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Abstract
Efficient utilization of accelerated HPC clusters is particularly sensitive to communication
efficiency of deployed algorithms. In this thesis, we reexamine pseudo-spectral solvers for
wave-like problems in medical ultrasonics to allow their deployment on these machines.
The domain decomposition is shown to be a preferable approach to improving data locality
of these solvers as a range of suitable alternative discretizations exhibited considerably
worse numerical properties. The local Fourier basis domain decomposition is then used to
construct a novel solver based on the state of the art model for ultrasound in medicine
– k-Wave. We show that this approach is up to 7.5× faster and achieves almost perfect
weak-scaling up to 512 GPU accelerated nodes, while being able to take full advantage of
advanced GPU interconnects such as NVLink in NVIDIA DGX-2 multi-GPU nodes. The
method offers flexible accuracy–efficiency trade off, which allows to nearly match accuracy
of the global k-Space method or maximize performance at sufficient accuracy by subdomain
overlap scaling.

Abstrakt
Efektivní využití akcelerovaných HPC clusterů je obzvlášť závislé na efektivitě komunikace
použitých algoritmů. Tato práce se tedy věnuje přezkoumání pseudo-spektrálních algorimů
používaných pro řešení vlnových problémů převážně v oblasti medicínského ultrazvuku s
cílem umožnit jejich běh na akcelerovaných strojích. Je ukázáno, že doménová dekompozice
je preferovaný způsob dosažení daného cíle, jelikož řada alternativních přístupů vykazuje
výrazně horší numerické vlastnosti. Na základě tohoto přístupu a k-Wave modelu ultra-
zvuku, široce používaného v medicíně, je navržen nový simulační algoritmus. Následnými
experimenty je ukázáno, že tento přístup dosahuje až 7.5× zrychlení a dosahuje téměř
perfektního slabého škálování až do 512 GPU akcelerovaných uzlů. Zároveň toto řešení
umožňuje plné využití výpočetních uzlů s několika GPU akcelerátory a pokročilým propo-
jením jako je NVIDIA DGX-2 s NVLink. Tato metoda také nabízí možnost flexibilní volby
mezi přesností a efektivitou. Volbou hloubky překryvu subdomén lze dosáhnout jak přes-
nosti srovnatelné s původní k-Space metodou, tak i maximalizovat výkon při zachování
dostatečné přesnosti.
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Chapter 1

Introduction

During last 15 years, the supercomputing landscape has gone through seismic shift with the
introduction of accelerators, which now comprise more than 50% of total available computa-
tional capability1. These accelerated clusters achieve significant efficiency and performance
gains at the cost of increased system architecture complexity. Typical accelerated node
may contain a few compute accelerators (such as GPUs) each with dedicated memory and
couple of smart network interfaces. Careful data movement planning and scheduling is cru-
cial for an efficient utilization of such a node. Inter-node communication in these clusters
is relatively more expensive than before due to increases in performance of each node as
interconnect bandwidth increases often lag behind.

Such a significant shift in the supercomputer architecture necessarily leads to redesign
of core algorithms or even whole applications to take full advantage of these machines.
The degree to which the application may need to be redesigned may range from a small
developer effort all the way to taking a completely different approach to the solution of
the original problem. In this thesis, we present an example of such a complete bottom up
analysis and the redesign of the ultrasound wave propagation simulation package.

1.1 Ultrasound in Medicine
The first medical applications of ultrasonics were suggested in 1920s during the development
of ultrasound transmission based nondestructive testing methods used to detect hidden
flaws in metals. However, the first medical applications were focused on high intensity
ultrasound and its heating effects, which were discovered earlier. The first diagnostics
efforts in 1930s focused on brain imaging using transmission intensity measurements and
pulse-echo methods were used in soft-tissue imaging with first two-dimensional tomograms
published in 1952 [50]. Since then, it has proliferated to many fields of medicine, where it is
used primarily for diagnostics of various soft tissues. The sonographic methods developed
to the point where blood flow can be monitored using Doppler effect and 3D images can be
reconstructed in real-time using 2D phased transducer arrays.

However, other classes of diagnostic and treatment methods using ultrasound are also,
perhaps even more so, actively developed. One of relatively recent developments in ultra-
sound imaging is Photoacoustic Imaging (PAI) [15]. This technique takes an advantage of
ultrasound waves generated by absorption of nanosecond laser pulse in the tissue. The initial
pressure distribution (and therefore laser absorption map) can be reconstructed by collect-

1According to Top500 (https://www.top500.org) statistics.
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ing generated ultrasound waves and solving an inverse ultrasound propagation problem.
While the solution of this inverse problem with incomplete data is very computationally
demanding, this technique offers advantages such as blood oxygenation measurement in the
tissue [70].

Significantly higher ultrasound intensities are utilized in the area of treatment (ultra-
sound therapy). Noninvasive procedures such as opening brain blood barrier [8] for drug
delivery or brain stimulation [98, 129] utilize lower intensities in this range. While the
highest intensities are used in High Intensity Focused Ultrasound (HIFU) [65, 126] to take
advantage of heating and cavitation effects for cancer tissue ablation [75].

The downside of these advanced methods is the requirement for a significant amount
of processing. Photoacoustic Imaging generally requires to solve an inverse ultrasound
propagation problem with incomplete data, hundreds of ultrasound sources and large do-
mains [113]. Similarly, HIFU procedure requires careful planning, so that only targeted
tissue is hit, which once again consists of an optimization problem. Each evaluation of
a plan candidate involves ultrasound propagation simulation over a large domain (see ta-
ble 1.1) which has to model nonlinear behavior of high intensity ultrasound wave.

Table 1.1: Typical modeling scenarios required for diagnostics or treatment using ultra-
sound. Shortcut “DU” stands for “Diagnostic Ultrasound”, “MC” for “Minimal Cavita-
tion”, “IC” for “Intense Cavitation” and “ST” for “Source Type”. “TB” and “CW” stands
for “Tone Burst” or “Continuous-Wave”. Numbers in parentheses in the fmax column de-
note maximal number of harmonic frequencies generated from the source frequency.

Modeling Scenario fsrc
[MHz]

S.T. fmax
[MHz]

Domain Size [mm] Domain Size [λ]

DU: Curvilin. Transducer 3 TB 18 (5) 150 × 80 × 25 1800 × 960 × 300
DU: Lin. Transducer 10 TB 60 (5) 50 × 80 × 30 2000 × 3200 × 1200
MC: Prostate HIFU 4 CW 64 (15) 80 × 60 × 20 3413 × 2560 × 853
MC: MR-Guided HIFU 1.5 CW 15 (10) 250 × 250 × 150 2500 × 2500 × 1500
IC: Histotripsy 1 CW 50 (50) 250 × 250 × 150 8333 × 8333 × 5000

1.2 Ultrasound Modeling for Medical Applications
The most general approach to modeling ultrasound propagation through tissue is a direct
application of continuum mechanics. However, accuracy required in most medical applica-
tions can be achieved using simplified models, which capture only a subset of real physical
phenomena. Generally, there are three important factors that have to be considered in
accurate models of ultrasound wave propagation in soft tissue. The acoustic wave ampli-
tude is typically large enough so that nonlinear wave propagation has to be considered.
The nonlinear models are critical for HIFU-type applications, however, some imaging ap-
plications such as tissue harmonic imaging [13] also take advantage of it. The material
properties (sound speed and density) of soft tissue are weakly heterogeneous (on the order
of 5% [77]) between different tissue types. The soft tissue exhibits frequency dependent
absorption, which follows frequency power law. The absorption process is an important
part of nonlinear model as it dampens frequencies generated by the nonlinear propagation.

The elastic wave propagation models are generally considered unnecessary for modeling
wave propagation in soft tissue as shear waves can be neglected without a significant loss
of accuracy [103]. The elastic models are therefore more prevalent in other fields such as
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seismology or geophysics [39, 95, 123], while fluid models are sufficient for most medical
applications. One of notable exceptions are applications involving bone tissue, especially
in cases with non-normal incidence angle of the ultrasound beam [121].

According to recent review [51] the Westervelt and Khokhlov-Zabolotskaya-Kuznetsov
(KZK) equations are the two most widely used models for medical ultrasound. Both of
these models can be derived from Kuznetsov equation, which itself, can be viewed as an
approximation of isentropic Navier-Stokes (for viscous media) and Euler (for the inviscid
media) systems [31]. The Kuznetsov equation is not widely used in medical ultrasound
modeling as it doesn’t offer significant advantages over Westervelt in those applications
and is considerably more difficult to directly numerically solve. The Westervelt equation
simplifies Kuznetsov equation by dropping the term describing Lagrangian density of acous-
tical energy, which is zero in case of progressive plane waves. However, even in the case of
non-plane waves, this approximation introduces error only in local (non-cumulative) non-
linear effects [26]. The KZK equation, which can be viewed as a parabolic approximation
of Westervelt equation, is in theory only accurate for waves traveling within 16◦ of the
nominal axis.

The models based on Kuznetsov equation can also be viewed as extensions to the second-
order wave equation. Models derived by Treeby et al. [115] and Tabei et al. [110] rather
use a system of first-order wave equations. This approach is advantageous when mass
and acoustic particle velocity source terms are to be introduced and also allows to easily
incorporate perfectly matched layer (PML) [16, 17, 127] to model absorbing boundary.
Further restricted linear models (such as wave equation) can be used in development of
phased array transducers or in ultrasound imaging applications.

The linear wave equation based models are easiest to solve. The Green’s function
method [114] can be used to rapidly calculate the wave field from a phased array trans-
ducer driven by a single frequency continuous wave in homogeneous media with power law
absorption. The fast near-field method (FNM) [27, 79, 80] and angular spectrum approach
(ASA) [29, 107, 118, 128] can be also used in similar settings up to first-order reflections
in heterogeneous media [117]. The three most commonly used methods to solve the het-
erogeneous media wave equation in the medical ultrasound community are finite-difference
time-domain method (FDTD) [52], pseudo-spectral time-domain method (PSTD) [74] and
k-space time-domain metod (KSTD) [110]. It appears that a typical FDTD solver used
in medical ultrasound applications is fourth order in space and second order in time and
requires 8 to 10 grid points per minimal wavelength to achieve the accuracy targets. Even
higher order solvers are often used in areas such as geophysics [12]. In contrast, both spec-
tral approaches can reduce necessary grid resolution down to 3 grid points per wavelength
for smooth fields with PML boundary [98]. The KSTD method augments PSTD method by
using a semi-analytical time-stepping scheme [82] and is thus considered even more efficient.

Given simulation requirements of typical medical applications listed in table 1.1, the
spectral methods are, due to significant reduction in spatial resolution, very popular and
often even the only choice. Table 1.2 highlights the fact that even at the theoretical limit
of the grid resolution achievable by spectral methods, many simulations require machines
with distributed memory and would be impractical with FDTD methods.
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Table 1.2: Possible domain sizes necessary to simulate sound wave propagation at frequen-
cies encountered in high-intensity focused ultrasound (HIFU) applications. Assuming a uni-
form Cartesian grid at the Nyquist limit of two points per minimum wavelength (PPMW)
and sound speed of 1500 m/s.

Domain Size [mm] Maximum
Freq [MHz]

Domain Size [λ] Grid Size
(2 PPMW)

Memory
per Matrix [GB]

50 × 50 × 50 5 3333 6673 1.1
10 6673 13333 8.8
20 13333 26673 71
50 33333 66673 1100

100 × 100 × 100 5 6673 13333 8.8
10 13333 26673 71
20 26673 53333 570
50 66673 133333 8800

200 × 200 × 200 5 13333 26673 71
10 26673 53333 570
20 53333 106673 4500
50 133333 266673 71000

1.3 Scope of this thesis
This thesis focuses on efficient numerical modeling and computer simulation of wave-like
physical phenomena in light of models used in medical ultrasonics and current and near-
future developments in high performance and client computing platforms.

First, we will overview typical architectures of modern accelerated and non-accelerated
supercomputers and identify architectural features critical for designing efficient numerical
methods for these platforms. With that, we will turn our attention to numerical methods
typically used for discretization of PDE based models describing wave-like phenomena.
In particular, we are interested in systems of conservation laws which are often preferred
over more complex equations due to simplicity and flexibility. In following chapters, we
will analyze possible approaches to adapting existing (and increasingly popular) Fourier
collocation numerical schemes for modern accelerated cluster environments.

To illustrate an application of our approach we will adapt fully developed and widely
used Fourier collocation scheme modeling propagation of non-linear ultrasound wave in
heterogeneous and absorbing media designed specifically for biological tissues in medical
applications called k-Wave [113]. Finally, we will provide detailed analysis of achieved
results from the perspective of both computational efficiency and numerical properties.
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Chapter 2

Modern High Performance
Computing Platforms

This chapter offers a short overview of high performance computing (HPC) platforms, which
are expected to be available for personalized medicine applications. This overview will serve
as grounds for evaluation of computational properties of numerical methods considered in
following chapters.

Tables 1.1 and 1.2 illustrate the primary characteristic of the problem at hand, quick
growth of the computational requirements dependent on combination of physical domain
size and supported frequencies. This is compounded by heterogeneity of the medium and
non-linearity of the problem, both of which severely limit options to ease this dependency
(such as boundary methods). These memory requirements are the main determining factor
for the simulation to be performed on workstation, hospital’s on premises data center or
has to be offloaded to large scale HPC or cloud platform.

In any case, it is reasonable to expect the basic building block (a node) of an available
platform to be based on architectures typical (or closely related) to commodity hardware. A
typical node (or workstation) then might feature a multi-core CPU in single or dual socket
configuration with up to eight DDR4 memory channels per socket and up to 128 PCI Express
5.0 lanes for peripherals. Each CPU can be expected to consist of up to 64 super-scalar
cores with simultaneous multi-threading (SMT), wide (eg., 512-bit) SIMD vector units and
up to 256MB of last level cache (LLC). For example, an Intel Xeon Platinum 8380 with 40
cores can sustain upwards 3TFLOP/s (Rpeak) in single precision AVX-512 workload with
170GB/s memory bandwidth (17.6FLOP/B) at about 250W TDP (or 12GFLOP/s and
680MB/s per watt).

However, a GPU accelerator such as AMD MI200 can achieve 48TFLOP/s in dou-
ble precision with 3.2TB/s memory bandwidth (15FLOP/B) at nearly 400W (nearly
120GFLOP/s and 8GB/s per watt). The GPU accelerator offers more than 10-fold im-
provement in energy efficiency over the Intel Xeon CPU in this case. For this reason,
majority of newly deployed machines are equipped with GPU accelerators used to offload
floating point math heavy or memory bandwidth demanding tasks. Alternatively, cus-
tom CPUs with emphasis on vector processing and memory bandwidth, such as A64FX in
Japanese Fugaku cluster1, are deployed with great results.

1Riken Center for Computational Science, Japan
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2.1 Accelerator Architectures
The primary focus of general purpose accelerators is to extend compute capabilities of tra-
ditional CPU architectures in terms of throughput and efficiency. These goals are typically
achieved by embracing parallelism to a much higher degree and exposing it to higher levels
of abstraction. For example, while a super-scalar CPU architecture attempts to exploit
parallelism in a sequential instruction stream to fill its execution units, the accelerator may
rather expose the same units in terms of Very Long Instruction Word (VLIW) instruction
set – significantly simplifying necessary circuitry. Similarly, memory consistency models
in accelerators are often weaker than those of traditional CPUs – reducing potentially un-
necessary on-chip communication. The aim of elimination of all this complexity is to free
up power and area budget of the chip, which can be utilized to integrate more execution
units. In most cases, the massive increase in execution capabilities has to be balanced
by increasing off-chip memory bandwidth, which often necessitates a tighter memory inte-
gration (eg., extremely wide memory bus of High Bandwidth Memory). The MI200 GPU
accelerator, introduced above is an example of a mismatch between compute performance
and memory bandwidth. While the accelerator manages to achieve almost tenfold increase
of both compute and memory bandwidth, the crucial ratio of these two metrics is slightly
worse compared to the top of the line CPU.

The novel (marketing focused) compute taxonomy introduced by Intel recognizes four
architecture categories: scalar, vector, matrix and spatial. The scalar architecture typi-
cally refers to traditional CPUs with focus on sequential tasks, while GPUs and Vector
Processing Units (VPUs) fall into vector architectures optimized for parallel vectorizable
workloads. The matrix architectures focus on matrix multiplication heavy workloads such
as deep learning (eg., systolic array based Google TPU architecture). Finally, the spatial
architecture describes data flow oriented algorithms often implemented by means of FP-
GAs. The majority of accelerators would fall into one of the last three categories (vector,
matrix and spatial).

2.1.1 Many-Core Accelerators

The idea behind many-core accelerator architectures is to expose more of the hardware par-
allelism in a manner similar to traditional multi-core processors. This is achieved primarily
by greatly simplifying architecture of each core (eg., out-of-order execution, branch predic-
tion, etc. are removed), which allows to integrate many more of such small cores on the
chip. However, compute capabilities of these small cores are typically enhanced by addition
of wide vector units, which allow to further increase the amount of parallelism exposed to
the user. Once again, the off-chip memory bandwidth has to be increased accordingly to
maintain reasonable compute-to-bandwidth ratio.

The advantage of such an accelerator design is that it allows to extend the programming
model well known from multi-core CPUs. However, doing so necessitates to also maintain
stronger memory consistency models used in multi-core architectures, which can induce
unnecessary complexity in the design.

The prime example of many-core accelerators is line of Intel Xeon Phi accelerators built
on the Intel Many Integrated Cores (Intel MIC) architectural family. The two commercially
available members of this family Knights Corner (KNC) and Knights Landing (KNL) follow
the design philosophy of integrating many simpler x86-64 cores with 512-bit wide vector
extensions (later adopted as Intel AVX-512 extensions into mainstream CPUs).

8
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Figure 2.1: Block architecture of the first (left) and the second (right) generation of Intel
Many-Core (MIC) accelerators. The two-way ring-bus interconnect was replaced with a 2D
mesh and each processing tile (light blue) was expanded to include two cores. The orange
blocks denote memory controllers and on-package memory, while system interfaces are in
yellow.

The KNC architecture (eg., Intel Xeon Phi 7120P) shown in fig. 2.1a consists of 61
P45C in-order cores extended by 4-wide simultaneous multithreading (SMT) and a 512-bit
wide vector processing unit (VPU). The KNC memory subsystem consists of 30.5MB of
L2 cache distributed among cores which are interconnected via a ring bus (2 × 64-byte
wide). The main memory is 16GB of GDDR5 divided between four memory controllers
with four channels each. The Rpeak of the accelerator is 2TFLOP/s with 352GB/s of
memory bandwidth.

The combination of 60 cores on a bidirectional ring interconnect with peak theoretical
bi-sectional bandwidth of 170GB/s and MOESI [67] cache coherency protocol is the pri-
mary weakness of the KNC architecture. The cache coherency traffic can easily saturate
the interconnect and high remote cache access latency (only moderately lower than main
memory access latency [35]) poses significant performance problems. We have observed
these issues in the case of multi-dimensional FFTs, which serve as a basis of many spectral
and pseudo-spectral methods. The algorithm exhibited unexpected performance drop at
certain transform sizes (see fig. 2.2).

The KNL architecture significantly improves upon KNC in multiple aspects ranging
from individual cores to memory hierarchy. The KNL cores are two-wide out-of-order
derivative of Silvermont cores (designed for Intel Atom product line) enhanced with two
AVX-512-capable VPUs each. The pair of cores with shared 1MB of L2 cache makes up
a tile, which is connected to the 2D-mesh interconnect (see fig. 2.1b). The main memory
is split in two pools, fast Multi-Channel DRAM (MCDRAM) and slower DDR4 connected
to two three-channel controllers. Intel Xeon Phi 7210-E based on KNL achieves Rpeak of
5TFLOP/s in single precision with 460GB/s and 80GB/s of memory bandwidth to fast and
slow pool respectively. The main memory of the accelerator is 16GB of the fast MCDRAM
memory and 96GB of slower DDR4 memory. The bi-sectional bandwidth of the 2D-mesh
interconnect is 700GB/s and the cache coherency protocol is changed to MESIF [60].
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Figure 2.2: Performance of a single KNC accelerator vs. a single Intel Xeon E5-2680v3
CPU while running in-place and out-of-place forward and inverse 3D FFTs. The analysis
of performance counters on KNC strongly suggests high L2 cache miss-rate caused by false
sharing.

The many-core architectures exemplified by Intel Many Integrated Cores (Intel MIC) is
largely superseded by growing core counts of traditional CPUs and general purpose compute
capabilities of GPUs. The successful 2D-mesh interconnect of KNL is being utilized by
high-core count Intel Xeon CPUs.

2.1.2 GPU Accelerators

The GPU accelerators, originally designed to speedup 2D and later 3D graphics rendering
tasks using largely fixed function hardware, gradually evolved into general purpose com-
pute accelerators (general purpose GPUs – GPGPUs). Generally, the GPGPU architecture
can be logically divided into an array of general purpose compute units (CUs), plethora of
domain specific (graphics) fixed function blocks (video decode/encode, texture decompres-
sion, ray intersection, etc.) and memory hierarchy tying it all together. The fixed function
hardware of the GPU can be usually left out of the discussion in the context of compute
applications.
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Figure 2.3: Streaming Multi-processor (SM) and SIMD (Sub-Core) unit in Nvidia V100
(Volta architecture).
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The design of the basic building block of the compute unit has largely settled on the
SIMD architecture since general purpose computing on GPUs took off (before that, the
typical architecture was VLIW). The modern compute unit (see figs. 2.3 and 2.4) consists
of multiple SIMD units (here 512-bit wide), each of which has a dedicated register file.
The group of these SIMDs belonging to a single compute unit share a relatively small
“shared memory”, which allows for communication between the SIMDs. The whole parallel
machine is then exposed in the Single Instruction Multiple Threads (SIMT) paradigm,
which logically views each SIMD lane as a thread of execution. The divergence of the
threads executed in lock-step by a single SIMD is handled by predicate lane masking. The
natural property of the SIMT paradigm is therefore hierarchical parallelism and memory
coherency. This means that the threads assigned to a single SIMD share register file, while
communication across SIMDs is possible only through shared memory and there is generally
no implicit coherency between CUs.
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Figure 2.4: AMD CDNA architecture compute unit consists of four SIMD units with shared
scalar ALU and register file. The scalar ALU is typically used to evaluate SIMD lane
masking predicates or other expressions constant across the work group.

The threads running in lock-step on a single SIMD are called “warp” (NVIDIA) or
“wavefront” (AMD). The size of the warp is hardware defined as an exact multiple of the
SIMD width, and is executed over subsequent cycles by the SIMD (eg., 32 thread warp is
executed in two cycles by V100 sub-core). Similarly, the warps assigned to a single CU
(SM) are aggregated into “thread block” or “work group”.
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The CU typically also has dedicated L1 instruction and data caches. However, due
to weak (hierarchical) memory consistency model, there is no need for cache coherency
protocols and this responsibility is delegated to the user. These distributed L1 caches are
typically backed by a single shared L2 (last level) cache of the GPU (see fig. 2.5).

In practice, a GPU such as NVIDIA Tesla V100 (see fig. 2.5b) may contain 5120 FP32
cores across 80 SMs achieving 15.7TFLOP/s at 1.53GHz. The GPU has 20MB register file
(256 kB per SM) and 7MB of shared memory (96 kB per SM), but only 6MB of last level
cache (L2). This shows that the GPU architectures tend to rely on data reuse in lower level
caches and the LLC is primarily used to coalesce memory access requests from SMs. The
memory subsystem consists of eight memory controllers connected to four High Bandwidth
Memory (HBM2) stacks (16GB) over 4096-bit bus (900GB/s).

Compared to the massive memory bandwidth of the accelerator, the interface to the rest
of the system (PCI-E 3.0 or 4.0 16x) is significantly limiting – especially in communication
with other accelerators in the system. Both AMD and NVIDIA introduced new high-
bandwidth interfaces (XGMI and NVLink, respectively) to provision for fast direct GPU-
to-GPU communication. Tesla V100 offers six NVLink 2.0 links with aggregate bandwidth
300GB/s and cache coherency capabilities. The benefit of these advanced communication
capabilities is very much application dependent. However, these capabilities are critical for
applications with large working datasets (larger than local memory of a GPU) with no easy
way of decoupling subsets of the data from each other.

2.2 Accelerated Nodes
An accelerated node is a basic building block in most of newly commissioned HPC clusters,
with majority of these nodes being GPU accelerated. The classical approach to building an
accelerated node is to equip a CPU-centric compute node with GPUs connected via PCI-E
bus.
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Figure 2.6: Classic dual-socket GPU accelerated compute node with eight GPUs (left), and
a modern dense GPU compute node with NVlink 2.0 interconnect between all 16 GPUs.

The dual-socket Intel Xeon based server such as PNY (see fig. 2.6a) is an example of such
a machine. The drawbacks of standalone compute server of this type are primarily two fold:
the connectivity between GPUs and CPUs is limited (pair of GPUs share 16 PCI-E 3.0 links)
and direct connectivity between GPUs is limited to the interface used for GPU-to-CPU
communication. There can also be issues with direct Peer-to-Peer (P2P) communication
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between GPUs connected to different CPU sockets (eg. Intel Quick Path Interconnect of
Intel Xeon E5 does not allow P2P PCI-E communication). The secondary issue, when
building cluster of these nodes, is that the external interconnect (such as Infiniband) of
such nodes is often insufficient given the massive increase in compute capabilities of the
node achieved by addition of the accelerators.

Therefore, more modern compute nodes used in clusters lean more toward architecture of
dense GPU accelerated compute servers designed by NVIDIA (see fig. 2.6b). The NVIDIA
DGX-2 is ground up designed for GPU accelerated workloads, which is primarily enabled by
all-to-all NVLink 2.0 interconnect network between all 16 Tesla V100 GPUs. Figures 2.7
and 2.8 show a comparison of PCI-E and NVLink 2 interconnect behavior on PNY and
DGX-2 machines. Similarly, DGX-2 offers eight 100Gbit/s Infiniband interfaces to connect
to a cluster.
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Figure 2.7: Comparison of inter-GPU communication bandwidth scaling using CUDA P2P
on PNY and DGX-2. In contrast to cross QPI communication, there is no penalty in cross
GPU board communication on DGX-2.
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Figure 2.8: Comparison of inter-GPU communication latency using CUDA P2P on PNY
and DGX-2. The latency of cross QPI communication is an order of magnitude higher than
through PCI-E switches.
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A typical GPU accelerated node falls somewhere between the PNY and DGX-2 server.
For example, an accelerated node of the Karolina cluster2 is a dual-socket AMD EPYC
machine equipped with eight NVIDIA A100 GPUs with NVLink 2.0 interconnect and four
200Gbit/s Inifiniband interfaces (note that non-accelerated nodes of the same cluster have
only a single 100Gbit/s interface).

2.3 Cluster Architectures
The interconnect network is one of points where HPC clusters diverge from cloud com-
puting ones. The interconnect is of vital importance for efficient execution of distributed
HPC workloads, while cloud computing typically focuses on workloads with lesser inter-
dependencies.
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Figure 2.9: Intel Xeon Phi (MIC) accelerated Salomon cluster with Infiniband based inter-
connect in 7D hyper-cube topology and Nvidia Tesla P100 (GPU) accelerated cluster Piz
Daint with ARIES interconnect in Dragon Fly topology.

The Salomon cluster2 (see fig. 2.9a) is a representative of the classical approach to
building HPC interconnect networks. The cluster consists of 1008 nodes (432 equipped
with a couple of Intel Xeon Phi 7120P) connected with InfiniBand FDR56 (56Gbit/s)
network in a 7D Enhanced hypercube topology [68]. The theoretical peak performance of
an accelerated node of the cluster is about 6TFLOP/s with network bandwidth of 3.5GB/s,
making compute-to-bandwidth ratio of the node 1715FLOP/B.

An accelerated portion of the Karolina cluster2 (successor of Salomon cluster) consists of
72 GPU accelerated nodes in a non-blocking Fat-tree topology built upon HDR InfiniBand
network. Each accelerated node consists of two AMD EPYC 7763 CPUs and eight NVIDIA
A100 GPUs with NVLink 2.0 interconnect and four 200Gbit/s InfiniBand NICs. The Rpeak
of the node is 170TFLOP/s (general compute), while its aggregate interconnect bandwidth
is 50GB/s doubling the compute-to-bandwidth ratio to 3400FLOP/B.

2IT4Innovations National Supercomputing Center, Czech Republic
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The Piz Daint cluster3 (see Fig. 2.9b) is a more specialized GPU accelerated cluster.
Each of Piz Daints’ 5704 nodes consists of a single Intel Xeon E5-2690v3 (comparable to
the CPUs of Salomon cluster) and a single NVIDIA P100 GPU (11TFLOP/s per node).
However, each four of these nodes are grouped and connected to a single Aries intercon-
nect ASIC by PCI-E 3.0 x16 (32GB/s aggregate), these groups are then interconnected
in Dragonfly topology [10] using combination of backplane, metallic and fiber connections.
The bandwidth available to a single node through an Aries router is about 8GB/s (in a
single direction) resulting in compute-to-bandwidth ratio of 1375FLOP/B.

The compute-to-bandwidth ratio of compute nodes in these clusters illustrate impor-
tance of minimization of communication of HPC workloads even on platforms with heavy
focus on the interconnect. Similar conclusion could be drawn by comparing internal aggre-
gate memory bandwidth of a node to its connection to the rest of a cluster. The global
communication will therefore be of the primary concern in the design of suitable numerical
method.

2.4 Trends and Future Development
The development of accelerated computing architectures seems to be heading in three ma-
jor directions. The first direction is introduction of increasingly more domain specific in-
struction set extensions to CPUs, which are enabled by increasing transistor budget. The
optional subsets of AVX-512 or Intel Advanced Matrix Extensions (Intel AMX) instruction
set can be viewed as domain specific accelerators tightly integrated in CPU µ-architecture.
The modular nature and extensibility of RISC-V instruction set (as one of the latest de-
velopments in this field) points in similar direction. This seamless tight integration of the
accelerator is both primary advantage and limitation to this approach. It allows to achieve
minimal latency, but also poses severe limitations on accelerator complexity.

The second direction is Accelerated Processing Unit (APU), which integrates accelerator
(typically GPU) on the CPU die or chip. The accelerator in this configuration usually
shares memory or even last level cache (LLC) with the CPU. While this configuration is
most widely used in mobile consumer products, there are upcoming datacenter products
from all three major hardware vendors in accelerated computing (AMD, Intel and Nvidia).
These Chiplet or Multi-Chip-Module designs allow more flexibility to implement complex
accelerators with dedicated memory interfaces, while maintaining close integration with the
CPU through optimized interfaces.

Finally, dedicated accelerators connected to the rest of the system through standardized
interfaces such as PCI-E allow the most flexibility at the cost of looser integration with the
CPU (lower bandwidth, possibly missing cache-coherency, etc.).

Overall, we expect the FLOP/B ratio of both accelerators and CPUs to worsen as any
off-chip communication is expensive in the latency and energy terms. This is being partially
counteracted by significant increases in the LLC size, which is rather new development in
GPU accelerator architectures. This trend can be expected to cascade further to node
and cluster level, where non-local communication becomes more and more critical part of
distributed algorithms. It is also reasonable to expect more tasks to be offloaded from
CPUs to accelerators and Smart NICs to reduce communication latency [86, 130].

3Swiss National Supercomputing Center
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Chapter 3

Numerical Methods Overview

A few well known and widely used numerical schemes are considered and their numeri-
cal and computational properties compared in this chapter. The primary concern is not
in precise evaluation of these schemes, but rather their asymptotic behavior. This is due
to variations in possible implementation of the schemes and enormous number of problem
specific adaptations which are proposed through the relevant literature. From the computa-
tional perspective, not only an asymptotic properties (such as time and space complexity)
are of interest, but also possible algorithmic solutions and their mapping to real cluster
architectures discussed previously.

First, the family of Finite Differences (FD) methods will be considered since it has
numerous advantages in its simplicity, flexibility, ease of implementation and well developed
mathematical theory. Many of those appealing properties are lost as the order of FD
schemes is increased in the pursuit of higher order accuracy. Therefore, it is worth to
investigate also less flexible, but much higher order spectral methods.

Although spectral methods have excellent convergence rate, they are efficiently appli-
cable only to linear problems. This limitation can be alleviated by employing collocation
(often called pseudo-spectral or transform) methods which evaluate non-linear terms in
the normal space (compared to convolution required when these terms are computed in
the transform space). Another limitation common to both spectral and pseudo-spectral
methods is the requirement on regularity of the solutions and limited flexibility in terms of
boundary conditions.

Finally, discretizations which combine spectral and element-based approaches are con-
sidered. These methods advantageously combine properties of both element and spectral
methods in such a way as to maintain their respective advantages while suppressing the
drawbacks. It is also important to note that these discretizations stem from weak formu-
lation of the PDE which allows weakening of regularity constrains on the solutions. The
Discontinuous Galerkin Method (DGM) will be used as a representative of these methods.

3.1 Prototype Differential Equations
One of typical approaches to evaluate the properties and suitability of numerical schemes
is to select a few simple (yet still representative) PDEs and discretize them using these
schemes. This allows to somewhat separate characteristic properties of an original complex
problem and compare numerical schemes at more restricted tasks. Such a way of a problem
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decomposition is certainly predicated upon the assumption that the results achieved on
these simplified problems also apply to the original problem.

The description of ultrasound wave propagation is usually based on some form of Acous-
tic Wave equation [40]. The model is then augmented to capture phenomena specific to a
given application. In the case of ultrasound wave propagation modeling for medical appli-
cations, these specifics can be divided into two categories: specifics of medium properties
and problem configuration.

Most of typically encountered materials (ie., biological tissues) in propagation medium
can be described as thermoviscous fluid (with the exception of bone tissue) [85, 102, 120]
with power law absorption due to large number of relaxation processes involved [119].
The diffraction and refraction effects are usually (again with exception of hard tissue)
rather weak as medium is only weakly heterogeneous and the sound propagation speed is
usually close to that of water. Finally, the soft biological tissue does exhibit non-linear
wave propagation which cannot be omitted from the model, particularly for high intensity
ultrasound models [77].

The specifics in problem configuration are mostly related to high ratio between propa-
gation distances, which need to be modeled, and wavelengths of interest. The large prop-
agation distances together with the lack of diffusion leads to high sensitivity to numerical
dispersion in the model. This usually leads to spatial oversampling and necessarily large
and memory intensive models (if tractable at all).

3.1.1 Linear Wave Equation

The linear wave equation can be simply written (in strong form) over infinite domain for
any number of spatial dimensions as

∂2u

∂t2
= c2∇2u in Rn, ∀t ∈ R, (3.1)

where u is the solution and c is a wave propagation speed. Solution u is a function of both
space and time, while c is usually only function of space (although it is possible to have time
varying wave propagation speed). In this case, only a constant wave propagation speed is
considered and c is therefore constant in both space and time.

Of course, to get a complete initial value problem, Eq. (3.1) has to be coupled with
proper initial conditions (as there are no boundaries):

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), in Rn. (3.2)

For numerical experiments, this can be further simplified by restricting the problem to
a single spatial dimension and only a finite domain which simplifies Eq. (3.1) to

∂2u

∂t2
= c2

∂2u

∂x2
in Ω, ∀t ∈ R, (3.3)

where Ω is some finite, but periodic, interval (a, b) in R. Such a domain can be described
as (0, d) + dZ where d = b − a and effectively results in a boundary condition in the form
of u(a, t) = u(b, t) ∀t ∈ R.

The periodic domain allows to avoid difficulties associated with boundary condition en-
forcement while maintaining ability to observe wave propagation over arbitrary distances.
In the case of FD methods, these difficulties would typically translate into the use of special
stencils [11] along the boundary. Similarly spectral collocation and Galerkin methods need
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appropriate basis functions [25] to handle boundaries. When restricted to Fourier colloca-
tion methods, arbitrary boundary conditions enforcement gets even more difficult and often
leads to hybrid schemes [92]. Note that this simplification doesn’t negatively impact simi-
larity between this simplified model and the complete model as free boundary is typically
required. The free boundary is then usually modeled as a non-reflective absorbing layer at
the boundary of the domain (known as Perfectly Matched Layer).

There are multiple ways leading to the wave equation in the form Eq. (3.3). A typical
example of the scalar wave equation in a single spatial dimension is to consider a mechanical
system of a simple string. The string can be imagined as an array of N point masses m
connected with mass-less springs of length h. The equation is then directly derived by
equating forces exerted on individual point masses, which are given by the second Newton’s
law and the Hooke’s law, and taking the limit N → ∞, h → 0. This leaves the equation
of the form Eq. (3.3) with c2 = KL2

M , where K is total spring constant, L is length of the
string and M is total mass.

Linear Acoustic Wave Equation

In the realm of acoustics, the same equation can be derived as an acoustic wave equation
from continuity equation and force equation which are connected through an equation of
state. This approach is very general and can be used to derive acoustic wave equations
accounting for variety of phenomena such as absorption, non-linearity of wave propagation
or heterogeneous medium. However, to derive a linear wave equation, the simplest case of
small amplitude waves in homogeneous non-absorbing medium at rest is considered here.
This allows to write density, pressure and velocity variables in terms of small perturbations
around respective mean values independent of time and position:

p′ = p0 + p, ρ′ = ρ0 + ρ, u′ = 0+ u (3.4)

where p0, ρ0 are mean pressure and density while u′ = u as we assume medium at rest.
The continuity equation and force equation describing conservation of mass and mo-

mentum respectively can be in general written as

Dρ′

Dt
+ ρ′∇ · u′ = 0

ρ′
Du′

Dt
+∇p′ = 0

(3.5)

where ρ′ is density, u′ is velocity and D/Dt notation represents material derivative defined
as Dy/Dt ≡ ∂y/∂t+ u′ · ∇y. Plugging p′, ρ′ and u′ from Eq. (3.4) to Eq. (3.5) in a single
spatial dimension and neglecting higher order terms yields

∂ρ

∂t
+ ρ0

∂u

∂x
= 0

ρ0
∂u

∂t
+
∂p

∂x
= 0

(3.6)

Linearized mass and momentum conservation equations are then combined by taking time
derivative of the first and spatial derivative of the second and subtracting the two:

∂2p

∂x2
− ∂2ρ

∂t2
= 0 (3.7)
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The last missing piece is the equation of state which relates density and pressure fluctua-
tions. Here, an adiabatic process is assumed and the relation can be therefore linearized
as

p = Cρ (3.8)

where C = ∂p′/∂ρ′ is a constant. Substitution of the linearized equation of state into
Eq. (3.7) results in a familiar wave equation:

∂2p

∂x2
− 1

c2
∂2p

∂t2
= 0 (3.9)

where c =
√
C is wave propagation or sound speed.

System (3.6) will be used for numerical experiments in subsequent sections as it is the
form of the wave equation which is used for the derivation of the final solver. The system
is however missing the equation of state, for this reason equation of state Eq. (3.8) will be
substituted for ρ and ρ0 set to 1.

∂p

∂t
+ c2

∂u

∂x
= 0

∂u

∂t
+
∂p

∂x
= 0

(3.10)

Solution to linear Wave equation

The advantage of using one-dimensional wave equation is that it has a relatively simple
general solution in the form of d’Alembert’s formula:

u(x, t) =
f(x− ct) + f(x+ ct)

2
+

1

2c

∫ x+ct

x−ct
g(s)ds (3.11)

where u(x, 0) = f(x) and ut(x, 0) = g(x) are initial conditions of the initial value problem
(IVP) and c is the wave propagation speed. Note that the integral in Eq. (3.11) vanishes
when g(x) = 0 which simplifies the solution to the point, where it becomes an average of
the same wave profile (f(x)) moving in opposite directions.

3.1.2 Burgers’ Equation

To investigate the performance of the discretizations in respect to solutions which exhibit
non-linear behavior, Inviscid Burgers’ equation will be considered. Burgers’ equation is a
hyperbolic quasilinear PDE which can be derived as a simplification of the Navier-Stokes
equations for Newtonian incompressible fluid [56] by dropping its pressure term. The equa-
tion in strong form then reads as:

∂u

∂t
+ (u · ∇)u = ν∇2u in Ω, ∀t > 0, (3.12)

where u is the velocity vector field and ν = µ/ρ is the kinematic viscosity (with µ denoting
viscosity and ρ density). The equation can be further simplified by assuming ν = 0 which
results in

∂u

∂t
+ (u · ∇)u = 0 in Ω, ∀t > 0, (3.13)
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which is a prototype conservation equation that can develop discontinuities (shocks). In a
single spatial dimension Eq. (3.12) and Eq. (3.13) turn into

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
in Ω, ∀t > 0 (3.14)

and
∂u

∂t
+ u

∂u

∂x
= 0 in Ω, ∀t > 0 (3.15)

respectively, where Ω is now chosen to be a periodic interval (0, d) + dZ. Each equation is
completed by an initial condition

u(x, 0) = f(x) (3.16)

forming an IVP on a periodic domain.
The advantage of using an IVP based on the Burgers’ equation for evaluation of nu-

merical experiments is that the initial condition f(x) can be selected so that the analytical
solution can be found in an implicit or even closed form.

Solution to Burgers’ Equation

Lets consider Eq. (3.15) with an initial condition Eq. (3.16), the solution to this problem
can be constructed by the method of characteristics. The characteristic equations are

dx

dt
= u,

du

dt
= 0, (3.17)

which (when integrated in t) show that the characteristics are lines and solution u is constant
along these lines

x = ut+ ξ, u = c, (3.18)

where ξ is a parameter denoting the point at which the characteristic line intersects the x-
axis. The constant c for a given characteristic line is therefore known from c = u(ξ, 0) = f(ξ)
and yields trajectory x = f(ξ)t + ξ. The solution then can be written in an implicit form
as

u(x, t) = f(ξ) = f(x− ut). (3.19)

This implicit relation describes the solution of the PDE only as long as characteristics don’t
intersect. The point in time at which the characteristics intersect is called breaking time
(tb) and it’s the point at which shock is formed and the PDE does no longer have a classical
solution. The breaking time can be determined as

tb =
−1

min f ′(x)
. (3.20)

Although the explicit solution to inviscid Burgers’ equation is known only for a linear
initial condition (f(x) = ax+b) we will still use this equation for our numerical experiments.
Specifically, we will use f(x) = sin(x) as it has properties which come handy in the analysis
of spectral discretizations and analytic solution u(x, t) (for t < tb) can still be computed by
solving the implicit form Eq. (3.19) (see Figure 3.1).

For the sake of completeness, it should be noted analytical solutions to general Burgers’
equation Eq. (3.14) can be found by the Cole-Hopf transformation [57]. This approach is
often demonstrated on derivation of periodic or non-periodic N-wave solution [101] to the
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equation. The advantage of this approach is that the N-wave solution can be found in an
explicit form.
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Figure 3.1: Analytic solution to inviscid Burgers’ equation initialized with sin(x) at the
breaking time tb = 1.

3.2 Strong and Weak Formulations of PDEs
Before we dive into various approaches to discretization of our PDEs, it is useful to briefly
introduce concepts of weak and strong formulation of differential problems. The strong
form means that the PDE is required to be satisfied at each point of its space-time domain
(i.e. at each point in its domain and for each time). All of the problems investigated
in section 3.1 (eqs. (3.3), (3.10), (3.14) and (3.15) with necessary constraints) are in strong
form. A solution to a problem in this formulation could be called strong solution. A
weak formulation, loosens the requirements on the solution so that it has to satisfy an
equation only with respect to certain “test functions” – weak solution. This is equivalent to
reformulating the problem so that it requires a solution in the sense of a distribution [108]
(as opposed to strong form which requires solution in the form of a function).

In practical terms the weak form of the PDE is obtained by requiring that the integral
of the PDE against all functions from a suitable space X of test functions is satisfied. For
example, the weak form of eq. (3.14) would be derived by multiplying both sides by each
test function and integrating in space:∫ b

a

∂u

∂t
vdx+

∫ b

a
u
∂u

∂x
vdx =

∫ b

a
ν
∂2u

∂x2
vdx ∀v ∈ X, ∀t > 0, (3.21)

assuming Ω = (a, b). The advantage of this integral form might not be immediately obvi-
ous, but it can serve as stepping stone for another weak formulation which is formed by
integration-by-parts of eq. (3.21) which yields∫ b

a

∂u

∂t
vdx− 1

2

∫ b

a
u2
∂v

∂x
dx+ ν

∫ b

a

∂u

∂x

∂v

∂x
dx

+

[
∂u

∂x
v

]b
a

− ν

[
∂u

∂x
v

]b
a

= 0 ∀v ∈ V, ∀t > 0.

(3.22)
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While eq. (3.21) requires solution u to be at least twice differentiable and places no
restrictions on test functions, eq. (3.22) lessens regularity constrains on the solution, at the
expense of increased regularity requirements placed on test functions. This means the space
of test functions is restricted to a subspace V of the original space X.

Applying the same approach to first order equation such as the first equation of sys-
tem (3.10) results in:∫ b

a

∂ρ

∂t
vdx+ [uv]ba −

∫ b

a
u
∂v

∂x
dx = 0 ∀v ∈ V, ∀t > 0, (3.23)

where Ω = (a, b) is assumed and V ⊂ X is space of differentiable test functions. However,
solution u (and ρ for that matter) doesn’t need to be differentiable in x at all.

Weak formulations also prove useful in respect to boundary conditions as they provide
multiple ways to incorporate boundary into the equation. In a weak form such as eq. (3.22),
the boundary condition can be enforced either by a suitable selection of test function space
or through boundary terms.

While some properties of these formulations vary and each of them is useful in different
context (usually leading to different discrete formulation), they are roughly equivalent at
the continuous level. This equivalence is possible essentially because the space of test
functions is infinite and allows to recover the strong form from the weak form. As number
of independent test functions is restricted in the discretization process this is no longer
possible and the equivalence is lost.

3.3 Numerical Solutions
Having our benchmark problems together with their analytic solutions and basic forms laid
out, its time to turn our attention to approaches usable to formulate numerical solutions
to these problems. Effectively, our task is to appropriately reduce infinite dimensionality
of our problem to a finite one and find the solution there.

As an example, let’s consider u ∈ X, where X is some infinite space of functions, which
contains solution u to some hypothetical problem. Now, to be able to attempt to search
for this solution u(x, t) using finite structures of our computational resources, we need to
be able to describe this space X by a finite number of coefficients. Typically, the space
X would be restricted to some subspace Y ⊂ X so that u ∈ Y and Y would then be
discretized.

A typical angle of attack is to split the task into spatial (in x) and temporal (in t)
discretization problems and solve these two more or less independently. In the case of time-
dependent problems, we aim to cast the problem into a finite system of ordinary differential
equations (ODEs), each of which can then be solved by one of well known implicit or explicit
integration methods such as Euler method, Runge-Kutta etc., see section 3.3.4. It should be
noted that there is a significant body of work on space-time discretizations [87, 122], where
temporal and spatial dimensions are handled at once. The relationship between spatial and
temporal discretizations is also significantly tighter in methods which implement corrections
of temporal errors in their spatial discretization (such as k-space pseudo spectral method
which will be introduced later).
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3.3.1 Finite Difference Methods

The finite difference method (FDM) is probably the simplest, yet powerful and flexible
approach to spatial discretization of PDEs. The method is based on the approximation of
derivatives in the PDE by a linear combination of function values at discrete grid points.
This means a function u(x) on some interval Ω = (0, L) is discretized as ui = u(xi), i =
0, 1, . . . , N corresponding to a set of discrete grid points xi = iΔx, where Δx = L/N is a
grid resolution.

The first-order derivative at some point x̄ (or corresponding xi in a discrete space) can
be (by definition) expressed as

∂u

∂x
(x̄) = lim

Δx→0

u(x̄+Δx)− u(x̄)

Δx
= lim

Δx→0

u(x̄)− u(x̄−Δx)

Δx

= lim
Δx→0

u(x̄+Δx)− u(x̄−Δx)

2Δx
,

(3.24)

which yields following approximations in the discrete space(
∂u

∂x

)
i

≈ ui+1 − ui
Δx

forward difference,(
∂u

∂x

)
i

≈ ui − ui−1

Δx
backward difference,(

∂u

∂x

)
i

≈ ui+1 − ui−1

2Δx
central difference.

(3.25)

Approximations in the eq. (3.25) are based on the Taylor series expansion of function
u around the point xi

u(x) =
∞∑
n=0

(x− xi)
n

n!

(
∂nu

∂xn

)
i

, u ∈ C∞([0, X]), (3.26)

which allows to compute values of ui+1 and ui−1 as in

T1 : ui+1 = ui +Δx

(
∂u

∂x

)
i

+
(Δx)2

2

(
∂2u

∂x2

)
i

+
(Δx)3

6

(
∂3u

∂x3

)
i

+ · · · ,

T2 : ui−1 = ui −Δx

(
∂u

∂x

)
i

+
(Δx)2

2

(
∂2u

∂x2

)
i

− (Δx)3

6

(
∂3u

∂x3

)
i

+ · · ·
(3.27)

or alternatively allows to express derivative approximations from eq. (3.25) as

T1 ⇒
(
∂u

∂x

)
i

=
ui+1 − ui

Δx
− Δx

2

(
∂2u

∂x2

)
i

− (Δx)2

6

(
∂3u

∂x3

)
i

+ · · · ,

T2 ⇒
(
∂u

∂x

)
i

=
ui − ui−1

Δx
+

Δx

2

(
∂2u

∂x2

)
i

− (Δx)2

6

(
∂3u

∂x3

)
i

+ · · · ,

T1 − T2 ⇒
(
∂u

∂x

)
i

=
ui+1 − ui−1

2Δx
− (Δx)2

6

(
∂3u

∂x3

)
i

+ · · · .

(3.28)

Expressions T1 and T2 include terms containing higher order derivatives, which are
unknown. The significance of these higher order terms decreases as the power of Δx goes
up (assuming Δx < 1). In the case of approximations eq. (3.25), error on the order of O(Δx)
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(forward/backward difference) or O(Δx2) (central difference) is introduced depending of
first neglected expansion term. This way, higher-order schemes can be derived by using
more points around xi to improve convergence rate of finite differences.

In general Taylor series, however, converges only for a small subset of smooth functions
and only with its generalization by using finite differences instead of derivatives. The series
then converges for any bounded continuous function on (0,∞) [55]. This is an issue not
only because non-smooth and discontinuous solutions are hard to represent, but it also
makes imposition of boundary conditions more difficult. Assuming that the positions of
discontinuities are known, both problems can be tackled by using special stencils, which
capture required properties of the solution (such as immersed interface method [71]).

Linear Acoustic Wave Equation

Let’s consider system (3.10) to see how FDM may be applied to spatially discretize simple
system of hyperbolic first order PDEs with periodic boundary conditions. The FDM is
based on a point-wise approximation of the function and we will use it in this manner to
find the solution fulfilling system (3.10) at discrete points. Therefore, strong form of the
system is considered at set of points xi in the interval Ω = (0, L) defined as

xi = iΔx, i = 0, 1, . . . , N, where Δx = L/N. (3.29)

The restriction of the system to these discrete points with a central differences approx-
imation of derivatives together with an application of boundary conditions yields following
system of ODEs

∂pi
∂t

= −c2ui+1 − ui−1

2Δx
, u−1 = uN , uN+1 = u0

∂ui
∂t

= −pi+1 − pi−1

2Δx
, p−1 = pN , pN+1 = p0

(3.30)

where ui = u(xi, t), pi = p(xi, t), ui, pi : i /∈ 0, 1, . . . , N are so called “ghost cells” and c
is a constant over the whole domain Ω. The ghost cell or extension grid point values are
computed so that the required boundary conditions are met in the original domain. The
number of ghost cells depends on the order of the finite difference stencil and its type.
In eq. (3.30), second order central differences are used, therefore, only a single grid point
has to be added on each side of the domain.

Burgers’ Equation

The general Burgers’ equation eq. (3.14) is a good example of how FDM discretization would
apply to a non-linear PDE with the second order term. Similarly to the wave equation,
the spatial domain is restricted to a finite set of points xi and derivatives are replaced
with central differences of a required order (in both accuracy and derivative). The periodic
boundary is again required and the following system of ODEs is assembled

∂ui
∂t

= ν
ui+1 − 2ui + ui−1

Δx
− ui

ui+1 − ui−1

2Δx
u−1 = uN , uN+1 = u0

(3.31)

where ui = u(xi, t) and ν is constant over the whole domain Ω, while the same ghost cells
approach is taken to satisfy periodic boundary conditions in the same way as in eq. (3.30).
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Generalization of FDMs

The systems of equations (3.30) and (3.31) hint on a general structure of the finite differ-
ence based methods in a single spatial dimension. The FD operators used in these systems
can be described as Dui, where D is a k-diagonal matrix with each diagonal equal to a
corresponding coefficient. The number of diagonals k depends on the order of the approxi-
mated derivative operator and the order of the approximation itself (e.g. central differences
scheme requires values ui±0,1,...,k/2 to compute derivative at i).

It is apparent that the operator D can be efficiently implemented as a convolution given
that the boundary conditions are appropriately handled by ghost cells, special stencils or
simply by a circular convolution as D becomes circulant in the case of a periodic boundary
conditions. The similar approach can be applied even for problems in higher dimensions and
it is often used to perform more complex operators such as gradient or Laplace operator in
a single pass. These compound operators, which operate over data in multiple dimensions,
are typically realized as n-dimensional convolutions with a von Neumann style stencils such
as 3-point, 5-point or 7-point in one, two or three spatial dimensions (see fig. 3.2) and their
respective extensions for higher order approximations.

(a) 3-point 1D Stencil (b) 5-point 2D Stencil (c) 7-point 3D Stencil

Figure 3.2: Narrow Von Neumann style stencils in one, two and three spatial dimensions
typical for FDMs.

Computational Properties of FDMs

From the algorithmic perspective, FD operator application is a sweep through an n-dimensional
array updating its elements (cells). The new value of each element is computed using its
neighboring elements in a fixed pattern (stencil). While complex solvers would use these
update sweeps only to implement specific operators, some simple solvers can be entirely
represented as their iterative application (so called stencil codes [104]). However, in both
cases it is useful to take advantage of formal descriptions which structure of stencil codes
offers.

While computational complexity of stencil codes is linear in both space and time with
respect to the size of the simulation domain, the matter gets more complicated when ac-
curacy is considered. As we have shown, the approximation accuracy of FD method can
be increased by either increasing the resolution or the order of the operator. Asymptoti-
cally, the error behaves as O(1/nk) while time and space complexity are O(knd) and O(nd)
respectively, where n is the number of grid points in a single spatial dimension, d is the num-
ber of dimensions and k is an order of the approximation. This means that only algebraic
convergence is achieved by the grid refinement.
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Another, and increasingly more important, view on an algorithm complexity is the
amount of communication that is necessary when computation is performed on architectures
with distributed memory. The typical approach to distribute FDMs across a cluster is
to uniformly split the domain into grid-aligned blocks. Considering such an arrangement
together with previously mentioned stencils leads to a neighbor only communication pattern
with 3d − 1 neighbors. The total amount of data exchanged during a single sweep then
grows as O(2dld−1pk) for narrow Von Neumann’s and O(p((2k + l)d − ld)) for Moore’s
neighborhood, where l = np−1/d is the edge length of each block, p is the number of blocks,
d is dimensionality of the domain and k is given by the stencil size.

3.3.2 Spectral Methods

The basic idea behind spectral methods is to use a finite series expansion to represent the
unknown function. The unknown function u(x) is approximated by a sum of N + 1 “basis
functions” ϕn(x) so that it can be represented by a set of coefficients an:

u(x) ≈ uN (x) =
N∑

n=0

anϕn(x). (3.32)

The substitution of this approximate series into an equation such as

Lu = f(x) (3.33)

where L is the differential or integral operator, yields a residual function of the form

R(x; a0, a1, . . . , aN ) = LuN − f (3.34)

The objective of spectral methods is the minimization of the residual function R(x; an) as
it vanishes for the exact solution. The main difference between various types of spectral
approaches is in the strategy employed to minimize the residual. As much these methods
may differ in the residual minimization they all rely on expansions in basis functions which
span the whole domain. In contrast, element methods (such as Finite element method
or FEM for short), which also rely on similar expansions, use basis functions with support
restricted to a particular element (sub-interval). In both cases, the expansion is constructed
for some set of grid points at once using all others in that set. Unlike FDMs, which make
use of a neighborhood of each grid point independently.

At the coarsest level, these algorithms can be divided into “interpolating” and “non-
interpolating” (see [18]). The term “spectral”, which is now used as an umbrella term for all
high-order expansion based methods, was originally reserved only for “non-interpolating”
methods such as Galerkin method [41] and Tau method [91], which were developed first.
These methods rely on integrating product of a function f(x) and a given basis function
ϕi(x) to derive the expansion coefficient ai. The integration should be ideally analytic (e.g.,
strict Galerkin method), but for more complicated problems it is often necessary to use
numerical quadratures (e.g., Galerkin with Numerical Integration – G-NI). In comparison,
the family of “interpolating” or “pseudospectral” methods finds expansion coefficients ai so
that the expansion fN (x) agrees with f(x) exactly at each grid point. The presumption
here is that with the increasing density of the grid points the residual R(x, ai) is forced to
vanish everywhere.

While global spectral methods offer many appealing properties, they have some major
drawbacks too. Perhaps, the most troublesome property of these methods is their inflexibil-
ity in terms of domain shapes and boundary conditions. Another issue is the representation
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of solutions with shock-waves or other discontinuities with known locations. Although spec-
tral shock-capturing schemes are still an area of active research [106, 124] the rest of these
issues can be largely alleviated by merging the concepts of local elements from Finite Ele-
ments Methods (FEMs) with spectral methods. This approach gives rise to schemes such
as Spectral Elements Methods (SEM) which is derived directly from FEM by increasing the
order of elements beyond 6-th order, and Discontinuous Galerkin Methods (DGM) which
loosens coupling between elements by allowing discontinuities at boundaries. These spectral
element based approaches have also significant computational implications as they lead to
sparse matrices.

In following sections, we illustrate both advantages and drawbacks of spectral methods
relevant to the problem at hand. Specifically, we will show classical spectral method with its
limitations related to nonlinear problems which will be solved by a transition to pseudospec-
tral method and finally discontinuous Galerkin approach will be used as a representative of
element based methods.

Classical Spectral Method

The straightforward way to introduce classical spectral method is to use a Fourier Galerkin
Method for spatial discretization of the wave equation (3.10). For simplicity, the problem is
completed by considering periodic boundary conditions and initial conditions p(x, 0) = f(x)
and u(x, 0) = 0. The approximate solution can then be represented as

uN (x, t) =

N/2∑
k=−N/2

ak(t)ϕk(x), pN (x, t) =

N/2∑
k=−N/2

bk(t)ϕk(x), (3.35)

where ϕk are the trial (or basis) functions, while ak(t) and bk(t) are expansion coefficients
of approximations to u(x, t) and p(x, t) respectively (see eq. (3.32)). With approximation
defined it’s necessary to specify a metric in which the residual is required to vanish. The
Galerkin method can be considered as a method of weighted residuals which can be written
as ∫ 2π

0

[
D
[
uN

pN

]]
ψk(x)dx = 0, D =

[
∂
∂t

∂
∂x

c2 ∂
∂x

∂
∂t

]
. (3.36)

The operator D describes the original wave equation and ψk(x) are test functions, which
are effectively weights in the weighted residuals approximation. The differential equation
is now transformed into an integral or weak formulation described in section 3.2.

The equation (3.36) and the solution expansions eq. (3.35) have to be completed by
choosing an appropriate trial and test functions. While the Galerkin approach prescribes
that the test functions should be the same as trial functions, the selection of these is not
entirely straightforward. Typically, the set of trial functions is selected so that it is easy to
enforce the boundary conditions later. This often leads to orthogonal polynomials such as
Chebyshev polynomials [97]. Another choice, especially suitable for problems with periodic
boundary conditions, are trigonometric polynomials, which are used here:

ϕk(x) = eikx, ψk(x) =
1

2π
e−ikx. (3.37)

Here, i is the imaginary unit and k is an integer wave-number. It should be noted that
these two functions are essentially the same and that they are pairwise orthogonal on [0, 2π),
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which is a very useful property. Expanding approximations eq. (3.35) and substituting these
basis functions into eq. (3.36) yields

1

2π

∫ 2π

0

 N/2∑
l=−N/2

(
D
[
al(t)
bl(t)

])
eilx

 e−ikxdx = 0. (3.38)

At this point, both equations can be analytically differentiated in the spatial dimension.
This is reflected in the following equation by a simple change of the operator D to D as
only the basis and test functions are dependent on x:

1

2π

∫ 2π

0

 N/2∑
l=−N/2

(
D

[
al(t)
bl(t)

])
eilx

 e−ikxdx = 0, D =

[
d
dt

il

c2il d
dt

]
. (3.39)

Finally, propagating the integral and test function e−ikx into the sum and taking the ad-
vantage of 1

2π

∫ 2π
0 eilxe−ilx = σkl, yields the set of dynamical equations

dbk
dt

+ c2ikak = 0,
dak
dt

+ ikbk = 0, k = −N/2, . . . , N/2, (3.40)

which can be used with a suitable time-stepping scheme to obtain the approximate solution
at an arbitrary time t. According to the strict Galerkin method, the initial conditions ak(0)
and bk(0) for system (3.40) should be computed analytically as

ak(0) =

∫ 2π

0
u(x, 0)ψk(x)dx, bk(0) =

∫ 2π

0
p(x, 0)ψk(x)dx. (3.41)

Most if not all reasonably complicated problems will require a numerical quadrature to be
used for evaluation of these integrals instead. Considering that the chosen approximation
(eq. (3.35) together with eq. (3.37)) is a truncated Fourier series, one would use Fourier
transform to transition between coefficients and original function values. The solution at
time t can be recovered similarly by an inverse Fourier transform.

Perhaps, one of the most severe limitations of the purely spectral approach is revealed
when a non-linear or variable (multiplicative) parameter problems are considered. The
simplest example could be a spatially variable wave speed c(x) in the wave equation. How-
ever, to stick with our theme of showing both linear and non-linear problems, let’s consider
the inviscid Burgers’ equation (eq. (3.15)) with periodic boundary conditions. Taking the
conservative form of inviscid Burgers’ equation

∂u

∂t
+

1

2

∂u2

∂x
= 0, (3.42)

and following the same procedure as above, we arrive at the integral form

1

2π

∫ 2π

0

[
∂

∂t

∑
l

al(t)e
ilx +

∂

∂x

1

2

∑
p

∑
q

ap(t)aq(t)e
i(p+q)x

]
e−ikxdx = 0. (3.43)

Although the overall form is very similar to eq. (3.39), the double summation should seem
rather suspicious from the computational perspective (as it means at least O(N2) complex-
ity). Taking the integral as before results once again in a set of dynamical equations

dak
dt

+
ik

2

∑
p+q=k

apaq = 0, k = −N/2, . . . , N/2, (3.44)

which still contain the double summation in the form of convolution thus prohibitively
increasing the complexity of each time step in the final algorithm from O(N) to O(N2).
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Pseudospectral Method

Whereas Fourier Galerkin method minimizes the residual in integral terms, the pseudospec-
tral or collocation approach requires that the approximate solution satisfies the original
equation exactly at a set of collocation points xj . The choice of these points is tightly
related to the selected expansion basis so that the high accuracy of approximation and
quadratures is achieved. In contrast to conventional Galerkin method, the collocation
methods are implemented entirely in the terms of nodal values uj(t) = uN (xj , t). The
nodal expression of the approximate solution can be written as

uN (x, t) =

N−1∑
j=0

uj(t)ψj(x), (3.45)

where ψj are approximation of shifted discrete delta-functions (formally distributions) sat-
isfying ψj(xi) = δij for 0 ≤ i, j ≤ N − 1. The choice of appropriate approximation polyno-
mials is determined by the selected expansion basis, which in turn strongly depends on the
boundary conditions of the equation at hand.

In the case of inviscid Burgers’ equation in its conservative form (eq. (3.42)) with peri-
odic boundary condition, the suitable expansion can be derived from Fourier basis as

ψj(x) =
1

N

N/2−1∑
k=−N/2

eik(x−xj), (3.46)

which can be (in combination with eq. (3.45)) easily derived from the interpolation on modal
Fourier expansion by rearranging sums. The substitution of this expansion of approximate
solution into the strong form of Burgers’ equation yields

∂uN

∂t
+

∂

∂x
F
(
uN

)∣∣∣∣
x=xj

= 0, j = 0, . . . , N − 1, (3.47)

where uN is a nodal expansion eq. (3.45) with basis defined by eq. (3.46). While the first
term simply collapses to the nodal values uj(t) the flux term F

(
uN

)
= 1

2

(
uN

)2 requires
a bit more attention. The flux has to be replaced with its numerical variant, which is
evaluated on the collocation points and only then interpolated:

FN (
uN

)
= IN

[
F
(
uN

)]
=

N−1∑
j=0

 1

2N
uj(t)

2

N/2−1∑
k=−N/2

eik(x−xj)

 . (3.48)

Here IN is the Fourier interpolation operator, which is used to interpolate the flux. This
operator can be analytically differentiated in x and written as a Fourier collocation differ-
entiation matrix

(DN )jl =
∂

∂x
(IN )jl =

1

N

N/2−1∑
k=−N/2

ikeik(xj−xl). (3.49)

In this case, the result is evaluated at points xj , while the differentiated function is known
at points xl. Both xj and xl are expected to be in the interval [0, 2π).
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The substitution of the numerical flux FN together with the Fourier collocation differ-
entiation matrix DN yields a system of dynamical equations

duj
dt

+
N−1∑
l=0

(DN )jl
1

2
u2l = 0, j = 0, . . . , N − 1, (3.50)

which can be combined with a suitable time-stepping scheme to obtain the solution.
Once again, each time step requires a matrix-vector multiplication or a pair of space-to-

space transforms to evaluate the derivative operator in a transform space. This is a slight
improvement over the classical spectral method as expensive O(N2) operations are now
restricted only to evaluation of derivative operators. Moreover, given a suitable basis where
a cheaper transform method is available, this cost can be further reduced.

Computational Properties of Spectral Methods

Considering non-linear problems the price for an exponential convergence achieved by these
spectral approaches is an introduction of either convolutions or multiple space-to-space
transforms in each time step. Although the complexity of these operations in general is
O(N2) it can be significantly reduces by the choice of suitable basis.

The popular options are, therefore, Fourier or Chebyshev basis, both of which offer
transform algorithms based on Fast Fourier Transform (FFT [30]) and thus requiring only
O(N log2(N)) time per transform. The choice between the two is mostly driven by bound-
ary conditions of the problem, where Chebyshev basis offers more flexibility. The disadvan-
tage of Chebyshev basis is however that a non-uniform grid-point distribution is required
which tends to severely limit time-step size for large problems (see fig. 3.3). Many applica-
tions therefore choose Fourier basis even in cases where this choice means that the explicit
boundary handling will be necessary.
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Figure 3.3: Eigenvalues of 1st order derivative operator using Fourier or Chebyshev basis.

3.3.3 Element Methods

The discretization strategies discussed so far assumed that our toy problems are solved on
an uniformly spaced grid-points. These approaches can be readily extended to Cartesian
grids (tensor product domains) and even further to other regular grids. However, only
FDM is relatively easily applicable to problems with more complicated geometries. The
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global nature of spectral methods in combination with smoothness requirements they im-
pose on the solution limits their applicability to problems with a complex geometry and
discontinuities in the medium properties.

The idea of finite element methods is to split the original domain into a set of coupled
subdomains (or elements)

Ω =

Ne⋃
e=1

Ω(e), (3.51)

where Ω is the simulation domain, Ω(e) is a single element and Ne is the total numbers of
elements in the decomposition. The shape of the elements is typically chosen to be easily
tractable (k-simplexes or hypercubes) or otherwise suitable for given problem (pyramids,
prisms, polyhedrons, curvilinear, etc.).

Practically speaking the solution u is once again found by minimizing the residual R
over its finite sum approximation uN

u(x) ≈ uN (x) =
N∑

n=0

anϕn(x), uN ∈ V

R(x; a0, a1, . . . , aN ) =LuN ,

(3.52)

where L is a differential operator. Typical strategies used to minimize the residual R
are Galerkin projection (Galekrin FEM) and least squares (LS FEM) [54, 131]. Both of
these strategies can be viewed as specializations of the method of weighted residuals, which
demands a residual R to be orthogonal to some space W :

(R, v) =

∫
Ω
Rvdx = 0, ∀v ∈W, (3.53)

where W = V for Galerkin method or W = span {w0, . . . , wN} and wi = ∂R/∂ai in the
case of least squares method.

The key differentiating factor of finite element methods is the selection of the test
function space. The test functions are selected so that they have only local support in
each element Ω(e) (see fig. 3.4). The adjacent elements are then suitably coupled so that
coherent global solution Un could be formed. This approach ultimately results in more or
less sparse system of equations, which is to be solved at each time step.
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Figure 3.4: Third order hat polynomial FEM basis (left) and its derivative (right).

Finally, these methods use notion of the reference element, which allows to factor out
geometry information from per-element operations. This is achieved by mapping between
each element in the domain and the reference element on which the test function bi-linear
forms are precomputed.
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Finite and Spectral Element Method

The finite element methods in their most widely used form use a Galerkin projection to
minimize the residual. This also means that the space of the test and trial (basis) functions
is the same. The adjacent elements are coupled by sharing coefficients an, which belong to
nodes at shared boundary between elements. The basic variant of FEM would typically use
a low-order piecewise basis such as Lagrange polynomials on equispaced nodes. However,
Hermite polynomials may be also used when C1 continuity between elements is required.

The spectral element method extends FEM by using high degree piecewise polynomial
basis functions such as Legendre polynomials over non-uniformly spaced nodes. For exam-
ple Legendre-Gauss-Lobatto grids [7, 20] are often used as they can be directly used for
numerical quadrature. See [34] for comprehensive overview of classical orthogonal polyno-
mials.

To better illustrate this method’s derivation and numerical performance, we use a
Galerkin FEM with a Lagrange basis to discretize a simple wave equation. We start with
the first order system (3.10) over Ω = (0, 2π) with periodic boundary conditions. The
interval Ω is then uniformly subdivided to form a mesh Th with element size h = 2π/Ne.
At this point we can define trial and test functions space as

Vh =
{
uh ∈ C(Ω)

∣∣∣ uh∣∣K ∈ Pn, ∀K ∈ Th
}
, (3.54)

which is space of C0 continuous functions on Ω, where each element K is represented by
an n-th order Lagrange polynomial. The solution u and ρ can now be approximated by
coefficients aj and bj , respectively, using basis functions ϕj ∈ Vh as

uN (x, t) =
∑
j

aj(t)ϕj(x), pN (x, t) =
∑
j

bj(t)ϕj(x). (3.55)

Rewriting the system (3.10) as differential operator D and applying Galerkin projection
yields

Dt =
[
∂t 0
0 ∂t

]
, Dx =

[
0 ∂x
∂x 0

]
, C =

[
0 1
c2 0

]
, uN = [ uN pN ]T∫

Ω
Dtu

Nψdx+

∫
Ω
DxCuNψdx = 0, ∀ψ ∈ Vh,

(3.56)

which can be rearranged by expanding uN to a vector of coefficients u = [ aj bj ]T and
realizing that u is now independent of x we get

Dt

∑
j

u

∫
Ω
ϕjψidx+C

∑
j

u

∫
Ω
ϕ′jψidx = 0, ∀i ∈ I. (3.57)

The bi-linear forms are now independent and can be pre-computed, arriving on system of
first order ODEs [

∂tIN 0
0 ∂tIN

] [
0 M
M 0

]
u = −

[
0 K
K 0

] [ 0 IN
c2IN 0

]
u

Mj,i =

∫
Ω
ϕjψi, Kj,i =

∫
Ω
ϕ′jψi

(3.58)

where matrices M and K are generally being called mass and stiffness matrix. The system
is to be solved at each evaluation of time derivatives needed by the time stepping scheme
of choice.
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The trial and test function space Vh, together with the mesh Th, determine the structure
of both mass and stiffness matrices. The matrices are sparse as each function ϕj ∈ Vh is
zero everywhere except element K and possibly its neighbors. This allows to assemble the
matrices element-by-element such as

M =
∑
k

Mk, K =
∑
k

Kk, (3.59)

where Mk
i,j =

∫
k ϕ

k
i ψ

k
j and Kk =

∫
k ϕ

′k
i ψ

k
j are matrices local to element k ∈ Th. For example,

the decomposition in question with Pn polynomial basis results in (n+ 1)-by-(n+ 1) local
matrices which are assembled into global block diagonal matrices. Further, the mass matrix
M is often symmetric, positive-definite and well conditioned. These properties enable the
approximation of the mass matrix by mass lumping process, which replaces the matrix
by its purely diagonal approximation M̃. This in turn eliminates the need to solve the
system (3.58) as M̃ can now be easily inverted thus making FEM fully explicit method.
The mass lumping process can also be used as means to preserve locality, which may be
useful in modeling certain physical phenomena (such as wave equation [53]).

Finally, to illustrate elimination of some per element calculations, we show how to
construct matrices Mk and Kk using reference element mapping. Let’s define reference
element R as Ω(R) = [−1, 1] and a linear affine mapping from the reference element to an
element Ω(e) = [xL, xR] in the domain as

x =
1

2
(xL + xR) +

1

2
(xR − xL) r, x ∈ Ω(R), r ∈ Ω(e). (3.60)

The local mass and stiffness matrices can then be expressed in terms of integrals over the
reference element R as

Mk
i,j =

∫
R
ϕRi (r)ψ

R
j (r)

dx

dr
dr, Kk

i,j =

∫
R
ϕ′Ri (r)ψR

j (r)dr, (3.61)

where dx
dr = (xR − xL)/2 is the stretch factor of the mapping eq. (3.60). Depending on the

element type and dimensionality of the problem, it may be useful to introduce coordinate
systems such as barycentric coordinates in derivation of these relationships. While this
process may get quite complicated, it is still preferable over computing these integrals for
each element separately.

Discontinuous Galerkin Method

Discontinuous Galerkin Method (DGM) or Discontinuous Galerkin FEM (DG-FEM) takes
FEM approach one step further by incorporating some ideas of Finite Volume Method
(FVM). The FVM [69] treats divergence terms in PDEs by splitting the space into small
cells (elements) in which volume integrals are used to represent the local volume average.
These volume integrals can be converted to surface integrals using the divergence theorem.
The problem is then described in terms of flows (fluxes) between adjacent cells and the
solution is naturally discontinuous (piecewise constant) as it consists of cell averages.

The DGM expands the space of solutions used in FEM by requiring the solution to be
only piecewise continuous. It, just like FVM, allows for discontinuities in the solution at
element boundaries. Formally, such a solution space can be described as “broken Sobolev
space” [33]

Vh =
{
uh ∈ L2 (Ω)

∣∣∣uh∣∣K ∈ Pn (K) , ∀K ∈ Th
}
, (3.62)
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which consists of n-th degree polynomials over each element K in the mesh Th. The adjacent
elements are coupled by numerical flux, which is typically a low order approximation of the
solution to the Riemann problem [111].

The weak formulation eq. (3.56) derived to find a FEM formulation of wave equation
problem eq. (3.10) can be used to highlight changes necessary to arrive at the DGM dis-
cretization. While the definition of the solution space Vh had to be changed the mesh
decomposition Th with elements K remain the same. Splitting the domain Ω into con-
stituent elements and applying divergence theorem yields∑

K∈Th

[∫
K
Dtu

Nψdx+

∫
∂K

CuNnKψdS −
∫
K
CuNψ′dx

]
= 0, ∀ψ ∈ Vh, (3.63)

where nK denotes outward unit normal of ∂K. At this point, we still require the element
surface integrals

∫
∂K CuNnKψdS at interior faces between adjacent elements to cancel out,

thus the approximate solution still has to be continuous. This restriction is alleviated by
replacing these integrals with a numerical flux function f̂ , which together with expanding
uN and restriction of the trial/test function space Vh results in

∑
K∈Th

Dt

∑
j

u

∫
K
ϕjψidx+

[
F̂ (u)

]xK
R

xK
L

−C
∑
j

u

∫
K
ϕjψ

′
idx

 = 0, ∀i ∈ I, (3.64)

where ϕj , ψi are trial and test functions from finite subspace of Vh, xKL , xKR denote left and
right endpoint of the element K and F̂ (u) = f̂

(
C
∑

j uϕj

)
ψi is the numerical flux.

The primary purpose of numerical flux functions is to describe the communication be-
tween elements, allowing recovery of the global solution, while permitting discontinuities at
element boundary. However, they also offer a way of injecting problem specific knowledge
into the solver. Consider a simple advection problem with velocity c, the upwind flux [89]:

f̂ (u) =


cu− if c > 0
cu+ if c < 0
0 otherwise

, (3.65)

can be used to express the advection process in the solver. Here u− and u+ denote solution
values at respective sides of the element boundary. The numerical flux can also have a
significant impact on the properties of the solver (see [73, 99]). While there are numerical
fluxes optimized for wave problems [28, 58, 99], we use central flux for its simplicity. The
central flux is a non-directional numerical flux which averages solution values across the
boundary as

f̂ (u) =
u− + u+

2
. (3.66)

The last missing piece necessary for the derivation of the semi-discrete matrix form is
the choice of approximation polynomials Pn for test and trial functions. This time, we
use Legendre polynomials over Gauss-Legendre points (see fig. 3.5), which offer number of
useful mathematical properties. The set of Legendre polynomials Pn up to the order n is,
by definition, pairwise orthogonal over [−1, 1] with respect to the weight function w(x) = 1
and therefore ∫ 1

−1
ϕRi ψ

R
j dx = 0 if i ̸= j (3.67)
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holds for test and trial functions ϕRi , ψR
j ∈ Pn over the reference element R. This naturally

leads to a purely diagonal mass matrix M, which can be trivially inverted. Having element
internal nodes located at zeroes of Legendre polynomials allows to directly compute integrals
using Gauss-Legendre quadrature, which is exact for polynomials of degree up to 2n − 1.
One of the disadvantages of these points is that they don’t include interval endpoints, which
are needed in evaluation of numerical fluxes and extrapolation has to be used.
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Figure 3.5: Third order Legendre polynomial basis used in Gauss-Legendre DGM elements
(left) and its derivative (right).

Finally, having derived a weak form of the problem and chosen a numerical flux function
and approximation polynomials, the semi-discrete system can be written as[

∂tIN 0
0 ∂tIN

]
u =

[
0 M
M 0

]−1
([

0 K
K 0

] [ 0 IN
c2IN 0

]
u−

[
0 F
F 0

] [ 0 IN
c2IN 0

]
u
)

(3.68)

where M, K and F are global mass, stiffness and numerical flux matrices, respectively. Both
mass and stiffness matrices have a block-diagonal structure as they consist of per-element
local blocks M =

∑
k M

k and K =
∑

k K
k, respectively, which are essentially independent

of each other. The numerical flux matrix F is typically block-sparse and while it can be
constructed in terms of blocks F =

∑
k F

k, these blocks are no longer independent as they
tie together adjacent elements. These local matrices can be constructed over a reference
element R using affine projections as

Mk
i,j =

∫
R
ϕRi (r)ψ

R
j (r)

dx

dr
dr, Kk

i,j =

∫
R
ϕRi (r)ψ

R′
j (r)dr,

Fk
i,j =

Lk+1
i,j +Rk

i,j

2
ψR
j (x

k
r )−

Rk−1
i,j + Lk

i,j

2
ψR
j (x

k
l ),

(3.69)

where Mk, Kk are (n + 1)-by-(n + 1) matrices whereas Fk is (n + 1)-by-3(n + 1) as it’s
non-zero for elements k and k±1. Matrices Lk and Rk denote extrapolation of the solution
to left and right edge of element k.

Slight complications arise in the case of nonlinear problems such as Burgers equation.
The choice of modal approximation by Legendre polynomials leads to the same issues as
those encountered in spectral methods. The solution is to either switch to nodal approx-
imation, evaluate products as convolutions or use transform methods. However, in this
case the transform methods are not as compelling because the fast transforms (such as
FFT) are not available for approximations typically used in element methods. While these
approaches with O(N2) time complexity are not really usable for global methods, they are
feasible for element methods as N is determined by the order of the local approximation
which is orders of magnitude smaller than the global approximation.
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Computational Properties of Element Methods

There are several factors which make the analysis of computational complexity of element
methods significantly more complicated. In situations where an element method is applied
to discretize the spatial part of the time dependent problem, we can expect to end up with
a sparse system of equations Mx⃗ = Kb⃗, which has to be solved at each evaluation of spatial
derivatives. However, the properties of the sparse matrices M and K will depend on factors
such as weak formulation of the problem, mesh and domain structure in combination with
the element shape, properties of basis and flux functions. The structure of these matrices
may be also affected by incorporating domain decomposition schemes such as FETI-DP [36],
which allow to improve parallel efficiency over general linear solvers.

Given the wide variety of possible approaches to element methods, let’s consider the
best case, where the mass matrix M is diagonal and can be trivially inverted beforehand.
In this case, the cost of the right hand side evaluation can be reduced down to matrix-vector
multiplication, where the matrix is block sparse. The bandwidth of the matrix is primarily
determined by the number of nodes (FEM) or faces (DGM) and the order of approximating
polynomials. This would make sequential time complexity of each time step O(NW ), where
N is the number of degrees of freedom and W is the bandwidth of the matrix.

Considering parallel solvers running on distributed memory architectures, good scaling
close to O(NW/P ), where P is number of processors, can be expected. The communication
should be only local and scale with element basis order and shape as it determines the
number of shared degrees of freedom between adjacent elements, which may belong to
separate shared memory pools.

3.3.4 Temporal Discretization Methods

The solutions to semi-discrete problems derived in previous sections can be approximated
by one of well known numerical integration methods for ordinary differential equations
(ODEs). The typical numerical method will treat the temporal dimension by splitting it
into finite number of (small) sub-intervals (time steps) at which ODE system becomes an
algebraic system. This system then has to be solved (explicitly or implicitly) at each of the
time steps. The major part of the time step is (often multiple) evaluation of right-hand side
(RHS) of the original semi-discrete problem. The number of time steps and the number
of these evaluations at each time step, therefore, largely determines overall computational
time.

An appropriate choice of the numerical integration method then has to balance the
number of RHS evaluations with accuracy requirements and stability of the solution. For
example, a stiff ODE system may necessitate the use of an implicit method, which allows
to guarantee stability with larger time step.

The canonical family of these numerical integration methods are Runge-Kutta methods,
which include Euler method and allow for construction of higher order methods. These
higher order methods, however, require multiple RHS evaluations and can become too
expensive computationally, especially when the RHS evaluation is expensive. The multi-
step methods attempt to circumvent this shortcoming by reusing RHS evaluations from
previous time steps. Finally, certain ODEs allow to derive non-standard schemes, which
are exact regardless of time step size.
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Runge-Kutta Methods

The Runge-Kutta methods are a class of widely used implicit and explicit iterative meth-
ods for numerical integration of ODEs. These methods include well known Euler method
and higher order schemes, which improve upon it in both accuracy and stability. While
these methods achieve high accuracy (especially in combination with high order spatial
discretizations – such as spectral methods), they also require multiple evaluations of RHS
(and relatively expensive spectral gradients). The following experiments use the classical
explicit 4th order Runge-Kutta (RK4) method, which can be written as

k1 =f (tn, yn) ,
k2 =f (tn + h/2, yn + hk1/2) ,

k3 =f (tn + h/2, yn + hk2/2) ,

k4 =f (tn + h, yn + hk3) ,

yn+1 =yn +
1

6
h (k1 + 2k2 + 2k3 + k4) .

(3.70)

Here yn+1 is the next time step value computed as a combination of four sub-steps k1, . . . , k4.
Note that both computational and storage requirements are increased as the right-hand side
evaluation is needed in each sub-step (which are also dependent on each other). However,
the method offers relatively large stability region (see fig. 3.6) and good accuracy [22].
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Figure 3.6: Stability regions of Forward Euler (left) and 4th order Runge-Kutta (right)
temporal integration schemes.

There are further variants of Runge-Kutta methods, which focus on improving stability
(Strong Stability Preserving Runge-Kutta methods [49]) or reducing storage requirements
(Low-storage Runge-Kutta schemes [88]).

Multi-Step Schemes

The multi-step methods belong to the family of higher-order schemes, however, they take
the advantage of the results computed in previous time steps (as opposed to multiple right-
hand side evaluations). These methods, therefore, lean even more toward using storage,
but avoid additional computation in return.
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The fourth-order staggered backward difference (BDS4) method [48] is used as a rep-
resentative of these methods in further experiments. This method, which requires results
of four previous time steps and only a single right-hand side evaluation per step, can be
written as

yn+1 =
12

11
f (tn, yn)−

17

22
yn − 9

22
yn−1 +

5

22
yn−2 −

1

22
yn−3. (3.71)

While stability (see fig. 3.7) and dispersion properties of this methods are not as good as
those of high-order methods (such as 4th order RK method), it’s especially useful in cases
where the evaluation of right-hand side is rather expensive.
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Figure 3.7: Stability regions of 4th order Backward Differences (left) and Strong Stability
Preserving Runge-Kutta 4-3 (right) schemes.

Nonstandard Finite-Difference Schemes

Nonstandard finite difference (FD) schemes [83] allow to derive exact finite difference
schemes by taking the traditional definition of derivative which can be generalized as

dy

dt
= lim

h→0

y(t+ ψ1(h))− y(t)

ψ2(h)
, (3.72)

where ψi(h) = h+O(h2), h→ 0; i = 1, 2. Such a choice of ψ(h) ensures that taking the
limit h→ 0 recovers the standard FD scheme. However, finite h allows to construct a large
class of FD schemes including the exact ones for particular differential equations.

Such an exact scheme can be derived by taking advantage of the fact that a given set
of N linearly independent functions, it is always possible to construct an N -th order linear
difference equation that has these functions as its solutions [81].

Considering a spatially discretized second-order wave equation eq. (3.3), which can be
thought of as a system of harmonic oscillators, each described by second-order ODE

d2y

dt2
+ ω2y = 0. (3.73)
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Given two linearly independent solutions to y(1)(t) = eiωt and y(2)(t) = e−iωt the exact
linear difference equation can be derived by solving∣∣∣∣∣∣

yk eiωhk e−iωhk

yk+1 eiωh(k+1) e−iωh(k+1)

yk+2 eiωh(k+2) e−iωh(k+2)

∣∣∣∣∣∣ = 0, (3.74)

which is

yk+2 − 2 cos(ωh)yk+1 + yk = 0, (3.75)

where k denotes the time-step index and h is time-step size. The standard central difference
form can be recovered from eq. (3.75) by shifting the step index k by one and rewriting
2 cos(ωh) as 2− 4 sin2(ωh/2):

yk+1 − 2yk + yk−1(
4
ω2

)
sin2

(
hω
2

) + ω2yk = 0. (3.76)

This approach can be used to derive k-Space pseudospectral method suitable for efficient
modeling of acoustic wave propagation in weakly heterogeneous medium [110].

3.4 Comparative Study of Numerical Methods
This section complements the estimated computational complexity of each proposed solver
with its numerical performance derived by the analysis of its behavior in two dominant
effects contributing to ultrasound wave behavior in tissue. The primary effect is a simple
wave propagation in homogeneous medium over long distances, which will be represented by
a constant coefficient wave equation eq. (3.10). The inviscid Burgers’ equation eq. (3.15) will
be used to represent a secondary effect, which is non-linearity observed as a high intensity
ultrasound wave propagates through the tissue. The wave equation experiments are used
to evaluate numerical dispersion and stability of the numerical scheme, while the Burgers’
equation stretches its ability to model non-linear problems.

The following experiments cover most of discussed spatial discretization approaches:
Finite Differences Method (FDM), Least Squares Finite Element Method (FEM), Gauss-
Legendre Discontinuous Galerkin Methos (DGM), Pseudo Spectral Method (PSM) and k-
Space Pseudo Spectral Method (KSP). While time-stepping schemes are limited to: Forward
Euler (FE), 4th order Runge-Kutta (RK4), 3rd order Strong Stability Preserving Runge-
Kutta (SSPRK43) and 4th order Backward Differences (BD4). The benchmark problems
are then disretized by solvers built as an appropriate combination of a spatial and a temporal
scheme. This approach allows to minimize the impact of one component of the solver (eg.
time-stepping) while an other is being investigated (eg. spatial discretization).

The solvers are characterized using experimental evaluation and step-matrix analysis.
The experimental approach allows to compare the performance of the solvers against the
analytic solution in specific settings and extract quantitative results, while the step-matrix
analysis allows to draw qualitative conclusions about properties such as the stability of the
solver. The combination of these two tools should provide sufficient information to draw
necessary conclusions.

The experimental evaluation attempts to compare solvers under as equal conditions
as possible. To achieve this, the grid resolution of the simulation is reduced in the case
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of element methods (GL-DGM and LS-FEM) according to an element order so that the
overall number of degrees of freedom remains constant (eg., 4th order GL-DGM would
be run with only a quarter of elements compared to the original number of grid-points).
This requirement necessitates interpolations to map from equispaced grid-points to element
nodes with a non-uniform distribution. These interpolations are performed using Fourier
series or trigonometric interpolation, which exhibited relative error on the order of 10−12

with the data used in our experiments.
Finally, the step-matrix factorization is used to analyze stability of each solver. The

fully discrete linear solver can be rewritten as a single matrix A, which allows to advance
the solution ut at time t by nΔt as

ut+nΔt = Anut. (3.77)

The step-matrix of the nonlinear inviscid Burgers’ equation solver depends on the solution
at the current time ut yielding

ut+Δt = A (ut)ut. (3.78)

Both A and A (ut) are diagonalizable and can be factorized by eigendecomposition as A =
QΛQ−1, where columns of Q consist of A’s eigenvectors and Λii = λi are corresponding
eigenvalues. In the linear case, the factorized matrix can be substituted into eq. (3.77) as

ut+nΔt = QΛnQ−1ut (3.79)

revealing that the stability is effectively determined by the behavior of Λn and therefore
eigenvalues λi of A. This analysis in following sections is performed on small grids (16 to
64 points) to keep eigenvalue plots readable.

3.4.1 Linear Wave Equation

The wave propagation behavior of the solvers is evaluated using lossless wave equation
(eq. (3.10)) with constant coefficients in the initial value problem with periodic boundary
conditions. The IVP is initialized with a Dirichlet function (or periodic cardinal sinus
function)

DN (x) =

{
sin(Nx/2)
N sin(x/2) if x ̸= 2πk, k ∈ Z
(−1)k(N−1) if x = 2πk, k ∈ Z

, N ∈ Z̸=0, (3.80)

which has a period of 2π for odd N and 4π for even. The convolution of a Dirichlet kernel
with any function f of period 2π is the nth-degree Fourier series approximation of f . In
other words, the Fourier series of Dn(x) is a window function, which is useful in evaluation
of spectral properties of investigated solvers (see fig. 3.9).
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Figure 3.8: Spatial error distribution (left) and error frequency dependency (right) of peri-
odic wave equation IVP initialized with odd order periodic sinc function (Dirichlet function)
after one period. All spatial discretization methods are coupled with 4th order Runge-Kutta
time stepping method. The k-space (KSP) solver uses its exact time-stepping scheme.

Figure 3.8 shows a comparison of all five solvers in combination with the 4th order
Runge-Kutta time stepping scheme. The temporal resolution was chosen so that CFL of
0.125 is achieved with a spatial grid resolution being 1024 grid points. The number of
elements for elements method was reduced to 256 to account for 4th order elements as
described above. The initial condition u(x, t) = D128+1(x) (see fig. 3.8a top) represents a
periodic pulse with reasonable, but non-trivial frequency content.
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Figure 3.9: Spectral content of the solution to a periodic wave equation IVP initialized with
512+1 order periodic sinc function after one period (left). Eigen values of sub-sampled (16
grid-points) step-matrix of each spatial discretiation. The k-space (KSP) solver uses its
exact time-stepping scheme.

The experiment (see fig. 3.8a bottom) confirms that both pseudo-spectral solvers (PSM
and KSP) considerably outperform the rest as expected due to their spectral convergence.
The advantage of KSP over PSM illustrates advantage of k-space time-stepping scheme,
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which is exact in this simple case (wave propagation speed is constant). The 4th order
element methods (FEM and DGM) perform similarly to each other while offering only
moderate advantage over FDM of the same order. The advantage of the element schemes
(especially DGM) would be more significant in the case of heterogeneous medium with
sharp interfaces. Figure 3.8b confirms that these observations mostly hold true as higher
modes are introduced (by increasing the order of the Dirichlet kernel).

Figure 3.9a offers some more insight into the sources of the error in the previous ex-
periment by analyzing the spectral content of the solution computed by each solver. The
solution is expected to maintain the exact spectral content of the IVP, in this case the
window function (due to properties of DN (x)) as illustrated by the analytic solution. The
majority (except KSP) of the solvers introduce error by attenuation of higher modes. This
behavior is especially obvious with FDM solver, but it is a source of the error in PSM solver
too. The element methods not only attenuate modes, but also introduce new ones outside
of expected window.

These results can be generalized by looking at eigenstructure of the step-matrix of each
solver (see fig. 3.9b). The equispaced eigen values with unitary magnitude of KSP method
(suggesting no attenuation or instability and uniform wave speed across all modes) can be
contrasted with other solvers which exhibit attenuation (PSM) or even non-uniform wave
speed.
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Figure 3.10: Eigen values of sub-sampled (16 grid-points) step-matrix of each time-stepping
scheme in combination with the pseudo-spectral spatial discretization (PSM) and k-space
(KSP) with its exact time-stepping scheme at CFL = 0.125 (left). The 4th order backward
differences scheme becomes unstable already at CFL = 0.375 (right).

While the 4th order Runge-Kutta time-stepping scheme used to evaluate spatial dis-
cretization methods performs very well, it is rather computationally expensive as it re-
quires four evaluations of equation’s right-hand side. The 4th order backward difference
scheme (BD4) is able to achieve similar results while utilizing results of previous time-steps
– trading storage for computation. The BD4 scheme has a significant disadvantage in that it
becomes unstable for relatively low CFLs (see fig. 3.10). The rest of analyzed time-stepping
schemes exhibit significant attenuation or non-uniform propagation speed of some modes.
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3.4.2 Inviscid Burgers’ Equation

While non-linearity has to be included in models capable of describing high-intensity ul-
trasound propagation, it’s typically counteracted by frequency-dependent absorption of the
tissue. The inviscid Burgers’ equation (eq. (3.15)) therefore represents somewhat extreme
or degenerate case, which doesn’t take absorption into account. However, it is advantageous
for our purpose in two ways: first, its analytical solution is readily available and second,
it allows to evaluate behavior of the solvers all the way up to the breaking time of the
equation (here T = 1).
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Figure 3.11: Spatial error distribution (left) and time error dependency (right) of inviscid
Burgers’ equation IVP initialized with a simple sin-wave near T = 0.95. All spatial dis-
cretization methods are coupled with the 4th order Runge-Kutta time stepping method.

Similarly to the wave equation experiments, the IVP is setup with periodic boundary
conditions. However, it is initialized with a simple u(x, 0) = sin(x) as higher modes develop
naturally as time progresses. The simulations are run up to T = 0.95 at which point
significant aliasing manifests (at chosen resolution of 1024 grid-points). Figure 3.11a shows
the initial condition and the solution near (up to time discretization) T = 0.95 (top)
together with the spatial distribution of the relative error of solutions computed by each
solver (bottom). The solvers struggle to capture the forming shock near the center of
the domain as its steepness approaches the sampling limit. The FDM and DGM solvers
have an advantage over PSM solver in that the large error around the shock is rather well
localized, while the global modes of PSM spread it over the whole domain. This can be
confirmed by plotting the relationship between the maximum relative error and time (and
therefore highest wavenumber in the solution) for each solver (see fig. 3.11b). The PSM
solver performs the best up to about T = 0.85 at which point aliasing begins to occur as
chosen discretization resolution is no longer sufficient.

The thorough stability analysis for inviscid Burgers’ equation solvers is considerably
more complicated as the equation typically develops a discontinuity in a finite time (breaking
time). This property in combination with nonlinearity of the equation limits usefulness of
the step-matrix decomposition. However, it is still possible to compare behavior of our
solvers at specific time points. Figure 3.12 shows such a comparison at time T = 0 (initial
condition) and T = 0.95 (near breaking time).
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Figure 3.12: Eigenvalues of sub-sampled (64 grid-points) step matrices around analytical
solution at T = 0 and T = 0.95. Each step-matrix is constructed by discretization of inviscid
Burgers’ equation using each spatial discretization method combined with 4th order Runge-
Kutta time stepping.

3.4.3 Summary

The pseudo-spectral method in combination with 4th order Runge-Kutta time-integration
significantly outperformed explored alternatives in both linear and non-linear benchmark
problems. The 4th order backward differences time-integration offers attractive alternative
to the Runge-Kutta as it allows to reuse right-hand side evaluations. However, it signif-
icantly restricts maximum time-step size as it becomes unstable otherwise. The k-Space
variant of pseudo-spectral method proved to be the best choice for the wave equation as
it’s computationally comparable to simple Forward Euler method and achieves analytic
accuracy in constant coefficient case.

Both of the most promising alternatives FDM and DGM, which can naturally reduce
expensive global communication in the solver, exhibit considerably slower convergence.
The lower convergence rate would have to be counteracted by oversampling, which would
significantly increase memory requirements and limit maximum problem size.

Overall these results highlight significant advantages of the pseudo-spectral (especially k-
Space) approach, which achieved the best results given fixed spatial and temporal sampling.
Therefore we will investigate domain decomposition methods which, offer an alternative way
to alleviate computational drawbacks of the pseudo-spectral approach.
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Chapter 4

Non-linear Ultrasound Wave
Propagation

Having concluded in the previous chapter that the combination of k-Space discretization
with domain decomposition is the best approach to construction of highly scalable ultra-
sound wave propagation solver we take a slight detour to overview widely used models and
derive solver in a single domain. This solver will be used in the following chapter as a basis
to derive suitable domain decomposition approach.

The three models of nonlinear ultrasound propagation in soft tissue that appear to be
widespread through medical community are Kuznetsov, Westervelt and KZK – eqs. (4.5)
to (4.7) mentioned in the introductory chapter. The fundamental assumption made by these
models is that soft tissue can be considered a continuous fluid medium. The continuum
approximation relies on the ultrasound wavelength (above 0.1mm) being orders of magni-
tude larger than the cell size. While tissue (even soft tissue) would be better described as
an elastic solid, the fluid approximation is equivalent to ignoring shear waves, which travel
slowly and are strongly absorbed [102].

4.1 Governing Equations
To simplify following equations, we add medium homogeneity to the rest of our assumptions
and note that the resulting equations can be generalized to heterogeneous media. This
allows to model the medium as a homogeneous thermo-elastic one and acoustic wave motion
can be described by the Navier-Stokes system:

∂tρ̂+∇ · (ρ̂v̂) = 0,

ρ̂ [∂tv̂ + (v̂ · ∇) v̂] = −∇p̂+ ηΔv̂ +
(
ζ +

η

3

)
∇2 · v̂,

ρ̂T̂
[
∂tŜ + (v̂ · ∇) Ŝ

]
= κΔT̂ + ζ (∇ · v̂)2 + η

2

(
∂iv̂j + ∂j v̂i −

2

3
∇ · v̂δij

)2

,

p̂ = p
(
ρ̂, Ŝ

)
,

(4.1)

where density ρ̂, velocity v̂, temperature T̂ and entropy Ŝ are unknown functions. The
equation of state is denoted by p

(
ρ̂, Ŝ

)
and η, ζ are constant shear and volume viscosity

coefficients respectively. The thermal conductivity is denoted by κ.
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Further, expressing unknowns in terms of small perturbations (ρ,v, S, T ) around a sta-
tionary solution (ρ0,v0, S0, T0) of the system (4.1) and using Galilean transformation to
set v0 = 0. Using an approximate state equation together with assumption of smallness
of viscosity, thermal coefficients and perturbations of unknowns in terms of dimensionless
parameter ϵ > 0 allows to derive isentropic Navier-Stokes system

∂tρ+∇ · (ρv) = 0,

ρ [∂tv + (v · ∇)v] = −∇p (ρ) + ϵνΔv,
(4.2)

with state equation p(ρ̂, Ŝ) = p(ρ) +O(ϵ3) approximated by a Taylor expansion:

p(ρ) = p0 + c2 (ρ− ρ0) +
(γ − 1) c2

2ρ0
(ρ− ρ0)

2 (4.3)

and a small viscosity coefficient:

ϵν = β + κ

(
1

CV
− 1

Cp

)
. (4.4)

Here β = (ζ + (4/3)η) is a combination of shear and volume viscosity, and γ = Cp/CV is
the ratio of heat capacity at constant pressure and at constant volume.

4.1.1 Full-wave Equations

The full-wave models describe full range of wave phenomena including backscattering and
multiple reflections in quiescent fluid.

To derive the Kuznetsov equation as an approximation to the isentropic Navier-Stokes
system (4.2)–(4.4), we assume that the flow is irrotational (∇ × v = 0). This allows to
write the equation in terms of the velocity potential v = −∇u

∂2t u− c2Δu = ϵ∂t

(
(∇u)2 + γ − 1

2c2
(∂tu)

2 +
ν

ρ0
Δu

)
+O(ϵ3) (4.5)

Here, the left hand side is a familiar second-order wave equation, while the second and
third term on the right hand side account for quadratic nonlinearity and thermo-viscous
attenuation. Details on this derivation can be found in [31].

The Kuznetsov equation is hard to solve numerically, and therefore, is not widely used in
practice, instead it’s further approximated by neglecting the local noncumulative nonlinear
effects. Such an approximation yields Westervelt equation

∂2tΠ− c2ΔΠ = ϵ∂t

(
ν

ρ0
ΔΠ+

γ + 1

2c2
(∂tΠ)

2

)
+O(ϵ2), (4.6)

where Π = u + (1/(2c2))ϵ∂t(u
2). The importance of neglected local nonlinear effects de-

creases with propagation distance making this model suitable especially for problems with
propagation distance much larger than the wavelength. The classical second-order wave
equation can be recovered by neglecting both nonlinear and absorption terms.
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4.1.2 One-way Equations

The one-way models are simplest models that can be used to describe transmission through
tissue layers with refraction, diffraction, absorption and nonlinear effects. The limitation
of these models is that they can no longer capture backscattering and multiple reflections.
The most widely used equation of this type is the KZK equation

2c∂2τzΦ− γ + 1

2c2
∂2τΦ

2 − ν

ρ0c2
∂3τΦ− c2ΔyΦ = 0, (4.7)

which can be derived from eq. (4.5) by paraxial change of variable, which amounts to taking
velocity potential u(x, t) = Φ(t − x1/c, ϵx1,

√
ϵx′) = Φ(τ, z, y). The accuracy of the KZK

equation decreases as angle between the main axis and the direction of the traveling wave
increases, therefore, it is considered relatively accurate only for angles less than 25◦ off the
nominal axis. Further approximation by discarding the diffraction term yields the Burgers’
equation, which can be used to model nonlinear effects and absorption.

4.2 First-order Full-wave Models
In many cases it’s more convenient to derive the model of nonlinear acoustic wave propa-
gation in the form of a first order system. Such a system is typically easier to solve than
classical equations and allows to easily introduce source terms and integrate PML. Treeby
et al. [115] used this approach to derive the model used by widespread ultrasound modeling
toolbox – k-Wave. Their approach, which builds upon the equations of fluid mechanics un-
der the assumption of a quiescent, isotropic, and inviscid medium also allows to introduce
more accurate model of acoustic absorption in the tissue.

Following Treeby et al. [115], the equations describing nonlinear propagation of acoustic
waves through heterogeneous fluid can be derived from mass and momentum conservation
equations of fluid mechanics

∂ρ̂

∂t
+∇ · (ρ̂û) = 0, (4.8a)

ρ̂
Dû

Dt
+∇p̂ = 0 (4.8b)

where ρ̂ = ρ+ρ0, û = u+u0 and p̂ = p+p0 are total density, particle velocity and pressure,
which split into acoustic and ambient components. Plugging these expansions into eq. (4.8)
while keeping only the terms up to the second order and assuming zero ambient velocity
(u0 = 0), constant ambient density in time (∂ρ0/∂t = 0) and uniform ambient pressure in
the domain (∇p0 = 0) yields

∂ρ

∂t
+∇ · (ρ0u) = −∇ · (ρu) , (4.9a)

ρ0
∂u

∂t
+∇p = −ρ∂u

∂t
− 1

2
ρ0∇

(
u2

)
. (4.9b)

Here p, ρ and u are the acoustic pressure, density and particle velocity, u2 = u ·u and ρ0 is
ambient density. The system has to be completed with a state equation p̂ = p̂ (ρ̂, ŝ), which
relates total pressure, density and entropy (ŝ) variables.
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Nonlinear Pressure-density Relation

A typical approach is to use a Taylor series expansion around ambient density and entropy
to describe properties of an arbitrary fluid. Treeby assumes that nonlinear effects and
entropy changes (absorption) are both second order. Therefore, only up to the second
order density terms and the first order entropy terms are kept. The truncated Taylor series
describing the change in total pressure over small time step δt = t1 − t0 can be written as

p̂(t1)− p̂(t0) =

(
∂p̂

∂ρ̂

)
ŝ

(ρ̂(t1)− ρ̂(t0)) +
1

2

(
∂2p̂

∂ρ̂2

)
ŝ

(ρ̂(t1)− ρ̂(t0))
2

+

(
∂p̂

∂ŝ

)
ρ̂

(ŝ(t1)− ŝ(t0)).

(4.10)

Considering homogeneous medium, the change in total density ρ̂(t1)− ρ̂(t0) is caused solely
by acoustic perturbations. However, in the heterogeneous case, the change may be also the
result of the fluid element displacement to a new position with a different ambient density.
Total density ρ̂ becomes a function of both position x and time t, its change ρ̂(t1) − ρ̂(t0)
can be also described by Taylor series expansion as

ρ̂(t1)− ρ̂(t0) =

(
∂ρ̂

∂t

)
x

(t1 − t0) +

(
∂ρ̂

∂x

)
t

(ξ1 − ξ0), (4.11)

where ξ1 and ξ0 are positions of the fluid element at time points t1 and t0. The two terms of
the expansion describe acoustic density ρ at a fixed point (assuming no flow in the medium)
and the influence of element displacement, respectively. This expansion can be rewritten
in a vector form as

ρ̂(t1)− ρ̂(t0) = ρ+ d · ∇ρ0, (4.12)

where d = ξ1 − ξ0 is a displacement vector and ∇ρ0 comes from rewriting the spatial
derivative of ρ̂ at constant time in a vector notation (∂ρ̂/∂x)t ≡ ∇ρ̂ = ∇ρ0. Assuming the
medium is initially in thermodynamic equilibrium, which means that spatial gradients of ŝ
and p̂ are zero, and therefore, ŝ(t1)− ŝ(t0) = s and p̂(t1)− p̂(t0) = p. Equation (4.10) can
then be rewritten as

p = c20 (ρ+ d · ∇ρ0) +
(
∂p̂

∂ŝ

)
ρ̂

s+
B

2A

c20
ρ0

(
ρ2 + (d · ∇ρ0)2 + 2ρd · ∇ρ0

)
, (4.13)

where A ≡ ρ0(∂p̂/∂ρ̂)ŝ = ρ0c
2
0 (which defines isentropic sound speed c0), B ≡ ρ20(∂

2p̂/∂ρ̂2)ŝ.
Note that the first term contains a linear pressure-density relation for heterogeneous medium,
while the last term, weighted by a parameter of nonlinearity (B/A), describes nonlinear
effects to the sound speed. The entropy term is energy loss due to acoustic absorption.

Acoustic Absorption

Following the typical approach of modeling soft tissue as thermoviscous medium, the acous-
tic absorption can be modeled by thermal conductivity and a specific heat capacity using
the energy conservation equation. This leads to attenuation exhibiting a squared frequency
dependency, γ = 2 [109], while empirical data show soft tissue to exhibit attenuation in
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γ = (0.6, 2) range [77]. Treeby therefore implements acoustic absorption using a more
general approach in the form of the phenomenological loss term(

∂ρ̂

∂ŝ

)
ρ̂

s = −
(
∂p̂

∂ρ̂

)
ŝ

(
∂ρ̂

∂ŝ

)
ρ̂

s ≡ −c20Lρ, (4.14)

where L is a general loss operator. In this case, the absorption follows power law and is
modeled by the fractional Laplacian operator of the form

L = τ
∂

∂t

(
−∇2

)y/2−1
+ η

(
−∇2

)(y+1)/2−1
. (4.15)

For 0 < y < 3 and y ̸= 1 the two terms account separately for power law absorption
and dispersion with τ and η being respective proportionality coefficients. Substitution of
the phenomenological loss term eq. (4.14) into the state equation eq. (4.13) and ignoring
higher-order terms yields the following pressure-density relation

p = c20

(
ρ+ d · ∇ρ0 +

B

2A

ρ2

ρ0
− Lρ

)
. (4.16)

Reduced nonlinear equations

Treeby further simplifies the system of equations (4.9) by considering only cumulative non-
linear effects and assuming that the effect of acoustic heterogeneity is second order, while
all higher order terms are discarded. This can be achieved by rewriting second-order terms
on the right hand side of both conservation equations in terms of acoustic Lagrangian den-
sity, which can be then set to be zero. To this end, the linearized homogeneous acoustic
equations are repeatedly substituted into equations (4.9). In the case of mass equation, the
series of substitutions is ρ = p/c20 and ∇ · u = −(1/ρ0)∂ρ/∂t followed by ∇p = −ρ0∂u/∂t
and once more ρ = p/c20. Similarly, ρ = p/c20 and ∂u/∂t = −∇p/ρ0 are substituted into the
momentum equation. The result is the second-order accurate system of the following form

∂ρ

∂t
+∇ · (ρ0u) =

1

c20

∂L
∂t

+
1

ρ0c40

∂p2

∂t
, (4.17a)

ρ0
∂u

∂t
+∇p = −∇L, (4.17b)

where L is the second-order Lagrangian density given by

L =
1

2
ρ0u

2 − p2

2ρ0c20
. (4.18)

Combination of coupled equations (4.17) with the pressure-density relation eq. (4.16)
under assumption of zero Lagrangian density (L = 0) and neglecting higher-order absorp-
tion terms results in a modified Westervelt equation valid for heterogeneous media with
power law absorption

∇2p− 1

c20

∂2p

∂t2
− 1

ρ0
∇ρ0 · ∇p+

β

ρ0c40

∂2p2

∂t2
− L∇2p = 0, (4.19)

where β = 1 +B/2A is the coefficient of nonlinearity.
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4.2.1 Numerical Implementation

Both reduced system (4.17) with pressure-density relation eq. (4.16) and combined equa-
tion (4.19) can be directly solved. However, considering spectral methods it’s convenient
to further modify the governing equations. Following substitutions used to derive equa-
tions (4.17), the final term of the mass equation can be rewritten as −2ρ∇ ·u. The system
of governing equations then can be written as

∂ρ

∂t
=− (2ρ+ ρ0)∇ · u− u · ∇ρ0, (4.20a)

∂u

∂t
=− 1

ρ0
∇p, (4.20b)

p =c20

(
ρ+ d · ∇ρ0 +

B

2A

ρ2

ρ0
− Lρ

)
. (4.20c)

When these equations are combined or solved as a coupled system terms u · ∇ρ0 in mass
equation and d · ∇ρ0 in pressure-density equation cancel each other out. This allows for
additional simplification of discrete equations.

Discrete equations

Discrete equations are derived by solving for particle velocity in the momentum equation
using an explicit first-order forward difference method and an implicit first-order forward
difference method for the density variable in the mass equation. The acoustic density is
also artificially divided into Cartesian components to allow use of an anisotropic PML.
Complementing these first-order in time methods with pseudo-spectral method in space
and k-space correction results in discrete system

∂

∂ξ
pn =F−1{ikξκF{pn}}, (4.21a)

un+1
ξ =unξ − Δt

ρ0

∂

∂ξ
pn, (4.21b)

∂

∂ξ
un+1
ξ =F−1{ikξκF{un+1

ξ }}, (4.21c)

ρn+1
ξ =

ρnξ −Δtρ0
∂
∂ξu

n+1
ξ

1 + 2Δt ∂
∂ξu

n+1
ξ

, (4.21d)

pn+1 =c20

(
ρn+1 +

B

2A

1

ρ0

(
ρn+1

)2 − Ld

)
. (4.21e)

The equations are repeated for each Cartesian dimension ξ ∈ {x, y, z} (in R3 case), the
superscript n and n + 1 denote current and next time step respectively, and ρ =

∑
ξ ρξ is

total acoustic density. Imaginary unit is denoted by i, kξ is the wavenumber, Δt is the time
step length and κ is the k-space operator (see section 3.3.4 and [110]) defined by

κ = sinc (crefkΔt/2) , (4.22)

where k2 =
∑

ξ k
2
ξ , and cref is a reference sound speed used for k-space correction. Finally,

the discrete form of loss operator eq. (4.15) (term Ld in eq. (4.21)) can be written as

Ld = −τF−1

ky−2F

ρ0∑
ξ

∂

∂ξ
un+1
ξ


+ ηF−1

{
ky−1F

{
ρn+1

}}
, (4.23)
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where Fourier transform of negative fractional Laplacian F{(−∇2)aρ} = k2aF{ρ} is used
and the acoustic density in the absorption term is replaced by linearized mass equation
∂ρ/∂t = −ρ0∇ · u.

In the k-Wave toolbox, the system (4.21) is further extended by including mass and
acoustic velocity sources. The k-space corrected forward differences time integration scheme
is further improved by using the leap-frog scheme instead. The acoustic velocity gradients
are therefore evaluated at staggered grid points [42] using spectral shifts (see eqs. (6.1)
and (6.3)).

∂

∂ξ
pn =F−1{ikξκeikξΔξ/2F{pn}}, (4.24a)

u
n+1/2
ξ =u

n−1/2
ξ − Δt

ρ0

∂

∂ξ
pn +ΔSn

Fξ
, (4.24b)

∂

∂ξ
u
n+1/2
ξ =F−1{ikξκe−ikξΔξ/2F{un+1/2

ξ }}, (4.24c)

ρn+1
ξ =

ρnξ −Δtρ0
∂
∂ξu

n+1/2
ξ

1 + 2Δt ∂
∂ξu

n+1/2
ξ

+
ΔtS

n+1/2
Mξ

1 + 2Δt ∂
∂ξu

n+1/2
ξ

, (4.24d)

pn+1 =c20

(
ρn+1 +

B

2A

1

ρ0

(
ρn+1

)2 − Ld

)
. (4.24e)

Ld = −τF−1

ky−2F

ρ0∑
ξ

∂

∂ξ
u
n+1/2
ξ


+ ηF−1

{
ky−1F

{
ρn+1

}}
, (4.25)

Similar system of equations can be derived using one of other discretizations investigated
in chapter 3.

4.2.2 Computational and Numerical Properties

The system (4.21) restricted to a linear model with homogeneous lossless medium yields
a simple wave equation. In this context, the k-space scheme is exact and unconditionally
stable (under assumption of periodic domain and smooth initial condition). Therefore,
the scheme can be considered optimal in a sense of minimizing both spatial and temporal
sampling requirements.

Heterogeneity in the medium properties introduces primary sources of error in the
model. The k-space operator is no longer exact in regions, where c0 and cref are mis-
matched. The phase error introduced by k-space operator is significant only for cref ≫ c0,
otherwise the error is always smaller than that of leap-frog scheme with no correction [115].
Such a medium also allows to generate non-smooth fields, which can no longer be accurately
represented by a given number of Fourier coefficients [18]. Even here, Treeby shows that
only three grid points per wavelength are necessary to achieve error less than 1%, while
first-order and fourth-order finite difference schemes requires 14 and 6 points respectively.

The harmonics generated by nonlinear wave propagation have to be generally accounted
for by increasing resolution of the simulation as expected. While it is possible to avoid
aliasing by filtering, doing so leads to a significant error as energy in these modes is lost.
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Computational Complexity

The direct implementation of system (4.21) in three spatial dimensions results in an algo-
rithm, where each time step consists of per-element (both scalar and complex) operations
on 3D arrays interleaved with eight forward and inverse 3D DFTs. Both time complex-
ity and arithmetic intensity of each time step is determined by the 3D FFT algorithm.
The overall time complexity is therefore O(N3 logN) with arithmetic intensity less than
O(logN), assuming a cube shaped simulation domain with an edge length of N grid points.

Due to the logarithmic factor in the time complexity, the proportion of time spent on
3D DFTs during each time step of the simulation is expected to grow with the domain size.
These higher rank DFTs are often implemented by reduction into lower rank problems,
which are solved recursively (see FFTW [43]). The straightforward approach is to use
traditional FFTs for rank one problems with transpositions so that FFTs are performed
on data in an optimal layout, thus introducing data dependencies between dimensions. In
practice, a typical shared memory system (a single CPU node or a GPU) can spend about
half to two thirds of the time in 3D DFTs.

Distributed Multi-dimensional FFT Algorithms

However, the full impact of the global nature of FFT algorithm shows once a distributed
memory machine is used. Our performance evaluation shows that up to 80% of the time
may be spent in the communication between nodes necessary to perform 3D DFTs (see sec-
tion 6.2.1). The typical approach to computing global higher rank DFTs is to use trans-
posed distributions, where lower rank FFTs are performed only on local data. While this
approach avoids complicated data exchanges necessary in distributed 1D FFT, each of the
transposition steps between local FFTs require up to O(P 2) messages to be exchanged.

The situation gets progressively worse as the gap between local compute performance
and interconnect throughput grows [32]. The high amount of communication is especially
prominent in GPU accelerated clusters, where local FFTs can be performed extremely
quickly due to high local memory bandwidth of these accelerators. Modern highly optimized
libraries for computing 3D FFTs on GPU accelerated clusters such as AccFFT [47] or
heFFTe [14] show up to 98% of time can be spent in the communication routines.

While the development of these high performance FFT libraries is an active research
area as new HPC platforms emerge, the fundamental limitation is the inherent amount
of data that has to be exchanged between nodes. Significant improvements are made in
asynchronous communication, optimization of communication on both node and cluster
level and in the area of data decomposition. For example in 3D domain, split between P
processors, reshaping a single slab to pencil requires O(P ) messages, while brick to pencil
only O(P 1/3) and pencil to pencil O(P 1/2). The choice of communication scheme helps to
take advantage of hardware features of the cluster.
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Chapter 5

Domain Decomposition for
Pseudo-Spectral Methods

The domain decomposition methods (DDM) attempt to address host of issues that arise
in the design process of large scale, parallel and distributed PDE solvers. The applications
of DDMs range from preconditioning of large systems of linear equations, which are at the
heart of many PDE solvers, through reducing communication in distributed systems to
coupling between different discretizations.

Pseudo-spectral discretizations (such as eq. (4.21)) don’t necessarily require solution
of large linear systems and transforms such as FFT allow for reasonable parallelism, but
they do suffer from high amount of communication in distributed systems. The impact of
communication is especially pronounced in accelerated clusters as local memory bandwidth
and compute capabilities of each accelerator typically evolve at a faster pace than cluster
interconnect networks, thus widening the gap. The reduction in the amount of non-local
communication is an attractive property of DDMs in our case.

The key concept of DDMs is to recast the original problem over a domain Ω with the
boundary Γ as a set of coupled problems defined over subdomains Ωj , so that Ω =

⋃M
j=1Ωj

(see Fig. 5.1a). Such a decomposition creates new boundaries Γj at interfaces between
subdomains and subdivides boundary Γ into Γ0

j . Depending on whether a pair of subdo-
mains Ωi and Ωj overlap or not (Ωi ∩ Ωj = ∅, i ̸= j), the DDMs can be broadly classified
as overlapping or non-overlapping methods.

(a) Non-overlapping Decomposition (b) Overlapping Decomposition

Figure 5.1: General non-overlapping (left) and overlapping (right) domain decomposition
in two spatial dimensions.
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Subdomain Coupling

Given the decomposition Ωj , the solution to the original problem over Ω is recovered by a
ensuring proper “synchronization” or coupling between subdomains at interfaces Γj . The
complexity of the coupling process is largely determined by the physics of the problem,
mathematical model and its discretization.

Consider an equilibrium process, such as Poisson’s equation described by an elliptic
PDE, which exhibits instant global interactions. Domain decomposition of such problems
often leads to global communication or iterative schemes [45] so that the information can
be propagated through all subdomains. Similarly, parabolic equations exhibit non-local
behavior, which is however dependent on the temporal discretization [61].

The problem at hand is dominated by the wave equation behavior, which is hyperbolic.
The wave equation is well localized as local disturbances travel at a finite speed determined
by the medium properties. The situation described by model eq. (4.20) is slightly more
complicated by nonlinear effects and non-locality of the fractional Laplacian operator [59]
used to accurately describe acoustic absorption in the tissue. However, for our purposes
it’s sufficient to consider our model well localized.

To illustrate DDMs, we will first look at a simple non-overlapping patching method and
continue with an overlapping Schwarz waveform relaxation, and finally, a restricted additive
Schwarz method (RAS) to justify our domain decomposition approach.

5.1 Non-overlapping Methods
Non-overlapping methods are directly derived from the idea of domain decomposition into
a set of coupled non-overlapping subdomains. The coupling happens exclusively through
the boundary conditions of each subdomain – continuity or transmission conditions. Let’s
consider a simple Poisson equation in a single spatial dimension over the domain Ω with a
boundary Γ

∂u

∂x
= f inΩ,

u = 0 onΓ,
(5.1)

and its decomposition into M problems over non-overlapping subdomains Ωj with bound-
aries Γj ∪ Γ0

j

∂uj
∂x

= f inΩj ,

uj = 0 onΓ0
j .

uj = uj+1 onΓj ,

∂uj
∂x

=
∂uj+1

∂x
onΓj ,

(5.2)

where last two equations required on boundaries Γj between subdomains ensure continuity
of solutions uj defined locally on each subdomain. These continuity conditions also ensure
equivalence between eq. (5.1) and eq. (5.2).
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5.1.1 Patching

The patching method [90] originally proposed for elliptic problems relies exactly on con-
tinuity conditions in eq. (5.2). In higher dimensions, condition on derivatives would be
replaced with normal derivatives ∂u/∂n⃗.

The matching conditions for hyperbolic problems are more complex as they have to
conform to the behavior of the solution to ensure stability of the method. For example, one
dimensional advection equation requires an upwinding scheme with one-way information
propagation

∂uj
∂t

+
∂uj
∂x

= 0 inΩj ,

u0(0, t) = uL(t) on (Γ0
0 × T ),

uj(x, t) = u0(x) inΩj ,

uj = uj+1 on (Γj × T ),

∂u

∂x
+ α

∂uj
∂x

+ (1− α)
∂uj+1

∂x
= 0 on (Γj × T ).

(5.3)

Here, the last equation describes both averaging (α = 1/2), which might be unstable
under certain conditions [24] and upwinding (α = 1) schemes. The averaging scheme
may sometimes be necessary for more complex hyperbolic full-wave systems as upwinding
would have to be applied separately to waves traveling in each direction, thus requiring
diagonalization of the problem [66].

Discretization and Efficiency

A simple patching method is not sufficient to allow subdomain solutions to be computed
independently in parallel. The matching conditions can be included in implicit systems
used to solve elliptic and parabolic problems or coupled with explicit time-discretization
in the case of hyperbolic problems. The benefit of patching is that the global algebraic
systems have a block structure, where only adjacent blocks are coupled.

The key to efficient patching method is a weak subdomain coupling [18], which allows
to decouple intra-subdomain computations from subdomain coupling. This is achieved by
rewriting the subdomain solution uj as a sum of particular solution pj and homogeneous
solutions

uj(x) = pj(x) + Uj−1hL,j(x) + UjhR,j(x), (5.4)

where Uj is an unknown value of the solution u at subdomain boundaries. The particular
integral pj is chosen so that it vanishes at both boundaries of the subdomain, while the ho-
mogeneous solutions hL,j , hR,j are set to one at the left or right boundary, respectively, and
zero on the opposite. Writing continuity conditions using the solution in the form eq. (5.4)
allows to derive a tridiagonal system which can be easily solved for unknowns Uj . With
values of Uj known, subdomain computations can be performed independently in parallel.

5.1.2 Element Methods

Element methods such as FEM are often combined with Finite Element Tearing and In-
terconnect (FETI) method [37, 38] for domain decomposition or preconditioning as both
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approaches originate in variational principles. The method is a parallel interative tech-
nique originally devised as a minimization approach for elliptic problems. Each iteration
of the method requires two solves on each subdomain followed by flux (normal derivative
values on subdomain boundaries) estimation update. The first step is to solve an inde-
pendent Neumann problem on each subdomain using initial guess of flux, which allows to
obtain Dirichlet values on subdomain boundaries. The difference of these values across
boundaries is then used as boundary condition of the Dirichlet problem on each subdomain
(second solve). Finally, the second solve yields normal derivative values, which are used for
correction of the initial guess.

5.1.3 Pseudo-spectral Methods

It is apparent that the key component of non-overlapping methods is the ability to enforce
boundary conditions at subdomain boundaries (as this is the only way subdomains are
coupled). This poses a significant difficulty for Fourier pseudo-spectral methods as there
is no obvious way to impose generic boundary conditions. These methods would have to
employ another subdomain basis (such as Chebyshev), which would inevitably lead to a
non-uniform node spacing [93], and restrictions on subdomain size and/or time-step length.

5.2 Overlapping Methods
Overlapping domain decompositions originate from Schwarz methods, developed as an an-
alytical tool to prove the Dirichlet’s principle [45] developed by Riemann. At the continu-
ous level, there are two main classical Schwarz methods: the original alternating Schwarz
method [105] and the parallel Schwarz method [72] developed later for parallel computing.
Both methods can be mapped on their discrete counterparts, which will be useful later to
show the equivalence between our local Fourier basis approach (derived at discrete level)
and continuous Schwarz method.

The concept of non-overlapping decomposition can be easily extended to describe over-
lapping decomposition by introducing Ω̃j , which denotes enlarged counterpart to subdomain
Ωj so that its new boundary Γ̃j is at least δ + ϵ far from Γj (see fig. 5.1b).

To illustrate these methods, we will focus solely on the parallel Schwarz method and its
discrete equivalent, the restricted additive Schwarz method. These methods are typically
discussed in relation to elliptic and parabolic problems, and we therefore use a simple
Laplace’s equation for illustration purposes. The Schwarz waveform relaxation method is
then applied to the linear wave equation to establish baseline properties expected in the
context of hyperbolic problems.

5.2.1 Restricted Additive Schwarz Method

The restricted additive Schwarz method (RAS) is attributed to accidental modification of
additive Schwarz method (AS), which itself can be shown to be equivalent to the paral-
lel Schwarz method under the assumption AS being algebraically non-overlapping. We
therefore start at continuous level and work our way to discrete AS and RAS methods.

The decomposition of a simple Laplace’s equation over domain Ω with boundary Γ

Δu = 0 inΩ, u = g onΓ, (5.5)
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into two subdomains Ω̃1 and Ω̃2 with boundaries Γ̃1 using the parallel Schwarz method can
be written as

Δun+1
1 = 0 in Ω̃1, Δun+1

2 = 0 in Ω̃2,

un+1
1 = un2 on Γ̃1, un+1

2 = un1 on Γ̃2,

un+1
1 = g on Γ̃1 ∩ Γ, un+1

2 = g on Γ̃2 ∩ Γ.

(5.6)

This iterative scheme is almost identical to the alternating Schwarz method, with the only
difference being the boundary values of all subdomains are used from the previous iteration
(instead latest results). The elimination of intra-step subdomain dependencies removes the
need for coloring schemes necessary for parallel implementations of alternating method.
However, the decomposition still has to ensure that there is precisely one neighboring
subdomain from which the boundary values can be taken (ie. if Ωi∩Ωj ̸= ∅ and Ωi∩Ωk ̸= ∅,
then Ωj ∩ Ωk = ∅).

To describe the discrete AS and RAS method the equation (5.5) has to be discretized
to obtain a linear system of the form

Ax = f . (5.7)

Just like the continuous domain was partitioned into subdomains, the unknowns in the
vector u have to be partitioned into subsets. This is typically represented by restriction
operators, which can be written in the matrix form as

R1 =

1 . . .
1

 , R2 =

 1
. . .

1

 , (5.8)

with zeros everywhere else. These matrices allow to recover a particular set of unknowns
as Riu and similarly to define the restriction of the matrix A as

Ai = RiAR
T
i , i = 1, 2. (5.9)

Using these definitions, the AS method can be applied to eq. (5.7) as a preconditioner
leading to (

RT
1A

−1
1 R1 +RT

2A
−1
2 R2

)
Au =

(
RT

1A
−1
1 R1 +RT

2A
−1
2 R2

)
f . (5.10)

The AS preconditioner can also be used in a stationary iterative method such as

un+1 = un +
(
RT

1A
−1
1 R1 +RT

2A
−1
2 R2

)
(f −Aun) , (5.11)

which shows how both sub-problems can be solved in parallel. It can be shown that the
AS method is identical to the discretization of parallel Schwarz method as long as Ri

are non-overlapping. In fact, the algebraically non-overlapping AS method (see fig. 5.2a)
corresponds to the discretization of the parallel Schwarz method with minimal overlap and
is also equivalent to the block Jacobi method [100].
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(a) Non-overlapping AS (b) Restricted Overlapping AS

Figure 5.2: Illustration of non-overlapping (left) and restricted overlapping (right) Addi-
tive Schwarz decomposition with two domain in a single spatial dimension. The domain
decomposition at continuous and discrete level is denoted by Ωi and Ri respectively.

The behavior of the method significantly changes when Ri actually do overlap as it
becomes divergent at least in the overlaps. The overlapping region of both subdomains is
now effectively solved twice and the solutions are added together. This issue can be resolved
by using a relaxation parameter in the cases of direct AS iteration (such as eq. (5.11)), which
allows the method to converge albeit at slower rate [44]. The method is also useful as a
preconditioner for a Krylov method [112].

Finally, somewhat accidentally [23] it was discovered that the AS method can be im-
proved by replacing RT

i in eq. (5.11) with a non-overlapping R̃T
i such that R̃T

1 R̃1+R̃
T
2 R̃2 = I

(see fig. 5.2b) yields

un+1 = un +
(
R̃T

1A
−1
1 R1 + R̃T

2A
−1
2 R2

)
(f −Aun) , (5.12)

where R̃i eliminates the non-converging modes in the overlap. Such a restricted AS method
is now equivalent to a discretization of the parallel Schwarz method even with overlaps
between subdomains. Just as other discussed methods, the RAS method can be easily
generalized to N subdomains as

un+1 = un +

N∑
i=1

R̃T
i A

−1
i Ri (f −Aun) . (5.13)

To emphasize, the restriction at the continuous level, we define a partition of unity χi ∈ C∞

associated with a non-overlapping subdomain Ωi, so that χi = 1 in Ωi and χi = 0 everywhere
else, except narrow (2ϵ > 0) transition layer centered at boundary Γi, where χi smoothly
decays to zero. The global solution in each step un then can be recovered as a sum of local
solutions on overlapping subdomains Ω̃i restricted to non-overlapping regions by χi. The
parallel Schwarz method for Laplace’s equation with N subdomains then can be written as

Δuni = 0 in Ω̃i,

uni = un−1 on Γ̃i, un =

N∑
i=1

χiu
n
i ,

uni = g on Γ̃i ∩ Γ.

(5.14)

5.2.2 Schwarz Waveform Relaxation

The classical approach to domain decomposition of time-dependent problems is to discretize
the problem in time first, and then apply one of DDMs to stationary problem at each time
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step. Such a decomposition requires a uniform time step size over the whole domain, which
may be limiting in some scenarios.

The waveform relaxation can be used to describe a space-time domain decomposition,
where the domain is likewise subdivided only in space, but interfaces span both space
and time. This potentially allows to solve subdomain problems independently over the
whole simulation time interval and only then exchange the information on these space-time
boundaries. However, typically the simulation time is subdivided into shorter time windows
to achieve a faster convergence. In the case of wave equation eq. (3.10) we get:

∂pni
∂t

+ c2
∂uni
∂x

= 0,
∂uni
∂t

+
∂pni
∂x

= 0 inΩi × (0, T ),

pni = pn−1, uni = un−1 onΓi × (0, T ),

pn =
N∑
i=1

χip
n
i , un =

N∑
i=1

χiu
n
i ,

pni (·, 0) = p0 uni (·, 0) = u0 inΩi

(5.15)

5.2.3 Convergence of Schwarz Methods

Convergence and stability of overlapping DDMs such as RAS is primarily dependent on
the domain of dependency of the problem in question. We have shown that RAS method
applied to simple hyperbolic problems such as advection or wave equation can converge in
a single iteration of eq. (5.13). This result follows from the finite speed of propagation and
in the context of Schwarz methods was proved in [46] for wave equation. The condition to
achieve convergence in a single iteration is

t <
δ

c̄
, (5.16)

where t is time, δ is overlap depth and c̄ is maximum wave propagation speed.
In the case of k-Wave eq. (4.21), the maximum time step length is severely limited by

other parts of the model so that convergence in a single iteration can be achieved even with
the minimal overlap.

5.3 Local Fourier Basis Methods
The Local Fourier Basis (LFB) domain decomposition method was introduced in [63, 116] as
a combination of patching method with LFB approaches used in signal analysis applications.
The resulting method allows to maintain most of the Fourier basis advantages in the domain
decomposition setting. Taking the advantage of the local nature of parabolic and hyperbolic
problems allows to reduce the global matching procedure eq. (5.4) to only a local matching
(see Parabolic Domain Decomposition [62]) thus allowing for good efficiency on distributed
systems.

Regardless of matching procedure, the use of the spectral Fourier method in LFB brings
an additional challenge as it requires each subdomain solution f(x) to have a smooth
periodic extension. If this requirement is not fulfilled, then the Fourier series of the solution
will converge very slowly, typically as fj ∼ O(1/j) as j → ∞ [18]. This problem can be
mitigated by extending f(x) to a periodic function f̃ on somewhat a larger interval. The
problem of constructing the periodic function f̃ given a non-periodic f is widely known as
the “Fourier extension problem” and many ways to solve the problem were proposed [19].
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5.3.1 Fourier Extension Problem

The Fourier Extension Problem can be defined (following [19]) as: Given a generally non-
periodic function f(x) on a physical interval [−χ, χ], define a function f̃(x) on an extended
interval [−Θ,Θ] with Θ ≥ χ so that

f̃ = f ∀x ∈ [−χ, χ], (5.17)

f̃ is periodic with period 2Θ, and f̃ has a rapidly convergent Fourier series. The problem
can be further classified into three variants depending on whether the function f is known
outside of the physical interval: f is well defined over the whole extended interval (first
kind), f has singularities in the extended interval (second kind) and f is known only in the
physical interval (third kind). In the context of LFB, we are primarily interested in the first
kind as whole function is known (albeit distributed over multiple sub-domains). However,
strategies developed to solve the third kind extensions may allow to reduce the amount of
communication between sub-domains as we will show later.

Given these requirements, Boyd shows that a good extension f̃ has to match the first
k derivatives of f at the endpoints of the physical interval as discontinuity in (k + 1)st
derivative would limit decay of Fourier coefficients of f̃ to O(1/jk+2) at best. The extension
also cannot be an analytic continuation of f as it couldn’t deviate from f at all and avoid
jump at f(Θ) ̸= f(−Θ). Therefore, the extension can be at most C∞ and its coefficients
converge only at sub-geometric rate O(e−pjr) for some r < 1.

Analytic extensions with geometric convergence can be achieved by loosening the re-
quirement eq. (5.17) to allow extension f̃ to only approximate f in the physical interval.
Such an approximation may be sufficient as the extension is expected to be approximated
itself by a truncated Fourier series later.

Fourier Extensions of the First Kind

Extensions of the first and second kind, for which eq. (5.17) holds, are typically constructed
by multiplying function f (which is known over whole extended interval) with a suitable
bell shaped (window [94]) function, which smoothly transitions from one to zero beyond
both ends of the physical interval (see fig. 5.3).
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Figure 5.3: The first kind extensions require the extended function to be known outside of
the physical region (left). The periodic extension then can be achieved easily by multipli-
cation of the function with a suitable bell function on the extended region (right).
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One example, among many suitable alternatives [94], is a Gauss error function based
bell function. Such a function can be constructed by squeezing erf(x) function into a finite
interval

E (x;L) =


−1, x < −1

erf
(
L x√

1−x2

)
, x ∈ [−1, 1]

1, x > 1

, (5.18)

so that its derivatives vanish at the endpoints of the interval. The parameter L describes
steepness of the squeezed error function, which has to be scaled and shifted

H (x;L) =
1

2
(1 + E (x;L)) , (5.19)

into an appropriate range forming a smooth ramp function. Finally, the bell over an
extended interval is constructed by taking the ramp function H and using it to smoothly
transition between one and zero on the intervals x ∈ [−Θ,−χ] and x ∈ [χ,Θ]:

B (x;L, χ,Θ) =


H ([x+ χ+ Ξ]/Ξ;L) , x ∈ [−Θ,−χ]
1, x ∈ [−χ, χ]
H (−[x− χ− Ξ]/Ξ;L) , x ∈ [χ,Θ]

, (5.20)

where Ξ = (Θ− χ) /2. While the resulting bell function B is not analytic at the breakpoints,
it is infinitely differentiable for all real x (due to E being infinitely flat) [19].

Fourier Extensions of Third Kind

There are two main options when it comes to finding a Fourier extension of the function
f , when it’s only known in the physical interval. The first approach is to use a polynomial
extrapolation of f to generate missing information in extension intervals followed by a bell
function treatment just like for any other first kind extension problem. Alternatively, a
Fourier series F that minimizes a suitable norm ∥F − f∥X over the physical interval and
describes approximate f̃ can be found directly.

The Fourier Continuation (FC) - the process of directly finding F can be expressed as
a discrete least squares problem

FNΘ
(f) = argmin

g∈GNΘ

∑
x∈Pχ

(f(x)− g(x))2 , (5.21)

where FNΘ
is the Fourier series of band-limited function g on the extended interval, which

is the best approximation of f over equispaced points Pχ in the physical interval. The least
squares problem eq. (5.21) can be written as a dense, rectangular, rank-deficient system

Aa = b, A ∈ CNχ×NΘ , b ∈ CNχ (5.22)

where

Akj =
1√
NΘ

, bk = f(xk). (5.23)

While the system (5.22) is ill conditioned, there are multiple algorithms (such as FPIC-
SU [19] and others [78]) which can take advantage of particular structure of matrix A and
distinct profile of its singular values (see fig. 5.4) to find an approximate solution.
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Figure 5.4: Normalized singular values of A in the Fourier Continuation problem (eq. (5.22))
for NΘ = 2Nχ.

The polynomial extension method consists of three steps: smooth extension, windowing
and periodization. The smooth extension of function f ∈ Cp over interval [0, 1] can be
formed by using the Taylor polynomial approximation around the interval endpoints

f̄ (x) =


f(x), x ∈ [0, 1]∑d

j=0 f
(j) (0) xj

j! , x ∈ (−∞, 0)∑d
j=0 f

(j) (1) (x−1)j

j! , x ∈ (1,∞)

, (5.24)

where f is extended by (d < p)-th degree Taylor approximation. The compactly supported
f̃ can now be formed by windowing f̄ just like in the case of the first kind extension
problem. However, the windowing function now has to smoothly decay quickly enough
to avoid accuracy loss in subsequent FFT caused by potentially rapid growth of f̄ in the
extrapolation regions (see fig. 5.5).
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Figure 5.5: The third kind extensions using a polynomial extrapolations (left) coupled with
periodization based on bell functions (right). The low order polynomial extrapolation (two
collocation points) is used for clarity.
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This approach is implemented in algorithms such as FC-Gram [21] or its alternative [9],
which formally have polynomial convergence. This is to be expected due to a combination
of exact approximation of f in the physical interval and extended function f̄ being only
Cd smooth (see eq. (5.24)). In practice, the polynomial convergence can be observed near
boundaries, while spectral-like behavior is often preserved within the interior. These algo-
rithms are also very fast as extension can be performed in O(1) time, but with significant
single-time data-independent preprocessing (algorithm described in [9] aims to improve
upon FC-Gram especially in this area).

Numerical Properties

Both, the error function bell based first kind extension algorithm and the polynomial exten-
sion algorithms for third kind extensions behave similarly following a sub-geometric Fourier
coefficient decay rate. Figure 5.6 shows how this decay rate translates into convergence with
respect to extension (smoothing) region width.
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Figure 5.6: Convergence of bell function based first kind extensions in terms of maximum
absolute error (left) and Fourier coefficient decay at 32-point overlap width (right).
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Figure 5.7: Convergence of polynomial extensions with bell function smoothing using two
(left) and eight (right) collocation points for extrapolation. The extension accuracy is
significantly dependent on the extrapolation quality, especially for oscillatory functions.
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The convergence of polynomial extension algorithms is almost identical (see fig. 5.7)
provided a sufficient number of collocation points is chosen. Figure 5.8 compares Fourier
coefficient decay achieved with two and eight collocation points. The number of collocation
points impacts especially more oscillatory functions such as f(x) = cos(24x) ∗ sin(21x).
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Figure 5.8: Fourier coefficient decay for third kind extensions based on polynomial ex-
trapolation with two (left) and eight (right) collocation points. In both cases expected
sub-geometric coefficient decay rate is observed.

While the polynomial extension algorithm opens the possibility to reduce communica-
tion between sub-domains to absolute minimum required by a decomposition method rather
than LFB, it is slightly more computationally expensive and may lead to extrapolation is-
sues. We will therefore proceed with first kind extension approach.

5.4 Prototype Equations using LFB Approach
We will use our linear wave equation (eq. (3.10)) and inviscid Burgers’ (eq. (3.15)) to
illustrate how the first kind Fourier extension might be used to construct a multi-domain
PDE solvers in a single spatial dimension. These simple solvers are also useful for evaluating
behavior of LFB and its interaction with various time stepping schemes.

Inviscid Burgers’ Equation

First, let’s consider inviscid Burgers’ equation with a pseudo-spectral discretization in space
and forward Euler method for time stepping. Such an equation has a hyperbolic behavior,
which allows overlapping decomposition with only minimal overlaps as the time step size
would be severely restricted by the Euler method. The overlap size is therefore dictated by
LFB method, which we use for domain decomposition as:

∂

∂x
ju

n =F−1{ikF{unBj}}, (5.25a)

ju
n+1 =ju

n −Δt ju
n ∂

∂x
ju

n, (5.25b)

un =
∑
j

ju
nΠj . (5.25c)
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Here ju
n denotes overlapping solutions over each subdomain at time step n. Equation (5.25c)

describes reconstruction of the global solution un by summing non-overlapping parts (masked
by rectangular function Πj) of all ju

n. The LFB is completed by restricting global solution
to each subdomain in eq. (5.25a) using a suitable bell function Bj . These two steps are
usually realized as an overlap exchange between every pair of neighboring subdomains so
that the global solution does not need to be explicitly reconstructed.

Linear Wave Equation

The decomposition of the linear wave equation system (3.10) can be handled in a similar
manner, with an exception of the time stepping scheme. The forward Euler method has to
be replaced with a better time stepping scheme as its unconditionally unstable in this case.
We therefore opted for a k-space corrected leap-frog scheme, which allows for an arbitrary
time step length. Such a discretization of eq. (3.10) can be written as

∂

∂x
jp

n =F−1{ikκeikΔx/2F{pnBj}}, (5.26a)

ju
n+1/2 =un−1/2Bj −Δt

∂

∂x
jp

n, (5.26b)
∂

∂x
ju

n+1/2 =F−1{ikκe−ikΔx/2F{jun+1/2}}, (5.26c)

jp
n+1 =jp

n −Δtc2
∂

∂x
ju

n+1/2, (5.26d)

with global solution reconstructed as

pn =
∑
j

jp
nΠj , un−1/2 =

∑
j

ju
n−1/2Πj . (5.27a)

Overlaps in both acoustic pressure pn and particle velocity un are exchanged once per time
step as we take strictly the same approach as in the case of the Burgers’ equation. However,
this means that the second derivative of jp

n (after computing ju
n+1/2) is computed without

a direct synchronization between subdomains. Our numerical experiments (see fig. 5.11b)
showed that this leads to a slight loss of accuracy as compared to exchanging ju

n+1 just
before its derivative is taken in eq. (5.26c). The LFB with a direct synchronization of vari-
ables just before pseudo-spectral derivatives are taken can be viewed as an approximation
to the derivative operator itself.

Numerical Properties

Similarly to our Fourier extension experiments, we discretize both LFB solvers over 1024
grid points in space with periodic boundary conditions. While the Burgers’ equation solver
is discretized with the combination of a plain PSM with the 4th order Runge-Kutta time
integration scheme, the wave equation experiments are also repeated with a k-Space PSM
discretization and the Leap-Frog integration scheme.
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Figure 5.9: Initial Value Problems for evaluation of domain decomposition error. Both
domains are decomposed into four subdomains (vertical dashed lines) with overlaps of 2 to
32 grid-points.

The Burgers’ IVP is setup with a sin-wave and the final time set so that truncation error
does not interfere with our results (see fig. 5.9a). The wave equation solver is initialized
with a normalized unit pulse filtered with a Blackmann window and the final time set for
exactly one period (see fig. 5.9b). This setup should avoid aliasing while all frequencies
are still represented. In both cases the solution is compared to the respective solver with
no decomposition. Figure 5.10 show convergence for both LFB solvers as the overlap
between sub-domains is increased. These results are largely consistent with our standalone
convergence tests of Fourier extensions.
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Figure 5.10: Local Fourier basis domain decomposition convergence with respect to sub-
domain overlap depth in problems shown in Figure 5.9. Both solvers use the Error Function
based bell to smooth subdomain data.

However, most simulations typically require free boundary rather than periodic one.
We therefore setup similar wave equation experiment with addition of the PML layer to

66



attenuate waves leaving the domain. Figure 5.11a shows IVP and solution at time T at
which error is evaluated (only last wave remains in the domain). The PML layer has minimal
impact on the solver (see fig. 5.11b) and its qualitative behavior remain virtually unchanged
(compared to fig. 5.10b). The figure also shows slight accuracy loss (for all overlap depths)
for delayed overlap exchanges approach, which we used previously to demonstrate similarity
between LFB and RAS domain decomposition. The final solver therefore uses immediate
overlap exchanges to avoid this issue.
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Figure 5.11: Overlap depth convergence of LFB k-Space wave equation solver with PML
used to implement free boundary. The convergence is shown for the Error Function bell
(immediate and delayed overlap exchanges) and for a numerically optimized bell shapes.

The scalability of the LFB domain decomposition is also limited by accumulation of
the error as wave passes through interfaces between subdomains. The experiment used
to evaluate this property is similar to the previous one. Once again we setup simulation
domain with PML and filtered unit pulse as the initial condition. However, the domain
is subdivided into 32 subdomains (256 grid points each) and initial pulse is placed in the
middle of leftmost subdomain.

0 5 10 15 20 25 30

Interface Count

0

5

10

15

20

25

M
a

x
. 

A
b

s
 E

rr
o

r 
G

ro
w

th

Interface Count Error @ Overlap Depth = 16

Fourier k-Space

Fourier k-Space (delay)

Fourier k-Space (opt)

(a) Relative L∞ Error Growth

0 5 10 15 20 25 30

Interface Count

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

M
a

x
. 

A
b

s
 E

rr
o

r

10-3 Interface Count Error @ Overlap Depth = 16

Fourier k-Space

Fourier k-Space (delay)

Fourier k-Space (opt)

(b) Cumulative L∞ Error

Figure 5.12: Error accumulation along the path of wave propagating through subdomain
interfaces in LFB k-Space wave equation solver. The accumulated error is shown for up to
30 interfaces with 16 points deep interfaces with Error Function and optimized bells shapes.
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This allows to track half of the pulse as it propagates to the right through all 31 inter-
faces. The accumulated error (see fig. 5.12b) is averaged over 25 time-steps as the pulse
propagates through each subdomain. Figure 5.12a shows that the error accumulates faster
when optimized bell shapes is used, however it is still advantageous due to much lower
initial error (see fig. 5.12b). The frequency spectrum of the error (see fig. 5.13) shows that
the error tends to grow with frequency and that the optimized bell somewhat alleviates
this.
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Figure 5.13: Smoothed spectral content of error accumulated along the path of wave prop-
agating through interfaces in LFB k-Space wave equation solver. The overlap depth is set
to 16 grid points with Error Function and optimized bell shapes.

5.4.1 Bell Functions Optimization

As we have seen, the discretely sampled continuous bell performs reasonably well. How-
ever, the performance guarantees derived in a continuous setting don’t necessarily apply
in a discrete setting. This is due to the discrete sampling and an implicit band-limited
interpolation of the bell function with the Fourier interpolant.

We therefore explore an alternative approach, where the bell shapes are chosen using
numerical optimization. The optimization problem is posed as a minimization of the L2

error norm between the final solution u(x, T ) computed with LFB and global spectral solver.
Once again, the solvers were initialized with a delta function filtered with a Blackmann
window to cover full frequency range. The LFB solver was using only two subdomains and
the final time T was chosen so that the wave crosses the interface only once, so that the
single interface crossing error could be estimated. The bell shapes at the interfaces were
initialized with a simple ramp function and optimized with a constrained active set method
to determine value between 0 and 1 at each grid point so that an optimal bell shape is
formed.

This approach closely tailored to our acoustic wave problem resulted in a set of bell
functions of 2 to 40 grid points, which can outperform the sampled error function bell
(see fig. 5.11b). Figure 5.14 shows that the optimized bell shapes are no longer symmetric
and their derivatives vanish only at the end inner to a subdomain. Using such a bell
shape also doesn’t enforce perfect periodicity of a subdomain. However, these shapes are
significantly smoother towards the local subdomain interior, which may allow for better
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performance, while sub-optimal shape towards the outer edge does not induce significant
error.
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Figure 5.14: Optimized bell functions for overlap depths n between 2 and 40 (left). First
three derivatives of the erf bell and optimized bells for n = 16, weighted by the magnitude of
the bell. The optimized bells are significantly smoother towards interior of the subdomain.
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Chapter 6

k-Wave Model using Local Fourier
Basis

The LFB domain decomposition approach derived in previous chapters can be straightfor-
wardly applied to the full k-Wave model eq. (4.21). In doing so, we arrive at the following
model

∂

∂ξ
jp

n =F−1{ikξκeikξΔξ/2F{pnBj}}, (6.1a)

ju
n+1/2
ξ =u

n−1/2
ξ Bj −

Δt

ρ0

∂

∂ξ
jp

n +ΔSn
Fξ
Bj , (6.1b)

∂

∂ξ
ju

n+1/2
ξ =F−1{ikξκe−ikξΔξ/2F{jun+1/2

ξ }}, (6.1c)

jρ
n+1
ξ =

jρ
n
ξ −Δtρ0

∂
∂ξ ju

n+1/2
ξ

1 + 2Δt ∂
∂ξ ju

n+1/2
ξ

+
ΔtS

n+1/2
Mξ

Bj

1 + 2Δt ∂
∂ξ ju

n+1/2
ξ

, (6.1d)

jp
n+1 =c20

(
jρ

n+1 +
B

2A

1

ρ0

(
jρ

n+1
)2 − Ld

)
. (6.1e)

jρ
n+1 =

∑
ξ

jρ
n+1
ξ (6.2)

Here, the time-stepping scheme of the model eq. (4.21) is swapped for Leap-frog method,
making space-time acoustic velocity uξ and pressure p grids staggered by half a grid point
relative to each other. Spatial shifts of these fields are implemented in transform space by
a spectral operator e±ikξΔξ/2 at no additional cost. The model also introduces pressure
and mass sources as SFξ

and SMξ
respectively. Both of those source distributions have to

be defined globally so that a subdomain local source can be formed by a bell function Bj

smoothing (and restriction).

Ld = −τF−1

ky−2F

ρ0∑
ξ

∂

∂ξ
ju

n+1/2
ξ


+ ηF−1

{
ky−1F

{
jρ

n+1
}}

, (6.3)

pn =
∑
j

jp
nΠj , u

n−1/2
ξ =

∑
j

ju
n−1/2
ξ Πj (6.4)

The model is dominated by linear wave behavior captured in equations (6.1a)–(6.1d) and
the first term of pressure-density relation eq. (6.1e), which also describes non-linearity and
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absorption. The weak diffusivity of the model stems from the acoustic absorption described
by eq. (6.3). The acoustic absorption operator remains largely the same as eq. (4.23) with
the only change being that it operates over fields local to each subdomain.

Finally, the overlap exchanges of all fields can be performed once before each time
step or directly before each forward Fourier transform. Our simplified models did not
require the overlap exchange of acoustic density field ρ as there were no spectral operators
applied directly to it. However, this is no longer the case with the introduction of the
acoustic absorption operator eq. (6.3), which does require a Fourier transform of jρ in each
subdomain. For this reason, we perform additional exchanges of jρ overlaps to avoid any
potential cumulative negative effects, which may be propagated back into the subdomain
interior.

Figure 6.1: Simplified main simulation loop of the k-Wave algorithm. The empty small
rectangles denote forward (gray) and backward (white) 3D FFTs. The red bars represent
overlap exchanges before each forward FFT.

Figure 6.1 shows a simplified version of the simulation loop in which direct overlap ex-
changes are used as this approach introduces less decomposition error compared to delayed
overlap exchanges (see section 5.4 and fig. 5.11b). In total, six overlap exchanges have to
be performed during a time-step. Each of these exchanges involves 3d − 1 direct neighbor
point-to-point communications depending on dimensionality d of the simulation (see fig. 6.2
for d = 2 case).

local 

subdomain

overlap

Figure 6.2: Domain decomposition with overlap exchanges in two spatial dimensions.

The size of exchanged data varies according to neighborhood relation between the do-
mains (corner, edge or face in a 3D simulation), and width of the overlap (or smoothing)
region. Such a communication pattern in three spatial dimensions requires to exchange
O(26P ) messages as each subdomain communicates with other 26 subdomains around it.
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This amounts to a significant reduction compared to global approach (analyzed in sec-
tion 4.2.2) which may require up to O(P 2) due to global transpositions. The secondary
advantage of neighbor-only communication is that it largely eliminates the need for po-
tentially costly communication planning required to achieve efficient scaling of distributed
FFT algorithms.

6.1 Implementation
The practical implementation of the simulation package introduced in [1, 3] is based on
a widely used MPI plus X (MPI+X) design pattern [96]. The Message Passing Interface
(MPI) is used to manage distributed memory (node level) parallelism, while X denotes
some complementary technology to manage shared memory parallelism or accelerators.

6.1.1 MPI+X Design Pattern

The typical combination for supercomputer architectures based on multi-core CPU or MIC
accelerated nodes is MPI+OpenMP. Similarly in GPU accelerated environments, MPI is
combined with suitable (often proprietary) accelerator focused programming interface. In
GPU accelerated HPC space, MPI+CUDA is a de facto standard due to proliferation
of NVIDIA GPU accelerators. However, MPI+OpenCL can be used to cover most of
accelerator vendors. In our case, CUDA or OpenCL is used to manage single accelerator
or all accelerators attached to a single shared memory node. The boundary between nodes
and accelerators in a single node gets a bit blurry as vendor interfaces such as CUDA often
offer faster communication paths.

6.1.2 Simulation Code Overview

Our implementation specifically allows to combine MPI with either OpenMP, CUDA or
OpenCL to cover the widest possible gamut of platforms. This allows to address hardware
ranging from single multi-GPU nodes such as Nvidia DGX-2 up to clusters with multi-GPU
accelerated nodes with CUDA or OpenCL support. While MPI+OpenMP combination
allows to fully utilize parallelism of CPU-only and MIC accelerated clusters.

Main Simulation Loop

The simulation loop of k-Wave can be considered a canonical representative of PSTD meth-
ods. Considering a global method running on a single shared-memory machine, the majority
of computational time is spent in simple per-element kernels and 3D FFTs used to transi-
tion between spaces. These 3D FFTs can be usually further decomposed into sets of classic
1D FFTs interleaved with transpositions on 3D arrays. Overall, this means the simula-
tion is an algorithm with a low arithmetic intensity running over relatively large datasets,
which leads to poor cache utilization and high memory bandwidth dependence. The most
arithmetically intensive part of the simulation loop are therefore 1D FFTs with O(log2 n)
intensity [84]. The rest of the simulation loop consists of a streaming I/O used to load
source signals at each time step (or at the beginning of the simulation in the case of initial
value problems) and store data from virtual sensors in the simulation domain.

In distributed memory environment, we have additional communication component to
consider. The communication is either part of the transpositions during 3D FFT stages
(global PSTD methods) or explicit overlap exchanges in the case of our LFB approach.
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Communication Stack

The communication stack for the overlap exchanges in its complete form (used for CUDA
accelerated clusters) consists of three tiers shown in fig. 6.3. Tier 1 employs CUDA Peer-
to-Peer (P2P) via PCI-E or NVlink to exchange data within each P2P domain, while tier 2
uses CUDA-Aware MPI to allow fast RDMA communication between GPUs across cluster
interconnect network. In this case tier 3 a is fallback where pure MPI is used when CUDA-
Aware MPI is not available. The tier at which the exchange of each overlap is performed
is decided at runtime as a part of the communication initialization process. This approach
allows to minimize communication overhead on the granularity of a single overlap, while
covering a wide range of hardware configurations.

CUDA P2P

cudaMemcpy
H2D/D2H

CUDA-Aware

MPI

Send/Receive buffers
Device

Host

cudaMemcpyAsync

MPI_Isend
MPI_Irecv

cudaEvent

Figure 6.3: Communication stack of k-Wave LFB implementation. The first of five overlaps
(two edges and three corners) in send/receive buffers are exchanged through a combination
of CUDA memory copy (host ↔ device) and host-to-host MPI communication, or preferably
through CUDA-Aware MPI. The last three overlaps can be transferred via CUDA Peer-to-
Peer using direct memory copy between devices while the synchronization with the host
and the neighbors is achieved through a combination of CUDA Events (locally) and empty
MPI messages.

The communication stack is initialized by identifying neighbor MPI ranks for each
subdomain using a Cartesian communicator defined by the chosen domain decomposition.
With the topology defined, additional storage is allocated for each distributed field to hold
both incoming and outgoing overlap data. This approach allows to use a GPU kernel (as
opposed to MPI primitive) to extract the overlap data from a 3D array into a linear overlap
buffer and reuse the original array during the communication.

Assuming the CUDA P2P support was enabled at the compile time, the second step is
to negotiate Peer-to-Peer access between neighbor GPUs. Since every GPU is managed by
an MPI process, the direct memory access is enabled by an inter-process communication
support provided by CUDA (CUDA IPC memory handles). Effectively, each GPU sends
device memory pointers to appropriate parts of its receive buffer to the neighbor GPUs
that copy the overlap data in that space. These transfers are managed asynchronously by
a secondary CUDA stream so that the other CUDA kernels can be running in parallel to
data transfers. If the negotiation fails, the overlap is marked to be handled by the CUDA-
Aware MPI or pure MPI transfer with explicit host-device copies. This may happen due
to respective GPUs being located at different nodes or lack of the PCI-E or NVlink P2P
support.
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The last stage is the initialization of persistent asynchronous MPI communications for
each overlap. These communication channels are used either as a fallback when P2P access
is not available or for synchronization only.

During the simulation loop, the overlaps are synchronously extracted from a given 3D
array into the send buffer. Next, they are exchanged using one of the methods described
above and the received data injected back into the array. During the asynchronous overlap
exchanges, other computations may be performed with the array. This is used to hide some
overlap exchanges by computing 3D FFTs during these exchanges. Theoretically, three out
of six total overlap exchanges can be hidden, see fig. 6.4.

Figure 6.4: Simplified main simulation loop of the k-Wave algorithm. The empty small
rectangles denote forward (gray) and backward (white) 3D FFTs. The solid red bars repre-
sent overlap exchanges which cannot be overlapped, while dashed ones can be hidden. For
example, overlap exchange of uy can be overlapped with FFT computation on ux, which
was exchanged before.

File I/O Subsystem

The I/O subsystem is built on the top of Parallel HDF5 to maintain compatibility with
the rest of k-Wave ecosystem and make efficient use of highly parallel filesystems. The
subsystem is responsible for reading simulation parameters such as medium properties,
streaming source and virtual sensor data and storage of simulation checkpoints.

The medium reading process is quite straightforward as each subdomain can easily read
an appropriate part of the dataset using parallel I/O and possibly exchange overlaps with
neighbors where necessary (using overlap exchange routines). The simulation checkpoints
can be handled similarly as each working field over the whole simulation domain has to be
stored preferably in domain decomposition independent form so that decomposition can be
easily changed when resuming the simulation later.

The situation gets more complicated in the case of source and sensor data streaming.
The source and sensor points may be arbitrarily distributed through the simulation domain,
which is challenging in several ways. Firstly, the distribution of these points is typically
clustered to model transducer or sensor surfaces, this leads to unbalanced I/O, where only
a few subdomains/nodes participate thus restricting I/O parallelism and achievable band-
width. Similar issues arise due to sources in subdomain overlaps and off-grid sources [125],
which may need to be replicated into both overlapping subdomains. This ties into the
second issue, both source and sensor series samples are stored with no regard to domain
decomposition, which causes discontinuous access patterns and once again impairs storage
bandwidth. Overall these issues are tackled by a combination of caching of the data over
multiple time steps and reordering between nodes so that I/O workload is more spread and
balanced.
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6.2 Experimental Results
In this section, we investigate the performance of the proposed simulation code to validate
our theoretical claims about its computational and numerical properties.

6.2.1 Performance Characteristics

The starting point for the assessment of the performance benefit of the proposed code
will be the comparison with equivalent traditional global decomposition code based on the
MPI FFTW library [64]. While the direct comparison is limited to CPU-based clusters
without accelerators, we should already be able to observe a positive impact of reduced
communication. From there, we will move to (largely deprecated) MIC accelerated machine
to see whether such an architecture is favorable to our approach to pseudo-spectral methods.
Finally, GPU accelerated nodes will be added to the comparison as clusters with these high
performance nodes further emphasize importance of reducing communication workload in
pseudo-spectral solvers.

The majority of our experiments focus on traditional strong and weak scaling as the
number of subdomains and spatial resolution are varied relatively to each other. A set
of linear wave propagation (which leads to the simplest form of pressure-density rela-
tion eq. (6.1e)) initial value or single point source problems is used to collect required
data and only the final pressure field is captured after 100 time steps. While 100 step sim-
ulation is unrealistically short for real problems, it’s sufficient for benchmarking purposes.
The spatial resolution of the 3D domain is increased from 2563 to 40963 grid points (or up
to the memory limit on smaller clusters) yielding simulation datasets between 2GB and
7.6TB. The size of the domain is exponentially increased by doubling the resolution in
each Cartesian dimension in a round robin fashion. These experiments are complemented
by varying the overlap size between 4 and 16 grid points to get a complete picture of
available tradeoffs between accuracy and performance.

CPU Based Clusters

The head to head comparison of the global decomposition (GDD) and our LFB based code
(LDD) was carried out using a non-accelerated portion of the Salomon cluster2. Each
node of the cluster based on dual-socket 12-core Haswell accompanied with 128GB of main
memory. The interconnect is running on 56Gbit/s FDR Infiniband network in hybrid 7D
hypercube topology (see section 2.3 for details).

The strong scaling comparison shown in fig. 6.5 already reveals few interesting properties
of the LFB code. Considering a single socket (and a single subdomain in the LFB case),
the GDD code is considerably faster than the proposed LFB code. This is due to less
optimization work put towards the OpenMP backend of the LFB code as there should be
no inherent overhead. The GDD code is also significantly faster on a per-socket basis for
small domains (such as 2563), This is due to a significant computational overhead of local
decomposition as each subdomain is extended in each dimension by up to 16 grid points.
However, the lead of the GDD code diminishes as the simulation resolution and the local
subdomain size with it grows. This amounts to a situation where LFB code has a median
speedup of 1.41 over the GDD, but can be up to 4.81 times faster for largest domains (due
to limitations of the global decomposition in a single dimension). Figure 6.8 shows how
median speedup improves to 2.15 and up to 7.5 for large domains when the overlap size of
the LFB simulation is decreased to only 4 grid points.
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LDD Strong scaling on Salomon, overlap = 16
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Figure 6.5: Strong scaling comparison of the global domain decomposition (left) and the
local Fourier basis (right) approach. The LFB code is configured with an overlap size of 16
and one subdomain per CPU socket.

Moving on to weak scaling plots shown in fig. 6.6, there are two key observations for
explanation. First, the weak scaling is very poor for less than 8 subdomains. This is due to
an increasing rank of the domain decomposition and increasing number of neighbors which
need to exchange data. We start with a single subdomain then split it in last dimension as
1× 1× 2, then 1× 2× 2 and finally into eight (2× 2× 2) subdomains, at which point each
of them has 26 neighbors (due to torus-like wraparound of the domain). Beyond this point,
the weak scaling curves of the LFB code are almost completely flat, which is a sign of near
perfect weak scaling. This is a result of the constant amount of work and communication
per subdomain.

The weak scaling of the GDD approach is much worse as the scaling curves grow on the
whole interval. The primary reason for this behavior is the slab decomposition used in the
GDD code, where slab spans the whole domain size in the first two dimensions. Considering
that, the size of each slab is growing (even with the number of slabs per node decreasing
accordingly) the time complexity of per-slab workload grows as O(n2 log2 n) due to nature
of the Fourier transform. The secondary reason is the aforementioned communication
complexity, which grows faster in this case.
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Figure 6.6: Weak scaling comparison of the global domain decomposition (left) and the
local Fourier basis (right) approach.
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The relative simulation time breakdown shown in fig. 6.7 visualizes the percentage
of the overall simulation time spent in computation (Comp) and communication (MPI).
In the case of LFB code, additional time is spent on extraction (Extract) and injection
(Inject) of the overlaps from/into subdomains. The comparison of GDD and LFB code
with 16 point overlaps shows that both codes can spend up to 70% of the execution time in
communication. However, the GDD code hits this point already at 32 sockets, where LFB
code wastes only about 40% of the time. The LFB simulation time breakdown also shows
how the amount of work required for overlap handling (extraction and injection) quickly
grows between one and eight subdomains due to increasing decomposition rank. This local
overhead then stabilizes and is finally overtaken by MPI communication as interconnect
usage grows with increasing number of nodes.
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Figure 6.7: Relative simulation time breakdown comparison between GDD (left) and local
decomposition (right) with 16 point overlaps on Salomon and a domains size of 10243 grid
points.

Finally, fig. 6.8 shows the impact of reducing the overlap size to only 4 grid points. With
this change, the LFB code is on average 2.63 times faster than GDD code and the average
scaling factor (or speedup achieved by doubling computational resources) improves to 1.74.
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Figure 6.8: Strong scaling (left) and relative simulation time breakdown (right) for LFB
code with 4 point overlaps on Salomon and a domains size of 10243 grid points.
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MIC Accelerated Clusters

While the LFB approach has considerable advantages when deployed on CPU-based clus-
ters, it’s primarily aimed at accelerated clusters. The addition of accelerators significantly
increases local computational performance and memory bandwidth of each node, and there-
fore, skews balance between compute and interconnect bandwidth of the cluster in that di-
rection. In [5, 6] we therefore investigated behavior of the LFB approach on two generations
of MIC accelerators.
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Figure 6.9: Strong scaling with overlap size of 16 grid points.

Similarly to our previous investigation of non-accelerated cluster, we begin with strong
and weak scaling by successively increasing the number of subdomains in the decomposition
and the resolution of the simulation. Figure 6.9 shows a comparison of strong scaling
between Salomons CPUs and Intel Xeon Phi (Knights Corner – KNC, see section 2.1.1 for
details) accelerators with domain sizes between 256×256×256 and 1024×1024×512 using 1
to 16 accelerators or CPU sockets. Contrary to the expectations, given parameters of KNC
accelerators figs. 6.9a and 6.9b show accelerators between 2.2× to 4.3× slower compared
to CPUs. The flat profile in fig. 6.13a shows a couple of reasons for this behavior. First,
the overlap exchange among accelerators is on average 2× slower than among CPUs. Such
a substantial overhead can be attributed to a combined effect of additional PCI-Express
communication and much slower accelerator cores responsible for packing of the overlaps
into MPI messages. However, the platform investigation in section 2.1.1 also shows very
low core-to-core bandwidth (only up to 2.65GB/s) on the accelerators. Second, the best
performing 3D FFT library optimized for KNC (Intel MKL) still performs up to 100× slower
than on CPUs for small subdomains (643) and two times slower for large subdomains (such
as 2563).
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Figure 6.10: Weak scaling with overlap size of 16 grid points.
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Figures 6.9c and 6.10c show a significant improvement in both strong and weak scaling
for KNL accelerators over its predecessor. The single accelerator measurements show up
to 8-fold speedup, while KNL is only up to 2.5× faster theoretically. We attribute this
significant improvement to a new on-chip interconnect introduced in KNL, which massively
increases core-to-core bandwidth. The Omnipath interconnect allows for average scaling
factor of 1.62 and average speedup of 4.16 compared to KNC accelerators with the Infini-
band on Salomon. The average speedup over Haswell CPUs on Salomon is more modest
1.7 when the same number of accelerators and CPU sockets is considered.

The investigation of larger decompositions had to be limited to 1 Gbit Ethernet inter-
connect due to stability issues in the Intel MPI Infiniband backend on the Salomon cluster.
While this configuration is very unrealistic, it is a useful representative of the worst case
from a cluster interconnect perspective. Figures 6.11 and 6.12 show a comparison of strong
and weak scaling between CPUs (connected through Infiniband) and KNC accelerators
(connected through 1 Gbit Ethernet).
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Figure 6.11: Strong scaling evaluation on large domains of 224 to 233 grid points with an
overlap size of 16 grid points collected on CPUs and accelerators. Since the Infiniband
interface is not stable for more than 32 accelerators, 1 Gbit Ethernet is used instead.
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Figure 6.12: Weak scaling evaluation on large subdomains with overlap size of 16 grid
points collected on CPUs and accelerators. The size of the subdomains ranges from 218 to
225 grid points.
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This unfavorable configuration renders KNC accelerators on average 4.3× slower than
the same number of CPU sockets, which is another 2-fold drop compared to accelerators
with Infiniband interconnect. However, a reasonable strong scaling factor of 1.45 is main-
tained due to the overall low performance of an individual accelerator which allows to hide
much slower communication.

Finally, simulation time breakdowns in fig. 6.13 clearly show communication and 3D
FFT computations as areas where KNC accelerators are lacking the most. Both 3D FFT
and element-wise computational stages run considerably slower on KNCs, but communica-
tion impact is especially pronounced in both Infiniband and 1 Gbit Ethernet case.
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(b) 256 CPUs or Accelerators

Figure 6.13: The execution time breakdown for a time step of the simulation loop collected
on 32 and 256 CPUs (CPU) or accelerators (KNC) for a range of domain sizes with an
overlap size of 16 grid points. Results for both the Infiniband (IB) and the 1 Gbit Ethernet
(GbE) interconnects are shown.

Multi-GPU Accelerated Nodes

Given the excellent results achieved using a single GPU CUDA based implementation of
k-Wave, we can reasonably expect a similar success employing LFB code on multi-GPU
machines. The limiting factor should be GPU-to-GPU communication and a mild penalty
incurred by expanding the size of each subdomain by a specified overlap depth.

We use two multi-GPU machines to investigate the behavior of the LFB code. These
machines are chosen to represent the first and second generation of multi-GPU accelerated
compute nodes. The first machine (PNY) is a typical server to be found in small research
departments. It integrates two Intel Xeon E5-2620 v4 processors and 8 Nvidia Tesla P40
GPUs. The CPUs are coupled with 2× 256GB of DDR4 2133 memory in a quad-channel
configuration. The sockets are connected via two 8GT/s QPI links. Each CPU provides
40 PCI-E 3.0 lanes, 32 of which are used together with two PCI-E 3.0 x16 switches to
communicate with 4 GPUs (two per switch). While these switches are PCI-E Peer-to-Peer
(P2P) capable, the QPI socket-to-socket connection is not. This creates two distinct P2P
domains, see fig. 6.14a. Each Nvidia Tesla P40 GPU consists of 3840 CUDA cores achieving
11.76TFLOP/s and provides 24GB of GDDR5X memory at 480.4GB/s.
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Figure 6.14: PCI-E 3.0 (a) and NVlink 2.0 (b) based machines used in the experiments.

The second machine (Nvidia DGX-2) represents a super-dense accelerated compute node
with a high-speed interconnect between accelerators. DGX-2 has two Intel Xeon Platinum
8168 processors with 2× 768GB of DDR4 2666 memory in a hexa-channel configuration.
The machine contains two 8 GPU boards with all-to-all NVlink 2.0 interconnect at 300GB/s
per GPU. The two boards are connected via 48 NVlink 2.0 lanes achieving a bisection
bandwidth of 2.4TB/s, see fig. 6.14b. Each Nvidia Tesla V100 GPU consists of 5120
CUDA cores achieving 7.8TFLOP/s and provides 32GB of HBM 2 memory at 900GB/s.

The first question which should be answered is whether it’s feasible to directly extend
single-GPU k-Wave implementation and rely directly on multi-GPU variants of the libraries
such as cuFFT. These primitives typically rely on Unified Address Space between host and
all GPUs in the system in combination with the runtime to exchange the data between
GPUs. As we have shown, the critical part of the algorithm is communication involved
in 3D FFT computations. In the absence of global multi-GPU implementation of k-Wave,
we use 3D FFT alone to predict the behavior of these two platforms. Figure 6.15 shows
that only the second generation multi-GPU machine with NVLink interconnect can be
reasonably used for global multi-GPU PSTD codes. The 3D FFT running on a machine
using PCI-Express 3.0 x16 interconnect between GPUs still bears a significant penalty and
the local approach is therefore necessary.
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(left) and NVLink (right) machines with 16 grid point subdomain overlaps.
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While the local approach is not as much sensitive to bandwidth limitations of PCI-
Express 3.0 based platform, it can still be easily spotted in weak scaling behavior and
especially in simulation time breakdowns shown in fig. 6.16. The weak scaling on both
machines exhibit a typical increasing trend due to the increasing rank of the decomposition.
However, PCI-Express platform exhibits a noticeably worse scaling when going from four
to eight than between one to four GPUs due to the QPI bridge between two quad GPU
clusters. There is no such an impact on DGX-2 machine and weak scaling significantly
improves for all sixteen GPUs as the maximum decomposition rank is already achieved.
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Figure 6.16: Weak scaling with a fixed overlap size of 16 points and subdomain sizes of 2563
and 5123 (left), and breakdown of the execution time of a fixed simulation domain size of
10243 grid points with a varying overlap size with 8 GPUs (right).

Figure 6.17 confirms this observation by comparing the communication overhead of the
same decomposition running on GPUs connected to a single or spread accross both sockets
(unless more than four GPUs are used). Although DGX-2 has its GPUs spread across two
GPU boards, the interconnect between them is still sufficient and the GPU mapping has
no measurable impact.
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Figure 6.17: Impact of the subdomain mapping onto GPUs in both machines. The sequen-
tial mapping (SEQ) maps neighboring subdomains to closest GPUs, while spread (SPR)
maps them across QPI domains (PNY) or GPU boards (DGX-2).
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GPU Accelerated Clusters

While we showed the LFB approach to bring significant improvements to scalability on CPU
based clusters, our primary goal is to enable large scale simulations on GPU accelerated
clusters such as Piz Daint3 and multi-GPU accelerated clusters like Karolina2. The LFB
approach is necessary in this case as the overhead would be prohibitive otherwise.

First, let’s compare the LFB code running on a CPU cluster and a GPU accelerated Piz
Daint cluster (see also [4]). Here, the GPU accelerated cluster is on average 2.75× faster
with similar scaling factor of 1.44 when comparing CPU sockets and GPUs one-to-one
in simulations with 16 point overlaps. The average speedup of the GPU implementation
is somewhat skewed by small domains, which exhibit significant overhead (see fig. 6.18).
However, on large domains decomposed over many GPUs (e.g. 20483 grid points over 512
GPUs) speedups over 5 were observed.
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Figure 6.18: Strong scaling of LFB code running on Salomon CPU cluster (left) and Piz
Daint GPU cluster (right) with 16-point overlaps between subdomains.

The weak scaling (fig. 6.19) of GPU implementation is inline with the behavior of the
CPU code with the exception of a penalty induced by increasing the decomposition rank.
While the CPUs experienced about 2× slowdown between one and eight subdomains, the
GPUs took twice as large hit (about 4×). This is due to increased communication overhead
introduced due to additional communication between CPUs and GPUs as neither CUDA-
Aware MPI or RDMA was used on Piz Daint.
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Figures 6.20 and 6.21 show a breakdown of fairly large simulation (10243 grid points)
using 16 and 4 point overlaps respectively. The overlap depth reduction allows considerable
simulation time savings on both architectures, but it has a significantly bigger impact on
the CPU cluster as its behavior is more dependent on the communication (up to 70%).
The GPU cluster exhibits a smaller impact as the change in the subdomain size has only
a small effect on the compute time and communication seems to be dominated by latency
rather than bandwidth.
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Figure 6.20: The simulation time breakdown for the LFB code with 10243 domain uniformly
distributed between 1 to 512 subdomains coupled via 16-point overlaps.
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Figure 6.21: The simulation time breakdown for the LFB code with 10243 domain uniformly
distributed between 1 to 512 subdomains coupled via 4-point overlaps.

6.2.2 Numerical Results

To evaluate both numerical performance and computational efficiency of the proposed LFB
approach to ultrasound wave simulation in realistic setting of HIFU treatment planning,
we performed a typical kidney sonication simulation [2].

HIFU Kidney Sonication

The simulation of a HIFU sonication of the kidney with a single element bowl-shaped trans-
ducer. The transducer radius is 140mm with circular aperture of 120mm and frequency of
1MHz. The transducer is approximated using a simply-connected discrete bowl [76] with
a surface intensity of 1W/cm2 (175 kPa) and an acoustic power of 119W.
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The simulation domain was discretized in 172 µm resolution, which (given material
properties) allows for a maximum supported frequency of 4.4MHz. Given the simulation
volume of 16.5 × 16.5 × 22 cm this resolution yields a simulation domain of 960 × 960 ×
1280 grid points with a time step of 11.4 ns (giving a CFL number of 0.1 in the background
medium). The simulation is run until steady state is reached after 25407 time steps.

The GPU server (dual Intel Xeon E5-2620 v4 with 8 Nvidia Tesla P40 GPUs) described
in section 6.2.1 was used to run the LFB simulations. While the reference simulation was
performed using a global domain approach with the MPI implementation of k-Wave running
on Anselm cluster2. Anselm is Sandy Bridge CPU (2×8 core Intel E5-2665 and 64GB RAM
per node) based cluster with 40Gbit/s interconnect in Fat-tree topology. The reference
simulation was run using 80 nodes (1280 cores) to approximately match 96TFLOP/s peak
performance achieved by the GPU server.

The LFB simulation was run in three decompositions (see fig. 6.22), rank-one (1, 1, 8),
rank-two (1, 2, 4) and rank-three (2, 2, 2) with the overlap size ranging from 4 to 16 grid
points. Numerically optimized bell functions (discussed in section 5.4.1) were used in all
investigated configurations.
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Figure 6.22: (Top Row) Output from the global domain simulation showing the peak pos-
itive pressure in steady state overlaid on the map of the tissue sound speed derived from
the AustinWoman model. Three slices through the geometrical focus of the transducer are
shown. (Lower Rows) Error plots showing the difference between the local domain decom-
position and global domain simulations for three different decompositions using an overlap
of four grid points. The sub-domain boundaries are shown with dashed lines.

The simulation error scaling (see fig. 6.23 left) roughly follows expected behavior, given
our analytical LFB results. The rank-one decomposition exhibits the highest error as it
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maximizes the number of interfaces between the transducer and the focus point. The de-
composition is also slightly faster than rank-two and three variants (see fig. 6.23 right)
as it requires only two overlaps per subdomain and minimizes number of overlaps trans-
ferred through QPI interface of the PNY server (discussed in section 6.2.1). The other two
decompositions perform similarly to each other in both simulation time and accuracy.
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Figure 6.23: Change in the (a) L∞ error and (b) compute time with the size of the overlap
between subdomains for different domain decompositions.

Figure 6.23 also highlights impact of subdomain size on the performance of FFT al-
gorithms. The simulation time of the rank-three decomposition is shown both with and
without zero-padding, which is used to minimize prime factors of the subdomain size in
each dimension (see table 6.1) thus significantly improving performance of local FFTs.

Table 6.1: Summary of decompositions, compute times and errors for the HIFU kidney
sonication simulation using LFB approach with different arrangements of sub-domains and
overlap sizes. The sub-domains are zero padded to give small prime factors and the largest
prime factor in each dimension is listed. The memory usage is reported per GPU.

Decomp
(x, y, z)

Overlap
[grid points]

Sub-domain
[grid points]

Factors
(x, y, z)

Memory
[GB]

Compute Time
[h:min]

L∞ error
[%]

(1, 1, 8) 4 972 × 972 × 192 (3, 3, 3) 21.8 4:55 0.20
8 972 × 972 × 192 (3, 3, 3) 22.2 6:45 0.039
12 972 × 972 × 192 (3, 3, 3) 22.6 8:21 0.020
16 972 × 972 × 192 (3, 3, 3) 23.0 9:50 0.014

(1, 2, 4) 4 972 × 512 × 384 (3, 2, 3) 23.1 5:17 0.091
8 972 × 512 × 384 (3, 2, 3) 23.4 7:23 0.020
12 972 × 512 × 384 (3, 2, 3) 23.8 9:28 0.0072
16 960 × 512 × 360 (5, 2, 5) 22.8 11:20 0.0043

(2, 2, 2) 4 512 × 512 × 648 (2, 2, 3) 21.0 4:52 0.12
8 512 × 512 × 672 (2, 2, 7) 22.1 6:48 0.030
12 512 × 512 × 672 (2, 2, 7) 22.4 9:13 0.012
16 512 × 512 × 672 (2, 2, 7) 22.8 11:10 0.0064
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Chapter 7

Conclusions

With this chapter we conclude our work on enabling high-efficiency pseudo-spectral methods
on modern accelerated machines. Here, we summarize the most relevant conclusions of the
achieved results presented in this thesis, highlight our contributions and offer directions for
future exploitation of our work.

Our work has focused on improving computational efficiency and scalability of numer-
ical models for wave-like problems based on pseudo-spectral approach in the context of
(GPU) accelerated machines and clusters. We chose to look into ultrasound models used
in medicine as there is a growing number of novel applications for large-scale simulations,
while there is also immense pressure on the cost of these simulation at the same time.

Chapter 1 was devoted to introduce problems in this area and models used to solve
them. In particular, the k-Wave model stood out among other state of the art models due
to its efficiency (especially in shared memory environments) and wide use in practice. In
the following chapter (chapter 2), we illustrated the misfit between this model and recent
developments in HPC architectures due to its high communication overhead leading to poor
scaling.

To improve upon k-Wave approach, we had to weight against each other two conceptual
approaches, an alternative discretizations to pseudo-spectral method used by k-Wave and
a domain decomposition. The direct comparison of multiple discretizations of the same
model is challenging and would require efficient implementations using each discretization.
In chapter 3, we therefore used an alternative approach in which we stripped the model
down to its simplest elements, wave and Burgers’ equations. We discretized these two equa-
tions with (k-space) pseudo-spectral, FDM, DGM and FEM methods comparing numerical
performance and efficiency of resulting solvers. This approach allowed us to confirm that
the k-space pseudo-spectral method is significantly more suitable to our problem than the
alternatives and the domain decomposition is a better way to reduce the communication
overhead in the k-Wave model.

In chapter 5, we analyzed a variety of domain decomposition techniques and showed
that the overlapping decompositions are the most suitable for our purposes. To overcome
the periodic nature of the Fourier basis with reasonable computational efficiency, we inves-
tigated a range of Fourier extension methods, settling on windowing approach. We showed
that the method allows for reasonable degree of flexibility in the terms of accuracy and
performance for both of our building block equations. Further, we developed a numerical
optimization technique to find windowing functions that outperform Error function in our
use case.
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Having found optimal techniques (k-space pseudo-spectral method with Local Fourier
basis) to achieve aforementioned goals, we applied those techniques to the k-Wave model
introduced in chapter 4. Chapter 6 describes derivation of our k-Wave LFB model, its
practical implementation and evaluation. The implementation, based on MPI+X design
pattern with OpenMP, CUDA or OpenCL, allows to support almost all common accelerator
architectures.

We have presented detailed analysis of the implementation across variety of HPC plat-
forms and accelerators. The analysis showed that k-Wave LFB achieves vastly superior
strong and weak scalability compared to global k-Wave on non-accelerated clusters. Further
we showed that the reduction in communication enables efficient use of GPU accelerated
clusters. Finally, realistic scenario of HIFU kidney sonication was used to confirm usability
and benefit of our solution in practice.

7.1 Key Contributions
The primary contribution of this thesis is a novel domain decomposition approach based on
local Fourier basis (LFB) and its application to the state of the art ultrasound simulation
package (k-Wave GDD) widely used in medical applications. We have used the proposed
DDM to implement the k-Wave LFB solver, which significantly improves upon efficiency
of the original k-Wave solver. We have shown that the k-Wave LFB can be 4.8 to 7.5
times faster (while using the same hardware resources) depending on the chosen accura-
cy/performance compromise. Further, significant reduction in the communication allowed
our implementation to efficiently utilize GPU accelerated machines with near perfect weak
scaling.

We have evaluated a range of approaches to LFB based domain decomposition and
performed detailed analysis of its variants and their properties in the context of wave-
dominated problems. We have contextualized the method with other DDMs and shown its
similarity to the Restricted Additive Schwarz method.

Finally, we have proposed an application specific optimization approach to the design
of the bell functions utilized by LFB, which can outperform traditionally used windowing
functions thus allowing to reduce overlap depth while maintaining accuracy.
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Chapter 8

Future Work

The domain decomposition approach for Fourier pseudo-spectral methods devised in this
thesis opens a number of research avenues.

8.1 Irregular Simulation Domains
The domain decomposition allows for irregular simulation domains, which are notoriously
difficult to model with methods using Fourier basis. Figure 8.1 shows an ultrasound simula-
tion, which utilizes a combination of domain decomposition and PML layer to more closely
follow shape of the focused wave and save 25% of computational resources.
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Figure 8.1: Sparse two dimensional simulation of focused ultrasound (initial wave profile in
red) in domain decomposed into 4-by-4 sub-domain grid. The sub-domain map (left) shows
sub-domains included (yellow) and left out (dark blue) from the simulation with PML layer
in between. The simulation exhibited sub-2% error while saving 25% of computational
resources.

8.2 Hybrid Models Coupling
The weak sub-domain coupling of the proposed domain decomposition method allows for
model coupling and hybrid simulations. Figure 8.2 shows coupling between ultrasound
models for fluid and elastic medium. The simulation domain is subdivided into 4-by-4 sub-
domains with four of them (surrounding a green disk with non-zero shear sound speed –
see fig. 8.2a) using the elastic model. The equivalency of these models in regions of zero
shear sound speed allows for a straightforward coupling through overlaps. The combination
of these models allows to accurately model isolated regions of elastic materials submerged
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in fluid medium (such as bone tissue surrounded by soft tissue), while maintaining efficiency
advantages of fluid model in the majority of the domain.
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(b) Fluid-only simulation result
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(c) Elastic-only simulation result
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(d) Hybrid simulation result

Figure 8.2: Hybrid ultrasound simulation in two spatial dimensions in 4-by-4 decomposition
using elastic in four (yellow) and fluid model in the remaining sub-domains. In contrast to
the fluid simulation (b), the hybrid simulation (d) allows to model non-zero shear sound
speed (green disk) using elastic model (c), while maintaining advantages (such as PML and
k-Space) of the fluid model in majority of the domain.

The domain decomposition can be similarly used to mitigate drawbacks of the k-Space
pseudo-spectral method such as poor ability to capture jump discontinuities in medium
properties.
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Figure 8.3: Comparison of hybrid k-Space/DGM and pure k-Space simulation of wave
propagation through an off-grid jump discontinuity in sound speed (black dashed lines).
The DGM patch is applied to the interval between blue dashed lines on the left.
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Figure 8.3 shows a hybrid simulation, which uses a small DGM sub-domain over the
jump discontinuity in sound speed to capture interface with a sub-grid accuracy. The
point-wise difference of the hybrid and k-space solution shows that the hybrid solution
converges to the over-sampled k-space solution (see fig. 8.4). However, it also shows spurious
oscillations, which suggest that the additional filtering may be required to optimize coupling
of the models.

0 0.2 0.4 0.6 0.8 1 1.2
-0.2

-0.1

0

0.1

0.2

Pointwise p
hybrid

- p
k-space

0 0.2 0.4 0.6 0.8 1 1.2
-0.04

-0.02

0

0.02

0.04

Pointwise p
hybrid

- p
4x k-space

Figure 8.4: Comparison of hybrid k-Space/DGM and pure k-Space simulation of wave
propagation through an off-grid jump discontinuity in sound speed (black dashed lines).
The DGM patch is applied to the interval between blue dashed lines on the left.

The detail of fig. 8.3 (fig. 8.5) near the interface clearly shows primary source of the
error in k-Space method. The method cannot precisely capture the position of the interface
which causes noticeable phase shift of both transmitted and reflected part of the wave.
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Figure 8.5: Detail of the reflected wave near interface in Figure 8.3 (top-left) clearly shows
phase error of the k-Space solution due to its inability to precisely capture interface position.
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