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Abstract

Automated execution of computational workflows has become a critical issue in achieving
high productivity in various research and development fields. Over the last few years,
workflows have emerged as a significant abstraction of numerous real-world processes and
phenomena, including digital twins, personalized medicine, and simulation-based science
in general. Workflow execution can be viewed as an orchestration of multiple tasks with
diverse computational requirements and interdependencies, determined by the workflow
structure. Due to the complexity of workflows, execution can only be satisfied by remote
computing clusters or clouds. As these resources are expensive, workflow scheduling plays
a crucial role in the automation process.

The primary objective of this thesis is to enable automated and reliable execution of
computational workflows. Moldable tasks, defined within these workflows, permit execu-
tion across multiple computational resources. This affects both the workflow makespan
and computational cost, but not equally due to varying computational efficiency. Conse-
quently, the thesis investigates various approaches to workflow scheduling and execution
optimization, focusing on methods based on genetic algorithms. Three optimization ap-
proaches—targeting both on-demand and static computational resource allocations—are
examined and discussed. The optimization process is supported by a performance database,
which is collected on-the-fly and maintains parallel scaling of executed tasks and diverse in-
puts. The sparsity and incompleteness of the performance database are addressed through
different interpolation methods. The proposed approaches demonstrate better utilization
of computing resources while allowing prioritization of various optimization criteria, such
as workflow makespan and computational cost. The final implementation was experimen-
tally validated using real workflows executed on high-performance computing clusters at
the I'T4Innovations national supercomputing center.

Additionally, this thesis presents the design and development of a comprehensive system
for automated workflow scheduling, execution offloading and monitoring, completed with
features such as accounting, reporting, and fault tolerance. This system, named k-Dispatch,
has been commercialized for the neuroscience market by Brainbox, Ltd.
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Abstrakt

Rutinni automatizované vykonavani slozitych vypocetnich procest, tzv. workflows, se stalo
naprosto klicovym pro dosazeni vysoké produktivity v riznych oblastech védy a vyzkumu.
Vypocetni workflows se v poslednich nékolika letech staly dilezitou abstrakci mnoha real-
nych procesu a jevi, jako napt. digitalnich dvojcat, personalizované mediciny ¢i na simulaci
zalozené védé obecné. Vykonani workflow 1ze vnimat jako orchestraci mnoha tloh s rtiznymi
vypocetnimi pozadavky a vzajemnymi zavislostmi. Vzhledem k vypocetni slozitosti real-
nych workflows je jejich provadéni mozné pouze na vypocetnich klastrech nebo v cloudu,
kde hraje efektivni pldnovani a optimalizace provedeni workflows klicovou roli.

Hlavnim cilem této prace je umoznit automatizované a spolehlivé vykonani vypocetnich
workflows. Tyto workflows se casto skladaji z distribuovanych tloh, které jsou schopny
bézet na nékolika vypocetnich prostiedcich najednou, dokonce umoznuji toto mnozstvi
meénit. Anglicky se tyto ulohy nazyvaji moldable tasks. Mnozstvi prirazenych prostiedku
ovliviiuje jak dobu vykonani workflow, tak i cenu vypoctu, ovSem ne stejnou mérou diky
rozdilné vypocetni efektivité. Proto tato prace zkoumad rizné pristupy k planovani a op-
timalizaci vykonani workflows, prevazné se zabyva optimaliza¢nimi technikami zalozenymi
na genetickych algoritmech. Préce pfredstavuje tfi optimaliza¢ni pristupy zkoumajici dy-
namicky i staticky pfidélované vypocetnich zdroje. V procesu optimalizace hraje dilezitou
roli vykonnostni databaze, kterd je pribézné vytvarena a jejiz dlohou je uchovavat par-
alelni skalovani provadénych tloh pii riiznych vstupech. Ridkost a netiplnost vykonnostni
databéze je TeSena riznymi interpolaé¢nimi metodami. Navrhované pristupy vykazuji lepsi
vyuziti vypocetnich prostredkii a umoznuji prioritizaci rtiznych optimalizacnich kritérii,
napi. doby provadéni workflow ¢i ceny vypoctu. Finalni implementace byla experimentalné
ovérena na realnych workflows vykondvanych na klastrech v ndrodnim superpocitacovém
centru I'T4Innovations.

Tato prace rovnéz predstavuje navrh a implementaci komplexniho systému pro auto-
matické planovani, vykonavani a monitorovani workflows na vypocetnich klastrech. Systém
rovnéz disponuje dalsimi funkcemi jako jsou uctovani, reportovani ¢i odolnost vuci chy-
bam. Tento systém, zvany k-Dispatch, byl ispésné komercializovan v oblasti ultrazvukové
neurostimulace a je nabizen spole¢nosti Brainbox, Ltd.
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optimalizace, HPC jako sluzba, vysoce narocné pocitani, cloud.
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Rozsireny abstrakt

Personalizovand medicina je velice slibné se rozrustajici se odvétvi v oblasti péce o pa-
cienty. Pri sestavovani lécby zde hraje hlavni roli pacient a jeho individualni potfeby.
Personalizovand medicina je vyznamnd zejména v oblasti onkologie, kde je zvySeny duraz
na vcasnou detekci, velice presnou diagnézu a operacni strategie. Vhodné zvolena lécba
dokéze maximalizovat svou ti¢innost a minimalizovat toxicitu. Rakovina se fadi na predni
pricky nemoci zpusobujici smrt v ekonomicky vice i méné vyspélych zemich. Nezdravy
zivotni styl prispiva rovnéz velkou vahou ke vzniku této nemoci. V roce 2020 bylo po celém
svété zaznamendno pres 18 miliont novych pripada rakovinovych onemocnéni a z toho 10
miliont tmrti. Predpoklada se, ze cisla stdle porostou a rakovina se i budoucnu bude radit
mezi nemoci s nejvyssi smrtnosti. Biomedicinsky ultrazvuku dnes stoji v ¢ele nové pouzi-
vanych metod pro diagnostiku rakoviny i jeji naslednou lécbu. V porovnani s konvenénimi
metodami jako je radioterapie, chemoterapie ¢i oteviené operace, neni ultrazvuk invazivni,
ionizujici a zplisobuje méné komplikaci pti 1éché.

Spolecnym jmenovatelem biomedicinskych aplikaci ultrazvuku je nutnost presného, nein-
vazivniho a bezpeéného zacileni energie z ultrazvukového vysilace do lékarem specifiko-
vaného mista v lidském téle. Aby mohla byt 1é¢ba prizpusobena kazdému pacientovi, je
potfeba provést simulaci dané procedury a odhadnout jeji dopady na lidské télo. Odhad
vysledku zvolené lécebné procedury je silné zavisly na vypocetné naroc¢nych simulacich
siteni ultrazvuku lidskym télem, termalniho a tkanového modelu. Takové vypocty mohou
byt provedeny pouze pomoci center pro vysoce naro¢né pocitani (z angl. High-Performance
Computing, HPC'). Soubor uloh, které tvori takto ndro¢ny vypocet, nazyvame workflow.
Formélné se jedna o orientovany acyklicky graf, zkracené DAG (z angl. Directed Acyclic
Graph), ktery definuje jednotlivé tlohy, zavislosti mezi nimi a parametry spusténi.

Koncovi uzivatelé, v tomto pripadné medicinsti pracovnici, vsak nedisponuji potrebnymi
znalostmi a zkusenostmi, aby mohli efektivné vyuzivat HPC zdroje. Z tohoto divodu jsme
navrhli néstroj, ktery disponuje prehlednym a jednoduchym rozhranim, jenz umoznuje kon-
covym uzivatelim pohodlné spoustét a monitorovat jejich tlohy. Stézejni vlastnosti tohoto
nastroje je, ze nepredpoklada specifikaci spoustéci konfigurace, tj. pocet vypocetnich uzli,
dobu vypoctu tuloh, apod., ze strany uzivatele. Na druhou stranu ndastroj tyto parame-
try optimalizuje s cilem maximalizovat propustnost, minimalizovat cenu vypoctu a celkovy
vypocetni ¢as. Optimalizaci téchto parametri je vyznamnou oblasti, kterou se tato prace
zabyva.

Prace se opird o pét stézejnich ¢lankh autora, které jsou komentovany v textu. Cilem
vyzkumu bylo poskytnout automatizované a bezporuchové vykonani slozitych workflows.
Prace takto reaguje na dnesni velice komplexni systémy pro vysoce naro¢né poéitani (HPC),
které nemohou byt vyuzivany uzivateli z akademického prostredi a primyslu bez fadnych
a hlubokych znalosti dané problematiky. Vytvorenim vhodného rozhrani a efektivniho
pldnovani se predpokladd (a) priblizeni HPC a nejnovéjsich technologii béznym uzivateliim,
(b) zvyseni efektivity zpracovani workflows sofistikovanym planovanim spusténi berouci
v potaz aktudlni vytizeni HPC, (c) redukce plytvani vypocetnimi zdroji, snizeni celkové
vypocetni doby nebo ceny diky vhodnému vybéru parametra spusténi pro jednotlivé tlohy
v rdmci workflows, (d) poskytnuti tirovné odolnosti vic¢i chybdm restartovanim chybnych
tloh s ohledem na jejich vzajemné zavislosti v rdmci workflows, a (e) umoznéni vzniku
novych metod v dané oblasti optimalizace spousténi tloh a ziskani praktickych zkuSenosti
diky moznosti uzivateli spolupracovat na slozitych problémech.

Prace zkouma pristupy, techniky a nastroje pouzivané v dané oblasti optimalizace tloh
a workflows a poskytovani sluzeb HPC. Za tcelem optimalizace byly navrzeny a implemen-



tovany specialni optimaliza¢ni moduly, které vzajemné kooperuji. Tyto moduly sestavaji
z (1) Optimalizdtoru, (2) Estimdtoru, (3) Evaludtoru a (4) Kolektoru. Pfedmétem vyzkumu
pak byly moduly (1)—(3). Pro tcely experimentu byly vytvoreny dvé datové sady obsahujici
uméla i redlna vykonnostni data. Readlnd data byla namérena s vyuzitim softwarového baliku
k-Wave na klastrech superpocitacového centra IT4Innovations. k-Wave je state-of-the-art
nastrojem vyuzivanym napriklad v aplikacich pro fotoakustické snimkovani prsou, tran-
skranialni snimkovani mozku, neurostimulace a planovani lécby vyuzivajici metodu HIFU
(z angl. High Intensity Focused Ultrasound) pti operacich nddorovych onemocnéni v led-
vinach, jatrech a prostaté. Déle byly vytvoreny workflow struktury rtznych velikosti in-
spirované redlnymi medicinskymi aplikacemi.

Prace se podrobné zabyva vyuzitim genetickych algoritmt pro potieby optimalizace
parametri spousténi dloh. V rdmci modulu (1) byly zkoumény tii pfistupy k optimal-
izaci: (a) lokélni optimalizace na trovni jednotlivych tloh, (b) globalni optimalizace na
urovni workflows s vyuzitim sdilené alokace, a (c) globélni optimalizace na tdrovni work-
flows s vyuzitim statické alokace. Pro vSechny pristupy byly navrzeny fitness funkce. Tyto
funkce mohou byt obecné vyuzity jinymi optimaliza¢nimi metodami. Optimalizace (b) navic
zavadi vahovaci koeficient, ktery umoznuje najit kompromis mezi dvéma protichudnymi op-
timaliza¢nimi kritérii, kterymi jsou celkova doba vypoctu oproti cené vypoctu. V ramci
modulu (2) byly zkoumény rizné metody linedrni interpolace pro (a) chybéjici data silného
skalovani v rdmci jedné domény a (b) odhad silného skalovani pro nezndmou doménu. Pro
modul (3) bylo zkouméno vyuziti existujicich simuldtoru klastru. Nakonec byl navrzen a
implementovan vlastni simulator s ndzvem Tetrisator, ktery se vyznacuje kratkou dobou
béhu a je tak vhodnym kandidatem pro vyuziti v ramci evaluace fitness funkce. Navrzené
pristupy byly verifikovany v simuldtoru a na realném klastru I'T4Innovations s vyuzitim
statické alokace.

Experimenty potvrdily, ze pomoci predstavenych optimaliza¢nich technik lze najit takové
parametry spusténi pro jednotlivé tilohy v ramci workflows, které minimalizuji cenu vypoctu,
celkovou dobu vypoctu nebo zlepsuji propustnost. Doba nalezeni parametru spusténi je
zévisla na velikosti workflow, tj. z kolika tloh workflow sestavd. Pro testované workflows
o velikosti az 64 tloh jsme byly schopni nalézt optimalni parametry spusténi pod dvé min-
uty s uspésnosti vyssi nez 90 %. Vyzkum provedeny v ramci této prace potvrdil, Ze jsme
schopni navrhnout a vytvorit takové reseni, které poskytuje automatizované a bezporuchové
vykonani workflows.

Realiza¢nim vystupem této prace jsou jednak implementované optimalizac¢ni techniky,
ale také néastroj k-Dispatch, ktery poskytuje HPC jako sluzbu a provadi planovani spusténi
workflows (tj. optimalizace parametri spusténi, vybér vypocetnich zdroju atd.), jejich
samotné spusténi a monitorovani. Kromé toho implementuje doprovodné funkce jako je
reportovani a uctovani. k-Dispatch je aktudlné nasazen jako soucast pokrocilého modelo-
vaciho nastroje k-Plan pro ultrazvukové planovani, uvedeny na trh firmou BrainBox, Ltd.
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Chapter 1

Introduction

1.1 Motivation

Personalised medicine is an emerging approach to patient care in which an individual’s char-
acteristics guide clinical decisions aiming for the right treatment for the right patient at the
right time [30]. Personalised medicine is particularly important in oncology, where increased
emphasis is placed on early detection, accurate diagnosis, and precise surgical strategies.
Appropriate selection of treatment for patients, to maximise efficacy and minimise toxicity,
has long been a fundamental part of routine clinical practice, but until recently, clinicians
had limited tools to determine benefits and potential threats.

Cancer is a leading cause of death in both more and less economically developed coun-
tries; the burden is expected to grow worldwide due to the growth and ageing of the
population, particularly in less developed countries. The adoption of lifestyle behaviours
that are known to increase cancer risks, such as smoking, poor diet, physical inactivity,
and reproductive changes, have further increased the cancer burden. About 18.1 million
new cancer cases and 10 million deaths occurred in 2020 worldwide, and this number is
continuing to grow [64]. According to the Czech Society of Oncology," more than 73,000
tumours diseases are newly diagnosed in the Czech Republic every year. Then, almost
27,000 patients die of the disease annually.

The applications of biomedical ultrasound sit at the heart of rapidly emerging cancer
diagnosis and treatment procedures. When compared to conventional cancer diagnosis and
treatment modalities, such as biopsy, open surgery, radio- and chemo-therapy, ultrasound
is non-invasive, non-ionising, and causes fewer complications after treatment. Traditional
treatment procedures suffer from severe limitations and side effects (radiation and drug
dosage limits, operability, repeatability, long-lasting consequences) that reduce patients’
chances of a successful cure. Moreover, most people need to get a combination of these
treatments. These methods carry significant morbidity and mortality and may be associated
with long in-patient stays and recovery periods. [74]

Non-invasive treatment procedures use high-intensity focused ultrasound (HIFU). HIFU
is a medical procedure that uses high-frequency sound waves to heat and destroy targeted
tissue without damaging surrounding tissue in the patient’s body. Over 250,000 patients
throughout the world have been treated using HIFU surgeries with great success.” The
number of patients being screened by ultrasound is countless. The application of ultra-

"https://www.linkos.cz/english-summary/czech-society-for-oncology/
2https: //www.fusfoundation.org/content/images/pdf/FUSF_State_of_the_Field_Report_2019.pdf
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sound in clinics can be used in diagnosis and therapeutic procedures as well. Examples
of ultrasound applications are non-invasive cancer tissue ablation [1, 65, 24|, targeted drug
delivery [51] significantly reducing the drug dosage, diagnostic imaging [38], and neurostim-
ulation (treatment of epilepsy, Alzheimer’s or Parkinson’s disease) [10].

Ultrasound is relatively inexpensive compared to other modes of investigation, such as
computed X-ray tomography or magnetic resonance imaging (MRI). It has no known long-
term side effects and rarely causes any discomfort to the patient [46]. It images muscle, soft
tissue, and bone surfaces very well and is particularly useful for delineating the interfaces
between solid and fluid-filled spaces. Therefore, it can show the structure of organs. On
the other hand, this method has problems with penetration in bones (skull, ribs, ...)
and calcifications (in the kidney, upper urinary tract, ...). The depth of the ultrasound
penetration may be limited by the frequency of imaging as well as the patient’s body
structure (obese patients). For the whole summary see [2, 13, 49].

In order to adapt therapeutic ultrasound procedures to the patient’s needs, complex
physical models have to be evaluated prior to the treatment to tailor treatment parameters
and estimate the treatment outcome. These models can also be used during the treatment to
monitor the procedure progress and after the treatment to evaluate the treatment outcome
and predict further disease development.

One physical model widely used in the international community is the open-source k-
Wave toolbox designed for the time-domain simulation of acoustic waves propagating in
tissues in 1, 2, or 3 dimensions [67]. The toolbox has a wide range of functionality, but at
its heart is an advanced numerical model that can account for both linear and nonlinear
wave propagation, an arbitrary distribution of heterogeneous material parameters, power
law acoustic absorption (thermal model), and the heating induced in tissue (tissue model).

Over the last decade, k-Wave has attracted a lot of interest amongst biomedical physi-
cists, ultrasonographers, neurologists, oncologists and other clinicians. Numerous applica-
tions of k-Wave have been reported, including in photoacoustic breast screening [38], tran-
scranial brain imaging [43], or small animal imaging [50]. k-Wave has also been used for
exciting applications of HIFU, including treatment planning of kidney [1, 65], liver [24] and
prostate tumour ablations [66], ultrasound neurosurgery and targeted drug delivery [51],
and neurostimulation [10].

Since the model computations are very complex and intensive, they generally cannot
be performed using desktop computers or small servers. Thus, it is essential to offload the
computational work to the cloud or High-Performance Computing (HPC) clusters. Each
application can be computationally described as a set of either independent or mutually
dependent tasks. A set of such tasks reflecting a real-world phenomenon is called a workflow
implemented as a Task Graph [53]. Workflows may consist of several levels of tasks with
differing computational and memory demands. The structure of a workflow also reveals
concurrency and mutual task dependencies.

Unfortunately, the composition of the processing workflow is complex and requires ad-
vanced knowledge. Moreover, running workflows in the cloud or HPC clusters represents
quite a big administrative overhead every day since advanced knowledge in computer sci-
ence is required. These computing facilities differ in architecture, libraries, tools and policies
implemented. Thus, the industry and medical practice show there is a great demand for
a middle-ware standing between clouds/HPCs and user applications and performing auto-
matic tasks and workflows scheduling and execution.

Over the last decades, *-as-a-service [52] solutions, acting as a middle-ware layer, have
become very popular. The history of this concept has its roots in the early days of computing



when mainframe computers were shared among users in large organizations. It allowed them
to access computing resources on-demand and pay for only what they used. A big boom
then came with huge companies like Google, Amazon Web Services, Apple and Microsoft,
that offered their computing infrastructures, software, cloud, and streaming solutions as a
service. The main advantages of *-as-a-service solutions are that (1) they eliminate the need
to invest in hardware, software, and infrastructure, (2) are easily scalable and efficiently
respond to changes in demands, (3) internet connection provides huge flexibility in accessing
data and applications, and (4) faster deployment and security features.

1.2 Thesis Outline

This Thesis focuses on the computational aspects of complex biomedical workflows, with
a particular emphasis on cluster management systems and workflow execution planning.
The ultimate goal is to apply multi-objective optimization techniques to enable safe and
automated execution of workflows in large, heterogeneous environments.

The Thesis comprises a collection of selected papers by the author and is organized as
follows. This chapter introduced the research area, revealed real-world applications, and
provided the motivation for research and development. Chapter 2 surveys job scheduling
and execution heuristics in heterogeneous environments, including cloud-based tools and
High-Performance Computing (HPC) facilities, as well as the automation of executions.
Chapter 3 lists the challenges in the research area and defines the aims and objectives of
this Thesis. Chapter 4 provides a high-level overview of the designed system for workflow
execution planning, while Chapter 5 details its implementation and presents experimental
results. Chapter 6 introduces selected research papers and summarizes their findings. Addi-
tionally, this chapter includes a list of other publications, research projects, fellowships, and
awards. Finally, Chapter 7 concludes by summarizing the challenges, aims, and outcomes
of this thesis, highlighting the deployment of software used for planning neurostimulation
procedures, and suggesting future research directions.



Chapter 2

State of the Art

This chapter brings fundamental definitions and a research overview of areas involved in
this Thesis. Attention is particularly pointed to (1) Workflow definition and description,
(2) Processing frameworks and workflow management systems, (3) Workflow execution
planning and scheduling, and (4) Cluster simulators. Various paradigms, their history,
state-of-the-art tools, their advantages and disadvantages, and challenges are discussed.

To prevent misunderstanding, terms job and task are defined and differentiated here.
Both terms may be considered interchangeable since both specify what shall be executed
and how. However, a task decidedly reveals dependencies and the position in a task graph.
Tasks are used in an abstract way but may hold some execution details. On the other hand,
a job rather serves as a resource request submitted to the particular remote computing
machine and its batch scheduler. Jobs may or may not reveal dependencies since this may
be a subject of submission command. Jobs are often defined using machine-specific shell
scripts, so-called a job (submission) script.

2.1 Workflow Definition

Workflows represent a standardized way to define processes and activities and may be used
in a variety of contexts. A well-designed workflow can help improve productivity, reduce
errors, and ensure that projects are completed on time and within budget. Effective work-
flows are designed to be reliable and easy to follow. They often involve the use of specialized
tools and software, such as workflow management systems, or automation software. [6]

Workflow structure is defined as a Directed Acyclic Graph (DAG), also referred to as
a Task Graph [53]. DAG G is defined as G = (V, E) where V is a set of v nodes in the
graph (representing tasks), and E is a set of e edges (representing data flow, dependency
relationship, and constraints).

There are multiple notations and languages using which workflows can be described and
shared amongst users and tools. We can also distinguish between graphical and text de-
scription approaches. Examples of tools providing a graphical interface are, e.g., Kepler [37]
and Taverna [70]. Such tools may also implement procedures that transform the graphical
representation into a text form. Contrary, many tools rely on scripting languages such as
Python or R to define workflows. The selection of the notation or language depends on the
specific needs of the organization or project as well as the tools and systems being used. [23]

Graphical format transforms DAGs into a diagram such as Unified Modelling Language
(UML) diagram or a flowchart. UML is a general-purpose modelling language providing



a standardized notation for creating visual representations. Workflow diagrams are very
powerful in expressing the aspect of process models. In a very small space, they convey
tasks, sequencing, decisions, participation, and information. [36]

Business Process Model and Notation (BPMN)! is a graphical language used to de-
scribe business processes and workflows, and provide a standardized notation for creating
visual representations of processes, including the flow of tasks, decisions, and information.
Workflow Management Coalition (WfMC) Standard? is a set of standards providing a com-
mon framework for workflow modelling and execution. It includes standards for workflow
definition, workflow execution, and workflow interchange.

JSON and YAML can be used to represent workflows, their tasks, inputs and outputs.
But they rather make a base for different languages and notations. Distributed Analytics
eXtensions (DAX) is an XML-based description of DAGs. DAX is used by Pegasus to
define workflows including a number of built-in data processing tasks, such as file transfers,
data transformations, and executable commands. [14]

A popular programming language for describing and automating scientific workflows
is Workflow Description Language (WDL)? that is portable across different computing
environments. Common Workflow Language (CWL)* is a JSON-based open standard for
describing workflows and tools.

2.2 Processing Frameworks and Workflow Management
Systems

This section discusses the most commonly used processing frameworks and workflow man-
agement system that have been developed and actively used during last decade.

2.2.1 Processing Frameworks

The purpose of processing frameworks is to simplify the development process, reduce de-
velopment time, and increase the quality and maintainability of the developed software.
Widely used data processing frameworks, especially for big data analytics, include
Hadoop [59], a MapReduce-based system for parallel data processing, Apache Spark [73],
a system for concurrent processing of heterogeneous data streams, Apache Storm,” for real-
time streaming data processing, and HTCondor,’ for managing compute-intensive jobs.
These tools, however, do not allow intertask dependencies to be specified. Sometimes,
such frameworks are implemented within more general workflow management systems (for
example HTCondor/DAGMan’ and Pegasus [14]) to schedule and offload the tasks.

2.2.2 Scientific Workflow Management Systems

Workflow management systems (WMSs) first emerged in the 1990s as a key technology for
supporting the coordination of complex scientific and business processes. These systems
were designed to automate the execution of workflows and to address a phenomenon called

"https://www.bpmn.org/
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‘https://www.commonwl.org/
Shttps://storm.apache.org/
Shttps://research.cs.wisc.edu/htcondor/
"https://research.cs.wisc.edu/htcondor/
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workflow decay. Workflow decay [40] refers to the poor reproducibility of workflows designed
to solve complex scientific problems and accelerate scientific progress. However, users, i.e.,
scientists in this case, often find it difficult to reuse others’ workflows. [61]

Over the last more than a decade, there have been developed manifold middle-ware
projects focusing on running computational tasks on high performance and cloud resources
to automate and accelerate scientific progress. For example, Globus [19] or gLite® rank
amongst grid [20] frameworks. They serve scientists to share computing power, databases,
tools, and screen resource management out of users. Workflow tools offer a formal way
to define, automate, and repeat multi-step computational procedures. Such tools usually
provide services for resource monitoring and management, security and file management.
Workflows supported by those tools are usually defined as DAGs and serve to specify the
tasks that have to be performed during a specific in-silico experiment. For instance, as a re-
action to this problem, a framework for facilitating the reproducibility of scientific workflows
at the task level by integrating execution environment specifications into scientific workflow
systems was proposed in [41]. Scientists were given complete control over the execution en-
vironments of the tasks in their workflows and integration of the execution environment
specifications into scientific workflow systems. [41] However, a regular researcher might not
have enough background knowledge to configure and tune the system to their needs. In-
sufficient computing background (not the main focus of scientists’ work) presents a strong
barrier to the adoption and distribution of scientific applications. Therefore, technical de-
tails of workflow execution should be delegated to the workflow and resource management
system, in such cases.

For example, Taverna [70] brings together a range of features to make it easier for users to
find, design and execute complex workflows and share them with other people using a drag-
and-drop interface. Therefore, Taverna integrates myExperiment’ and BioCatalogue [5]
and creates an interface to work with these tools. Taverna workflows are built using the
Taverna Workflow Language (TWL) and can be executed on various environments, i.e.,
local desktops (using Taverna Workbench'”), on Taverna servers, clouds (for example, on
Amazon Cloud) and grids, using its own Workflow Management System. Taverna has a
huge domain of usage but focuses on bioinformatics and data-intensive science, and supports
a wide range of web services, tools and databases.

Similarly to Taverna, Kepler Workbench [37] allows computations over local desktop
computers, grid and cloud computing facilities. The user graphical interface helps users to
perform complex simulation workflows. Kepler allows building workflows using the Kepler
Scientific Workflow System. It offers a library of components, called actors, which are
used to build workflows by connecting them through data and control flow. Kepler has a
focus on environmental research and ecological science. Both Taverna and Kepler focus on
researchers and experienced users.

Probably the most advanced WMS developed during the last two decades is Pegasus [14].
Pegasus executes large-scale scientific workflows and data-intensive applications on grids,
and in clouds. Users can create their own workflows using Python API or YAML, and
provide input files together with executables using external catalogues, e.g., replica, trans-
formation, and site catalogues. Pegasus also provides a combination of different heuristics
and mechanisms for optimizing resource allocation. Some of the commonly used heuristics
in Pegasus include backfilling, priority-based scheduling and job clustering packing a bunch

Shttps://glite.web.cern.ch/glite/
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of tiny jobs or such jobs sharing the same feature. Users may adjust and customize these
heuristics to meet the specific requirements of different workflows and environments.

FabSim [25] shares functionality with mentioned middleware toolkits such as Globus or
glLite. However, FabSim aims at experienced computational scientists and does not pro-
vide decision-making in terms of planning and monitoring. Its main goal is to simplify
researchers’ daily tasks. The only supported interface is a command line which is easy to
extend for developers. The key strength of FabSim is its focus on simplifying and acceler-
ating development activities. It simplifies the execution of previously defined workflows as
well as creation of the new ones.

Many WMSs focused only on short-running tasks, i.e., single-core applications, usually
terminating within a second. For such tasks, it is typical that the time needed for resource
allocation creates a significant scheduling overhead. Examples of WMSs addressing this
problem include Dask'' and HyperLoom [12]. These tools usually implement their own
scheduling mechanism and heuristics.

Dask handles short-running tasks and can reduce file system usage. However, it does
not support native pipelining of third-party applications. Dask offers both high-level (e.g.,
NumPy objects) and low-level programming user interfaces.

HyperLoom [12] is a platform for defining and executing scientific workflows in large-
scale HPC systems. Its goal is to minimize the overall workflow execution time respecting
tasks’ and the environment’s resource constraints. HyperLoom implements an optimized
dynamic scheduler that schedules the tasks reactively with a low overhead since the exe-
cution time of individual tasks is not known in advance. Moreover, the scheduler respects
task dependencies and prioritizes placements that induce the smallest possible inter-node
data transfers. Data produced by tasks are kept directly in memory and can be accessed by
any other task without additional overhead. HyperLoom allows the chaining and execution
of third-party applications. HyperLoom enables users to define and execute workflows us-
ing its client application. Although HyperLoom was originally designed to be used within
HPC infrastructures, these infrastructures may be unavailable or too expensive especially
for small to medium workloads. Therefore, HyperLoom developers started to aim at public
cloud providers since the performance of their machines is comparable to those in HPC
systems. However, network solutions used in HPC systems offer incomparably higher inter-
node throughput. HyperLoom focuses on experienced users.

Many tools classified as HPC as a Service tools, were created and have been used
by supercomputing centres to satisfy automated executions of particular classes of tasks.
Their robustness and ability to support different HPCs and their schedulers differ. Many
of them stand mainly on the programming interface or a command line. They differ in
license and some of them require having an active account at the computing facility or
a third-party company and having admin privileges for the tool installation. Examples
of tools under an active development are: a lightweight Python-based workflow manager
Autosubmit'? used at Barcelona Supercomputing Centre (BSC)'? in weather and climate
research, unifying the access to computational resources with different batch schedulers,
and providing job reports; Java and Python-based UNICORE (Uniform Interface to Com-
puting Resources) '* middleware developed in Juelich supercomputing centre providing uni-
fied access to different computational resources, and RESTful API for client integration;

Uhttps://www.dask.org/

2https://autosubmit.readthedocs.io/en/master/index.html
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FirecREST'® maintained by the Swiss National Supercomputing Centre and focusing on
Slurm only; SuperFacility '° enabling automated use of all NERSC computational resources
encapsulating services like data transfers, data sharing and data discovery; and HEAppE'”
developed by IT4Innovations supercomputing centre, enabling simple and intuitive access
to the supercomputing infrastructure and providing client-server interface to control user
computations.

2.3 Workflow Execution Planning and Scheduling

Workflow execution planning dates back to the 1970s when early computer systems started
to be deployed for scientific and industrial use. By that time, researchers began to recognize
the need for automated tools to manage and coordinate the execution of complex tasks,
especially in high-performance computing environments. [68]

In the 2000s, with the advent of cloud computing and big data, the demand for efficient
workflow execution planning increased significantly. This led to the development of new
algorithms and techniques for dynamic scheduling of workflows in large-scale distributed
systems, such as grids and clusters. [72]

The concept of HPC as a Service (HPCaaS) was introduced to bring traditional HPC
technologies to the era of cloud computing while aiming to easier access to computing
facilities and their applications [28].

Together with rapidly growing HPCaaS, there are also different service approaches in
HPC and Cloud. The main service approaches according to the National Institute of Stan-
dards and Technology (NIST) are: (1) Software as a Service (SaaS) being a model of
software delivery where the software application is hosted by a third-party provider and
made available to users over the internet, (2) Platform as a Service (PaaS) allowing a user
to develop or deploy applications using tools and infrastructure provided by the HPC or
cloud service provider, and (3) Infrastructure as a Service (IaaS) providing a complete vir-
tualized infrastructure, including computing resources (e.g., virtual machines, containers),
storage, and networking, which users can access and use as needed. [52]

Today, workflow execution planning and scheduling is a widely researched and widely
used technology with many organizations relying on it to support their business processes.
Research in this area continues to focus on improving the efficiency, scalability, and relia-
bility of workflow execution, as well as developing new techniques for integrating workflows
with other technologies, such as machine learning and artificial intelligence.

Effective workflow scheduling is the key issue in computing environments. A workflow
modelled as a DAG consists of several tasks that are scheduled for execution. Nevertheless,
these tasks differ in execution time, resource demands, dependencies, and software licenses.
The task scheduling strongly affects the efficiency and throughput of the HPC facility, as
well as the workflow makespan, which is defined as the total wall-clock time the workflow
stays in the system from the submission of the very first task to the completion of the last
one, including the queuing times. The makespan is very crucial for applications that are
meant to be used on a daily basis or require a guarantee to be completed within a specified
time frame.

The problem of workflow scheduling along with assigning the optimal amount of compute
resources to particular tasks is known to be NP-hard [15]. Even more, the task scheduling
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problems aiming for the smallest parallel execution time have been shown to be NP-complete
in the strong sense, even for an unbounded number of processors [56].

2.3.1 Workload Managers and Batch Schedulers

In this Thesis, the terms Workload Manager and Batch (Job) Scheduler are related and
both interchangeable. Generally, a workload manager is a broader term that refers to a
piece of software to manage and schedule executions of jobs in a computing environment.
A batch scheduler is a specific type of workload manager that is designed for scheduling
batch jobs. The typical feature of such jobs is they are non-interactive and long-running.
Batch schedulers are often used in HPC environments to manage large-scale computational
workloads.

Supercomputing facilities employ commercial or open-source workload managers and
batch schedulers that contain job scheduling algorithms such as backfilling, First Come
First Served (FCFS), etc. For instance, Portable Batch System (PBS)!®:1? uses a backfilling
scheduling algorithm considering user and group priorities, and fair-share cluster policy.?’

The IT4Innovations?' supercomputing centre’s PBS scheduler first assigns each job an
execution priority, which is consequently used to select which job(s) to run. Job execution
priority is determined by the queue priority, fair-share priority and eligible time. Queue
priority has the biggest impact on job execution priority. Fair-share priority is calculated
on the recent usage of resources (projects with higher recent usage have lower fair-share
priority). This priority is calculated per project, therefore, all members of the project share
the same fair-share priority. The eligible time has the least impact on execution priority.
Eligible time is an amount (in seconds) of eligible time a job accrued while waiting to
run. Therefore, jobs with higher eligible time gain higher priority. IT4Innovations’ clus-
ters, Barbora and Karolina, use job backfilling scheduling algorithm. Therefore, it is very
beneficial to precisely specify the allowed job wall time before submission to enable better
scheduling and better resource utilization. Backfilling is an FCFS technique improved by
increasing the utilization of the system resources and by decreasing the average waiting
time in the queue. Backfilling fits smaller jobs in front of the higher-priority jobs if it is
possible, in such a way that the higher-priority jobs are not delayed. This allows keeping
resources from becoming idle when the top job (job with the highest execution priority)
cannot run. [62]

Another widely employed workload manager is Slurm (Simple Linux Utility for Resource
Management).”” Best supercomputers from the top of Top 500** chart such as American
Frontier, Japanese Fugaku or Finnish Lumi employ it. Slurm is highly scalable and per-
forms always a best-fit algorithm based on a Hilbert curve scheduling or a fat tree network
topology in order to determine the best match between the resources required by a job
and the available resources in the cluster. By using a best-fit algorithm, Slurm is able to
allocate resources in a way that balances the needs of multiple jobs and maximizes the
overall utilization of the cluster. Next, Slurm implements a couple of heuristics to improve
the performance of parallel computing clusters, e.g., backfilling, fair-share scheduling or
topology scheduling. [47]

Bhttps://wuw.openpbs.org/
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However, as mentioned before, developers of workflow management systems sometimes
implement their own schedulers, e.g., HyperLoom, operating above those used in HPC
centres. Another example is the NCSA (National Center for Supercomputing Application
at the University of Illinois) scheduler tool’* designed for Blue Waters (Cray-based) and
other high-performance computing systems. If a researcher needs to handle thousands of
single-node jobs rather than a single job that can use a thousand nodes, the batch queuing
system becomes cumbersome. Furthermore, many HPC facilities limit the number of jobs a
user may submit into the queues. The other limitation of standard batch queuing systems
is that they do not allow node sharing between applications. NCSA scheduler allows a user
to aggregate single-core jobs as a single batch and jobs share the node between applications
using a simple configuration file. The scheduler allows queuing jobs and manages efficiently
independent single-core jobs, and can bundle OpenMP single-node jobs but cannot bundle
MPI jobs.

2.3.2 Autonomous Workflow Scheduling

Based on the flexibility in parallelism, parallel jobs can be divided into four different groups:
(1) Rigid, (2) Moldable, (3) Evolving, and (4) Malleable. Although this Thesis deals with
the moldable type of jobs, a brief description to make the differences clear is provided here.

Rigid jobs can only be excluded with a single fixed amount of compute resources which
cannot be adjusted by the batch scheduler (or even by the user), e.g., a single-threaded
job, or a parallel MPI job the user is limited to take exactly 4 computing nodes, etc.
As mentioned above, batch schedulers that implement backfilling are, almost exclusively,
adapted to deal with rigid jobs. Moldable jobs are flexible in the number of resources they
can utilize, which gives the batch scheduler/user some degree of freedom to pick a suitable
amount of resources to maximize the cluster utilization or minimize the makespan. However,
once launched, the number of resources cannot be adjusted and remains static for the whole
time of execution. Malleable and Evolving jobs are even more flexible and allow asking for
more resources or releasing some during the job execution. For evolving jobs, changes are
application initiated, while the changes in malleable jobs are system initiated. [17, 28]

During the last decade, many papers have focused on the estimation of the rigid workflow
execution time and enhancing HPC resource management. For example, Chirkin et al. [11]
introduces a makespan estimation algorithm that may be integrated into job schedulers.
Robert et al. [35] gives an overview of task graph scheduling algorithms. Menaka et al. [39]
gives a thorough overview of workflow scheduling algorithms and strategies used in cloud
computing.

Naturally, common HPC batch schedulers allow rigid workflow/task executions meaning
that users specify the number of resources together with other execution parameters upon
job submission. Those allocated computing units are fixed for the duration of the entire job.
In other words, such a rigid job consumes only a specific number of computing units and
this cannot be optimized by the batch scheduler in any way. Rigid executions may be used
for benchmarking, for example. However, most modern parallel applications are moldable,
being able to exploit different levels of parallelism and ask for various amounts of computing
resources just before their execution. In those cases, the remote facility performance could
be improved. Selecting an appropriate number of resources even for a single job is, however,
not an easy task. Users have to consider several factors like actual cluster utilization, and
strong and weak scaling of the executed program. The difficulty of this task is rising with
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a growing number of jobs executed within the workflow and their mutual dependencies.
Generally, this task is very time-consuming, tiring and requires advanced knowledge. Some
HPC workload managers have already tried to support moldable job submission, e.g., IBM’s
Load Sharing Facility (LSF).?> This workload manager allows users to specify a range of
required resources instead of a specific amount. The scheduling algorithm is, however, quite
simple implementing a greedy algorithm that allocates as many resources as possible at the
time of execution. [28]

While the field of rigid workflow optimization has been thoroughly studied, the au-
tonomous optimization and scheduling of moldable workflows have still been an outstanding
problem, although first opened two decades ago in [16].

Moldable workflow scheduling is considered a multi-criteria optimization problem. The
objective here is to allocate resources to tasks in a workflow so that a set of performance
criteria is optimized. These criteria can include objectives like minimizing makespan, max-
imizing resource utilization, minimizing cost or minimizing energy consumption. Naturally,
these objectives often conflict with each other, which makes moldable workflow scheduling
a challenging problem that requires the use of sophisticated optimization techniques to find
a suitable solution.

Linear programming is a powerful tool for workflow execution scheduling as it allows
decision-making to consider multiple conflicting objectives and constraints in a systematic
and efficient manner. However, the complexity of the problem and the computational
resources required for solving it increase with the size and complexity of the workflow, so
it may not always be the most suitable method for large and complex workflows. [60]

Constraint programming is a paradigm for solving optimization problems that involve
formulating the problem as a set of constraints on the variables and then finding values for
the variables that satisfy the constraints. The constraint programming approach is well-
suited for problems with complex constraints and for problems where the objective function
is not well-defined or is hard to optimize directly. [54]

Other commonly used optimization methods are, e.g., simulated annealing [34], hill
climbing [55] or random search [4]. These methods tend to get stuck in a local optimum and
are not very effective in exploring big search spaces. Genetic algorithms (GAs), however,
have several advantages over those heuristics. GAs are better suited for global optimization
problems, as they explore the entire search space. Moreover, GAs handle large and complex
search spaces efficiently and are less computationally expensive. Other advantages are
the ability to incorporate various objectives and constraints for scheduling, support of
flexible encoding schemes that can easily represent different scheduling policies and trade-
offs between objectives, and multi-objective optimization. [45]

The usage of genetic algorithms addressing the task scheduling problems has also been
introduced, e.g., a task graph scheduling on homogeneous processors using genetic algo-
rithm, local search strategies [29] and a performance improvement of the used genetic
algorithm [45]. However, a handful of works have taken into consideration the moldabil-
ity and scaling behaviour of particular tasks, their dependencies and the current cluster
utilization [7, 15, 71].

A significant complication in moldable workflow scheduling is the necessity to a priori
know the execution time for particular tasks under different resource assignments, e.g.,
complete strong and weak scaling of particular jobs stored in the performance database.
Several works addressed this problem [7, 28, 31, 63], however, they are either tightly con-
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nected to an existing HPC cluster and its scheduler, use idealized models of strong scaling
and parallel efficiency, or optimize only one criterion such as makespan, cluster throughput,
or computational cost. The user tunability of these approaches is thus limited.

In reality, it is often not possible to benchmark the execution time for all possible
combinations of the task types, task inputs and execution parameters. If a task has already
been executed with given inputs and execution parameters, the execution time can be
retrieved from the performance database. However, for unseen combinations, some kind of
interpolation or machine learning techniques have to be used.

2.4 Cluster Simulators

Due to many reasons such as the cost of resources, the reliability, the varying background
load or the dynamic cluster behaviour, experimental evaluation generally cannot be per-
formed on real systems. Moreover, to obtain reliable results, multiple workflows with vari-
ous execution parameters need to be performed using the same and controllable conditions
that simulate different real-life scenarios which is, however, often not possible. Simple job
scheduler simulators often provide a detailed model of the queuing behaviour as the jobs
arrive at the system upon submission, wait for available resources, start their execution,
and eventually leave the system upon their completion.

For example, PySS [42] is a trace-driven scheduler simulator. It implements a number
of scheduling algorithms, including several backfilling ones. The problem with simple simu-
lators is that they do not really model the target HPC system or the runtime behaviour of
the applications. PySS takes the job runtime directly from the job trace, although in reality
a job’s runtime is affected by the specific resources allocated to the job and by the applica-
tion’s runtime behaviour, which can be affected by other jobs running simultaneously [44].
Thus, more sophisticated simulators need to be used instead.

Alea 4 [33] is an event-based grid and cluster scheduling simulator that uses the GridSim
toolkit [9]. The simulator is able to deal with common problems related to job scheduling
like the heterogeneity of jobs, resources, and dynamic runtime changes such as the arrival
of new jobs or resource failures and restarts. The main part of the simulator is a complex
scheduler which incorporates several common scheduling algorithms working either on the
queue or the schedule (plan) based principle. The latest version of Alea uses a dynamic
workload adjustment technique enabling user-to-system interactions to be modelled prop-
erly. The input is still a static workload (historical workload traces extracted from the HPC
system itself, or from a public workload trace repository) but transformed into a dynamic
one afterwards.

Performance Prediction Toolkit (PPT) [44] is a full-scale HPC simulator. It can use
synthetic workload models or adopt job traces from existing HPC workload archives. The
simulator implements several commonly used scheduling algorithms, however, it does not
include backfilling algorithms. Other complex frameworks for studying grids, clouds, HPC
or peer-to-peer systems have been developed. However, the majority of these projects seem
to be inactive or abandoned. [33]
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Chapter 3

Aims and Objectives

Although the workflow execution and scheduling investigation dates back several decades
ago, it is still a hot research topic. There is a growing interest in developing novel workflow
scheduling algorithms that can address crucial challenges. Different approaches to workflow
scheduling have been explored, such as heuristic algorithms, machine learning, optimiza-
tion techniques, and game theory. Moreover, workflow scheduling may be considered as
an interdisciplinary research topic that involves computer scientists, domain experts, and
practitioners from different fields which can lead to the development of innovative solutions
to workflow scheduling problems. The next section gives a brief overview of open prob-
lems and challenges in workflow scheduling. Furthermore, the hypothesis of the work is
introduced accompanied by aims and particular objectives.

3.1 Open Problems and Challenges

Workflow scheduling is a complex and challenging problem. The execution of many tasks
on distributed and heterogeneous computing systems needs to be precisely coordinated.
Here, a list of selected open problems and challenges follows:

« Heterogeneous computing resources. Scheduling workflows on heterogeneous
computing systems poses many challenges, including load balancing, data transfer
optimization, and resource allocation. Different computing platforms (CPUs, GPUs,
FPGAs) have different computing power and capacity, data storage, and network
connectivity. Naturally, their incorporation affects the workflow makespan and cost.

« Workflow interoperability. To enable the reuse and sharing of workflows across
different domains and remote computing facilities, workflows have to be compatible
with different tools, for example, being able to orchestrate different types of exe-
cutable binaries and work under different environments. Another challenge is the
standardization of workflows description and compositions.

e Real-time decision making. When planning the executions of workflows, many
factors need to be considered, such as task input data and related parameters, type
and amount of requested resources, current availability and utilization of computing
facility, time and cost constraints, execution constraints like availability of particular
executable binaries for different hardware, and so on. The decision must be made
promptly before the situation at the facility has changed.
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e Quality of Service (QoS). Workflow execution and scheduling are supposed to
provide some guarantees about the quality of service including throughput, reliability
and fault tolerance. Proper monitoring of executed workflows and remote comput-
ing facilities is essential for QoS. Although the process of monitoring itself may be
straightforward, the challenge is to properly recognize and handle uncommon and
suspicious situations.

e Security. Workflow executions have to ensure the security and privacy of workflow
data and computations, especially when involving sensitive data, such as personal
health information or financial transactions. Some of the challenges include certified
binaries, data encryption and access control.

e Multi-objective optimization. In order to balance multiple objectives, such as
execution time, computational cost, energy consumption, and resource utilization,
workflow scheduling algorithms face several challenges. It is usually necessary to build
a performance database and employ different optimization algorithms and heuristics
to operate over this database, and finally perform, e.g., Pareto optimization or trade-
off analysis.

e Large scale workflows. Workflows can grow in their size as well as complexity
involving hundreds of tasks. The challenges include data replication and transfer,
tasks coupling and conforming to execution queues policies, such as the maximum
number of submitted jobs, disk quotas, etc. On the other hand, workflows capable of
employing a vast number of resources face challenges with long queuing times, star-
vation, and large execution parameters search space which makes the multi-objective
optimization even more complex.

3.2 Challenges from a User’s Perspective

Depending on their knowledge and experience, users may struggle with different actions
during the whole workflow execution process from constructing the workflow, over the data
transfers to the execution and monitoring. When the workflow structure is constructed,
its inputs and outputs together with dependencies are specified, accompanied by cluster-
specific execution parameters.

Workflows may be constructed fully manually by creating job submission scripts (fol-
lowed by a correct submission defining dependencies), using a programming language in-
terface or graphical user interface. When using some dedicated tool interface, e.g., a WMS,
the definition of workflows may be simplified in some manner. Workflows may or may not
be created and stored in a standard format. Assuming no WMS or specialized tool is used,
users have to access the cluster using the command line interface, manually transfer files
to an intended place and correctly submit workflow tasks to particular computing queues.

Submission is the most crucial point of the execution progress. It affects the workflow
makespan and its cost. The submission of every task in the workflow individually based on
the input data and the strong and weak scaling of the executed program is very demand-
ing and requires a low-level knowledge of the executed programs. Thus, the majority of
users stick with the default parameters of the selected computational queue. However, in
practice, the execution is completed in a much shorter time than requested. This leads to
unnecessarily long waiting times in queues, potentially higher computational cost, and low
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cluster utilization connected with the inefficiency of the batch scheduler. When submit-
ted correctly (although possibly not sensibly), the only next step is to monitor the whole
execution and transfer the output data back.

Monitoring may be way more tedious when the submission is done inefficiently. In
daily practice, however, users face multiple issues when monitoring arising from (1) their
own codes, (2) hitting quotas, (3) used libraries, e.g., MPI processes getting stuck, and
(4) cluster itself, e.g., failing hardware, overloaded nodes and storage. Any of these issues
may corrupt the completion of the execution and users have to know how to handle them.
We may come to the conclusion that users in general have to gain some basic knowledge
of the cluster architecture and deployed batch system at least, and their experience plays
a significant role in the task submission and handling error situations. Constructing the
workflow and its submission is time-consuming, but other steps are crucial in terms of
utilization, efficiency and cost. The complexity of the whole procedure gets higher with the
number of workflows and their size.

3.3 Hypothesis

Contemporary complex high-performance computing (HPC) systems do not allow users
from academia and industry to use them without proper and deep knowledge. The design of
a robust and user-friendly interface with workflow execution planning software is supposed
to (a) bring HPC and the latest technologies to a much broader user base, (b) increase the
processing efficiency by sophisticated workflow scheduling taking into account background
HPC workload, (c) save resources, reduce the price of calculation and decrease computation
time by selecting appropriate job execution parameters, (d) offer a level of fault tolerance by
restarting faulty tasks with respect to dependencies, and (e) enable new methods to emerge
and to gain new knowledge by allowing more users to cooperate on complex problems.

3.4 Research Objectives

The ultimate goal of the research presented in this Thesis is to
provide an automated and failure-free execution of workflows.

Based on the open problems and challenges depicted in this chapter, the main and auxiliary
objectives are defined in this section. These objectives may be divided into research and
implementation ones.

The main objectives of this Thesis are to:

1. Investigate multi-objective optimization methods in order to select a suitable amount
of computing resources such as computing cores, nodes and accelerators for particular
tasks in the workflow.

2. Collect and create performance datasets and identify experimental use cases to demon-
strate the selected optimization method.

3. Provide an effective workflow execution planning with throughput maximization and
latency minimization.
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4. Create a piece of software providing the execution, data transfers, and monitoring of
the workflows on HPC systems. This software parses the input data, automatically
assembles a corresponding workflow, sets execution parameters and generates HPC
system-specific jobs scripts. Required data is transferred to the target HPC system
where the execution is orchestrated. The remote jobs are monitored and obtained
result data is transferred back.

5. Experimentally evaluate the implemented optimization methods and software on se-
lected use cases.

6. Asses the implemented solution, its benefits and discuss open issues.

Auxiliary objectives are to (1) design and implement additional features within the
developed software, e.g., accounting, authentication and authorization, reporting, and fault
tolerance, (2) store performance data after each successful run in order to build a custom
performance database, and (3) design and implement a RESTful (Representational State
Transfer) API (Application Programming Interface) together with a GUI (Graphical User
Interface) application to handle workflow submissions easily.
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Chapter 4

Design of the Workflow Execution
Planning System

This chapter provides a high-level overview of the designed system for workflow execution
planning, orchestration and monitoring. It is demonstrated how the Thesis goals were
achieved and what led to the selected methods and solutions. This chapter also describes
the impact of the designed system on practice.

4.1 Designed Solution and Research Steps

Together with this Thesis, a workflow management system called k-Dispatch has been
developed. k-Dispatch was first developed as a lightweight platform for experiments done
in the Thesis. By this time, it has become a stand-alone tool being successfully deployed
and used by clinical users and researchers, utilizing remote Czech and UK computational
resources. It should be noted, that k-Dispatch has also been commercialized and is being
offered by the BrainBox, Ltd. company.! Experiments done in this Thesis were performed
within k-Dispatch or aside as a module to be integrated into k-Dispatch in the future after
additional tuning.

Thus, this section describes k-Dispatch together with performed experiments. It sum-
marizes the research done and crucial decisions. The attached papers cited here provide
more details and explanations.

k-Dispatch [mjaros6] represents a software package that provides biomedical workflows
(1) execution offloading to remote computing machines, (2) execution planning, and (3) ex-
ecution monitoring. Together with these key features, supporting mechanisms including ac-
counting, reporting, file transfers and fault tolerance are implemented as well. k-Dispatch’s
mission is to make high-performance computing (HPC) facilities and cloud computational
resources easily accessible as a service (providing HPC as a Service, HPCaaS) to end-users
with no prior expertise in computational science. k-Dispatch’s goal is to provide automated
and failure-free job execution including advanced job execution planning.

k-Dispatch receives an input file including a workflow description tag and accompany-
ing parameters together with the input data such as CT images. Since the development
was driven by PAMMOTH,? a European H2020 project in the area of photoacoustic breast

'https://brainbox-neuro.com/products/k-plan
2https://www.pammoth-2020.eu/
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imaging, and is further routinely used in CITRUS,® an EC EU - Horizon Europe project in
the area of ultrasound neurostimulation, the k-Wave toolbox was employed in workflows.
After the input file is parsed, a task graph corresponding to the workflow is constructed.
This task graph serves as a template since execution details are not assigned to each task
yet. Thereafter, compute allocation, i.e., assigned computational units such as core hours,
together with the remote computing machine are selected and for each individual task in the
workflow, and execution details are filled in. The execution details include an executable bi-
nary, its execution parameters, hardware selection (CPU, GPU, ...), number of computing
units (i.e., nodes, cores, MPI processes), wall-clock time (i.e., execution time) and mem-
ory requirements. Such an evaluated task graph is called a specific execution plan. Since
multiple execution plans may be generated, a quality function considering the execution
plan with respect to the estimation of overall execution time (makespan) and computa-
tional cost is defined. Based on this quality function, a single execution plan is finally
selected, submission job scripts are created and together with the input data transferred to
the particular remote computing machine. Computing jobs processing particular tasks are
submitted to particular computing queues. Their execution is controlled via individual job
scripts. k-Dispatch then monitors submitted jobs and handles situations when jobs need
to be altered or restarted. After the computation is finished, k-Dispatch downloads the
results to its own storage cleans the remote space and performs reporting, accounting and
performance database updates.

Since k-Dispatch’s parts will be often referenced, a brief high-level description of its
architecture follows here. The overall architecture of k-Dispatch is shown in Fig. 4.1.
k-Dispatch consists of three main modules: Web server, Dispatch database and Dispatch
core. The user applications, e.g., a stand-alone medical GUI or a web application, communi-
cate with the Web server using the secured HTTPS protocol and REST API. The Dispatch
database holds all the necessary information about the users, groups of users, submitted
workflows, particular jobs, computational resources, available executable binaries for dif-
ferent hardware resources, types of tasks, and permissions. This database is crucial in
processes that perform workflow execution planning, HPC selection, and accounting. Its
structure is depicted in Fig. B.1 in the appendix and for better orientation, tables in the
figure are coloured. The tables in green define workflows together with remote jobs, their
possible dependencies and the files used. The tables in red are essential for executions.
They define remote computational facilities, allowed codes, and their particular implemen-
tations, together with internal resource allocations used in submissions. The performance
database is included in the Dispatch database as well. A single purple table stands for the
performance database for k-Wave source codes. It is assumed to have multiple performance
tables similar to this one when adding computing codes to capture their scaling under spe-
cific domain parameters. The tables in orange are used by both the accounting and the
workflow execution planning systems when acquiring free resources. Lastly, tables in yellow
define groups, users and software licenses. A brief description of individual tables can be
found in Table B.1.

The Dispatch core is the most crucial part, which is responsible for the following key
features: (1) planning, (2) execution and (3) monitoring of submitted workflows. The
planning is a complex process addressed by this Thesis’s research. The communication
with HPC and cloud facilities is done via SSH and RSYNC protocols.

3https://mpbmt.meduniwien.ac.at/en/forschung/projekte/citrus/
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From the application HPCaaS deployment point of view, we define three modules:
(1) a treatment planning module (TPM), running on a local PC under the control of
the end user, (2) a dispatch server module (DSM), running on a remote server under the
control of the administrative team, this is equivalent to k-Dispatch, and (3) a simulation
execution module (SEM), running on a remote computing machine (HPC, cloud, ...) under
the control of its provider.

N | k-Dispatch(osm) |
\ A ! -
) — | — - = _— ==
Y I ™ Y
User Application | | ' | SSH
P OMA A wres | RN -planning | | |RSYNC | © o
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Figure 4.1: Simplified architecture of k-Dispatch (DSM) showing its three essential modules
- Web Server, Dispatch Database including Performance Database, and Dispatch Core, and
their connection to user applications (TPM) and computational resources (SEM). The
key features, i.e., workflow execution planning, the execution itself and monitoring, are
implemented within Dispatch Core.

4.2 Workflow Executions and Limitations

Workflows are formally defined as task graphs, see Paper Il for details. Nodes represent
executed tasks together with execution details while edges define task dependencies and
data transfers. The k-Wave toolbox-based workflows are directed acyclic graphs (DAGs).
They usually consist of many heavy computational tasks spreading over several compute
nodes alternated with lightweight data processing tasks. These heavy computational tasks
are meant to be moldable. It means that a task can be executed on various numbers of
nodes as shown in Fig. 4.2.

Ideally, let us assume we have two vectors of 8 numbers and we want to add one vector
to the other one. Such a task can be evenly distributed over 1, 2, 4, and 8 processing
units. It can be simply shown that employing 8 processing units yields 8 times faster
execution while the overall computational cost remains constant, no matter how many
units are employed. This is called perfect strong scaling since the parallel efficiency stays at
100%. But this usually does not happen. Parallel algorithms almost always introduce some
overhead caused by additional work to aggregate partial results, communication between
processing units, and inherently sequential parts causing idleness of other units [3]. A typical
example would be summing a vector of 8 numbers into a single value. A single processing
unit would need 8 steps, while a parallel algorithm would need logy P steps, where P is
the number of processing units employed. The speedup given by the quotient of sequential
and parallel execution time reaches only S = T,/T, = 8/3 = 2.66, parallel efficiency
E=S/P=2.66/8 =33%, and the computational cost C = P x T grows from 8 and 21.28
for a single and 8 processing units, respectively.
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Figure 4.2: Example of two different execution plans of the neurostimulation workflow on
a 16-node cluster. On the left, every job was optimized independently neglecting the queuing
times caused to the subsequent jobs. On the right, the complete workflow was optimized
together, which led to different resource allocations for particular jobs and shorter overall
computation time. This figure shows how the number of resources assigned per task affects
the execution plan and its quality.

Figure 4.3 shows a practical example of the MPI implementation of the k-Wave tool-
box [32, 67] (SEM module) simulating (non)-linear propagation on ultrasound wave through
a heterogeneous absorbing medium. The strong scaling of the execution time and cost for
one specific problem instance on the Barbora cluster with 36 processor cores is depicted.
In this case, a domain of 10243 grid points is partitioned into 2D slabs and distributed over
various numbers of compute nodes (1 to 32). The red curve shows the execution time per
one simulation time step (the whole simulation usually executes tens of thousands of time
steps). The strong scaling curve looks generally very good but several sudden drops in the
execution time caused by reaching a well-balanced workload distribution can be observed.
Well-balanced (the number of 2D slabs and the number of MPI ranks are commensurable)
and poor-balanced (some MPI ranks has more work than others) workload distribution are
also reflected in the computational cost since there is an indirect proportion between the
parallel efficiency and the related cost. The blue curve shows several local minima and
maxima in the computational cost which provide suitable execution parameters or those
that should be avoided, respectively. As already mentioned before, this plays a crucial role
in submission and finding the execution parameters.
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Figure 4.3: Red line shows the strong scaling of the k-Wave code measured for a domain
size of 10243 grid points on the Barbora cluster. The blue line shows the evolution of the
computational cost when more nodes are added.

As depicted in Fig. 4.4, a static acyclic execution model and both task- and data-driven
workflows are supported. After the workflow is constructed, evaluated and submitted, no
conditional behaviour, such as dynamic task generation or loops with an unknown number
of iterations, is allowed. Since workflows may contain subgraphs that may be either omitted
or repeated multiple times, this has to be determined during the planning phase while the
final workflow is being constructed.

A Workflow To Computational Flow Of The Submitted Workflow
Be Submitted

____________

L aRAR:

k-Dispatch Remote HPC System
O Running O Finished (O Queued/Hold

Figure 4.4: The execution model of workflows. The first blue workflow reveals the concur-
rency and dependencies between tasks. Tasks in separate red rectangles can be executed
concurrently, in other words, there are no dependencies between other red rectangles. How-
ever, tasks within the red rectangle have to follow the dependencies. Tasks within a red
rectangle are usually pipelined, i.e., one task waits for the previous task to finish. A task in
a yellow rectangle has to wait till all red rectangles finish. Workflows on the right side of the
dividing line show an example of computational flow on a remote computational machine.
One may see the order in which tasks may be executed.
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4.3 Investigated Workflows and Performance Datasets

Although the workflows used here have evolved a bit during the research, two typical
biomedical ultrasound workflows are shown. These workflows are applied in ultrasound
neurostimulation and photoacoustic imaging, see Fig. 4.5. Both workflows consist of two
types of tasks. The simulation tasks (ST) executing the k-Wave MPI solver represent heavy
parallel jobs running for a few hours. The k-Wave solver is based on the distributed fast
Fourier transform (FFT) [21] which has a known communication bottleneck and O(nlogn)
time complexity. Moreover, the time to compute an FFT is highly sensitive to the fac-
torization of the domain size, working well only for small prime numbers such as 2, 3, 5
and 7. [20]

In experiments, the STs were limited to use between 1 and 32 nodes (i.e., 36-1152 cores).
The data processing tasks (PT) perform data pre-processing, post-processing, aggregation,
etc. The PTs have a linear time complexity and almost perfect scaling. Since their runtime
is in the order of minutes, only one or two nodes depending on the amount of memory
requested are used.

The first workflow begins with a single PT generating input files for a set of STs.
Consequently, a few independent series of ST-PT-STs are executed. Finally, the results
from all series are aggregated using a parallel reduction tree composed of only PTs. The
second workflow begins by running a few STs operating on the same input file but with
different parameters. The results are aggregated into a single output file using a parallel
tree reduction. But this time, the result is used by the following set of STs. In practice, this
workflow is repeated in a loop until some error metric calculated by the last PT is satisfied.

*ST = Simulation Task,
PT = Data Processing Task

[o]o]o]

o0

* ST = Simulation Task, PT = Data Processing Task

Figure 4.5: The structure of investigated workflows. The heavy simulation tasks are inter-
laced with light data-processing tasks. The parts highlighted in black show the minimal
workflow structure consisting of 20 and 11 tasks, respectively. The parts displayed in grey
show how the workflow structure can grow.

In order to explore various kinds of task scaling and assess the sensitivity of the execution
planning to the scaling anomalies, both artificial (ranging from ideal scaling to extreme
cases with peaks and bumps) and real performance datasets were used. Currently used
performance datasets may slightly differ from those ones presented in already published
papers, especially the real ones, due to continuing optimization of the underlying executable
binaries. Additional information can be found in Appendix A.
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4.4 Steps to Generality

Currently deployed version of k-Dispatch aims mainly to clinical users by supporting a sub-
set of predefined biomedical workflows. Nevertheless, k-Dispatch was designed to be simply
extensible to support other applications and different computing resources.

k-Dispatch is based on modular design (see details in Paper II) enabling a so called plug
and execute approach. It allows easy extensions by adding (1) new computational work-
flows, (2) task execution planning strategies and algorithms, and (3) computing resources.
Since k-Dispatch provides a simple and well-documented interface in the form of Python
virtual classes, new functionality can be added by means of inheritance and polymorphism.
Moreover, the implementation of extensions (1) and (3) is equivalent to filling out a form.

To add a new computational workflow, one has to define (a) how to parse the input file
and what information to collect for advanced execution planning if required, and (b) job
script templates together with commands to be executed on remote machines. Executable
binaries together with required software modules may be added to the k-Dispatch database.

Adding new planning strategies and algorithms may be more complicated since they
are supposed to be evaluated and tested before integration. When ready, the integration
within k-Dispatch stands on the re-implementation of several virtual classes and adding new
records into the factory design pattern. In order to be able to plan moldable task execution
adaptively based on the input data and selected computational resources, performance data
has to be stored in the database. k-Dispatch makes this data accessible for additional post-
processing, filtering, mining, etc. Selected execution parameters can then be forwarded to
the submission module which incorporates them into job execution scripts.

Defining a new computational resource is very similar to adding a new computational
workflow. Essential information about the resource, e.g., name, address, batch scheduler
commands and location of SSH keys, has to be specified. To support the new functionality,
updates in both DSM and SEM modules need to be done.
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Chapter 5

Implementation and Results

This chapter describes the implementation of the execution planning strategy and algo-
rithms described in Chapter 4. This chapter also addresses the performed experiments and
achieved results.

Execution planning is a process carried out by HPC batch schedulers. It can be described
as a mapping of tasks within the workflow to free time slots and computational resources,
see Eq. (5.1):

Q— (T'"xR), T CTANR CR, (5.1)

where @ is a set of all tasks in the workflow, T" and T” are finite sets of all and available
time slots, respectively, and R and R’ are finite sets of all and idle computation resources
at given time slots, respectively. Based on the scheduling policy, each scheduler attempts
to maximize cluster utilization while guaranteeing the quality of service at some level.

The execution planning implemented in k-Dispatch follows Algorithm 1. The presump-
tions of the algorithm define necessary conditions and functions to (1) select an active
resource allocation and an executable binary for each task, and (2) evaluate the quality of
candidate workflows in terms of the makespan and cost. The workflow cannot be executed
if no suitable resource allocation is found or the set of binaries for the particular task type
is empty. The algorithm steps are performed in a loop until a suitable machine-specific
workflow (best-evaluated workflow) is found. Points 3 and 4 of Algorithm 1 may be imple-
mented by various optimization algorithms, e.g., genetic algorithms, simulated annealing,
hill climbing algorithms, etc.
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Algorithm 1: Workflow execution planning algorithm

Presumptions:

1 Let G = (V, E) be a workflow where V is a set of tasks and £ C V x V is a set of
task dependencies.

2 Let C be a set of active resource allocations with enough resources to satisfy the
workflow G. It holds C C A, where A is a set of all allocations the user has got
access to.

3 All executable binaries for supported task types available in a given allocation
a € A are defined as D € (B, Be,...,By), where N is the number of task types
within the workflow G, and B; = {b1, b, ...,bys} is the set of available binaries
for a given task type. B; may be an empty set.

4 Let p: G x C x D — R* be a price function returning the aggregated
computational cost of the workflow G.

5 Let t : G x C x D — R be a function returning the aggregated execution time of
the workflow GG. This value is calculated as a critical path through the workflow
considering both the net execution time e and the queuing time gq.

6 Let workflow evaluation f serving as quality metric be defined as
f=a-p+ (1 —a)-t, where « is an optional ratio prioritizing the computational
cost or the execution time.

Algorithm:

1 Create a workflow G = (V, E') from the workflow template and input data.

2 Select a set of candidate allocations
C = {c e A" | c.status == active A c.hours_left > 0.0}.

3 Search for appropriate execution parameters for all tasks and evaluate the workflow
G for all combinations of candidate allocations C and binary executables D.

4 Return the best parameters for a given workflow G as argmin.cc qepy f(G)-

The implementation of the execution planning in k-Dispatch is divided into four per-
formance modules: Optimizer (see Paper III and V), Estimator (see Paper IV and V),
Evaluator (see Paper III and V) and Collector (see Paper II). Optimizer traverses the
search space and seeks for suitable execution parameters for particular tasks and their in-
put data. If the collected performance database is sparse and incomplete, Estimator mines
measured performance database and estimates execution time for the requested amount of
resources. Once a candidate workflow evaluation is created, the Evaluator simulates the
workflow execution and assesses its quality metrics. Finally, Collector updates the perfor-
mance database after each successful workflow execution. Performance modules and their
interactions are depicted in Fig. 5.1.
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Figure 5.1: The illustration of the key features (grey) of Dispatch Core (pink), performance
modules (blue) and remote computation (SEM, yellow). A workflow is created based on the
input file and code types. For the workflow execution planning process, the workflow struc-
ture is transformed into a vector where each element represents the execution parameters
of the particular task. The workflow execution planning is an iterative process managed
by three performance modules, Optimizer, Estimator, and Evaluator. Optimizer selects
suitable execution parameters based on the data retrieved from the performance database.
Optimizer can invoke Estimator if the retrieved performance data is not complete, and reg-
ularly calls Evaluator to evaluate candidate workflow based on the predefined constraints
and optimization criteria. The output of this grey box is an evaluated workflow in which
computation, orchestrated using a set of job scripts, can be offloaded to the selected remote
computational resource (Workflow Execution). The remote process of computation is then
carefully watched by Execution Monitoring. When the computation is completed, the last
performance module called Collector updates the Performance Database.

5.1 Optimizer: Execution Planning

Based on the research in the related work presented in Sec. 2.3, Genetic Algorithms (GAs)
were chosen as the optimization. GAs are very effective and robust in the solutions of
combinatorial problems and scheduling, well scalable and simply parallelizable. The crucial
part of the designed approach is the fitness function, which can be simply employed by
different space searching or machine learning methods. GAs use various operators and
parameters to control the search. Selected operators and parameters used in the proposed
solutions are summarized in Table 5.1.
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Table 5.1: Selected Control Parameters of the Genetic Algorithm

Control parameter Details
Selection method Steady-state (sss), roulette wheel (rws), rank, tournament
Crossover method Uniform
Crossover probability 0.7
Mutation method Random
Gene mutation probability 0.1%, 0.5%, 1%, and 5%
Elitism 5% of the best individuals copied to the next population.
Population size 25, 50, 100, 150
Maximum number of generations 1000

The GA traverses the search space and seeks good solutions by applying genetic ma-
nipulations and selection strategies on the population of individuals/chromosomes. Each
individual encodes a candidate assignment of execution parameters and binaries to par-
ticular tasks in the workflow. The quality of all individuals is evaluated by the fitness
function. First, the execution time for every task is calculated based on the task type,
execution parameters encoded in the individual, input data size, and known parallel effi-
ciency /strong scaling behaviour. Next, the tasks are submitted to Evaluator (implemented
using a cluster simulator, such as Alea or Tetrisator) that draws up an execution schedule
and calculates the makespan as the critical path through the workflow including queuing
times and computational cost. The output of the optimization is a set of best execution pa-
rameters for individual tasks minimizing given criteria implemented by the fitness function.
The optimization process is depicted in Fig. 5.1.

From the vast number of existing implementations, PyGAD [22], an open-source Python
library for building genetic algorithms, has been chosen. PyGAD supports different types
of crossover, mutation, and parent selection operators. It allows different types of problems
to be optimized using the genetic algorithm by customizing the fitness function. Since
the PyGAD operators and fitness functions can be easily customized, we found this tool
suitable to be integrated into our code which is also implemented in Python.

5.1.1 Workflow Encoding

To solve the workflow optimization problem using GAs, it is necessary to transform the
workflow into a template for candidate solutions (chromosomes/individuals) I. The work-
flow’s task graph is traversed in a breath-first manner producing a vector of N tasks. Every
gene ¢ corresponds to a single task and holds the number of resources R; assigned to that
task i, see Eq. (5.2).

I =(Ri,Rs,...,RN) (5.2)

The amount of resources assignable per task is naturally constrained by 1 from the
bottom and the size of the computing system from the top. However, acceptable values
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may be further limited by the scaling behaviour of the task and the actual input data size.
These constraints are imposed during the fitness function evaluation.

5.1.2 Fitness Functions

There may be designed many approaches to evaluate the quality of the workflow sched-
ules and the suitability of chosen execution parameters to particular tasks. This thesis
investigates two different approaches, the second of which is in two distinct variants.

The first approach, referred to as local task optimization fitness function, treats each
task individually and independently trying to find the best execution parameters to optimize
the objective functions (makespan or cost). The idea supporting this approach is that the
workflow execution will be optimal if each task will have optimal execution parameters.

The second approach, referred to as global workflow optimization fitness function consid-
ers the dependencies amongst tasks and their interaction in computational queues, e.g., one
long task employing a large number of compute nodes may delay many independent small
tasks due to an insufficient amount of free resources, which can prolong the critical path
and the makespan. This approach is examined in two variants designed for (1) on-demand
allocation where users only pay for really consumed resources, and (2) static allocations
where a portion of the computational facility is reserved for a given user/workflow, which
may lower the latency but the user pays for all reserved resources, no matter of being idle.

These approaches are further described in the following Sec. 5.1.3 and 5.1.4.

5.1.3 Local Task Optimization

The local task optimization approach searches for suitable execution parameters of partic-
ular tasks independently considering only one optimization criterion, e.g., execution time
or computational cost, while neglecting others, see Eq. (5.3) and (5.4).

N
fitness =t = Zti(Ri) (5.3)
=1

where t is the aggregated net execution time of N tasks in the workflow, each of which
running on R; compute cores/accelerators/nodes for time ¢;. An analogous fitness function
may be written for the computational cost as

N
fitness = c =Y (ti(R:) - R;) (5.4)
=1

which computes the cost of the task as a product of the execution time and the amount of
resources used.

This fitness function sums the execution time of all tasks and calculates the total time
consumed on the computing facility by the workflow. This fitness function relies on the
batch job scheduler to assemble a good execution schedule allowing to run as many tasks
as possible concurrently and minimize queuing time, which naturally contributes to the
makespan but is not considered in this fitness function. This fitness function is suitable for
large HPC clusters with hundreds of nodes and workflow composed of a few tasks employing
low tens of nodes.

If this assumption forfeits its validity, the quality of the schedule may be degraded.
A simple example is shown in Fig. 5.2 where the shortest execution time for tasks <0,6>
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and <8,14> is reached with 36 nodes, but the computing facility only has 60 nodes. This
prevents executing two tasks concurrently and increases makespan. It might have been
better to use suboptimal execution parameters for those tasks, e.g., 30 nodes, to reduce the
makespan to almost one-half.

From a practical point of view, this fitness function is the fastest one. The time com-
plexity of the fitness function calculation is linear with the size of the workflow and does
not involve running the cluster simulator.
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Figure 5.2: Execution plan performing the local task optimization for the workflow of 16
tasks. Each task is optimized for the shortest execution time independently resulting in
workflow completion in 20 minutes. The workflow structure used can be seen in Fig. A.2.

5.1.4 Global Workflow Optimization

Unlike local task optimization, the global workflow approaches take into account the inter-
action amongst tasks and competition for resources. This requires a cluster simulator to
be engaged to calculate the critical path in the workflow, see Sec. 5.3. This approach can
produce better results, however, the optimization complexity significantly increases because
of a more complex fitness function and the dependencies between tasks causing the search
space growing exponentially with the number of tasks [57].

Table 5.2 shows the time necessary to evaluate a single generation of workflow of various
sizes, ranging from 7 to 64 tasks, and different population sizes.
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Table 5.2: The execution time of the evolution process for various population sizes and
workflows with dependant tasks, evaluated by global workflow fitness functions on the
Salomon cluster at IT4Innovations using a single computing core. The evolution runtimes
for workflow without dependencies are approximately three times smaller.

Workflow Size / Runtime per a Single Generation in Seconds
Population Size 7 | 8 |15 ] 16 | 31 | 32 | 63 | 64
25 0.004 | 0.005 | 0.010 | 0.010
50 0.007 | 0.009 | 0.019 | 0.021 | 0.040 | 0.043 | 0.112 | 0.120
100 0.013 | 0.018 | 0.037 | 0.043 | 0.077 | 0.088 | 0.227 | 0.220
150 0.110 | 0.132 | 0.382 | 0.335

Global workflow Optimization on systems with on-Demand Allocations
(GODA)

This fitness function minimizes the makespan [27], the overall execution time ¢ of the
workflow given by the sum of the execution times of the tasks along the critical path in the
workflow graph, together with the computational cost ¢ given by a sum of the computational
cost of all tasks in the workflow, see Eq. (5.7). No delays caused by sitting in computational
queues while waiting for free resources are considered, but can simply be added by the
cluster simulator by reading the time the first task was submitted and the time the last
task left the system.

As we know, the optimization criteria may go against each other making the optimiza-
tion more challenging. Here, makespan and cost are such parameters. Therefore, a trade-off
coefficient « to prioritize either makespan (bigger ) or cost (smaller «) is introduced. This
coefficient can be set by the user when the workflow is submitted to k-Dispatch. In order
to balance between proportionally very different criteria, a kind of normalization is intro-
duced. The makespan is normalized by the maximum total execution time of the workflow
tmaz, Which is considered to be the sum of the execution times of all N tasks executed by
only a single compute node in a sequential manner. The cost is normalized by the mini-
mum computational cost which is the cost of the workflow computed by a single node in a
sequential manner, see Eq. (5.5). This presumption is valid for typical parallel algorithms
with sublinear scaling, i.e., parallel efficiency as a function of the number of nodes is always
smaller than 1.

The algorithm cannot perform a true multi-objective optimization because there is no
further feedback from the user that could select the preferred solution from the Pareto
frontier. Instead, the most suitable solution has to be chosen autonomously and submit-
ted to the cluster as soon as possible (before the cluster background workload changes
significantly).

N
Cmin = tmaz = ) ti(1) (5.5)
i=1
ci =ti(R;) - R; (5.6)
itness = . - M _a.N @
f t ];4( tmaa; > + (1 ) ; < Cmin > ’ (5.7)

where M = {i|i € CriticalPath}
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This fitness function suits best the workflow being executed in environments with shared
resources where only truly consumed resources are paid for, e.g., shared HPC systems.
Figure 5.3 depicts two execution plans for the same workflow (see Fig. 4.5) and demonstrates
the differences in the makespan and computational cost while different trade-off coefficients
are used.
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Figure 5.3: Execution plans designed under the GODA fitness function for the workflow of
11 tasks and different « parameters. The trade-off parameter of 0.05 (top) pushes down the
overall execution cost by allocating fewer resources to tasks. This plan completes in 126
minutes and costs 592 node minutes. On the other hand, the trade-off parameter of 0.95
(bottom) prioritizes the makespan over cost. It is visible that tasks demand many more
compute nodes. This plan completes in 51 minutes and costs 747 node minutes.

Global workflow Optimization on systems with Static Allocations (GOSA)

The last fitness function, described by Eq. (5.9), also minimizes the workflow makespan,
but the computational cost now considers also idling nodes. The computational cost, the
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user will be accounted for, equals the size of the allocation multiplied by the makespan,
no matter whether some nodes are not being used for the whole duration of the workflow
execution. Therefore, the fitness function attempts to shake down the tasks to minimize
the amount of idling resources while still minimizing the makespan. The computational
cost is then normalized by the highest possible cost in the dedicated system where only one
node works.

Although these allocations may be more expensive, they usually reduce the queuing
time. Since the makespan and cost are directly proportional, no trade-off coefficient is
needed and only the makespan is considered, as demonstrated in Paper III.

N
tmaz = th(l) (58)
=1

fitness = <t9(Rﬂ)> ,

]EM max
where M = {i|i € CriticalPath}

(5.9)

Similarly to the previous case, t is the overall execution time of the workflow, and #,,,4.
is the maximum overall execution time obtained for serial scheduling of sequential tasks.
The number of nodes statically allocated to the workflow is denoted by P. The number of
nodes assigned per task ¢ is R;.
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Figure 5.4: The execution plan designed under the GOSA fitness function for the workflow
of 11 tasks. This plan completes in 13 minutes with only 8.45 % of allocated resources idling.
When only a single workflow is submitted, the obtained numbers are highly dependent on
the workflow structure used and how well the tasks can utilize free resources. The cost of
such a solution is 832 node-minutes.

5.1.5 Investigation of GA Control Parameters

This section summarizes the process of finding suitable control parameters for the genetic
algorithm, more details can be found in Appendix A. These experiments use a custom
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performance database consisting of both artificial and real scaling data obtained for the
acoustic k-Wave toolbox [32]. The experiments are performed for both local task and global
workflow optimization. The experiments cover workflows with and without dependencies
(embarrassingly parallel), however, the presented results only show workflows with depen-
dencies. Investigated workflows contain between 8 and 64 tasks. Bigger workflows were not
taken into account since many HPC facilities limit the number of currently submitted tasks
to low tens, e.g. 100, at IT4Innovations where the experimenters were conducted.

For the local tasks optimization, we can conclude that the best selection strategy driv-
ing the GA through the search spaces appears to be steady-state selection, although the
difference between the rank and tournament selections was marginal. Uniform crossover
produced the best results and the influence of the crossover probability was not statistically
significant. The optimal gene mutation ratio seems to be around 0.5%. As expected, the
better the task scaling, the faster the convergence and the higher the success rate of finding
the optimal resource assignment. The number of generations to be evaluated before the
GA finds an optimal schedule stays relatively constant close to 200. The execution time
of the evolution appears to grow linearly. This growth can be attributed to a product of
increasing population size which rises the number of fitness function evaluations, and the
linearly growing time complexity of the fitness function evaluation. Nevertheless, an exe-
cution time of 14s on a single core with a 95 % success rate for the workflow containing
64 tasks is an excellent result. For the workflows omitting dependencies, the runtime is
roughly 20 % shorter. The results were obtained from 20 independent runs of GA on the
IT4Innovations’ Salomon supercomputer.

For GODA fitness function, steady-state selection and the random mutation probability
of 0.1 % led to the best results. For workflows counting less than 32 tasks included, however,
rank selection provided the best results. Other control parameters remained the same as
for the local optimization. Small populations counting about 50 individuals seemed to be
sufficient for benchmarks with good-looking strong scaling. Otherwise, a population of 150
individuals had to be employed to find sensible solutions.

Our very first experiments with GOSA fitness function, published in Paper III, em-
ployed a trade-off coefficient between the makespan and cost, as well. However, experiments
showed that the fitness function can be simplified. This gave us a different perspective on
the problem, we modified the fitness function and published the latest result in Paper V.
Nevertheless, we were still able to find solutions that reduced unused resources to 29 % but
balancing the different optimization criteria could not be well controlled. When task de-
pendencies are considered, the ability to reduce idling resources also stands on the structure
and size of the particular workflow. Recommended settings of the GA are roulette wheel
selection using a 1 % random gene mutation for workflows counting more than 64 tasks, and
steady-state selection with a 0.5 % random gene mutation for smaller workflows. Uniform
crossover of a 0.7 rate together with a 5% elitism remains the same as for other methods.

5.2 Estimator: Incomplete Performance Data Handling

When planning the task execution, we may face the following situations: (1) The perfor-
mance dataset measured for given tasks is complete and no estimation is required. Such
a dataset contains execution times measured for all possible amounts of computational re-
sources such as nodes. Moreover, when having multiple measurements, their median value
can be taken to smooth out anomalies. (2) The performance dataset for a given input
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data is incomplete and sparse, i.e., the execution time for some amounts of resources is not
known. Missing values need to be estimated. (3) No performance data is available for a
given input data and the full performance dataset has to be estimated. In other words,
execution times for all possible amounts of resources have to be estimated from performance
data collected on similar input data. This Thesis investigated cases (2) and (3).

5.2.1 Interpolation

Interpolation is commonly used in various fields such as engineering, computer graphics,
and scientific computing, where it is used to estimate values of a function at points where
it is not explicitly defined. More precisely, it is a mathematical method of estimating or
calculating the value of a function at a point within the range of the function, based on the
known values of the function at nearby points.

A thorough investigation of interpolation techniques was performed in Papers IV and
V. Finally, two different interpolation techniques, linear and quadratic interpolation, from
Python’s scipy package [69] were used to estimate missing execution time for a particular
task, input data size, and the number of resources (compute nodes in this case).

Although interpolation methods are very straightforward and easy to implement, they
may suffer from the inability to accurately estimate the execution time of tasks with poor
scaling. Such scaling may be characterized by drops caused by poor/good workload and
distribution, complex communication patterns and parallel overhead.

5.2.2 Evaluation Metrics

As the measure of the interpolation quality, a mean relative error was used, see Eq. (5.10).

1 X /a; — byl
meanError = N Z <> (5.10)

py
i=0 v

where a denotes the measured execution time, b the estimated execution time, and N is
the total number of the compute nodes.

5.3 Evaluator: Workflow Quality Evaluation

The Evaluator module is responsible for calculating the makespan and cost for global work-
flow optimization fitness functions. As such, it is directly called from within the fitness
function and can possibly calculate additional characteristics of the workflow schedule,
such as average queuing time, node idle time, etc. In order to do so, Evaluator simulates
the execution of individual tasks in the workflow following the constraints of the target
HPC cluster and its batch job scheduler.

Naturally, an instance of the batch scheduler (PBS or Slurm) running in a Docker
container was considered to take charge of the Evaluator. This container would have been
executed for each evaluation of the fitness function. Although the execution and processing
of data coming to and from this Docker container was quite straightforward in Python, this
approach was not finally used due to the high time complexity of an accurate HPC system
simulation. Moreover, too low-level understanding of the target system and the factors that
impact its performance and efficiency were required to get reliable outputs.

On the other hand, the key parameters of the cluster simulator that shall be taken into
account when modelling the target batch scheduler and the HPC cluster are listed below:
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e number and type of compute nodes,
e computational queues,
e resource allocation policies,

e job scheduling and submission policies.

Since all of these parameters have a significant impact on the accuracy of the makespan
evaluation, they need to be set properly to accurately reflect the target system. Thus,
a simplified model of the batch scheduler was implemented in the Python language with
the emphasis put on the fast evaluation. This model is called Tetrisator (see Paper V).
Tetrisator is a PBS-based simulator that also implements backfilling, and allows specifica-
tion of initial background workload. As implemented, Tetrisator can simulate the execution
of workflows coming to the system in sequential order.

Experiments with a more robust and complex Alea simulator were performed as well.
Paper I confirmed it as a possible candidate for Evaluator but evaluated it as far too complex
to be used with the GA. Assuming that a workflow of 64 tasks with dependencies may be
evolved in 140 s using 67,500 evaluations of the fitness function (i.e., 450 generations and 150
individuals), a single evaluation takes 0.002 s in Paper I11. In Paper [ we confirmed that Alea
is able to simulate the same-sized workflow under 2.5s. Employing Alea in the developed
approach would have made the optimization time 1,000 times longer, which is enormous.
We affirmed that although our custom cluster simulator (Tetrisator) has some limitations,
it can provide reasonable estimations and works accurately for static allocations.

Nevertheless, Alea is still a live project that is being worked on. This Java-based tool
was extended to support dependencies in workflows, enables switching among different
schedulers and scheduling policies, and can simulate the execution of multiple workflows at
the same time.

5.4 Experimental Results

This section briefly discusses the quality and accuracy of the developed schedules when
using the performance database (1) containing all data, (2) only a subset, and (3) no data
for particular task inputs using the GOSA fitness function as presented in Paper V. Realistic
k-Wave workflows with various number highly parallel ST tasks and short PT tasks were
used for the evaluation.

Table 5.3 summarizes these experiments in two parts. The left part investigated a work-
flow with tasks spreading over a domain size of 10243 grid points where missing strong
scaling values were completed by a linear interpolation. Performance datasets mentioned
in this part of the table are depicted in Fig. 5.5 where Dataset 1 is on the right while
Dataset 2 on the left. These datasets differ in the number of known values on the strong
scaling curve, i.e., 8 and 16, respectively, while the rest are estimated. The right part of
the table investigates a workflow running over a domain size of 8102, where the execution
time was fully interpolated using a quadratic interpolation, see Fig. 5.6. The table states
the minimum, maximum and average times of achieved makespans in minutes obtained
from 20 independent runs of the GA. The first row reveals reference values measured for
fully known performance datasets. Column Diff. in other rows describes a percentage dif-
ference between the achieved makespan on the full performance dataset and interpolated
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datasets. This difference is given by an interpolation error and performance fluctuations of

the cluster’s nodes.

Table 5.3: The results show fitness function GOSA applied on k-Wave workflows with the
domain of 10242 grid points on the left and 810 grid points on the right. Experiments
were performed using (1) the full performance dataset without interpolation, (2) the partial
performance dataset of 8 and 16 known values, respectively, completed using linear interpo-
lation, and (3) the complete performance dataset estimated using quadratic interpolation.
The table depicts the average (Avg), minimum (Min) and maximum (Max) obtained values
of the makespan in minutes. The percentage difference between experiments with partial
and full performance datasets is also depicted.

40 Tasks 80 Tasks 40 Tasks 80 Tasks
Makespan Diff. Makespan Diff. Makespan Diff. Makespan Diff.
1024 x 1024 x 1024 [min] %] [min] (%] 810 x 810 x 810 [min] (%] [min] (%]
GOSA Avg || 29.70 - 58.31 - GOSA Avg || 14.82 - 30.05 -
with no Min || 27.75 - 55.74 - with no Min || 14.07 - 28.32 -
interp. Max || 35.10 - 61.07 - interp. Max || 16.88 - 31.76 -
GOSA with  Avg || 29.19 1.72 | 59.23 1.57 GOSA Avg || 17.08 15.25 | 33.11 10.18
linear interp. Min || 27.29 1.65 | 55.27 0.84 with quadratic Min || 15.44 9.70 31.27 10.41
(Dataset A1) Max || 33.25 5.27 | 65.47 7.21 interpolation ~Max || 18.85 11.64 | 36.67 15.44
GOSA with Avg || 26.74 9.98 | 51.06 12.44
linear interp. Min || 24.87 10.36 | 49.05 12.00
(Dataset A2) Max || 30.33 13.58 | 56.46 7.55
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Figure 5.5: Reference and interpolated strong scaling of ST tasks for a domain size of 10243
grid points with a linear interpolation calculated from 8 and 16 known values, respectively.
In the left figure, values in peaks were selected intentionally to see how much the value

would be underestimated.

38



8192.0 ®
0

. 4096.0 -

(%)

13

2 2048.0

]

n

5 1024.0 )

o

[ 4

g 5120 R AL

= o

§ 25607 Reference 810x810x810

3 | ==~ Interpolated 810x810x810 Oog.

g 1280 Soeg Ny

X ® 512x512x512 Y p
64.0{ ® 648x648x648 \.__i

® 1024x1024x1024

32.0

1 2 4 8 16 32
Number of Nodes

Figure 5.6: Reference and interpolated strong scaling of ST tasks for an unknown domain
size of 8103 grid points with quadratic interpolation.

We may conclude that the number of missing values in the strong scaling has a significant
impact on the accuracy of the makespan prediction. On the other hand, having a difference
of less than 10 % or 13 %, for 40 and 80 tasks respectively, while only 8 from 32 values in
the performance dataset were known is a very good result. When 16 from 32 values are
known, the difference drops below 2 %. It has been demonstrated that linear interpolation
works very well in situations where the input data has been seen before and the task has
already been executed using a few execution parameter configurations. For yet unseen
inputs (domain sizes) where the whole performance dataset has to be estimated based
on similar inputs, the difference is below 15% and 10 %, respectively. This affirmed that
a quadratic interpolation works sufficiently well for our codes having O(n - logn) time
complexity with respect to the domain edge size and P? communication complexity with
respect to the number of MPI ranks (cores used). For codes with different time complexity,
higher polynomial interpolations may produce better results. However, when the whole
domain is estimated, there are several variables that portray and impact the achieved
accuracy, i.e., characteristics of other collected performance data (similarities in strong
scaling vs. anomalies, domain size, medium parameters, and so forth). We may say that
overall achieved results are very promising.

The evolved schedules were cross-validated with the real schedules created by the PBS
job scheduler on the IT4Innovations’ Barbora cluster. This showed a good general match,
see Fig. 5.7. It can be seen that the evolved schedule finishes slightly earlier than the real
one. This is caused by a tiny lag of the PBS scheduler connected with the orchestration of
the job execution (see thicker lines in the plot, e.g., between tasks no. 10 and 11).
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Figure 5.7: Simulated execution schedule finishing in 26.4 minutes (top), and the corre-
sponding real workflow execution on Barbora (IT4Innovations) finishing in 27.3 minutes
(bottom).

40



5.5 Discussion

This chapter has provided a high-level overview of the optimization of the execution pa-
rameters and workflow scheduling implemented in the k-Dispatch software.

The workflows used stand on the k-Wave toolbox and reflect real biomedical use cases.
When incorporating new codes, it is recommended to analyse them first and provide basic
benchmarking on target computational machines and typical input data to pre-fill the
performance database. Understanding used algorithms, communication and decomposition
techniques and typical workload is key for selecting appropriate optimization heuristics.

As for k-Wave codes, there are many parameters inside the input data, such as the do-
main size, heterogeneity of the media, linearity/non-linearity and lossless/absorbing wave
propagation. These variables influence the computation time, and obviously the cost as
well. We performed a correlation analysis and experimentally verified how much these pa-
rameters affect the computation time. A strong correlation was found for heterogeneity,
where heterogeneous media required 40 % longer execution, absorption causing an addi-
tional increase of 30 %, while non-linearity had negligible impact. Based on this knowledge,
the size of the performance database was reduced because the impact of some parameters
can be calculated on the fly.

Recently, we have started experiments employing symbolic regression to capture the task
strong scaling, which will be deployed in further versions of Estimator. Early experiments
showed very promising results reaching the maximum error of 7.3 %. Since this topic is still
under investigation and has not been published yet, its description, experimental results
together with future research steps was added to Appendix C.
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Chapter 6

Research Summary

The research outcomes consist of five original publications published at leading HP C-related
conferences and workshops ordered by their release date. For each publication, an abstract,
the author’s contribution, and other relevant information are provided.

Paper I [mjaros4], summarized in Sec. 6.1.1, answers the question of how to optimise
workflow scheduling based on historical performance data and demonstrates this concept us-
ing the Alea simulator. Paper II [mjaros6], summarized in Sec. 6.1.2, introduces k-Dispatch
as a workflow management system (WMS), ranks k-Dispatch amongst other WMSs, and
reveals both development and deployment details. Big progress in workflow optimization
is depicted in Paper III [mjaros2] which was summarized in Sec. 6.1.3. In this paper, a ge-
netic algorithm-based scheduling is introduced together with local task-based and global
workflow-based quality assessment functions. To satisfy contradictory objectives, a trade-off
coefficient is established. Paper IV [mjaros5], summarized in Sec. 6.1.4, overcomes another
challenge in the execution optimization, i.e., how to deal with incomplete performance data
and yet unseen inputs. This paper serves mainly as a proof of concept comparing several
interpolation methods in different but realistic scenarios. Finally, Paper V [mjaros3], sum-
marized in Sec. 6.1.5, follows up the previous paper, integrates the selected methods to the
optimization algorithm, and demonstrates the simulated results on a cluster. All papers
discuss and compare the achieved results, and propose future research directions.

The full texts of these publications are available in Appendices [-V of this Thesis.
Lastly, a list of other author’s publications, research projects, fellowships and awards is
provided at the end of this chapter in Sec. 6.4.
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6.1 Publications

6.1.1 Publication I

JAROS Marta, KLUSACEK Dalibor and JAROS Jiri. Optimizing Biomedical Ul-
trasound Workflow Scheduling Using Cluster Simulations. In: Job Scheduling
Strategies for Parallel Processing. JSSPP 2020. Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), vol. 12326. New Orleans: Springer Nature Switzerland AG, 2020, pp. 68-84. ISBN
978-3-030-63170-3. Available from: https://link.springer.com/chapter/10.1007/978-
3-030-63171-0_4

e Publication type: conference paper
o Conference ranking: B (ERA), B1 (Qualis), B (CORE2020, CORE2021)

o Author’s participation: 70%

Author’s Contribution

Collection of historical performance data on the HPC cluster and its post-processing.
Preparing and running experiments on the cluster, and evaluation of results. Preparing
experiments executed using the Alea simulator and the evaluation of the results. Creating
figures and contributing to writing the paper parts regarding k-Dispatch.

Abstract

Therapeutic ultrasound plays an increasing role in dealing with oncological diseases, drug
delivery and neurostimulation. To maximize the treatment outcome, thorough pre-operative
planning using complex numerical models considering patient anatomy is crucial. From the
computational point of view, the treatment planning can be seen as the execution of a com-
plex workflow consisting of many different tasks with various computational requirements
on a remote cluster or in cloud. Since these resources are precious, workflow scheduling
plays an important part in the whole process. This paper describes an extended ver-
sion of the k-Dispatch workflow management system that uses historical performance data
collected on similar workflows to choose suitable amount of computational resources and
estimates execution time and cost of particular tasks. This paper also introduces necessary
extensions to the Alea cluster simulator that enable the estimation of the queuing and total
execution time of the whole workflow. The conjunction of both systems then allows for
finegrain optimization of the workflow execution parameters with respect to the current
cluster utilization. The experimental results show that this approach is able to reduce the
computational time by 26%.
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6.1.2 Publication II

JAROS Marta, TREEBY Bradley E., GEORGIOU Panayiotis and JAROS Jiri. k-
Dispatch: A Workflow Management System for the Automated Execution of
Biomedical Ultrasound Simulations on Remote Computing Resources. In: Pro-
ceedings of the Platform for Advanced Scientific Computing Conference, PASC 2020. New
York: Association for Computing Machinery, 2020, pp. 1-10. ISBN 978-1-4503-7993-9.
Available from: https://dl.acm.org/doi/pdf/10.1145/3394277.3401854

e Publication type: conference paper
e Conference ranking: none

o Author’s participation: 70%

Author’s Contribution

Design of k-Dispatch, its core, database and partially REST API used for communication
with user applications. Implementation and testing of all these modules. Creating defi-
nitions of workflows and their execution model. Deployment of k-Dispatch on a remote
server. Creating figures and writing the paper.

Abstract

Therapeutic ultrasound is increasingly being used for applications in oncology, drug deliv-
ery, and neurostimulation. In order to adapt the treatment procedures to patient needs,
complex physical models have to be evaluated prior to the treatment. These models, how-
ever, require intensive computations that can only be satisfied by cloud and HPC facilities.
Unfortunately, employing these facilities and executing the required computations is not
straightforward even for experienced developers. k-Dispatch is a novel workflow manage-
ment system aimed at modelling biomedical ultrasound procedures using the open-source
k-Wave acoustic toolbox. It allows ultrasound procedures to be uploaded with a single click
and provides a notification when the result is ready for download. Inside k-Dispatch, there
is a complex workflow management system which decodes the workflow graph, optimizes the
workflow execution parameters, submits jobs to remote computing facilities, monitors their
progress, and logs the consumed core hours. In this paper, the architecture and deployment
of k-Dispatch are discussed, including the approach used for workflow optimization. A key
innovation is the use of previous performance data to automatically select the utilised hard-
ware and execution parameters. A review of related work is also given, including workflow
management systems, batch schedulers, and cluster simulators.
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6.1.3 Publication III

JAROS Marta and JAROS Jiri. Performance-Cost Optimization of Moldable
Scientific Workflows. In: Job Scheduling Strategies for Parallel Processing. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 12985. Portland, Oregon USA: Springer In-
ternational Publishing, 2021, pp. 149-167. ISBN 978-3-030-88223-5. Available from:
https://link.springer.com/book/10.1007%2F978-3-030-88224-2

e Publication type: conference paper
o Conference ranking: B (ERA), B1 (Qualis), B (CORE2020, CORE2021)

o Author’s participation: 80%

Author’s Contribution

Design and implementation of the presented algorithm, solution encoding and fitness func-
tion. Preparing and running experiments on the cluster, results post-processing and evalu-
ation. Creating figures and writing paper parts regarding the algorithm, experiments, their
evaluation and conclusions.

Abstract

Moldable scientific workflows represent a special class of scientific workflows where the tasks
are written as distributed programs being able to exploit various amounts of computer re-
sources. However, current cluster job schedulers require the user to specify the number of
resources per task manually. This often leads to suboptimal execution time and related
cost of the whole workflow execution since many users have only limited experience and
knowledge of parallel efficiency and scaling. This paper proposes several mechanisms to
automatically optimize the execution parameters of moldable workflows using genetic algo-
rithms. The paper introduces a local optimization of workflow tasks, a global optimization
of the workflow on systems with on-demand resource allocation, and a global optimiza-
tion for systems with static resource allocation. Several objectives including the workflow
makespan, computational cost and the percentage of idling nodes are investigated together
with a trade-off parameter putting stress on one objective or another. The paper also
discusses the structure and quality of several evolved workflow schedules and the possible
reduction in makespan or cost. Finally, the computational requirements of the evolution-
ary process together with the recommended genetic algorithm settings are investigated.
The most complex workflows may be evolved in less than two minutes using the global
optimization while in only 14s using the local optimization.
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6.1.4 Publication IV

JAROS Marta, SASAK Tomas, TREEBY Bradley E. and JAROS Jiri. Estimation of
Execution Parameters for k-Wave Simulations. In: High Performance Computing
in Science and Engineering. HPCSE 2019. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Cham: Springer Nature Switzerland AG, 2021, pp. 116-134. ISBN 978-3-030-67076-4.
Available from: https://link.springer.com/chapter/10.1007/978-3-030-67077-1_7

e Publication type: conference paper
e Conference ranking: none

o Author’s participation: 70%

Author’s Contribution

Post-processing of collected performance data, providing experiments with different inter-
polation methods and different inputs. Evaluation of experiments. Creating figures, plots
and writing the paper.

Abstract

Estimation of execution parameters takes centre stage in the automatic offloading of com-
plex biomedical workflows to the cloud and high-performance facilities. Since ordinary users
have no or very limited knowledge of the performance characteristics of particular tasks in
the workflow, the scheduling system has to have the capability to select the appropriate
amount of compute resources, e.g., compute nodes, GPUs, or processor cores and estimate
the execution time and cost.

The presented approach considers a fixed set of executables that can be used to create
custom workflows and collects performance data of successfully computed tasks. Since the
workflows may differ in the structure and size of the input data, the execution parameters
can only be obtained by searching the performance database and interpolating between
similar tasks. This paper shows it is possible to predict the execution time and cost with
high confidence. If the task parameters are found in the performance database, the mean
interpolation error stays below 2.29%. If only similar tasks are found, the mean interpo-
lation error may grow up to 15%. Nevertheless, this is still an acceptable error since the
cluster performance may vary in order of percent as well.
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6.1.5 Publication V

JAROS Marta and JAROS Jiri. Optimization of Execution Parameters of Mold-
able Workflows under Incomplete Performance Data. In: Klusacek, D., Julita, C.,
Rodrigo, G.P. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2022. Lecture
Notes in Computer Science, vol 13592. Springer, Cham. https://doi.org/10.1007/978-
3-031-22698-4_8.

e Publication type: conference paper
o Conference ranking: B (ERA), B1 (Qualis), B (CORE2020, CORE2021)

o Author’s participation: 80%

Author’s Contribution

Preparing and running experiments on the cluster and their evaluation. Implementation of
improvements in Tetrisator, the cluster simulator. Creating figures, and plots and writing
the paper parts about the problem description, experiments done, obtained results together
with their evaluation, conclusions and future work.

Abstract

Complex ultrasound workflows calculating the outcome of ultrasound procedures such as
neurostimulation, tumour ablation or photoacoustic imaging are composed of many com-
putational tasks requiring high-performance computing or cloud facilities to be computed
in a sensible time. Most of these tasks are written as moldable parallel programs being able
to run across various numbers of compute nodes. The number of compute nodes assigned
to particular tasks strongly affects the overall execution and queuing times of the whole
workflow (makespan) as well as the total computational cost. This paper employs a genetic
algorithm searching for a good resource distribution over particular tasks, and a cluster
simulator evaluating the makespan and cost of the candidate execution schedules. Since
the exact execution time cannot be measured for every possible combination of the task,
input data size, and assigned resources, several interpolation techniques are used to predict
the task duration for a given amount of compute resources. The best execution schedules
are eventually submitted to a real cluster with a PBS scheduler to validate the whole tech-
nique. The experimental results confirm the proposed cluster simulator corresponds to a
real PBS job scheduler with sufficient fidelity. The investigation of the interpolation tech-
niques showed that incomplete performance data can be successfully completed by linear
and quadratic interpolations making a maximum mean error below 10%. Finally, the pa-
per shows it is possible to implement a user-defined parameter which instructs the genetic
algorithm to prefer either the makespan or cost or find a suitable trade-off.
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6.2 Other Publications

2022

« JAROS Marta, TREEBY Bradley E. and JAROS Jiri. k-Plan: from the Hospi-
tal to the Cluster and back. 6th Users’ Conference of IT4Innovations. Ostrava,
CZ, 2022.

— Publication type: poster
— Author’s participation: 50%

« JAROS Marta, TREEBY Bradley E. and JAROS Jiri. k-Dispatch’s Perfor-
mance Modules for Advanced Workflow Submission. High Performance Com-
puting in Science and Engineering 2022, Hotel Solan, CZ, 2022.

— Publication type: poster
— Author’s participation: 80%

2021

« JAROS Marta, TREEBY Bradley E. and JAROS Jiri. Adaptive Execution
Planning in Biomedical Workflow Management Systems. The Platform for
Advanced Scientific Computing (PASC) Conference 2021. Geneva, CH, 2021.

— Publication type: poster
— Author’s participation: 80%

e JAROS Marta and JAROS Jiri. k-Dispatch’s Performance Modules for Ad-
vanced Workflow Submission. 5th Users’ Conference of I'T4Innovations. Ostrava,
CZ, 2021. Available from: https://events.it4i.cz/event/119/contributions/
410/

— Publication type: poster
— Author’s participation: 80%

2020

« KUKLIS Filip, JAROS Marta and JAROS Jiri. Accelerated Design of HIFU
Treatment Plans Using Island-based Evolutionary Strategy. In: Applica-
tions of Evolutionary Computation. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), vol. 12104. Cham: Springer International Publishing, 2020, pp. 463-478. ISBN
978-3-030-43721-3. Available from: https://link.springer.com/chapter/10.1007/
978-3-030-43722-0_30

— Publication type: conference paper
— Conference rating: B5 (Qualis), B (CORE2021)
— Author’s participation: 15%
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2019
e JAROS Marta, TREEBY Bradley E. and JAROS Jiri. Adaptive Execution

Planning in Biomedical Workflow Management Systems. 3rd Users’ Confer-
ence of I'T4Innovations, Ostrava, CZ, 2019.

— Publication type: poster

— Author’s participation: 75%

e JAROS Marta. Adaptive Execution Planning in Workflow Management
Systems. In: Pocitacove architektury a diagnostika 2019. Doksy: Academic and
Medical Conference Agency, CZ, 2019, pp. 23-26. ISBN 978-80-88214-20-5.

— Publication type: conference paper
— Conference ranking: none
— Author’s participation: 100%

« JAROS Marta, JAROS Jiri and TREEBY Bradley E. Adaptive Execution Plan-
ning in Workflow Management Systems. SuperComputing 2019, Denver, Col-
orado, US, 2019.

— Publication type: poster
— Author’s participation: 75%

« JAROS Marta, TREEBY Bradley E. and JAROS Jiri. Scientific workflow man-
agement framework. High Performance Computing in Science and Engineering
2019, Hotel Solan, CZ, 2019.

— Publication type: poster
— Author’s participation: 75%

2018

« CUDOVA Marta, TREEBY Bradley E. and JAROS Jiri. Design of HIFU
Treatment Plans using Evolutionary Strategy. In: GECCO 2018 Compan-
ion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference
Companion. Kyoto: Association for Computing Machinery, 2018, pp. 1568-1575.
ISBN 978-1-4503-5764-7. Available from: https://dl.acm.org/citation.cfm?doid=
3205651.3208268

— Publication type: conference paper
— Conference ranking: none
— Author’s participation: 50%
« JAROS Marta, TREEBY Bradley E. and JAROS Jiri. Design of HIFU Treat-

ment Plans using an Evolutionary Strategy. 2nd Users Conference of
IT4Innovations, Ostrava, CZ, 2018.

— Publication type: poster
— Author’s participation: 75%
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e JAROS Marta. Scientific Workflows Management. In: Pocitacove architek-
tury & diagnostika PAD 2018. Pilsen: University of West Bohemia in Pilsen, CZ,
2018, pp. 25-28. ISBN 978-80-261-0814-6.

— Publication type: conference paper
— Conference ranking: none

— Author’s participation: 100%

2017
« CUDOVA Marta and JAROS Jiri. Framework for Planning, Executing and

Monitoring Cooperating Computations. 1st Users Conference of IT4Innovations,
Ostrava, CZ, 2017.

— Publication type: poster

— Author’s participation: 80%

e CUDOVA Marta. Framework for Planning, Running and Monitoring Co-
operating Computations. In: Pocitacove architektury & diagnostika PAD 2017.
Bratislava: Slovak University of Technology in Bratislava, SK, 2017, pp. 20-23. ISBN
978-80-972784-0-3.

— Publication type: conference paper
— Conference ranking: none

— Author’s participation: 100%
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6.3

6.4

Publications Being Prepared

BUCHTA Martin, JAROS Marta and JAROS Jiri. Using Symbolic Regression
in Incomplete Performance Data for Optimization of Workflow Scheduling.

— Publication type: conference paper

— To be submitted at: WORKS 2023 (workshop at Supercomputing) or JSSPP
2024 (workshop at IPDPS)

— Author’s participation: 30%

TREEBY Bradley E., JAROS Marta and JAROS Jiri. k-Plan: Advanced Mod-
elling Tool for Ultrasound Planning.

— Publication type: journal paper

— Author’s participation: 20%

Fellowships, Memberships, Awards and Others

A year fellowship as a Research Assistant at the Department of Medical Physics and
Biomedical Engineering, University College London, London, UK, 2021.

Three-year membership of the faculty senate, Faculty of Information Technology, Brno
University of Technology, CZ, 2019-2022.

Presentation at the PRACE Birds of Feathers at ISC High Performance, DE 2021.
Invited talk at the University College London at the Social Tech event, UK, 2021.

Invited talks at the Girls Summer School at the Faculty of Information Technology,
Brno University of Technology, CZ, 2020-2021.

Contribution at the Women in HPC (WHPC) blog about k-Dispatch, 2017. Accessible
from https://womeninhpc.org/hpc/framework-planning.

Poster at Women in HPC (WHPC) workshop at Supercomputing 2017, Denver, USA.
See https://womeninhpc.org/women-in-hpc-events/whpc-reflections.

Talk at the PRACE booth at Supercomputing 2017, Denver, USA.

Winner of the PRACE Summer of HPC Ambassador Award, 2016. See https://

prace-ri.eu/about/prace-awards/sohpcprize/sohpcprize-2016/.

Two-month internship PRACE Summer of HPC at the supercomputing center EPCC,
University of Edinburgh, UK, 2016. Working on Parallelising of Scientific Python Ap-
plications on Archer, supervised by Dr. Neelofer Banglawala. See https://youtu.be/
__oNjB6DIis.

The PAD (Pocitacové architektury a diagnostika) workshop co-organization, CZ,
2016.
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6.5 Research Projects and Grants

2023
 Application-specific HW/SW architectures and their applications, BUT, FIT-S-23-
8141, 2023-2025, running, start: 2023-03-01, end: 2025-12-31.
2022

e C(losed-loop Individualized image-guided Transcranial Ultrasonic Stimulation, EC EU
- HORIZON EUROPE, 101071008, 101071008, 2022-2026, running, start: 2022-10-01,
end: 2026-09-30

o Acceleration of selected evolutionary computing techniques for solving global opti-
mization problems., BUT, FIT/FSI-J-22-7980, 2022, completed, start: 2022-03-01,
end: 2022-12-31.
2021

e Acceleration of Selected Evolutionary Communication Techniques for Solving combi-
natoric NP-complete tasks, BUT, FIT/FSI-J-21-7435, 2021, completed, start: 2021-
03-01, end: 2021-12-31, principal investigator.

e Analysis of the applicability of Angle of Arrival technology in practice, ADWITECH
system s.r.o., 2021-2022, completed, start: 2021-10-01, end: 2022-02-28
2020
e Design, Optimization and Evaluation of Application Specific Computer Systems,
BUT, FIT-S-20-6309, 2020-2022, completed, start: 2020-03-01, end: 2022-12-31.
2017

o Advanced parallel and embedded computer systems, BUT, FIT-S-17-3994, 2017-2019,
completed, start: 2017-03-01, end: 2019-12-31.

« Moderni a oteviené studium techniky (MOST), MSMT CR, 2017-2022, completed,
start: 2017-09-01, end: 2022-12-31.

o Photoacoustic/Ultrasound Mammoscopy for evaluating screening-detected lesions in
the breast, EC EU, PAMMOTH, PAMMOTH, 2017-2021, completed, start: 2017-01-
01, end: 2021-06-30.
2016

o IT4Innovations excellence in science, MSMT CR, LQ1602, 2016-2020, completed,
start: 2016-01-01, end: 2020-12-31.
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Chapter 7

Conclusions

This chapter summarizes and discusses the contributions and outcomes of this Thesis for
the research community and industry. Finally, future research directions are proposed.
The main objectives of this Thesis were:

1. Investigate multi-objective optimization methods in order to select a suitable amount
of resources, e.g., nodes, for particular tasks in workflows.

Multi-objective optimization methods were thoroughly studied together with ap-
proaches adopted by high-performance computing (HPC) centres, workload man-
agers, processing frameworks and workflow management systems. The summary may
be found in Sec. 2 and other details are provided in related papers attached.

2. Collect and create performance datasets and identify experimental use cases to demon-
strate the selected optimization method.

Biomedical workflows employing the state-of-the-art k-Wave toolbox were selected as
experimental use cases. The selection was motivated by PAMMOTH, the European
Horizon 2020 project, requiring routine execution of ultrasound simulations to recon-
struct photoacoustic images of the breast, and several other research projects in the
areas of ultrasound-based neurostimulation, and is further developed in CITRUS, an
EC EU - Horizon Europe project in the area of ultrasound neurostimulation. The
k-Wave performance data was collected on various I'T4Innovations clusters. Detailed
description can be found in Sec. 4.3. Experimental workflows, their computational
demands on different clusters and collected performance data are also explained in
the following related papers: Paper I gives a detailed description of computational
demands of different code types, measured for the I'T4Innovations’ Anselm cluster, ex-
ecuted within the neurostimulation workflow and shows their strong scaling character-
istics. Paper 11 presents structures of two real-world biomedical workflows. Paper 111
introduces two experimental workflows together with the performance data collected
on the IT4Innovations’ Barbora cluster for the distributed MPI version of the k-Wave
toolbox. Paper IV reveals performance data for the shared memory OpenMP-based
k-Wave toolbox simulations measured using [T4Innovations’ Anselm cluster. Finally,
Paper V depicts differences between k-Wave performance data obtained for Salomon
and Barbora clusters and describes experimental datasets together with experimental
workflows.
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3. Provide an effective workflow execution planning with the throughput mazimization
or the latency minimization.

After a thorough investigation of related solutions in Sec. 2, the genetic algorithms-
based approach was selected and implemented. The crucial part of multi-objective
optimization is the fitness function. We designed three different fitness functions pro-
viding: (1) Local task-level optimization selecting optimal execution parameters for
each individual task in the workflow and considering only one optimization criterion.
This approach minimizes the execution time per each task but the overall execution
time (makespan) may not be the fastest one due to longer waiting times for free
resources. (2) Global workflow-level optimization using on-demand resource alloca-
tions selecting execution parameters with respect to the whole workflow. The selected
parameters may, thus, be suboptimal for individual tasks. This fitness function opti-
mizes two contrary optimization criteria, i.e., workflow makespan and cost. Therefore,
a trade-off coefficient to prioritize between them was introduced. Using this approach,
time or cost-constrained solutions can be found as well as differently balanced solu-
tions. Finally, (3) Global (workflow-level) optimization using static resource alloca-
tions finding solutions that better utilize allocated resources and minimizes latency.
Unlike (2), no trade-off coefficient is used.

The fitness function is encapsulated by the genetic algorithm. The fitness function
is, however, universal enabling the genetic algorithm to be easily replaced by differ-
ent optimization methods. The encapsulating method represents a black box inside
which the execution parameters are selected based on the task input and collected
performance data in history. The optimization heuristics and fitness functions are
thoroughly described in Sec. 5.1 and Papers III and V.

Since the collected performance data may be incomplete or missing for a given input,
interpolation methods were incorporated. They estimate the missing values using
similar known values in their neighbourhood. Section 5.2 and Papers IV and V deal
with this topic.

Moreover, this Thesis introduced early experiments where symbolic regression is em-
ployed and gave very promising results. This is, however, the subject of future re-
search. A description of this approach together with the provided experiments can,
however, be found in Appendix C.

4. Create a piece of software providing the execution and monitoring of the workflows on
HPC systems, and data transfers. This software parses the input data, automatically
assembles a corresponding workflow, sets execution parameters and generates HPC
system-specific jobs scripts. Required data is transferred to the target HPC system
where the execution is orchestrated. The remote jobs are monitored and obtained
result data is transferred back.

For this purpose, k-Dispatch providing HPC as a Service was designed, developed
and successfully deployed. k-Dispatch currently utilizes Czech and UK computational
resources and is used by users from both academia and industry. It should be noted,
that k-Dispatch has also been commercialized and is being offered by the BrainBox,
Ltd. company. k-Dispatch and its functionality is described in Sec. 4.1 and published
in Paper II. Its deployment and real usage are then defined in Sec. 7.1.
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o.

Ezperimentally evaluate the implemented optimization method and software on se-
lected use cases.

The genetic algorithm-based optimization method was experimentally evaluated (1)
in the custom-created cluster and batch scheduler simulator called Tetrisator (see
Paper [1T and V), (2) in Alea, the complex and general cluster simulator (see Paper I),
and (3) on real IT4Innovations” HPC clusters and static resource allocations (see
Paper 11T and V). The experimental results were summarized in Sec. 5.4.

k-Dispatch was tested and evaluated in various aspects: inputs processing and decod-
ing, data transfers, remote job script generation, executions orchestration, job and
cluster monitoring, status reporting, RESTful API communication, and fault toler-
ance. A set of Python unit tests was created to test the key low-level features. Typical
and more complex scenarios covering a submission and orchestration of executions,
monitoring, detection of error states, etc., were tested manually and experimentally
evaluated using the I'T4Innovations’ HPC clusters.

. Asses the implemented solution, its benefits discuss open issues.

We designed, developed and deployed a piece of software to automatize and offload
computational workflows to remote computing facilities. We also designed and devel-
oped optimization heuristics to select a suitable amount of computational resources
(e.g., nodes) for individual tasks in the workflow. We designed several fitness functions
to satisfy different optimization criteria (e.g., overall execution time, cost, computa-
tional throughput). The execution plans show how workflows are executed using
particular remote computing resources. The time needed to create an execution plan
is dependent on the size of the workflow. We managed to create these plans in under
two minutes with a success rate higher than 90% for workflows consisting of up to
64 tasks. The evaluation of these plans answers how well the optimization criteria
would be met. The presented solution provides automated and failure-free execution
of workflows.

Auxiliary objectives were to

1.

design and implement additional features within the developed software, e.g., account-
ing, authentication and authorization, reporting, and a level of fault tolerance,

. store performance data after each successful run in order to build a custom perfor-

mance database,

design and implement a RESTful (Representational State Transfer) API (Application
Programming Interface) together with a GUI (Graphical User Interface) application
to handle workflow submissions easily.

All auxiliary objectives were fulfilled. k-Dispatch, as an HPC as a Service tool, shares

features with other state-of-the-art workflow management tools. It deploys its own database
of users, allocated resources, remote computing facilities and available executable binaries.
This database is used for execution planning, accounting, authentication and authorization.
Designed RESTful API enables unified communication with various user applications, and
can read from and write to the database. To provide a quality of service, mechanisms pro-
viding fault tolerance and reporting are implemented. To provide adaptive and optimized
workflow executions, the performance database is being collected. New records are added
after each successful workflow completion. Details can be found in Chpt. 6 and Paper II.
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The approaches presented in this text are applicable to anybody who is interested
in automated task or workflow execution and scheduling. This Thesis gives ideas and
offers means how to (1) automate daily tasks, (2) improve workflow executions and better
utilize computational resources, and (3) handle constrained executions. Steps needed to
obtain a general solution are depicted in Sec. 4.4. Designed fitness functions can be used
generally by various optimization and machine learning methods. This approach may be
adjusted or extended, e.g., to optimize different or multiple variables alongside. It also
lists open problems and challenges (see Sec. 3.1 and 3.2) in this area that may help new
researchers and developers to react to nowadays issues. Presented techniques build a bridge
between users and computing facilities that helps to employ them in industry, academia
and various research fields. Moreover, a middle-ware software k-Dispatch introduced has
been successfully deployed in clinics and represents an HPC as a Service tool.

7.1 k-Dispatch Development and Deployment

k-Dispatch is a Python-based tool. Due to clinical usage, its development was performed
under strict rules, properly tested, and versioned in a GitLab repository. Each new func-
tionality or improvement was described within the GitLab’s Issue system and supplied with
a log of changes. Every code update or new feature has to be properly tested before being
merged into the main development branch. Strict rules also concern used binaries and data.
Due to clinical usage, only certified binaries can be employed in the workflows. All data is
anonymized and stored temporarily only for the necessary period of time.

A container-based approach was used to simplify the process of deployment, mainte-
nance, data safety and fault tolerance. We used Docker [8], an open-source platform based
on Linux containers, which has become very popular for modern software development
and deployment. The biggest advantage of this solution is the isolation of k-Dispatch and
its dependencies into self-contained units that can run anywhere. k-Dispatch is split into
four Docker containers and three volumes connected via a Docker network deployed by the
docker-compose tool, as depicted in Fig. 7.1. These containers individually encapsulate the
Dispatch database (depicted in yellow), the Dispatch core together with the k-Dispatch’s
application server Web Server (depicted in pink), and additionally, an Nginx-based web
server [18] acting as an entry point for user requests (depicted in green). The Dispatch
database stores all persistent data in a dedicated volume. The remaining volumes store
k-Dispatch Python source codes and SSH credentials to remote computational facilities, re-
spectively. These volumes are shared between the Dispatch core and the application server
to enable easy data updates. The application web server employing the Flask framework
cannot be run in the production version without another gateway, e.g., GUnicorn' or other
uWSGI? hosting services, since they only offer HTTP communication. The Nginx con-
tainer thus adds the required security by providing HT'TPS communication. Moreover, the
website API is secured using the Let’s Encrypt® certificates.

"https://gunicorn.org/
*nttps://flask.palletsprojects.com/en/1.0.x/deploying/uwsgi/
3https://letsencrypt.org/
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Figure 7.1: k-Dispatch architecture wrapped into Docker containers and volumes. The text
descriptions below individual rectangles show network port mappings used in the current
solution.

7.1.1 k-Plan: Advanced Modelling Tool for Ultrasound Planning

k-Plan® is an advanced modelling tool for planning transcranial ultrasound stimulation
(TUS) procedures. k-Plan uses a streamlined and intuitive workflow that allows users to
select an ultrasound device, position the device using a template or medical image, and
specify the sonication parameters. k-Dispatch here plays a key role in allowing access to
high-performance computing resources in the cloud enabling users to run high-resolution
planning simulations with a single click. k-Dispatch optimises the computing resources
needed for every simulation and monitors the running simulations. Their states are auto-
matically refreshed and displayed in the plan browser. Additional services like accounting,
data transfers, fault tolerance, etc., are performed under the hood as well.

Today, k-Plan has 35 active users from both academia and industry that simulate their
problems regularly using this service. Over the last six months, users have submitted over
1400 workflows with typical sizes ranging from 37 x69 x 69 to 1095 x 954 x 704, and consumed
over 3000 node hours on both Barbora and Karolina supercomputers at I'T4Innovations.

Development and exhaustive testing could be possible owing to the national supercom-
puting center I'T4Innovations. Required node hours were gained in periodical open access
grant competitions.” This work was supported by the following projects: OPEN-17-6,
OPEN-22-47, OPEN-25-43, OPEN-25-25, OPEN-25-26 and OPEN-27-69.

7.2 Future Work

Science and research define humanity, transform our society for the better, and push our
intellectual borders even further. Of course, the work presented here is not at its end.
This work could not answer all of the found open problems and implement all ideas and
approaches due to their complexity. Each day gives us new opportunities to follow up with
the research done here.

“https://brainbox-neuro.com/products/k-plan
"https://www.it4i.cz/en/for-users/open-access-competition
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Some ways of further research have already been indicated in this text. We may split
the future work into two groups, which are research goals, and application improvements
and extensions.

Research goals mainly follow up with the commenced research here and aim at their (com-
mercial) usage in a broader community:

e Complete and publish experiments with genetic programming and symbolic regression
to estimate task execution time for unknown input data and/or amount of computing
resources. Symbolic regression allows to better capture the scaling behaviour, and
thus, allows better predictions.

¢ Include the information about the actual remote facility utilization. This is particu-
larly handy in on-demand allocations where users compete with each other. In such
a case, tasks and their character coming to the remote system are unpredictable.
Together with a changing workload, user priorities change as well. Waiting times
in computational queues are directly affected by these priorities. Waiting for more
resources usually implies waiting in queues for a longer time. Therefore, it is benefi-
cial to ask for fewer resources and try to fill in the currently idling resources in the
schedule. This solution may not be so price advantageous because the execution time
gets longer, however, the throughput is better. This is crucial for time-constrained
workflows.

o Update Evaluator to allow new scheduling strategies. Since different computing fa-
cilities based on different technologies are to be used, it is essential to employ a tool
that can dynamically simulate the target system. It is also crucial to follow a modular
design to flexibly react to any change that the future may bring.

On the other hand, application improvements and extensions react to users’ needs and
try to keep pace with nowadays technologies and requirements:

o Integrate the latest advanced planning methods introduced in this Thesis and enable
users to prioritize one optimization criterion over another on their own for on-demand
allocations. This may be implemented using a graphical slider, internally represented
as a trade-off coefficient.

e Enable custom workflows together with a user-friendly workflow editor. This step
helps k-Dispatch to keep pace with traditional workflow management systems. Cre-
ating custom workflows and their sharing in a standard format is, however, a great
opportunity for (slightly) advanced users to optimize their routine tasks.

o Enable user binary executables. This step also helps k-Dispatch to keep pace with
traditional workflow management systems. Allowing user binaries may be considered
a security hazard but running them encapsulated, e.g., in a Docker container may
solve this issue. Unlike in the current k-Dispatch, users would be responsible for their
binaries, their reliability and efficiency.

« Employ Slurm-based computing facilities and clouds, e.g., Amazon Cloud.®

Shttps://aws.amazon.com/
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Appendix A

Evaluation and Tuning of Genetic
Algorithms Optimizer

In order to evaluate the capabilities of the genetic algorithm and tune genetic operators and
control parameters, a performance database containing tasks with various parallel scaling
characteristics was created. This database was consequently used to build several test
workflows covering a wide range of typical use cases.

When creating the performance database, the number of nodes assigned to each task
was limited to the interval <1, 36>. Figure A.l shows generated strong scaling curves
consisting of 6 different examples, three of which are purely artificial and three of which
are realistic.

Artificial Data 1 Artificial Data 2 Artificial Data 3 Real Data 4 Real Data 5 Real Data 6
512 512

Execution Time [s]

2 8 2 8 2 8 2 8 2 2 8 2 2 8
Computational Resources Computational Resources Computational Resources Computational Resources Computational Resources Computational Resource:

Figure A.1: Investigated strong scaling curves generated for both artificial data and a real-
istic application. Execution time is related to a single simulation step.

The artificial scalings were created to capture specific corner cases. The first plot
represents perfect scaling, which is typical for embarrassingly parallel applications. The
second one shows good scaling with some minor artifacts at the end typical for memory-
bound applications. The last example represents an extreme type of bad scaling containing
many local extremes caused by unbalanced workload distribution or high communication
overhead. The realistic scalings were measured on the distributed MPI version of the
acoustic k-Wave toolbox [32], which is our target application. In this case, k-Wave simulated
the ultrasound wave propagation in tissue-realistic media with grid resolutions of 5003,
5123 and 5442 grid points. The pseudo-spectral solver heavily depends on 3D fast Fourier
transforms which are highly sensitive to the highest prime factor of the domain sizes, which
are 5, 2, and 17 for the domain sizes of 5003, 5123 and 5443 grid points, respectively. The
toolbox was compiled using the GCC compiler 8.2, OpenMPI 4.0 and FFTW 3.3.8, and
measured on the Barbora supercomputer at IT4Innovations.
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The size of the experimental workflows varied between 8 and 64 tasks. Bigger workflows
were not taken into account since many HPC facilities limit the number of currently submit-
ted tasks to low tens, e.g. 100, at IT4Innovations where the experimenters were conducted.
In order to bring some variability into the workflows, the execution time of each task was
randomly altered by up to 25%, which typically happens in integrative algorithms with
an error-based termination condition. Moreover, since the performance variability between
nodes in the cluster may attribute to about 5% deviations in the execution time [58], we
added this variation to the execution time as well. For the sake of brevity, this section will
only present experimental results obtained on Artificial Datasets 2, 3 and Real Dataset 4,
and the workflow structure depicted in Fig. A.2.

ST||ST||ST||ST|eee ST

PT
/N T
ST||ST||ST|[ST|eee |ST

—\/
PT

* ST = Simulation Task, PT = Data Processing Task

Figure A.2: The structure of the investigated workflow where computationally heavy Simu-
lation Tasks (STs) produce data and less demanding Processing Tasks (PTs) imply barriers
between ST stages.

The proposed experiments investigated (1) control parameters and operators used in
the GA and summarized in Table A.1, (2) local task optimization fitness function and (3)
global workflow optimization fitness function utilizing either shared allocation (GOSA) or
on-demand allocation (GODA) resources. The experiments employ fitness functions defined
in Eq. (5.3), Eq. (5.7) and Eq. (5.9), and they were evaluated using an artificial cluster
composed of 64 computational nodes. To get statistically relevant results, 20 independent
runs for each configuration were carried out.
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Table A.1: Control Parameters and Operators of the Genetic Algorithm

Control parameter Details
Selection method Steady-state (sss), roulette wheel (rws), rank, tournament
Crossover method Single-point, uniform, arithmetic
Crossover probability 0.7, 0.9
Mutation method Random
Gene mutation probability 0.1%, 0.5%, 1%, 5%, and 10%
Elitism 5% of the best individuals copied to the next population.
Population size 25, 50, 100, 150
Maximum number of generations 1000

Figures A.3 and A.4 show experiments performing local tasks optimization on Artificial
Datasets no. 2 and 3. While all runs of the GA with almost any combination of control
parameters found the solution for the perfect scaling, the Artificial Dataset no. 3 usually
led to a sub-optimal solution. We managed to find the optimal solution only for small
workflows of 8 tasks using steady-state selection, the uniform crossover of 0.7 probability
with 28 % average success rate and 20 % median success rate. It may be calming that such
scaling is really extreme and it is rather unlikely for real runs.

A comparison of various control parameters can be seen in Fig. A.3. The plots show
the generation in which the GA converged (the dashed line stands for the optimal solution)
together with the execution time of the best solution found. The colour of the dots denotes
the particular parameter combination. It is visible that the mutation rate of 5 % seems the
most promising. Thus, Fig. A.4 investigates other control parameters for the experiment
with Artificial Dataset no. 2 while using a 5 % mutation rate fixed.
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Artificial Dataset 2: 64 Tasks, 100 Individuals, Uniform Crossover 0.7
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Artificial Dataset 3: 64 Tasks, 100 Individuals, Uniform Crossover 0.7
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Figure A.3: Investigation of the GA control parameters and operators shown on Artificial
Dataset no. 2 (top) and Artificial Dataset no. 3 (bottom). The plots illustrate the number
of generations needed to find the optimal solution (dashed line). The y-axis shows the

makespan.
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Artificial Dataset 2: 64 Tasks, 5 % Mutation Rate
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Figure A.4: Evaluation of the necessary number of generations to reach convergence for
various control parameters.

Local task optimization shows very good capabilities in optimizing particular tasks.
From 20 independent runs of the GA, more than 90% trials always found the best possible
solution. The following Table A.2 summarises the average evolution runtime of the GA
in seconds and the median number of generations to achieve the best solution for various
sizes of the population while considering steady-state selection, the uniform crossover of
0.7 probability, random gene mutation of 1% probability, and 5% elitism. The evolution
runtimes were obtained for Real Dataset no. 4. The table reveals that the necessary pop-
ulation size linearly grows with the size of the workflow from 25 up to 150 individuals,
but still stays quite small. This is natural behaviour since bigger workflows require longer
chromosomes which in turn requires larger populations to keep promising building blocks
of the solution. On the other hand, the execution time appears to grow quadratically. This
growth can be attributed to a product of increasing population size which rises the num-
ber of fitness function evaluations, and the linearly growing time complexity of the fitness
function evaluation. Nevertheless, an execution time of nearly 14s on a single computing
core with 90 % success rate for the biggest workflow is an excellent result.

Table A.2: Evolution time for Real Dataset no. 4 to find the best solution for different
workflows size. Various sizes of populations were investigated. Values in brackets stand
for the generation number (median) when the solution was found. Solutions highlighted in
bold determine the minimum number of generations needed to reach a 90 % success rate.

Population Size 25 50 100 150
Number of Tasks
8 0.45s (225) | 0.30s (102) | 0.28s (48)
16 1.29s (431) | 1.00s (431) | 1.66s (151)
32 3.33s5 (370) | 3.51s (196) | 4.75s (176)
64 10.8s (598) 12.25 (360) | 13.2s (260)
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We may conclude that the uniform crossover produced the best results. The influence
of the crossover probability was not statistically significant. The best selection strategy
that drives the GA through the search spaces is hard to definitely determine. The differ-
ence amongst steady-state, rank and tournament selection methods is marginal but sig-
nificantly higher when compared to Roulette Wheel selection. However, experiments with
Real Dataset no. 4 showed steady-state selection as the best one followed by rank selection.
The optimal mutation ratio seems to be around 0.5 %. As expected, the better the scaling
the faster the convergence and the higher the success rate of finding the optimal resource
assignment.

When performing a global workflow optimization, the GA does not converge to a single
optimal solution but to many incomparable solutions. These solutions may be illustrated
as a Pareto frontier. Figure A.5 shows the Pareto frontier for a workflow consisting of 64
tasks using Real Dataset no. 4 and performing the global optimization using on-demand al-
location, together with dominated solutions illustrated using a line. Figure depicts evolved
solutions while various trade-off coefficients o are employed. It can be seen, the solutions
form clusters proving that using the trade-off coefficient, different solutions meeting differ-
ent optimization criteria can be found. These clusters may slightly overlap. It can also
be seen that although the fitness function may still push down the execution time, the
computational cost remains the same from some point. Figure A.6 depicts suitable GA
parameters for GODA when a trade-off coefficient of 0.95 is used. Steady-state selection
and random gene mutation of 1.0 % rate defeats other methods. Both Rank and Tourna-
ment selection methods provide mostly identical results. We also observed that for smaller
workflows counting 32 tasks included, Rank selection gives better results than steady-state
selection, see Paper II1.

Real Dataset 4: 64 Tasks, 150 Individuals, Uniform Crossover with Rate 0.7
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Figure A.5: Pareto frontier and dominated solutions obtained by multiple GA runs using
the GODA fitness functions for the workflows without dependencies and various values of
the o parameter. The computational cost on the x-axis is computed as the execution time
multiplied by the number of computational resources, while the elapsed time on the y-axis
stands for the makespan.
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Real Dataset 4: 64 Tasks, 150 Individuals, Uniform Crossover with Rate 0.7
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Figure A.6: Exploration of suitable GA parameters for GODA employing the trade-off
coefficient of 0.95. It can be seen that the steady-state selection method gives the most
promising results.

In the case of GOSA shown in Fig. A.7, solutions for different trade-off coefficients
highly overlap. A smaller a parameter pushes the GA to find solutions with a smaller
amount of unused resources (up to 29 %) but the range of found solutions is very high.
When considering a simple case of a single workflow with task dependencies, the feasibility
of the request to minimize idling resources may also be limited by the workflow structure.
Figure A.8 shows that Roulette Wheel selection with 1.0 % random gene mutation rate is
the most appropriate method for this kind of problem. Next, steady-state selection with
0.5 % random gene mutation seems to be able to give good results but without additional
tuning and experiments cannot compete with roulette wheel selection. In this configuration,
red points form a line which indicates that two optimization criteria are correlated and it is
not feasible to prioritize between them. On the other hand, we found out that steady-state
selection works better for smaller workflows counting less than 32 tasks included. Other
selection methods are considered unsatisfying. The selection example uses a population of
100 individuals and a uniform crossover of a 0.7 rate. The runtimes of GODA and GOSA
are shown in Table A.3 and Table A.4, respectively. The workflow containing 64 tasks was
evolved on a single processor core within 2 and 4.5 minutes, respectively.
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Real Dataset 4: 64 Tasks, 100 Individuals, Uniform Crossover with Rate 0.7
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Figure A.7: Pareto frontier and dominated solutions obtained by multiple GA runs using
the GOSA fitness function for the workflows with dependencies and various values of the a
parameter. The computational cost on the x-axis is computed as a sum of tasks’ execution
times multiplied by the number of computational resources used, while elapsed time on the
y-axis stands for the makespan.

Real Dataset 4: 64 Tasks, 100 Individuals, Uniform Crossover with Rate 0.7
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Figure A.8: Graph showing the search for suitable GA parameters for GOSA fitness function
employing the trade-off coefficient of 0.05%. It is evident that only the Roulette Wheel
selection gives reasonable results. The steady-state selection using 0.5 % random mutation
provided acceptable results too but did not achieve as good values as the roulette wheel.
Both rank and tournament selection methods provided the same unsatisfying results.
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Table A.3: Evolution time for the GODA fitness function measured for Real Dataset no. 4
to find the best solution for different workflow sizes. Various sizes of populations were in-
vestigated. Values in brackets stand for the generation number (median) when the solution
was found.

Population Size 25 50 100 150
Number of Tasks
8 0.68 s (135) 0.56 s (62) | 0.51 s (28)
16 1.60 s (160) 1.79 s (85) | 2.58 s (60)
32 6.36 s (148) | 8.80 s (100) | 11.88 s (90)
64 30.60 s (460) | 62.7 s (285) | 120.6 s (360)

Table A.4: Evolution time for the GOSA fitness function measured for Real Dataset no. 4
to find the best solution for different workflow sizes. Various sizes of populations were in-
vestigated. Values in brackets stand for the generation number (median) when the solution
was found.

Population Size 25 50 100 150
Number of Tasks
8 1.03 s (205) | 1.53 s (170) | 4.41 s (245)
16 3.40 s (340) | 4.20 s (200) | 13.33 s (310)
32 24.1 s (560) | 44.9 s (510) | 73.26 s (555)
64 102.6 s (855) | 189.2 s (860) | 274.7 s (820)
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Figure B.1: Simplified Entity Relationship Diagram (ERD) of the k-Dispatch’s database.
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Explanatory notes

Table B.1: Brief description of database tables excluding tables that implement N-N rela-
tionship. Tables that define the states of the particular table are depicted on the right.

Table name

Meaning

Status index

treatmentplan A workflow. treatmentplanstate
job A task in the workflow. jobstate
jobdependency Dependency relationship amongst tasks. -
restartedjobs A track of jobs that replaced error one. -

file A file associated with the job. -

filetype Type of the file, e.g., job script, log. -

user A user. usergroupstate
group A group of users. usergroupstate
license A license defining the software usage rights. licensestate
licensetype Type of the license. -

hpe A remote computing facility. hpcstate
hpcqueue A computing queue in the HPC. -

allocation An internal resource allocation. allocationstate
codetype A code type. For each code type, multiple implementations may exist. | —
implementationdetails | A binary (particular code type implementation) definition. -

run A submission script template for a particular binary.

allowedcode Allowed code and the binary on the particular HPC and its queue. -

purchase A purchase of resource allocation made by a group. purchasestate
purchaseresource A purchase details on a particular HPC queue. purchasestate
currency A currency in which the purchase was made. -
kwavescaling Performance database for selected k-Wave codes. -
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Appendix C

Estimation of Task Execution
Time using Symbolic Regression
and Genetic Programming

The content of this chapter was created in collaboration with a master’s student at Faculty
of Information Technology, Brno University of Technology, Martin Buchta, who helped me
with experiments and their evaluation.

The goal of this research is to better exploit the measured performance database and
estimate more accurately the task execution time for a given amount of resources, input
data, and computational facility. For this purpose, we decided to use symbolic regression
and genetic programming.

Symbolic Regression is a type of machine learning technique that searches for a mathe-
matical expression that best fits a given dataset. In our case, we are looking for a formula
that describes the parallel scaling for a wide range of input data based on their character-
istic features, such as domain size. Construction of this expression is, however, a complex
problem requiring an extensive training dataset, a search space technique and a quality
measure.

Genetic Programming (GP) [48] is a subfield of evolutionary computing that involves
the use of evolutionary algorithms to automatically generate computer programs or models
to describe a specific problem. The outputs generated by GP are mathematical expressions
traditionally represented as tree structures since they can be easily evaluated in a recursive
manner. Non-tree representations, however, have also been successfully used. For exam-
ple, Linear Genetic Programming (LGP) uses a sequence of instructions from imperative
programming languages and Cartesian Genetic Programming (CGP) uses a graph represen-
tation. Different forms of GP and their inner individual representation suit better different
problems and applications, e.g., digital circuits, image recognition, data analysis, time-series
predictions, etc. The quality measure used as a fitness function is typically based on some
error metrics such as the mean square error.

We used two toolboxes, the Python Pandas' module and HeuristicLab? to create the
scaling models. Since HeuristicLab achieved much better results, the most of experimenters
were conducted in this toolbox. We created a training set containing 822 performance
records of the MPI k-Wave solver. The training set covers 21 different domain sizes and

"https://pandas.pydata.org/
“https://dev.heuristiclab.com/trac.fcgi/wiki
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runs executed over up to 100 nodes utilizing up to 32 computational cores (maximum) and
up to 3072 MPI ranks. The test set was created from two distinct domain sizes counting
64 performance records.

As input variables/features considered by the symbolic regression, we selected the fol-
lowing parameters:

e domain size denoted as ds,

e maximum domain factor denoted as mdf,

e number of compute nodes denoted as nodes,
e number of MPI ranks denoted as ranks,

e MPI ranks ratio, denoted as rr, defined as a ratio of MPI ranks used to the number
of cores available in a single node,

o number of used computational cores, denoted as cores, per a single node,

e MPI ranks used ratio, denoted as rur, saying how well is the computation distributed
over available MPT ranks.

Since k-Wave is memory- and communication-bound, it is beneficial to execute fewer
ranks per compute node than there are cores. Although some cores will become idle, the
memory congestion will decrease. Spreading the MPI ranks over more nodes also brings
higher aggregated network throughput.

Following mathematical functions were used (based on the default settings of Heuristi-
cLab): addition, subtraction, multiplication, division, average, exponential, logarithm, ab-
solute value, constant (a random value), variable (input value multiplied by the constant),
power of two, power of three, power of n, square root, cube root, nth root, if-then-else,
greater than, less than, and, or, not, and xor.

The optimization process was executed with the following settings and constraints:

e maximum tree depth: 16,

e maximum number of nodes: 42,

o train samples: 92% (822 out of 886 records),
o elites: 1,

e maximum number of generations: 1,000,000,
o mutation probability: 10%,

e population size: 100,

o fitness function: mean square error.

Using a desktop computer virtualised using Parallels Desktop,’ a suitable model was
found in generation number 845,242. The training process took 24 hours. The model
reached the maximum error of 7.3 % which is very promising. The formula that models the
strong scaling is depicted in Fig. C.1.

3https://www.parallels.com/eu/
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Let us note, that the model training can be done offline and does not slow down the
task submission. The model inference is almost instant. It is expected that retraining will
only appear after substantial changes in the performance database (significantly different
input data, new executables with new optimizations/features, computing facility upgrades,
etc.).

0.9 cores e 1.5 ds @ ° 0.7 ranks
. 1.7 mdf 1.4

0.8 nodes

rr

Figure C.1: Mathematical formula calculating the estimated k-Wave execution time based
on a given set of features. Nodes contain tradition mathematical operations: addition (+),
subtraction (— ), multiplication (%), division (/), square root (x*), cube root (x3); conditions
(IF ) and compares (>). Leaves represent input variables and randomly generated numbers.

This experiment serves as a proof of concept, still under active investigation and thus,
has not been published yet. Since the results obtained are very promising, in the near
future we will (1) move the training to the cluster environment to reduce the training time,
(2) add new mathematical operations such as modulo, rounding up and down to extend the
default set of operators, (3) create a validation set, (4) extend the test set, and (5) perform
other experiments, and discuss results and issues.
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Abstract. Therapeutic ultrasound plays an increasing role in dealing
with oncological diseases, drug delivery and neurostimulation. To maxi-
mize the treatment outcome, thorough pre-operative planning using com-
plex numerical models considering patient anatomy is crucial. From the
computational point of view, the treatment planning can be seen as the
execution of a complex workflow consisting of many different tasks with
various computational requirements on a remote cluster or in cloud. Since
these resources are precious, workflow scheduling plays an important part
in the whole process.

This paper describes an extended version of the k-Dispatch workflow
management system that uses historical performance data collected on
similar workflows to choose suitable amount of computational resources
and estimates execution time and cost of particular tasks. This paper
also introduces necessary extensions to the Alea cluster simulator that
enable the estimation of the queuing and total execution time of the
whole workflow. The conjunction of both systems then allows for fine-
grain optimization of the workflow execution parameters with respect to
the current cluster utilization. The experimental results show that this
approach is able to reduce the computational time by 26%.

Keywords: Scheduling - Workflow - k-Dispatch - Simulation + Alea

1 Introduction

The use of ultrasound as a diagnostic imaging tool is well-known, particularly
during pregnancy where ultrasound is used to create pictures of developing
babies. In recent years, a growing number of therapeutic applications of ultra-
sound have also been demonstrated [17]. The goal of therapeutic ultrasound is
to modify the function or structure of biological tissue in some way rather than
produce an anatomical image. This is possible because the mechanical vibrations
caused by ultrasound waves can affect tissue in different ways, for example, by
© Springer Nature Switzerland AG 2020

D. Klusacek et al. (Eds.): JSSPP 2020, LNCS 12326, pp. 68-84, 2020.
https://doi.org/10.1007/978-3-030-63171-0_4
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causing the tissue to heat up or by generating internal forces that can agitate the
cells or tissue scaffolding. These ultrasound bioeffects offer enormous potential
to develop new ways to treat major diseases. In the last few years, clinical trials
of different ultrasound therapies have demonstrated the ability of ultrasound to
destroy cells through rapid heating for the treatment of cancer and neurologi-
cal disorders, target the delivery of anticancer drugs, stimulate or modulate the
excitability of neurons, and temporarily open the blood-brain barrier to allow
drugs to be delivered more effectively [12]. These treatments are all completely
noninvasive and have the potential to significantly improve patient outcomes.

The fundamental challenge shared by all applications of therapeutic ultra-
sound is that the ultrasound energy must be delivered accurately, safely, and
noninvasively to the target region within the body identified by the doctor. This
is difficult because bones and other tissue interfaces can severely distort the shape
of the ultrasound beam. In principle, it is possible to predict and correct for these
distortions using models of how ultrasound waves travel through the body. How-
ever, the underlying physics is complex and typically must consider nonlinear
wave propagation through absorbing media with spatially varying material prop-
erties. Simple formulas do not exist for this scenario, so models used for studying
therapeutic ultrasound are instead based on the numerical solution of the wave
equation (or the corresponding constitutive equations) [19].

The k-Wave toolbox designed for the time-domain simulation of acoustic
waves in biomedical materials has become very popular in the international
ultrasonic community [18]. Nevertheless, modelling ultrasound treatments using
this toolbox requires very complex and intensive computations that generally
cannot be satisfied by desktop computers or small servers [6]. It is thus essential
to offload the computational work to cloud or HPC clusters. Unfortunately,
using these facilities and composing the processing workflow representing the
treatment is complex even for experienced developers. Therefore, it is crucial to
offer clinical end-users a middleware layer that features a simple interface (e.g.,
web page, medical GUI, etc.) to upload treatment setups with related data and
automate the execution. This middleware layer is implemented by our software
package called k-Dispatch [9].

k-Dispatch, however, offers much more than simple job submission with semi-
automated execution and monitoring such as HTCondor [8] or Pegasus [3]. k-
Dispatch additionally provides a low level automatization by selecting suitable
execution parameters specifying the amount of compute resources and estimates
required execution time for particular tasks. This is enabled by a fixed set of
medically certified binaries serving as building blocks for user’s workflows, and
collected performance data updated after every successful run. Based on the task
input data, k-Dispatch searches the performance database to estimate scaling of
particular binaries on the fly, and tune the execution parameters to minimize
execution time and/or computational cost. Nevertheless, since the computational
resources are shared by multiple users and workflows, the queuing times and user
interference may depreciate the execution plan.
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Therefore, this paper deals with the extension of the Alea cluster simula-
tor [10] to estimate the workflow makespan, i.e., the overall execution time
including the queuing times as well as the computational cost for complex
biomedical ultrasound workflows. For every workflow, k-Dispatch prepares a can-
didate set of execution parameters and passes them to Alea which simulates the
workflow execution with respect to the cluster parameters, job scheduling system
setup, and background workload.

This paper is organized as follows. In Sect. 2, the considered workflow schedul-
ing problem is discussed thoroughly. Section 3 describes the Alea simulator
and its new workflow-related functionality. Next, Sect. 4 demonstrates the newly
developed simulation capabilities which are crucial for the k-Dispatch’s schedul-
ing module when analyzing the quality of considered workflow execution plan(s).
The paper is concluded and the future work is discussed in Sect. 5.

2 Problem Description

The k-Dispatch’s mission is to enable fully automated offloading of biomedical
ultrasound workflows built on the top of the acoustic k-Wave toolbox to the
HPC and cloud environment. These workflows are used for pre-operative treat-
ment planning based on the patient specific images to maximize the treatment
outcome. Every treatment plan consists of many tasks carrying out data pro-
cessing, ultrasound sonications, and thermal and tissue model evaluations. Their
orchestration is encoded in the form of a directed acyclic graph (DAG) describ-
ing the data dependency and precedence relations [14]. Every task is evaluated
by an appropriate piece of software included in the k-Wave toolbox. The most
time consuming ultrasound tasks can be executed by a variety of simulation
codes optimized for particular hardware platform including shared memory sys-
tems, single Nvidia GPU, and distributed memory CPU and GPU clusters. Each
binary is suitable for a different simulation size and complexity and has associ-
ated a different simulation cost. The shared memory/GPU versions can be used
for treatment planning in small volumes such as prostate, while the distributed
versions are suitable for large treatments in the brain, liver or kidney.

Working within the medical environment implies all software must undergo
a strict regulatory and certification process. It is thus not possible for users
to use their own binaries. Instead, only authorized personnel are allowed to
deploy the simulation binaries within a strictly controlled environment, e.g.,
inside Singularity [7] or Docker [13] containers. The clinical users are, of course,
allowed to compose different workflows from predefined modules, change the
number of sonications, their parameters or upload different patient images.

These restrictions, on the other hand, open great opportunity for automated
performance tuning and resource allocation. Since the binaries are fixed, their
execution can be monitored, and the performance data collected and analysed
for future use. k-Dispatch maintains a complex performance database including
information about every successful task containing binary name, cluster name,
queue name, amount of resources, simulation medium size and properties, wall
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clock time and computational cost. Once a new ultrasound workflow is received,
k-Dispatch decodes individual tasks and assigns them suitable binaries, appro-
priate resources, and estimates the wall clock time. Then, the tasks are handed
over to the cluster job scheduler that is responsible for their execution.

The optimizations of execution parameters help minimizing the computa-
tional cost and/or the execution time of individual tasks. However, since every
workflow contains many tasks and there are usually multiple workflows being
simultaneously executed, the isolated optimization of individual tasks may lead
to poor cluster utilization or long queuing times. It is necessary to focus on
bigger picture and take into account the dependencies between tasks of (multi-
ple) DAGs. However, the optimization complexity can become exponential [15].
Therefore, there is a need for heuristics that include fast cluster simulations to
evaluate the overall execution time of all workflows currently in the system. This
information provides the feedback to the planning logic to adjust the amount of
resources for particular tasks.

2.1 Workflows and Infrastructure

There are many workflow templates supported by k-Dispatch [9]. Figure 1 shows
an intracranial neuromodulation workflow used for treatment planning of essen-
tial tremor and Parkinson’s disease procedures. The purpose of this workflow
is to verify the ultrasound hits the desired target but does not rise the tissue
temperature above safety levels.

The workflow starts with the aberration correction pre-processor converting
the treatment parameters and patient data into input files for the following
ultrasound simulations. This task is usually simple and only employs a single
compute node for a couple of minutes per sonication. The total execution time
thus increases with the number of sonications (V) being executed (see the first
line in Table 1). Next, a number of independent aberration correction simulations
is executed. For this particular example, an ultrasound transducer with a driving
frequency of 550 kHz, and a medium of 25 ¢cm x 29 ¢cm X 19 cm is used.

Table 1. Execution time and amount of resources for particular tasks within the
neurostimulation workflow measured on the Anselm Supercomputer. The number of
sonications (denoted by N) influences the total execution time.

Code type Number of nodes | Execution time
Aberration correction pre-processor |1 400+ 250 - N [s]
Aberration correction simulation 1-16 < 34.31,4.96 > [h]
Aberration correction post-processor | 1 115495 N [s]
Forward planning pre-processor 1 650 + 310 - N [s]
Forward planning simulation 1-16 < 30.90,4.72 > [h]
Forward planning post-processor 1 105460 - N [s]
Thermal simulation 1 304720 N [s]
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Fig. 1. Typical neurostimulation simulation workflow using the reverse focusing for
aberration corrections. After pre-processing, reverse ultrasound propagation simulation
from particular targets are executed. After aberration correction, forward ultrasound
simulations are executed to calculate energy deposition. Finally, a thermal simulation
is executed to estimate overall heat deposition and temperature rise in the tissue.

A simulation of such a size can be executed by the distributed CPU code running
on 1 to 16 nodes. The number of sonications is usually between 1 and 32. After
all aberration correction simulations have completed, the aberration correction
post-processor joins the results from the previous step and derives corrected
transducer signals. The forward planning pre-processor consequently generates
new ultrasound simulation files. Both these tasks require a single node only. The
forward planning simulations use the same code as the aberration correction
simulations but with different driving signal. The execution times are therefore
very similar. This stage is closed by the forward planning post-processors, which
collects the heat deposition from particular sonications. Again, a single node is
sufficient for this task. Finally, the thermal simulation is executed to calculate
the temperature rise in the brain and evaluate the treatment outcome. This code
uses a single simulation node only.

The target infrastructure used for the evaluation of the planning capabili-
ties is based on a 16 node partition of the Anselm supercomputer run by the
IT4Innovations National Supercomputing Centre!. Each node is equipped with
two 8-core Sandy Bridge processors, 64 GB RAM and 40 GB InfiniBand connec-
tion. The supercomputer is managed by the PBS Pro scheduler with a backfilling
job scheduling.

! https://docs.it4i.cz/anselm /compute-nodes/.
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2.2 Optimization Criteria

In general, k-Dispatch aims to find the best execution parameters for particular
tasks to minimize the overall execution time, computational cost and queuing
times. This is achieved by using the database maintaining information about
previously completed tasks that allows us to approximate execution time and
amount of resources for new workflows, and cluster simulations that evaluate
queuing times for given execution parameters.

The optimization criteria can be minimized independently using a multi-
objective approaches to create a Pareto front, or aggregated into a single criterion
by associated weights. To limit the time complexity of the optimization process,
the following aggregated criteria f is used:

f=wex(t+q) +wexc (1)

where w; and w,. are the weights promoting the execution time and computa-
tion cost, respectively, ¢ is the wall clock execution time of all tasks, ¢ is the
aggregated queuing time, and c is the overall computation cost. Five different
combinations of the weights are evaluated in this paper:

— wy = 1 A w, = 0 minimizing execution time but ignoring cost,

— wt = 0 A we, = 1 minimizing execution cost but ignoring time

— wy = 0.5 AN w, = 0.5 looking for a trade-off between execution time and cost,
— w; = 0.7 ANw, = 0.3 preferring execution time to cost,

— wy = 0.3 AN w, = 0.7 preferring execution cost to time.

2.3 Execution Parameters Selection

Before the workflow is submitted to the cluster, the execution parameters for
particular tasks have to be set. For this purpose, k-Dispatch employs four mod-
ules: (1) Optimizer that employs a simple hill climbing algorithm traversing the
search space of promising execution parameters, (2) Interpolator that provides
estimations of execution time and cost for given tasks and their execution param-
eters, (3) Simulator that evaluates the queuing times and calculates the overall
execution time of the complete workflow, see Eq. (1), and (4) Collector that
updates the performance database after the workflow execution.

Let us start with Interpolator which is supposed to estimate the execution
time and cost for a given task and execution parameters provided by Optimizer.
This module searches the performance database for similar tasks. If there is a
direct match, i.e., a task of the same type and size has already been executed, the
records are filtered by the age and sorted according to the execution parameters
used. If there are multiple records for the same execution parameters, the median
value is taken. Consequently, a strong scaling plot is constructed, see Fig. 2. From
this plot, it is straightforward to estimate the execution time and cost for given
execution parameters (number of nodes in this case). If some values are missing,
e.g., Optimizer asks about an odd number of compute nodes, the execution
time and cost are interpolated. If there is not a direct match, which indicates
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Fig. 2. Strong scaling of the (a) execution time and (b) execution cost for aberration
correction and forward planning simulations. The anomalies in the plots are caused by
unbalanced work distribution over compute nodes.

such a task has not been executed before, a dual interpolation is performed.
Interpolator searches all tasks of similar size, constructs multiple scaling plots,
and interpolates between them. If the interpolation fails due to oscillations of the
interpolation polynomial or a low number of records found, a default wall clock
time with the associated cost are returned. This is, however, a very rare situation,
since the more tasks get executed, the more records are in the database, and the
more precise interpolations are.

Once the execution parameters have been set for all tasks, the workflow sched-
ule is handed over to Simulator. Although many job schedulers offer some kind
of queuing time estimation, the number of such requests is very limited, e.g., one
per 5 min. Therefore, the actual state of the cluster is downloaded and fed into
the Alea simulator. After the evaluation, the overall execution time (makespan)
is calculated as the sum of the estimated execution and queuing times over all
tasks. Since the queuing times are not included in the execution cost, the simula-
tor only returns the overall time. Let us note that on a real system, the execution
times of particular tasks may slightly vary due to cluster workload (network and
I/O congestion, varying temperature and clock frequency between nodes, etc.).
These oscillations are, however, neglected since being usually below 5%, and
if there is a significant transient performance drop, the k-Dispatch monitoring
module detects such an anomaly and terminates affected tasks.

Optimizer tries to select appropriate execution parameters to minimize the
aggregated criteria for the whole workflow, see Fig. 3. The parameters of the
tasks may be initialized randomly, using the recently best known values, or by
individual optimization of each task. In order to search the space, the execution
parameters are slightly perturbed in every iteration, the compute time and cost
estimated by Interpolator, and the makespan evaluated by Simulator. After a
predefined number of iterations, the best workflow parameters are used to submit
the workflow to the cluster. In order to broaden the performance database, there
is a small probability that Optimizer selects such execution parameters that have
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not been tried before. This helps adapt the workflow schedules to changes in
the cluster software configuration, hardware upgrades, long-term performance
anomalies, etc. After the workflow has been executed by the cluster, the amount
of resources used is stored in the performance database along with the actual
execution time and cost.

Figure 3 shows two examples of the execution plans designed by k-Dispatch.
In the first example, all aberration correction simulations use the same amount
of resources, which may yield the best value of the optimization criteria for
individual tasks. This may however lead to a suboptimal execution schedule when
the cluster size is limited. A better solution may be to use 2 nodes for first 16
tasks and 4 nodes for the last four. Should the number of nodes assigned per task
happen not to be a divider of the cluster size, there would be wasted computing
slots. The main objective of k-Dispatch is to prevent such inefficiencies.

# Computational Resources (e.g. number of nodes) # Computational Resources (e.g. number of nodes)
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Fig. 3. Example of two different execution plans of the neurostimulation workflow on
a 16-node cluster. On the left, every job was optimized independently neglecting the
queuing times. On the right, the complete workflow was optimized leading to different
resources allocations for particular simulations to minimize the overall execution time.
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3 Simulator

As the basis for our workflow scheduling simulator, we have adopted the Alea
job scheduling simulator [10]. Alea is a platform-independent event-driven dis-
crete time simulator written in Java built on the top of the GridSim simulation
toolkit [16]. GridSim provides the basic functionality to model various entities
in a simulated computing system, as well as methods to handle the simulation
events. The behavior of the simulator is driven by an event-passing protocol. For
each simulated event, such as job arrival or completion, one message defining this
event is created. It contains the identifier of the message recipient, the type of the
event, the time when the event will occur and the message data. Alea extends
this basic GridSim’s functionality and provides a model allowing for detailed
simulation of the whole scheduling process in a typical HPC/HTC system. To
do that, Alea either extends existing GridSim classes or it provides new classes
on its own, especially the core Scheduler class and classes responsible for data
parsing and collection/visualization of simulation results.

Figure 4 shows the overall scheme of the Alea simulator, where boxes denote
major functional parts and arrows express communication and/or data exchange
within the simulator.

3.1 General Description

The main part of the simulator is the centralized job scheduler. The sched-
uler manages the communication with other parts of the simulator. It maintains
important data structures such as job queue(s). Job scheduling decisions are per-
formed by scheduling algorithms that can be easily added using existing simple
interfaces. Furthermore, scheduling process can be further influenced by using
additional system policies, e.g., the fair-sharing policy which dynamically pri-
oritizes job queue(s). Also, system queues including various limits that further
refine how various job classes are handled are supported. Additional parts sim-
ulate the actual computing infrastructure, including the emulation of machine
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Fig. 4. Main components of the Alea jobs scheduling simulator.
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failures/restarts. Workload readers are used to feed the simulator with input data
about jobs being executed and the simulator also provides means for visualiza-
tion and generation of simulation outputs. Alea is freely available at GitHub [1].

The primary benefit of Alea is that it allows for realistic testing of work-
load execution subject to (different) scheduling policies or setups of computing
systems. It models all important features that have significant impact on the
performance of the system. These features enable us to mimic real-life systems
properly with a reasonably high realism [11].

3.2 Workflow Support

One of the main contributions of this work is the development of workflow (DAG)
execution support in Alea. This has been mostly achieved by modifying two
components in the simulator: the workload reader and the scheduler. Workload
reader has been modified to properly parse new DAG-compatible workload for-
mat (see Sect. 3.3). In the scheduler, new logic has been added to properly handle
inter job dependencies. The most important modification was the addition of a
new hold queue for all jobs with unfinished predecessors. Using this queue, these
jobs are excluded from the normal scheduling loop until all their dependencies
are resolved, i.e., all their predecessors are completed.

The list of all unfinished predecessors is kept up-to-date throughout the exe-
cution of DAGs. Once a job completes its execution, it is removed from the list
of unfinished predecessors and the hold queue is scanned to check if any job
now has all of its precedence constraints satisfied. If so, this job is immediately
moved to the normal scheduling queue where it waits until it is actually started.
Figure 5 demonstrates how the inter-DAG dependencies are handled, using the
hold queue together with the list of all unfinished predecessors.

Otherwise, only minor changes were necessary in Alea, e.g., job definition as
well as simulation outputs have been extended to reflect that each job (task)
may have predecessors.

3.3 DAG Workload Format

For convenience, we use slightly extended Standard Workload Format (SWF)
which is used in the Parallel Workloads Archive [4]. SWF is a simple format
where each workload is stored in a single ASCII file [5]. Each job (or task) is
represented by a single line in the file. Lines contain a predefined number of fields,
which are mostly integers, separated by whitespace. Fields that are irrelevant
for a specific log or model appear with a value of —1. To represent DAGs, we
have extended the standard 18 entries with two new entries that allow us to
distinct which line corresponds to which DAG (DAG_id) and which task within
a given DAG this job represents (task-id). Also, we have modified the existing
Preceding Job Number such that it can point to more than one job (task). If a
given job has more than one predecessor in the DAG, then & character is used
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Job Submission Logic (with DAG support)

New Job J T S AddJintotheglobal listof |
(DAG task) " unfinished predecessors !
e
1.2
i3
Add J into the . . e
schedulin Jis now eligible 'S
& for scheduling | '3
are all J's direct queue '
predecessors i
completed? i
Add J into the Jis waiting in !
Compare J's list of direct hold queue the hold queve |
predecessors with the global list '
of unfinished predecessors i
\> Global list of unfinished predecessors

remove completed job

Job Completion Logic (with DAG support)

Completed Remove J from the global list
Job J (DAG task) of unfinished predecessors

Move H into the
YES scheduling

For each job Hin are all H’s direct gucuc
the hold queue: predecessors
completed?
keep H in the
NO hold queue

Fig. 5. Added logic handling correct execution order of DAG-like workflows within Alea
simulator. Job dependencies are checked during new job arrival (top) and updated once
a job completes its execution (bottom). At this point, waiting jobs from the hold queue
are moved to the scheduling queue if their dependencies are satisfied.

to concatenate the list of these predecessor IDs. For example, 1&2&3 means that
the given job can only start once jobs 1, 2 and 3 are all completed?.

4 Alea Simulation Capabilities

Alea job scheduling simulator is well known for its capability to simulate and
also optimize various setups of HPC/HTC systems [2,10]. In this section we will
demonstrate the novel DAG-oriented simulation capability. We illustrate how
the newly extended Alea simulator can be used to evaluate various setups of
ultrasound simulations in order to choose the best available setup.

2 This string corresponds to the list of direct predecessors used in Fig. 5.
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As discussed in Sect. 2, k-Dispatch keeps its internal performance database
to predict rather accurately what the execution time needed to complete such
a task will be. The problem is, that task-level optimization does not guarantee
that good results will be achieved. Instead, we need to optimize the execution
parameters of the whole workflow(s) to achieve good performance. An example of
such situation has been shown in Fig. 3. Also, as the available computing infras-
tructure may change over the time, k-Dispatch must be able to adapt existing
scheduling plans once, e.g., the amount of available resources has changed.

In the first example, we use Alea to model and execute (simulate) the problem
depicted previously in Fig. 3. In this case, the same workflow uses two different
sets of task execution parameters which influence the total execution time. The
Gantt chart presented in Fig. 6 shows the execution of all tasks (Y -axis) over the
time (X-axis). Clearly, these results correspond to the illustration used in Fig. 3.

fw-plan-pmst-proc T ' ! ' ! ! " far-plan-pmst-proc ! ! ! ! [
fw-plansim 20 | ' ! ' ! ! — fw-plansim 20 ! ! ! —
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Fig. 6. Alea simulator used to measure the impact of task-level (left) vs. workflow-level
(right) optimization on the total workflow execution time (makespan).
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We can observe, that task-level execution time optimization (see the Gantt chart
on the left in Fig. 6) is suboptimal compared to the workflow-level optimization
(right). In this particular case, the second (right) scenario decreased the total
execution time from 31 time units to just 23, representing 26% improvement by
means of cost/time.

Of course, there are more scenarios that can be modelled and analysed in
Alea. For example, we may analyse how several workflows will perform when
executed simultaneously. Such an experiment may be very useful when finding
the trade-off between total execution time and cost. In other words, we can use
such experiment to see how many resources are needed to compute N workflows
in a given time 7'. We illustrate this situation in Fig. 7. Here we show the impact
of concurrently executed workflows on the queuing time and the total execution
time (makespan). Also, the impact of varying number of available number of
CPU cores (i.e., the cost) is shown.

For this demonstration, we use identical workflows, each consisting of 3 tasks
that are directly dependent upon each other3. We start with a scenario where
we execute 3 such workflows together (see the top chart in Fig. 7). As we can
see, the system (16 nodes) is capable of executing all 3 workflows concurrently.
The situation changes once we add the fourth workflow (see the middle chart
in Fig. 7). In this case, the system is not large enough to execute all four tasks
no. 2 simultaneously, i.e., the task no. 2 from the fourth workflow (denoted as
DAG-4 [2]) has to wait until at least one task no. 2 of the remaining workflows is
completed. As a result, the makespan gets higher. As illustrated in the bottom
chart in Fig. 7, the makespan gets even worse once we shrink the available
resources to a half (8 nodes).

Clearly, the Alea simulator allows us to compare various alternatives and
decide which combination of parameters and/or what cost leads to acceptable
makespan. Simulations like these can be then used by the k-Dispatch’s scheduling
module when deciding which parameter settings to choose for the tasks that must
be scheduled.

Finally, we would like to briefly mention the simulation overhead of Alea
when dealing with DAG-like workflows. Naturally, we need the simulator to be
fast when emulating the execution of realistically complex workflows. Therefore,
we have performed a set of experiments, where we measured the time needed
to perform a simulation. We investigated the influence of both DAG complexity
(number of tasks within a workflow) and the number of DAGs being simulated
simultaneously*. The results are shown in Fig. 8. Simulations use various number
of DAGs (up to 64 DAGs) while each such DAG has different number of tasks
(2, 4, 8, 16, 32 or 64 tasks per DAG). The figure shows that the simulator is
capable to simulate DAG executions in a reasonable amount of time. Even with
the most demanding setup (64 DAGs, each having 64 tasks per DAG) the total
simulation time is below 2.5s.

3 The corresponding DAG looks like this: task 1— task 2— task 3.
4 The experiments were performed on a machine running Windows 10 with Intel Core
i7-7500U CPU running at 2.7 Ghz and having 8 GB of RAM.
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Fig. 7. Makespan and wait time (queuing time) as impacted by the number of concur-
rently executed workflows and the size of the infrastructure.

This means that Alea is capable of evaluating many different workflow param-
eter setups within just few seconds. Such a small overhead is clearly no issue for
the k-Dispatch workflow management system.

98



82 M. Jaros et al.

Time to schedule N DAGs with M tasks per DAG

w

]
wn

12 tasks per DAG

(%]

B4 tasks perDaG
B & tasks perDAG

[

16 tasks per DAG

simulator runtime [s]
=)
o

=
W

B 32 tasks perDAG

W64 tasks per DAG

o

1DAG 2DAGS 4 DAGS 8 DAGS 16 DAGS 32DAGS 64 DAGS

MNumber of executed DAGs [workflows)

Fig. 8. The time needed to execute one simulation with respect to the number and
complexity of simulated workflows (DAGsS).

5 Conclusions

In this paper, we have described the scheduling problem related to proper setup
of complex biomedical ultrasound workflows. Moreover, we have provided an
example of real life-based problem instances (workload describing DAG-like
workflows) and developed an extension for the open source job scheduling sim-
ulator Alea. Using this extension, basic DAG-like workflows can be simulated
and the impact of varying workflow execution parameters (number of tasks and
their requirements) can be quickly analysed. Also, thanks to the main focus of
the Alea simulator, detailed system-oriented setups and resource policies (e.g.,
scheduling algorithms, queue setup or fair-share priorities) can be easily emu-
lated, thus providing more realistic outputs and performance predictions.

In the future, we would like to integrate this functionality with the k-Dispatch
workflow management system. The newly extended Alea simulator with DAG
scheduling support can be freely obtained on GitHub [1]. Also, we invite other
researchers to look into the data provided along with this paper that describe
real-life based workflows used within the international ultrasonic community.
These workloads include the examples used in this paper and will be available
at the website of the workshop®.

This work has a significant impact on the biomedical ultrasound community.
Not only the clinicians do not have to bother with selecting suitable comput-
ing facilities, deploying simulation codes, moving data forth and back, job sub-
mission, execution and monitoring, but their workflows are executed efficiently
minimizing the execution time and cost. This all is done without any user inter-
vention, actually, the users do not even know such a process exists.
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ABSTRACT

Therapeutic ultrasound is increasingly being used for applications
in oncology, drug delivery, and neurostimulation. In order to adapt
the treatment procedures to patient needs, complex physical models
have to be evaluated prior to the treatment. These models, however,
require intensive computations that can only be satisfied by cloud
and HPC facilities. Unfortunately, employing these facilities and
executing the required computations is not straightforward even
for experienced developers.

k-Dispatch is a novel workflow management system aimed at
modelling biomedical ultrasound procedures using the open-source
k-Wave acoustic toolbox. It allows ultrasound procedures to be
uploaded with a single click and provides a notification when the
result is ready for download. Inside k-Dispatch, there is a com-
plex workflow management system which decodes the workflow
graph, optimizes the workflow execution parameters, submits jobs
to remote computing facilities, monitors their progress, and logs
the consumed core hours. In this paper, the architecture and de-
ployment of k-Dispatch are discussed, including the approach used
for workflow optimization. A key innovation is the use of previ-
ous performance data to automatically select the utilised hardware
and execution parameters. A review of related work is also given,
including workflow management systems, batch schedulers, and
cluster simulators.
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1 INTRODUCTION

Personalised medicine is an emerging approach to patient care in
which an individual’s characteristics guide clinical decisions aiming
for the right treatment for the right patient at the right time [24].
Personalised medicine is particularly important in oncology, where
there is an increased emphasis on prevention and precise surgical
strategies. Appropriate selection of treatment for patients, to max-
imise efficacy and minimise toxicity, has long been a fundamental
part of routine clinical practice, but until recently clinicians had
had limited tools to determine benefits and potential threats.

The applications of biomedical ultrasound sit at the heart of
rapidly emerging cancer diagnosis and treatment procedures. In
comparison to conventional cancer diagnosis and treatment modal-
ities, such as biopsy, open surgery, radio- and chemo-therapy, ultra-
sound is non-invasive, non-ionising, and has fewer complications
after treatment. When talking about high-intensity focused ultra-
sound (HIFU) surgery, over 250,000 patients have been treated
throughout the world with great success [17]. The number of pa-
tients being screened by ultrasound is countless.

In order to adapt therapeutic ultrasound procedures to the pa-
tient needs, complex physical models have to be evaluated prior to
the treatment to tailor treatment parameters and estimate the treat-
ment outcome. These models can also be used during the treatment
to monitor the procedure progress, and after the treatment to evalu-
ate the treatment outcome and predict further disease development.
One physical model widely used in the international community
is the open source k-Wave toolbox designed for the time-domain
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simulation of acoustic waves propagating in tissues in 1, 2, or 3 di-
mensions [45]. The toolbox has a wide range of functionality, but at
its heart is an advanced numerical model that can account for both
linear and nonlinear wave propagation, an arbitrary distribution of
heterogeneous material parameters, power law acoustic absorption,
and the heating induced in tissue.

Over the last decade, k-Wave has attracted a lot of interest
amongst biomedical physicists, ultrasonographers, neurologists,
oncologists and other clinicians. Numerous applications of k-Wave
have been reported, including in photoacoustic breast screening
[27], transcranial brain imaging [30], or small animal imaging [35].
k-Wave has also been used for exciting applications in HIFU, in-
cluding treatment planning of kidney [1, 43], liver [20] and prostate
tumour ablations [44], ultrasound neurosurgery and targeted drug
delivery [36], and neurostimulation [8].

All these applications, however, require very complex and in-
tensive computations that generally cannot be performed using
desktop computers or small servers. Thus, it is essential to offload
the computational work to cloud or HPC clusters. Unfortunately,
using these facilities and composing the processing workflow is
complex even for experienced developers. Therefore, it is crucial to
offer clinical end-users a middleware layer that allows a treatment
setup and other data to be uploaded using a simple interface (e.g.,
web page, medical GUI, etc.) and automate the hard work behind
the scenes. k-Dispatch is such a tool.

2 K-DISPATCH MISSION

The mission of k-Dispatch is to make HPC and cloud computational
resources accessible as a service to clinical end-users with no prior
expertise in computational science. On the other hand, k-Dispatch
has to remain flexible enough to cover typical ultrasound simulation
workflows, ensure a certain level of fault-tolerance, quality of ser-
vice, and medical data protection. It must also enable user, system
and data management, monitoring and accounting. Generally, there
are two kinds of k-Dispatch users: (1) ordinary users who want to
have their job computed in the simplest possible way, and (2) ad-
ministrators who manage the software installation, computational
services and accounting.

Since treatment planning applications built on k-Wave are con-
sidered software as a medical device, strict quality and risk man-
agement policies apply to all software used. The users are thus not
allowed to use their own binaries but have to use certified ones
installed by authorized personnel. This restriction has a dramatic
impact on the k-Dispatch philosophy and makes it different from
other workflow management systems, see Sec. 6.

Ordinary users are only allowed to create a medical procedure
using predefined templates, e.g., HIFU treatment planning, neu-
rostimulation, etc. The file describing the selected procedure along
with other data is consequently submitted to k-Dispatch. The first
step for k-Dispatch is to decode the procedure and assemble a
computational workflow. Next, the true magic comes. k-Dispatch
inspects the list of available HPC resources and finds a suitable
one. Then it selects the best binaries for given tasks according
to the input data size and available hardware. Since the binaries
are a priori known and their performance scaling well described,
k-Dispatch can optimize the amount of computational resources
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assigned to particular tasks to minimize several objectives such as
computational time, computational cost or waiting times in pro-
cessing queues. After submission into the computational queues,
k-Dispatch periodically monitors all running jobs and detects per-
formance anomalies such as frozen jobs to recover from typical
faults. After the complete workflow has been computed, the results
are downloaded from the HPC resource back to k-Dispatch and the
user is notified that the result is available for download.

The main benefit of k-Dispatch is that ordinary users are com-
pletely hidden from the complexity of the HPC or cloud resources.
They do not have to know anything about the cluster submission
system, job batch schedulers, queues and their policies. Moreover,
they do not have to set the number of compute nodes and cores,
choose between CPUs and GPUs, or estimate the computation time.
Everything is done automatically.

From the perspective of administrators, k-Dispatch collects per-
formance statistics about the executed workflows and learns their
performance scaling, logs the usage for different HPC or cloud re-
sources, and detects offline resources and automatically forwards
computations to available ones. On the other hand, the administra-
tors are responsible for user management, introducing new work-
flow templates, installing new software or computational resources,
setting up the policies and user priorities, etc.

k-Dispatch is highly optimized for efficient execution of a rel-
atively small number of different workflow templates. Although
modifications to the workflow structure are straightforward, intro-
duction of a new task type and/or binaries requires collection of a
relatively large performance dataset necessary for optimization of
the execution parameters. Therefore, the workflows are currently
hard-coded in simple Python classes. In the future, this part may
be extended to support a common syntax such as CWL [3] to allow
other experienced users or administrators to deploy their codes
using k-Dispatch. There is a possibility the optimization core will
be released as a plug-in for existing WMS such as Pegasus. Three
typical workflows are described below and in Fig. 1:

e HIFU treatment planning. HIFU treatments use multiple
sonications to ablate the diseased tissue as a single sonica-
tion can only cover a volume about the size of a grain of
rice. These sonications are displayed in Fig. 1a as columns.
The goal is to precisely set the transducer focal positions
and the sonication parameters such as the intensity and son-
ication duration. For every sonication, an acoustic model
is evaluated to calculate the energy deposition using a dis-
tributed CPU or GPU implementation, typically spanning
across 16-32 computing nodes and running for several hours.
If time reversal focusing is used, multiple invocations of the
acoustic model may be necessary for each sonication. Next,
the thermal model is executed to calculate the temperature
rise and thermal dose. This typically requires a single GPU
for a few minutes.

Neurostimulation. The example neurostimulation work-
flow, shown in Fig. 1b, is similar to the HIFU workflow ex-
cept the sonications use much lower intensities such that the

wave propagation is linear. The goal is to stimulate the brain
but any thermal or mechanical damage must be prevented.
In this workflow, the sonications are independent and the
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thermal model is used to calculate safety metrics, rather than
dose quantities. The acoustic models are typically complex
due to the skull and large simulation domains.

Photoacoustic imaging. The example workflow for pho-
toacoustic image reconstruction consists of an a priori known

number of iterations of the forward and adjoint acoustic
models that reconstruct the tissue structure based on the
ultrasound signals sampled at the detectors placed at the
surface of the tissue, e.g., breast. The simulations are usually
very large and require at least 8 GPUs or 256 computer cores
for a few hours. In between the iterations, a simple gradient
descent method is executed.

3 SYSTEM ARCHITECTURE

The overall architecture of k-Dispatch is shown in Fig. 2. k-Dispatch
consists of three main modules: Web server, Dispatch database and
Dispatch core. The user applications, e.g., a stand-alone medical GUI,
web app, or Matlab interface, communicate with the Web server us-
ing the secured HTTPS protocol and REST API The Dispatch data-
base holds all the necessary information about the users, submitted
workflows, particular jobs, computational resources, available bina-
ries, etc. The Dispatch core is responsible for planning, executing
and monitoring submitted workflows. The communication with
HPC and cloud facilities is done via SSH and RSYNC protocols.
The architecture of k-Dispatch is generic and modular to enable
easy system extensions by adding new workflows, computational
resources, interfaces to different job schedulers, etc. Currently, k-
Dispatch supports several predefined workflows hard-coded in the
structure of the input file and parsing Python classes. Nevertheless,
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(a) An example of HIFU treatment planning workflow.
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Figure 2: Simplified architecture of k-Dispatch showing
three basic modules and their connection to user applica-
tions and computational resources.

the file structure is open and the file format is based on the widely
adopted HDF5 file format easily readable from Matlab, Octave,
Python and other scientific software [15].

3.1 Web Server and Dispatch Database

The Web server module is based on the Python Flask technology
[39] and represents the only entry point to k-Dispatch. The web
server communicates with the Dispatch database and with the local
storage. The input files with new workflows to compute are stored
in the local storage and a new record is made in the database. If
the user asks about the status of their workflows, the web server
reads appropriate data from the database and reports back to the
user. Analogously, when the results are ready for download, the
web server sends the result file to the user, updates the database
record and clears local storage.

The Dispatch database and the database server is based on the
PostgreSQL 10 technology [18]. The database holds all the necessary
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(b) An example of neurostimulation workflow.

Figure 1: Two generic templates of different ultrasound workflows. The input file holds the patient specific data and simu-
lation parameters, e.g., transducer positions. The star-marked gray blocks may be replicated multiple-times to extend the
fundamental workflow structure. DPL blocks denote data processing layers. The procedure results are stored in the result file,
usually as an archive with multiple files including essential program logs.
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information for planing, executing and monitoring the workflows
on remote computational facilities. A simplified entity relationship
(ER) diagram of the Dispatch database is shown in Fig 3.

The database tables are divided into four groups. The red group
is related to user management. Users form user groups based on
their affiliation to companies, hospitals, departments, etc. Users
may have different roles and permissions while groups may hold
different licenses for k-Dispatch (which includes usage permissions
and expiry dates). User groups usually purchase some computa-
tional core hours which may be split into several allocations on
various computational facilities. The invoices are then stored in the
Purchase table.

The green group represents workflows and their execution. When
the input data file is parsed, a Workflow record is created together
with its Job and Job Dependency records reflecting the workflow ex-
ecution structure. If a job fails during execution, the job is restarted
and a new record in the Restarted Jobs table is created to keep track
of faulty jobs and the number of attempts to restart them. All file
links used by the job, i.e., submission script, input, output, and log
files are stored in the File table.

The blue group reflects supported computer facilities, task types
and associated binaries. The information retrieved from these tables
is used in the workflow execution optimization.

HPC, HPC Queue and Allocation tables identify the computing
facility and the amount of core hours that may be consumed. The
Task Type table holds the information about admissible task types,
recall the building blocks in Fig. 1, while the Run table specifies
available implementations (binaries) for particular task types along
with the recipe to generate submission scripts. Let us note that
every task type can have several implementations, e.g., a GPU
version, a single node version (OpenMP), and a distributed version
(MPI). The additional parameters for particular binaries are stored
in the Implementation Detail table. Finally, the Allowed Code table
specifies where the binary can be executed (which HPC, which
queue) and what software modules need to be loaded prior to the
execution.
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Figure 3: Simplified entity relationship diagram (ERD) for
the Dispatch database.
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Figure 4: The architecture of k-Dispatch composed of three
modules and numerous submodules.

The gray table group comprises information about the perfor-
mance scaling of particular binaries. The Scaling table collects the
performance data about each successfully completed task. This data
consists of the binary, HPC and queue identifiers, number of nodes,
cores and GPU employed, the size of the simulation domain, basic
medium and wave propagation parameters, number of simulation
time steps, and execution wallclock time. This data is integral to the
workflow execution optimization. In order to provide accounting,
the HPC Queue, Allocation and Job tables are used to calculate the
amount of consumed core hours and their price, and to update the
available group budget.

3.2 Dispatch Core

The Dispatch core is composed of the Daemon module, Monitor
module, and the Dispatch and Transfer (D&T) module, each of
which is implemented as a Python class. The functionality of these
modules is shown in Fig. 4. The Daemon module enables k-Dispatch
to be registered as a service in the operating system. The Monitor
module periodically scans particular database records and invokes
the D&T module to, e.g., plan and submit a new workflow, terminate
calculations and delete a workflow, get the status of current jobs,
etc. The Monitor module also updates the database records with
progress information.

The heart of k-Dispatch lies in the Dispatch and Transfer module.
This module unifies the access to different computational resources
and their schedulers. This module performs the following opera-
tions:

parses the input file and stores important data for the work-
flow submission,

assembles the workflow task graph based on the input data
file using predefined Python classes representing a particular
workflow structure and its tasks,

optimizes the workflow execution by finding a suitable al-
location on one of the remote computational facilities and
assigns appropriate binaries and execution parameters to
particular tasks,

generates HPC-specific job scripts using the Python jinja2
library [37],

provides data transfers between remote computational facil-
ities and k-Dispatch using the Python fabric library [12],

o (re-)submits, deletes and monitors remote jobs using the
fabric library and the batch scheduler commands,
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Figure 5: k-Dispatch architecture wrapped into Docker con-
tainers and volumes. The text descriptions below individual
rectangles show network port mappings used in the current
solution.

detects failures on the remote computational facilities and
restarts jobs (restarts only the minimal and necessary amount
of dependant jobs, not the whole workflow),

collects performance scaling data,

provides accounting by retrieving the amount of consumed
core hours directly from the cluster scheduler and multiply-
ing by a price per hour stored in the database, and

creates and modifies records in the Dispatch database.

3.3 Deployment Using Docker

To simplify the deployment process, maintenance, fault tolerance
and data safety of k-Dispatch, a container-based approach using
Docker is adopted. Docker [6] is an open-source project based on
Linux containers which has undergone significant development
and become widespread amongst programmers in recent years. The
biggest advantage of this solution is the isolation of k-Dispatch and
its dependencies into self-contained units that can run anywhere.

k-Dispatch is split into four Docker containers and three volumes
connected via a Docker network deployed by the docker-compose
tool, see Fig. 5. These containers individually encapsulate the Dis-
patch database (depicted in yellow), the Dispatch core and the
k-Dispatch’s application server Web Server (depicted in pink), and
additionally, an Nginx [14] based web server acting as an entry-
point for user requests (depicted in green). The Dispatch database
stores all persistent data in a dedicated volume. The remaining
volumes store k-Dispatch Python source codes and ssh credentials
to remote computational facilities, respectively. These volumes are
shared between the Dispatch core and the application server to
enable easy data updates. The application web server employing
the Flask framework cannot be run in the production version with-
out another gateway, e.g., GUnicorn! or other uWSGI? hosting
services, since they only offer HTTP communication. The Nginx
container thus adds the required security by providing HTTPS
communication.

4 WORKFLOW EXECUTION OPTIMIZATION

This section explains the workflow execution optimization. The
goal is to find the best execution parameters for particular tasks
to minimize the overall execution time, computational cost and

!https://gunicorn.org/
Zhttps://flask.palletsprojects.com/en/1.0.x/deploying/uwsgi/
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waiting times in the job submission queues. The execution parame-
ters typically only cover the type and the amount of computational
resources along with an expected execution time, but can also in-
clude the most appropriate queue, desired processor and memory
frequencies and other hardware parameters in the future. This in-
formation is then written into a submission script and handed over
to the HPC or cloud batch scheduler which orchestrates the execu-
tion itself. This optimization is only possible thanks to historical
performance data collected for the a priori known binaries.

4.1 Workflow Definition and Execution Model

The most natural way to define a workflow is to use a Directed
Acyclic Graph (DAG), often reffered to as a Task Graph [38], whose
nodes are the tasks and the edges are the precedence constraints
and data dependencies between tasks. The nodes also encapsulate
the task type, input and output files, and the execution parameters.

k-Dispatch allows both task- and data-driven workflows [26]
and a static acyclic execution model (see Fig. 6). After the workflow
assembly and submission, no conditional behaviors, i.e., dynamic
task generation or while loops with an unknown number of itera-
tions, are supported. Since the ultrasound workflows may contain
subgraphs that may be either omitted or repeated multiple times,
this has to be determined during the planning phase while the final
workflow is being assembled.

4.2 Optimization of Execution Parameters
The execution planning process that every HPC job scheduler
solves, can be described as a mapping of tasks from the workflow
to free time slots and computational resources, see Eq. (1):

Q— (T"xXR),T"CTAR CR, (1)

where Q is a set of all tasks in the workflow, T and T’ are finite
sets of all and available time slots, respectively, and R and R” are
finite sets of all and idle computation resources at given time slots,
respectively. Based on the scheduling policy, each scheduler tries

A Workflow To Computational Flow Of The Submitted Workflow

TYEY

Remote HPC System
ORunning  @Finished O Queued/Hold

k-Dispatch

Figure 6: k-Dispatch’s execution model. The blue workflow
on the left hand side reveals the concurrency and dependen-
cies between tasks. Subgraphs in the red rectangles can be
executed concurrently since there are no dependencies be-
tween them, however, the tasks inside them have to be exe-
cuted sequentially. The task in the yellow rectangle has to
wait until all red rectangles have finished. The workflows
on the right hand side show a possible execution flow on
the remote computational machine. The order of the task
execution is clearly visible.
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to maximize the cluster utilization while guaranteeing quality of
service at some level.

HPC and cloud systems often differ in hardware (type of nodes
and accelerators, number of cores per node, interconnection, etc.)
and software equipment (scheduler and their policy, tools, compil-
ers, etc.). In order to create a favorable execution schedule, the type
and amount of resources along with the execution time must be
carefully chosen. In many other workflow management systems
(WMSs), the end user is responsible for providing this information.
This is, however, not viable in our approach and k-Dispatch must
automatically find suitable workflow execution parameters. We con-
sider this optimization as the biggest challenge in the development
of k-Dispatch.

Since k-Dispatch does not implement its own job scheduler but
relies on those used by supported HPC systems, there is a need for
cooperation between k-Dispatch and the HPC job scheduler, e.g.,
PBS Pro or Slurm. The execution parameters are dependent on the
current cluster utilization and the list of other queued jobs waiting
for execution. Therefore, before the optimization, the current cluster
utilization is downloaded along with the actual user priorities, e.g.,
fairshare priority. This information then guides the optimization
process and helps to reduce the queuing times.

There are two approaches to create a heuristic for choosing ap-
propriate execution parameters for particular tasks in the workflow.
This heuristic may either be rigid, which always uses predefined
default values for the execution parameters of a given simulation
code, or adaptive, which takes into account current cluster utiliza-
tion, code performance scaling and the complexity of the current
input data. At the time of writing this paper, only a rigid heuris-
tic has been fully tested. This method always works, however, the
throughput and effectiveness of the submission may be limited. The
adaptive heuristic, currently under development, can be classified
as local or global. The local approach searches for optimal execution
parameters of particular tasks independently. While the parameter
setting may be suboptimal, the optimization time complexity is
linear. On the other hand, the global approach takes into account
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(e.g., #nodes)
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Figure 7: Two examples of the workflow mapping to com-
putational resources and time slots under different execu-
tion parameters. Colors show resources occupied by partic-
ular tasks. Both mappings take 7 time units to complete.
The mapping on the left-hand side is, however, a bit cheaper
since it consumes 29 work units while the second one 31.
The influence of other jobs coming into the system is not
considered.
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the dependencies between tasks and can produce better parameters,
however, the optimization complexity can become exponential [40].
In both cases, the optimization heuristics assign a specific binary
and a set of execution parameters to each task (see Fig. 7) in order to
minimize computational time, or cost while not exceeding specified
time constraints. The selection of execution parameters is based
on the collected performance scaling data. For every task, the size
and complexity of the execution can be deduced from the input
file. This information can be projected into graphs of strong and
weak scaling constructed from the performance data collected for
a candidate binary. Finally, the estimated queuing time is taken
into account. The workflow with assigned execution parameters is
then sent for evaluation either to a simulator or the job scheduler
that can provide a more accurate estimation of the launch time. If
suitable parameters are found, the workflow is submitted to the
job scheduler. The use of adaptive heuristic opens a lot of research
questions summarized in Sec. 5. A one-pass local optimization
method which uses linear and cubic spline interpolations to find
the most suitable amount of computer resources is currently being
investigated. Preliminary results show that a cubic spline is a very
good model for the strong and weak scaling performance of k-Wave,
with errors in the execution time on the order of one percent.

5 CURRENT WORK AND OPEN QUESTIONS

The development of adaptive heuristics for execution parameter
optimization opens many new issues. They form the challenges we
have been attempting to address and which are described below.

5.1 Data Collection and Processing

The first issue is the collection of performance data. The execu-
tion time and cost are defined by strong [2] and weak scaling [22].
However, constructing the scaling for every possible binary, type
of resources, and inputs is impossible due to the extreme number
of combinations. Therefore, we limited ourselves to only select a
small subset of simulation parameters that have the most influence
on the computational complexity, e.g., domain size, wave propaga-
tion mode, heterogeneity and absorption of the medium. For these
parameters we select the most typical values and run benchmark
simulations to initially populate the Scaling table. In production,
every successfully executed job is used to update this table.

The open question is how to adapt to unseen inputs (e.g., domain
sizes), performance fluctuations caused by cluster overloading, or
changes in the software and hardware configuration, etc. Both
problems can be solved by combinatorial optimization. Having a
workflow with a number of tasks (sonications) of the same type
and size, the execution parameters can be deliberately perturbed to
explore the local neighbourhood of currently optimal parameters.
The collected performance data can be also filtered by its age to
get the actual state. If a task is encountered that has not been seen
before, the optimal parameters can be chosen using interpolation
or machine learning.

So far, a set of performance data has been collected for ultrasound
simulations and typical domain sizes, various numbers of resources
(e.g., number of cores), code implementations (e.g., OpenMP, MPI)
and code-specific parameters using the IT4Innovations clusters.
Currently, metrics defining the relevance of the records are being
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developed considering the age and distance from the investigated
simulation size and type.

5.2 Dynamic Cluster Behaviour

As already mentioned, the current HPC utilization may have a
strong influence on the optimal values of the workflow execution
parameters. Although it does not affect the computational time
or cost itself, it may strongly affect the queuing time and lead to
exceeding the timespan which users are willing to wait. Usually, jobs
asking for small numbers of compute nodes are executed sooner
than those asking for a huge portion of the cluster. Of course, this
is queue dependent and there may be another queue promoting
large jobs.

Another issue is how often to monitor the HPC cluster utiliza-
tion. The possibility being used now is to take a snapshot before
the execution parameter optimization. Nevertheless, what happens
if the cluster utilization dramatically changes, e.g., by a burst of
high priority jobs from privileged users, or lodging a reservation?
The cluster scheduler will recalculate the job priorities and may
postpone their execution. If such a situation is detected, the execu-
tion parameters of already queued jobs are obsolete and should be
altered. The questions under investigation now is how to detect or
predict these dramatic changes, how to find some patterns, how to
estimate the delay caused, and decide whether it pays off to alter
the parameters or not.

5.3 Workflow Parameters Evaluation

Due to many reasons such as the cost of resources, reliability and
varying background load, the experimental evaluation of the adap-
tive heuristics cannot be easily performed on production HPC sys-
tems. Moreover, to obtain sensible results, multiple workflows with
various execution parameters need to be evaluated under the same
and controllable conditions that simulate different real-life scenar-
ios. This is, however, often unachievable.

Therefore, a job scheduling simulator emulating production HPC
environments can be used. A short review of the latest simulators
is given in Sec. 6. These simulators can provide relatively good
estimations of the queuing times. The other alternative is to use
dedicated resources (a dedicated queue) and do the experiments
there. Nonetheless, this may become quite costly.

6 RELATED WORK

The area of task execution in distributed and heterogeneous sys-
tems has been studied for the last decade. There have been many
middleware projects developed focusing on running various types
of computational workflows on HPC facilities, clouds and grids.
We focus mainly on Workflow Management Systems (WMSs) for
offloading the task computations to HPC clusters.

The majority of WMSs have been created to address a phenom-
ena called workflow decay. Workflow decay refers to poor repro-
ducibility of scientific workflows which were designed to solve com-
plex scientific problems and accelerate scientific progress. However,
scientists often find it difficult to reuse others’ workflows. [28]

To characterize WMSs, the following properties may be consid-
ered: computational infrastructure (e.g., grids, clouds, HPC clus-
ters), workflow design (e.g., DAG) and means of its composition
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(e.g., graphical desktop application, web page, command-line tool,
programmable interface), types of parallelism, and so on. A novel
characterization of WMSs was introduced in [13]. This work uses (1)
workflow execution models, (2) heterogeneous computing environ-
ments, and (3) data access methods to characterize the workflows.
Moreover, the paper classifies 15 state-of-the-art WMSs into an
easy-to-use lookup table containing a feature checklist for each
WMS.

We especially distinguish WMSs based on the application (type
of tasks — long- and short-running) and users’ perspective. Many
WMSs introduced in this section think about users as scientists
or developers. In the daily practice of various user communities,
this is simply not the case. WMSs can be deployed in multiple
scenarios to serve the needs of various users which places different
requirements on the WMS.

Although, not being perfect, WMSs still offer a formal way to
define, automate, and repeat multi-step computational procedures.
They usually provide services for resource monitoring and manage-
ment, security and file management, and help scientists to share
computing power, databases, tools, etc.

6.1 Workflow Management Systems and
Processing Frameworks

Widely used data processing frameworks, especially for big data
analytics, include Hadoop [41], a MapReduce-based system for
parallel data processing, Apache Spark [47], a system for concur-
rent processing of heterogeneous data streams, Apache Storm [4],
for real-time streaming data processing, and HTCondor [23], for
managing compute-intensive jobs. These tools do not allow inter-
task dependencies to be specified. Sometimes, such frameworks
are implemented within more general WMSs (for example HTCon-
dor/DAGMan [23] and the Pegasus [11] WMS) to schedule and
offload the tasks.

When speaking about short-running tasks (one-core, < 1 second),
examples of applicable WMSs include Dask [10] and HyperLoom [9].
Since the time needed for resource allocation may create a signifi-
cant scheduling overhead, these tools usually implement their own
scheduling mechanism and heuristics.

Dask handles short running tasks and allows the filesystem usage
to be reduced. However, it does not support native pipelining of
third-party applications. Dask offers both high-level (e.g., NumPy
objects) and low-level programming user interfaces.

HyperLoom is a platform for defining and executing scientific
workflows in large-scale high performance computing systems. Its
goal is to minimize the overall workflow execution time respecting
resource constraints of the tasks and environments. HyperLoom
implements an optimized dynamic scheduler that schedules the
tasks reactively with a low overhead since the execution time of
individual tasks is not known in advance. Moreover, the scheduler
respects task dependencies and prioritizes placements that induce
the smallest possible inter-node data transfer. Data produced by
tasks are kept directly in memory and can be accessed by any other
task without additional overhead. HyperLoom allows chaining and
execution of third-party applications. HyperLoom enables users
to define and execute workflows using its client application. Al-
though HyperLoom was originally designed to be used within HPC
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infrastructures, these infrastructures may be unavailable or too
expensive especially for small to medium workloads. Therefore,
HyperLoom developers started to aim at public cloud providers
since performance of their machines is comparable to those in HPC
systems. However, the network solutions used in HPC systems
offer much higher inter-node throughput. HyperLoom focuses on
experienced users as well.

Today’s WMSs allow users to compose custom workflows (DAGs)
by providing graphical or programmable user interfaces. This de-
termines the potential user of the system. Those WMSs often rely
on traditional resource schedulers that are optimized for coarse-
grained long-running tasks. The inter-task data transfers are usually
performed using a shared distributed filesystem.

FabSim [21] shares functionality with middleware toolkits such
as Globus [16] or gLite [19]. However, FabSim is aimed at the ex-
perienced computational scientist. The only supported interface is
a command line tool which is easy to extend for developers. The
key strength of FabSim is its focus on simplifying and accelerating
development activities. It simplifies the execution of previously
defined workflows as well as the creation of new ones. FabSim does
not provide decision-making in terms of planning and monitoring.
Its main goal is to simplify researchers’ daily tasks.

Taverna [46] is bringing together a range of features to make it
easier for users to find, design and execute complex workflows and
share them with other people. Therefore, Taverna integrates myEx-
periment [31] and BioCatalogue [5] and creates an interface to work
with these tools. Taverna enables workflows to be run on the user’s
computer (using Taverna Workbench), on the Taverna server, clouds
(for example, on Amazon cloud) and grids, using its own Workflow
Management System. Taverna has a huge domain of usage, e.g., in
bioinformatics and biology, chemistry, annotation, arts (compos-
ing music), astronomy, data mining and analysis, engineering, and
so on. Similarly to Taverna, Kepler [26] allows computations over
computer clusters and grids. Both provide a graphical environment
to help users to perform complex simulation workflows. Kepler
is used by projects that operate in bioinformatics, ecological and
environmental research, and weather and climate analysis. Both
Taverna and Kepler focus on researchers and well-informed users.

Pegasus encompasses a set of technologies that help workflow-
based applications execute in a number of different environments
including desktops, campus clusters, grids, and clouds. Pegasus
bridges the scientific domain and the execution environment by
automatically mapping high-level workflow descriptions onto dis-
tributed resources. It automatically locates the necessary input data
and computational resources necessary for workflow execution.
Pegasus enables scientists to construct workflows in abstract terms
without worrying about the details of the underlying execution
environment. Pegasus has been used in a number of scientific do-
mains including astronomy, bioinformatics, earthquake science,
and others. To recover from error, Pegasus provides workflow-level
checkpointing.

6.2 Cluster Batch Schedulers

Supercomputing facilities use commercial or open-source job sched-
ulers that contain job scheduling algorithms developed in the past,
e.g., backfilling, first come first served (FCES), etc. For instance,
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Portable Batch System (PBS) uses the backfilling scheduling algo-
rithm, and considers user and group priorities, and fair-share cluster
policies. The IT4Innovations? supercomputing center’s PBS sched-
uler gives each job an execution priority first, and then uses this
job execution priority to select which job(s) to run. Job execution
priority is determined by the queue priority, fairshare priority and
eligible time, where the queue priority has the biggest impact. The
fair-share priority is calculated on the recent usage of resources per
project. Eligible time is the amount of eligible time the job accrued
while waiting to run and has the least impact on execution priority.
Jobs with higher eligible time gain higher priority. Overall, it is
very beneficial to specify the walltime when submitting jobs as this
enables better scheduling and better resource usage. Backfilling is
an FCFS approach that is improved by increasing the utilization of
the system resources and by decreasing the average waiting time
in the queue. Backfilling fits smaller jobs in front of higher-priority
jobs if it is possible, in such a way that the higher-priority jobs are
not delayed. This prevents resources from becoming idle when the
top job (job with the highest execution priority) cannot run. [42] A
backfilling scheduling algorithm is used by IT4Innovations’ clus-
ters.

Another widely employed workload manager is Slurm used by,
e.g., Chinese Sunway TaihuLight or Swiss Piz Daint. Slurm performs
a best-fit algorithm based on Hilbert curve scheduling or fat tree
network topology in order to optimize the locality of task assign-
ments on parallel computers [34]. However, as mentioned before,
developers of WMSs sometimes implement their own schedulers,
operating above those used in supercomputing centers. Another
example is the NCSA (National Center for Supercomputing Appli-
cations at the University of Illinois) scheduler tool [32] designed for
Blue Waters and other HPC systems. Many HPC facilities limit the
number of jobs per user to prevent queues from becoming cumber-
some. The NCSA scheduler allows users to aggregate single-core
jobs as a single batch and jobs share the node between applications
using a simple configuration file. The scheduler allows queuing
jobs and manages efficiently independent single-core jobs, can bun-
dle OpenMP (Open Multi-Processing) single-node jobs but cannot
bundle MPI (Message Passing Interface) jobs.

6.3 Cluster Simulators

The following text gives a short review of job scheduling simulators.
Due to many reasons such as the cost of resources, the reliability,
the varying background load or the dynamic cluster behaviour,
experimental evaluation generally cannot be performed on real
systems. Moreover, to obtain reliable results, multiple workflows
with various run configurations need to be performed using the
same and controllable conditions that simulate different real-life
scenarios which is, however, often not possible.

Simple job scheduler simulators often provide a detailed model
of the queuing behaviour as the jobs arrive at the system upon
submission, wait for available resources, start their execution, and
eventually leave the system upon their completion.

For example, PySS [29] is a trace-driven scheduler simulator. It
implements a number of scheduling algorithms, including several
backfilling ones. The problem with simple simulators is that they

3Czech national supercomputing center, https://www.itdi.cz/
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do not really model the target HPC system or the runtime behavior
of the applications. PySS takes the job runtime directly from the
job trace, although in reality a job’s runtime is affected by the
specific resources allocated to the job and by the application’s
runtime behavior, which can be affected by other jobs running
simultaneously [33]. Thus, more sophisticated simulators need to
be used instead.

Alea 4 [25] is an event-based grid and cluster scheduling sim-
ulator that uses the GridSim toolkit [7]. The simulator is able to
deal with common problems related to job scheduling like the het-
erogeneity of jobs, resources, and dynamic runtime changes such
as the arrival of new jobs or resource failures and restarts. The
main part of the simulator is a complex scheduler which incorpo-
rates several common scheduling algorithms working either on the
queue or the schedule (plan) based principle. The latest version
of Alea uses a dynamic workload adjustment technique enabling
user-to-system interactions to be modeled properly. The input is
still a static workload (historical workload traces extracted from
the HPC system itself, or from a public workload trace repository)
but transformed into a dynamic one afterwards.

Performance Prediction Toolkit (PPT) [33] is a full-scale HPC
simulator. It can use synthetic workload models or adopt job traces
from existing HPC workload archives. The simulator implements
several commonly used scheduling algorithms, however, it does
not include backfilling algorithms.

Other complex frameworks for studying grids, clouds, HPC or
peer-to-peer systems have been developed. However, the majority
of these projects seem to be inactive or abandoned. [25]

6.4 Summary

After a detailed review of current WMSs, k-Dispatch seems to be
unique in several aspects. Unlike many other low level WMSs, it
does not require the end users to have personal access to remote
computational facilities (user accounts). k-Dispatch uses its own
credentials to access several computing facilities and provides ac-
counting for the end users.

k-Dispatch is also oriented towards workflows composed of large
long running jobs. For these jobs, the optimization of execution
parameters is crucial to reduce the computation cost, minimize
queuing times and offer some estimation of the delivery time. Since
the set of possible binaries is limited, statistically relevant perfor-
mance data can be captured and consequently used for estimations.
As far as we have seen, there are no similar tools available, and
instead users are generally responsible for providing appropriate
parameters themselves.

For the job submission and execution, the PBS and Slurm inter-
faces provide enough functionality. However, for the evaluation of
hundreds of jobs per second, they may be too slow. As a suitable
tool for quick execution parameter evaluation, the ALEA simula-
tor appears to be a good candidate and has already been under
evaluation.

7 CONCLUSIONS AND FUTURE WORK

Over the last few decades, numerous middleware projects have
been developed focusing on running user-defined workflows on
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various computational platforms including local desktop computers,
middle-sized servers up to huge and heterogeneous supercomputing

facilities and clouds. These tools are developed as stand-alone desk-
top applications, web applications or importable libraries which
determines the level of interactivity with end users.

Unfortunately, all these tools focus primarily on experienced
users from various scientific domains. Despite the orchestration,
monitoring and data management being provided by the tools, the
users have to compose their own workflows, specify the execution
parameters and provide their own binaries manually. This is, how-
ever, unfeasible in medical applications where the level of HPC
experience is much lower and the computation software has to
undergo a strict certification process. Since our search for a suit-
able tool was not successful, we decided to develop a brand new
workflow management system called k-Dispatch.

k-Dispatch is a Python middleware layer bridging clinical end-
users with large computing facilities such as clouds or HPC clusters.
k-Dispatch offers a list of generic biomedical ultrasound workflows
that execute optimized binaries. The users are able to upload treat-
ment parameters and patient specific data using a simple interface
and do not have to consider the execution planning, submission,
and monitoring of simulations. Furthermore, k-Dispatch provides
data management, accounting, reporting, fault tolerance, and most
importantly, optimizes the execution parameters and the amount
of computational resources to reduce computational time or cost.

We have successfully deployed k-Dispatch using Docker contain-
ers. Currently, the predefined workflows may be submitted using
a user-friendly web interface. The workflows are executed by the
HPC clusters at the IT4Innovations supercomputing center.

7.1 Future Work

The development of k-Dispatch has reached a point where the
system is up and running, however, there are several issues to be
solved. First, we would like to implement advanced techniques for
performance data mining. Next, we would like to adapt HPC cluster
simulators to provide us with reliable evaluation of the workflow
execution parameters. We would like to investigate adaptive op-
timization heuristics for execution parameters and also consider
dynamically changing HPC utilization. Finally, we would like to
develop a graphical user interface for k-Dispatch administrators
and advanced clinical users.

8 ACKNOWLEDGEMENT

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme H2020 ICT 2016-2017
under grant agreement No 732411 and is an initiative of the Pho-
tonics Public Private Partnership. This work was supported by
The Ministry of Education, Youth and Sports from the National
Programme of Sustainability (NPU II) project IT4lnnovations excel-
lence in science - LQ1602" and by the IT4Innovations infrastructure
which is supported from the Large Infrastructures for Research, Ex-
perimental Development and Innovations project IT4Innovations
National Supercomputing Center - LM2015070". This work was sup-
ported by the Engineering and Physical Sciences Research Coun-
cil, United Kingdom, grant numbers EP/L020262/1, EP/M011119/1,
EP/P008860/1, and EP/S026371/1.

111



PASC ’20, June 29-July 1, 2020, Geneva, Switzerland

REFERENCES

(1]

[10
[11]

[12
[13]

[14

[15

[16

[7

[18

[19

[20

[21]

[22

[23]

Magda A. Abbas, Constatin C. Coussios, and Robin O. Cleveland. 2018. Patient
specific simulation of HIFU kidney tumour ablation. Conference proceedings: IEEE
Engineering in Medicine and Biology Society. 2018, 5709-5712. https://doi.org/10.
1109/EMBC.2018.8513647

Gene M. Amdahl. 1967. Validity of the single processor approach to achieving
large scale computing capabilities. Proceedings of the April 1820 1967 spring
Jjoint computer conference 23, 4 (1967), 483-485. https://doi.org/10.1145/1465482.
1465560

Peter Amstutz, Michael R. Crusoe, Nebojsa Tijanic, Brad Chapman, John
Chilton, Michael Heuer, Andrey Kartashov, Dan Leehr, Herve Menager, Maya
Nedeljkovich, and et al. 2016. Common workflow language, v1.0.  https:
//doi.org/10.6084/m9.figshare.3115156.v2

Apache. 2019. Apache Storm. http://storm.apache.org/

Jiten Bhagat, Franck Tanoh, Eric Nzuobontane, Thomas Laurent, Jerzy Orlowski,
Marco Roos, Katy Wolstencroft, Sergejs Aleksejevs, Robert Stevens, Steve Pettifer,
Rodrigo Lopez, and Carole A. Goble. 2010. BioCatalogue: a universal catalogue
of web services for the life sciences. Nucleic Acids Research 38, suppl_2 (05 2010),
W689-W694.  https://doi.org/10.1093/nar/gkq394

Carl Boettiger. 2015. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Systems Review 49, 1 (jan 2015), 71-79. https://doi.org/10.
1145/2723872.2723882

Rajkumar Buyya and Manzur Murshed. 2002. GridSim: a toolkit for the modeling
and simulation of distributed resource management and scheduling for Grid
computing. Concurrency Computat.: Pract. Exper. 14 (2002), 1175-1220. https:
//doi.org/10.1002/cpe.710

Vandiver Chaplin, Marshal Phipps, and Charles Caskey. 2017. A random phased-
array for MR-guided transcranial ultrasound neuromodulation in non-human
primates. Physics in Medicine and Biology 10 (12 2017), 105016. https://doi.org/
10.1088/1361-6560/aabeff

Vojtéch Cima, Stanislav Bhm, Jan Martinovi¢, Jifi Dvorsky, Katefina Janurova,
Tom V. Aa, Thomas J. Ashby, and Vladimir Chupakhin. 2018. HyperLoom: A plat-
form for defining and executing scientific pipelines in distributed environments.
In Proceedings of the 9th Workshop and 7th Workshop on Parallel Programming and
RunTime Management Techniques for Manycore Architectures and Design Tools
and Architectures for Multicore Embedded Computing Platforms. ACM, 1-6.
Dask. 2019. Dask natively scales Python. https://dask.org/

Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J.
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny,
and Kent Wenger. 2014. Pegasus: a Workflow Management System for Science
Automation. Future Generation Computer Systems (2014).

Fabric. 2020. Fabric — Pythonic Remote Execution. https://www.fabfile.org/
Rafael Ferreira da Silva, Rosa Filgueira, Ilia Pietri, Ming Jiang, Rizos Sakellariou,
and Ewa Deelman. 2017. A characterization of workflow management systems
for extreme-scale applications. Future Generation Computer Systems 75 (oct 2017),
228-238.

Martin Fjordvald and Clement Nedelcu. 2018. Nginx HTTP Server - Fourth Edition:
Harness the Power of Nginx to Make the Most of Your Infrastructure and Serve Pages
Faster Than Ever Before (4th ed.). Packt Publishing.

Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011.
An overview of the HDF5 technology suite and its applications. In Proceedings of
the EDBT/ICDT 2011 Workshop on Array Databases - AD ’11. https://doi.org/10.
1145/1966895.1966900

Tan Foster. 2006. Globus toolkit version 4: Software for service-oriented systems.
Journal of Computer Science and Technology 21, 4 (jul 2006), 513-520. https:
//doi.org/10.1007/s11390-006-0513-y

Focused Ultrasound Foundation. 2019. 2019 state of the field report. Technical
Report. 1230 Cedars Court, Suite 206.

Lutz Frohlich. 2018. PostgreSQL 10. In PostgreSQL 10. Carl Hanser Verlag GmbH
& Co. KG, Miinchen, I-X. https://doi.org/10.3139/9783446456419.fm

glLite. 2013. gLite introduction.  http://grid-deployment.web.cern.ch/grid-
deployment/glite-web/introduction

Anthony Grisey, Sylvain Yon, Véronique Letort, and Pauline Lafitte. 2016. Simu-
lation of high-intensity focused ultrasound lesions in presence of boiling. Journal
of Therapeutic Ultrasound (2016). https://doi.org/10.1186/S40349-016-0056-9
Derek Groen, Agastya P. Bhati, James Suter, James Hetherington, Stefan J. Zasada,
and Peter V. Coveney. 2016. FabSim: Facilitating computational research through
automation on large-scale and distributed e-infrastructures. Computer Physics
Communications 207 (2016), 375-385. https://doi.org/10.1016/j.cpc.2016.05.020
arXiv:1512.02194

John L. Gustafson. 1988. Reevaluating Amdahl’s law. Commun. ACM 31, 5 (may
1988), 532-533. https://doi.org/10.1145/42411.42415

HTCondor. 2019. HTCondor - High Throughput Computing. https://research.
cs.wisc.edu/htcondor/

112

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Marta Jaros, Bradley E. Treeby, Panayiotis Georgiou, and Jiri Jaros

Sarah E. Jackson and John D. Chester. 2015. Personalised cancer medicine.
https://doi.org/10.1002/ijc.28940

Dalibor Klusacek, Simon Toth, and Gabriela Podolnikova. 2017. Complex Job
Scheduling Simulations with Alea 4. CEUR Workshop Proceedings 1828 (2017),
53-59. https://doi.org/10.1145/1235 arXiv:arXiv:1603.07016v1

Bertram Ludascher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. 2006. Scientific workflow
management and the Kepler system. Concurrency and Computation: Practice and
Experience 18, 10 (aug 2006), 1039-1065. https://doi.org/10.1002/cpe.994
Srirang Manohar and Maura Dantuma. 2019. Current and future trends in
photoacoustic breast imaging. Photoacoustics 16 (1 12 2019). https://doi.org/10.
1016/j.pacs.2019.04.004

Haiyan Meng and Douglas Thain. 2017. Facilitating the reproducibility of scien-
tific workflows with execution environment specifications. Procedia Computer
Science 108 (2017), 705-714. https://doi.org/10.1016/j.procs.2017.05.116 Interna-
tional Conference on Computational Science, ICCS 2017, 12-14 June 2017, Zurich,
Switzerland.

Tom Mens, Alexandre Decan, and Nikolaos Spanoudakis. 2018. A method for test-
ing and validating executable statechart models. Software and Systems Modeling
(2018). https://doi.org/10.1007/s10270-018-0676-3

Leila Mohammadi, Hamid Behnam, Jahan Tavakkoli, and Mohammad R.N.
Avanaki. 2019. Skull’s photoacoustic attenuation and dispersion modeling with de-
terministic ray-tracing: Towards real-time aberration correction. Sensors (Switzer-
land) (2019). https://doi.org/10.3390/s19020345

myExperiment. 2018. myExperiment Home. https://www.myexperiment.org/
home

NCSA. 2019. GitHub - ncsa/Scheduler: The aggregate job launcher of single-core
or single-node applications on HPC sites. https://github.com/ncsa/Scheduler
Mohammad A. Obaida and Jason Liu. 2017. Simulation of HPC job scheduling
and large-scale parallel workloads. In 2017 Winter Simulation Conference (WSC).
IEEE, 920-931. https://doi.org/10.1109/WSC.2017.8247843

Jose A. Pascual, Javier Navaridas, and Jose Miguel-Alonso. 2009. Job Scheduling
Strategies for Parallel Processing. In JSSPP 2009. Lecture Notes in Computer Sci-
ence, vol. 5798, Uwe Frachtenberg, Eitan Schwiegelshohn (Ed.). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-04633-9_8

Joemini Poudel, Yang Lou, and Mark A. Anastasio. 2019. A survey of computa-
tional frameworks for solving the acoustic inverse problem in three-dimensional
photoacoustic computed tomography. Physics in Medicine and Biology (may 2019).
https://doi.org/10.1088/1361-6560/ab2017 arXiv:1905.03881

Antonios Pouliopoulos, Shih-Ying Wu, Mark Burgess, Maria Karakatsani, Hermes
Kamimura, and Elisa Konofagou. 2019. A Clinical System for Non-invasive Blood-
Brain Barrier Opening Using a Neuronavigation-Guided Single-Element Focused
Ultrasound Transducer. Ultrasound in Medicine and Biology 46 (10 2019), 73-89.
https://doi.org/10.1016/j.ultrasmedbio.2019.09.010

The Pallets Projects. 2020. Jinja. https://palletsprojects.com/p/jinja/

Yves Robert. 2011. Task graph scheduling. Springer US, Boston, MA, 2013-2025.
https://doi.org/10.1007/978-0-387-09766-4_42

Armin Ronacher. 2013. Flask (A Python Microframework). http://flask.pocoo.org/
Vivek Sarkar. 1989. Partitioning and Scheduling Parallel Programs for Multiproces-
sors. MIT Press, Cambridge. 101-154 pages.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The Hadoop distributed file system. In Proceedings of the 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST) (MSST ’10). IEEE Computer
Society, Washington, DC, USA, 1-10. https://doi.org/10.1109/MSST.2010.5496972
Priya Singh, Zafruddin Quadri, and Anuj Kumar. 2016. Comparative Study of
Parallel Scheduling Algorithm for Parallel Job. International Journal of Computer
Applications 134, 10 (2016), 10-14.

Visa Suomi, Jiri Jaros, Bradley Treeby, and Robin Cleveland. 2016. Nonlinear
3-D simulation of high-intensity focused ultrasound therapy in the Kidney. IEEE,
5648-5651. https://doi.org/10.1109/EMBC.2016.7592008

Visa Suomi, Bradley Treeby, Jiri Jaros, Pietari Makela, Mikael Anttinen, Jani
Saunavaara, Teija Sainio, Aida Kiviniemi, and Roberto Blanco. 2018. Transurethral
ultrasound therapy of the prostate in the presence of calcifications: A simulation
study. Medical physics 45 (9 2018), 4793-4805. https://doi.org/10.1002/mp.13183
Bradley E. Treeby and Ben T. Cox. 2010. k-Wave: MATLAB toolbox for the
simulation and reconstruction of photoacoustic wave-fields. Journal of Biomedical
Optics 15, 2 (Mar-Apr 2010), 021314. https://doi.org/10.1117/1.3360308
Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David
Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic,
Paul Fisher, Jiten Bhagat, Khalid Belhajjame, Finn Bacall, Alex Hardisty, Abraham
Nieva de la Hidalga, Maria P. Balcazar Vargas, Shoaib Sufi, and Carole Goble.
2013. The Taverna workflow suite: designing and executing workflows of Web
Services on the desktop, web or in the cloud. Nucleic Acids Research 41, W1 (5
2013), W557-W561. https://doi.org/10.1093/nar/gkt328

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster computing with working sets. Technical Report.



Related Paper III

Performance-Cost Optimization of
Moldable Scientific Workflows

JAROS Marta and JAROS Jiri

Job Scheduling Strategies for Parallel Processing (JSSPP) 2021
DOI: 10.1007/978-3-030-88224-2_ 8

113



n

Check for
updates

Performance-Cost Optimization of
Moldable Scientific Workflows

(=)

Marta Jaros and Jiri Jaros

Faculty of Information Technology, Centre of Excellence IT4Innovations,
Brno University of Technology, Brno, Czech Republic
{martajaros, jarosjir}@fit.vutbr.cz

Abstract. Moldable scientific workflows represent a special class of sci-
entific workflows where the tasks are written as distributed programs
being able to exploit various amounts of computer resources. However,
current cluster job schedulers require the user to specify the amount of
resources per task manually. This often leads to suboptimal execution
time and related cost of the whole workflow execution since many users
have only limited experience and knowledge of the parallel efficiency and
scaling. This paper proposes several mechanisms to automatically opti-
mize the execution parameters of moldable workflows using genetic algo-
rithms. The paper introduces a local optimization of workflow tasks, a
global optimization of the workflow on systems with on-demand resource
allocation, and a global optimization for systems with static resource
allocation. Several objectives including the workflow makespan, compu-
tational cost and the percentage of idling nodes are investigated together
with a trade-off parameter putting stress on one objective or another. The
paper also discusses the structure and quality of several evolved work-
flow schedules and the possible reduction in makespan or cost. Finally,
the computational requirements of evolutionary process together with
the recommended genetic algorithm settings are investigated. The most
complex workflows may be evolved in less than two minutes using the
global optimization while in only 14s using the local optimization.

Keywords: Task graph scheduling - Workflow - Genetic algorithm -
Moldable tasks - Makespan estimation

1 Introduction

All fields of science and engineering use computers to reach new findings, while
the most compute power demanding problems require High Performance Com-
puting (HPC) or Cloud systems to give answers to their questions. The problems
being solved nowadays are often very complex and comprise of a lot of various
tasks describing different aspects of the investigated problem and their mutual
dependencies. These tasks compose a scientific processing workflow [3]. There
are immense of such scientific workflows in various fields [22], yet they have one
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thing in common. They all demand to be computed in the minimum possible
time, and more often, for the lowest possible cost.

The execution of a scientific workflow on an HPC system is performed via
communication with the HPC front-end, also referred to as job scheduler [13].
After the workflow data has been uploaded to the cluster, the workflow tasks
are submitted to the computational queues to wait until the system has enough
free resources, and all task dependencies have been resolved (predecessor tasks
have been finished).

Modern HPC schedulers control multiple processing queues and implement
various techniques for efficient task allocation and resource management [15].
However, the workflow queuing time, computation time and related cost are
strongly dependent on the execution parameters of particular tasks provided by
the user during submission. These parameters usually include temporal param-
eters such as requested allocation length, as well as spatial parameters including
the number and type of compute nodes, the number of processes and threads, the
amount of memory and storage space, and more frequently, the frequency and
power cup of various hardware components. These parameters, unfortunately,
have to be specified by the end users based on their previous experience with
the task implementation and knowledge on the input data nature.

In everyday practice, the estimations of task allocation lengths are quite
inaccurate, which disturbs the scheduling process. Most users deliberately over-
estimate the computational time in order to provide some reserve to mitigate
performance fluctuation and prevent premature termination of the task execu-
tion [23]. Moreover, many complex tasks are written as moldable distributed
parallel programs being able to exploit various amounts and types of computing
resources. Nonetheless, it is again the user responsibility to choose appropriate
values of these parameters according to the input data.

The task moldability is often limited by many factors, the most important of
which being the domain decomposition [6], parallel efficiency [2], and scalabil-
ity [14]. While the domain decomposition may limit the numbers of processing
units (nodes, processes, threads) to rather a sparse list of acceptable values, the
parallel efficiency determines the execution time and cost for a given task and
a chosen amount of resources. Naturally, the lower the parallel efficiency, the
lower the speed-up, and consequently, the longer the computation time and the
higher the computational cost. Finally, the scalability upper-bounds the amount
of exploitable resources by the overall available memory.

While the field of rigid workflow optimization, where the amount of resources
per task cannot be tuned, has been thoroughly studied and is part of common
job schedulers such as PBSPro [13] or Slurm [30], the automatic optimization
and scheduling of moldable workflows has still been an outstanding problem,
although firstly solved two decades ago in [10].

For the last decade, many papers have focused on the estimation of rigid
workflow execution time in HPC systems and enhancing the resource manage-
ment. For example, Chirkin et al. [7] introduces a makespan estimation algorithm
that may be integrated into schedulers. Robert et al. [25] gives an overview of
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task graph scheduling algorithms. The usage of genetic algorithms addressing the
task scheduling problems has also been introduced, e.g., a task graph schedul-
ing on homogeneous processors using genetic algorithm and local search strate-
gies [17] and a performance improvement of the used genetic algorithm [24].
However, handful works have taken into the consideration the moldability and
scaling behaviour of particular tasks, their dependencies and the current cluster
utilization [4,9,29].

This paper focuses on the automation optimization of the moldable scientific
workflow execution using genetic algorithms [28]. The optimization of execution
parameters is based on collected historical performance data (i.e., strong scal-
ing) for supported tasks in the workflow. The paper presents several objective
functions and trade-off coefficients that allow to customize the pressure either
on the overall execution time, or the computational cost, or both.

The rest of the paper is structured as follows. Section 2 describes the opti-
mization algorithm, the solution encoding specifying the amount of resources
per task, the objective and fitness functions evaluating the quality of the can-
didate workflow schedule and the details of the applications use cases. Section 3
elaborates on the quality of the genetic algorithm and its best set-up, presents
the time complexity of the search process and compares several workflow exe-
cution schedules by the optic of particular objective functions. The last section
concludes the paper and draws potential future improvements of this technique.

2 Proposed Algorithm

The assignment of optimal amount of compute resources to particular tasks
along with the scheduling of the workflow as a whole is known to be an NP-hard
problem [9]. There have been several attempts to use heuristics to solve this
problem [4,16,18,26], however, they are either tightly connected to an existing
HPC cluster and its scheduler, use idealized models of strong scaling and parallel
efficiency, or optimize only one criterion such as makespan, cluster throughput,
or execution cost. The user tunability of these approaches are thus limited.

Therefore, we decided to use genetic algorithms, which are highly flexible in
combinatorial optimization and scheduling [8]. From the vast number of existing
implementations, PyGAD [11], an open-source Python library for building the
genetic algorithm, was chosen. PyGAD supports various types of genetic opera-
tors and selection strategies, and offers a simple interface for objective function
definition.

The overall concept of the moldable workflow scheduling optimization using
PyGAD is shown in Fig. 1. The structure of the task graph is converted into
a 1D array where each element corresponds to a single task and holds its exe-
cution parameters. The genetic algorithm traverses the search space and seeks
for good solutions by applying genetic manipulations and selection strategies on
the population of candidate solutions. The quality of these candidate solutions
is evaluated by the fitness function. Although the paper presents three different
methods to evaluate the schedule quality, the concept is similar in all cases. First,
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Fig. 1. A workflow is transformed to a vector of integer elements specifying assigned
amount of resources to particular tasks. This vector represents a candidate solution
of the GA search space. The final output of the optimization can be visualized as
a workflow schedule.

the execution time for every task is calculated based on the task type, execution
parameters set by the GA, input data size, and known parallel efficiency/strong
scaling behavior. Next, the tasks are submitted to the cluster simulator that
draws up an execution schedule and calculates the makespan (the critical path
through the workflow including queuing times) and execution cost. The output
of the optimization is a set of best execution parameters for individual tasks
minimizing given criteria implemented by the fitness function.

2.1 Solution Encoding

In order to optimize workflow execution schedules using GA, it is necessary to
transform the workflow into a template for candidate solutions (chromosomes)
1. The workflow’s DAG is traversed in a breath-first manner producing a vector
of N tasks (genes). Every gene i corresponds to a single task and holds the
execution parameters (resources) R; assigned to the task 4, see Eq. (1).

I=(Ri,R,...,Ry) (1)

The execution parameters being investigated in this study only consider the
number of computing nodes assigned to a given task. This set can be simply
extended in the future to support, e.g., node cpu frequency and power cup or
the number of processes/threads per node.

The number of nodes assignable to a given task is naturally constrained by
1 from the bottom, and by the size of the computing system from the top.
Moreover, it is also limited by the type of the task, its scalability, and the size of
input data. The strong scaling, parallel efficiency and scalability were measured
for each task type and input data size in advance using short benchmark runs
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and stored in the performance database. These constraints are imposed at the
beginning of the fitness function evaluation.

2.2 Fitness Function

This paper considers three different types of the fitness function looking at the
optimization problem from different angles: (1) Independent local optimization
of the execution time for particular tasks useful when running small tasks on
large HPC systems, (2) Global optimization of the whole workflow minimizing
the execution time and related computational cost under on-demand resource
allocations, (3) Global optimization of the whole workflow time and cost on
statically allocated cluster parts, i.e., the idling nodes also contribute to the
computational cost.

Local Optimization of Workflow Tasks. This fitness functions optimizes
each task independently considering only the execution time while neglecting
the computational cost, see Eq. (2). This fitness function does not use the clus-
ter simulator but only sums the execution time of all tasks. Let us note that
the highest possible number of computing nodes may not lead to the fastest
execution time due to unbalanced local decomposition, high overhead of parallel
computation, etc.

This fitness function relies on the cluster scheduler to assemble a good execu-
tion schedule of the whole workflow when provided optimal setup for particular
tasks. This statement is likely to be valid for large HPC clusters with hundreds
of nodes and tasks employing low tens of nodes. From the scheduling point of
view, this fitness function is the fastest one.

N
fitness =t = Zti(Ri) (2)
1=1

where t is the aggregated net execution time of NV tasks in the workflow, each of
which running on R; nodes for time ¢;.

Global Optimization with On-Demand Allocation. This fitness function
minimizes the overall execution time ¢ of the workflow given by the sum of
the execution time of the tasks along the critical path in the workflow graph
(makespan [12]), together with the computational cost ¢ given by a sum of com-
putational cost of all tasks in the workflow, see Eq. (5).

As we know from the problem definition, those two requirements usually go
against each other. Therefore, an a parameter to prioritize either makespan or
cost is introduced. In order to balance between proportionally very different cri-
teria, a kind of normalization is introduced. The makespan is normalized by the
maximum total execution time of the workflow t,,,., which is considered to be
the sum of the execution times of all N tasks executed by only a single com-
putation node in a sequential manner. The cost is normalized by the minimum
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execution cost which is the cost of the workflow computed by a single node in
a sequential manner, see Eq. (3). This presumption is valid for typical parallel
algorithms with sub-linear scaling, i.e., parallel efficiency as a function of the
number of nodes is always smaller than 1, E(P) < 1.

N

Cmin = tma:c - Z tz(l) (3)
i=1

ci =t;(R;) - R (4)
fitness = a - Z (ti(Rj)) +(1—a)- Z(CQ(RZ) ), 5)
jem ~mar i=1

where M = {i|i € CriticalPath}

This fitness function suits best the workflow being executed in environments
with shared resources where only truly consumed resources are paid for, e.g.,
shared HPC systems.

Global Optimization with Static Allocation. The last fitness function
described by Eq. (8) also minimizes the workflow makespan, but the compu-
tational cost now takes into the consideration also idling nodes. Let us imagine
we have a dedicated portion of the cluster consisting of 64 nodes statically allo-
cated before the workflow has started. The computational cost, the user will be
accounted for, equals to the size of the allocation multiplied by the makespan,
no matter some nodes are not being used for the whole duration of the workflow
execution. The fitness function thus attempts to shake down the tasks to min-
imize the amount of idling resources while still minimizing the makespan. The
execution cost is then normalized by the highest possible cost in the dedicated
system where only one node works.

Cmax = tmam - P (6>
N

c=)Y ti(R;)- R (7)
i=1

fitness = a Z(t;(RJ)) +(1- Q)M’

jeM max Crmazx (8)
where M = {i|i € CriticalPath}

Similarly to the previous case, t is the overall execution time of the workflow,
and t,,4, is the maximum overall execution time obtained for a serial scheduling
of sequential tasks. The number of nodes statically allocated to the workflow is
denoted by P. The number of nodes assigned per tasks 7 is R;. The maximum
possible cost is represented by ¢4, While the actual cost based on the current
execution parameters and the workflow structure is denoted by c.
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2.3 Cluster Simulator

In order to create a workflow execution schedule and calculate the makespan, we
developed a simple cluster simulator called Tetrisator. The name of this compo-
nent is inspired by the Tetris game [5] since there is a strong analogy in arranging
the blocks of different sizes and shapes with the optimization of the execution
schedule to minimize execution time and cost. The blocks can be seen as tasks
and their sizes are given by required amount of resources and corresponding exe-
cution time. The blocks a.k.a tasks may be molded to be “wider” or “longer” by
changing the number of resources, however, their surface does not have to stay
constant due to varying parallel efficiency.

Tetrisator simulates the operation of an artificial HPC system with a pre-
defined number of computing nodes P. The tasks are submitted to the simula-
tor in the same order as defined in the chromosome (a breadth-first top down
traversal). During the submission, the numbers of nodes assigned to particular
tasks are taken from the chromosome and the corresponding execution times
are located in the performance database. The breadth-first traversal also allows
a simple definition of task dependencies the simulator has to obey. If there are
multiple tasks being ready to be executed, the submission order is followed. This
is inspired the default behaviour of the PBS job scheduler with the backfilling
policy switched off [27].

3 Experimental Results

The experiments presented in this paper have the following goals: (1) confirm
the hypothesis that it is possible to find suitable schedules for given workflows
using genetic algorithms, (2) investigate the suitability of the a parameter to
prefer of one optimization criterion over the other one (overall execution time
vs. computational cost), and (3) evaluate the computational requirements of the
optimization process on various workflow sizes.

3.1 Investigated Moldable Workflows

The performance and search capabilities of the proposed optimization algorithm
were investigated on three scientific workflows inspired by real-world applications
of the acoustic toolbox k-Wave [19] for validation of neurostimulation procedures,
see Fig. 2. The workflows are composed of two different kinds of tasks, simulation
tasks (ST) and data processing tasks (PT). The first workflow shows a barrier
behaviour where all simulation tasks at the first level have to finish before the
data is processed by a single data processing task. Only after that, the second
level of STs can continue. The second workflow uses a reduction tree where the
data processing is parallelized in order to reduce the execution time of PT tasks.
The last workflow, not shown in the figure, is composed of the set of independent
STs executed in embarrassingly parallel manner.
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Fig. 2. The structure of two investigated workflows. The simulation tasks are inter-
leaved with data processing tasks implying barriers between stages (left), the data
produced by the simulation tasks are merged via a reduction tree (right).
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Fig. 3. Strong scaling of the k-Wave toolbox measured for <1,36> nodes on domain
sizes composed of 500%, 512° and 544° grid points. k-Wave simulations are the main
part of simulations tasks in the examined workflows.

The simulation tasks are heavy computing programs scalable from 1 to 36
nodes, see Fig. 3. Their scaling was measured using the C++/MPI implementa-
tion of the k-Wave toolbox on the Barbora supercomputer at IT4Innovations®.
The scaling behaviour depends on the input data size and shows several local
optima for the number of nodes being powers of two. The shortest execution
time was seen for 35 nodes. From these three examples, the first one was chosen
in our experiments. The data processing tasks are lightweight tasks executable
on one or two nodes. Their time complexity grows linearly with the number of
input files they have to process.

In real k-Wave applications, the size of the domain for all STs is the same,
however, the amount of time steps may vary by up to 25%. This is given by
the mutual position of the transducer and the patient’s head, which influences

! https://docs.it4i.cz/barbora/introduction/.
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the distance the ultrasound wave has to travel. Moreover, the performance of
all processors in the cluster is not equal. According to [1], the fluctuations may
cause up to 5% deviations in the execution time. Both factors are considered by
adding random perturbations to the task execution time during the workflow
generation.

3.2 Local Task Optimization of the Execution Time

First, we investigated the local optimization of the proposed workflows, which
is the simplest kind of optimization. This optimization only considers the net
execution time of all tasks neglecting the queueing times and simulation cost.
Thus no a parameter is used. This technique shows very good capabilities in
optimizing particular tasks. From 20 independent runs of the GA, more than
90% of trials always found the best possible solution, the fitness of which can be
analytically derived.

Table 1 shows suitable parameters for the genetic algorithm along with the
number of generations necessary to find the optimal schedule, the execution time
in seconds and the success rate. Since the variability of the results across different
workflows was negligible, we collapsed all results into a single table.

The table reveals that the necessary population size linearly grows with the
size of the workflow from 25 up to 150 individuals, but still stays quite small. This
is natural behaviour since bigger workflows require longer chromosomes which in
turn requires larger populations to keep promising building blocks of the solution.
The best selection strategy driving the GA through the search spaces appears to
be Steady state selection, although the difference to the Rank and Tournament
sclections was marginal. The number of generations to be evaluated before the
GA finds the optimal schedule stays relatively constant close to 200. On the
other hand, the execution time appears to grow quadratically. This growth can
be attributed to a product of increasing population size which rises the number
of fitness function evaluations, and the linearly growing time complexity of the
fitness function evaluation. Nevertheless, an execution time of 14s with 95% of
success rate for the biggest workflow is an excellent result.

3.3 Global Workflow Optimization of Execution Time and Cost

The global optimization of the workflow considers both criteria and balances
between them using the o parameter. In this section we investigate two fitness
functions oriented on on-demand and statically allocated resources.

The Influence of the a Parameter. Let us first investigate the influence of
the a parameter on both global fitness functions. In practise, the a parameter
can be seen as a user-friendly control slider promoting either the execution time
or cost. The following values of o« were tested: 0.95 and 0.8 prioritizing the
minimal makespan, 0.5 balancing the makespan and the cost/usage of resources),
and 0.2 and 0.05 prioritizing the minimal execution cost and unused resources,
respectively.
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Table 1. Computation requirements of the local optimization method together with
recommended genetic algorithm (GA) settings that lead to optimal schedules obtained
in the shortest time. Other GA settings common for all experiments is uniform crossover
of 0.7 probability, random mutation of 0.01 probability, and 5% elitism.

Workflow size | Population| Selection Median Average Success
size method number of | runtime rate
generations

7 25 Steady State, | 180 0.27s 100%
Rank

8 25 Steady State, |220-250 0.37-0.42s | 100%
Rank

15 50 Steady State, | 120-200 0.52-0.87s | 100%
Rank,
Tournament,
Roulette
Wheel

16 50 Steady State, | 180-200 0.98-1.08s | 100%
Rank,
Tournament

31 100 Steady State, | 100 1.40s 100%
Rank

32 100 Steady State, | 190 341s 90—
Rank 95%

63 100 Rank, Steady | 215 5.61s 100%
State

64 150 Steady State, |260 13.29s 90—
Rank 95%

For each value of a and suitable GA settings, 20 independent runs were
carried out. For the sake of brevity, only a few examples of selected workflows
with the best GA settings will be shown. For each example, the results from
all runs were collected, sorted, and 5% of the best solutions visualized in the
form of a Pareto frontier. The color of the data points and lines representing the
frontiers correspond to the « parameter used.

Let us start with the quality of solutions produced by the on-demand alloca-
tion fitness, see Fig. 4 and 5. Although evolved solutions for various « parameter
may slightly overlap, Fig.4 shows that we managed to drive the genetic algo-
rithm to find desired solutions (forming clusters) that meet given optimization
constraints. By adjusting the o parameter, we move along an imaginary curve
composed by the combination of all Pareto frontiers. Thus when the importance
is attached to the simulation cost, it is possible to get a schedule that reduces
the cost by 10%, however, runs for 12% longer time, and vice versa. It can also
be seen that each value of o works well only in a relatively short interval (the
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Fig. 4. Pareto frontier and dominated solutions calculated using the fitness function
for on-demand allocations for the workflow with two levels of simulation tasks and
various values of the o parameter.
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Fig. 5. Pareto frontier and dominated solutions calculated using the fitness function
for on-demand allocations for the workflows without dependencies and various values
of the a parameter.

middle of the frontier). At the edges it is usually outperformed by a different
values of a.

The workflows without dependencies, however, show much worse
parametrization, see Fig. 5. The only sensible value of « seems to be 0.05. Other
values produce much worse compromises between time and cost. The only excep-
tion is the value 0.95 which can offer 15%-20% cost-effective schedules, but many
times slower.
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Fig. 6. Pareto frontier and dominated solutions calculated using the fitness function
for static allocations for the workflow with two levels of simulation tasks and various
values of a balancing between makespan and percentage of unused resources.
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Fig. 7. Pareto frontier and dominated solutions calculated using the fitness function
for static allocations for the workflow without dependencies and various values of «
balancing between makespan and percentage of unused resources.

For experiments using the fitness function for static cluster allocations, we
only show three different o parameters because the solutions highly overlap, see
Figs.6 and 7. The solutions found for workflows containing task dependencies
seem to be saturated by the same minimal execution time. Smaller a parameter
pushes the genetic algorithm to find solutions with smaller amount of unused
resources (up to 44%) but a range of found solutions is quite high. From this
point of view, 0.05 for « gives the most reasonable solutions. This is even more
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Table 2. Recommended settings for the GA and the on-demand allocation fitness
function. Other settings common for all experiments are uniform crossover of 0.7 prob-
ability, random mutation and 5% elitism.

Alpha | Workflow size | Population Selection Mutation Median number of evaluations
size method probability
0.95 7-16 25 Rank 0.001 2000-19750
31-64 50 Steady State 0.01 5000—-10000
0.80 7-16 25 Steady State 0.01 1250-2500
31-64 50, 100 Rank 0.001 22000 (50)-45000 (50)
0.50 | 7-64 50, 100 Rank 0.001 2500 (50)-65000 (100)
0.20 7—64 25, 50 Rank 0.001 8750 (25)—42500 (50)
0.05 764 50, 100 Steady State 0.01 5000 (50)—-30000 (100)

visible for workflows without task dependencies where 0.05 for the o parameter
optimizes both makespan and the amount of unused resources.

The experiments showed that both criteria, the makespan and percentage of
idle resources, are highly correlated. Thus, the lower percentage of idle resources
the faster execution time. Although this may sound natural, the anomalies in the
scaling behaviour of particular tasks has the potential to break this presumption.
This experiment, however, shows that the scaling plots in Fig.3 are very close
to the perfect scaling.

Suitable Parameters of the Genetic Algorithm. Table2 presents recom-
mended settings for the genetic algorithm which produced best results along
with the computational requirements expressed as the number of fitness func-
tion evaluations (i.e., a product of the number of generations and the population
size). When two population sizes are given, the smaller one is used for the smaller
workflows, and vice versa. The median number of evaluation is calculated for the
actual population size shown in bracket in the last column. The range is bounded
by two values, the one for the smallest workflow in the range and the one for the
biggest workflow.

Table 3 presents an average execution time for a single generation. In connec-
tion with Table 2, the absolute wall clock time of the evolution process can be
calculated. As an example, a schedule for a workflow with 64 dependant tasks
can be evolved in 2 min and 20s. We found out that schedules for tasks without
dependencies may be evolved in 2 to 3 times shorter time.

The recommended settings of the genetic algorithm covers 0.7 probability of
uniform crossover, steady state selection, 1% random mutation and 5% elitism.
Workflow with less than 31 tasks could be evolved with 25 individuals in the
population whereas bigger workflows (up to 64 tasks) with 50 individuals. It
took approximately from 2500 (100 generations for 25 individuals) to 25000 (500
generations for 50 individuals) evaluations to evolve schedules for workflows of
7 to 64 tasks. So, a schedule for the workflow of 64 tasks with dependencies is
evolved in a minute.
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Table 3. The execution time of the evolution process for various workflows with depen-
dencies and population sizes measured using global fitness functions on the Salomon
cluster at I'T4Innovations. The evolution runtimes for workflow without dependencies
are approximately three times smaller.

Population size | Runtime per a single generation in seconds

Workflow size |7 8 15 16 31 32 63 64
25 0.004 | 0.005 | 0.010 | 0.010

50 0.007{0.009 | 0.019 | 0.021 | 0.040 | 0.043 | 0.112 | 0.120
100 0.013{0.018 | 0.037 | 0.043 | 0.077 | 0.088 | 0.227 | 0.220
150 0.110{0.132]0.382 | 0.335

Investigation of the Workflow Schedules. Here, we show and compare
several evolved schedules using different fitness functions. For better visibility,
only schedules for workflows of 15 and 16 tasks are shown. Figure 8 shows two
execution plans for 15 and 16 tasks, respectively, locally optimized by Eq. (2).
Regardless of the number of tasks in the workflow, the genetic algorithm always
picks 35 nodes for simulation tasks and 2 nodes for data processing tasks because
this selection assures their minimal execution time.
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Fig. 8. Evolved schedules for investigated workflows with 16 and 15 dependant tasks
using a local optimization.

Figure 9 shows evolved schedules using a global optimization for on-demand
allocations balancing the makespan and computational cost with a = 0.5. When
compared with schedules depicted in Fig. 8, it is evident that the GA preferred
much smaller amounts of nodes for simulation tasks which resulted in a cost
reduction by 40% and makespan increase by 37% for the workflow of 16 tasks.
In the case of the workflow with 15 tasks, we may however observe that the
makespan is even better when the global optimization is used. This is given by
the way the local optimization works, i.e., the concurrency is not expected. Here,
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Fig. 9. Evolved schedules for investigated workflows with 16 and 15 dependant tasks
using a global optimization for on-demand allocations balancing the makespan and
computational cost.
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Fig. 10. Evolved schedules for workflows with 16 and 15 dependant tasks using a global
optimization balancing the makespan and the amount of unused resources (24.49% for
the left workflow, 15.21% for the right workflow).

the global optimization gives better results in both aspects, i.e., the makespan
was reduced by 30% and the computational cost by 37%.

Figure 10 shows evolved schedules using a global optimization balancing the
makespan and the amount of unused resources with o = 0.5. If we compare them
with schedules in Fig. 8, we can see that in both cases the makespan is reduced
by 51% in case of 15 tasks, and by 35% in case of 16 tasks while the amount
of unused resources was reduced from 53.0% and 50.0% to 15.21% and 24.49%,
respectively.

Since the global optimization approaches are not comparable, we just empha-
size the differences between obtained solutions in Fig.9 and Fig. 10. It can be
seen that the solutions evolved using the global optimization focusing on the
amount of unused resources have shorter makespans because there is an effort
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to use, i.e., pay for, the resources for the shortest time. If we evaluate these solu-
tions using the fitness function for on-demand allocations, it is obvious that we
get more expensive solutions than those which were originally evolved using this
fitness function. Since we cannot compare the solutions in absolute numbers, we
can come out of the premise that computational cost equals to actually used
resources. In other words, the solution for 15 tasks found by fitness function
for static allocations used 85% of available resources but the solution found by
fitness for on-demand allocations used only 42%. The same states for 16 tasks
where the solution found by the fitness function for static allocations used 75% of
available resources but the solution found by the fitness function for on-demand
allocations used only 19%.

The makespans of 15 tasks schedules differ by 29% while there is a 31%
difference in obtained computational cost and the amount of unused resources.
The schedules of 16 tasks differ by 59% in their makespans and by 14% in the
computational cost.

4 Conclusions

This paper investigates the execution optimization of moldable scientific work-
flows. It uses genetic algorithm to evolve schedules for workflows comprising of
two kinds of tasks with and without mutual dependencies. The presented objec-
tive functions use collected historical performance data for supported workflow’s
tasks. Those objective functions implement a trade-off coefficients that allow
the schedule customization to either minimize one objective to another or to
balance them. The paper introduces three objective functions that provide the
(1) local optimization of workflow tasks minimizing their execution times, (2)
global optimization with on-demand resource allocation balancing the workflow
makespan and its computational cost, and (3) global optimization with static
resource allocation balancing the workflow makespan and the cluster’s idling
nodes.

After performing the experiments, we confirmed our hypothesis that (1) we
are able to generate good schedules for various workflows as well as meet dif-
ferent optimization criteria. For local optimization, we got very good results
where more than 90% of performed trials found the optimal solution. (2) When
performing a multi objective optimization, we introduced an « trade-off param-
eter and confirmed we can prioritize one objective to another. Here, we got the
best results for the global optimization with on-demand resources and work-
flows with task dependencies where solutions found for the different parameter
« form clusters. Let us note, that the trade-off parameter allows to customize
the solution parameters only in a limited scale of makespan and cost, e.g., 10%.
Much worse parametrization could be seen for workflows without task depen-
dencies for both global optimization methods where the only value 0.05 of «
produced sensible solutions. (3) We measured and summarized computational
demands of each presented objective function and workflows of different sizes.
Using the local optimization, the workflow of 64 tasks could be evolved in 14s.
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Global optimization is more computationally demanding but we managed to get
the schedule for the most complex workflow with task dependencies in roughly
2min. Finally, the paper provides the genetic algorithm settings to reproduce
the presented results.

4.1 Future Work

Here we summarize several ideas to be addressed soon. First, we would like
to better tune the presented trade-off coefficient o and better define ourselves
among other already existing optimization heuristics. Next, we would like to
validate our approach against standard task graphs? of different sizes.

Furthermore, a couple of the algorithm improvements is to be addressed.
Currently used cluster simulator traverses tasks within a workflow in a breadth-
first top down order and follows the task submission order when multiple tasks
are ready to be executed. A mechanism such as backfilling commonly presented in
the PBS job scheduler is not implemented. In practise, we use mainly PBS-based
clusters for our workflows, thus, we would like to integrate this functionality
to the presented Tetrisator. We will also consider a possibility to integrate an
already existing cluster simulator, e.g., ALEA [21].

Next, more real world tasks together with their measured performance data
would be incorporated. In reality, we usually cannot measure and hold perfor-
mance data for all input data sizes and input parameters options. Therefore, we
need to implement interpolation based heuristics [20].
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Abstract. Estimation of execution parameters takes centre stage in
automatic offloading of complex biomedical workflows to cloud and high
performance facilities. Since ordinary users have no or very limited knowl-
edge of the performance characteristics of particular tasks in the work-
flow, the scheduling system has to have the capabilities to select appro-
priate amount of compute resources, e.g., compute nodes, GPUs, or pro-
cessor cores and estimate the execution time and cost.

The presented approach considers a fixed set of executables that can
be used to create custom workflows, and collects performance data of suc-
cessfully computed tasks. Since the workflows may differ in the structure
and size of the input data, the execution parameters can only be obtained
by searching the performance database and interpolating between simi-
lar tasks. This paper shows it is possible to predict the execution time
and cost with a high confidence. If the task parameters are found in the
performance database, the mean interpolation error stays below 2.29%.
If only similar tasks are found, the mean interpolation error may grow
up to 15%. Nevertheless, this is still an acceptable error since the cluster
performance may vary on order of percent as well.

Keywords: Workflow management system + Performance data
collection - Interpolation + Job scheduling - HPC as a service

1 Introduction

Computation of complex scientific applications may no longer be satisfied by
personal computers and small servers manually operated by highly experienced
users. First, the extent of data being processed and the computational require-
ments highly exceed the capacity of such machines. Increasing number of appli-
cations is thus moving to the cluster or cloud environments. Second, scientific
applications often feature a very complex processing workflows consisting of
many particular tasks employing different computer codes, and complex data

(© Springer Nature Switzerland AG 2021
T. Kozubek et al. (Eds.): HPCSE 2019, LNCS 12456, pp. 116-134, 2021.
https://doi.org/10.1007/978-3-030-67077-1_7
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dependencies. Third, scheduling, execution and monitoring of such workflows
require automated tools to remove the burden from the experienced users, enable
ordinary users to routinely execute their applications, and increase the through-
put of the computing facilities.

To face these challenges, the scientific and software development communities
have adopted the workflow paradigm to describe the processing flow. The most
common formalism used is the weighted directed acyclic graph (DAG) defining
computational tasks by the nodes, and the dependencies and data movements
by the edges. The weights in the nodes describe the computational requirements
while the weights on the edges denote the amount of data being transferred
between tasks [15].

In order to automate workflow execution, several workflow management sys-
tems (WMSs) have been developed and used within the scientific community.
The most popular tools such as Pegasus [2, 3], Globus [4] or Kepler [12] now offer
automated execution of scientific workflows on remote computational resources
in a more or less general way. However, these tools focus on expert users who
know the behaviour of the computational codes used within the workflow, and
are able to estimate the amount of computational resources needed by each task.
The scheduling and mapping of the workflow on the computational resources are
usually left to the cluster batch processing systems such as PBS! or Slurm?.

These task schedulers provide their best effort to execute the tasks in the
earliest possible time depending on the cluster workload and user/task priorities.
However, what they cannot deal with is the execution parameters settings. If
the user overestimates the amount of the computing resources, the tasks may
be waiting in the queue for much longer time while making only little benefit
from increased amount of resources, e.g., processor cores. On the other hand,
underestimating these requirements may lead to the premature task termination
due to exhausting the execution time.

This paper focuses on the heuristic-based selection of the execution param-
eters for a list of predefined computing codes used in the biomedical workflows
supported by the k-Wave toolbox [18]. Since all binaries are fixed and known in
advance, their performance characteristics such as strong and weak scaling can
be automatically collected and used for prediction. Limiting the users in upload-
ing their binaries also enables fine-grain performance tuning of the underlying
codes for target machines and simplifies the workflows composition by the use
of high-level processing blocks.

The next section describes the k-Plan system supporting the design of ultra-
sound workflows via a graphical user interface, and workflow offloading, schedul-
ing, execution and monitoring using the k-Dispatch module. Section 3 describes a
single pass optimization of the workflow execution parameters and related inter-
polation heuristics. Section 4 investigates the quality of interpolation for known
and unknown tasks, and Sect.5 concludes the paper.

! https://www.altair.com/pbs-works/.
2 https://slurm.schedmd.com/.
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2 Automatic Offloading of k-Wave Workflows

The k-Wave toolbox [18] is an open source Matlab toolbox designed for the time-
domain simulation of acoustic waves propagating in tissues. The toolbox has a
wide range of functionality, but at its heart is an advanced numerical model that
can account for both linear and nonlinear wave propagation, an arbitrary dis-
tribution of heterogeneous material parameters, power law acoustic absorption
and its thermal effects on the tissue. During recent years, k-Wave has attracted
a lot of attention amongst biomedical physicists, ultrasonographers, ncurologists
and oncologists. Many k-Wave-based applications have been reported in photoa-
coustic breast screening [13], transcranial brain imaging [14], and high intensity
focused ultrasound treatment planning for kidney [1,16], liver [7] or prostate
tumour ablations [17].

However, all these applications require very intensive computations. During
the last decade, the simulation core has been rewritten in C++ and parallelized
by various technologies, such as OpenMP for shared memory systems [19], CUDA
for GPU accelerated systems [10], and MPI for large distributed clusters [8].
These implementations now cover a wide range of ultrasound simulations in
domains of various sizes reaching the limits of the top supercomputers.

To support clinicians in executing ultrasound workflows, a complex system
called k-Plan [9], consisting of tree modules, is being developed, see Fig. 1:

1. TPM - Treatment Planning Module implements user front-end with the
graphical user interface to compose the processing workflow. Advanced users
may also use a Matlab interface or third-party applications.

2. DSM (k-Dispatch) - Dispatch Server Module is responsible for the workflow
offloading to remote computing facilities. It also schedules particular tasks,
estimates computing requirements, and monitors the workflow progress.

3. SEM - Simulation Execution Module covers the deployed binaries necessary
to run particular tasks. Due to strict medical restrictions, all binaries have to
be certified, thoroughly tested and properly deployed.

Although designed for the k-Wave toolbox, k-Dispatch remains as general
as possible to support other applications and workflow types. User applications
such as TPM communicate with k-Dispatch through the Web server, see Fig. 2.
The Dispatch database maintains users and groups, their resource allocations,
history of calculated and submitted workflows, available computing facilities,
executable binaries with their performance characteristics, etc. Besides decod-
ing the workflows, data transfers, monitoring and communication with remote
computing facilities, the k-Dispatch core performs the optimization of the work-
flow execution parameters.

Users can create new ultrasound procedures by altering predefined work-
flow templates and packing them with the patient’s data. Once delivered to
k-Dispatch, the execution workflow is constructed from the provided input file.
Next, the list of available computing resources is scanned to find a suitable one,
e.g., the one with the lowest actual workload. Consequently, appropriate bina-
ries for particular tasks are filled in to the workflow template according to the
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Fig. 1. Architecture of the k-Plan system. The dispatch server module (k-Dispatch)
arranges for the workload scheduling, execution, monitoring and data transfers between
client applications and computing facilities.

tasks input data size and available hardware. Since k-Dispatch knows the perfor-
mance scaling of the given binaries, it can optimize the amount of computational
resources (i.e., number of nodes) assigned to particular tasks and minimize sev-
eral objectives such as cost, execution time and queuing time, see Algorithm 1.
After the tasks have been submitted to the computational queues, k-Dispatch
keeps monitoring them, detects anomalies such as frozen/crashed jobs, and
restarts them if necessary. After the workflow computation has been completed,
the results are downloaded from the remote computing facility back to the k-
Dispatch and the user is notified that the results are available for download.

|
/ cmm— : [ —— —
oW | SSH
User Application HTTPS 3 | RSYNC o o
— o | S o (e}
User Application :
— ————o ———
i _— —
User Application Dispatch : Remote Computational
Core I Resources
|

Fig. 2. k-Dispatch stands between user applications and remote computational
resources. The communication with user applications is based on standard web services
while the SSH protocol is used to communicate with remote computational resources.
The dispatch core is responsible for the workflow submission, monitoring and other
service mechanisms.
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Algorithm 1: Adaptive execution planning algorithm

Presumptions :

1 Let G = (V, E) be a workflow where V is a set of tasks and E CV x V is a set
of task dependencies.

2 Let C be a set of active resource allocations with enough resources to satisfy the
workflow G. It holds C' C A, where A is a set of all allocations the user has got
access to.

3 All executable binaries for supported task types available in a given allocation
a € A are defined as D € (B1, Ba,...,Bn), where N is the number of task
types within the workflow G, and B; = {b1,ba,...,bam} is the set of available
binaries for a given task type. B; may be an empty set.

4 Let p: G x C x D — R" be a price function returning the aggregated
computational cost of the workflow G.

5 Let t : G x C x D — R™ be a function returning the aggregated execution time
of the workflow G. This value is calculated as a critical path through the
workflow considering both the net execution time e and the queuing time q.

6 Let workflow evaluation f serving as quality metric be defined as
f=a-p+ (1 —a)-t, where « is a selectable ratio prioritizing the minimal
computational cost or the execution time.

Algorithm

1 Create a workflow G = (V, E) from the workflow template and input data.

2 Sclect a set of candidate allocations
C = {c € A" | c.status == active A c.hours_left > 0.0}.

3 Set appropriate execution parameters for all tasks and evaluate the workflow G
for all combinations of candidate allocations C and binary executables D.

4 Return the best parameters for a given workflow G' as argmin.cc 4ep) f(G).

3 Optimization of Workflow Execution Parameters

A typical course an ordinary user takes when executing a complex workflow is to
use default execution parameters for each task, often consisting of one compu-
tational node and 24 h of wall time. If a task fails due to insufficient memory or
time, another node or more time is allocated and the workflow restarted. Never-
theless, experienced users usually run a few benchmarks with various input sizes
and number of nodes to create a strong scaling plot and predict the extent of
computational resources for each task, which is the idea k-Dispatch has adopted.

In [9], three levels of workflow optimization were introduced. The naive one
using the default execution parameters was implemented to compare k-Dispatch
with other WMSs which use firmly set values directly provided by the users.
This paper deals with a single-pass, task level optimization, processing each
task independently. As we will show later, this is a viable solution with a linear
time complexity providing sufficient results when execution cost and time is only
considered. However, optimizing also for the queuing time requires a multi-pass,
global optimization which may lead to an exponential time complexity, and needs
a cluster simulator loaded with actual snapshots of cluster workload.
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3.1 Single-Pass Optimization

The goal of the single-pass optimization is to independently find such execution
parameters for each task ¢ that minimize the workflow evaluation given by

f:Z(a*pi—i—(l—a)*ei) (1)

where « is a weight preferring either execution cost or time, p is the execution
cost and e is the net execution time. The queuing time is omitted here. Currently,
the execution parameters to be optimized only cover the number of allocated
nodes/cores and the execution time. Nevertheless, it is straightforward to extend
the optimization to select the most suitable code, computational queue, node
type (accelerated /fat/slim), etc.

Figure 3 illustrates the optimization of the task execution parameters as a
black box with a task type and task input file provided by the workflow as the
inputs. The task input file is parsed to extract information necessary to estimate
the computational requirements. This information typically includes the size of
the simulation domain, the simulation timespan, type of the medium, transducer
definition, etc. Next, the collected performance data is searched to find similar
records. Having a filtered out performance dataset, the plot of strong scaling
can be constructed and several interpolation techniques can be used to estimate
the task duration and cost for suitable amounts of resources. Once the best
execution parameters are selected, the machine specific job scripts are generated
and submitted to the computing queue. After the task has been properly finished,
the performance data is used to update the performance database.

[ Code Type Input File

» US simulation N
e 2 Performance Data
es yer
o [ [ [ . 2
-
-
- P%
Black Box ey
‘ Goals: @ Approach:
» Choose the binary > Interpolation
» Choose execution techniques
parameters (HW » Machine learning

resource, number methods
of CPUs, queue, ...)

Machine Specific
Workflow
-39 -= Ready to generate
® = job scripts

Fig. 3. Optimization of the execution parameter for a given task using a couple of
heuristics and historically collected performance data for known code types.

139



122 M. Jaros et al.

3.2 Interpolation Heuristics

The goal of interpolation heuristics is to estimate the execution time and cost
using the measured performance data from previous runs. Since the users are
not limited in the size of the simulation domain and many other simulation
parameters influencing the execution time, the performance data will never be
complete.

There are three basic situations which may happen during the execution time
and cost estimation:

1. The same simulation has been seen before. In such a case, the execution time
and cost can be taken as a median value over multiple records stored in the
database. If the values for particular amount of resources are unknown, an
interpolation is used. Figure 4a shows this situation for four different domain
sizes where the performance data are only known for 1, 2, 4 and 8 threads.
The values for other numbers of threads have to be interpolated, see the
question marks.

2. The simulation has not been seen before. In such a case, similar simulations
are sought for in the database. First, the total number of grid points is calcu-
lated as a product of the dimension sizes. This may, however, unfavourably
impact the estimation, since the actual shape does have an impact on the
execution time, see Sect.3.3. Next, all simulations with the number of grid
points close to the one being estimated are selected. Finally, the execution
time and cost are interpolated from the selected data. Figure 4b shows a sit-
uation where the performance data was only measured for 4 different domain
sizes. The others have to be interpolated, see the yellow area.

3. The interpolation fails and it is necessary to use queue default wall time
and amount of compute resources. This may happen if the simulation is too
far from the known ones, or the interpolation method begins to oscillate
and produces, e.g., negative values. Fortunately, this is a transient situation
because as soon as the task is executed at least once, the measured values
can be used next time.

Four interpolation methods offered by the SciPy [20] Python package were
investigated in this paper:

— linear interpolation (LI),

— cubic spline interpolation (CS),

nearest neighbour interpolation (NN),

— radial basis function interpolation (RBF).

As the quality measure for the interpolation methods, L1-, L2- and L-Infinity
norms were used [6]. Additionally, the mean percentage error of the obtained
data series with respect to the measured values was calculated using Eq. (2).

|a—b|

al
where a is a vector of reference data series and b is a vector of interpolated data
series.

meanPercent Error = mean( ) x 100 (2)
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Fig. 4. (a) The performance database misses data (highlighted in yellow) for some
numbers of threads. The interpolation works with the corresponding strong scaling
curves. (b) The performance database misses data for a range of domain sizes (high-
lighted by yellow areas). The interpolations works with several strong scaling curves
from the close proximity. (Color figure online)

3.3 k-Wave Workflow Properties

A typical biomedical ultrasound workflow consists of several data processing and
numerical simulation tasks. Together, they form a workflow with approximately
100 tasks. Figure 5 shows an example of the neurostimulation workflow. While
the pre- and post-processor tasks require only a single computing node, the
aberration correction, forward planning, and thermal simulations may employ
various executables to run on a single node, a single GPU, or multiple nodes.

The simulation domain size and timespan is given by the subject anatomy,
transducer position, and the ultrasound frequency. Considering small animal
neurostimulations, the domain sizes can be as small as 162 x 192 x 128 grid
points with 3,000 simulation time steps. The move towards human patients may
expand the simulation domain size up to 768 x 900 x 600 grid points with 16,800
simulation time steps.

Figure 6 shows the performance behaviour of the distributed MPI version
of the k-Wave toolbox for the largest practical domain normalised to a single
simulation time step. The execution times were measured on the Anselm super-
computer using 1 to 16 compute nodes, each of which with 16 cores and 64 GB
of memory. It can be seen that the performance scaling is not perfect with the
maximum speed-up of 6.5 yielding the parallel efficiency of 40%. The yellow,
green and orange dots mark the ideal amount of computational resources for
three different values of the a parameters. If the execution time is preferred, the
highest possible number of nodes is selected. On the other hand, if the execution

141



124 M. Jaros et al.

Aberration Correction
Pre-processor

]

Aberration Correction
Simulation

Aberration Correction
Simulation

Aberration Correction

Simulation o0e

!

Aberration Correction |
Post-processor

!

Forward Planning
Pre-processor

!

Forward Planning
Simulation

Forward Planning

L . PYYS Forward Planning
Simulation

Simulation

i

Forward Planning
Post-processor

!

Thermal Simulation

Fig. 5. A neurostimulation workflow consisting of several data processing and simula-
tion tasks. The task dependencies are shown by the arrows, meaning the simulations
depicted in red or blue may be executed concurrently. (Color figure online)

Strong Scaling of k-Wave MPI Code
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Fig. 6. Strong scaling of the MPI version of the k-Wave simulation in a domain con-
sisting of 768 x 900 x 600 grid points. The yellow, green and orange dots show the
best number of nodes when minimizing the computational time, computational cost,
or composite workflow evaluation, respectively. (Color figure online)

cost is preferred, a single node is selected. Finally, if both the time and cost have
the same weight, two computing nodes looks as a good compromise.
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Optimized vs. Maximum Number of MPI Processes
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Fig. 7. Strong scaling of the MPI version of the k-Wave simulation on a domain of
768 x 900 x 600 domain size executed with the maximum (blue line) and optimal
(orange line) numbers of MPI processes (np). (Color figure online)

When working with the MPI version of the k-Wave toolbox, balanced work
distribution must be paid attention to. Since the code uses a one-dimensional
grid decomposition over the z dimension, and the grid is z-y transposed several
times every time step, the z and y dimensions must be divisible by the number
of MPI processes. Otherwise, the work is not balanced evenly and the code does
not scale well. Figure 7 shows the scaling of the code executed with the maximum
numbers of MPI processes for given number of nodes, and with reduced numbers
of processes ensuring commensurability. It is obvious, the optimized numbers of
processes yield higher performance.

3.4 Typical Problems of Performance Data Interpolations

The interpolation and extrapolation methods have several drawbacks that will
be discussed in this section. We used measured performance data from Fig.6
and tried to manually fit interpolation curves through the measured data.

Generally, the k-Wave codes have a linearithmic computation complexity
O(n-log-n) due to extensive use of 3D Fourier transform. However, the significant
amount of communication stemming from the distributed FFT may lead to
quadratic communication complexity. Moreover, the proper workload balancing
as well as other restrictions imposed on the domain size make the scaling even
more difficult to predict [5,8]. Therefore, there are significant differences in the
course of the scaling curves at low and high numbers of threads/nodes.
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Fig. 8. (a) Unsuccessful extrapolation trained on a small number of nodes. (b) and
(c) Oscillation caused by distant known values. (d) Interval interpolation not suffering
from the oscillations.

Figure 8a shows a poor attempt to extrapolation where the performance data
is only known for 2, 4, 6 and 8 nodes. The estimation of the execution time for
number of nodes above 8 is not acceptable. The linear extrapolation as well as
cubic spline extrapolation predict much shorter execution time. Nevertheless,
the code scales much worse for higher number of nodes because the communica-
tion component starts to dominate. The nearest neighbour extrapolation could
be used as the worst case, however, Fig.6 suggests that the performance can
even deteriorate with higher number of compute nodes. Finally, the radial basis
interpolation does not produce meaningful predictions.

Figure 8b and ¢ point out the need to abide appropriate interval between
known values to eliminate oscillations. Figure 8b uses an additional value for one
node compared to Fig.8c. This value is usually an outlier causing unintended
oscillations since having no communication. To reduce them, several interpola-
tions may be performed on smaller intervals. The impact of this technique is
shown in Fig.8d, where the scaling data is divided into 5 intervals of 2 to 3
values. However, it is not clear how to determine the interval size automatically.
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4 Experimental Results

This section describes performed experiments and the results. The experi-
ments show the application of the selected interpolation methods in order to
autonomously find the suitable execution parameters.

Due to the necessity of collecting an extensive performance dataset, we lim-
ited ourselves to only consider the OpenMP k-Wave implementation running on
a single node, however, with various numbers of threads. The execution cost was
then calculated as a product of the execution time and the number of proces-
sor cores used. In principle, similar results are expected to be obtained for the
CUDA implementation of k-Wave. On the other hand, the MPI version poses
more restrictions and may feature different results, see Sect. 3.4.

The performance data collected for the OpenMP code was obtained on
Anselm with 16 cores per node, and Salomon with 24 cores per node. The per-
formance data was divided into the training and testing datasets both of which
containing over 6,500 records of the aberration correction k-Wave simulation
running over 24 different domain sizes (32% to 512% grid points) and with various
number of threads.

4.1 Comparison of Interpolation Techniques for Known Simulation

We first investigated the behaviour of all four interpolation techniques on the
known domain size of 5123 grid points. The first experiment used 6 known exe-
cution times from the Anselm cluster measured for 1, 2, 4, 8, 12 and 16 threads.
Table 1 and Fig. 9 show the course of the interpolation functions. It can be seen
that the linear and cubic spline interpolation methods reached less than 3% mean
error. The linear interpolation can be thought of as a pessimistic one since over-
estimating the execution times. Although this may lead to a bit longer queuing
times, it is safer than underestimation produced by the cubic spline interpolation,
which may lead to premature termination of the simulation. The nearest neigh-
bour interpolation shows significantly worse accuracy as well as the radial basis
function interpolation deeply oscillating, especially for high numbers of threads.

The second experiment extended the number of measured values and also
included the Salomon cluster. For Anselm, the performance data was extracted
from the database for 1, 2, 4, 5, 8, 10, 13, and 15 threads, while for Salomon

Table 1. Comparison of selected interpolation methods for domain size of 5123 grid
points domain size and 6 known values measured on Anselm.

Interpolation method |L1-Norm | L2-Norm | L2-Infinity Norm | Mean error [%)]
Linear 1.27 0.59 0.46 2.89
Cubic Spline 0.93 0.42 0.35 2.29
Nearest Neighbour 4.60 2.40 2.06 9.85
Radial Basis Function | 3.41 1.37 0.79 8.77
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Interpolated Solutions for k-Wave OpenMP Code
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Fig. 9. Comparison of various interpolation techniques for the OpenMP implementa-
tion of k-Wave running on Anselm with a domain size of 512% grid points.

the set was further extended by performance data for 17, 20, 22, and 24 threads.
This covers 50% of all possible thread numbers usable on both clusters. The
domain size remained the same (512 grid points).

Tables 2 and 3 show significant improvement in the prediction accuracy. The
mean error produced by the linear interpolation was reduced from 2.89% to
1.81%, and 1.27% on Anselm and Salomon, respectively. Even better results
were achieved for the cubic spline interpolation which produced estimation with
only 1.23% and 1.12% error. Even the other interpolation methods improved

Table 2. Comparison of selected interpolation methods for domain size of 512% grid
points domain size and 8 known values measured on Anselm.

Interpolation method |L1-Norm | L2-Norm | L2-Infinity Norm | Mean error [%]
Linear 0.80 0.45 0.41 1.81
Cubic Spline 0.56 0.38 0.37 1.23
Nearest Neighbour 2.99 2.03 1.95 5.70
Radial Basis Function | 1.61 0.90 0.67 4.67

Table 3. Comparison of selected interpolation methods for domain size of 5123 grid
points domain size and 12 known values measured on Salomon.

Interpolation method |L1-Norm | L2-Norm | L2-Infinity Norm | Mean error [%]
Linear 0.62 0.33 0.29 1.27
Cubic Spline 0.60 0.40 0.39 1.12
Nearest Neighbour 2.73 1.71 1.63 4.68
Radial Basis Function | 1.08 0.69 0.66 2.01
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Interpolated Solutions for k-Wave OpenMP Code
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Fig. 10. Estimation of the best execution configuration according to the workflow
evaluation function for a domain size of 512% grid points on the Anselm cluster produced
by linear and cubic spline interpolation.

the error close to or below 5%. This can be considered as a very good result
since there is always a slight variation in execution times between different runs
caused by the underlying cluster workload (mainly network and I/O parts), and
variations in clock frequency amongst different cluster nodes.

Figure 10 illustrates the result of the interpolation for linear and cubic spline
interpolation for the extended training set, and the domain size of 5123 grid
points. The curves show a very good agreement without any significant oscilla-
tions. The orange and grey curves are the visualizations of the workflow evalu-
ation functions with o = 0.5. If looking for the fastest solution, both the linear
and cubic spline interpolations predict 16 threads to be the best solution. In
the case the combined workflow evaluation metric is minimized, 3 and 5 threads
are predicted as best compromises by the cubic spline and linear interpolations,
respectively.

4.2 Comparison of Interpolation Techniques for Unknown
Simulations

This set of experiments evaluates the capabilities of the proposed interpolation
methods to estimate the execution time for simulations that have not been seen
before. In this case, the closest simulations in terms of the total number of grid
points are used to fit the interpolation curves. Since the results were similar for
both clusters, we only present measurements on Anselm.

Three different unknown domain sizes were tested:

1. Tested simulation size 256 x 2242, training set containing simulations of 2243,
2562 x 224, and 2242 x 192 grid points.

2. Tested simulation size 1602 x 128, training set containing simulations of 1443,
1603, and 132 x 1282 grid points.

147



130 M. Jaros et al.

3. Tested simulation size 1443, training set containing simulations of 1603, 160 x
1282, and 132 x 1282 grid points.

Figure 11 shows the results of selected interpolations on the first two sim-
ulation domains. Both linear and cubic spline interpolations show a very close
agreement with the reference data stored in the testing set. As Tables4 and 5
quantify, the mean error for the biggest domain reaches 4.7% and 3.1% for linear
and cubic spline interpolations, respectively. For the smaller domain, the error
decreases to 1.75% and 2.25%. Interestingly, the cubic spline produces slightly
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Fig. 11. Comparisons of linear and cubic spline interpolation methods for unknown
domain sizes. The reference data points are used for the error evaluation.
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Table 4. Comparisons of selected interpolation methods for an unknown domain sizes
of 256 x 224% grid points.

Interpolation method |L1-Norm | L2-Norm | L2-Infinity Norm | Mean error [%)]
Linear 0.17 0.056 0.034 4.724
Cubic Spline 0.11 0.037 0.025 3.073
Nearest Neighbour 0.84 0.271 0.191 22.35
Radial Basis Function | 352 99.26 47.99 11492

Table 5. Comparisons of selected interpolation methods for an unknown domain sizes
of 160% x 128 grid points.

Interpolation method |L1-Norm | L2-Norm | L2-Infinity Norm | Mean error [%)]
Linear 0.015 0.005 0.003 1.75
Cubic Spline 0.023 0.007 0.005 2.25
Nearest Neighbour 0.252 0.089 0.068 17.7
Radial Basis Function | 0.371 0.121 0.089 29.2

worse estimations here. The nearest neighbour interpolation gives much worse
estimation with a mean error of 22% and 18% for those two cases. Finally, the
radial basis interpolation appears to be unusable for the largest domain. The
extreme error is caused by high oscillations. In case of the medium-sized domain,
the error decreases to 29%. Unfortunately, this still exceeds acceptable values.

The smallest domain size of interest suffers from very poor results which are
summarized in Table6 and Fig. 12. The only usable estimations are provided by
the linear interpolation, however, with a mean error of 16%. The cubic spline
completely fails in this case while the best estimation is surprising provided by
the nearest neighbour interpolation. The radial basis interpolation also fails on
this domain size. The overestimation is very likely caused by a small domain size
when a single grid can fit into L3 cache memory leading to much faster execution
of the Fourier transforms and overall algorithm speed-up. On the other hand,
even overestimation by 200% may be thought of as acceptable considering such
a simulation is executed within 2 min using 16 threads.

Table 6. Comparisons of linear and cubic spline interpolation methods for an unknown
domain sizes of 144% grid points.

Interpolation method | L1-Norm | L2-Norm | L2-Infinity Norm | Mean difference [%]
Linear 0.196 0.061 0.041 15.99
Cubic Spline 2.080 0.527 0.185 212.6
Nearest Neighbour 0.177 0.064 0.050 13.40
Radial Basis Function | 4.050 1.024 0.356 416.8
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Interpolated Solutions for k-Wave OpenMP Code
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Fig.12. Comparisons of linear and cubic spline interpolation methods for unknown
domain size of 1443. The reference data points are used for the error evaluation.

5 Conclusions

The need for offloading complex scientific workflows to cluster and cloud environ-
ment is ubiquitous. k-Dispatch is a workflow management system providing auto-
mated execution, planning and monitoring of biomedical workflows composed of
k-Wave ultrasound and thermal simulations. Its interface enables connection
of various user applications and unifies the access to different computational
resources.

One of the key challenges in automated execution of complex workflows is the
proper setting of execution parameters for particular tasks. Since the end users
have no or very limited knowledge about the amount of computational resources
to be allocated for each task, it is necessary to provide as good estimation as
possible based on the performance characteristics of particular codes and actual
input data. Unsuitable values may lead to long queueing times or early tasks
termination due to exhausted time allocation.

This paper has presented a single pass algorithm traversing the workflow
and optimizing the execution parameters for every task independently. For every
task, the input file is inspected, the task parameters retrieved, and the perfor-
mance database searched for similar ones. If there is a direct match, the execution
time and cost are loaded for known execution parameters, i.e., number of com-
pute nodes, GPUs, processor cores, etc. Missing values may be filled in using
interpolation techniques. However, if the task parameters have not been seen
before, the interpolation is used to estimate the execution time and cost using a
training set composed of tasks with similar parameters.

Four different interpolation techniques have been investigated. When the
task parameters have been seen before, the cubic spline interpolation showed
the best results with mean error between 1.12% and 2.29%. In the case the
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task parameters have not been seen before, the linear interpolation showed the
best results. Depending on the similarity of the records found in the performance
database, the mean error varies between 1.17% and 15%. It should be noted that
the highest error showed up only for very small tasks where the overestimation
of execution time or cost do not play a significant role.

5.1 Future Work

Future work will be focused on multi-pass optimization of workflow execution
parameters. The goal is to minimize not only the execution time and cost but
also the queuing times. This however requires the knowledge of the actual cluster
workload and queues occupancy as well as a cluster simulator to quickly estimate
the queuing times for the whole workflow under different execution parameters.
We are considering the adaptation of the ALEA simulator [11] to match the
scheduling algorithms and hardware configurations of IT4Innovations clusters,
and the characteristics of the k-Wave workflows.

We would also like to implement more sophisticated heuristics to select an
appropriate number of compute nodes as well as optimal number of MPI pro-
cesses for large simulations to avoid performance penalizations. Consequently,
we would like to study machine learning methods since we expect to have col-
lected large performance dataset, and perform experiments on both, artificial
and real-world workflows.
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Abstract. Complex ultrasound workflows calculating the outcome of
ultrasound procedures such as neurostimulation, tumour ablation or pho-
toacoustic imaging are composed of many computational tasks requiring
high performance computing or cloud facilities to be computed in a sen-
sible time. Most of these tasks are written as moldable parallel programs
being able to run across various numbers of compute nodes. The number
of compute nodes assigned to particular tasks strongly affects the overall
execution and queuing times of the whole workflow (makespan) as well
as the total computational cost.

This paper employs a genetic algorithm searching for a good resource
distribution over the particular tasks, and a cluster simulator evaluating
the makespan and cost of the candidate execution schedules. Since the
exact execution time cannot be measured for every possible combination
of the task, input data size, and assigned resources, several interpolation
techniques are used to predict the task duration for a given amount of
compute resources. The best execution schedules are eventually submit-
ted to a real cluster with a PBS scheduler to validate the whole technique.

The experimental results confirm the proposed cluster simulator corre-
sponds to a real PBS job scheduler with a sufficient fidelity. The investiga-
tion of the interpolation techniques showed that incomplete performance
data can successfully be completed by linear and quadratic interpola-
tions keeping the maximum mean error below 10%. Finally, the paper
introduces a user defined parameter instructing the genetic algorithm to
prefer either the makespan or cost, or find a suitable trade-off.

Keywords: Task graph scheduling -+ Workflow - Genetic algorithm -
Moldable tasks - Makespan estimation - Performance scaling
interpolation

1 Introduction

All fields of science and engineering use computers to reach new findings, while
the most compute power demanding problems require High Performance Com-
puting (HPC) or Cloud systems to give answers to their questions. The problems
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being solved nowadays are often very complex and comprise a lot of various tasks
with mutual dependencies describing different aspects of the investigated prob-
lem. Their computation can be formally described using scientific workflows [2],
also referred to as task graphs [22].

Ultrasound computing workflows aim at various applications of the ultra-
sound such as neurostimation, tumour ablation, targeted drug delivery, or pho-
toacoustic imaging [23]. The goal of ultrasound treatment workflows is to asses
the outcome the treatment and adjust the parameters of the ultrasound traduc-
ers to deliver the acoustic energy into desired area while preventing any damage
to heathy tissue. The goal of photoacoustic imaging is to reconstruct the tissue
structure by running an iterative inverse ultrasound models on signals recorded
at the body surface [20]. Since the wavelength of the ultrasound signals are very
small compared to the investigated area, e.g. human head or chest, and there
are tight deadlines by when the simulation outcome has to be delivered, it is
necessary to optimize the workflow execution to reduce both the execution time
as well as the cost.

The execution of scientific workflows on HPC systems is performed via com-
munication with the HPC front-end, also referred to as the job scheduler [11].
After the workflow data has been uploaded to the cluster, the workflow tasks
are submitted to the computational queues where waiting until the system has
enough free resources, and all task dependencies have been resolved (predecessor
tasks have been finished).

Modern HPC schedulers implement advanced techniques for efficient task
and resource management [12]. However, the queuing time, computation time
and related cost depend on the task execution parameters provided at submis-
sion. These parameters include the required execution time accompanied by the
number of compute nodes, cores and accelerators, the amount of main memory
and storage space, and more and more frequently, the frequency and power cap of
various hardware components. In most cases, only experienced users are endowed
by sufficient knowledge to estimate these parameters appropriately knowing the
size of the input data for particular tasks. In other cases, default parameters
may be chosen leading to inefficient workflow processing.

Complex compute tasks are usually written as moldable distributed pro-
grams being able to exploit various amounts and types of computing resources,
i.e., they can run on different numbers of compute nodes. However, the mold-
ability is often limited by many factors, the most important of which being the
domain decomposition [4] and parallel efficiency (strong scaling) [1]. The goal
of the workflow execution optimization is posed as the assignment of suitable
amount of compute resources to individual tasks in order to minimize the overall
computation time and cost.

While the field of rigid workflow optimization, where the amount of resources
per task is fixed or specified by the user in advance, has been thoroughly studied,
and is part of common job schedulers such as PBSPro [11] or Slurm [28], the
autonomous optimization and scheduling of moldable workflows has still been
an outstanding problem, although firstly opened two decades ago in [8].
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During the last decade, many papers have focused on the prediction of rigid
workflow execution time and enhancing the HPC resource management. For
example, Chirkin et al. [5] introduces a makespan estimation algorithm that
may be integrated into job schedulers. Robert et al. [22] gives an overview of task
graph scheduling algorithms. The usage of genetic algorithms addressing the task
scheduling problems has also been introduced, e.g., a task graph scheduling on
homogeneous processors using genetic algorithm and local search strategies [13],
and performance improvement of the used genetic algorithm [19]. However, a
handful works have taken into the consideration the moldability and strong
scaling behavior of particular tasks, their dependencies and the current cluster
utilization [3,7,27].

In all cases, the estimation of the makespan and optimization of the tasks
execution parameters rely on the performance database storing strong and weak
scaling. However, it is often not possible to benchmark the execution time for all
possible combinations of the task type, task inputs and execution parameters. If
a task has already been executed with given inputs and execution parameters,
the execution time can be retrieved from the performance database. However, for
unseen combinations, some kind of interpolation or machine learning techniques
have to be used.

In our previous work [16], Genetic Algorithms (GA) [10] and a simple cluster
simulator were used to find optimal execution parameters for various workflows
on systems with on-demand and static allocations. This paper follows up with our
previous work and its main goals are to (1) prove that GA is able to find execu-
tion plans for different workflows when using incomplete performance datasets,
(2) prove a trade-off parameter to find different solutions meeting contradic-
tory optimization criteria can be introduced, and finally (3) extend the cluster
simulator by adding support for backfilling and considering the initial cluster
workload. The resilience of the optimization techniques will be investigated on
several scenarios and validated against the real workflow makespan measured on
the Barbora supercomputer!.

2 Automatic Optimization of Workflow Execution
Parameters

Selection of suitable execution parameters for workflow tasks plays a crucial role
in scheduling process and the maskespan/cost optimization. A naive selection
of the execution parameters often leads to various unpleasant situations such as
unnecessarily long waiting times and idling nodes if high amounts of compute
resources were chosen, or on the other hand, premature task termination and
crashes if the amount of compute resources was not sufficient.

Even having enough experience with applications used within the workflow,
setting the execution parameters properly to get good performance is a difficult
and tedious task. The key to get short makespan is to look at the workflow as a

! TT4Innovations, Czech republic, https://docs.it4i.cz/barbora/introduction/.
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whole. There are many dependencies among tasks and selection of best execution
parameters for each task independently may lead to a suboptimal solution since
there is a limited total amount of resources offered by the HPC facilities.

Although batch schedulers implement several optimization methods and
heuristics to maintain high cluster utilization and low queueing times, bad exe-
cution parameters spoil their submission schedules, e.g., when tens of tasks enter
the queue asking for 24 h allocations but actually finishing after an hour.

2.1 k-Dispatch Workflow Management System

Molding scientific workflows during the scheduling process goes beyond the capa-
bilities of common batch job schedulers which schedules tasks independently only
paying attention to their dependencies and requires the resource requirements
to be specified in advance. For the modlable workflow scheduling, a workflow
management system sitting in between the end user and the batch job scheduler
is required [18,24]. k-Dispatch [18] is a Workflow Management System (WMS)
[6,26] allowing the end users to submit complex workflows with associated data
via a simple web interface and have them automatically executed on remote
HPC facilities. Although oriented on the ultrasound community and the popu-
lar k-Wave acoustic toolbox [24], its general design allows simple adaptation to
other workflows and toolboxes by integrating new task graphs, registering new
binaries and adding performance tables.

k-Dispatch consists of three main modules depicted in Fig.1: Web server,
Dispatch database and Dispatch core. The user applications, e.g., a stand-
alone medical GUI, Web application, or Matlab interface, communicate with the
Web server using the secured HTTPS protocol and REST API. The Dispatch
database holds all necessary information about the users, submitted workflows,
jobs, computational resources, available binaries and the performance data col-
lected over all executed tasks suitable for the execution time estimation. The
Dispatch core is responsible for planning, executing and monitoring submitted
workflows. The communication with HPC and cloud facilities is done via SSH
and RSYNC protocols. For more information, please refer to [18].

2.2 Workflow Optimization Within k-Dispatch

The optimization algorithm providing suitable parameters for particular tasks
of the workflow is integrated inside the Dispatch core. It is composed of four
modules: Optimizer, Estimator, Evaluator and Collector [16].

The Optimizer is based on a Genetic Algorithm implemented in the PyGAD
library [9] and its parameter settings have been thoroughly investigated in [16].
The goal of the Optimizer is to generate high quality candidate solutions, each of
which holding a list of execution parameters for all tasks in the workflow. In the
simplest case, a candidate solution is a vector where the position of the task is
given by a breath first traversal through the workflow task graph and the value
determines the number of compute nodes to be used. Although several heuristics
has been proposed to optimize the execution parameters [7,14,27], they have
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Results Delivery Monitor Module & Security Petiricties
Task Monitori Unified Access to
Dispatch Database ask Monitoring Computational Resources
. Invokation of the Dispatch Remote Jobs and
Tables, Views, Procedures and Transfer Module Data Management

Fig. 1. k-Dispatch’s modules and a brief description of the actions each module is
responsible for. Arrows show the communication between Dispatch Core, Web Server
and Dispatch Database.

strong limitations such as no dependencies among tasks or monotonic strong
scaling. The genetic algorithm allows to solve any instance of the optimization
problem.

The Estimator is responsible for estimating the execution time for particular
tasks based on their input data and the amount of required resources. The Esti-
mator incorporates various interpolation heuristics to reckon up missing values
in strong and weak scaling.

The Evaluator uses a simplified simulator of job scheduler -called
Tetrisator [16], which takes a candidate schedule, simulates its execution on
a given cluster and calculates the workflow makespan and cost. Tetrisator is a
one-pass simulator of an HPC system with a predefined number of uniform com-
puting nodes. It is inspired by the default strategy of the PBS job scheduler. In
this paper, its functionality was extended by the backfilling technique allowing
smaller jobs to overtake larger ones if no delays is introduced. The tasks are
submitted to the simulator in the order defined in the candidate solution. Work-
flows may contains multiple dependencies among inner tasks, and the initial
cluster workload may be defined, i.e., the cluster is not empty at the workflow
submission time.

As soon as a satisfactory solution is found, the workflow is submitted to the
real cluster and executed. Upon finishing the execution, the execution times for
all tasks are collected by the Collector and stored in the performance database.
This data is used to gradually improve the accuracy of the Estimator.

2.3 Estimator Module and Interpolation Techniques

There are many factors that may affect the execution time of a given task.
Obviously, the most important ones are the size of the problem stored in the
input file and the amount of resources assigned to the task. However, there might
be many additional aspects significantly impacting the execution time such as
data distribution and load balance, varying time complexity of the algorithms
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Fig. 2. Red line shows the strong scaling of the k-Wave code measured for a domain
size of 10243 grid points on the Barbora cluster. Blue line shows the evolution of the
computational cost when more nodes are added. (Color figure online)

used, additional task parameters and the amount of data being stored during
the task execution.

As a practical example, let us talk about the MPI implementation of the
k-Wave toolbox [15] simulating (non)-linear propagation of ultrasound wave
through a heterogeneous absorbing medium. The scaling of the execution time
and cost for one specific problem instance on the Barbora cluster with 36 pro-
cessor cores per node can be seen in Fig. 2. Here, a domain of 10242 grid points
is partitioned into 2D slabs and distributed over various numbers of compute
nodes (1 to 32). The red curve shows the execution time per one simulation time
step (the whole simulation usually executes tens of thousands of time steps).

Although this strong scaling curve looks almost ideal, several sudden drops
in the execution time can be observed. These drops are the consequences of
well balanced workload distribution. For example, if we cut the domain into 512
slices, we can distribute the work over 512 ranks mapped onto 512 cores. Since
k-Wave is a memory and network bound application, it is often advantageous
to undersubscribe the computing nodes and use higher aggregated memory and
network bandwidth. On the Barbora cluster, we can spread 512 ranks over 15
to 28 nodes in a round robin fashion. Since the efficiency of such distribution is
decreasing, the scaling curve is flattening toward 28 nodes. However, when 29
nodes are allocated to the task, the domain can be cut into 1024 slices leading to
a much better workload distribution and significantly lower execution time. This
imperfect workload distribution also renders into the simulation cost since there
is a direct proportion between the parallel efficiency and the related cost. The
blue curve shows several local minima and maxima in the execution cost which
provide very suitable execution parameters or should be avoided, respectively.
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Fig. 3. Strong scaling of the k-Wave code execution time measured for 1024> domain
size on the Barbora (36 cores/node) and Salomon (24 cores/node) cluster.

Let us note that having a complete performance dataset with all possible
input sizes, numbers of nodes, and other tens of simulation parameters is com-
putationally intractable. When having incomplete performance datasets where
some points on the scaling curve are missing, the interpolation should rather
overestimate the execution time to prevent premature task termination. Even
more important question is how the scaling curve changes when a previously
unseen domain size is used. In this situation, it is necessary to estimate both
the shape and the position of the scaling curve from measured strong and weak
scaling. As interpolation functions, linear and quadratic interpolation were used.

Finally, the scaling curves may change significantly among different machines.
One such an example can be seen in Fig. 3 where the same problem is solved on
Barbora (36 Cascade Lake cores per node) and Salomon (24 Haswell cores per
node). Not only is the curve shifted due to a lower node performance, but it has
a very different shape in the second half. This may be the effect of a different
interconnection network topology, but also current cluster utilization. In this
case, it may be very hard to use any interpolation. Thus when a new cluster is
connected to k-Dispatch, a few benchmark runs for the most typical simulation
settings are performed to get a minimum amount of performance data.

2.4 Evaluator Module Improvement

Since our previous work [16], Tetrisator has been extended by implementing the
backfilling technique [21] to simulate the real batch scheduler more accurately.
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Fig. 4. The state of the entry and backfill queues when the task no 4 is about to be
executed. Workflow tasks came to the entry queue in the execution order. Tasks 0-3
have already been executed. When task 4 is to be executed, the scheduler (depicted
as schedule on the right) gets short of free nodes, and allows task 5 and 7 to overtake
task 4 and fill the shadow window.

Tetrisator schedules tasks in the same order as they come to the HPC system
(breadth first traversal of the workflow) [16]. The tasks are waiting in an entry
queue until executed. A task at the front of the entry queue is ready for execution
when all the task dependencies have been fulfilled and there are enough free
resources. If this condition is not met, backfilling may find its place. Provided
that the execution time of the waiting task will not be postponed and any task
dependencies will not be offended, tasks requiring smaller amount of resources
may overtake the waiting task. The task to be backfilled is calculated in a so
called shadow window. The implemented algorithm is depicted in Fig. 4.

Real batch schedulers? may implement more sophisticated criteria for back-
filling. For example, user and task priorities may be taken into account when
deciding which tasks may overtake the waiting ones (fair-share policy). Since
we mainly aim at static allocations where users do not compete, this calcula-
tion is omitted, i.e., all tasks and users have the same priority and only task
dependencies are considered.

The implemented backfilling algorithm considers a queue of jobs that could
be possibly backfilled, i.e., the backfill queue of length n and width of 1. n stands
for a positive number of tasks that have the capability to be backfilled. Width
of 1 means that the dependent tasks on the direct candidates to backfill are not
considered. In other words, let us have task A actually being calculated, task B
waiting for task A and other two tasks C and D. Task D depends on task C.
Task C'is not dependant on any other task and since not offending the execution
time of task B, it can be directly added to the backfill queue. Task D could be
also executed and finished within the shadow window as task C as well as still
not running out of available resources, however, since dependent on task C' it is
not added to the backfill queue (attacking width of 2).

2 https://docs.it4i.cz/general /job-priority/.
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3 Experiment Setup

This paper follows the experimental setup presented in [16] to evaluate the
developed workflow schedules under incomplete performance database. For the
makespan and cost evaluation, the Tetrisator simulator worked with a 54 node
cluster. The validation of the final schedules was performed on the Barbora clus-
ter, where a static allocation was created to ensure the same initial conditions
for all tests.

3.1 Investigated Workflows

This paper uses two typical biomedical ultrasound workflows applied in the ultra-
sound neurostimulation and photoacoustic imaging, see Fig.5. Both workflows
consist of two types of tasks. The simulation tasks (ST) executing the k-Wave
MPI solver represent heavy parallel jobs running for a few hours. The ST tasks
were limited to use between 1 and 32 nodes (36 - 1152 cores). The data process-
ing tasks (PT) perform data pre-processing, post-processing, aggregation, etc.
The PT tasks have a linear time complexity and almost perfect scaling. Since
their runtime is on the order of minutes, only one or two nodes depending on
the amount of memory requested are used.

The first workflow starts with a single PT task generating input files for
the ST tasks. Consequently, a few independent trains of ST-PT-ST tasks are
executed. Finally, the results from all trains are aggregated using a parallel
reduction tree composed of PT tasks. The second workflow starts by running a
few ST tasks operating on the same input file, but with different parameters. The
results are aggregated into a single output file using a parallel tree reduction.
But this time, the result is used by the following wave of ST tasks. In practise,
this workflow is repeated in a loop until some error metric calculated by the last
PT task is satisfied.

3.2 Used Datasets

Let us here define the datasets used in our experiments along with their short
description:

— Dataset A. Reference strong scaling of the k-Wave code measured on
a domain size of 1024 x 1024 x 1024 grid points using 1-32 nodes.

— Dataset 1A. Based on Dataset A but having only 16 values including peaks
and values in between them.

— Dataset 2A. Based on Dataset A but having only 8 values excluding peaks.

— Dataset B. Reference strong scaling of the k-Wave code measured on
a domain size of 810 x 810 x 810 grid points using 1-32 nodes.

— Dataset 1B. 810 x 810 x 810 domain interpolated for 1-32 nodes using
the quadratic interpolation from the known domain sizes: 512 x 512 x 512,
648 x 648 x 648, 1024 x 1024 x 1024.
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Fig. 5. The structure of investigated workflows. The heavy simulation tasks are inter-
leaved with light data processing tasks. The parts highlighted in black show the minimal
workflow structure consisting of 20 and 11 tasks, respectively. The parts displayed in
grey show how the workflow structure can grow. (Color figure online)

3.3 Tetrisator Validation Against Real Cluster

To compare the simulator output with the real execution carried out in a ded-
icated queue comprising 54 nodes of the Barbora cluster, an artificial schedule
based on the first workflow type was created. This workflow contained 20 tasks,
(8 heavy STs alternated with 12 light PTs). The execution times of particu-
lar tasks were taken from the Dataset A. The number of simulation time steps
inside the ST tasks were reduced to make the workflow finish in less that 1 h.
To prevent premature termination, a safety cap of 10% calculated from the esti-
mated execution time was added to each task. The real execution time actually
covers net computing time as well as overheads such as the computing node
initialization. Performed experimental scenario expects no initial workload, i.e.,
the cluster was empty when the workflow was submitted and executed. The
obtained experimental results are then compared against two evolved execution
plans employing Tetrisator with backfilling switched on and off.

3.4 Workflow Schedule Quality Measures

The quality of the developed workflow schedules is evaluated by a fitness function
the Optimizer calls after the execution trace has been created by Tetrisator. This
work investigates two different fitness functions: GODA and GOSA.

GODA (Global Optimization of the workflow on systems with on-Demand
Allocations) calculates the makespan over the longest critical path including
queueing times. However, the execution cost considers only truly consumed
resources. This is a typical cluster operation with users competing for resources.
Since having two contradictory criteria, a user-defined scalarization parameter «
is used to balance between the execution time and cost. The algorithm cannot
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perform a true multi-objective optimization because there is no further feedback
from the user that could select the preferred solution from the Pareto front.
Contrary, the most suitable solution has to be chosen autonomously and sub-
mitted to the cluster as soon as possible (before the cluster background workload
changes significantly).

GOSA (Global Optimization of the workflow on systems with Static Allo-
cations) expects the user holds a dedicated part of the cluster and thus has to
pay for the whole allocation no matter some nodes may remain idle. Although
this is a more expensive solution, it usually reduces the queueing time. Since
the makespan and cost are directly proportional, no scalarization coefficient is
needed and only the makespan is considered.

3.5 Evaluation of Interpolation Techniques

To estimate missing execution time for a particular task, domain size, and num-
ber of nodes, two different interpolation techniques from the Python’s scipy pack-
age [25] were used. After a thorough investigation in [17] and new experiments
performed in the paper, a linear and quadratic interpid interpolations were
chosen. Very similar results to the quadratic interpolation were also obtained by
cubic spline CubicSpline with the bc_type parameter set to natural. Unfor-
tunately, the use of the default value of bc_type caused high oscillations and

strong underestimations of the execution time. Therefore, we decided to use a

quadratic interpolation instead.

Three different experiments with the interpolation functions were conducted.

The goals of particular experiments were

— to estimate missing points on the strong scaling curve for a domain size of
10243 grid points defined by the points with ideal scaling (N%(P x 36) ~ 0),
where N is the domain size and P is the number of nodes, see Fig. 8.

— to estimate missing points on the strong scaling curve for a domain size
of 10243 grid points when having also points in the middle of the intervals
between two points with ideal scaling, sce Fig. 8.

— to reconstruct a completely unknown scaling curve for an unseen domain size
from the data stored in the performance database. In this example, scaling
curves for 5123, 6483 and 10243 were used to estimate the one for 8102 grid
points, see Fig.9. The domain sizes chosen progressively double the total
number of grid points.

As the measure of the interpolation quality, a mean relative error was used,
see Eq. (1).

meanError = — —_—
N —o a;
where a denotes the measured execution time, b the interpolated execution time,
and N is the total number of the compute nodes (32).
In all cases, we can tolerate a small overestimation but shall avoid underes-
timation which leads to premature job termination and necessary resubmission
with prolonged execution time.
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4 Experimental Results

This section presents and discusses (1) the similarity of the workflow execution
schedule to the one executed on a real HPC cluster, and (2) the error reached
by the interpolation techniques.

4.1 Simulated Execution Plans Reliability

The following figures point out the differences between simulated execution plans
created by Tetrisator and the real executions performed in the dedicated queue
on Barbora. Figure 6 shows the scenario where no initial workload is expected
and all 54 nodes are fully available at submission time. As expected, the sim-
ulated makespan by Tetrisator with backfilling switched off is a bit pessimistic
causing the overestimation by 15%. On the contrary, it can be seen that the
simulated makespan by Tetrisator using backfilling is underestimated by 3%.
This underestimation is, however, caused by cumulative error produced by slight
delays of individual task execution times on the cluster.

Our observations suggest that the real PBS cluster scheduler works in the
same manner as Tetrisator. This means the tasks within the workflow are submit-
ted to the real cluster in the same order as they are processed by the Tetrisator,
and their submission time is more or less the same. Thus, the tasks are also
executed one by one in the same manner as arriving to the cluster. The changes
in the order happen when a task has to wait for free resources (Fig. 7).

4.2 Interpolation Functions Accuracy

Figure 8 shows the measured and interpolated strong scaling curves on a domain
composed of 10243 grid points. Inspecting the scaling curve created by a linear
interpolation, a very close match can be seen. When interpolating using values
where the scaling is close to the optimal, the mean interpolation error reaches 4%.
After adding the values from the middle of particular intervals, the error drops
below 0.8%. Unfortunately, the interpolated values for sparser training data are
mostly underestimated, which can be corrected by a small bias or picking the
points with the worst instead of best workload distribution.

When repeating the same experiment with a cubic spline and a quadratic
interpolation, the mean error gets higher up to the level of 12% and 7%, respec-
tively, depending on the number of known values. The high error is caused by
several oscillations, and more specifically, by the extrapolation error where the
execution time is extremely underestimated.

The 4% error of the linear interpolation reaches the level of uncertainty of real
execution time measurement on clusters due to unstable node, network and I/0
performance. The suitability of the linear interpolation can be also attributed
to a very good scaling of the ST tasks without any significant anomalies. Since
parallel codes have to show good scaling to be deployed in production runs,
linear interpolation is expected to work well for most such codes.
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Fig. 6. Two simulated execution schedules. The top one with backfilling switched-off

and the makespan reaches 32.1 min, and the bottom one implementing backfilling and
finishing earlier in 26.4 min.
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Fig. 7. Real execution of the workflow on Barbora finishing in 27.3 min.

The second experiment attempts to estimate the strong scaling for an
unknown domain size, see Fig. 9. The figure reveals that the interpolation method
rather overestimate the scaling curve. When repeating this experiment with a
linear and a natural cubic spline interpolations, we got the mean error of 25.4%
and 13.5%, respectively, while the quadratic interpolation and the cubic spline
with bc_type parameter set to default produced better estimates reaching the
mean error at a level of 10.5%. The explanation is quite simple. While the strong
scaling of the ST tasks on a given domain size is almost linear, the algorithm
has an asymptotic time complexity of O(nlogn). Moreover, the ST tasks heavily
employ fast Fourier transform which is very sensitive to the domain size and its
prime factors. The quadratic interpolation thus better capture the nature of ST
tasks.

The conclusion is to use a linear interpolation to estimate values on known
scaling curves while using a quadratic interpolation when the domain size has not
been seen before. It is important to say that the k-Wave code is highly tuned and
scales very well. Employing a code the scaling of which is more “wild” with many
peaks or a dramatic slowdowns may become a challenge. When using different
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Fig. 8. Reference and interpolated strong scaling of ST tasks for a domain size of
10243 grid points with a linear interpolation calculated from 8 and 16 known values,
respectively. In the top figure, values in unexpected peaks were selected intentionally
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to see how much the value would be underestimated.

parallel codes, it may be beneficial to use a different interpolation for unknown
domain sizes corresponding to the asymptotic time complexity. Moreover, if the
scaling is relatively stable, it may be possible to construct a scaling equation
and use a fitting methods to set its coeflicients using known performance data.
Alternatively, we may try to interpolate the known points using a various poly-
nomial interpolations and based on the error make a decision about a selection

of the interpolation method.
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Fig. 9. Reference and interpolated strong scaling of ST tasks for an unknown domain
size of 810 grid points with a quadratic interpolation.

4.3 Impact of Interpolation on Schedule Makespan and Cost

This section investigates the quality and accuracy of the developed schedules
when using the performance database containing all data, only a subset, or no
data for particular domain size.

Figure 10 shows the makespan and cost of the best workflow schedules devel-
oped for the GODA situation on a known domain size of 10242 grid points, with
all, 8 and 16 performance values. These experiments also use different values
of the «a scalarization coefficient (only three values of a are used in figure for
better visibility). The schedules were collected over twenty independent runs of
the genetic algorithm. The Pareto fronts (lines in the plot) for the same values
of v are close to each other confirming that by employing interpolation methods
on incomplete datasets we are able to achieve very similar results. When using
Dataset 2A containing only 8 performance values, the solutions found may be
deflected from that ones evolved using dense dataset. This actually does not
mean that found solutions are bad, they just overlap the area where solutions
for different value of a would be expected. Next, it can be seen that solutions
for different a form isolated clusters. This implies we can affect the execution
plan to prioritize different criteria. At this point, it is important to note that
the execution plan may be adjusted in makespan by a factor of 10.0 while in
computational cost by a factor of 1.7. The factors vary and the cost factor is
such small due to the highly optimised code used. This is a very promising result
showing that when the interpolation is reasonably accurate, the impact on the
best solution developed by the Optimizer is rather small.

Table 1 summarizes conducted experiments of GOSA expressing the quality
of the execution schedules as makespan. The table may be divided into two
parts. The left one is for the domain size of 1024 where missing strong scaling
values were completed by a linear interpolation. The right one is for the domain
size of 8103 which was fully interpolated using a quadratic interpolation. The
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difference between the achieved makespan for the full performance dataset and
interpolated datasets is given by an interpolation error (investigated in Sec. 4.2)
and performance fluctuations of cluster’s nodes. The experiments were provided
with both backfilling switch on and off. It turned out backfilling did not impact
the results significantly, causing differences between 0.09% and 4%. This suggests
the genetic algorithm finds such good workflow schedules that minimize the
amount of unused resources so that the backfilling has only a limited space for
schedule improvements. Next, a workflow structure also influences how good the
workflow could be mapped.

Table 1. The results show GOSA applied on the domain of 1024% on the left and
810% on the right. Experiments were performed using (1) the full performance dataset
without interpolation, (2) the partial performance dataset of 8 and 16 known values,
respectively, and completed using linear interpolation, and (3) the full performance
dataset created using quadratic interpolation. The table depicts average (Avg), mini-
mum (Min) and maximum (Max) obtained values of makespan in minutes. The per-
centage difference between experiments with partial and full performance datasets is
also depicted.

1024 x 1024 x 1024 |40 Tasks 80 Tasks 810 x 810 x 810 40 Tasks 80 Tasks
Makespan | Diff. Makespan | Diff. Makespan | Diff. Makespan | Diff.
[min] [%] | [min] (%] [min] [%] | [min] (%)
GOSA Avg |29.70 - 58.31 - GOSA Avg | 14.82 - 30.05 -
with no Min |27.75 - 55.74 - with no Min |14.07 - 28.32 -
interp. Max |35.10 - 61.07 - interp. Max | 16.88 - 31.76 -
GOSA with |Avg 29.19 1.72 59.23 1.57 GOSA Avg | 17.08 15.25 |33.11 10.18
linear interp. | Min |27.29 1.65 55.27 0.84 with quadratic | Min | 15.44 9.70 31.27 10.41
(Dataset A1)  Max |33.25 5.27 65.47 7.21 interpolation |Max |18.85 11.64 36.67 15.44
GOSA with |Avg 26.74 9.98 51.06 12.44
linear interp. Min |24.87 10.36 | 49.05 12.00
(Dataset A2) | Max |30.33 13.58 56.46 7.55
le2
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Fig. 10. Pareto front together with dominated solutions showing the evolved schedules
for workflows of 11 tasks not requiring interpolation, and two experiments both using
linear interpolation (LI) but differing in the content of the performance dataset.
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5 Conclusions

The paper has investigated the optimization of moldable ultrasound workflow
executions under incomplete performance database where the execution times for
some combination of tasks, input data and amount of resources are not known
and have to be estimated. Consequently, the paper has proven the workflow
execution on a cluster can be simulated and this simulator can be integrated
in the k-Dispatch’s optimization module. Although being a one-pass PBS-based
simulator, the estimations provided are sensible. The simulator gives accurate
estimations especially for workflows executed on dedicated resources where other
workload is known. The cross validation of an artificial and the real schedules
created by the PBS job scheduler on Barbora show a good general match.

The experimental results indicate that linear interpolation works well in sit-
uations the input data has been seen before and the task has already been
executed using a few execution parameters configurations. In such cases, the
missing performance data can be calculated with a very small error below 4%.
From our experience, linear interpolations appear to be generally applicable on
parallel codes with good strong scaling. On the other hand, if the input data
has not been seen before, the execution time has to be estimated from similar
inputs by interpolating between known strong/weak scaling curves. In this case,
a quadratic interpolation worked sufficiently well for our codes, however, the
error may reach 10%. This can be attributed to used codes having O(N log N)
time complexity. For codes with different time complexity, higher polynomial
interpolations may produce better results.

The paper also confirms that it is possible to find different schedules that
prioritize various criteria using the trade-off parameter «. The proposed opti-
mization algorithm constructs the Pareto front offering different suitable sched-
ules. Users, however, (1) are not aware of what tasks are executed within the
workflow, (2) may not know what solution to choose, and finally (3) the Pareto
fronts are calculated just before the workflow execution and this information is
not available at submission time to k-Dispatch. This is the reason why a multi-
criteria optimization is transformed to an easier form where users can express
their preferences between two criteria (makespan vs. computational cost) using,
e.g., a slider bar just before workflow submission to k-Dispatch.

The developed schedules tend to overestimate the execution time, which is
partially caused by imperfect interpolation, and a reserve of 10% added to the
workflow to avoid premature termination. Nevertheless, the error between devel-
oped and real schedules fits within a 15% margin, which is considered to be
acceptable for most users.

5.1 Future Work

There are two directions we would like to follow in our future work. First, we
would like to include the information about the actual cluster utilization into the
cluster simulator. This will allow us to better simulate workflow execution in on-
demand allocations where the user competes with others. It may have an impact
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on the shape of the developed schedules because tasks asking for more resources
sit longer in the queue. Using smaller amounts of resources thus may improve the
workflow makespan. Second, we would like to examine more advanced machine
learning techniques to improve the interpolation accuracy once the performance
database includes tens of thousands of records.
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