Data-Centric Engineering: Computer Vision and Pattern Recognition ### Professor Heikki Kälviäinen Professor of Computer Science and Engineering Computer Vision and Pattern Recognition Laboratory (CVPRL) Department of Computational Engineering School of Engineering Science Finnish CoE in Inverse Modeling and Imaging LUT University, Lappeenranta, Finland heikki.kalviainen@lut.fi http://www2.it.lut.fi/cvprl/ Prof. H. Kälviäinen LUT CVPRL ## Where is LUT and Lappeenranta? ### Computational Engineering: Data-Centric Engineering https://www.lut.fi/web/en/admissions/apply-to-lut/double-degree-studies/masters-programmes https://www.lut.fi/web/en/admissions/masters-studies/msc-in-technology/computational-engineering/data-centric-engineering 3 ### CVPRL: research projects at LUT #### **Computer Vision and Pattern Recognition Laboratory:** Applications of Computer Vision, Digital Image Processing and Analysis, Data Analytics. Laser scan (log surface) X-ray images (log) RGB image (sawn timber) ## Medical Image Analysis: Diagnosis of Diabetic Retinopathy Prof. Lasse Lensu et al. Prof. H. Kälviäinen Image pre-processing Statistical modeling of image information #### **IMAGERET/REVISION:** Kuomed, Mawell, Perimetria, Santen Tekes, Academy of Finland, LUT, UEF, Tampere U, Birmingham U, Bristol U, Czech TU, UC at Berkeley #### CoExist&SealVision: # Could you help me by recognizing me? Prof. Heikki Kälviäinen et al. Nepovinnykh, E., Eerola, T., Kälviäinen, H., Siamese Network Based Pelage Pattern Matching for Ringed Seal Re-identification, *WACV, Workshop*, 2020. Only around 450 Saimaa ringed seals ("saimaannorppa" in Finnish) left in Lake Saimaa. Detection and identification of individual Saimaa ringed seals based on the fur pattern using computer vision and machine learning for conservation of nature. "Biometric passport" for seals (wild life photo ID). Cooperation with biologists: UEF, Finland & BFNC, Russia (Lagoda ringed seals). ## DigiSaw: Leap of Digitalization for the Sawmill Industry - Optimized sawing. - Quality prediction of the end product from raw material. - More efficient sorting of logs and sorting of the end products. http://www2.it.lut.fi/project/digisaw/ Laser scan (log surface) Sorting & stacking Intake & rough sorting Drying X-ray images (log) # Plankton recognition from imaging flow cytometer data using convolutional neural networks Prof. H. Kälviäinen, L. Lensu, T. Eerola, et al. A huge amount of data produced by a measuring device from Baltic Sea => how to recognize planktons automatically? **Objective:** detect plankton types for analyzing the condition of the Baltic Sea and the climate change. Collaboration: Finnish Environment Institute (SYKE), BUT, CTU, FastVision project. ⇒ What plankton type? ## FastVision: LUT-BUT joint supervision - Bureš, Jaroslav, Classification of Varying-Size Plankton Images with Convolutional Neural Network, MSc thesis, Brno University of Technology, 2020. - Bureš, J., Eerola, T., Lensu, L., Kälviäinen, H., Zemčík, P. Plankton Recognition in Images with Varying Size, ICPR Workshops and Challenges, 2021. - Various modifications to the baseline convolutional neural networks are compared to address the extreme size variation in plankton image data. | Model combination | Test accuracy | |--|---------------------| | InceptionV3 (299x299) | 0.9228 ± 0.0019 | | InceptionV3 (299x299) + Jeffrey (128x128) | 0.9259 ± 0.0012 | | InceptionV3 (299x299) + Barazanchi (224x224) | 0.9271 ± 0.0018 | | InceptionV3 (299x299) + Barazanchi_2 (361x181) | 0.9262 ± 0.0014 | | InceptionV3 (299x299) + Barazanchi_4 (448x112) | 0.9284 ± 0.0014 | | InceptionV3 (299x299) + DeepWriter 2x(224x224) | 0.9285 ± 0.0027 | | InceptionV3 (299x299) + Barazanchi_4 (448x112) + Deep-
Writer 2x(224x224) | 0.9303 ± 0.0017 | ## Brno University of Technology (CZ): LUT-BUT-DD master The content and structure of the Degree Programme 1 competer at LLIT (coloct minimum 20 ECTS) **LUT students** TOTAL min 120 ECTS 120 | 1. Semester at LOT (Select millimum 50 EC15) | 24 | |--|---------| | Course name | credits | | Digital Imaging and Image Preprocessing | 6 | | GPGPU Computing | 6 | | Pattern Recognition | 6 | | Advanced Data Analysis and Machine Learning | 6 | | | | | | | | | | | | | | | | | 2. semester at BUT (select minimum 30 ECTS) | 30 | |--|---------| | Course name | credits | | Multimedia | 5 | | Any voluntary course in 2nd or 3rd semester | | | Speech Signal Processing | 5 | | Data Communications, Computer Networks and Protocols | 5 | | Physical Optics | 5 | | Computational Geometry | 5 | | Theoretical Computer Science | 5 | | · | | | | | | 3. semester at BUT (select minimum 30 ECTS) | 30 | |---|---------| | Course name | credits | | Mathematical Structures in Computer Science | 5 | | Computer Graphics | 5 | | Term Project | 5 | | Hardware/Software Codesign | 5 | | Advanced Database Systems | 5 | | Any voluntary course in 2nd or 3rd semester | 5 | | | | | | | | 4. semester at LUT | 36 | |---|---------| | Course name | credits | | Thesis work | 30 | | Machine Vision and Digital Image Analysis * | 6 | | Computer Vision * | 6 | ^{*} select one of the two courses or a compatible course #### **BUT students** TOTAL min 120 ECTS 122 | 1. semester at BUT (select minimum 30 ECTS) | 30 | |---|---------| | Course name | credits | | Mathematical Structures in Computer Science | 5 | | Computer Graphics | 5 | | Theoretical Computer Science | 5 | | Term Project | 5 | | Hardware/Software Codesign | 5 | | Advanced Database Systems | 5 | | | | | | | | | | | 2. semester at BUT (select minimum 30 ECTS) | 30 | |--|---------| | Course name | credits | | Multimedia | 5 | | Image Processing | 5 | | Speech Signal Processing | 5 | | Data Communications, Computer Networks and Protocols | 5 | | Physical Optics | 5 | | Computational Geometry | 5 | | | | | | | | | | | semester at LUT (select minimum 30 ECTS) | 26 | |--|---------| | Course name | credits | | GPGPU Computing | 6 | | Pattern Recognition | 6 | | Advanced Data Analysis and Machine Learning | 6 | | Seminar in Intelligent Computing | 4 | | Academic Writing in English | 4 | | 5 | | | | | | | | | 4. semester at LUT | 36 | |---|---------| | Course name | credits | | Thesis work | 30 | | Machine Vision and Digital Image Analysis * | 6 | | Computer Vision * | 6 | ^{*} select one of the two courses ## **Computational Engineering by CVPRL:** Data-Centric Engineering Computer Vision and Pattern Recognition http://www2.it.lut.fi/cvprl/ Prof. H. Kälviäinen **LUT CVPRL** 11