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Abstract
Shadow mapping is the most widely used method in real-time 3D graphics for producing
shadows in local light models. This thesis step-by-step explains the process of creating
shadow maps. Depth biasing as well as filtering methods are analysed, then the calculation
of normal offset bias for variable sized kernels is derived. We describe the process of effi-
ciently fitting stable cascade frustums to view frustum. Also shown is how to use modern
OpenGL to reduce performance overhead.

Abstrakt
Shadow mapovanie je najpoužívanejšia metóda ktorá sa využíva v real-time 3D grafike na
tvorbu tieňov v lokálnych osvetlovacích modeloch. Táto práca krok-za-krokom vysvetľuje
proces vytvárania shadow máp. Porovnané su metódy výpočtu hĺbkovej odchylky ako
aj filtrovacie metódy, a zároveň je odvodený výpočet normálovej odchýlky pre filtrovacie
kernely s premennou veľkosťou. Taktiež popíšeme proces ako efektívne obaliť frustum
kamery kaskádovým frustumom. Popri tom vysvetlíme ako využiť moderné OpenGL API
na zníženie výkonnostných nedostatkov.
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Chapter 1

Introduction

The need for real-time shadows in computer graphics has resulted in several approaches
over the years; the most widely used being shadow mapping. Thanks to its flexibility it can
be used to implement simple hard shadows, but its basis is also used in various advanced
shadowing techniques, capable of producing both hard and soft shadows. What is shadow
mapping and how do we achieve it is discussed in chapter 2. The biggest problem of
shadow mapping is that it requires sampling the scene from light’s view. When we render
the scene from camera’s view the sampling resolution is going to mismatch with shadow map
resolution creating aliasing. The various approaches of removing aliasing will be discussed.

In chapter 3 we discuss working with OpenGL API. This library helps us offload most
of the hard work in computer graphics to fast graphics card specialized in parallel com-
putations. In order to get the maximum performance we need to be well versed with the
specification, but significant role also plays the driver. Drivers responsibility is to implement
the API and communicate with graphics card, submitting jobs the programmer prepares.
This all has to happen in parallel, with CPU submitting work fast enough, otherwise the
GPU stalls and we waste computing power. Hardware architecture plays a big role as well,
with newer GPUs pushing the boundaries of computing power, and with vendor support of
new extensions.

How to design a software architecture used in our application is part of chapter 4. We
will step through important parts of pipeline, explore possible implementations, and judge
how to choose between them. Taking into account multi-core design of modern processors,
we need to try and design algorithms with parallelism in mind. From the OpenGL 4.3
we now have the possibility to use compute shaders, allowing us to easily tap into GPU’s
processing power even outside of classic rasterization pipeline. This allows us to efficiently
compute lighting for hundreds of lights.

The result, application written in C++, will be then used to compare chosen methods.
Some of the screenshots from the application will be shown. Video is available on CD.
When measuring the GPU timings, care needs to be taken to properly query the card
through OpenGL. We will also use two cards, one older NVIDIA Kepler architecture, and
newer Maxwell architecture to see how different they behave. Details on this are written
in chapter 5
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Chapter 2

Shadow Mapping

Before discussing shadows we first need to define lighting model. In real-time graphics, most
widely used lighting model is direct (also called local) illumination. As the name implies, it
only takes into account light that comes directly from light source, the fragment’s attributes
and computes the reflected light. This is in contrast with global illumination, which models
rays reflected off objects in scene multiple times, before hitting the point from where light
reflects off into our camera. In global illumination model, the shadow is simply fewer light
rays hitting surface (similar to real life). But in direct illumination, it is up to us to to find
how much direct light from light source makes it onto a surface. One of these methods is
shadow mapping.

There is also difference between light sources. While global illumination has no problems
dealing with area lights, in direct illumination these require fast approximation of integral
over half-sphere summing incoming light. And so most used light sources are simple with
no surface area. These include point, directional and spot lights. The shadows between
non-area and area lights also differ, while non-area lights should theoretically produce
very sharp shadows, are lights will create soft shadows with penumbra size dependent on
the area of light that the surface is illuminated by. Variable penumbra size is achieved
with soft shadow mapping, but is more expensive than hard shadow mapping for non-area
lights. Hard shadow mapping instead uses filtering/softening to either anti-alias or simulate
penumbra, however such penumbra is usually fixed size.

In order compute shadow term in direct illumination, we need to know if there is a oc-
cluder between receiver and light. To find these occluders we sample the scene from light’s
view-projection space. Then the shadow map is sampled from our camera’s rasterized view
of scene. This however suffers from projection aliasing. Other techniques like shadow vol-
umes extend the occluder silhouette to create a shadow boundaries defining volume. These
shadows are very clear and don’t suffer form projection aliasing, since the rasterization hap-
pens only once and in camera’s view-projection space. This method has fell out of favor,
since it requires additional geometry data, performance is of concern. This chapter will
discuss the problems of shadow mapping and the methods used to solve them. We won’t
go over all implementation details, that will be discussed in chapter 4 instead.

2.1 Model
So let’s analyze a simple case for an analytical point light 𝑙. The amount of light coming
from The simplest space to compute occlusion is space based on lights view space. In
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implementation this usually ends up being texture space of a light view projection NDC
space. We can get this space by multiplying world transformation with light view-projection
transformation and hardware takes care of the rest. A point 𝑟 (as in receiver) is in shadow if
there exists a surface point 𝑜 (as in occluder), such that 𝑟𝑥𝑦 = 𝑜𝑥𝑦 ∧𝑜𝑧 < 𝑟𝑧. For directional
light the situation is the same, except since our rays are parallel the light projection matrix
will be different.

l

r

o

Figure 2.1: Hard shadow occlusion

For area lights size of penumbra depends on light size and distances between light,
blocker and receiver. This approximation is used by Percentage Closer Soft Shadows, which
enables us to create soft shadows even with single shadow map. In reality to be accurate
we would have to render scene from multiple points on, and indeed some techniques utilize
multiple shadow maps to improve appearance. This technique is increasing in popularity,
as newer hardware architecture capabilities can significantly lower its cost. Using triangle
similarity we can solve for penumbra width 𝑝𝑠, with light width 𝑙𝑠, occluder depth 𝑜𝑧 and
receiver depth 𝑟𝑧:

𝑝𝑠
𝑙𝑠

=
𝑟𝑧 − 𝑜𝑧

𝑜𝑧

𝑝𝑠 =
(𝑟𝑧 − 𝑜𝑧) · 𝑙𝑠

𝑜𝑧
(2.1)
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Figure 2.2: Soft shadow occlusion
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2.2 Precision
For storing our sampled results, we need to decide the format and encoding. If our platform
supports it, we can simply use the implicitly written depth buffer from rasterization. How-
ever, care should be taken when constructing perspective projection matrix, in OpenGL it
usually is:

𝑃 =

⎡⎢⎢⎣
𝑛
𝑟 0 0 0
0 𝑛

𝑡 0 0

0 0 −𝑓+𝑛
𝑓−𝑛 − 2𝑓𝑛

𝑓−𝑛

0 0 −1 0

⎤⎥⎥⎦ (2.2)

This, together with hardware normalization, transforms view space 𝑧𝑣 into normalized
device coordinates (NDC) space 𝑧𝑛:

𝑧𝑛 =
𝑓 + 𝑛

𝑓 − 𝑛
+

1

𝑧𝑣

−2𝑓𝑛

𝑓 − 𝑛
(2.3)

The problem with this rational function is that just after first 𝑛 (ie. 𝑧𝑣 = 𝑛 + 𝑛) distance
into view frustum we’ve used 𝑛

𝑓−𝑛 (approximately half) of NDC space. This is very waste-
ful, and can result in insufficient resolution in far distance. We can either increase near
plane distance, or use a combination of reversed near/far planes with floating point depth
buffer. Floating points have higher precision near zero, thus reversing the mapping with
far plane near zero should increase precision in distance. While in directional lights with
orthogonal mapping we won’t have this problem since it’s simple linear function as shown
in equation 2.4. In this case the precision is uniformly distributed and we don’t have to
compensate.

𝑧𝑛 = 2
𝑧𝑣 − 𝑛

𝑓 − 𝑛
− 1 (2.4)

2.3 Biasing
Since the scene in shadow map is rendered from light’s view-projection, in most cases it
will end up being under-sampled, meaning that single shadow map texel covers multiple
window space texels. This projective aliasing, possibly combined with precision errors,
creates shadow acne or speckled patches of self-shadowed areas in a similar fashion to
moiré pattern. The problem becomes exacerbated on slopes, where single shadow texel
could cover long strip of pixels.

Figure 2.3: Self-shadowing errors
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Figure 2.4: Biasing methods

The simplest approach is to simply offset by constant depth in light space (either by
adding to occluder or subtracting from receiver depth position). This unfortunately solves
only small sampling errors [5], and increasing this value causes peter-panning effect, where
the object and its shadow gets separated (giving a floating appearance). Another way,
would be to inset vertices into mesh using their normal during shadow map rasterization.
However, this could create visible disconnects in parts of mesh where it’s not continuous
surface. Also insetting by normal requires normal information per vertex during shadow
pass. This could have an impact on performance, since it would mean double the vertex size.
More performant variant of insetting, is to offset during shadow coordinates calculation,
show also in figure 2.5, where normal information is available (in vertex, or texture). This
has a drawback of visually moving the shadow out of place, but the effect can be minimized
down to displacement of few pixels. Research by Dou et al. [7] has tried to calculate optimal
adaptive 𝜀 bias per sample. Ehm et al. [8] optimized and improved the method, but found
that the calculation needs a constant 𝐾 fitted to scale scene factor. However, both of these
methods cannot be used with hardware filtering. Speed of these techniques, varies on the
pipeline used, but generally is negligible compared to other parts of shadow mapping.

2.4 Filtering
While a simple depth test results in a point either being fully in shadow or not, this effect is
rarely wanted. Using hardware shadow interpolation somewhat removes extreme crispiness,
but depending on resolution, still leaves visible shadow map texels. The biggest difference
between these methods is that some (ESM, VSM) can be filtered in separate pass, while
others (PCF, Poisson) cannot. Filtering in separate pass allows us to make use of separable
kernel, lowering the number of samples. Though on other hand also means, we also filter
texels that might end up not being sampled.

2.4.1 PCF

The simplest approach to softening a shadow boundary is Percentage Closer Filtering.
Reeves et al. [14] proposed that instead of having a step function, the shadow strength is
based on ratio of occluded versus unoccluded samples. We can control the softness of the
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shadow by increasing or decreasing kernel size. We can combine this with hardware shadow
filter function to reduce the number of samples. Using sampler*Shadow samplers, we supply
additional coordinate that will be compared to four samples of the shadow map, and returns
normalized number of how many passed. Increasing softness needs bigger kernels, and this
can cause problems. Our biasing solution will need to make sure to either individually
offset samples, or offset the whole kernel by large enough bias otherwise bigger kernels will
bring self-shadowing back. This problem is most visible if our scene has long stretches of
geometry lit at low angle.

L N

α
wk

Figure 2.5: PCF kernel self-shadow problem

We can calculate the normal offset 𝑘 needed to push kernel out of shadow from figure 2.5.
We notice the right triangle with hypotenuse 2𝑤 and angle 𝛼. We can use sinus to calulate
offset from these two variables. To quickly calculate 𝛼 we should take advantage of dot
product between two normalized vectors, light and normal vectors, yielding cos(𝛼). The
width of light texel depends on light’s projection matrix and shadow map’s resolution. We
can precalculate these as they as they don’t change per fragment. To generalize we will use
𝑟 as kernel radius, i.e. half of sample count.

𝑘 = 𝑟 · 𝑤 · sin(𝛼),

𝑠𝑖𝑛(𝛼) =
√︀
1− cos(𝛼)2,

𝑤 =
𝑡− 𝑏

𝑆𝑦

(2.5)

Using the sinus equality we can avoid two trigonometric functions in a exchange for
squaring and square root. The 𝑡 and 𝑏, used to calaculate texel width, can be taken from
light’s ortographic matrix 𝑃1,1 where they are in form of 2

𝑡−𝑏 . We assumed symmetric
shadow map, but if they are not we can apply similar principle in horizontal direction.
This solution applied single offset to whole kernel, nonetheless we could calculate offset for
each sample, albeit at bigger cost. We should then preferably transform normal into light
space and apply normal offset per sample. Does this method preclude using normal maps?
We presumed having vertex normal available, however in deferred renderer that is rarely
possible, if using normal maps. Artifacts could happen if fragment’s normal pushes kernel
into shadow. Note that the offset amount is modulated by sin(𝛼), so the offset increases
if the light is almost perpendicular to normal direction, however such fragment also should
reflect less light since it’s facing away from the light. Another way is to write depth
derivatives into gbuferr and reconstruct normal from depth and derivatives. Calculating
derivatives from depth buffer will cause discontinuities at edges.
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Very popular variant to PCF is Poisson disc sampling. We first need to generate sample
offsets. Work by Bridson R. [4] shows how to implement this in general for n-samples for
radius r. The points for offsets fulfill simple rule, that they cannot closer to others than
radius r. Limiting the points to be lay inside a circle, we make the filter size rotationally
invariant. Another advantage is that we can use lower number samples. This introduces
noise in result, but can still produce acceptable visual quality. The filter can be rotated per
pixel or per frame, to increase dithering. However we should be careful make this pattern
stable when camera is not moving, or we could get flickering shadow boundaries.

2.4.2 Exponential SM

By replacing shadow simple step shadow function 𝑟𝑧 < 𝑜𝑧 with exponential function 𝑒𝑥𝑝(𝑘 ·
(𝑟𝑧 − 𝑜𝑧)) we get a transition between lit area and shadow are where the depth difference
is positive. We can use 𝑘 darkening factor to strengthen shadow transition. When blur is
used to smooth out depth differences, together with the test function produces continuous
transition. Blurring can be done using separable kernel, whether it’s Gauss or box filter.
Using such depth function also means that thin objects close to receiver will produce lighter
shadows, which strengthen away from object casting them, the opposite of the effect we
perceive in real life.

Figure 2.6: ESM bleeding with low darkening factor

2.4.3 Variance SM

Another test function we can use is based on approximating the depth 𝑜𝑧 to be first moment
𝑀1 and depth squared to be second moment 𝑀2 of a depth distribution. From moments
we can calculate mean 𝜇 and variance 𝜎2. The paper [6] then uses Chebyshev’s inequality
to express attenuation of light hitting the fragment at depth 𝑟𝑧.

𝜇 = 𝑀1 = 𝑜𝑧

𝑀2 = 𝑜2𝑧

𝜎2 = 𝑀2 −𝑀2
1

𝑝(𝑟𝑧) =
𝜎2

𝜎2 + (𝑡− 𝜇)2
(2.6)

This technique is susceptible to light-bleeding which occurs when two occluders shade
same point, the penumbra from first object then bleeds through seconds object shadow.
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Later variations try to solve this problem, such as Layered VSM [11], or combination of
exponential and variance SM called EVSM.

2.5 Coverage
If we are rendering rendering anything bigger than very small test scenes we quickly run into
coverage inefficiencies. Using a regular single shadow map for most scenes results in extreme
undersampling near the near plane of our frustum, and oversampling near the far plane.
Increasing shadow map resolution has negative impact on both memory and bandwidth,
while not solving oversampling in far distances. Using mip-maps with basic depth test is
not recommended, it could introduce biasing problems 2.3 or moving boundaries, and while
high anisotropy can smooth the errors, it has high performance impact [3]. Some depth
test functions as VSM and ESM are capable of mip-mapping.

The nature of this method is to solve coverage inefficiency by splitting the view frustum
into multiple parts, and for each a unique shadow map is created. The basis of this technique
is relatively old, but it is still primary choice for many developers, thanks to its robustness
and quality increase. The differences are how we fit the shadow map onto or into view
frustum. One way is to split frustum with planes parallel to near and far plane, and the
cover these splits by fitting the light frustum around them. This was used in parallel split
shadow maps by Zhang et al. [17]. Other algorithms like cascade shadow maps, create
volumes inside view frustum and fit shadow maps around them. This can have higher
coverage efficiency, however accessing the shadow maps becomes more complex.

Figure 2.7: Same-sized cascades fitted to view frustum

Important factor when it comes to fitting the light’s frustum around view frustum split is
that we don’t change its size. If we would fit a bounding box in light space around the split,
its size would change depending on camera orientation. This would result in shadow map
texels changing size, creating flickering on shadow boundaries, more pronounced depending
on how mis-matched is the sampling rate. One way to ensure that ensure the size will be
stable is to create a bounding sphere around split. Sphere has the same sized bounding
box no matter the light’s view matrix. To calculate a frustum split bounding sphere we
make use of the frustum being symmetric this way we can reduce the problem to 2D. We
will need a plane splitting the frustum in half going through opposite corners. The sphere
center will lay on intersection of two symmetry planes, which is across the middle of the
frustum. We will define the split as two planes at fraction of a distance between near and
far plane. The real distance is easily calculated with 𝑛𝑒𝑎𝑟+𝑠 ·(𝑓𝑎𝑟−𝑛𝑒𝑎𝑟), this way we are
independent of actual values of near and far planes. Reducing the problem to 2D we get
a bounding circle around isosceles trapezoid as seen in figure 2.8. It should be noted that
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Figure 2.8: Frustum split bounding sphere

the center of the sphere doesn’t have to be inside this isosceles, if the distance between the
near split and far split is short enough. This method is independent of whether the center
lies inside or not. If we would insist for some reason, for the center to lie inside the split
we could limit it to far split distance. We can see that there is lot of coverage outside the
split, this can still be useful as we will show in section 4.4.

So we need two things, the distance 𝑐 from origin to center of sphere, and it’s radius 𝑟.
We make use of knowing that distances |𝐴𝐶| and |𝐵𝐶| are same, with length 𝑟. These
segments are also hypotenuses of triangles 𝐶𝐴𝑁 and 𝐶𝐵𝐴 respectively. We will use triangle
similarity between 𝑁𝑆𝐴 and 𝐹𝑆𝐵 to calculate 𝑠𝑓 from 𝑠𝑛. The ℎ𝑛 is a half of near plane
diagonal which we need to calculate from our camera’s properties defined by vertical field
of view 𝜑 and ratio between height and width 𝑦.

(𝑐− 𝑛)2 + ℎ2𝑛 = (𝑐− 𝑓)2 + ℎ2𝑓

2𝑓𝑐− 2𝑐𝑛 = ℎ2𝑓 + 𝑓2 − (ℎ2𝑛 + 𝑛2)

𝑐 =
𝑠2𝑓 − 𝑠2𝑛

2(𝑓 − 𝑛)

𝑐 =
𝑠2𝑛(

𝑓
𝑛 − 1)

2(𝑓 − 𝑛)
,

𝑠𝑛 = ℎ2𝑛 + 𝑛2,

ℎ2𝑛 = (𝑛 · tan(𝜑
2
))2 + (𝑦 · 𝑛 · tan(𝜑

2
))2

(2.7)

When we move the camera the shadow map origin also moves. This offsets the sampling
points, even if by a small amount, which can cause texels on boundaries to miss or hit
triangles. This will cause flickering, unless we fix the shadow map origin to a grid. We can
fixate the shadow map by calculating the offset from the grid and then moving the origin
back. The grid size depends on the map resolution. The pseudo-code is shown in listing 2.1.

Another approach called perspective shadow maps samples a scene from a post-projection
space. This space is setup up so that objects closer to camera have higher sampling reso-
lution. However certain situations may arise, such as shadow casters being behind camera
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1 vec4 origin = lproj * lview * vec4 (0, 0, 0, 1)
2 origin *= map_size / 2
3 offset = (round( origin ) - origin ) * (2 / map_size )
4 lproj [3][0] += offset .x
5 lproj [3][1] += offset .y

Listing 2.1: Shadow map stabilization (square)

view frustum, that require special handling. Later successors such as Light Space Per-
spective SM, try to solve its limitations by modifying the post-projection transform. This
method hasn’t really caught on in industry. One reason might be that the split shadow
maps provide simpler implementation with similar or better results. Research by Rosen [15]
explored the use of warping shadow maps. As the name suggests, we sample the scene non-
uniformly based on parameters as distance to camera, object boundaries, etc. We do this by
rendering shadow map with non-linear transformations on scene geometry, using tessella-
tion to mitigate artifacts of rasterization resulting from non-linearity. This novel approach
can dynamically change sampling frequency of shadow map, however the requirement for
tessellating the geometry can hinder performance during shadow map generation.
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Chapter 3

OpenGL

OpenGL is a specification of an application programming interface (API) designed around
3D graphics. This API is implemented by driver vendor. Open-source implementations
such as Mesa3D do exist, but because of the competitive market, the GPU vendors usually
supply their optimized drivers as proprietary software. OpenGL changed a lot in last years,
stepping away and abandoning fixed function pipeline. The vendors now recommend trying
to adhere with Almost Zero Driver Overhead (AZDO) principle. Simply stating, the less we
have to talk with driver and try to batch work together, the lower the chance that we stall
the GPU pipeline losing processing power. These techniques can be implemented either by
extensions or core function in newer versions.

3.1 Pipeline overview
We will take a short look at a minimal pipeline needed to draw triangle on screen. Majority
of data in OpenGL is managed by two objects, buffers and textures. Buffers are linear
memory storage blocks where user writes his data to be read by OpenGL or vice versa.
Internal format of a buffer depends on a buffer target binding. Textures on the other
hand can be up to three-dimensional, but their internal format is strictly set, and used
whenever accessing or writing to texture. OpenGL has a large number of switches and
options controlling the pipeline, but most of the work is done in programmable stages
called shaders. Shaders are written in OpenGL Shading Language (GLSL). They have to
be compiled and linked by the driver at run-time, in order to run on GPU.

Figure 3.1: Simplified overview of pipeline from 1

The vertex data is supplied in a buffer bound to GL_ARRAY_BUFFER and is also called
vertex buffer object (VBO). When the vertex data repeats itself (i.e. a vertex is shared by

1Glumpy. Modern OpenGL, 2016. https://glumpy.github.io/modern-gl.html. Licensed under CC
BY 3.0. Modified. [Online, accessed 12.5.2016]

12

https://glumpy.github.io/modern-gl.html


multiple primitives), we can cut down the buffer size by using index buffer object (IBO)
bound to GL_ELEMENT_ARRAY_BUFFER. In this buffer we specify the primitives as indexes into
VBO, creating a level of indirection, but cutting the VBO size significantly. The GPUs
nowadays have vertex caches, and seem to handle this kind of indexing very well. We
describe the structure of a VBO in a vertex array object (VAO). We tell OpenGL how
many attributes (position, normal, uv, etc.) we have by enabling them, and then specifying
their type, stride and offset where they start in VBO.

When a draw call is issued the vertex data is sent to a vertex shader. Here we have
to specify the location of the vertex attributes, relative to each other. If we don’t, the
driver is allowed change the order and we would have to query it, so it’s best to explicitly
state the attribute location with layout directive: layout(location = 0). This way we make
sure that different shaders will share the vertex location. After the vertex is processed by
the vertex pipeline (starting with vertex and ending with geometry shader), by specifying
the gl_Position output variable we tell the opengl where in normalized device coordinates
(NDC) space the vertex is. The fragment is then rasterized depending on the draw target
resolution. If we have depth testing enabled, it also tested against the depth buffer. Re-
maining fragments are sent to fragment shader. The shader processes the fragment and
outputs its values, which get blended (if enabled) into the bound color buffer.

3.2 Buffer objects
The main distinction between buffers is in the way they connect to the pipeline. This
is specified by the target parameter during binding. There are four types that we will
use the most: GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER for vertex data and indices, and
GL_UNIFORM_BUFFER, GL_SHADER_STORAGE_BUFFER for data that we need to present to shader. So
how exactly do we create and submit data? There are two ways, and we will briefly look
over both of them.

Mutable

We start by creating buffer with glBufferData(). The parameters are self-documenting,
except for usage parameter. This is just a hint for driver, whether we are going to read
or write, and how often will the buffer content change. For example, for a VBO, if our
geometry is static, we would use GL_STATIC_DRAW. These hints are not restricting access in
any way, as per specification chapter 6.2 [16].

We can either populate the buffer during allocation, or we can use glBufferSubData()
with offset parameter to copy into buffer region. This however raises a question, when is
the data copied? OpenGL has to copy the data before the function returns, since we are
not required to hold the data afterwards. But what happens if the previous data is still
needed for drawing? The driver in this case will mostly likely force synchronization and
wait until the previous data is used. There is a workaround, by reallocating the buffer with
same size, we tell the driver that we don’t need the old data, also called “orphaning”. If
the data is still needed, we get a new allocation, thus not blocking, and if the old data is
not needed, then new allocation happens over the old data.
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Immutable

Immutable buffers are allocated with glBufferStorage(). Immutable in this context means,
that we promise to not change its size. However the contents are readable/write-able
depending on the flags we specify. What is different from mutable buffers, is that we can
call glMapBufferRange on immutable storage, to get a pointer to driver’s memory. This way
we when we generate data in our application we can write it straight into the buffer. When
the buffer is mapped, the OpenGL cannot do any operations with it. After we are done we
will unmap the buffer, the pointer is invalidated, and the data is available to OpenGL again.
The buffer data can we invalidated either by mapping with GL_MAP_INVALIDATE_BUFFER_BIT or
by glInvalidateBufferData. If the previous data is still used invalidating the buffer will make
sure that mapping will not block, because we get a pointer to new memory. More advanced
buffer streaming can be done with persistent buffers, which stay mapped the whole time.
We would have to implement triple buffering (one part is used, another prepared, and one
being written to), and explicit synchronization.
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Chapter 4

Implementation

Application is written in C++ against c++11 standard. The compiler used was part of
Microsoft Visual Studio 2015 on Windows 8.1. All of the libraries used, as well as source
code, are multi-platform. However a multi-platform build system for the dependencies and
application is not included. One of the reasons for developing on Windows, instead of
Linux, was to avoid potential issues with less supported driver on Linux.

Context creation

To use OpenGL we need a valid OpenGL context first. Context creation is not a part of
standard, and is specific to operating system. We also need a window from window manager
which is also platform dependent. SDL2 (Simple Directmedia library) offers abstraction for
both of these things, and supports multiple platforms. We have to set window properties,
and context settings such as version, default buffer options, etc. We will try to use some
of the new functions in 4.5 core profile to utilize faster pathways in driver. On windows
we would need to dynamically load function pointers, instead we can make use of GLEW
(OpenGL Extension Wrangler) library to do it for us with simple call to glewInit()1.

4.1 Shadow map generation

4.1.1 Initialization

In order to draw off-screen we need to setup a framebuffer. Framebuffer object (FBO)
is just a set of attachment points for textures (or renderbuffers) to attach into. We can
categorize these points into four types: color, depth, stencil, depth-stencil. If our platforms
allows using texture as depth buffer, we should consider doing so. This way we can render
without color buffer, thus reducing the framebuffer bandwidth. Without color buffer we
don’t have to explicitly write to any output in fragment shader, since fragment’s depth is
implicitly written (unless glDepthMask() is set to false).

When creating textures used for shadow maps, we should try and use layered textures.
We can bind these to framebuffer using glFramebufferTexture() to create layered framebuffer
or glFramebufferTextureLayer() to bind single layer of a texture. Layered framebuffers are

1If we are using core profile, we also need to set glewExperimental to true, otherwise GLEW won’t
correctly query driver, resulting in invalid function pointers. This is a result of GLEW being slightly
outdated, and trying to use deprecated parameters. There are other, but also more complex, alternatives
such as glbinding library.
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used together with gl_Layer variable in shaders to control which layer the primitive will be
rasterized into. When binding single layer we proceed as with normal non-layered texture.

There are numerous ways we can store vertices in VBOs, but generally engines use
interleaved attributes. What this means is that attributes are stored sequentially and we
specify offset from start of vertex using glVertexAttribPointer(). Stride in this case is size of
vertex. Since the only information needed to generate shadow maps is depth, we can take
advantage of this to reduce vertex size down to position only. So we have to consider the
vertex size we use for geometry pass, if it’s big our vertex shader would have to skip the
unused attributes between positions. In this case it might be better idea to split position
attribute into separate buffer.

4.1.2 Frustum culling

Before we submit our draw calls we need to decide which objects should cast shadow. Draw-
ing objects that won’t end up on screen can be costly, we might pay for submitting vertices,
and also for vertex processing cost, even though no fragments will be rasterized. We can use
frustum culling to eliminate objects outside of shadow map. The frustum characteristics
depend on light type, especially what projection matrix it uses. For directional lights it is
oriented bounding box, while for spotlight it’s pyramid shape due to perspective projection
and in the case of point light it is cube centered around source.

First we need to extract frustum planes. Gribb et al. [10] show how to extract planes
from projection matrix. We can use this on view-projection matrix, to extract planes in
world space. Since there are many ways to do frustum culling, we aren’t limited to world
space. Some approaches use clip space or local space, depends on the algorithm that best
suits us. In worlds space we can use axis-aligned bounding boxes (AABB), oriented bound-
ing boxes (OBB) or bounding spheres, or even combination since for example bounding
spheres first, since it’s fast and then test OBB after. There are additional optimizations
possible to use with frustum culling shown in work by Assarsson et al. [2]. Simplest bound-
ing shape to cull is sphere, in pseudocode shown in listing. For AABB we can test with two
dot products, first the center, then extent with absolute value of plane normal 4.1. Quick
way to calculate world space, shown by Arvo [1], is to AABB from local space AABB (which
is constant for given mesh) is to transform center using model matrix, and then transform
extent as a normal with absolute value of model matrix. This AABB is not going to have
best fit, but is very fast compared to calculating from mesh data.

1 result = IN;
2 for each plane
3 d = dot(center , plane_normal );
4 r = dot(extent , abs( plane_normal ));
5 if d + r < - plane_d
6 return OUT
7 else if d - r < - plane_d
8 result = PARTIAL
9 return result

Listing 4.1: Fast axis-aligned bounding box frustum cull
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4.1.3 Buffer updating

In order to properly transform our vertex data, the vertex shader needs to know the model,
view and projection (MVP) matrices. These are usually combined into one MVP matrix
on CPU, therefore saving GPU core cycles that would be wasted doing the matrix multi-
plication for each vertex. One way of making this data available to shader is with Uniform
Buffer Objects (UBO). Each shader has a number of uniform block binding indices that
buffer ranges can be bound to. We can set the buffer index explicitly from shader, this way
we won’t have to query it after shader linking. Also it ensures that if we change shader, we
won’t have to bind UBOs again, since the binding indexes stay the same. Generally two
kinds of information are updated this way, per pass (such as geometry pass, lighting pass,
etc.) and per object (matrices, materials, etc.).

4.1.4 Drawing loop

After we make sure that OpenGL state is correctly set, and our VAO, textures, shader and
UBOs/SSBOs are bound we can issue draw command. This is where we find out if our
rendering technique is designed adequately. The general rule is fewer state changes, whether
it’s binding objects or context states, means less driver involvement and higher throughput
we can get from OpenGL. There are draw commands specifically designed for joining draws
together, such as the glDraw*Instanced*() and glMultiDraw*() functions. However multi-draw
requires putting geometry is shared VBO, so if the models don’t fit into single vbo, we need
to split and manage residency.

1 layout ( location = 0) in vec3 vert_pos ;
2 layout ( location = 1) in uint draw_id ;
3 layout ( binding = 0) buffer Object {
4 mat4 mvp [];
5 uint layer;
6 };
7

8 void main () {
9 #ifdef GL_ARB_shader_viewport_layer_array

10 gl_Layer = layer;
11 #endif
12 gl_Position = mvp[ draw_id ] * vec4(vert_pos , 1.0);
13 }

Listing 4.2: Multi-draw vertex shader for depth pass

4.2 Tile-based rendering
Lighting pass accumulates the light for each pixel, and this is where we need to have
shadow maps ready to sample. Shading techniques approach this step differently: in forward
shading we shade the geometry at the same time we submit it, in deferred we defer, or
delay, the lighting pass after we have accumulated geometry data in special framebuffer
(also called gbuffer). Forward shading comes with multiple problems: expensive overdraw,
object shaded by multiple lights, lack of buffers needed for post-process. Deferred also comes
with its problems: fixed material attributes and big gbuffer taking memory and bandwidth
resources. When increasing number of lights both of these start under-performing, forward
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because of having to shade unnecessarily, deferred because of state switches needed to
render light’s bounds. Olsson et al. [12] introduced tile-based light culling method, which
produces per-tile light information used to shade tile’s portion of screen. This method can
be used with forward shading also called forward+, as well as with deferred. Compute
shaders are usually used to build tile data, and can be used to compute lighting in deferred
rendering as well.

We also need to decide the space we are going to do shading in. The two most sensible
options are view or world space. In forward shading it’s easy to use either, but in deferred
we have to decide what space store the normals in. Storing normals in view space is more
efficient, since we can reconstruct the z-direction and need to store just two components.
However some post-processing effects need world space normals so it’s up to us to decide
which space is more beneficial. Our application uses world space normals, and therefore
shading happens in world space as well.

4.2.1 Position reconstruction

Fragments position is a important information used for shading, shadow map sampling,
and light culling in tiled renderer. In forward+ shading it is necessary to do a depth pre-
pass to build light list. This can be expensive depending on geometry complexity. During
the second pass we can get fragments position by interpolating the position from vertex
shader. In deferred however, we have to store this position in gbuffer. Storing the position
in view/world space as three vector component is not good idea, we would need lot of
precision and it would make for a large gbuffer, wasting lot of bandwidth. Instead we
can reconstruct position from hardware depth buffer. There are two ways, depending on
whether we are operating in fragment shader or using compute shader. When using the
rasterization pipeline we can interpolate the direction of rays going to frustum corners in
desired space. The resulting direction is multiplied by linearized depth and added camera
position gives us fragments position in world space. To linearize depth we need to convert
it from texture space 𝑧𝑡 to view space 𝑧𝑣. We need to do inverse of depth transform of view
to NDC space, using 2.3 we get result shown in 4.1. In compute shader easiest choice is to
construct texel’s position in screen space and then use inverse transform of view-projection.
We also need to apply perspective divide.

𝑧𝑛 = 2 · 𝑧𝑡 − 1

𝑧𝑣 =
2𝑛𝑓

𝑓 + 𝑛− 𝑧𝑛(𝑓 − 𝑛)

𝑧𝑣 =
𝐴

1− 𝑧𝑡𝐵
,𝐴 = 𝑛,𝐵 =

𝑓 − 𝑛

𝑓

(4.1)

4.2.2 Light model

For local light model I’ve chosen normalized Blinn-Phong shading model for specular and
Lambertian for diffuse reflections. Blinn-Phong is similar to Phong shading model, but
produces longer specular highlights at grazing angles. Normalization in this context tries
to ensure that the specular exponent should have no effect on the total reflectance. This
results in less intense reflections with low specular factor, and stronger reflections with high
factor.
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𝑅𝐷𝐹 = (𝑁 ·𝐻)𝑛(𝑁 · 𝐿)𝑛+ 6

8𝜋
(4.2)

For point lights we also need attenuation model. In real life the point light intensity falls
of with squared distance. However, with this model, the luminous intensity never reaches
zero. To keep the number of shaded computations down, we try to limit the point light
radius, so we can skip the computation for pixels further than this radius. We can force the
intensity to zero using cutoff variable as shown in 4.3. Alternative is to use more slightly
more linear model shown in 4.4.

𝑘 =
1

1 + 𝑟2
,

𝐴𝑡𝑡1(𝑥) =

{︂
1−𝑘
1+𝑥2 − 𝑘

1−𝑘 if 𝑥 < 𝑟

0 if 𝑥 > 𝑟
(4.3)

𝐴𝑡𝑡2(𝑥) =

{︂
(1− 𝑥

𝑟 )
2 if 𝑥 < 𝑟

0 if 𝑥 > 𝑟
(4.4)

4.3 Light culling
First we need to calculate frustum. Top, bottom, left and right planes can be calculated
from the projection matrix and tile offset. For near and far planes we have to find minimum
and maximum depth of a tile. One way to do this is for each thread do atomic min/max
over texel depth. If the depth is float we need to first convert it with floatBitsToUint() and
then do atomic operations, since compute shaders don’t support atomic float operations yet.
Then we wait for all threads to finish. This way of finding min/max depth is sequential
and doesn’t really take advantage of parallel execution. One possible optimization is to
do parallel reduction in a separate pass. Once we have min/max depth we can construct
frustum. Only a single thread needs to do this, and then use shared variable for other
threads in tile to read. Once we have frustum, we synchronize and we can start culling. It’s
easier to do in view space, so we can pre-compute lights position in view space or do it in
shader. We will construct a loop so that each thread will cull single light per loop. With a
work-group size 16 times 16 that’s 256 lights culled per loop. If the light is in frustum we
add it to shared light list. We wait for all threads to finish and then we can start shading.
Each thread will shade single pixel, looping over the lights and accumulating color, and
then storing the color in output image.

Presentation by Gareth T. [9], shows culling optimizations. One problem is that on
depth discontinuities single frustum will span long distances, producing false positives for
lights in the middle which might not shade any pixel. Calculating two min/max intervals,
one for each split, will produce two frustums we can test against, with the lights in middle
properly culled away. This should lower number of lights and bring the shading costs down.
Constructing AABB around frustum and testing against light radius before frustum culling
was also shown as advantageous.

4.4 Shadow map sampling
In order to sample shadow map we need to know position of currently shaded fragment
in shadow map texture space. In classic forward shading we can do calculations in ver-

19



tex shader, and pass the interpolated result to fragment shader. This could be done by
calculating the world space position and the transforming to shadow textures space. The
complexity depends on vertex count of our scene, which may or may not be desirable. With
forward+ we have to calculate per fragment, since lights change per tile. Per vertex calcu-
lation is not possible in deferred shading, but for special cases (such as sun light) we can
create another texture in gbuffer, output shadow term and use it as a mask for light inten-
sity. Otherwise we have to calculate shadow space position per fragment. This can be done
by reconstructing world space position of fragment (shown in 4.2.1) and then transforming
from world space to shadow texture space. The sample GLSL code in 4.4 shows how to
calculate shadow space coordinates from world space, using the normal offset bias.

1 vec4 shadow_space (vec3 pos_w , vec3 normal_w , vec3 light_dir_w , float ←˒
texel_s , mat4 view_proj )

2 {
3 float cos_alpha = max(dot(normal_w , light_dir_w ), 0);
4 float sin_alpha = sqrt (1 - cos_alpha * cos_alpha );
5 float off = texel_s * max(sin_alpha , 0.5);
6 return view_proj * vec4(pos_w + normal_w * off , 1.0);
7 }

Listing 4.3: Shadow map coordinates calculation function

If we are using cascade shadow maps, we will first need to find the cascade the fragment
is in. This is usually computed by stepping linearized depth from depth buffer. We then
compute the lowest split index that the fragment is ensured to be in. We can then test
whether fragment is in lower split, if it is we sample the lower split. This has a positive
effect on quality, while the cost is low and constant as we test only single lower split. The
code shown in 4.4 shows how to do this.
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1 float casc_shadow_term (vec3 pos_w , vec3 normal_w , vec3 light_dir_w , float ←˒
cam_depth )

2 {
3 float sp = 0;
4 for (int i = 0; i <= sun_light . max_split ; ++i)
5 sp += (step( sun_light . splits [i], cam_depth ));
6

7 // Try lower split
8 int spi = int(max(sp - 1, 0));
9 vec4 frag_shadc = shadow_space (pos_w , normal_w , light_dir_w , smpl_count←˒

[spi] * sun_light . scales [spi], sun_light .vp[spi ]);
10 // so it doesn 't interfere with tests
11 frag_shadc .w = 0.5;
12

13 vec4 bounds = vec4 (0.5 - 0.5* smpl_count [spi ]/ split_size );
14 vec4 dist = abs( frag_shadc - vec4 (0.5));
15 if (any( greaterThan (dist , bounds ))) {
16 spi = spi + 1; // we didn 't fit in lower split
17 if (spi > sun_light . max_split ) // outside of last split
18 return 1;
19 // Recalculate coords for next split
20 frag_shadc = shadow_space (pos_w , normal_w , light_dir_w , smpl_count [←˒

spi] * sun_light . scales [spi], sun_light .vp[spi ]);
21 }
22

23 return shadow_pcf ( frag_shadc .xyz , spi);
24 }

Listing 4.4: Shadow split calculation function with lower split test
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Chapter 5

Results

The task was to investigate techniques used in shadow mapping. We have analyzed problems
resulting from projective aliasing, developed model to solve them and implement the meth-
ods in application. We showed how to solve depth biasing using normal offsets for variable
sized kernels. Softening of shadows was implemented using percentage-closer filtering with
hardware filtering, and simple pre-filterable approach was implemented with exponential
shadow maps. Large scene was used to show advantages of cascade shadow mapping. The
scene features dynamic level of detail terrain using tessellation. Deferred tile-based light
rendering was used to cull and shade lights. However shadow maps were not computed for
these. Rendering high number of shadow maps with standard textures costs a lot of band-
width. Possible approaches are discussed in section 5.1. Modern OpenGL functionality was
used when applicable, limiting the overhead of driver-application communication.

When testing percentage closer filtering produced better visual results in cases where
lights comes from higher angle, but struggles when the angle is low. Normal offset method
worked very well, even with variable sized kernels, however wasn’t tested together with
normal mapping. Exponential shadow maps easily deal with self-shadowing problem, how-
ever produce light bleeding when occluder and receiver are close. Using geometry shaders
together with layered framebuffers, was not found to be faster than non-layered frame-
buffers. Geometry shaders seem to slow down rasterization pipeline even when outputting
same number of primitives as their input. Using GL_ARB_shader_viewport_layer_array was not
found to be faster than non-layered framebuffer. One of the reasons for this may be that
the cost of object rendering was too low to make a difference. More complex scene with
more dynamic geometry would be better to show difference.

5.1 Future work
The biggest difficulty when dealing with high number of shadow maps is memory and
bandwidth limitations. Olsson et al. [13] in their work show how sparse textures are used
to implement virtual shadow maps. It requires state-of-the-art light render called clustered
shading. It is an extension of tile-based shading, but instead of 2D tiles works with 3D
clusters. This allows them precisely cull lights, but more important, partially allocate
shadow map storage as needed. In terms of filtering, hybrid frustum traced shadows use
combination of shadow maps and ray tracing to produce very precise shadows. These
techniques use newest hardware capabilities such as conservative rasterization. Soft-shadow
mapping can together with area lights create near realistic lighting conditions.
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To improve cascade shadow mapping, compute shader could be used to calculate depth
bounds from depth buffer, and calculate the split distribution. This should be combined
with compute shader frustum culling, so we don’t have to read-back the values, creating
implicit synchronization. Compute shaders can also be used for fast blurring if we choose
pre-filterable method.
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Appendix A

Figures

Figure A.1: Rendered large-scale scene

Figure A.2: PCF filtering Figure A.3: Exponential shadow maps
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Figure A.4: Split shadow map frustums visualized

29



Appendix B

CD contents

CD contains this thesis in PDF form and latex sources used to build it are in documents/
folder. The application source codes are in source/ folder together with libraries needed
to build the codes. Also included is Microsoft Visual 2015 build solution file. Run-time
binaries are in binaries/ folder together with the built libraries. The root directory contains
file LICENSE.txt which contains licenses of all software and 3D models used in this project.
It also contains the license of this work. In the file USAGE.txt is short explanation of
keyboard controls used to control the program. The video file in root directory contains
short presentation of the work.
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