
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

AUTOMATA IN SOFTWARE VERIFICATION
AND TESTING
AUTOMATY VE VERIFIKACI A TESTOVÁNÍ SOFTWARE

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. MARTIN HRUŠKA
AUTOR PRÁCE

SUPERVISOR prof. Ing. TOMÁŠ VOJNAR, Ph.D.
ŠKOLITEL

COSUPERVISOR doc. Mgr. LUKÁŠ HOLÍK, Ph.D.
ŠKOLITEL

BRNO 2023

Abstract
This thesis focuses on applications of automata theory to software quality. In the first part,
we focus on shape analysis which can be used for formal verification of programs manipu-
lating dynamic data structures. Particularly, we develop an approach of backward program
execution along possible counterexamples traces and counterexample-guided refinement for
shape analysis based on forest automata. We also introduce a new approach based on au-
tomata over graphs with a bounded tree width which is more general than forest automata
but still has feasible computation properties.

In the second part, we introduce a method for automated testing of manufacturing
execution systems (MES) in digital twin. We are able to orchestrate a digital twin to
reproduce behaviour of a real-world setting in which MES is deployed and so provide a safe
environment for testing. Moreover, we can generate new test cases by applying automata
and abstraction over them in this context.

Abstrakt
Tato práce se zabývá aplikacemi teorie automatů v zajištění kvality software. V první části
se zabývá aplikací automatů v tzv. analýze tvaru, kterou lze využít pro formální veri-
fikaci programů pracujících s dynamickými datovými strukturami. Konkrétně představuje
rozšíření analýzy tvaru založené na lesních automatech o zpětný běh analýzy přes řádky
programu, které se objeví v potenciálním protipříkladu a zjemnění abstrakce založené pro-
tipříkladech. Dále je v práci představena nová doména pro analýzu tvaru a to automaty
nad grafy s omezenou stromovou šířkou. Ty jsou obecnější než lesní automaty, ale zároveň
výpočetní složitost algoritmů s nimi pracujících je použitelná.

V druhé části se zabýváme automatizovaným testováním výrobních informačních sys-
témů v prostředí digitálního dvojčete. Představujeme metodu, která dokáže orchestrovat
digitální dvojče tak, aby reprodukovalo reálné prostředí, v němž bývají zmíněné systémy
nasazeny. To poskytuje bezpečné prostředí testování výrobních informačních systémů.
Navíc jsme metodu rozšířili o možnost tvorby nových testovacích scénářů nad rámec pouhé
reprodukce již pozorovaného chování reálného prostředí, a tak zvýšili kvalitu testovacího
procesu.

Keywords
static analysis, formal verification, shape analysis, testing, finite automata

Klíčová slova
statická analýza, formální verifikace, analýza tvaru, testování, konečné automaty

Reference
HRUŠKA, Martin. Automata in Software Verification and Testing. Brno, 2023. PhD
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor prof.
Ing. Tomáš Vojnar, Ph.D.

Automata in Software Verification and Testing

Declaration
I hereby declare that this PhD thesis was prepared as an original work by the author under
the supervision of prof. Ing. Tomáš Vojnar, Ph.D., and doc. Mgr. Lukáš Holík, Ph.D. I
have listed all the literary sources, publications and other sources, which were used during
the preparation of this thesis.

. .
Martin Hruška

February 18, 2024

Acknowledgements
First of all, I would like to thank my supervisors, Tomáš Vojnar and Lukáš Holík, for all
their support, guidance, and help. They taught me what research is all about. Further, I am
grateful to Tomáš Fiedor and Aleš Smrčka for the priceless experience in applied research
that I gained during my collaboration with them. I would also like to thank Ondra Lengál,
who introduced me to the wonderful land of automata a decade ago and later helped me
many times during my studies.

I am thankful to all my co-authors for the valuable experiences I gained from our
collaborations. I also thank all members of the VeriFIT research group for creating such a
great working environment.

Additionally, I would like to thank all my friends with whom I enjoyed moments of time
off (and it was often great fun!), especially Lucie, Tomáš, Luděk, and Zdeněk.

Na závěr bych rád poděkoval za podporu celé své rodině, především pak těm nějbližším,
ségře, mámě a tátovi za to, že mi byli vždy nablízku, podporovali mě a umožnili mi tak,
abych v životě dělal věci, které mě naplňují a davají mi smysl.

Contents

1 Introduction 3
1.1 Goals of the Thesis . 5
1.2 Overview of the Achieved Results . 6
1.3 Plan of the Thesis . 7

I Automata in Shape Analysis 9

2 State of the Art 10
2.1 Shape Analysis . 10

2.1.1 Three-valued Predicate Logic . 10
2.1.2 Separation Logic . 11
2.1.3 Symbolic Memory Graphs . 13
2.1.4 Abstract Regular Model Checking 13
2.1.5 Symbolic Execution . 14
2.1.6 Bounded Model Checking . 15

2.2 Counterexample Validation and Automatic Refinement of Abstraction for
Shape Analysis . 15

2.3 Work on Graph Automata . 17

3 Shape Analysis based on Forest Automata 19
3.1 Introduction . 19
3.2 From Heaps to Forests . 20
3.3 Forest Automata and Heaps . 23

3.3.1 Forest Automata . 24
3.3.2 Boxes and Hierarchical Forest Automata 25
3.3.3 Entailment of Forest Automata . 25

3.4 Verification of Pointer Programs with Forest Automata 28
3.4.1 Symbolic Execution with Forest Automata 29
3.4.2 Backward Run and Counterexample Analysis 30

3.5 Intersection of Forest Automata . 31
3.5.1 Intersection Construction . 31
3.5.2 Compatibility for Precise Intersection 32

3.6 Implementation of the Forward Run . 33
3.7 Abstraction and Counterexample-based Refinement 35

3.7.1 Backward Run for Counterexample Analysis 35
3.7.2 Regular Abstractions over Forest Automata 38
3.7.3 Abstraction Refinement . 38

1

3.8 Automatic Discovery of Boxes . 39
3.8.1 Cut-point Types . 40
3.8.2 Cut-point Elimination . 41
3.8.3 From Nested FAs to Alphabet Symbols 44

3.9 Running Example . 45
3.10 Architecture of Forester . 50

3.10.1 Design . 50
3.10.2 Forester Microcode . 51

3.11 Tutorial . 52
3.11.1 Running Forester with BenchExec 52

3.12 Experiments . 53
3.12.1 Description of Benchmarks . 55

4 Developing Shape Analyser for Software Verification Competition 58
4.1 Introduction . 58
4.2 Technical Preparation of Forester for SV-COMP 59
4.3 Conceptual Improvements over the Editions of SV-COMP 60
4.4 Strengths and Weaknesses . 61

5 Towards Efficient Shape Analysis with Tree Automata 62
5.1 Introduction . 62
5.2 Representing Graphs with Trees and Tree Automata 63
5.3 Towards Entailment . 65
5.4 Conclusions and Future Work . 67

6 Shape Analysis based on SMT Solving 68
6.1 Template-based Program Verification . 69

6.1.1 Program Encoding . 69
6.2 Template Domain for Shape Analysis . 70
6.3 Conclusion . 72

II Automata in Software Testing 75

7 Generating Scenarios for Digital Twins of Distributed Manufacturing Ex-
ecution Systems 76
7.1 Introduction . 76
7.2 Framework for Generating Orchestration Scenarios 77
7.3 Modelling Messages . 79
7.4 Modelling Communication of Monitored System 83
7.5 Generating Scenario . 86
7.6 Conclusion . 90

8 Conclusion and Further Work 91
8.1 Future Directions . 92
8.2 Publications Related to this Thesis . 93

Bibliography 95

2

Chapter 1

Introduction

Assuring software quality is a crucial part of development cycles for all kinds of software. It
is important for low-level code often deployed in highly critical applications where one bug
can have expensive consequences or even threat human lives. It is crucial also in high-level
software where bugs can destroy user experience and ruin the whole process of development
and selling a new software.

Approaches to Software Quality There are different approaches to software quality
at different stages of development cycle with different quality warranties. The most rigorous
one is based on a formal specification of requirements followed by deriving program from
the specification or proving program against the specification manually or with help of
automated proof assistant. This approach is present from the beginning of computer science
and although it provides the highest level of guarantee it has not became mainstream. The
main negatives are the demands on qualification of developers and severe difficulties to scale
to larger software.

There are also more or even fully automated approaches to proving correctness of pro-
grams such as model checking which strive to verify that a program satisfies a given specifi-
cation. These methods are generally called formal verification. They are easier to use than
manual proving of program, however, they still have problems with scaling and applicabil-
ity to real-world software. There are more specialized automated methods such as different
types of sound static analysis based, e.g., on data flow analysis or abstract interpretation,
which are designed to verify certain program properties (such as values of integer variables
or analyses of termination properties). These methods scale better and can work out of the
box. However, they are less precise and often tuned for a particular program property.

Another approach comes from programming language community claiming that pro-
gramming language itself should guide a programmer to write software without bugs. This
is mostly achieved by static strong type systems which facilitate encoding different program
properties to the type system. The advantage of this approach is that one does not need
another technology and forces programmers to write correct code. On the other hand, the
programming languages of this kind have a slow learning curve and can be even unusable
for certain programmers. Moreover, only a limited set of program properties is encodable
to type systems.

The fourth approach to software quality are lightweight automated methods such as
automated testing, unsound static analysis based, e.g., on error pattern matching, symbolic
execution, or extrapolating dynamic analysis. This class of methods also contains the
relaxed versions of methods from formal verification such as bounded model checking or

3

different approaches to abstract interpretation which do not overapproximate the original
semantics. The methods try to hit a sweet spot between mathematical rigour and plain
bug hunting. They are easy to use, straightforward, often scale well but they are not sound
and some of them may detect many false alarms which can cause that they are ignored by
developers completely.

The last of the main approaches is based on traditional testing by humans possible aided
by automated test execution, continuous integration, and the like. It may be developers
writing unit tests or the whole tester teams implementing the complex integration tests. It
is mostly known and time-tested approach, but it costs a lot of human resources and does
not give any guarantees about correctness.

The presented dichotomy does not pretend to be complete or exhaustive. It tries to
summarise the main approaches and give an overview of them. In practice, the different
approaches are combined, complement each other, and may fall to different categories at
the same time. The proposed thesis focuses on automated formal methods (the first part
of thesis) and lightweight automated testing methods (the second part), which we used in
a domain where scalability was required.

Finite Automata The main uniting theme of the thesis is application of finite au-
tomata to the fields of formal verification and automated testing. Finite automata are
a (syntactically) simple but powerful tool for representing regular languages. Since their
introduction in the 50s by Rabin and Scott [119], they have been used in various domains
such as compilers, modelling of various kinds of systems, design of digital circuits, natural
language processing, speech recognition, as well as in verification or testing of software and
hardware. Moreover, finite automata and their variations are widely studied in theoreti-
cal computer science either from perspective of the decidable properties or complexity of
algorithms for their manipulation.

Finite automata are mainly used to represent the various structures with recurrent pat-
terns of substructures (we deliberately do not use word regular to prevent confusion with
meaning of the word in context of theory of formal languages). A classical application is
language consisting of plain strings (used in pattern-matching applications such as lexical
analysis in compilers or detection of malicious strings in security domains). A more so-
phisticated case arises when using regular languages containing sequences of messages or
generally objects with an inner structure, which is used, e.g., for modelling communication
protocols. In formal verification, there are also automata representing regular languages of
infinite strings (so called Buchi automata), which are used for verification of some prop-
erties requiring one to reason about infinite behaviors such as termination of a program.
Another kind of automata used in formal verification are tree automata that represent sets
of trees. These automata have been applied, e.g., to represent tree data structures (and
even more complex structures defined over their tree backbones) allocated on heap by a
program.

In the applications of automata in this thesis, we need to perform operations such
as testing language inclusion and equivalence of two finite automata, testing emptiness
of language of automaton or complementation of automaton. All these properties are
decidable but some of them have a high complexity, e.g., complement has exponential
complexity w.r.t. number of states of automaton, language inclusion and equivalence are
PSACE-complete (or even EXPTIME-c for nondeterministic tree automata). Fortunately,
efficient heuristics (e.g., [12, 32]) for the mentioned operations were introduced making
them computationally feasible in many practical cases.

4

As we mentioned above, we focus on applications of automata to two different fields.
The first one is shape analysis, i.e., static analysis of programs manipulating dynamic data
structures. In shape analysis, we are interested in representing data structures allocated
on the heap, such as linked lists or trees, and verifying the operations properties such as
absence of invalid memory dereference, invalid memory free, or memory leaks. Programs
using dynamic data structures are a great fit for methods of formal verification since they
are prone to the mentioned bugs and are written in programming languages with manual
memory management such as C or C++ where memory management is fully within user’s
control. At the same time, these programs are used in critical software such as kernels of
operating systems. Any bugs in them may affect many users and lead to expensive losses.
Therefore they need strong safety guarantees which can be provided by the methods with
formal basis.

Our approach to shape analysis is based on forest automata and automata over graphs
with a bounded tree width (both extensions of tree automata). Both formalisms are able
to represent a quite wide class of data structures that can be allocated on the heap. We
employ a verification procedure to compute shape invariants for each program location. In
our case, a shape invariant is an automaton representing all possible states of heap. Finally,
we check that shape invariants imply that a given specification is fulfilled by the program
(usually checking absence of invalid dereferences, invalid frees or memory leaks).

The second field of application of automata in this thesis is automated software test-
ing. Particularly, we focus on testing of a manufacturing execution system (MES) in an
environment of digital twins. MES is critical software in controlling a factory where bugs
may stop the production or even damage manufacturing machines. Such bugs may be very
expensive, and it is important to find as many of them as possible before MES is deployed
to a real factory. Our approach analyses the behavior of the software used in a real factory,
builds its models and then generates tests for a digital twin of the factory which are applied,
e.g., when a new version of the software is deployed and the rest of factory emulated.

1.1 Goals of the Thesis
The first goal of this thesis is to improve the current tools and methods of shape analysis. We
aim to further develop the approach to shape analysis based on forest automata proposed
in [68, 82] and enhance it by 1. revisiting and improving its description, 2. enhancing it by
a mechanism of checking possible counterexamples and automated abstraction refinement,
3. improving its tool support, particularly the tool Forester, to make it able to compete
on an international level.

Further we want to study possible alternatives to shape analysis based on forest au-
tomata. We will focus mainly on the following topics: 1. an alternative automata-based
representation with the aim to cover the class of graphs with bounded tree width (taking
inspiration from Courcelle theorem [53]), 2. exploring possibilities of shape analysis based
on predicate logic, templates-based invariants, abstract domains, and SMT solving.

The second goal of the thesis is to apply automata to the field of testing, particularly to
testing manufacturing execution systems. We want to create a novel approach combining
automated test generation from observed behaviour of a manufactory with testing in an
environment of a digital twin which will be orchestrated according to the tests we create.

5

1.2 Overview of the Achieved Results
Shape analysis The first of our results is an extension of shape analysis on forest au-
tomata by spurious counterexample detection and predicate abstraction refinement pub-
lished in [81]. Abstraction is generally used in formal verification to overapproximate rep-
resented state space of the program under verification, to reduce the size of representation
of finite state space and to allow infinite state spaces to be represented finitely. On the other
hand, a violation of a specification can be detected in the overapproximated part of the state
space, which needs not to correspond to a real behaviour in a program under verification.
We call such fake violations of specification spurious counterexamples. Forest-automata-
based shape analysis as proposed in [68, 82] used an abstraction overapproximating the
set of reachable states of the heap, i.e., abstract forest automata represent more possible
shapes of the heap than those allocated by the program in reality. However, the method
did not contain any algorithm to check whether a found possible counterexample to the
given specification is real or spurious. We develop a detection of spurious counterexamples
based on so called backward runs. It will be described in more a technical way in the rest
of the thesis, but, intuitively, it reverts all actions done over forest automata in the forward
symbolic execution, starting from the forest automaton representing an erroneous configu-
ration. When forest automata in the backward run diverge from the ones in the forward
run, it means that the found possible counterexample is spurious.

Once we are able to detect spurious counterexamples, we need an abstraction which
is refinable. In other words, we want to make the abstraction more precise once a spuri-
ous counterexample is found so that when we restart the analysis, we will not reach the
same counterexample again. Therefore we developed a version of predicate abstraction for
forest automata. We are able to derive new predicates from a spurious counterexample
which guarantee that after a restart of the verification method, we exclude the spurious
counterexample from the represented state space.

We also revisited the formalisation and description of shape analysis based on forest
automata. As a part of our work we introduced refined presentation of the framework
in more comprehensible way. A slow learning curve and hard to understand formalism
were one limiting factor of development of shape analysis based on forest automata. The
refined description is presented in this thesis and is accepted for publication in book about
state-of-the-art methods in software verification.

We have also significantly improved implementation of the approach in the Forester
tool. Consequently, Forester was able to seriously compete in international level. Partic-
ularly, it participated in software verification competition SV-COMP [8] in the editions of
years 2015, 2016, 2017, and 2018. Although Forester did not win a medal in any major
category, we managed to support a non trivial subset of the C language needed for a reason-
able participation in the competition and made the tool mature enough to be competitive
with other tools, often developed by large teams. The tool also verified soundly some test
cases such as programs manipulating skip-lists of level 3 or variants of trees which were not
analysable by any other tool.1 Although Forester stayed at the state of a prototype and
a lot of engineering work would be needed to make it a mature tool, we were able to show

1to the best of our knowledge, even today there is no tool in SV-COMP that would be capable of handling
these programs in sound way. Some of the programs could be handled by the S2 tool [96] whose abstraction
is, however, rather fragile, allowing it to handle complex programs on one hand, but failing on simple ones
on the other hand according to our experiments with the tool. See also related work section.

6

that a shape analysis based on automata can compete with other approaches, and it is a
meaningful path of research.

Beyond the work done on forest-automata-based shape analysis, we introduced au-
tomata over graphs with a bounded tree width. The automata are directly influenced
by the Courcelle’s theorem [54] stating that any graph property definable in the monadic
second-ordered logic over graphs can be decided in a linear time on graphs with a bounded
tree width. We sketch automata using principles from this theorem together with an al-
gorithm for entailment over these automata which has a singly-exponential complexity.
Automata over graphs with a bounded tree width are able to represent a more general class
of graphs than forest automata but still have feasible computational properties, making
them a suitable domain for shape analysis.

Finally, our last result in shape analysis was participation on approach to shape analysis
based on predicate logic, templates-based invariants, abstract domains, and SMT solving
implemented in the 2LS framework [123]. In this case, the possible shapes of heap are
described by a points-to relation between pointer variables and abstract memory objects.
The program is converted to a SSA form over which a system of constraints modelling
operations on the heap is put together using especially proposed templates of points-to
relation. Then the invariants of the points-to relation are computed by an application of
SMT solver to the system of constraints. This approach is more straightforward, more
scalable but less general than the approaches based on automata.

Automated testing Our main result in automated testing is a system for orchestrating
a digital twin to test a manufacturing execution system (MES). Our approach is based
on learning a model of communication in a real manufactory between a MES, machines,
and an enterprise resource planning (ERP) system. We also learn models of messages
communicated in a monitored system. Once we learn a model of communication and models
of sent messages, we are able to generate a testing scenario for a digital twin. A digital twin
contains emulated parts of the factory such as machines, an ERP system, human workers,
and a natively run MES. Such setup can be used, e.g., for testing a new version of the MES,
when we derive the models from the logs of communication in a real manufactory where an
older version of the MES was deployed. Then the new version is run in the digital twin,
and it is checked that the new version has the same semantics as the older version where it
is expected.

Moreover, since we can use finite automata to the model communication, we are able to
perform an abstraction over the learnt models and extrapolate the new test cases, which can
be used for a more robust testing of the MES in the digital twin than just a reproduction
of the previously seen runs.

The methods described above were implemented in the tool Tyrant [3]. The tool was
developed for testing a particular MES used in industry, and was tested on communication
logs from a real manufactory.

1.3 Plan of the Thesis
The plan of the rest of the thesis is the following. In Chapter 2 the state of the art in shape
analysis is described. In Chapter 3, we provide a description of forest-automata-based shape
analysis including a detailed description of the backward run and predicate abstraction,
which were originally developed as a part of the thesis. Chapter 4 summarizes Forester

7

participation in the various editions of the software verification competition SV-COMP.
Chapter 5 introduces automata over graphs with a bounded tree width together with their
crucial properties. Chapter 6 discuss an approach to shape analysis based on predicate
logic, templates-based invariants, abstract domains, and SMT solving implemented in 2LS
framework.

Finally, Chapter 7 describes our methods for testing MES in the environment of digital
twins.

8

Part I

Automata in Shape Analysis

9

Chapter 2

State of the Art

This section provides a summary of the state-of-the-art methods for shape analysis. First,
we give an overview of the formalisms for representing and analysing data structures allo-
cated on the heap. Then the refinement techniques for abstraction over various formalisms
are summarized, and finally, the existing works on automata for graph languages are pre-
sented.

2.1 Shape Analysis
As we mentioned, shape analysis deals with analysis of dynamically linked data structures
allocated on the heap. Many different approaches to shape analysis have been proposed,
using various underlying formalisms, such as logics [89, 110, 122, 121, 19, 67, 111, 131, 130,
44, 102, 20, 58, 97, 67, 103, 48, 37, 117], automata [35, 57, 72, 82, 36], graphs with summary
nodes and edges [48, 60], graph grammars [74, 129], or upward closed sets [11].

In the following chapter, we abstract data structures allocated on the heap to graphs
(so called heap graphs or heap shapes). An allocated memory heap cell corresponds to a
node of the graph and a pointer pointing from one memory cell to another is represented
by an edge between the nodes. The selectors are represented by the labels of the edges.
Formally, a heap graph 𝐺 is a tuple (𝑉,𝐸, 𝛼) where 𝑉 is a set of nodes, 𝐸 ⊆ 𝑉 ×𝑉 is a set
of edges, 𝛼 : 𝐸 → Sel is a labelling function, and Sel is a set of selector names.

Shape analysis heavily relies on the formal model used to represent the set of the heap
shapes reachable in the program. The requirements on the model include: (a) generic-
ity and expressivity — the more general classes of the heap graphs model can represent,
more programs can be (in theory) analyzed, (b) automation — the model should be deriv-
able from a program automatically and have decidable properties important for reasoning
about the program, (c) efficiency and scalability — there should exist efficient algorithms
for manipulation with the model even when it is applied to big systems.

2.1.1 Three-valued Predicate Logic

The approach of [122] uses predicates to express relations between nodes of heap graphs.
Moreover, it introduces the third logical value (unknown) to the standard boolean values
true, false. The unknown value is used when more items from a given universe may but
need not to be in a relation. The unknown value may be needed for an abstraction merging
some nodes. E.g., consider an abstraction 𝒜𝛼 : 𝑉 → 𝑉 where 𝑉 is a set of nodes of
heap graphs, and the predicate NEXT : 𝑉 × 𝑉 → {true, false, unknown} saying that we

10

can go from the heap node 𝑢 to the node 𝑣 using the NEXT selector, formally (𝑢, 𝑣) ∈
𝐸 ∧ 𝛼(𝑢, 𝑣) = 𝑁𝐸𝑋𝑇 . Then when 𝒜𝛼(𝑢) = 𝑠 and 𝒜𝛼(𝑣) = 𝑠, where 𝑠 is a so-called
summary node, and there exists 𝑤 ∈ 𝑉 such that NEXT(𝑢,𝑤) = true∧NEXT(𝑣, 𝑤) = false,
then NEXT(𝑠, 𝑤) = unknown.

The work of [122] that builds the TVLA shape analyser on top of 3-valued predicate
logic with transitive closure was one of the first works on shape analysis. The framework
is general, it can find some basic predicates describing shapes in the analysed program
automatically, but it needs to be parametrized manually by predicates to represent more
complex data structures. The precision of the used abstraction by refinement was addressed
in [109, 25]. Scalability of the method has not been systematically studied.

2.1.2 Separation Logic

Separation logic was first introduced by Reynolds [121] as an extension of Hoare logic for
reasoning about programs manipulating dynamic data structures. Hoare logic builds on so-
called Hoare triples. A triple has a form {𝑃}𝐶{𝑄} where 𝑃,𝑄 are assertions in predicate
logic and 𝐶 is a command in an imperative programming language. When 𝑃 is satisfied
before an execution of 𝐶, then the 𝑄 assertion should hold when 𝐶 terminates. Another
possible formulation is that predicates from the set 𝑃 are transformed to the set 𝑄 with
respect to the semantics of 𝐶.

While the assertions in Hoare logic consist of standard connectives and symbols of
predicate logic, separation logic extends the framework with several new ones for heap
description: 𝑒𝑚𝑝 (representing the empty heap), 𝑃 *𝑄 (saying that the heap can be split
to two separated parts, i.e., parts not allocating same nodes, but allocating disjoint sets
of nodes, where one satisfies 𝑃 and the second 𝑄), 𝑒 ↦→ 𝑒′ (the address defined by the
expression 𝑒 is mapped to the value defined by the expression 𝑒′, and the rest of the heap
is empty, i.e., *𝑒𝑚𝑝 is implicit), and 𝑃 −* 𝑄 (which describes ℎ such that the union of ℎ
with heap ℎ′ that is disjoint from ℎ and that satisfies 𝑃 will satisfy 𝑄).

The interest in separation logic has started rising with the introduction of the auto-
mated, abstract-interpretation-based approaches associated with Space Invader [130] and
SLAyer [20]. These approaches assume pre-defined templates of shape predicates and are
not very general since they are restricted to programs over certain classes of linked lists (and
cannot handle even structures such as linked lists with data pointers pointing either inside
the list nodes or optionally outside of them). E.g., the separation logic-based approach
of [67] suffer from the need to manually provide inductive predicates describing the heaps
shapes (even for some list structures). The work [97] concerning overlaid data structures
mentions an extension of Space Invader to trees, but this extension is also of a limited
generality and requires some manual help.

Separation logic has also been extended to a concurrent version, see, e.g., [42].
The scalability of the approach based on separation logic was significantly improved by

bi-abduction [44]. Further, the second-order bi-abduction provided ability to learn some
predicates automatically and so made possible analysis of more complex data structures
such as skiplists [96]. The principles similar to second-ordered bi-abduction enabling anal-
ysis of complex data structures were used in [67].

The recent work [79] further extended separation logic by the low-level features of data
structures manipulation such as pointer arithmetic, bit-masking on pointers, block oper-
ations with blocks of variable size, their splitting to fields of in-advance-not-fixed size,
merging such fields back, and reinterpreting them differently, etc.

11

A main downside of the bi-abduction-based methods is their inability to provide a coun-
terexample breaking the given specification. Moreover, these approaches are rather fragile.
Especially, the [67] is quite dependent on the fact that the encountered data structures are
built in a “nice” way conforming to the structure of the predicate to be learnt (meaning,
e.g., that lists are built by adding elements at the end only), which is close to providing
an inductive definition of the data structure. Similarly, the approach of [96] fails on exam-
ples that might seem easy (such as certain rather straightforward variants of creations and
deletions of a doubly-linked list).

Separation logic has found its way to practice, mainly its implementation in the Face-
book Infer tool widely used in Facebook [128] and other companies.

Separation logic was further modified to incorrectness separation logic [118] which com-
bines local reasoning of separation logic with the newly introduced incorrectness logic [118].
An interprocedural analysis based on incorrectness separation logic has no false positives
by construction and is aimed to rigorous bug hunting. Incorrectness logic enables reasoning
about errors in programs based on an underapproximating analogue of Hoare triples. The
authors newly introduce the operator 𝑥 ̸↦→ saying that the pointer 𝑥 has been deallocated
(and not reallocated). The operator was needed to distinguish between a dangling pointer
and pointer which we do not know anything about and it also makes possible to intro-
duce a frame rule for underapproximating reasoning in separation logic. The methods were
implemented in the plugin called Pulse inside Facebook Infer.

We note that there are other works on separation logic, e.g. [111], that consider tree
manipulation, but these are usually semi-automated only. The work [103] proposes an
approach that uses separation logic for generating numerical abstractions of heap manip-
ulating programs allowing for checking both their safety as well as termination. The de-
scribed experiments include even verification of programs with 2 level skip-lists. The work,
however, still expects the user to manually provide an inductive definition of skip lists in
advance. Likewise, the work [48] based on the so-called separating shape graphs reports
on verification of programs with 2 level skip-lists, but it also requires the user to come up
with summary edges to be used for summarizing skip list segments, hence basically with
an inductive definition of skip lists.

For separation logic to be applied in verification procedure, one needs to solve problems
of satisfiability and entailment on separation logic. Many abstract interpretation tools solve
the problem rather in ad hoc ways. On the other hand, there have also appeared many
results on automated decision procedures for various fragments of separation logic addressing
these problems [64, 87, 92, 95, 63]. Unfortunately, the cited works cannot be used to the
bi-abduction problem described in the above section, which is crucial for a compositional
(scalable) program analysis. In bi-abduction, one needs to solve the abduction problem
𝑃 * [?] |= 𝑄, where * is the separating conjunction. The best solution (i.e., the logically
weakest) is given by the formula 𝑃−*𝑄 where one needs to use the magic wand operator −*.
The cited works do not support magic wand since it has been shown that adding even the
singly-linked list-segment predicate to a propositional separation logic that includes magic
wand causes undecidability of the satisfiability problem [56], [17]. The mentioned problem
was recently addressed by [114] which defined new semantics for separation logic. The new
semantics make possible to use magic wand and the singly-linked list-segment predicate.
The work also discuss their potential application to the abduction problem. However, to
make this a reality, more research is needed.

12

2.1.3 Symbolic Memory Graphs

Symbolic Memory Graphs (SMG) [60] were designed as an abstract domain for the frame-
work of abstract interpretation [55]. They can model states of the heap precisely, but
one can also perform widening over SMGs by introducing summary nodes in the form of
singly/doubly-linked lists nodes to accelerate the analysis and enable representation of in-
finite state spaces. Since the representation is quite straightforward, it is easy to model
the semantics of the concrete program operations in the abstract domain. These practical
advantages are confirmed by the repeated wins of the tool in the competition on software
verification SV-COMP [8].

The formalism was designed mainly for list structures aiming at verification of system-
level programs (e.g. Linux kernel) using such structures. Therefore it can also handle low-
level memory operations with byte precision [60]. However, the domain has not been yet
generalized to the tree structures. The scalability of the method has not been systematically
studied yet, but the principles of bi-abduction should be applicable to the domain just as
for the separation logic-based methods.

Many of the principles used in [60] to deal with low-level memory operations have been
applied in the recent work [79] combining them with separation logic. The scalability of
the approach is, however, still limited despite the potential stemming from the modularity
of the approach.

2.1.4 Abstract Regular Model Checking

Abstract regular model checking (ARMC) [39] is an automata-based method for verification
of parametrized and infinite-state systems. It employs automata over words and trees to
represent reachable configurations of the system being verified and a regular transition
relation (represented by transducers or specialized operations over automata) to model
the semantics of the analysed system. ARMC was applied on various kinds of parametric
and infinite systems such push-down systems, systems with queues, parametrised networks
of process, Petri nets. It was also used for verification of programs with dynamic data
structures where words and trees are used to represent reachable shapes of heap [38].

Abstraction over automata is used to overapproximate the set of reachable configura-
tions, e.g., by collapsing automata states whose languages are same up to some bound or
satisfy, i.e., intersect, the same set of predicate languages. Counterexample-guided refine-
ment is applied to refine the abstraction and to validate the found potential counterexamples
when needed.

When applied in forward manner, the verification procedure starts with an automa-
ton representing initial configurations of an analysed system. An abstraction is applied to
the automaton followed by an application of a transition in each step of the verification
procedure. An intersection of the automaton representing so-far computed reachable con-
figurations with an automaton representing the bad configurations of the system is also
done in each step. When the intersection is empty, the verification procedure continues
until a fixpoint is reached (the set of system configurations represented by an automaton
is not enlarged after the application of a transition relation). When the intersection is not
empty, a backward run is started to validate the counterexample. If the counterexample is
not real, then the abstraction is refined to avoid reaching the counterexample again, and
the verification procedure is restarted. Otherwise the real counterexample is reported to a
user.

13

As indicated above, abstract regular model checking is a general verification method
that was applied to various kinds of systems including pointer programs [35, 68, 82] where
automata are used as a domain for representation of the allocated data structures on the
heap. In [35], the whole heap is encoded in one tree automaton, and the semantics of
programs is represented by a tree transducer. The approach is able to verify complex tree
structures but since it encodes the whole heap in one automaton, even a small change in
one part of the heap may be propagated over the whole model, which negatively effects
the scalability of the method. The scalability problem was improved in [68] where the
heap is represented by a tuple of tree automata, so called forest automata, which localize a
change in one part of heap to a change in a particular tree automaton. The approach needed
forest automata representing the repeating sub-graphs of the heap to be provided manually.
This was solved by [82] where the shape analysis based on forest automata became fully
automated and was able to verify structures such as skiplists.

The work [13] added ordering relations into forest automata to allow verification of
programs whose safety depends on relations among data values from an unbounded domain.
The Forester tool implementing the method is able to verify complex data structures such
as various tree and skiplists of the second and third level [82] which are not analysable by
any other tool fully automatically. This work is starting point of some results of this thesis
which extended [82] by potential counterexamples analysis (to distinguish spurious and real
ones) and abstraction refinement.

2.1.5 Symbolic Execution

The main idea of symbolic execution [93] is to run a program under verification on symbolic
values instead of concrete ones. I.e., the program is run on symbolic input which may have
an arbitrary value. The concrete program operations from the original program are then
replaced by operation manipulating symbolic values. When symbolic execution reaches a
branching condition, then it continues in the both branches and maintains a set of path
conditions for each branch, i.e., the conditions which needs to be satisfied for the given
branch to be (symbolically) executable. When the path conditions are unsatisfiable, the
symbolic execution of the corresponding branch is aborted. When a bug is found during
symbolic execution, it is possible to generate a test case using the concrete values which
satisfies the path conditions in the path to the found bug.

An advantage of this approach is that it does not produce false alarms since all symbol-
ically executed paths are feasible. On other hand, a user needs to add assert statements
to a source code to represent the error states. Symbolic execution may also be computa-
tionally demanding and it may not even terminate on programs with unbounded loops or
recursion.

Symbolic execution was successfully used to detect bugs in real-world software. E.g.,
the KLEE tool [43] found bugs in the tools such as GNU COREUTILS.

In the recent years, the tool Symbiotic [125] using KLEE as an engine for symbolic
execution won the numerous medals in the various categories of the SV-COMP competi-
tion. Symbiotic combines symbolic execution with metacompilation and program slicing.
It instruments a given program with a code that tracks the states of the state machines.
These state machines describe erroneous behaviour in code — if the error states of the state
machine are reached then there is a bug in code. Once the code is instrumented (i.e., meta-
compiled) a program slicer is executed to reduce an input for symbolic execution. Finally,
the instrumented and sliced code is given to symbolic execution.

14

Symbiotic instruments code also with state machines describing bugs related to shape
analysis, i.e., invalid dereferences, invalid frees, or memory leaks [46]. Further, it uses a data-
flow analysis (particularly, a pointer analysis) to prevent adding checks to the manipulations
with pointers which are guaranteed to be safe by the pointer analysis and so do not need
to be verify by computationally expensive symbolic execution. One of possible goals for
this thesis is adding a more precise shape analysis to the work flow of Symbiotic which
would even more reduce computational complexity of symbolic execution by avoiding the
unnecessary checks of pointer manipulation.

2.1.6 Bounded Model Checking

So far, we introduced domains for representation of shapes allocated on the heap and
assumed that the verification procedure used will be sound. However, when the requirement
on soundness is relaxed, we will obtain a bug hunting method still able to detect many errors
in program. One of such methods is bounded model checking (BMC) [29] whose applications
in the works such as [26, 50] achieved many achievements in the various editions of the SV-
COMP competition.

An exploration of the state space is limited up to some bound in BMC. The bound can
be given, e.g., on the number of interleavings in a parallel program, on the number of the
loop unfoldings, or on the size of the memory.

BMC systematically explores the state space of the analysed systems up to the given
bound and checks whether the given specification holds in each possible state. From the
perspective of shape analysis it means that the methods explores which shapes may be
possibly allocated on heap in the given state of the program and checks whether it does
not lead to a memory manipulation related error.

A model of the analysed system can be automatically derived from a program. Therefore
the approach may be fully automated. It can be also easily combined with other domains
of interest in program analysis, e.g., interval analysis of numerical values. It is also general
and scales to large software systems. On the other hand, because the approach is unsound
it can only find bugs, but it cannot prove a program to be correct. There are attempts
to get over this bottleneck by k-induction but they are still not as mature as the original
bounded approach.

2.2 Counterexample Validation and Automatic Refinement
of Abstraction for Shape Analysis

A common weakness of the current approaches to shape analysis is a lack of a proper
support for checking spuriousness of potential counterexample traces, possibly followed by
automated refinement of the employed abstraction. This is one of the problems we tackle in
this thesis. Below, we characterize previous attempts on the problem and preparing grounds
for its application to forest-automata-based shape analysis described in the Section 2.1.4.

A well-known approach to refinement of abstraction is the counterexample-guided re-
finement (CEGAR) principle [49] which works as follows:

1. Set a default (overapproximating) abstraction.

2. Perform an analysis of the given program.

3. If a counterexample is found:

15

(a) start a validation of the counterexample,
(b) if it is valid, report an error,
(c) otherwise refine the abstraction and go to Point 2.

4. If no potential counterexample is found, report the program as correct.
CEGAR has been quite well elaborated in the context of software verification. In the
following text, we discuss the application of CEGAR in the different approaches to shape
analysis.

As we briefly mentioned in Section 2.1.1, the work [25] adds a CEGAR loop on top of
the TVLA analyzer [122], which is based on 3-valued predicate logic with transitive closure.
The refinement is, however, restricted to adding more pointer variables and/or data fields
of allocated memory cells to be tracked only (together with combining the analysis with
classic predicate analysis on data values). The analysis assumes the other necessary heap
predicates (i.e., the so-called core and instrumentation relations in terms of [122]) to be
fixed in advance and not refined. The work [100] also builds on TVLA but goes further by
learning more complex instrumentation relations using inductive logic programming. The
core relations are still fixed in advance though. Moreover, the approach of [100] is not
CEGAR-based—it refines the abstraction whenever it hits a possible counterexample in
which some loss of precision happened, regardless of whether the counterexample is real or
not.

In [116], a CEGAR-based approach was proposed for automated refinement of the so-
called Boolean heap abstraction using disjunctions of universally quantified Boolean com-
binations of first-order predicates with free variables and transitive closure. The approach
assumes the analyzed programs to be annotated by procedure contracts and representa-
tion invariants of data structures. New predicates are inferred using finite-trace weakest
preconditions on the annotations, and hence new predicates with reachability constraints
can only be inferred via additional heuristic widening on the inferred predicates. Moreover,
the approach is not appropriate for handling nested data structures, such as lists of lists,
requiring nested reachability predicates.

In the context of approaches based on separation logic, several attempts to provide
counterexample validation and automated abstraction refinement have appeared. In [18],
the SLAyer analyzer was extended by a method to check spuriousness of counterexample
traces via bounded model checking and SMT. The approach may, however, fail in recogniz-
ing that a given trace represents a real counterexample. Moreover, the associated refinement
can only add more predicates to be tracked from a pre-defined set of such predicates.

In [15], another counterexample analysis for the context of separation logic was proposed
within a computation loop based on the Impact algorithm [90]. The approach uses bounded
backwards abduction to derive so-called spatial interpolants and to distinguish between real
and spurious counterexample traces. It allows for refinement of the predicates used but only
by extending them by data-related properties. The basic predicates describing heap shapes
are provided in advance and fixed.

Another work based on backwards abduction is [33]. The work assumes working with a
parametrized family of predicates, and the refinement is based on refining the parameter.
Three concrete families of this kind are provided, namely, singly-linked lists in which one
can remember bigger and bigger multisets of chosen data values, remember nodes with
certain addresses, or track ordering properties. The basic heap predicates are again fixed.
The approach does not guarantee recognition of spurious and real counterexamples nor
progress of the refinement.

16

None of the so-far presented works is based on automata, and all of the works require
some fixed set of shape predicates to be provided in advance. Among automata-based
approaches, counterexample analysis and refinement was used in [35] (and also in some
related, less general approaches like [34]). In that case, however, a single tree automaton
was used to encode sets of memory configurations, which allowed standard abstraction
refinement from abstract regular (tree) model checking [39] to be used. On the other hand,
due to using a single automaton, the approach did not scale well and had problems with
some heap transformations.

The first approach based on forest automata used a fixed abstraction [72]. However,
in [72, 82], it was conjectured that counterexample validation and abstraction refinement
should be possible in the context of forest automata too. This thesis will show that this is
indeed the case, but that much more involved methods than those of [39] are needed.

2.3 Work on Graph Automata
The generality of a verification method for shape analysis crucially depends on the choice
of the underlying formalism enabling representation of various heap graphs. Moreover,
some data structures are defined with special relations between nodes or sets of nodes (e.g.,
red-black trees have red and black nodes with the special rules how they can alternate).
Therefore the formalism should make it possible to represent also relations over graphs.

In the field of formal logic, a natural choice is monadic second order logic on graphs
(MSO). It allows one to quantify over sets of nodes of graphs. Unfortunately, the logic is
undecidable. There are different versions of graph automata with expressive power equal to
MSO, i.e., for each MSO formula there is a graph automaton whose language (which is a set
of graphs) is equivalent to the set of models of the formula. However, the undecidability of
the logic implies that automata accepting such graphs have undecidable crucial properties,
e.g., emptiness of the automata language. This is exactly what happens in the works
[126, 120] where the designed automata suffer from the undecidability of some properties.

The undecidability does not necessarily imply that a formalism is not usable, but it is
better to target decidability or if that is not possible, at least a formalism allowing for a
design of efficient algorithmic heuristics.

When accepting a graph, an automaton needs to remember which nodes have already
been processed and which will be processed further. This is a difference compared to the
classical word or tree automata where an automaton runs over a given input in a particular
direction. Remembering the so-far processed parts of the graphs is not easy task. In [126],
the path through a processed graph is encoded in symbols. In [120], there is a special
automaton for each node of the graph, the automata communicate in rounds, and the
computation continues until all automata reach their stable state.

However, when the domain is restricted to a special class of graphs, it is possible to
design automata with much more useful properties. It has been shown by Courcelle [54]
that when we restrict MSO to graphs with a bounded tree width, it is possible to decide
satisfiability of MSO formulas. A decision procedure is then implemented by encoding the
formula to a tree automaton and checking its emptiness. Unfortunately, the tree automaton
has an exponential number of states compared to the size of the formula, which makes the
manipulation with it inefficient.

Another approach to the definition of graph automata is from an algebraic point of
view. In the work [31], the automata were defined using concepts of cospans from category
theory. Intuitively, the automata have as symbols some basic graph operations which can

17

create an arbitrary graph with a bounded tree width. Such a definition implies that word
and graph automata are basically the same because the graph operations can be viewed
just as standard letters from an alphabet of word automata. Then a word automaton
accepts a word consisting of letters mapped to the graph operations. When the operations
are concatenated, we obtain the encoded graph. However, the authors have not found an
efficient automatic derivation of their model from a system description.

Grammars are a standard counterpart to automata in the formal language theory. For
instance, context-free grammars characterize the class of context-free languages just as
pushdown automata. The paper [41] explores the relation between automata working over
graphs and graph grammars and shows that they describe the same class of graph languages
as the NCE graph grammars.

Graph grammars can also be naturally compared with the separation logic. The relation
has been shown in Jansen et. all [106]. They show that so-called tree-like separation logic
can describe the same graphs as those that can be generated by the so-called tree-like
grammars (TLG). Both formalisms are meant to describe tree-like data structures (i.e.,
data structures decomposable to trees). Further, a TLG formula can be transformed to the
MSO2 logic which is a variant of MSO on graphs where the quantification is allowed not
only over sets of nodes but also over edges.

Both of the works comparing graph automata to grammars and separation logic explore
the expressive power of the automata and their relation to other formalisms but do not
concern efficient algorithms and their properties. Hence, they are not really suitable for
applications in shape analysis.

Graph automata on graphs with bounded tree width can be applied for shape analysis
indirectly as a decision procedure for separation logic. This is illustrated by [88] where a
variation of automata accepting graphs with bounded tree width are used to encode graphs
represented by a fragment of separation logic.

The notion of graph automata on graphs with bounded tree width has also been used
for proving properties of other abstract machines. An example is emptiness of automata
with auxiliary storage in [101].

In this work (Chapter 5) we present graph automata over graphs with bounded tree
width that, unlike presented works, aims to efficient manipulation within automata-based
shape analysis.

18

Chapter 3

Shape Analysis based on Forest
Automata

3.1 Introduction
This chapters presents some of the main contributions of this the thesis, namely, the
proposed way of checking spuriousness of potential counterexample traces within forest-
automata-based shape analysis, the proposed refinement of the abstraction used, as well as
the improvements done to the implementation of forest-automata-based shape analysis in
the Forester tool.

In order for these approaches to be presented, the basic shape analysis based on forest
automata is introduced first. We note here that while basic shape analysis based on forest
automata were introduced in [68, 82, 72, 69, 76], the conference publications [68, 82] were
missing quite some details, the technical reports [69, 76] were not fully consistent and easy to
read. Therefore they were revisited as part of our work and this revised version was accepted
as a chapter of a book about tools participating in software verification competition SV-
COMP. Further we modified basic approach using forest automata with respect to [81] to
allow the analysis of potential counterexamples traces and abstraction refinement to be
added in a smooth way. The revised description of the method is also presented in this
chapter.

Forest-automata-based shape analysis is an approach to verification of sequential C-
like programs with complex dynamic linked data structures such as various forms of singly
and doubly-linked lists (SLLs/DLLs), possibly cyclic, shared, hierarchical, and/or having
different additional (head, tail, data, and similar) pointers, as well as various forms of trees,
based on the so-called forest automata. The approach is suitable for verification of generic
safety properties like absence of null dereferences, double free operations, dealing with
dangling pointers, or memory leakage. Moreover, verification of special shape properties of
the involved data structures is allowed via testers, i.e., additional parts of the code that,
in the case some desired property is broken, lead the control flow to a designated error
location.

Forest automata represent sets of heaps via tree automata (TAs). A heap is split in
a canonical way into several tree components whose roots are the so-called cut-points.
Cut-points are nodes pointed to by program variables or having several incoming edges.
The tree components can refer to the roots of each other, and hence they are “sepa-
rated” much like heaps described by formulae joint by the separating conjunction in sep-

19

aration logic [121]. Using this decomposition, sets of heaps with a bounded number of
cut-points can be represented by forest automata (FAs) that are basically tuples of TAs
accepting tuples of trees whose leaves can refer back to the roots of the trees. Moreover,
alphabets of FAs may contain nested FAs, leading to a hierarchical encoding of heaps, so
that FAs can represent even sets of heaps with an unbounded number of cut-points (e.g.,
sets of DLLs). Intuitively, a nested FA can describe a part of a heap with a bounded num-
ber of cut-points (e.g., a DLL segment), and by using such an automaton as an alphabet
symbol an unbounded number of times, heaps with an unbounded number of cut-points are
described.

In [68], it was shown that entailment of non-nested FAs (i.e., having a bounded number
of cut-points) is decidable. This covers sets of complex structures like SLLs with head/tail
pointers. It was also showed that entailment can be decided or quite precisely approximated
for a large class of nested FAs. Further, C program statements manipulating pointers can
be encoded as operations modifying FAs. This made it possible to generalise the essential
parts (mainly the forward state space exploration) of the framework of abstract regular tree
model checking (ARTMC) [38, 35] to forest automata and implement a shape analyser based
on it. Finally, our work [81] (which is one of main contributions of this thesis) shows that
it is possible to compute forest automata intersection (under-approximated or even precise
for a large class of nested FAs) and implement a generalisation of the counterexample-based
abstraction refinement of [38, 35] based on it.

The proposed approach brings the principle of local heap manipulation (i.e., dealing with
separated parts of heaps) from separation logic into the world of automata. It combines
some advantages of using automata and separation logic. Automata provide higher general-
ity and flexibility of the abstraction and allow one to leverage the recent advances of efficient
use of non-deterministic automata [10, 12]. As further discussed below, the use of sepa-
ration allows for a further increase in efficiency compared to a monolithic automata-based
encoding proposed in [35].

Forest-automata-based symbolic execution and abstraction refinement was implemented
in a prototype tool called Forester. The tool is able to fully automatically verify complex
properties of programs with complex data structures such as various flavours of (nested
and/or circular) lists, trees, or skip lists. In SV-COMP, it was able to handle a number of
benchmarks with complex data structures that no other tool could successfully verify.

3.2 From Heaps to Forests
In this section, the concept of hierarchical forest automata as a symbolic representation of
heaps in an informal way is outlined. For the purpose of the explanation, heaps may be
viewed as directed graphs whose nodes correspond to allocated memory cells and edges to
pointer links between these cells. The nodes may be labelled by non-pointer data stored in
them (assumed to be from a finite data domain) and by program variables pointing to the
nodes. Edges may be labelled by the corresponding selectors of data structures.

In what follows, the description is restricted to garbage-free heaps, in which all memory
cells are reachable from pointer variables by following pointer links. This is, however, not
a restriction in practice since the emergence of garbage can be checked for each executed
program statement. If some garbage arises, an error message can be issued and the symbolic
computation stopped. Alternatively, the garbage can be removed and the computation
resumed.

20

x
1

2

3

y
4

next

next

next

next

next
data

data

data

data

data

data

data

datanext

next

next

(a) A heap graph with cut-points highlighted
in red

x
1

2

2

3

3

3y
4

2

next

next

next next

next

next

next

next

data

data

data data

data

data

data

data

(b) The canonical tree decomposition of the
heap with x ordered before y

Figure 3.1: A heap graph and its tree decomposition

It is easy to see that each heap graph can be decomposed into a set of tree components
when the leaves of the tree components are allowed to reference back to the roots of these
components. Moreover, given a total ordering on program variables and selectors, each
heap graph may be decomposed into a tuple of tree components in a canonical way as
illustrated in Figures 3.1a and 3.1b. In particular, one can first identify the so-called cut-
points, i.e., nodes that are either pointed to by a program variable or that have several
incoming edges. Next, the cut-points can be canonically numbered using a depth-first
traversal of the heap graph starting from nodes pointed to by program variables in the
order derived from the order of the program variables and respecting the order of selectors.
Subsequently, one can split the heap graph into tree components rooted at particular cut-
points. These components should contain all the nodes reachable from their root while
not passing through any cut-point, plus a copy of each reachable cut-point, labelled by its
number.

The notion of forest automata builds upon the described decomposition of heaps into
tree components. In particular, a forest automaton (FA) is basically a tuple of tree automata
(TAs). Each of the TAs accepts trees whose leaves may refer back to the roots of any of
these trees. An FA then represents exactly the set of heaps that may be obtained by taking
a single tree from the language of each of the component TAs and by glueing the roots of
the trees with the leaves referring to them.

The described encoding allows one to represent sets of heaps with a bounded number of
cut-points. Many common dynamic data structures, however, have an unbounded number
of cut-points. Indeed, for instance, in doubly-linked lists (DLLs), every node is a cut-point.
The problem of an unbounded number of cut-points is solved by representing heaps in a
hierarchical way. In particular, one collects sets of repeated subgraphs (called components)
containing cut-points into the so-called boxes. Every occurrence of such components can
then be replaced by a single edge labelled by the appropriate box. To specify how a subgraph
enclosed within a box is connected to the rest of the graph, the subgraph is equipped with
the so-called input and output ports. The source vertex of a box then matches the input

21

next

prev

next

prev

next

prev

(a) A part of a DLL

DLL DLL DLL

next
prev

(b) A hierarchical encoding of the DLL

Figure 3.2: Encoding of a DLL using boxes

left right
next

next
left right

next
next

left right
next
next

(a) A tree with linked sibling nodes

𝑖

𝑜1 𝑜2

𝐵

left right
next

next

(b) A pattern that re-
peats in the structure
and that is linked in
such a way that all
nodes in the structure
are cut-points

𝐵

𝐵 𝐵

(c) The tree with linked sibling
nodes represented using hyper-
edges labelled by the box 𝐵

Figure 3.3: An example of a data structure where boxes with multiple output ports are
necessary

port of the subgraph, and the target vertex of the edge matches the output port.1 In this
way, a set of heap graphs with an unbounded number of cut-points can be transformed into
a set of hierarchical heap graphs with a bounded number of cut-points at each level of the
hierarchy. Figs. 3.2a and 3.2b illustrate how this approach can reduce the representation
of DLLs into singly-linked lists (with a DLL segment used as a kind of a meta-selector).

In general, a box is allowed to have more than one output port. Boxes with multiple
output ports, however, reduce heap graphs not to graphs but rather hypergraphs with hyper-
edges having a single source node, but multiple target nodes. This situation is illustrated
on a simple example shown in Fig. 3.3. The tree with linked siblings from Fig. 3.3a is
turned into a hypergraph with binary hyperedges shown in Fig. 3.3c using the box 𝐵 from
Fig. 3.3b. The subgraph encoded by the box 𝐵 can be connected to its surroundings via
its input port 𝑖 and two output ports 𝑜1 and 𝑜2. Therefore, the hypergraph from Fig. 3.3c
encodes one level of the tree by a hyperedge with one source and two target nodes. A for-
malisation using hypergraphs and hyperedges was used in [72]. Here, in order to simplify

1Later on, the term input port will be used to refer to the nodes pointed to by program variables too
since these nodes play a similar role as the inputs of components.

22

the formal development, ordinary graphs are used, in which a hyperedge is represented by
a set of ordinary edges (which always need to occur together) from a single source to several
targets.

Sets of heap graphs corresponding either to the top level of the representation or to
boxes of different levels can then be decomposed into tree components and represented
using hierarchical FAs, whose alphabets can contain nested FAs. Intuitively, FAs appearing
in the alphabet of some higher-level FA play a role in some sense similar to that of inductive
predicates in separation logic.2 The approach is restricted to automata whose nesting forms
a finite and strict hierarchy (i.e., there is no circular use of the automata in their alphabets).
This is obviously different from separation logic, where recursive inductive predicates are
standard. This kind of recursion is in forest automata represented through cycles of tree
automata transitions.

3.3 Forest Automata and Heaps
We consider sequential non-recursive C programs operating on a set of pointer variables
and the heap using standard statements and control flow constructs. Heap cells contain
zero or several pointer or data fields.

Configurations of the considered programs consist of memory-allocated data and an
assignment of variables. Heap memory can be viewed as a (directed) graph whose nodes
correspond to allocated memory cells. Every node contains a set of named pointer and data
fields. Each pointer field points to another node (we model the NULL address and undefined
locations as special memory nodes pointed by variables NULL and undef, respectively),
and the same holds for pointer variables of the program. Data fields of memory nodes
hold a data value. Term selector is used to talk both about pointer and data fields. For
simplification, data variables are modeled as pointer variables pointing to allocated nodes
that contain a single data field with the value of the variable, and therefore consider only
pointer variables hereafter.

Heap memory is represented by partitioning it into a tuple of trees, the so-called forest.
The leaves of the trees contain information about roots of which trees they should be merged
with to recover the original heap. The symbolic representation of a set of heaps by forest
automata is based on representing the obtained sets of forests using tuples of tree automata.

Graphs and Heaps

Let Γ be a finite set of selectors, Ω be a finite set of references, and D be a bounded data
domain such that Ω∩D = ∅. A graph 𝑔 over ⟨Γ,Ω⟩ is a tuple ⟨𝑉𝑔, next𝑔⟩ where 𝑉𝑔 is a finite
set of nodes and next𝑔 : Γ → (𝑉𝑔 ⇀ (𝑉𝑔 ∪ Ω ∪ D)) maps each selector 𝑎 ∈ Γ to a partial
mapping next𝑔(𝑎) from nodes to nodes, references, or data values. References and data
values are treated as special terminal nodes that are not in the set of regular nodes, i.e.,
𝑉𝑔 ∩ (Ω ∪ D) = ∅. For a graph 𝑔, we use 𝑉𝑔 to denote the nodes of 𝑔, and for a selector
𝑎 ∈ Γ, we use 𝑎𝑔 to denote the mapping next𝑔(𝑎). The triple (𝑣, 𝑎, 𝑢) is an edge of 𝑔 if
𝑎𝑔(𝑣) = 𝑢. Given a finite set of variables X, a heap ℎ over ⟨Γ,X⟩ is a tuple ⟨𝑉ℎ, nextℎ, 𝜎ℎ⟩
where ⟨𝑉ℎ, nextℎ⟩ is a graph over ⟨Γ, ∅⟩ and 𝜎ℎ : X → 𝑉ℎ is a (total) map of variables to
nodes.

2For instance, a nested FA is used to encode a DLL segment of length 1. In separation logic, the
corresponding inductive predicate would represent segments of length 1 or more. In forest-automata-based
approach, the repetition of the segment is encoded in the structure of the top-level FA.

23

Forest Representation of Heaps

A graph 𝑡 is a tree if its nodes and pointers form a tree with a unique root node, denoted
root(𝑡) (references and data fields may have multiple incoming edges). A forest over ⟨Γ,X⟩
is a pair ⟨𝑡1 · · · 𝑡𝑛, 𝜎𝑓 ⟩ where 𝑡1 · · · 𝑡𝑛 is a sequence of trees over ⟨Γ, {1, . . . , 𝑛}⟩ and 𝜎𝑓 is
a (total) mapping 𝜎𝑓 : X → {1, . . . , 𝑛}. The elements in {1, . . . , 𝑛} are called root references
(note that 𝑛 must be the number of trees in the forest). A forest ⟨𝑡1 · · · 𝑡𝑛, 𝜎𝑓 ⟩ over ⟨Γ,X⟩
represents a heap over ⟨Γ,X⟩, denoted ⊗⟨𝑡1 · · · 𝑡𝑛, 𝜎𝑓 ⟩, obtained by taking the union of the
trees of 𝑡1 · · · 𝑡𝑛 (assuming w.l.o.g. that the sets of nodes of the trees are disjoint), connecting
root references with the corresponding roots, and mapping every defined variable 𝑥 to the
root of the tree indexed by 𝑥. Formally, ⊗⟨𝑡1 · · · 𝑡𝑛, 𝜎𝑓 ⟩ is the heap ℎ = ⟨𝑉ℎ,nextℎ, 𝜎ℎ⟩
defined by (i) 𝑉ℎ =

⋃︀𝑛
𝑖=1 𝑉𝑡𝑖 , (ii) for 𝑎 ∈ Γ and 𝑣 ∈ 𝑉𝑡𝑘 , if 𝑎𝑡𝑘(𝑣) ∈ {1, . . . , 𝑛} then

𝑎ℎ(𝑣) = root(𝑡𝑎𝑡𝑘 (𝑣)) else 𝑎ℎ(𝑣) = 𝑎𝑡𝑘(𝑣), and, finally, (iii) for every 𝑥 ∈ X it holds that
𝜎ℎ(𝑥) = root(𝑡𝜎𝑓 (𝑥)).

3.3.1 Forest Automata

A forest automaton is essentially a tuple of tree automata accepting a set of tuples, each
tuple being a forest decomposition of a graph, associated with a mapping of variables to
root references.

Tree Automata

To simplify the formal development, we use a definition of tree automata specialised to the
above sketched application in shape analysis.

A (finite, non-deterministic) tree automaton (TA) over ⟨Γ,Ω⟩ is a triple 𝐴 = (𝑄, 𝑞0,Δ)
where 𝑄 is a finite set of states (we assume 𝑄 ∩ (D ∪ Ω) = ∅), 𝑞0 ∈ 𝑄 is the root state (or
initial state), denoted root(𝐴), and Δ is a set of transitions. Each transition 𝜏 is of the
form 𝑞 → 𝑎(𝑞1, . . . , 𝑞𝑚) where 𝑚 ≥ 0, 𝑞 ∈ 𝑄, 𝑞1, . . . , 𝑞𝑚 ∈ (𝑄∪Ω∪D)3, and 𝑎 = 𝑎1 · · · 𝑎𝑚 is
a sequence of different symbols from Γ. We call 𝑞 the parent state of 𝜏 and 𝑞1, . . . , 𝑞𝑚 child
states. Additionally, we assume the sequence of symbols 𝑎 = 𝑎1 · · · 𝑎𝑚 is always ordered
according to some total ordering on Γ (this is important when checking entailment of forest
automata, cf. Section 3.3.3, or constructing their intersection, cf. Section 3.5).

Let 𝑡 be a tree over ⟨Γ,Ω⟩, and let 𝐴 = (𝑄, 𝑞0,Δ) be a TA over ⟨Γ,Ω⟩. A run of 𝐴
over 𝑡 is a total map 𝜌 : 𝑉𝑡 → 𝑄 where 𝜌(root(𝑡)) = 𝑞0 and, for each node 𝑣 ∈ 𝑉𝑡, there
is a transition 𝑞 → 𝑎(𝑞1, . . . , 𝑞𝑚) in Δ with 𝑎 = 𝑎1 · · · 𝑎𝑚 such that 𝜌(𝑣) = 𝑞 and for all
1 ≤ 𝑖 ≤ 𝑚, we have (i) if 𝑞𝑖 ∈ 𝑄, then 𝑎𝑖𝑡(𝑣) ∈ 𝑉𝑡 and 𝜌(𝑎𝑖𝑡(𝑣)) = 𝑞𝑖, and (ii) if 𝑞𝑖 ∈ Ω ∪ D,
then 𝑎𝑖𝑡(𝑣) = 𝑞𝑖. The language of 𝐴 is defined as 𝐿(𝐴) = {𝑡 | there is a run of 𝐴 over 𝑡},
and the language of a state 𝑞 ∈ 𝑄 as 𝐿(𝐴, 𝑞) = 𝐿(𝑄, 𝑞,Δ).

Forest Automata

A forest automaton (FA) over ⟨Γ,X⟩ is a tuple of the form 𝐹 = ⟨𝐴1 · · ·𝐴𝑛, 𝜎⟩ where
𝐴1 · · ·𝐴𝑛, with 𝑛 ≥ 0, is a sequence of TAs over ⟨Γ, {1, . . . , 𝑛}⟩ whose sets of states 𝑄1, . . . ,
𝑄𝑛 are mutually disjoint, and 𝜎 : X → {1, . . . , 𝑛} is a mapping of variables to root references.
A forest ⟨𝑡1 · · · 𝑡𝑛, 𝜎𝑓 ⟩ over ⟨Γ,X⟩ is accepted by 𝐹 iff 𝜎𝑓 = 𝜎 and ∀1 ≤ 𝑖 ≤ 𝑛 : 𝑡𝑖 ∈ 𝐿(𝐴𝑖).

3For simplicity, data values and references are used as special leaf states accepting the data values and
references they represent, instead of having additional leaf transitions to accept them.

24

The language of 𝐹 , denoted as 𝐿(𝐹), is the set of heaps over ⟨Γ,X⟩ obtained by applying
⊗ on forests accepted by 𝐹 .

3.3.2 Boxes and Hierarchical Forest Automata

Forest automata, as defined in Section 3.3.1, can represent heaps with cut-points of an
unbounded in-degree as, e.g., in singly-linked lists (SLLs) with head/tail pointers (indeed,
there can be any number of references from leaf nodes to a certain root). The basic definition
of FAs cannot, however, deal with heaps with an unbounded number of cut-points, since
this would require an unbounded number of TAs within the FAs. An example of such a
set of heaps is the set of all doubly-linked lists (DLLs) of an arbitrary length, where each
internal node is a cut-point. The solution provided in [68] is to allow FAs to use other
nested FAs, called boxes, as symbols to “hide” recurring subheaps and in this way eliminate
cut-points. The alphabet of a box itself may also include boxes, though it is required that
they them to form a finite hierarchy—they cannot be recursively nested.4The language of
a box is a set of heaps over 𝑘+1 special variables, in and out1, . . . , out𝑘, which correspond
to the one input and 𝑘 output ports of the box respectively.

An FA with the references {in, out1, . . . , out𝑘}, for 𝑘 ≥ 1, is called a 𝑘-ary box; the
arity of 𝐵 is denoted as ♯𝐵 = 𝑘. An FA over ⟨Γ,X⟩ is a nested/hierarchical FA over ⟨Γ,X⟩
of level 1, and a nested FA over ⟨Γ,X⟩ of level ℓ > 1 is an FA over ⟨Γ ∪ ℬ,X⟩ where
ℬ may contain selectors of the form 𝐵(𝑖), where 𝐵 is a nested box over ⟨Γ,X⟩ of a level
smaller than ℓ and 1 ≤ 𝑖 ≤ ♯𝐵. Finally, given a 𝑘-ary box 𝐵, a 𝑘-tuple of graph edges
(𝑣,𝐵(1), 𝑢1), . . . , (𝑣,𝐵(𝑘), 𝑢𝑘) is called a hyperedge of 𝐵 from the source node 𝑣 to the target
nodes 𝑢1, . . . , 𝑢𝑘.

In the case of a nested FA 𝐹 , one needs to distinguish between its language 𝐿(𝐹), which
is a set of heaps over ⟨Γ ∪ ℬ,X⟩, and its semantics J𝐹 K, which is a set of heaps over ⟨Γ,X⟩
that emerges when all boxes in the heaps of the language are recursively unfolded in all
possible ways.

A heap ℎ′ is called an unfolding of a heap ℎ if ℎ has edges (𝑢,𝐵(1), 𝑣1), . . . , (𝑢,𝐵(𝑘), 𝑣𝑘)
labeled with indexed variants of a box 𝐵 = ⟨𝐴1 · · ·𝐴𝑛, 𝜎ℬ⟩ of the rank 𝑘, and ℎ′ is obtained
from ℎ by substituting these edges by a graph from 𝐿(𝐵), connecting the input and output
ports of 𝐵 at 𝑢 and 𝑣1, . . . , 𝑣𝑘, respectively. That is, all edges (𝑢,𝐵(1), 𝑣1), . . . , (𝑢,𝐵(𝑘), 𝑣𝑘)
are removed, and the remainder of ℎ is united with a heap ℎ𝐵 ∈ 𝐿(𝐵), with the variable
map 𝜎𝐵, in which 𝜎𝐵(in) = 𝑢, 𝜎𝐵(out1) = 𝑣1, . . . , 𝜎𝐵(out𝑘) = 𝑣𝑘, and all its remaining
nodes do not appear in ℎ. We then write ℎ⇝𝐵,𝑢/ℎ𝐵

ℎ′ or simply ℎ⇝ ℎ′. Then ⇝* is used
to denote the reflexive transitive closure of ⇝. The semantics of 𝐹 , written as J𝐹 K, is the
set of all heaps ℎ′ over ⟨Γ,X⟩ for which there is a heap ℎ in 𝐿(𝐹) such that ℎ⇝* ℎ′.

3.3.3 Entailment of Forest Automata

The entailment, or semantic inclusion, test of forest automata is needed when testing con-
vergence of our program analysis. In this section, an overview of the techniques described
in detail in [68, 127] is given.

The starting point is a component-wise language inclusion test. That is, for a pair of
FAs 𝐹 = ⟨𝐴1 · · ·𝐴𝑛, 𝜎⟩ and 𝐹 ′ = ⟨𝐴′

1, . . . , 𝐴
′
𝑚, 𝜎′⟩, the component-wise test 𝐹 ⊑ 𝐹 ′ returns

true iff 𝑚 = 𝑛, 𝜎 = 𝜎′, and 𝐿(𝐴𝑖) ⊆ 𝐿(𝐴′
𝑖) for every 1 ≤ 𝑖 ≤ 𝑛. The test safely approximates

4Recursive boxes would introduce complications in symbolic execution and checking entailment. Instead,
recursively repeating structure of heap graphs is with FAs expressed using cycles of transitions in TAs.

25

the language inclusion 𝐿(𝐹) ⊆ 𝐿(𝐹 ′) and hence also semantic entailment J𝐹 K ⊆ J𝐹 ′K. It is
efficient, allowing us to use fast tree automata language checking algorithms such as [12].
It is incomplete though—if it returns false, the language inclusion and entailment may still
hold. In the following, it is discussed how the test can be made more precise by means of
converting the FAs into special normal forms.

Dense and Canonic Form of Non-hierarchical FAs

A cut-point of a heap ℎ was defined as a node that is either pointed by some variable or is
a target of more than one selector edge. The roots of trees of a forest 𝑓 that are not cut-
points in the heap ⊗𝑓 represented by 𝑓 are called false roots. A forest is dense if it does not
have false roots, and a dense FA accepts only dense forests. Each FA can be transformed
into a set of dense FAs that together have the same language as the original. Density
will be used in abstraction refinement and construction of intersections of FAs discussed in
Section 3.5.

Density is a part of canonicity. Canonicity extends density with the requirements that
(1) every node of the corresponding graph is reachable from a node assigned to a variable
and (2) the trees of the forest are ordered by the discovery time of their roots in the depth-
first traversal starting from the nodes marked by the variables. The discovery times of
nodes in the traversal depend on a predetermined ordering of the variables and selectors,
according to which the traversal is steered. With the ordering fixed, the discovery times are
completely deterministic (recall that every node in a heap is reachable from some variable
and that a node has at most one successor for every selector). Hence, there is indeed exactly
one canonic forest representation for every heap. An FA is canonicity-respecting if it accepts
only canonical forests. The transformation into the canonicity-respecting form is discussed
in detail in [68, 127]. It may transform a single FA into a set of canonicity-respecting FAs
such that the semantics of FAs in the set form a partition of the semantics of the original
FA. The component-wise test over canonicity-respecting automata is then a precise test
of their language, so it is also a precise semantic entailment test of non-hierarchical forest
automata (since the language of a non-hierarchical FA coincides with its semantics).

To test language inclusion of a pair of non-canonicity-respecting FAs 𝐹 and 𝐹 ′ in a
sound and complete way, one first converts the two FAs into sets 𝑆 and 𝑆′ of canonicity-
respecting FAs, respectively. The second step is testing language inclusion of the two sets,
that is, testing whether

⋃︀
𝐹𝑎∈𝑆 𝐿(𝐹𝑎) ⊆

⋃︀
𝐹𝑏∈𝑆′ 𝐿(𝐹𝑏).

The language inclusion of any two sets 𝑆 and 𝑆′ of canonicity respecting FA can be
decided in a sound and complete way by converting each set into a single tree automaton
and testing language inclusion of the two tree automata. The set 𝑆 is converted into the
tree automaton 𝐴𝑆 , created as follows: Every forest automaton 𝐹 = (𝐴1 · · ·𝐴𝑛, 𝜎) ∈ 𝑆 is
converted into the tree automaton 𝐴𝐹 that accepts exactly trees of the form 𝜎(𝑡1, . . . , 𝑡𝑛)
where 𝑡𝑖 ∈ 𝐿(𝐴𝑖), for 1 ≤ 𝑖 ≤ 𝑛. That is, 𝐴𝐹 accepts trees that arise by taking a tree from
each 𝐴𝑖, and connecting them below a new common root, labeled by 𝜎 as a new symbol.
This tree automaton is created from the tree automata union of 𝐴1, . . . , 𝐴𝑛 by introducing
a new root state 𝑞 and transitions 𝑞 → (𝑞1, . . . , 𝑞𝑛) where, for 1 ≤ 𝑖 ≤ 𝑛, it holds that 𝑞𝑖 is
the root state of 𝐴𝑖 (one assumes w.l.o.g. that 𝐴1, . . . , 𝐴𝑛 have disjoint sets of states and, as
mentioned later, the FAs are kept in the form where each TA has one root transition). 𝐴𝑆

is then obtained as the tree automata union of all 𝐴𝐹 for 𝐹 ∈ 𝑆. The tree automaton 𝐴𝑆′

is constructed analogously from 𝑆′. It then holds that
⋃︀

𝐹𝑎∈𝑆 𝐿(𝐹𝑎) ⊆
⋃︀

𝐹𝑏∈𝑆′ 𝐿(𝐹𝑏) ⇐⇒
𝐿(𝐴𝑆) ⊆ 𝐿(𝐴𝑆′

), which is equivalent to
⋃︀

𝐹𝑎∈𝑆 J𝐹𝑎K ⊆
⋃︀

𝐹𝑏∈𝑆′ J𝐹𝑏K for non-hierarchical FA.

26

Entailment and Canonicity-respecting Form of Hierarchical FAs

Entailment of hierarchical FAs is substantially more difficult since they can hide parts of
heaps into boxes in an arbitrary way. We believe (though that has not been proved yet)
that the problem is decidable, considering that the expressive power of hierarchical FAs
is close to the decidable fragments of separation logic with inductive predicates studied
within [88, 91]. Here is presented a solution that is (theoretically speaking) incomplete, but
practical in the context of shape analysis with forest automata as the abstract domain—it
is fast, relatively simple, and precise enough. To describe this solution, we again start from
the component-wise test discussed above, and elaborate on how and when it can be made
more precise by transformations of FAs to normal forms.

The first complication compared to the case of non-nested FAs appears already when
converting to the canonicity-respecting form (even when the semantics of boxes is not
taken into account yet). Namely, the conversion requires that all nodes of the heaps in the
semantics of an FA are reachable from variables. With nested FAs, even if the nodes of
heaps of J𝐹 K are reachable from variables, some nodes might, however, be unreachable in
the corresponding heaps from 𝐿(𝐹). For instance, a path in a graph of J𝐹 K from a variable x
reaching some node 𝑢 might lead through boxes against the direction of the box-labelled
edges (the path uses a sub-path through a graph 𝑔 in J𝐵K that leads from an output port
to the input port of 𝑔). Such a path from x to 𝑢 would then on the top level—in the
corresponding graph of 𝐿(𝐹)—appear as leading from the node 𝑢 to a leaf labeled by the
variable x. Hence, when boxes are viewed as plain selectors, 𝑢 is not reachable but only
backward-reachable from a variable. The notion of canonicity and the canonicity-respecting
form for hierarchical FAs is hence in [72, 127] modified to take into account such paths as
well. Essentially, one pre-computes the so-called port interconnection of boxes, i.e., how
the graphs encoded by boxes interconnect their ports, and takes this into account in the
depth-first traversal, which determines the canonic order of the tree components. This way,
one can still have a precise language inclusion test of canonicity-respecting hierarchical
FA, but since the full semantics of boxes is not taken into account, it is only a sound
approximation of the semantic entailment.

The works [68, 127] go one step further and define a sub-class of nested FAs for which
the generalised canonicity with the component-wise test is a complete semantic entailment
test. In short, for the test of the entailment of FAs 𝐹 and 𝐹 ′ to be complete, it must hold
that (1) the heaps of 𝐿(𝐹) and 𝐿(𝐹 ′) are “maximally boxed”, meaning that if a sub-graph
is not hidden in a box, then there is no box of 𝐿(𝐹) or 𝐿(𝐹 ′) that would contain it, (2) the
sets of graphs hidden in different boxes are disjoint, and (3) different graphs hidden in
the boxes are not “overlapping” (meaning, e.g., that one box would hide a DLL segment
of length one and another box would hide a DLL segment of length two). We note that
although these restrictions may seem strong, The program analysis using forest automata
is designed in such a way that they are usually satisfied or can easily be enforced. The
fact that the entailment test is oblivious to the full semantics of boxes (apart from the pre-
computed information of port interconnection, it treats boxes as ordinary selectors) makes
it also highly efficient.

Root Interconnection Graph

In the practice of shape analysis based on forest automata, an additional heuristic is used
to speed up entailment testing. In particular, every FA is kept paired with the so-called
root interconnection graph [127], which contains information about reachability between its

27

cut-points. This allows a very fast refutation of their entailment in case the reachability
relation is incompatible.

The root interconnection graph of a forest 𝑓 = ⟨𝑡1 · · · 𝑡𝑛, 𝜎⟩ is a (directed) graph 𝐺 =
(𝑉,𝐸) in which the nodes 𝑉 = {𝑡1, . . . , 𝑡𝑛} represent the roots of the trees 𝑡1, . . . , 𝑡𝑛, and
the edges 𝐸 ⊆ 𝑉 × (N× {1, 2})× 𝑉 represent the interconnection of the roots through the
paths in 𝑓 . In particular, an edge labeled by (𝑘, ℓ) appears between 𝑡𝑖 and 𝑡𝑗 in 𝐺 if and
only if the depth-first traversal (DFT) started in the root of 𝑡𝑖 visits a reference to 𝑡𝑗 after
visiting 𝑘 − 1 other root references (when multiple occurrences of the same references are
counted as one). If 𝑡𝑗 is not visited anymore in the rest of the DFT, then ℓ = 1, otherwise
ℓ = 2.

Forest automata are kept in a form in which they accept forests with the same root
interconnection graph (this is actually a stronger property than the dense form). One can
then talk about the root interconnection graph of a forest automaton. Such FAs can be
transformed to the canonicity-respecting form by permuting the TA components based on
the information on the edges of the root interconnection graph. Languages of two forest
automata in the canonicity-respecting form and with defined root interconnection graphs
may then intersect (or be included in one another) only if their root interconnection graphs
are the same. Root interconnection graphs are thus used to speed up testing language
inclusion of forest automata, computation of their intersection, and also to improve precision
of their abstraction (discussed in detail in [127]).

3.4 Verification of Pointer Programs with Forest Automata
In this section, we provide an overview of the main components of the approach to verifica-
tion of pointer programs using forest automata as implemented in the tool Forester. The
detailed discussion of some of the components will be the subject of the further sections.

We start by discussing symbolic execution of programs in the C programming languages
in the abstract domain of forest automata.5 We will work on the level of the program’s con-
trol flow graph, which is a mapping 𝑝 : T → (L×L) where T is a set of program statements
and L is a set of program locations. Statements are partial functions 𝜏 : H ⇀ H where H is
the set of heaps over the selectors Γ and variables X occurring in the program. The heaps
from H are used as representations of program configurations. The initial configuration
is the heap ℎinit = ⟨∅, ∅, ∅⟩ (i.e., the empty graph and variable assignment). We assume
that statements are indexed by their line of code, so that no two statements of a program
are identical. If 𝑝(𝜏) = (ℓ, ℓ′), then the program 𝑝 can move from ℓ to ℓ′ while modifying
the heap ℎ at the location ℓ to 𝜏(ℎ). We assume that X contains a special variable pc
that always evaluates to a location from L, and that every statement updates its value
according to the target location. Note that a single program location can have multiple
successors (corresponding, e.g., to conditional statements), or no successor (corresponding
to exit points of the program). We use src(𝜏) to denote ℓ and tgt(𝜏) to denote ℓ′ in the pair
above. Every program 𝑝 has a designated location ℓinit called its entry point and ℓerr ∈ L
called the error location6.

5By symbolic execution, we mean an execution of the program in the given abstract domain using abstract
transformers (there are also other different notions of symbolic execution).

6For simplification, we assume checking the error line (un-)reachability property only, which is, anyway,
sufficient in most practical cases. For detection of garbage (which is not directly expressible as line reacha-
bility), we can extend the formalism and check for garbage after every command, and if a garbage is found,
we jump to ℓerr.

28

A program path 𝜋 in 𝑝 is a sequence of statements 𝜋 = 𝜏1 · · · 𝜏𝑛 ∈ T* such that src(𝜏1) =
ℓinit, and, for all 1 < 𝑖 ≤ 𝑛, it holds that src(𝜏𝑖) = tgt(𝜏𝑖−1). We say that 𝜋 is feasible iff
𝜏𝑛 ∘ · · · ∘ 𝜏1(ℎinit) is defined. The program 𝑝 is safe if it contains no feasible program path
with tgt(𝜏𝑛) = ℓerr. In the following, we fix a program 𝑝 with locations L, variables X, and
selectors Γ.

3.4.1 Symbolic Execution with Forest Automata

Safety of the program 𝑝 is verified using symbolic execution in the domain F of forest au-
tomata over ⟨Γ,X⟩. The program is executed symbolically by iterating abstract execution of
program statements and a generalization step. These high-level operations are implemented
as sequences of atomic operations and splitting. Atomic operations are partial functions of
the type 𝑜 : F ⇀ F. Splitting splits an FA 𝐹 into a set 𝒮 of forest automata such that
J𝐹 K =

⋃︀
𝐹 ′∈𝒮 J𝐹 ′K. Splitting is necessary for some operations since forest automata are not

closed under union, i.e., some sets of heaps expressible by a finite union of semantics of
forest automata are not expressible by a single forest automaton.7

The symbolic execution builds the abstract reachability tree (ART) of the program, with
branches being symbolic executions. Nodes of the ART are forest automata corresponding
to sets of reachable configurations at particular program locations. The tree is rooted by the
forest automaton 𝐹init s.t. J𝐹initK = {ℎinit}. Every other node is a result of an application
of an atomic operation or a split on its parent, and the applied operation is recorded on
the tree edge between the two. The atomic operation corresponds to one of the following:
symbolic execution of an effect of a program statement, generalization, or an auxiliary
meta-operation that modifies the FA while keeping its semantics (e.g., connects or cuts its
components). Splitting appears in the tree as a node labelled by a special operation split
with several children connected via edges labelled by a special operation split . The said
operations are described in more detail in Section 3.6.

The tree is expanded starting from the root as follows: First, a symbolic configura-
tion, represented using an FA, in the parent node is generalized by iterating the following
three operations until fixpoint: (i) transformation of the FA into the dense form (see Sec-
tion 3.3.3), (ii) application of regular abstraction over-approximating sets of sub-graphs
between cut-points of the heaps represented by the FA (described in more detail in Sec-
tion 3.7.2), and (iii) automatic discovery and folding of boxes to decrease the number of
cut-points in the represented heaps (described in more detail in Section 3.8). The trans-
formation into the dense form is performed in order to obtain the most general abstrac-
tion in the subsequent step. A configuration where one more loop of the transformation-
abstraction-folding sequence has no further effect is called stable. Operations implementing
effects of statements are then applied on stable configurations. Exploration of a branch is
terminated if its last configuration is entailed (cf. Section 3.3.3) by a symbolic configuration
with the same program location reached previously elsewhere in the tree (not necessarily
on the given branch).

7To show an example of how a symbolic execution may generate a set of configurations not expressible
using a single FA, assume that the statement x = y->sel is executed on a forest automaton that encodes
cyclic singly-linked lists of an arbitrary length where y points to the head of the list. If the list is of length 1,
then x will, after execution of the statement, point to the same location as y. If the list is longer, x and y

will point to different locations. In the former case, the configuration has a single tree component, with
both variables pointing to it. In the latter case, the two variables point to two different components. These
two configurations cannot be represented using a single forest automaton.

29

A symbolic path is a path between a node and one of its descendants in the ART, i.e.,
a sequence of FAs and operations 𝜔 = 𝐹0𝑜1𝐹1 . . . 𝑜𝑛𝐹𝑛 such that 𝐹𝑖 = 𝑜𝑖(𝐹𝑖−1). A forward
run is a symbolic path where 𝐹0 = 𝐹init. We write 𝜔𝑖 to denote the prefix of 𝜔 ending
by 𝐹𝑖 and 𝑖𝜔 to denote its suffix starting from 𝐹𝑖. A forward run that reaches ℓerr is
called an abstract counterexample. We associate every operation 𝑜 with its exact semantics
𝑜, defined as 𝑜(𝐻) =

⋃︀
ℎ∈𝐻{𝜏(ℎ)} if 𝑜 implements the program statement 𝜏 , and as the

identity for all other operations (operations implementing generalization, splitting, etc.),
for a set of heaps 𝐻. The exact execution of 𝜔 is a sequence ℎ0 · · ·ℎ𝑛 such that ℎ0 ∈ J𝐹0K
and ℎ𝑖 ∈ 𝑜({ℎ𝑖−1}) ∩ J𝐹𝑖K for 0 < 𝑖 ≤ 𝑛. We say that 𝜔 is feasible if it has an exact
execution, otherwise it is infeasible/spurious. Atomic operations in a symbolic path are
either semantically precise, or over-approximate their exact semantics, i.e., it always holds
that 𝑜(J𝐹 K) ⊆ J𝑜(𝐹)K. Therefore, if the exploration of the program’s ART finds no abstract
counterexample, there is no exact counterexample, and the program is safe.

3.4.2 Backward Run and Counterexample Analysis

Assume that the forward run 𝜔 = 𝐹0𝑜1𝐹1 · · · 𝑜𝑛𝐹𝑛 is spurious. Then there must be an
index 𝑖 > 0 such that the symbolic path 𝑖𝜔 is feasible but 𝑖−1𝜔 is not. This means that the
operation 𝑜𝑖 over-approximated the semantics of 𝜔 and introduced into J𝐹𝑖K some heaps
that are not in 𝑜𝑖(J𝐹𝑖−1K) and that are bad in the sense that they make 𝑖𝜔 feasible. An
interpolant for 𝜔 is then a forest automaton 𝐼𝑖 representing the bad heaps of J𝐹𝑖K that
were introduced into J𝐹𝑖K by the over-approximation in 𝑜𝑖 and are disjoint from 𝑜𝑖(J𝐹𝑖−1K).
Formally,

1. J𝐼𝑖K ∩ 𝑜𝑖(J𝐹𝑖−1K) = ∅ and

2. 𝜔𝑖 is infeasible from all ℎ ∈ J𝐹𝑖K ∖ J𝐼𝑖K.

In the following, we describe how to use a backward run, which reverts operations of
the forward run on the semantic level, to check spuriousness of an abstract counterexam-
ple. Moreover, we show how to derive interpolants from backward runs reporting spurious
counterexamples, and how to use those interpolants to refine the operation of abstraction
so that it will not introduce the bad configurations in the same way again.

A backward run for 𝜔 is the sequence 𝜔 = 𝐹 0 · · ·𝐹𝑛 such that

1. 𝐹𝑛 = 𝐹𝑛 and

2.
q
𝐹 𝑖−1

y
= 𝑜−1

𝑖 (
q
𝐹 𝑖

y
) ∩ J𝐹𝑖−1K, that is, 𝐹 𝑖−1 represents the weakest precondition ofq

𝐹 𝑖

y
w.r.t. 𝑜𝑖 that is localized to J𝐹𝑖−1K.

If it happens that there is an FA 𝐹 𝑖 such that
q
𝐹 𝑖

y
= ∅ (and, consequently,

q
𝐹 0

y
=

∅, . . . ,
q
𝐹 𝑖−1

y
= ∅), the forward run is spurious. In such a case, an interpolant 𝐼𝑖 for 𝜔 can

be obtained as 𝐹 𝑖+1 where 𝑖+1 is the smallest index such that
q
𝐹 𝑖+1

y
̸= ∅. We elaborate

on the implementation of the backward run in Section 3.7.1.
We note that our use of interpolants differs from that of McMillan [108] in two aspects.

First, due to the nature of our backward run, we compute an interpolant over-approximating
the source of the suffix of a spurious run, not the effect of its prefix. Second, for simplicity
of implementation in our prototype, we do not compute a sequence of localized interpolants
but use solely the interpolant obtained from the beginning of the longest feasible suffix of
the counterexample for a global refinement. It would also, however, be possible to use the
sequence 𝐹 𝑖, . . . , 𝐹𝑛 as localized interpolants.

30

In Section 3.7.2, we show that using the interpolant 𝐼𝑖, it is possible to refine regular
abstraction 𝑜𝑖 (the only over-approximating operation) to exclude the spurious run. We can
formulate progress guarantees for the next iterations of the CEGAR loop. The formulation
will refer to the notion of compatibility of two FAs, which intuitively means that the two
FAs represent the heaps from the intersection of their semantics in the same way: their
boxes are folding the same sub-heaps of the represented heaps, and their TA components
are partitioning the represented heaps into the same tree components. We will define
compatibility formally in Section 3.5.2. The progress guarantees are that

1. for any FA 𝐹 such that J𝐹 K ⊆ J𝐹𝑖−1K that is compatible with 𝐹𝑖−1 it holds that
J𝑜𝑖(𝐹)K ∩ J𝐼𝑖K = ∅, and

2. forward runs 𝜔′ = 𝐹 ′
0𝑜1𝐹

′
1 · · · 𝑜𝑛𝐹 ′

𝑛 such that for all 1 ≤ 𝑗 ≤ 𝑛, J𝐹 ′
𝑖 K ⊆ J𝐹𝑖K and 𝐹 ′

𝑖 is
compatible with 𝐹𝑖 are excluded from the ART.

In the following sections, we elaborate in a greater detail on the components of the ver-
ification procedure outlined above. We discuss the construction of forest automata inter-
section in Section 3.5, then we describe how the forward run is implemented in Section 3.6,
and how operations are inverted while checking spuriousness of a counterexample in a back-
ward run in Section 3.7.1. We then discuss the regular abstraction and its refinement using
the interpolants obtained from the backward run in Section 3.7.2. Lastly, we give more
detail on how boxes to be folded are automatically identified within the transformation-
abstraction-folding loop in Section 3.8.

3.5 Intersection of Forest Automata
The above presented inference of interpolants used the intersection of the semantics of forest
automata to detect spuriousness of a counterexample. In this section, we give an algorithm
that computes an under-approximation of the intersection of the semantics of a pair of FAs,
and later give conditions (which are, in fact, met by the pairs of FAs in our backward run
analysis) on the intersected FAs to guarantee that the computed intersection is precise.

3.5.1 Intersection Construction

A simple way to compute the intersection of the semantics of two FAs, denoted as ∩, is com-
ponent-wise, that is, for two hierarchical FAs 𝐹 = ⟨𝐴1 · · ·𝐴𝑛, 𝜎⟩ and 𝐹 ′ = ⟨𝐴′

1 · · ·𝐴′
𝑛, 𝜎

′⟩
over ⟨Γ,X⟩ with 𝜎 = 𝜎′, we compute the FA 𝐹 ∩ 𝐹 ′ = ⟨(𝐴1 ∩ 𝐴′

1) · · · (𝐴𝑛 ∩ 𝐴′
𝑛), 𝜎⟩. Note

that intersection of forest automata with different numbers of components or different
assignments of references is always empty. The tree automata product construction for
our special kind of tree automata synchronizes on data values and on references. That is,
a pair (𝑎, 𝑏) that would be computed by a classical product construction where 𝑎 or 𝑏 is
a reference or a data value is replaced by 𝑎 if 𝑎 = 𝑏, and removed otherwise (cf. [51] for
the standard construction). This algorithm only under-approximates the actual semantic
intersection, i.e., it is only guaranteed that J𝐹 ∩ 𝐹 ′K ⊆ J𝐹 K ∩ J𝐹 ′K.

To increase its precision, we replace the operator ∩ by the operator ⊓ that takes into
account the semantics of the boxes. Namely, we compute the FA 𝐹 ⊓𝐹 ′ in a similar way as
𝐹 ∩ 𝐹 ′ but replace the tree automata product 𝐴 ∩𝐴′ by the construction of 𝐴 ⊓𝐴′, which
recursively calls ⊓ on boxes. For TAs 𝐴 = (𝑄, 𝑞0,Δ) and 𝐴′ = (𝑄′, 𝑞′0,Δ

′), it computes the

31

TA 𝐴 ⊓𝐴′ = (𝑄×𝑄′, (𝑞0, 𝑞
′
0),Δ ⊓Δ′) where Δ ⊓Δ′ is built as follows:

Δ ⊓Δ′ =
{︀
(𝑞, 𝑞′) → 𝑎1 ⊓ 𝑎′1 · · · 𝑎𝑛 ⊓ 𝑎′𝑛((𝑞1, 𝑞

′
1), . . . , (𝑞𝑚, 𝑞′𝑚)) |

𝑞 → 𝑎1 · · · 𝑎𝑛(𝑞1, . . . , 𝑞𝑚) ∈ Δ, 𝑞′ → 𝑎′1 · · · 𝑎′𝑛(𝑞′1, . . . , 𝑞′𝑚) ∈ Δ′}︀.
. Here, the symbol 𝑎𝑖 ⊓ 𝑎′𝑖 is computed as follows:

1. If 𝑎𝑖 = 𝑎′𝑖, then 𝑎𝑖 ⊓ 𝑎′𝑖 = 𝑎𝑖;

2. else if 𝑎𝑖 = 𝐵(𝑖) and 𝑎′𝑖 = 𝐵′
(𝑖) where 𝐵 and 𝐵′ are boxes over ⟨Γ,X⟩, then 𝑎𝑖 ⊓ 𝑎′𝑖 =

(𝐵 ⊓𝐵′)(𝑖);

3. otherwise 𝑎𝑖 ⊓ 𝑎′𝑖 as well as the whole transition is undefined (and no transition is
added to Δ ⊓Δ′).

3.5.2 Compatibility for Precise Intersection

In this section, we formally define the notion of compatibility of FAs. Compatibility is
required in order to guarantee precision of the intersection of FAs from the forward and the
backward runs. Intuitively, it means that the heaps represented by the FAs are folded into
boxes in the same way. If this were not the case, due to the different positions (or types) of
boxes occurring in the FAs, the intersection operation might yield an FA with the empty
language although the intersection of the semantics of the FAs would be non-empty.

For a forest automaton 𝐹 = ⟨𝐴1 · · ·𝐴𝑛, 𝜎⟩, its version with marked components is the
FA 𝐹𝐷 = ⟨𝐴1 · · ·𝐴𝑛, 𝜎∪𝜎root⟩ where 𝜎root is the mapping {root1 ↦→ 1, . . . , root𝑛 ↦→ 𝑛}. The
root variables root𝑖 are fresh variables that point to the roots of the tree components in
𝐿(𝐹).

q
𝐹𝐷

y
then contains the same heaps as J𝐹 K, but the roots of the components from

𝐿(𝐹) remain visible since they are explicitly marked by the root variables. In other words,
the root variables track how the forest decomposition of the heaps in 𝐿(𝐹) partitions the
heaps from J𝐹 K. By removing the root variables of ℎ𝐷 ∈

q
𝐹𝐷

y
, we get the original heap

ℎ ∈ J𝐹 K. We call ℎ𝐷 the component decomposition of ℎ by 𝐹 .
Using the notion of component decomposition, we further introduce a notion of the

representation of a heap by an FA. Namely, the representation of a box-free heap ℎ by
an FA 𝐹 with ℎ ∈ J𝐹 K records how 𝐹 represents ℎ, i.e., (i) how 𝐹 decomposes ℎ into
components, and (ii) how its sub-graphs enclosed in boxes are represented by the boxes.
Formally, the representation of ℎ by 𝐹 is a pair repre = (ℎ𝐷, {repre1, . . . , repre𝑛}) such
that ℎ𝐷 is the component decomposition of ℎ by 𝐹 , and repre1, . . . , repre𝑛 are obtained
from the sequence of unfoldings

ℎ0 ⇝𝐵1,𝑢1/𝑔1 ℎ1 ⇝𝐵2,𝑢2/𝑔2 · · ·⇝𝐵𝑛,𝑢𝑛/𝑔𝑛 ℎ𝑛

with ℎ0 = ℎ𝐷 and ℎ𝑛 ∈ 𝐿(𝐹𝐷), such that, for each 1 ≤ 𝑖 ≤ 𝑛, repre𝑖 is (recursively) the
representation of 𝑔𝑖 in 𝐵𝑖.

We write JrepreK to denote {ℎ}, and, for a set of representations 𝑅, we let J𝑅K =⋃︀
repre∈𝑅 JrepreK. The set of representations accepted by a forest automaton 𝐹 is the set

Repre(𝐹) of all representations of heaps from J𝐹 K by 𝐹 . We say that a pair of FAs 𝐹 and 𝐹 ′

is (representation) compatible iff J𝐹 K ∩ J𝐹 ′K = JRepre(𝐹) ∩ Repre(𝐹 ′)K. The compatibility
of a pair of FAs intuitively means that for every heap from the semantic intersection of the
two FAs, at least one of its representations is shared by them.

Lemma 3.1 For a pair 𝐹 and 𝐹 ′ of compatible FAs, it holds that J𝐹 ⊓ 𝐹 ′K = J𝐹 K ∩ J𝐹 ′K.

32

3.6 Implementation of the Forward Run
This section describes the operations that are used to implement the forward symbolic
execution over FAs. To be able to implement the backward run, we will need to maintain
compatibility of the FAs (discussed in the previous section) between the forward run and
the so-far constructed part of the backward run. Therefore, we will present the operations
used in the forward run mainly from the point of view of their effect on the representation
of heaps (in the sense of Section 3.5.2). Then, in Section 3.7.1, we will show how this effect
is inverted in the backward run such that, when starting from compatible configurations,
the inverted operations preserve compatibility of the configurations in the backward run
with their forward run counterparts.

We omit most details of the way the operations are implemented on the level of ma-
nipulations with transitions and states of FAs. We refer the reader to [68, 127, 84] for the
details.

We note that when we talk about removing a component or inserting a component in
an FA, this also includes renaming references and updating assignments of variables. When
a component is inserted at a position 𝑖, all references to 𝑗 with 𝑗 ≥ 𝑖 are replaced by 𝑗 + 1,
including the assignment 𝜎 of variables. When a component is removed from a position 𝑖,
all references to 𝑗 with 𝑗 > 𝑖 are replaced by references to 𝑗 − 1.

Splitting

Splitting has already been discussed in Section 3.4.1. It splits the symbolic execution into
several branches such that the union of the FAs after the split is semantically equivalent
to the original FA. The split is usually performed when transforming an FA into several
FAs that have only one variant of a root transition of some of their components. From the
point of view of a single branch of the ART, splitting is an operation, denoted further as
split , that transforms an FA 𝐹 into an FA 𝐹 ′ s.t. J𝐹 ′K ⊆ J𝐹 K and Repre(𝐹 ′) ⊆ Repre(𝐹).
Therefore, 𝐹 is compatible with 𝐹 ′.

Operations Modifying Component Decomposition

This class of operations is used to implement the transformation of FAs to the dense form
and they are also used as pre-processing steps before the operations of folding, unfolding,
and symbolic implementation of program statements. They do not modify the semantics
of forest automata but change the component decomposition of the represented heaps.

• Connecting components. When the 𝑗-th component 𝐴𝑗 of a forest automaton 𝐹
accepts trees with false roots, then 𝐴𝑗 can be connected to the component that refers
to it. Indeed, as such roots are not cut-points, a reference 𝑗 to them can appear
only in a single component, say 𝐴𝑘, and at most once in every tree from its language
(because a false root can have at most one incoming edge). For simplicity, assume
that 𝐴𝑗 has only one root state 𝑞 which does not appear as a child state in transitions.
The connection is done by adding the states and transitions of 𝐴𝑗 to 𝐴𝑘, replacing the
reference 𝑗 in the transitions of 𝐴𝑘 by 𝑞. The 𝑗-th component is then removed from 𝐹 .
The previous sequence of actions is below denoted as the operation connect [𝑗, 𝑘, 𝑞].

• Cutting a component. Cutting splits a component with an index 𝑗 into two. The part
of the 𝑗-th component containing the root will accept tree prefixes of the original trees,
and the new 𝑘-th component will accept their remaining sub-trees. The cutting is done

33

at a state 𝑞 of 𝐴𝑗 which appears exactly once in each run (the FA is first transformed to
a form that satisfies this). Occurrences of 𝑞 as child states of transitions are replaced
by the reference 𝑘 to the new component, and 𝑞 becomes the root state of the new
component. We denote this operation by cut [𝑗, 𝑘, 𝑞].

• Swapping components. The operation swap[𝑗, 𝑘] swaps the 𝑗-th and the 𝑘-th compo-
nent (and renames references and assignments accordingly).

Folding of Boxes

In this section, we briefly describe the effect of folding FAs into boxes during our symbolic
execution. More details and algorithms for selecting which part of which components of
FAs are to be folded will be given in Section 3.8.

The folding operation assumes that the concerned FA is first transformed into the form
𝐹 = ⟨𝐴in𝐴2 · · ·𝐴𝑛−𝑘𝐴out1 · · ·𝐴out𝑘𝐴

′
1 · · ·𝐴′

𝑚, 𝜎⟩ by a sequence of splitting, cutting, and
swapping. The tuple of tree automata 𝐴in𝐴2 · · ·𝐴𝑛−𝑘𝐴out1 · · ·𝐴out𝑘 will then be folded into
a new 𝑘-ary box 𝐵 with 𝐴in as its input component and 𝐴out1 , . . . , 𝐴out𝑘 as its outputs.
Moreover, the operation is given sets of selectors 𝑆in, 𝑆out1 , . . . , 𝑆out𝑘 of roots of components
in 𝐴in and 𝐴out1 , . . . , 𝐴out𝑘 , respectively, that are to be folded into 𝐵. The box 𝐵 =
⟨𝐴𝐵

in𝐴2 · · ·𝐴𝑛−𝑘𝐴
𝐵
out1

· · ·𝐴𝐵
out𝑘

, {in ↦→ 1, out1 ↦→ 𝑛− 𝑘 + 1, . . . , out𝑘 ↦→ 𝑛}⟩ arises from 𝐹
by taking the tuple of tree automata 𝐴in𝐴2 · · ·𝐴𝑛−𝑘𝐴out1 · · ·𝐴out𝑘 and removing selectors
that are not in 𝑆in and 𝑆out1 , . . . , 𝑆out𝑘 from the root transitions of 𝐴in and 𝐴out1 , . . . , 𝐴out𝑘

to obtain 𝐴𝐵
in and 𝐴𝐵

out1
, . . . , 𝐴𝐵

out𝑘
, respectively (we w.l.o.g. assume that the root states of

the TAs do not appear as child states in transitions).
Folding returns the forest automaton 𝐹 ′ = ⟨𝐴′

in𝐴
′
out1

· · ·𝐴′
out𝑘

𝐴′
1 · · ·𝐴′

𝑚, 𝜎′⟩ that arises
from 𝐹 as follows. All successors of the roots accepted in 𝐴in and 𝐴out1 , . . . , 𝐴out𝑘 reach-
able over selectors from 𝑆in and 𝑆out1 , . . . , 𝑆out𝑘 are removed in 𝐴′

in and 𝐴′
out1

, . . . , 𝐴′
out𝑘

,
respectively (since they are enclosed into 𝐵). The root of the trees of 𝐴′

in gets an addi-
tional edge labelled by 𝐵, leading to the reference 𝑛 (the output port), and the components
𝐴2, . . . , 𝐴𝑛−1 are removed (since they are also enclosed in 𝐵). This operation is denoted as
fold [𝑛, 𝑆in, 𝑆out1 , . . . , 𝑆out𝑘 , 𝐵].

Unfolding of Boxes

Unfolding is called as a preprocessing step to used before applying operations that imple-
ment program statements in order to expose the selectors accessed by the statement. Before
an unfolding is performed, the input FA with a 𝑘-ary box 𝐵 is first transformed (using a
sequence of cutting, splitting, and swapping) into the form:

𝐹 ′ = ⟨𝐴′
in𝐴

′
out1

· · ·𝐴′
out𝑘

𝐴′
1 · · ·𝐴′

𝑚, 𝜎′⟩

where the roots of the trees accepted by 𝐴′
in have an outgoing 𝐵-labeled hyperedge to the

references 2, . . . , 𝑘 + 1. Furthermore, assume that the box 𝐵 is of the form:

⟨𝐴𝐵
in𝐴2 · · ·𝐴𝑛−𝑘𝐴

𝐵
out1

· · ·𝐴𝐵
out𝑘

, {in ↦→ 1, out1 ↦→ 𝑛− 𝑘 + 1, . . . , out𝑘 ↦→ 𝑛}⟩,

and the ports have outgoing edges with selectors from the sets 𝑆in and 𝑆out1 , . . . , 𝑆out𝑘 ,
respectively. The operation returns the forest automaton 𝐹 that arises from 𝐹 ′ by in-
serting components 𝐴𝐵

in𝐴2 · · ·𝐴𝑛−𝑘𝐴
𝐵
out1

· · ·𝐴𝐵
out𝑘

in between 𝐴′
in and 𝐴′

out1
, removing the

𝐵-transition including its targets, and merging 𝐴𝐵
in with 𝐴′

in and 𝐴𝐵
out1

, . . . , 𝐴𝐵
out𝑘

with
𝐴′
out1

, . . . , 𝐴′
out𝑘

, respectively.

34

The merging on the TA level consists of merging root transitions of the corresponding
TAs. We denote this operation as unfold [𝑛, 𝑆in, 𝑆out1 , . . . , 𝑆out𝑘 , 𝐵].8

Symbolic Execution of Program Statements

We will now discuss our symbolic implementation of the most essential statements of a
C-like programming language. We assume that the operations are applied on an FA 𝐹 =
⟨𝐴1 · · ·𝐴𝑛, 𝜎⟩.

• x := malloc(): A new (𝑛+1)-th component 𝐴new is appended to 𝐹 s.t. it contains one
state and one transition with all selector values set to 𝜎(undef). The assignment 𝜎(x)
is set to the root reference 𝑛+ 1.

• x := y->sel and y->sel := x: If 𝜎(y) = 𝜎(undef), the operation moves to the error
location. Otherwise, by splitting, cutting, and unfolding, 𝐹 is transformed into the
form where 𝐴𝜎(y) has only one root transition and the transition has a sel-successor
that is a root reference 𝑗. The statement x := y->sel then changes 𝜎(x) to 𝑗, and
y->sel := x changes the reference 𝑗 in 𝐴𝜎(y) to 𝜎(x).

• assume(x ∼ y) where ∼ ∈ {==, !=}: This statement tests the equality of 𝜎(x) and
𝜎(y) and stops the current branch of the forward run if the result does not match ∼.

• assume(x->data ∼ y->data) where ∼ is some data comparison: We start by unfolding
and splitting 𝐹 into the form where 𝐴𝜎(x) and 𝐴𝜎(y) have only one root transition
with exposed data selector. The data values at the data selectors are then compared
and the current branch of the forward run is stopped if the values do not satisfy ∼.
The operation moves to the error locations if 𝜎(x) or 𝜎(y) are equal to 𝜎(undef).

• free(x): First, we cut 𝐴𝜎(x) at all positions that appear in its root transition, then
we remove 𝐴𝜎(x) from 𝐹 and set 𝜎(x) to 𝜎(undef).

The updates are followed by checking that all components are reachable from program
variables in order to detect garbage. If some component is unreachable, the execution either
moves to the error location, or—if the analysis is set to ignore memory leaks—removes the
unreachable component and continues with the execution.

3.7 Abstraction and Counterexample-based Refinement
In this section, we will describe the counterexample-based refinement loop (CEGAR) for
forest automata that we proposed. It is a generalisation of the CEGAR for abstract regular
tree model checking of [38, 35].

3.7.1 Backward Run for Counterexample Analysis

Our counterexample trace validation is based on backward symbolic execution of a candidate
counterexample trace on the level of FAs (with no abstraction on the FAs) while checking
non-emptiness of its intersection with the forward symbolic execution (which was abstract-
ing the FAs). For that, we have to revert not only abstract transformers corresponding to

8The parameters 𝑆in, 𝑆out1 , . . . , 𝑆out𝑘 are used in the backward run to easily invert the operation of
unfolding by folding, cf. Section 3.7.1.

35

program statements but also various meta-operations that are used in the forward sym-
bolic execution and that significantly influence the way sets of heap configurations are
represented by FAs. In particular, this concerns folding and unfolding of boxes as well as
splitting, merging, and reordering of component TAs, which is used in the forward run for
the following two reasons: to prevent the number of component TAs from growing and to
obtain a canonic FA representation.

If the above meta-operations were not reverted, we would not only have problems in
reverting some program statements but also in intersecting FAs obtained from the forward
and backward run. Indeed, the general problem of checking emptiness of intersection of
FAs that may use different boxes and different component TAs (i.e., intuitively, different
decompositions of the represented heap graphs) is open. When we carefully revert the
mentioned operations, it, however, turns out that the FAs obtained in the forward and
backward run use compatible decompositions (cf. Section 3.5.2) and hierarchical structuring
of heap graphs, and so checking emptiness of their intersection is possible. Even then,
however, the intersection is not trivial as the boxes obtained in the backward run may
represent smaller sets of sub-heaps, and hence we cannot use boxes as symbols and instead
have to perform the intersection recursively on the boxes as well.

The analysis of spurious counterexamples is further used to refine the abstraction. Par-
ticularly, we use a modification of the so-called predicate language abstraction on TAs [39],
which collapses those states of component TAs that have non-empty intersection with the
same predicate languages.

In case the intersection of the set of configurations of the above described forward and
backward symbolic runs is empty, we can derive from it an automata interpolant allowing
us to get more predicate languages and to refine the abstraction such that the CEGAR loop
is guaranteed to progress (in the sense that the same abstract forward run is not repeated).

Inverting Operations in the Backward Run

We now present a description of how we compute the weakest localized preconditions (in-
versions for short) of the operations from Section 3.6 in the backward run. As mentioned
in Section 3.6, it is crucial that compatibility with the forward run is preserved. Let
𝐹𝑖 = 𝑜(𝐹𝑖−1) appear in the forward run and 𝐹 𝑖 be an already computed configuration in
the backward run s.t. 𝐹𝑖 and 𝐹 𝑖 are compatible. We will describe how to compute 𝐹 𝑖−1

such that it is also compatible with 𝐹𝑖−1.
Inverting most operations is straightforward. The operation cut [𝑗, 𝑘, 𝑞] is inverted by

connect [𝑘, 𝑗, 𝑞𝑘] where 𝑞𝑘 is the root state of 𝐴𝑘, swap[𝑗, 𝑘] is inverted by swap[𝑘, 𝑗], and
split is not inverted, i.e., 𝐹 𝑖−1 = 𝐹 𝑖.

One of the more difficult cases is connect [𝑗, 𝑘, 𝑞]. Assume for simplicity that 𝑘 is the
index of the last component of 𝐹𝑖−1. Connecting can be inverted by cutting, but prior to
that, we need to find where the 𝑘-th component of 𝐹 𝑖 should be cut. To find the right place
for the cut, we will use the fact that the places of connection are marked by the state 𝑞 in
the FA 𝐹𝑖 from the forward run. We use the tree automata product ⊓ from Section 3.5,
which propagates the information about occurrences of 𝑞 to 𝐹 𝑖, to compute the product of
the 𝑘-th component of 𝐹𝑖 and the 𝑘-th component of 𝐹 𝑖. We replace the 𝑘-th component
of 𝐹 𝑖 by the product, which results in an intermediate FA 𝐹

′
𝑖. The product states with the

first component 𝑞 now mark the places where the forward run connected the components
(they were leaves referring to the 𝑘-th component). This is where the backward run will cut
the components to revert the connecting. Before that, though, we replace the mentioned

36

product states with 𝑞 by a new state 𝑞′. This replacement does not change the language
because 𝑞 was appearing exactly once in every run (because in the forward run, it is the root
state of the connected component that does not appear as a child state of any transition),
and so, a product state with 𝑞 can appear at most once in every run of the product too.
Finally, we compute 𝐹 𝑖−1 as cut [𝑘, 𝑗, 𝑞′](𝐹

′
𝑖).

Folding is inverted by unfolding and vice versa. Namely, we invert the operation
fold [𝑛, 𝑆in, 𝑆out1 , . . . , 𝑆out𝑘 , 𝐵] by unfold [𝑛, 𝑆in, 𝑆out1 , . . . , 𝑆out𝑘 , 𝐵] and unfold [𝑛,𝑆in,𝑆out1 ,
. . . ,𝑆out𝑘 ,𝐵] by fold [𝑛, 𝑆in, 𝑆out1 , . . . , 𝑆out𝑘 , 𝐵

′] where the box 𝐵′ folded in the backward run
might be semantically smaller than 𝐵 (since the backward run is returning with a subset
of configurations of the forward run).

Regular abstraction is inverted using the intersection construction from Section 3.5.
That is, if 𝑜𝑖 is a regular abstraction, then 𝐹 𝑖−1 = 𝐹 𝑖 ⊓ 𝐹𝑖−1.

Finally, inversions of abstract statements use 𝐹 𝑖 = ⟨𝐴1 · · ·𝐴𝑚, �̄�⟩ and 𝐹𝑖−1 =
⟨𝐴1 · · ·𝐴𝑛, 𝜎⟩ to compute the FA 𝐹 𝑖−1 = ⟨𝐴′

1 · · ·𝐴′
𝑛, �̄�

′⟩ as follows:

• x = malloc(): We obtain 𝐹 𝑖−1 from 𝐹 𝑖 by removing the 𝑗-th TA, for �̄�(x) = 𝑗. The
value of �̄�′(x) is set to 𝜎(x).

• x := y->sel: The inversion is done by setting �̄�′(x) to the value of 𝜎(x) from 𝐹𝑖−1.

• y->sel := x: The target of the sel-labelled edge from the root of 𝐴�̄�′(y) is set to its
target in 𝐴𝜎(y).

• assume(...): Tests do not modify FAs and, since we are returning with a subset of
configurations from the forward run, they do not need to be inverted, i.e., 𝐹 𝑖−1 = 𝐹 𝑖.

• free(x): First, the component of 𝐹𝑖−1 at the index 𝜎(x), which was removed in the
forward run, is inserted at the same position in 𝐹 𝑖, and �̄�′(x) is set to that position.
Then we must invert the rewriting of root references pointing to 𝜎(x) to 𝜎(undef)
done by the forward run. For this, we compute the ⊓ forest automata product from
Section 3.5 with 𝐹𝑖−1 but modified so that instead of discarding the reached pairs
(𝜎(undef), 𝜎(x)), it replaces them by 𝜎(x). Intuitively, the references to x are still
present at 𝐹𝑖−1, so their occurrences in the product mark the occurrences of references
to undef that were changed to point to undef by free(x). The modified product
therefore redirects the marked root references to undef back to x.

The Role of Compatibility in the Backward Run

Inversions of regular abstraction, component connection, and free(x), use the TA product
construction ⊓ from Section 3.5. The precision of all intersection and product compu-
tations in the backward run depends on the compatibility of the backward and forward
run. Inverting the program statements also depends on the compatibility of the backward
and forward run. Particularly, inversions of x := y->sel and y->sel := x use indices of
components from 𝐹𝑖−1. They, therefore, depend on the property that heaps from 𝐹 𝑖 are
decomposed into components in the same way. The compatibility is achieved by invert-
ing every step of folding and unfolding, and every operation of connecting, cutting, and
swapping of components.

37

3.7.2 Regular Abstractions over Forest Automata

Our abstraction over FAs is based on the automata abstraction from the framework of ab-
stract regular tree model checking (ARTMC) [39]. This framework comes with two abstrac-
tions for tree automata, finite height abstraction and predicate language abstraction. Both
of them are based on merging states of a tree automaton that are in the same class of a given
equivalence relation. Formally, consider a tree automaton 𝐴 = (𝑄, 𝑞0,Δ) and an equivalence
relation ∼ ⊆ 𝑄×𝑄, then an abstraction of 𝐴 is the TA 𝛼(𝐴) = (𝑄/∼, [𝑞0]∼,Δ∼) such that
𝑄/∼ is the set of ∼’s equivalence classes, i.e., 𝑄/∼ = {[𝑞] | 𝑞 ∈ 𝑄} where [𝑞0]∼ denotes the
equivalence class of 𝑞0, and Δ∼ arises from Δ by replacing occurrences of states in transitions
by their equivalence classes, i.e., Δ∼ = {[𝑞] → 𝑎([𝑞1], . . . , [𝑞𝑚]) | 𝑞 → 𝑎(𝑞1, . . . , 𝑞𝑚) ∈ Δ}.
It holds that |𝑄/∼| ≤ |𝑄| and 𝐿(𝐴) ⊆ 𝐿(𝛼(𝐴)).

A Finite height abstraction is a function 𝛼ℎ that merges states with languages equivalent
up to a given tree height ℎ. Formally, it merges states of 𝐴 according to the equivalence
relation ∼ℎ defined as follows: 𝑞1 ∼ℎ 𝑞2 ⇔ 𝐿≤ℎ(𝐴, 𝑞1) = 𝐿≤ℎ(𝐴, 𝑞2) where 𝐿≤ℎ(𝐴, 𝑞) is
the language of tree prefixes of trees from 𝐿(𝐴, 𝑞) up to the height ℎ. A Predicate language
abstraction is a function 𝛼[𝒫] parameterized by a set of predicate languages 𝒫 = {𝑃1, . . . , 𝑃𝑛}
represented by tree automata. States are merged according to the equivalence ∼𝒫 ⊆ 𝑄×𝑄
such that ∼𝒫 = {(𝑞, 𝑞′) ∈ 𝑄 × 𝑄 | ∀𝑃 ∈ 𝒫 : 𝐿(𝐴, 𝑞) ∩ 𝐿(𝑃) = ∅ ⇔ 𝐿(𝐴, 𝑞′) ∩ 𝐿(𝑃) = ∅}.
Informally, 𝑞 and 𝑞′ are merged iff their languages 𝐿(𝐴, 𝑞) and 𝐿(𝐴, 𝑞′) intersect with
the same subset of predicate languages from 𝒫.

We extend the abstractions from ARTMC to FAs by applying the abstraction over TAs
to the components of the FAs. Formally, let 𝛼 be a tree automata abstraction. For an
FA 𝐹 = ⟨𝐴1 · · ·𝐴𝑛, 𝜎⟩, we define 𝛼(𝐹) = ⟨𝛼(𝐴1) · · ·𝛼(𝐴𝑛), 𝜎⟩. Additionally, in the case
of predicate abstraction, which uses automata intersection to annotate states by predicate
languages, we use the intersection operator ⊓ from Section 3.5, which descends recursively
into boxes, and it is thus more precise from the point of view of the semantics of FAs. More
precisely, when a TA 𝐴 is abstracted, we perform the intersection ⊓ of 𝐴 and all 𝑃 from
𝒫. An intersection TA 𝐴⊓𝑃 has a state set 𝑄′

𝐴⊓𝑃 consisting of pairs of states from 𝐴 and
𝑃 , i.e., 𝑄′

𝐴⊓𝑃 ⊆ 𝑄𝐴 ×𝑄𝑃 . The states 𝑞 and 𝑞′ of 𝐴 are merged iff {𝑝 ∈ 𝑃 |𝑃 ∈ 𝒫 ∧ (𝑞, 𝑝) ∈
𝑄𝐴⊓𝑃 } = {𝑝 ∈ 𝑃 |𝑃 ∈ 𝒫 ∧ (𝑞′, 𝑝) ∈ 𝑄𝐴⊓𝑃 }

Since the abstraction only over-approximates languages of the individual components,
it holds that J𝐹 K ⊆ J𝛼(𝐹)K and Repre(𝐹) ⊆ Repre(𝛼(𝐹)); therefore, 𝐹 and 𝛼(𝐹) are
compatible.

3.7.3 Abstraction Refinement

The finite height abstraction may be refined by simply increasing the height ℎ. Advantages
of finite height abstraction include its relative simplicity and the fact that the refinement
does not require counterexample analysis. A disadvantage is that the refinement by in-
creasing the height is quite rough. Moreover, the cost of computing in the abstract domain
rises quickly with increasing the height of the abstraction as exponentially more concrete
configurations may be explored before the abstraction closes the analysis of a particular
branch. The finite height abstraction was used—in a specifically fine-tuned version—in the
first versions of Forester [68, 82], which successfully verified a number of benchmarks,
but the refinement was not sufficiently flexible to prove some more challenging examples.

Predicate abstraction offers the needed additional flexibility. It can be refined by adding
new predicates to 𝒫 and it gives strong guarantees about excluding counterexamples. In
ARTMC, interpolants in the form of tree automata 𝐼𝑖 are extracted from spurious coun-

38

terexamples in the way described in Section 3.7.1. The interpolant is then used to refine
the abstraction so that the spurious run is excluded from the program’s ART.

The guarantees shown to hold in [39] on the level of TAs are the following. Let 𝐴 and
𝐼 = (𝑄, 𝑞0,Δ) be two TAs and let 𝒫(𝐼) = {𝐿(𝐼, 𝑞) | 𝑞 ∈ 𝑄} denote the set of languages
of states of 𝐼. Then, if 𝐿(𝐴) ∩ 𝐿(𝐼) = ∅, it is guaranteed that 𝐿(𝛼[𝒫(𝐼)](𝐴)) ∩ 𝐿(𝐼) = ∅.
That is, when the abstraction is refined with the languages of all states of 𝐼, it will exclude
𝐿(𝐼)—unless applied on a TA whose language is already intersecting 𝐿(𝐼).

We can generalize the result of [39] to forest automata in the following way, implying
the progress guarantees of CEGAR described in Section 3.7.1. For a forest automaton
𝐹 = ⟨𝐴1 · · ·𝐴𝑛, 𝜎⟩, let 𝒫(𝐹) =

⋃︀𝑛
𝑖=1 𝒫(𝐴𝑖).

Lemma 3.2 Let 𝐹 and 𝐼 be FAs s.t. 𝐼 is compatible with 𝛼[𝒫](𝐹) and J𝐹 K∩ J𝐼K = ∅. Then
J𝛼[𝒫∪𝒫(𝐼)](𝐹)K ∩ J𝐼K = ∅.

We note that the lemma still holds if 𝒫(𝐼) is replaced by 𝒫(𝐴𝑖) only where 𝐴𝑖 is the 𝑖-th
component of 𝐼 and 𝐿(𝐴𝑖 ⊓𝐴′

𝑖) = ∅ for the 𝑖-th component 𝐴′
𝑖 of 𝛼[𝒫](𝐹).

3.8 Automatic Discovery of Boxes
In this section, we discuss in a more detail the operation of box folding from Section 3.6;
mainly, we focus on how boxes are discovered (synthesised) automatically.

Originally, the verification approach published in [68] relied on the following two facts:

1. the user is able to provide a set of nested boxes that is sufficient for the verification
of the given program, and

2. it is enough to look for instances of the provided boxes to be folded at roots existing
in the FA in which the folding should occur.

However, the subsequent experiments showed, it turned out that constructing a set of boxes
suitable for verification of a given program is quite inconvenient. In particular, construct-
ing boxes requires a non-trivial insight into the program’s semantics and a considerable
amount of manual effort of an experienced user. It is not possible to reuse boxes even for
quite common sub-heap patterns—such as doubly-linked list segments—in cases where the
structures are connected via different selectors (because we are working at the level of gcc
intermediate code, the issue is not with selector names but rather with their offsets within
the data structures). Finally, in certain cases, the algorithm could at some point choose
between two actions: either eliminate an existing root by concatenating two components
together or perform a folding of some box at this root. If the concatenation is performed
first, it could happen that the box (whose folding is crucial for eliminating other cut-points
that could not be eliminated in any other way) cannot be folded anymore because the
required root disappeared, and, as a consequence, the analysis does not terminate. To
address these issues, a fully automatic approach was proposed in the later work [82] that
is able to automatically find a suitable set of boxes and, moreover, does not rely on folding
at existing roots only. The slightly lighter-weighted version of the automatic approach was
implemented in the Forester tool and described in [127].

Recall that boxes were introduced in order to bring a possibility of hiding certain cut-
points that appear repeatedly within the heap. The way boxes look like heavily depends
on the shape of the data structures being handled, but the general principle is to hide into
boxes some repeating (possibly hierarchical) heap patterns with cut-points.

39

𝑖

𝑖

(a) Type 1 cut-point 𝑖 representing a refer-
ence within the same component

𝑗 𝑗

𝑖

𝑞

(b) Type 2 cut-point 𝑗 representing a single
component contains multiple references to 𝑗

𝑗

𝑖

𝑖

𝑗

(c) Type 3 cut-points 𝑖 and 𝑗 representing a
several mutually linked components

𝑘

𝑖

𝑘

𝑗

(d) Type 4 cut-point 𝑘 representing a refer-
ence from several other components)

Figure 3.4: Four possible types of cut-points.

In this text, we follow the procedure described in [127], which is the one used in the SV-
COMP version of Forester. The procedure can handle most usual data structures, such
as (doubly) linked and nested or cyclic lists, trees with additional pointers, and even skip
lists. We note that a more complete and complex solution (theoretically capable of handling
a larger class of shape graphs) was presented in [82]. In [127], one concentrates directly on
dealing with the growing number of cut-points. That is, one does not ask “Which repeated
patterns does one need to fold?”, but rather “Which cut-points need to be eliminated?”.
In the rest of this section, we show how we can automatically eliminate certain kinds of
cut-points using this kind box folding.

3.8.1 Cut-point Types

We are now going to describe four types of cut-points (illustrated in Fig. 3.4), each of which
is eliminated by a special algorithm. We distinguish whether a node is a cut-point due to
a cycle in the heap or whether it is only referenced multiple times, and we also distinguish
whether this can be seen locally within a single component or only across several different
components. This gives us four different types of cut-points. Note, however, that one
cut-point can be of multiple types.

In particular, Type 1 cut-points arise, for instance, when one works with cyclic lists.
In such a case, a single TA component encodes a set of cyclic lists with the cycle encoded
using a leaf that refers back to the root of the component. Type 2 cut-points are those cut-
points that are referenced multiple times from within a single component. These typically
arise when one deals with trees whose all leaves refer to some designated node (e.g., the
root). Next, a set of two or more cut-points is said to consist of cut-points of Type 3 if
the components rooted at them are linked in a cycle. A typical scenario, where such cut-

40

𝑖

𝑖− 1 𝑖+ 1

𝑖+ 1

𝑖 𝑖+ 2

𝑖+ 2

𝑖+ 1 𝑖+ 3

nextprev nextprev nextprev.

⇓
𝑖

𝑖+ 1

𝑖+ 1

𝑖+ 2

𝑖+ 2

𝑖+ 3

DLL DLL DLL.

Figure 3.5: Folding of a doubly-linked list with a Type 4 cut-point 𝑖+ 1

points appear is working with doubly-linked lists where the cycle appears between a pair
of successive list nodes. Observe that each inner element of the lists is pointed from its
predecessor and from its successor at the same time, and so (without using a hierarchical
encoding) every element has to reside in its own component (and the present loops cannot
be reduced to loops within a single component with a cut-point of Type 1). Finally, Type 4
cut-points are cut-points referred from two or more components at the same time.

In the following section, we will show how to eliminate cut-points of Type 1 and 2 as
well as some cut-points of Type 3. In the case of Type 3 cut-points, we only show how to
deal with pairs of cut-points of Type 3 that are the roots of neighboring components linked
in a cyclic way. We do not consider any other form of Type 3 cut-points since we have
not encountered them in any of our case studies (in particular, we have not encountered
loops going through more than two cut-points). We also do not have any direct elimination
procedure for cut-points of Type 4. This was not needed in our case studies either because
no matter how ubiquitous cut-points of Type 4 were, they were always of other types too,
and eliminating cut-points of Type 1, 2, and 3 either eliminated Type 4 too or turned
Type 4 cut-points to one of the first three types. For instance, in the case of doubly-linked
lists, each node in fact corresponds to a cut-point of Type 3 and Type 4 at the same time.
Nevertheless, when we fold the parts of the heap that make the concerned nodes to be
cut-points of Type 3, there will not remain any cut-points of Type 4 either (see Fig. 3.5 for
an illustration).

3.8.2 Cut-point Elimination

In this section, we discuss the automatic elimination of cut-points of Type 1, 2, and 3,
discussed in the previous section. As we have already mentioned, it might happen that
some cut-point is of more than one type, which is solved by several applications of the
folding algorithm. The heuristic, which currently seems to give the best results in our
experiments, eliminates cut-points in the order 3, 2, and 1.

Before we explain how to deal with the particular types of cut-points, we introduce
the so-called component slicing. On the level of a single forest ⟨𝑡1, . . . , 𝑡𝑛, 𝜎⟩, folding is an
operation that (1) selects the part of the forest to be folded into the new box, in the form
of one root component 𝑡𝑖, a set of selectors 𝑆, and possibly several additional components,
and (2) slices the component 𝑡𝑖 into two parts, the kernel and the residue. The kernel is

41

kernel residue
𝑞

left right

⇒

𝑞

left

𝑞

right

Figure 3.6: An example of component slicing. The left part shows the original automaton
that is to be sliced at the state 𝑞 according to the edge labeled by “left” (i.e., we perform
𝑞 → ⟨left , right⟩(𝑞1, 𝑞2)▷ {left}). The right part shows the result after slicing, in which the
kernel contains the structure reachable via “left”, and the residue contains the rest of the
original automaton (in this case, the structure reachable via “right”).

the root and its sub-trees connected to it by the selectors of 𝑆. The residue is the root and
its sub-trees connected to it by the remaining selectors outside 𝑆. The box will then hide
the kernel and the eventual additional components. The original forest is then represented
by its modification in which (i) 𝑡𝑖 is replaced by a component created from the residue by
adding an additional hyperedge leading from the root labeled by the new box, and (ii) the
additional components are removed.

We will now discuss how slicing is implemented on the level of forest automata. Let
us recall that an FA is a tuple 𝐹 = ⟨𝐴𝑖 · · ·𝐴𝑛, 𝜎⟩ where the TAs 𝐴𝑖, for 1 ≤ 𝑖 ≤ 𝑛, have
transitions of the form 𝑞 → 𝑎1 · · · 𝑎𝑛(𝑞1, . . . , 𝑞𝑛). Such transition generates a tree node 𝑣
connected to nodes 𝑣1, . . . , 𝑣𝑛 via edges (𝑛, 𝑎𝑖, 𝑛𝑖) for each 𝑖 : 1 ≤ 𝑖 ≤ 𝑛. The symbols 𝑎𝑖
are either selectors or indexed boxes of the form 𝐵(𝑘) where 𝐵 is a box, 1 ≤ 𝑘 ≤ ♯𝐵, and
the symbols 𝐵(1), . . . , 𝐵(♯𝐵) always appear together and represent a hyperedge labeled by
𝐵. We use additional technical assumptions on the form of FAs that simplify the operation
of slicing; in the symbolic execution, we always keep FAs in the following form. Namely,
(1) root states of tree automata components never appear as child states of transitions,
and (2) for every state, all transitions with that state as the parent state have the same
vector of symbols (both can be achieved by simple automata transformations). Slicing will
be further specified using the operator ▷ called transition cut that, when given a transition
𝑡 = 𝑞 → 𝑎1 · · · 𝑎𝑛(𝑞1, . . . , 𝑞𝑛) and a set of selectors and indexed boxes 𝐸, produces a new
transition 𝑡 ▷ 𝐸 that is made from 𝑡 by, for all 𝑎𝑖 ∈ 𝐸, erasing 𝑎𝑖 from the sequence of
symbols 𝑎1 · · · 𝑎𝑛 and also erasing 𝑞𝑖 from the sequence of states 𝑞1, . . . , 𝑞𝑛. Slicing of the
𝑖-th component 𝐴𝑖 of 𝐹 w.r.t. a set of selectors or indexed boxes 𝐸 then produces two
versions of 𝐴𝑖, again called the kernel and the residue. The residue has each accepting
transition 𝑡 = 𝑞 → 𝑎1 · · · 𝑎𝑚(𝑞1, . . . , 𝑞𝑚) of 𝐴𝑖 replaced by 𝑡 ▷ 𝐸, while the residue has
the accepting transition replaced by 𝑡▷ {𝑎1, . . . , 𝑎𝑘} ∖ 𝐸 (see Fig. 3.6 for an illustration of
slicing).

Type 1 Cut-point Elimination

A Type 1 cut-point (cf. Fig. 3.4a) corresponds to a component that contains references to
its own root (these are called self-references in the following). To eliminate such a cut-
point, we want to “hide” all the self-references into a box. Therefore, we identify a set 𝐸
of all selectors (or boxes) within the accepting transitions that lie on some path going to

42

some self-reference. Then, we perform slicing of the component w.r.t. the set 𝐸 to obtain
the kernel containing all self-references and a residue containing the rest. Suppose that the
root references appearing in the kernel form the set 𝑅 ⊆ {1, . . . , 𝑛}; the rank of the new
box will be 𝑘 = |𝑅| − 1.

Next, we perform a depth-first traversal on the kernel and we rename all references
from 𝑅 according to the order in which they are visited (such that the self-references are
always relabeled to 0) to obtain a mapping 𝑓 : 𝑅 → {0, . . . , 𝑘}. The relabeled kernel is
transformed into a new box 𝐵 with ♯𝐵 = 𝑘. All accepting transitions 𝑞 → 𝑎(𝑞1, . . . , 𝑞𝑛) of
the residue are modified to

𝑞 → 𝑎𝐵(1) · · ·𝐵(𝑘)(𝑞1, . . . , 𝑞𝑛, 𝑟1, . . . , 𝑟𝑘)

where 𝑟𝑗 is a state representing a reference to a root 𝑢 such that 𝑓(𝑢) = 𝑗 (i.e., the additional
child states encode the mapping 𝑓 and, as a result, also the correspondence between the
root references appearing inside the box and the root references appearing on the level on
which the box is used).9 As the last step, we replace the original component by the modified
residue.

Note that the process of folding can easily be reversed whenever needed. First, we
extract the mapping 𝑓 . Then, we relabel the root references inside the box using 𝑓−1, and
we replace the given box in some transition 𝑡 by the relabeled component.

Type 2 Cut-point Elimination

A Type 2 cut-point arises when the reference to a node appears multiple times within a
single component (cf. Fig. 3.4b). In this case, we will fold into a box the smallest sub-tree
of the component that contains all references to the cut-point. The box will then allow us
to reduce the number of references to the given cut-point to one. We first identify a state 𝑞
that accepts sub-trees containing all root references to the given cut-point such that none
of 𝑞’s child states have this property (see Fig. 3.4b). If there are more such states, the
folding is performed separately for each of them. We then cut the component into two at
the state 𝑞 (the operation of cutting of Sec. 3.6). Then, in the new component rooted by 𝑞
(the tree suffix component created by the cut), we identify the set of selectors and indexed
boxes 𝐸 that start paths from the root (corresponding to state 𝑞) to references to the cut-
point we wish to eliminate. Then, we perform slicing of the component parametrized by 𝐸.
The kernel of the slicing is transformed into a box 𝐵, which is then appended to the residue
in the same manner as in the case of cut-points of Type 1.

Type 3 Cut-point Elimination

To eliminate a pair of Type 3 cut-points 𝑖 and 𝑗 (i.e., the cut-points mutually referencing
each other—see Fig. 3.4c), we need to use a box that encodes a cycle starting at the cut-
point 𝑖, going through the cut-point 𝑗, and, finally, back to 𝑖 (this corresponds, e.g., to
a pair of forward and backward links in a doubly-linked list). Intuitively, we create a
box composed of two components (unlike cut-points of Type 1 and 2, which have a single
component only). The first component of the box will be constructed from the part of the
𝑖-th component that contains all references to 𝑗. Similarly, the second component of the

9Here, for the sake of simplicity, we ignore the fact that the selectors and the boxes are ordered, hence
𝐵 should not be put simply behind 𝑎. The sequence of symbols on the rule should be then ordered, and the
sequence of states on the right-hand-side should be permuted accordingly.

43

𝑗

𝑖

𝑖

𝑗

⇓

𝑗

𝑖

𝐵

𝑗

+

1

0
𝐼𝑁

0

1
𝑂𝑈𝑇𝐵

Figure 3.7: An illustration of an elimination of Type 3 cut-points. First, the two components
are sliced at their accepting states. Next, the kernels of the result containing references
to 𝑖 and 𝑗 are transformed into a new box 𝐵, which is added to the remaining part of the
component 𝑖. Finally, the modified component 𝑗 contains no references to 𝑖.

box will be constructed from the part of the 𝑗-th component that contains all references to
𝑖. As a result, the box will represent a sub-graph containing the loop between the roots of
the original 𝑖-th and 𝑗-th components.

Let us describe the elimination of Type 3 cut-point in a greater detail. First, we perform
slicing of the components 𝑖 and 𝑗, which mutually refer each other, such that the kernels
obtained in the slicing contain all paths from 𝑖 to 𝑗 (resp. from 𝑗 to 𝑖). The two kernels
are transformed into a box 𝐵. The box 𝐵 is then appended to the accepting transitions
of the residue of the component 𝑖 in the same way as in the previous cases. As the last
step, we replace (1) the component 𝑖 within the original FA by the modified residue and
(2) the component 𝑗 by the residue of component 𝑗. As a result, the new component 𝑖
contains a single reference to 𝑗, and the new component 𝑗 contains no reference to 𝑖—see
Fig. 3.7.

Note that we could also perform the symmetrical transformation in which the newly
created box is added into the component 𝑗. This would yield a different structure with the
same semantics. In order to decide which variant to choose in practice, we use an ordering
on the set of components of the original FA, i.e., if 𝑖 < 𝑗, we append the newly created box
to the residue of 𝑖.

3.8.3 From Nested FAs to Alphabet Symbols

When performing certain automata operations, such as language inclusion, we treat all
symbols as not having any underlying structure at all. To make this work, we have to
ensure that the nested FAs (boxes) with the same semantics are represented using the same
alphabet symbol. This is achieved by maintaining a database that maps boxes to alphabet
symbols. Every time a new box is created, it is first compared to existing boxes having the
same root interconnection graph (cf. Section 3.3.3) (which also implies the same number

44

Figure 3.8: On the left-hand side there is a data structure allocated on the heap by a
program. On the right-hand side there is the same structure after the first abstraction.

of components). The comparison of two boxes is done via checking language equality of
their underlying FAs10, 11. If the same box already exists, the symbol obtained from the
database is used for its representation. Otherwise, a new alphabet symbol is created and
stored in the database.

Furthermore, we can also consider language inclusion only to relax the requirement of
equality when testing whether the two boxes match. This means that during the folding the
given box can be potentially replaced by a “bigger” one that already exists in the database.
This can in some cases drastically decrease the number of boxes that are required and thus
substantially increase the performance.

3.9 Running Example
To illustrate the proposed application of FAs to shape analysis, this sections provides a run-
ning example. We are going to show a computation of shape invariant in which abstraction
and folding are performed alternately until a fixpoint is reached. The presented example
should illustrate the main principles and give you some intuition, therefore it is imprecise
in some details. We will first show the main principle on a concrete heap graph to build
basic intuition and then we are going to present the same example on forest automata.

Consider the data structure allocated on the heap shown on the left-hand side of Fig-
ure 3.8. It is a doubly-linked list whose nodes are also the roots of trees. All nodes of the
trees contain pointers to the root nodes. The trees differ in the nodes which are highlighted
by the different colors.

When the first abstraction is performed whose result is shown on the right-hand side
of Figure 3.8 the differences are abstracted away. The dotted lines represent a loop in the
corresponding automaton created by the abstraction. In our example, we use the height
abstraction with the height two. It merges all states whose height is greater than two to one

10Here, we are not dealing with sets of FAs, hence the comparison of two FAs can be done component-wise.
11The language equality check is performed as two inclusion queries. The inclusion test itself is again

a safe approximation only, since we ignore the structure of nested boxes that can appear within the box we
have just created. Therefore, it can be the case that two boxes with the same semantics are represented
by different alphabet symbols. According to our experiments, such approximation, however, works well in
practice.

45

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr

tr
ee

-r
oo

tp
tr

Figure 3.9: On the left-hand side there is the studied data structure where the highlighted
parts are going to be folded to a box. On the right-hand side, the highlighted parts of the
graph are folded and replaced by the box tree-rootptr.

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr

tr
ee

-r
oo

tp
tr

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr

tr
ee

-r
oo

tp
tr

DLS
D

LS

DLS

D
LS

DLS

Figure 3.10: On the left-hand side there is the data structure before another folding where
the blue areas are going to be folded. On the right-hand side there is the resulting graph
with the highlighted parts folded in to the box DLS.

leaf node with the root pointer. In the figure, we illustrate this by removing the abstracted
nodes but preserving the root pointers to illustrate the created cycle while keeping the
figure understandable. The resulting automaton now represents a doubly-linked list whose
nodes are roots of trees with the root pointers of arbitrary depth. We note again that the
example does not reproduce the behaviour of the algorithm precisely but it should bring
an intuition how the abstraction works, i.e., it creates a loop in the automaton.

Then the folding operation is performed once the first abstraction is finished. The
folding algorithm finds the suitable parts of heap graph to be folded. These parts of the
graph (highlighted by the red areas on left-hand side of Figure 3.9) are the trees with root
pointers pointed by the nodes of the doubly-linked list. They are folded to a box called
tree-rootprt which is added to the edges leading from the nodes of the doubly-linked list as
shown on the right-hand side of Figure 3.9.

The second abstraction is performed, but the abstraction algorithm finds nothing that
could be abstracted. Then the second folding follows. It finds the suitable sub-graphs for

46

tree-rootptr

tree-rootptr

tree-rootptr

tree-rootptr

tr
ee

-r
oo

tp
tr

DLS

D
LS

DLS

D
LS

DLS
tree-rootptr

tr
ee

-r
oo

tp
tr

tree-rootptr

DLSDLS

Figure 3.11: On the left-hand side there is the data structure before the last abstraction.
On the right-hand side there is the graph after the abstraction.

tree-rootptr

tr
ee

-r
oo

tp
tr

tree-rootptr

DLSDLS

circular-DLL-of
-trees-rootptr

Figure 3.12: On the left-hand side there is the data structure before the last folding. The
highlighted green part is going to be folded. On the right-hand side there is the graph
with the highlighted part folded to the box circular-DLL-of-trees-rootptr. Now, a fixpoint
is reached.

folding which are highlighted by the blue color on the left-hand side of Figure 3.10. These
sub-graphs are segments of the doubly-linked list, i.e., the parts of the graph between two
neighboring DLL nodes. The algorithm folds the sub-graphs to the boxes called DLS. The
resulting graph after the folding is shown on the right-hand side of Figure 3.10.

Now, another abstraction is performed which merges the nodes of the graph in such
way that the automaton now represents arbitrary doubly-linked lists of length at least two
(which is a consequence of the fact that we used again the height abstraction with the
height 2). The abstraction is shown in Figure 3.11.

Finally, the last folding is performed. The whole heap graph can now be folded to
one box as shown by the left-hand side of Figure 3.12. As the result, we obtain the box
circular-DLL-of-trees-rootptr shown on the right-hand side of Figure 3.12. A fixpoint is
reached in this step, and verification procedure proceeds with an automaton containing
just one transition with the mentioned box.

47

14 2

p n
l t r

1

1

l t
r

1

l t
r

1

l
t

r 1

l
t

r 21 3

p n
l t r

2

32 4

p n
l t r

3

43 1

p n
l t r

4

Figure 3.13: The forest automaton on the figure represents circular doubly-linked list whose
nodes are root pointers of binary trees with root pointers.

14 2

p n
l tr

1

1

l
t

r
21 3

p n
l tr

2

2

l
t

r
32 4

p n
l tr

3

3

l
t

r
43 1

p n
l tr

4

4

l
t

r

Figure 3.14: The same forest automaton after an abstraction is applied. The forest au-
tomaton represents the same structure but the trees can have arbitrary depth.

To make the running example complete we illustrate the same computation on forest
automata. In Figure 3.13, there is a forest automaton representing data structure already
shown in the left-hand side of Figure 3.8, i.e., circular doubly-linked lists which nodes are
roots of binary tree with root pointers. The forest automaton consists of four tree automata
with the numbered root states. The transitions from the roots states are labeled by the
selectors p, l, t, r, n (in this order) where n, p correspond to the next, previous selectors of
doubly-linked list and l, t, r to the left, tail, right selectors of binary tree with root (or tail)
pointer. The remaining transition from non-root states contains only the selectors l, t, r (in
this order), i.e., these states accept the tree parts of the represented heap graph. Further,
the overlined numbers in the colored boxes are the root references to the root states.

One can see that in every transition of a tree automaton, the selector 𝑡 leads to a root
reference referencing the root state of the given tree automaton. This is consistent with the
fact that each node of the represented binary tree has a root pointer.

The last tree automaton references the first automaton over the selector n and the
first tree automaton references the last automaton over the selector p. That models the
circularity of doubly-linked lists where the first and the last node are connected via the
next and previous selectors.

For the sake of simplicity, we have not drawn the complete automaton in the figure. The
dotted lines points to the parts of automaton which are not presented here due to space
limitations.

Figure 3.14 contains the same automaton after the first abstraction has been applied.
The abstraction merges states of automaton representing the tree parts of the heap graph
and creates loops on the states which are under the root states. Now the automaton

48

14 2

p n

l tr

1

1

l
t

r
21 3

p n
l tr

2

2

l
t

r
32 4

p n
l tr

3

3

l
t

r
43 1

p n
l tr

4

4

l
t

r

Figure 3.15: The parts of forest automaton denoted by red ovals are suitable for folding to
boxes.

4 2

p n

trp

1

1 3

p n

trp

2

2 4

p n

trp

3

3 1

p n

trp

4

Figure 3.16: The parts of forest automaton representing trees from heap graph have been
folded to the box trp.

represents the binary trees with tree pointers of arbitrary length. Again, we use height
abstraction with the height 2.

The procedure continues with the first folding. It detects that the parts of tree automata
representing binary trees with roots pointers can be folded to a box. Note that it is a folding
of the cutpoint of type 1. This is illustrated by the red ovals in Figure 3.15. The resulting
automaton after folding is performed is in Figure 3.16. The transitions from the root states
now contains only two selectors p, n corresponding to the selectors next, previous of the
doubly-linked list and one box named trp representing a binary tree with root pointers.

Now the abstraction is performed again but there is nothing to abstract so we continue
with another folding. The folding algorithm detects that it is possible to fold a sub-graph
of doubly-linked list containing two nodes referencing each other via the next, previous
selectors. On the forest automata level, the pattern is illustrated in Figure 3.17 by the

𝑐

n
𝑏

𝑏

p
𝑐

Figure 3.17: The figure illustrates box representing one segment of doubly-linked list.

2

dls
trp

1

3

dls
trp

2

4

dls
trp

3

1

dls
trp

4

Figure 3.18: The forest automaton after folding of the dls boxes is done.

49

dls
trp

1

dls
trp

dls
trp

1

dls
trp

dls
trp

1

dls

trp

1

dls
trp

Figure 3.19: The left-hand side shows automaton after tree automata has been merged
to one since there were no longer any cutting points after the last folding. The resulting
automaton after another abstraction is in the right-hand figure was applied. The automaton
represents doubly linked of arbitrary length.

two root states b, c and their references such that the state b references the state c via
the selector n and the state c references the state b via the selector p. Note that is a folding
of the cutpoint of type 3.

When this pattern is folded to a box named dls, the corresponding parts of automaton
are replaced by the box. The obtained automaton is shown in the Figure 3.18. Note that
each transition is now labeled with two boxes (the dls and trp box). It corresponds to the
fact that each transition represents a segment of the doubly-linked list whose nodes are the
roots of a binary tree with root pointers. More precise would be to draw each transition
with two selectors, one labeled by the dls box and one labeled by the trp box, but we use
the single line representation for the sake of simplicity.

After the folding we can merge the tree automata in the forest automaton to one tree
automaton since the represented heap graph has no longer any cut-points (i.e., each node
is pointed exactly once) which is shown in the left-hand side of Figure 3.19. Finally, when
the abstraction is applied to this automaton, we obtain an automaton representing circular
doubly-linked list of arbitrary length as it is shown in the right-hand side of Figure 3.19.

Finally, it would be possible to fold the rest of forest automaton to the box circular-
DLL-of-trees-rootptr as it was shown on the graph level in Figure 3.12, i.e., the resulting
forest automaton would contain one transition over this box.

3.10 Architecture of Forester
Forester is an open source tool (written in C++) for verification of programs manipulating
complex dynamic data structures. Currently, it supports analysis of programs written in
the C language. Forester was designed as a gcc plugin under the GPLv3 license and can
be obtained from its website [70].

3.10.1 Design

Although Forester is implemented as a gcc plugin, it does not directly analyze gcc’s
low-level intermediate code, called GIMPLE. Instead, it uses the Code Listener infras-
tructure [59], which provides a higher-level interface over GIMPLE.

50

Code Listener

Microcode Compiler

Virtual MachineForest Automata Error Detected

Correct ProgramVata

«use»

«use»

Intermediate Code

Forester Microcode

Error

Shape Invariant

Forester

Figure 3.20: High-level overview of Forester

Let us describe the architecture of Forester (see Fig. 3.20). Forester starts the
analysis by using Code Listener (providing an interface to gcc) to obtain the intermediate
code of the analysed program. This intermediate code is in the second step compiled, using
the Forester’s Compiler module, into its representation in the Forester Microcode
(representing abstract transformers), which can be interpreted by the Forester’s Virtual
Machine. We give more details about the microcode in Section 3.10.2.

The Virtual Machine is an abstract execution engine whose configuration contains a for-
est automaton and a register set. The registers are used for auxiliary operations, e.g., when-
ever a memory location is to be modified, it is first (after the necessary splitting and cutting
performed on the FA) loaded into a register, changed there, and then stored back into the
FA. The registers can contain an arbitrary symbolic value, e.g., a data value, a reference
to a root in the FA (representing a symbolic pointer), or contents of a memory node (i.e.,
a struct data type). The Virtual Machine performs the symbolic execution over the FAs
(represented by the module Forest Automata) as described in Section 3.4, including auto-
matic abstraction refinement and box discovery. The analysis conclude either by finding an
error or by inferring safe shape invariants (represented by FAs) for each program line.

Efficient handling of FAs needs fast algorithms for performing operations and tests on
tree automata, especially for operations with high worst-case complexity, such as the FA
entailment test, which is reduced to the ExpTime-complete TA language inclusion check.
Therefore, Forester uses the efficient TA algorithms from the Vata library [99].

3.10.2 Forester Microcode

In this section, we provide an example of Forester microcode (a detailed description can
be found in [84]). Consider the following data structure implementing a singly-linked list:

struct T {
struct T* next;
int data;

};

51

The syntax of a microinstruction is op 𝑟0, 𝑟1, 𝑟2 where op is the operation code of the
instruction and 𝑟0, 𝑟1, and 𝑟2 are operands such that 𝑟0 is the destination register and 𝑟1
and 𝑟2 are source registers or constants. A microinstruction can have zero to three operands.
The notation [𝑟 + 𝑐] is used to access the selector with displacement 𝑐 in a label under the
root referenced by the register 𝑟.

Suppose that the verified program contains the following statement:
x = malloc(sizeof(struct T));

The statement is translated into the following sequence of microinstructions:
1: mov_reg r0, (int)8
2: alloc r1, r0
3: node_create r2, r1, <next,data>[0:4:+0,4:4:+0]
4: mov_reg r3, ABP + 0
5: mov_reg [r3 + 12], r2
6: check

First, on line 1, the size of the newly allocated data is stored into register 𝑟0 (it is
the size of struct T, which is 8 in this case). Second, on line 2, a new symbolic memory
location of the size given by 𝑟0 is created and its symbolic address stored into 𝑟1. On line 3,
we create a new TA 𝑡 with a single transition representing a freshly created instance of the
type struct T at the memory location given by 𝑟1 and append it to the FA representing
the symbolic state. The reference to the TA is stored into 𝑟2. The type of the instance is
given by <next,data>[0:4:+0,4:4:+0], which gives names of the selectors and for each
of them their offset (location in the memory cell, i.e., 0 for next and 4 for data), size (we
assumed a 32-bit system, which uses 4 B for a pointer and 4 B int), and displacement (it is
valid only for pointers and denotes the target offset with which the pointer points into the
referenced memory location – in our case 0 for the next pointer.12). On line 4, a reference
to the TA representing the current function’s stack frame (ABP) is loaded into register 𝑟3.
(Note that in Forester, the program stack is represented using memory locations on the
heap.) Finally, on line 5, the root reference to the TA 𝑡 stored in register 𝑟2 is added
to the selector with the displacement 12 (corresponding to the displacement of the local
variable x in the current stack frame) in the TA referenced by register 𝑟3. The instruction
check on line 6 checks that the heap is garbage free.

3.11 Tutorial
Forester can be obtained from its web page [70], and the easiest way to run it is from the
virtual machine [71]. Once the provided virtual machine (Ubuntu 16) is booted, the user
will find the forester folder on the desktop. The folder contains compiled binaries (the
fa_build folder) of Forester and also its source code (the fa folder). For running the
tool, one can follow the instructions provided in the README file. Instructions for compilation
of the tool from sources can then be found in the INSTALL file.

3.11.1 Running Forester with BenchExec

The BenchExec framework is a platform for evaluation of tools over a benchmark. Since
it is used for evaluation of the SV-COMP competition, it contains modules necessary for

12For instance, linked lists used within the Linux kernel do not point at the beginning of the linked data
structure, but, instead, into its middle (the position of the list header).

52

running Forester. If one wants to use BenchExec, it is still needed to compile Forester
and provide the include directory, the files libfa.so, and sv_comp_run.py from the
directory fa_build. It is suggested to check the GitHub repository of BenchExec13 for
further information about how to run the tool using the framework.

3.12 Experiments
The following section summarizes different experiments performed to evaluate the abilities
of Forester. The benchmark set consists of the tasks from [82] and [81]. We selected
the programs in order to illustrate the two crucial features of Forester: the ability to
learn boxes automatically and to perform counterexample analysis with abstraction re-
finement. We also compare Forester with Predator [58, 60], a many-times winner of
heap-manipulation-related categories of SV-COMP.

The benchmarks are C programs manipulating singly and doubly-linked list, trees, skip
lists, and their combinations. We were able to analyse all of them fully automatically
without any need to supply manually crafted predicates or any other manual aid. The test
cases are described in detail in Section 3.12.1.

We present our experimental results in Table 3.1. The table gives for each test case
its name, the information whether the program is safe or contains an error, the number of
lines of code, the time needed for the analysis, the number of refinements, the number of
predicates learnt during the abstraction refinement, and, finally, the time that Predator
needed to analyse it (err denotes a wrong answer and ∞ denotes timeout, which was set
to 900 s, the same as in SV-COMP).

Some of the test cases consider dynamic data structures without any data stored in
them, while some of them consider data structures storing finite-domain data. Such data
can be a part of the data structure itself, as, e.g., in red-black trees; they can arise from some
finite data abstraction; or they are also sometimes used to mark some selected nodes of the
data structure when checking the way the data structure is changed by a given algorithm
(e.g., one can check whether an arbitrarily chosen successive pair of nodes of a list marked
red and green is swapped when the list is reversed—see e.g. [39]).

As the results show, some of our test cases do not need refinement. This is because the
predicate abstraction (even with the empty set of predicate languages) is a priori restricted
in order to preserve the forest automata root interconnection graph (cf. Section 3.3.3),
which roughly corresponds to the reachability relation among variables and cut-points in
the heaps represented by a forest automaton. This restriction was already used with the
finite height abstraction in the versions of Forester from [68, 82].

Table 3.1 also provides a comparison of the version of Forester from [82] with the
version from [81]. In particular, the highlighted cases are not manageable by the version
from [82]. These cases can be split into two classes. In the first class, there are safe programs
where the initial abstraction is too coarse and introduces spurious counterexamples, and
the abstraction thus needs to be refined. The other class consists of programs containing
a real error (which could not be confirmed without the backward run). The times needed
for analysis are comparable in both versions of Forester.

To illustrate a typical learnt predicate, let us consider the test case GBSLL. This pro-
gram manipulates a list with nodes storing two data values, green and blue, for which it
holds that a green node is always followed by a blue one (this data structure is a simplified

13https://github.com/sosy-lab/benchexec/

53

https://github.com/sosy-lab/benchexec/

Table 3.1: Results of experiments

Program Status LoC Time [s] Refnm Preds Predator [s]
SLL (reverse) safe 32 0.03 0 0 0.03
SLL (delete) safe 33 0.02 0 0 0.03
SLL (insertsort) safe 36 0.04 0 0 0.03
SLL (bubblesort) safe 42 0.02 0 0 0.2
SLL (mergesort) safe 76 0.08 0 0 0.10
DLL (reverse) safe 39 0.70 0 0 0.03
DLL (insert) safe 39 0.56 0 0 0.05
DLL (insertsort1) safe 47 0.40 0 0 0.11
DLL (insertsort2) safe 48 0.12 0 0 0.05
CDLL safe 32 0.02 0 0 0.03
SLL+head safe 33 0.05 0 0 0.03
SLL-Linux safe 60 0.03 0 0 0.03
DLL+subdata safe 40 0.12 0 0 ∞
SLLOfCSLL safe 47 0.02 0 0 0.05
SLLOf2CDLL-Linux safe 35 0.16 0 0 0.26
SkipList2 safe 84 3.36 0 0 ∞
SkipList3 safe 92 20.05 0 0 ∞
SkipList2 error 84 0.08 1 1 0.10
SLL01 safe 70 0.90 1 1 𝑒𝑟𝑟
DLL01 safe 73 0.54 2 2 2.2
CSLLMon safe 49 2.1 3 3 2.3
CDLLMon safe 52 31.0 18 24 2.3
OptPtrSLL safe 59 0.94 3 3 ∞
OptPtrDLL safe 62 1.3 5 5 ∞
QueueSLL safe 71 17.00 10 10 2.2
QueueDLL safe 74 1.5 14 14 2.1
GBSLL safe 64 6.10 3 3 ∞
GBDLL safe 71 1.4 4 4 ∞
GBSLLSent safe 68 0.48 3 3 ∞
GBDLLSent safe 75 1.3 4 4 ∞
RGSLL safe 72 14.41 22 38 0.13
RGDLL safe 76 78.76 26 26 0.13
WBSLL safe 62 0.71 5 5 0.16
WBDLL safe 71 1.60 7 7 0.14
SortedSLL safe 190 227.12 15 15 2.2
SortedDLL safe 82 120.00 11 11 2.20
EndSLL safe 45 0.10 2 2 2.1
EndDLL safe 49 0.14 3 3 1.8
TreeRB error 130 0.08 0 0 ∞
TreeWB error 125 0.05 0 0 ∞
TreeCnstr safe 52 0.31 0 0 ∞
TreeCnstr error 52 0.03 0 0 ∞
TreeOfCSLL safe 109 0.57 0 0 ∞
TreeOfCSLL error 109 0.56 1 3 ∞
TreeStack safe 58 0.20 0 0 ∞
TreeStack error 58 0.01 0 0 ∞
TreeDsw safe 72 1.87 0 0 ∞
TreeDsw error 72 0.02 0 0 ∞
TreeRootPtr safe 62 1.43 0 0 ∞
TreeRootPtr error 62 0.17 2 6 ∞

version of a red-black tree). The program also contains a tester code to test this prop-
erty. Forester first learns two predicate languages describing particular violations of the
property: (1) “a green node is at the end of the list” and (2) “there are two green nodes
in a row.” After that, Forester derives a general predicate representing all lists with the
needed invariant, i.e, every green node is followed by a blue one. The program is then
successfully verified.

54

Another example comes from the analysis of the program TreeOfCSLL, which creates
and deletes a tree where every tree node is also the head of a circular singly-linked list. The
program contains an undefined pointer dereference error in the deletion of the circular lists.
Forester first finds a spurious error (also an undefined pointer dereference) in the code
that creates the circular lists. In particular, the abstraction introduces a case in which a
tree node that is also the head of a list needs not be allocated, and an attempt of accessing
its next selector causes an undefined pointer dereference error. This situation is excluded
by the first refinement, after which the error within the list deletion is correctly reported.
Notice that, in this case, the refinement learns a property of the shape, not a property over
the stored data values. The ability to learn shape as well as data properties (as well as
properties relating shape with data) using a uniform mechanism is one of the features of
our method that distinguishes it from most of the related work.

3.12.1 Description of Benchmarks

In this section, we describe the test cases used above in our experimental evaluation. Note
that we use a limited set of integer values since we do not support integer abstraction. We
use “SLL” and “DLL” to denote singly and doubly-linked lists respectively.

The cases described in the following list satisfy some safe invariant expressible using
regular languages (if their status in the table is “safe”) or contain an error (if their status
is “error”). As an error, we consider violation of memory safety properties, i.e., absence of
null/undefined pointer dereference, invalid free, and presence of garbage. For some data
structures, we have both a safe case and an error case.

• (SLL/DLL) (operation): Performing operation on a SLL/DLL.

• CDLL: Construction of a circular DLL.

• SLL+head: Construction of a list where each element points to the head of the list.

• SLL-Linux: Implementation of lists used in the Linux kernel, which uses type casts
and restricted pointer arithmetic.

• DLL+subdata: A DLL implementation that uses data pointers pointing either inside
the list nodes or optionally outside of them.

• SLLOf(CSLL/2CDLL): An SLL of circular SLLs or two circular DLLs respectively.

• SkipList𝑖: Construction and traversal of a skip list of level 𝑖.

• (SLL/DLL)01 : The nodes of the list may or may not point to an external node,
which, if present, is unique for each list item. We check the invariant that each node
has a pointer set to null or to an address of an external node.

• C(SLL/DLL)Mon: A circular SLL/DLL consisting of nodes with integer values. The
head of the list has the reserved value 0. The rest of the nodes with their integer
values form a non-decreasing sequence. We verify that the successor of an arbitrary
node can have a smaller value than the node only when the successor is the head of
the list.

• OptPtr(SLL/DLL): Each node of the list has an integer value, a pointer to the next
node, and an optional pointer to an external node. When constructing the list, an

55

integer value of every node is chosen nondeterministically. When the integer value
0 or 1 is chosen, the optional pointer points to the node itself. On the other hand,
when 2 is chosen, a new external node is allocated and its address is assigned to the
optional pointer. We verify the relation of integer values and optional pointers for all
nodes of the list.

• Queue(SLL/DLL): We create a list with nodes containing the integers 0, 1, 2, and 3.
The list can form sequences 0, 01, 012, 0123+. A particular sequence is created
during construction of the list nondeterministically. We remember which sequence
was actually created by an auxiliary integer variable. Then we traverse the list and
check that the sequence formed by the list corresponds to the value of the auxiliary
variable.

• GB(SLL/DLL): We create a list containing green and blue nodes. The colors arbi-
trarily alternate but it holds that a green node is always followed by a blue node.

• GB(SLL/DLL)Sent: This case is similar to the previous one but instead of termi-
nating the list with the null value, the list is terminated using a dedicated sentinel
node.

• RG(SLL/DLL): The list contains an arbitrary prefix of white nodes, one red node
followed by a green one, and an arbitrary suffix of white nodes. The list is reversed
and it is checked whether the green node is followed by the red node.

• WB(SLL/DLL): Exactly one blue node is inserted into a list of white nodes of an
arbitrary length. Then the list is traversed and it is checked that the number of blue
nodes is one.

• Sorted(SLL/DLL): This test case contains a sorted list of nodes with integer values 0
and 1. A node with value 1 is added at an arbitrary position that keeps the order of
values of nodes in the list. Finally, it is checked that the values of nodes in the list
are still ordered.

• End(SLL/DLL): The last element of the list has a special integer value.

• TreeRB: We construct a red black tree and then go through the tree checking (regular)
invariants of this data structure. The created tree has an arbitrary height, and the
nodes may have both, one, or no child allocated. A transposition of nodes needed
to preserve the data structure’s invariants is done continuously during construction
of the tree when a new node is added. This operation is complex since it requires
relocation of nodes in several levels of trees. The nodes also need to have parent
pointers to allow the transposition.

• TreeWB: We construct a tree that has all nodes white except exactly one blue node.
The blue node is at an arbitrary position. We traverse the tree and check that there
is a single blue node.

The following test cases from our benchmark are checked only for memory safety prop-
erties.

• TreeCnstr : The construction of an arbitrary binary tree.

56

• TreeOfCSLL: We construct a binary tree where each node points to a circular SLL of
an arbitrary length. Then we traverse the whole tree and all nested lists.

• TreeStack: The construction of a binary tree, which is subsequently destroyed using
stack implemented by an SLL.

• TreeDsw: We construct a binary tree and perform the Deutsch-Schorr-Waite traversal.

• TreeRootPtr : The construction and traversal of a binary tree with nodes containing
root pointers.

57

Chapter 4

Developing Shape Analyser for
Software Verification Competition

4.1 Introduction
The following chapter describes development of the Forester tool [70] for the interna-
tional Software Verification Competition [8] (SV-COMP), which is annually held within
the TACAS conference. Tools competing in SV-COMP vary from sound abstract inter-
preters or formal verifiers through static analysers to unsoud tools like bounded model
checkers. The tools compete in verification of the C programs from the competition bench-
mark. The length of the programs varies usually from tens to hundreds lines of code. The
verification tasks are separated to different categories, e.g., reachability, termination, or
memory safety. Each category has its own specification of program invariants which are
verified. For instance, in the reachability category, an invariant may be that a certain line
of the program is never reached.

A verification tool is supposed to answer for a given program and specification whether
the program fulfills the specification (the tool answers true), breaks the specification (the
tool answers false), or the tool cannot decide and gives the answer unknown. The tools
are rewarded by 2 points for a correct true answer, 1 point for a correct false answer, or
penalized by 32 points for an incorrect true answer, 16 points for an incorrect false answer.
As one can see, since SV-COMP is a verification competition, not a testing competition, it
favors sound tools over unsound ones by its scoring scheme.

Forester was participating in SV-COMP from 2015 to 2018. It was competing in the
tasks related to memory safety and heap manipulation. There are two types of properties
verified in these tasks: 1. reachability of a location in program, 2. memory safety properties
(i.e., absence of memory leaks, invalid dereferences, and invalid frees).

In particular, Forester competed in the sub-categories HeapManipulation, Memo-
rySafety in the year 2015, in the categories HeapReach, HeapMemSafety in 2016, and in the
categories ReachSafety-Heap, MemSafety-Heap, MemSafety-LinkedLists in the years 2017
and 2018. Its major successes were the second places in MemSafety-LinkedLists, a sub-
category of MemSafety, in the years 2017 and 2018.

Although Forester has never won any medal, it was able to analyze some really tough
test cases that have not been successfully verified by any other (sound) tool. Examples of
these programs are programs with skip lists (of the second and the third level) and some
test cases from [81] (described in Section 3.12.1), which were included into the category

58

MemSafety-LinkedLists in SV-COMP 2017. The former cases are hard to analyse because
a tool needs to derive complicated shape invariants which Forester can do thanks to the
automated box discovery. The latter cases are hard due to the need to derive invariants
describing relations between nodes of data structures, which Forester can infer using the
CEGAR loop.

We note that Forester was created as a proof of concept, to test the limits of forest
automata in shape analysis, with the focus on difficult shape properties. It was not engi-
neered to become a robust tool capable of handling a large class of practical C programs.
It hence usually did not rank high in SV-COMP since the programs targeted by Forester
are only in a small minority in SV-COMP, which is aimed at evaluation of general software
verifiers. Even the categories specialized to heap manipulation consist of programs that
use a wide range of features of the C language, not only the small subset of the syntax
(focused on pointer manipulation) supported by Forester. Therefore, for many tasks,
our tool did not even start verification, and even when the analysis successfully started,
Forester often failed because of some unsupported feature of C (such as the standard
C library functions alloca or memset, whose modelling is hard and needs to be done by
hand, potentially making changes in the core engine of Forester). Still, we believe that
Forester succeeded in showing that the combination of forest automata with techniques
from ARTMC are superior to a number of other existing approaches in terms of generality
and flexibility, and that it is competitive with the best in terms of speed. Building a more
robust tool on top of our experience with Forester is one of possible future goals.

The main concepts of the verification approach used by Forester were described in
detail in the previous parts of the thesis, and so the rest of the chapter is going to mainly
discuss technical improvements of Forester done during the preparations for different
editions of the competition.

4.2 Technical Preparation of Forester for SV-COMP
This section contains description of technical improvements of the tool that we did for
the different editions of the competition. The conceptual improvements of forest automata
based shape analysis in different editions of the competition are described in the next
section.

For the first participation of Forester in SV-COMP (edition 2015) [80], no principle
changes in Forester were done, and we aimed to preparing the tool from a technical
perspective to fulfill the requirements of the competition. Forester did not have a coun-
terexample analysis or an abstraction refinement in this first participation. The tool was
submitted as a binary file in an archive together with the scripts wrapping it for execution
in the competition. The scripts, e.g., translate outputs of Forester to the form of outputs
defined by the competition rules.

However, it was needed to add to Forester a support for printing out a path leading to
a found counterexample violating the given specification, the so-called witness. The witness
format is a dialect of GraphML (which is based on XML) defined by the competition rules
and described in more detail way in [24]. We use the fact that Forester performs a
symbolic execution and creates symbolic states containing a link to the previous state. We
travel the path of symbolic states from an erroneous state to the beginning of the program
and gradually generate the needed witness in GraphML. The witnesses are later used by
so-called witness checkers which perform precise exact checking (i.e., without abstraction)
navigated by the input witness to check that a found error is really in program.

59

In the next edition of the competition (year 2016), we adapted Forester to the new
competition environment. Particularly, the competition started using Benchexec [28], a
platform supporting easy execution of the different tools over a given benchmark and re-
porting results in a structured way. We implemented a script called by Benchexec to
execute Forester over a given verification task. This script calls another script directly
encapsulating Forester and translating outputs of the tool to the ones predefined by the
competition. It was also needed to create a specification of the Forester’s participation in
an XML format and to upload it to the SV-COMP repository. The specification defined in
which categories Forester participated and which parameters were used for a particular
category.

Finally, since edition 2017 of SV-COMP, Forester supported printing so-called cor-
rectness witness. I.e., a description of the state space explored during a verification of
error-free task together with invariants implying correctness of program. A witness is again
based on the GraphML format defined by the competition and described in [23]. In our
case, the invariants are forest automata representing a shape invariant (i.e. all possible
shapes of data structures allocated on the heap) for each line of the program visited during
the verification procedure.

4.3 Conceptual Improvements over the Editions of SV-
COMP

For the first edition in which Forester participated (2015), we did mainly technical im-
provements of the tool as described above. The main conceptual change was a replacement
of an ad-hoc implemented tree automata library by the VATA library [99]. It improved
the overall architecture of Forester (and therefore maintainability) and made possible to
benefit from improvements in the VATA library, which contains efficient implementations
of various algorithms for tree automata.

The main bottleneck of Forester in the competition, namely, is inability to distin-
guish between false and real bugs in a program, was fixed for the next edition (2016) (the
possibility of false bugs is caused by using abstraction over forest automata as was described
in the previous chapters). This deficiency was resolved by an implementation of a backward
symbolic execution from the point where a violation of the specification was detected and
check whether it is real or spurious counterexample. The principle of this procedure was
already described in Section 3.4.2.

The backward run and abstraction refinement were implemented in the standard CE-
GAR loop. We used the already existing forward run and added it to a loop where a
(potentially) found counterexample is analysed by the new backward run. If the poten-
tial counterexample is a spurious one, we perform a refinement of the abstraction, either
by increasing the height for the height abstraction or by deriving new predicates for the
predicate abstraction which was also newly implemented. Particularly, the new predicates
are forest automaton from backward run. Once the abstraction is refined, Forester can
recover from the phase of detection of a spurious counterexample and restart the analysis.

Finally, for edition 2017 we extended the backward run and abstraction refinement
to hierarchical forest automata (described in Section 3.3.2). The hierarchical structuring
complicates the intersection of forest automata since the intersection needs to take the
semantics of boxes into account. One possible solution would be some on-the-fly unfolding
of boxes which would make the intersection algorithm complicated. Therefore, as described

60

in Section 3.5, we take another approach which keeps automata in forward and backward
run in the so-called compatible form (Section 3.5.2). This form assures that the same
heaps are represented in the same way. From a technical point of view, we needed to
change the implementation of the abstract operations performed in the forward run and
their reversion in the backward run. As it is was described in the previous chapter, the
most challenging operations to revert in the backward run w.r.t. the compatible form are
the operations of folding (creating a box from a forest automaton), unfolding (reverted
folding), and splitting, merging, and reordering (i.e., the operations of removing redundant
cut-points and connecting associated tree automata).

4.4 Strengths and Weaknesses
The main strength of the Forester tool in the competition came from the generality of the
underlying verification procedure. Forest automata as a domain are able to represent many
different data structures, ranging from doubly linked lists to different kinds of trees. From
the first participation in the competition, Forester was the only tool able to soundly verify
correctness of the implementation of skip lists of the second and the third level. Then the
further development extended the set of programs verified only by Forester. Particularly,
the newly implemented backward run and abstraction refinement gave Forester an ability
to learn more sophisticated invariants. An example of such an invariant is alternation of
two kinds of nodes in a singly or doubly linked list. Forester also benefits from using an
efficient implementation of the state-of-the-art algorithms for tree automata (in the VATA
library) what makes it quite efficient.

As we already discussed, the main weaknesses of Forester came from that it is still
a technical immature of the tool. It did not support the whole C syntax, and therefore it
reported unknown on many tasks from the SV-COMP benchmark as we already mentioned.
We did not have the manpower to add all needed features to Forester, which is still a
prototype and would need a major refactoring to reach a state where an easy maintainability
and extensible would be possible.

61

Chapter 5

Towards Efficient Shape Analysis
with Tree Automata

5.1 Introduction
As we have already discussed in the previous chapters, the recent 20 years have seen a
rise of many approaches to verification of pointer programs, aka shape analysis, up to
their industrial deployment (e.g. the technique of [44] in Facebook’s Infer). The existing
approaches are mainly distinguished by the formalism used to describe sets of memory con-
figurations (shape graphs), which are essentially graphs with nodes being memory locations
and edges being pointers. The dominant position, previously held by frameworks such as
[122, 110], is currently occupied by more automated and scalable approaches based on sep-
aration logic (SL) [121, 19, 48], symbolic memory graphs [60], forest automata [72], and
graph grammars [73]. These approaches clearly identified the importance of local reasoning
and modularity in reasoning about memory configurations as the key to scalability.

One of the major bottlenecks in the field is extending the techniques to more complex
data structures: with anything beyond relatively simple variants of lists and trees, the
existing approaches struggle with scalability and precision or require a non-trivial users
assistance. None of the existing formalisms for describing shape graphs have all the fol-
lowing desirable properties: 1. Expressiveness – the ability to talk about variants of lists,
trees, structures such as skip-lists, threaded trees, their combinations and overlaid vari-
ants. 2. Local reasoning – running a program statement on the abstract domain should
have a local effect only, it should be possible to reason locally about the affected parts.
3. Effectiveness – satisfiability and entailment should be efficiently decidable, as well as
additional graph operations needed, e.g., in (higher-order) bi-abduction [44, 96]. 4. Ab-
straction and generalization learning mechanisms – it should be possible automatically and
efficiently learn abstractions of inductive invariants with controlled precision.

Separation logic approaches provide the first two qualities, expressiveness and local
reasoning but lack in the other two (despite the local reasoning that allows efficient im-
plementation of some of the needed operations but not all of them). Earlier verification
methods based on separation logic are not sufficiently general, their decision procedures
handle mostly just lists. Indeed, the approaches such as [87, 64, 115] are rather restricted
and incomplete, while the general approaches [88, 106] are theoretical and far from being
efficiently implementable. The recent works [91, 113, 62, 61] finally came with an entail-
ment for a large fragment of separation logic. These algorithms have not yet been tried

62

within actual verification of pointer programs but are promising not only in the context of
separation logic.

SL approaches so far lack ways to automatically learn shape invariants without a help
of user-predefined patterns. The higher-order bi-abduction [96] is a notable exception: it
is capable of learning extremely complex shape invariants such as B+ trees, skip-lists, or
threaded trees. It is, however, very sensitive to how the code is written (since it is, in
a sense, transforming the recursive code to inductive shape predicates) and hence quite
fragile, easily failing on seemingly easy examples such as natural implementations of a
doubly-linked list reversal.

Outside separation logic, especially the approach based on forest automata [68, 72, 83,
81] (described in Section 3) has been shown viable [80, 77, 78]. It allows for some degree of
local reasoning and has potential to be efficient as it allows to utilise advanced algorithms
for tree automata (such as simulation reduction or antichain language inclusion). The main
distinguishing advantage is its compatibility with abstraction schemes from abstract regular
model checking [81] with counterexample guided refinement loop. The formalism, however,
suffers from some deficiencies as that the classes of shape graphs it can handle are relatively
rich but still with limitations and that it is not closed under union (which complicates their
manipulation during verification procedure, e.g., a fixpoint computing).

We discuss here our work on developing a new graph formalism in the spirit of forest
automata that would remedy their weaknesses. We present main ideas on which such a
formalism can be built. First, we explain how graphs can be encoded into trees and tree
automata (as a variation on the tree decomposition of graphs [53] and also the formalism
used in [88, 87]). We then discuss basic ideas for an entailment procedure for the formalism.
We believe that this new formalism can eventually combine local reasoning of separation
logic and forest automata, strong entailment procedures of [91, 113, 62, 61], efficiency of
tree automata [12, 16, 10, 99], and powerful abstraction schemes of regular model checking.

5.2 Representing Graphs with Trees and Tree Automata
We will first discuss encoding of graphs as variations on tree decompositions, similar to
that used in [88] and also [87].

A Σ-labeled graph is a pair 𝑔 = (𝑉,𝐸) where 𝑉 is a finite set of nodes, 𝐸 ⊆ 𝑉 × Σ× 𝑉
is a set of Σ-labeled edges. A graph 𝑔 = (𝑉,𝐸) is deterministic if for every node 𝑛 ∈ 𝑉 and
every label 𝑎 ∈ Σ, there is at most one node 𝑛′ ∈ 𝑉 such that (𝑛, 𝑎, 𝑛′) ∈ 𝐸. Unless stated
otherwise, we will assume all graphs deterministic.

A tree decomposition of a labeled graph 𝑔 over a finite set of variables X and alpha-
bet Σ is a tree 𝑡 = (𝐵,𝐸). Nodes 𝐵 of 𝑡 are Σ-labeled graphs called bags. Nodes of a
bag are variables from X. Edges of 𝑡 are labelled by partial mappings 𝜌 : X → X called
parameter assignments. The tree-width of a decomposition, tw(𝑡), is the maximum cardi-
nality of a parameter assignment in it. A node occurrence in 𝑡 is a pair (𝑥, 𝑏) ∈ X × 𝐵
where either 𝑥 is a node of a bag 𝑏 ∈ 𝐵 (i.e., 𝑥 ∈ 𝑏) (so called an active occurrence)
or 𝑥 belongs to the image of the parameter assignment on the edge targeting 𝑏 (then it
is a passive occurrence), i.e., 𝑥 ∈ 𝑖𝑚𝑔(𝜌) such that (𝑏, 𝜌, 𝑏′) is an edge of 𝑡 and 𝜌 is a
label of the edge. The alias relation ∼ is the smallest equivalence of occurrences such
that if (𝑏, 𝜌, 𝑏′) ∈ 𝐸 and 𝑥′ = 𝜌(𝑥) then (𝑥, 𝑏) ∼ (𝑥′, 𝑏′). The Σ-labeled graph repre-
sented by 𝑡 is the graph 𝑔𝑡 = (𝑉 𝑡, 𝐸𝑡) where the nodes 𝑉 𝑡 are the equivalence classes
of ∼, called pipes, and 𝐸𝑡 = {([(𝑥, 𝑏)]∼, 𝑎, [(𝑥′, 𝑏)]∼) | (𝑥, 𝑎, 𝑥′) is an edge of the graph 𝑏 ∈

63

Figure 5.1: Figure shows circular doubly-linked list and its tree decompositions (from left
to right we refer to them as a, b, c, d). In the decompositions (a), the variables 𝑣, 𝑥, 𝑦, 𝑧
represent the nodes 1, 2, 3, 4 (in this order) of the list. The figure shows that it is pos-
sible to transform the first decomposition (a) to the second decomposition (b) one using
transformations shown in (c) and (d). Sub-figure (c) illustrates the reconnection operation.
It shows the decomposition obtained by reconnection applied to the decomposition of (b)
where the bag 𝑏0 is reconnected below the bag 𝑏′0. The figure also shows the primed vari-
ables introduced by the reconnection to prevent inference of reconnected pipes with pipes
along the reconnection path. Analogously, (d) shows a result of rotation applied to (c)
where the bags 𝑏1 and 𝑏′1 were rotated. The operation changes orientation of edge between
them and also introduces the new primed variables for each existing variable, e.g., (𝑥′)′ for
𝑥′ and since 𝑥′ already exists, 𝑥′′ is created for 𝑥.

𝐵} (that is, every edge (𝑥, 𝑎, 𝑥′) of every graph 𝑏 ∈ 𝐵 gives rise to
an edge ([(𝑥, 𝑏)]∼, 𝑎, [(𝑥

′, 𝑏)]∼) of the represented graph 𝑔𝑡).
An example of a graph (representing circular doubly-linked list data structure) and its

tree decomposition is shown in Figure 5.1.
We will work with the following restrictions of graphs and tree decompositions. If a

bag 𝑏 has an edge originating at 𝑥, then the pipe [(𝑥, 𝑏)]∼ is allocated at 𝑏. A backbone
decomposition corresponds to an (unoriented) tree backbone of the graph. It has three
defining properties: 1. Every bag 𝑏 allocates exactly one graph node. 2. Every graph node is
allocated only once. 3. The tree is connected in the sense that every tree edge corresponds
to a graph edge (regardless the edge orientation). That is, for every two adjacent bags, one
of them, say 𝑏, has an edge adjacent with 𝑥, and the other, 𝑏′, has an active occurrence
(𝑏′, 𝑧) with (𝑏, 𝑥) ∼ (𝑏′, 𝑧).

Last, assuming a backbone decomposition, we define so called pipe child relation ▷.
Two pipes 𝑝 and 𝑝′ of a decomposition 𝑡 are in the relation 𝑝▷ 𝑝′ iff 𝑝 is allocated in node
𝑏 and 𝑝′ in node 𝑏′ such that (𝑏, 𝑎, 𝑏′) ∈ 𝐸 for some 𝑎.

64

A set of tree decompositions can be represented by a tree automaton. Intuitively, a
node of a tree represents a node in the tree decomposition, and the label of each tree node
records the bag and the labels on the decomposition edges leading from the node to its
children.

5.3 Towards Entailment
The idea for deciding entailment is to use tree automata language inclusion algorithms (such
as [12, 16, 10, 99]) over tree automata encoding of tree decompositions. The difficulty here
is that a single graph has multiple decompositions and the tree automata may accept only
some of them, hence simple language inclusion check may underapproximate the inclusion
of sets of represented graphs (entailment). We therefore propose means of saturating the
tree automata languages with all possible tree decompositions of the represented graphs.
Conceptually, we will define a small set of operations which is complete for tree decompo-
sitions, that is, allows to transform a decomposition into any other decomposition of the
same graph. The two tree automata under the entitlement accept decompositions with
certain maximum tree width 𝑡, that can be easily determined. The entailment procedure
will apply the decomposition operations symbolically over the tree automata until they are
saturated with all tree decompositions of the represented graphs with the tree width up-to 𝑡.
Computing the language inclusion of thus saturated automata is then a sound algorithm
for entailment.

We will now outline the operations. These operations are essentially meant to complete
the rotation operation of [87].

Reconnection. The operation of reconnection is parameterised by two peer bags 𝑏 and
𝑏′ of the decomposition that allocate pipes 𝑝 and 𝑝′, respectively (they are peer bags, i.e.
not on the same branch of the tree). Its purpose is to create an equivalent decomposition
with the child relation on graph nodes being the same up to that 𝑝 becomes a child of 𝑝′
in the new decomposition.
The operation is implemented as a function reconnect(𝑏, 𝑏′, 𝑡) that transforms a tree de-
composition 𝑡 = (𝐵,𝐸) into 𝑡′ as follows. First, the pipes that are reaching 𝑏 in 𝑡 must
be in 𝑡′ sent to 𝑏′ through the path between 𝑏 and 𝑏′, called the reconnection path. Let
𝜌1, . . . , 𝜌𝑘 be the sequence of edge labels appearing on the reconnection path. Take ev-
ery label 𝜌𝑖 of an edge on the reconnection path with 2 < 𝑖 ≤ 𝑘, and replace it by
𝜌′𝑖 = 𝜌𝑖 ∪ {𝑥′ ↦→ 𝑥′ | 𝑥 ∈ img(𝜌1)}. The primed variables must be such that they do not
appear anywhere on the reconnection path, neither in the graph bags nor in the variable
renamings (they may be fresh variables). This is to stretch the pipes reaching 𝑏 through
the reconnection path towards 𝑏′. Replace also 𝜌2 by 𝜌′2 = 𝜌2 ∪{𝑥′ ↦→ 𝑦 | 𝜌1(𝑦) = 𝑥}. This
binds the new primed part of the pipes with the original pipes reaching 𝑛. Last, replace
the edge leading to 𝑏 by (𝑏′, 𝜌′1, 𝑏) where 𝜌′1 = {𝑥′ ↦→ 𝑥 | 𝑥 ∈ img(𝜌1)}. This makes 𝑏 a
child of 𝑏′ and connects the new primed pipes to the corresponding original pipes of 𝑏.
An example of the operation is shown in Figure 5.1 where the decomposition (b) is trans-
formed to the decomposition (c) by rotation reconnect(𝑏0, 𝑏

′
0, 𝑡0).

Rotation. The rotation operation is parameterised by two bags 𝑏 and 𝑏′ of the decompo-
sition. The operation inverts the edges in the path 𝜋 between 𝑏 and 𝑏′. Then it redirects
the incoming edge of 𝑏 to 𝑏′. Intuitively, it takes a subtree with the root 𝑏, changes the
root to 𝑏′ and inverts the edges in the subtree. It yields an equivalent tree decomposition

65

with respect to child relation which is inverted between pipes allocated in the nodes of the
path 𝜋.
The operation is implemented as a function rotation(𝑏, 𝑏′, 𝑡). At the tree level, it works
as follows. Consider the path 𝜋 : 𝑏 = 𝑏1, . . . , 𝑏𝑛 = 𝑏′. Remove each edge (𝑏𝑖, 𝜌, 𝑏𝑖+1),
where 1 ≤ 𝑖 ≤ 𝑛, between nodes in 𝜋 from 𝐸 and add (𝑏𝑖+1, 𝜌, 𝑏𝑖) to 𝐸. Moreover, we
replace each edge (𝑚, 𝜌, 𝑏) ∈ 𝐸 by the edge (𝑚, 𝜌, 𝑏′) in 𝐸. The labels along the rotated
path are changed in the following way. Replace the label 𝜌1 of the edge (𝑚, 𝜌1, 𝑏

′) by
𝜌1 = {𝑥 ↦→ 𝑥′ | 𝑥 ∈ dom(𝜌1)}. Replace each label 𝜌𝑖 in the path 𝜋 by 𝜌𝑖 = 𝜌𝑖 ∪ {𝑥′ ↦→ 𝑥′ |
𝑥′ ∈ img(𝜌′1)} for 2 ≤ 𝑖 ≤ 𝑏. Finally, replace the label 𝜌𝑏 over the edge leading to 𝑏 by
𝜌′𝑏 = 𝜌𝑏 ∪ {𝑥′ ↦→ 𝑥 | 𝑥′ ∈ img(𝜌′1)}.
An example of the operation is shown in Figure 5.1 where the decomposition (c) is rotated
by the operation rotation(𝑏1, 𝑏

′
1, 𝑡1) resulting to the decomposition (d).

Phase. The operations from one tree decomposition to an equivalent one may take un-
boundedly many operations. We will divide them into phases. One phase can still per-
form unboundedly many operations, but the set is restricted: the reconnection paths of
all reconnections must be node disjoint.
Formally, a phase is characterised by a set of operation parameters, pairs of nodes
{(𝑏1, 𝑏′1), . . . , (𝑏𝑘, 𝑏′𝑘)} of a decomposition 𝑡 such the for any two 1 ≤ 𝑖, 𝑗 ≤ 𝑘, 𝑖 ̸= 𝑗,
the operation paths between 𝑏𝑖 and 𝑏′𝑖 and between 𝑏𝑗 and 𝑏′𝑗 are node disjoint. A result
of the phase is any decomposition which arises by performing the appropriate operation
on (𝑏𝑖, 𝑏

′
𝑖) for each 𝑖 (in any order).

An example of two phases are show in Figures 5.1 (c) and (d) where the right-handed side
decomposition from Figure 5.1 (b) is transformed in the left-handed side decomposition
of the same figure in these two phases.

An important consequence of the disjointness of the reconnection paths is that all the
operations can be implemented while only doubling the number of variables and the tree-
width of the original decomposition. Particularly, all the operations can use the same set
of fresh primed versions of the variables X on the operation path without fearing a conflict
with the names of the existing pipes.

Lemma 5.1 One phase at most doubles the number of variables.

We conjecture that the number of phases needed depends on only on the tree-width:

Conjecture 5.1 An equivalent decomposition 𝑡′ can be obtained from 𝑡 in a number of
phases that depends only on max(tw(𝑡), tw(𝑡′)).

Next, we discuss implementation of a phase over tree automata (TA) representation.
We design phase over TA in such way that its results is an automaton that encodes all
possible results of phase applied at any possible decomposition represented by the original
automaton. We will briefly sketch the basic idea of the operation.

Namely, saturation with reconnections can be implemented by a tree transducer. Seen
as a top-down machine, it oscillates between two routines, idle, and reconnecting. In the idle
state, it is just traversing the tree. At any node 𝑟, it may non-deterministically chose to start
reconnecting. When reconnecting, it non-deterministically selects two peer descendants of 𝑟,
nodes 𝑏 and 𝑏′, and performs the reconnection on them. The reconnection, roughly, involves

66

adding of primed versions of existing pipes on the path from 𝑏 to 𝑏′ and reconnecting
the subtree of 𝑏 below 𝑏′. After that, the reconnecting phase stops and the transducer
continues traversing the tree in the idle phase. The requirement in the definition of phase
on the disjointness of the reconnection paths makes this doable—when reconnecting, the
transducer needs to worry only about one reconnection path at a time. Saturation with
rotations can be then implemented similarly as in [87].

We conjecture, based partially on Lemma 5.1, that such implementation of a phase over
tree automata representation is cheap:

Conjecture 5.2 The implementation of a tree automata phase at most doubles the number
of variables and leads to an automaton that is of a polynomial size assuming a fixed tree-
width of the original automaton.

Based on Conjecture 1 and 2, the saturation of a tree automata representation with all
decompositions until a fixed tree-width 𝑡 can be done in a time that is polynomial (when
the 𝑡 is fixed). Recall that deciding entailment between two TA representations, we saturate
both of them up to the maximum tree-width 𝑡 (in fact, it is enough to use the maximum
tree width of the automaton that is supposed to entail), and then we compute language
inclusion between the saturated automata. Since language inclusion of tree automata is
EXPTIME-complete, Conjectures 1 and 2 give an entailment algorithm singly exponential,
assuming a fixed maximum tree-width 𝑡.

5.4 Conclusions and Future Work
We have presented a basic outline of a formalism for representing shape graphs based on
tree automata. The ideas should lead to an entailment algorithm which is relatively fast
assuming fixed maximum tree-width of the graph representations if the proposed conjectures
are true.

In the future, the Conjectures 1 and 2 need to be proven. The conjectures are somewhat
optimistic but not in a direct contradiction with the recent 2-EXPTIME-hardness result of
[61]. If the conjectures turn out to be false, one could search for (1) restrictions under which
they are true and/or (2) one could try to show that the algorithm is efficient in practice
(possible combined with some heuristics) despite its complexity. In the long term plan, one
could develop a shape analysis framework based on this formalism and entailment check in
the spirit of [83] and also [96].

67

Chapter 6

Shape Analysis based on SMT
Solving

Apart from the automata-based approach as described in the previous chapters, the author
of this thesis participated also on development of a new shape analysis based on SMT solving
[104]. Although the author of this thesis has a minor share on the work, it is presented here
since it gives yet another perspective on shape analysis. However, we provide an overview
of the approach only. For a full technical description please check [104].

The verification method is based on representing the state space of the program being
verified w.r.t. the property of interest using a first order formula over a suitable combination
of SMT theories that represents the program in SSA form, a set of invariants based on
predefined templates (proposed for various domains of data), and the property of interest.
Templates are manually crafted logic formulae to capture only certain aspects of an analysed
program which makes the analyses computationally quite efficient. An example of such
template may be formula

⋀︀
𝑖 𝑥𝑖 ≤ 𝑑𝑖 where 𝑥𝑖 are the program variables and 𝑑𝑖 are templates

parameters for which analysis should find constant values. From perspective of abstract
interpretation, the templates parameters (the 𝑑𝑖 values in the previous example) are abstract
values representing more concrete states of the verified program. Similarly, the templates
may be viewed as abstract domains from this perspective and we use this term to speak
about templates in the rest of chapter.

The template-based representation of state space of program is then used within the
𝑘I𝑘I algorithm [40]. The algorithm is based on 𝑘-induction [124] which unwinds transition
relation representing program to the depth 𝑘 in the 𝑘-th iteration. For each depth 𝑘 of
unwinding, there is inferred 𝑘-inductive invariant (using the templates described above).
The invariant is added to a set of so far inferred invariants and the algorithm tries to
prove safety of program using the invariants. If it cannot be proved, the algorithm tries
to find counterexample in the current unwinding using bounded model checking. If the
counterexample is found, it is reported to user, otherwise the unwinding 𝑘 is incremented
and the algorithm continues.

The verification method using template-based representation of program state space
and 𝑘I𝑘I algorithm is implemented in the 2LS tool [7].

The main contributions of this work are:
1. We propose a novel abstract template domain for reasoning over heap-allocated data

structures such as singly and doubly linked lists.

68

2. Since we designed our domain in the template-based verification framework of 2LS, we
can build product and power domain combinations of our heap domain with structural
domains (e.g. trace partitioning) and value domains such as template polyhedra that
capture the content of data structures.

3. We implement our abstract heap domain in the 2LS verification tool for C programs.
We demonstrate the power of the proposed domain on benchmarks, which require
combined reasoning about the shape and content of data structures, showing that
other tools, which performed well in the international verification competition SV-
COMP, cannot handle these examples.

In this chapter, we firstly describe the template-based verification method and then the
domain for the shape analysis in whose design we participated.

6.1 Template-based Program Verification
In template-based program verification, a set of program states is described by a formula
built using suitable templates—states in the set are defined by models of the formula.
We are going to describe in this section how the formulas with templates are used in the
template-based verification procedure.

Given a vector of variables �⃗�, let the formula Init(�⃗�) describes the initial states. Further,
let Trans(�⃗�, �⃗�′) be a a describing the transition relation. Finally, let 𝐸𝑟𝑟(�⃗�) be a formula
describing error states.

Using Inv(�⃗�) to refer for an (inductive) invariant of the system, the verification task
can be reduced to the following second-order quantification (∃2):

∃2Inv . ∀�⃗�, �⃗�′. (Init(�⃗�) =⇒ Inv(�⃗�)) ∧
(Inv(�⃗�) ∧ Trans(�⃗�, �⃗�′) =⇒ Inv(�⃗�′)) ∧
(Inv(�⃗�) ⇒ ¬𝐸𝑟𝑟(�⃗�))

(6.1)

The above formula would, however, need a solver able to deal with second-order logic
quantification and there are currently no general and efficient solvers able to do it. There-
fore, the problem is reduced to an iterative application of a first-order solver by restricting
the inductive invariant Inv to 𝒯 (�⃗�, �⃗�) where 𝒯 is a template formula over program vari-
ables �⃗� and template parameters �⃗�. The template should ideally capture only properties
of interest for a certain analysis (which corresponds to the choice of an abstract domain in
abstract interpretation). The resulting first-order verification task is therefore following:

∃�⃗�. ∀�⃗�, �⃗�′. (Init(�⃗�) =⇒ 𝒯 (�⃗�, �⃗�)) ∧

(𝒯 (�⃗�, �⃗�) ∧ Trans(�⃗�, �⃗�′) =⇒ 𝒯 (�⃗�′, �⃗�))
(6.2)

Finally, since quantifier alternation is a problem for current SMT solvers, one iteratively
chose different values of 𝑑 and checks unsatisfiability for the negated formula:

∃�⃗�, �⃗�′. ¬(Init(�⃗�) =⇒ 𝒯 (�⃗�, 𝑑)) ∨

¬(𝒯 (�⃗�, 𝑑) ∧ Trans(�⃗�, �⃗�′) =⇒ 𝒯 (�⃗�′, 𝑑))
(6.3)

6.1.1 Program Encoding

The program is encoded into a formula representing a specific static single assignment form
(SSA). As usual, we use a fresh copy 𝑥𝑖 of each variable 𝑥 for each program location 𝑖

69

where the value of 𝑥 is modified. In this encoding, special variables called guards are used
to track the control flow of the program in such way that for each program location 𝑖 there
is a Boolean variable 𝑔𝑖 whose value encodes whether the program location is reachable.

To achieve acyclicity of the SSA, each the path coming from the end of some loops
is cutted. The value of each variable 𝑥 at the loop head is then represented using a phi
variable 𝑥𝑝ℎ𝑖 whose value is defined by a non-deterministic choice between the value coming
from before the loop, say 𝑥0, and the value coming from the end of the loop. The latter
value is represented by a newly introduced loop-back variable 𝑥𝑙𝑏. In particular, we let
𝑥𝑝ℎ𝑖 = 𝑔𝑙𝑠 ? 𝑥𝑙𝑏 : 𝑥0 where 𝑔𝑙𝑠 is a so-called loop-select Boolean guard that is unconstrained
in order to model the non-deterministic choice. The effect of the loop is overapproximated
and the value of the loop-back variable 𝑥𝑙𝑏 is initially unconstrained and later constrained
by the derived candidate loop invariants.

6.2 Template Domain for Shape Analysis
In [104], we design a template domain which is used in the described framework to derive
loop invariants of the programs with dynamic pointer-linked data structures. The domain
is particularly useful for programs with various kinds of lists as shown in our experiments.
Since we are interested in describing shapes of heaps, we limit our shape domain to the set
Ptr 𝑙𝑏 of all loop-back pointers. Since there is one loop-back pointer variable for each pointer
variable and each loop, we define Ptr 𝑙𝑏 = Ptr × 𝐿 where Ptr is the set of all pointers in
program (either a pointer variable, or a pointer field of a memory object) and 𝐿 is the set
of all loops in the program. We denote elements (𝑝, 𝑙) ∈ Ptr 𝑙𝑏 by 𝑝lb𝑖 where 𝑖 is the program
location of the end of the loop 𝑙. Intuitively, the value of 𝑝lb𝑖 is an abstraction of the value
of the pointer 𝑝 coming from the end of the body of the loop 𝑙. The property that our base
shape domain describes is the may-point-to relation between the set Ptr 𝑙𝑏 and the set Addr
of abstract memory addresses.

The template of our base shape domain has the form of the formula:

𝒯 𝑆 ≡
⋀︁

𝑝lb𝑖 ∈Ptr 𝑙𝑏
𝒯 𝑆
𝑝lb𝑖
(𝑑𝑝lb𝑖

). (6.4)

It is a conjunction of so-called template rows 𝒯 𝑆
𝑝lb𝑖

, each row corresponding to one loop-back
pointer from the set Ptr 𝑙𝑏. A template row 𝒯 𝑆

𝑝lb𝑖
(𝑑𝑝lb𝑖

) describes the may-point-to relation
for the loop-back pointer 𝑝lb𝑖 . The parameter 𝑑𝑝lb𝑖 ⊆ Addr of the row (i.e., the abstract value
of the row) specifies the set of all addresses from the set Addr that 𝑝 may point to at the
location 𝑖. The template row can thus be expressed as the quantifier-free formula:

𝒯 𝑆
𝑝lb𝑖
(𝑑𝑝lb𝑖

) ≡ (
⋁︁

𝑎∈𝑑
𝑝lb
𝑖

𝑝lb𝑖 = 𝑎). (6.5)

Abstract values of template rows corresponding to pointer fields of abstract dynamic
objects (e.g., the next fields of nodes of a singly-linked list) allow the domain to describe
unbounded linked paths in the heap, such as list segments.

To illustrate how template domain represents an unbounded data structure we provide
an example in Listing 6.1. It contains a program in the C programming language extended
by the function __VERIFIER_nondet_int() which generates a random number. The program
contains a structure representing a node of singly-linked list with one integer value and the

70

1 typedef struct node {
2 int val;
3 struct node *next;
4 } Node;
5

6 int main() {
7 Node *p, *list = malloc(sizeof(Node));
8 Node *tail = list;
9 *list = {.next = NULL, .val = 10};

10 while (__VERIFIER_nondet_int()) {
11 int x = __VERIFIER_nondet_int();
12 if (x < 10 || x > 20) continue;
13 p = malloc(sizeof(Node));
14 *p = {.next = NULL, .val = x};
15 tail→next = p; tail = p;
16 }
17 }

Listing 6.1: A running example

main function allocating a list of arbitrary length. In each iteration of the cycle in the main
function, a random number is generated and if the number is in range from 10 to 20, there
is also allocated a node with the generated value and this node is added to the list.

Our template domain will represent the shape invariants of the cycle from the example
in the following way. The memory objects allocated in the loop are represented by the
abstract dynamic objects 𝑎𝑜113 and 𝑎𝑜213 and they are linked through the pointer field next.
Please note that the malloc on Line 13 must be really represented by these two objects 𝑎𝑜113
and 𝑎𝑜213 as, e.g. on Line 14, variables tail and p may point to different concrete objects
allocated by this malloc call.

The shape of the heap will be described by an invariant for the loop, specifically
by the two template rows for the pointer fields of the abstract objects 𝑎𝑜113.𝑛𝑒𝑥𝑡

lb
16 and

𝑎𝑜213.𝑛𝑒𝑥𝑡
lb
16. The invariant is the formula ∧𝑙=1,2𝒯 𝑆

𝑎𝑜𝑙13.𝑛𝑒𝑥𝑡
lb
16
({&𝑎𝑜113,&𝑎𝑜213, null}) where the

rows 𝒯 𝑆
𝑎𝑜𝑙13.𝑛𝑒𝑥𝑡

lb
16

are the formulae 𝑎𝑜𝑙13.𝑛𝑒𝑥𝑡lb16 = &𝑎𝑜113∨𝑎𝑜𝑙13.𝑛𝑒𝑥𝑡lb16 = &𝑎𝑜213∨𝑎𝑜𝑙13.𝑛𝑒𝑥𝑡lb16 =
null. These formulae say that the next fields of both 𝑎𝑜113 and 𝑎𝑜213 may either point to one
of the objects themselves or to null. I.e., it describes an unbounded linked path in the heap
composed of by abstract objects 𝑎𝑜113, 𝑎𝑜213 and terminated by null.

Let return back to the general description of template domain. In order to use the base
shape domain within the 2LS approach, we have to augment it with information about
the guard variables that encode the program’s control flow in the SSA. The guards express
when an appropriate loop-back control edge is executed and the loop-back pointer has a
defined value1. We define a row of a guarded shape template as the formula:

𝒯 𝐺
𝑝lb𝑖
(𝑑𝑝lb𝑖

) ≡ 𝐺𝑝lb𝑖
⇒ 𝒯 𝑆

𝑝lb𝑖
(𝑑𝑝lb𝑖

) (6.6)

where 𝐺𝑝lb𝑖
is a conjunction of SSA guards associated with the definition of the variable 𝑝lb𝑖

and 𝒯 𝑆
𝑝lb𝑖

is as in the base shape domain. If 𝐺𝑝lb𝑖
is true for a program run, the definition

1Using the base domain without the guard variables would be sound. However, it would produce very
imprecise results since the abstract value would need to cover even states in which the loop-back edge was
not taken.

71

of 𝑝lb𝑖 was reached in the run. A shape template 𝒯 𝐺 with guards is then a conjunction:

𝒯 𝐺 ≡
⋀︁

𝑝lb𝑖 ∈Ptr 𝑙𝑏
𝒯 𝐺
𝑝lb𝑖
(𝑑𝑝lb𝑖

). (6.7)

Let 𝑝lb𝑖 be a loop-back pointer abstracting the value of a pointer 𝑝 ∈ Ptr coming from
the end of a loop 𝑙 ∈ 𝐿. The row guard 𝐺𝑝lb𝑖

is a conjunction of the following guards:

• The guard 𝑔𝑙ℎ𝑗 linked with the head of the loop 𝑙 located at a program location 𝑗,
encoding that the loop 𝑙 is reachable.

• The guard 𝑔ls𝑖 linked with the use of 𝑝lb𝑖 . The value of 𝑔ls𝑖 is true if 𝑝lb𝑖 is chosen as the
value of the corresponding phi variable at the head of 𝑙.

• If 𝑝lb𝑖 describes a pointer field of some abstract dynamic object (i.e. it has the form
𝑎𝑜𝑘𝑗 .𝑓

lb
𝑖 for some 𝑎𝑜𝑘𝑗 ∈ AO , 𝑓 ∈ Fld where AO is a set of all abstract dynamic objects

and Fld a set of all fields of abstract objects), we also use the guard 𝑔𝑎𝑜
𝑘
𝑗 linked

with the allocation of 𝑎𝑜𝑘𝑗 at a program location 𝑗. This guard conjoins the guard
expressing reachability of the program location 𝑗 with the object-select guards 𝑔𝑜𝑠𝑗,𝑙
and their negations denoting allocation of the 𝑘-th materialisation 𝑎𝑜𝑘𝑗 of the object
allocated at 𝑗.

Once we assemble a set of templates describing possible shapes of heap we derive shape
invariants using an SMT solver (since shape invariants are models of the logic formulae put
into the SMT solver).

We provide again an example giving more intuition about guards. Consider again
the program from Listing 6.1, the corresponding guards for the two template row are
𝐺𝑎𝑜113.𝑛𝑒𝑥𝑡

lb
16

= 𝑔10 ∧ 𝑔ls16 ∧ (𝑔13 ∧ 𝑔𝑜𝑠13) and 𝐺𝑎𝑜213.𝑛𝑒𝑥𝑡
lb
16

= 𝑔10 ∧ 𝑔ls16 ∧ (𝑔13 ∧ ¬𝑔𝑜𝑠13). Here,
the loop head guard is 𝑔10, the loop-select guard is 𝑔ls16, and the allocation guard is given by
the guard of the reachability of the allocation site 𝑔13 and by the appropriate object-select
guards (𝑔𝑜𝑠13 for 𝑎𝑜113 and ¬𝑔𝑜𝑠13 for 𝑎𝑜213, respectively).

6.3 Conclusion
The previous sections provided a brief and dense introduction to the template-based ap-
proach to static analysis and its extension by shape analysis.

Beyond the described aspects, we needed to design operations of dynamic memory
allocation (malloc), reading through dereferenced pointers, and memory free in our abstract
template domain to be able to model the semantics of C programs. As we mentioned above,
we also designed a combination of the described abstract domain for shape analysis with
other already existing domains.

The last part of the described method is checking that a program contains no absence of
null pointer dereferences, free safety, and absence of memory leaks. For instance, to check
absence of a null pointer dereference on a pointer 𝑝, we verify the assertion 𝑝𝑖 ̸= null where
𝑝𝑖 is the version of 𝑝 valid at a program location 𝑖, for each expression *𝑝 occurring at
every 𝑖.

A detailed description of abstract memory operations or how all three memory safety
properties are checked can be found in [104].

72

Table 6.1: Comparison of 2LS using the proposed method with the previous version of the tool over
the SV-COMP benchmark.

RS-ControlFlow RS-Heap MS-Heap MS-LinkedLists MS-Other
cpu (s) score cpu (s) score cpu (s) score cpu (s) score cpu (s) score

2LS 252 64 41 106 17.5 59 107 7 29 46
2LS-old 1400 45 53 -161 190 -194 96 -182 23 46

Table 6.2: Comparison of 2LS with other tools on examples combining unbounded data structures
and their stored data.

2LS CPA-Seq PredatorHP Forester Symbiotic UAutomizer
Calendar 2.88 timeout false unknown timeout timeout
Cart 23.70 timeout false unknown timeout timeout
Hash Function 3.65 8.51 unknown unknown unknown timeout
MinMax 5.14 timeout false unknown timeout timeout
Packet Filter 431.00 timeout timeout unknown unknown timeout
Process Queue 6.62 7.68 timeout unknown timeout timeout
Quick Sort 18.20 3.50 timeout unknown unknown 5.75
Running Example 1.24 timeout timeout unknown timeout unknown
SM1 0.53 timeout 0.31 false timeout timeout
SM2 0.55 5.41 false false timeout 14.50

To conclude this chapter, we provide a brief overview of an empirical evaluation of
our method. First, we did an experiment showing how the proposed method improved
performance of 2LS in benchmarks of the software verification competition SV-COMP,
particularly in the sub-categories ReachSafety-ControlFlow and ReachSafety-Heap, where a
reachability of an error condition was checked and in the sub-categories MemSafety-Heap,
MemSafety-LinkedLists, MemSafety-Others where absence of invalid pointer dereference, in-
valid free, and memory leaks were checked. We used BenchExec [27] to run the experiments
with time limit set to 900 s and memory limit to 15GB. We compared the implementation
of the described method to the version of 2LS from SV-COMP’17 without it.

The results are shown in Table 6.1. As one can see the old version of 2LS had even a
negative score due to missing shape analysis which often lead to reporting incorrect results.
2LS with our analysis obtained a positive score in all subcategories and it is also faster in
some of them.

Unfortunately, we are sill unable to compete with the best tools of SV-COMP’18 in
the heap categories. They support the bigger set of the C language features such pointer
arithmetic or manipulation of arrays. Some of the tools also use the domains for shape
analysis with higher expressive power so they can handle various kinds of trees or nested
lists what is currently beyond expressivity of our approach.

However, the main comparative advantage of our work is combining different analysis,
particularly we can combine value and shape analysis. We created a benchmark consisting
of 10 program in the C language. These programs manipulates unbounded dynamic data
structure and the verification tools also need to reason about the data stored in these struc-
tures. All of these programs are correct. We compared our approach to the various leaders
of SV-COMP’18 in the heap-related categories with the the results shown in Table 6.2. As
one can see, 2LS outperforms the other tools significantly. Numbers in the table represent
CPU time in seconds needed for the analysis of the example. The value unknown means
that a tool was not able to analyse the task.

The tools like Forester and Predator [60] were limited by their inability to reason
about the stored in the lists. On the other hand, more general tools such as Symbiotic [47] or

73

Ultimate Automizer [75] often timed out since they probably lack an efficient abstraction for
combination of shape and value properties. CPAChecker [26] (in the CPA-Seq configuration
from SV-COMP’18) solved four tasks but times out on the rest.

The empirical evaluation shows that our method has a potential outperform the state-
of-the-art tools and it may be a promising direction in the field of shape analysis. As we
mentioned before, the full description of the method can be found in [104] and we provided
only a brief overview since we are not the main authors of it.

74

Part II

Automata in Software Testing

75

Chapter 7

Generating Scenarios for Digital
Twins of Distributed
Manufacturing Execution Systems

7.1 Introduction
In this chapter, we switch to our proposed usage of automata in the area of Industry 4.0.
Industry 4.0 (or the fourth industrial revolution) is a trend pushing further cooperation
between humans, computers, and machines in the industrial applications. In Industry 3.0,
computers increased the level of automation in industrial production and so improved the
efficiency of manufacturing. In Industry 4.0, the automation is pushed even further by
allowing computers and machines to make autonomous decisions and control a part of
production without human intervention. One of the main challenges of Industry 4.0 is to
develop secure and bug-free components, especially in distributed manufacturing execution
systems. These systems usually control an industrial production consisting of manufac-
turing machines paired with controlling terminals, industrial control systems (ICS), and
enterprise resource planning system. Development and testing of such systems is quite
complex because their components (1) work in a distributed environment, (2) use differ-
ent communication protocols, (3) use different software ranging from low-level embedded
software to complex information systems, (4) require interaction between humans and ma-
chines, and (5) often cannot be tested in a real-world environment during the common
traffic.

Moreover, any bug or security issue may be quite costly which can be substantiated by
the expected grow of the market of ICS security up to $22.2 billions by 2025 [1]. Quality
assurance teams working in this area usually utilize some form of test automation while
they still need to spent effort on the manual testing itself. Unfortunately, test automation
of distributed manufacturing systems is hard for two main reasons.

First, testing in a real-world environment (so-called out-of-the-lab testing) is expensive.
Hence, one usually constructs the so-called digital twin: a virtual environment where com-
ponents (such as production machines) are emulated or simulated to create a digital copy
of the manufacturing process. Such a copy can then be used for testing in an environment
as close as possible to the real system.

The other problem is how to model the communication among a number of quite dif-
ferent components common in a manufacturing process. The communication within the

76

system is often purpose-specific and replicating it requires a strong domain knowledge.
Hence, creating the automated test suite is complicated as it requires a lot of effort spent
on a precise test-environment setup and deterministic test-case description.

In this work, we propose a generic framework for creating automated test suites for
digital twins of manufacturing execution systems (MES). The framework analyses the com-
munication captured from a run of the real system, learns a model of the communication
protocol and models of data sent. Based on these models, we generate test scenarios that
are used for orchestration of the corresponding digital twin. In particular, we suggest to
use such scenarios for automated testing of systems, e.g., when a new version of MES is
being developed.

7.2 Framework for Generating Orchestration Scenarios
In [66], on which this chapter is based, we proposed a generic framework that can be applied
to various settings of distributed MES system and instantiated it for a particular use case
consisting of various types of nodes communicating using various protocols. We assume the
following infrastructure: the distributed system consists of an Enterprise Resource Planning
(ERP) system, a MES system that controls the actual production, and manufacturing
machines with their corresponding terminals used by human operators. We expect that
the communication between the particular components uses different protocols and data
structures, i.e.: (1) MES and ERP communicate using the REST protocol with XML data,
(2) MES and terminal communicate using the REST protocol with JSON data, and (3) MES
communicates with machines using the OPC-UA protocol.

An overview of our framework is shown in Figure 7.1. Our framework requires logs of
communication collected from a real-world system, e.g., with an older version of the MES
system under testing: the collected log usually represents either expected communication
in the system or a log of communication that led to some incident. The log is in the form of
a sequence of messages between pairs of communicating components logged with timestamps
of the communication and the data that were transferred. We derive two kinds of models
based on this log: (1) a model of the data transmitted in the messages, and (2) a model of
the whole communication in the system. To model the communication, we convert the log
to a so-called event calendar which provides efficient and direct manipulation with the seen
messages. Then, we eventually convert the event calendar to a finite automaton (where
every event is a symbol) which is a more abstract representation but provides options for
postprocessing (e.g., by applying a trace abstraction to generate new test cases) or analyses
(e.g., by searching for a particular string representing an error behaviour). From the derived
(abstract) models, we generate a so-called scenario: a sequence of concrete messages that
will be sent into a real-world or simulated environment. A scenario is later used by a digital
twin orchestrator to perform simulation of a real system in a digital twin. In our case, we
use the Cryton tool [2] to orchestrate the simulated environment. Other orchestrators that
conform to our format of scenarios can be naturally used as well. Finally, based on the
result of orchestration, developers can observe whether the new version in the digital twin
behaves as expected.

The framework can also be quite easily extended to support performance testing of
the digital twins. In particular, we propose to mine selected performance metrics (among
others, the duration of communications) from a captured logs. The metrics are then used
for comparison of runs from different environments or from different versions to detect, e.g.,
anomalies in the performance.

77

v0 v1

Real System
with System Version 0

Simulated System
with System Version 1

Digital Twins

...
Tyrant Cryton

Scenario

Abstract Models
(communication, messages, …)

Reproduction of Runs
(for debugging or testing)

Detection of Anomalies
(wrong ordering, slow response, …)

Controls of the Simulation

Reproduces the Messages

Logs Anomalies

...
Captured

Communication
Logs

... Stream of
Messages

Figure 7.1: A scheme of our solution for generating scenarios for orchestrating digital twins
based on learning from logs of a real system and then testing MES in an environment of
digital twin.

Related work. There exist different approaches for modelling communication in manu-
facturing systems and deriving new test cases. The work [22] uses finite automata to model
the communication in the described systems, however, their approach is limited to learning
a fixed number of components only. Another approach is the process mining approach [9],
a mature technique for modelling event-based systems. We see the technique as not suited
well for MES systems as it analyses one-to-one communications and is restricted to a single
thread per node [98]. Modelling of communication for anomaly detection [107] implements
an approach based on probabilistic automata. The usual communication in factory is,
however, mostly deterministic, hence, no probabilistic transitions would be created in the
derived automata. Finally, there some other approaches such as [14] (does not have avail-
able implementation and it is not clear from the experiments if the new test cases can be
generated from an inferred model), [52] (focuses on inferring a state machine representing
a communication protocol but does not consider more communicating components of sys-
tem neither an inner structure of communicated messages), or [86] (which produce complex
models from which it would be complicated to generate scenarios), but none of them fulfill
all needs of this project.

Beside modelling communication, we also need to model and generate new messages.
In our use case, the messages are in the JSON and XML formats. There are several
tools which can generate testing data in these formats. One of them is the DTM Data
Generator for JSON [5] which can generate testing JSON data having a structure defined
manually by the user or derived from an example of an input document. It supports deriving
relations between data in a JSON document and contains a domain-specific built-in data

78

generator (e.g., for addresses, phone numbers, or URLs). Moreover, it can also combine
more structures to new test cases. However, the software is proprietary, it is not clear how
other formats than JSON would be supported, and it does not provide a abstraction over the
input data which would allow extrapolation for generating testing data. Another example
of a tool for generating input data in JSON is the JSON Schema TestData Generator [6].
The tool is open source but quite simple. It generates test data based on a given JSON
scheme and does not provide any functionality for deriving relations between data in a
JSON document or ability to learn and abstract from a given set of JSON documents.

For generating XML, there two classes of approaches. The first one is based on gen-
erating XML according to a given XPath query (the so-called category-partition based
approach) [112, 94]. The advantage is the ability to change the specification easily and so
the generated data. However, it is not suitable for our purposes since we want to learn
the syntactic structure of logged messages, not to write their specification manually. The
second approach is based on generating XML documents based on a given XML schema
instance [21] which is closer to our needs. But it does not provide generalization of the
same class of messages to one generic syntactic structure.

7.3 Modelling Messages
In a distributed system, components usually communicate through messages. We assume
that each message that was captured in the log has the following parts: (1) a timestamp
(when the message was sent), (2) data (what was sent), and (3) a type (what kind of message
was sent). A suitable data representation of such messages can be a challenging task,
especially when modelling communication among different components. The representation
should be unified for different kinds of data formats (such as JSON, XML, or YAML),
should preserve the original semantics, and should allow generating new test cases from the
observed data (e.g., extrapolating extreme values from the underlying domains).

Communication logs usually contain lots of subsets of messages that are structurally
similar to each other and differ only in certain aspects (mainly in the data that were sent
and the type of the message). Thus, we propose classification of the messages into groups
of similar messages before creating abstract models. In particular, we classify the seen
messages based on the so-called fingerprint of the message (in the form of the spanning tree
of the nested structure with respect to the fields of the data) and based on the type of the
message. The idea is that messages having a similar structure (but differing, e.g., in the
number of items in a list or values in the leaves) should have the same abstract model. For
each such class, we construct an abstract model that represents all seen messages of the
given class. Such a model can then be used not just to reproduce the communication but
also to create new (potentially unseen) messages, e.g., by generating syntactically-similar
messages.

We propose to model the messages using the following representation (simplified for
the sake of presentation). We assume two types of nodes: (1) A leaf node is a quadruple
𝑛 = ⟨𝑘, 𝑙, 𝑢, 𝑉 ⟩ where 𝑘 is a key associated with the node (e.g., as in JSON key-value pairs),
𝑙 (resp. 𝑢) is the minimum (resp. maximum) number of occurrences of the node with the
key 𝑘 in the given part of the message, and 𝑉 is the set of all seen values for the node,
(2) a composite node is a quadruple 𝑛 = ⟨𝑘, 𝑙, 𝑢,𝑁⟩ where 𝑘, 𝑙, and 𝑢 are defined the same
as previously, and 𝑁 is a set of child nodes (either leaves or composite). We illustrate a
representation of an XML message by our model in the following example. Consider the
XML messages from the Listings 7.1 and 7.2. Both messages contains simplified description

79

1 <Item>
2 <Name>laptop</Name>
3 <Component>
4 <Material>silicon</Material>
5 <Count>5</Count>
6 </Component>
7 <Component>
8 <Material>aluminum</Material>
9 <Count>1</Count>

10 </Component>
11 <Component>
12 <Material>plastic</Material>
13 <Count>2</Count>
14 </Component>
15 </Item>

Listing 7.1: An XML message between ERP and MES. In the captured logs, it is stored
in the file named 20211207-125952.xml containing timestamp in its name. The message
describes of components needed for construction of a product.

16 <Item>
17 <Name>table</Name>
18 <Component>
19 <Material>wood</Material>
20 <Count>10</Count>
21 </Component>
22 <Component>
23 <Material>metal</Material>
24 <Count>3</Count>
25 </Component>
26 </Item>

Listing 7.2: An XML message between ERP and MES. In the captured logs, it is stored in
the file named 20211207-125955.xml containing timestamp in its name.

of a product built in a hypothetical factory. A product is described within Item tags where
a name of it is given together with a list of the components needed for production of
the product. For each component there is specified a material of the component and a
number defining how many pieces of the given component is needed for the production.
This kind of messages is sent from ERP to MES and in the logs of communication, the
messages are stored in the files having the timestamps as the file names (particularly,
20211207-125952.xml and 20211207-125955.xml in our example).

An illustration of our models of the messages are in Figure 7.3. The upper fig-
ure corresponds to the message from 20211207-125952.xml and the bottom one to the
20211207-125952.xml. As one can see the tree structures of the models in the figure cor-
responds to the structures of the XML messages. The pink nodes are composite nodes and
the blue nodes are leaf nodes. The text inside nodes corresponds to the quadruples in the
definition of both kinds of nodes. Please note that the children of the composite nodes are
not enumerated explicitly in the label of the nodes but are reflected by the tree structure of
the model. Generally, the various atomic values (occurring in XML and JSON messages)
correspond to leaf nodes and composite values (lists, dictionaries, nested tags) correspond
to composite nodes in our representation.

80

Figure 7.3: The models of the XML messages from Listing 7.1 (the upper figure) and Listing
7.2 (the bottom figure)

Intuition behind minimum and maximum of node occurrences is that these values are
used when we merge the concrete messages of the same class to an abstract message repre-
senting the class. The minimum and maximum values keep information about a number of
occurrences of the given node in the concrete messages of the class what may be used later
for a generation of messages from the abstract representation for the testing purposes.

Note that other types of nodes are special cases of the defined nodes, e.g., the attribute
node used in the XML format, is a special case of leaf node.

Now we provide a description how to obtain a abstract representation of messages
which can be later used to generate the new test cases. We start with an intuition and later
formalise the described method. To create abstract models of the different classes of the
messages, we process the input log message by message (which are in the XML or JSON
format), classify a message to a class and then apply the group and reduce function to a
model of the message. The function groups the same nodes w.r.t. a given property (usually
it groups the nodes with the same keys) to one node what makes the representation more
concise and general. Then we apply the merge function to the all messages in the given
class which results to one abstract message representing the class.

In the following definitions, we will work with unary predicates 𝑐 over nodes 𝑛 written as
𝑐(𝑛) representing that the node 𝑛 has a specific property. We denote the set of all possible
predicates as 𝐶.

We define the function reduce over a set of leaves {𝑛1, . . . , 𝑛𝑚} with the same key 𝑘
as 𝑟𝑒𝑑𝑢𝑐𝑒({⟨𝑘, 𝑙1, 𝑢1, 𝑉1⟩, . . ., ⟨𝑘, 𝑙𝑛, 𝑢𝑛, 𝑉𝑛⟩}) = ⟨𝑘,

∑︀𝑛
𝑖=1 𝑙𝑖,

∑︀𝑛
𝑖=1 𝑢𝑖,

⋃︀𝑛
𝑖=1 𝑉𝑖⟩; similarly, we

define the reduce of a set of composite nodes {𝑛1, . . . , 𝑛𝑚} corresponding to a key 𝑘 as
𝑟𝑒𝑑𝑢𝑐𝑒({⟨𝑘, 𝑙1, 𝑢1, 𝑁1⟩, . . . , ⟨𝑘, 𝑙𝑛, 𝑢𝑛, 𝑁𝑛⟩}) = ⟨𝑘,

∑︀𝑛
𝑖=1 𝑙𝑖,

∑︀𝑛
𝑖=1 𝑢𝑖,

⋃︀𝑛
𝑖=1𝑁𝑖⟩. Let us explain

why the values 𝑢𝑖 and 𝑙𝑖 are summed. If we reduce two nodes with the key 𝑎, one with 30

81

Figure 7.4: The results of applying of the group and reduce function to the trees in Fig-
ure 7.3.

maximal occurrences and the second with 20 maximal occurrences, then the resulting node
should has 50 at most occurrences maximally because it represents nodes which occurred
in 50 places at the most.

Then, for composite nodes, we define the group and reduce function as
𝑔𝑟𝑝𝑟𝑒𝑑𝑢𝑐𝑒(⟨𝑘, 𝑙, 𝑢,𝑁⟩, ⟨𝑐1, . . . , 𝑐𝑚⟩) = ⟨𝑘, 𝑙, 𝑢,𝑁 ′⟩, where ⟨𝑐1, . . . , 𝑐𝑚⟩ are predicates and
𝑁 ′ =

⋃︀𝑚
𝑖=1

{︀
𝑟𝑒𝑑𝑢𝑐𝑒({𝑛 ∈ 𝑁 | 𝑐𝑖(𝑛)})

}︀
. Basically, the operation groups the children nodes

according to a given predicate (e.g., it groups children with the same key), merges their
values, and aggregates their occurrences.

We illustrate the group and reduce function in the following example. Consider the
models of the messages from Figure 7.3. If we apply group and reduce to the composite
nodes of the models starting from the root nodes and then proceeding in the breadth-first
manner, we obtain the tree structure shown in Figure 7.4. We use predicate stating that
only the nodes with the same children (i.e., their children have the same keys) can be
grouped. As one can see the nodes with the key Component are grouped to one node as
well as their children nodes with the keys Material and Count. The number of minimal
and maximal occurrences of the nodes has also changed to 3 in the upper sub-figure and to
2 in the bottom sub-figure which is the number of grouped nodes.

Finally, we define the merge of leaves and composite nodes, respectively, with the same
key 𝑘 as follows: (1) for two leave nodes 𝑛𝑙 = ⟨𝑘, 𝑙1, 𝑢1, 𝑉1⟩ and 𝑛′

𝑙 = ⟨𝑘, 𝑙2, 𝑢2, 𝑉2⟩ as
𝑛𝑙∘𝑛′

𝑙 = ⟨𝑘,𝑚𝑖𝑛(𝑙1, 𝑙2),𝑚𝑎𝑥(𝑢1, 𝑢2), 𝑉1 ∪𝑉2⟩ and (2) two composite nodes 𝑛𝑐 = ⟨𝑘, 𝑙1, 𝑢1, 𝑁1⟩
and 𝑛′

𝑐 = ⟨𝑘, 𝑙2, 𝑢2, 𝑁2⟩ as 𝑛𝑐 ∘ 𝑛′
𝑐 = ⟨𝑘,𝑚𝑖𝑛(𝑙1, 𝑙2),𝑚𝑎𝑥(𝑢1, 𝑢2), 𝑀𝑒𝑟𝑔𝑒𝑑(𝑁1, 𝑁2) ∪

𝐶𝑜𝑝𝑦(𝑁1, 𝑁2) ∪ 𝐶𝑜𝑝𝑦(𝑁2, 𝑁1)⟩, where 𝑀𝑒𝑟𝑔𝑒𝑑(𝑁, 𝑁 ′) = {𝑛 ∘ 𝑛′ | 𝑛 ∈ 𝑁 ∧ 𝑛′ ∈ 𝑁 ′ ∧∃𝑐 ∈
𝐶 : 𝑐(𝑛)∧𝑐(𝑛′)} and 𝐶𝑜𝑝𝑖𝑒𝑑(𝑁, 𝑁 ′) = {𝑛 | 𝑛 ∈ 𝑁 ∧∀𝑛′ ∈ 𝑁 ′ ∀𝑐 ∈ 𝐶 : 𝑐(𝑛)∧¬𝑐(𝑛′)}. Let us
provide an intuition for the operation. We choose values of minimal and maximal number of
occurrences to cover both nodes. In the composite nodes, we group the children satisfying

82

Figure 7.5: The result of application of the merge method to the trees from Figure 7.4
.

the same criterion and recursively merge them. If there is a child node from 𝑁1 (resp. 𝑁2)
with no node from 𝑁2 (resp. 𝑁1) that matches the same criterion, the former node is simply
copied to the result. For simplicity, we assume that a criterion 𝑐 is satisfied by maximally
one node in one subtree. We can afford such restriction since in our use cases merge is always
called after the group and reduce operations with the same set of criteria. Finally, for each
class and its messages with the root nodes 𝑟1, . . . , 𝑟𝑛, we compute the final abstract node 𝑛
representing the class as 𝑛 = 𝑔𝑟𝑝𝑟𝑒𝑑𝑢𝑐𝑒(𝑟1, ⟨𝑐1, . . . , 𝑐𝑚⟩) ∘ . . . ∘ 𝑔𝑟𝑝𝑟𝑒𝑑𝑢𝑐𝑒(𝑟𝑛, ⟨𝑐1, . . . , 𝑐𝑚⟩).

We illustrate the merge operation by Figure 7.5. The figure contains the result of
application of the operation to the trees from Figure 7.4. The nodes with keys Name and
Component from both trees were merged. The numbers defining minimal and maximal
occurrences of nodes Name are still 1 since the node appears exactly once in the both
reduced trees. The minimal number of occurrences of the node with the key Component
is now 2 (since it has 2 occurrences in the bottom tree from Figure 7.4) and the maximal
number of occurrences is 3 (which is the number of the occurrences of the node in the upper
tree from Figure 7.4). The same holds also for the leaf nodes Material and Count.

7.4 Modelling Communication of Monitored System
Once we derived the models of messages communicated in a system, we further learn the
communication protocol used in the environment. We first use an intermediate data struc-
ture called the event calendar to represent messages in the monitored system where each
event corresponds to one message. The messages are ordered chronologically in the calen-
dar by their timestamps. This way, we can represent the communication using different
protocols, and data formats in a unified and regular manner and we are not limited to a
fixed number of components. That would not be possible with other representations which
need predefined topology of the represented system. The calendar is later used to generate
scenarios precisely reproducing the learnt communication by transforming each event to
a single step in a scenario for orchestrating the digital twin.

Moreover, we want to generate the new test cases allowing to experiment with the
scenarios which have not yet been seen but are similar to real-world situations. Such
scenarios bring sometimes more testing value since they are relatively easy to generate in
contrast to the time demanding process of writing tests manually. Hence, we propose to
transform the event calendar to a finite automaton and apply, e.g., a trace abstraction
which over-approximates the language of the automaton. In the following paragraphs, we
describe our method in a formal way.

83

An event is a tuple 𝑒 = (𝑡, 𝑠, 𝑟, time,𝑚) where 𝑡 is the type of communication protocol
(i.e., OPC-UA or REST), 𝑠 is the identification of the sender, 𝑟 is the identification of
the receiver, time is a timestamp, and 𝑚 is an abstract representation of the sent message
described in the previous section. An event calendar 𝑐 is a list of events 𝑐 = (𝑒1, . . . , 𝑒𝑛).
A finite automaton is tuple 𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) where 𝑄 is a finite set of states, Σ is a finite
alphabet, 𝛿 ⊆ 𝑄 × Σ × 2𝑄 is a transition relation, 𝐼 ⊆ 𝑄 is a set of initial states, 𝐹 ⊆ 𝑄
is a set of final states. The language 𝐿 of an automaton 𝒜, denoted by 𝐿(𝒜), is a subset
of Σ* defined as follows. A run 𝜌 of the automaton 𝒜 is a sequence of states (𝑞1, . . . , 𝑞𝑛)
such that ∀1 ≤ 𝑖 ≤ 𝑛 − 1 : ∃𝑎 ∈ Σ : 𝑞𝑖+1 ∈ 𝛿(𝑞𝑖, 𝑎). A word 𝑤 = 𝑎1, . . . , 𝑎𝑛 is accepted by
the automaton 𝒜 iff there is a run 𝜌 = (𝑞1, . . . , 𝑞𝑛+1) of 𝒜 such that 𝑞1 ∈ 𝐼 and 𝑞𝑛+1 ∈ 𝐹 .
The language 𝐿𝑞 of a state 𝑞 ∈ 𝑄 is a set {𝑤 = 𝑎1, . . . , 𝑎𝑛 |𝑤 is accepted by a run 𝜌 =
𝑞 . . . , 𝑞𝑛+1 such that 𝑞𝑛+1 ∈ 𝐹}. The language of of the automaton 𝒜 is then 𝐿(𝒜) = {𝑤 ∈
Σ* |𝑤 ∈ 𝐿𝑞𝑖 ∧ 𝑞𝑖 ∈ 𝐼}.

An event calendar 𝑐 = (𝑒1, . . . , 𝑒𝑛) is transformed to a finite automaton 𝒜𝑐 =
(𝑄𝑐,Σ, 𝛿𝑐, 𝐼𝑐, 𝐹 𝑐) as follows: the set of states is 𝑄𝑐 = {𝑞𝑖 ∈ N | 𝑞𝑖 = 𝑖 ∧ 1 ≤ 𝑖 ≤ 𝑛+ 1}, i.e.,
we create the state 𝑞𝑖 for each event 𝑒𝑖 representing a state of the modeled system before
this event happens and we also add the final state 𝑞𝑛+1 representing the state of system
after the last event of series. For simplicity, the states are represented by natural numbers.
The alphabet Σ is obtained by transforming each event 𝑒𝑖 = (𝑡𝑖, 𝑠𝑖, 𝑟𝑖, time𝑖,𝑚𝑖), where
1 ≤ 𝑖 ≤ 𝑛, to a unique symbol 𝑎𝑒𝑖 by applying a hashing function over (𝑡𝑖, 𝑠𝑖, 𝑟𝑖) (particu-
larly, we concatenate string representing the given values and call a hashing function over
the resulting string), i.e., giving away 𝑚𝑖 and time𝑖. The set of initial states is 𝐼𝑐 = {𝑞1}
(the state corresponding to the state of the modeled system before the series of event starts)
and the set of final states is 𝐹 𝑐 = {𝑞𝑛+1}. Finally, ∀2 ≤ 𝑖 ≤ 𝑛+1 : (𝑞𝑖−1, 𝑎

𝑒𝑖 , {𝑞𝑖}) is added
to 𝛿𝑐.

In order to create new scenarios, we need to overapproximate the models. In particular,
we propose to use a trace abstraction transforming the automaton 𝒜 to an abstracted
automaton 𝒜𝑘 by merging all states with the same language with respect to a given length.
Formally, a trace abstraction up to length 𝑛 over an automaton 𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) is
an equivalence relation 𝛼𝑘 ⊆ 𝑄 × 𝑄 such that (𝑝, 𝑝′) ∈ 𝛼𝑘 iff 𝐿𝑛

𝑝 = 𝐿𝑛
𝑝′ where 𝐿𝑛

𝑞 =

{𝑤 | ∃𝑤′ : 𝑤𝑤′ ∈ 𝐿𝑞 ∧ |𝑤| ≤ 𝑛}. We denote the equivalence class of 𝑞 ∈ 𝑄 w.r.t. 𝛼𝑘

by J𝑞K. The abstracted automaton 𝛼𝑘(𝒜) = (𝑄𝛼,Σ, 𝛿𝛼, 𝐼𝛼, 𝐹𝛼) is obtained using 𝛼𝑘 in the
following way: 𝑄𝛼 = {J𝑞K | 𝑞 ∈ 𝑄}, for each 𝑞 ∈ 𝛿(𝑝, 𝑎) there is J𝑞K ∈ 𝛿𝛼(J𝑝K, 𝑎), and finally,
𝐼𝛼 = {J𝑞K | 𝑞 ∈ 𝐼} and 𝐹𝛼 = {J𝑞K | 𝑞 ∈ 𝐹}.

The trace abstraction overaprroximates language of the original automaton, i.e., 𝐿(𝒜) ⊆
𝐿(𝒜𝛼) (in fact, 𝐴 accepts just word representing content of the event calendar 𝑐, i.e.,
|𝐿(𝒜)| = 1) meaning that there may exist a word 𝑤 = 𝑎1, . . . , 𝑎𝑛 such that 𝑤 ∈ 𝐿(𝒜𝛼)∧𝑤 ̸∈
𝐿(𝒜). Both automata have the same alphabet which was originally derived from the set of
events. Therefore, it is possible to convert the word 𝑤 to a series of actual messages (i.e., to
a new event calendar). Supposing that 𝑤 is not in the language of the original automaton,
we thus obtain a series of events not present in the original system that can be used as a
new test case for testing the MES system in a digital twin.

The principles described in this section are shown in the following example. Consider
the event calendar at the left part of Figure 7.6. It contains six messages, two between
ERP and MES (communicated using the REST protocol), two between terminal and MES
(communicated using the REST protocol), and two between machines and MES (commu-
nicated using the OPC-UA protocol). The messages between ERP and MES corresponds
to the XML messages from Listing 7.1 and 7.2 as one can see from the timestamps (which

84

Figure 7.6: Figure illustrates transformation of an event calendar (on the left side) to an
automaton. It also contains an automaton created by applying abstraction to the one
obtained from the event calendar

.

corresponds to the timestamps in the names of files with XML messages). The messages
between machines and MES are in Listing 7.3 and the messages between terminals and
MES are in Listing 7.4. The content of the messages is described in a more detail in the
next section.

Each event contains information as defined above. The messages are not included or
abbreviated for the sake of brevity. The text <XML> or <JSON> means that the whole
XML or JSON message would be included in an event. A type of event is determined
by communication protocol and the types related with the XML and JSON messages are
further refined by the class of a message (we described the concept of a class of a message
in the previous section). In our example, we have types REST-1 and REST-2 which means
that all messages of these types are communicated via REST protocol but those of the type
REST-1 are classified to the class 1 and those of the type REST-2 are classified to the class
2.

In the next step, we convert the events to the symbols (of alphabet of an automaton) by
dropping the message and timestamp as we described above. In this case, we obtain three
different symbols – a,b,c. Then we create an automaton representing the event calendar.
The automaton has seven states and transition over the created symbols. Finally if we
apply a trace abstraction up to length 1 we get the automaton on the right-hand side of
the figure. The states 1 was merged with the state 4, the state 2 with the state 5, and the
state 3 with the state 6. One loop was created in the resulting automaton and the language
of the automaton is (𝑎𝑏𝑐)𝑛 for 𝑛 ≥ 1.

85

1 SampleDataTime ; Value ; Name ; Path
2 2021−12−07 12:59:53.617 ; 99 ; Machine 001 ; 0
3 2021−12−07 12:59:56.617 ; 100 ; Machine 001 ; 0

Listing 7.3: A message between the MES and a machine

1 07/12/2021 12:59:54 PM | ClientId: ExampleHost, Command: ResponseCommand, MessageType: Response
2 CommunicationId: 00000075−54f6−6fc3−84b6−0037d241d36b,
3 Data: {"user": "username", "isLoggedIn": true, "productsInBucket": 10}
4 07/12/2021 12:59:57 PM | ClientId: ExampleHost, Command: ProductionBalance, MessageType: Request
5 CommunicationId: 00000075−54f6−6fc3−84b6−0037d241d36b,
6 Data: {"MatchSetupOperationStr":"456 (930s)","MatchSetupLoginStr":"456 (0s)"}

Listing 7.4: An example of messages sent between a terminal and MES. The messages
consist of a header containing a timestamp, the identification numbers of a client and a
communication, a type of message, and a body containing data in JSON.

7.5 Generating Scenario
Finally, we generate a scenario that will be used for orchestration of the digital twin of
the tested system. We iterate over an event calendar created from the input logs and for
each event, we generate one step in the scenario. Each step consists of sending messages
in the digital twin. The concrete messages sent during the orchestration are generated
from the abstract representation. By default, we support an exact replication of the seen
communication, however, we provide also an experimental support for, e.g., generating
syntactically, semantically similar messages, or creating a new event calendar (i.e., a new
test scenario) from abstracted automaton as described in the previous section and proceed
in the same way. However, we would need more support from our industry partner to more
refine these methods which we unfortunately did not get.

We implemented our framework in our tool Tyrant [3] which generates scenarios for
the orchestrating tool Cryton [2]. Cryton uses as an input a configuration for creating the
digital twin (i.e., a description of components of the digital twin) and a scenario generated
by Tyrant in the YAML format.

In the following section, we will illustrate the transformation of communication logs to
a YAML scenario. For simplicity we present a generation of scenario corresponding directly
to the collected logs without any abstraction included. We remark that we consider a
system consisting of an ERP system, a MES system, and manufacturing machines and their
corresponding terminals used by human operators. Consider again the XML messages from
Listing 7.1 and 7.2. As we said, these messages are sent between the ERP and the MES.
The messages are stored in the file 20211207-125952.xml and 20211207-125955.xml which
have the timestamps encoded in their names.

Listing 7.3 shows the messages between a machine and the MES. The messages contains
their timestamps. The semantics of message is that the value of the node 0 should be set
to 99 (and then to 100 by the second message) in Machine 001. Listing 7.4 shows an
example of a log of communication between terminal and MES consisting of two messages.
The messages have two sections. The first one is header which includes a timestamp, the
identification numbers of a client and a communication, and the type of message. The
second part of a message are data in the JSON format.

86

1 −−−
2 timestamps:
3 − delta:
4 seconds: 0
5 minutes: 0
6 hours: 0
7 steps:
8 − type: REST
9 host: ERP

10 target: MES
11 args:
12 xml: |−
13 <Item>
14 <Name>laptop</Name>
15 <Component>
16 <Material>silicon</Material>
17 <Count>5</Count>
18 </Component>
19 <Component>
20 <Material>aluminum</Material>
21 <Count>1</Count>
22 </Component>
23 <Component>
24 <Material>plastic</Material>
25 <Count>2</Count>
26 </Component>
27 </Item>
28 − delta:
29 seconds: 1
30 minutes: 0
31 hours: 0
32 steps:
33 − type: OPC−UA
34 host: MES
35 target: Machine 001
36 args:
37 value: 99
38 node: 0
39 − delta:
40 seconds: 2
41 minutes: 0
42 hours: 0
43 steps:
44 − type: REST
45 host: MES
46 target: Terminal 001
47 args:
48 ClientId: ExampleHost
49 Command: ResponseCommand
50 MessageType: Response
51 json: |−
52 {
53 "user": "username",
54 "isLoggedIn": true,
55 "productsInBucket": 10
56 }

Listing 7.5: The generated scenario

87

57 − delta:
58 seconds: 3
59 minutes: 0
60 hours: 0
61 steps:
62 − type: REST
63 host: ERP
64 target: MES
65 args:
66 xml: |−
67 <Item>
68 <Name>table</Name>
69 <Component>
70 <Material>wood</Material>
71 <Count>10</Count>
72 </Component>
73 <Component>
74 <Material>metal</Material>
75 <Count>3</Count>
76 </Component>
77 </Item>
78 − delta:
79 seconds: 4
80 minutes: 0
81 hours: 0
82 steps:
83 − type: OPC−UA
84 host: MES
85 target: Machine 001
86 args:
87 value: 100
88 node: 0
89 − delta:
90 seconds: 5
91 minutes: 0
92 hours: 0
93 steps:
94 − type: REST
95 host: MES
96 target: Terminal 001
97 args:
98 ClientId: ExampleHost
99 Command: ProductionBalance

100 MessageType: Request
101 json: |−
102 {
103 "MatchSetupOperationStr": "456 (930s)",
104 "MatchSetupLoginStr": "456 (0s)"
105 }

Listing 7.6: The second of part of the generated scenario from Listing 7.5

88

Finally, the listing 7.5 and 7.6 shows a generated scenario consisting of two steps (Listing
is splitted to two part because it length). The first step is executed in (logical) time 0 hours,
0 minutes, 0 seconds: the orchestrator will sent a message from the ERP to the MES using
the REST protocol. The message has the XML data attached. The second step is executed
one second after the first step (which corresponds to a difference between the times of the
first and the second messages): the orchestrator will send another message from the MES
to Machine 001 using the OPC-UA protocol. The message says that the value of the node
with path 0 should be set to 99. The third messages is sent three seconds after the start of
orchestration from MES to Terminal 001 using REST protocol. The message contains data
from the headers of the logged messages and the data in the JSON format. Note, that we
can drop some information from the logged message such as a id of communication since
we get the fresh values of such variables in a simulation in digital twin.

Then the orchestration continues with the similar three steps which differs only in the
arguments (and time). Particularly, the fourth step is communication between ERP and
MES containing the XML message from Listing 7.2. The fifth step is a message from
Machine 001 to MES setting the value of the node with path 0 to the value 100 (as it is
in the second message in the in Listing 7.3), and finally, the sixth step is a message from
MES to Terminal 001 containing the JSON message corresponding to the second message
in Listing 7.4.

We tested our approach on a captured communication provided by a partner company
that offers a MES as their product. Particularly, we got the following logs:

1. communication between the MES and ERP consisting of 228 XML files where each
file is one message,

2. communication between the MES and two machines consisting of 25, 072 messages
between the first machine and MES and 20 messages between the second machine
and MES,

3. communication between the MES and a terminal consisting of 5, 970 messages.

That is a total of 31, 290 messages.
We processed the logs using the Tyrant tool on a machine having a 3 GHz Dual-Core

Intel Core i5 CPU and 8 GiB DDR3 RAM. We generated a scenario for the Cryton tool
having 31, 303 steps, which corresponds to the mentioned 31, 290 messages with 13 steps
added for initialization of the communication between the MES and ERP. We generated
the scenario in 22 seconds.

We further transformed the event calendar representing the above scenario to an au-
tomaton and applied abstraction over it. Before the abstraction, we obtained an automaton
with 31, 303 states (which corresponds to the number of steps in the scenario). After the
abstraction, we got an automaton with 3, 568 states and 17 loops, and we were able to
generate the new scenarios using the abstracted automaton.

Although the results of applying the abstraction look promising, this feature of Tyrant
is still experimental, and to be fully applicable for testing a particular MES in a digital
twin, it would need some fine-tuning. For instance, some sequences of messages (such as
the initial ones) cannot be repeated more than once or some messages need to be kept in a
particular order. Unfortunately, we did not manage to do this fine-tuning in a cooperation
with the partner company.

In general, the Tyrant tool is still a prototype, and it would need extensive collaboration
with the company to deploy it to production.

89

7.6 Conclusion
In the work presented in this chapter, we proposed a generic framework for orchestrating
digital twins of distributed systems in manufacturing environments. The main challenges
of generating scenarios suitable for orchestrating digital twins is finding suitable models for
(1) the communication in the systems and (2) the actual sent messages during the commu-
nications. We proposed to use a simple approach: using event calendar (or eventually finite
automaton) to represent (and generalize in the case of finite automaton) the communication
and a simple abstract representation for individual messages within the communication.

However, in our experience applying the framework in practice requires much more ef-
fort. Lots of testing scenarios and components require a specific preparation before the
orchestration: e.g., setting of the initial database or sending a specific sequence of (hard-
coded) messages to prepare the system that are usually not being captured in the commu-
nication log. Currently, our framework was instantiated to a concrete use case in a concrete
manufacturing environment. Extending our solution to broader class of manufacturing
environments remains an interesting subject of future work.

90

Chapter 8

Conclusion and Further Work

This thesis focused primarily on usage of finite automata in shape analysis and automated
testing. Our work utilized the following strong sides of automata in the different contexts:
1. expressivity (we are able to learn the different shape invariants using refinement of ab-
straction over forest automata), 2. genericity (we proposed a new kind of automata able to
represent graphs with bounded tree width), 3. flexibility (we used automata techniques in
the different fields, particularly in our work on shape analysis and automated testing). To
provide a different perspective and comparison to automata-based approaches, we also pre-
sented alternative approach to shape analysis based on SMT solving, on which development
we participated.

The main achieved result in shape analysis is the proposed way of using backward sym-
bolic execution on forest automata for checking spuriousness of potential counterexamples
and counterexample-guided refinement (CEGAR) to shape analysis based forest automata.
Backward symbolic execution enables distinguishing between real and spurious (caused by
abstraction) counterexamples. This made reporting of bugs found in programs through the
forest-automata-based shape analysis reliable due to avoiding the possibility of reporting
false alarms. The ability to detect spurious counterexamples is the first building block for a
CEGAR loop. The second one is a way of applying of predicate abstraction to the domain
of forest automata which makes precise refinements possible (quite uniquely in the domain
of shape analysis). Although the height abstraction originally used in shape analysis based
on forest automata can be refined too, it does not perform an exact exclusion of spurious
counterexamples and therefore could guarantee termination of the verification procedure
only when the height is radically increased, which would have a detrimental effect on the
efficiency. On the other hand, predicate abstraction derives the new predicates from the
detected spurious counterexample which prevents reaching the counterexample again. Since
the refinement is informed (i.e., it refined the abstraction in a way needed to exclude the
given counterexample, not blindly) it enables verification of a new class of data structures
where a set of predicates (derived during CEGAR) is needed to describe their invariants.
The concrete examples were described in Chapter 3.

The above mentioned results have been implemented in the Forester shape analyser.
As another contribution of this thesis, we have significantly improved various aspects of
this tool, allowing it to participate in the Software Verification Competition (SV-COMP).
Although we did not win a medal in any major category, we have shown that our approach
is able to compete and it is often superior to the other ones. Indeed, Forester was able
to soundly verify as the only tool in the competition test cases such as programs over skip

91

lists of the 2nd and 3rd level, various trees, and also data structures with relations between
nodes (for which we derive predicates using CEGAR).

Our further result in automata-based shape analysis is introduction of automata over
graphs with a bounded tree width which are inspired by the Courcelle’s theorem [54]. These
automata have expressivity higher than forest automata while keeping feasible algorithmic
properties. The complexity of entailment between these automata is singly-exponential,
which we believe to be acceptable for application in practical tests cases once some heuristics
will be introduced.

As we mentioned above, we also participated on a new kind of shape analysis based on
SMT solving. In this case, the possible shapes of data structures allocated on the heap are
described by logic of formulae over bit vectors. Basically, it uses SMT solving to compute
the points-to relation between pointers used in the given program and abstract memory
objects used by the analysis to represent memory dynamically allocated on the heap. This
approach is more straightforward than the automata based ones that we presented and
enables combinations of shape analysis with other domains such as integer domains, or array
domains. Moreover, it allows one to perform not only safety analysis but also termination
analysis. On the other hand, it lacks the generality of the automata-based approaches and
currently supports only analysis of linked list data structures.

The second field of focus of the thesis was automated testing. We developed an auto-
mated testing procedure for manufacturing execution systems (MES) in the environment of
digital twins. We learn a model of the communication protocol and messages sent between
software components of a factory where the MES is deployed. We automatically create the
test scenarios from the learnt models for digital twins in which the factory is emulated and
the MES is deployed natively. We can test, e.g., a new version of the MES before it is
deployed to a real factory using the described method. Since we can use finite automata
to model the communication protocol, we may use abstraction to overapproximate their
languages allowing us to create new test cases. The results of this part of the thesis are
mainly from the field of applied research. We implemented the procedure in the tool Tyrant
which was supposed to be applied in the Unis company. The company provided us with
logs of the real communication in their systems system which allowed us to developed a
prototype version of the tool Tyrant. Unfortunately, the cooperation then stopped with
the end of the project that supported it, and so it was not possible to make the real tests
of the approach in practice.

8.1 Future Directions
We see the main potential in automata-based-shape analysis in further development of graph
automata over graphs with a bounded tree width. We only sketched the basic concepts, and
it is now needed to design and prove an algorithm for entailment between these automata.
Then, one can think about using the formalism in a verification procedure such as abstract
regular model checking. Finally, it is needed to implement the approach and evaluate it
e.g., on the SV-COMP benchmark. Eventually, the basic algorithm may be extended by
various heuristics (e.g., approximate inclusion or more aggressive or (conversely) more exact
abstraction) allowing it to work successfully even for various difficult cases that do appear
in practice.

The experience with automata-based verification provides a basis for developing a new
efficient automata library. In fact, works in this direction have already started with the
author of this thesis technically involved. The library provides an efficient representation

92

of finite automata together with a rich collection of efficient methods for manipulation with
them such as union, intersection, complementation, determinisation. Various algorithms
crucial for formal verification and automated reasoning, such as emptiness checking, lan-
guage inclusion checking, or simulation based reduction have been also already implemented
(together with various heuristics to make them computationally feasible).

Another feature of the library should be a user friendliness. The interface should be
simple enough to be usable by anyone with basic programming skills and knowledge of
automata theory. The source code therefore hides complicated heuristics and optimiza-
tions and keep basic data structures simple and easily extensible. The implementation is
done in C++ for efficiency purposes but we provide an interface for Python to allow easy
experimentation with the algorithms.

Further, we have have designed a text-based format for description of various version
of finite automata. The format supports finite automata and alternating finite automata
with explicit, symbolic, or bitvector alphabet as well as transducers with the mentioned
alphabets.

The library was already used for development of a new decision procedure for string
solving published in [30] where the library was used as the back end for the tool Z3-
noodler [4].

In the field of automated testing of MES-controlled digitalized manufacturing systems,
one may consider more domain-specific abstractions over the proposed model of commu-
nication to enable generation of more useful tests automatically. In our experience, there
are often domain-dependent particularities such as the order of messages sent in the system
during initialization or special restrictions of parameters of some messages in real-life man-
ufacturing systems. In the current approach, we do not take that in consideration which
may lead to generating scenarios for the digital twin, which fail early not due to a found
bug in the system under testing but because of, e.g., a wrong initialization of the MES.

8.2 Publications Related to this Thesis
The work described in this thesis was published in the following papers. The backward sym-
bolic execution and counterexample-guided refinement over forest automata used in shape
analysis was published in [81]. A chapter describing the whole shape analysis based on for-
est automata was accepted for publication in a book about the state-of-the-art verification
tools, that participated in the SV-COMP competition. The book should be published by
the end the year 2023. The participations of Forester in the SV-COMP competition was
described in the short competition papers [80, 77, 78]. Our automata over graphs with a
bounded tree width were sketched in [85]. The approach to shape analysis based on SMT
was published in [104] and the 2LS tool implementing the proposed method participated
in the SV-COMP 2019 [105].

During work on this thesis, we participated also on another result related to shape
analysis which was not included in the thesis. Namely, it conceived an interconnection of
Symbiotic [125], a static analyser based on symbolic execution, with Predator, a successful
shape analyser using symbolic memory graphs [58]. Predator won multiple editions of
SV-COMP in memory-safety-related categories and was therefore a good candidate for
providing information about memory safety invariants for each line of an analysed program.
The information was further used by Symbiotic, which relies heavily on slicing the program
over which the symbolic execution is executed. Particularly, Symbiotic does not need to
analyse lines of code which were denoted as safe (from the perspective of memory safety) by

93

Predator running in its overapproximating (sound) mode. On the other hand, if Predator
find a potential bug in the program, Symbiotic takes the bug report and combines it with
the results of its own static pointer analysis to filter out some spurious counterexamples.
The viability of the approach was shown by the second place of Symbiotic combined with
Predator in the memory safety category of SV-COMP 2018. However, the first place was
taken by Predator Hunting Party, a tool suite of different versions of Predator (one in
the sound mode, several instances in a bug hunting mode) running with the GCC front
end, which was more mature than the LLVM fronted used in the integration of Predator
with Symbiotic. The participation of the combination of Predator with Symbiotic in the
SV-COMP competition was described in the short competition paper [45]. In the next
editions of the competition, the developers of both tools managed to make LLVM fronted
for Predator as mature as the GCC one which helped Symbiotic to win in the Memory
Safety category.

The presented work on automated testing was published in the proceedings of the con-
ference EUROCAST 2022 [66].

Finally, the paper based on the new library for finite automata described in the pre-
vious section was accepted for a publication in the proceedings of the conference CADE
2023 [65]. The paper compares several new algorithms for deciding emptiness of Boolean
combinations of regular languages and of languages of alternating automata (AFA). The
comparison was done using a benchmark mostly originating in or related to practical prob-
lems from string constraint solving, analysing LTL properties, and regular model checking.
Our finite automata library was used as the back end of the ENFA tool implementing one
of the approaches under the comparison. The results showed that although some advanced
algorithms, such as antichain algorithms and reductions to IC3/PDR, are fast they are not
as overwhelmingly dominant as sometimes presented and there is no clear winner. The
simplest NFA-based technology (such as ENFA) may be actually the best choice, depend-
ing on the problem source and implementation style. This confirms that a development of
the library for finite automata focused on an efficient implementation is a reasonable path
of research. The findings of the paper should be highly relevant for development of the
NFA-based techniques as well as for related fields such as string constraint solving.

94

Bibliography

[1] MarketsandMarkets Research Pvt. Ltd. ”Industrial Control Systems (ICS) Security
Market worth $22.2 billion by 2025“ [https://www.marketsandmarkets.com/
PressReleases/industrial-control-systems-security-ics.asp, Last accessed
1. July 2023].

[2] Repository of Cryton [https://gitlabdev.ics.muni.cz/beast-public/cryton,
Last accessed 1. July 2023].

[3] Repository of Tyrant [https://pajda.fit.vutbr.cz/tacr-unis/tyrant, Last
accessed 1. July 2023].

[4] Repository of Z3-Noodler [https://github.com/VeriFIT/z3-noodler, Last
accessed 2. July 2023].

[5] Website of DTM Data Generator for JSON
[https://sqledit.com/jsongenerator/index.html, Last accessed 1. July 2023].

[6] Website of JSON Schema TestData Generator
[https://www.npmjs.com/package/json-schema-test-data-generator, Last
accessed 1. July 2023].

[7] Website of the 2LS tool [www.cprover.org/2LS, Last accessed 22. July 2023].

[8] Website of the SV-COMP Competition [http://sv-comp.sosy-lab.org, Last
accessed 22. July 2023].

[9] Aalst, W. M. P. van der. Process Mining - Data Science in Action, Second
Edition. Springer, 2016.

[10] Abdulla, P. A., Bouajjani, A., Holík, L., Kaati, L. and Vojnar, T.
Computing Simulations over Tree Automata. In: Proceedings of TACAS’08.
Springer, 2008, vol. 4963, p. 93–108. Lecture Notes on Computer Science.

[11] Abdulla, P. A., Bouajjani, A., Cederberg, J., Haziza, F. and Rezine, A.
Monotonic Abstraction for Programs with Dynamic Memory Heaps. In: Proceedings
of CAV’08. Springer, 2008, vol. 5123, p. 341–354. Lecture Notes on Computer
Science.

[12] Abdulla, P. A., Chen, Y.-F., Holík, L., Mayr, R. and Vojnar, T. When
Simulation Meets Antichains (on Checking Language Inclusion of NFAs).
In: Proceedings of TACAS’10. Springer, 2010, vol. 6015, p. 158–174. Lecture Notes
on Computer Science.

95

https://www.marketsandmarkets.com/PressReleases/industrial-control-systems-security-ics.asp
https://www.marketsandmarkets.com/PressReleases/industrial-control-systems-security-ics.asp
https://gitlabdev.ics.muni.cz/beast-public/cryton
https://pajda.fit.vutbr.cz/tacr-unis/tyrant
https://github.com/VeriFIT/z3-noodler
https://sqledit.com/jsongenerator/index.html
https://www.npmjs.com/package/json-schema-test-data-generator
www.cprover.org/2LS
http://sv-comp.sosy-lab.org

[13] Abdulla, P. A., Holík, L., Jonsson, B., Lengál, O., Trinh, C. Q. et al.
Verification of heap manipulating programs with ordered data by extended forest
automata. Acta Informatica. 2016, vol. 53, no. 4, p. 357–385.

[14] Ackermann, C. Recovering Views of Inter-System Interaction Behaviors.
In: Proceedings of Working Conference on Reverse Engineering 2009, Lille, France.
IEEE, October 2009, p. 53–61.

[15] Albarghouthi, A., Berdine, J., Cook, B. and Kincaid, Z. Spatial Interpolants.
In: Proceedings of ESOP’15. Springer, 2015, vol. 9032, p. 634–660. Lecture Notes on
Computer Science.

[16] Almeida, R., Holík, L. and Mayr, R. Reduction of Nondeterministic Tree
Automata. In: Proceedings of TACAS’16. Springer, 2016, vol. 9636, p. 717–735.
Lecture Notes on Computer Science.

[17] Appel, A. W. Program Logics - for Certified Compilers. Cambridge University
Press, 2014.

[18] Berdine, J., Cox, A., Ishtiaq, S. and Wintersteiger, C. Diagnosing
Abstraction Failure for Separation Logic-based Analyses. In: Proceedings of
CAV’12. Springer, 2012, vol. 7358, p. 155–173. Lecture Notes on Computer Science.

[19] Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P. W. et al.
Shape Analysis for Composite Data Structures. In: Proceedings of CAV’07.
Springer, 2007, vol. 4590, p. 178–192. Lecture Notes on Computer Science.

[20] Berdine, J., Cook, B. and Ishtiaq, S. SLAyer: Memory Safety for Systems-Level
Code. In: Proceedings of CAV’11. Springer, 2011, vol. 6806, p. 178–183. Lecture
Notes on Computer Science.

[21] Bertolino, A., Gao, J., Marchetti, E. and Polini, A. Automatic Test Data
Generation for XML Schema-based Partition Testing. In: Proceedings of AST ’07.
2007.

[22] Beschastnikh, I., Brun, Y., Ernst, M. D. and Krishnamurthy, A. Inferring
Models of Concurrent Systems from Logs of Their Behavior with CSight.
In: Proceedings of ICSE ’14. ACM, 2014, p. 468–479.

[23] Beyer, D., Dangl, M., Dietsch, D. and Heizmann, M. Correctness Witnesses:
Exchanging Verification Results Between Verifiers. In: Proceedings of FSE ’16.
ACM, 2016, p. 326–337.

[24] Beyer, D., Dangl, M., Dietsch, D., Heizmann, M. and Stahlbauer, A.
Witness Validation and Stepwise Testification across Software Verifiers.
In: Proceedings of ESEC/FSE ’15. ACM, New York, 2015, p. 721–733.

[25] Beyer, D., Henzinger, T. A. and Théoduloz, G. Lazy Shape Analysis.
In: Proceedings of CAV’06. Springer, 2006, vol. 4144, p. 532–546. Lecture Notes on
Computer Science.

96

[26] Beyer, D. and Keremoglu, M. E. CPAchecker: A Tool for Configurable Software
Verification. In: Proceedings of CAV’18. 2011, vol. 6086, p. 184–190. Lecture Notes
on Computer Science.

[27] Beyer, D., Löwe, S. and Wendler, P. Benchmarking and Resource
Measurement. In: SPIN. Springer, 2015, vol. 9232, p. 160–178.

[28] Beyer, D., Löwe, S. and Wendler, P. Reliable Benchmarking: Requirements and
Solutions. STTT’19. 2019, vol. 21, no. 1, p. 1–29.

[29] Biere, A., Cimatti, A., Clarke, E. and Zhu, Y. Symbolic Model Checking
without BDDs. In: Proceedings of TACAS’99. Springer Berlin Heidelberg, 1999,
p. 193–207.

[30] Blahoudek, F., Chen, Y.-F., Chocholatý, D., Havlena, V., Holík, L. et al.
Word Equations in Synergy with Regular Constraints. In: Proceedings of FM’23.
Springer International Publishing, 2023, p. 403–423.

[31] Blume, C., Bruggink, H. J. S., Engelke, D. and König, B. Efficient Symbolic
Implementation of Graph Automata with Applications to Invariant Checking.
In: Proceedings of ICGT’12. Berlin, Heidelberg: Springer-Verlag, 2012, p. 264–278.

[32] Bonchi, F. and Pous, D. Checking NFA Equivalence with Bisimulations up to
Congruence. In: Proceedings of POPL’13. ACM Trans. Comput. Log., 2013,
p. 457–468.

[33] Botinčan, M., Dodds, M. and Magill, S. Refining Existential Properties in
Separation Logic Analyses. arXiv:1504.08309. 2015.

[34] Bouajjani, A., Habermehl, P., Moro, P. and Vojnar, T. Verifying Programs
with Dynamic 1-Selector-Linked Structures in Regular Model Checking.
In: Proceedings of TACAS’05. Springer, 2005, vol. 3440, p. 13–29. Lecture Notes on
Computer Science.

[35] Bouajjani, A., Habermehl, P., Rogalewicz, A. and Vojnar, T. Abstract
Regular Tree Model Checking of Complex Dynamic Data Structures. In: Proceedings
of SAS’06. Springer, 2006, vol. 4134, p. 52–70. Lecture Notes on Computer Science.

[36] Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P. et al. Programs
with Lists are Counter Automata. Formal Methods in System Design. 2011, vol. 38,
no. 2, p. 158–192.

[37] Bouajjani, A., Drăgoi, C., Enea, C. and Sighireanu, M. Accurate Invariant
Checking for Programs Manipulating Lists and Arrays with Infinite Data.
In: Proceedings of ATVA’12. Springer, 2012, vol. 7561, p. 167–182. Lecture Notes on
Computer Science.

[38] Bouajjani, A., Habermehl, P., Rogalewicz, A. and Vojnar, T. Abstract
Regular Tree Model Checking. Electronic Notes in Theoretical Computer Science.
2006, vol. 149, no. 1, p. 37–48.

[39] Bouajjani, A., Habermehl, P., Rogalewicz, A. and Vojnar, T. Abstract
Regular (Tree) Model Checking. STTT. 2012, vol. 14, no. 2, p. 167–191.

97

[40] Brain, M., Joshi, S., Kroening, D. and Schrammel, P. Safety Verification and
Refutation by 𝑘-Invariants and 𝑘-Induction. In: Proceeedings of SAS’15. Springer,
2015, vol. 9291, p. 145–161.

[41] Brandenburg, F. J. and Skodinis, K. Finite Graph Automata for Linear and
Boundary Graph Languages. Theoretical Computer Science. Elsevier Science
Publishers Ltd. 2005, vol. 332, 1-3, p. 199–232.

[42] Brookes, S. and O’Hearn, P. W. Concurrent Separation Logic. ACM SIGLOG
News. ACM. 2016, vol. 3, no. 3, p. 47–65.

[43] Cadar, C., Dunbar, D. and Engler, D. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In: Proceedings
of OSDI’08. USENIX Association, 2008, p. 209–224.

[44] Calcagno, C., Distefano, D., O’Hearn, P. W. and Yang, H. Compositional
Shape Analysis by Means of Bi-Abduction. Journal of ACM. december 2011,
vol. 58, no. 6.

[45] Chalupa, M., Jašek, T., Tomovic, L., Hruška, M., Šoková, V. et al. Symbiotic
7: Integration of Predator and More - (Competition Contribution). In: Proceedings
of TACAS’20. Springer, 2020, vol. 12079, p. 413–417. Lecture Notes on Computer
Science.

[46] Chalupa, M., Vitovská, M., Jonáš, M., Slaby, J. and Strejček, J. Symbiotic
4: Beyond Reachability. In: Proceedings of TACAS’17. Springer Berlin Heidelberg,
2017, p. 385–389.

[47] Chalupa, M., Vitovská, M. and Strejcek, J. SYMBIOTIC 5: Boosted
Instrumentation - (Competition Contribution). In: Proceeding of TACAS’18.
Springer, 2018, vol. 10806, p. 442–446. Lecture Notes on Computer Science.

[48] Chang, B.-Y. E., Rival, X. and Necula, G. C. Shape Analysis with Structural
Invariant Checkers. In: Proceedings of SAS’07. Springer, 2007, vol. 4634,
p. 384–401. Lecture Notes on Computer Science.

[49] Clarke, E., Grumberg, O., Jha, S., Lu, Y. and Veith, H.
Counterexample-Guided Abstraction Refinement. In: Proceedings of CAV’00.
Springer, 2000, p. 154–169.

[50] Clarke, E., Kroening, D. and Lerda, F. A Tool for Checking ANSI-C Programs.
In: Proceedings of TACAS’04. Springer Berlin Heidelberg, 2004, p. 168–176.

[51] Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F. et al.
Tree Automata Techniques and Applications. 2008.

[52] Comparetti, P. M., Wondracek, G., Krügel, C. and Kirda, E. Prospex:
Protocol Specification Extraction. In: Proceedings of S&P 2009. IEEE Computer
Society, 2009, p. 110–125.

[53] Courcelle, B. The Monadic Second-order Logic of Graphs. I. Recognizable Sets of
Finite Graphs. Information and Computation. march 1990, vol. 85, p. 12–75.

98

[54] Courcelle, B. and Engelfriet, J. Graph Structure and Monadic Second-Order
Logic: A Language-Theoretic Approach. 1st ed. Cambridge University Press, 2012.

[55] Cousot, P. and Cousot, R. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
In: Proceedings of POPL’77. ACM, 1977, p. 238–252.

[56] Demri, S., Lozes, É. and Mansutti, A. The Effects of Adding Reachability
Predicates in Propositional Separation Logic. In: Proceedings of FoSSaCS’18.
Springer, 2018, vol. 10803, p. 476–493. Lecture Notes on Computer Science.

[57] Deshmukh, J., Emerson, E. and Gupta, P. Automatic Verification of
Parameterized Data Structures. In: Proceedings of TACAS’06. Springer, 2006, vol.
3920, p. 27–41. Lecture Notes on Computer Science.

[58] Dudka, K., Peringer, P. and Vojnar, T. Predator: A Practical Tool for
Checking Manipulation of Dynamic Data Structures Using Separation Logic.
In: Proceedings of CAV’11. Springer, 2011, vol. 6806, p. 372–378. Lecture Notes on
Computer Science.

[59] Dudka, K., Peringer, P. and Vojnar, T. An Easy to Use Infrastructure for
Building Static Analysis Tools. In: Proceedings of Computer Aided Systems Theory
– EUROCAST 2011. Berlin, Heidelberg: Springer, 2012, p. 527–534.

[60] Dudka, K., Peringer, P. and Vojnar, T. Byte-Precise Verification of Low-Level
List Manipulation. In: Proceedings of SAS’13. Springer, 2013, vol. 7935, p. 215–237.
Lecture Notes on Computer Science.

[61] Echenim, M., Iosif, R. and Peltier, N. Entailment Checking in Separation Logic
with Inductive Definitions is 2-EXPTIME hard. In: Proceedings of LPAR 2020.
EasyChair, 2020, vol. 73, p. 191–211. EPiC Series in Computing.

[62] Echenim, M., Iosif, R. and Peltier, N. Decidable Entailments in Separation
Logic with Inductive Definitions: Beyond Establishment. In: Proceedings of CSL’
21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, vol. 183,
p. 20:1–20:18. LIPIcs.

[63] Echenim, M., Iosif, R. and Peltier, N. Unifying Decidable Entailments in
Separation Logic with Inductive Definitions. In: Proceedings of CADE’21. Springer,
2021, vol. 12699, p. 183–199. Lecture Notes on Computer Science.

[64] Enea, C., Lengál, O., Sighireanu, M. and Vojnar, T. Compositional
Entailment Checking for a Fragment of Separation Logic. In: Proceedings of
APLAS’14. Springer, 2014, vol. 8858, p. 314–333. Lecture Notes on Computer
Science.

[65] Fiedor, T., Holík, L., Hruška, M., Rogalewicz, A., Síč, J. et al. Reasoning
about Regular Properties: A Comparative Study. In: To Appear in Proceedings of
CADE’23. 2023.

[66] Fiedor, T., Hruška, M. and Smrčka, A. Orchestrating Digital Twins for
Distributed Manufacturing Execution Systems. In: Proceedings of EUROCAST’22.
Springer, 2022, vol. 13789, p. 223–231. Lecture Notes in Computer Science.

99

[67] Guo, B., Vachharajani, N. and August, D. I. Shape Analysis with Inductive
Recursion Synthesis. In: Proceedings of PLDI’07. ACM, June 2007, vol. 42, no. 6,
p. 256–265.

[68] Habermehl, P., Holík, L., Rogalewicz, A., Šimáček, J. and Vojnar, T. Forest
Automata for Verification of Heap Manipulation. In: Proceedings of CAV’11.
Springer, 2011, vol. 6806, p. 424–440. Lecture Notes on Computer Science.

[69] Habermehl, P., Holík, L., Rogalewicz, A., Šimáček, J. and Vojnar, T. Forest
Automata for Verification of Heap Manipulation. FIT-TR-2011-001. FIT BUT,
2011.

[70] Habermehl, P., Holík, L., Hruška, M., Lengál, O., Rogalewicz, A. et al.
Forester. July 2023. Available at:
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/.

[71] Habermehl, P., Holík, L., Hruška, M., Lengál, O., Rogalewicz, A. et al.
Forester Virtual Machine. July 2023. DOI: 10.5281/zenodo.3339213. Available at:
https://zenodo.org/record/3339213.

[72] Habermehl, P., Holík, L., Rogalewicz, A., Šimáček, J. and Vojnar, T. Forest
Automata for Verification of Heap Manipulation. Formal Methods in System
Design. Springer. 2012, vol. 41, no. 1, p. 83–106.

[73] Heinen, J., Jansen, C., Katoen, J. and Noll, T. Juggrnaut: Using Graph
Grammars for Abstracting Unbounded Heap Structures. Formal Methods in System
Design. 2015, vol. 47, no. 2.

[74] Heinen, J., Noll, T. and Rieger, S. Juggrnaut: Graph Grammar Abstraction for
Unbounded Heap Structures. In: Proceedings of TTSS’09. Elsevier, 2010, vol. 266,
p. 93–107. ENTCS.

[75] Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke, J. et al.
Ultimate Automizer and the Search for Perfect Interpolants - (Competition
Contribution). In: Proceedings of TACAS’18. Springer, 2018, p. 447–451. Lecture
Notes on Computer Science.

[76] Holík, L., Lengál, O., Rogalewicz, A., Šimáček, J. and Vojnar, T. Fully
Automated Shape Analysis Based on Forest Automata. FIT-TR-2013-01. FIT BUT,
2013.

[77] Holík, L., Hruška, M., Lengál, O., Rogalewicz, A., Šimáček, J. et al. Run
Forester, Run Backwards! (Competition Contribution). In: Proceedings of
TACAS’16. Springer, 2016, vol. 9636, p. 923–926. Lecture Notes on Computer
Science.

[78] Holík, L., Hruška, M., Lengál, O., Rogalewicz, A., Šimáček, J. et al.
Forester: From Heap Shapes to Automata Predicates (Competition Contribution).
In: Proceedings of TACAS’17. Springer, 2017, vol. 10206, p. 365–369. Lecture Notes
on Computer Science.

100

http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/
https://zenodo.org/record/3339213

[79] Holík, L., Peringer, P., Rogalewicz, A., Šoková, V., Vojnar, T. et al.
Low-Level Bi-Abduction. In: Proceedings of ECOOP’22. Schloss Dagstuhl, 2022,
vol. 222, p. 19:1–19:30. LIPIcs.

[80] Holík, L., Hruška, M., Lengál, O., Rogalewicz, A., Šimáček, J. et al.
Forester: Shape Analysis Using Tree Automata (Competition Contribution).
In: Proceedings of TACAS’15. Springer Verlag, 2015, vol. 9035, p. 432–435. Lecture
Notes on Computer Science.

[81] Holík, L., Lengál, O., Rogalewicz, A., Hruška, M. and Vojnar, T.
Counterexample Validation and Interpolation-Based Refinement for Forest
Automata. In: Proceedings of VMCAI’17. Springer, 2017, vol. 10145, p. 288–309.
Lecture Notes on Computer Science.

[82] Holík, L., Lengál, O., Rogalewicz, A., Šimáček, J. and Vojnar, T. Fully
Automated Shape Analysis Based on Forest Automata. In: Proceedings of CAV’13.
Springer, 2013, vol. 8044, p. 740–755. Lecture Notes on Computer Science.

[83] Holík, L., Lengál, O., Rogalewicz, A., Šimáček, J. and Vojnar, T. Fully
Automated Shape Analysis Based on Forest Automata. In: Proceedings of CAV’13.
Springer, 2013, vol. 8044, p. 740–755. Lecture Notes on Computer Science.

[84] Hruška, M. Verification of Pointer Programs Based on Forest Automata. Brno,
CZ, 2015. Master’s thesis. FIT BUT.

[85] Hruška, M. and Holík, L. Towards Efficient Shape Analysis with Tree Automata.
In: Proceedings of NETYS ’21. Springer, 2021, vol. 12754, p. 206–214. Lecture
Notes on Computer Science.

[86] Hsu, Y., Shu, G. and Lee, D. A Model-based Approach to Security Flaw Detection
of Network Protocol Implementations. In: Proceedings of ICNP 2008. IEEE
Computer Society, 2008, p. 114–123.

[87] Iosif, R., Rogalewicz, A. and Vojnar, T. Deciding Entailments in Inductive
Separation Logic with Tree Automata. In: Proceedings of ATVA’14. Springer, 2014,
vol. 8837, p. 201–218. Lecture Notes on Computer Science.

[88] Iosif, R., Rogalewicz, A. and Šimáček, J. The Tree Width of Separation Logic
with Recursive Definitions. In: Proceedings of CADE’13. Springer, 2013, vol. 7898,
p. 21–38. Lecture Notes on Computer Science.

[89] Jensen, J. L., Jørgensen, M. E., Klarlund, N. and Schwartzbach, M. I.
Automatic Verification of Pointer Programs using Monadic Second-Order Logic.
In: Proceedings of PLDI ’97. ACM Trans. Comput. Log., 1997, p. 226–236.

[90] Jhala, R. and McMillan, K. Lazy Abstraction with Interpolants. In: Proceedings
of CAV’06. Springer, 2006, vol. 4144, p. 123–236. Lecture Notes on Computer
Science.

[91] Katelaan, J., Matheja, C. and Zuleger, F. Effective Entailment Checking for
Separation Logic with Inductive Definitions. In: Proceedings of TACAS ’19.
Springer, 2019, vol. 11428, p. 319–336. Lecture Notes on Computer Science.

101

[92] Katelaan, J. and Zuleger, F. Beyond Symbolic Heaps: Deciding Separation
Logic With Inductive Definitions. In: Proceedings of LPAR’11. EasyChair, 2020,
vol. 73. EPiC Series in Computing.

[93] King, J. C. Symbolic Execution and Program Testing. Commun. ACM. New York,
NY, USA: Association for Computing Machinery. jul 1976, vol. 19, no. 7, p. 385–394.

[94] La Riva, C. D., Garcia Fanjul, J. and Tuya, J. A Partition-Based Approach for
XPath Testing. In: Proceedings of ICSEA’06. IEEE, 2006, p. 17–17.

[95] Le, Q. L. Compositional Satisfiability Solving in Separation Logic. In: Proceedings
of VMCAI’21. Springer, 2021, vol. 12597. Lecture Notes on Computer Science.

[96] Le, Q. L., Gherghina, C., Qin, S. and Chin, W. Shape Analysis via Second-Order
Bi-Abduction. In: Proceedings of CAV’14. Springer, 2014, vol. 8559, p. 52–68.
Lecture Notes on Computer Science.

[97] Lee, O., Yang, H. and Petersen, R. Program Analysis for Overlaid Data
Structures. In: Proceedings of CAV’11. Springer, 2011, vol. 6806, p. 592–608.
Lecture Notes on Computer Science.

[98] Leemans, M. and Aalst, W. M. P. van der. Process Mining in Software Systems:
Discovering Real-life Business Transactions and Process Models from Distributed
Systems. In: Proceedings of MODELS’15. IEEE, 2015, p. 44–53.

[99] Lengál, O., Šimáček, J. and Vojnar, T. VATA: A Library for Efficient
Manipulation of Non-deterministic Tree Automata. In: Proceedings of TACAS’12.
Springer, 2012, p. 79–94.

[100] Loginov, A., Reps, T. and Sagiv, M. Abstraction Refinement via Inductive
Learning. In: Proceedings of CAV’05. Springer, 2005, vol. 3576, p. 519–533. Lecture
Notes on Computer Science.

[101] Madhusudan, P. and Parlato, G. The Tree Width of Auxiliary Storage.
In: Proceedings of POPL’11. 2011.

[102] Madhusudan, P., Parlato, G. and Qiu, X. Decidable Logics Combining Heap
Structures and Data. ACM SIGPLAN Notices. 2011, vol. 46, no. 1.

[103] Magill, S., Tsai, M.-H., Lee, P. and Tsay, Y.-K. Automatic Numeric
Abstractions for Heap-manipulating Programs. In: Proceedings of POPL’10. ACM,
2010, p. 211–222.

[104] Malík, V., Hruška, M., Schrammel, P. and Vojnar, T. Template-Based
Verification of Heap-Manipulating Programs. In: Proceedings of FMCAD’18. IEEE,
2018, p. 1–9.

[105] Malík, V., Hruška, M., Schrammel, P. and Vojnar, T. 2LS: Heap Analysis and
Memory Safety (Competition Contribution). CoRR. 2019, abs/1903.00712.
Available at: http://arxiv.org/abs/1903.00712.

[106] Matheja, C., Jansen, C. and Noll, T. Tree-Like Grammars and Separation
Logic. In: Proceedings of APLAS’15. Springer, 2015, vol. 9458, p. 90–108. Lecture
Notes on Computer Science.

102

http://arxiv.org/abs/1903.00712

[107] Matousek, P., Havlena, V. and Holík, L. Efficient Modelling of ICS
Communication For Anomaly Detection Using Probabilistic Automata.
In: Proceedings of IM’21. IEEE, 2021, p. 81–89.

[108] McMillan, K. L. Interpolation and SAT-Based Model Checking. In: Proceedings of
CAV’03. Springer, 2003, vol. 2725, p. 1–13. Lecture Notes on Computer Science.

[109] McPeak, S. and Necula, G. C. Data Structure Specifications via Local Equality
Axioms. In: Proceedings of CAV’05. Springer, 2005, vol. 3576, p. 476–490. Lecture
Notes on Computer Science.

[110] Møller, A. and Schwartzbach, M. I. The Pointer Assertion Logic Engine. ACM
SIGPLAN Notices. 2001, vol. 36, no. 5.

[111] Nguyen, H. H., David, C., Qin, S. and Chin, W.-N. Automated Verification of
Shape and Size Properties Via Separation Logic. In: Proceedings of VMCAI’07.
Springer, 2007, vol. 4349, p. 251–266. Lecture Notes on Computer Science.

[112] Ostrand, T. J. and Balcer, M. J. The Category-Partition Method for Specifying
and Generating Fuctional Tests. Communications of ACM. New York, NY, USA:
ACM. 1988, vol. 31, no. 6.

[113] Pagel, J., Matheja, C. and Zuleger, F. Complete Entailment Checking for
Separation Logic with Inductive Definitions. 2020.

[114] Pagel, J. and Zuleger, F. Strong-Separation Logic. In: Proceedings of ESOP’21.
Springer, 2021, vol. 12648, p. 664–692. Lecture Notes on Computer Science.

[115] Piskac, R., Wies, T. and Zufferey, D. Automating Separation Logic with Trees
and Data. In: Proceedings of CAV’14. Springer, 2014, vol. 8559, p. 711–728. Lecture
Notes on Computer Science.

[116] Podelski, A. and Wies, T. Counterexample-Guided Focus. In: Proceedings of
POPL’10. ACM, 2010, p. 249–260.

[117] Qin, S., He, G., Luo, C., Chin, W.-N. and Chen, X. Loop Invariant Synthesis in a
Combined Abstract Domain. Journal of Symbolic Computation. Elsevier. 2013,
vol. 50, p. 386–408.

[118] Raad, A., Berdine, J., Dang, H., Dreyer, D., O’Hearn, P. W. et al. Local
Reasoning About the Presence of Bugs: Incorrectness Separation Logic.
In: Proceedings of CAV’20. Springer, 2020, vol. 12225, p. 225–252. Lecture Notes on
Computer Science.

[119] Rabin, M. O. and Scott, D. Finite Automata and Their Decision Problems. IBM
Journal of Research and Development. 1959, vol. 3, no. 2, p. 114–125.

[120] Reiter, F. Distributed Graph Automata. In: Proceedings of LICS’15. Washington,
DC, USA: IEEE Computer Society, 2015, p. 192–201.

[121] Reynolds, J. C. Separation logic: a logic for shared mutable data structures.
In: Proceedings of LICS’02. 2002, p. 55–74.

103

[122] Sagiv, S., Reps, T. W. and Wilhelm, R. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems. 2002, vol. 24,
no. 3, p. 217–298.

[123] Schrammel, P. and Kroening, D. 2LS for Program Analysis. In: Proceeding of
TACAS’16. Berlin, Heidelberg: Springer-Verlag, 2016, p. 905–907.

[124] Sheeran, M., Singh, S. and Stålmarck, G. Checking Safety Properties Using
Induction and a SAT-Solver. In: Proceedings of FMCAD’00. IEEE, 2000, p. 127–144.

[125] Slabý, J., Strejček, J. and Trtík, M. Checking Properties Described by State
Machines: On Synergy of Instrumentation, Slicing, and Symbolic Execution.
In: Proceeding of FMICS’12. Berlin, Heidelberg: [b.n.], 2012, p. 207–221.

[126] Thomas, W. On logics, tilings, and automata. In: Automata, Languages and
Programming. Springer, 1991, vol. 510, p. 441–454. Lecture Notes on Computer
Science.

[127] Šimáček, J. Harnessing Forest Automata for Verification of Heap Manipulating
Programs. 2012. Dissertation. FIT BUT.

[128] Web Pages of the Facebook Infer. The Facebook Infer
[http://fbinfer.com/]. 2017 [cit. 2022-08-24].

[129] Weinert, A. D. Inferring Heap Abstraction Grammars. 2012. BSc thesis. RWTH
Aachen.

[130] Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B. et al. Scalable Shape
Analysis for Systems Code. In: Proceedings of CAV’08. Springer, 2008, vol. 5123,
p. 385–398. Lecture Notes on Computer Science.

[131] Zee, K., Kuncak, V. and Rinard, M. C. Full Functional Verification of Linked
Data Structures. In: Proceedings of PLDI’08. ACM, 2008, p. 349–361.

104

	Introduction
	Goals of the Thesis
	Overview of the Achieved Results
	Plan of the Thesis

	I Automata in Shape Analysis
	State of the Art
	Shape Analysis
	Three-valued Predicate Logic
	Separation Logic
	Symbolic Memory Graphs
	Abstract Regular Model Checking
	Symbolic Execution
	Bounded Model Checking

	Counterexample Validation and Automatic Refinement of Abstraction for Shape Analysis
	Work on Graph Automata

	Shape Analysis based on Forest Automata
	Introduction
	From Heaps to Forests
	Forest Automata and Heaps
	Forest Automata
	Boxes and Hierarchical Forest Automata
	Entailment of Forest Automata

	Verification of Pointer Programs with Forest Automata
	Symbolic Execution with Forest Automata
	Backward Run and Counterexample Analysis

	Intersection of Forest Automata
	Intersection Construction
	Compatibility for Precise Intersection

	Implementation of the Forward Run
	Abstraction and Counterexample-based Refinement
	Backward Run for Counterexample Analysis
	Regular Abstractions over Forest Automata
	Abstraction Refinement

	Automatic Discovery of Boxes
	Cut-point Types
	Cut-point Elimination
	From Nested FAs to Alphabet Symbols

	Running Example
	Architecture of Forester
	Design
	Forester Microcode

	Tutorial
	Running Forester with BenchExec

	Experiments
	Description of Benchmarks

	Developing Shape Analyser for Software Verification Competition
	Introduction
	Technical Preparation of Forester for SV-COMP
	Conceptual Improvements over the Editions of SV-COMP
	Strengths and Weaknesses

	Towards Efficient Shape Analysis with Tree Automata
	Introduction
	Representing Graphs with Trees and Tree Automata
	Towards Entailment
	Conclusions and Future Work

	Shape Analysis based on SMT Solving
	Template-based Program Verification
	Program Encoding

	Template Domain for Shape Analysis
	Conclusion

	II Automata in Software Testing
	Generating Scenarios for Digital Twins of Distributed Manufacturing Execution Systems
	Introduction
	Framework for Generating Orchestration Scenarios
	Modelling Messages
	Modelling Communication of Monitored System
	Generating Scenario
	Conclusion

	Conclusion and Further Work
	Future Directions
	Publications Related to this Thesis

	Bibliography

