
 



Abstract 

Stable proteins are utilized in a vast number of medical and 

biotechnological applications. However, the native proteins have 

mostly evolved to function under mild conditions inside the living 

cells. As a result, there is a great interest in increasing protein stability 

to enhance their utility in the harsh industrial conditions. In recent 

years, the field of protein engineering has matured to the point that 

enables tailoring of native proteins for specific practical applications. 

However, the identification of stable mutations is still burdened by 

costly and laborious experimental work. Computational methods offer 

attractive alternatives that allow a rapid search of the pool of 

potentially stabilizing mutations to prioritize them for further 

experimental validation. A plethora of the computational strategies 

was developed: i) force-field-based energy calculations, ii) evolution-

based techniques, iii) machine learning, or iv) the combination of 

several approaches. Those strategies are usually limited in their 

predictions to less impactful single-point mutations, while some more 

sophisticated methods for prediction of multiple-point mutations 

require more complex inputs from the side of the user. 

The main aim of this Thesis is to provide users with a fully automated 

workflow that would allow for the prediction of the highly stable 

multiple-point mutants without the requirement of the extensive 

knowledge of the bioinformatics tools and the protein of interest. 

FireProt is a fully automated workflow for the design of the highly 

stable multiple-point mutants. It is a hybrid method that combines both 

energy- and evolution-based approaches in its calculation core, 

utilizing sequence information as a filter for robust force-field 

calculations. FireProt workflow not only detects a pool of potentially 

stabilizing mutations but also tries to combine them together while 

reducing the risk of antagonistic effects. 

FireProtASR is a fully automated workflow for ancestral sequence 

reconstruction, allowing users to utilize this protein engineering 

strategy without the need for the laborious manual work and the 



knowledge of the system of interest. It resolves all the steps required 

during the process of ancestral sequence reconstruction, including the 

collection of the biologically relevant homologs, construction of the 

rooted tree, and the reconstruction of the ancestral sequences and 

ancestral gaps. 

HotSpotWizard is a workflow for the automated design of mutations 

and smart libraries for the engineering of protein function and stability. 

It allows for a wider analysis of the protein of interest by utilizing four 

different protein engineering strategies: i) identification of the highly 

mutable residues located in the catalytic pockets and tunnels, ii) 

identification of the flexible regions, iii) calculation of the sequence 

consensus, and iv) identification of the correlated residues. 

FireProtDB is a database of the known experimental data quantifying 

a protein stability. The main aim of this database is to standardize 

protein stability data, provide users with well-manageable storage, and 

allow them to construct protein stability datasets to use them as 

training sets for various machine learning applications. 

 

 

  



Introduction 

Proteins are the building blocks of every living organism, where they 

perform a wide variety of functions, including DNA replication, 

catalysis of metabolic reactions, responding to the stimuli, and 

transporting molecules between different parts of the living 

structures[1]. They consist of one or more long chains of amino acid 

residues connected by peptide bonds. The sequence of the amino acids 

in the protein determines its structure and function. Therefore, 

mutations leading to amino acid alteration are the driving force of 

evolution at the molecular level. 

Over time, Nature has developed a remarkable diversity of 

biochemical reactions vital to the continuing evolution of living 

organisms and the preservation of life. These biochemical reactions 

scale from the simple one-step degradation processes to more complex 

pathways employing several different proteins. The recent advances of 

the next-generation sequencing, together with the steady growth of the 

computational resources and advances in bioinformatics have allowed 

wider access to these naturally evolved processes and their utilization 

in various medical, industrial and biotechnological applications. 

Furthermore, protein engineering has matured to the point that enables 

tailoring of native proteins for specific practical applications, thus 

overcoming the limitations of the native variants that have evolved to 

function in mild conditions[2]. 

As a result, the ability to understand what drives the protein folding, 

its function, and other characteristics is crucial for further advances in 

the field of protein engineering as the mutations introduced into a 

modified protein can affect it in many different ways. Only a small 

portion of the mutations will have a beneficial impact on the protein 

characteristics, considering its intended purpose in the specific 

medical or industrial applications. Some of the mutations can 

influence protein stability, while others will affect its solubility, 

activity, expression yields, or ability to fold into the 3D structure and 

create more complex quaternary structures by interacting with other 

molecules. Both positive and harmful effects can be observed by 



introducing mutations into the sequence of the protein of interest, and 

in many cases, there is an apparent trade-off between some of the 

characteristics of the proteins[3–5]. As a result, mutation improving 

protein stability can harm its function and vice versa. Thus, it is 

necessary to analyze a large number of mutations to obtain the variant 

most suitable for its intended use. 

This Thesis focuses mainly on the aspect of protein stability as one of 

the main characteristics that determine the usability of the natural 

biochemical reactions in the harsh environment of the medical and 

industrial applications. Stable proteins are able to withstand extreme 

temperatures, acidic or basic pH, or an unfavorable effect of organic 

solvents and proteases[6]. Furthermore, stable proteins are often 

distinguished by higher half-life, making them easier to transport and 

store for later use[7]. As a result, there is a high interest in increasing 

protein stability, and many different methods were designed over the 

years to accomplish such a task. 

In the ideal case, the saturation mutagenesis would be applied to 

evaluate every possible mutation on every position of the engineered 

protein. However, such search space would be enormous, and the 

experimental evaluation laborious and costly. Therefore, there rises a 

need for effective and precise computational methods to predict 

protein stability. To satisfy this goal, a number of in silico tools have 

been developed recently. Unfortunately, due to the limited reliability 

and potential antagonistic effect between individual mutations, only 

single-point mutations with an almost negligible effect on protein 

stability are usually predicted in the existing tools. Such mutations 

typically enhance the stability of the target proteins only mildly, while 

higher stabilization can be achieved by engineering multiple-point 

mutants[8]. 

 

Objectives of the Thesis 

The main aim of this Thesis is to develop new methods that would 

allow for the design of highly stable multiple-point mutants, and it 



presents several possible solutions. FireProt is a hybrid method that 

combines several different computational approaches into a single 

workflow, allowing for a more robust and reliable construction of the 

stable multiple-point mutants. The second solution, FireProtASR, is 

based on natural evolution and the observation that the ancestral 

proteins were significantly more stable than their extant counterparts. 

Finally, HotSpotWizard is presented as a tool that can be utilized to 

highlight potentially interesting residues in the protein, where 

mutations could have a positive impact not only on the stability but 

also on other protein characteristics. The new database FireProtDB is 

introduced as a possible solution for a current troubling situation 

surrounding the storage and management of the existing data obtained 

from the laboratory measurements of the protein stability. Such a 

compilation of manually curated data is very much needed for future 

development of reliable predictive tools based on machine learning. 

The main goals of this Thesis are: 

 to analyze the physico-chemical forces that participate in the 

increase of protein stability 

 to construct a reliable protein stability dataset that could be 

used for the validation of the existing tools and force-fields 

and for the training of the methods based on machine learning 

 to develop, integrate and thoroughly validate a hybrid 

workflow for an automated design of the stable multiple-

point mutants 

 to resolve the algorithmic and technical problems connected 

with the automatization of the ancestral sequence 

reconstruction with the primary focus on improvement of the 

proteins’ thermal stability 

 to develop, integrate and validate a fully automated workflow 

for ancestral sequence reconstruction 



Computational approaches for prediction of 

protein stability 

In the ideal case, saturation mutagenesis of each possible mutation 

would be carried by the rigorous experimental validation. However, in 

most projects, such validation is close to impossible due to the costly 

and laborious nature of those experiments. Considering a standard 

protein consisting of approximately 300 amino acids, this leaves us 

with over 5,000 single-point mutations. Furthermore, single-point 

mutations often provide an almost negligible effect on protein stability 

(< 2 kcal/mol)[9,10], and therefore combining several stabilizing 

mutations is typically required to procure a significant improvement 

of protein stability[8]. Unfortunately, the additive effect of stabilizing 

mutations is not guaranteed as synergistic or antagonistic effects can 

occur between any subset of stabilizing single-point mutations. 

Mutations are considered synergistic if their combined effect on 

protein stability is notably higher than the sum of the individual 

mutations, while the antagonistic effect means the exact opposite. The 

synergistic effect usually appears due to the creation of a new physico-

chemical interaction such as a salt bridge between anionic carboxylate 

and cationic ammonium or a disulphide bridge between two cysteine 

residues. On the other hand, the antagonistic effect disturbs some of 

the newly introduced interactions or creates clashes between the side 

chains of the mutated or original residues. This, for example, can be 

easily observed when several mutations are designed to fill the same 

space in the structure of the protein, filling the void each by itself, 

however being unable to fit in if combined. This could either damage 

protein stability or even completely prevent it from a successful 

folding. 

In most cases, antagonistic effects are not easily detectable, and 

therefore further experimental validation is needed. With only 100 

potentially stabilizing mutations, close to 5,000 experiments would 

have to be performed to evaluate all possible double-point mutants, 

and this number is exponentially increasing with each added mutation. 

As a result, there is an ever-growing need for fast and accurate 



computational methods that would allow for rapid evaluation of the 

potentially stabilizing mutations, and serve as a reliable tool for the 

prioritization of mutations for the rigorous laboratory experiments. 

In general, the computational methods for the prediction of the effect 

of mutations on protein stability can be divided into four categories[11]: 

Force-field methods relying on the calculation of the ΔΔG based on 

the models of molecular mechanics. 

Phylogenetic analysis utilizing the evolutionary information 

contained in the set of homolog sequences. 

Machine learning methods constructing a computational model 

based on the stability data provided by previous experimental 

validation. 

Hybrid methods and meta-predictors combining several of the 

previous approaches or several different methods of a single approach 

together to obtain more robust and reliable results. 

 

Principles of methods based on force-field calculations 

In silico design of the stable proteins based on the calculation of the 

energy force-fields is deeply rooted in our current state of knowledge 

of the physico-chemical properties of the individual amino acids and 

their description by molecular mechanic force-fields. Therefore, these 

calculations do not rely on the availability of the diverse, high-quality 

experimental data. In general terms, a force-field is a description of all 

bonded and non-bonded interactions in the protein of interest[2,12]. 

These interactions are captured in the energy-field equation used to 

estimate the potential energy of a molecular system[13]. The most 

accurate methods in this category are the free energy methods, relying 

on molecular dynamics (MD), or Metropolis Monte Carlo simulations. 

Unfortunately, those methods require a tremendous amount of 

computational power and are viable only for a limited number of 

mutations or smaller, less expensive systems of interest[14]. A number 



of heuristic approaches were created over the last decades to overcome 

this bottleneck, however huge analysis is still viable only with the use 

of simulation-independent stability predictors that can be divided into 

three categories[15,16]: 

Physical effective energy functions (PEEFs) are closely related to 

classical molecular mechanic force-fields, which allow for a 

fundamental analysis of the molecular interactions[13]. The individual 

terms of the energy-field equations are calculated via the 

simplification of the known physical laws and are still burdened by 

high computational demands reaching from hours up to several days 

for a single mutation. However, similarly to the molecular dynamics 

methods, they are versatile, accurate, and capable of predicting the 

behaviour of the enzymes under non-standard conditions such as non-

physiological pH, non-standard salinity, or elevated temperature[17]. 

Statistical effective energy functions (SEEFs) are viable for rapid 

analysis as they can predict changes in stability over the entire 

sequence space of an average-sized enzyme in a matter of 

minutes[18,19]. Compared to PEEFS, terms used in the SEEFs energy-

field equations are derived from curated data sets of available 

experimental protein structures projected into several stability 

descriptors. An effective potential can be then extrapolated for every 

descriptor distribution and utilized as a part of the overall energy 

function[18]. SEEFs do not explicitly model physical molecular 

interactions and are strongly dependent on the folded protein 

structures' availability and diversity[16]. 

Empirical effective energy functions (EEEFs) represent a bridge 

between PEEFs and SEEFs as they include both physical and 

statistical terms in their energy-field equations, which are weighted 

and parametrized to match experimental data[15,16]. The 

thermodynamic data used in the derivation of terms typically originate 

from mutational experiments conducted under standard conditions. As 

a result, EEEFs provide a reasonable compromise between 

computational demands and the accuracy of the free energy 

function[20]. A major drawback of EEEFs is that their applicability is 



restricted to the environmental conditions under which the 

experimental data used for the parametrization were acquired[21,22]. 

Even though force-field-based calculations are currently considered 

the most powerful tool for predicting the effect of mutations on protein 

stability, the accuracy of the energy functions is still suboptimal due 

to insufficient conformational sampling, imbalances in force-fields, 

and the problems connected with the existing data sets[21,23]. The 

computation of ΔΔG is based on the thermodynamic cycle, and 

therefore it requires modelling the folded and unfolded states of both 

wild-type and mutant protein[14,24]. The value of ΔΔG is then 

established as the difference between both folded states with several 

issues reported for various energy functions. All energy functions are 

known to overestimate hydrophobicity and tend to favour nonpolar 

mutations as the stabilizing ones[25–27]. PEEFs often underestimate the 

stabilization provided by the buried polar residues as they overestimate 

the energetic cost of unsatisfied salt bridges and hydrogen bonds in the 

protein core[28–30]. The estimation of the conformational and solvent-

related entropy is also imprecise. The inability of force-field methods 

to account for entropy-driven contributions can be partially resolved 

by utilizing evolutionary-based approaches inside the more robust 

hybrid workflows[2,12]. Another shortcoming comes with the prediction 

of the multiple-point mutants as most stability predictors have been 

parametrized using only a single-point mutant datasets. As a result, the 

predictive power for the multiple-point mutants is limited for most of 

the existing force-fields[31,32]. This shortcoming can also be attributed 

to the insufficient conformational sampling of the folded state, 

especially in the case of mutations introducing large-scale backbone 

movements into the mutant protein structure[33]. In PEEFs and EEEFs, 

such movements are simulated by the utilization of the rotamer 

libraries to the fixed protein backbones, thereby reducing 

computational demands while providing comparable precision for the 

predictions of the single-point mutations[34]. However, this approach 

does not stand in the case of the multiple-point mutants and multistate 

designs. Therefore, flexible backbone sampling techniques[23,35], 

generating conformational ensembles and utilizing energetically more 



favourable conformations, are required. Finally, the accuracy of the 

force-field methods is strongly dependent on the quality of the 

available tertiary structure. Their applicability for the proteins without 

resolved tertiary structure is given by the reliability of the structure 

modelling tools and the similarity of the closest sequence homology 

with a known tertiary structure. Furthermore, structures obtained by 

X-ray crystallography (>90% proteins in PDB database[36]) do not 

necessarily reflect the global energy minimum of the native state of 

the protein in its natural environment[37] and may, in some cases, be 

misleading starting point for a comprehensive prediction of protein 

stability[22,38]. 

 

Principles of methods based on phylogenetic analysis 

A phylogenetic or evolutionary analysis are methods that take 

advantage of the information hidden in the set of homolog sequences. 

The evolutionary approach's main advantage is that those methods do 

not require tertiary structure and are therefore viable for the majority 

of known protein sequences (about 200 million of sequences in 

UniProt compared to 100 thousand structures in the PDB database). 

The only limitation in its applicability occurs in the families with the 

low representation of sequences in the database. However, with the 

rise of the next-generation sequencing methods, this limitation slowly 

mitigates as the number of sequences in the databases almost doubles 

every three years. The two most widely used phylogeny-based 

methods are consensus design and ancestral sequence reconstruction, 

both built on top of the reasonably-sized set of homolog sequences. 

Consensus design (CD) starts by building a compact multiple-

sequence alignment (MSA) using a small number of homolog 

sequences ranging between a dozen and a few hundred. This MSA 

allows for a computation of every amino acid's frequency distribution 

in each position in the sequence alignment. Positions, where one or 

just a few amino acids are significantly more prevalent than others, are 

conserved as those residues changed only sparsely during evolution. 



CD's core assumption is that conserved positions are somehow crucial 

for the function of the protein (stability, activity, protein folding, etc.), 

and the most frequent amino acid at the given position is more likely 

to be stabilizing[39]. CD can be utilized when amino acid in the 

designed sequence differs from the most dominant ones in those 

conserved regions. This residue's mutation to the dominant amino acid 

suggested by evolution often leads to a non-negligible improvement of 

protein's thermal stability. It has been observed that high levels of 

sequence diversity in the MSA can interfere with the preservation of 

catalytic activity in the designed proteins, particularly if the MSA 

contains both prokaryotic and eukaryotic sequences. On the other 

hand, including only closely related homologs might introduce an 

evolutionary bias that prohibits CD from discovering more 

thermostable variants[40]. In recent studies, the proportions of neutral 

and destabilizing CD mutations have been estimated to be 10 and 40%, 

respectively[41]. In 2012, Sullivan was able to increase the proportion 

of correctly identified stabilizing mutations to 90% by discarding 

mutations of the residues with high statistical correlations to other 

positions in the MSA[39]. This would suggest an inability of the CD 

analysis to account for any synergic or antagonistic effects. The second 

possible weakness comes from an apparent phylogenetic bias when the 

MSA is dominated by a small number of highly similar subfamilies[42]. 

If tertiary structure for the protein of interest is available, the CD can 

be further refined by utilizing information about an active site, 

secondary structures, and intramolecular contacts or by analyzing 

molecular fluctuations based on crystallographic B-factors or MD 

simulations[43]. 

Ancestral sequence reconstruction (ASR) is a probabilistic method 

that explores the deep evolutionary history of homolog sequences to 

reassemble protein's evolutionary trajectory[44]. The method was 

initially developed to study molecular evolution. ASR is able to 

unearth sequences of the long-extinct genes and organisms from which 

the current ones evolved and is, therefore, an invaluable tool in the 

field of evolutionary biology. ASR has also been shown to be a very 

effective strategy for thermostability engineering[45] and for improving 



other protein's characteristics such as specificity, activity, or 

expression rates. Similarly to CD, ASR starts with the MSA's 

construction from the set of relevant homolog sequences. However, 

while CD relies on the simple analysis of the conservation of amino 

acids on the individual positions in the sequence alignment, ASR goes 

much further by considering evolutionary information depicted by the 

phylogenetic tree. Two main algorithms, maximum-likelihood[46] 

(ML) and Bayesian inference[47] (BI) were designed to interfere with 

ancestral sequences from MSA and phylogenetic tree. Over the years, 

many tools were built to make those algorithms accessible to the broad 

scientific community. However, several crucial steps in the calculation 

of ASR were not yet resolved in a satisfactory way that would allow 

for a fully automatized inference of the ancestral proteins, i.e., 

selection of the biologically relevant subset of homolog sequences, 

rooting of the phylogenetic tree and the reconstruction of the ancestral 

gaps. This limits the ASR's applicability as the method requires an in-

depth knowledge of the biological system of interest and necessary 

bioinformatics tools together with the abysmal amount of manual 

work. 

 

Principles of the methods based on machine learning 

In recent years, machine learning has become one of the most 

dominant approaches in predicting protein stability[48–50] and many 

other fields reaching far above the limited scope of protein engineering 

applications. The popularity of machine learning methods comes 

mostly from their ability to construct computational systems without 

being explicitly programmed. Statistical techniques are used to 

analyze training data sets and recognize patterns that might be difficult 

to detect, given the limitations of human knowledge and cognitive 

abilities. The system based on the machine learning approach can be 

trained either with or without supervision. Both find their utilization 

in the field of protein engineering. In the supervised approaches, the 

system is given a set of training inputs and the expected outputs in the 

form of labels indicating each input's correct classification. Those 



methods are well-suitable for training predictive systems. On the other 

hand, unsupervised approaches are mostly implemented for tasks 

involving data clustering. 

As the machine learning systems are constructed during the learning 

process, they do not require a full understanding of the mechanistic 

principles underpinning the target function. This advantage shines, 

especially in situations where there is a severe gap in human 

knowledge-base, and therefore expert construction of the predictive 

systems is not entirely possible. Machine learning can also expand 

existing systems by discovering previously unrecognized features, 

patterns, and relationships hidden in the training dataset. Furthermore, 

machine learning methods are very flexible because any characteristic 

extracted from the data can be used as a feature if it improves the 

prediction accuracy, i.e., minimizes the prediction error. Moreover, 

machine learning is also much less time demanding than other 

methods because once the model has been constructed using the 

training data, predictions can be obtained at an almost instant rate. 

However, the reliability of the machine learning approaches strongly 

depends on the quality and size of the training data set. The weights 

representing the relative importance of the individual features and the 

relationships between them are based on the provided experimental 

observations. Consequently, it is crucial to use high-quality 

experimental data with high consistency of experimental 

measurements and wide diversity when training and testing machine 

learning methods. The size and balance of the training dataset must 

also be considered. A modest dataset with only a few hundreds of cases 

might be too small to establish useful descriptors during learning. 

Additionally, lower diversity of the training data usually leads to a 

higher risk of overtraining and, therefore, losing its ability to 

generalize on a new, previously unknown data. In such cases, the 

weights assigned to the individual descriptors tend to be influenced by 

over-representing some of the descriptors in the training data, while 

other features with high informational value are under-estimated or 

omitted entirely. Unbalanced training datasets with substantial 

differences in the individual prediction categories' size could also lead 



to erroneous predictions. For example, a training dataset in which 

more than two-thirds of the mutations are stated as deleterious would 

mislead the predictor to classify most mutations as deleterious because 

of the prevalence of such mutations during the learning. Some 

methods, namely support vector machines and random forests, are 

known to be more resistant to overfitting caused by unbalanced 

datasets[51], while decision trees and standard neural networks are 

particularly sensitive. If the dataset is not sufficiently sized for the 

manual balancing by cutting part of the mutations out of the training 

set, this problem can be partially addressed using cost-sensitive 

matrices[52], which penalize the system more strictly for misclassifying 

mutations that are sparsely represented in the training set. Some 

oversampling techniques such as SMOTE[53] or ADASYN[54] can be 

also utilized. 

In parallel to the issue of the construction of the high-quality training 

data set, there arises the problem of model validation. In the ideal 

scenario, the validation data should also be balanced and utterly 

independent of the data used for training. However, due to the limited 

amount of experimental data, this scenario is often hard to reach. In 

bioinformatics, especially in the prediction of the effect of mutations 

on protein stability, it has become a common practise to use k-fold 

cross-validation as a standard method to validate the performance of 

the newly developed tools. This method entails randomly partitioning 

the original dataset into k subsets, using k - 1 subsets for the system's 

training, and the last random subset is left for the following validation. 

This process is then performed for each of the k subsets. The main 

argument of the utilization of cross-validation instead of splitting the 

data into independent training and testing datasets is that the available 

set of experimental data is often too small to support such a division 

without compromising the model's ability to identify the essential 

patterns and relationships. However, combining unbalanced datasets 

with the random aspect of k-fold cross-validation further increases the 

risk of overestimating the system's accuracy on the general data[55]. 

Therefore, cross-validation is often no longer accepted as a means of 

validation of the bioinformatics tools. This is particularly problematic 



in protein stability, where the construction of the sizeable, high-quality 

training dataset is impossible due to the lack of experimental data. 

In summary, machine learning is a powerful approach that allows for 

detecting the previously unknown dependencies and interactions in the 

protein molecules. However, the utilization of the machine learning 

approaches in the predictions of the protein stability currently suffers 

from the overestimation of the accuracy of the existing machine 

learning-based tools due to the usage of the k-fold cross-validation as 

the method for their validation. This disadvantage is partially 

mitigated by using less vulnerable methods, such as random forests, 

and the cost-sensitive matrices. 

 

Meta-predictors and principles of the methods based 

on hybrid approach 

Methods based on the hybrid approaches cannot be considered a 

singular tool but more as a combination of several different methods, 

tools, and computational strategies. Those methods are usually more 

robust and provide users with mostly reliable results as the hybrid 

methods usually incorporate both energy- and evolution-based 

approaches into their workflows, utilizing their strengths and 

mitigating their shortcomings. 

The analysis of the highly conserved regions and the residues that 

show a high correlation with one or more other residues in the MSA 

(correlated residues are usually changing together during evolution) is 

a starting point for most of the hybrid methods[27,56]. This comes from 

the presumption that the conserved or highly correlated residues are 

somehow crucial for the correct function of the target protein, and 

therefore mutations designed on those positions would be at high risk 

of damaging some of the characteristics of the proteins. Conserved 

regions are often clustered around active sites, while the evolutionary 

correlation of two or more residues suggests an important 

intramolecular interaction. For this reason, hybrid approaches often 



exclude those positions from further calculation, making the 

mutational space safer and, at the same time, reducing the 

computational demands. Furthermore, it was previously proven that 

evolution-based and force-field methods are complementary in many 

proteins as there is only a partial overlap of the stabilizing mutations 

designed by force-fields and evolution[24]. This complementarity might 

be in part caused by the inability of the energy-based methods to 

correctly classify the charge changing mutations due to their weak 

implementation in the current force-fields and by the inability to 

estimate the effect of mutation on the unfolded state of the protein. As 

a result, hybrid methods are able to identify potentially stabilizing 

mutations that would be omitted by using only energy- or evolution-

based approaches. 

Due to the higher complexity and robustness of the hybrid methods, 

these methods are often viable not only for predicting the effect of 

single-point mutations but also for significantly more stable multiple-

point mutants. In general, multiple-point mutants are unattainable by 

the tools based on a singular approach, as there is a high risk of 

undesired antagonistic effects. However, this issue is tackled in hybrid 

methods such as PROSS[56] and our novel FireProt strategy[27]. 

Finally, meta-predictors are the special subset of the hybrid methods 

that combine the results of several different tools into one consensual 

prediction using the simple majority voting or utilizing some form of 

weights. Those predictors are usually more accurate than their 

components. However, they lack the complexity and robustness of the 

real hybrid workflows.  



Research summary 

This part summarizes the research that was conducted in connection 

with the main topic of this thesis, i.e. the development of the in silico 

tools that can be employed to design stable protein structures. Four 

original publications describing three tools and one database: FireProt, 

FireProtASR, FireProtDB, and HotSpotWizard 2.0 are included. A brief 

list of the research published by the author that is not mentioned in this 

thesis is attached at the end of this section. 
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FireProt 

There is a continuous interest in increasing proteins stability to 

enhance their usability in numerous biomedical and biotechnological 

applications. A number of in silico tools for the prediction of the effect 

of mutations on protein stability have been developed recently. 

However, only single-point mutations with a small effect on protein 

stability are typically predicted with the existing tools and have to be 

followed by laborious protein expression, purification, and 

characterization. Here, we present FireProt, a web server for the 

automated design of multiple-point thermostable mutant proteins that 

combines structural and evolutionary information in its calculation 

core. FireProt utilizes sixteen tools and three protein engineering 

strategies for making reliable protein designs. The server is 

complemented with interactive, easy-to-use interface that allows users 

to directly analyze and optionally modify designed thermostable 

mutants. FireProt is freely available at 

http://loschmidt.chemi.muni.cz/fireprot. 

 

Figure 1: Workflow of the FireProt method. 



FireProtASR 

There is a great interest in increasing proteins’ stability to widen their 

usability in numerous biomedical and biotechnological applications. 

However, native proteins cannot usually withstand the harsh industrial 

environment, since they are evolved to function under mild conditions. 

Ancestral sequence reconstruction is a well-established method for 

deducing the evolutionary history of genes. Besides its applicability to 

discover the most probable evolutionary ancestors of the modern 

proteins, ancestral sequence reconstruction has proven to be a useful 

approach for the design of highly stable proteins. Recently, several 

computational tools were developed, that make the ancestral 

reconstruction algorithms accessible to the community, while leaving 

the most crucial steps of the preparation of the input data on users’ 

side. FireProtASR aims to overcome this obstacle by constructing a fully 

automated workflow, allowing even the unexperienced users to obtain 

ancestral sequences based on a sequence query as the only input. 

FireProtASR is complemented with an interactive, easy-to-use web 

interface and is freely available at 

https://loschmidt.chemi.muni.cz/fireprotasr/. 

 

Figure 2: Workflow of the FireProtASR calculation. 



FireProtDB 

The majority of naturally occurring proteins have evolved to function 

under mild conditions inside the living organisms. One of the critical 

obstacles for the use of proteins in biotechnological applications is 

their insufficient stability at elevated temperatures or in the presence 

of salts. Since experimental screening for stabilizing mutations is 

typically laborious and expensive, in silico predictors are often used 

for narrowing down the mutational landscape. The recent advances in 

machine learning and artificial intelligence further facilitate the 

development of such computational tools. However, the accuracy of 

these predictors strongly depends on the quality and amount of data 

used for training and testing, which have often been reported as the 

current bottleneck of the approach. To address this problem, we 

present a novel database of experimental thermostability data for 

single-point mutants FireProtDB. The database combines the published 

datasets, data extracted manually from the recent literature, and the 

data collected in our laboratory. Its user interface is designed to 

facilitate both types of the expected use: (i) the interactive explorations 

of individual entries on the level of a protein or mutation and (ii) the 

construction of highly customized and machine learning-friendly 

datasets using advanced searching and filtering. The database is freely 

available at https://loschmidt.chemi.muni.cz/fireprotdb. 

 

Figure 3: Schematic representation of the data stored in the FireProtDB database. 



HotSpotWizard 

HotSpot Wizard 2.0 is a web server for automated identification of hot 

spots and design of smart libraries for engineering proteins’ stability, 

catalytic activity, substrate specificity and enantioselectivity. The 

server integrates sequence, structural and evolutionary information 

obtained from 3 databases and 20 computational tools. Users are 

guided through the processes of selecting hot spots using four different 

protein engineering strategies and optimizing the resulting library's 

size by narrowing down a set of substitutions at individual randomized 

positions. The only required input is a query protein structure. The 

results of the calculations are mapped onto the protein's structure and 

visualized with a JSmol applet. HotSpot Wizard lists annotated 

residues suitable for mutagenesis and can automatically design 

appropriate codons for each implemented strategy. Overall, HotSpot 

Wizard provides comprehensive annotations of protein structures and 

assists protein engineers with the rational design of site-specific 

mutations and focused libraries. It is freely available at 

http://loschmidt.chemi.muni.cz/hotspotwizard. 

 

Figure 4: Workflow of the HotSpotWizard service. 

  



Concluding remarks 

Stable proteins are utilized in various medical and biotechnological 

applications. However, native proteins have evolved to function in 

very mild conditions. Therefore, there is an increasing interest in 

improving protein stability by introducing mutations into the 

sequences of modern proteins. However, the saturation mutagenesis of 

all possible mutations is still far out of reach for many academic 

laboratories, creating the need for fast and reliable computational 

approaches. In the recent years, a plethora of computational tools was 

designed to deal with such a task, falling into one of the three main 

categories: i) tools based on force-field calculations, ii) tools utilizing 

the evolutionary information extracted from the set of homolog 

sequences, and iii) models built on top of the existing experimental 

data with the use of the modern machine learning methods. 

The steady growth of the computational resources allowed for a 

comprehensive analysis of the mutational space, while the accuracy of 

stability-predicting methods is currently well-sufficient for the 

prioritization of experimentally validated mutations. Thus, in silico 

approaches are reducing the need for expensive and laborious 

laboratory experiments. However, most of the existing methods are 

viable only for predicting the single-point mutations with only a 

negligible effect on protein stability, while the construction of the 

multiple-point mutants is more complicated due to the possible 

occurrence of the antagonistic effects. 

In this Thesis, several computational tools were presented to deal with 

designing stable multiple-point mutants. FireProt is a fully automated 

hybrid workflow that combines both energy- and evolution-based 

approaches in its calculation core. The tool utilizes sequence 

information, such as conservation and correlation of the amino acids 

in the MSA, as an initial filter to exclude those risky regions from the 

further calculation. Force-field approaches are then employed to select 

a pool of the potentially stable single-point mutations, which are then 

combined while eliminating most of the antagonistic effects by 

evaluating all the mutations' pairs. The second approach, FireProtASR, 



is based on the idea that the ancestral proteins were significantly more 

stable than their extant counterparts. It is a fully automated workflow 

that allows users to utilize ancestral sequence reconstruction for their 

proteins without the deep knowledge of the essential bioinformatics 

tools and the biological system. FireProtASR deals with all steps of the 

ancestral reconstruction, including the search for the biologically 

relevant homolog sequences, construction of the MSA and 

phylogenetic tree, rooting of the tree without the need to specify its 

outgroup and finally the reconstruction of the ancestral sequences 

together with the identification of the ancestral gaps. 

As the introduction of the stabilizing mutations into the protein 

structure often causes deterioration of other protein properties, the 

protein engineering tool HotSpotWizard was designed to add another 

level of abstraction. HotSpotWizard allows observing the protein by 

many different criteria, including its conservation and flexibility. 

Moreover, it provides the visualization of the sites and tunnels that are 

crucial for the function of the protein of interest. Stabilizing mutations 

designed by other methods can be analyzed in the HotSpotWizard tool 

to consider their position within a tertiary structure and the distance of 

those mutations from the sites essential for protein function. Such an 

analysis can unearth mutations that could (while stabilizing) 

compromise proteins activity and other properties, and therefore 

removing such a mutation could lead to the safer design of the 

engineered variant. 

Finally, the work presented in this Thesis takes a stance on the current 

unsatisfactory situation surrounding the storage and management of 

the experimental data that are crucial for the training and validation of 

the computational tools based on the machine learning approaches. 

FireProtDB is a comprehensive database of a protein stability data, 

supplemented with a sophisticated search engine and expanded by 

various annotations from the sequence and structural databases. 

In conclusion, this Thesis presents a set of methods that aim to ease 

the engineering of highly stable multiple-point mutants, while 

providing users with a further analysis of the designed protein by 



considering other factors such as protein flexibility and location of the 

functional sites. Furthermore, it aims to simulate further improvement 

of the protein stability predictors by providing the research community 

with easy access to reliable experimental data. 

In the future, the plan is to utilize the new high-quality dataset that was 

compiled for FireProtDB to train a novel machine learning-based 

predictor of the effect of mutations on protein stability. This novel 

predictor would not be just a simple implementation of some of the 

standard machine learning techniques (e.g., SVM, RF), but rather a 

more complex multi-agent system that would focus more deeply on 

the mutations that are hard to predict by the existing predictors such as 

charge changing mutations located on the protein surface. 
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