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Abstract
Biometric recognition has long since become a common concern in various fields of study,
including forensics, anthropometry, biometrics, and computer science. This thesis focuses
on the development of an approach to create datasets for the evaluation of face recognition
algorithms, with an emphasis on the preservation of facial features. Such datasets open up
new possibilities for the evaluation of face recognition algorithms, which were previously
hindered by the limited sample size of the datasets usually used. Through extensive re-
search in the field of face recognition algorithms and modern neural network techniques,
algorithms for face detection and recognition on embedded devices have been developed.
These algorithms are based on the EfficientNet feature extractor.

Abstrakt
Biometrické rozpoznávání osob se stalo běžnou součástí několika vědních oborů, včetně
kriminalistiky, antropometrie, biometrie a informatiky. Práce se zaměřuje na vytvoření
inovativního přístupu generování datových sad pro evaluaci algoritmů pro rozpoznávání
osob podle obličeje. Na rozdíl od dosavadních přístupů naše řešení zachovává obličejové rysy.
Vygenerované datové sady přinášejí nové možnosti pro hodnocení algoritmů rozpoznávání
podle obličeje, které je jinak těžce realizovatelné z důvodu malého množství dat. Dále v
této práci řešíme akceleraci algoritmů pro rozpoznávání osob na základě obličejových dat
pomocí vestavěných zařízení. Především jsme se zaměřili na zhodnocení možností, které
přináší neuronová síť pro extrakci příznaků EfficienNet.
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Chapter 1

Introduction

Recognizing objects, or, more specifically people, through visual perception stands as one
of the fundamental abilities of the human brain. Although we perform this task effortlessly
on a daily basis without conscious effort, replicating this capability through computational
methods has proven to be a formidable challenge. For a long time, the presence of a human
was essential in situations where person identification was required. However, research has
made significant progress since those early days, evolving the algorithms from rudimen-
tary techniques focused solely on face recognition, to the development of fully autonomous
recognition systems.

Compared to other biometrics used for identifying a person, face biometrics is one of
the easiest to obtain - one just needs to capture an image of the person’s face, whereas
other biometrics usually require special sensors and, most importantly, the cooperation
of the person. This proves to both a great advantage and a major liability - government
agencies can perform recognition of people using today’s extensive network of public security
cameras, which can contribute to public safety, but the same approach can be misused to
track people for malicious purposes.

In the first part of this thesis, state-of-the-art methods for biometric face detection
and recognition are investigated. The primary emphasis of the research is on methods for
generating a dataset from scanned 3D head models of real people. Subsequently, this work
shifts its focus to the use of face detection and recognition algorithms on embedded devices.
This includes both detecting the presence of people in images and evaluating the recognition
of their identities. The use of such devices can offer improved privacy protection without
sacrificing personal identification capabilities.

1.1 Research questions

In this thesis, we explore the available methods for face detection and recognition, which
also bring observations useful for forensic face examination. With the gained knowledge,
we perform experiments using state-of-the-art algorithms on both publicly available and
our semi-synthetic datasets. Using the results of our experiments, we propose modifications
of the selected algorithms with the aim to use these algorithms on embedded devices.
The diversity within the domain of face recognition and analysis research topics has led us
to outline the specific objectives presented below.
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We have defined two research goals for this thesis. In general, for the training and
evaluation of a neural network, it is important to secure an appropriate dataset. As a part
of the first goal, we explore ways to generate a semi-synthetic dataset with face images.

The second goal is to develop an embedded device to execute the face recognition process
using accelerators suitable for embedded devices.

The following two goals of this dissertation thesis have been defined:

• Generated dataset for evaluation of face detection and face recognition - due
to the need to obtain a dataset to evaluate the influence of head (face) rotation on face
recognition performance, we propose and implement a pipeline to generate a dataset
with the ability to preserve the facial characteristics of real people. Furthermore, we
compare the generated dataset with a dataset containing real images.

• Propose and implement a device for face recognition using neural network
accelerators - nowadays, the available technology makes it possible to create smart
cameras to perform face recognition. However, in general, face recognition intrudes
upon a person’s privacy. By utilizing an embedded device also called edge device, we
can eliminate privacy concerns. For the proposed device, we modify the available
state-of-the-art algorithms in order to adapt them for use on embedded devices.
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Chapter 2

Introduction to face recognition
and face characteristics

People recognize each other by specific criteria that belong to face recognition. In addition,
some features of the face can help to determine the emotional or health state of a person.
The use of facial appearance finds application through fields that commonly affect our lives.
The contribution of research focused on face recognition and face analysis using machine
learning methods is significant for security purposes. Unfortunately, except for positive
contributions, the face recognition system can also have a negative impact on life due to
privacy violations, identity theft, and other aspects raise privacy concerns [1]. On the other
hand, with the face recognition systems that can quickly identify a person, we can save
people’s lives by the possibility of finding a concrete person quickly or suppressing a crime
quickly.

In general, face recognition falls under the umbrella of biometric systems and computer
vision, which are designed to process biometric characteristics to determine identity. On
the other hand, the methods assigned to face analysis can be utilized in various fields such
as criminology, healthcare, or consumer sector. In the following section, we try to familiarize
the reader with information to better understand the issues related to face analysis and face
recognition. Let us begin with an introduction to the field of biometrics.

2.1 Biometric systems and face recognition

Biometrics originated from the combination of two Greek words, bio (life) and metrics (mea-
sure) [2]. Biometric characteristics [3] have been used for several centuries. Interestingly,
before 500 BC, Babylonian merchants used fingerprints as part of their records of commer-
cial transactions. After the industrial revolution, there was a development of systems that
work with other biometric features. Today, we encounter biometric systems on an almost
daily basis.

We have mentioned the term fingerprint [4][TG.1], which represents one of the most
widely used biometrics. However, it is not the only one. Other anatomical characteristics
used in biometrics include the iris, retina, finger and hand veins, DNA, behavioral char-
acteristics, and, of course, the face. Each of these biometrics has its own advantages and
disadvantages, which arise from their underlying biological nature and depend on the spe-
cific use case. For each biometric, we assume that it possesses a certain amount of entropy
information, which has been determined and quantified through biometric research. Fur-
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thermore, when selecting an appropriate biometric system, we need to consider several
aspects such as the level of unambiguity, resistance to imitation, inter-class and intra-class
variability, and stability over time [4][5]. Intra-class variability [6] refers to the degree of
variation between samples within the same class, while inter-class variability [6] determines
the degree of variation among samples from different classes. Based on these considerations,
we should select biometric properties with minimal intra-class and maximal inter-class vari-
ability. This selection ensures the ability to effectively discriminate among different samples.

In practice, the most commonly used biometric systems are based on fingerprints, iris
patterns, hand shape, and face images (2D and 3D) [7]. Fingerprint biometric is the most
widely used biometric that has penetrated various areas of public life. At the goverment
level, fingerprints are used in police criminal investigations, in connection with biometric
passports, in asylum procedures, and in many other areas. In terms of the consumer sector,
they are most commonly used to secure laptops and mobile devices. A disadvantage is
the moderate universality of fingerprints and the possibility of theft of this biometric data
(obtainability from various surfaces) [4].

Biometric features are used in biometric systems to verify identify and finally authen-
ticate a person. The first type of identity recognition is identification [6], which expresses
a process to determine the person’s identity. The results can be used to determine a person’s
identity from a reference set of identities for N subjects. From this perspective, identification
is also known as 1:N matching. While the second type of identity recognition is verifica-
tion [6], unlike identification, verification involves comparing one identity with another to
determine whether or not the identities are the same.

The biometric system [8] consists of several interconnected modules (Figure 2.1). The first
module is responsible for capturing a user’s biometric characteristic (1), whereas one or more
technologies can be employed. This is especially true for fingerprint sensors. To capture
a face, color cameras are usually used. The two subsequent modules of a biometric system
carry out preprocessing (2) and feature extraction (3). The objective of preprocessing is to
clarify the biometric characteristics by suppressing all unrelated elements. Consequently,
the biometric features are mapped to a specific format using a feature extractor, which is
the holy grail of the biometric system. Although the variability of the individuals is pri-
marily derived from biological factors, the extractor should be designed with respect to
maximizing inter-class variability and minimizing intra-class variability. Furthermore, the
algorithm should be designed with an emphasis on extracting features that have discrim-
inative ability. Such features are processed by a template generator to map the features
into a suitable format that allows them to be stored (5) and compared (4). The module
responsible for template comparison takes an input feature template and, then, depending
on whether it works on the identification or verification, it selects one or more templates
from the data storage, and performs a comparison (6). However, it is impossible to declare
two different biometric templates as equal with absolute certainty. Therefore, a score is
assigned to each comparison to express the degree of similarity. The outputs of matcher are
then provided to an application (7).

In terms of security, biometric systems are burdened with many vulnerabilities, there-
fore, their security is a crucial part of their development. The next factor that should be
considered is the processing time. When a biometric system is used as an access system, fast
processing of the biometric characteristic is required. However, there might be a trade-off in
the preprocessing or feature extraction stage, which may negatively affect the performance
of the whole system. In general, the developer of the biometric system must balance these
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Figure 2.1: Simplified diagram of a biometric system. Adapted from [9].

factors. These shortcomings can be overcome by using domain-based hardware to accelerate
the algorithms associated with the biometric pipeline, such as a neural network accelerator.

The biometric system that allows the processing of more than one biometric charac-
teristic is called multimodal system [10][6]. An example of such a device is a sensor that
works with fingerprint and face images to construct a robust biometric template that can
be created by fusing two sets of the features. Such a system has better ability to deal with
presentation attacks or a biometric characteristic damaged by a disease, compared to a bio-
metric system utilizing only one characteristic. Overall, the advantage is the greater degree
of reliability of such systems.

In addition, user privacy is the next aspect that is closely related to biometrics. Due to
the nature of biometric data, there are legal and privacy issues that need to be considered
when deploying or developing a biometric system.

2.1.1 Face recognition

The goal of the algorithms used in biometric systems that work with face images is to
extract significant information from the face and create features from them. The input
data for these systems are primarily image data composed of the color components visible
to the human eye.

The first documented use of face recognition in legal proceedings was reported in
the British court in 1871, where a face image was used to identify a subject [11]. In
terms of the relationship between face recognition and computational means, the first semi-
automated process was presented in 1964 [12]. From a technical perspective, the system was
based on measurements between selected facial points. The set of measurements was then
uploaded to and processed by a computer. This means that the computer only worked with
a set of values that had to be measured by a person. In the following years, this method
was expanded to include new features such as lip width and hair color.

With the advent of statistical methods, the next era in face recognition history began.
In 1991, the method based on Principle Component Analysis (PCA) [13] was introduced
by Alex Pentland and Matthew Turk. In contrast to the previous approaches, an input face
image is directly mapped to a specific numeric representation. In 1998 [14], the Defense
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Advanced Research Projects Agency (DARPA) introduced a program to support the devel-
opment of face recognition algorithms. Within the program, a challenge dataset consisting
of 2,400 images from 850 subjects was encompassed.

The expansion of the Closed-Circuit Television (CCTV) system has presented opportu-
nities to deploy systems to automatically solve certain tasks. In the 1990s, Great Britain,
especially London, was the leader in using the CCTV systems for surveillance. For example,
an automatic plate recognition system was deployed in London in 1997. Among other ap-
proaches, a pedestrian tracking system can be included; historically, this solution was based
on the method of background subtraction, which allows to extract a mask of all objects in
the image. Subsequently, by storing individual masks over time, we can track the move-
ment of individual object silhouettes. This principle is one of the possible approaches to
object tracking. Another algorithm for tracking multiple individuals in an image using Ga-
bor wavelets has been published in [15]. In general, the first system capable of recognizing
faces was put into practical use in London in 1998 [16].

The "golden age of face recognition" came after 2001 when the World Trade Center in
New York was attacked. This attack changed the world in many ways, and new require-
ments for international security emerged. As a result, face recognition systems were rapidly
deployed at international airports. Of course, the use of these systems raises privacy issues.

The latest breakthrough in face recognition occurred in 2014, when Facebook unveiled
FaceNet [17]. From that moment on, face recognition has used neural networks.

Available approaches

In the previous section, we defined face recognition as a process that uses a face image
as input, which can be obtained from surveillance cameras, cameras in access sensors, or
commonly used cameras, i.e. webcams, mobile phone cameras etc. Over time, methods
have arisen from various principles, which has led to the categorization of these methods.
While studying the literature, we were surprised that the categories of the approaches were
different through the literature and papers. Based on [18][19], we divided the approaches
into the following categories according to the milestones which are marked in Figure 2.2.

Figure 2.2: Timeline of the major milestones in face recognition. Adopted from [19].
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Holistic methods - In the 1990s, the field of face recognition primarily relied on holistic
methods. These methods were characterized by their ability to extract information from
the entire image. This was achieved by mapping the input image to a subspace. Given the
knowledge of linear algebra, we can reduce the space defined by M images with N×N to
a subspace that is represented by a non-singular basis. Holistic methods can be further
categorized into linear and non-linear approaches. In the case of linear methods, we assume
a direct mapping to the subspace by a linear transformation. Notable representatives of
this category are methods based on PCA, as discussed in Section 2.2.2, as well as methods
derived from Linear Discriminant Analysis (LDA)[20], as discussed in 2.2.2. The non-linear
subcategory encompasses methods that process an input image map using a kernel. For
classifying face images, the transformation matrix is employed to map the input image
to the subspace, followed by computing the distances to all classes associated with that
subspace.

Local-feature based methods - in the early 2000s, the next generation of algorithms be-
gan. Unlike holistic approaches, these methods deal with the local appearance of a face
image. For their detection, filters and detectors with the ability to capture a required part
of an image were used. The methods are called handcraft methods, because the "by hand"
preparation of essential filters is their crucial part. Then, the local features can be described
by histograms, geometric properties, pixel orientation, or other forms to describe the data
for machine learning processing. Similar to the previous category, these methods are cate-
gorized into the local-appearance based methods and keypoints based techniques. This task
can be solved using pattern recognition algorithms, while their advantages include such as
higher invariance to low light, variance in brightness, and resistance to monotonic gray scale
changes [21]. For example, to create local histograms, the face image is transformed into
a suitable form using the Local Binary Pattern [22] algorithm. In addition, we can describe
the face using the features obtained by using Gabor filter [23].

The second subgroup utilizes the facial keypoints to create a descriptive template to
represent the face. The term facial keypoints refers to well-defined points in the surface of
the face that may be related to face anhtropometry, see Section 2.1.2. In addition to facial
keypoints, it is possible to describe faces using Scale-Invariant Feature Transform (SIFT)
and Speeded Up Robust Features (SURF) points [24].

Method based of shallow learning - in the 2010s, there was another change in the history
of face recognition. The advent of learning-based local descriptors opened up a new way to
describe faces [25]. However, these features do not consider all essential characteristics of
a face. Moreover, the published approaches were unsuitable to be used in the real conditions.
In our view, this milestone was the first step in the major expansion of deep learning.

Deep learning method - although the research community had explored various meth-
ods to improve individual steps of face recognition, these approaches have not been able to
cope with the variability in the conditions under which the face can be captured. The break-
through came in 2014, when Facebook introduced a novel solution called DeepFace. This
was the first time a computer algorithm achieved human-like recognition performance. Since
then, the vast majority of researchers have adopted deep neural networks as the basis for
their solutions.

Although many algorithms for face recognition have been introduced in the last decades,
we decided to describe only Eigenface and Fisherface from the older algorithms, see Sections
2.2.2 and 2.2.2, respectively. The best way to perform face recognition is to use a deep neural
network. The theory of neural networks is described in Section 3.5.
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Commercial software

Just as there are open source solutions available, there are many commercial applications
designed for household to government purposes. For example, among the representatives of
commercial software, can be included Clearview AI12, Innovatrics3, 3DiVi4.

Challenges in face recognition

The design and implementation of robust face recognition algorithms is challenging because
of the many factors that must be taken into account, such as rotation, lighting, image
quality, and other factors. Most modern face recognition algorithms show high performance
on a face image captured under controlled "laboratory" conditions. On the other hand, when
the image is captured in a real world environment, commonly referred to as "the wild" [26]
in the literature, recognition performance may be insufficient. In recent years, research has
focused on improving the performance of such algorithms.

To date, researchers have found several ways to suppress the influence of these factors.
Before a face image is processed by a face recognition algorithm, it is possible to improve
its quality in the preprocessing stage. However, by adding another stage, the requirements
to the computing systems may increase. Therefore, we must consider the longer processing
time when designing biometric systems.

Another approach is to focus directly on the processing algorithm itself, which can be
modified to improve tolerance for miscellaneous input variations. However, the approach
must be developed with respect to a required use case. In the case of forensic applications,
it is crucial to ensure that the properties in a face image remain unaltered.

Since modern approaches are based on neural networks that map a face image to a vec-
tor, it is beneficial to understand how this vector is affected by various conditions. With
this knowledge, we can effectively address weaknesses in face recognition algorithms with
the goal of suppressing or even eliminating them. Therefore, it is important to summarize
information about known challenges in the field, such as variations in lighting conditions,
pose, and occlusion.

For a better understanding, Figure 2.3 shows four faces and their corresponding em-
bedding vectors (the process of generating embedding vectors is described and discussed
in Section 3.5.1) visualized using heatmaps. The face images on the left side of the figure
are taken in frontal position, while the upper right is a capture of the rotated face and the
lower right face photo is related to another person. In general, a larger distance indicates
a lower probability that the face belongs to the same identity.

Nowadays, the ability of the algorithm to deal with environmental influences is a major
challenge. Therefore, we first focus on the environmental conditions relevant to the face
image. According to [27], these factors include:

• Light conditions - the distribution of light in the whole image should be uniform, if
not, it causes decrease of recognition performance.

• Complex backgrounds - due to the complexity of a scene, face detection can be affected.

1https://www.clearview.ai/
2Due to the violation of privacy law, the company is banned for selling its service and products to most

US companies.
3https://www.innovatrics.com/
4https://3divi.ai/
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Figure 2.3: Face images and their visualized embedding vectors obtained by the ArcFace
algorithm, for more information see Section 3.5.8.

• Many faces in one image - similar to the previous case, the presence of multiple faces
in an image can also affect the recognition performance.

Another group of unfavorable conditions for face recognition arises from the face itself
and these include [28]:

• Pose variations - rotation of the head can change the appearance of the face. To sup-
press this problem, a robust biometric template must be created.

• Expression - the variability in face expressions among the images of the subjects can
aggravate face recognition.

• Plastic surgery - plastic surgery brings a greater ability to modify significant charac-
teristics of a face.

• Aging - throughout life, the appearance of a face is affected by aging.

• Occlusion - similarly, facial accessories can contribute to the degradation of recogni-
tion capabilities.

The last group determines which properties of a camera have an influence on an image
quality. These include the following properties:
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• Resolution - for face recognition, it is essential to choose suitable resolution, for more
information, see Section 2.3.2.

• Image compression - with the compression (i.e. JPEG), the small artifacts can appear
on the face, which causes the worst performance of both face detection and recognition.

• Distortion - the face radial distortion can greatly degrade the performance of existing
face recognition methods [29].

The next challenge lies in the biological variation of the anthropometric properties of
the face involved and the variation in appearance, such as color and skin pigmentation.
In 2020, there was a case in the USA where three dark skinned men were wrongly arrested
due to a faulty evaluation by the recognition software [30]. In subsequent studies, the
researchers focused on analyzing the effect of skin color on face recognition performance.
The results confirmed that the performance of face recognition on people with dark skin is
lower than that of people with Caucasian skin type. Buolamwini and Gebru [31] found that
the dataset selected to train the face recognition algorithm was imbalanced, with a higher
representation of Caucasian type identities.

2.1.2 Facial antrophometry

Anthropometry [32] is a scientific field that deals with the measurement of characteristics
of the human body. Body characteristics are unique for each individual, and the same is
true for the face. In the following section, we introduce the anthropometric subfield that
describes the face using the knowledge gained from quantitative evaluation of human face
morphology [33]. The importance of face anthropometry is given by the fields where it is
used, which include forensic application, orthodontics, biometric system, and maxillofacial
surgery in which it is an essential part.

In the past, facial features were only measured using specialized equipment, including
anthropometers, personal scales, spread calipers, pelvimeters, sliding calipers, soft metric
tape, and calipers [34]. Today, modern methods include computer vision algorithms with
the ability to extract the facial landmarks from the face image or 3D face model, respec-
tively. The essential part of the human face is defined by proportions that vary among
individuals. The set of proportions is determined by researchers. For example, in the paper
[35] 155 properties in a face were described, while in the paper [36] only 30 significant prop-
erties were selected. The evolution of humans has been diversified according to a branch
of evolution that is specific to different places in the world. Therefore, there is no general
set of face proportions that can be used to describe any individual face. Anthropometric
researchers study the relationship between facial features, and this knowledge has a sig-
nificant impact on face recognition. Therefore, face recognition algorithms must take this
aspect into account.

Today, the work of anthropometric researchers can be facilitated by computer algo-
rithms. These algorithms can automatically detect face regions and landmarks, which are
then used to create an anthropometric description of the face. It is possible to capture more
anthropometric points to create a more robust description when we have applications that
can handle a 3D model.

Let us show some examples using face anthrophometry. In terms of forensic applications,
most tasks are related to the identification of people. However, the identification of a dead
person can be burdened by various forms of body decomposition. With applications, we can
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perform body reconstruction based on its remains [37] and then provide information for
crime investigation.

The second example comes from another field, specifically plastic surgery. Before the
operation, it is necessary to determine which methods will be used for the operation, and
it is necessary to specify when the operated face parts will move. In addition, with the pre-
surgery position of face features, we should modify the statistics of these features. It means
that parameters such as standard deviation or variance are changed to the given distribution
of characteristics. It leads to refinement of statistics.

Finally, we came to an anthropometric perspective on face recognition and biometrics.
Biometric recognition capabilities depend on the appearance of the face and its representa-
tion. Using a 3D face model and its texture, we should be able to extract more information
than is included in a 2D face image. For face recognition, the characteristic part of the face
is used in algorithms for face alignment, and in earlier approaches, called the feature base,
was also used for face recognition. Similarly, the selected face characteristic should be used
to determine the face rotation and so on for face classification. In addition, face anthropo-
metric properties can be used to evaluate the quality of a portrait photo when capturing a
face.

In the following section, we describe the essential facial characteristics and evaluate
their possibilities of use in the face recognition process. According to [35], we know that
the face can be described by up to 155 cranio-facial anthropometric proportions. However,
the number of usable features depends on the use case. In face recognition, two key points
are sufficient for the basic alignment that is needed for face recognition. On the other
hand, face reconstructive and cosmetic procedures can be planned using all the craniofacial
anthropometric proportions.

Face anthropometry landmarks and measurements

Next, we become familiar with the location of common facial landmarks used in anthro-
pometry. Due to the negative influence of the landmark location on the accuracy of facial
measurements, it is crucial to ensure their localization.

Besides the manual selection of landmarks, they can be localized by computer vision
algorithms [38]. One of the possible ways to ensure accurate localization is to utilize the 3D
model of the head [39]. However, in many cases such a model is not available. The goal of a
face landmark detector is to detect the landmarks in a face image. Often, a face image suffers
from lack of data to determine some landmarks. For better understanding, the following
illustration (Figure 2.4) shows individual landmarks in the face.

As you can see, the number of landmarks is relatively large. Thus, we have focused
on only a subset of them that have been identified through analysis of available studies.
The following list is composed of selected landmarks and their description is according to
[41].

• Endocanthion (en) - the point located at inner commisure of the eye fissure.

• Exocanthion (ex) - the point located at outer commisure of the eye fissure.

• Subnasale (sn) - the middle point of the angle at columella base where the lower
border of the nasal septum and the upper lip meet.

• Naison (n) - the middle point of the nasal root and the nasofrontal suture.
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Figure 2.4: Facial landmarks in (a) anterior view and (b) right lateral view [40].

• Gnathion (gn) - the lowest midpoint landmark on the lower border of the mandible.

• Cheilion (ch) - the point at each labial commisure.

• Tragion (t) - the tragion is localized on the ear and their exact location is in the notch
above the tragus.

• Alare (a) - the most lateral point on each alar contour.

• Gonion (g) - the most lateral point on the manidublar angel.

Consequently, the points are utilized to define the distances to describe the character-
istics of a face. However, only a subset of these points is used in face anthropometry. As
mentioned above, the location of each anthrophometric point is very well defined. Then,
the measurement among them can be performed to determine a set of measurements with
different degrees of variation within the human face per individual. Moreover, the statistical
parameters of the measurements are affected by many factors, such as sexual dimorphism,
ethnic variations, deme group variations, and others. Apart from the above mentioned pos-
sibilities of using facial measurements, we can estimate human age by combining them with
the position of landmarks [42].

We have selected essential measurements [43] that can be used as a baseline for face
analysis, face alignment, or face recognition:

• Forehead height (tr-n)

• Physiognomical face height (tr-gn)

• Morphological face height (n-gn)

• Face width (zy-zy)
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• Mandible width (go-go)

• Mouth width (ch-ch)

• Nose height (n-sn)

• Forehead height (tr - n)

• Lower face height (sn-gn)

• Intercanthal distance (en-en)

• Biocular width (ex-ex)

• Eye fissure length (en-ex)

• Mandible width (go-go)

• Morphological nose width (al-al)

We intentionally did not include the pupillary distance. This measure is described
in more detail below. The measurements allow us to classify the face according to the in-
dices. These indices are defined by the ratios between the selected measurements. Among
the indices is the Facial Index [44], which is used to assign a face to one of the five categories
defined in Table 2.1.

Table 2.1: Categories of Facial Index (FI) [44].

Facial Index (FI)

FI range Scientific term

< 79.9 Hyper euriproscopic (very broad face)
80− 84.9 Euriproscopic (broad face)
85− 89.9 Mesoproscopic (round face)
90− 94.9 Leptoproscopic (long face)
> 95 Hyperleptoproscopic (very long face)

Then, the part of identity represented by the face is derived from the measurements
with large variability. This is best described in the following illustration (Figure 2.5), which
shows which parts of the face have a strong influence on identity.

Overall, pupillary distance is the most widely used metric for 2D face recognition. In con-
trast to early feature-based approaches, modern approaches to face recognition primarily
use the holistic view of a face image without focusing on individual facial features. For 3D
face recognition, however, the combination of anthropometric features can be used [45].

Pupillary distance

With the exception of 3D face recognition, face recognition used by police, surveillance,
and citizen identification systems uses a face image as input. In order to use a face image,
it is necessary to ensure the required size of the image and also the orientation of the face.
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Figure 2.5: The extent of variability in face regions presented in a color spectrum [43].

For both, the position of the eyes can be used. The distance defined between them is called
Pupillary Distance (PD) [46].

The pupillary distance is defined as the distance between the pupils (centers) of the
eyes. According to the Anthropometric Survey of US Army Personnel [47], the mean PD
for males is 64.0 mm with a standard deviation of 3.4 mm and for females the mean of
the distance is 61.7 mm with a standard deviation of 3.6 mm. The study is unique in its
inclusion of various ethnic groups of subjects. Although the study is primarily related to
the Caucasian ethnicity (64.85 % of the evaluated samples), it also includes other ethnic
groups.

Today, from the perspective of face recognition and analysis algorithms, PD can be used
anywhere in the face recognition pipeline, which includes training, algorithm evaluation,
identity inference, and even face classification using this metric. In the case of training and
inference, the metric is used to align a face image in the roll rotation. Practically in all
areas, this metric can be used for the normalization of faces on the basis of their size.

However, the alignment of the face image in the roll based on the eyes is limited. In
addition, it is necessary to use another landmark for complete centering. This alignment
method is also suitable for filtering the face image by resolution when it is obtained during
the recognition process. For example, if its resolution is less than 16×16 pixels [48], face
recognition should not be performed due to insufficient resolution. To suppress the defi-
ciency, the image resolution can be increased using methods that employ interpolation or
methods based on neural networks.

In another perspective, the PD metric can be used to identify the health disorder. For
example, it includes near point convergence and stereo acuity [49].
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Frankfort horizontal

The above sections describe the possible 2D alignment of the face. The most common
way to perform anatomical alignment of a 3D head model is to use the Frankfort plane or
Frankfort horizontal [50]. Mathematically, three points are needed to define a plane. In terms
of the Frankfort horizontal alignment, the plane passes through the two anthropometric
points located at the lowest point of the eye orbits and the third point outside the face,
which is defined as the superior point of the external auditory meatus.

In a face image, we can determine the Frankfort plane by locating the anthropometric
points that include the lowest points of the orbital ridge and the tragion point.

2.1.3 Security and privacy questions

In general, biometric systems are associated with privacy and security because of using
and collecting personal information. Likewise, face recognition must address security and
privacy. Unlike a fingerprint recognition system, a face recognition system processes a face
image, which is an easily obtainable biometric feature.

In addition, the use of face recognition systems in government organizations and the con-
sumer sector has expanded widely. In order to cover crucial aspects related to security and
privacy, the conditions and laws are divided into levels, from general regulation to specific
regulation. By the term general regulation, we mean the Law on Protection of Personal
Data with laws related to biometric systems, while the specific regulation includes regula-
tions for the specific case of using face recognition, e.g. surveillance face recognition systems.
The issue of privacy protection in surveillance systems should be carefully considered, as
the privacy of people in public can be seriously violated. In general, face recognition is
considered to be the most "privacy-invasive" biometric technology than any other [51].

The first international convention aimed at ensuring data protection was presented
in 1981, such as the Convention for the Protection of Individuals with regard to Automatic
Processing of Personal Data (ETS No. 108) [52]. The main focus of the Convention is to
ensure the rights of individuals, in particular their right to privacy, regardless of their na-
tionality or where they live. Simply put, the Convention defines laws for the collection,
processing, and storage of personal data for participating parties. According to the Con-
vention, digital biometric data is classified as data that uniquely identifies an individual.
By processing a face image with technical means, we can uniquely identify or authenticate
a person; therefore, the nature of the image meets the definition of biometric data under
the Convention.

The first version of the Convention was published before the emergence of new ways of
processing and collecting biometric data. Therefore, the Convention was extended in 2018
and is referred to as 108+ [53]. Today, the Convention has 55 signatories, 8 of which are
not members of the Council of Europe (CoE). In the field of face recognition, the guideline
on face recognition adopted by the Convention was introduced in 2021 [54]. The document
consists of three parts covering the technology of face recognition. The first part is intended
for legislators and decision makers, which defines the lawfulness and also determines the
restrictions for state authorities.

Whereas the second part is related to providers and developers of face recognition sys-
tem, and last, the third part is intended for entities using face recognition technologies.
In general, the last part summarizes the rights of subjects that are provided in Article 11
of Convention 108+. In addition, it is mentioned that under what conditions the rights of
subjects can be restricted by authorities.
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In 2018, the next set of data protection rules, known as the General Data Protection
Regulation (GDPR) [55], was introduced. This regulation is based on the standards and
legal recommendations specified in extension of convection 108. In addition, the GDPR
brings new requirements to the subject privacy file. Convention 108 is sometimes referred
to as the mother of the GPDR.

In the USA, for face recognition there is established law called Biometric Information
Privacy Act introduced in 2008 [56].

2.2 Historical methods for face detection and recognition

In the following section, we present methods for face detection and recognition that were
commonly used around 20 years ago. Due to their earlier significance, we decide to discuss
them in more detail.

2.2.1 Face detection

In the previous section, we emphasized the importance of face detection as a crucial step
in the face recognition process. Assuming that the input image contains only one face, this
step should not be performed and should be skipped. Historical face recognition algorithms
operated on manually cropped and processed face images. Previously published face detec-
tors solved face recognition as a binary classification, determining the presence or absence of
a face. As a result, these detectors relied on machine learning classifier algorithms. However,
the advent of neural network-based detectors has revolutionized the field, rendering previ-
ous approaches obsolete. In the next section, the principles behind these earlier detectors
are discussed.

Viola-Jones detector

The Viola-Jones detector [57] marked a breakthrough in the field of face detection. It
was published in 2001 and named after its authors. This detector offered indisputable ad-
vantages, including an excellent balance between computation speed and computing power
requirements, as well as high detection accuracy. To detect faces, the detector utilizes a care-
fully selected set of weak classifiers with the ability to identify facial features.

In the case of binary classification, a weak classifier determines its outputs in a range
close to the threshold. For example, if we consider a positive classification represented by
one and a negative classification represented by zero, the weak classifier will provide a value
close to 0.5 [58]. The weak classifiers used in the Viola-Jones approach are represented by
Haar-like features derived from Haar wavelets [57].

In [57], the author’s research identifies three types of features: edge features, line fea-
tures, and four-sided features. Edge and line features are used for extracting edges and
lines in an image, respectively. The last one is specifically designed for the extraction of
the diagonal features.

During face detection, it is necessary to perform calculations for features responses.
The Viola-Jones algorithm employs a different representation of a face image, called in-
tegral image, which enables a fast computation of the Haar features. The integral image
is calculated only once, and the values of the features are computed by referencing the
corners of specific areas. This allows us to efficiently calculate the sum of these areas, pro-

16



viding the exact information needed for further processing. Together, the integral image is
calculated by

ii(x, y) =
∑

x′≤x,y′≤y

i
(

x′, y′
)

(2.1)

where ii represents the integral image and i represents the input image.
The algorithms generate a large number of candidate features that can be counted

in the thousands. However, only a small subset of these features is crucial for accurately
identifying a face. Therefore, it is necessary to reduce the number of parameters and identify
the subset of features that can detect faces in an image. The selection of appropriate features
is done using the AdaBoost algorithm [57]. This algorithm aims to find a set of features
that produce strong responses when a face is present in the image.

Furthermore, the algorithm selects approximately 2,500 features that need to be com-
puted for each region in the image, which can be a time-consuming process. To address
this, the authors employ cascading features systems, where the features are ordered from
the most influential to the least significant. The best features are those that have a signifi-
cant impact on detection. For example, this could include features that detect essential parts
of the face, such as the nose, mouth, or eyes. By implementing cascade systems, the face
detector can achieve real-time performance for face detection. Using a sliding window [59]
approach, we traverse the image and perform the cascade classifier at each localization. At
each level of the cascade, the output determines whether a face could potentially be present
in that region. If a weak classifier provides a negative answer, the evaluation is terminated
and the window moves to the next location.

On the other hand, if the response is positive, indicating a potential face "maybe it is
a face", the classifier proceeds to the next level of the cascade with the same behavior.
Only when the last level of the cascade is reached, and it gives a positive response, it is
determined that a face exists at the given location.

Detector based on Histogram of Oriented Gradients

Previously, one of the most famous detectors was a detector based on Histogram of Oriented
Gradients (HOG) [60]. While Viola-Jones performs recognition based on the responses of
Haar-like features, the HoG utilizes edges contained in the face area which are expressed
by the histogram of oriented gradients. Detection in the image is performed by moving
a sliding window over the image with a well-defined step and overlap.

The feature descriptor is calculated in several steps. According to the name of the al-
gorithm, the essential step is the calculation of oriented gradients represented by angles
and magnitudes. This is performed on each channel of the RGB or grayscale input image
by convolution operation with Sobel filters for the x and y direction separately. The result
is then represented by two resulting matrices with derivatives per pixel. Given by Eq. 2.2,
the magnitude matric is calculated for each location defined by the coordinates x and y
[61].

m(x, y) =
√

fx(x, y)2 + fy(x, y)2 (2.2)

where fx(x, y) is the component for the x direction and similarly the fy(x, y) is the com-
ponent for the y direction. Furthermore, the angle is calculated using the following equation
(Eq. 2.3):

17



Θ(x, y) = tan−1 fy(x, y)

fx(x, y)
(2.3)

where Θ(x, y) is the angle.
Furthermore, the matrix is organized into units called cells. For each cell, the histogram

is computed by assigning magnitude values to bins according to their directions. However,
the contribution of the magnitude depends on the directions, proportionally, the magnitude
is divided between two closest bins depending on the direction of the derivative. In the pub-
lished paper, the angular range 0-180° is divided into nine bins.

Optionally, we can enhance the histograms in cells by block normalization with the aim
of ensuring the brightness invariation. Normalization is performed by concatenating the his-
tograms in a given block and calculating the normalization factor, which is then divided by
the values of the individual histograms. This is performed on blocks over cells. This gives
the resulting descriptor higher resistance to changes in illumination and shadows.

In the last step, individual histograms are concatenated to one vector, which is used as
a descriptor.

Consequently, the descriptors are used as inputs to the classifier to determine the class
probability. For this purpose, we can use Support Vector Machine (SVM) [60]. Note that
the SVM is primarily designed for binary classification. However, by using the kernel to map
the input to the subspace, it is given the ability to solve a multiclass classification.

2.2.2 Face recognition algorithms

The face recognition algorithms published in the 1990s were based on linear algebra meth-
ods. With the expansion of neural networks, these algorithms are already being outper-
formed. However, the algorithms essentially use techniques from the field of machine learn-
ing. Familiarity with these techniques is essential for face recognition. Anyone seeking a com-
prehensive understanding of face recognition should be familiar with at least two important
algorithms, such as Eigenface and Fisherface. In the following text, we explain the principle
of these algorithms.

Eigenface

The Eigenface was introduced in 1991 by Mathhew A. Turk and Alex P. Pentland [13].
In general, the faces represented by images share a set of features that are common to all
faces. For example, the face of a healthy person includes mouth, eyes, and nose. Face images
may also contain other less obvious features and noise. At the training time, the Eigenface
algorithm views the images as a set of vectors. This set of vectors is represented in huge
multidimensional space, making it difficult to extract useful information directly. Therefore,
it is necessary to reduce the dimensionality of the space. To do this, the Eigenface uses the
Principal Component Analysis (PCA) [62] algorithm, which is commonly used in machine
learning.

From an abstract point of view, the Eigenface maps the feature space into the principal
components, called the eigenspace. PCA then determines a correlation matrix, which is used
to calculate the eigenvectors and their values. In linear algebra, the eigenvector is a non-
zero vector such that it does not change direction when the linear transformation is applied
to it. When the eigenvector is multiplied by a scalar, the magnitude of the vector can be
changed while the direction remains the same. The scalar is then called an eigenvalue.

18



Let us see how PCA reduces an input space to a subspace and how the eigenvectors are
determined. Based on [62], the training is divided into the following steps.

1. Dataset preprocesing and calculating covariance matrix - the first step is to unfold
each image from the two-dimensional matrix (N×N) to the vectors Γ with length n = N ·N
and create the set S of image vectors Γ1,Γ2, ...,ΓM . Subsequently, the images are centered
by subtracting their mean, computed as follows (Eq. 2.4)

Ψ =
1

M

M
∑

i=1

Γi. (2.4)

Then, the centering is performed by subtraction Ψ from each image represented as
the vector Γ. We obtaine a new set of vectors represented by the matrix A (Eq. 2.5) [62].

A = [Φ1,Φ2, . . . ,ΦM ]n×M . (2.5)

where Φi = Γi−Ψ, i ∈ N, 1 ≤ i ≤M . Now we determine the covariance matrix, intended
for dimensionality reduction, defined by

C =
1

M

M
∑

i=1

AAT (2.6)

where A is the matrix composed of the image vectors. Assume that the size of C is
M × N , where M is the length of the vector and N is the size of the vector. This may
cause the computational effort to be high and thus the covariance matrix to be difficult
to compute. If N << M , then it is advantageous to compute the covariance matrix by
Cr = ATA. In [62], there is proven that the eigenvectors of the covariance matrix C are
the same as the eigenvectors of the second covariance matrix Cr.

2. Find eigenvectors and eigenvalues – the next step is to find the corresponding eigen-
vectors and eigenvalues in the covariance matrix. The orthonormal basis of the subspace is
defined by eigenvectors with non-zero eigenvalues. According to the eigenvalues, the eigen-
vectors are sorted in descending order. The eigenvector with highest eigenvalue represents
the great variance in the images. For each face, the weights corresponding to the set of the
eigenvectors are defined. In this way, each face in the training dataset can be defined.

2. Classification - during the recognition process, the input image is converted into
a vector and the mean is subtracted from it. The vector is then projected into eigenspace
and assigned to a face class based on the projection weights.

Fisherface

Currently, we know that the Eigenface projects data by eigenvector in the direction that
has the most variation. However, the labels of the data samples are not taken into account
when calculating the eigenvectors. Given this fact, the weakness of Eigenface lies in its
ability to effectively separate different classes. Under ideal conditions, including precise face
alignment, homogeneous lighting conditions, and others, the classes are linearly separable.

Nevertheless, most face images are captured in the wild under conditions that do not
meet the requirements, see Section 2.1.1 for more information. This leads to a large scatter
of the vectors in space. As a result, the subset of samples becomes ineffective when PCA is
applied.

Using the labels, we can design a more appropriate method to reduce the dimensionality
of the space. The Fisherface algorithm [20] considers the class label to ensure the ability
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to maximize the separability among classes. Mathematically, the essential part of the Fish-
erface arises from Linear Discriminant Analysis (LDA), and is known as Fisher Linear
Discriminant (FLD). From a high-level perspective, the objective of FLD and PCA is the
same, to obtain the projection matrix W to determine the eigenvectors and eigenvalues.

However, unlike PCA, the projection matrix is obtained from the class scatter matrix
and the within-scater matrix consists of the sum of the scatter matrix for individual class.
The main objective is to maximize the ratio between them.

The within-scater matrix is given by (Eq. 2.7) [20]

SW =
C
∑

j=1

Nj
∑

i=1

(

xji − µj
)(

xji − µj
)T

(2.7)

where xi is the ith sample of class j, µj is the mean over all images in the corresponding
class j, Nj expresses the number of samples in class j and C is the number of classes.

Whereas class scatter matrix SB is calculated by the global mean µ and the individual
class mean µj . In general, the equation is given by (Eq. 2.8) [20]

SB =

C
∑

j=1

Ni (µj − µ) (µj − µ)T (2.8)

.
where Ni expresses the number class of samples in class i. Consequently, the projection

matrix W is computed to maximize the ratio between the determinant SW and SB given
by the following formula, defined by [20]

Wopt = argmax
W

∣

∣W TSBW
∣

∣

|W TSWW |
= [w1w2...wm] (2.9)

where wi is the ith generalized eigenvectors of Sb and m expresses the number of these
vectors.

By the prove [63], we assume that the ratio should be maximized when the projection
matrix is non-singular. Such matrix consists of generalized eigenvectors i.e.

SBwi = λiSWwi, i = 1, 2, . . . ,m (2.10)

that is fulfilled provided that the maximum rank is N−C, where N denotes the number
of samples, C denotes the number of classes and λi is corresponding eigenvalue to eigenvector
wi.

However, if the number of samples N is smaller than the dimension of the face image
space (number of pixels per image), we have to assume that the matrix SW may be singular.
This makes the Fisherface calculation difficult, since the inverse of the matrix SB is not
possible. To deal with this problem, the paper [20] proposed a solution to overcome this
problem by reducing the face image space to N−C using the PCA algorithm. The modified
project matrix, denoted as W T

opt is defined as

W T
opt =W T

fldW
T
pca (2.11)

where

Wpca = argmax
W

∣

∣W TSTW
∣

∣ , ST =
N
∑

k=1

(xk − µ) (xk − µ)T (2.12)
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Wpca = argmax
W

∣

∣W TSTW
∣

∣ (2.13)

Wfld = argmax
W

∣

∣W TW T
pcaSBWpcaW

∣

∣

∣

∣W TW T
pcaSWWpcaW

∣

∣

. (2.14)

Overall, PCA is used to reduce the face space, while FDA is used to discriminate among
classes. However, the Fisherface algorithm suffers from several problems. First, the algo-
rithm is very complex and requires a lot of computing power. Second, similar to Eigenface,
the accuracy of recognition is affected by the attributes of the face image.

2.3 Face recognition standards and performance metrics

The following section describes the standards related to face recognition. In general, stan-
dards play an important role in the development, deployment, and use of biometric systems.
In addition, the performance metrics for evaluating the face detection and recognition sys-
tem are also described.

2.3.1 Standards

Biometric standards have been published to ensure uniformity of biometric system eval-
uation metrics, methodologies, and terminology. As noted above, the use of biometric
standards is critical to the evaluation and deployment of biometric systems from differ-
ent vendors [64]. Likewise, rules and recommendations for collecting biometric data play
an important role in biometrics.

In general, biometric standards are a collection of documents that aim to ensure interop-
erability and data exchange between biometric applications and systems, respectively. Such
documents are maintained by international institutes with a large number of participants
to maximize the likelihood of ensuring consensus.

The first attempts to define biometric standards were made around 2000 when the boom
in biometric systems began. This led to the creation of the first international committee
for biometric standards maintained by the International Organization for Standardization
(ISO) established in 2002, ISO/IEC JTC5 1/SC6 37 [64]. The scope of the committee is
focused on a general biometrics and its aim is to cover the following areas of standards
that include (taken from [64]): common file frameworks; application of evaluation criteria
to biometric technologies; biometric application programming interfaces; biometric data
interchange formats; related biometric profiles; methodologies for performance testing and
reporting and cross-jurisdictional and social aspects.

The development of the standards is being carried out by six working groups, including
Harmonized Biometric Vocabulary (WG1), Biometric Technical Interfaces (WG2), Bio-
metric Data Interchange Formats (WG3), Technical Implementation of Biometric Systems
(WG4), Biometric Testing and Reporting (WG5) and Cross-Jurisdictional and Societal
Aspects of Biometrics (WG6).

However, the committee has relations with other JTC 1 subcommittees. For example,
the committee is involved in ISO/IEC JTC 1/SC 17 [65] and ISO/IEC JTC 1/SC 27
[66], the first covering cards and personal identification and the latter covering IT security

5Joint Technical Committee
6Subcommittee
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techniques. During the development of a standard, the ISO committee collaborates with
an external organization such as the International Labour Organization (ILO).

In total, the number of published standards covered by ISO/IEC JTC 1/SC 37 from its
inception to 05/2023 is 136, with 20 standards under development.

Let us examine standards in greater detail. One of the most important sets of standards
is the BioAPI intended for implementation of a uniform interface to ensure integration of
different biometric modules using defined Biometric Interworking Protocol (BIP). The first
version of BioAPI (BioAPI Specification Version 1.00) was introduced by the BioAPI Con-
sortium in 2000. In addition, BioAPI v1.0 (BioAPI - ANSI INCITS 358-2002) has been
revised and extended due to the creation of new standards registered under ISO/IEC JTC
1/SC 37. As a result, the standard is included in ISO/IEC 19784-1 [67].

From a technical perspective, the essential part of BioAPI is the BioAPI Framework,
which is designed to communicate with Biometric Service Providers (BSPs). BSPs provide
support for various biometric capture devices, preprocessing algorithms, matching algo-
rithms, etc. In BioAPI v2, the foundation of the topology has been modified by adding the
Biometric Function Provider (BFP). In the topology, the BFP is placed between the bio-
metric application and the BSP. This change reduces the complexity of the implementation
and leads to the implementation of the solution by the vendors. In addition, the BioAPI
has defined the BioAPI Interworking Protocol presented in ISO/IEC 24708 [68] for com-
munication among the different multisystems.

The next significant means to ensure interoperability among biometric systems is the use
of a uniform data format designed to represent different data. This format is described in
the ISO/IEC 19785 [69] standard and is provided by the Common Biometric Exchange
Formats Framework (CBEFF), which defines approaches for sharing biometric data and
effectively performing serialization. From a perspective of biometric systems, the standards
introduced in 2006 offer new opportunities for exchanging data between systems from var-
ious vendors using standardized structures.

It would be a mistake to ignore the domain-specific standards associated with a biomet-
ric characteristic. This includes standards such as the Biometrics Data Interchange Formats
[70] for face images, iris images, and fingerprint images.

Due to the topic of this thesis, we focused only on biometric standards related to face
recognition. Capturing the face image can be affected by many factors. Given appropriate
rules and recommendations, we should control some of them in order to achieve better
quality of the face image.

The necessary step in the development of a biometric system is to test its performance or
its ability to withstand attacks. This means creating well-defined scenarios and establishing
a uniform procedure for testing the algorithms. This is the only way to compare them.

With the growing trend of using biometric technology, it was necessary to establish new
standards and methodologies for testing biometric systems for mobile phones. From a user
perspective, it was important to understand the reliability of the sensor in a mobile phone
and the ability to secure the device. In response to this need, Google and the FIDO (Fast
IDentity Online) Alliance [71] have introduced new standards related to biometrics in mobile
phones. An important information from the Google standard [72] is that the biometric
standards for Android (>11) consider face recognition as a weak biometric, compared to
fingerprint recognition.

The requirements defined in the Biometric Data Interchange Formats for Face Image
ISO/IEC 19794-5 [70] standard include specific scene, photographic, digitization, and for-
mat requirements for both human verification and face recognition by a computer program.
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Even the process for capturing a portrait photo used by officers is defined by the standards.
The appropriate quality of an ID portrait photo can be ensured by following the recom-
mendations and requirements for capturing the portrait photo.

2.3.2 Portrait photo standard

Besides the view on face recognition as a machine learning task, we should not forget that
a face image can be utilized to obtain identity by human evaluation. Because it is easy to
compare a real face with a face image, the face image is often used on an ID card. Especially
for official documents, it is necessary to ensure that a face image is captured according to
well-defined requirements and recommendations. Therefore, one way how to achieve this
goal is to use the rules of a standard.

The process of capturing the portrait photo follows a standard denoted ISO/IEC 19794-
5 [70], the importance of which is emphasized by the adoption of the standard by the ICAO
organization to establish rules for Machine Readable Travel Documents (MRTD) [73].

The standard has a direct impact on automated face recognition, although historically
it has been used primarily for manual face verification. In Section 2.1.1, there is noted that
the quality of a face image is affected by many different factors. Fortunately, in the case of
laboratory conditions, we can suppress the influence of these factors more than in the "wild
condition“.

The following text summarizes important information that is essential to achieve the ap-
propriate quality of a face image. Some parts are related to both face identification (1:N)
and face verification (1:1). In addition, the standard uses the term face area, defined by
four points (2.1: Bottom of the chin, 10.9: Upper contact point between left ear and face,
10.10: Upper contact point between right ear and face, 11.1: Middle border between hair
and forehead) according to ISO/IEC 14496-2. The following section is based on [70].

Camera lens and related parameters

In order to avoid face distortion, it is crucial to set appropriate lens parameters and the dis-
tance between the face and the camera, which is called camera to subject distance (CSD)
[70]. For example, in the case of an APS-C sensor with crop factor 1.44, we should consider
using a lens of focal length between 50/1.44 and 130/1.44, or approximately 35 to 90 mm,
while the CSD according to the best practices should be: 1.0-2.5 m (1:1) and 1.2 - 2.5 m.
The camera must be placed at the subject’s eye level with a tolerance of ± 5°. The objective
of the metric is to control the magnification distortion that should ideally be less than 5 %
(1:1) and less than 4 % (1:N), respectively. Similarly, the recommendation for the radial
distortion is to maintain the properties under 2.5 %.

Focusing the camera from the nose to the ears should provide adequate sharpness. It
follows that the recommended depth of field is approximately 15 cm from the level of
the nose. The other important property to consider before taking a face photo is the Inter
Eye Distance (IED). For legacy applications, the IED in the captured face photo must be
greater than or equal to 90 pixels. However, for new passport applications, the IED should
be at least 240 pixels. For a summary of the IED requirements, see Apendix A.

Scene background and illumination

A background surface needs to be positioned behind the head. In order to employ an ap-
propriate background, it is essential for a background layer with a uniform color to be
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placed to distinguish the facial components from the background. Although this standard
requires the use of a uniform color, the use of a background with a gradient in one direction
is also allowed. When considering the illumination of the scene, it is advisable to choose
a uniform illumination with sufficient intensity. For automatic evaluation, this standard
defines the four spots on the face where the mean intensity (MI) over all color channels is
calculated. Then, within each spot and for each channel individually, the lowest MI should
not be less than 50 % of the highest MI.

Contrast, dynamic range and color

To achieve appropriate face appearance, we need to choose suitable setup of the camera in
terms of contrast, dynamic range and color, which have direct influence on image quality. In
general, the parameters should be set to achieve sufficient contrast between face background
and hair. Nowadays, the face images must be captured in color using cameras that allow
capturing wavelengths between 400 nm and 700 nm, namely visible spectrum.

For color calibration, we should use the method with the 18 % gray background and
the dynamic range of the image should have at least 50 % of intensity variation in the face
region.

Head pose and face expressions

The rotation of the head is controlled by the cervical spine, but, in terms of this standard,
the pose can be described by using three angles. To increase the suitability of a face image,
we establish a goal to minimize these three angles. However, the standard allows small
tolerances, which are defined by the following table, see Table 2.2.

Table 2.2: Pose angle requirements and recommendations [70].

Criterion: Requirement Pitch ≤ ±5◦, yaw ≤ ±5◦, roll ≤ ±8◦
Pose angle Best practice Pitch ≤ ±5◦, yaw ≤ ±5◦, roll ≤ ±5◦

We must not forget the last dynamic property of the face, the expression. In order
to capture it, the face must have a neutral expression with the mouth closed. Likewise,
the smile is not allowed even with the jaw closed. Furthermore, the eyes should open natu-
rally, whereas the reflections on the iris should not exceed 15 % of the area. The standard
defines Eye Visibility Zone (EVZ) [70] that should be visible and unobstructed.

Face accessories

In addition, this standard [70] deals with accessories that the person may wear for health
and religious reasons. In short, sunglasses, glasses with polarization filters and tinted glasses
are allowed, as well as glasses with a face image, provided that they are made of completely
transparent material and are worn on the nose. Eyeglasses should not disturb the eyes or
the EVZ. According to the reflectivity of the glasses, it is appropriate to adjust the light to
reduce the number of light artifacts.

Portrait dimensions and head location

At the end of this section, we take a look at the requirements for portrait photography
in terms of head size and localization. To ensure the fulfillment of the aforementioned
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requirements, we put great emphasis on capturing the face accurately and appropriately,
thus improving the overall quality. However, the last step is to define the set of ratios and
parameters that are used to determine the location of a face in the image. We assume that
a face in the image is surrounded by the specific border and is also centered, then it must
meet the criteria in Table 2.3. The illustration is attached in Appendix A.

Table 2.3: Geometry requirements for portrait photo [70].

Term Description Requirement

A Image width -
B Image height 74 % ≤ A/B ≤ 80 %
H Line through the centers of the

left (feature point 12.1) and
the right eye (feature point
12.2)

-

M Face center (midpoint of H ) -
Mh Distance from the left side of

the image to M
45 % ≤Mh/A ≤ 55 %

Mv Distance from the top of the
image to M

30 % ≤Mv/B ≤ 50 %

V Line through mouth center
(feature point 2.3) and M

-

w Head width: Distance between
the two imaginary lines paral-
lel to the line; each imaginary
line is drawn between the up-
per and lower lobes of each ear
(feature points 10.2 / 10.6 for
the right and 10.1/10.5 for the
left ear

50 % ≤W/A ≤ 75 %

L Head length: Distance be-
tween the base of the chin
(feature point 2.1) and the
crown (feature point 11.4)
measured on the imaginary
line, if these feature points are
not exactly located at 11.4,
the vertical projection of them
to shall be used

60 % ≤ L/B ≤ 90 %

Image format

According to this standard [70], several different image formats are defined for the repre-
sentation of a face image, including the PNG, JPEG, JPEG2000, and RAW related to the
camera. It is recommended to use lossless formats and it is crucial to capture the face image
in color. In terms of image encoding, one of the following options should be used:

• JPEG Sequential Baseline (ISO/IEC 10918-1 [74])

• JPEG-2000 Part-1 Code Stream Format (ISO/IEC 15444-1 [75])

• JPEG-2000 Part-1 Code Stream Format (ISO/IEC 15444-1 [75])
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• PNG (ISO/IEC 15948:2003 [76]) standard - PNG should not be used in its interlaced
mode and not for images that have been JPEG compressed before

This section represented a brief summary of the ISO/IEC 19794-5 [70] standard. In
addition to the information above, the document contains other information, such as rec-
ommendations for capturing children’s faces, information related to the production of Ma-
chine Readable Travel Documents (MRTDs) [77]. It also includes data format requirements.
The biometric passport is closely related to the standard because it is managed by the
ICAO administration. Therefore, the face image of a passport must meet the requirements.
Generally, a biometric passport contains a chip with biometric data and basic information
about a person, such as first name, last name, birthday date, portrait photo and permanent
address.

2.3.3 Performance metrics

For the evaluation of biometric systems and machine learning algorithms, it is essential
to define standardized metrics [78]. In the field of biometrics, several metrics are used to
evaluate a biometric system. First, we summarize the basic metrics related to detection and
recognition success. The terms genuine and impostor express positive matches and negative
matches, respectively.

Due to the varying imperfections of such a system, identity mislabeling can occur for
both impostor and genuine pairs. Therefore, for biometric purposes, the essential metrics
are derived from Figure 2.6.

Figure 2.6: Systematic notations in a binary contingency table. Adopted from [79].

In the filed of machine learning, individual formulas are defined as follows [78]

• True positive rate (TPR) = Sensitivity = Recall = TP
TP+FN (2.15)

• False positive rate (FPR) = FP
TN+FP (2.16)

• True negative rate (TNR) = TN
TN+FP (2.17)

• False negative rate (FNR) = FN
FN+TP (2.18)

• Precision = TP
TP+FP (2.19)

• Accuracy = TP+TN
TP+TN+FP+FN (2.20)
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where TP and TN denote correct positive matches and correct non-matches, respec-
tively, and FP expresses instances where a positive match is misclassified. Finally, the neg-
ative FNs express the incorrect non-match when the match should be marked as positive.

However, in the ISO biometric standards, the names of the terms are different from those
commonly used in machine learning. The following terms are related to the evaluation of
biometric systems [TG.1]:

• False accept rate (FAR) = FPR

• False reject rate (FRR) = FNR

• True acceptance Rate (TAR) = TPR

• Equal error rate (EER) is error rate at which FAR and FRR are equal

.
The metric, known as the Receiver Operating Characteristic (ROC) curve [80], is used

to express the relationship between FAR and FRR or also relationship between FAR and
TAR [81], in order to determine the threshold of a biometric system. Theoretically, a perfect
classifier would have a score placed in the top left corner of the ROC plot (FPR = 0 %,
TPR = 100 %), while the worst classifier would have a score placed in the lower right corner.
For a random classifier, the scores are typically distributed around the ROC diagonal.
The point on the ROC curve where the FAR and FRR is equal is called equal error rate
(EER) [82]. The threshold can be used to change and fine-tune the acceptance and rejection
levels. Similarly, the threshold can be determined from the true and false distributions of
the pairs.

Related to the ROC, there is another metric called the Area Under Curve (AUC) [83],
i.e. for a single parameterized model that is defined as a single point. In the case of a pa-
rameterized model, the AUC is defined as the integral of the ROC function from (0,0) to
(1,1). If the AUC value is zero, we consider the model prediction to be 100 % wrong, while
the model prediction with AUC = 1 is considered to be 100 % correct. The AUC is desirable
because it is scale invariant and classification threshold invariant. For illustration purposes,
the ROC curve and the AUC metric are shown in Figure 2.7.

Figure 2.7: ROC curve with AUC [80].
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The next metric close to ROC and AUC is Average Precision (AP), which is the average
precision across all recall values between 0 and 1 [84] and also as area under precision-recall
curve [85].

Another metric, the F1 measure, is the combination of recall and precision into a single
score that is expressed by the following formula [78]

F1 =
TP

TP + 1
2(FN + FP )

(2.21)

In addition to ROC, the histograms of genuine and impostor match scores can be used
to analyze the performance of a biometric system, where the genuine score, also known as
the similarity match score, expresses a correct positive match, whereas the term impostor
score refers to the correct non-match between different subjects [86]. The distance can be
represented by a matching score or by a distance metric with a range depending on its
properties.
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Chapter 3

Modern approaches for face
recognition

With advances in computer technology, face recognition approaches have undergone signif-
icant changes over the years. Recently, the vast majority of face recognition systems are
based on deep neural networks, see Figure 2.2. At first glance, face recognition can be seen
as a multi-class classification problem, where each class corresponds to an identity (per-
son). Related to this fact, the first approach based on a deep neural network to solve face
recognition as a classification problem was published in 2014 [87].

The need to retrain the neural network model each time when a new identity is added
is very restrictive. Another option is to create a descriptive vector (biometric template) for
each face image, this process is called face embedding, see Section 3.5.1. Like face recognition,
face detection is now also solved by a classification neural network.

Although the term neural network is familiar to almost everyone involved in computer
vision, we would like to briefly summarize the basics of neural networks. However, the in-
formation provided here is mainly focused on neural networks for image classification or for
solving regression tasks that process image data. We also introduce the necessity of face em-
bedding and primarily discuss state-of-the-art approaches to face detection and recognition;
see Section 3.4 and Section 3.5, respectively.

3.1 Theoretical background for neural networks

As an introduction, when we talk about neural networks implemented as a computer al-
gorithm, we are talking about the so-called artificial ones that are inspired by biological
neurons [88]. In general, the term neural network instead of artificial neural network is
widely used in information technology.

An artificial neural network consists of an artificial system of neurons. The basic type
of such systems is a feedforward neural network, usually represented as a three layer net-
work [89]. The first layer is an input layer, which is responsible for the transfer of input
data to the following layers. The output of this layer is connected to the subsequent parts
of a model, including 0 to N hidden layers. Due to the goal of computer vision algorithms
to get a response to an input, the last layer is called output layer. During the training
process, the output of the output layer is compared to the expected output. From this com-
parison, the error is calculated using the loss function [88]. This evaluation shows how the
neural network processes the input to produce the output. Another type of neural network
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is the recurrent neural network (RNN) [90], where its connections between nodes can create
a cycle in its graph.

So far we have only talked about neural networks. But what does the term deep neural
network mean? How many layers must a deep neural network have? According to the Univer-
sal Approximation Theorem [91], any function can be approximated with a shallow network
(three layer neural network). However, unlike deep neural networks, the number of neurons
grows with the complexity of the task. Furthermore, in the book [92], it is stated that
the number of hidden layers improves the accuracy. This fact was demonstrated by using
a neural network model to transcribe multidigit numbers from photos. For these reasons,
most current research is focused on the deep layer model.

Activation functions

To begin with, let us clarify what an artificial neuron [88] actually is. In this context,
a neuron is basic unit, sometimes called a node, consisting of four entities: an input vector
x = x1, ..., xp along with weights w = (w1, ..., wp), where p expresses the number of inputs
to the neuron and a bias b and an activation function g(x). Although the input of a neuron
is exactly given by its initial input or the outputs of preceding neurons, the weights and
biases are commonly altered during the training process. The basic principle is that the input
vector is modified by the weights of the neurons and then partial outputs are summed. Such
an output is called the net input and is defined as [88]

vi =

p
∑

j=1

wijxj (3.1)

where xj represents the ith element of the input vector and wij denotes the element of
the weight vector.

The activation function g(x) is the function that provides the response of the artificial
neuron. In principle, the function maps the input of the network to the output of the nodes
of the layer. Therefore, in mathematical notation, the artificial neuron is defined as

yi = g(

p
∑

j=1

wijxj). (3.2)

The choice of activation function has a significant effect on the performance of a neural
network and its training process. We can divide the activation function into two categories,
linear and non-linear. Let us look at common loss functions. The following summary is
based on [93].

• Linear (Figure 3.1) - the first category of the loss functions is the linear activation
function that preserves the input value.

In addition, there are non-linear activation functions that have been specifically designed
during the development of neural networks.

• Sigmoid (Figure 3.2) is monotonic function with a fixed output range (0,-1).
Cons: The sensitivity of y depense on the change in x. The further the value of x
is from zero, the smaller the value of the sensitivity is, which can lead to vanishing
gradients [94]. The output of the loss is not zero-centered.
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f(x) = y

Figure 3.1: Linear activation function and its equation.

• Unlike Sigmoid, the Tanh (Figure 3.3) loss function is a zero-centered function.
Cons: Because the derivatives are steeper, the gradient is stronger than the gradient
of the sigmoid.

• Rectified Linear Units (ReLU) (Figure 3.4) is a modern activation function that is
commonly used in the hidden layers. According to the book Deep Learning [92],
the ReLU is recommended activation function for modern convolutional neural net-
works. The main advantage of this function is its resistance to the vanishing gradients
problem.
Cons: It should only be used inside hidden layers. Unfortunately, it can happen that
the output of a neuron is zero for all data points. This is caused by the impossibility
to adjust the weights during the descent. This phenomenon is called the dying ReLu
problem [95].

f(x) =
1

1 + e−x

Figure 3.2: Sigmoid

f(x) =
ez − e−z

ez + e−z

Figure 3.3: Tanh

f(x) =

{

x x > 0
0 x <= 0

}

Figure 3.4: ReLU

Figure 3.5: Non-linear activation functions and its equations.

• Softmax is a function that has a vector as an input. The vector has the same length
as the number of classes, and its output is a probability distribution (the sum of all
vector elements is one). The softmax loss function is utilized in classification tasks.

Each neuron in a neural network can be assigned a different activation function. In
practice, however, all neurons in a layer are usually assigned the same activation function.
Likewise, most hidden layers have the same activation function.

For the output layer, the activation function is chosen according to the solved task. For
a summary of common output activation functions, see Table 3.1.
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Table 3.1: Activation functions for output layers [96].

Task Subtask Activation Function

Classification
Binary Sigmoid
Multiclass Softmax
Multilabel Sigmoid

Regression Linear

Layers

Modern neural networks are composed of various types of layers, and do not have to be
composed only of artificial neurons. From the perspective of deep neural network, the con-
volutional layer is considered to be one of the basic layers in convolutional neural networks.

In addition, modern neural networks require additional layers to achieve proper function-
ity and required performance. Such layers are used to extract information from an input and
to improve the training process. For example, the additional layers are intended to ensure
proper gradient descent. For example, the vanishing gradient problem can be suppressed
with a certain composition of layers. The following text introduces most common layers
used in a convolutional network.

The following layers are essential for creating the blocks used in a deep neural network.

• Convolution layer [97] - to explain what the convolution layer means, it is necessary
to define the convolution operation. In the field of machine learning, the convolution
for a discrete signal is used, which is mathematically defined as

(f ⋆ g)[n] =

∞
∑

m=−∞

f [g][n−m] =

∞
∑

m=−∞

f [n−m]g[m]. (3.3)

The convolution is performed with the functions f and g, where the f expresses
the signal that we want to process and where n is the step.

However, for an image processing task, the expression has to be modified due to
the above definition, which does not consider an image as input. Thus, a one-dimensional
discrete signal in the equation has been replaced by the two-dimensional discrete sig-
nal, which is defined as f [x, y]. Furthermore, the two-dimensional filter h[k1, k2] is
used in the equations. Finally, the convolution is calculated as follows

(f ⋆ g)[x, y] =

K1−1
∑

k1=0

K2−1
∑

k2=0

h[k1, k2]× [x+ k1, y + k2]. (3.4)

Technically, the above expression is not a convolution, but it expresses a similar
operation denoted as cross-correlation [97].

• Pooling layer [97] is often used to reduce the number of model parameters. The main
idea is to map the response of input neurons within a given region to a single value. The
value is calculated as the average of a neuron’s outputs, the operation is called average
pooling [97]. On the other hand, if the value is selected according to the maximum
value in the given region, the layer is denoted as max pooling [97].
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• Fully connected [97] is the type of layer that can be used to change the topology of
the neural network. The outputs of all neurons in the previous layer are connected
to all neurons in this layer. Therefore, each neuron is "fully connected" to all neurons
in the input layer. If two fully connected layers are behind each other, the topology
of the layer remains the same. In a regression task, the output of the fully connected
layer can be interpreted as a vector of numbers, but in the case of classification tasks,
the output of the neurons should be the probability of being a member of a class.

However, the layers described above are not the only ones used in convolutional neural
networks. To develop a robust CNN model, it is necessary to use other types of layers,
i.e. add layer, concatenation [98]. One of the advanced architectures is ResNet [98] uses add
layer to merge the output of the convolutional blocks with the input. This technique is used
to suppress the vanishing gradient problem [99].

Regularization of neural network model

Regularization [88][100] is a method to reduce the complexity of the model, as well as to
suppress the bias and variance of the model. On one hand, the model can reduce its error by
using the enormous number of assumptions, which of course implies a higher complexity of
the model. On the other hand, reducing the variance of the model implies a simpler model.
Therefore, for maximum performance, we need to balance these two aspects.

In order to mitigate overfitting and improve the generalization of a model, machine
learning provides methods to reduce it [88]. With these methods, it is possible to reduce
the variance while maintaining a similar bias. The first regularization methods, called L1
and L2 regularization [88], focus on reducing the range of neuron weights as close to zero
as possible by adjusting the loss function. With the regularization methods, the weights
of some neurons can be zero; therefore, the complexity of the neural network should be
smaller. We should not forget about regularization methods, which we describe in more
detail.

However, this is not the only way to ensure that the selected neurons are turned off.
A special type of layer, dropout [100], can be used to randomly turn off neurons based
on a set probability. According to the set probability, a certain number of neurons are
turned off in each training cycle. As with the previous regularization method, the goal of
regularization is to reduce the complexity of the model, resulting in a simplified network
that is more resistant to overfitting.

Loss function

In neural network theory, the loss function [88] is intended to determine the error between
the observed output and the predicted output of the algorithm (a model of neural network).
In other words, the loss function attempts to quantify how close the predicted values pro-
duced by an algorithm are to the true values. Calculating the loss function is an important
part of the neural network training process, and it allows optimization methods to deter-
mine the model parameters. Thus, the loss function can also be described as a training
feedback signal.

The choice of a loss function depends on the nature of the task to be performed by
the algorithm. In the following section, we present commonly used loss functions. We have
chosen the loss functions primarily for the classification and regression tasks. The following
selection of loss functions is related to classification tasks.
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• Cross entropy [101] is a loss function used to solve multiclass classification tasks. It
is also essential for other loss functions and is defined as follows

LCE = −
n

∑

i=1

yilog(pi) (3.5)

where yi expresses the truth label, n is the number of classes and pi is the predicted
probability for ith class. This loss function assumes that the classified sample belongs
to only one class.

• Binary cross entropy [102] is the modified version of the cross entropy loss which is
determined for binary classification.

LBCE = −
2

∑

i=1

yilog(pi) = −y1log(p1) + (1− y1)log(1− p1) (3.6)

where y is the expected observation (truth label) and p is the predicted probability.

However, the selection of the loss function is also related to an activation function. When
the binary cross entropy is combined with the sigmoid function, the neural network has
the ability to solve the multiclass classification task where multiple labels can be assigned
to the output. On the other hand, the binary cross entropy combined with softmax is
intended to solve multiclass classification tasks; however, only one label is assigned to an
output, see Figure 3.6, where C denotes the number of classes and t is the sample.

Figure 3.6: Difference between multi-class and multi-label classification [103].

Assuming that we want to use the probability distribution in output vector to classify
the sample into one of the classes, the use of the softmax activation function and the cross
entropy can be considered. The combination is also known as softmax loss and is derived
as follows [104]

LCEsoftmax
= −

C
∑

i=1

yilog(
ezi

∑C
j e

zj
) (3.7)

where z is the output vector and C expresses the number of classes. It is important to
mention that some loss functions used in face recognition neural networks are derived from
this loss function.

34



Let us look at the loss functions for regression problems [105]. The goal of these algo-
rithms is to predict a real value. Therefore, the training datasets consist of samples and
expected real numbers. For example, the samples can be images, and their expected values
can be vectors containing the coordinates of key points in the image. Commonly used loss
functions for regression tasks include [105]:

• Mean absolute (L1)

x =
1

N

N
∑

i

‖yi − ŷi‖ (3.8)

• Mean square (L2)

x =
1

N

N
∑

i

(yi − ŷi)2 (3.9)

where yi is the ground truth value, ŷi expresses the output of neural network and N is
the number of samples.

Optimizer

The training of neural networks is ensured by the loss function and an algorithm for ad-
justment of attributes of neural networks called optimizer [106]. After each training step,
the weights and other parameters in neural network are updated with the aim of reducing
the error between observation and the expected output. Modern neural networks are made
up of a large number of trainable parameters, and therefore it is almost necessary to use
the algorithm that can help determine how to reduce the difference. In general, the aim
of optimizer is to direct the adjustment of the weights of the model to reach the global
minimum. In practice, we have to consider many aspects related to the neural network as
well as training algorithms in order to get close to the local minimum.

• Stochastic Gradient Descent (SGD) [107] - due to the high computational complexity
of the gradient within a batch, the SGD was proposed. The algorithm selects only one
sample from the batch to calculate the exact value of the gradient. The computational
cost of the algorithm is independent of the number of samples. In the case of strongly
convex problem, the SDG can achieve the optimal convergence speed.

• Adam [107] - improves the SGD by utilizing an adaptive learning rate for each pa-
rameter. To ensure the gradient descent, the algorithm combines adaptive learning
rate and momentum methods.

3.2 External datasets for face detection and recognition

In machine learning, data are an irreplaceable part of the training, testing, and validation
process. Such a collection of data is commonly organized into a set denoted as a dataset.
Generally, the aim of machine learning (ML) algorithms is to extract information and
provide a way to process it. In this section, we focus on the datasets utilized by algorithms
related to face recognition algorithms.

As we already know from the Eigenface and Fisherface algorithms, the classification
problem can be solved using supervised or unsupervised learning. In the case of unsuper-
vised learning, a machine learning algorithms utilize a data without label, and therefore
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the algorithm does not consider the assigned response of the data sample. Supervised learn-
ing, on the other hand, checks the response of an input sample against a reference label to
determine whether or not it was correctly classified during training.

Duing the training process, the classification parameters are adjusted at each iteration to
minimize the error of the task. Similarly, regression tasks can be solved with ML algorithms
trained with a supervisor.

Let us examine the partitioning of the datasets. Remember that the datasets are used to
test and validate machine learning algorithms. To evaluate performance, the trained model
is tested on another dataset called validation dataset [108]. Unlike the training dataset,
which is used directly to change the parameters of the neural network model, the valida-
tion dataset can be used to adjust the hyperparameters if the model’s performance is not
suitable.

The final type of a dataset is test dataset [108], which is designed to evaluate trained
algorithm or neural network model. Unlike the validation dataset, the test dataset has no
influence on the training process. It is only used to evaluate the performance of the learned
algorithms.

When creating the dataset, we need to determine how many samples will be dedi-
cated to the training, validation, and test datasets. While [109] provides recommendations
for partitioning the dataset, we must also consider the specific task at hand and adjust
the partitioning.

Because face recognition algorithms use datasets composed of images, the following
information applies primarily to this type of dataset. However, the number of samples
in a dataset must be considered in almost all machine learning tasks. Since the size of
the dataset has a significant impact on the final performance of the model, we must take
this into account when designing and training a neural network. Furthermore, one of the
crucial properties of a dataset is the balance of samples across classes [110], which can
directly influence the performance of algorithms across classes.

Satisfying the requirements when creating a dataset can be time consuming and expen-
sive. Therefore, the data in the dataset can be modified to obtain a larger dataset consisting
of data represented in different situations. This can be accomplished by a method called
augmentation [111] and its idea is based on using image processing algorithms to mod-
ify the existing samples and thus extend the dataset. The former has the advantage of
faster training, while the latter has the ability to generate unique samples for each training
iteration. Among the well-known methods for image modification are cropping, rotation,
flipping, and translation [111]. However, other computer vision operations can also be used.
Furthermore, augmentation has been shown to reduce overfitting [111].

It is important to note that the data in the dataset should represent the real situation in
which the model will be used. In the case of face images, we can find the terms in the wild or
unconstrained conditions [26] to express that the data were captured outside of controlled
conditions. This means that the face images were captured regardless of the position of the
face, lighting conditions, etc. On the other hand, if a face image is captured with the direct
goal of capturing it, then we speak of a controlled capture.

Another important factor that can affect the performance of the trained algorithm is
the alignment of object of interest [112]. For example, the output of face detection algo-
rithms may be coordinates that mark the position of the face. However, the center position
of the face in the region is not guaranteed. If the face is misaligned in the region, the trained
face recognition neural network may perform poorly.
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In the following section, we present three main categories of datasets that can be uti-
lized by face recognition algorithms. It is necessary to state that the presented selection
of datasets is influenced by our opinion and in practice, it is difficult to objectively assess
the significance of individual datasets. Moreover, some datasets are intended to solve more
than one task, for example, the AFW [113] contains samples for both face recognition and
landmark regression.

3.2.1 Face detection

In the first section, we focus on datasets that are utilized by face detection algorithms.
Historically, after the introduction of the Viola-Jones and the Histogram of Oriented Gra-
dients face detector (Section 2.2.1), the researchers began to develop new possibilities for
face detection. The main need for datasets came with the advent of solutions based on
neural networks. Nowadays, the datasets are composed of face images ranging from easy,
controlled capturing scenarios, to very difficult in-the-wild scenarios.

FDDB

The dataset called Face Detection Data Set and Benchmark (FDDB) [114] was introduced
in 2010 and is presented as a benchmark for testing the face detection algorithms in uncon-
strained scenarios. An interesting feature of the dataset is that faces are labeled with ellipses.
In contrast to the face detection dataset, where faces are usually labeled with rectangles,
this brings new possibilities for the accurate evaluation of face detection. The number of
faces in the dataset is 5,171 faces in 2,845 images.

Year: 2010
Metric: 5,171 annotated faces

AFW

The Annotated Faces in the Wild (AFW) dataset was introduced in [113] and is intended
for testing algorithms. It is a relatively small dataset consisting of 468 faces in 205 images
collected from Flickr1 images. The selection was made with an emphasis on covering a wide
variation in both face viewpoint and face appearance. Each face was tagged with a bounding
box, a discretized viewpoint, and at most six significant landmarks.

Year: 2012
Metric: 468 annotated faces

MALF

With the continuous improvement of face detectors, new requirements for datasets have
emerged. In particular, the dataset is being expanded to include images taken under un-
controlled conditions. This was taken into account by the authors of the Multi-Attribute
Labeled Faces (MALF) dataset [115]. In addition, each face has meta-information associ-
ated with it, including, in addition to bounding box and pose, facial attributes such as
gender, glasses, occlusion, and exaggerated expression. The dataset is primarily intended
for a fine-grained evaluation of face detection, while it consists of 5,250 images with 11,931
annotated faces collected from the internet.

1www.flicker.com
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Year: 2015
Metric: 5,171 annotated faces

WIDER Face

In 2017, a further significant dataset for the training and evaluation of face detection al-
gorithms was introduced, significantly exceeding the number of images available at that
time [116]. The dataset contains 32,203 images with 393,703 labeled faces. Moreover, the
authors demonstrate limitations of selected face detection algorithms available at the time,
such as heavy occlusion, small scale, and atypical pose. The selection of images for the
dataset emphasizes variations in scale, occlusion, pose, and background clutter.

This data is divided into ten classes, determined by events defined using the Large
Scale Ontology for Multimedia (LSCOM) [117]. For each category, the 1,000-3,000 matching
images were found using search engines such as Google and Bing. In the last step, the data
were processed by manuall examination of all the images and also filtering the images
without faces.

Finally, the authors divided the dataset into training, validation, and testing, such that
40 % is intended for training, 10 % for validation, and 50 % for testing. According to
the difficulty of pose and occlusion of the faces in the images, the dataset is further divided
into three categories: easy, medium, and hard.

Although the dataset is popular, perhaps the most popular one, the paper lacks any
information regarding the license agreements for individual images.

Year: 2017
Metric: 393,703 annotated faces

3.2.2 Facial landmarks

Among the algorithms related to face analysis and recognition are the algorithms for deter-
mining the positions of facial landmarks. The obtained landmarks can be used by various
applications such as face alignment algorithms, facial expression detection, face deepfake
generation, and more. The challenge arises from the need to accurately locate the points,
and this challenge is multiplied by the number of points to be detected. Moreover, some fa-
cial landmarks that can be detected by available approaches intersect with anthropometric
points. In general, the accuracy of the position of such landmarks is critical for applica-
tions that use landmarks for anthropometric purposes. On the other hand, for many tasks,
a small inaccuracy of facial landmarks does not pose a problem. The positional accuracy of
landmarks is generally better for well-defined points, such as the tip of the nose, the corner
of the eyes, and the corner of the mouth.

AFLW

The Annotated Facial Landmarks in the Wild (AFLW) [118] dataset introduced in 2011 is
another representative of datasets composed of images with a wide variety of appearances.
It consists of 25,993 real images gathered from Flicker. The sample labels were chosen to
primarily mark the internal keypoints of the face, rather than the points on the outline of
the face. The number of labeled points per face image varies according to their visibility with
the assumption that the 21 points are the maximum that can be determined. The AFLW
dataset is well suited for both training and testing.
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COFW

The Caltech Occluded Faces in the Wild (COFW) [119], presented in 2013, was created
with the participation of four annotators with different levels of computer vision expertise.
Each annotator collected 250 images to represent real world situations. The images were
then manually annotated with the same landmarks as in the LFPW dataset. Consequently,
the subset of images was annotated twice to measure human performance. The final dataset
consists of 1,007 images with 29 landmarks.

300 Faces In-The-Wild Challenge

The next representative of annotated face datasets is 300 Faces In-The-Wild Challenge
(300W) [120], which was an essential part of the facial landmarks challenge in 2013 and
2015. The dataset is divided into two parts, where the first part is represented by faces
captured in indoor environments and the second part includes images captured in outdoor
environments. Each part contains 300 faces with 68 labeled landmarks.

WFLW - Wider Facial Landmarks in-the-wild

One of the datasets that contains images taken in the wild is the Wider Facial Landmarks
in-the-wild (WFLW) [121] dataset. This dataset consists of faces with a large variation in
expression, occlusion, and pose, making it possible to assume that the images were taken
in the wild. Unlike the other datasets presented, the WFLW dataset includes 10,000 faces,
each annotated with 98 landmarks. Overall, the dataset is suitable for training robust face
landmark detectors.

3.2.3 Face recognition

In the following section, we describe the collection of widely-used datasets that are used to
train and evaluate face recognition algorithms.

Labeled Face in the Wild

One of the most important benchmark datasets still used today to evaluate face recogni-
tion algorithms is the dataset called Labeled Faces in the Wild (LFW) [122], which was
published in 2007. The dataset consists of 13,233 face images of 5,749 individuals collected
from the web. The number of samples per person varies throughout the dataset, and only
1,680 identities have two or more images. The images were detected using the Viola-Jones
detector, which is now considered obsolete.

The LFW dataset is intended for limited academic purposes due to its inherent limita-
tions that could potentially bias the results. One of these limitations is the underrepresen-
tation of certain groups in the dataset. For example, children and individuals over the age
of 80 are minimally represented, and babies are not included at all. Furthermore, the ethnic
representation in this dataset is not balanced, and some ethnicities may be missing entirely.
The distribution of men and women across the dataset is also unbalanced. In [87] is stated
that the LFW contains about 75 % males.

The next drawback is the statistically significant number of samples among subgroups.
This means that the number of samples in the data is statistically inappropriate for evalu-
ating algorithms within and between subgroups. Another limitation stems from the method
of image capture; the images in the dataset are of good quality, close to studio photographs,
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because the dataset consists mainly of celebrity photos, and the images were mostly taken
by professional photographers. The images taken under difficult conditions, such as extreme
pose, strong occlusion, and others, do not make up a large part of the LFW.

According to its authors, the dataset is primarily intended for the research purposes.
Therefore, the LFW disclaimer states that the dataset should not be used to evaluate
commercial algorithms.

Currently, there is one original dataset and three additional datasets that differ in
the alignment methods used. The first additional dataset contains "funnaled images" (2007)
and the LFW-a dataset (2012) consists of images aligned by an unknown method. Images
aligned by deep funneling are included in the last dataset.

In addition, the Cross-Age LFW (CALFW) [123] dataset was introduced in 2017 [123]
to suppress the age imbalance drawbacks of LFW, see Figure 3.7.

Figure 3.7: Age gap comparison [123].

As a result, the LFW is still a popular benchmark for evaluating face recognition al-
gorithms. In Section 3.5, we present the face recognition neural networks that have been
evaluated for their performance on the LFW.

YouTube Faces Database

The YouTube Faces Database [124] is a dataset intended to study the problem of uncon-
strained face recognition in videos. The dataset is made up of 3,425 videos from 1,595
different subjects. Each subject in the dataset is represented in one to six videos. The pro-
cess of creating the dataset involved searching for videos on YouTube using the subjects’
LFW labels. Six videos for each subject were then selected and downloaded and these were
then divided into frames at a rate of 24 frames per second.

Similar to LFW, the faces were detected using the Viola-Jones detector. The resulting
faces were then filtered to suppress detections that occurred for less than 48 consecutive
frames. The term consecutive frames was defined as detections with an Euclidean distance
between their centers of less than 10 pixels. Furthermore, all regions of interest (ROIs) of
the detections are scaled by a factor of 2.2 of their original size and cropped from the frame.
These cropped images have a size of 200×200 pixels, which are subsequently scaled down
to 100×100 pixels.
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As a test benchmark, the authors introduced a list of pairs. The benchmark is based
on randomly collected pairs, half of which are equal matches and the other half of which
are mismatches. The pairs are then divided into 10 mutually exclusive subgroups. Overall,
the dataset partially complements the LFW dataset and extends it with the face images
captured in an uncontrolled environment.

AgeDB

In 2017, another dataset, AgeDB [125], was introduced for the verification of the face recog-
nition algorithms. The main characteristic of the dataset lies in the wide age distribution of
the subjects. The subjects are manually annotated, so the author considers the dataset to
be noise-free. In addition to the identity labels, the images are also annotated with gender
and age at the time of the dataset release.

In total, the dataset contains 16,488 images of 568 different subjects. The ages range
from 1 to 101 years, with an average age of 50.3 years.

MS-CELEB-1M

One of the largest datasets for face recognition was introduced by Microsoft in 2016 [126].
The dataset contains approximately one million images of 100,000 individuals. Although
the name of the dataset includes the word "celeb", the images in the dataset belong to
individuals who need to maintain an online presence for their professional lives such as
journalists, artists, musicians, activists, politicians, writers, and academics. The authors of
the dataset have prepared scraping algorithms that can assign meta information in addition
to the individual’s name.

The authors used a knowledge graph called Freebase [127] to define one million identities.
The first step was to select a subset of identities, ensuring that each identity had a positively
defined facial appearance. The items in the subset were then ranked based on their frequency
of occurrence on the web. Finally, the top one million items from the ranking were selected.

This approach was adopted for two main reasons. The first reason is that the authors
focused the benchmark on a real-world application. The second reason is that the availability
of real images for identities increases the likelihood that the images belong to the correct
identity.

Due to the fact that the dataset is intended for training and testing face recognition
algorithms, the part of the dataset intended for testing is separated. In the published
dataset, 1,500 celebrities were selected for measurement, each with two face images. Since
the authors emphasized accuracy, the images for each celebrity in the subset were manually
reviewed.

In the paper, the capabilities of the dataset were demonstrated on 100,000 identities,
with a selection of 100 images per identity. The main goal of the paper was to find an effective
approach for scraping data from the internet.

This dataset was introduced around 2016. Nowadays, the presented approach is contro-
versial. The Microsoft website with the dataset was closed in 2019. In [128] it was presented
that there is a suspicion that this dataset could have been used to track a foreign journalist
in China.

Although the dataset website has been discontinued, the dataset is still available on the
internet. Moreover, it has also been used in published papers. Some variants of this dataset
have been published nowadays, i.e. C-MS-Celeb [129]. The difference between the original
dataset and the "forked" dataset is that the mislabeled images have been removed. The

41



assumption is that the performance of the trained neural network will be better with this
dataset.

CASIA-WebFace

CASIA-WebFace [130] is another dataset for training a classifier or embedding a neu-
ral network for face recognition, consisting of images that were scraped from the inter-
net. The dataset was created by Chinese Academy of Sciences2 and is available for non-
commercial and academic purposes. The dataset contains 94,414 face images of 10,575 real
identities. From 3/2023, the dataset webpage is unavailable.

DigiFace-1M

Due to restrictions on individual privacy, datasets containing real faces can raise legal and
moral concerns. This leads to new approaches to collecting new datasets. The authors of
the DigiFace-1M [131] dataset established a goal to address three common shortcomings.
The first stems from the ethical issues raised by the fact that the face images in the dataset
are used without explicit consent. Second, a face dataset may contain mislabeled images,
which affects the performance of an algorithm. By using the generated dataset, the correct-
ness of the labels is guaranteed. The last problem that often occurs in a real face dataset is
data bias, which includes unbalanced racial distribution and celebrity photos with specific
appearances that lead to inadequate representation of individuals.

Despite overcoming these shortcomings, face images may exhibit non-standard face fea-
tures that deviate from anthropometric characteristics, see Figure 3.8. Our approach [TG.2]
to generating the dataset has a better assumption that the face features are preserved.

The dataset introduced by Microsoft in 2023 is divided into two parts, where the first
part consists of 720,000 images with 10,000 identities and the second part consists of 500,000
images with 100,000 identities.

Figure 3.8: Face images from DigiFace-1M dataset (the face images are available in low
resolution only) [131].

2http://www.nlpr.ia.ac.cn/en/
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3.2.4 Family of IJB datasets

Among the important datasets intended for face detection and recognition evaluation, we
considered the family of IARPA Janus Benchmark (IJB) datasets [132][133][134]. In con-
trast to previous datasets, these datasets were introduced by the prominent institutes NIST3

and IARPA4, which perform an independent5 evaluation of algorithms. Public challenges
began with the launch of IJB-A in 2015 [132].

Let us look closer at the dataset. The crucial features of the dataset include full pose
variation, possibility to use a dataset for face detection and face recognition, samples consist
of images and videos, wider geographic variation of the subjects, protocols for identification
and verification, ground truth of eye and nose location and so that the optional protocol
allows modeling of gallery subject. And all this for 500 subjects in 5,712 images under
Creative Commons license6.

The next generation of the dataset was introduced in 2017 and is referred to as IJB-
B [133]. In contrast to the previous dataset, the number of subjects increased to 1,845,
where 21,798 images and 7,011 videos were annotated. At the time of publication, it was
the largest annotated unconstrained joint detection, recognition, and clustering benchmark.
The dataset covers 10 different protocols to satisfy the mentioned domains. The IJB-B
protocols and the results of Government-Off-The-Shelf (GOTS) [135] algorithms have been
evaluated and published.

The last generation of IJB is represented by the IJB-C dataset [134]. Similar to the
previous dataset, the number of subjects has been further increased to 3,531 within 31,334
images and 11,779 videos. The majority of the dataset consists of face images of celebrities,
such as actors and performers, which are strongly associated with physical appearance and
may be less representative of the global population. To avoid these drawbacks, the authors
used other sources to ensure the diversity of the subjects’ professions.

3.2.5 Datasets with face in varying angels

Multi-PIE [136] - other datasets include the Multi-PIE, which consists of images from
337 subjects taken in four sessions over six months, and includes faces taken from exact
viewpoints. This dataset is no longer available.

Celebrities in Frontal-Profile in the Wild (CFP) [137] - the dataset consists of frontal and
nonfrontal images of celebrities, which is its strength over others. The dataset contains
images of 500 individuals with 10 frontal images and four non-frontal images. To evalu-
ate the algorithms, the scenarios were prepared for both frontal-frontal and frontal-profile
comparisons.

Headpose [138] - although the dataset consists of only 15 individuals, there is an advantage
in the number of images taken at specific poses.

UMDFaces [139] dataset - the next interesting representative of face datasets is UMDFaces
that contains 367,888 face annotations for 8,277 subjects. Each face is annotated with yaw,
pitch, and roll. Unfortunately, the dataset is temporarily unavailable.

3National Institute of Standards and Technology
4Intelligence Advanced Research Projects Activity
5Some companies do not consider this testing to be independent.
6https://creativecommons.org/licenses/
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3.3 Deep features extractor - backbone

In modern convolutional neural networks, the stage responsible for feature extraction is
referred to as backbone [140]. This is an essential part of the neural network that is often
trained on a different task, which also demonstrates its capabilities [140]. The known back-
bones are primarily trained as image classification or object detection tasks. For the use in
other types of tasks, the last fully connected layer is removed and replaced by the head,
thus creating a new model.

Using one of the known backbones, we can save time in designing a neural network.
Of course, we can propose our own backbone, but improving the capabilities of a feature
extractor is difficult because there are many parameters to be considered. Overall, most face
detectors and recognition models are based on neural networks using one of the backbones
presented below.

However, a detailed description of the backbones is beyond the scope of this thesis.
Therefore, we present only a simplified summary of the backbones to highlight their capa-
bilities to be used in embedded systems to solve face detection and recognition tasks.

The pioneer of well-known backbones is AlexNet [141], introduced in 2012 for image
classification, which consists of convolutional, max-pooling, and dropout layers. In total,
AlexNet contains 60 million parameters and 650,000 neurons. AlexNet has been succeeded
by families of backbones, such as VGG-Net [142], ResNet [98], Inception [143] and DenseNet
[144].

Inception backbone is composed of Inception modules [140]. This module is composed
of convolutional blocks of different kernel sizes, with the layers arranged in parallel. This
means that the input of the Inception layer is broadcast to the layers and their output is
merged into one, see Figures 3.9 and 3.10.

Figure 3.9: Inception module [145].

Among the new generation of backbones is EfficientNet, which was released in 2019
[146]. In general, improving the performance of neural networks can be achieved by scaling
the architecture. Note that known architectures include subtypes according to depth. For
example, the ResNet architecture can be scaled by the number of convolution blocks from
ResNet50 to ResNet300.

Next possibility to change the number of parameters is to scale a neural network archi-
tecture up by the width by changing the resolution of an input image. Given the assump-
tion that neural network performance depends on depth, we can change the neural network
topology to achieve the required performance for the specific task.
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Figure 3.10: Inception module with dimension reductions [145].

The first empirical quantification of the relationship among the three dimensions of
the width, depth and resolution of the network was presented in [146]. The authors focused
on balancing the complexity, number of parameters and performance of the neural network
with the goal of creating a new generation of backbones. As part of the research, the authors
designed new backbone architectures called EfficientNet. The cornerstone of the architecture
is the inverted bottleneck MBConv [147].

To select relevant blocks and their parameters, the design of the architecture was con-
ceived as an optimization task to optimize ACC(m)×[FLOPS(m)/T ], where ACC(m) and
FLOP (m) express the accuracy and FLOPS of the model m, respectively. The parameter w
is used to control the trade-off between accuracy and FLOPS. Furthermore, the other archi-
tectures of the EfficientNet family were derived from the baseline using the scaling method,
which determines appropriate parameters to describe the depth, width and resolution of
the base model. The parameters are then locked and scaled by the scaling factor.

When it was first released, EfficientNet outperformed most of the backbones available at
the time [146]. Surprisingly, according to our research, EfficientNet has not yet been thor-
oughly explored in terms of face recognition. Nowadays, the next generation of EfficientNet
has been introduced, called EfficientNetV2.

Although the accuracy of these backbones has improved over time, the complexity of
their architecture has also increased. Therefore, the use of such backbones in an embedded
solution is limited. The need to use neural networks in mobile and embedded applications
led to the development of backbones that focused on processing speed performance. The first
significant attempt to meet these requirements was made by Google with the MobileNet
backbone. The essential part of the backbone is the use of depth-wise convolutional layers
to reduce the computational cost (similar layers are used in Inception). There are currently
many versions of MobileNet [148][149].

If we decide to use a platform to accelerate a neural network, we need to know what
operations the platform supports. In the case of EfficientNet-like backbones, the base of
the architecture has been modified to a lightweight version for effective computation by
Google TPU [150]. The main goal of this version of EfficientNet is to ensure effective
computation on TPU. In addition, EfficientNet-Lite has a similar accuracy on ImageNet
with lower latency than Resnet50, see Figures 3.11 and 3.12. Likewise, the MobilenetV2/V3
is also intended for embedded and mobile devices.
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Figure 3.11: Latency comparison of EfficientNet-Lite to MobileNetV2, ResNet50 and In-
ception v4 [151].

Figure 3.12: Model size comparison of EfficientNet-Lite to MobileNetV2, ResNet50 and
Inception v4 [151].

3.4 Face detection

Face detection is the first stage in the face recognition process, where the goal is to precisely
locate the face area in an image while minimizing unnecessary background inclusion. Since
the face detection task can be safely replaced by general object detection, in the following
sections we discuss the concept of object detection in general.

Historically, face recognition has used a technique known as the sliding window method,
usually in connection with Histogram of Oriented Gradients (Section 2.2.1) and classifica-
tion algorithms such as Viola-Jones (Section 2.2.1). As the name implies, this method in-
volves a window that systematically traverses the image in predefined increments. A binary
classification is typically performed at each position. However, this approach has several
limitations – for one, it assumes that the object to be detected exactly matches the dimen-
sions of the sliding window, which proves restrictive in real-world scenarios where objects
of the same type can vary significantly in size. This limitation also extends to the aspect
ratio of the sliding window. Another challenge is determining the appropriate step size for
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window movement. A larger step can result in missed object detection, while a smaller step
significantly increases the number of classification operations.

Due to the inefficiency of the techniques, the performance of detection in real time is
limited. This led to the replacement of the method in modern algorithms. Around 2013,
approaches using neural networks began to be published, and the sliding window over
randomly generated windows changed to one-stage detectors with the ability to locate
objects in an image.

Let us look at two concepts commonly used in object detection algorithms. To evaluate
the positional accuracy between the detected bounding box and its reference, the metric
Intersection over Union (IoU) [152] is commonly utilized. The metric expresses the inter-
sections between the predicted bounding boxes and their ground truth bounding boxes.
Mathematically, the metric is defined as [152]

IoU =
|A ∩B|
|A ∪B| (3.10)

where A,B ⊆ S ∈ R
n and S expresses the shape of the detection.

If |A∩B| = 0 then IoU(A,B) = 0. Thus, IoU does not reflect the positional relation of
the shapes, which is considered the main drawback [152] of the metric.

We also focused on Non-Maximum Suppression [153] (NMS), which is an algorithm for
filtering a set of proposed boxes with the goal of finding the one that best fits the object.
The algorithm computes the IoU metric to express the relationship among the boxes.

The algorithm is divided into several steps, where the input contains proposed boxes
B, corresponding confidence scores S, and overlap threshold IoU N . The expected output
is a list of filtered prediction bounding boxes. The algorithm follows the steps described in
Algorithm 1.

Algorithm 1 Non-maximum Suppression algorithm [153].
.

Input:
B = {b1, ..., bN}; B - is the list of initial detection boxes
S = {s1, ..., sN}; S - contains corresponding detection scores
Nt - is the NMS threshold
D ← {}
while B 6= empty do

m← argmax(S)
M← bm
D ← D ∪M;B ← B −M
for biinB do

iou_m ← iou(M, bi)
if iou_m >= N then
B ← B − bi;S ← S − si

end if
end for
return D,S

end while

The basis of the algorithm is parameterized by the threshold. Therefore, in certain cases,
the correct detection may be suppressed. We assume three object proposals that overlap
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with a confidence score around 0.8. Although these are three different objects, in the second
step, the correct object can be eliminated when IoU is higher than the set threshold. This
drawback has a significant impact on the accuracy of the detection. Fortunately, the algo-
rithm has been modified and the drawback has been suppressed. The improved version of
the algorithm is called Soft-NMS and it is described in Algorithm 2 [153].

Algorithm 2 Soft Non-maximum Suppression algorithm [153]
.

Input:
B = {b1, ..., bN}; B - is the list of initial detection boxes
S = {s1, ..., sN}; S - contains corresponding detection scores
Nt - is the NMS threshold
D ← {}
while B 6= empty do

m← argmax(S)
M← bm
D ← D ∪M;B ← B −M
for bi ∈ B do

si ← sif(iou(M, bi))
end for
return D,S

end while

where the sif is defined by

si =

{

si, iou (M, bi) < Nt

si (1− iou (M, bi)) , iou (M, bi) ≥ Nt
, (3.11)

Modern object detectors can be categorized by the number of stages. The most com-
monly used object detectors consist of one or two stages. However, the detectors based on
the single-stage concept are considered the state-of-the-art detectors [154][155].

3.4.1 R-CNN

The Region with CNN Features (R-CNN) [156] algorithm was published in 2013 and is one
of the first approaches using CNN to localize and classify objects in an image. This detector
system consists of three modules, see Figure 3.13. The first is intended to generate category-
independent region proposals. Similar to the sliding window, the object classification is
performed for each proposal. Thus, in order to fulfill the detector function, there are two
other modules to ensure object classification. Since the CNN part of the system has a fixed
input size (resolution 227×227 was used in the paper), the proposed regions have to be
adapted to the size. In the next step, each object proposal is mapped to a 4096-dimensional
feature vector and then classified by the SVM algorithm (Section 2.2.1). The detector may
generate more regions for individual objects, which should be reduced by the post-processing
algorithm. One of the ways to reduce the proposals brings the NMS algorithm, which utilizes
the IoU score of the covered bounding boxes for each class independently.

The speed capability of the algorithm is presented in [156]. The test scenario described
by the authors in this paper uses about 2,000 proposals generated by the Selective search
algorithm. Computing region proposals and features took 13 seconds on GPU and 53 seconds
on CPU (the CPU and GPU specifications are stated in [156]). Nevertheless, the speed of
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the detector system is one of its main drawbacks. On the other hand, it is possible to achieve
high accuracy of object detection with this detector.

Figure 3.13: Architecture of R-CNN object detector [156].

3.4.2 Fast R-CNN

The next iteration of R-CNN brings two algorithms, the first being Fast R-CNN (2015) [157].
Like R-CNN, the Fast R-CNN uses Selective search [158] to generate proposal regions. In
contrast to R-CNN, the architecture of Fast R-CNN combines the proposed regions with
the feature map generated by the CNN neural network. For feature extraction, one of
the possible options is to use a well-known backbone (see Section 3.3), or it is also possible
to design your own architecture to perform feature extraction. Furthermore, each extracted
feature vector is fed into a sequence of fully connected layers, which are divided into two
branches. The first branch is responsible for predicting the probabilities of K object classes
using softmax. The output of the second branch is composed of four real values representing
the position of the bounding box, which is labeled by one of the K object classes. Moreover,
like R-CNN, the regions proposed by Fast R-CNN have varying sizes, thus they need to be
unified. The authors designed and implemented a layer called ROI pooling, which aims to
map regions of different sizes to regions of a uniform size. The ROI pooling layer is based
on the spatial pyramid layer with only one pyramid level. The input layer is divided into
subwindows of size h/H by w/W , where h and w denote height and width, and H and W
express the required number of subwindows. By pooling each sub-window, we obtain a fixed
size of output features, which are then fed into fully connected layers. The architecture is
shown in Figure 3.14.

Figure 3.14: Architecture of Fast R-CNN object detector [157].

Due to the two different outputs of the neural network, a loss function should be uti-
lized to process both. The first of them is the classification vector p = (p0, . . . , pK), which is
represented by a discrete probability distribution (per ROI), where K is the number of cate-
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gories. In the case of the bounding box regression, the output consists of tk =
(

tkx, t
k
y, t

k
w, t

k
h

)

for each of the K object classes. Thus, the loss function is defined as [157]

L (p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc (t
u, v) (3.12)

where u,v are ground truth class and ground truth bounding box, respectively, Lloc
expresses the ground truth bounding box and predicted tuple for class u in the vector t,
Lcls(p, u) = − log pu is log loss function for true class u defined by following loss [157]

Lloc (t
u, v) =

∑

i∈{x,y,w,h}

smoothL1 (t
u
i − vi) , (3.13)

where smoothL1 [157] is defined as follows

smoothL1(x) =

{

0.5x2 if |x| < 1

|x| − 0.5 otherwise
(3.14)

Fast R-CNN achieved state-of-the-art performance on VOC20127, VOC20108

and VOC20079 when it was released.

3.4.3 Faster R-CNN

Another type of R-CNN is the Faster R-CNN algorithm [159], which, to put it bluntly,
uses only CNN without any other supporting algorithms. Unlike other R-CNN approaches,
the proposal windows are generated directly by the convolutional neural network. The high-
level idea is to feed an image into a neural network and use its responses, including bounding
box regression and box classification.

In Fast R-CNN, the proposal windows were fed into a classifier neural network. However,
the approach suffers from a fundamental drawback that arises from the large number of
candidates that need to be processed by a separate neural network, resulting in increased
computational complexity. Due to this drawback, the author of Faster CNN focused on
suppressing it.

Before explaining the principle of classification in Faster R-CNN, we describe the ap-
proaches used for multiscale prediction. In [159] three different options are presented.
The first is based on a pyramid of images, where the input image is resized to different
scales and for each size a feature map is computed, which is time-consuming. The second
method preserves the size of the image/feature map and uses sliding windows of different
sizes to extract features. Finally, the third option, used by Faster R-CNN, is called pyramid
of anchors and relies only on feature maps and images of a single scale/size. This approach
replaces the direct bounding box regression with a method based on the localization of
the bounding box relative to the anchors. It is appropriate to mention that this method is
used in other state-of-the-art algorithms that outperform the Faster R-CNN [17][160].

From the perspective of Faster R-CNN architecture, the first part employs a convolu-
tional neural network that is intended for generating object proposals and performing ob-
jection detection simultaneously. This stage of the neural network utilizes the same weights
to solve both of the tasks.

7http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
8http://host.robots.ox.ac.uk/pascal/VOC/voc2010/
9http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
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The output of the feature extractor is then sequentially slid over by a small neural
network. In the published research paper, the small network contains convolutional layers
followed by two sibling 1×1 convolutional layers.

Using this small neural network, the prediction is conducted at each location in the im-
age. Thus, the vector size for regression is derived from the number of detections k, assuming
that the number of detections per location is equal to the number of anchors. The bounding
box is defined by coordinates and size relative to an anchor (cx, cy, cw, ch). It follows that
the vector size is 4k and, for classification, the vector size is 2k due to the use of a two-class
softmax layer.

Unlike Fast R-CNN, it is clear that Faster R-CNN is a translation-invariant detector,
as there is the same set of anchors for each sliding window. When using either R-CNN or
Fast R-CNN algorithm, we cannot guarantee that the same proposal will be generated at
different locations. Due to the irregular distribution of regions produced by the MultiBox/S-
electiveSearch generator [158] in an image, it is challenging to ensure translation invariance
of the detector.

At training time, a label with IoU between the predicted box and the ground truth
box above 0.7 is considered a positive label. On the other hand, the labels with the IoU
threshold below 0.3 are considered negative.

The loss function is divided into two parts, where the first is the classification logarithmic
loss and the second is the regression loss based on a robust logarithmic function (smooth
L1, see Eq. 3.14). The loss is defined by the following equation [159]

L ({pi} , {ti}) = 1
Ncls

∑

i Lcls (pi, p
∗
i ) + λ 1

Nreg

∑

i p
∗
iLreg (ti, t

∗
i ) . (3.15)

where pi is the predicted probability and ti is the predicted vector described by four
parameterized coordinates for each anchor indexed by i. The parameters p∗i , t

∗
i express

the ground truth labels for the classes and for the box associated with a positive anchor,
respectively. The Lcls performs log loss over two classes. For regression loss, it is obvious that
the function is activated only for positive anchors and the loss is defined as Lreg (ti, t∗i ) =
R (ti − t∗i ), where R is the robust loss function (smooth L1). The normalization of the losses
is expressed by the parameters Ncls and Nreg, while the loss is balanced by λ.

3.4.4 Single Shot Detector

The Single Shot Detector [160] (SSD) belongs to a group of one-stage detectors designed
for real-time object detection and classification. Although the use of improved versions of
the R-CNN has led to a reduction in processing time, they are still not suitable for use in
real-time applications. Therefore, the goal of the next generation of detectors is to suppress
this drawback. The authors of [160] modified the extraction method to reduce the number
of region evaluations.

In the SSD, region localization is provided by a multi-scale feature map and default
boxes. Although the SSD is considered a single stage detector, the architecture of the neu-
ral network is divided into two subnetworks, the backbone and the head. In many neural
networks, a pre-trained backbone is used to extract the features of common objects. How-
ever, the backbone usually has a fully connected layer (FC) as the output layer. To adapt
it to the detector, the FC layer is removed and replaced by the head. Among the well-
known backbones, ResNet, DenseNet, AlexNet and VGG16 can be used for these purposes
(for more information, see Section 3.3). The solution published in the original paper uses
VGG16.
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From an architectural standpoint, the backbone output is used in different stages of
the SSD head network. For a better understanding, the architecture is shown in Figure
3.15. Let us look at the first stage of the SSD head; the output of Conv4_3 preserves
the same shape (38×38) as the output of the backbone. Each stage of the head is divided
into cells, and these cells are responsible for classification and localization.

Figure 3.15: Architecture of Single Shot Detector [160].

As mentioned above, the SSD detector uses predefined bounding boxes called default
boxes. Each cell is assigned four default boxes. Now, one might ask why it is necessary to
use a default box when we have bounding boxes derived from annotations. The idea is to
suppress the influence of the shape of the ground truth object on the training process, since
it can be influenced by instances of an object with different shape. The predefined set of
default bounding boxes is the same for each cell in a given layer. In addition, the set of
default boxes can be different for each of the head layers.

Overall, the predicted bounding boxes are calculated relative to the default bounding
boxes at each cell. The bounding boxes are represented by four values (cx, cy, w, h), where
cx and cy are the differences between the center of the bounding box and the center of
the default bounding box. Given this knowledge, it is clear that a default bounding box
represents only one potential detection. The default boxes are chosen manually to find
the sizes and proportions that most closely resemble the real objects.

Unlike most two-stage detectors, SSD employs only a single CNN to generate proposals
and perform their classification. Additionally, the output of the backbone is segmented into
cells, with individual cells responsible for localization and classification. Moreover, the effec-
tiveness of multiscale detection is tied to the number of head stages. This is the only reason
why SSD uses multiple layers with different resolutions. The layer closest to the feature ex-
tractor is responsible for detecting small objects, because it has a higher resolution. While
the following layers have gradually decreasing resolutions and are responsible for detecting
larger objects. In the paper [160], the detector head consists of six convolution layers, where
five of which perform object detection. In each layer, convolution is conducted using small
filters and its output is fed to the next stage and can also contribute to the output vector.
The shape of the contributions is defined by the number of classes, the number of default
boxes, and the size of the bounding box vector. By changing the part, we can adapt the SSD
according to the specific use case.

In practice, the probability that the ROI labels of training samples have the same shape
as the default bounding box is close to zero. This raises a question of how to determine
which detections should be labeled as positive. In SSD, the IoU metric was used to de-
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termine the ratio of the intersected area to the connected area for two regions. Based on
the published parameters, if IoU is greater than 0.5, the match is considered positive.

In order to train a neural network, it is necessary to define a loss function. As we already
know, the SSD performs localization and classification. Therefore, the loss function consists
of two parts, the localization loss Lloc and the confidence loss Lconf [160], defined as follows
[160]

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g)) (3.16)

where N is the number of the matched default boxes. The loss function Lloc is defined
by [160]

Lloc(x, l, g) =
N
∑

i∈Pos

∑

m∈{cx,cy ,w,h}

xkij smoothL1
(

lmi − ĝmj
)

(3.17)

where xpij = {1, 0} determines the correspondence between the ith default box and
the jth ground truth box of category p. The predicted box is denoted as l and the ground
parameter is denoted as g. Additionally, the confidence loss is a cross-entropy loss over
categories c given by [160]

Lconf(x, c) = −
N
∑

i∈ Pos

xpij log (ĉ
p
i )−

∑

i∈Neg

log
(

ĉ0i
)
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p
i

∑

p e
c
p
i

(3.18)

In order to ensure the stability of the neural network training, the authors use support
methods. The first one is focused on the balance ratio between the negative and the positive
matches and it is called the hard negative mining [160]. Instead of using all negative exam-
ples, only a subset of them is selected for training. In practice, the negative examples are
sorted in ascending order by their confidence loss for each default box. Such sets are then
selected from the top to achieve a 3:1 ratio of negative to positive examples. An equally
important part of SSD training is data augmentation, which helps to improve the accuracy
of the neural network.

3.4.5 Multi-task Cascaded Convolutional Networks

In contrast to a single-task neural network, a multitask neural network brings the ability to
solve more than one task, which can be useful in many cases. Similarly, in face recognition,
we can fuse face detection and face keypoint detection into one step using the multitask
neural network. One of the representatives is Multi-task Cascaded Convolutional Networks
(MTCNN) [161], which has the ability to perform detection and landmarks regression si-
multaneously. The process is carried out in several stages. Before the input is processed by
neural networks, it is resized to multilevel scale pyramid to ensure the scale invariance of
the detector.

The pyramid is then fed into the first stage, called Proposal Network (P-Net) [161], which
is built by a fully convolutional neural network, so its output is a feature map. Similar to
the feature extractor in Faster R-CNN, the ROI candidates are generated by the P-Net.
Then, the NMS algorithm reduces the obtained candidates calibrated by the bounding box
vector.
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The next stage, the neural network called Refine Network (R-Net) [161], is intended to
suppress a large number of false proposals, and then, like in the previous stage, the can-
didates are reduced by the NMS. Unlike the P-Net, the R-Net is fully connected, since its
outputs are represented by a vector.

The third stage, known as the O-net network, excludes other candidates from the re-
maining ROIs and is responsible for determining the output of the detector. In the original
paper, the detector has three outputs: face classification, bounding box regression, and face
landmark regression.

At training time, each task is assigned a specific loss function. For face classification,
which is considered to be a binary classification, the cross-entropy loss function is used,
given by [161]

Ldeti = −
(

ydeti log (pi) +
(

1− ydeti

)

(1− log (pi))
)

(3.19)

where the pi expresses the probability of the presence of a face.
Another loss function is intended for bounding box regression, specifically to compute

the offset between the predicted bounding box and the nearest ground truth [161]

Lboxi =
∥

∥

∥
ŷboxi − yboxi

∥

∥

∥

2

2
(3.20)

where the ŷboxi is the output of the network and yboxi is the ground truth coordinate.
Finally, the last loss function, similar to the bounding box regression, calculates the dif-

ference between ground truth landmarks and predicted landmarks. Mathematically, it is
defined as follows

Llandmark
i =

∥

∥

∥
ŷlandmark
i − ylandmark

i

∥

∥

∥

2

2
(3.21)

where ŷlandmarki expresses the regression of the landmarks and yboxi is the location of
the ground truth of the landmarks. Both of these functions use the Euclidean distance as
a metric.

Overall, the loss function is defined by [161]

L = min
N
∑

i=1

∑

j∈{det,box,landmark}

αjβ
j
iL

j
i (3.22)

where N is the number of samples, αj expresses the importance of the task and βji ∈
{0, 1} denotes negative or positive samples, respectively.

Another technique closely related to neural network training is the hard sample min-
ing. The technique is used to mine only those samples that can significantly contribute to
the training within a mini-batch. In the case of MTCNN, the samples are sorted by their
losses calculated in the forward propagation phases. Of these, 70 % is used to compute
the gradient.

According to the published paper [162], the CNN for face detection performs binary
classification, which means that we need fewer parameters in the neural network while
maintaining higher discrimination power. The authors have compared their architecture
with that of [162] and found that the response produced by their solution provides better
results.
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3.4.6 YOLO

YOLO (You Only Look Once) [163] stands as a renowned neural network for object detection
and serves as another representative of one-stage detectors. Similar to the SSD, the classi-
fication and box regression tasks are performed simultaneously by the YOLO architecture.
The output of the feature extractor is divided into cells, where each cell is responsible for
detecting an object. Unlike R-CNN and Fast R-CNN, YOLO views the image globally so
that contextual features can be utilized. YOLO outperforms two-stage detectors such as
R-CNN, Fast R-CNN, and Faster R-CNN. Neverthless, the comparison between SSD and
YOLO is not as straightforward, because it must take into account the version of YOLO
and the application for which the detector is used.

On closer inspection, the architecture of YOLO includes two main parts. The ImageNet
[163] was chosen as the default backbone, although other architectures can be used for
feature extraction.

With the head of the YOLO neural network, the feature map is divided into a S×S
grid, where S is a size of one dimension. In the published article, the grid has a size of 7×7
cells. For each cell, vectors are defined consisting of B bounding boxes with their confidence
scores and C class probabilities. A bounding box is represented by four predictions x,y,w,h
and its confidence score, which determine how probable it is that an object was detected
and how accurately it is defined and located. A bounding box is assigned to a cell if its
center is inside the cell, otherwise the confidence score is set to zero. During the testing
phase, the confidences of the bounding boxes are multiplied by the probabilities of the class
C (in each cell there is only one set of probabilities for the class), and the result predicts
the assignment of the object to a particular class. Using the coefficients S = 7 and B = 2,
the neural network can detect up to 98 boxes.

In the YOLO loss function, a squared metric is used for both regression and classifica-
tion of a bounding box to determine the error between the reference and the prediction.
Furthermore, the part of the loss that solves the regression of a bounding box is weighed
by λcoord, while λnoobj is related to confidence predictions for boxes that do not contain
objects. Balancing these parameters can lead to model stability. According to the publica-
tion, the authors increase the weight for the prediction of a bounding box at the expense
of λnoobj . Overall, the loss function L is defined by the following equation [163]

L = λcoord
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where by ✶

obj
i determines whether the object appears in cell i or not. Similarly, ✶obji

determines whether the box predictor j in cell i is "responsible" for the prediction.
We have described the techniques that were used in the first version of YOLO. Despite

its numerous advantages, this network also has its shortcomings, such as the limitation of
detection per cell, since it can only perform two detections per cell for one class. This means
that small objects in group cannot be detected properly. Another limitation is related to
the loss function and the fact that the calculation of error is the same for different object
sizes. Therefore, the larger object is not susceptible to small errors, while small objects
should be significantly affected by small errors (they may have a low IoU value).

Since the YOLO detector is a very popular detector, its subsequent versions have
improved performance and suppressed drawbacks. The following sections briefly describe
the selected newer YOLOs.

YOLO9000

Based on the YOLOv1 error analysis, the authors redesign the YOLO architecture by
adding a batch normalization layer to the convolution layers [164]. This increases the mAP
value by more than 2 % and also helps to regularize the model. Unlike YOLOv1, this YOLO
predicts detections on a 13×13 feature map, whereas the preceding pass-through (26×26)
layer contributes to the output vectors consisting of predicted detections. This modification
is intended to improve the ability of the neural network to detect smaller objects. Another
improvement was achieved by using anchor boxes instead of directly predicting the bounding
boxes. Overall, we can see that the number of units is the same, but the topology of the layer
was changed, i.e. the spatial locations are stacked in different channels.

YOLOv5

Since the release of the original version of YOLO, several other versions have been released
through 2020 [165]. In 2020, just a few months after the release of YOLOv4 [166], Ultr-
alytics introduced YOLOv5. YOLOv5 replaces PyTorch’s darknet implementation and is
heavily inspired by the techniques introduced in YOLOv4. A notable architectural change
is the use of a backbone, neck, and head-based structure first introduced in YOLOv4. This
architectural principle is also described in RetinaFace (Section 3.4.7).

The underlying architecture is rooted in CSPDarknet53 [166], which has been adapted
to lower memory and computational costs. For the neck, the Spatial Pyramid Pooling Fast
architecture is used together with a modified CSP-PAN. The design of the heads is inspired
by YOLOv3 [167].

In addition, YOLOv5 incorporates several augmentation methods, including Mosaic,
Copy Pass, Random Affine, MixUp, HSV augmentation, and others, which are taken from
the albumentations package10.

Similar to YOLOv4, the training uses the CIoU loss [166] for supervision and uses cross
mini-batch training.

YOLOv7

YOLOv7 [168] introduced further changes to the architecture and subroutine algorithms
to provide better training. The underlying architecture is also based on YOLOv4 [166].
The primary modification is the integration of Extended efficient layer aggregation network

10https://albumentations.ai/
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(E-ELAN) [168], a mechanism that manages the shortest and longest gradient paths, allow-
ing for more efficient learning and convergence of the network. In addition, the architecture
is designed with scalability in mind, which is achieved through a concatenation-based struc-
ture.

The trainable bag of freebies11 category includes techniques such as RepConv [169],
where the identity connection is removed, resulting in RepConvN, specifically adapted for
YOLOv7. For training support, two types of heads are used: one for final output and another
designed to enhance the training process. These heads are associated with two different sets
of labels. Soft labels are associated with the auxiliary head, while fine labels correspond to
the output head. In addition, YOLOv7 has placed the batch normalization in the Conv-Bn
activation to connect a convolutional layer directly to the batch normalization layer. Similar
to YOLOR [170], this version of YOLO uses implicit knowledge to avoid suboptimal future
generation. The final reference model, YOLOv7, is marked as an EMA model intended for
the teacher method.

3.4.7 RetinaNet and RetinaFace

RetinaNet [171] is one of the state-of-the-art neural networks designed to solve multiple
tasks in a single step. From a face detection standpoint, this architecture is used in the de-
rived network called RetinaFace [154]. RetinaFace can solve tasks involving face classifi-
cation, face box regression, face landmark regression, and dense face regression. However,
the main concept is the same for both RetinaNet and RetinaFace, differing only in their
configurations.

Let us examine the architecture of RetinaNet. In the first part, the input image is
processed by ResNet, and selected branches of its outputs are fed into a multiscale feature
pyramid based on the Feature Pyramid Network (FPN) [172]. To understand the use of
the FPN, it is necessary to understand the meaning of the layers in context. As the size of
the feature layer decreases, the ability to extract a semantic value increases. In the SSD,
only the lower layers are used for object detection, so the detector performs much worse
for small objects. The idea of FPN is to add a complement to ResNet that combines
low-resolution (semantically strong) features with high-resolution features. In other words,
the FPN performs an upscaling of the context information represented by the feature layer
and merges it with the corresponding feature map of the backbone. Overall, the FPN is
fast in computation and semantically strong.

In this architecture, instances of a subnetwork responsible for performing the multi-tasks
is assigned to selected levels of the pyramid. In RetinaNet, this part is called the context
module and is responsible for solving the tasks mentioned above.

The loss function responsible for the classification is designed with the focal loss instead
of the cross-entropy loss used in most detectors. The cross-entropy loss is not suitable in
a situation where the classes are highly unbalanced, which occurs when the number of
anchors is high. The focal loss allows to increase the importance of hard samples to the loss
function and vice versa to reduce the influence of easy samples. The focal loss is described
as [171]

FL (pt) = − (1− pt)γ log (pt) (3.24)

11The term bag of freebies characterizes methods that modify training strategies or increase training costs,
all in an effort to improve object detector accuracy while keeping inference costs the same [166]
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where pt is the estimated probability depending on the ground truth class and γ is
the focusing parameter. However, the loss function was not used in the published Reti-
naFace. The definition of the RetinaFace loss function is as follows [154]

L = Lcls (pi, p
∗
i ) + λ1p

∗
iLbox (ti, t

∗
i ) + λ2p

∗
iLpts (li, l

∗
i ) + λ3p

∗
iLpixel (3.25)

where Lcls is the class probability for the anchor i realized by the softmax loss. Lbox
refers to loss for bounding box regression, where the bounding box is represented by ti =
{tx, ty, tw, th}i and its ground truth is marked as t∗i . Furthermore, we use Lbox = R (ti − t∗i ),
where R is the robust loss function (Smooth−L1). The loss of facial landmarks Lpts (li, l∗i )
is solved as a regression task, where {lx1 , ly1 , . . . , lx5 , ly5}i and l∗i =

{

l∗x1 , l
∗
y1
, . . . , l∗x5 , l

∗
y5

}

i
defined the prediction of five face landmarks and their ground truth for positive anchor.
The last part of the loss is a dense regression that includes the predicted parameters Pcam,
the illumination parameters Pill, and the colored mesh DPST

. Then it is defined by [154]
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(3.26)

where W and H are the dimensions of the anchor crop I∗i,j (ground truth).

3.4.8 TinaFace and SCRFD

An alternative approach to designing neural networks for face detection involves tailor-
ing the model exclusively for the face detection purpose. An example of such network is
TinaFace [155]. TinaFace is a detector based on established state-of-the-art techniques. Its
creators used the principles of the RetinaNet neural network, widely regarded as the most
advanced model for generic object detection available today.

TinaFace and RetinaFace share a common core architecture, but instead of using context
blocks [154], the TinaFace’s authors use inception blocks [155] combined with head blocks.
Inception blocks consist of convolutional layers in a parallel topology used for both object
and context capture at multiple scales [155]. In addition to classification and regression
heads, TinaFace also incorporates an IoU-aware head, which is used for resorting the clas-
sification score and suppressing false-positive detected boxes. TinaFace’s feature extractor
utilizes a six-level FPN, which operates on square-shape images, each with dimensions of
(i.e 640×640).

The TinaFace’s authors also introduced Distance-IoU Loss (DIoU), which outperforms
Smooth L1 loss for bounding box regression. While Smooth L1 loss guarantees stable train-
ing, this metric does not consider IoU. Therefore, the authors replace Smooth L1 with DIoU,
which, according to them, is more suitable for small objects. DIoU is defined as follows [154]

LDIoU = 1− IoU +
ρ2

(

b, bgt
)

c2
(3.27)

where b and bgt express the central points of the predicted box and the ground truth
box, ρ2 is the L2 distance, the C means the diagonal length of the smallest enclosing box
covering the two boxes.

Although the performance of TinaFace is really impressive, the authors made the ar-
chitecture based on the analysis of WIDER Face dataset, in which roughly two thirds of
the data represent small objects.
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The next iteration of RetinaNet-like algorithms is SCFRD, Sample and Computation Re-
distribution for Efficient Face Detection [173]. The authors perform an analysis of TinaFace
and propose improvements in the design of face detection, both from an architectural and
a training standpoint.

Though analyzing neural network model space, the authors find a model with reduced
complexity, whereas the performance was preserved. This optimization is performed using
a technique that is used in RegNet [174]. The idea is based on constricting selected degrees
of freedom of the model. Simply, some parameters of neural network are fixed, and some
can be changed. For example, we fix filter kernel size and define that the number of filters
is between 16 and 64 where the number must be divisible by sixteen. From this we can
generate four models. Using the techniques, we can deal with the influence of the parameters
to performance of training network.

The training process was also adjusted considering that the WIDER dataset contains
a large number of small faces.

3.4.9 Summary

Based on the study of face detectors, we can consider detectors with the FPN architecture,
which is a fundamental part of RetinaFace, TinaFace and SCFRD, as state-of-the-art de-
tectors. These detectors together with the YOLOv7 detector represent the best solution
for face detection today. In future developments, we expect reduction of the number of
parameters and acceleration of the response time of these neural networks.

3.5 Face recognition algorithms based on deep convolutional
neural network

According to the timeline presented in Section 2.1.1, modern algorithms for face recognition
have been based on neural networks since around 2015. In addition, sufficient computing
power and large datasets with face images have become available. These aspects have led
researchers to focus on solutions based on neural networks. The first published neural
network was DeepFace, which achieved a recognition accuracy of 97.35 % in face verification
on the LFW dataset [122], while the accuracy obtained by humans was 97.53 %. Although
the results of face verification were slightly worse in the case of the neural network, this
started the era of face recognition using neural networks [175]. Currently, face recognition
algorithms based on neural networks achieve excellent accuracy.

To train a neural network, it is necessary to use a dataset meeting the criteria defined
in Section 3.2. However, in practice, it is difficult to meet the criteria, mainly because
the images in the dataset may be mislabeled or corrupted. As the amount of data increases,
it becomes increasingly difficult to maintain an error-free dataset. However, the dataset issue
is not the only problem we have to deal with. Another problem is how to properly train
a neural network to correctly determine the identity of a person. According to the theory
of neural networks, face recognition is the task of classifying a face image as belonging to
a certain identity. In the classification tasks, the classes are represented as the output of
the last layer.

However, there is a fundamental difference compared to common classification tasks.
What happens if we need to recognize a person on whom the neural network has not been
trained? The output layer of the neural network can be extended by a new class, and then
the neural network has to be retrained. This approach is very impractical and difficult to
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apply in practice. Therefore, it is necessary to use a method in which the neural network
does not need to be retrained. In general, this can be solved by a neural network that can
map an input face image to a unique vector even for unknown identities.

In the following section, we describe known face recognition algorithms based on a neural
network. The loss functions mentioned are based on the loss functions presented in Section
3.1.

3.5.1 Face embedding

To compare pairs of face images, it is necessary to transform the face images into another
representation in such a way that even if the input images for the same person are taken in
different positions and various environments, they should still be mapped to the same place
in space. One way to achieve this is to use an operation called embedding. In mathematics,
an embedding is a representation of a topological object in a given space in such a way that
its connectivity or algebraic properties are preserved [175]. The embedding of an instance
X is given by a injective map x, (x→ X).

From the neural networks standpoint, the embedding produced by a deep neural network
mainly transforms an input into a vector x in the Euclidean space x ∈ R

n, where n denotes
the dimensionality of the space. The part of the neural network responsible for embedding is
called feature extractor (Section 3.3 and solves the above problem. In general, it can be said
that face embedding is used by the vast majority of face recognition algorithms. However,
this approach has other advantages, including the ability to quickly compare the vectors.
The similarity between the vectors can usually be determined by the Euclidean distance,
the cosine similarity [176] and the cosine distance [177]. These metrics are composed of
several mathematical operations, making them efficient to compute. The Euclidean distance,
also known as the L2 distance, is the length between two points in Euclidean space and can
be computed by [178]

d(A,B) =
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√

√

√
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where A and B are the vectors (A,B ∈ R
n) and d is the Euclidean distance.

The cosine similarity is the angle between two vectors and can be computed as follows
[179]
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where A and B are vectors and θ is cosine similarity.
The cosine distance is directly related to the cosine similarity and is defined as [177]
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(3.30)

You may be wondering how to choose appropriate metrics? The choice depends mainly
on the loss function used. If the vectors have an angular distribution, it is better to use
cosine similarity or cosine distance.

The challenge in face embedding is to create a unique vector for each identity with min-
imal intra-class variability and maximum distance from vectors representing other classes.
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Therefore, the neural network must be trained to minimize the distance between samples of
the same class and maximize the distance between samples of the different classes. In recent
years, algorithms with various loss functions have been published. Recently, it can be said
that the design of the loss function [180], the acceleration of training and the enlargement
and filtering of the dataset are the main directions of the development of face recognition
algorithms. Following [181], we describe several neural networks for face embedding.

3.5.2 DeepFace

DeepFace,introduced in 2014 [87], can be regarded as the first dedicated neural network
for face recognition embedding. Although the crucial part of the algorithm is the neural
network, other machine learning algorithms are utilized for preprocessing input of the neural
network and for classifying the output of the neural network. As preprocessor is considered
the part that is responsible for face alignment. The need to align the face in an image arises
from the nature of the data obtained under unconstrained scenarios.

In DeepFace, face alignment is performed using both 2D face alignment and 3D map-
ping techniques. 2D alignment provides a basic in-plane alignment that changes image
rotation, scale, and translation through the transformation matrix. However, 2D alignment
cannot compensate for out-of-plane face rotation. Also, a face shape cannot be considered
as a generic 3D object, such as a sphere. Therefore, the authors implemented a suitable
method to perform 3D alignment while preserving identity factors. In DeepFace, the 3D
alignment is based on the generic 3D head mapping to the 2D plane by the affine camera
P .

Thus, in the next step, the 67 face landmarks are assigned to the corresponding land-
marks in the generic 3D model. Furthermore, the points are transformed into a 2D image
using the camera matrix P composed of the estimated vectors. Since the camera matrix P
is only an approximation that does not take into account all elements of the perspective
projection, it is necessary to modify each reference landmark point x3d by its corresponding
residuals r, which are determined during the fitting of P . The modified points are denoted
by x̃3d. Finally, the frontalization is performed by a piecewise affine transformation T from
x2d (source) to x̃3d (target).

The workhorse of the DeepFace is the feature extractor, which is based on a deep
neural network. As mentioned in Section 3.5.1, we consider face recognition problem as
a multiclass classification task. Therefore, the goal of training the neural network is to
maximize the probability of assigning a correct class to an identity, which is achieved using
the cross-entropy loss function and the SGD optimizer (Section 3.1).

In perspective of architecture, the model of neural network consists of the convolutional
layers, max pooling layers and fully connected layers. In the last fully connected layer,
the individual neurons are assigned to the corresponding identities, while the penultimate
layer is composed of neurons that have ability to describe the face characteristic in a vector
form. Of course, the vector is well known as a face embedding vector (Section 3.5.1).

In mathematical form, the output representation G(I) is derived from the preprocessing
transformation and the output of a feedforward neural network. Thus, the representation
can be described as G(I) = gF7

φ (gL6
φ (...gC1

φ (T (I, θT ))...)) where φ = {C1, ..., F7} are param-

eters of the network (Figure 3.16) and θT = {x2d, ~P , ~r} are the face alignment parameters.
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Figure 3.16: Architecture of DeepFace neural network [87].

To compare feature vectors, the DeepFace algorithm uses the weighted χ2 distance that
is defined as

χ2(f1, f2) =
∑

i

wi(f1[i]− f2[i])2
(f1[i] + f2[i])

(3.31)

where w is the weight parameter that is obtained by the SVM classifier and that is
applied to the vector of elements (f1[i] − f2[i])

2/(f1[i] + f2[i]) and f1,2 are the DeepFace
representations.

The paper then describes the modification of the neural network called the Siamese
neural network [87]. This neural network determines whether the two images belong to
the same person or not. Although the neural network has shared weights, the computation
has to be done twice (for both input images). The distance between two feature vectors is
defined as [87]

d(f1, f2) =
∑

i

αi‖f1[i]− f2[i]‖ (3.32)

where αi is the trainable parameter.
To achieve better accuracy, the final published results are based on the composition of

the outputs of three neural networks. Except for the Siamese network, each of the networks
has the same architecture, but the their inputs differ due to the fact that they are trained
with different seeds. The predicted distance is weighted by the weight vector determined
by the non-linear SVM. Overall, the final method achieves a face recognition accuracy of
97.35 % on the LFW dataset, compared to the accuracy of 97.53 % obtained by a human.
With DeepFace, the new generation of face recognition algorithms has begun.

3.5.3 FaceNet

The second popular method of face recognition based on neural networks was introduced
by Google researchers in 2015 and is called FaceNet [17]. Using face embedding, the neural
network maps a face image x to the feature space Rn. In FaceNet, the output vector v is com-
posed of 128 real values, which means that the identity is represented in a 128-dimensional
hyperspace. Unlike the DeepFace neural network, FaceNet training is supervised by an in-
novative loss function called triplet loss. While the cross-entropy utilizes class probabilities,
triplet loss uses the distance metric, specifically the Euclidean distance metric, see Section
3.17.

Let us take a closer look at the triplet loss function. In general, the loss function is used
in machine learning to determine the error between the values produced by an algorithm
and the required target values. The idea of a triplet loss function is based on minimizing
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Figure 3.17: Principle of the triplet loss function [17].

the L2 distance between the faces of the same identity and enforcing maximal distance
between the faces of different identities. The algorithm is similar to the nearest neighbor
classification. During the computation, it is necessary to establish the anchor for each
triplet to which positive and negative samples are related. Then the triplet loss ensures
that the positive sample xpi (positive) is close to a face image xai (anchor) compared to
a face image xni that should be far from the face image xai . In mathematical terms, with
the loss function, we want the loss function to satisfy the following condition [17]

‖f(xai )− f(xpi )‖
2
2 + α < ‖f(xai )− f(xni )‖22 , ∀(f(xai ), f(x

p
i ), f(x

n
i )) ∈ τ (3.33)

where τ is the set of all possible triplets, α expresses the coefficient to ensure the margin
between the negative and positive pairs. Similarly, the triplet loss function L is defined as
[17]

L =
i

∑

N

[

‖f(xai )− f(xpi )‖
2
2 − ‖f(x

a
i )− f(xni )‖22 + α

]

+
(3.34)

where the N expresses the cardinality of the training dataset.
However, it is not feasible to generate all possible triplets. Therefore, it is crucial to select

relevant sets of triplets that contribute to the improvement of the model. Such triplets are
called hard triplets. Consequently, it is difficult to compute argmax and argmin for all
samples in a data set, calculated by [17]

argmaxxpi ‖f(x
a
i )− f(xpi )‖

2
2 , argminxni ‖f(x

a
i )− f(xni )‖22 . (3.35)

for both xpi (hard positive) and xni (hard negative) related to anchor xai
There are two ways to avoid this problem: generating the triplets online and gener-

ating the triplets offline. When generating the triplets offline, the last checkpoint is used
every n steps to calculate argmin and argmax on a subset of the data. Another approach
is to choose the subset by selecting hard positive/negative examples from a mini-batch.
Commonly used option is to generate the triplets online. However, the selection of triplets
within the mini-batch is still an essential procedure. The proposed method uses a mini-batch
consisting of 20 face images per identity, complemented by random negative examples. In
the set, all anchor-positive pairs are used, while the set of used negative examples is re-
duced. Instead of hard samples, which can lead to bad local minima, the set of semi-hard
samples is used, which satisfies the following condition [17]

‖f(xai )− f(xpi )‖
2
2 < ‖f(x

a
i )− f(xni )‖22 . (3.36)

In the paper, the authors proposed two neural network architectures. The first architec-
ture consists of basic elements for convolutional neural networks, such as a convolutional

63



layer, a pooling layer and a fully connected layer. However, the second (NN2) includes
a different type of blocks, the inception block [145], for more information see Section 3.3.

While the first architecture, denoted NN1, has 140 milion parameters, the second, based
on GoogleNet inception models, has 20 times fewer parameters than the first one. For
the triplet loss function, the gradient descent of the neural network was performed using
the SGD optimizer. It is interesting to note that the authors state that the training time
was between 1,000 and 2,000 hours.

Unlike DeepFace [87], the presented approach does not require any post-processing
algorithms. Therefore, the only task to improve performance is to optimize the loss func-
tion. Other strengths of the presented approaches are less strict conditions for face align-
ment. In particular, on the LFW dataset, the classification accuracy of the algorithms is
98.87 %±0.15 when the face is centered in the images and 99.63 %±0.09 when the face
images are aligned.

3.5.4 VGGNet

As mentioned in Section 3.3, backbones are essential components of face embedding neural
networks, responsible for extracting characteristic features from images. In their paper
[112], the authors introduced a methodology for constructing a dataset by collecting face
images from public sources. Additionally, they designed and trained various neural networks
using different backbones, all based on VGG nets (where VGG stands for Visual Geometry
Group).

There are five steps to the data collection approach presented in their paper. The goal of
the first step is to obtain a list of candidate names, where each name represents an identity
that will be used in the following steps. This is accomplished through the processing of
the Internet Movie Data Base (IMDB)12. The next step is to intersect the list of candidate
names with all the people in the Freebase knowledge graph [127]. The results included 5k
identities for their 200 images downloaded via Google Image Search13.

The images are initially filtered by human annotators to assess their purity, reducing
the number of identities to 3,250. Subsequently, these identities are compared with those
present in the LFW and YTF datasets. If they match, they are excluded. The remaining
identities are supplemented by searching for additional corresponding images.

The aim of the third stage is to automatically remove any erroneous faces to improve
purity. After this, the datasets contain 1,000 images per identity. Since the same images
from different sources can be present in the dataset, the fourth step deals with the removal
of duplicates. In the last step, the images are again manually filtered. Seeing that manual
annotation is time-consuming, the authors trained AlexNet [141] to classify the images
according to their identity. In their paper, the proposed dataset was again validated by
human annotators in the final step.

From an architectural point of view, the authors consider three different architectures
with an input size of 224×224. In addition, the input is normalized to ensure the stability
of the optimization algorithm.

The procedure for obtaining a neural network for face embedding has already been
established in the preceding sections. This includes removing the last fully connected layer.
To control the training, the author used the triplet loss function introduced in FaceNet, see
Section 3.5.3.

12https://www.imdb.com
13https://www.google.com
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In conclusion, the authors selected and evaluated the best architecture so that its accu-
racy on the LFW is 98.98 %.

3.5.5 From Softmax loss to Center Loss

From a machine learning perspective, the goal of face recognition is to assign a label or iden-
tity to an input sample. Therefore, face recognition can essentially be seen as a multiclass
classification task. When developing a face recognition application, we can rely on classifier
algorithms or neural networks, which are designed to solve similar types of machine learn-
ing tasks. While the performance of neural networks depends on various factors, researchers
primarily focus on optimizing the loss function to supervise the training of a neural network.

Let us go back to the perspective of looking at face recognition as a cross-entropy
activation function task. The basis for this task is the softmax activation function. In
the next sections, we focus on this activation function and analyze it.

Softmax loss

From the given information, it is obvious that each class is represented in the output vector.
Unlike the sigmoid activation function, the softmax loss produces a distribution in which
the sum of the values in the vector equals one [182]. For face recognition, the softmax loss
function is defined by [183]

Lsoftmax = −
m
∑

i=1

log
expW

T
yi
xi+byi

∑n
j=1 exp

WT
j xi+bj

(3.37)

where W T
{j,yi}

xi + b{j,yi} refers to the last fully connected layer. The xi ∈ R
d expresses

the ythi deep feature belonging to the ythi class. Next, Wj ∈ R is the weight matrix column
W ∈ R

d×n, b ∈ R
n is the bias term, m is the number of training samples and n is the number

of classes.
A possible area for research is the observation of the distribution of feature vectors in

a space. Therefore, in [183], an experiment focused on evaluating the distribution of vectors
provided by a neural network trained using softmax loss was conducted. For the experiment,
a model based on the LeNets neural network was designed [184]. The output of the model
consists of only two output neurons, in which their responses are then used to observe the
distribution of the features.

The visualization of the responses shows that the learned features are separable, while
they are less discriminative due to low intra-class variability, see Figure 3.18. Therefore, it
is not appropriate to directly use the softmax loss function for training a neural network,
since it produces features that suffer from this deficiency. To improve this type of neural
network, we need to deal with both the intra-class vector distribution and the distribution
over the different classes.

Face recognition network trained with center loss

The paper [183] introduced this novel loss function with the aim of suppressing the disad-
vantages mentioned above. The authors considered how to improve the discriminative power
of deeply learned features. The proposed loss function used an idea to minimize the intra-
class variation while still ensuring the separability between the features of different classes.
This resulted in the following loss function [183]
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Figure 3.18: Deep feature distributions obtained by using (a) training dataset and (b) test
dataset [183].

LC =
1

2

m
∑

i=1

‖xi − cyi‖22 (3.38)

where Cyi ∈ R
d expresses the ythi class center of the deep features, the xi ∈ R

d is the ith

deep feature belonging to the ythi class and the m expresses the number of classes.
Considering the loss function, the center of a deep feature should be updated after

the deep features have been changed, which is inefficient in practice. Similar to FaceNet,
the problem is solved by calculating a new position of the centers within the mini-batch.
In addition to this issue, the samples can sometimes be mislabeled, so the scalar α is used
to control the learning rate of the centers. Then, the center of the class cyi is updated by
[183]

∆cj =

∑m
i=1 δ (yi = j) · (cj − xi)

1 +
∑m

i=1 δ (yi = j)
(3.39)

where δ(condition) is 1 if the condition is satisfied and 0 otherwise.
Finally, the final loss includes the softmax loss and the center loss, which is defined as

[183]

LC = LS + λLC = −
m
∑

i=1

log
eW

T
yi
xi+byi

∑n
j=1 e

WT
j xi+bj

+
λ

2

m
∑

i=1

‖xi − cyi‖22 (3.40)

The deep learning features produced by LeNets trained using the center loss function
with different λ scalars are shown in Figure 3.19. Unlike the triplet loss function, the center
loss is directly focused on the objective of intra-class compactness, which brings advantages
in improving the discrimination of deep features. However, both approaches strive to form
the sample pairs or sample triplets from the training dataset, which necessitates the use of
optimization methods.

The architecture of this neural network employs the same general concepts described by
the previously discussed networks. It consists of convolutional, pooling and fully connected
layers, without any special addition. All training samples were preprocessed and cropped
to 112×96 RGB images and normalized by subtracting 127.5 and then dividing by 128.
The training dataset was collected from the internet (CASIA-WebFace [130], CACD2000
[185], Celebrity + [186]). The authors present results obtained from experiments with three
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Figure 3.19: Deep feature distributions for various coefficients λ [183].

different models; the first was trained with softmax loss, the second was trained with center
loss only, and the last was supervised by the loss consisting of previous ones. The final
accuracy achieved on the LFW dataset is 99.28 %.

3.5.6 SphereFace

The training of the neural network presented above was supervised by the loss functions
using the Euclidean distance measure. According to Section 3.5.5, the distribution of the fea-
ture vectors corresponds to an angular distribution, but this is not taken into account in
the loss function, which uses a distance metric. The SphereFace method, published in 2017
[187], takes this finding into account. The essential change in this approach lies in the loss
function. Although the loss function used in this approach is similar to the softmax loss, it
incorporates an angular margin instead of the Euclidean distance metric. This approach has
also been used in other published works, resulting in improved face recognition performance.

Since other algorithms employ similar modifications, we decided to analyze the mod-
ifications applied to the softmax loss function. First, we examine the decision criteria of
the softmax loss. The best way to illustrate this concept is to use binary class cases, where
the posterior probabilities obtained by the softmax loss function are defined as [187]

p1 =
eW

T
1 x+b1

eW
T
1 x+b1 + eW

T
2 x+b2

, p2 =
eW

T
2 x+b2

eW
T
1 x+b1 + eW

T
2 x+b2

(3.41)

where x is the learned feature vector, Wi expresses the weights and bi is the bias with
the bias corresponding to class i. Then, if p1 > p2, the predicted label is assigned to
class 1, and similarly, if p2 > p1, the label is marked as class 2. From Equation 3.41 it
is clear that W T

1 x + b1 and W T
2 x + b2 determine the classification results. Thus, we can

claim that the decision boundary is (W1 − W2)x + b1 − b2 = 0. According to [187], the
W T
i x + b can be rewritten as

∥

∥W T
i

∥

∥ ‖x‖ cos(θi) + bi, where θi is the angle between x and
Wi. When the weight vector is normalized to one (|Wi| = 1) and the bias is set to zero
(bi = 0), it is worth noting that p1 and p2 share the same learned feature vector. As a result,
the decision bounds depend solely on θ1 and θ2. Overall, the decision boundary becomes
cos(θ1)− cos(θ2) = 0. This concept can be extended to the multi-class case. Consequently,
the softmax loss function can be modified to [187]

Li = −log
eW

T
yi
xi+byi

∑

j e
WT

j xi+bj
= −log e

‖Wyi‖‖xi‖cos(θyi,i)+byi
∑

j e
‖Wj‖‖xi‖cos(θj,i)+bj

(3.42)
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where θj,i(0 ≤ θj,i ≤ π) is the angle between the vector Wj and xi. When the weights
are normalized by the first norm ‖Wj‖ = 1, ∀j, the function looks like follows [187]

Lang =
1

N

∑

i

−ln e‖xi‖cos(θyi,i)
∑

j e
‖xi‖cos(θj,i)

. (3.43)

Although the modified loss function can be used to monitor the neural network during
the training process, it does not necessarily guarantee feature discrimination. Based on
the analysis of the softmax loss function, it was observed that the decision boundaries have
a strong influence on the feature distribution. This assumption has a significant impact on
approaches based on angular metrics. For SphereFace, the loss function was modified by
adding a parameter m to control the size of the angular margin.

To illustrate the principle, consider a binary classification task. If class 1 is represented
by θi, which is given by the angle between a learned feature x and its corresponding
weightsWi, then the previously modified loss function requires cos(θ1) > cos(θ2) to correctly
classify x. With the margin parameters, the equation can be changed to cos(mθ1) > cos(θ2).
Assuming that m > 2 is an integer, this decision is stricter than the previous one, because
the angle must be smaller to get the same value as in the previous case. This also applies from
a class 2 perspective, cos(mθ2) > cos(θ1). So for class 1, the boundary is cos(mθ1) = cos(θ2)
and for class 2, the boundary is cos(mθ2) = cos(θ1). Assuming that all training samples
are correctly classified, the decision boundaries of all training samples produce the angu-
lar margin m−1

m+1θ
1
2 , where θ 12 expresses the angle between W1 and W2. The modified loss

function is defined as [187]

Lang =
1

N

∑

i

−log e‖xi‖cos(mθyi,i)

e‖xi‖cos(mθyi ,i) +
∑

j 6=yi
e‖xi‖cos(θj,i)

(3.44)

where θyi,i is the angle in the range of [0, π
m
]. This loss function is called A-Softmax

[187] and it is based on the SphereFace algorithm.
Although the changes are feasible in theory, the loss is difficult to optimize in CNNs. To

solve this issue, the authors proposed a monotonically decreasing angular function ψ(θyi,i),
which should be equal to cos(θyi,i) in the range [0, π

m
]. Therefore, the final A-Softmax loss

function was partially changed and is formulated as [187]

Lang =
1

N

∑

i

−log e‖xi‖ψ(mθyi,i)

e‖xi‖ψ(mθyi,i) +
∑n

j 6=yi
e‖xi‖cos(θj,i)

(3.45)

where the ψ(mθyi,i) = (−1)kcos(mθyi,i)−2k, θyi ∈ [kπ
m
, (k+1)π

m
]. The integerm is intended

to control the size of the angular margin.
Similar to previous cases, the authors employed a CNN that includes the convolutional

layer, the pooling layer, and the fully connected layer, while he neural network was trained
on CASIA-WebFace and tested on LFW (Section 3.2.3) and YTF (Section 3.2.3). To find
out the influence of the parameter m on the accuracy of the neural network, the authors
performed experiments with different values. The results showed that m has a significant in-
fluence on the accuracy, see Figure 3.2. The distribution of the learned features is visualized
in Figure 3.20. Overall, SphereFace achieves 99.42 % accuracy on the LFW dataset.

SphereFace was one of the pioneering approaches that used the concept of angles instead
of a distance metric. However, the A-Softmax loss function contains approximations that
can affect the stability of neural network training. Ensuring stability during training remains
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Table 3.2: Influence of sotfmax’s m parameters on accuracy.

Dataset Original m = 1 m = 2 m = 3 m = 4

LFW [%] 97.88 97.90 98.40 99.25 99.42
YTF [%] 93.10 93.20 93.80 94.40 95.00

Figure 3.20: Visualization of learned features dependent on m parameters [187].

a critical goal for other state-of-the-art approaches that aim to improve the usability and
performance of the loss function.

3.5.7 CosFace

Similar to previous approaches, the CosFace loss function, as described in [188], is based
on the concept of angles. Through an analysis of the SphereFace approach, its limitations
have been identified. Hence, the primary objective of this approach, known as CosFace, is
to refine the approximations employed in the SphereFace loss function. In addition, this
approach aims to improve the accuracy of face recognition. One of the shortcomings of
the A-Softmax loss is the non-monotonic nature of the cosine function, which SphereFace
mitigates through function approximations.

During the development of the CosFace loss function, it was found that the face recog-
nition score of a test pair is usually given by the cosine similarity between the two future
vectors. To achieve this, the previously defined softmax function without bias is adapted,
where W T

j x is replaced by |Wj | |x| cos(θj), with θj representing the angle between Wj and
x. According to A-Softmax, W is modified by L2 normalization to ‖Wj‖ = 1. Consequently,
we assume that the norm of the feature vector x does not contribute to the scoring function,
so the norm is fixed to ‖x‖ = s. Thus, the posterior probability is only given by the cosine
of the angle. The modified formula is thus defined as [188]

Llmc =
1

N

∑

i

−log e‖xi‖ψ(mθyi,i)

e‖xi‖ψ(mθyi,i) +
∑n

j 6=yi
e‖xi‖cos(θj,i)

(3.46)

The authors refer to this formula as the Normalized Version of the Softmax Loss (NSL)
[188]. With the loss function, the neural network produces separable feature vectors in
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a radial distribution. However, the feature vectors are not discriminative enough. Therefore,
the authors introduce a modified loss function by adding a cosine margin to the classification
boundary.

Taking the binary class example from SphereFace, if the angle θi is given by the learned
feature vector (x) and the corresponding weight vector Wi, then it is necessary to satisfy
cos(θ1) > cos(θ2) to correctly classify x1. Since the margin between two classes enforces
the discrimination between them, the comparison equation is modified by adding the mar-
gin parameter m. Unlike the A-Softmax, the deep feature discrimination is enforced by
the cosine margin instead of the angle margin.

In A-Softmax, the angle is multiplied by the margin parameter, while in CosFace the loss
is modified by changing cos(θ). For the classification feature vector fall into class 1, it must
satisfy the following condition (cos(θ1)−m) > cos(θ2) and for class 2 (cos(θ2)−m) > cos(θ1)
similarity. Assume that m ≥ 0 is a fixed parameter introduced to control the magnitude of
the cosine margin. From the point of view of class discrimination, the cos(θi)−m is lower
than cos(θi), so this ensures a stronger classification. After generalizing this example to
multiclass, the Large Marin Cosine Loss (LMCL) is formulated as follows [188]

Llmc =
1

N

∑

i

−log es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑

j 6=yi
es(cos(θj,i)−m)

(3.47)

cos(θj,i) =W T
j xi,W =

W ∗

‖W ∗‖ , x =
x∗

‖x∗‖ (3.48)

where N is the number of training samples, xi is the vector of the ith depth features,
Wj is the column of the weight matrix for the jth class, and θj is the angle between Wj and
xi.

Let us look at the normalization of the weight vector and the feature vector. From
[188], it is clear that the weight vector can be normalized by L2 norm, which is used in
the A-Softmax loss function. However, if the feature vector is not normalized, the softmax
loss implicitly learns the L2 norm of the feature vector and the cosine value of the angle.
Therefore, the LMCL uses both normalization and, for the weights, a scaling parameter
that controls the magnitude of the radius.

Using normalization, the CosFace algorithm with LMCL achieved an accuracy of 99.33 %
on the LFW dataset and 96.1 % on the YTF dataset.

3.5.8 ArcFace

In 2018, a new method was introduced that leverages the radial distribution of features to
achieve superior performance, see Section 3.5.5. To train the new neural network, called
ArcFace [189], the softmax loss function was also modified. What exactly is an ArcFace
Loss Function? In simple terms, it is an approach that further modifies the loss function
with respect to angle distribution.

The main goal is to further improve feature discrimination while maintaining separa-
bility, which should be enforced by changes in decision boundaries. As we already know,
the margin of A-Softmax (SphereFace) is enforced by multiplying the angle before calcu-
lating the cosine (multiplicative angular margin), while CosFace determines the margin by
subtracting the margin value (additive cosine margin) from the calculated cosine value. In
the case of SphereFace, a significant disadvantage arises due to the approximation used to
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calculate the monotonic function. This factors have been taken into account in the design
of the ArcFace.

In ArcFace, the modification of the softmax function lies in the following changes.
For simplicity, the bias is set to bj = 0 [187]. Furthermore, this results in W T

j xi =
‖Wj‖ ‖xi‖ cos(θj), where θj is the angle between the weight Wj and the feature xi. Both
the weight and feature vectors should be normalized by the L2 norm, then Wj = 1 and
xi = 1 [190]. In the loss function, the weight is scaled by s to determine the magnitude
of the vector. The normalization and the weights cause the prediction to depend only on
the angle θ between the weight and the feature vector. Accordingly, the loss function for
ith class is defined as [189]

Lpart = − log
es cos(θyi)

es cos(θyi) +
∑N

j=1,j 6=yi
es cos(θj)

(3.49)

This function produces embedding vectors that are distributed around feature center
on a hypersphere. To enforce better intra-class compactness and inter-class discrepancy,
the loss function added angular penalty. Finally, the loss function for ith class is defined as
follows [189]

Lpart = − log
es cos(θyi+m)

es cos(θyi+m) +
∑N

j=1,j 6=yi
es cos(θj)

(3.50)

The authors used a proven experiment with 2D vector to investigate the feature dis-
tribution, which shows that the ArcFace loss produces a wider gap between the nearest
classes than the softmax loss. In contrast, the Softmax produces noticeable ambiguity in
the decision boundaries. From a numerical point of view, A-Softmax, CosFace and ArcFace
enforce the compactness of the intra-class features. The second aspect of investigation is
the geometric difference, where the focus is on the geometric distance.

The ArcFace has a constant linear angular margin throughout the interval. While,
the other loss functions have a non-linear angular margin, see Figure 3.21. Research has
shown that small changes in the angular margin can affect the training process.

Figure 3.21: Decision margins of different loss functions where the dashed lined represents
the decision boundary, whereas the gray color marks the decision margins.

The ArcFace has surpassed the state-of-the-art in face recognition, achieving a remark-
able accuracy of 99.53 % on the LFW. The next accuracy evaluation was performed on
the CFP-FP dataset, where ArcFace achieved 95.56 % accuracy. It is obvious that the al-
gorithm is capable of successfully solving the face recognition task.
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3.5.9 MagFace

Due to the performance of the ArcFace algorithm, researchers have focused on further im-
proving this algorithm. In CosFace, ArcFace employs the angle of the distribution of the
vectors to ensure minimizing the intra-class feature distribution and maximizing the dis-
tance between clusters of identities. However, the authors of these algorithms did not take
into account the magnitude of the feature vector.

In [191] an experiment was presented to prove the influence of vector magnitude on face
recognition performance. This leads to the conclusion that the size of the vector magnitude
correlates with the quality of a face image, see Figure 3.22.

Figure 3.22: Distribution of magnitudes across different datasets [191].

Based on this finding, the ArcFace loss function was modified to utilize the vector
magnitude, which is defined as follows [191]

LMag =
1

N

∑

i

− log
es cos(θyi+m(ai))

es cos(θyi+m(ai)) +
∑N

j=1,j 6=yi
es cos θj

+ λgg(ai) (3.51)

where λg controls the trade-off between classification and regularization losses. The mag-
nitude of the feature vector ai is bounded in [la, ua]. The g(ai) and m(ai) are strictly de-
creasing convex and increasing convex functions, respectively. The loss function always has
the following properties during its optimization

• Property of convergence - for ai ∈ [la, ua], Li is a strictly convex function which has
a unique optimal solution a∗i . [191]

• Property of monotonicity - the optimal a∗i is monotonically increasing as the cosine-
distance to its class center decreases and the cos-distances to other classes increase.
[191]

For the experiments, the authors used m(ai) as a linear function defined on [la, ua] with
m(la) = lm,m(ua) = um by the following equation [191]

m(ai) =
um − lm
ua − la

(ai − la) + lm (3.52)
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where lm, um denote hyperparameters and g(ai) is given by [191]

g(ai) =
1

ai
+

1

u2a
ai (3.53)

This allows the ambiguous samples to be pushed away from the class centers and then
pulled back toward the origin. To achieve this improvement, the original loss function was
modified by replacing the edge factor with an adaptive edge. Unlike the feature distribution
produced by the ArcFace loss, the MagFace loss distributes the vectors according to their
direction and magnitude. The MS1M-V2 [190] was used for training due to the small number
of noisy face images compared to the MS1M [126].

Using the MagFace algorithm, the accuracy on the LFW dataset was further improved
to 99.83 %.

3.5.10 QMagFace

In the above face recognition method, the magnitude of the vector is utilized during
the training process. Moreover, this concept of feature vector size has been extended to
the comparison stage, giving rise to a novel metric known as Quality-Aware Comparison
Scoring [192] has been proposed. The training of the neural network is enforced by the Mag-
Face loss function, see Eq. 3.51. The strength of Quality-Aware Face Recognition is based
on a comparison metric defined as

ŝ (s, q1, q2) = ω(s) ∗min {q1, q2}+ s (3.54)

where s denotes the standard comparison score s = cos(e1, e2). q1, q2 express the mag-
nitudes, and ω(s) is a quality-weighting function, defined as follows

ω(s) = min{0, β ∗ s− α} (3.55)

where β and α are trainable parameters.
Currently, the accuracy of face recognition algorithms is generally above 99.70 %.

The QMagFace-100 (with IResnet100 [193] feature extractor) achieved an accuracy of
99.83 % on the LFW dataset. QMagFace outperforms accuracy on the CFP-FP and AgeDB
datasets, although other algorithms outperform it on the LFW.

3.5.11 Summary

The most significant improvement in face recognition performance came from the use of
neural networks. In recent years, progress in individual neural networks has not been sub-
stantial. However, there has been a noticeable shift due to changes in loss functions that
lead to better exploitation of the angular distribution. Since the potential for improving
face recognition algorithms is limited, the significance of these changes is often obscured by
preprocessing algorithms applied to training samples, such as padding of the detected face.

3.6 Devices for neural network acceleration

Neural Processor Unit (NPU) [194] is a type of computing unit designed to perform tasks
that are domain-specific in nature. As a result, these chips are generally not based on
the Von Neumann architecture. One of the goals of the NPU is to reduce power consumption
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while maintaining maximum computational throughput. For example, Google developers
have developed a chip called the Tensor Processor Unit (TPU) [150]. The TPU is designed
to process large amounts of data with low precision. However, neural networks consist of
parameters represented by real values (floating-point numbers), which are less efficient to
process than integers. Therefore, before the neural network is processed by an NPU, the
model parameters are mapped to another representation using quantization algorithms,
usually with low precision.

According to [195], quantization techniques are used by virtually all NPU chips. Al-
though quantization reduces the accuracy of neural networks, the gain in acceleration over-
comes this disadvantage in many applications. By analyzing the CNN, we can see that
most common operation is a convolution. Therefore, the NPU contains a unit that is pri-
marily designed to perform matrix multiplication, with an emphasis on speed and efficient
operation.

Note that most NPU chips are proprietary and descriptions of their technologies are not
published. The following section describes the known technologies associated with the NPU.

3.6.1 Quantization

As mentioned above, the quantization process in neural networks involves mapping the float-
ing point value, commonly represented by the IEEE 754 [196] standard, to compact rep-
resentations according to well-defined rules. For example, on the hardware side, the pro-
cessing of integer values is easier than processing floating-point values. The parameters of
the neural network can be quantized due to the observation that neural networks are over-
parameterized [197] and robust to noise [198]. Therefore, there is an opportunity to reduce
the number of bits per parameter with minimal impact on accuracy. Except this, the pa-
rameters of the over-parameterized network can be reduced by pruning [197] or knowledge
distillation. Even when processing neural networks on Graphics Processor Unit (GPU),
there is an effort to reduce floats to a format with less accuracy, i.e. float16. Except for
special cases, the parameters of a neural network are represented in double data type. Let
us see how the basic concept of quantization is defined.

When training the neural network, the primary goal is to minimize the loss function.
Through quantization, the goal is to reduce the precision of the parameters in the neural
network and the corresponding activation maps with minimal impact on the generaliza-
tion accuracy of the model to achieve faster inference. The following subsections describe
the basic types of quantization methods and their properties [195].

Uniform quantization

First, we need to define a function that maps a value to another representation. The easiest
way is to use the function where the input is represented by a real value and its map
to a lower precision range. We assume that the distance between the quantized values is
preserved; this method is called uniform normalization [195]. Theoretically it is defined as
[195]

Q(r) = Int(r/S)− Z (3.56)

where Q expresses the quantization operator, r is a real value input, S is the scaling
factor and Z is the integer zero point. The de-quantization function is defined as [195]
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r̃ = S(Q(r) + Z). (3.57)

where r̃ is the recovered real value.

Symmetric and asymmetric quantization

Quantization maps a value to a well-defined range that depends on the scaling factor S.
We can design the quantization method to produce values in the symmetric or asymmetric
range. This range is defined by two parameters called α and β, where the first defines
the minimum value and the second defines the maximum of the range, then S is defined as
[195]

S =
β − α
2b − 1

. (3.58)

The process of selecting the parameters is referred to as calibration. If the parameters
satisfy −α = β , the quantization is called symmetric. Otherwise, it is considered asym-
metric quantization. By modifying Eq. 3.56, the symmetric quantization (Z = 0) is defined
by [195]

Q(r) = Int
( r

S

)

. (3.59)

The disadvantages of symmetric quantization become apparent when the range of values
is non-symmetric and skewed.

Dynamic and static quantization

Next, we need to decide when the values will be quantized. In neural networks, the weights
are defined during model training and their range of values is known in advance [195]. On
the other hand, the activation outputs should produce values in a variable range depending
on an input sample. In this case, the predefined range is not suitable. Fortunately, besides
static quantization, there is also dynamic quantization, which calculates a quantization
coefficient for each activation map. However, this approach has more overhead, requiring
minimum, maximum, and percentile calculations.

When we use static quantization, the range is determined before the runtime. It can be
used when we have deep knowledge about the values. During the runtime, the accuracy of
neural networks can be negatively affected by static quantization. Nonetheless, this type of
quantization is often used due to latency requirements.

Quantization granularity

The quantization methods can be divided into categories according to how the clipping
range is calculated for the neural network weights. These categories include [195]:

• Layerwise quantization - in convolutional filters, the clipping range is calculated for
all weights in the layer. However, in convolutional filters, the variance of the weights
within the layer can vary widely. Thus, a convolutional kernel with a relatively narrow
range of parameters can be negatively affected by this type of quantization if another
kernel has parameters in a wider range.
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• Groupwise quantization - using this approach, quantization can be performed on
a group of different channels within a single layer. In this way, the disadvantages
caused by varying parameters can be suppressed.

• Channelwise quantization - with this option, the clipping range for convolution fil-
ters is defined separately within channels. This method provides better quantization
resolution and often results in higher accuracy.

• Sub-channelwise quantization - compared to the previous method, sub-channel quan-
tization ensures different clipping ranges of convolution kernels within a channel.
However, the approach introduces significant overhead.

Fine-tuning methods

In the text above, we described different approaches that can be used for quantization.
However, when applying quantization to neural networks, it is often necessary to tune
their parameters. We can tune the parameters of quantized neural networks either through
Quantization-Aware Training (QAT) [195] or through a method that does not involve re-
training, called Post-Training Quantization (PTQ) [195].

Using QAT, we aim to optimize the quantization coefficients. Each training iteration
consists of a forward and a backward pass, during which the gradient calculation is per-
formed on the quantized model in floating point. The model parameters are updated after
each gradient update and are then quantized again.

The rounding operator in Eq. 3.56 can cause the gradient of this operator to be zero
almost everywhere. Thus, the question is how to edit the weights in the neural network ac-
cording to the quantization parameters when the gradients during training have no relation
to the quantization parameters. This can be solved by the Straight Throughout Estimator
(STE) [195], which is essentially based on replacing the rounding operation with an identity
function. In the same way, the other approaches can be used to solve the drawback.

Another fine-tuning method, PTQ, is based on the idea of performing quantization
on the trained model. The trained model is analyzed and its parameters are quantized
without retraining it. In contrast to QAT, this approach may result in lower accuracy of
the quantized model.

The final method is Zero-Shot Quantization (ZSQ) [195], which addresses the issue of
insufficient data for calibration. This method uses a subset of the training data to calculate
the scaling factor and the boundaries of the clips. In addition, the training subset is used to
fine-tune the model, allowing adjustments to the model parameters and restoring accuracy
that may have been lost. However, data availability can sometimes be limited, and ZSQ
provides a potential solution to this challenge.

In [199], two different levels of zero-shot quantization were presented:

• Level 1 - no data and no fine-tuning (ZSQ + PTQ)

• Level 2 - no data but requires fine-tuning (ZSQ + QAT)

Level 1 is for fast quantization without fine-tuning. On the other hand, in level 2,
the fine-tuning helps the quantized model to recover from the loss of accuracy.

Overall, the above information on quantization properties and approaches is merely
a brief summary. In practice, quantization is a complex process involving other algorithms
to optimize a neural network model. Authors in [195] present techniques related to sub-INT8
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quantization. The low-bit data format allows the operations to be performed efficiently on
the hardware device. Hardware accelerators for neural networks are designed to handle large
integers. The smaller the range, the more operations per second should be processed.

3.6.2 Matrix multiplication

Modern AI accelerators are designed to compute a large number of operations. From a
high-level architecture perspective, the accelerator divides the operations into parallel com-
puting and memory units organized in a two-dimensional structure to support common
matrix-vector multiplications. According to the [200], the most common operations in the
DNN are matrix multiplication and convolution, which cover over 90 % of the operations in
a neural network. Mathematically, the computational patterns of matrix multiplication and
convolution are different. However, these operations can be cross-transformed by remap-
ping. The convolution operation can be transformed into matrix multiplication using a
Toeplitz matrix [200]. The AI accelerators usually use only one such operation, so it must
include the unit or algorithm to remap the rest of the operation. One way to ensure matrix
multiplication in the accelerators is to use the systolic array [200].

The premise of the systolic array is based on replacing the single processor with an array
of regular processing elements. While the Single Instructions Multiple Data (SIMD) [200]
approach performs the same operation on multiple data, the arithmetic element in the
systolic array can perform different operations. For matrix multiplication, the systolic array
is arranged on the 2D grid where each of the elements incrementally accumulates the values
of the products. Sometimes the units are called multiply-accumulate, often abbreviated as
MAC [201].

3.6.3 Available devices

From the available NPU devices for accelerating neural networks, we have selected several
representatives that can be used for accelerating face recognition algorithms. First of all,
the pioneer of such devices is Google, which has developed the Google Tensor Processing
Unit.

Google Tensor Processing Unit

The rapid development in the field of neural networks forced Google to develop a chip ca-
pable of both training and inferencing neural networks. In 2015, the first Tensor Processing
Units (TPUs) [150] were used internally by Google. The TPU is designed to process large
amounts of data with less precision, specifically low-precision integers.

Architecturally, the workhorse of the TPU is based on the 8-bit systolic matrix to provide
matrix multiplication [202], see Figure 3.23. In this case, the units of the multiplier are
called MACs (Multiply-Accumulate). The Google Edge TPU only supports 8-bit arithmetic.
Therefore, a neural network model must be quantized before it can be used with the TPU.
The matrix unit generates a partial sum of 256 elements per clock cycle. The weights
for the multipliers are stored in a weight FIFO that reads data from an external DRAM
memory, the weight memory. In addition, the intermediate results are stored in the 24 MiB
Unified Buffer, which provides the data to the matrix multiplier.
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Figure 3.23: Architecture of the first generation of TPUs [200].

ARM – Machine Learning Processor

The Machine Learning Processor (MLP) [201] was introduced by the ARM consortium in
2019 as a processor architecture. The primary focus of the design, as envisioned by the au-
thors, is scalability. This means that the architecture can be customized and synthesized for
specific use cases, with a performance range from 1 TOPS to 10 TOPS. In terms of power
consumption, the choice of a smaller model and a chip with lower throughput is the more
favorable approach.

From a high-level perspective, the architecture (Figure 3.24) consists of DMA, which
is responsible for communication between the memory and the processor [201]. To better
optimize the computational process, the DMA engine uses information about neural network
layouts that are predefined during the NPU design process. Next, there is a component
called the Network Control Unit, which is responsible for communication. Finally, the most
important part is the Compute Engine (CE) [201], which is the core of the processor.
As mentioned earlier, the primary function of the NPU is to perform fast convolution
calculations. Within the NPU, there exists a specialized unit known as the MAC Compute
Engine [201], which is specifically designed to perform fixed-function multiply-accumulate
operations. Each individual MAC unit within this engine is capable of computing 16 8-bit
dot product operations.

In addition to convolution operations, the neural network model includes other types of
operations, such as normalization, addition, and pooling layers. To compute the various op-
erations, the CE uses the Programmable Layer Engine (PLE) [201], which is a programmable
processor that supports vector operations and is designed to perform post-processing oper-
ations and custom functions. The MCE and PLE utilize the slice of SRAM.

In terms of data processing, the MLP is statically scheduled, which means that all oper-
ations related to the hardware architecture are planned during compilation. During compi-
lation, the compiler ensures that the neural network model is interleaved over the sources.
The minimum memory of MLP is SRAM, which is used to store input feature maps, model
weights, and output feature maps. The compiler allocates the space for them in CE.

Now let us see how the code is executed in the CE. First, each MCE reads 2D patches of
the input map from its local SRAM and then sends them to the broadcast neural network.
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Figure 3.24: Architecture of ARM MLP [201].

Then, the broadcast neural network maps the 2D patches into 3D blocks of input activations
and sends them to all MCEs in the MPLE. At the same time, each MCE loads weights
from SRAM and decompresses them. Then, the input feature map is computed by the MCE
and the results for the output feature map are stored in 32-bit accumulators. Finally, the
value is mapped to 8-bit and shifted to PLE. When the values arrive in the register file
of the PLE, the Arm Cortex-M CPU runs the vector engine to perform the appropriate
operation on the register file.

Intel Movidius Myriad X Vision Processing Units

The Intel Movidius Myriad X Vision Processing Units (MA2085) [203] are the third gen-
eration of dedicated hardware accelerators for deep neural networks. The core of the chip
is based on a Vision Processing Unit (VPU) architecture that includes the Neural Com-
pute Engine, Vision Accelerators, Imaging Accelerators, CPUs, and 16 SHAVE processors.
The SHAVE processors [204] are based on the 128-bit VLIW14 architecture, which allows
multiple application pipelines to run simultaneously.

In terms of interfaces, the processor supports MIPI lines, USB 3.1, Quad SPI, I2S,
PCIe 3.0 and 10 GbE.

Before this chip, an older version was introduced. The chip is called MA2450 and was
introduced in 2016. However, its production was discontinued in 2019.

To make this easy to use, the chips are manufactured in a form of a USB stick. The first
device, called Intel Neural Compute Stick, was based on MA2450, while the second gener-
ation used MA2085 chip.

The OpenVINO15 library is used to operate the device. Unfortunately, the last version
that supports the accelerators is OpenVino 2022.3.

14Very long instruction word
15https://www.openvino.com
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Hailo

The year 2022 saw the emergence of a new type of accelerator called Hailo 816. This acceler-
ator, as stated in their PR material, has the ability to significantly accelerate neural network
response calculations for input data. While the company has provided limited information
about its architecture, it is understood that the neural network undergoes quantization and
is then mapped onto a resource graph. Our observations further indicate that this quantiza-
tion method specifically utilizes PTQ. In the subsequent phases, the graph is mapped onto
the chip’s physical resources, with a strong focus on optimizing performance and efficiency.

Intrigued by the speed potential of this accelerator, we decided to conduct an evaluation
of its suitability for face recognition tasks. The company offers the accelerator in various
forms, including a standalone chip and compute modules compatible with mPCIE and M.2
interfaces.

Rockchip NPU

The Rockchip NPU17 has been developed by Rockchip, a Chinese semiconductor company
that is involved in the processor manufacturing. This NPU is designed to be integrated
primarily into their processors.

The biggest challenge is documentation. Although information about the architecture
of the Rockchip NPU is not readily available, we have discovered that it supports INT4,
INT8, INT16 and FP16 hybrid operations [205]. By studying the SDK documentation,
we found that the model can be quantized using asymmetric quantization. In addition,
the quantization process can be controlled by the optimization level parameters selected by
the user during initialization.

16https://hailo.ai/products/hailo-8/
17https://github.com/rockchip-linux/rknpu2
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Chapter 4

Experiments with face detection
and recognition algorithms

One of the primary objectives of the thesis is to study face detection and recognition algo-
rithms applied to face images captured from different angles. Due to the limited availability
of such datasets, a dataset generator was designed and developed. The idea of using a gen-
erated dataset stems from both the need for specialized data samples and privacy concerns.
By using image processing algorithms, simulating optical properties, and projecting 3D
head models onto a plane, we gain the ability to generate a dataset containing specific im-
ages that may be more difficult to obtain in larger quantities in a real-world environment.
Such images can be used to augment existing datasets or to create new datasets to evalu-
ate available algorithms. Several experiments are conducted to validate the capabilities of
the generator and the resulting dataset. The first experiment focuses on assessing the sim-
ilarity between the generated dataset and a real face dataset. Additionally, the generated
dataset is subjected to tests using state-of-the-art face detection and recognition algorithms.

In recent years, there have been advances in methods for generating and augmenting face
data, many of which rely on generative neural networks. With these types of networks, new
datasets can be created either directly, or by using existing face images. However, generative
neural networks may not always faithfully preserve facial features, and we wondered what
such a distortions look like. To address this question, an experiment was conducted in which
a frontal photo was transformed into a profile using artificial intelligence.

4.1 Our approach to obtain datasets for face recognition

Datasets serve as the foundation for training and testing machine learning algorithms. These
datasets typically consist of face images, which can be acquired through three primary meth-
ods. The most straightforward approach involves capturing images directly with a camera.
Alternatively, computer vision and machine learning techniques can be employed to gener-
ate these images. The generation methods encompass the utilization of neural networks or
the utilization of 3D scanned head models.

The research objective is to determine how face recognition performance is affected by
the rotation of the face. This evaluation requires a dataset with a substantial number of
subjects. Nevertheless, the availability of such a dataset is limited. In [136], a dataset of faces
captured by a camera from different angles was presented. However, this dataset has fixed
environmental factors, and its extension is practically impossible due to the use of a special
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camera setup for the capturing. Another method to generate face images in specific poses
involves the use of generative neural network models [206].

We decided to develop an approach that preserves facial characteristics and simulates
real conditions using 3D scanned head models with facial texture instead of fully generated
images. Consequently, we introduce our novel method for acquiring a face dataset from 3D
head scans.

4.1.1 HeadViewer and creation of a custom face dataset

In 2015, we conducted initial experiments with the aim to find out how head rotation
in the pitch axis affects the detection and recognition performance. To do this, we used
an aerial work platform (AWP) to obtain the real images with the head rotated in the
pitch and yaw axis. Although the dataset, namely Airfield Face 20151, is composed of
only three subjects (see Figure 4.1), it was sufficient for the first experiments. In order to
capture the head (face) at different pitch, we defined two scenarios, as shown in Figure
4.2. The dataset is mainly focused on evaluating the influence of pitch rotation on face
detection. In addition to the frontal images, the face images were rotated in two othe yaw
angles.

Figure 4.1: Example of images from our Airfield Face 2015 dataset.

Figure 4.2: (a) Sketch of the capturing scene using the AWP, where A,B,C,D represent
spots where the individuals stood and X denotes the AWP position. Distances: |XA| =
15 m, |XA| = 25 m, |AD| = 10 m and |CA| = 10 m. (b) Angles calculated based on the
distances.

The results were used to develop software to simulate cases where face detection does not
work as well as it should. We designed the software, called HeadViewer [TG.3], primarily
as a tool for installing security cameras, see Figure 4.3. The setup of the cameras has

1internal dataset
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a direct impact on the utilization of the video captured by the cameras in computer vision
algorithms [TG.4]. The software made a significant contribution to security in 2015 and
2016, when it was used by police and companies working with security cameras. However,
due to the rapid development of new technologies, HeadViewer has become obsolete from
today’s point of view.

Figure 4.3: HeadViewer screenshot.

4.1.2 New sensors for capturing 3D models of faces

While developing HeadViewer, we encountered a lack of rotated face images. Capturing
the face in a specific pose is difficult due to the need to align the face and ensure the coop-
eration of the captured subjects. Although the neural network can be employed to generate
the face images in a specific position, such images do not correspond to real people and
may suffer from distortion of certain characteristics. To prove these claims, we have con-
ducted experiments with a neural network capable of generating a face in different positions
[207][208] derived from a frontal image. We found that the generated profile image has a
different shape (especially around the nose (1)) than the real face profile image, see Figure
4.4. Likewise, the angle between the lines (2) and (3) is different; it is smaller in the AI-
generated image than between the lines in the real image.

Other approaches to obtain the accurately positioned face images have emerged from the
use of the 3D head model. Images for the dataset are generated by projecting the 3D head
model onto the 2D plane using computer vision methods. The first step in the process is to
obtain a 3D head model. As part of police cooperation, we are asked to build a customizable
3D head scanning device. Such 3D scanners are usually based on Time of Flight (ToF)
[209], structured light [209], and photogrammetry [210]. After consulting with the police
and a specialist in anthropometry, we decided to use the 3D head models of real people to
generate a dataset of 2D images.
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Original images

Differences

(a) (b) (c)

Figure 4.4: Experiments with the AI generator of face images in different positions: (a)
reference image, (b) generated frontal image and (c) real frontal image.

For our face profile scanning sensor [TG.5], we chose to use photogrammetry. Unlike
similar commercial products Vectra H12 and Vectra H2 3, our device can be modified into
a 3D face recognition sensor or fit behind a semi-transparent mirror.

Sensor design and construction

Based on our experience, we decided to use cameras with frame buffers. This allows all the
images to be captured in a single moment, with a minimal time difference between captures.
Another consideration was the number of cameras needed to capture the 3D face profile. In
total, we decided to place the six cameras at the vertices of the pentagon shape, see figure
4.5. Due to the risk of face spoofing when using an unattended sensor, the prototype was
equipped with a thermal sensor for liveness face detection (LFD).

From a technical point of view, the device consists of six cameras, each capable of
capturing images with a maximum resolution of 3,840×2,160 pixels. These cameras are
equipped with lenses with a focal length of 4.3 mm and a diagonal field of view of 67°. They
are positioned with a rotation of less than 10°, all pointing to the center of a pentagon with
edges 45 cm in length.

3D model reconstruction

Photogrammetry is a process that involves several steps [210]. For each image, the position
where it was taken has to be determined. Then the pixels are projected into 3D space.
When the equivalent points from different images intersect in space, the 3D position can be

2https://www.canfieldsci.com/imaging-systems/vectra-h1-3d-imaging-system/
3https://www.canfieldsci.com/imaging-systems/vectra-h2-3d-imaging-system/
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Figure 4.5: Final design of the sensor, (1) cameras, (2) thermal sensor for LFD, (3) person
(me), (4) basis

calculated. Other algorithms are used for texture mapping, error suppression, and surface
smoothing. The result is a high-quality meshed and textured 3D model.

We have tried open source solutions for this, but the result is that Zephyr’s4 proprietary
software produces high quality results/models. The principles of some of the program’s key
algorithms have been published [211], [212], [213], [214], [215].

With this tool, we have attempted to generate a 3D head model using images captured
at different times with a standard photo camera, while the person holds their head in
a specific position, see Figure 4.6(a) and 4.6(b). In Figures 4.6(c) and 4.6(d) we can see a
3D mask with texture. The 3D model created from 39 images is already suitable for use,
as it includes prominent facial features such as eyes, nose shape, lip corners, and more.

(a) (b) (c) (d)

Figure 4.6: (a) Model created from 11 paired images (input dataset contains 25 images);
(b) Model created from 39 paired images (input dataset contains 50 images); (c) and (d)
Models with textures with directional light.

We also experimented with images taken at the same moment and we experimented with
the six cameras (Figure 4.7). The data from one camera is not used in the final 3D model
due to the lack of corresponding points with the other images. The results exceeded our
expectations. Only five images captured at the proposed positions are sufficient to create 3D
face models. In contrast to the previous scenario where we captured the face from various

4https://www.3dflow.net/3df-zephyr-photogrammetry-software/
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angles in a sequence, the quality of the output significantly improves when using five images
simultaneously taken from precisely defined positions.

Figure 4.7: First experiment with using six cameras.

Prototype and outputs

The mechanical parts for the scanner were printed on a 3D printer, and the computer for
controlling the cameras was placed in the middle, see Figure 4.8. Each of the cameras can
be rotated to set or adjust the appropriate angle. The outputs of the scanner is shown in
4.9. The final device is protected by a utility model [TG.5].

Figure 4.8: Final version of the 3D face scanner.
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Person A

Person B

Figure 4.9: Outputs of our 3D face scanner.

Summary

The primary function of the 3D scanner is to collect a dataset of 3D face profiles. Neverthe-
less, there are certain drawbacks, most notably the need to use photogrammetry software.
Furthermore, the use of the device as a sensor for 3D face recognition is accompanied by ex-
tended processing time, in order of minutes even with hardware acceleration. In the future,
we expect the development of algorithms that will allow the extraction of 3D-like features
from photographs without the need for the reconstruction of a complete 3D model, an ad-
vancement that has the potential to open doors for the sensor’s application in future 3D
face recognition tasks. In the meantime, given the sensor’s ability to capture face features,
its outputs can still be utilized in face analysis software or, for instance, for the creation of
a 2D face image dataset.

4.1.3 Face dataset generator

In the preceding section, we outlined the process of acquiring a 3D head model. Another step
in creating a face image dataset generation involves projecting these 3D models onto a 2D
plane. Since there was no suitable generator available at the time, we made the decision to
create our own solution, which we named SYDAGenerator [TG.6], as introduced in [TG.2].
In developing this tool, we established three primary objectives for the generator to achieve:
to simulate the real capture process, to allow the the application of post-processing filters
and to enable control of head alignment and rotation.

Moreover, it is worth noting that this generator extends beyond the scope of head
models. Although a similar approach has been introduced elsewhere [216], our generator
is distinguished by its increased complexity, offering a variety of options for simulating "in
the wild" conditions. We have progressively expanded the functionality of this application
over time. The set of features include:

• Simulation of camera properties (chip resolution, focal length)
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• Possibility to set direction of light and its color

• Rotation of head in three axis (yaw, pitch, roll)

• Setting the background image

• Operations (translation, rotation, scale) to establish the center of rotation

• Width normalization of the head

• Support for post-processing module

• YOLO annotation of Region of Interest (ROI)

The main goal of the generation is to use a 3D model and project it into 2D images
with a predefined scene setup. The primary requirement is that the resulting images look
as natural as possible. The idea was introduced in [TG.7].

The SYDAGenerator is implemented with the use of the LibGDX5 library to work
with a 3D model and post-processing is solved by algorithms from the OpenCV library.
The library supports basic operations with 3D models that are sufficient for the type of
application. However, it also brings a limitation, which is a reduced number of vertices to
32K.

The generating process is divided into the following steps:

1. 3D model transformation

2. Scene settings

3. Generate images

4. Image post-processing and filters

Verification of the plausibility of the simulation of the camera properties is attached in
Appendix B.1.

3D model transformation

Most scanned 3D models are not suitable for direct use. The SYDAGenerator supports
basic transformations to align a 3D model, including translation, rotation, and scaling. If
more advanced modifications are required, the model must be processed by an external
application (e.g. Blender6). During the generation, the 3D model is rotated in yaw, pitch,
and roll angles. However, the center of gravity of the model should be selected before starting
the generation.

In the case of the head model rotation, determining the center of rotation is a complex
problem. The human head rotates through the cervical spine (seventh vertebrae C 1-7) [217],
but face or head detectors only capture the head itself. In addition, the curvature of the
spine has many degrees of freedom and it would be difficult to determine the rotation derived
from the cervical spine. Therefore, the center of gravity of the head must be approximated
for simplicity.

5https://libgdx.badlogicgames.com
6https://www.blender.org
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For correct operation of the generator, a center of gravity, which servers as the center of
rotation, must be defined for every model. This center can be determined by the intersection
of three planes, as illustrated in Figure 4.10.

In [TG.2], we proposed the following algorithm to define the center of rotation of head.
The first plane is defined as the one passing through the center of the nose. However,

defining the second plane is challenging because it is unrealistic to locate nodal points
on the face for its determination. We have chosen to use a plane defined by the tip of
the nose and the anthropometric point of the ear, known as the intertragic notch, which
is perpendicular to the first plane. To define the position of this second plane, we need to
know the coordinates of these two points and ensure its perpendicularity to the first plane.
Alternatively, the second plane can be defined in the same way as the Frankfort horizontal
(Section 2.1.2).

The third plane passes through a specific part of the ear, defined as the midpoint between
the posterior auricle, helix root, and the tip of the nose. This plane is also perpendicular
to the other planes. The center of the head is then established at the intersection of these
three planes, as shown in Figure 4.11. This center must be defined for each head model
individually.

(a) (b) (c)

Figure 4.10: Planes defining the center of the head rotation.

Figure 4.11: The center of rotation of the head model defined by the intersection of planes.

Once the desired transformations are set, it is possible to save the transformation matrix
to a JSON file so that the desired matrix is loaded when the program is started. After

89



running the program, the configuration file with transformations will be loaded if it exists.
This is an important feature for automatic generation.

Scene settings

The preceding step involves preparing a 3D model, while the subsequent one revolves around
setting up the scene to ensure the dataset conforms to specific requirements. Since the appli-
cation mimics face capture by a camera, configuring camera properties and lighting becomes
imperative. Furthermore, the 3D model is positioned in front of a background derived from
the image and is seamlessly projected into the scene without any alterations or distortions.

Another important aspect is the adjustment of the light settings. By default, the tool
uses only ambient diffused light to illuminate the scene, where the color temperature can be
set. However, if we need directional light, we can set it in the configuration file. However,
if the model has deformations on the surface, the directional light will cause highlight
artifacts. The software can also adjust the camera position, however after experimenting
with the human head, we came to the conclusion that it is better to keep the setting when
the camera has a straight direction.

Generating images

The primary function of the application is to generate images with rotated heads, creating
a new dataset of face images. To achieve this, the application allows the transformation of
a 3D model during the generation process. The 3D model can be rotated in yaw (ψ), roll
(φ), and pitch (θ) according to the settings (Figure 4.12).

Figure 4.12: Euler angles [218].

While the 3D head alignment uses quaternions to rotate the object, the image generation
is performed using Euler rotation. Euler rotation is defined by the following equations [218]

R (φ, θ, ψ) = Rz(ψ)Ry(θ)Ry(φ) (4.1)

where R is the rotation matrix and Rz, Ry, Rx are the partial rotation matrices, defined
as follows [218]
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Rx (φ) =





1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)





Ry (θ) =





cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)





Rz (ψ) =





cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1





. (4.2)

The number of images depends on the step size and the angle range. In addition,
the background can be changed for each iteration of the rotation. Examples of images
generated by SYDAGenerator are shown in Figure 4.13.

(a) (b) (c)

Figure 4.13: Examples of the generated face image with rotated head.

Image post-processing

A real face image contains unwanted distortions due to camera characteristics and envi-
ronmental influences. Camera characteristics that affect the image include chip resolution,
focal length, lens distortion, and more. If we want to test algorithms for detection and
recognition, we should take these paradigms into account. The SYDA generator supports
image modification using image processing algorithms. This part is useful for testing of face
detectors and classifiers.

For example, the surveillance systems produce images of varying quality, which can
negatively affect face detection and identification. We have chosen one property that affects
the success of face detection - resolution. Using a downscaling algorithm, we can create
a dataset that simulates the real conditions of a surveillance system. This dataset proves
valuable for assessing the impact of resolution on face algorithms.

Other camera characteristics include lens distortion (Equation 4.3), which can have
a significant effect on the captured image. Because distortion can alter important facial
features, it can degrade or prevent the identification of a person. The distortion filter is
determined by mapping pixel values from ideal coordinates to distortion coordinates, defined
as follows [219]

[

Xd

Yd

]

=

[

Xu

Yu

]

[

1 +R2
uKµ1 +R4

uKµ2

]

(4.3)

where Ru =
√

X2
d + Y 2

d , Kµ1 and Kµ2 are the distortion coefficients, Xd and Yd are the
undistorted image coordinates.
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(a) (b) (c)

Figure 4.14: Examples of generated downscaled face images with rotated head.

Summary

The implementation of a tool to generate synthetic or semi-synthetic datasets was driven
by the need to extend existing datasets for the evaluation of face recognition algorithms.
The SYDAGenerator provides the ability to use 3D head models obtained by modeling,
generating, or scanning a head to create a 2D face image dataset. We developed our own
sensor capable of acquiring 3D head scans.

In 2018, we started a collaboration with Masaryk University, Faculty of Science, where
a dataset consisting of 3D models was created, namely Fidentis [220], as part of their
research. The dataset was created by long-term scanning of different individuals under
laboratory conditions. This provides an excellent opportunity to use our generator to obtain
a unique semi-synthetic dataset for testing face recognition algorithms. While our own 3D
scanner is fully operational, recreating a similar dataset would be unprofitable.

Overall, the SYDAGenerator7 is still available and maintained.

4.2 SYDA-Fidentis dataset

Depending on the type of 3D head model, the SYDAGenerator can be used to generate
a synthetic8 or semi-synthetic dataset9. In contrast to the fully synthetic dataset, the main
advantage of the semi-synthetic dataset is the preservation of the facial features. This led
us to use the SYDAGenerator in combination with the 3D head models of real people
from the Fidentis dataset [220] to introduce the new dataset to test the face recognition
algorithms. The advantage of the Fidentis dataset is that the scanned heads are aligned
based on the Frankfurt horizontal, ensuring that each model has the same center of rotation.

Unlike a synthetic dataset, the images in the proposed dataset should be closer to the real
face images. However, despite the best efforts to ensure faithful images, depending on the
generator settings, the images may contain deviations from the natural face appearance
caused by the generator and model preprocessing.

This generator was designed to simulate the conditions that occur when a real face is
photographed. For our dataset, we established the configuration includes properties of the
Nikon D2700 camera, such as the dimension of the virtual sensor and the resolution. The fo-
cal length was set to 35 mm. From the perspective of the face detector, it was stated in
Section 3.4 that the detector may suffer from sensitivity to the size of the face in the image.
To better understand the state-of-the-art detectors, we decided to generate the dataset con-

7https://www.fit.vutbr.cz/~igoldmann/app/sydagenerator/.en
8Dataset is generated using generated 3D head model.
9Dataset is generated using a 3D head that is obtained by scanning a real head.
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sisting of three subsets with different camera to subject distance (CSD) (4, 7 and 10 meters)
between the face and the camera, where each subset includes images rotated in the yaw and
pitch axis. Due to the large number of adjustment degrees provided by the SYDAGenerator,
the enormous combination of parameters such as light color, light direction, and background
can lead to data explosion. Therefore, for this dataset, both distance and rotation in pitch
and yaw were selected as variable parameters. Other parameters are frozen and used across
all images.

In summary, we created our dataset, named SYDA-Fidentis, using semi-synthetic face
images designed to mimic conditions found in real-world environments. To accomplish this,
we selected 216 3D head models from the Findetis dataset, consisting of 131 female and
85 male subjects. Figure 4.15 visually represents the age distribution of the subjects in our
dataset.

In contrast to the generated 3D models (see experiment in Section 4.1.2), the head mod-
els preserve the facial characteristics of real people, each of the heads is aligned according
to the Frankfort plane, see Section 2.1.2. The example images are shown in Figure 4.16.

Figure 4.15: Age distribution in the SYDA-Fidentis dataset.

From the perspective of face recognition, the generated dataset needs to be evaluated
to discover its properties and to compare the behavior of the face recognition algorithms
when interacting with the generated dataset, against their behavior with the real images.
As a result, we have established the following research objectives:

• Determine the impostor and genuine distributions - the objective is to determine
the behavior of the face recognition algorithm applied to the generated dataset.
The experiment is based on the assumption that if the face recognition algorithm
can discriminate positive and negative matches similarly to real-world datasets, then
we can claim that the algorithm is able to identify the necessary features in the images
that correspond to face identity.

• Ability of face detectors to detect faces in the generated dataset - by comparing the gen-
erated images with real face images at different positions, we can estimate the behavior
of the generated rotated face images with respect to the real face images. Furthermore,
the influence of face rotation on face detection can be evaluated.

• Face recognition capability within the generated dataset - similar to the previous goal,
but using the face recognition algorithms instead of the face detectors, we can perform
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experiments to find out how much face recognition is affected using a generated dataset
against a dataset of real images.

Yaw - 4 m Yaw - 7 m Yaw - 10 m

-35°

0°

35°

Figure 4.16: Examples of images from our dataset.

4.3 Impostor and genuine distributions of the generated
dataset

The first experiment is designed to assess the ability of the generated datasets to discrim-
inate between impostors and genuine matches. As explained in Section 3.5.1, determining
the membership of a face image sample to a specific identity relies on a distance metric.
When the distance between the input sample and the template is below a certain thresh-
old, we assume that the input sample belongs to the same class. Conversely, if the distance
exceeds the threshold, the comparison is classified as negative. However, in the case of
the QMagFace algorithm (Section 3.5.10), the genuine and impostor distribution is reversed
due to the quality-aware metric.
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Furthermore, the distribution for positive matches (impostor) and negative matches
(genuine) can be calculated. To balance the two distributions, we used an equal number
of positive and negative pairs, following the protocols defined by the datasets authors. For
better visualization, the distributions are smoothed using kernel density estimation (KDE)
[221].

Using the distributions, the ability to discriminate the samples can be observed and
evaluated within the dataset consisting of the face images. However, such a comparison is
not sufficient to evaluate the similarity between the generated dataset and the real face
dataset. Therefore, in addition to the SYDA-Fidentis dataset, we chose two well-known
datasets, namely LFW (Section 3.2.3) and CFP (Section 3.2.5), as the foundation for our
comparison. For the CFP-FP scenario, a protocol is defined that comprises positive and
negative pairs, including frontal and profile images. Thus, we can observe the performance
of the face recognition algorithm with images that are captured in profile position compared
to frontal position.

ArcFace (Section 3.5.8) and QMagFace (Section 3.5.10) have been chosen as represen-
tative face recognition algorithms. For the ArcFace algorithm, the pairs are compared by
L2 distance and cosine distance. The experiments were performed first with the LFW and
CFP datasets and then with the generated datasets.

4.3.1 LFW and CFP datasets

Let us examine a dataset consisting of real face images. The genuine and impostor pairs
were established using LFW testing scenario and the face images were aligned using five
facial landmarks.

Initial experiments were carried out using the LFW dataset with ArcFace recognition
algorithms, resulting in expected distributions with minimal overlap as shown in Figure
4.17(a,b). Based on this, the appropriate threshold (T ) to separate impostor and genuine
pairs is set to 1.19, which gives an accuracy of 0.991 (TAR = 0.985, FAR = 0.0034), while
for cosine distance distributions, the accuracy is 0.974 (TAR = 0.988, FAR = 0.040) for
a threshold set to 0.8.

(a) Pairs matched by L2 distance (b) Pairs matched by Cosine distance

Figure 4.17: Genuine and impostor score distributions obtained using ArcFace on the LFW
dataset.

However, hand in hand with ArcFace, the QMagFace algorithm was used to evaluate
the distributions, see Figure 4.18. It is obvious that QMagFace has a better ability to
separate the impostors from the genuine matches due to the use of a quality-aware matric.
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Figure 4.18: Genuine and impostor score distributions obtained using QMagFace on
the LFW dataset.

Another representative of the datasets, the CFP dataset, contains both frontal face
images and profile face images. The frontal images from the datasets are evaluated ac-
cording to the same scenarios as the LFW dataset, see Figures 4.19(a,b) and 4.20. In this
term, the accuracy obtained by ArcFace (L2 distance) is 0.9797 (T : 1.20, TAR = 0.9732,
FAR = 0.0138) and for QMagFace is 0.998 (T : -0.830, TAR = 0.9966, FAR = 0.0002).

(a) Pairs matched by L2 distance (b) Pairs matched by cosine distance

Figure 4.19: Genuine and impostor score distributions obtained using ArcFace on the CFP
frontal dataset.

Figure 4.20: Genuine and impostor score distributions obtained using QMagFace on
the CFP frontal dataset.

In the last scenario, the CFP-FP protocol is used in order to find the face recognition
performance between frontal and profile images. In ArcFace, it is obvious that the overlap of
the distributions is larger in the case of the scenario according to the distributions obtained
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from the frontal images, Figure 4.21. In this case, the accuracy for the L2 distance matches
is 0.97415 (T : 1.28, TAR = 0.9616, FAR = 0.0133).

(a) Pairs matched by L2 distance. (b) Pairs matched by cosine distances.

Figure 4.21: Genuine and impostor score distribution obtained using ArcFace on the CFP-
FP dataset.

Similar to the previous case, the QMagFace algorithm gives better results (ACC = 0.9791,
T : -0.99, TAR = 0.962, FAR = 0.00475), and so it is clear that it is better at dealing with
faces in non-frontal positions than ArcFace, see Figure 4.22.

Figure 4.22: Genuine and impostor score distributions obtained using QMagFace on
the CFP-FP dataset.

4.3.2 SYDA-Fidentis dataset

The research objective is to find out how the identities contained in the generated dataset
are classified based on a metric. Assuming that face recognition has the ability to produce
vectors that can discriminate between the impostor and the genuine pairs, we can observe
their distributions in order to evaluate the properties of the generated dataset.

Although the LFW dataset consists most of images that capture the face in a frontal
position, faces are usually captured at an angle with a small deviation, see Section 2.3.2.
Due to the fact that the dataset was generated with heads rotated at different angles, we
marked as frontal images with pitch and yaw between 0° and 5°. Similarly, images with
a pitch of 0° and 5° were marked as profile images.

Comparisons between frontal images of the dataset showed that although the algo-
rithms were not trained on similar data, both ArcFace (see Figure 4.23) (ACC = 1.0,
T : -0.6, TAR = 1.0, FAR = 0.0) and QMagFace (see Figure 4.24) (ACC = 0.9996, T : 0.02,
TAR = 1.0, FAR = 0.0008) were very effective at separating the genuine from the impos-
tor distributions. This suggests that there are significant correlations between real and our
generated face images.
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(a) Pairs matched by L2 distance (b) Pairs matched by cosine distances

Figure 4.23: Genuine and impostor score distributions obtained using ArcFace on the SYDA-
Fidentis dataset (CSD = 4 m).

Figure 4.24: Genuine and impostor score distribution obtained using QMagFace on
the SYDA-Fidentis dataset (CSD = 4 m).

Next, we conducted experiments to observe how the face recognition algorithms deal
with the profile face images. As stated in [137], we consider images in our dataset to be
profile images, in which there are faces rotated in the yaw axis between 60° and 90° Each
pair consists of a frontal and a corresponding profile image, this is called a frontal-profile
scenario. The results are shown in Figure 4.25.

(a) Matches obtained by ArcFace (L2 distance) (b) Matches obtained by QMagFace

Figure 4.25: Genuine and impostor score distributions obtained using ArcFace and QMag-
Face on the SYDA-Fidentis dataset, Frontal-Profile (FP) scenario.

The generated near profile face images suffer from poor quality due to corrupted or miss-
ing texture. As a result, such images of the SYDA-Fidentis dataset appear to be unsuitable
for face detection and recognition algorithms.

Overall, ArcFace and QMagFace behave similarly on generated frontal images as they
do on real face images. Although the algorithms have not been trained on such a dataset,
the discrimination between genuine and impostor pairs is guaranteed. However, the face
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recognition ability of the profile-generated images needs to be further investigated. There-
fore, in the following section, we evaluate the ability to detect and recognize faces in various
poses.

4.4 Influence of head rotation on face detection

In previous experiments with the SYDA-Fidentis dataset, we have shown that face recog-
nition algorithms are primarily able to discriminate between the generated frontal faces.
However, the next research question is how face detection algorithms work with the gener-
ated data. First, we investigate the behavior of face detectors on real face images captured
at different angles. Overall, the main goal of the following experiments is to observe the in-
fluence of head rotation on face detection performance. Within the head rotation, three
axes of rotation are used, consisting of yaw, pitch, and roll, see Figure 4.26.

Figure 4.26: Head rotation axes [222].

Due to the ability to correct for roll rotation using the warping transformation [223],
the generated dataset consists only of images with faces rotated in yaw and pitch, as shown
in Figure 4.27. To remove the roll, it is possible to simply determine the roll rotation
according to the eye positions [224], and then modify the image using the affine warping
transformation. The roll is calculated by

φ = arctan(
ley − rey
lex − rex

) (4.4)

where le expresses the coordinate of the center of the left pupil (midpupil) for both x
and y directions and re{x,y} is the coordinate of the center of the right pupil (midpupil) for
both x and y directions.

(a)

(b)

-90° -75° -60° -45° -30° -15° 0° 15° 30° 45° 60° 75° 90°

Figure 4.27: Illustration of the rotated head in pitch (a) and yaw (b).
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According to the information in Section 3.4, the state-of-the-art face detectors and
Viola-Jones from the OpenCV implementation were chosen. Fear not, the Viola-Jones was
chosen as a representative of historical approaches, and its contribution to face detection is
insignificant at this time.

Experiments were performed with the available implementations of the following de-
tectors: Viola-Jones10, MTCNN11, SSD12, RetinaFace13, Yolov7-Face (model s), Yolov7-
Face14 (default model) and SCRFD15 (model 34GF). The MTCNN implementation chosen
for the MTCNN detector is a derivative of FaceNet’s MTCNN, and the model used is an
adaptation of the original implementation. The Single Shot Detector (SSD) is based on
the reduced ResNet-10 backbone [225]. The Yolov7 Face is derived from YOLOv7 and has
been modified for binary classification and landmark regression. In the case of RetinaFace
and SCRFD, corresponding implementations are included in the Insightface Face Library16.

In terms of state-of-the-art face detection algorithms, we focused on YOLOv7, Reti-
naFace and SCRFD, which were trained on the WIDER Face dataset. In addition, for
the YOLO detectors, the training dataset was extended with the Yolov7-face-label17 dataset.

Given the available performance results for the selected face detectors (ROC, F1 score),
we focused only on evaluating the influence of head rotation on detection performance, which
is not evaluated for the selected face detectors. Since there is only one face in the image,
the figures only show the recall metrics, for more details on the performance metrics, see
Section 2.3.3.

4.4.1 HeadPose

For our purposes, we need a dataset with well-defined face positions. Unfortunately, such
datasets are rare or unavailable. We discovered the M2FPA dataset [226], which contains
397,544 images from 229 subjects, with each image featuring a face rotated to a precise
position. Access to this dataset requires that you agree to certain terms. We have therefore
accepted the agreement and submitted two requests for access to the dataset, but have not
yet received a response from the authors.

For our experiments, a dataset called HeadPose (see Section 3.2.5) was chosen as a repre-
sentative of the real face dataset. The dataset consists of 15 subjects with face images taken
at different angles. However, the dataset does not have a well-defined center of rotation,
which causes some variations in the results.

To ensure the same conditions for yaw and pitch, we kept the detector’s default settings
for both rotations.

Face detection in images with yaw head rotation

First, face detection was performed on the images with faces rotated around the yaw axis.
Due to asymmetric facial features (such as freckles or pigmentation) [227], the progression
of the function may not be the same for positive and negative rotations. The worst result

10https://opencv.org
11https://github.com/ipazc/mtcnn
12https://github.com/serengil/deepface
13https://github.com/deepinsight/insightface/tree/master/detection/retinaface
14https://github.com/derronqi/yolov7-face
15https://github.com/deepinsight/insightface/tree/master/detection/scrfd
16https://github.com/deepinsight/insightface
17https://github.com/derronqi/yolov7-face
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was obtained with Viola-Jones (OpenCV), which is in line with our expectations for this
detector. The other detectors had no problems with head rotation along the yaw axis, as
shown in Figure 4.28. The algorithms did not produce any false positive detections, resulting
in a precision of one for all detectors.

Figure 4.28: Influence of head rotation in the yaw axis on face detection performance in
the Headpose dataset.

From frontal to profile, these algorithms expect OpenCV to be able to accurately detect
faces, meaning that recall has not decreased.

Face detection in images with pitch head rotation

The pitch rotation is another factor that can distort the features in a face. We found that
pitch rotation has a much larger effect on face detection than yaw rotation. Although both
YOLOv7 face detectors are trained on the same dataset, their performance differs when
the head is rotated in pitch. Although the MTCNN is an older face detector, it outperforms
all state-of-the-art detectors in this case.

Figure 4.29: Influence of head rotation in pitch axis on face detection performance in
the Headpose dataset.

Surveillance cameras should be mounted high and out of reach, such as on building walls
[228]. Based on our results in Figure 4.29, detection can be negatively affected by improper
angles. More research should be done in this area to improve face detectors.
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4.4.2 SYDA-Fidentis

Based on the distribution experiments, we observed that the face recognition algorithms
discriminate face images from the SYDA-Fidentis dataset in a manner similar to real face
images. The following experiments focus on evaluating the effect of head rotation on face
detection. First, the effect of yaw head rotation on recognition performance is evaluated.

Face detection in images with yaw head rotation

In order to investigate the effect of face rotation on face detection performance, the selected
face detectors were applied to images from the SYDA-Fidentis dataset, which featured
heads rotated in the yaw axis. Experiments were conducted on the SYDA-Fidentis dataset
at simulated distances including CSD 4 meters (Figure 4.30), 7 meters (Figure 4.31), and
10 meters (Figure 4.32).

Figure 4.30: Influence of head rotation in the yaw axis on performance of face detection in
the SYDA-Fidentis (CSD = 4 m) dataset.

Figure 4.31: Influence of head rotation in the yaw axis on performance of face detection in
the SYDA-Fidentis (CSD = 7 m) dataset.

The results show that, as expected, the Viola-Jones detector from OpenCV gives the worst
results. The second worst detector among the selected ones is SSD, which is theoretically
sensitive to face size. The other detectors can almost perfectly detect the face in the range
between -75° and 75°. The observation reveals that even though the generated images only
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Figure 4.32: Influence of head rotation in the yaw axis on performance of face detection in
the SYDA-Fidentis (CSD=10 m) dataset.

contain the texture of the face, without covering the entire profile of the face, the detec-
tors are still able to perform the detection in a reliable manner. Additionally, the detection
performance is affected by the size of the face, with smaller profile face having a lower
probability of being detected, see Figure 4.32.

Face detection in images with pitch head rotation

Note that the situation becomes more interesting when the faces are rotated around the pitch
axis. Obviously, face detection is successful in the range between -45° and 30°, outside of
this interval the recall drops rapidly for the most detectors. However, the RetinaFace and
SCRFD detectors can handle rotated faces between -60° and 45°, as shown in Figures 4.33,
4.34 and 4.35. These results show the limitations of the generated dataset. The OpenCV
and YOLOv7 detectors show an anomaly where the recall rate consistently decreases as
the orientation deviates from the frontal position, but begins to increase at a certain angle.
This behavior might be a result of the neural networks recognizing patterns that resemble
faces located within the face areas.

Figure 4.33: Influence of head rotation in the pitch axis on performance of face detection
in the SYDA-Fidentis (CSD = 4 m) dataset.
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Figure 4.34: Influence of head rotation in the pitch axis on performance of face detection
in the SYDA-Fidentis (CSD = 7 m) dataset.

Figure 4.35: Influence of head rotation in the pitch axis on performance of face detection
in the SYDA-Fidentis (CSD = 10 m) dataset.

4.4.3 Comparison of face detection between Headpose
and SYDA-Fidentis datasets

Based on the results, it is evident that the face detectors exhibit similar responses when
applied to both the generated and real datasets. However, there is a slight difference in recall
between these two datasets. Except for SSD, the effect of yaw rotation on face detection
remains relatively consistent for both the generated and real datasets. When it comes to
pitch rotation, the gap between the generated and real datasets widens. Recall performance
is similar for both datasets within the range of -45° to 30°, but differs significantly outside
of these angle intervals.

The main difference between the datasets is in the positive values of the pitch rotation,
where for the dataset with real images, the detection is successful up to 60°, while in the case
of the generated dataset this limit is between 30° and 45°.

If the dataset is used within these rotation intervals, it can be employed for testing
the detector in various scenarios, such as changes in direction or lighting conditions, lens
distortions, and compression artifacts.
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4.5 Influence of head rotation on face recognition

The final step in the face recognition pipeline is face embedding, which is responsible for
constructing a vector representation that can be used for verification or identification. In
recent years, face recognition algorithms have achieved impressive accuracy on datasets
with near-frontal face poses. However, we were interested in finding out how accurate these
algorithms would be when confronted with images containing other face poses. This ability
to evaluate the influence of head rotation on face recognition accuracy is one of the origi-
nal reasons for introducing our custom face generator. Following the experiments described
above, we focus on comparing the accuracy of face recognition by first running the algo-
rithms on the limited dataset of real faces and then on the generated dataset.

For the experiments, we chose well-known algorithms presented in the theoretical part of
the thesis, including SphereFace, ArcFace, MagFace, and QMagFace. The RetinaFace detec-
tor was used for face detection. We performed both the analysis of the match distances and
the evaluation of the accuracy for the selected threshold. With the exception of QMagFace,
the threshold was selected based on the error equal rate (EER) of the corresponding ROC
obtained from the LFW dataset. In the case of QMagFace, the comparison is conducted
using a quality-aware function, the parameters of which are configured based on training
samples, FAR, and minimum quality. For QMagFace, the threshold was obtained based on
the EER of IJB-C, where its value corresponds to the observations noted in the distribution
experiments.

We must not overlook the issue of face alignment, which has a significant impact on
face recognition performance. Five landmarks in the face are commonly used for frontal
face alignment. These landmarks are aligned as close to the center of the image as possible.
However, in the case of the profile images, the transformation causes the nose to be located
in the center of the image. As a result, the profiled face image occupies only half of the image.
For our purposes, we chose an alignment method that finds similarity between landmarks
against reference points.

4.5.1 Headpose

First, the capabilities of the recognition algorithms were tested on the face images using
images from the Headpose dataset. The goal is to see if and how face rotation affects the L2
distance between the embedding vectors.

Face recognition with yaw head rotation

The first investigation is the recognition performed with the heads rotated in the yaw axis.
The position of the face in the images was detected by the RetinaFace algorithm, which gave
a high performance in the previous case. Due to the asymmetry of the face, the face rotated
in yaw does not match the symmetric values for negative and positive rotation. From the
distributions in Figure 4.36 and the accuracy evaluation (Figure 4.37), it is clear that most
algorithms, except ArcFace, classified all face images from -90° to 90° below the threshold.

The medians of the distributions (marked in red) gradually approach the threshold as
the head rotation moves away from the frontal view. Overall, both detectors are able to
handle yaw rotation when using the real face images.
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(a) Face recognition performed by ArcFace (b) Face recognition performed by QMagFace

Figure 4.36: Distributions of distances between face vectors with respect to the rotation in
the yaw axis.

Figure 4.37: Accuracy of face recognition with respect to yaw rotation in the Headpose
dataset.

Face recognition with pitch head rotation

The next analysis deals with head rotation in the pitch axis. As mentioned before, since
the surveillance cameras are installed at high points, it is important to know the influence
of head rotation in the pitch axis on face recognition. Note that the distance distributions
are only evaluated for detected faces.

In the case of ArcFace, the values are below the threshold of -60° to 60°, see Figures
4.38 and 4.39.

(a) Face recognition with ArcFace (b) Face recognition with QMagFace

Figure 4.38: Distributions of distances between face vectors with respect to the rotation in
the pitch axis.
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Figure 4.39: Accuracy of face recognition with respect to pitch rotation in the Headpose
dataset.

Within the same interval, QMagFace can also correctly recognize a person. However,
reliable recognition is only secured in the interval between -30° and 30°. Looking at the head
rotation at 60° and -60°, we can see that the median is less favorable for the negative angle
than for the positive angle. This means that backward head tilt makes face recognition more
prone to accuracy loss. In contrast to the forward head tilt, the face features are visible at
higher angles.

4.5.2 SYDA-Fidentis

From the distribution experiments, it is clear that ArcFace and QMagFace are able to rec-
ognize the identities from the generated dataset. However, rotation near the profile position
causes a high error rate, so it is worth examining individual distributions for each angle to
determine the limits of usable pitch and yaw rotations.

Face recognition with yaw head rotation

The experiments with the head rotated in the yaw axis were performed on the images
taken at distances of 4 m, 7 m, and 10 m from the camera. However, the face recognition
algorithms scale the ROI with the face to 112×112 pixels, so the results for all distances
are very similar. This has led us to present the results for the 4 m distance only.

With ArcFace, all matching pairs are correctly classified in the interval of -60° to 60°,
see Figure 4.40. However, for the QMagFace algorithm, a small number of samples exceed
the set threshold, resulting in slightly worse performance compared to ArcFace at this angle.

(a) Face recognition with ArcFace (b) Face recognition with QMagFace

Figure 4.40: Distributions of distances between face vectors obtained from the SYDA-
Fidentis dataset with respect to the rotation in the yaw axis.
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At -75° and 75° the values are close to the threshold, with some exceeding it for both
detectors. This causes a significant drop in accuracy, see Figure 4.41.

Figure 4.41: Accuracy of face recognition with respect to yaw rotation in the SYDA-Fidentis
dataset (CSD = 4 m).

Face recognition with pitch head rotation

The final experiments with the face recognition algorithms deal with a face rotated around
the pitch axis. When the face is rotated below -45° along the pitch axis, both algorithms
consistently fail to provide accurate identifications. In cases where the angle is positive,
the limit falls within the range of 30° to 45°, see Figure 4.42.

(a) Face recognition with ArcFace (b) Face recognition with QMagFace

Figure 4.42: Distributions of distances between face vectors obtained from the SYDA-
Fidentis dataset with respect to the rotation in the pitch axis.

However, an anomaly occurred at 85° when using QMagFace (Figure 4.43), where
the distance between the vector generated from the rotated head image and the vector
generated from the reference image implies a positive match, while at this angle there
should hardly be enough face data present. This observation may indicate security issues,
since it implies that it may be possible to generate identity vectors without using real face
data.

4.5.3 Comparison of face recognition between Headpose
and SYDA-Fidentis datasets

In the case of yaw rotation, the progression of the medians of the distributions in the interval
-60° to 60° is similar, with all distributions below the threshold. However, the variance of
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Figure 4.43: Accuracy of face recognition with respect to pitch rotation in the SYDA-
Fidentis dataset (CSD = 4 m).

the distributions is larger in the case of the real image dataset, indicating that the features
of the faces in the generated dataset are not significantly affected by negative influences.

Rotation in the yaw axis limits the usability of rotated face images outside of the -60°

and 60° intervals. Another, more significant limitation is introduced by pitch rotation.
The matching distance distributions of faces are similar for real and generated faces in the
range of -30° to 30°. The lower limit of usable face rotation is about -45°, while the upper
limit is 30°. Beyond these limits, the responses of the tested algorithms on the generated
dataset are strongly influenced by incomplete texture or other factors.

Overall, the success rate is directly affected by distorted or missing textures areas when
the face is rotated beyond the presented intervals. This led to defining limits for the SYDA-
Fidentis dataset.

4.6 Summary

In this chapter, we first focused on the novel possibilities of obtaining a dataset of face
images that capture the biological features of real people. As a result, we created a dataset
of pitch-rotated and yaw-rotated faces taken at simulated CSDs of 4 m, 7 m, and 10 m
using a "virtual" 45 mm lens. For individual CSD, the dataset contains 37 yaw-rotated and
37 pitch-rotated face images for each of the 216 subjects.

The face detection and recognition algorithms were run on our generated dataset and on
a dataset containing real images. In these experiments, we investigated the dependence of
face rotation on detection and recognition success rates and the behavior of the algorithms
applied to the semi-synthetic generated face dataset.

For validation and testing of face recognition algorithms, only a subset of images from
the SYDA-Fidentis dataset can be used at certain intervals, determined by comparing
the output of the algorithms applied to the generated dataset and the real dataset. In
the results, the images can be utilized between -60° and 60° for rotation around the yaw
axis. While for pitch rotated face the interval is between -60° and 60°. Based on this, an
assumption was made that by using models with better lateral textures, it may be possible
to create a generated dataset that has the same behavior as the real one.

By analyzing the distance distributions, we found that yaw rotation less than -75° and
greater than 75° is not appropriate for face recognition due to the distances generated
close to the threshold. For both detectors, the usable range of rotated images with reduced
reliability is in the interval -60° to 60°. However, the effect of pitch rotation on recognition
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is even greater, whereas the only face pitch rotation that has no significant effect on face
recognition is rotation from -30° to 30°. Due to the loss of face characteristics in positive
yaw rotation, the possibilities of 2D face recognition above 30° degrees are very limited.
Future research can focus on face recognition using negative rotation around the pitch axis.

4.6.1 Future work

MagFace introduced the idea of ordering the intra-class vector distribution using the quality
of the face image. Further improvement of the face recognition loss function can be achieved
by using the face rotation in the loss function during training. Similar to the MagFace
loss, the intra-class vectors should be organized by rotation. To solve this problem, it is
necessary to ensure that the face image dataset with labeled pitch, yaw, and roll rotation
has an adequate representation of differently rotated faces.

We believe that this can be the next step in neural networks for face recognition, which
can lead to improved face recognition in non-frontal positions.
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Chapter 5

Our approaches and acceleration of
face recognition algorithms

In the 1990s, computing resources were severely limited, making real-time face recogni-
tion virtually impossible. Over time, computing resources have become more powerful and
affordable. By 2010, computing resources were sufficient to perform online face detection
and then face recognition. For specific tasks in computer vision, technologies such as Field
Programmable Gate Array (FPGA) [229] or Digital Signal Processor (DSP) [230] have been
used to accelerate them. As technology has evolved, computers have become smaller and
more powerful. This is where edge computing [231] comes in.

With the expansion of neural networks, a new platform has emerged to accelerate their
inference. Combined with edge computing, it brings the application of face recognition
technology to a new level.

Using such a platform, face recognition can be executed on a device with limited comput-
ing power. This technology offers new ways to protect the privacy of face recognition system
users, as well as to improve the privacy of citizens with the use of government-maintained
surveillance systems. For example, when the set of biometric templates is uploaded to
the edge device, the device’s output can contain only information about the presence of
the person of interest to suppress privacy concerns. This system can be used in security
cameras and police surveillance tools such as drones, fixed cameras, handheld cameras, and
even directly in cameras mounted on police cars. In deploying these systems, we must bal-
ance privacy and security concerns, and we must not neglect the risk of misuse of these
systems, while adhering to standards, see Section 2.1.3.

A motivation to develop a new solution for face recognition on edge devices arises from
the need for a modern, expandable system suitable for use with security cameras or drone
cameras. Based on the summary outlined in the theoretical foundation of the thesis and
the available data, we chose suitable algorithms for designing these new face recognition
systems.

To develop an application for an embedded system, the algorithms should be improved
to reduce processing time while maintaining model accuracy as much as possible. Therefore,
we proposed and tested improved algorithms for face detection and face recognition on such
devices. A similar solution was presented in the paper [232], however, within the scope of
our research, we focused on evaluating the performance of our modified algorithms for
face recognition on three acceleration platforms, selecting algorithms currently considered
state-of-the-art.
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For this part, we have set the following research objectives:

• Design and development of face recognition algorithms for use in embedded systems.

• Design and experiments with a lightweight method to improve the quality of a face
image for a face recognition neural network.

5.1 Embedded system for face recognition

One of the goals of the thesis is to implement accelerated solutions to perform face recogni-
tion. When we first started working on the thesis in 2016, the acceleration of neural networks
and machine learning algorithms was performed by GPU [156], FPGA [233] and DSP. Over
time, resources dedicated to neural network acceleration began to emerge. Today, neural
network acceleration devices can be integrated directly into the CPU [194].

5.1.1 Architecture of the experimental system

Before delving into the development of the face recognition system itself, we first constructed
an embedded camera system, using the Movidius Myriad X platform and UP Core, with
power provided by the Intel Atom x5-z8350 CPU, as shown in Figure 5.1(a). Our dedication
to advancing this research led us to also explore alternative acceleration platforms. Since
the primary focus of our research was low-performance embedding, we switched to an ARM
device offering lower performance compared to the Intel Atom. Most notably, we integrated
three acceleration devices selected from those described in section 3.6.3, as depicted in
Figure 5.1(b).

Today, processors based on the ARM architecture are widely used in Internet of Things
edge devices. Therefore, we decided to use the ARM platform as the basis for our solution.
To compute the response of the neural network model, we chose three accelerators: Intel
Compute Neural Stick 2 (ICNS 2), Hailo, and NPU integrated in RK3568 (2020), which
are introduced in Section 3.6.3. The Hailo accelerator is only designed for the M.2 interface
or PCIe. Considering these aspects, we chose Rockchip 3A1 platform, which contains CPU
Quad-core Cortex-A55 2 GHz (RK3568) and 0.8 Tera Operations Per Second (TOPS) NPU.
To control the accelerators, libraries and Software Development Kit (SDK) are used, which
are different for each accelerator.

The RetinaFace-based face detector and the ArcFace and MagFace recognition algo-
rithms are implemented in Python using Pytorch and Tensorflow, respectively. The imple-
mentations are used to train models for our experimental systems. Furthermore, the trained
models are exported to format intended for ICNS 2, Rockchip NPU, and Hailo. The easi-
est way to infer the model is to use ICNS 2 due to its direct ONNX support. To use the
model with Rockchip NPU, the model must be quantized and then saved in RKNN format.
Similarly, the Hailo device requires parsing, optimization (quantization), and compilation
of the TFLite2 or ONNX model into the Hailo proprietary format.

The experimental system application is implemented in Python 3.9, which supports all
accelerator libraries and SDKs, enabling the implementation of a single application for three
accelerators.

1https://wiki.radxa.com/Rock3
2https://www.tensorflow.org/lite
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(a) Our camera with the Myriad X device (b) Experimental platform

Figure 5.1: Experimental platforms.

5.2 Face detection on embedded devices

The advanced face recognition algorithms discussed in the thesis were developed by modi-
fying the RetinaNet architecture, which can also be adapted for deployment in embedded
systems. In addition to their primary task of face localization, these detectors are equipped
to perform face landmark regression. Consequently, the detected landmarks can be employed
for precise face alignment. To implement these modifications, we used the implementation
in PyTorch3.

The first step is to replace the RetinaFace backbones with more modern architectures
that can enhance attributes such as processing time, performance, or the number of model
parameters. To achieve this, we utilize various versions of EfficientNet-like architectures.
It is worth noting that the use of accelerators may negatively affect the performance of
certain operations within the EfficientNet architecture. Due to these potential drawbacks,
we expand our selection of EfficientNet backbones to include EfficientNet for embedded
systems, known as EfficientNet-Lite.

Except for the Neural Compute Stick 2, the quantized models were calibrated on a subset
of WIDER Face images that were first resized to VGA (640×480) and HD (1280×720)
resolutions [234][235].

5.2.1 Proposed architectures

The workhorse of the face detector is the three-headed RetinaNet architecture. From the per-
spective of the RetinaNet/RetinaFace architecture, the feature extraction is provided by two
main blocks, the first represented by a backbone that can be easily modified, and the second
is the Feature Pyramid Network that performs the upscaling of the feature maps and their
merging with the backbone layers. Consequently, the outputs of the FPN are connected
to the heads that ensure the detection, for more information, see Section 3.4.7. The layers
where the FPNs and heads are connected to backbone, are marked by blue color in Ap-
pendix D.1. We have named the RetinaFace detectors based on EfficientNets as RetinaFace
for Edge, available on Github4.

Except for ResNet50 and MobileNet0.25 which are original backbones, we focus on
the EfficientNet architectures with fewer parameters that seem suitable for use with em-

3RetinaFace in PyTorch - https://github.com/biubug6/Pytorch_Retinaface
4https://github.com/tgoldmann/RetinaFace_for_Edge - private, available on request
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bedded devices, see Section 3.3. An overview of the selected backbones is given in Table
5.1.

Table 5.1: Summary of selected backbones.

Backbone type
#backbone
parameters

#RetinaFace
parameters

ResNet50 23.508M 27.293M
Mobilnet0.25 0.213M 0.428M
MobilnetV2 1.0 3.504M 6.479M
EfficientNetV2M 52.858M 53.500M
EfficientNetV2L 117.234M 117.869M
EfficientNetB0 5.288M 5.897M
EfficientNetB0Lite 5.288M 5.897M
EfficientNetV2S 20.787M 20.177M

The WIDER Face dataset was chosen for training because it contains a large number
of images of varying difficulty, and because it is readily available. In addition, this dataset
is commonly used to evaluate the average precision (AP) (Section 2.3.3) of face detectors
[154] [173].

5.2.2 Experiments

The face detectors were trained on 100 epochs and assessed using the standard AP metric
on the test portion of the WIDER Face dataset. However, due to accelerator limitations,
only models that were successfully converted were evaluated.

Performance on GPU and ARM CPU

Performance on the GPU and ARM CPU serves as a baseline for comparing detection
on the embedded device. For this reason, in addition to testing the algorithms on the
images with the resolution from the test dataset (Table 5.2), the algorithms were also
evaluated on images with VGA resolution and HD resolution, see Table 5.3 and Table 5.4.
The best results in terms of accuracy are marked in orange . Table 5.2 shows that the
original model with Resnet50 is outperformed by EfficientNetV2-S with fewer parameters.
However, in the RetinaFace publication, the achieved results on the WIDER Face Hard
subset are around 0.91 AP. Thus, the detector with EfficientNet outperforms the published
RetinaFace on the WIDER Face Medium subset.

It is interesting to compare the architectures of EfficientNetB0 and MobileNetV2. Effi-
cientNetB0 shows a slight performance advantage over MobileNetV2 in all three subdatasets
with images at original resolution. MobileNet 0.25 is typically used in applications where
high speed is critical, even at the cost of lower average precision (AP).

For further experiments, we kept the image resolutions fixed at 640×480 (VGA) and
1280×720 (HD), using a letterbox approach mentioned in [236]. In the theoretical part,
we noted the abundance of small faces in the WIDER Face dataset, which resulted in a
significant gap between face recognition performance at HD and VGA resolutions within
the WIDER Face hard subdataset.
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Table 5.2: Overview of the AP of the face detectors obtained from the WIDER Face subsets
using images in their original resolution.

Backbone Easy Medium Hard Inference GPU [ms] MISC5 [ms]

ResNet50 0.9538 0.9396 0.8430 174 98.0
Mobilenet0.25 0.9070 0.8816 0.7382 38.2 90.4
MobilenetV2 0.9423 0.9248 0.8183 89.2 78.8
EfficientNetV2S 0.9614 0.9614 0.8732 153.4 93.5
EfficientNetV2M 0.9630 0.9501 0.8802 127.3 95.8
EfficientNetV2L 0.9629 0.9536 0.8868 167.7 103.4
EfficientNetB0 0.9444 0.9250 0.8227 91.2 98.5
EfficientNetB0Lite 0.9448 0.9260 0.8353 102.1 90.7

Table 5.3: Overview of the AP of the face detectors obtained from the WIDER Face subsets
using VGA resolution images.

Backbone Easy Medium Hard
Inference
GPU [ms]

MISC [ms]
Inference

ARM [ms]

ResNet50 0.9323 0.8959 0.6391 18.2 35.1 9805
Mobilenet0.25 0.8795 0.8168 0.5280 7.4 27.4 303
MobilenetV2 0.8703 0.7873 0.4421 16.4 31.7 3070
EfficientNetV2S 0.9501 0.9186 0.7087 33.5 36.3 6407
EfficientNetV2M 0.9536 0.9238 0.7174 42.2 34.7 11683
EfficientNetV2L 0.9602 0.9338 0.7368 60.3 36.9 19876
EfficientNetB0 0.9312 0.8894 0.6480 20.0 36.3 1836
EfficientNetB0Lite 0.9350 0.8953 0.6561 30.2 35.2 1854

When examining the results of the WIDER Face Hard, the models using the Mo-
bileNetV2 backbone suffered the most from resolution degradation. For the Efficient B0
and Efficient-Lite B0, the decrease in AP was less pronounced.

Table 5.4: Overview of the AP of the face detectors obtained from the WIDER Face subsets
using HD resolution images.

Backbone Easy Medium Hard
Inference
GPU [ms]

MISC [ms]
Inference

ARM [ms]

ResNet50 0.9495 0.9320 0.8217 16.6 82.3 28605
Mobilenet0.25 0.9351 0.9160 0.8021 8.4 85.1 851
MobilenetV2 0.9351 0.9160 0.8021 15.7 70.9 8530
EfficientNetV2S 0.9561 0.9413 0.8560 31.8 91.1 18057
EfficientNetV2M 0.9601 0.9450 0.8628 40.7 80.7 33163
EfficientNetV2L 0.9604 0.9528 0.8723 54.4 79.0 57102
EfficientNetB0 0.9377 0.9208 0.8099 18.7 86.1 5564
EfficientNetB0Lite 0.9391 0.9228 0.8209 27.7 87.0 5499

The EfficientNet backbones seem to be the backbones that provide adequate feature ex-
traction for the RetinaFace detectors. The performance of RetinaFace with the EfficientNet-
Lite B0 backbone is slightly worse than that of RetinaFace with ResNet50, while the number
of parameters is about five times less.
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Performance on the experimental platform

We conducted the following experiments to evaluate the performance level of RetinaFace
on embedded devices. It’s important to note that this neural network architecture requires
an additional post-processing step in order to transform its output into detections, which
brings additional computational overhead. This post-processing involves three main opera-
tions: first, ordering the detections based on their confidence scores, then filtering through
them using a confidence threshold, and finally, applying the NMS (Section 3.4) algorithm
to further reduce detections that describe the same object.

In line with our previous experiments, we continued to assess face detection response
times and average precision (AP) for both VGA and HD resolutions (as depicted in Figure
5.5). This time, however, we employed the Intel Neural Compute Stick 2 (INCS 2) acceler-
ator, which was connected through a USB interface. In order to perform inference on this
device, the models had to be converted from the ONNX format6 to a format intended for
INCS 2, without using quantization.

Table 5.5: AP of face detectors on the WIDER Face dataset and inference time for Intel
Compute Neural Stick 2 accelerator.

Backbone Easy Medium Hard
Inference time

[ms]
MISC [ms]

640×480
Mobilenet0.25 0.8778 0.8149 0.5268 214.9 91.7
MobilenetV2 0.9211 0.8736 0.6201 382.1 92.2
ResNet50 0.9319 0.8960 0.6392 705.6 83.8
EfficientNetV2S 0.9496 0.9180 0.7081 931.0 81.9
EfficientNetV2M 0.9523 0.9227 0.7168 1545.2 76.7
EfficientNetV2L 0.9598 0.9336 0.7361 2209.2 73.8
EfficientNetB0 0.9311 0.8886 0.6480 540.0 85.6
EfficientNetB0Lite 0.9345 0.8949 0.6560 531.2 84.3

1280×720
Mobilenet0.25 0.9011 0.8719 0.7252 610.2 201.2
MobilenetV2 0.9011 0.8719 0.7252 1289 0.1895
ResNet50 0.9494 0.9318 0.8226 2231 191.3
EfficientNetV2S 0.9556 0.9410 0.8562 2452 180.2
EfficientNetV2M 0.9596 0.9442 0.8618 4094 164.2
EfficientNetV2L 0.9634 0.9509 0.8724 7522 180.1
EfficientNetB0 0.9371 0.9205 0.8098 1472 178.8
EfficientNetB0Lite 0.9384 0.9221 0.8208 1456 151.2

Next, the proposed models were quantized for execution on the Rockchip NPU using
asymmetric uint8 quantization. The models with input images at a resolution of 640×480 px
were quantized using the RKNN optimization algorithms. Despite the response time being
better than in the previous cases, the AP is affected by the quantization. While all mod-
els were successfully quantized for HD resolution, the models based on EfficientNetV2-S,
EfficientNetV2-M, and EfficientNetV2-L do not work properly, and their output does not
allow face detection.

In terms of acceleration with the Rockchip NPU, the AP is roughly the same for all
models. However, the inference time is significantly better than that of the INCS 2 device.

6https://onnx.ai/
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The best APs are observed with variants of the detector using EfficientNet-V2. Nevertheless,
these detectors are slower in terms of inference time. The EfficientNet B0 and Efficient-Lite
B0 detectors, which have approximately the same AP as ResNet50, offer better processing
times. The results are shown in Table 5.6.

Table 5.6: AP of the face detectors on the WIDER Face dataset and inference time per-
formed on Rockchip NPU.

Backbone Easy Medium Hard
Inference time

[ms]
MISC [ms]

640×480
Mobilenet0.25 0.8560 0.7871 0.5010 108.6 80.8
MobilenetV2 0.9207 0.8723 0.6176 161.8 57.7
ResNet50 0.9311 0.8943 0.6363 288.7 54.4
EfficientNetV2S 0.9481 0.9170 0.7068 284.2 49.7
EfficientNetV2M 0.9473 0.9167 0.7127 430.4 41.8
EfficientNetV2L 0.9563 0.9305 0.7343 623.5 51.2
EfficientNetB0 0.9153 0.8681 0.6066 187.3 52.8
EfficientNetB0Lite 0.9270 0.8856 0.6432 188.4 57.5

1280×720
Mobilenet0.25 0.8877 0.8565 0.7036 271.3 163.5
MobilenetV2 0.9048 0.8817 0.7298 462.1 150.2
EfficientNetB0 0.8920 0.8690 0.7020 576.6 168.8
EfficientNetB0Lite 0.8966 0.8760 0.7390 569.3 155.2

The following experiments were conducted with the Hailo device. Before using the de-
vice, the model must be converted and compiled. With Hailo SDK, the model can be
quantized to 8-bit or 4-bit. In order to maintain the accuracy, the 8-bit quantization was
selected. Not all of the proposed models were compiled due to errors in the conversion
process. Therefore, Table 5.7 only gives an overview of the compiled models.

Table 5.7: AP of the face detectors on the WIDER Face dataset and inference time per-
formed on Hailo.

Backbone Easy Medium Hard
Inference time

[ms]
MISC [ms]

640×480
Mobilenet0.25 0.8769 0.8139 0.5222 19.3 67.4
MobilenetV2 0.9197 0.8710 0.6180 34.6 64.3
ResNet50 0.9320 0.8960 0.6393 55.5 53.6
EfficientNetV2M 0.9460 0.9168 0.7140 236.4 56.3
EfficientNetB0 0.8320 0.7670 0.4590 71.9 54.4
EfficientNetB0Lite 0.8924 0.8925 0.5730 69.5 58.8

1280×720
Mobilenet0.25 0.8877 0.8565 0.7035 28.0 148.7
MobilenetV2 0.9339 0.9144 0.8001 85.7 147.4

In general, the Hailo platform has excellent support for ResNet and MobileNetV2 in
contrast to the EfficientNet backbones. Using ResNet50 as the backbone, face detection
can be performed in approximately 100 ms. Considering all the above possibilities for face

117



detection, the Hailo with ResNet50 backbone offers the best trade-off between speed and
average accuracy.

5.3 Face recognition on embedded devices

From the perspective of face recognition, the angle distribution of features is used by state-
of-the-art algorithms. Although first such algorithms were introduced in 2017 [190], this
principle is still used in the new algorithms. This led us to use the ArcFace and MagFace
algorithms as the engine in our embedded system to perform face recognition.

5.3.1 Proposed architecture

In their original versions, the ArcFace algorithm used ResNet as its feature extractor, while
MagFace, which primarily differs from ArcFace in its loss function, utilized IResNet. To
optimize these algorithms for embedded devices, we replaced their feature extractors with
more recent EfficientNet backbones. Our primary source of inspiration for this implemen-
tation was the existing ArcFace codebase. We have also implemented support for MagFace
in Tensorflow 2.0. Our implementation is available on Github7.

All input face images had a resolution of 112×112 pixels and were in RGB format.
Further details can be found in Table 5.8, which provides an overview of the selected
model backbones along with their respective parameter counts. All models were trained
on the MS1M dataset [126] using the SGD optimizer (Section 3.1), with the learning rate
tuned according to the model architecture.

Table 5.8: Overview of proposed models.

Abbreviation Architecture Backbones Step decay #parameters

res50 ArcFace Resnet50 No 40.376M
efb0flr ArcFace EfficientNet B0 Yes 16.412M
efb0flr_mag ArcFace EfficientNet B0 Yes 16.412M
efb1flr ArcFace EfficientNet B1 Yes 17.068M
efb1flr_mag ArcFace EfficientNet B1 Yes 17.068M
efb0lite ArcFace EfficientNet B0 lite No 13.906M
efb1lite ArcFace EfficientNet B1 lite No 14.683M
efb0lite_mag MagFace EfficientNet B0 lite No 13.906M
efb1lite_mag MagFace EfficientNet B1 lite No 14.683M
efV2b0_flr ArcFace EfficientNet V2 B0 Yes 16.413M
efV2S_flr ArcFace EfficientNet V2S Yes 30.825M
efV2M_flr ArcFace EfficientNet V2M Yes 63.644M
efV2S_flr_mag MagFace EfficientNet V2S Yes 30.825M
efV2M_flr_mag MagFace EfficientNet V2M Yes 63.644M

The performance was evaluated on the well-known test datasets such as LFW (Section
3.2.3), CFP-FP (Section 3.2.5), and AgeDB30 (Section 3.2.3).

5.3.2 Experiments

The models were trained using the default parameters for ArcFace and MagFace according
to their papers. Since the backbones used directly affect the training of the neural network,

7https://github.com/tgoldmann/Arcface_Magface_for_Edge - private, available on request
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the number of epochs for model training was continuously adjusted according to the eval-
uation on the LFW, CFP-FP, and AgeDB datasets. The accuracy on LFW was used as
a metric for selecting the dataset.

The models were trained using the aligned MS1M dataset (Section 3.2.3). During the
initial training of the models with EfficientNet, the training became unstable (see Ap-
pendix E.1). Therfore, a step decay with a reduced initial step was used to suppress it.
Unlike older backbones, the EfficientNet-like backbones are designed for fast training [151].

Performance on GPU and ARM CPU

The trained models were first evaluated on the NVIDIA RTX A5000 GPU to obtain the ref-
erence results for comparison with the quantized models. Likewise, the inference time was
measured on the ARM CPU (Cortex-A55, 2 GHz). The results are shown in the table 5.9.
The accuracy evaluation was conducted on the test dataset for each epoch and the results
of the evaluation can be found in the appendix E.1.

In terms of inference time, the duration on the GPU was consistently below 4 millisec-
onds in all scenarios. However, we hold the perspective that evaluating the performance on
a high performance machine is less important compared to assessing it on a low performance
machine, where the differences among the times are significant. Furthermore, the inference
times of the ARM CPU used by our experimental platform have been included in Table
5.9, in addition to the accuracy obtained from the test data.

Table 5.9: Accuracy of the ArcFace and MagFace models with EfficientNet and ResNet50
backbones.

Name LFW (ACC)
AgeDB30

(ACC)
CFP-FP
(ACC)

Epoch
ARM

inference time [ms]

resnet50 0.994667 0.947167 0.945429 11 391.9
efb0flr 0.991667 0.918000 0.932000 15 123.4
efb1flr 0.994333 0.930333 0.934714 20 189.8
efb0lite 0.993667 0.927500 0.927286 21 97.5
efb1lite 0.994000 0.931333 0.932571 22 126.4
efb0flr_mag 0.991000 0.918667 0.932429 18 125.4
efb1flr_mag 0.993667 0.929333 0.940143 15 176.1
efb0lite_mag 0.993000 0.919667 0.924000 25 97.0
efb1lite_mag 0.994667 0.926333 0.929286 17 123.4
efV2S_flr 0.996167 0.955833 0.957571 10 396.6
efV2M_flr 0.930500 0.714167 0.807429 13 -
efV2S_flr_mag 0.996333 0.960167 0.960571 12 -
efV2M_flr_mag 0.995500 0.960000 0.956000 13 -

The results show that the accuracy on LFW exceeds 99 % for most models. In the case
of ArcFace, using EfficientNetV2-S as the backbone, it outperforms ResNet. Similarly, for
MagFace, when EfficientNetV2-S or EfficientNetV2-M is used as the backbone, the perfor-
mance exceeds that of the original implementation, which includes ResNet50 backbones.
Furthermore, when we focus on the CFP-FP dataset, we see that the MagFace models with
EfficientNetV2-S and EfficientNetV2-M have significantly improved capabilities in detect-
ing images outside the frontal angle. The most noticeable differences among the models are
observed in the evaluation on the CFP-FP dataset, and the evaluation of performance is
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illustrated by the ROC curves in Figure 5.2. The ROC curves for the LFW and AgeDB30
datasets can be found in the Appendix E.2.

If these neural network models were to be used directly on an ARM processor, approxi-
mately 97 ms per face frame would be required for the EfficientNet B0 and EfficientNet B0
Lite models. For ResNet50 and EfficientNet models with more parameters than EfficientNet-
V2 S, the processing time would exceed 390 ms.

Figure 5.2: Evaluation of the trained models on the CFP-FP dataset - ROC curves.

Performance on the experimental platform

From the experiments with face detectors, it is clear that the performance of quantized
models with EfficientNet backbones can be affected by the quantization process. The ex-
periments with the proposed models were first performed using the INCS 2 inference engine,
as shown in Figure 5.10.

Table 5.10: Accuracy of face recognition performed with the Intel Neural Compute Stick 2
device.

Name LFW (ACC) AgeDB30 (ACC)
CFP-FP
(ACC)

Inference time [ms]

resnet50 0.9948 0,9432 0.9451 44.9
efb0flr 0.9830 0.9010 0.9037 66.4
efb1flr 0.9557 0.8270 0.8940 84.2
efb0lite 0.9930 0.9318 0.9260 42.2
efb1lite 0.9937 0.9288 0.9316 51.6
efb0flr_mag 0.9712 0.8727 0.8847 66.3
efb1flr_mag 0.9782 0.8897 0.8940 84.2
efb0lite_mag 0.9922 0.9177 0.9199 42.0
efb1lite_mag 0.9937 0.9228 0.9289 51.8
efV2S_flr 0.9915 0.9355 0.9424 114.1
efV2S_flr_mag 0.9782 0.8897 0.8940 83.0
efV2M_flr_mag 0.9915 0.9448 0.9391 188.1

The Rockchip NPU outperformed the INCS 2 in terms of processing speed. However,
some models showed a significant drop in accuracy, as shown in Table 5.11. Although
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the implementation with ResNet50 gives the highest accuracy, the solution with the Mag-
Face model based on EfficientNet-Lite B0, which is able to process a single face image with
a resolution of 112x112 in 15.9 ms, seems to be well suited for embedded devices. Apart
from ResNet50, this model demonstrates the best performance, even for rotated faces (see
CFP-FP in Table 5.11). As a result, the RockChip NPU can process approximately 60
detected face images per second.

Table 5.11: Accuracy of face recognition performed with the Rockchip NPU.

Name LFW (ACC) AgeDB30 (ACC)
CFP-FP
(ACC)

Inference time [ms]

resnet50 0.9948 0.9467 0.9430 26.7
efb0flr 0.5750 0.5073 0.5407 22.2
efb1flr 0.5598 0.4993 0.5607 24.9
efb0lite 0.9928 0.9250 0.9247 13.9
efb1lite 0.9927 0.9303 0.9273 16.3
efb0flr_mag 0.5383 0.5462 0.5041 23.0
efb1flr_mag 0.5843 0.5328 0.5574 24.7
efb0lite_mag 0.9932 0.9193 0.9244 14.1
efb1lite_mag 0.9945 0.9242 0.9300 15.9
efV2S_flr 0.7728 0.6543 0.7089 30.0
efV2S_flr_mag 0.8001 0.6572 0.7391 29.9
efV2M_flr_mag 0.6735 0.8285 0.7631 41.7

All models were also quantized for the Hailo device, which is theoretically designed to
achieve fast processing with high accuracy. The results are shown in Table 5.12.

Table 5.12: Accuracy of face recognition performed with Hailo device.

Name LFW (ACC) AgeDB30 (ACC) CFP-FP Inference time [ms]

resnet50 0.9852 0.8672 0.9066 20.1
efb0flr 0.6317 0.5005 0.5520 14.9
efb1flr 0.5343 0.4897 0.5119 17.9
efb0lite 0.9482 0.7393 0.8399 6.2
efb1lite 0.9455 0.7432 0.8174 7.3
efb0flr_mag 0.5230 0.5053 0.5146 14.8
efb1flr_mag 0.5197 0.4997 0.5351 18.3
efb0lite_mag 0.9432 0.7398 0.8093 6.6
efb1lite_mag 0.9702 0.7742 0.8761 7.7
efV2S_flr 0.8435 0.6718 0.7233 26.4
efV2S_flr_mag 0.8122 0.6587 0.7159 26.0
efV2M_flr_mag 0.8402 0.6768 0.7670 49.3

In contrast to RetinaFace Edge face detectors, the quantization process is responsible for
the significantly lower accuracy of models for face recognition. Considering the Intel Neural
Compute Stick 2, the ResNet model stands out as a suitable choice due to its favorable
trade-off between accuracy and inference time (AgeDB30 0.9467, 44.9 ms). However, in
the case of ArcFace with ResNet using the Rockchip NPU, the performance is similar with
an inference time of 26.7 ms. The least accurate model is MagFace with EfficientNet-Lite
B1, with an inference time of 15.9 ms.
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The absolute fastest processing is achieved with the Hailo accelerator, which can gen-
erate the embedding vector in just 6.6 ms for the EfficientNet-Lite B1 model. However,
the accuracy is lower than in the previous case. It is important to note that quantization
alters the ROC of the model; i.e., the threshold is different from the original model. Conse-
quently, when deploying the model, the ratio between FRR and FAR must be established
based on the evaluation accuracy directly on the quantized model for the used accelerator.

Furthermore, we found that using EfficientNetV2-S models can improve face recognition
performance in the case of ArcFace and QMagFace algorithms. However, these models
should not be used for Rockchip NPU and Hailo due to low accuracy.

5.4 Face image preprocessing

The image quality of face images can be affected by the presence of shadows, blur, and
compression. To mitigate these issues, we have implemented a filter based on commonly
used computer vision methods to adjust the input images before feeding them into a neural
network for processing.

During the research, it was discovered that modern face recognition algorithms only ap-
ply normalization techniques to face images for the preprocessing phase, thereby preserving
the original image quality along with potentially damaged or low-quality areas.

To enhance the quality of a face image, various types of generative neural networks can
be used for preprocessing. We have previously conducted a series of experiments aimed at
reconstructing face images using these networks, and the results indicate that reconstruc-
tion has a positive impact on the accuracy of face recognition, as we have detailed in our
paper [TG.8]. Nevertheless, employing a neural network for image preprocessing demands
substantial computing power, making it unsuitable for embedded systems. In addressing
the issue of distortion in face images caused by shadows and reflections, we carried out
experiments that employed a straightforward local image normalization algorithm. Our
primary research focus centered on assessing the influence of kernel size on recognition
performance, representing the key contribution of our study.

5.4.1 Filter for suppressing shadows in a face image

One approach for improving non-uniform brightness in images involves utilizing Gaussian
functions to calculate the variance and mean of the image, as detailed in [237]. It is worth
noting that this method is primarily tailored for grayscale images. Building upon this algo-
rithm, the Gaussian-HSV filter was specifically developed to enhance the accurate recogni-
tion of color face images.

In modern face recognition, it is essential to work with color face images. Consequently,
the initial step in these algorithms involves extracting color intensity information. Unlike
the RGB color model, the HSV model directly expresses intensity through the V channel,
which can be can be susceptible to variations caused by uneven lighting conditions. As
a result, our approach primarily focuses on adjusting the intensity within this channel. To
achieve this, we begin by computing a Gaussian-blurred image through convolution of the
input channel I with the Gaussian filter G, defined as follows

IG = I2 ∗G =
H−1
∑

y=0

W−1
∑

x=0

I[x, y]2 ∗G =
H−1
∑

y=0

W−1
∑

x=0

u=k
∑

u=−k

u=k
∑

v=−k

I[x, y]2G[x+ u, x+ v] (5.1)
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where W and H are the image width and height, respectively. The Gaussian filter G is
given by [238]

G(x, y) =
1

2πσ2
e

−(x2+y2)

2σ2 (5.2)

Our filter for improving the image brightness is mathematically defined as follows

Ienhanced =
I√
IG · α

(5.3)

where the parameter α controls the variance.
While it is possible to denoise an image by replacing the color of a pixel with the av-

erage of the colors of its neighboring pixels, this approach disregards the location of these
neighboring pixels. To suppress the noise of the V channel, we decided to use the Non-Local
Means Denoising algorithm [239]. This algorithm assigns a weight to each pixel based on
the surrounding windows of neighboring pixels. The mathematical description of this algo-
rithm can be found in Appendix F.1. Subsequently, the original HSV-V channel is replaced
with the denoised V channel.

5.4.2 Evaluation of the filter to enhance quality of a face image

The primary objective of these experiments is to ascertain how the preprocessing filter
influences the performance of face recognition. In order to assess the filter’s impact on
the recognition process comprehensively, it was necessary to create a custom dataset that
simulates various types of shadows.

Dataset

A face image can be corrupted by various combinations of non-uniform brightness. To
simulate different shadow variants, we modified the images from the LFW dataset using
two different groups of masks. The first set, called hard shadows represents situations in
which the face image is strongly affected by non-uniform illumination. The second set is
distinct because it focuses on simulating conditions that may occur frequently, namely, soft
shadows.

Figure 5.3 demonstrates an example of masks applied to images from the LFW dataset
in order to simulate shadows.

Hard shadow images

Soft shadow images

Figure 5.3: Examples of masks used to simulate shadows in the LFW dataset, where the first
row consists of images modified by "hard shadow masks" and the second row consists of
images modified by "soft shadow masks".
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Experiments

First, experiments were conducted to determine the optimal size of the Gaussian kernel.
Since the algorithm is used in the face recognition system, the influence on face recognition
was evaluated using the ArcFace algorithm, with the threshold determined by the highest
accuracy result found on the ROC curve generated using the LFW dataset.

To evaluate the performance, we compared triplets from the dataset containing the ref-
erence, shadowed, and enhanced images. Each triplet from the dataset was converted into
embedding vectors using ArcFace. The effect of the filter is then observed by comparing
the L2 distances within the individual triplet. The kernel size affects both corrupted images
and images with uniform illumination. Therefore, it is necessary to investigate the effect of
the filter kernel size in both cases.

For practical use, it is necessary to balance these factors together with the FAR and
FRR parameters. First, we deal with the filter to enhance the image so that the L2 distance
between the reference and the enhanced image is below the threshold, see Table 5.13.

Table 5.13: Summary of the Gaussian kernel size to improve face recognition performance
without using denoising.

Kernel size
#images above threshold

before enhancement
#images above threshold

after enhancement

3× 3 10,077 2,660
5× 5 10,077 2,840
10× 10 10,077 4,264
15× 15 10,077 5,637
20× 20 10,077 6,611
25× 25 10,077 7,260
30× 30 10,076 7,902
35× 35 10,077 7,643

We found that using the kernel with size 3×3 servers to reduce the distance between
reconstructed and reference image. Moreover, when denoising is not used, the results for 3×3
are slightly better (only 2,442 samples are above the threshold). Therefore, the experiments
with the second group of damages were performed with and without denoising, see Table
5.14.

Table 5.14: Summary of the Gaussian kernel size to improve face recognition performance.
The results are obtained using ArcFace on the dataset with soft shadowed images.

Kernel
size

#images
above threshold

before enhancement

#images
above threshold

after enhancement

#images
above threshold

enhancement+denoised

3× 3 435 52 55
5× 5 435 6 7
10× 10 435 6 18
15× 15 435 29 45
20× 20 435 81 98

Since the filter affects all comparisons, it is necessary to observe changes in the medians
of the distributions both before and after reconstruction. Figures 5.4(a,b) show the median
curve progression for soft and hard shadows, respectively. It is evident that the application
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of the filter leads to a larger gap between the reconstructed image and the reference image.
Nevertheless, the median is still well below the established threshold based on the EER.

(a) Hard shadows (b) Soft shadows

Figure 5.4: The median curve progression as a function of Gaussian filtering kernel size.

Furthermore, distributions of the comparisons were generated for each mask. In Figure
5.5 (a, b), where the mask ID identifies the mask applied to the face image, we can ob-
serve that the distribution of comparison distances is affected by the proposed filter in each
case. However, the distances are sufficiently distant from the threshold, so while the gap
between the vectors increases, the impact on recognition is not substantial. Conversely,
the comparison distances exceeded the threshold before being reduced by the filter. Simi-
larly, distributions were generated for kernels with other sizes, as shown in Appendix F.2.

(a) Hard shadows (b) Soft shadows

Figure 5.5: Distributions of L2 distances between reference image and
non-enhanced/enhanced images with soft shadows for kernel 10× 10.

The filter is easy to implement and use, and we recommend using it before processing
the face image with the neural network for an embedded device. Overall, using the 10×10
kernel does not give the best possible results, but has less impact on shadow images. For
cases where processing speed is not critical, we recommend considering the use of neural
networks, which also have a positive effect on recognition, as we have shown in [TG.8].

5.5 Summary

In this chapter, we focused on face recognition on embedded devices, which is divided into
detection and recognition phases. Since most modern face detectors use feature pyramid
networks (FPN) to improve accuracy, we chose RetinaFace, a detector that also uses this
sub-architecture. In general, backbones of neural network architectures have strong im-
pact on their accuracy and inference speed. Likewise for RetinaFace architecture, these
parameters can be modified by changing its backbone network. Our focus was mainly on
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the performance of the EfficienNet family. First, we evalauted behavior of EfficienNets in-
ferred on the GPU, where we discovered that the EfficientNetV2-S detector has better
average precision than the ResNet50 backbone detector.

Regarding the embedded devices, we found that using EfficientNet-Lite B0 on Intel
Neural Compute Stick 2 and Rockchip NPU accelerators results in only sligthly lower
average detection precision than the originaly used ResNet50, but the processing speed is
significantly better. The exception was the Hailo accelerator, which, within our observations,
had the best response with the ResNet50 backbone. However, the compromise between
accuracy and inference speed should be considered with respect to the intended usage of
the embedded system.

Our experiments show that the models based on EfficientNet-Lite B0 and EfficientNet-
Lite B1 can be successfully processed by the Rockchip NPU and the Hailo device. Using
the Hailo device, face recognition can be performed in less than 10 ms. Overall, the phase
responsible for mapping a 112×112 resolution face image to an embedding 512-dimensional
vector is significantly faster than the face detection step, showing that the detection phase
is the bottleneck of the face recognition process performed on an embedded device.

In an effort to speed up the solution, we experimented with applying a pruning algorithm
to the RetinaFace Edge networks. Unfortunately, this approach did not result in any form
of acceleration, primarily due to the complex nature of the RetinaFace Edge models and
the substantial interdependencies within their architectures.

The final part of this chapter saw an introduction of our design for a filter for improving
non-uniform brightness in face images. This filter represents a less computationally demand-
ing alternative to enhancing the quality of face images using generative neural networks,
which is feasible for devices with limited performance.
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Chapter 6

Conclusion

This thesis deals with extensive research in the field of face recognition. To establish a theo-
retical framework, the initial part of the work identifies and summarizes the state-of-the-art
approaches and methods in this field. The first research task was focused on the generation
of face datasets that are reliable for evaluation of biometric systems based on face recogni-
tion. This was achieved by simulating the real conditions and preserving the facial features,
which is a crucial aspect that distinguishes our dataset from those generated by AI, as we
have also validated experimentally. As a part of this research task, we have examined in de-
tail different components of the pipeline for creating a generated dataset, such as obtaining
models using a 3D scanning device and an application for dataset generation. To generate
a dataset tailored to contain different head poses, we used our SYDAGenerator application
and the scans of 3D head models contained in the SYDA-Fidentis dataset. The result con-
tains images of 216 subjects captured at three simulated distances with various yaw and
pitch head rotations, the majority of whom are of Caucasian descent.

The verification of the credibility of the generated dataset was split into two parts. By
comparing the impostor and genuine distributions of two commonly used face recognition
datasets (LFW and CFP) to the distributions obtained using the generated dataset, we
verified that the face recognition algorithms can discriminate between different identities
represented in the generated images. However, for the second part, for verifying the behavior
of detection and recognition algorithms when working on generated images of faces at angles
where facial texture is evident, we were faced with a small causality dilemma. To evaluate
these situations properly, we would ideally need labeled datasets containing real faces under
various angles. But these are hard to come by, and are too limited in sample size for our
needs, which, coincidentally, is the reason for creating our generated dataset in the first
place. Nevertheless, despite the use of a small number of samples, we were able to clearly
demonstrate that the behavior of the detection and recognition algorithms on generated
images is comparable to recognition on datasets of real faces. Based on this comparison, we
also determined the rotation range in which the dataset can be used to evaluate algorithms
under various conditions, which can be simulated by SYDAGenerator.

While studying the behavior of face detection and recognition algorithms using a dataset
of real images, we discovered that the pitch rotation can significantly affect recognition
accuracy, which has important implications for biometrics, forensics and public security.

The next part of the thesis deals with algorithms related to face detection and recog-
nition on embedded devices, known as edge devices in IoT terms. While experimenting
with existing algorithms for the aim of designing our own approach, we mainly focused on
the backbone module, which is responsible for extracting features from the input images.
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For this purpose, our research efforts focused on the EfficientNet family of networks. Since
a backbone module has a direct impact on the overall performance, the main features of
these networks that we considered were accuracy, number of parameters, and above all,
the possibility of acceleration. An important part of this research was to reduce the infer-
ence time of the algorithms while maintaining the level of accuracy using devices designed
for neural network acceleration - Intel Compute Neural Stick 2, Rockchip NPU and Hailo.

The face detection phase of the pipeline for the proposed approach is based on the Reti-
naFace architecture. As a part of our experiments, we discovered that disregarding the orig-
inal backbone options and using EfficientV2-S instead, which also has fewer parameters,
offers better average precision on some datasets.

Even though the use of the neural network accelerators enabled us to overcome the per-
formance limitations of embedded devices and opt for more computationally demanding
backbones with higher levels of accuracy, the overall processing time is still significantly
affected by the post-processing phase. This phase, which includes tasks such as box extrac-
tion and position computation, is the main bottleneck in acceleration of the modern face
detection approaches, and is particularly challenging for embedded devices.

On the other hand, when it comes to face recognition, the process of face embedding
can be accomplished within a matter of tens of milliseconds. If one is open to a slight
compromise in accuracy in exchange for a fast processing time, leveraging the MagFace
model with the EfficientNet-Lite B0 backbone and the Hailo accelerator can achieve face
recognition under 10 milliseconds.

Face image quality has strong effect on the process of face embedding, and surveil-
lance cameras often capture images under varying lighting conditions. In order to address
the problem of shadow effects on these images, we decided to add a preprocessing step to
our pipeline. While the first option to enhance the quality of the images would be to em-
ploy a neural network, this is not feasible for performance constrained embedded devices.
Therefore, we designed a lightweight algorithm using HSV and Gaussian techniques and
conducted a series of experiments to fine-tune parameters such as kernel size, aiming to
determine the optimal configuration for improving image quality.

Overall, we explored the means of face recognition for embedded devices. We expect
embedded devices, also called edge devices, will play a significant role in the new generation
of surveillance systems. With well-defined regulations, standards, and rules, these systems
have the potential to provide new ways of mitigating the growing privacy concerns. A system
utilizing an edge device would be able to recognize a person of interest directly at the scene,
discarding the face data of unrelated individuals and minimizing the need for their off-site
processing.

We expect that further collaboration with police and experts in the field of anthropom-
etry may lead to an expansion of our research and a further deployment of our application.
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Appendix A

Face standard ISO/IEC 19794-5

These figures are taken from the ISO 19794-5 [70] standard and show the recommended
and inappropriate position of the face in the image.

Figure A.1: Sample portraits with the respective minimal and maximal head dimensions:
a) true location and allowed region for the center point M, b) minimal size (inner rectangle)
and maximal size (outer rectangle, note that the position including the relative position of
the two rectangles is not fixed) of image width W and head length L depending on A and
B [70].
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Figure A.2: Sample portraits not complying with minimal and maximal head dimensions:
a) face too large and doesn’t fit into the larger rectangle, b) face too small and does not
cover the entire smaller rectangle [70].
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Appendix B

SYDAGenerator

B.1 Preserving optical properties during image generation

To validate the plausibility of the simulation of the optical properties of the cameras, we
performed an experiment in which the same properties were set in the generator as those
of the reference camera. We then captured the mask of the face profile with the camera
and also generated semi-synthetic images using the corresponding 3D model of the mask.
Figures B.1 and B.2 show the generated image (blue background) and the mask captured
by a camera.

Figure B.1: Comparison of reference (captured mask) with generated image.
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Figure B.2: Comparison of covered reference (captured mask) with generated image.
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Appendix C

Influence of face rotation to
performance of face recognition

(a) (b)

Figure C.1: MagFace (a) and SphereFace (b) distributions of L2 distances for yaw-rotated
faces in SYDA-Fidentis (CSD = 4 m).

(a) (b)

Figure C.2: MagFace (a) and SphereFace (b) distributions of L2 distances for pitch-rotated
faces in SYDA-Fidentis (CSD = 4 m).
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(a) (b)

Figure C.3: MagFace (a) and SphereFace (b) distributions of L2 distances for yaw-rotated
faces in Headpose.

(a) (b)

Figure C.4: MagFace (a) and SphereFace (b) distributions of L2 distances for pitch-rotated
faces in Headpose.
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Appendix D

Face detection

D.1 RetinaFace Edge - architectures

In this section we show where the RetinaFace FPN are attached to the backbones.

Table D.1: EfficientNet B0 - places where the FPNs and heads are connected to feature
extractor.

Stage Operator #Channels #Layers #Stride

1 Conv3x3 32 1 2
2 MBConv1, k3x3 16 1 1
3 MBConv6, k3x3 24 2 2
4 MBConv6, k5x5 40 2 2
5 MBConv6, k3x3 80 3 2
6 MBConv6, k5x5 112 3 1
7 MBConv6, k5x5 192 4 1
8 MBConv6, k3x3 320 1 1
9 Conv1x1 & Pooling & FC 1,280 - 1

Table D.2: EfficientNet-Lite B0 - places where the FPNs and heads are connected to feature
extractor.

Stage Operator #Channels #Layers #Stride

1 Conv3x3 32 1 2
2 MBConv1, k3x3 16 1 1
3 MBConv6, k3x3 24 2 2
4 MBConv6, k5x5 40 2 2
5 MBConv6, k3x3 80 3 2
6 MBConv6, k5x5 112 3 1
7 MBConv6, k5x5 192 4 1
8 MBConv6, k3x3 320 1 1
9 Conv1x1 & Pooling & FC 1,280 - 1
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Table D.3: EfficientNet V2-S - places where the FPNs and heads are connected to feature
extractor.

Stage Operator #Channels #Layers #Stride

1 Conv3x3 32 1 2
2 Fused-MBConv1, k3x3 24 2 1
3 Fused-MBConv4, k3x3 48 4 2
4 Fused-MBConv4, k3x3 64 4 2
5 MBConv4, k3x3 128 6 2
6 MBConv6, k3x3 160 9 1
7 MBConv6, k3x3 256 15 2
8 Conv1x1 & Pooling & FC 1,280 - 1

Table D.4: EfficientNet V2-M - places where the FPNs and heads are connected to feature
extractor.

Stage Operator #Channels #Layers #Stride

1 Conv3x3 32 1 2
2 Fused-MBConv1, k3x3 24 3 1
3 Fused-MBConv4, k3x3 48 5 2
4 Fused-MBConv4, k3x3 80 5 2
5 MBConv4, k3x3 160 7 2
6 MBConv6, k3x3 176 14 1
7 MBConv6, k3x3 304 18 2
8 MBConv6, k3x3 512 5 1
9 Conv1x1 & Pooling & FC 1,280 - 1

Table D.5: EfficientNet V2-L - places where the FPNs and heads are connected to feature
extractor.

Stage Operator #Channels #Layers #Stride

1 Conv3x3 32 1 2
2 Fused-MBConv1, k3x3 32 4 1
3 Fused-MBConv4, k3x3 64 7 2
4 Fused-MBConv4, k3x3 96 7 2
5 MBConv4, k3x3 192 10 2
6 MBConv6, k3x3 224 19 1
7 MBConv6, k3x3 384 25 2
8 MBConv6, k3x3 640 7 1
9 Conv1x1 & Pooling & FC 1,280 - 1
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Table D.6: MobileNet V2 - places where the FPNs and heads are connected to feature
extractor.

Stage Operator #Channels #Layers #Stride

1 Conv3x3 32 1 2
2 bottleneck1, k3x3 16 1 1
3 bottleneck6, k3x3 24 2 2
4 bottleneck6, k3x3 32 3 2
5 bottleneck6, k3x3 64 4 2
6 bottleneck6, k3x3 96 3 1
7 bottleneck6, k3x3 160 3 2
8 bottleneck6, k3x3 320 3 1
9 bottleneck6, k3x3 1,280 1 1
10 Conv1x1 & Pooling & FC 1,280 - 1
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Appendix E

Face recognition

E.1 Accuracy of the ArcFace and QMag models

(a) (b)

(c) (d)

(e) (f)

Figure E.1: Accuracy of MagFace and ArcFace models.
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(a) (b)

(c) (d)

(e) (f)

Figure E.2: Accuracy of MagFace and ArcFace models.

E.2 ROC of face recognition models on LFW and AgeDB30

Figure E.3: Evaluation on LFW dataset - ROC curves.
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Figure E.4: Evaluation on AgeDB30 dataset - ROC curves.
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Appendix F

Face image preprocessing

F.1 Non-Local Means Denoising

The Non-Local Means Denoising [239] is based on the following equations

ûi(p) =
1

C(p)

∑

q∈B(p,r)

ui(q)w(p, q), C(p) =
∑

q∈B(p,r)

w(p, q), (F.1)

where ui is the ith channel of the image u = (u1, u2, u3) and p expresses a certain pixel
in the image. B(p, r) is a function indicating a neighborhood centered at p with size (2r +
1)×(2r+1). The weight w(p, q) is based on the Euclidean distance d2 = d2(B(p, f), B(p, f))
of the (2f + 1)× (2f + 1) then

d2(B(p, f), B(q, f)) =
1

3(2f + 1)2

3
∑

i=1

∑

j∈B(0,f)

(ui(p+ j)− ui(q + j))2 . (F.2)

The weights function w(p, q) is defined as

w(p, q) = e−
max(d2−2σ2,0.0)

h2 , (F.3)

where h is the filtering parameter and σ denotes the standard deviation of the noise.
The weighting function is set in such a way that similar patches are averaged up to the
noise level.

This is the basic principle of the algorithm, but there are several other variations de-
signed to further improve both Peak Signal to Noise Ratio (PSNR) and computational
speed.

F.2 Experiments

The following figures show the distance distributions for other kernel sizes.
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(a) Hard shadows (b) Soft shadows

Figure F.1: Distributions before and after enhancement for kernel 3× 3 without denoising.

(a) Hard shadows (b) Soft shadows

Figure F.2: Distributions before and after enhancement for kernel 15×15 without denoising.
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