových procesů.
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Chapter 1

Introduction

Proteins are molecules that play essential roles in all living organisms. They provide struc-
ture to cells and perform key functions, such as DNA replication, molecule transportation,
regulation, cell signaling, or catalysis of biochemical reactions. Proteins catalysing chemical
reactions are called enzymes or biocatalysts. The catalytic function of enzymes is mediated
by several essential amino acids which form the optimal chemical environment to accelerate
the reaction. Enzymes are attractive targets for pharmaceutical and industrial applications
because of reduced process time, intake of low energy input, cost effective, nontoxic and eco-
friendly characteristics [18]. They are successfully used in drug design, biofuel production,
detergents, waste treatment, food processing, paper industry, and many others [16].

There are currently more than 395 million non-redundant proteins1 in protein sequence
databases [73], approximately 16% of which are assumed to be enzymes2. Despite their
enormous promise for biological and biotechnological discovery, a thorough experimental
characterization has been only performed for 0.3% of the proteins available3 because cur-
rent biochemical characterization techniques are time- and resource-demanding. Therefore,
computational methods are currently more convenient to explore the immense protein di-
versity available among the millions of uncharacterised protein entries. However, existing
computational mining approaches for large databases usually yield hundreds or thousands
of hits. Production and experimental testing of all of the hits would be extremely re-
source demanding and cost-ineffective. Therefore, prioritization methods narrowing down
the selection to just the most promising hits based on computational analysis are needed.

An important prioritization criterion is protein solubility which is one of the most critical
factors limiting the success of protein production. Insufficient protein solubility is probably
the most common cause of failure of protein production and experimental characteriza-
tion pipelines as evidenced by the large-scale Protein Structure Initiative (PSI) project [8].
PSI sought to produce thousands of different protein sequences. In 81% of cases4, it was
probably impossible to produce the target proteins in soluble form. Although many com-
putational tools were developed to predict solubility, obtaining an accurate estimation of
protein solubility is still an open problem.

1NCBI NR database release 2021-05-14.
2Number of records with an assigned enzyme class (https://www.uniprot.org/uniprot/#enzymesViewBy)

to the total number of records in UniProtKB.
3Number of reviewed records in Swiss-Prot database to the total number of records in UniProtKB.
4Based on the total number of purified targets to the total number of targets in the TargetTrack database

(http://sbkb.org/metrics/)
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The goal of the Thesis is to develop integrated tools for mining soluble enzymes from
protein databases. The only required input for the analysis should be one or more enzyme
sequences and a description of enzyme’s essential residues to keep the analysis easy to set
up, thus enabling broad applicability of the tools. The essential residues should be used in
additional filtering steps in order to increase the specificity of the results. The output of
the analysis should be a list of protein sequences annotated with the predicted solubility,
sequence similarity to the input sequences and living environment of the source organism.
The source environment is of particular interest as enzymes from organisms adapted to
harsh conditions—e.g. extreme temperatures, broad range of pH, and extreme salinity,
could also show higher adaptation to such extreme conditions. This would be beneficial for
practical applications in industry where enzymes are required to sustain more demanding
operating conditions. The predicted solubility and sequence similarity will be the primary
prioritization criteria to select hits for further experimental characterization. A new method
should be developed for more accurate sequence-based solubility prediction.

1.1 Specific objectives of the Thesis
1. To develop a method for mining enzymes from NCBI Protein database [73] based on

the input protein sequence and the description of the essential amino acids.

2. To integrate protein domain annotations [33] and environment annotations [7] into
the mining method to facilitate a rational selection of promising hits for experimental
characterization.

3. To compile training set and independent test set for sequence-based protein solubility
prediction.

4. To develop state-of-the-art sequence-based solubility prediction method.

5. To integrate the solubility prediction method into the protein mining method for
prioritization of hits by predicted solubility.

1.2 Organization of the Thesis
The Thesis is organised into six chapters. In the Chapter 2, the field of protein engineering
is introduced, its methods are described, and a newly emerging approach—rational selection
of enzymes, is presented. In the Chapter 3, existing methods for identification of proteins
in databases and visualization of results are discussed along with three main databases used
for mining of enzymes. In the Chapter 4, the current state of the art in the field of protein
solubility prediction is presented. The Chapter 5 presents published works and describe
author’s participation on each of the result. The last Chapter 6 summarises important
points about the presented research. Three articles published in peer-reviewed journals
as a result of the Thesis are attached in the Appendices. The first article (Appendix A)
describes EnzymeMiner—a method for mining enzymes. The second article (Appendix
B) presents SoluProt—a state-of-the-art sequence-based solubility prediction method. The
third article (Appendix C) provides a summary and critical assessment of existing protein
solubility prediction methods.
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Chapter 2

Protein engineering

Protein engineering [11] is the process of developing proteins with novel properties by
modifying the sequences of naturally existing proteins, so-called wild-type proteins. Protein
sequences are chains of amino acids, which can be adjusted by substituting, adding, or
removing specific amino acids. To design these modifications, protein engineering requires
understanding of molecular mechanisms and biological processes governing the genesis and
evolution of proteins and their interactions with other molecules. Such understanding is
then used to intentionally design novel proteins applicable for therapeutic or industrial
purposes.

There exists two well established protein engineering methods: directed evolution [63]
and rational design [39]. These are not mutually exclusive but instead might be combined
to obtain even better design products. Rational selection [85] is a third emerging method
complementing the previous two by suggesting alternative wild-type proteins. All three
protein engineering methods can be described in terms of seven engineering steps: (i)
computer aided analysis and application of expert knowledge, (ii) generation of gene library,
(iii) transformation of the genes into target expression system, (iv) protein expression, (v)
protein purification, (vi) broad screening and selection for target biochemical property and
(vii) in-depth biochemical characterization (Figure 2.1).

2.1 Directed evolution

Directed evolution is a method that mimics natural evolutionary processes that generated
the current set of proteins present in nature. The central idea of directed evolution is
to rapidly mutate genes encoding the target protein at random positions. The best gene
variants are then selected by fitness value screening, which is derived from biochemical
testing of the resulting proteins.

The key biochemical process used for directed evolution is a random mutagenesis based
on an error-prone polymerase chain reaction (PCR) [57] that allows introduction of random
nucleotide substitutions into the target gene. Such mutagenesis results in a large library of
mutated genes. The gene-encoding DNA is then transferred into either an in vivo or in vitro
expression system to produce the corresponding proteins. In vivo systems use the natural
protein production machinery of living organisms which are coerced to accept and translate
the modified DNA. In vitro expression systems do not require a living organism but consists
of all chemicals necessary for initiation of gene transcription and RNA translation [75].

5



Figure 2.1: Protein engineering methods. The goal of protein engineering is to design a
protein, usually an enzyme for catalysis of biochemical reactions, with improved properties.
Rational design uses previous expert knowledge and computational simulations to design
individual improved protein variants. Directed evolution relies on random mutagenesis and
high-throughput screening of generated gene libraries. Rational selection provides alterna-
tive starting proteins based on computer aided database mining for both rational design
and directed evolution. The figure was adapted from the previous work by Damborský [24].
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2.2 Rational design

Rational design uses knowledge of the target protein and extensive computational analy-
sis to design specific variants of the initial protein. A small set of designed genes is then
synthesised biochemically and produced using preferred expression system. However, the
three-dimensional structure of the protein is required to reliably design specific variants.
Conveniently, such information is available for many proteins thanks to the advent of X-ray
crystallography [79], which helped to solve the 3D structure of proteins with a resolution
even below one angstrom (0.1 nanometers). The set of reliable protein structures can be
expanded by currently available protein structure predictors that can reach accuracy of
values close to those of X-ray crystallography [53]. In this context, the protein structure
is used to infer important sites, responsible for binding other molecules or facilitating bio-
chemical reactions (catalytic sites). To understand and predict the effect of an amino acid
substitution, extensive computational analysis and simulations are essential [45, 3].

The combination of rational design and directed evolution is often favourable, leading
to a semi-rational design. The sequence space of a designed protein is reduced by computa-
tional approaches to several amino acids and these positions are subjected to site-directed or
saturation mutagenesis to generate small-sized mutant libraries. These smart libraries are
then screened for desired function similarly as in the process of directed evolution. A dis-
tinctive discipline of rational design is de novo design [71]. The target protein is constructed
from scratch using small building blocks. On the one hand, this is the most demanding
approach and requires large amount of computational power and extensive laboratory work
in multi-step iterative process. On the other hand, it might produce proteins displaying
properties never observed before in nature.

2.3 Rational selection

Both directed evolution and rational design require the knowledge of the input protein se-
quence. However, the question about which protein is the best target for protein engineering
needs to be answered by an expert on the field. Usually, protein engineers select from a set
of proteins for which exists a previous knowledge of their function and biological context
based on available experimental characterization. However, there are cases, where such
characterization is not available or where the characterised proteins display poor biochemi-
cal properties, such as solubility, thermodynamic stability, activity, or substrate specificity.
That kind of proteins make for a poor starting point for engineering. As protein engineering
methods are most effective in making gradual improvements rather than great leaps, it is
advisable to identify the protein with better starting properties and, if necessary, optimise
it by protein engineering.

The current knowledge about existing proteins is accumulated in large protein databases
(Protein Data Bank—PDB [9], UniProtKB [83], NCBI Protein [73]). UniProtKB and
NCBI Protein databases contain both experimentally confirmed proteins and hypotheti-
cal proteins computationally extracted and annotated from known genomes. According
to the UniProtKB database—a comprehensive, high-quality, and freely accessible resource
of protein sequence and functional information, approximately 500,000 confirmed proteins
represent less than 0.3% of all deposited proteins. The remaining 209 million uncharac-
terised proteins represent a great wealth of potentially interesting and diverse proteins for
both basic science and industrial applications.
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Rational selection methods help to search in the millions of uncharacterised protein se-
quences and to suggest the most promising targets. Here, the key hypothesis is that similar
proteins from different organisms perform similar function, but encompass different interest-
ing properties because they adapted to different environmental conditions. Some specially
adapted organisms—so called extremophiles (Table 2.1), live in otherwise unbearable con-
ditions such as extreme temperature, wide pH range, and extreme salinity [28]. Proteins
from such organisms had to evolve to withstand these harsh conditions and preserve their
function. The rational selection methods combine expert knowledge with database searches
based on sequence similarity, identification of protein domains, identification of essential
residues, computational annotations, prediction of 3D structure and analysis of structural
properties [85, 55].

Table 2.1: Classification of extremophilic organisms. Extremophiles might be a good
source of proteins suitable for industrial applications which often requires resilience to
non-standard conditions. The table was adapted from the previous work by Vaňáček [84].

Name Growth characteristics
Psychrophile Growing at low-temperature optimum (∼0–20°C)
Thermophile Growing at high-temperature optimum (∼60–80°C)
Hyperthermophile Growing at extremely temperature optimum (∼80–120°C)
Acidophile Growing at acidic pH optimum (pH <4)
Alkalophile Growing at alcalic pH optimum (pH >8)
Halophile Growing at high salt concentration (>1 M NaCl)
Piezophile Tolerating high hydrostatic pressures (p >40 MPa)
Metalophile Tolerating the presence of high level of heavy metals
Radiophile Resisting to high ionizing and ultraviolet levels
Oligotroph Growing in nutritionally deplete habitats
Toxitolerant Resisting to high levels of damaging agents
Xerophile Tolerating the low water level and resisting to high desiccation
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Chapter 3

Searching for proteins in databases

The basic computer representation of a protein is a protein sequence—a string of letters
from the standardised amino acid alphabet [44]. Other metadata describing the current
knowledge about the protein are usually available. The protein sequence and associated
metadata are deposited in protein sequence databases.

Both protein sequence and metadata may be trusted to a different extent based on the
source of each data. The annotation can be either experimentally determined, manually
added by a domain expert, predicted computationally, or obtained by combination of both
experiments and predictions. A typical path through which a new protein sequence gets
to a protein database is as follows: (i) DNA is read using DNA sequencing method, (ii)
protein coding genes are identified in the DNA sequence, (iii) the genes are translated into
their amino acid sequence, and (iv) the protein sequence is deposited into the database.

Millions of novel protein sequences are being added to databases every year thanks to
efficiency of sequencing technologies [13]. However, most of the novel gene products are only
computationally predicted and automatically translated to proteins using standard codon
tables. Few of such novel proteins are manually reviewed or experimentally characterised
because of the vast human and laboratory resources such tasks demand. The fact that
most proteins in databases are uncharacterised makes searching for proteins with desired
biochemical properties a difficult task.

3.1 Databases

In this section, three main protein sequence databases are introduced which can be used as
a data source for identification of novel enzymes.

3.1.1 UniProtKB

UniProtKB [83] is a joint protein database of three collaborating institutions associated in
the UniProt consortium—the European Bioinformatics Institute (EMBL-EBI), the Swiss
Institute of Bioinformatics (SIB), and the Protein Information Resource (PIR). It is the
most comprehensive protein database available. UniProtKB provides information on pro-
tein function, involvement in regulatory paths, cell location, and pathological associations
connected to protein variants. It also provides annotation of post-translational protein
modifications and interactions of the protein. UniProtKB is linked to the Protein Data
Bank (PDB) of 3D structures of available macromolecules.
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UniProtKB has two parts: (i) TrEMBL (>209,000,000 records) which contains automat-
ically annotated and not reviewed records (ii) Swiss-Prot (500,000 records) which provides
curated annotations. The enormous size-difference of these two UniProtKB parts highlights
the extreme contrast between the fast and easy prediction of novel protein sequences and
their slow and tedious experimental characterization.

The UniProt consortium maintains three other large databases: UniParc—an archive
of all available protein sequences containing one record for each unique protein sequence;
UniRef—sets of protein sequences clustered at various sequence identity thresholds; and
MGnify—a repository of metagenomic and environmental data.

3.1.2 NCBI Protein

The NCBI Protein database [73] is the protein sequence database of National Center for
Biotechnology Information (NCBI) of the National Library of Medicine. The database
is mainly based on coding sequence translations from two other NCBI databases of ge-
nomic assemblies—GenBank and RefSeq. It also cross-references other protein databases
like Swiss-Prot or PDB. Beside the Protein database, NCBI maintains a compilation of
non-identical protein sequences—the non-redundant (NR) database, being similar to the
UniParc database. Currently, the NR database is the largest database of non-redundant
genomic protein sequences.

3.1.3 BRENDA

BRENDA [14] is a database from the Technische Universität Braunschweig specialised on
enzymes—the proteins involved in catalysis of biochemical reactions. BRENDA provides
information on enzyme and ligand nomenclature, source organism, reaction and specificity,
kinetic properties, structure and role of the ligands, stability information, ligand-enzyme
information, enzyme sequence and structure, mutants, connection to diseases, and biolog-
ical pathways. BRENDA is the most comprehensive source of enzyme-related information
attempting to map entire enzyme classes and families.

3.2 Existing approaches

There are two basic approaches to search in protein sequence databases: (i) metadata-
based search and (ii) sequence-based search. Both methods can be combined to achieve
more refined results.

Metadata-based search uses protein metadata like protein name, genomic location,
source organism, domain and functional annotations, and references to other databases to
find relevant hits. This type of search is supported by UniProtKB, NCBI Protein database,
and BRENDA. The user can construct arbitrary complex queries by combining terms using
the logical operators AND, OR, NOT. The metadata-based search has two major advan-
tages. First, it is fast as search indexes can be precomputed for the terms to speed up the
query evaluation. Second, the query can target specific protein properties such as genomic
context, ligand-enzyme relation, or protein function. The main disadvantage of this ap-
proach is the low confidence of most annotations. As mentioned previously, most of the
protein sequences are automatically annotated and the accuracy of such annotations is still
modest [70]. Therefore, the results need additional evaluation. Metadata-based methods
are herein not further discussed as the Thesis is focused on sequence-based search methods.
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In contrast, sequence-based search uses the protein sequence as a query to perform the
search in the database. Due to a natural evolutionary variation in proteins, algorithms
based on sequence similarity are required. These algorithms reflect biological homology of
the protein sequences, defined in terms of shared ancestry in the evolutionary history. No-
tably, the substitution of biologically similar amino acids is less penalised by this strategy
than the substitution of biologically distant ones. The key advantage of sequence-based
search methods over metadata-based ones is the specificity of the search. Proteins showing
high sequence similarity tend to have similar biochemical properties. The output of the
sequence-based search is the alignment of the hit proteins with the query itself. Thus, the
user can further check if important functional parts of the protein are correctly aligned.
The disadvantage of the approach is its high computational complexity in comparison to
metadata search. An alignment needs to be computed for many protein sequence pairs
which is time-demanding. The alignment could be computed using optimal deterministic
algorithms, such as those designed by Needleman and Wunsch [60] or by Smith and Wa-
terman [78], but in practice, faster heuristic approaches are used. There are many existing
algorithms differing in speed, memory usage, and sensitivity of the search, including BLAST
[4], DIAMOND [12], MMseqs2 [82], UBLAST [32], RAPSearch2 [90], FASTA [64], and HM-
MER [31]. Here, two most-frequently used ones—BLAST and HMMER, are discussed as
well as other enzyme-specific methods that consider the catalytic function of the enzyme.

3.2.1 BLAST

Basic Local Alignment Search Tool (BLAST) [4] is one of the oldest and most widely used
heuristic algorithms for sequence-based search in protein databases. BLAST nucleates
regions of similarity from minimal alignments, whose length is determined by the word-size
parameter and extends them to produce local alignments. Due to the modular nature of
proteins, this local alignment approach outperforms optimal methods in finding shorter
stretches of sequence similarity while producing results in much shorter time. BLAST
outputs an alignment bit score for each hit which is based on selected scoring matrix,
typically some matrix from the BLOSUM family [40], although PAM matrices [26] can be
used as well. These matrices are position-independent, giving always the same score for a
particular amino acid substitution regardless of the position in the query sequence.

To assess statistical relevance of the hits, BLAST provides a measure called expectation
value (E-value). It gives the expected number of how many times an alignment with a
better or equal score could be found by chance in a database of a particular size. Hence,
the lower the E-value the more statistically significant the found solution is. The E-value
is given by Equation 3.1, where 𝑚 is the length of the query sequence, 𝑁 is the length of
all sequences in the database (total number of residues) and 𝑆′ is a bit score.

𝐸 = 𝑚𝑁2−𝑆′ (3.1)

The E-value can be transformed to a P-value (Equation 3.2) which gives probability
that a hit with a greater or equal score is found in a database of particular size.

𝑃 = 1 − 𝑒−𝐸 (3.2)

To improve the results of the search, BLAST can use a position specific scoring matrix
(PSSM) as an alternative to a single query sequence and the position independent scoring
matrix. The PSSM is based on alignment of multiple sequences similar to the query. The
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Figure 3.1: A profile HMM (right) representing a short multiple alignment of five sequences
(left) with three consensus columns. The three columns are modelled by three match states
M, each of which has 20 residue emission probabilities, shown with black bars. Insert states
I also have 20 emission probabilities each. Delete states D have no emission probabilities.
A begin and end state are included (b and e, respectively). State transition probabilities
are shown as arrows. The figure was adapted from the previous work by Eddy [30].

matrix represents probability of the 20 different amino acids at each position in the query
protein and it is of size 𝐿× 20, where 𝐿 is the length of the query sequence. The score for
aligning an amino acid with a PSSM position is given by the matrix itself, rather than by
reference to a fixed scoring matrix. The PSSM accounts for the allowed variability in the
protein and can express that certain parts of the protein are evolutionary more conserved
and thus do not allow substitutions.

The PSSM approach is used for iterative search by the PSI-BLAST tool which enhances
the sensitivity of the search. In the first iteration, a classic BLAST search is performed
using a single query sequence. Then a PSSM is constructed based on the search results. In
the next iterations, the search is performed using the PSSM from the previous steps. This
approach allows detection of more distant homologous sequences (higher sensitivity) while
not introducing excessive amount of false positive hits.

3.2.2 HMMER

HMMER [31] is a suite of tools for searching similar biological sequences based on profile
Hidden Markov Models (profile HMM) [30]. A profile HMM is a variant of an HMM de-
signed specifically to biological sequences to model evolutionary variation in the sequences.
Similarly to PSSM, profile HMM is calculated using a multiple sequence alignment. A pro-
file HMM defines three types of states: match (M), insertion (I), and deletion (D) (Figure
3.1). M state emits a single amino acid and the probability of emitting is determined by
the frequency at which that residue has been observed in the corresponding column of the
alignment. The sequence of match states is analogous to the PSSM. A profile HMM cap-
tures multiple sequence alignments better than PSSM by modelling insertions and deletions
using D and I states. M, I, and D states are connected by state transition probabilities,
which reflect different rate of insertions and deletions along the sequence alignment.
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Figure 3.2: A cross-section of a 3D structure of haloalkane dehalogenase with a detail of the
active site (1) and main access tunnel (2). The catalytic pentad residues and the substrate
are highlighted by blue and orange sticks, respectively. The figure was adapted from the
previous work by Chovancová et al. [19].

3.2.3 Enzyme-specific methods

Distinctive feature of enzymes is the presence of essential residues, which are the key amino
acids involved in the catalysis. For example, enzymes from the family of haloalkane dehalo-
genases encompass so-called catalytic pentad—five essential residues accelerating hydrolytic
conversion of halogenated alkanes into alcohols (Figure 3.2). Removing a single essential
residue from the protein usually results in a detrimental impact on the enzymatic function.

Therefore, enzyme mining methods must consider essential residues. A common ap-
proach to validate essential residues calculates the optimal pair-wise sequence alignment
of the query and the target sequence using one of Smith-Waterman or Needleman-Wunsch
algorithms. The validation succeeds when the essential residues on the query are aligned
to identical residues on the target. An alternative approach uses active site profiles of the
query taking into account not only the essential residues themselves but also flanking amino
acids upstream and downstream, respectively [55].

Another step to validate enzyme hits is the constitution of protein domains. Protein
domains are structurally distinct parts of proteins having a specific role in the protein’s
architecture. Enzymes usually require a specific arrangement of protein domains to perform
their function. The largest database of protein domains is Pfam [33], currently containing
18,259 unique domains1. The domains are represented by multiple sequence alignments
and profile HMMs, and their detection can be performed using InterProScan software [67].

3.3 Sequence-space visualization

As protein search methods yield thousands of hits, an easy-to-interpret visualization show-
ing the most significant relationships between the sequences could be of great help to select
targets. A sequence-similarity network (SSN, Figure 3.3) is suitable for such task [6]. In
SSN, sequences are represented by nodes. Edges between nodes indicate substantial se-
quence similarity between the sequences. The network is arranged in a two-dimensional

1Pfam 33.1 (05/2020) http://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam33.1/relnotes.txt

13

http://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam33.1/relnotes.txt


Figure 3.3: Representative sequence similarity network (SSN) of 3675 haloalkane dehaloge-
nases. The SSN was generated by the EnzymeMiner web server [42] which uses Cytoscape
[74] to lay out the network. Sequences sharing greater than 50% identity were consolidated
in a single node. Edges indicate sequence identity between representative sequences of the
connected nodes. Red nodes represent clusters that contain the query sequences used for
the EnzymeMiner analysis.
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space such that the edge length is proportional to the sequence similarity. The SSN con-
struction is done in several steps:

1. All-to-all BLAST similarity search is performed to calculate similarity between se-
quences which will be used as edge weights.

2. A minimum similarity threshold is applied to remove irrelevant edges.

3. A layout algorithm is applied to spread the nodes in a 2D space.

If the SSN is colour-coded, it helps to analyse sequence relationships between the input
and the identified sequences. Sequence groups and outliers can be easily spotted. The
SSN is especially useful for selecting promising targets across to whole sequence space to
increase the sequence variability of the selection and increase the chance of finding enzymes
with novel biochemical properties. SSNs can be visualised and interactively analysed, for
example using Cytoscape software [74].

3.4 Summary
Existing metadata- and sequence-based approaches are well developed and widely used for
mining enzyme sequences in protein databases. The fundamental unsolved problem is how
to deal with the overwhelming number of sequence entries identified by these methods and
select a small number of relevant hits for in-depth experimental characterization. For ex-
ample, a metadata-based search for members of the haloalkane dehalogenase model family
using the UniProt web interface yields 3598 sequences2. It is impossible to rationally select
several tens of targets for experimental testing without additional bioinformatics analyses
that would help to prioritize such a large pool of sequences. To address the challenge of
exploring the unmapped enzyme sequence space and rational selection of attractive tar-
gets, a novel tool is needed that would identify enzyme family members, comprehensively
annotate the targets and visualise them to facilitate efficient prioritization and selection of
representative hits for experimental characterization. Since solubility is a critical parame-
ter for successful production of proteins in laboratory conditions, it would be a convenient
criterion for such prioritization.

2UniProtKB release 2020_01
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Chapter 4

Protein solubility prediction

Protein solubility is a key attribute when choosing protein targets for experimental charac-
terization [85]. Its accurate computational prediction based on protein sequence would save
high amount of resources wasted on difficult-to-produce proteins. The sequence-based pro-
tein solubility prediction task is a problem of finding a mapping between protein sequences
Σ+ and solubility values 𝑆 (Equation 4.1).

Σ+ −→ 𝑆 (4.1)

Σ = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y} (4.2)

Σ+ is a set of all possible non-empty protein sequences composed from letters of the
amino acid alphabet Σ (Equation 4.2). The solubility values 𝑆 might be defined as any of
the following sets depending on the data and model used for the prediction: (i) discrete
classes (soluble/insoluble), (ii) numeric values from 0 to 1 representing probability of the
protein being soluble, or (iii) real-scale numeric values representing experimental quanti-
tative solubility measurement. In the context of sequence-based solubility prediction, the
second definition is the most frequent by existing sequence-based methods [43].

This chapter is based on one of the three main results of the Thesis—a summary and
critical assessment of computational tools and databases for predicting protein stability
and solubility [59] (Appendix C). While this chapter focuses on sequence-based solubility
prediction only, the summary also discusses other types of methods and databases.

4.1 Biochemical background
Protein solubility is a thermodynamic parameter defined as the concentration of protein in a
saturated solution that is in equilibrium with a solid phase, either crystalline or amorphous,
under a given set of conditions [5]. However, it is challenging to quantitatively measure
the solubility of large sets of proteins [51], so there is little quantitative experimental data
on protein solubility. More often, protein solubility is recorded as binary value in existing
datasets—1 for soluble proteins and 0 for insoluble proteins. The exact understanding of
the two solubility classes and their relation to the formal definition of protein solubility can
differ greatly between datasets.

The key biochemical process limited by protein solubility is a recombinant protein ex-
pression (RPE) [22]. The main goal of this process is to manipulate living organisms,
usually bacteria, to produce the desired recombinant (artificial) protein. RPE is widely
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Figure 4.1: Recombinant protein expression (RPE). The gene of interest coding a required
protein (enzyme) is synthesised and cloned into a plasmid (expression vector). Recombi-
nant plasmid DNA is then transformed into a host bacteria cell, cells are cultured, the
expression is induced, and the protein produced. As the protein is produced on the basis
of a recombinant DNA, it is referred to as a recombinant protein. The figure was adapted
from the previous work by Duro-Castano et al. [29].

used in both research and industry. At the theoretical level, the steps needed for obtaining
a recombinant protein are straightforward. First of all, a gene of interest is selected, cloned
into an expression vector, transformed into the host cell of choice, induced and then, the
protein is ready for purification and characterization (Figure 4.1). In practice, however,
several problems often arise. Apart from potential difficulties with the host organism culti-
vation, the recombinant protein might result to be insoluble. Protein insolubility can arise
from various reasons at multiple stages of RPE process:

• Protein toxicity: the host cell does not tolerate the recombinant protein and eliminate
it using the self-protective cell mechanisms.

• Inability to fold: the protein in its primary form can not be properly folded and
requires additional post-translational modifications of the protein chain.

• Inability to self-fold: the protein needs the assistance of auxiliary molecules (chaper-
ones) to properly fold into an active conformation.

• Inappropriate cellular environment: the host cell is not able to provide a suitable
cellular environment that is essential for the given protein to fold.

• Aggregation: the protein aggregates and forms inclusion bodies in where it is de-
posited in alternate non-native conformations rather than folding into its natural
conformation.

To conclude, the reasons for the protein insolubility are usually tightly related to the
specific conditions in the host cell. This has one important implication. A protein that is
soluble in one expression system is not necessarily soluble in the other systems and vice
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Table 4.1: Summary of protein solubility databases. The proteins in PDB were counted on
April 22, 2021. TT—TargetTrack. *Refined numbers after the chaperones were added to
the PURE system.

DB Format Proteins Soluble Insoluble Comments
eSol CSV 3,173 2,385 788 ∙ solubility from 0% to ~100%

*2,911 *262 ∙ in vitro system PURE
∙ E. coli proteins only
∙ might be over-estimated

TT XML 339,354 87,854 251,500 ∙ binary solubility information
∙ heterogenous protocols
∙ insolubility derived indirectly

NESG CSV 9,478 5,773 3,705 ∙ discrete solubility from 0 to 5
∙ repeated experiments
∙ E. coli expression system

PDB PDB 155,045 155,045 0 ∙ only soluble proteins
∙ expression system annotations

versa. Therefore, solubility is not exclusively an intrinsic property of the protein sequence.
Each prediction tool, especially those based on statistical or machine-learning methods, are
reliable only when applied on proteins expressed in similar conditions as those from the
training dataset.

4.2 Databases

In this section, four major databases of protein solubility—eSol [62], TargetTrack [8], NESG
[66], and PDB [9], are discussed. All these databases are valuable resources for designing
protein solubility prediction tools, but each have its own specific properties that have to
be taken into consideration before constructing a derived dataset and applying statistical
models or machine learning algorithms. In the Table 4.1, important facts about each
database are summarised.

4.2.1 eSol

Solubility database eSol [62] is very specific. The solubility data was obtained using an in
vitro cell-free translation system–PURE [75], that is notably different from the conventional
in vivo methods (Figure 4.2). In the first study from 2009 [62], eSol authors successfully
quantified solubility for 70% of the E. coli ASKA library [48] of putative protein coding
sequences (3173 from 4132) without the presence of the chaperones. 788 proteins showed
to be insoluble. Later, in 2012, the same authors published next version of eSol [61]. They
newly evaluated the effects of the major E. coli chaperones—trigger factor, DnaK/DnaJ/-
GrpE, and GroEL/GroES, on the 788 insoluble proteins using the same PURE system. As
a result, approximately 600 of the previously insoluble proteins turned up to be soluble with
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Figure 4.2: Cell-free translation system PURE [62, 75]. Each open reading frame (ORF—
DNA sequence coding a protein) is amplified and translated in the presence of translation
factors, ribosomes, tRNAs, amino acids and energetic molecules. Solubility was defined as
the proportion of the supernatant fraction (which was obtained after the centrifugation of
the translation mixture) over the uncentrifuged total protein. The figure was adapted from
the previous work by Niwa et al. [62].

the help of at least one of the E. coli chaperones. The recent version of the eSol database
is available for a download in the form of an annotation table (CSV file).

Several caveats should be stated regarding the interpretation of the eSol data. First,
because the solubility analysis completely depends on a centrifugation process (Figure 4.2),
it is possible that soluble fractions include oligomeric assemblies that act as aggregation
precursors and, thus, the resulting solubility values could be overestimated. Second, the
set of quantified proteins is limited to the E. coli proteins only. Machine-learning methods
that would be trained solely on the eSol database, would certainly introduce a significant
bias towards typical E. coli proteins and would not account for protein toxicity since the
eSol dataset contains only proteins that are naturally occurring in E. coli. Third, after
the evaluation of insoluble proteins in the presence of chaperones, only about 200 insoluble
proteins are left. This makes eSol a highly-imbalanced database. On the other hand, the
eSol database offers unique information about the effects of typical E. coli chaperones.
This may be used to find a novel protein feature that would discriminate the proteins
that need chaperones from those that do not. Moreover, the eSol experimental data are
homogenous—measured under standard reproducible conditions.

4.2.2 TargetTrack

Despite the fact that TargetTrack [8] was not originally designed as a solubility database, it
is now probably the most valuable resource regarding this property. Primarily, TargetTrack
provides information on the experimental progress and status of protein targets selected
for structural determination by the Protein Structure Initiative and other worldwide high-
throughput structural biology projects. However, before the structural determination is
performed, sufficient amount of a pure protein has to be first produced and this is usually
achieved by the recombinant protein expression (Section 4.1). As a secondary outcome, pro-
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Table 4.2: TargetTrack protocol statistics across research centers. JCSG—Joint Center
for Structural Genomics, MCSG—Midwest Center for Structural Genomics, NYSGRC—
New York Structural Genomics Research Consortium, SECSG—Southeast Collaboratory
for Structural Genomics, SSGCID—Seattle Structural Genomics Center for Infectious Dis-
ease.

Center Selection Cloning Expression Purification Crystallization
JCSG 127 1 1 1 2
MCSG 3 8 6 11 9
NYSGRC 1 17 36 28 5
SECSG 1 9 85 47 2
SSGCID 26 17 17 21 3
. . . . . . . . . . . . . . . . . .
Total 251 232 291 235 84

tein solubility can be either directly or indirectly derived from the status of the structural
determination process. Each status is defined by a keyword from a controlled dictionary
and follows a particular experimental protocol used by a certain research centre which con-
ducted the experiment. A typical protocol involves steps like selection, cloning, expression,
purification and crystallization.

Extraction of soluble proteins from TargetTrack is then straightforward. Those proteins
that reached the experimental status soluble, or any subsequent status (diffraction, crystal
structure, in PDB, . . . ) are considered to be soluble. On the other hand, extraction of
insoluble proteins is rather indirect. All proteins that did not reach soluble status or any
subsequent one and at the same time reached a work stopped status, are most likely to
be insoluble. The explicit work stopped status is required to decrease the chance of false
negatives.

Unlike eSol, TargetTrack is hierarchically organised and compiled as an XML file with a
controlled schema. Nowadays, it contains 339,354 target protein records. If the procedure
described in the previous paragraph is applied, nearly 75% of all targets turn out to be
insoluble. Most of the target proteins come from Bacteria (66%), then from Eukaryota
(27%) and Archea (7%).

Several important facts should be considered before TargetTrack is used in practise for
solubility prediction. First, TargetTrack records were created by a varied group of research
centres and thus also the set of used protocols is very diverse (Table 4.2). This can be
taken as both an advantage and a disadvantage. It is a significant complication for all
prediction tools that would try to derive their models from the entire TargetTrack. The
expression conditions of the individual targets are too different and it is nearly impossible
to reasonably include them directly in the model. However, TargetTrack could be possibly
divided into disjoint subsets, one for each specific protocol, and a model could be built
separately on each subset. Second, as described above, the insolubility of the target protein
is derived from the indirect signal that the work on the particular protein was stopped
and no soluble status was reached. Nevertheless, the exact reason for the interruption of
the process does not have to be the protein insolubility. Some of the protocols might be
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inherently error-prone and the human factor can also play an important role. This might
lead to solubility underestimation.

4.2.3 NESG

NESG dataset was generated by the North East Structural Consortium (NESG), which
represents 9644 proteins expressed in E. coli using a unified production pipeline [66]. The
dataset contains two integer scores ranging from 0 to 5 for each target, indicating the
protein’s level of expression and the soluble fraction recovery. The reproducibility of the
experimental results in the dataset was validated by performing repeated measurements for
selected targets and achieving very similar results. The NESG dataset targets are included
in the TargetTrack database because the NESG participated in the Protein Structure Ini-
tiative project. However, the expression and solubility levels from the NESG dataset were
not included in the TargetTrack database. The high consistency and quality of the NESG
dataset make it suitable for benchmarking purposes.

4.2.4 PDB

The Protein Data Bank (PDB) [9] archives primarily information about experimentally-
determined 3D structures of proteins. However, from the perspective of protein solubility,
all proteins that have a determined 3D structure are assumed to be soluble because sufficient
solubility is a necessary condition for the structure determination. Thus, PDB can be used
as a reliable source of soluble proteins. Moreover, PDB records often contain additional
annotations, e.g., information about the expression system or expression vector type, that
might be exploited in the construction of solubility datasets for a specific expression system.

4.3 Sequence features

Computational prediction models typically expect a fixed number of inputs. However, a
protein might be encoded by an arbitrary-long sequence. Therefore, the protein sequences
have to be transformed first into a fixed-size vector of numerical (Equation 4.3) or categorical
values. This procedure is referred to as sequence encoding or feature extraction.

Σ+ −→ R𝑁 (4.3)

The term encoding is used for reversible transformation of the sequence. One-hot protein
encoding is a typical example occurring mainly in deep-learning methods. The sequence
is represented by a matrix of size 𝑁 × 20, where 𝑁 is the length of the longest expected
sequence. Each row represents one position in the sequence. Columns represent the 20
amino acids. There is 1 in the matrix at position (𝑖, 𝑘) if there is amino acid 𝑘 on position
𝑖 in the sequence. Otherwise there is 0. The feature extraction, on the other hand, is
irreversible operation. The sequence can not be inferred just from the value of the feature.
In this section, several common extracted features used in existing models are discussed.

4.3.1 Amino acid content

The amino acid content is a relative frequency of the amino acid in the protein sequence.
It is the most common feature used for sequence-based solubility prediction. There is a
major concern about this feature—random shuffling of the amino acids in the sequence do
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not change the amino acid content. Biologically, random shuffling of amino acids leads to
low solubility and the loss of protein function as important residue interactions forming
secondary and tertiary structures are disrupted. The invariability to random shuffling can
be avoided by using higher orders of amino acid content, for example the content of amino
acid dimers or trimers.

4.3.2 Physico-chemical properties

Physico-chemical properties of amino acids are frequently used for solubility prediction.
The typical approach is to use the average of a specific physico-chemical property for all
amino acids in the sequence in the prediction model, for example average hydrophobicity,
hydropathy (GRAVY) or charge. The largest source of possible physico-chemical properties
is AAindex database [46]. There are also physico-chemical properties requiring additional
calculation—isoelectric point, flexibility, instability index, or molar extinction coefficient.
A similar concern that is mentioned for the amino acid content—invariability to random
shuffling, applies for most of the physico-chemical properties.

4.3.3 Sequence similarity

Sequence similarity introduces basic evolutionary information in the prediction model. The
feature is usually defined as similarity to a fixed set of sequences, often to a set of insoluble or
soluble sequences. The similarity value might be a BLAST score or proportion of identical
amino acids in the pair-wise sequence alignment, which is then referred to as sequence
identity.

4.3.4 Predicted features

Many existing models include features predicted by other predictors. The most frequent
example is the predicted secondary structure of a protein which gives estimation of helix,
sheet and coil structure in the folded protein. Other predicted features are protein disorder
or content of transmembrane helices.

4.4 Performance evaluation
Sequence-based solubility predictors are usually binary classifiers predicting soluble or in-
soluble class based on a numeric decision threshold which can be tuned. At a specific
threshold, the classifier’s performance is fully described by confusion matrix (Table 4.3)
which is 2 × 2 contingency table of positive and negative predictions.

Table 4.3: Confusion matrix for solubility classification.

True class
Soluble Insoluble

Prediction Soluble true positives (TP) false positives (FP)
Insoluble false negatives (FN) true negatives (TN)

Many derived metrics are based on the confusion matrix. There are metrics independent
on the prevalence (which is how often each category occurs in the population), and metrics
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Figure 4.3: Receiver operating characteristic curve (ROC). The ROC reveals to which
type of error is the classifier more predisposed. The figure shows three ROC curves of
three different hypothetical classifiers with equal area under the curve (AUC) of 0.86. The
balanced classifier makes similar error in predicting soluble and insoluble class. The sensitive
classifier makes fewer errors in prediction of the soluble class. The specific classifier makes
fewer errors in prediction of the insoluble class. The dashed line shows a ROC of a baseline
random classifier with AUC of 0.5. The specific classifier is preferred for tasks where low
false positive rate is required.

that depend on the prevalence. Accuracy (ACC, Equation 4.4), sensitivity (TPR—true
positive rate, Equation 4.5) and specificity (TNR—true negative rate, Equation 4.6) are
dependent on the prevalence, whereas Matthew’s correlation coefficient (MCC, Equation
4.7) is not. The latter is therefore preferred when comparing performance using imbalanced
datasets.

ACC =
TP + TN

TP + FP + TN + FN (4.4)

TPR =
TP

TP + FN (4.5)

TNR =
TN

TN + FP (4.6)

MCC =
TP × TN − FP × FN√︀

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4.7)

The performance of the classifier over different prediction thresholds is typically eval-
uated using Receiver operating characteristic curve (ROC) and the area under the ROC
(AUC). The ROC curve is created by plotting the true positive rate (TPR, Equation 4.5)
as a function of the false positive rate (FPR, Equation 4.8) at all possible threshold settings
(Figure 4.3). Models predicting quantitative solubility measurements are usually compared
using Pearson correlation coefficient (PCC, Equation 4.9, where 𝑛 is test set size, 𝑥𝑖, 𝑦𝑖 are
the individual predicted and actual values of the 𝑖-th element of the series, and �̄�, 𝑦 are
means of predicted and actual values).

FPR = 1 − TNR (4.8)
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PCC =

∑︀𝑛
𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − 𝑦)√︀∑︀𝑛

𝑖=1(𝑥𝑖 − �̄�)2
√︀∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2
(4.9)

4.5 Existing methods
Up to the present, many protein solubility prediction methods have been created. In this
section, methods based on protein sequence features providing single solubility score are
discussed (Table 4.4). Each method is described at different level of detail depending on the
complexity of the method and available information. Simple methods are described fully.

4.5.1 Wilkinson-Harrison and RPSP

One of the first methods described is a six-parameter model by Wilkinson and Harrison [89]
published in 1991 combining residue charge average, turn-forming residue fraction, cysteine
and proline content, residue hydrophilicity, and total sequence length. These parameters
emerged from a correlation analysis on a small data set of 81 proteins. The coefficients for
the model equation were obtained by Fisher’s linear discriminant analysis [35].

In 1999, Davis et al. [25] published a revised model of Wilkinson and Harrison (rWH).
On a larger set of E. coli proteins (4,000 sequences), they discovered that only two of the
original parameters were critical for distinguishing between soluble and insoluble proteins.
The critical parameters are (i) the residue charge average, which accounts for differences in
the numbers of aspartic acid plus glutamic acid vs. lysine plus arginine residues, and (ii)
turn-forming residue content, which accounts for the total number of asparagine, glycine,
proline, and serine residues. The core of the solubility prediction is the canonical variable
expressed by the Equation 4.10.

𝐶𝑉 = 15.43

(︂
𝑁 + 𝐺 + 𝑃 + 𝑆

𝑛

)︂
− 29.56

(︂
(𝑅 + 𝐾) − (𝐷 + 𝐸)

𝑛
− 0.03

)︂
(4.10)

Here, 𝑛 is the protein sequence length and 𝑁,𝐺, 𝑃, 𝑆,𝑅,𝐾,𝐷,𝐸 are the counts of the
specific amino acids denoted by the IUPAC codes. The final prediction is computed as
𝐶𝑉 − 𝐶𝑉 ′, where 𝐶𝑉 ′ is 1.71. In case the difference is positive, protein is predicted as
insoluble. Otherwise, it is considered to be soluble. The probability of solubility is expressed
by the Equation 4.11.

𝑃 (𝑆) = 0.4934 + 0.276|𝐶𝑉 − 𝐶𝑉 ′| − 0.0392(𝐶𝑉 − 𝐶𝑉 ′)2 (4.11)
In 2009, Harrisson’s research group published a different model which is commonly

referred to as RPSP (Recombinant Protein Solubility Prediction) [27]. The model uses
logistic regression of 32 possible parameters. The protein database used to create this
model consisted of 212 proteins. The parameters used for the model include molecular
weight, amino acid fractions, aliphatic index, alpha-helix propensity, beta-sheet propensity,
average pI, approximate charge average, and hydrophilicity index. The authors reported
an accuracy of 87% on cross-validation.

4.5.2 SOLpro

One of the first well-established machine learning prediction tools based on the global
protein features is SOLpro [56]. It is designed as a two-stage support vector machine
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classifier. In the first stage, 20 SVMs are trained on different sets of features. 18 from
the 20 feature sets represent frequencies of mono-, di- and trimers derived from 7 distinct
amino acid alphabets. One feature set contains features directly computed from protein
sequence, similar to those used by Wilkinson and Harrison—sequence length, turn-forming
residues fraction, absolute charge per residue, molecular weight, GRAVY index (averaged
hydropathy value) [54], and aliphatic index. The last feature set is composed of the features
predicted by other application-specific prediction tools—alpha and beta secondary structure
forming residues fraction, the number of domains, and exposed residues fraction.

In the second stage, the outputs of the 20 SVMs are used as the inputs for a final SVM.
To conclude, SOLpro introduced some novel sequence features, while others appeared to
be in good agreement with the previous research. SOLpro performance was evaluated by
a ten-fold cross-validation for which the authors stated an average accuracy of 74% and a
Matthews correlation coefficient (MCC) of 0.487.

4.5.3 PROSO II

PROSO II [77] has a two-layered structure where the output of a primary Parzen window
model and a logistic regression classifier serve as the input of a second-level logistic regres-
sion classifier. PROSO II uses the best performing mono- and dimer frequencies that were
selected using a wrapper feature selection method [50]. Eighteen out of 20 monopeptide fre-
quencies and thirteen out of 400 dipeptide frequencies were selected as the most important
for the model performance. Eight selected dimers contain electrically charged side chains,
which is in good agreement with Wilkinson–Harrison model [89]. Other frequently occur-
ring amino acid groups include hydrophobic aromatic and hydrophobic aliphatic residues.
Five selected dimers contain aromatic amino acids. As demonstrated before in the study
of Christendat et al. [20], a high percentage of aromatic residues is a good indicator of
insolubility. Also, a high content of hydrophobic dimers seems to be an important factor
for protein solubility.

As an additional feature in the first layer of the method, a sequence-similarity-based
model using an adapted Parzen window approach was used to capture the differences be-
tween sequence patterns of soluble and insoluble proteins. It relies on a BLAST [4] score
to calculate similarity values to two sets of proteins (soluble vs. insoluble) using a modified
Cauchy kernel. Additionally, the aliphatic index, fold index, GRAVY index, and isoelectric
point were also used as features. PROSO II was tested on a separate holdout set not used
at any point of the method development and the authors declare an accuracy of 75.4% and
MCC of 0.39.

4.5.4 ccSOL

Beyond other features that, to some extent, are employed also in the other tools, ccSOL
[2] introduced a coil and disorder proneness as a novel type of feature. It was shown that
disorder prediction correlates (𝜌 = 0.45) with the experimental solubility. The 6 final
features were selected by constructing a SVM for each subset of the initial 11 promising
features and evaluating each of them by a ten-fold cross-validation. The 6 final features
(coil and disorder propensities, hydrophobicity, hydrophilicity, alpha and beta secondary
structure forming residues fractions) were then associated with the best performing SVM.
The overall published ccSOL accuracy is around 76%.

ccSOL omics [1] is a variant of ccSOL method where a solubility score is predicted
for each amino acid in the sequence. The method uses a sliding window of 21 amino
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acids that is moved one residue at a time until the C-terminus is reached. The solubility
propensity of each fragment is calculated by the previously published ccSOL method. The
final overall solubility prediction is expressed as a solubility score that is computed using
Fourier transform of the solubility profile and a neural network. Unfortunately, the authors
give very little information about the design of the neural network. The published accuracy
of this method on an independent test set is 74%.

4.5.5 ESPRESSO

ESPRESSO [41] implements two methods for protein solubility prediction—property-based
and pattern-based. The property-based approach relies on SVM and unlike the previous
tools, ESPRESSO uses information also from the protein coding DNA sequence. The set of
features contains protein length, single nucleotide frequencies, GC content, codon frequen-
cies, amino acid frequencies and amino acid group frequencies. The sequence information,
except for the protein length, was computed for the entire chain and both terminal regions,
which are defined as 60 bases (meaning 20 amino acid residues). Additionally, several
pieces of predicted structure information like secondary structure ratios, trans-membrane
elements, disordered regions, and accessible surface area are also used. For each of the
features, the statistically significant difference between the positive and negative datasets
was computed by the Student’s t-test. The features with 𝑝 < 0.05 were considered to be
associated with protein solubility.

The pattern-based method uses the occurrence frequencies of highly frequent sequence
patterns. In the first step, the authors defined a set of sequence patterns as all combinations
of ten amino acid groups (based on the physicochemical properties) with the length that
exhibited the highest prediction performance (six or seven amino acids). In the second step,
they searched for the sequence patterns that appeared exclusively in either the positive or
negative data. The counts of the most significant patterns were then used in a simple linear
discrimination function to get the final prediction. Moreover, the locations of the sequence
patterns can be easily mapped to a query sequence, therefore an additional benefit of the
pattern-based method is to provide candidate regions, matching either positive or negative
sequence patterns, that the researcher can modify, to change protein solubility. Property-
and pattern-based methods for solubility prediction reached an accuracy of 68% and 63%,
respectively.

4.5.6 CamSol

CamSol [81] was originally designed for a slightly different purpose than sequence-based
solubility prediction. It identifies protein hot spots that could be mutated to improve
protein solubility. It also employs a 3D protein structure as an additional input besides
protein sequence.

CamSol, in order to obtain a solubility profile, employs a linear combination of four
physicochemical properties of amino acids—hydrophobicity, charge (at neutral pH), alpha-
helix propensity, and beta-strand propensity. The linear combination is then averaged
over a window of seven residues to account for the effect of the neighbouring residues. A
correction is added to consider the possible presence of hydrophobic–hydrophilic patterns
and the influence of charges of the same sign.

In the next step, the intrinsic solubility profile is modified to account for the proximity of
the amino acids in the three-dimensional structure of the input protein and for their solvent
exposure. These modified profiles are used to identify residues unlikely to be soluble. Such
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residues are usually required to prompt a fast and correct folding of a protein and are
typical constituents of the hydrophobic core of the protein native state. In contrast, more
soluble residues are normally exposed to the solvent and thus, are more likely to elicit the
aggregation process.

In 2017, CamSol authors published a second version of their method [80] that allows for
calculating an overall solubility score based on the previously described solubility profile
using the Equation 4.12,

𝑆𝑃 =

∑︀𝑁
𝑖=1

{︃ 𝜔𝑢𝑝(𝑆𝑖 − 𝑡ℎ𝑢𝑝) if 𝑆𝑖 > 𝑡ℎ𝑢𝑝

𝜔𝑙𝑜𝑤(𝑆𝑖 − 𝑡ℎ𝑙𝑜𝑤) if 𝑆𝑖 < 𝑡ℎ𝑙𝑜𝑤

0 otherwise

𝛾𝑁 𝛿
(4.12)

where 𝑆𝑖 is the value of the intrinsic solubility profile for the amino acid 𝑖 and 𝑁 the
length of the input sequence. The upper and lower thresholds 𝑡ℎ𝑢𝑝 and 𝑡ℎ𝑙𝑜𝑤, as well as
the coefficients 𝜔𝑢𝑝, 𝜔𝑙𝑜𝑤, 𝛾, and 𝛿 were fitted with a Monte Carlo procedure maximising
both the 𝑆𝑃 correlation with measurements of aggregation rates from the literature and the
ability of 𝑆𝑃 to discriminate between non-aggregating and aggregating peptides and pro-
teins [80]. The CamSol score was validated experimentally using 9 monoclonal antibodies
achieving a Pearson correlation of 0.79 (p < 0.05) with experimental results. However, the
performance on larger datasets was not commented by the authors.

4.5.7 Protein-Sol

Protein-Sol [38] is a linear model based on 10 features (six amino acid propensities, sequence
length, absolute charge, fold propensity, sequence entropy) which was trained using eSOL
dataset. Feature weights were determined from separation of low and high solubility subsets
of eSOL database. Protein-Sol achieved Pearson correlation of 0.62 with the eSOL dataset.

4.5.8 DeepSol

DeepSol [47] is one of the first solubility predictors using deep-learning methods. DeepSol
consists of a convolutional neural network (CNN) with multiple convolution blocks using
a one-hot-encoded raw sequence as input. The usage of a raw sequence allows to learn
feature representations that best encode the information essential for solubility prediction.
Fifty-seven additional sequence- and structure-related features are used to complement the
raw sequence input.

DeepSol is trained using TargetTrack data compiled by the authors of PROSO II.
DeepSol authors then performed two major pre-processing steps (as in their previous tool
PaRSnIP [69]) to avoid any unwanted bias and to ensure heterogeneity of sequences within
the training set. As an independent test set, they used a balanced dataset compiled by
Chang et al. [15] consisting of 2001 sequences. DeepSol attained an accuracy of 77% and
a Matthew’s correlation coefficient of 0.55 using the independent test set.

4.5.9 SKADE

SKADE [68] is the latest addition to deep learning based solubility predictors. It uses
a neural network model of two sub-networks: the predictor network and the attention
network. The final prediction is a scalar product of outputs of both networks. The final
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model has 25462 trainable parameters. SKADE used the same datasets for both training
and testing as DeepSol and used one-hot encoding for sequence input.

The attention network enabled SKADE authors to provide some insight into the predic-
tion. The attention profiles suggest that N- and C-termini are the most relevant regions for
solubility prediction and are predictive for complex emergent properties such as aggregation-
prone regions involved in beta-amyloidosis and contact density. DeepSol achieved an ac-
curacy of 73% and a Matthew’s correlation coefficient of 0.47 using the independent test
set.

4.5.10 Solubility-weighted index

The Solubility-weighted index (SWI) method [10] is surprisingly simple. It uses optimized
normalized B-factors [78] to calculate the solubility-weighted index (Equation 4.13 and a
logistic regression formula (Equation 4.14) to calculate the probability of solubility. 𝑊𝑖 is
the optimized B-factor for 𝑖-th residue and 𝑁 is the sequence length.

SWI =

∑︀
𝑊𝑖

𝑁
(4.13)

𝑃 (𝑆) =
1

1 − exp(−(81.05812 · SWI − 62.7775))
(4.14)

SWI used binary solubility data from the DNASU database [23] to optimize the weights
and find the coefficients of the logistic function. SWI showed a Pearson correlation of 0.50
with the eSOL dataset which was left as an independent test set.

4.6 Summary

There are many existing tools that address the problem of sequence-based protein solubility
prediction [59]. However, Chang et al. reported large drop of 10–20% in accuracy of
existing tools when evaluated using a larger test set [15]. This suggests that the authors of
the solubility predictors overestimate the performance of their methods. The main reason
for the overestimation might be that the training and testing data are not independent—
they might be similar in terms of sequence similarity or they might share similar bias.
The existing solubility datasets are very small in comparison to the number of all known
proteins. If there is no strong effort to decrease the similarity between the training and test
set and to keep the number of model parameters at a reasonable level in comparison to the
size of the dataset, the overestimation of the performance is inevitable [88]. Although the
field of sequence-based protein solubility prediction has been already thoroughly explored,
there are several aspects that could be still improved.

First, surprisingly, there has been no attempt to partition TargetTrack database more
carefully, for instance from the perspective of experimental protocols. This suggests that
recently published tools might be trained on too heterogeneous datasets that mix solubility
information for very different expression systems and even different host organisms. The
reason why TargetTrack was not carefully partitioned yet might be due to its organization.
Such an effort would require manual analysis of all protocols in TargetTrack, a task that
might be time-consuming. Moreover, there has been a little effort on correcting the data
using the available knowledge and technology. Some of the unexpressed proteins might be
produced now thanks to the advance in the technology.
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Table 4.4: Sequence-based protein solubility prediction methods. SVM—support vector
machine, GRAVY—grand averaged hydropathy value, pI—isoelectric point

Method Model Features
rWH discriminant analysis residue charge average, turn-forming residue con-

tent
RPSP logistic regression molecular weight, frequencies of monomers,

aliphatic index, alpha-helix propensity, beta-sheet
propensity, average pI, approximate charge aver-
age, hydrophilicity index

SOLpro two-stage SVM frequencies of mono-, di- and trimers derived
from seven amino acid alphabets, sequence length,
turn-forming residues fraction, absolute charge
per residue, molecular weight, GRAVY index,
aliphatic index, alpha and beta residues fractions,
the number of domains and exposed residues frac-
tion

PROSSO II logistic regression,
Parzenov window

frequencies of mono- and dimers, GRAVY index,
aliphatic index, fold index, isoelectric point and
sequence similarity to both insoluble and soluble
protein sets

ccSOL SVM coil and disorder propensities, hydrophilicity, hy-
drophobicity, alpha and beta residues fractions

ESPRESSO SVM, pattern
discrimination
function

protein length, single nucleotide frequencies, GC
content, codon frequencies, amino acid frequencies,
amino acid group frequencies, secondary structure
ratios, trans-membrane elements, disordered re-
gions, accessible surface area, sequence patterns

CamSol linear regression hydrophobicity, charge at neutral pH, alpha-helix
propensity, and beta-strand propensity

Protein-Sol linear regression frequencies of monomers, sequence length, abso-
lute charge, fold propensity, sequence entropy

DeepSol convolutional neural
network

one-hot encoding

SKADE predictor and
attention deep neural
network

one-hot encoding

SWI logistic regression normalized B-factors
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Second, the balancing of the training and test sets could be improved. A class-based
balancing is usually used to avoid overtraining on the majority class. However, length-based
balancing tends to be overlooked. It is important to balance the sequence length distribution
in the datasets so that length alone would not play a dominant role in the predictions
[77]. Although the sequence length was shown to correlate with protein solubility—larger
proteins are usually less soluble, the expected major use case for sequence-based solubility
predictors is the prioritization of proteins of similar lengths, usually from a single protein
family. A prediction model relying heavily on sequence length would not perform well in
this use case.

Third, performing extensive feature selection among all of the known features could
improve the performance significantly [72]. The set of features used among the prediction
tools is quite rich and it mainly relies on three types of features—physicochemical properties
derived directly from the protein sequence, predicted or direct structural features, and
sequence patterns. However, the pool of the relevant features could still be extended. As the
performance of computers increases, more computationally demanding feature extractions
are feasible.

In addition to proposing a better solubility predictor, the contribution of a novel method
could be a comprehensive comparison of existing methods. The comparison itself is a
challenging task as there is little data that is not used by the existing methods for training
and, thus, could be potentially used to construct a fully-independent test set. However, at
least the overlap of the training set with the test data can be quantified to indicate the
level of overestimation. An additional challenge when comparing different methods arises
from the variety of working definitions used for ”solubility“. The existing variety of such
working definitions and their relation to the formal definition of solubility (Section 4.1) has
not been discussed yet.
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Chapter 5

Results

This Thesis addresses the challenge of mining and selecting soluble enzymes from protein
databases by developing and publishing two novel tools: (i) EnzymeMiner [42] for mining
of enzymes in protein databases and (ii) SoluProt [43] for sequence-based protein solubility
prediction. Additionally, a summary and critical assessment of existing computational
methods and databases for protein stability and solubility prediction is presented [59].
Other results that were under consideration for acceptance at the time of writing or that
are not directly related to the topic of the Thesis are mentioned only briefly.

5.1 EnzymeMiner

EnzymeMiner is an enzyme sequence search tool addressing the challenge of selecting a small
number of relevant proteins from a large pool of database hits. It has several distinctive
features which are not available in existing tools. First, it checks the presence of user-
specified essential amino acids in the protein sequence which allows to target the search to a
very specific set of enzymes performing the required function. Second, it integrates available
environmental information which enables selection of hits from extremophilic organisms
that might be resilient to harsh conditions. Third, it generates sequence similarity network
which can be used to select hits with higher sequence diversity. Fourth, it provides solubility
prediction which can be used for prioritization and for increasing the success rate of protein
production.

EnzymeMiner requires two inputs: (i) query sequences and (ii) essential residue tem-
plates. The essential residue template is defined as a pair of a protein sequence and a set of
essential residues in that sequence. The output is an interactive selection table containing
the annotated identified sequences that can be prioritized based on various criteria. The
table helps to select a small diverse set of enzyme sequences with a putative function for
experimental characterization.

EnzymeMiner implements a three-step bioinformatics workflow: (i) homology search,
(ii) essential residues based filtering and (iii) annotation of hits. In the first step, the
input sequence is used as a query for a PSI-BLAST [4] two-iteration search in the NCBI
nr database [73]. In the second step, the obtained hits are filtered using the input essential
residue templates. Essential residues are checked using a global pairwise alignment with
the template calculated by USEARCH [32] and a multiple sequence alignment calculated
by Clustal Omega [76]. In the third step, the identified sequences are annotated using
several databases and predictors: (i) transmembrane regions are predicted by TMHMM
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[52], (ii) Pfam domains are predicted by InterProScan [67], (iii) source organism annotation
is extracted from the NCBI Taxonomy [34] and the NCBI BioProject database [7], (iv)
sequence identities to queries, hits or other optional sequences are calculated by USEARCH
[32] and (v) solubility is predicted by the solubility predictor SoluProt (Section 5.2). More
details on EnzymeMiner method are described in the corresponding publication.

EnzymeMiner workflow is to some extent based on two previous studies [85, 86]. The
main differences between the previous computational pipelines and the EnzymeMiner work-
flow are described herein. First, the pipeline was simplified and generalised to work with
any enzyme families and not just haloalkane dehalogenase family. The essential residue
based filtering was improved to effectively replace the original hierarchical clustering by
global pairwise alignment with the template. This step reduced the calculation time and
eliminated parameters needed for the hierarchical clustering. Second, SoluProt (Section
5.2 was used instead of the revised Wilkinson-Harrison model to predict solubility. Third,
the calculation and visualization of the sequence similarity network was integrated in the
tool. Fourth, the pipeline was automatised and made accessible as a publicly available web
server.
Publication: Hon J*, Borko S*, Štourač J, Prokop Z, Zendulka J, Bednář D, Martínek T,
Damborský J. EnzymeMiner: automated mining of soluble enzymes with diverse structures,
catalytic properties and stabilities. Nucleic Acids Research. 2020, 48(W1), W104–W109.
*These authors contributed equally. The article is attached in Appendix A.
Journal Impact Factor 2019: 11.5 (Q1), citations by Scopus: 7 (self citations excluded)
Author contribution: design of the updated computational workflow and its initial im-
plementation, leading the development of the web server, design of the user interface,
contributing to the implementation of the user interface, writing of the manuscript and
documentation (45%)
Abstract: Millions of protein sequences are being discovered at an incredible pace, rep-
resenting an inexhaustible source of biocatalysts. Despite genomic databases growing ex-
ponentially, classical biochemical characterization techniques are time-demanding, cost-
ineffective and low-throughput. Therefore, computational methods are being developed to
explore the unmapped sequence space efficiently. Selection of putative enzymes for biochem-
ical characterization based on rational and robust analysis of all available sequences remains
an unsolved problem. To address this challenge, we have developed EnzymeMiner—a web
server for automated screening and annotation of diverse family members that enables se-
lection of hits for wet-lab experiments. EnzymeMiner prioritizes sequences that are more
likely to preserve the catalytic activity and are heterologously expressible in a soluble form
in Escherichia coli. The solubility prediction employs the in-house SoluProt predictor de-
veloped using machine learning. EnzymeMiner reduces the time devoted to data gathering,
multi-step analysis, sequence prioritization and selection from days to hours. The successful
use case for the haloalkane dehalogenase family is described in a comprehensive tutorial
available on the EnzymeMiner web page. EnzymeMiner is a universal tool applicable to any
enzyme family that provides an interactive and easy-to-use web interface freely available at
https://loschmidt.chemi.muni.cz/enzymeminer/.
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5.2 SoluProt

SoluProt is a predictor of soluble protein expression in Escherichia coli used in EnzymeM-
iner to prioritize hits. SoluProt uses a gradient boosting machine [36] and its only input is
a protein sequence. The output is the predicted probability of soluble class.

SoluProt addressed several areas which the current predictors did not solve properly.
First, the TargetTrack database used for training was partitioned more carefully than in
other methods. Most importantly, keyword matching combined with manual checking of
TargetTrack annotations was performed to extract only proteins expressed in the most
common host organism, E. coli.

Second, the sequence redundancy in the training set was reduced by clustering to 25%
identity using MMseqs2 [82] and retaining only representative sequences from each clus-
ter. This was done separately for positive and negative samples to avoid simplifying the
prediction problem. The number of soluble and insoluble samples was balanced such that
both classes were equally represented. Additionally, the sequence length distribution was
balanced so that length alone would not play a dominant role in the predictions.

Third, the SoluProt test set was built from a consistent dataset generated by the North
East Structural Consortium (NESG) [66] whereas existing tools usually uses part of the
TargetTrack database as a test set. The advantage of using NESG over TargetTrack for
testing is a higher quality of solubility data which were measured using a unified pipeline
and the measurements were shown to be reproducible.

Fourth, extensive feature selection was performed using a set of 251 sequence charac-
teristics that were divided into eight groups: (i) single amino acid content (20 features),
(ii) amino acid dimer content (210 features), (iii), sequence physicochemical features (12
features), (iv) average flexibility as computed by DynaMine [21] (1 feature), (v) secondary
structure content as predicted by FESS [65] (3 features), (vi) average disorder as predicted
by ESPRITZ [87] (1 feature), (vii) content of amino acids in transmembrane helices as
predicted by TMHMM [52] (3 features) and (viii) maximum identity to a specific E. coli
subset of Protein Data Bank [9] as calculated using USEARCH [32] (1 feature). In the end,
96 features were selected for inclusion in the predictive model.

Fifth, SoluProt model and existing tools were evaluated using the SoluProt test set to
an extent which was not done before. The overlap of the training sets with the test set was
considered and also different understandings of solubility classes among existing tools were
pointed out. SoluProt achieved a slightly higher accuracy (58.5%) and AUC (0.62) than
other available tools. Surprisingly, some recently reported tools, which are based on deep
learning methods, performed worse than simpler methods in the comparison. More details
on the comparison are provided in the corresponding publication.
Publication: Hon J, Marušiak M, Martínek T, Kunka A, Zendulka J, Bednář D, Dambor-
ský J. SoluProt: prediction of soluble protein expression in Escherichia coli. Bioinformatics.
2021, 31(1), 23–28. The article is attached in Appendix B.
Journal Impact Factor 2019: 5.6 (Q1), citations by Scopus: not available
Author contribution: design and analysis of most of the experiments, feature calcula-
tions, design of dataset construction, leading of predictor’s implementation, implementation
of web interface, performance comparison of existing tools, writing of the manuscript (60%)
Abstract: Poor protein solubility hinders the production of many therapeutic and in-
dustrially useful proteins. Experimental efforts to increase solubility are plagued by low
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success rates and often reduce biological activity. Computational prediction of protein
expressibility and solubility in Escherichia coli using only sequence information could re-
duce the cost of experimental studies by enabling prioritization of highly soluble proteins.
A new tool for sequence-based prediction of soluble protein expression in Escherichia coli,
SoluProt, was created using the gradient boosting machine technique with the Target-
Track database as a training set. When evaluated against a balanced independent test
set derived from the NESG database, SoluProt’s accuracy of 58.5% and AUC of 0.62
exceeded those of a suite of alternative solubility prediction tools. There is also evi-
dence that it could significantly increase the success rate of experimental protein stud-
ies. SoluProt is freely available as a standalone program and a user-friendly webserver at
https://loschmidt.chemi.muni.cz/soluprot/.

5.3 Computational design of stable and soluble biocatalysts

The progress in the development of computational tools and databases for predicting protein
stability and solubility is summarised in this publication. Strengths and weaknesses of the
methods were critically assessed. The solubility prediction methods and databases are
presented in the second part of the paper. Section 5.2.1 of the paper is dedicated to the
sequence-based solubility prediction methods which are also discussed here in the Thesis
(Section 4.5). Additionally, two other groups of solubility prediction methods are included:
(i) tools predicting solubility or aggregation profile, and (ii) tools predicting the effect of
an amino acid mutation on the solubility. In the last section of the paper, perspectives on
the computational design of stable and soluble biocatalysts are presented.
Publication: Musil M*, Konegger H*, Hon J*, Bednář D, Damborský J. Computational
Design of Stable and Soluble Biocatalysts. ACS Catalysis, 2018, 9(2), 1033–1054. *These
authors contributed equally. The article is attached in Appendix C.
Journal Impact Factor 2019: 12.4 (Q1), citations by Scopus: 21 (self citations excluded)
Author contribution: critical assessment of protein solubility prediction tools and data-
bases, writing of solubility-related parts of the manuscript (30%)
Abstract: Natural enzymes are delicate biomolecules possessing only marginal thermody-
namic stability. Poorly stable, misfolded, and aggregated proteins lead to huge economic
losses in the biotechnology and biopharmaceutical industries. Consequently, there is a need
to design optimized protein sequences that maximize stability, solubility, and activity over
a wide range of temperatures and pH values in buffers of different composition and in
the presence of organic cosolvents. This has created great interest in using computational
methods to enhance biocatalysts’ robustness and solubility. Suitable methods include (i)
energy calculations, (ii) machine learning, (iii) phylogenetic analyses, and (iv) combina-
tions of these approaches. We have witnessed impressive progress in the design of stable
enzymes over the last two decades, but predictions of protein solubility and expressibility
are scarce. Stabilizing mutations can be predicted accurately using available force fields,
and the number of sequences available for phylogenetic analyses is growing. In addition,
complex computational workflows are being implemented in intuitive web tools, enhancing
the quality of protein stability predictions. Conversely, solubility predictors are limited
by the lack of robust and balanced experimental data, an inadequate understanding of
fundamental principles of protein aggregation, and a dearth of structural information on
folding intermediates. Here we summarize recent progress in the development of compu-
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tational tools for predicting protein stability and solubility, critically assess their strengths
and weaknesses, and identify apparent gaps in data and knowledge. We also present per-
spectives on the computational design of stable and soluble biocatalysts.

5.4 Other results

Functional annotation of enzyme family

In this work, uncharacterised members of haloalkane dehalogenase enzyme family were
functionally annotated using a combined computational and experimental approach, and
novel enzymes with activities that exceed activities of most published haloalkane dehaloge-
nases were identified. This work is closely related to the topic of the Thesis and especially
to the EnzymeMiner software. This study is the second of the two works on which the
EnzymeMiner is based and it was performed before the EnzymeMiner and SoluProt tools
were developed. The computational workflow herein presented is based on the first study
[85], expanding it by: (i) applying EFI-EST [37] and Cytoscape [74] for calculating and
visualizing the sequence similarity network, (ii) extracting biotic relationships and disease
annotations of the source organisms from the BioProject [7] database, and (iii) quantita-
tively assessing the quality of all homology models by MolProbity [17]. Because of the
difficulty and time demands of the experimental work, only a preprint has been published
and it still awaits the full peer-review process. Therefore, it is mentioned here and not
included in the main results of the Thesis.
Preprint: Vaňáček P, Vašina M, Hon J, Kovář D, Faldýnová H, Kunka A, Buryška T,
Badenhorst C, Mazurenko S, Bednář D, Bornscheuer U, Damborský J, Prokop Z. Functional
annotation of an enzyme family by integrated strategy combining bioinformatics with micro-
analytical and microfluidic technologies. ChemRxiv. DOI: 10.26434/chemrxiv.13621517.v1
Author contribution: reimplementation and extension of the previous computational
pipeline [85], performing all calculations, analysis of results, sequence-space visualization,
contribution to writing of the manuscript (20%)

Pqsfinder

Pqsfinder is an algorithm for efficient detection of imperfect potential quadruplex-forming
sequences in DNA. It is not related to the topic of the Thesis.
Publication: Hon J, Martínek T, Zendulka J, Lexa M. pqsfinder: an exhaustive and
imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioin-
formatics. 2017, 33(21), 3373–3379.
Journal Impact Factor 2019: 5.6 (Q1), citations by Scopus: 35 (self citations excluded)
Author contribution: design and implementation of the method, writing majority of the
manuscript (70%)

Pqsfinder web

Pqsfinder web is an easy-to-use web interface for the pqsfinder algorithm. It is not related
to the topic of the Thesis.
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Chapter 6

Concluding remarks

Two tightly integrated computational methods—EnzymeMiner [42] and SoluProt [43], for
mining of soluble enzymes from protein sequence databases are introduced in the Thesis.
EnzymeMiner identifies putative members of enzyme families and facilitate their prioriti-
zation and well-informed manual selection for experimental characterization to reveal novel
biocatalysts. Such a task is difficult to address using the web interfaces of the available
protein databases, e.g. UniProtKB/TrEMBL [83] and NCBI Protein [73], since additional
analyses are often required. The major advantage of EnzymeMiner over existing protein
sources is the flexibility of input and concise annotation-rich interactive presentation of
results. The user can input custom queries and a custom description of essential residues
to focus the search on specific protein families or subfamilies. The output of EnzymeMiner
is an interactive selection table containing the annotated sequences that can be prioritized
based on various selection criteria. The table helps to select a diverse set of sequences for
experimental characterization. Two key prioritization criteria are (i) the solubility score
predicted by SoluProt, which can be used to prioritize the identified sequences and increase
the chance of finding enzymes with soluble protein expression in E. coli, and (ii) the se-
quence identity to query sequences complemented with an interactive sequence similarity
network visualization, which can be used to explore diverse sequences. Additionally, source
organism and domain annotations help to select the sequences with diverse properties. En-
zymeMiner is a universal tool applicable to any enzyme family. It reduces the time needed
for data gathering, multi-step analysis and sequence prioritization from days to hours and
provides this analysis to non-experienced users. EnzymeMiner web server is available at
https://loschmidt.chemi.muni.cz/enzymeminer/.

SoluProt is a sequence-based predictor of soluble protein expression in E. coli, which was
created using the gradient boosting machine technique with manually curated TargetTrack
database as a training set. SoluProt achieved a slightly higher accuracy (58.5%) and AUC
(0.62) than a suite of alternative solubility prediction tools when evaluated using balanced
independent test set of 3100 sequences. PROSO II [77], SWI [10] and CamSol [81] were the
next best tools, achieving accuracies of 58.0%, 55.9% and 54.1%, respectively. Surprisingly,
the recently reported DeepSol [47] and SKADE [68] tools, which are based on deep learning
methods, performed worse than simpler methods PROSO II, SWI and CamSol in this
comparison. SoluProt also performed well in protein prioritization. The main strengths
of SoluProt are that it was trained using a dataset generated by thorough pre-processing
of the noisy TargetTrack data, and was validated using a high-quality independent test
set. The SoluProt predictor is available via a user-friendly web server or as a standalone
software package at https://loschmidt.chemi.muni.cz/soluprot/.
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In the future, improvements for both EnzymeMiner and SoluProt methods could be im-
plemented. EnzymeMiner can be improved in three aspects. First, metagenomic database
MGnify [58] of more than 267 million protein sequences could be included as an additional
database for sequence search. The MGnify database contains proteins from organisms
which were not yet identified or can not be cultivated under laboratory conditions, such as
organisms living deep in ocean in hot springs or in digestion systems. However, greater at-
tention and expert validation is needed for the proteins found in the metagenomic databases
as they may include erroneously assembled chimeric sequences which are just an artefact
of the whole-genome shot-gun sequencing and subsequent data processing. Second, auto-
mated tertiary structure prediction based on homology modelling and threading could be
implemented for all identified sequences. The structural predictions will allow a subsequent
analysis of active site pockets/cavities and access tunnels. Structural features will signif-
icantly enrich the set of annotations and help to identify additional attractive targets for
experimental characterization. Third, automated periodical mining could be implemented.
When enabled, EnzymeMiner will rerun the analysis periodically and inform the user about
novel sequences found since the last search.

SoluProt most probably reached the prediction limit due to both the quality and the
quantity of the available protein sequence solubility data. Thus, to improve its applicability,
a new prediction task could be considered—the prediction of the effect of an amino acid
mutation on protein solubility, specifically a prediction of the difference in solubility between
wild-type protein and a variant of the same protein with a change in a single amino acid
(single-point mutant). This effort has two motivations. First, the prediction of the effect of a
mutation would be extremely useful for engineering solubility of proteins. It would allow to
design novel protein variants with improved solubility or just to avoid mutations decreasing
solubility. Second, novel experimental data for protein solubility change upon a single-point
mutation are emerging rapidly thanks to the advent of deep mutational scanning technology
[49]. The data usually contains thousands of samples covering nearly all possible point
mutations in a selected protein which makes them well suited for understanding the key
mechanisms influencing protein solubility.

EnzymeMiner and SoluProt have promising applicability prospects. EnzymeMiner iden-
tifies novel putative enzymes and facilitates selection of several targets for experimental
characterization. In industry, these enzymes have a great potential to decrease energetic
consumption and environmental burden of many chemical processes. SoluProt indicates
the probability of soluble expression for a given protein sequence which helps to prioritize
proteins that are easier to produce. This will accelerate the discovery of novel proteins or
enzymes which can be produced with high yields. The tight integration of EnzymeMiner
and SoluProt enables easy-to-use mining of soluble enzymes, which makes them unique and
powerful tools for the protein engineering community. Notably, both tools have already
caught the attention of the community, as shown by the number of requests satisfied by
both services at this time—more than 1400 jobs calculated by EnzymeMiner and more than
8700 jobs calculated by SoluProt.
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ABSTRACT

Millions of protein sequences are being discovered
at an incredible pace, representing an inexhaustible
source of biocatalysts. Despite genomic databases
growing exponentially, classical biochemical char-
acterization techniques are time-demanding, cost-
ineffective and low-throughput. Therefore, computa-
tional methods are being developed to explore the
unmapped sequence space efficiently. Selection of
putative enzymes for biochemical characterization
based on rational and robust analysis of all available
sequences remains an unsolved problem. To address
this challenge, we have developed EnzymeMiner––a
web server for automated screening and annotation
of diverse family members that enables selection
of hits for wet-lab experiments. EnzymeMiner priori-
tizes sequences that are more likely to preserve the
catalytic activity and are heterologously expressible
in a soluble form in Escherichia coli. The solubil-
ity prediction employs the in-house SoluProt predic-
tor developed using machine learning. EnzymeMiner
reduces the time devoted to data gathering, multi-
step analysis, sequence prioritization and selection
from days to hours. The successful use case for the
haloalkane dehalogenase family is described in a
comprehensive tutorial available on the EnzymeM-
iner web page. EnzymeMiner is a universal tool ap-
plicable to any enzyme family that provides an inter-
active and easy-to-use web interface freely available
at https://loschmidt.chemi.muni.cz/enzymeminer/.

INTRODUCTION

There are currently >259 million non-redundant protein
sequences in the NCBI nr database (release 2020-02-10)
(1). Despite their enormous promise for biological and
biotechnological discovery, experimental characterization
has been performed on only a small fraction of the avail-
able sequences. Currently, there are about 560 000 protein
sequences reliably curated in the UniProtKB/Swiss-Prot
database (release 2020 01) (2).

The low ratio of characterized to uncharacterized se-
quences reflects the sharp contrast in time-demanding/low-
throughput biochemical techniques versus fast/high-
throughput next-generation sequencing technology.
Although more efficient biochemical techniques employing
miniaturization and automation have been developed
(3–5), the most widely used experimental methods do not
provide sufficient capacity for biochemical characterization
of proteins spanning the ever-increasing sequence space.
Therefore, computational methods are currently the only
way to explore the immense protein diversity available
among the millions of uncharacterized sequence entries.

Two different computational strategies are generally used
for exploration of the unknown sequence space. The first
strategy takes a novel uncharacterized sequence as input
and predicts functional annotations. The method involves
annotating the unknown input sequences by predicting pro-
tein domains (6), Enzyme Commission (EC) number (7)
or Gene Ontology terms that are a subject of the initia-
tive named the Critical Assessment of Functional Anno-
tation (8). These methods are often universal and applica-
ble to any protein sequence. However, they often lack speci-
ficity as the automatic annotation rules or statistical mod-
els need to be substantially general. A significant advantage
of these methods is their seamless integration into available
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databases. Submission of a query sequence to a database
is sufficient, with no need for running computation- and
memory-intensive bioinformatics pipelines locally. Amodel
example of this approach is the automatic annotation work-
flow of the UniProtKB/TrEMBL database (2).

The second strategy takes a well-known characterized se-
quence as an input and applies a computational workflow,
typically based on a homology search, to identify novel un-
characterized entries in genomic databases that are related
to the input query sequence (5,9). The homology search is
often followed by a filtration step, which checks the essen-
tial sequence properties, e.g. domain structure or presence
of catalytic residues. The main advantage of these methods
is the higher specificity of the analysis. A disadvantage is
that it may be complicated to apply the developed work-
flow to protein families other than those for which it was
designed. Moreover, these workflows typically require run-
ning complex bioinformatics pipelines and are usually not
available through a web interface.

The fundamental unsolved problem is how to deal with
the overwhelming number of sequence entries identified by
these methods and select a small number of relevant hits
for in-depth experimental characterization. For example, a
database search for members of the haloalkane dehaloge-
nase model family using the UniProt web interface yields
3598 sequences (UniProtKB release 2020 01). It is impos-
sible to rationally select several tens of targets for experi-
mental testing without additional bioinformatics analyses
to help prioritize such a large pool of sequences.

To address the challenge of exploring the unmapped en-
zyme sequence space and rational selection of attractive tar-
gets, we have developed the EnzymeMiner web server. En-
zymeMiner identifies novel enzyme family members, com-
prehensively annotates the targets and facilitates efficient
prioritization and selection of representative hits for experi-
mental characterization. To the best of our knowledge, there
is currently no other tool available that allows such a com-
prehensive analysis in a single easy-to-run integrated work-
flow on the web.

MATERIALS AND METHODS

EnzymeMiner implements a three-step workflow: (i) ho-
mology search, (ii) essential residue based filtering and (iii)
hits annotation (Figure 1). To execute these tasks, the server
requires two different types of input information: (i) query
sequences and (ii) essential residue templates. The query se-
quences serve as seeds for the initial homology search. The
essential residue templates, defined as pairs of a protein se-
quence and a set of essential residues in that sequence, allow
the server to prioritize hits that aremore likely to display the
enzyme function. Therefore, the essential residues may be
the catalytic and ligand- or cofactor-binding residues that
are indispensable for proper catalytic function. Each essen-
tial residue is defined by its name, position and a set of al-
lowed amino acids for that position.

In the first homology search step, a query sequence is used
as a query for a PSI-BLAST (10) two-iteration search in
the NCBI nr database (1). If more than one query sequence
is provided, a search is conducted for each sequence sepa-
rately. Besides aminimumE-value threshold 10−20, the PSI-

BLAST hits must share a minimum of 25% global sequence
identity with at least one of the query sequences. Artifi-
cial protein sequences, i.e. sequences described by the term
artificial, synthetic construct, vector, vaccinia virus, plas-
mid, halotag or replicon, are removed. EnzymeMiner sorts
the PSI-BLAST hits by E-value and passes a maximum of
10,000 best hits to the next steps in the workflow. The de-
fault parameters for the homology search step, as well as the
other steps, can be modified using advanced options in the
web server.

In the second essential residue based filtering step, the ho-
mology search hits are filtered using the essential residue
templates. First, the hits are divided into template clusters.
Each cluster contains all hits matching essential residues of
a particular template. Essential residues are checked using
global pairwise alignment with the template calculated by
USEARCH (11). Whenmultiple essential residue templates
match, the hit is assigned to the template with the highest
global sequence identity. Second, for each cluster, an ini-
tial multiple sequence alignment (MSA) is constructed us-
ing Clustal Omega (12). The MSA is used to revalidate the
essential residues of identified hits by checking the corre-
sponding column in the MSA. Sequences not matching es-
sential residues of the template are removed from the clus-
ter. Third, the MSA is constructed again for each template
cluster and the essential residues are checked for the last
time. The final set of identified sequences reported by En-
zymeMiner contains all sequences left in the template clus-
ters.

In the third annotation step, the identified sequences
are annotated using several databases and predictors: (i)
transmembrane regions are predicted by TMHMM (13),
(ii) Pfam domains are predicted by InterProScan (14), (iii)
source organism annotation is extracted from the NCBI
Taxonomy (15) and the NCBI BioProject database (16),
(iv) protein solubility is predicted by the in-house tool
SoluProt for prediction of soluble protein expression in Es-
cherichia coli and (v) sequence identities to queries, hits
or other optional sequences are calculated by USEARCH
(11). SoluProt is based on a random forest regressionmodel
that employs 36 sequence-based features (https://loschmidt.
chemi.muni.cz/soluprot/). It has been shown to achieve an
accuracy of 58%, specificity of 73% and sensitivity of 44%
on a balanced independent test set of 3788 sequences (Hon
et al., manuscript in preparation). Alternative solubility pre-
diction tools are summarised in a recently published review
(17). It is not advised to use the solubility score for other
expression systems because it was trained solely on E. coli
data. We expect further intensive development of protein
solubility predictors in coming years and will ensure that
the solubility score in the EnzymeMiner stays at the cutting-
edge in terms of its accuracy and reproducibility.

The sequence space of the identified hits is visualized us-
ing representative sequence similarity networks (SSNs) gen-
erated at various clustering thresholds using MMseqs2 (18)
and Cytoscape (19). SSNs provide a clean visual approach
to identify clusters of highly similar sequences and rapidly
spot sequence outliers. SSNs proved to facilitate identifica-
tion of previously unexplored sequence and function space
(20). The SSN generation method used in EnzymeMiner
is inspired by the EFI-EST tool (21). The minimum align-
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Figure 1. The EnzymeMiner workflow. The workflow consists of three distinct steps: (i) sequence homology search, (ii) filtration of functional sequences,
and (iii) annotation of hits. These steps are executed consecutively and automatically. EnzymeMiner has only two required inputs: (i) query sequences, and
(ii) essential residue templates. TheOther sequences are optional inputs that allow EnzymeMiner to calculate the sequence identity between these sequences
and all the hits. Input files are highlighted by a white background, tools and databases have a light blue background, outputs are highlighted by a yellow
background.

ment score to include an edge between two representative
sequences in an SSN is 40.

DESCRIPTION OF THE WEB SERVER

Job submission

New jobs can be submitted from the EnzymeMiner home-
page. EnzymeMiner provides two conceptually different
ways to define the input of the workflow: (i) using cu-
rated sequences from the UniProtKB/Swiss-Prot database
and (ii) using custom sequences. We recommend the
UniProtKB/Swiss-Prot option for users who do not have
in-depth knowledge of the enzyme family. In contrast, the
Custom sequences tab gives full control over the EnzymeM-
iner input––query sequences and essential residue templates
are specified manually by the user. This is recommended for
users who have good knowledge about the enzyme family
and want to provide additional starting information to ob-
tain refined results. The last option is a combination of both
approaches, where Swiss-Prot sequences can be pre-selected
first and then the input can be modified in the Custom se-
quences tab.

In the Swiss-Prot sequences tab (Figure 2A), sequences
from the Swiss-Prot database can be queried by Enzyme
Commission (EC) number. As a result, a table of all se-
quences annotated by the EC number and corresponding
SSN is generated. The table has four columns: (i) sequence
accessions hyperlinked to the UniProt database, (ii) number
of essential residues, (iii) sequence length and (iv) sequence
plot. The sequence plot summarizes two important features
of the sequence – positions of essential residues and identi-

fied Pfam domains. The positions of essential residues are
obtained from the Swiss-Prot database. The SSN visualizes
the sequence space of all the sequences in the current EC
group. Nodes represent Swiss-Prot sequences, whereas edge
lengths are proportional to the pairwise sequence identities.
Similar sequences are close to each other, whereas more dis-
tant sequences are not connected at all.

There are three strategies possible for selecting Swiss-Prot
sequences as the EnzymeMiner query: (i) select a row from
the sequence table, (ii) select a node in the SSN and (iii)
select cluster representatives by defining a sequence iden-
tity threshold. The sequence identity threshold buttons se-
lect cluster representatives at the given percentage thresh-
old. Using this feature, the user can automatically select a
small set of sequences that cover the whole known sequence
space of the current EC group. All selected Swiss-Prot se-
quences are used as a query in the homology search step
and also as essential residue templates for the filtration step.
To modify the selected sets of queries and essential residue
templates, the user can switch to the Custom sequences tab
and refine the selection manually.

EnzymeMiner results

The results page is organized into four sections: (i) job in-
formation box, (ii) download results box, (iii) target selection
table and (iv) sequence similarity network.

In the job information box, the user can find the job ID,
title, start time and status of the job. There is also a rerun
button for rerunning the same analysis without the need for
re-entering the same input. This feature is handy for peri-
odically mining new sequences as the sequence databases
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Figure 2. The EnzymeMiner graphical user interface showing example inputs and results for the haloalkane dehalogenase family (EC 3.8.1.5). (A) Inputs
based on curated sequences from the UniProtKB/Swiss-Prot database. The input sequences can be selected using: (i) the sequence table, (ii) the SSN or (iii)
the sequence identity threshold. (B) Target selection table. The table is organized into eleven sheets that summarize the results from different perspectives.
The table can be filtered using solubility and identity sliders, and transmembrane and extra domain exclusion switches.

grow. For example, there are hundreds of new hits for the
haloalkane dehalogenase family every year. In the down-
load results box, the user can download the results table in
XLSX format or tab-separated text format. A ZIP archive
containing all output files from the EnzymeMiner workflow
can also be downloaded.

The target selection table is the most important compo-
nent of the EnzymeMiner results (Figure 2B). It presents
all the putative enzyme sequences identified by EnzymeM-
iner and helps to select targets for experimental character-
ization. The table is organized into eleven sheets summa-
rizing the results from different perspectives. (i) The Se-
lected sheet shows all the sequences selected from individ-
ual sheets. It contains an extra column to track the argu-
ment used for the selection. By default, it is prefilled by
the name of the sheet from which the sequence was se-
lected, but it can be freely changed. (ii) The Full Dataset
sheet shows all identified sequences. (iii) The Extra domain
sheet shows sequences with extra Pfam domains found in
the sequence but not listed in the Primary domains selec-
tion box. (iv) The Organism sheet shows sequences with
known source organisms. (v) The Temperature sheet shows
sequences from organisms having extreme optimum tem-
perature annotation in the NCBI BioProject database, in-
cluding sequences from thermophilic or cryophilic organ-
isms. (vi) The Salinity sheet shows sequences from organ-
isms having extreme salinity annotation in the NCBI Bio-
Project database. (vii) The Biotic Relationship sheet shows
sequences from organisms having biotic relationship anno-
tation in the NCBI BioProject database. (viii) The Disease
sheet shows sequences from organisms having disease an-
notation in the NCBI BioProject database. (ix) The Trans-
membrane sheet shows sequences with transmembrane re-
gions predicted by the TMHMM tool. (x) The 3D Struc-
ture sheet shows sequences with an available 3D structure in

the Protein Data Bank (22). (xi) The Network sheet shows
sequences clustered into a selected sequence similarity net-
work node.

There are four options for filtering the identified se-
quences displayed in the target selection table. The first op-
tion is the minimum solubility slider. Sequences with lower
predicted solubility will be hidden. We recommend setting
the solubility threshold to >0.5 to increase the probabil-
ity of finding soluble protein expression in E. coli. We do
not recommend to set the solubility threshold too high be-
cause of possible trade-off between enzyme solubility and
activity (23). The second option is the identity range bar.
Only sequences with identity to query sequences in the spec-
ified range will be visible. The third option is to exclude
transmembrane proteins. We recommend removing these
sequences as they are usually difficult to produce and tend
to have lower predicted solubility. The fourth option is to
exclude proteins with an extra domain. Extra domains are
defined as domains found in the sequence but not listed in
the Primary domains selection box. We recommend avoid-
ing sequences with extra domains, but these sequences may
also show interesting and unusual biological properties. The
selection table can be sorted by clicking on a column header.
Holding ‘Shift’ while clicking on the column headers allows
sorting by multiple columns.

The SSN visualizes the sequence space of all identified
sequences. Both clusters of similar sequences and sequence
outliers can be easily identified. As there might be thou-
sands of sequences, the sequences are clustered at the iden-
tity threshold and only an SSN of the representative se-
quences is shown for performance reasons. Sequences hav-
ing greater sequence identity are consolidated into a sin-
gle metanode. Edges indicate high sequence identity be-
tween representative sequences of the connectedmetanodes.
Clicking on ametanode displays theNetwork sheet showing
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which sequences are represented by a particular metanode.
The SSN can be downloaded as a Cytoscape session file for
further analysis and custom visualization. Networks clus-
tered at different identities are available. The numbers of
nodes and edges are indicated for each identity threshold.
The SSN is interactively linked to the target selection table.
All nodes representing selected sequences are automatically
highlighted in the SSN.

Target selection

The target selection table and SSN facilitate the selection
of a diverse set of soluble putative enzyme sequences for
experimental validation. First, we recommend setting the
maximum sequence identity to queries to 90%. This will re-
move all hits that are very similar to already knownproteins.
Second, we recommend selecting a few sequences from in-
dividual sheets to cover different phyla from the domains
Archea, Bacteria and Eukarya. The most exciting enzymes
might be from extremophilic organisms. Third, the SSN can
be used to check that the selection covers all sequence clus-
ters. Fourth, users can select sequences from all subfamilies
of the enzyme family of interest. The members of different
subfamilies can be easily recognized by the Closest query or
Closest known column in the selection table (note: requires
representative sequences of subfamilies as job input). Fifth,
the available filtering options can be used to (i) prioritize se-
quences with the highest predicted solubility, (ii) prioritize
sequenceswith known tertiary structures, (iii) eliminate pro-
teins with predicted transmembrane regions and (iv) elimi-
nate sequences with extra domains.

EXPERIMENTAL VALIDATION OF THE EnzymeMiner
WORKFLOW

The EnzymeMiner workflow has been thoroughly experi-
mentally validated using the model enzymes haloalkane de-
halogenases (5). The sequence-based search identified 658
putative dehalogenases. The subsequent analysis prioritized
and selected 20 candidate genes for exploration of their pro-
tein structural and functional diversity. The selected en-
zymes originated from genetically unrelated Bacteria, Eu-
karya and, for the first time, also Archaea and showed novel
catalytic properties and stabilities. The workflow helped to
identify novel haloalkane dehalogenases, including (i) the
most catalytically efficient enzyme (kcat/K0.5 = 96.8 mM−1

s−1), (ii) the most thermostable enzyme showing a melt-
ing temperature of 71◦C, (iii) three different cold-adapted
enzymes active at near to 0◦C, (iv) highly enantioselective
enzymes, (v) enzymes with a wide range of optimal opera-
tional temperature from 20 to 70◦C and an unusually broad
pH range from 5.7–10 and (vi) biocatalysts degrading the
warfare chemical yperite and various environmental pol-
lutants. The sequence mining, annotation, and visualiza-
tion steps from the workflow published by Vanacek and co-
workers (5) were fully automated in the EnzymeMiner web
server. The successful use case for the haloalkane dehaloge-
nase family is described in an easy-to-follow tutorial avail-
able on the EnzymeMiner web page. Additional extensive
validation of the fully automated version of EnzymeMiner,

experimentally testing the properties of another 45 genes of
the haloalkane dehalogenases, is currently ongoing in our
laboratory.

CONCLUSIONS AND OUTLOOK

The EnzymeMiner web server identifies putative members
of enzyme families and facilitates their prioritization and
well-informed manual selection for experimental character-
ization to reveal novel biocatalysts. Such a task is difficult
using the web interfaces of the available protein databases,
e.g. UniProtKB/TrEMBL and NCBI Protein, since addi-
tional analyses are often required. The major advantage of
EnzymeMiner over existing protein sources is the flexibility
of input and concise annotation-rich interactive presenta-
tion of results. The user can input custom queries and a cus-
tom description of essential residues to focus the search on
specific protein families or subfamilies. The output of En-
zymeMiner is an interactive selection table containing the
annotated sequences divided into sheets based on various
criteria. The table helps to select a diverse set of sequences
for experimental characterization. Two key prioritization
criteria are (i) the predicted solubility score, which can be
used to prioritize the identified sequences and increase the
chance of finding enzymes with soluble protein expression,
and (ii) the sequence identity to query sequences comple-
mented with an interactive SSN displayed directly on the
web, which can be used to find diverse sequences. Addition-
ally, source organism and domain annotations help to select
sequences with diverse properties. EnzymeMiner is a uni-
versal tool applicable to any enzyme family. It reduces the
time needed for data gathering, multi-step analysis and se-
quence prioritization fromdays to hours. All the EnzymeM-
iner features are implemented directly on the web server and
no external tools are required. The web server was opti-
mized for modern browsers including Chrome, Firefox and
Safari. AnEnzymeMiner job can take a fewhours or days to
compute, depending on the current load of the server. In the
next EnzymeMiner version, we plan three major improve-
ments. First, we will implement automated tertiary struc-
ture prediction based on homologymodeling and threading
for all identified sequences. The structural predictions will
allow subsequent analysis of active site pockets/cavities and
access tunnels. Structural features will significantly enrich
the set of annotations and help to identify additional at-
tractive targets for experimental characterization. Second,
we will implement automated periodical mining. When en-
abled, EnzymeMiner will rerun the analysis periodically
and inform the user about novel sequences found since the
last search. Finally, we will implement a wizard for auto-
mated selection of hits based on input criteria provided by
a user.
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Abstract

Motivation: Poor protein solubility hinders the production of many therapeutic and industrially useful proteins.
Experimental efforts to increase solubility are plagued by low success rates and often reduce biological activity.
Computational prediction of protein expressibility and solubility in Escherichia coli using only sequence information
could reduce the cost of experimental studies by enabling prioritization of highly soluble proteins.

Results: A new tool for sequence-based prediction of soluble protein expression in E.coli, SoluProt, was created
using the gradient boosting machine technique with the TargetTrack database as a training set. When evaluated
against a balanced independent test set derived from the NESG database, SoluProt’s accuracy of 58.5% and AUC of
0.62 exceeded those of a suite of alternative solubility prediction tools. There is also evidence that it could signifi-
cantly increase the success rate of experimental protein studies. SoluProt is freely available as a standalone pro-
gram and a user-friendly webserver at https://loschmidt.chemi.muni.cz/soluprot/.

Availability and implementation: https://loschmidt.chemi.muni.cz/soluprot/.

Contact: jiri@chemi.muni.cz

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Low protein solubility causes severe problems in protein science
and industry; insufficient protein solubility is probably the most
common cause of failure of protein production pipelines. The im-
portance of solubility is underlined by the findings of the large-
scale Protein Structure Initiative (PSI) project (Berman et al.,
2017), which sought to produce thousands of protein sequences
from different organisms, crystallize them and resolve their ter-
tiary structure. Unfortunately, in most cases it proved impossible
to produce the target proteins in soluble form. The inherent low
solubility of natural enzymes also limits the success of emerging
high-throughput pipelines that explore protein databases to iden-
tify novel enzymes with diverse functions (Hon et al., 2020;
Vanacek et al., 2018). Given the rapid growth of protein sequence
databases driven by the capabilities of next-generation sequencing
technologies, there is an urgent need to focus only on potentially
soluble targets to avoid wasting resources on hard-to-produce
orthologs. Solubility is thus a key attribute when choosing protein

targets for experimental characterization (Vanacek et al., 2018).
Strictly speaking, solubility is a thermodynamic parameter defined
as the protein’s concentration in a saturated solution in equilib-
rium with a solid phase under specific conditions. However, it is
challenging to quantitatively measure the solubility of large sets of
proteins (Kramer et al., 2012), so there is little quantitative ex-
perimental data on protein solubility. Moreover, this definition of
solubility is too narrow to encompass many of the practical prob-
lems that may occur during protein production with common ex-
pression systems. Therefore, inspired by existing tools
(Supplementary Table S1) (Agostini et al., 2014; Khurana et al.,
2018; Raimondi et al., 2020; Smialowski et al., 2012), available
data (Berman et al., 2017) and laboratory practice, we use a
slightly extended definition of protein solubility in this work.
Specifically, by solubility, we mean the probability of soluble pro-
tein (over)expression in Escherichia coli cells. The difference from
the classical thermodynamic solubility is in the perception of the
insoluble class. We assume that insoluble proteins were either not
expressed or were expressed in the insoluble form.
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Solubility depends on many extrinsic and intrinsic factors.
Extrinsic factors are dictated by the choice of expression system and
the experimental conditions used in protein production. Expression
systems may be either in vivo or in vitro (Carlson et al., 2012;
Rosano and Ceccarelli, 2014). In vivo protein expression is induced
inside living cells of a host organism, whereas in vitro expression
relies on the use of cell-free translational systems. Solubility can be
increased by adjusting extrinsic solubility factors, especially by using
different mutated host strains, codon optimization, coexpression of
chaperones and foldases, lowering cultivation temperatures and
adding suitable fusion partners (Costa et al., 2014). However, tun-
ing the expression system or experimental conditions is not always
sufficient to confer solubility, and is not feasible in high-throughput
protein production pipelines. If extrinsic factors cannot be varied,
protein solubility will depend only on the intrinsic properties of the
protein sequence. Unfortunately, the relationship between a pro-
tein’s sequence and its solubility is poorly understood, mainly due to
a lack of reproducible quantitative solubility measurements (Kramer
et al., 2012). Recent protein engineering studies suggest that charged
amino acids on the protein surface are key intrinsic determinants of
solubility (Carballo-Amador et al., 2019; Chan et al., 2013; Sankar
et al., 2018). However, this knowledge cannot be directly used for
solubility prediction due to a lack of structural data. Despite the
continuous growth of structural databases (Burley et al., 2019), the
structures of proteins of interest are generally unknown, and the lim-
ited availability of template structures prevents their accurate com-
putational prediction.

The simultaneous effects of extrinsic and intrinsic factors make
solubility prediction challenging. For example, the prediction of
solubility from sequence data using machine learning is hindered by
the high level of noise in typical training datasets due to the influ-
ence of diverse extrinsic variables. Because the molecular mecha-
nisms governing protein solubility are poorly understood, recent
solubility prediction tools rely heavily on statistical analysis and ma-
chine learning, using previously reported experimental data to train
and validate model parameters. One of the most widely used data
sources is the TargetTrack database (Berman et al., 2017), formerly
known as PepcDB or TargetDB, which integrates information from
the Protein Structure Initiative projects. This database contains data
from over 900 000 protein crystallization trials involving almost
300 000 unique protein sequences, which are referred to as targets.
The database does not contain solubility data per se, but target pro-
teins can be considered soluble if they were successfully purified in
the experimental trials. A major limitation of this database is the
low quality of its annotations. For example, reasons for failure are
generally not provided for unsuccessful crystallization attempts.
Therefore, it is impossible to distinguish failures due to insolubility
from failures due to other problems later in the experimental pipe-
line. Second, the experimental protocols used for protein production
and crystallization are described in free text with no internal struc-
ture, making it hard to automatically extract information about ex-
perimental conditions and expression systems for a given target.
Filtering is therefore needed to reduce noise before using the
TargetTrack data for model training. However, the application of
stringent filtering rules to the target annotations can dramatically re-
duce the number of usable records.

eSOL is another well-known and commonly used solubility data-
base (Niwa et al., 2009, 2012) that contains experimentally meas-
ured solubilities for over 3 000 E.coli proteins produced in the
PURE (Shimizu et al., 2001) cell-free expression system. eSOL is an
impressive collection of highly homogenous data but has its own
limitations. First, it only contains data on proteins originating from
E.coli. Second, it has relatively little negative data; adding the three
main cytosolic E.coli chaperones (TF, DnaKJE and GroEL/GroES)
to the PURE expression system reduced the number of insoluble pro-
teins from 788 to 24 (Niwa et al., 2012). eSOL is a valuable source
of exact solubility data that were generated using a robust pipeline
and provide a good quantitative measure of thermodynamic solubil-
ity. However, these data cannot be used to assess solubility accord-
ing to our expanded definition, which also encompasses
expressibility.

The relationship between protein sequence and solubility has
been studied for over 30 years, leading to the development of several
predictive models and software tools. There are 11 such models or
tools that use definitions of solubility like that described above and
take protein sequences as their sole input. These are the revised
Wilkinson-Harrison model (rWH) (Davis et al., 1999; Wilkinson
and Harrison, 1991), SOLpro (Magnan et al., 2009), RPSP (Diaz
et al., 2010), PROSO II (Smialowski et al., 2012), ccSOL omics
(Agostini et al., 2012, 2014), ESPRESSO (Hirose and Noguchi,
2013), CamSol (Sormanni et al., 2015), Protein-Sol (Hebditch et al.,
2017), DeepSol (Khurana et al., 2018), SKADE (Raimondi et al.,
2020) and the Solubility-weighted index (SWI) (Bhandari et al.,
2020). However, the accuracy of these tools is limited, and there is
clear room for improvement. Additionally, these tools exhibit poor
generality when used to make predictions based on previously un-
seen data. A comprehensive review of advances in solubility predic-
tion, including predictors that use protein structures as inputs, was
published recently (Musil et al., 2019). Here, we present a novel ma-
chine learning based tool, SoluProt, for predicting soluble expression
from protein sequence data. SoluProt benefits from thorough dataset
pre-processing and predicts soluble expression more accurately than
previously reported methods.

2 SoluProt training and test set

We used the TargetTrack database to build the SoluProt training
set. Since this database does not directly provide solubility informa-
tion, we inferred solubility computationally, using an approach
similar to those adopted previously (Magnan et al., 2009;
Smialowski et al., 2012). A protein was considered soluble if it was
recorded as having reached a soluble experimental state or any sub-
sequent state requiring soluble expression (Supplementary Table
S2). If failed expression or purification was mentioned in the experi-
ment record’s stop status, the protein was labeled insoluble. In con-
trast to a previous approach (Smialowski et al., 2012), we required
an explicit stop status relating to insolubility to reduce the frequency
of incorrect classification of insoluble sequences. To improve the
quality of the training set, we also performed several additional steps
to clean the data.

Most importantly, we performed keyword matching combined
with manual checking of TargetTrack annotations to extract only
proteins expressed in the most common host organism, E.coli. This
was necessary because a protein soluble in one organism might be
insoluble in another. By focusing solely on the most common expres-
sion system, we reduced the noise in the training data. We also used
specific keywords to search the unstructured descriptions of experi-
mental protocols provided in the TargetTrack database
(Supplementary Table S3). Generic search phrases like ‘E.coli’ or
‘Escherichia coli’ were used to identify potential E.coli related pro-
tocols. These protocols were then manually checked and confirmed
(Supplementary Table S4). A full list of 248 TargetTrack protocols
signifying expression in E.coli is available at the SoluProt website.

We next identified transmembrane proteins in the dataset based
on direct annotations from the TargetTrack database and predic-
tions generated using TOPCONS (Tsirigos et al., 2015) with default
settings. The transmembrane proteins were then removed, along
with sequences shorter than 20 amino acids, and sequences with un-
defined residues. We also removed sequences that had been classi-
fied as insoluble but for which a protein structure was available in
the Protein Data Bank (PDB) (Berman, 2000). To this end, we com-
piled an E.coli PDB subset containing sequences of proteins whose
structures had been solved by NMR or X-ray crystallography and
which had been expressed in E.coli according to the PDB annota-
tions (64 416 sequences, downloaded April 4, 2018). Because both
NMR and X-ray crystallography require soluble proteins, any pro-
tein in this PDB subset can be considered soluble in E.coli. This step
reflects advances in molecular biology: methodological develop-
ments have made it possible to produce and crystallize some proteins
that were previously considered insoluble.

Finally, we reduced the sequence redundancy in the training set
by clustering to 25% identity using MMseqs2 (Steinegger and
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Söding, 2017) and retaining only representative sequences from
each cluster. This was done separately for positive and negative sam-
ples to avoid simplifying the prediction problem. We balanced the
number of soluble and insoluble samples such that both classes were
equally represented. Additionally, we balanced the sequence length
distribution so that length alone would not play a dominant role in
the predictions. Sequence length correlates with protein solubility—
larger proteins are usually less soluble. However, we wanted to sup-
press its influence in the model because we anticipate that SoluProt
would mainly be used to prioritize proteins of similar lengths, usual-
ly from a single protein family. A typical expected use case is that of
the EnzymeMiner web server (Hon et al., 2020) for automated min-
ing of soluble enzymes. A prediction model relying heavily on se-
quence length would not perform well in this use case.

The SoluProt test set was built from a dataset generated by the
North East Structural Consortium (NESG), which represents 9644
proteins expressed in E.coli using a unified production pipeline (Price
et al., 2011). The dataset contains two integer scores ranging from 0
to 5 for each target, indicating the protein’s level of expression and
the soluble fraction recovery. The reproducibility of the experimental
results in the dataset was validated by performing repeat measure-
ments for selected targets. The NESG dataset targets are included in
the TargetTrack database because the NESG participated in the PSI
project. However, the expression and solubility levels from the NESG
dataset were not included in the TargetTrack database; instead, they
were provided to us directly by the authors of the original study (W.
Nicholson Price II, personal communication). The high consistency
and quality of the NESG dataset make it suitable for benchmarking
purposes. We processed the NESG dataset using the same procedure
as the training set, although the computational solubility derivation
and expression system filtration steps were omitted because they were
pointless in this case. Instead, we transformed the solubility levels
into binary classes: all proteins with a solubility level of 1 or above
were considered soluble and all others insoluble.

Finally, we ensured that no pair consisting of a sequence from the
test set and a sequence from the training set had a global sequence iden-
tity above 25% as calculated using the USEARCH software (Edgar,
2010). This made the test set more independent because it ensured that
predictions were not validated against data similar to those used during
training. In total, 11 436 protein sequences remained in the SoluProt
training set and 3 100 in the independent SoluProt test set. Both data-
sets had equal numbers of soluble and insoluble samples with balanced
sequence length distributions (Supplementary Fig. S1). The datasets are
available at the SoluProt website. The dataset construction steps are
summarized in Supplementary Table S5.

3 Prediction model

The SoluProt predictor is implemented in Python using scikit-learn
(Pedregosa et al., 2011), Biopython (Cock et al., 2009) and pandas
(McKinney, 2010) libraries. We used a gradient boosting machine
(GBM) (Friedman, 2001) to generate the predictive model.
Prediction features were selected from a set of 251 sequence charac-
teristics that were divided into eight groups: (i) single amino acid
content (20 features), (ii) amino acid dimer content (210 features),
(iii), sequence physicochemical features (12 features, Supplementary
Table S6), (iv) average flexibility as computed by DynaMine (Cilia
et al., 2014) (1 feature), (v) secondary structure content as predicted
by FESS (Piovesan et al., 2017) (3 features), (vi) average disorder as
predicted by ESPRITZ (Walsh et al., 2012) (1 feature), (vii) content
of amino acids in transmembrane helices as predicted by TMHMM
(Krogh et al., 2001) (3 features) and (viii) maximum identity to the
E.coli PDB subset as calculated using USEARCH (1 feature). All
sequences equal to any sequence from the test set were excluded
from the E.coli PDB subset for the calculation of maximum identity.
The objective was to eliminate even the indirect presence of test set
sequences from model training. We standardized all features by sub-
tracting the mean and scaling to unit variance. The means and var-
iances were calculated using the training set.

We removed correlated features in two steps. First, we fitted a
GBM with default parameters using the full training set and all

features. Second, we calculated Pearson’s correlation coefficient for
each pair of features. If the correlation between any two features
exceeded 0.75, we removed the feature with the lesser importance in
the fitted GBM model. We also removed irrelevant features using
LASSO (Tibshirani, 1996). LASSO’s alpha parameter was optimized
to maximize the mean AUC of the GBM model with default parame-
ters over 5-fold cross-validation. The alpha parameter was varied
between 0.08 to 0 with a step size of 6.25�10�4; its optimal value
was 0.005. In total, 96 features were selected for inclusion in the
predictive model (Supplementary Table S7). The DynaMine, FESS
and ESPRITZ features were not included in the final feature set.

We next optimized the hyperparameters of the GBM model,
using an iterative 7-stage strategy to maximize the mean AUC over
5-fold cross-validation using the training set (Supplementary Table
S8). In each stage, one or two parameters were optimized using grid
search; other parameters were left either at their final values from
the previous stages or at the default value if the parameter had not
yet been optimized. The best GBM model achieved mean AUC val-
ues of 0.85 6 0.003 for the training part and 0.72 6 0.02 for the val-
idation part. Overall, the feature selection and hyperparameter
optimization had little effect on the mean AUC: without these meas-
ures, the mean AUC values for the training and validation sets were
0.83 6 0.003 and 0.72 6 0.02, respectively. The main benefit of the
feature selection and parameter tuning steps was that they reduced
the number of features and thus made the feature calculation step
roughly two times faster.

Finally, we used the best GBM hyperparameters to train the final
SoluProt model using the full training set. The resulting model had an
AUC of 0.84 and an accuracy of 76% for the full training set. The five
most important features according to the GBM are: (i) maximum iden-
tity to the E.coli PDB subset (14.5%), (ii) isoelectric point (6.2%), (iii)
predicted number of amino acids in transmembrane helices in the first
sixty amino acids of the protein (4.2%), (iv) lysine content (4.0%) and
(v) glutamine content (3.5%) (Supplementary Table S7).

4 Performance evaluation and comparison

We used the SoluProt test set to evaluate and compare SoluProt to
11 previously published tools. The evaluation relied on both
threshold-independent (area under the ROC curve) and threshold-
dependent metrics (accuracy, Matthew’s correlation coefficient and
confusion matrices). For the threshold-dependent metrics, we
applied a threshold of 0.5 or the thresholds recommended by the
authors of the corresponding method (Table 1). SoluProt achieved
the highest accuracy (58.5%) and the greatest AUC (0.62) of the

Table 1. Performance of various solubility predictors using the bal-

anced SoluProt test set of 3100 sequences

Method AUC T ACC MCC TP TN FP FN

SoluProt 0.62 0.50 58.5% 0.17 939 873 677 611

PROSO II 0.60 0.60 58.0% 0.17 630 1167 383 920

SWI 0.60 0.50 55.9% 0.13 1206 527 1023 344

CamSol 0.57 1.00 54.1% 0.08 676 1001 549 874

ESPRESSO 0.56 0.50 53.8% 0.08 1003 664 886 547

rWH 0.55 0.50 54.0% 0.08 670 1005 545 880

DeepSol 0.55 0.50 52.9% 0.09 230 1409 141 1320

Protein-Sol 0.54 0.45 51.6% 0.03 1056 544 1006 494

SOLpro 0.53 0.50 52.0% 0.04 654 959 591 896

SKADE 0.51 0.50 49.2% –0.03 159 1366 184 1391

ccSOL omics 0.51 0.50 50.8% 0.02 884 690 860 666

RPSP 0.50 0.50 49.8% 0.00 501 1044 506 1049

Note: The different definitions of solubility and target expression system

(Supplementary Table S1) should be considered when comparing the perform-

ance of individual tools.

AUC—area under the ROC curve, T—threshold for the soluble class,

ACC—accuracy, MCC—Matthew’s correlation coefficient, TP—true posi-

tives, TN—true negatives, FP—false positives, FN—false negatives.
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tested tools when evaluated against the SoluProt test set (Table 1
and Fig. 1),followed by PROSO II and SWI.

While the SoluProt test set is independent of the SoluProt train-
ing set, other tools’ training sets might overlap with our test set.
Therefore, we compared the SoluProt test set to the training sets of
DeepSol, SKADE, SWI and SOLpro to quantify their overlaps
(Table 2). DeepSol and SKADE have a common training set, which
showed the largest overlap (74.0%), followed by the SWI training
set (26.5%) and the SOLpro training set (15.5%). SWI benefits
from the overlap; it was the third-best tool in our comparison.
DeepSol and SKADE ranked 7th and 12th by accuracy with respect
to the SoluProt test set despite having the greatest proportion of test
sequences in their training set. This comparatively poor performance
can be partly explained by differences in solubility annotations be-
tween the DeepSol training set and the SoluProt test set (Table 2):
360 (11.6% of the total) sequences annotated as insoluble in the
DeepSol training set were annotated as soluble in the SoluProt test
set. The total number of disagreements (the sum of false positives
and false negatives) ranged from 336 to 551, depending on the
binarization threshold applied to the SoluProt test set
(Supplementary Table S9). No training set was published for
PROSO II; only an initial set of soluble and insoluble sequences
without pre-processing is available. However, the initial set exhibits
95.2% overlap with the SoluProt test set. Therefore, we expect the
overlap of the PROSO II training set to also be very high, like the
DeepSol training set. Unfortunately, the training sets of other previ-
ously developed tools have not been published, preventing a more
comprehensive comparison.

The absolute accuracy of the available solubility prediction tools
is low (below 60%), so there is clearly room for improvement.
Nevertheless, SoluProt and other tools can be useful for protein se-
quence prioritization (Fig. 2), i.e. for selecting a small number of
sequences for in-depth experimental characterization from a large
database of several hundreds or thousands of sequences.
Specifically, predicted solubility values can be used to select a lim-
ited number of high-scoring protein sequences. For example, if we
use SoluProt predictions to order the SoluProt test set and remove
all sequences bar the 10% with the highest scores, we get 232 true
positives, i.e. 49.7% more true positives than would be expected
with blind selection (155 true positives). This shows that despite
their limited accuracy, current solubility predictors are valuable for
protein sequence prioritization and can increase the success rate of
experimental protein studies.

5 Conclusions

We have developed a novel method and software tool, SoluProt, for
sequence-based prediction of soluble protein expression in E.coli.
The tool simultaneously predicts the solubility and expressibility of
the proteins under consideration. SoluProt achieved a higher accur-
acy (58.5%) and AUC (0.62) than a suite of alternative solubility
prediction tools when evaluated using the balanced independent
SoluProt test set of 3100 sequences. PROSO II, SWI and CamSol
were the next best tools, achieving accuracies of 58.0%, 55.9% and
54.1%, respectively. SoluProt also performed well in protein priori-
tization. The main strengths of SoluProt are that it was trained using
a dataset generated by thorough pre-processing of the noisy
TargetTrack data, and was validated using a high-quality independ-
ent test set.

Surprisingly, the recently reported DeepSol (Khurana et al.,
2018) and SKADE (Raimondi et al., 2020) tools, which are based
on deep learning methods, performed worse than the simpler and
mostly older methods PROSO II (Smialowski et al., 2012), SWI
(Bhandari et al., 2020) and CamSol (Sormanni et al., 2015) in our
comparison. This may be partly due to the overlap of their training
set with our test set and disagreements between these sets with re-
spect to the solubility of certain sequences.

The SoluProt predictor is available via a user-friendly web server
or as a standalone software package at https://loschmidt.chemi.
muni.cz/soluprot/. The SoluProt web server has already predicted
the solubility of over 4700 unique protein sequences in ten months
since its launch in February 2020. It has also been integrated into
the web server EnzymeMiner (Hon et al., 2020) for automated

Fig. 1. Receiver operating curves (ROC) calculated for the balanced SoluProt test set of 3100 sequences. The predictors are ordered by the area under the receiver operating

curve (AUC)

Table 2. Overlaps between the SoluProt test set and available train-

ing sets

Dataset Size Test set overlap TP TN FP FN

PROSO II initial 129643 2952 (95.2%) 951 1437 50 514

DeepSol/SKADE 69420 2294 (74.0%) 737 1130 67 360

SWI 12216 820 (26.5%) 537 210 53 20

SOLpro 17408 480 (15.5%) 178 120 39 143

Note: Two sequences were considered identical if their global sequence

identity reported by USEARCH was 100%. Differences in solubility annota-

tions for identical sequences were quantified using confusion matrix terms

(TP, TN, FP and FN). The solubility annotations of the SoluProt test set are

assumed to reflect the true solubilities of the proteins.

TP—true positives, TN—true negatives, FP—false positives, FN—false

negatives. a DeepSol and SKADE share the same training set.
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mining of novel soluble enzymes from protein databases (https://
loschmidt.chemi.muni.cz/enzymeminer/).
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Table S1.  The summary of  solubility  concepts used in  existing tools.  The key difference lies  in  the
perception  of  the  insoluble  class.  The  tools  predicting  “soluble  expression”  assume  that  insoluble
proteins  were  either  not  expressed  or  were  expressed  in  the  insoluble  form.  The  tools  predicting
classical “solubility” assume that insoluble proteins were successfully expressed before the solubility was
determined.

Method Predicted property Expression system Comment

SoluProt soluble expression E. coli Based on curated TargetTrack data.

PROSO II soluble expression mixed Based on PepcDB data (predecessor of 
TargetTrack).

SWI solubility E. coli Based on PSI:Biology data. All proteins in
the dataset were successfully expressed.

CamSol solubility mixed Based on literature data.

ESPRESSO solubility E. coli Based on Hirose dataset (Hirose et al., 
2011).

rWH solubility E. coli Based on literature data.

DeepSol soluble expression mixed Based on TargetTrack data.

Protein-Sol solubility cell-free Based on eSOL data.

SOLpro solubility mixed Based on PDB, Swiss-Prot and 
TargetTrack data. Proteins marked as 
insoluble were required to reach at least 
“cloned” or “expressed” states.

SKADE soluble expression mixed Based on TargetTrack data.

ccSOL omics soluble expression mixed Based on TargetTrack data.

RPSP solubility E. coli Based on literature data.

Table S2. TargetTrack experiment states signifying soluble expression. The list was compiled by the
authors of PROSO II (Smialowski et al., 2012).

Experiment states

soluble, purified, crystallized, hsqc, structure, in pdb, native diffraction-data, NMR assigned, phasing 
diffraction-data, diffraction, in bmrb, nmr structure, crystal structure, diffraction-quality crystals

Table S3. Specific keywords signifying expression in E. coli.

Specific keywords

BL21, DE3, rosetta, xl10, DH10B, CodonPlus, RIPL, RIL, DB3.1, DB3, arctic, origami
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Table S4. Protocols identified by generic phrases and manually checked to signify expression in E.coli.

Protocol id

NYSGXRC-SGX_MOLBIO_TOPO_TRANSFORM
JCSG-E_Ecoli_GNF_1
CSGID-NU_SelMet_expression
CSGID-NU_native_expression
MPP-LP.4341
MCSG-NU_default_expression
NYSGXRC-SGX_FERM_ECOLI_LB
MPP-LP.4813
SSGCID-33
NYSGXRC-SGX_FERM_ECOLI_M9
CSGID-NU_default_expression
SSGCID-2
SSGCID-31
SSGCID-1
CESG-MAXWELL 16 EXPRESSION TESTING (R D) v.1.0.0
MPP-LP.4814
SSGCID-128
EFI-SeMET expression in HY Media-PSI2
SGX-SGX_FERM_ECOLI_LB_CFTR
SGX-SGX_MOLBIO_EXPR_SOL_CFTR
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Table S5. The number of sequences retained in each dataset construction step. The higher number of
soluble sequences in comparison to insoluble sequences in the training set can be explained by the lack
of stop status annotation in the TargetTrack database. Therefore, it is generally harder to reliably extract
insoluble sequences from the TargetTrack database.

Construction step Training set Soluble Insoluble Test set Soluble Insoluble

Input 335,771T - - 9,703R - -

Pre-processing and solubility 
assignment

114,648R - - - - -

Expression system detection 82,362R - - - - -

Redundancy removal 54,969 40,905 14,064 9,423 5,718 3,705

Removal of short sequences 
and sequences with unknown 
residues

54,962 40,904 14,058 9,420 5,715 3,705

Removal of transmembrane 
proteins

51,380 38,633 12,747 8,769 5,421 3,348

Removal of insoluble sequences
with available PDB structure

51,360 38,633 12,727 8,754 5,421 3,333

Overlap removala - - - 6,398 3.928 2,470

Clustering to 25% identity 22,169 16,422 5,747 3,545 1,990 1,555

Class and length balancing 11,436 5,718 5,718 3,100 1,550 1,550

TThe number of targets in the TargetTrack database. RThe number of extracted sequence records – 
possibly more than one record for a sequence. Without any superscript – the number of unique protein 
sequences.
aTest set sequences sharing >25% sequence identity to any training set sequence were removed. The 
input for this step was the final training set of 11,436 sequences to minimize the reduction of the test set.
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Figure S1. Sequence length distribution of soluble and insoluble proteins in the SoluProt datasets. The x-
axis is limited to the range of 0–1,000 amino acids to improve readability. The longest sequences in the
test and training sets have 979 and 2,825 amino acids, respectively. 

Table S6. Sequence physicochemical features. Most of the features were extracted using the Biopython
package (Cock et al., 2009).

Feature Description

physico_chemical_fracnumcharge Fraction of charged amino acids (R, K, D, E). 

physico_chemical_kr_ratio Ratio of K and R content.

physico_chemical_aa_helix Fraction of helix amino acids (V, I, Y, F, W, L).

physico_chemical_aa_sheet Fraction of sheet amino acids (E, M, A, L).

physico_chemical_aa_turn Fraction of turn amino acids (N, P, G, S).

physico_chemical_molecular_weight Molecular weight.

physico_chemical_avg_molecular_weight Molecular weight normalized by the sequence length.

physico_chemical_aromaticity Fraction of aromatic amino acids (Y, W, F)

physico_chemical_flexibility Flexibility according to (Vihinen et al., 1994)

physico_chemical_gravy Grand average of hydropathy according to (Kyte and 
Doolittle, 1982)

physico_chemical_isoelectric_point Isoelectric point using methods of Bjellqvist (Bjellqvist et 
al., 1993, 1994)

physico_chemical_instability_index Instability index according to (Guruprasad et al., 1990)
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Table S7. Sequence features and their importance in the final SoluProt model.

# Feature Importance # Feature Importance

1 ecoli_usearch_identity_identity 14.54% 26 dimers_comb_EM 0.96%

2 physico_chemical_isoelectric_point 6.23% 27 monomers_F 0.94%

3 tmhmm_first_60 4.18% 28 dimers_comb_EN 0.92%

4 monomers_K 3.95% 29 dimers_comb_AV 0.89%

5 monomers_Q 3.48% 30 dimers_comb_DL 0.89%

6 physico_chemical_aa_helix 1.91% 31 dimers_comb_IS 0.87%

7 monomers_E 1.84% 32 dimers_comb_EE 0.86%

8 physico_chemical_molecular_weight 1.77% 33 dimers_comb_CG 0.85%

9 monomers_M 1.70% 34 dimers_comb_PQ 0.85%

10 dimers_comb_DK 1.57% 35 dimers_comb_LQ 0.83%

11 dimers_comb_RR 1.55% 36 dimers_comb_EH 0.82%

12 dimers_comb_EK 1.49% 37 dimers_comb_AQ 0.82%

13 monomers_Y 1.39% 38 monomers_H 0.82%

14 dimers_comb_AA 1.35% 39 dimers_comb_CI 0.79%

15 monomers_C 1.28% 40 dimers_comb_EL 0.79%

16 dimers_comb_GK 1.13% 41 dimers_comb_HT 0.78%

17 dimers_comb_DT 1.09% 42 dimers_comb_EI 0.77%

18 dimers_comb_LN 1.09% 43 dimers_comb_QV 0.76%

19 dimers_comb_FT 1.08% 44 dimers_comb_DE 0.75%

20 dimers_comb_AI 1.05% 45 dimers_comb_DM 0.74%

21 dimers_comb_DI 1.02% 46 dimers_comb_MV 0.74%

22 dimers_comb_AG 1.01% 47 dimers_comb_GL 0.74%

23 dimers_comb_LT 1.00% 48 monomers_W 0.73%

24 dimers_comb_MN 0.98% 49 dimers_comb_TY 0.72%

25 dimers_comb_AN 0.98% 50 physico_chemical_fracnumchar
ge

0.72%
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# Feature Importance # Feature Importance

51 dimers_comb_EV 0.70% 74 dimers_comb_CS 0.48%

52 dimers_comb_SV 0.65% 75 dimers_comb_CP 0.47%

53 dimers_comb_RW 0.65% 76 dimers_comb_AK 0.47%

54 dimers_comb_QT 0.64% 77 dimers_comb_IY 0.46%

55 dimers_comb_KQ 0.61% 78 dimers_comb_PW 0.45%

56 dimers_comb_GV 0.61% 79 dimers_comb_VY 0.45%

57 dimers_comb_KV 0.60% 80 dimers_comb_NY 0.43%

58 dimers_comb_HL 0.59% 81 dimers_comb_GM 0.42%

59 dimers_comb_GN 0.58% 82 dimers_comb_IT 0.41%

60 dimers_comb_RS 0.57% 83 dimers_comb_FP 0.40%

61 dimers_comb_GG 0.57% 84 dimers_comb_HK 0.38%

62 dimers_comb_AC 0.56% 85 dimers_comb_FM 0.38%

63 dimers_comb_IL 0.55% 86 dimers_comb_GT 0.36%

64 dimers_comb_FL 0.55% 87 dimers_comb_KR 0.34%

65 dimers_comb_AM 0.54% 88 dimers_comb_FH 0.31%

66 dimers_comb_LL 0.54% 89 dimers_comb_MM 0.31%

67 dimers_comb_FI 0.52% 90 dimers_comb_KM 0.29%

68 dimers_comb_MW 0.51% 91 dimers_comb_MY 0.28%

69 dimers_comb_DR 0.51% 92 dimers_comb_WW 0.26%

70 dimers_comb_EF 0.50% 93 dimers_comb_CC 0.21%

71 dimers_comb_CY 0.50% 94 dimers_comb_DW 0.19%

72 dimers_comb_GH 0.49% 95 dimers_comb_HW 0.17%

73 dimers_comb_EP 0.48% 96 tmhmm_pred_hel 0.06%
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Table S8. Optimized hyperparameters of the Gradient Boosting classifier.  In each stage, one or two
parameters were optimized while the other parameters were left either at their final values from previous
stages or at their default values if they had not been optimized previously. The parameters were first
optimized using a large step size. Smaller steps were then used for refinement. The learning rate was
lowered from the default value of 0.1 to 0.01 before optimizing the number of estimators. Parameters not
mentioned here were left  at  their default  values. The procedure is based on the  Complete Machine
Learning Guide to Parameter Tuning in Gradient Boosting (GBM) in Python by Aarshay Jain1.

Stage Parameter Range Step Final value

1 n_estimators 20-100 10 -a

2 max_depth 3-17 2, 1 6

min_samples_split 100-1400 100, 50 1250

3 min_samples_leaf 1-160 10, 5 6

4 max_features 5-96 5 40

5 subsample 0.5-1 1/40 0.525

6 learning_rate -b -b 0.01

7 n_estimators 200-1800 200, 50 1500

a The parameter was optimized again in the 7th stage, after which its final value was determined; b The 
learning rate was set to a fixed value; The final set of parameters was as follows: 
criterion='friedman_mse', init=None, learning_rate=0.01, loss='deviance', max_depth=6, 
max_features=40, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, 
min_samples_leaf=6, min_samples_split=1250, min_weight_fraction_leaf=0.0, n_estimators=1500, 
n_iter_no_change=None, presort='auto', random_state=9, subsample=0.525, tol=0.0001, 
validation_fraction=0.1, verbose=0, warm_start=False.

Table S9. Class disagreements between available training sets and the SoluProt test set when applying 
different binarization thresholds.

Dataset FP1 FP2 FP3 FP4 FP5 FN1 FN2 FN3 FN4 FN5 E1 E2 E3 E4 E5

PROSO II
initial

50 56 202 405 535 514 381 306 199 140 564 437 508 604 675

DeepSol/
SKADE

67 74 202 354 451 360 262 209 138 100 427 336 411 492 551

SWI 53 108 184 285 384 20 18 12 8 4 73 126 196 293 388

SOLpro 39 40 48 83 110 143 127 82 46 33 182 167 130 129 143

SoluProt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FP – false positives, FN – false negatives, E – total number of errors (FP + FN). The numerical suffix
denotes the binarization threshold used for the SoluProt test set. For example, a binarization threshold of
2 means that all sequences with solubility scores of 2 or above are considered soluble, and all others are
considered insoluble.

1 https://www.analyticsvidhya.com/blog/2016/02/complete-guide-parameter-tuning-gradient-boosting-gbm-python/
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ABSTRACT: Natural enzymes are delicate biomolecules possess-
ing only marginal thermodynamic stability. Poorly stable,
misfolded, and aggregated proteins lead to huge economic losses
in the biotechnology and biopharmaceutical industries. Con-
sequently, there is a need to design optimized protein sequences
that maximize stability, solubility, and activity over a wide range of
temperatures and pH values in buffers of different composition
and in the presence of organic cosolvents. This has created great
interest in using computational methods to enhance biocatalysts’
robustness and solubility. Suitable methods include (i) energy calculations, (ii) machine learning, (iii) phylogenetic analyses,
and (iv) combinations of these approaches. We have witnessed impressive progress in the design of stable enzymes over the last
two decades, but predictions of protein solubility and expressibility are scarce. Stabilizing mutations can be predicted accurately
using available force fields, and the number of sequences available for phylogenetic analyses is growing. In addition, complex
computational workflows are being implemented in intuitive web tools, enhancing the quality of protein stability predictions.
Conversely, solubility predictors are limited by the lack of robust and balanced experimental data, an inadequate understanding
of fundamental principles of protein aggregation, and a dearth of structural information on folding intermediates. Here we
summarize recent progress in the development of computational tools for predicting protein stability and solubility, critically
assess their strengths and weaknesses, and identify apparent gaps in data and knowledge. We also present perspectives on the
computational design of stable and soluble biocatalysts.

KEYWORDS: aggregation, computational design, force field, expressibility, machine learning, phylogenetic analysis, enzyme stability,
enzyme solubility

1. INTRODUCTION

Nature has developed a remarkable diversity of biochemical
reactions that are vital to the continuing evolution of living
organisms and the preservation of life. Enzymes are the most
prominent catalytic entities in living cells and are collectively
capable of catalyzing a vast range of biochemical reactions. The
advent of next-generation sequencing together with recent
advances in bioinformatics and molecular and structural
biology have granted ready access to these rich genetic
resources, facilitating the identification of efficient biocatalysts
for diverse applications.1−4 Moreover, the field of protein
engineering has matured to a level that allows tailoring of
native enzymes for specific practical applications.5 However,
the redesign of an enzyme sequence often imposes unintended
secondary effects, frequently reducing the solubility and
stability of the target enzyme.6−9 Strategies for mitigating or
eliminating these negative effects include chaperone buffer-
ing,10 chemical modification of the protein structure,11,12

protein immobilization,13 medium engineering,13 the addition
of fusion proteins,14,15 and the introduction of stabilizing or
solubilizing mutations by protein engineering.16−18

Of particular interest for a mutational strategy is “directed
evolution”, which refers to experimental methods that emulate
natural evolution by coupling molecular diversity generation to
a selection or screening process. However, the immensity of an
enzyme‘s sequence space prohibits global evaluation of all
possible mutational combinations,19 frequently causing opti-
mization trajectories to become stuck in evolutionary dead
ends.20,21 This restricts the scope for creating stable and
soluble biocatalysts by directed evolution alone and calls for
knowledge-guided approaches to navigate the mutational
space.22 Rational protein design strategies can dramatically
reduce the experimental effort required for successful directed
evolution by consolidating pre-existing information.23 Semira-
tional strategies that combine directed evolution with
structural and sequence data to help identify mutational
hotspots amenable to focused screening efforts have been
particularly popular recently.24−26
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This Perspective provides a thorough overview of con-
temporary data sets and computational protein redesign tools
for enhancing enzyme stability or solubility. Preservation of
enzymatic activity is of paramount importance in all protein
engineering projects.21,27 However, highly active and stable

catalysts are evolutionarily disfavored because they could
disrupt the host organism’s homeostatic balance28 or interfere
with the cell’s complicated metabolic regulatory networks.29,30

Accordingly, several studies have indicated that most natural
enzymes operate in a suboptimal regime,21,28 leaving

Table 2. Advantages and Disadvantages of Methods for the Computational Design of Stable and Soluble Biocatalysts

method advantages disadvantages

energy
calculations

• granularity of predictions can be adjusted via different force fields • high computational cost of accurate
methods

• web servers make predictions accessible to inexperienced users • dependence on high-resolution
structures

• ever-growing structural databases together with advances in homology modeling and molecular
threading

• trade-offs between stability and activity

• high accuracy for the prediction of single-point mutations • predicted stable mutants may not be
expressible

• epistatic effects are not well resolved

machine learning • very rapid predictions • lack of balanced high-quality
experimental data

• easy to implement and use • limited accuracy of current models
• wide applicability of features • risk of overtraining
• no need to understand all dependencies
• previously unknown patterns can be discovered

phylogeneticsa • rich abundance of sequence data • selection of relevant sequences is
nontrivial

• structures not needed for predictions • profound understanding of the gene
family is required

• web servers available for certain tasks • CD: epistatic effects are not considered
• CD: simple and fast • ASR: small data set size due to

computational costs
• CD: several filters are available to enhance prediction accuracies • ASR: requires technical skills and

experience
• ASR: prediction of highly thermostable variants is achievable
• ASR: sequences of extremophilic proteins are not required
• ASR: sequence context and epistasis are maintained

aCD, consensus design; ASR, ancestral sequence reconstruction.

Figure 1. Simplified energy landscape with characteristic conformational states accessible from the native-state ensemble of a folded enzyme. Each
point on the plane defined by the X axis and Y axis resembles a different conformation of the enzyme. The corresponding value on the Z axis is the
free energy of folding, which has been color-coded to depict the spectrum from less probable high-energy states (red) to more probable low-energy
states (blue). The catalytic state is readily accessible from the native-state ensemble but clearly separated by a free energy barrier. Catalysis based on
a conformational selection model is assumed, which requires a distinct set of conformations prior to substrate binding and catalysis.48 A reversible
transition from the native state to a partially unfolded state via TS1 is characterized by the free energy difference of folding ΔG1 and its free energy
barrier ΔG1

⧧. The partially unfolded state can also constitute the starting point for an irreversible unfolding transition via TS2, leading to the fully
unfolded state. Another irreversible pathway emanating from the partially unfolded state leads to an aggregated state, which is often characterized
by the interactions of several biomolecules. ΔG1 and ΔG2 relate to thermodynamic stability, while ΔG1

⧧ and ΔG2
⧧ relate to kinetic stability.
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Figure 2. Representative experimental methods to quantify (a−d) protein stability and (e, f) solubility. Curves for a hypothetical wild-type enzyme
(black) and an improved variant exhibiting higher stability or solubility (red) are shown. (a) Differential scanning calorimetry (DSC) curve. Tm is
the midpoint of the transition, ΔCp is the difference between the pre- and post-transition baselines, and ΔH is the area under the curve between the
pre- and post-transition baselines. (b) Differential scanning fluorimetry (DSF) curve. Fluorescent dyes progressively bind to exposed hydrophobic
regions of unfolding proteins, and the fluorescence signal is detected at different temperatures. Tm corresponds to the midpoint value of the stability
curve. (c) Far-UV circular dichroism (CD) curve. Following the change of molar ellipticity at a specific wavelength over a wider temperature range
monitors the change in secondary structure of an unfolding protein. The midpoint of the sigmoid curve is related to Tm of the protein. (d) Kinetic
deactivation curve. For first-order deactivations, a plot of ln(activity) vs time yields a straight line with a slope of −k. The half-life can be calculated
using the equation τ1/2 = ln(2)/k and hence corresponds to the point (τ1/2, −0.69) on the fitted line. (e) Protein precipitation experiment. The
addition of a precipitant is negatively correlated with the solubility of the folded protein. The parameter β is protein-specific and characterizes the
dependence of the solubility on the precipitant concentration. (f) Record from ultracentrifugation. In vitro translation followed by
ultracentrifugation allows quantification of protein solubility independent of the proteostatic network of a living cell (the PURE system). The
solubility percentage is calculated as the ratio of protein in the supernatant to the total protein measured by autoradiography.60 Adapted with
permission from ref 37. Copyright 2007 Elsevier.
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considerable room for further optimization (Table 1).
Unfortunately, activity enhancements often come at the cost
of reduced enzyme stability. The protein redesign tools
presented here offer ways to avoid this trade-off and also to
solubilize the polypeptides, facilitating the purposeful adapta-
tion of natural enzymes.31 Here we outline the theoretical
frameworks of methods commonly used to analyze protein
stability and solubility. We also critically review the data sets
and software tools available for predictive purposes. This
Perspective strives to evaluate the tools from the perspective of
users, who are typically interested in accuracy, reliability, user-
friendliness, and the strengths and weaknesses of the
underlying methods (Table 2). We also present a personal
perspective on existing gaps in knowledge and propose
possible directions for future development.

2. EXPERIMENTAL FRAMEWORK TO DETERMINE
PROTEIN STABILITY AND SOLUBILITY

2.1. Experimental Determination of Protein Stability.
Globular proteins are known to be marginally stable, with free
energy differences between the folded and unfolded states
(Figure 1) being as low as 5 kcal/mol.32 Two key concepts in
the analysis of protein stability are thermodynamic and kinetic
stability.30,33−35 Thermodynamic stability can be defined on
the basis of equilibrium thermodynamics as the Gibbs free
energy difference of folding (ΔG). Exact quantification of
absolute ΔG values is difficult,36 so most stability predictors
and experimental procedures determine the relative change in
free energy (ΔΔG) upon mutation. A commonly used
experimental quantity related to ΔΔG is the change in melting
temperature (ΔTm). The melting temperature, Tm, is defined
as the temperature at which half of the sample is in the
unfolded state, and it can be determined using biophysical
techniques (Figure 2) such as circular dichroism spectroscopy
(CD), fluorescence spectroscopy (FS), dynamic light scatter-
ing (DLS), differential scanning microcalorimetry (DSC), or
differential scanning fluorimetry (DSF).37 The chemical
equivalent of Tm is the half-concentration (C1/2), i.e., the
concentration of denaturant at which half the sample exists in
the unfolded state. Kinetic stability, on the other hand, is a
time-dependent property that is quantified by the height of the
free energy barrier of unfolding (ΔG⧧) separating distinct
folding states (Figure 1). Predicting kinetic stability is
challenging,38 and experimentally determined biological half-
lives (t1/2) are preferred to theoretical estimates (Figure 2).
The kinetic stability is a key determinant of an enzyme’s
functional competence30 because it is related to the rate at
which the protein’s structure is irreversibly altered by
proteolysis or aggregation.29,39,40

2.2. Experimental Determination of Protein Solubil-
ity. Protein solubility is a thermodynamic parameter defined as
the concentration of folded protein in a saturated solution that
is in equilibrium with a crystalline or amorphous solid phase
under given conditions.49 Two methods can be used to
estimate protein solubility in aqueous solutions in vitro: (i)
adding lyophilized protein to the solvent and (ii) concentrating
a protein solution by ultrafiltration and then estimating the
protein fractions in the supernatant and the pellet. Both
methods require that the concentration of protein in solution is
increased until saturation is reached, which can be difficult to
achieve.49 The difficulties of measuring protein solubility can
be alleviated by adding an agenta precipitantto reduce the

protein’s solubility. Precipitants may be salts, organic solvents,
or long-chain polymers.
The term solubility can also be applied to the in vivo

observable that describes protein expression quantitatively
(expression yield) or qualitatively (soluble/insoluble). Besides
the previously given definition of solubility, these two
observables critically depend on the expressibility of a given
enzyme inside the cell.50,51 As a polypeptide is synthesized in
the ribosome, the emerging chain enters the cell’s highly
regulated proteostasis network,29,35,52 which assists the enzyme
to attain its native-state structure. Protein folding does not rely
on the random scanning of all accessible conformational states
but follows a deterministic folding pathway53,54 or multiple
folding pathways.55,56 Changes in the protein sequence can
perturb such folding pathways, frequently diminishing the
expressibility and solubility of an enzyme with a negative
impact on its aggregation propensity or the formation of
inclusion bodies.8,9,57,58 One high-throughput in vivo exper-
imental screening assay to test for properly folded enzyme
variants is the Split-GFP system.59 Besides the calculation of
the expression yields via the Bradford method and the
quantification of mRNA levels of the cells, the PURE system60

might be a valuable experimental platform to investigate
determinants of protein solubility and folding under in vitro
conditions (Figure 2).

3. THEORETICAL FRAMEWORK FOR THE DESIGN OF
ROBUST PROTEINS
3.1. Principles of Methods Based on Energy Calcu-

lations. In silico design of protein stability based on energy
calculations has taken a long way from fairly simple61,62 to
more accurate and versatile methods, facilitating reliable high-
throughput predictions of thermodynamically and kinetically
stable enzymes.41,63 A force field is a collection of bonded and
nonbonded interaction terms64,65 that are related by a set of
equations that can be used to estimate the potential energy of a
molecular system.66 For stability predictions, such potential
energy functions can be applied to a protein’s structure to
assess the energetic changes caused by the mutations. The
most accurate but also the most computationally expensive
methods are free energy methods, which rely on molecular
dynamics (MD) or Metropolis Monte Carlo simulations. Free
energy perturbation has proven to be a potent and rigorous
alchemical approach that generates the most meaningful
stability predictions, but only for a limited number of
mutations.67 Less accurate but considerably more performant
are end-point methods such as molecular mechanics
generalized Born68 or linear interaction energy.69 These free
energy methods require a high level of technical expertise and
access to supercomputing facilities, which can be challenging
for experimental groups. Over the last 20 years, simpler and
simulation-independent stability predictors have been devel-
oped. A subdivision into three categories has been proposed,
namely, (i) statistical effective energy functions (SEEFs), (ii)
empirical effective energy functions (EEEFs), and (iii) physical
effective energy functions (PEEFs).70,71

SEEFs are fast and can predict changes in stability over the
entire sequence space of an average-sized enzyme in a matter
of seconds.72,73 They are derived from curated data sets of
folded protein structures, which are projected into a number of
stability descriptors. An effective potential can be extracted for
every descriptor distribution, and these can be combined to
create an overall energy function.72,74 SEEFs do not explicitly
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model physical molecular interactions, and the exact physical
nature of statistical potentials remains obscure.71 Conse-
quently, overlapping and double counting of terms relating
to the same causative interactions should be avoided.70 EEEFs
include both physical and statistical terms, which are carefully
weighted and parametrized to match experimental data.70,71

The thermodynamic data used in their derivation typically
originate from mutational experiments conducted under
standard conditions, which can be obtained from databases
such as ProTherm.75−77 EEEFs provide a reasonable
compromise between computational cost and accuracy of the
free energy function.78 A major drawback of EEEFs and SEEFs
is that their applicability is restricted to the environmental
conditions under which the experimental data used for
parametrization were acquired.79,80 PEEFs are closely related
to classical molecular mechanics force fields81,82 and allow a
fundamental analysis of molecular interactions.66 PEEFs have
more complex mathematical formalisms71 and higher computa-
tional costs than EEEFs.70 However, they are versatile,
accurate, and capable of predicting behavior of the enzymes
under nonstandard conditions, for instance at elevated
temperature, nonphysiological pH, or nonstandard salinity.83

The accuracies of stability predictors based on such energy
functions are still suboptimal77,79,84−86 because of (i)
imbalances in the force fields,87,88 (ii) insufficient conforma-
tional sampling,85,88 (iii) the occurrence of insoluble species,8,9

and (iv) intrinsic problems with existing data sets (Table 2).
The concept of free energy change upon mutation (ΔΔG) was
introduced for a fundamental analysis of the causative factors
leading to these deficits. The computation of ΔΔG is based on
a thermodynamic cycle (Figure 3), which requires modeling of

the folded states of both the wild type and the mutant as well
as their unfolded states.36,67 Contemporary force fields
describe enthalpic interactions reasonably well, although they
are known to overestimate hydrophobicity and tend to favor
nonpolar substitutions.6,9,89 EEEFs and PEEFs generally
underestimate the stability of buried polar residues because
they overestimate the energetic cost of unsatisfied salt bridges
and hydrogen bonds in the protein core.58,90,91 The estimation

of both conformational and solvent-related entropy is
imprecise9,92 because of the necessity of using computationally
less expensive terms.83 The inability of force field methods to
account for entropy-driven contributions can be mitigated by
using hybrid methods that incorporate complementary
evolution-based approaches.45,47,92,93 Moreover, most stability
predictors have been parametrized using single-point-mutation
data sets, resulting in higher prediction errors upon application
to multiple-point mutants.69,94 Whenever epistatic effects20 are
present between two or more individual mutations, force field
predictions deviate from experimental results.
This shortcoming can be attributed to insufficient conforma-

tional sampling of the mutant’s folded state, particularly when
the introduced mutations induce large-scale backbone move-
ments.95 Tools based on EEEFs or PEEFs often apply rotamer
libraries to fixed protein backbones, thereby reducing
computational costs while providing comparable accuracies
for the prediction of single-point mutations.88 Multistate
design80,96 and flexible backbone sampling techniques84,97−99

have partly alleviated the sampling problem for multiple-point
substitutions by generating conformational ensembles and
utilizing energetically more favorable conformations. Enzymes
are intrinsically dynamic molecules and populate a high
number of heterogeneous conformational substates100 (Figure
1). Consequently, an adequate treatment of an enzyme’s
conformational plasticity96,97 in the folded states of the wild
type and mutant may be crucial for further advances of these
methods. Structures obtained by X-ray crystallography do not
essentially reflect the global energy minimum of the native
state of an enzyme in its natural environment101 and may
therefore be nonideal starting points for stability predic-
tions.80,102 Besides the folded states, ΔΔG computations rely
on sampling of the unfolded states of the wild type and the
mutant. Simplifying and less realistic models (random coil or
tetrapeptide) are frequently employed for explicit computa-
tions of the unfolded-state energies.68,69 Generally, it is
assumed that the free energy of the unfolded state does not
change much upon mutation.68,84

The aforementioned explanations primarily relate to the
prediction of thermodynamic stability. Not much work has
been anticipated to predict kinetic stability, which can mostly
be explained by the time-dependent nature30 of this property
and the time scales103 assessable by energy-based methods.
However, it is recognized that enhanced thermodynamic
stability frequently goes hand in hand with enhanced kinetic
stability.41,45 One energy-based strategy to enhance the kinetic
stability of an enzyme is to optimize solvent−solute
interactions by introducing surface charges,104 which can
affect its expressibility.105 The latter property may also be
enhanced by computational linker design,106 providing fusion
enzymes with solubilizing protein tags.

3.2. Principles of Methods Based on Machine
Learning. Machine learning is a field of computer science
that allows computational systems to be constructed without
being explicitly programmed. Statistical techniques are used to
analyze training data sets and recognize patterns that might be
difficult to detect given the limitations of human knowledge
and cognitive abilities. Machine learning systems can be
trained with or without supervision. In supervised approaches,
the system is given a set of example inputs and the
corresponding desired outputs in the form of labels indicating
the correct classification of each input. Supervised approaches
are suitable for training predictive systems, while unsupervised

Figure 3. Thermodynamic cycle used to compute the free energy
change upon mutation (ΔΔG). ΔΔG is calculated according to the
formula ΔΔG = ΔGmut − ΔGwt = ΔGf − ΔGu. For better illustration,
the hypothetical folded and unfolded states of the wild type and a
two-point mutant are shown. The respective substitution sites have
been color-coded in black (wild type) and red (mutant). Adapted
with permission from ref 69. Copyright 2012 Wiley.
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approaches are more suitable for tasks involving data
clustering. In recent years, machine learning has become one
of the most common approaches for predicting the effects of
mutations on protein stability107−109 and solubility.57,110

Machine learning does not require full understanding of the
mechanistic principles underpinning the target function
because they are modeled during the learning process. An
important advantage of machine learning methods is that they
are very flexible because any characteristic extracted from the
data can be used as a feature if it improves the prediction
accuracy, i.e., minimizes the prediction error (Table 2).
Consequently, machine learning methods can reveal previously
unrecognized patterns, relationships, and dependencies that
are not considered in knowledge-based models. Moreover,
machine learning is much less time-intensive than other
methods because once a model has been constructed using the
available data, predictions can be obtained almost instanta-
neously.
The reliability of machine learning approaches depends on

the size and quality of the training data set. The weights
representing the relative importance of the individual features
and the relationships between them are based on experimental
observations. Consequently, it is essential to use high-quality
experimental data with high consistency when training and
testing machine learning methods. The size and balance of the
training data set must also be considered carefully. A modest
data set with only a few hundred or a few thousand cases might
be too small to identify useful descriptors during the learning
process. Additionally, lower diversity of the training data set
leads to a greater risk that the prediction tool will lose its
ability to generalize. In such cases, the weights assigned to
individual descriptors might be influenced by over-representa-
tion of some descriptors in the training data, while other
descriptors that might be very important for general predictive
ability could be omitted. Unbalanced training data sets with
large differences in the numbers of cases representing
individual categories could also lead to erroneous over-
estimations. For example, a training data set in which 80% of
the mutations are destabilizing would allow the predictor to
classify most mutations as destabilizing because of the
prevalence of such mutations during the learning process.
Methods like support vector machines and random forests are
known to be more resistant to overfitting caused by
unbalanced data sets,111−113 while standard neural networks
and decision trees are particularly sensitive to them. If the data
set is too small to be balanced, the problem can be partially
addressed by using cost-sensitive matrices,114 which penalize
the predictor more strictly for misclassifying mutations that are
sparsely represented in the training data.
In parallel to the issue of the quality and availability of

training data, one must address the problem of model
validation. Ideally, the validation data set should be balanced
and completely independent of the training set. In
bioinformatics, it has become common to use k-fold cross-
validation as a standard method for testing the performance of
newly developed tools. This method entails randomly
partitioning the original data set into k subsets. During the
learning process, one of the k subsets is used for validation,
while the remaining subsets are used as a training data set. This
process is performed for each of the k subsets. The main
reason for using cross-validation instead of splitting the data set
into independent training and validation subsets is that the
data set may be too small to support such splitting without

harming the model’s ability to learn the important predictive
patterns. However, the combination of unbalanced data sets
with the random aspect of k-fold cross-validation increases the
risk of serious overestimation. Therefore, cross-validation is
not a reliable method for measuring model accuracy when
lower-quality data sets are used.115 In conclusion, machine
learning is a powerful approach that can reveal unknown
interactions that are poorly defined in current force fields
(Table 2). However, great care must be taken when
constructing the training data set and during validation to
avoid overfitting and overestimation of the results.

3.3. Principles of Methods Based on Phylogenetic
Analysis. The two most widely used phylogeny-based
approaches for stability engineering are consensus design
(CD) and ancestral sequence reconstruction (ASR). Con-
tinuous cycles of variation and selection have created an
enormous diversity of modern-day enzyme sequences that can
be processed using phylogenetic techniques (Table 2). Over
the last two decades, the advent of next-generation sequencing
methods has revolutionized life science but has also introduced
new challenges arising from the vast amounts of sequence data
that are now available.116 When phylogenetic analyses are
performed, this results in a selection problem: one must
carefully decide which sequences to include in any analysis.
Identifying suitable homologous sequences to a given target
can be particularly challenging. Local alignment algorithms
such as the Basic Local Alignment Search Tool (BLAST)117

offer reasonable accuracy at minimal computational cost. More
complex and computationally demanding signature-based and
profile-based search algorithms118−120 have further extended
the boundaries of homology detection121 beyond the twilight
zone.122 The twilight zone is an alignment-length-dependent
pairwise sequence identity range above which homologous
sequences can reliably be distinguished. When pairwise
sequence identities fall within or below this specific range, a
large number of false negative sequences will get incorporated
into multiple sequence alignments (MSAs). Great care is
needed in the construction of biologically relevant MSAs from
distantly related homologues. The treatment of nontrivial
evolutionary artifacts such as indels, translocations, and
inversions within the coding sequence can profoundly affect
the quality of an MSA.123,124 Progressive, iterative, and
consistency-based alignment algorithms125 exclusively consider
sequence data and often introduce topological inconsistencies
that require manual correction.126 These deficiencies have
been alleviated by incorporating complementary structural or
evolutionary information, but such approaches can be
computationally demanding.25,126,127

CD starts from a set of homologous protein sequences. A
genuine MSA is generated using a small number (between a
dozen and a few hundred) of homologous sequences, which
permits the computation of the frequency distribution of every
amino acid position in the alignment.128 A user-specified
conservation threshold is then used to distinguish between
ambiguous and conserved “consensus” positions. The core
assumption of this method is that the most frequent amino
acid at a given position is more likely to be stabilizing.128−133 It
has been noted that high levels of sequence diversity in the
MSA can interfere with the preservation of catalytic activity in
consensus enzymes; this problem can be particularly acute
when the MSA incorporates both prokaryotic and eukaryotic
sequences.129,134 However, the assumption of statistical
independence is central to CD. Excessively homogeneous
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MSAs may violate this assumption, introducing phylogenetic
bias that hinders the discovery of more thermostable
proteins.133 The proportions of neutral and destabilizing
consensus mutations have been estimated to be 10 and 40%,
respectively, among all characterized variants produced using
consensus design to date, suggesting a need for a more focused
selection of substitution sites.128,132 To this end, Sullivan et
al.129 discarded mutations of residues with high statistical
correlations to other positions in the MSA, thereby increasing
the proportion of identified stabilizing mutations to 90%.
Vazquez-Figueroa et al.135 adopted a different approach,
successfully using structural information (e.g., the distance
between a possible mutation and the active site, secondary
structure data, and the total number of intramolecular
contacts) to complement traditional CD predictions. Another
example of an effective structure-based CD approach involved
the analysis of molecular fluctuations based on crystallographic
B-factors.136 Important drawbacks of CD are its inability to
account for epistatic interactions137,138 and an apparent
phylogenetic bias in cases where the MSA is dominated by a
few subfamilies.130,139

ASR is a probabilistic method for inferring primordial
enzymes and ancestral mutations, which have proven to be
very effective for thermostability engineering.43,44,46,140 ASR
explores the deep evolutionary history of homologous
sequences to reassemble a gene’s evolutionary trajectory.138,141

As a starting point, a phylogenetic gene tree can be inferred
from a manually curated MSA and a suitable evolutionary
model using either the maximum-likelihood method142,143 or
Bayesian inference.144 In the simplest case, such statistical
inference methods derive parameters from the given MSA for
the selected empirical evolutionary model, which defines the
underlying amino acid substitution process. Once the gene
phylogeny has been established, ancestral sequences corre-
sponding to specific nodes of the tree can be computed,
synthesized, overexpressed, and characterized in vitro. In
addition to the difficulty of identifying and aligning legitimate
sequences,124 a major challenge encountered in ASR is the
computation of a plausible phylogenetic tree that adequately
explains the evolutionary relationships of the given sequences.
Homogenous evolutionary models assume that amino acid
substitutions are homogeneously distributed over time and
among sites and are therefore heavily oversimplified models of
evolution.145 Maximum-likelihood methods have been shown
to systematically overestimate the thermodynamic stability of
deeper ancestors,140,146 so Bayesian inference methods have
been recommended as alternatives to account for this bias.
However, Bayesian inference computes ancestral sequences
with considerably lower posterior probabilities, sometimes
leading to the loss of the biological function.147 It is not
entirely clear why ASR is successful at identifying sequences
with improved thermostability.141 One hypothesis states that
its success is an artifact of the ancestral inference methods and
resembles a possible bias toward stabilizing consensus
sequences.140,146 Another plausible explanation is based on
the thermophilic origin of primordial life.148,149 Regardless of
the reasons for its effectiveness, ASR is clearly a very robust
and efficient method for identifying enzyme sequences with
high thermodynamic stability and elevated expression yields
(Table 2). Furthermore, increases in kinetic stability resulting
in higher τ1/2 have frequently been reported for ancestral
enzymes in comparison with their extant forms.140,150 The
sequence context is maintained in the resurrected ancestral

enzymes, enabling the conservation of historic mutations
causing functionally important epistatic effects.20,137,138 The
fundamental drawbacks of ASR are that users must have
considerable methodological skill and a good level of
knowledge about the targeted gene family.

4. DATA SETS AND SOFTWARE TOOLS FOR
DESIGNING STABLE PROTEINS
4.1. Data Sets for Protein Stability. The accuracy and

reliability of computational methods depends strongly on the
size, structure, and quality of the chosen training and validation
data sets. The primary source of validation data for protein
stability is the ProTherm database.75 ProTherm is the most
extensive freely available database of thermodynamic param-
eters such as ΔΔG, ΔTm, and ΔCp. It currently contains almost
26 000 entries representing both single- and multiple-point
mutants of 740 unique proteins. Although ProTherm is the
most common source of stability data, it suffers from high
redundancy and serious inconsistencies. Particularly troubling
are differences in the pH values at which the thermodynamic
parameters were determined, missing values, redundancies, and
strikingly even disagreements about the signs of ΔΔG values.
ProTherm also neglects the existence of intermediate
states.57,107 To overcome the problems of the ProTherm
database, the data must be filtered and manually repaired to
construct a reliable data set.
Several subsets of the ProTherm database have been

developed (Table S1) and used widely to train and validate
new prediction tools. The most popular is the freely available
PopMuSiC data set,151 which contains 2648 mutations
extracted from the ProTherm database. The data set is
unbalanced because only 568 of its mutations are classified as
stabilizing or neutral, while 2080 are classified as destabilizing.
Furthermore, 755 of its 2648 mutations have reported ΔΔG
values in the interval ⟨−0.5, 0.5⟩. Mutations with such ΔΔG
values cannot be considered either stabilizing or destabilizing
because the average experimental error in ΔΔG measurements
is 0.48 kcal/mol.152 Additionally, the data extracted from
ProTherm are insufficiently diverse: around 20% of the
PopMuSiC data set comes from a single protein, and 10
proteins (of 131 represented in the data set) account for half of
the available data. Inspection of the data reveals that mutations
to more hydrophobic residues located on the surface of the
protein tend to be stabilizing, whereas mutations that increase
the hydrophilicity in the protein core are usually destabilizing.
Consequently, most computational tools are likely to identify
mutations that increase surface hydrophobicity as stabilizing
even though such designs often fail because of poor protein
solubility.58

Some predictive tools use alternative data sets derived from
ProTherm or PopMuSiC for training and validation. The most
common benchmarking data set utilized for independent tests
is S350,151 which contains 90 stabilizing and 260 destabilizing
mutations in 67 unique proteins. However, this data set is still
small for comprehensive evaluation and unbalanced. The
recently published PoPMuSiCsym data set153 tries to address
these issues, containing 342 mutations inserted into 15 wild-
type proteins and their inverse mutations inserted into the
mutant proteins. A comparative study conducted using this
data set showed a bias of the existing tools (Table S2) toward
destabilizing mutations, as they performed significantly worse
on the set of inverse mutations. Because of the overlaps of the
mutations in training and validation data sets, the results of the
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individual tools can be overestimated. Even the new derivatives
of the ProTherm database do not solve the problems arising
from the size and structure of the available data. Therefore,
there is an urgent need for new experimental data, particularly
on the side of stabilizing mutations. Moreover, it would be of
immense help for the future development of predictive tools to
proceed with the standardization of the stability data, e.g., a
unified definition of ΔΔG as a subtraction of the ΔG values for
the mutant and the wild type. FireProt DB, a new publicly
available database collecting carefully curated protein stability
data, is being established at https://loschmidt.chemi.muni.cz/
fireprotdb/.
Until the new unbiased data sets arise, a regular accuracy

measure considering only the number of correctly predicted
mutations from the testing set is not suitable for validation of
the predictive tools. For binary classification, the Matthews
correlation coefficient (MCC) can be utilized, as it was
designed as a balanced measure that is usable even for data sets
with a significant difference in the sizes of individual classes.113

Similarly, when binary predictions are utilized as a filtration
step in the hybrid approaches, metrics like sensitivity,
specificity, and precision might be useful. When numerical
measures are considered, the linear correlation between the
predicted and experimental values can be estimated with the
use of the Pearson correlation coefficient (PCC) and the
average error established as the root-mean-square error
(RMSE). Finally, the bias of the computational tools can be
estimated as the sum of ΔΔG for the direct and inverse
mutations according to Thiltgen and Goldstein.94 Critical
evaluation of the existing tools using the S350 data set revealed
that the PCC ranges from 0.29 to 0.81 with an average RMSE
of about 1.3 kcal/mol (Table S5).
4.2. Software Tools for Predicting Protein Stability

Based on Energy Calculations. Software tools relying on
force field calculations are based on either modeling the
physical bonds between atoms (PEEFs) or utilizing methods of
mathematical statistics (SEEFs). Rosetta88 is one of the most
versatile software suites for macromolecular modeling and
consists of several modules. Rosetta Design is a generally
applicable module for protein design experiments that
evaluates mutations and assigns them scores (in physically
detached Rosetta energy units) reflecting their predicted
stability. In its newest version, the Rosetta force field converts
Rosetta energy units into well-interpretable ΔΔG values.83

Furthermore, the stand-alone ddg_monomer module was built
on top of Rosetta Design and is parametrized specifically for
predicting ΔΔG values and protein stability. The Rosetta suite
is also supplemented by a wide variety of usable force fields
and protocols. The Eris software154 is based on the Medusa
force field and incorporates a side-chain packing algorithm and
backbone relaxation method. A similar physical approach is
adopted in the Concoord/Poisson−Boltzmann surface area
(CC/PBSA) method,155 which uses the GROMACS force
field156 to evaluate an ensemble of structures initially generated
by the Concoord program.157

Unlike the previously mentioned methods, in which the
values of the individual terms in the force field equation are
evaluated by performing calculations based on Newtonian
physics, some tools simply fit equations using values derived
from the available data. One of the main representatives of this
approach is PopMuSiC,73 whose force field equation includes
13 physical and biochemical terms with values derived from
databases of known protein structures. Similar approaches are

used by other statistical and empirical tools, including FoldX78

and Dmutant.158 Another tool in this class is HotMuSiC,159

which is based on PopMuSiC and was parametrized specifically
for estimating ΔTm, since the correlation coefficient between
ΔΔG and ΔTm is −0.7.159 HotMuSiC makes predictions using
five temperature-dependent potentials based exclusively on
data extracted from mesostable and thermostable proteins.
While PEEFs provide generally more accurate predictions of

the effect of mutations on protein stability, there is an apparent
trade-off between predictive power and computational
demands. In the majority of cases, SEEFs still perform fairly
well compared with most machine learning methods and are
orders of magnitude faster than PEEFs. Therefore, SEEFs seem
to be an acceptable compromise between accuracy and time
demands, especially when utilized as filters for prioritization of
the mutations in hybrid workflows.

4.3. Software Tools for Predicting Protein Stability
Based on Machine Learning. Machine learning methods do
not require comprehensive knowledge of the physical forces
governing protein structure; their predictions are based
exclusively on the available data. The most popular machine
learning tools are based on the support vector machines (e.g.,
EASE-MM,107 MuStab,108 I-Mutant,160 and MuPro161) and
random forest (e.g., ProMaya162 and PROTS-RF163) methods,
which are known to be comparatively resistant to overtraining
even when used with unbalanced training data sets (Table S2).
Neural networks are rarely used for protein stability engineer-
ing because of their high sensitivity to the quality and size of
the training data set.
In recent years, several new machine learning approaches

have been applied to diverse problems in the field of
bioinformatics. Deep learning is used to predict the effects of
mutations on human health in DANN164 and to predict
protein secondary structure in SSREDNs.165 Unfortunately,
like regular neural networks, deep learning methods are prone
to overfitting because adding extra layers of abstraction
increases their ability to model rare dependencies, resulting
in a loss of generality. This shortcoming can be addressed by
using regularization methods such as Ivakhnenko’s unit
pruning.166,167 However, this does not eliminate problems
arising from inadequate training data sets because deep
learning has very stringent data requirements. Consequently,
deep-learning-based tools such as TopologyNet168 still have
very limited applicability in predicting protein stability.
The robustness and accuracy of computational tools can be

increased by combining several machine learning approaches
into a single multiagent system, as in the case of
MAESTRO.169 In MAESTRO, neural networks are combined
with support vector machines, multiple linear regression, and
statistical potentials. The outputs of the individual methods are
then averaged to provide users with a single consensus
prediction. In such tools, machine learning can be used to train
the arbiter that decides how to combine the outputs of the
individual methods and their weights, balancing the relative
strengths of each method when applied to the type of mutation
under consideration. This approach is widely used in
metapredictors.58

It is difficult to compare individual tools on the basis of the
results presented in the publications where they were first
reported because most of them were validated using different
data sets. This can bias a tool’s performance toward particular
proteins or mutation types, causing its general prediction
accuracy to be overestimated. Therefore, independent

ACS Catalysis Perspective

DOI: 10.1021/acscatal.8b03613
ACS Catal. 2019, 9, 1033−1054

1041



comparative studies are needed. The critical evaluations
reported by Kellogg et al.,88 Potapov et al.,77 and Khan and
Vihinen170 revealed that methods based on PEEF calculations
systematically outperform tools relying only on machine
learning techniques or statistical potentials in independent
tests. Furthermore, machine learning methods tend to be more
biased,153,171 and their reported accuracies are overestimated
as a result of overtraining. The PCC upper bound for the most
commonly used stabilization data sets is about 0.8, and the
lower bound of the RMSE is 1 kcal/mol.172 The applicability
of machine learning methods will increase with the size and
diversity of the available data in the future.
4.4. Software Tools for Predicting Protein Stability

Based on Phylogenetics. Phylogeny-based methods do not
require knowledge of high-resolution protein structures; they
can be applied to any protein with a known amino acid
sequence and a sufficiently high number of sequence
homologues. However, although phylogeny-based methods
often improve some protein characteristics, the influence of
individual mutations manifested during evolution is uncertain.
About 50% of all mutations identified by CD are stabilizing,
but some may affect protein solubility rather than stability.131

CD-based methods are therefore frequently utilized as filters
during core calculations of hybrid workflows or as components
of predictive tools for hotspot identification.
CD is available in several bioinformatics suits (e.g.,

EMBOSS,173 3DM,25 VectorNTI,174 and HotSpot Wizard175).
Although there are no stand-alone tools for CD, there are
several for ASR, some using maximum-likelihood methods
(e.g., RAxML,176 FastML,177 and Ancestors178) and others
using Bayesian inference (e.g., HandAlign179 and MrBayes180).
A major limitation of these methods is that most of the tools
require users to upload their own MSA and phylogenetic tree.
Constructing these input data is the most important and
demanding step of the entire process. To obtain reliable
predictions, the initial set of homologue sequences must be
filtered to identify a reasonably sized subset of biologically
relevant sequences. At present, sets of homologous sequences
obtained using BLAST,117 profile-based methods such as
position-specific iterated BLAST,118 or hidden Markov
models120,181 must be manually curated to ensure reliable
ancestral reconstructions.
4.5. Software Tools for Predicting Protein Stability

Based on Hybrid Approaches. Hybrid methods make
predictions by combining information from several fundamen-
tally different approaches. They offer greater robustness and
reliability than individual tools, allowing multiple-point
mutants to be designed while reducing the risk of combining
mutations with antagonistic effects. Consequently, several
research groups are focusing on hybrid methods in their efforts
to improve the rational design of thermostable proteins.
The Framework for Rapid Enzyme Stabilization by

Computational Libraries (FRESCO)93 is available as a set of
individual tools and scripts, and its use requires a good
knowledge of bioinformatics. FRESCO initially selects a pool
of potentially stabilizing mutations (FoldX or Rosetta energy
cutoff of −5 kJ/mol) and also filters out all residues in close
proximity (<10 Å) to active sites. Disulfide bridges are
designed by dynamic disulfide discovery using snapshots from
MD simulations and subsequently evaluated using the set of
geometric criteria. An energy criterion for the maximal
molecular mechanics energy of the disulfide bond was also
adopted. Furthermore, very short MD simulations predict

changes in backbone flexibility upon mutation to remove
designs with unreasonable features that are expected to
destabilize the protein. About a hundred of the single-point
mutants are then subjected to experimental validation to select
mutations to be included in the combined multiple-point
mutant. Experimental validation of individual mutations greatly
reduces the risk of false positives and maximizes the
stabilization effect but requires a substantial investment of
time and effort.
FireProt45,89 combines energy- and evolution-based ap-

proaches in a fully automated process for designing thermo-
stable multiple-point mutants (Figure 4). FireProt integrates

16 computational tools, utilizing both sequence and structural
information in the prediction process. When the energy-based
approach is applied, information extracted from the protein
sequences (e.g., lists of conserved and correlated residues) is
used to exclude potentially deleterious mutations, while
structural information is used to obtain estimated ΔΔG values
with both FoldX and Rosetta. The second approach is based
on back-to-consensus analysis followed by energy filtration
using FoldX. Finally, a distance-based graph algorithm is used
to create a multiple-point mutant by selecting the most
favorable mutually nonconflicting mutations from the pool of
all potentially stabilizing mutations. A stand-alone version of
FireProt45 has been implemented as an intuitive web-based
application,89 making this complex modeling workflow
accessible to a wide user community. The automation of the
whole procedure eliminates the need to select, install, and

Figure 4. Workflow of the protein thermostabilization platform
FireProt. The hybrid method combines evolutionary- and energy-
based approaches and designs stable multiple-point mutants by
fundamentally different methods.45 The user is offered three different
designs, two based solely on the energy- and evolution-based
approaches and a third combining all of the identified mutations.
FireProt has been made available as a fully automated and user-
friendly web application89 and is free of charge for academic users at
http://loschmidt.chemi.muni.cz/fireprot.
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evaluate tools, optimize their parameters, and interpret
intermediate results.
Protein Repair One-Stop Shop (PROSS)47 is another

automated web-based protein stabilization platform. The
PROSS workflow begins with a Rosetta design calculation in
which the amino acids constituting the protein’s active and
binding sites are not eligible for mutation. A position-specific
substitution matrix is analyzed to steer the design process away
from amino acids that are rarely observed in the sequence
homologues,182 and Rosetta’s computational mutation scan-
ning tool183 is used to scan the remaining pool of potential
amino acid mutations. Finally, Rosetta’s combinatorial
sequence design tool is used to find an optimal combination
of potentially stabilizing mutations, and an energy function is
applied that favors amino acid identities on the basis of their
frequency in the multiple-sequence alignment. This phylogeny-
based biasing potential allows the designed variants to
incorporate mutations found to be neutral or even slightly
destabilizing in the Rosetta calculations,35 which is desirable
because some of these mutations might positively influence
properties such as catalytic activity or protein solubility.
Hybrid methods represent a step forward in the prediction

of protein stability because of their higher reliability at a
decreased computational cost. These methods utilize evolu-
tion-based approaches as filters for removing potentially
deleterious mutations in the conserved or correlated regions
of the target protein. Furthermore, hybrid methods identify
stabilizing mutations that would be missed by using only force
field or phylogeny methods, as these two approaches are often
complementary.92 The increased robustness of the hybrid
methods allows for a safer combination of single-point
mutations into a multiple-point mutant. Hybrid methods can
be further expanded by predictions of protein solubility or
catalytic activity.

5. DATA SETS AND SOFTWARE TOOLS FOR THE
DESIGN OF SOLUBLE PROTEINS
5.1. Protein Solubility Data Sets. Protein solubility,

aggregation propensity, and expressibility are complex proper-
ties governed by several distinct biophysical and biological
mechanisms. Progress in understanding these mechanisms
depends on the availability of large, high-quality, diverse
experimental data sets. In addition, the performance of
prediction methods must be assessed with respect to the
data used during their training. It is therefore important to
recognize the strengths and limitations of the available
experimental data sets on protein solubility and expressibility.
To this end, this section presents a comprehensive review of
the data sets available at the time of writing (Table S3).
5.1.1. Protein Solubility Data Sets Based on Full-Length

Proteins. Data sources of this type contain information on the
solubility of entire proteins produced in a specific expression
system, either in vitro using a cell-free expression system or in
vivo. Solubility can be determined by separating the liquid
component of a sample by centrifugation or filtration and
measuring the protein content in a solution, which is
normalized by the protein content in the unseparated sample.
The normalization removes the relationship between the
solubility value and varying protein expression level. Alter-
natively, proteins may be simply classified as soluble or
insoluble.
The Solubility Database of E. coli Proteins (eSOL)60

contains experimentally measured solubilities for over 4000

E. coli proteins. The solubilities were determined by expressing
the proteins using the PURE cell-free expression system184 and
using ultracentrifugation to measure their solubility as the ratio
of the protein content in the supernatant to the total protein
content of the sample. The limitations of eSOL are that only a
moderate number of proteins are represented and that all of
them originate from E. coli. In addition, in vitro cell-free
expression systems cannot reproduce the post-transcriptional
molecular processes that occur during protein expression in
vivo. Interestingly, adding the three main cytosolic E. coli
chaperones (TF, DnaKJE, and GroEL/GroES) to the in vitro
cell-free expression system reduced the number of insoluble
proteins from 788 to 24.185

TargetTrack,186 formerly PepcDB or TargetDB, integrates
vast amounts of information from the Protein Structure
Initiative, a large-scale structure determination project. It
contains data from over 900 000 protein crystallization trials
using almost 300 000 unique protein sequences, which are
termed targets. The database is not focused on solubility, but
target proteins can be considered soluble if they reached a
particular state in the experimental trial. We note that strictly
speaking, this parameter reflects both the expressibility and the
solubility of the target proteins. The major drawback of this
database is the low quality of the annotations. No reason for
failure is recorded for most of the unsuccessful crystallization
attempts. Moreover, the experimental protocols are described
in free text with no common structure. Therefore, it is difficult
to automatically extract information about the expression
systems. As a result, the application of strict rules to the target
annotations dramatically reduces the number of usable records.
The Northeast Structural Consortium (NESG)187 database

is a subset of TargetTrack containing data on 9644 targets
analyzed between 2001 and 2008. The NESG database
contains explicit data on protein expression and solubility
levels based on uniform protein production in E. coli. Two
integer scores are recorded for each target, indicating the
protein’s level of expression and the recovery of the soluble
fraction. The major drawback of this data set is that it was
generated using outdated experimental methods; some of the
targets could probably be solubilized using current techniques.
Additionally, the database is too small to be used to train new
machine learning algorithms. However, it can be used as a
high-quality benchmark data set because its explicit exper-
imental observations are more trustworthy than any other data
in TargetTrack.
The Human Gene and Protein Database (HGPD)188

contains expression and solubility measurements on over
9000 human proteins expressed in E. coli, a wheat-germ cell-
free expression system, or Brevibacillus. The expression data
were obtained using the Gateway system coupled with SDS-
PAGE of C-terminal V5- or His-tagged proteins. Like the
NESG data, these results originate from a uniform high-
throughput protein production pipeline and thus constitute a
consistent data set. Moreover, the HGPD provides information
at the DNA level, so it includes codon composition data. Its
major drawback is that it is focused exclusively on human
proteins, so predictors constructed on the basis of its data will
have an implicit bias toward human proteins.
AMYPdb189 contains data on over 12 000 proteins

belonging to amyloid precursor families as well as over 6000
generalized sequence patterns useful for assigning new
sequences to poorly soluble amyloid precursor families.
These data are derived from the literature and by UniProt
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and PROSITE mining, so they are useful only as training data
and for concept verification; they are not suitable for
performance validation. This database has not been updated
since its release in 2008.
5.1.2. Protein Solubility Data Sets Based on Protein

Fragments. Fragment databases often describe properties of
short peptides and their tendency to aggregate when exposed
to solvent. This tendency does not necessarily correlate with
the peptide’s behavior when it is incorporated into a larger
globular protein, in which case it may be protected by the
formation of a hydrophobic core. Therefore, great care is
necessary when using these databases as a basis for solubility
prediction.
AmylHex and AmylFrag190 are literature-based collections of

nearly 200 short peptide sequences known to form amyloid
fibrils. The major flaws of this database are its strong over-
representation (51%) of point variants of a single amyloido-
genic hexapeptide (STVIIE) and its low content of data on
longer protein fragments.
WALTZ-DB191 integrates data obtained from the literature

and by in-house experimental verification on over 1000
hexapeptides tested for amyloidogenicity. As such, it is a
unique resource containing primary experimental data. Of the
peptides represented in the data set, 22% were found to be
amyloidogenic and 78% were found to be non-amyloidogenic.
AmyLoad192 combines data collected from WALTZ-DB,

AmylHex, AmylFrag, the AGGRESCAN and TANGO
validation data sets, and manual reviews of over 90
publications. The data set contains information on almost
1500 amyloidogenic and non-amyloidogenic protein fragments
that have been characterized experimentally or computation-
ally. About 30% of the fragments are considered amyloido-
genic.
The Human Protein Atlas (HPA)193 contains data on over

16 000 protein epitope signature tags (PrESTs) that were
produced using a uniform E. coli production pipeline. PrESTs
are substantial fragments of human proteins ranging from 20 to
150 amino acids. Their expression and solubility were
measured and are quantified using integer scores ranging
from 0 to 5.
The Curated Protein Aggregation Database (CPAD)194 is

an integrated database that includes data on almost 1700
amyloidogenic protein fragments and aggregation changes
upon mutation. The fragments represented in the database
include peptides with known and unknown structures, almost
100 verified aggregation-prone regions, and over 2300
aggregation rate changes upon mutation. The database
represents a unique resource for validating the effect of
mutations on protein aggregation. Unfortunately, it is poorly
structured, and the data are not easily downloadable in a
machine-friendly format.
5.1.3. Protein Solubility Data Sets Based on Mutants. The

existing data sets containing information on protein variants
with measured effects on protein solubility are very small and
were constructed ad hoc by the authors of prediction software
on the basis of literature data. Three representatives of this
small group of solubility data sources are OptSolMut,195

CamSol,17 and PON-Sol.57 OptSolMut contains binary
solubility data on 137 protein variants, and the amounts of
positive and negative samples are nearly balanced. CamSol
contains data on 56 protein variants, of which only three are
classified as reducing solubility. The PON-Sol data set contains

443 protein variants, of which 222 reportedly have no effect on
protein solubility.

5.2. Software Tools for Predicting Protein Solubility.
Unlike stability prediction tools, solubility prediction tools
differ in their outputs rather than their fundamental operating
principles. Almost all solubility prediction tools use some form
of machine learning, ranging from simple statistical approaches
to modern nonlinear methods such as support vector
machines, random forests, or deep neural networks. The
tools also use similar sets of features based on amino acid
composition and physicochemical properties. Their outputs
typically fall into one of three categories: (i) a single solubility
score for the entire input sequence, (ii) a solubility profile with
a unique score for each amino acid, or (iii) a score reflecting
the effect of a specific mutation on solubility. All three outputs
are expressed using arbitrary solubility scales with no physical
meaning. The following section discusses the available
predictive tools and their theoretical underpinnings and
critically assesses their reliability (Table S4). Tools that
predict single solubility scores for entire protein sequences are
most useful for genomic projects because they can help
prioritize protein sequences for laboratory production.
Conversely, algorithms that provide quantitative scores over
fixed-size sequence windows generate solubility profiles that
can be used in the rational design of soluble proteins.

5.2.1. Software Tools for Protein Solubility Based on
Primary Sequences. One of the first single-score solubility
methods was the linear prediction model proposed by
Wilkinson and Harrison,196 which was later simplified by
Davis and co-workers.197 The revised model is surprisingly
simple, using only two features (the approximate-charge
average and turn-forming residue content) that both measure
the relative abundance of specific amino acid types in the
sequence. Despite its simplicity, the model can be useful for
analyzing certain protein families. For example, it achieved a
Spearman correlation coefficient of 0.54 and outperformed
several newer tools in the same category (Table S4) when its
predictions were compared to experimental data for 20
sequences closely related to a recently characterized haloalkane
dehalogenase family.4

SOLpro,198 PROSO II,199 ccSOL omics,200 and DeepSol201

use the TargetTrack database as the source of training data.
Consequently, although they use different features and
machine learning models, they are quite similar to one another
and have many shared strengths and weaknesses. Their most
significant drawback is that they do not focus on any one
expression system because it is hard to automatically extract
expression system data from TargetTrack. Therefore, when
validating these tools on a set of proteins expressed in a single
expression system (e.g., E. coli), the observed prediction
performance might differ significantly from that reported by
the tools’ creators. Published results suggest that DeepSol
should have the highest prediction accuracy in general.
However, this algorithm was created by using deep learning
with a moderately sized training set and was validated against a
data set representing protein families similar to those included
in the training set. Moreover, although good performance is
commonly claimed for tools based on TargetTrack, these
claims have been strongly questioned.199,201 In conclusion, the
validation of these tools should be evaluated carefully, and
further external validation using test sets independent of
TargetTrack is needed. Unfortunately, the limitations of the
TargetTrack database, from which solubility data can be
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extracted only via automated parsing, impose a strong
performance limit on any tool that relies heavily on its data.
Periscope202 attempts to predict soluble protein expression

in the periplasm of E. coli rather than the cytosol. Although it
was trained on a small data set, it was validated against an
independent set of proteins and thus might be useful for
predicting periplasmatic expression in E. coli.
ESPRESSO203 estimates protein expression and solubility in

both cell-free (wheat germ) and in vivo (E. coli) expression
systems. The system has three unique aspects. First, it is based
on measured expression and solubility levels of human proteins
from the HGPD and thus may be useful for production of
human proteins in either of the two relevant expression
systems. Second, it offers two types of prediction: property-
based and motif-based. The former type resembles the
predictions offered by the other machine learning tools in
this category. In contrast, motif-based predictions identify
positive and negative solubility motifs extracted from the
training data. For each negative motif, ESPRESSO suggests
point mutations that should turn the negative motif into a
positive one, so the tool can be used for the rational design of
soluble proteins. Third, ESPRESSO also uses DNA-level
features in its property-based method. However, direct
verification of its reported performance is currently compli-
cated because the original training and testing data are
unavailable.
SoluProt204 is one of the latest additions to the family of

solubility predictors. Its training set is based on the
TargetTrack database,186 which was carefully filtered to keep
only targets expressed in E. coli. The negative and positive
samples were balanced and equalized with respect to protein
length. The independent validation set was derived from the
NESG data set.187 The current version of the tool uses a
predictor based on a random forest regression model that
employs 36 sequence-based features, including amino acid
content, predicted disorder, α-helix and β-sheet content,
sequence identity to the Protein Data Bank (PDB), and
several aggregated physicochemical properties. SoluProt
currently achieves a prediction accuracy of 58.2%, which
exceeds that of other currently available tools, and is under
active development. An intuitive web interface to the tool will
soon be made available to the community at https://
loschmidt.chemi.muni.cz/soluprot/.
5.2.2. Software Tools for Predicting Protein Solubility

Based on Sequence Profiles. A solubility profile is an abstract
construct in which each residue of a given protein sequence is
assigned a solubility score that contextually describes its
relative contribution to the solubility of the protein as a whole.
The solubility scores within a profile may represent
aggregation rates or values on an arbitrary scale with no
corresponding physical units. In either case, the highest scores
represent solubility hotspots. Predictions based on such
profiles must be interpreted with care because they rest on a
hidden assumption: most profile-predicting methods are
trained with data on short linear and unstructured peptides
(Table S4), so there is an inherent assumption that the protein
of interest is also at least partially unstructured. Therefore,
these tools lack specificity when applied to natively folded
globular proteins, in which many predicted low-solubility (or
aggregation-prone) segments are stabilized by the interactions
that maintain the protein’s secondary and tertiary structure. If
the protein’s structure or a reasonable homology model is

available, it is possible to compensate for these problems by
applying structural corrections.
There are several profile-based tools, most of which share at

least some concepts and/or training data sets. Zyggrega-
tor205,206 uses a model fitted to the measured aggregation rates
of nearly 100 variants of 15 proteins mined from the scientific
literature. AGGRESCAN207 is based on data from a single-
codon saturation mutagenesis study of amyloid β 42 protein, in
which aggregation rates were measured for 20 protein variants.
Because both methods are based on very small data sets, the
authors took care to bolster their credibility by applying the
models in several case studies.
TANGO,208 WALTZ,209 and PASTA210 predict amyloid

plaque formation propensity on the basis of data for short
experimentally characterized peptides (mostly hexapeptides).
TANGO is the most famous of these tools and has been cited
hundreds of times. However, the models used by the newer
tools WALTZ and PASTA were inferred from larger
experimental data sets, so they are claimed to outperform
TANGO. A common concern is that the data sets of
amyloidogenic peptides are unbalanced, containing too few
non-amyloidogenic fragments (Table S3), which limits the
generalizability of predictions obtained with these tools.
BETASCAN,211 FoldAmyloid,212 ZipperDB,213 and Arch-

Candy214 learn from experimentally determined structures of
amyloidogenic proteins and apply the discovered general
concepts at the sequence level. BETASCAN calculates
likelihood scores for potential β-strands and strand pairs in
sequences based on correlations observed in parallel β-sheets
of experimental structures. FoldAmyloid uses the number of
contacts per residue and statistics on hydrogen bonds in nearly
4000 PDB structures. In ZipperDB, the input protein is
threaded onto a template cross-β spine structure, and the
relative threading energy is used to predict amyloidogenicity.
ArchCandy evaluates whether a protein segment can fold into
β-arcade structures, which are often disease-related, and uses
an empirical scoring function to evaluate interactions that
disrupt β-arcade formation. These structure-based tools are
expected to be inherently more specific than sensitive because
structure-derived criteria tend to be relatively strict. When a
high sensitivity is required and a structure is available, methods
based on short peptides are expected to be more sensitive than
structure-based alternatives. It is possible to compensate for
false positives by checking the tool’s output against known
structures.
Because individual solubility prediction tools have different

strengths and weaknesses, efforts have been made to create
consensus-based methods that combine multiple tools to
mitigate against the weaknesses of individual tools while
preserving their strengths. The advantages of consensus
methods have been proven both theoretically215 and
empirically.216 Both AmylPred2217 and MetAmyl218 imple-
ment 11 individual methods, including AGGRESCAN,
TANGO, and WALTZ. Although the primary publication on
AmylPred2 claims superior performance to all of the individual
methods, these results should be treated with care because the
consensus threshold was validated using the entire data set
chosen by the developers. Consequently, there was no
independent validation set, and the claimed performance is
very likely to be overestimated. MetAmyl uses a specially
developed peptide set derived from the WALTZ data set to
establish a logistic regression model that integrates the outputs
of the individual tools. An evaluation using the AmylPred2 data
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set indicated that MetAmyl outperformed AmylPred2 despite
having been optimized with a different data set.218 This
strongly suggests that MetAmyl performs better than
AmylPred2 in general.
5.2.3. Software Tools for Protein Solubility Based on

Mutations. While the profile-based tools discussed above can
be used to design solubilizing mutations, the methods
described in this section are tailored for this purpose and
therefore are easier to use. Importantly, most of the methods
discussed here require a protein structure as an additional
input (Table S4).
OptSolMut195 uses the concepts from computational

geometry to define a scoring function reflecting the changes
in solubility due to mutations. The scoring function was
optimized using linear programming on the basis of a set of
protein variants extracted from the literature. The reported
81% overall accuracy should be taken with care, as the training
set was small and the model might not generalize well. In
contrast to other tools in this section, OptSolMut is able to
predict the effect of multiple-point mutations.
Several tools for predicting the effect of mutations on

solubility have been developed from tools for predicting
solubility profiles. For example, CamSol,17 AGGRES-
CAN3D,219 SolubiS,220,221 and SODA110 are based on the
previously published profile-based methods Zyggregator,
AGGRESCAN, TANGO, and PASTA, respectively. The
workflows of these tools are all very similar: first a solubility
profile is predicted, then a correction based on knowledge of
the protein’s structure is applied, and finally solubility hotspots
are identified and specific mutations targeting low-solubility
regions are suggested. CamSol, AGGRESCAN3D, and SODA
use structural corrections to refine the predicted solubility
profiles by averaging physicochemical properties over residues
proximal in three-dimensional space or on the basis of solvent
exposure of individual residues. SolubiS uses free energy
calculations based on the FoldX force field to avoid potentially
destabilizing mutations in aggregation-prone regions and can
thus be classified as a hybrid method (Figure 5). CamSol and
SODA can make predictions even without structural data.

However, this necessarily eliminates the potential to exploit
structure-based corrections and thus tends to reduce the
prediction accuracy. The main issue with all of these tools is in
the difficulty of validating their output. The data sets available
for both training and testing are small, and they have only been
validated using data for a small number of experimentally
characterized protein variants.
PON-Sol57 uses a machine learning algorithm designed from

scratch for solubility prediction of protein variants from
protein sequences without structure-based corrections. The
reported accuracy of this three-class classification method is
43%. The training data set was rather limited, representing a
few tens of proteins.

6. PERSPECTIVES
Protein Structures from Cryoelectron Microscopy

and Hardware-Accelerated Calculations. Access to large
and diverse data sets is a key factor in the development of new
predictive methods and tools. Therefore, the applicability of
force field methods to stability prediction is limited by the
availability of relevant tertiary structures. At present, the PDB
contains over 77 000 unique protein structures, and around
10 000 new structures are added each year. Advances in
structural genomics will provide access to an additional large
pool of protein structures, including previously unattainable
structures of membrane-bound proteins that will be solved by
cryogenic electron microscopy. A tertiary structure of a
biomolecule of interest is typically required for predictions
employing energy calculations. The general applicability of
these methods is also hindered by their computational cost,
which imposes a trade-off between accuracy and throughput.
The most precise alchemical free energy calculations rely on
MD simulations in which both the solute and solvent are
modeled atomistically. Such calculations are too costly to be
used in systematic mutagenesis campaigns with currently
available computational resources. However, they could be
selectively used to design mutations whose effects are poorly
predicted by otherwise reliable Rosetta or FoldX calculations
(e.g., substitutions that change the charge at the protein
surface). Their high computational cost could be alleviated by
adopting computing employing graphics processing units
(GPUs), which has not yet been implemented in a number
of software tools. Wider use of GPUs will enable predictions of
structures and complexes that are currently too large to process
using computationally demanding physical force fields.

Consistent and Balanced Stability Data Sets Are
Urgently Needed. Machine learning techniques are faster
than force field methods and less dependent on the availability
of tertiary structures because many features used in machine-
learning-based predictors can be extracted from primary
sequences. However, machine learning methods are very
sensitive to the size and quality of the experimental data sets
available for training and validation. At present, there is a
serious lack of reliable experimental data suitable for use in
protein stabilization efforts. The only available database
ProThermis burdened by errors and contains data on fewer
than 2000 single-point mutations after rigorous filtering. This
number is insufficient to train reliable machine learning
systems without introducing a risk of overfitting. Moreover,
the ProTherm database was most recently updated in February
2013, and several protein stabilization projects have been
conducted since then. Systematic mining of the scientific
literature to incorporate the stability data from these projects

Figure 5. Workflow of the protein solubilization platform SolubiS.
The platform uses free energy calculations performed with FoldX to
avoid potentially destabilizing mutations in aggregation-prone regions
identified by TANGO. The results are presented in form of a mutant
aggregation and stability spectrum plot.220 The web server is free of
charge for academic users at http://solubis.switchlab.org/.
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could provide valuable data resources for the training and
validation of stability predictors. A new database, FireProt DB,
is being established for this purpose at https://loschmidt.
chemi.muni.cz/fireprotdb/. The research community should
make an effort to establish validation procedures to assess the
quality of predictions of protein stability and solubility. This
could be done by releasing design challenges, but not
experimental data, as in the well-known Critical Assessment
of Protein Structure Prediction. Such a community-wide
assessment is one of the most efficient ways to compare
individual tools.
The Shift from Scores to Profiles and Specific

Mutations in Solubility Predictions. The problem of
unbalanced data sets also affects solubility predictors based
on machine learning, especially those that use k-mer content
and physicochemical properties as dominant features. The
imbalance of the training data sets containing a larger number
of negative samples and low diversity of protein structures limit
the predictive performance and generalizability to unseen
protein families. Over the short history of solubility prediction,
there has been a significant and positive shift away from
methods that provide single solubility scores toward
alternatives that offer more detailed solubility profile
predictions and even suggest mutations predicted to enhance
protein solubility. However, this trend also poses problems
because the quantity of relevant high-quality data decreases as
the detail of the predictions increases. For single solubility
score predictions, the TargetTrack database (which contains
information on tens of thousands of samples) is large enough
to support the development of machine learning models. For
solubility profile predictions, the number of relevant samples
decreases to hundreds or thousands, most of which are
amyloidogenic peptides. Matters are worse still for attempts to
predict the effect of mutations on protein solubility; in this
case, the amount of relevant experimental data is arguably
below the minimum needed to make adequate predictions.
Therefore, mathematical models developed by machine
learning frequently incorporate empirical components such as
structure-based corrections. A mechanistic understanding of
protein solubility justified by robust statistical analysis can only
be expected once larger sets of experimental data become
available.
High-Throughput Techniques for Highly Consistent

Data Sets. We envisage that the lack of appropriate data for
solubility prediction will be partially addressed by studies using
novel high-throughput characterization techniques such as
droplet microfluidics, fluorescence-activated cell sorting,
fluorescence resonance energy transfer, deep sequencing, and
deep mutational scanning. Experiments should be conducted
under strictly controlled conditions to produce robust data and
could employ one or more of the biomolecular and cellular
systems that have recently been developed to monitor protein
solubility and aggregation inside living cells. Additional high-
quality data could be obtained from projects conducted by
companies and other private organizations. The data generated
under defined conditions need to be properly annotated, for
example to report vectors, host organisms, buffers, laboratory
conditions, and procedures used for protein expression,
purification, and characterization. Proper controls should
always be included and the statistics reported to allow a
quantitative assessment of data variation. Collected data should
be structured to allow processing using computers, which is for
example not the case for the largest database of protein

solubility data, TargetTrack. The data should be curated and
stored in publicly accessible databases following the FAIR
principles: Findable, Accessible, Interoperable, and Reusable.
New data sets will enable the use of more sophisticated and
data-intensive methods such as deep learning and allow proper
external validation to be performed. Moreover, because
solubility depends largely on the properties of the protein’s
surface, corrections based on protein structure and the
inclusion of structural data in predictive tools could improve
the prediction accuracy. Enhanced-sampling MD simulations
of simplified molecular systems might reveal residue
interactions that are important for protein folding, while
advances in homology modeling and threading can comple-
ment sequence-based descriptors by providing structural
information at a reasonable computational cost.

Robust Scaffolds for Directed Evolution by Phyloge-
netic Analyses. Whereas force field and machine learning
methods are limited by a lack of data, the problem for
phylogenetic approaches is different: high-throughput sequenc-
ing has made vast numbers of sequences available, allowing
evolutionary analyses to be performed for the vast majority of
protein families. The genomes of organisms living under
extreme conditions are also becoming available, providing
essential information for wider use of CD. This rapid
expansion of the accessible sequence space has a downside
for the ASR method, which can only use a limited number of
homologous sequences for reconstruction. Therefore, large
pools of potential homologues make sequence selection a
challenging task. Homologue selection can be guided by
annotation ontologies (e.g., molecular function, cellular
component, and biological process) and other information
from bioinformatics and biophysical databases. Furthermore,
with increasing numbers of solved protein structures, structure-
guided MSAs may displace sequence-based alternatives, and
ASR may be more commonly used to generate robust scaffolds
for directed evolution campaigns and de novo enzyme design.
The degree of uncertainty in ASR increases the further back we
go in evolutionary history. Therefore, the reliability of
inference methods should be increased to more accurately
predict folded, stable, and soluble ancestral proteins.

Addressing Stability−Activity Trade-Offs Using Meta-
data and Negative and Multistate Designs. The
predictive power of computational methods has improved in
recent years, with a positive impact mainly in the area of
protein stabilization. A very challenging but important task is
to predict thermodynamic as well as kinetic stability. There are
several spectacular examples illustrating the improvement in
kinetic stability by only a few mutations, but to the best of our
knowledge, methods specifically targeting kinetic stability have
not been developed. Connecting the design of kinetic stability
with solubility within a single method could be particularly
powerful. Stability−activity trade-offs are intrinsic to protein
structures. Buried polar catalytic residues are suboptimal with
respect to protein stability, and structural optimization of these
functionally relevant regions is likely to also affect the
biological activity. Mutations that stabilize regions whose
conformational dynamics are important for enzyme activity can
similarly be expected to negatively affect the catalytic
performance. The incorporation of metadata and smart filters
into engineering workflows will help preserve protein activity
by enabling the identification of structurally and functionally
important residues, which should be systematically excluded
from mutagenesis. The incorporation of such negative designs
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will suppress misfolding and protein aggregation. Furthermore,
prediction accuracy is sometimes compromised by using a
single structure in calculations. Increasing computational
power and the use of GPU hardware will allow the adoption
of multistate designs. Extracting multiple representative
conformations and averaging results over the ensemble will
further improve the robustness and accuracy of predictions.
Enhancing Accuracy by Using Metapredictors, Con-

sensual Force Fields, and Hybrid Methods. There is a
clear trend toward combining multiple fundamentally different
methods within single predictors, leading to the development
of metapredictors, consensual force fields, and hybrid methods.
Hybrid methods offer several advantages: (i) even a simple
majority voting approach over several methods yields better
results than any individual method, each of which has its own
strengths and weaknesses; (ii) smart filtering out of
“untouchable” residues reduces the time required for
calculations to a degree that permits very thorough analysis
of the designable residues; (iii) the phylogenetic components
of hybrid methods can incorporate both positive and negative
design elements; and (iv) the availability of reliable predictions
will enable the combination of substitutions to create multiple-
point mutants without risking the introduction of destabilizing
or antagonistic effects. Hybrid methods represent a natural step
forward in the rapidly evolving field of protein stability
prediction because improvements in machine learning models
are limited by the availability of adequate data sets, while the
application of advanced force field methods is restrained by
their computational cost. It was recently demonstrated that
combining phylogenetic methods and atomistic force fields can
effectively optimize stability−activity trade-offs. We also
envisage the future enrichment of protein stabilization
methods addressing both thermodynamic and kinetic stability
with tools for predicting protein solubility, aggregation
propensity, and expressibility, eventually yielding all-in-one
software suites capable of designing “ideal” biocatalysts.
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Table S1. Datasets for prediction of protein stability. 

Dataset Stabilizing/Neutral Destabilizing Proteins Source 

S2381 45 193 25 ProTherm (Feb 2013) 

S16761 453 1,223 70 ProTherm (Feb 2013) 

S26482 568 2,080 131 ProTherm 

S3502 90 260 67 ProTherm 

S21553 NA NA 79 ProTherm (Dec 2004) 

S33664 836 2,530 NA Prethermut 

S14805 464 1,016 NA NA 

S18596 NA NA 64 NA 

S12107 NA NA NA NA 

S5958 NA NA NA NA 

S9189 NA NA 27 NA 

S342110 NA NA 150 NA 

S161511 462 1,153 42 ProTherm 

S38811 44 340 17 ProTherm 

S157312 315 1,258 93 ProTherm 

S192513 NA NA 55 NA 

S346314 NA NA NA NA 

S194815 NA NA NA NA 

S176516 NA NA NA NA 

S153817 NA NA NA NA 

S160317 NA NA NA NA 

S16264 461 1165 93 ProTherm (in part) 

S239918 NA NA 113 ProTherm 

Trudeau19 34 231 1 Experimental 

NA – information was not available in the article 
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Table S2. Software tools for prediction of protein stability. 

Method Basis of prediction Availability Input Output Mutations Dataset Validation 

Machine learning 

EASE-MM1 SVM web sequence ddG single S1676 10-fold crossvalidation 

MuStab2 SVM web 
(unavailable) 

sequence binary + 
confidence 

single S1480 5-fold crossvalidation 

ProMaya3 Random forest web structure ddG single S2648, S2155 5 and 10-fold 
crossvalidation 

mCSM4 Graph based web structure ddG single S2648, S350, 
S1925 

5 and 10-fold 
crossvalidation 

ELASPIC5 SVM + HMM web structure ddG single/multiple S3463 20-fold crossvalidation 

MuPro6 SVM web seq/struct ddG single S1615 20-fold crossvalidation 

I-Mutant2.07 SVM web seq/struct ddG single S1948 crossvalidation 

TopologyNet8 Deep learning web structure ddG single S2648, S350 5-fold crossvalidation 

PROTS-RF9 Random forest SA structure ddG single/multiple S2155 5-fold crossvalidation 

MAESTRO10 ANNs + SVM + 
multiple linear 
regression + statistical 
potentials 

SA/web structure ddG + 
confidence 

single/multiple, 
disulfide bridges 

S2648, S350, 
S1925, S1765 

5/10/20-fold 
crossvalidation and 
performance test 

Iptree-stab11 Decision tree web 
(unavailable) 

partial 
sequence 

binary Single S1859 4/10/20-fold 
crossvalidation 

INPS-MD12 Support Vector 
Regression 

web sequence ddG Single S2648 10-fold crossvalidation 

iStable13 SVM web structure ddG Single S2648, S1948 5-fold crossvalidation 

Prethermut14 SVM + RF SA structure ddG single/multiple S3366 10-fold crossvalidation 

Force field calculations 

PopMusic15 SEEF web structure ddG single S2648 5-fold crossvalidation 

FoldX16 SEEF SA structure ddG single NA NA 

CUPSAT17 Atom potentials and 
torsion angles 

web structure ddG single S1538, S1603 3/4/5-fold crossvalidation 

Rosetta18 PEEF SA structure ddG single/multiple S1210 20-fold crossvalidation 

ERIS19 PEEF SA structure ddG single S595 crossvalidation 

CC/PBSA20 PEEF SA structure ddG single NA 5-fold crossvalidation 

DMutant21 Amino acid potentials 
and torsion angles 

SA structure ddG single S918 independent 

SDM22 SEEF web structure ddG single S2648, S350 independent 

HotMusic23 SEEF web structure dTm single S1626 5-fold crossvalidation 

STRUM24 SEEF SA/web structure ddG single S3421 5-fold crossvalidation 
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AUTO-MUTE25 SEEF/ML SA structure binary/ddG single NA NA 

Phylogenetic analysis 

HotStopWizard26 CA web seq/struct hotspots single/multiple NA NA 

FastML27 ML web MSA + tree seq multiple Protein 
sequence 
databases such 
as 
UniProt  

NA 

RaXML28 ML SA/web MSA phylogeny multiple NA 

MLGO29 ML web MSA + tree seq + 
phylogeny 

multiple NA 

Ancestors30 ML web 
(unavailable) 

MSA + tree seq + PP multiple NA 

PARANA31 MP SA MSA + tree biological 
networks 

multiple NA 

HandAlign32 BA SA MSA + tree seq + PP + 
phylogeny 

multiple NA 

TreeTime33 BA SA MSA + tree seq + PP + 
phylogeny 

multiple NA 

PAML34 ML SA MSA + tree seq + PP + 
phylogeny 

multiple NA 

PhyloBot35 ML web MSA seq + PP + 
phylogeny 

multiple NA 

MaxAlike36 ML web MSA + tree seq + PP +  
seq logo 

multiple NA 

Hybrid methods 

FireProt37 Evolution + energy web structure mutations + 
ddG 

multiple S1573 performance test 

PROSS38 Evolution + energy web structure mutations multiple Trudeau NA 

FRESCO39 Evolution + energy SA  structure mutations multiple experimental Experimental 

Other methods 

pStab40 Equilibrium 
thermodynamics 
fitting on Wako–
Saito–Muñoz–Eaton 
model 

web structure unfolding 
curves 

charged residues NA NA 

Encom41 Normal mode analysis web 
(unavailable) 

structure ddG single   

Neemo42 Residue interaction 
networks 

web structure ddG single S2399 independent 

SA – Stand alone; CA – Conservation analysis; ML – Maximum likelihood; PEEF – Physical force-field; SEEF – Statistical force-field; MP – Maximum parsimony; BA – Bayessian; NA – 

Information not available in the article; PP = Posterior Probabilities; Characteristics of datasets is provided in Table S1; Method – hyperlinks refer to the web pages of the method 
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Table S3. Datasets for prediction of protein solubility. 

Name Description Contents AV Advantages Disadvantages Value Method PS 

Protein sequences 

eSOL20,21 Solubility of entire ensemble 
E.coli proteins individually 
synthesized by PURE system 

4,132 proteins Y highly consistent dataset, 
solubility value in %, 
effect of chaperones 

only E.coli proteins, in vitro system, 
low number of negative samples  
(26 cytosolic proteins), especially after 
chaperones added 

0-100 % Ratio of supernatant and non-
centrifuged protein fraction 

Y 

TargetTrack22 Data from Protein Structure 
Initiative project. Previously 
known as PepcDB or 
TargetDB. 

297,404 proteins, 
961,548 trials 

Y the largest source of 
experimental data, 
description of 
experimental protocols 
used 

low-quality trial annotations, especially 
of unsuccessful trials, solubility might be 
either over- or underestimated 
depending on extraction method, 
unreliable annotation of expression 
system, strict database pre-processing 
can significantly reduce database size 

No explicit value, 
binary solubility 
has to be deduced 
from trial status 

Mixed N 

NESG23 Subset of TargetTrack. 
Results from high-
throughput platform 
developed by North East 
Structural Genomics 
Consortium. 

9,644 proteins Y* consistent data from 
uniform protein 
production pipeline of 
the NESG 

created between 2001 and 2008 in the 
first PSI project phase - the high 
throughput pipeline might not reflect 
current advances in experimental 
methods 

Integer score from 
0 to 5 

Yield in supernatant after low-
speed centrifugation 

Y 

HGPD24,25 Data from genome-scale 
experiment to assess the 
overexpression and the 
solubility of human full-
length cDNA in an in vivo E. 
coli expression system and a 
wheat germ cell-free 
expression system 

5,100 proteins 
expressed in E.coli, 
2,932 proteins 
expressed in wheat 
germ cell-free 
system, 
289 proteins 
expressed in 
Brevibacillus 

N consistent expression 
and solubility data from 
uniform pipeline, 
DNA-level information 

only human cDNA Binary Detection of specific activities 
of the 14 C-Leu and 35 S-Met 
radioisotopes. Binary solubility 
based on ratio of signal 
intensity of soluble fraction 
and signal intensity of whole 
sample 

Y 

Periscope26 Solubility of proteins 
expressed in periplasm of E. 
coli. 

98 proteins Y unique data on 
expression in E. coli 
periplasm. 

very small dataset Three state: low, 
medium, high 

Literature search N 

AMYPdb27 Online database dedicated to 
amyloid precursor families 
and to their amino acid 
sequence signatures.  

12,069 proteins, 
6,454 patterns 

Y amyloid sequence 
patterns derived from 
known amyloid families 

not actively maintained and enriched, 
result of database mining 

Binary Literature search, keyword 
mining in UniProtKB, 
extraction of PROSITE motifs 

N 
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Protein fragments 

AmylHex & 
AmylFrag28 

A data set of six-residue 
peptides including positive 
and negative examples of 
fibril formation 

158 hexapeptides, 
45 amyloidogenic 
protein fragments 

Y one of the first sets of 
fibril-forming fragments 

strong overrepresentation (51%) of 
point mutations of the amyloidogenic 
hexapeptide STVIIE 

Binary Literature search N 

WALTZ-DB29 Experimentally verified 
amyloidogenic hexapeptides 

1089 peptides Y many samples 
experimentaly 
validatated by authors 

only 244 amyloidogenic peptides Binary Fourier Transform Infrared 
Spectroscopy, Proteostat Dye 
Binding, Transmission Electron 
Microscopy, FoldX Modelling 
of Structural Zipper class 

Y 

AmyLoad30 Amyloidogenic and non 
amyloidogenic protein 
fragments, experimentally or 
computationally 
characterized. 

1481 protein 
fragments 

Y aggregated from various 
datasets, 
additional manual 
curation and references 

only 444 amyloidogenic fragments Binary Data selected from WALTZ-DB, 
AmylHex, AmylFrag and 
validation datasets of 
AGGRESCAN and TANGO, 
detailed information obtained 
by manual inspection of over 
90 publications 

N 

HPA31 Data from high-throughput 
screening of human protein 
fragments used for antibody 
screening (Protein Epitope 
Signature Tags - PrESTs). Part 
of Human Protein Atlas 
project. 

16,082 protein 
fragments ranging 
from 20 to 150 
amino acids 

Y consistent high-
throughput expression 
and solubility data, 
DNA-level information 

only human protein fragments, 
fragmentation prevents folding into 
globular protein 

Integer score from 
0 to 5. 

Protein concentration after 
separating protein precipitate 
using centrifugation 

Y 

CPAD32 Amyloid peptides and 
aggregation rates upon 
mutations. Amyloid peptides 
with known structure. 
Verified aggregation prone 
regions. 

1,681 peptides 
2,356 agg. rate 
changes upon 
mutation, 
76 agg. prone 
regions (APR) 

Y unique resource for 
validating mutation 
effect on protein 
aggregation 

no clear database structure, not easily 
downloadable 

Binary 
amyloidogenicity, 
continuous 
aggregation rate 

Literature search, other data 
taken from GAP dataset, 
WALTZ-DB, PDB 

N 

Protein variants 

OptSolMut33 Mixed single-point and multi-
point protein variants. 

137 variants of 19 
proteins. 

Y multi-point mutations, 
nearly balanced amount 
of positive and negative 
samples 

small dataset Binary Literature search N 

CamSol34 Mixed single-point and multi-
point protein variants. 

56 variants of 19 
proteins. 

Y multi-point mutations very small dataset, only three mutation 
decreasing solubility 

Three levels, '-', 
neutral, '+' 

Literature search N 

PON-Sol35 Single-point protein variants 443 variants of 71 
proteins 

Y unique resource for 
validating mutation 
effect on protein 
solubility 

small dataset, 222 mutations with no 
effect, only 85 increasing solubility and 
136 decreasing solubility 

Five levels: '--', '-', 
neutral, '+', '++' 

Literature search N 

AV – Availability; PS – Primary source; *Available only at request; Name – hyperlinks refer to the web pages of the dataset 
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Table S4. Software tools for prediction of protein solubility. 

Method Approach Typea Availabilityb Input Output Dataset source Dataset size Validationc 

Protein sequence solubility 

Revised Wilkinson-
Harrison36,37 

Discriminant 
analysis 

ML Equation Sequence Propensity own experiments 81 proteins no independent test set, 
ACC 88 % 

SOLpro38 Two-layer SVM ML SA - Linux, 
web 

Sequence Propensity TargetTrack, 
SwissProt, PDB 

17,408 proteins 10-fold crossvalidation, 
MCC 0.487, 
ACC 60%, MCC 0.20 on newer test set39 

PROSO II40 Logistic regression, 
Parzen window 

ML, SS web Sequence Propensity TargetTrack, PDB 82,299 proteins 10-fold cross-validation, 
MCC 0.421, 
ACC 64%, MCC 0.34 on newer test set39 

ESPRESSO24 SVM ML, SP web Sequence, expression 
system 

Propensity, 
binary decision, 
mutations 
increasing 
solubility 

HGPD 5,100 proteins (E. coli 
expression system) 
2,932 proteins (wheat germ 
cell-free expression system) 
289 (Brevibacillus expression 
system) 

MCC 0.42 for property-based solubility 
in E.coli 

ccSOL omics41,42 SVM ML web Sequence Propensity, 
profile 

TargetTrack 36,990 proteins 10-fold cross-validation, 
ACC 78% 

Periscope26 SVM ML web Sequence Propensity literature 98 proteins expressed in 
periplasm of E. coli 

independent test set of 15 proteins 
ACC 78%, PC 0.77 

Protein-Sol43 Linear regression ML web Sequence Propensity eSOL 2,395 proteins no independent solubility test set, 
ACC 90% on train set 

DeepSol44 CNN ML SA - Python Sequence Propensity PROSO II unfiltered 
set 

69,420 proteins ACC 77%, MCC 0.55 

SoluProtunder review Random forests ML SA - Python Sequence Propensity TargetTrack 10,912 proteins ACC 58% on independent balanced test 
set of 3,788 proteins from NESG dataset 

Solubility profile 

Zyggregator45,46 Linear regression ML web Sequence, pH Profile literature 79 variants of 15 proteins leave-one-out cross-validation, PC 0.91, 
validated on several case studies 

AGGRESCAN47,48 Custom regression ML web Sequence Profile own experiments 20 AB42 variants at position 
19 

validated on various protein sets from 
literature 
 

TANGO49 Custom regression 
and statistical 
potentials 

ML web, SA - 
Linux, 
Windows, 
Mac OS 

Sequence, pH, 
temperature, ionic 
strength, 
concentration, N-, C-
term protection 

Profile literature 179 fragments of 21 proteins 
and 71 peptides from human 
disease-related 
proteins 

MCC 0.70 on 71 experimentally 
measured peptides 

BETASCAN50 Pairwise 
probabilistic 
analysis 

ML web, SA - Perl Sequence Profile PDB not published validated on 120 protein fragments from 
TANGO dataset, 
ACC 80% 
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ZipperDB51 Threading FF web Sequence Profile own experiments 16 hexapeptide zipper crystal 
structures 

experimental validation on 12 
hexapeptides, ACC 100% 

WALTZ52 PSSM ML web Sequence, pH Segments own experiments, 
AmylHex 

278 hexapeptides cross-validation 
ACC 60-80% 

FoldAmyloid53 Custom regression 
and statistical 
potentials 

ML web Sequence Profile PDB54 3,769 protein structures validated on dataset derived from 
TANGO and AmylHex (407 peptides), 
ACC 75% 

PASTA 2.055 Custom regression 
and statistical 
potentials 

ML web Sequence Profile TANGO, httNT56, 
AmylHex, PDB54, 
AmylPred2 

424 peptides and 33 
amyloidogenic proteins 

leave-one-out cross-validation, 
AUC 0.85 

ArchCandy57 Amino acid pairing SP SA - Java Sequence Segments literature, DisProt58 73 proteins no independent test set 
ACC 95% 

AmylPred259 Majority MP web Sequence Segments literature 33 amyloidogenic proteins no independent test set as complete 
dataset was used to optimize consensus 
threshold 
MCC 0.22 

MetAmyl60 Logistic 24regression MP web Sequence Profile WALTZ 278 hexapeptides leave-one-out cross-validation on 
AmylPred2 dataset, 
MCC 0.23 

Effect of mutations on solubility 

OptSolMut33 Linear programming ML SA - Binary Structure Propensity literature 137 variants of 19 proteins 10-fold cross-validation, ACC 76%, MCC 
0.55 

CamSol34 Custom regression ML, SC web Sequence or 
structure 

Profile, 
mutations 
increasing 
solubility 

literature 56 variants of 19 proteins no independent test set 
7 mutations verified experimentally with 
PC 0.98 

AGGRESCAN3D61 Custom regression ML, SC web Structure Profile AGGRESCAN 20 AB42 variants at position 
19 

Validated on 129 variants of 29 proteins 
from literature, 
ACC 94% 

SolubiS62,63 Statistical and 
physical potentials 
(empirical force 
field) 

FF web, SA - 
YASARA 
plugin 

Structure Profile, ddG of 
mutations to 
selected 
gatekeepers 

none none experimental validation on two proteins 

PON-Sol35 Random forests ML web Sequence Propensity, 
mutation effect 

literature 443 variants of 71 proteins 5-fold cross-validation, 
ACC 43% on blind test set (three-state 
prediction) 

SODA64 Custom regression ML, SC web Sequence or 
structure 

Mutation 
landscape 

PON-Sol 201 mutations 5-fold cross-validation, 
ACC 59-67%, ACC 100% on CamSol 
dataset 

aSC – spatial corrections; SP – sequence patterns; ML – machine learning; MP – meta predictor; SS – sequence similarity; bSA – stand-alone application; cACC – accuracy; PC – Pearson correlation; MCC – 

Mathew's correlation coefficient; AUC – area under the ROC curve; Method – hyperlinks refer to the web pages of the method;  
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Table S5. Comparison of the existing tools using S350 dataset. 

Method PCC RMSE 

PopMuSiC 2.02 0.67 1.16 

PEAT-SA65 0.50 1.92 

AUTO-MUTE66 0.46 1.42 

CUPSAT17 0.37 1.46 

DMutant9 0.48 1.38 

Eris8 0.35 1.49 

I-Mutant 2.015 0.29 1.50 

I-Mutant 3.067 0.53 1.35 

MuPro68 0.41 1.43 

Neemo18 0.67 1.16 

Pro-Maya3 0.79 0.96 

Prethermut69 0.72 1.12 

SDM70 0.52 1.80 

mCSM13 0.73 1.08 

INPS71 0.68 1.26 

STRUM10 0.79 0.98 

TopologyNet 1.072 0.74 1.07 

TopologyNet 2.072 0.81 0.94 

MAESTRO16 0.70 1.13 

SDM270 0.61 1.29 

iStable73 0.68 1.39 

Rosetta7 0.69 0.72 

PCC – Pearson Correlation Coefficient; RMSE – Root Mean Square Error 
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