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Abstrakt
Tato práce se zabýva metodou photon mappingu. Nejprve byla naimplementována jednoduchá
metoda photon mappingu a poté jeji progresivní varianta byla naimplementována na pro-
cesoru a grafické kartě. Po implementaci progressivní varianty photon mappingu na GPU,
několik akceleračních technik bylo navrženo. Na konci této práce byl představený genetický
klustrovací algoritmus, který se snaží pomocí vhodnějších clusterů urychlit čas výpočtu
photon mappingu na gpu.

Abstract
This master thesis focuses on photon mapping rendering technique. A simple photon map-
ping was implemented as a baseline and then progressive photon mapping was prepared
for CPU and GPU. After implementing progressive photon mapping on GPU, further ac-
celeration techniques were proposed. Finally, in the thesis, genetic clustering algorithm for
suitable clusters on GPU was proposed.
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Chapter 1

Introduction

Computer graphics products are in these days everywhere, they are in movies, games,
medicine, industry etc. For instance in movies, computer graphics are only way or much
cheaper way to create movie about some subject. In medicine, it is nice way to explore
some parts of human body without using surgery.

From the beginning of computer graphics, there was an effort to make nice photorealistic
images. Physical based rendering is one way how to do it. This class of rendering methods
is called global illumination methods.

About one global illumination technique - photon mapping - is this thesis. In this
thesis, photon mapping renderer is implemented on CPU and GPU with focus on speed of
rendering process.

I personally believe that in near future, graphics processor units have sufficient power
to render global illumination methods and global illumination methods will be mainstream
and because of this, I chose work on this master’s thesis.

In first part of this thesis, theory about photorealistic rendering is described. First,
rendering techniques are classified, then each class of rendering technique is described,
from easy realtime graphics techniques to advanced physically

”
correct“ global illumina-

tion methods. In second part, implementations of photon mapping are described. This
implementations are written with focus on speed. First, simple photon mapping imple-
mentation is described. Then on this simple renderer, few tests are performed. After this,
progressive photon implementation is described, this implementation was done on CPU
and on GPU. Progressive implementation is extended by few acceleration approaches. In
the end of this thesis, genetic algorithm is proposed for faster speed of progressive photon
mapping.
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Chapter 2

Photorealistic rendering

This chapter describes classification of rendering methods and present few needed terms
and formulas for classification rendering methods. Later in this chapter object order and
image order methods are described. This overview is written exclusively only for this master
thesis and should not be understand as encyclopedic or exhaustive overview of photorealistic
problematic.

2.1 What is photorealistic rendering

Very simplified definition of rendering is: rendering is process where 2D image is created
from 3D representation of scene[20]. This is obviously very vastly defined and there exists
lot of approaches how to do this.

Photorealistic rendering is rendering where goal is to create image which is indistin-
guishable from photograph[20], this goal is typically achieved by correct simulation of light
propagation in scene.

2.2 Rendering techniques

Lot of rendering techniques exists, they vary by measure of photorealism and by speed.
Basic division of rendering techniques are object order, image order and global illumination.

Object Order

In this type of rendering techniques, each object is independently rendered into framebuffer
using for example classic rasterization.

In image 2.1 is shown simple example of this technique, object with largest distance
from image plane is rendered in each iteration (if Painter’s algorithm is used) and this
iterations are performed until all objects are rendered.

In basic variant it’s not possible to compute shadows, reflection, refraction and another
photorealistic phenomenon because all objects are rendered independently and they do not
know any informations about each other[10].

This type of rendering technique is most used in realtime rendering using graphics
frameworks like OpenGL and DirectX.

Complexity is linearly by number of objects in scene[10].
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Figure 2.1: Object order[10]

Image Order

In this type of rendering techniques, image is synthesized by examining color of each pixel
in framebuffer, by computing rays from viewer through image plane into the scene.

In image 2.2 is shown usage of this technique when image is computed by progressively
examining pixels of framebuffer, for instance, from top to bottom, but it is not required to
use this schema and it’s possible to randomly select each non-evaluated pixel.

Figure 2.2: Image order[10]

In this type of rendering technique it is possible to easily compute simple shadows,
reflection, refraction and another optic phenomenon. It is possible to use massive parallelism
to compute image, because each pixel of scene is evaluated independently[10].

Complexity is linearly by number of pixels in image and logarithmically by number of
objects in scene (if spatial subdivision is used).

Global Illumination

First, illumination of whole scene is computed and after that, image is computed by using
object or image order technique.

Computing illumination of scene can be computed correctly, because for this compu-
tation whole scene is provided[10]. (In object order and image order rendering algorithm
doesn’t have any information about whole scene).

Global illumination provides best computed shadows, reflections, refractions and all
physical phenomena, but rendering through this technique is very complex and time con-
suming and, typically, most of the time is spent on computing illumination of scene[10].
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Figure 2.3: Global Illumination[10]

Conclusion

Object order methods are fastest rendering methods, but they are not photorealistic at
all. Better photorealistic result provide image order methods and best photorealistic re-
sults provide global illumination methods, but this methods are not suitable for usage in
realtime rendering and are used for production (offline) rendering, for rendering movies,
precomputaion of lighmaps etc.

2.3 Rendering equation

Rendering equation was invented by James T. Kajiya in 1986[15]. Rendering equation
solves outgoing radiance for arbitrary point x in direction ~ω. Rendering equation is this
equation:

Lo(x, ~ω) = Le(x, ~ω) +

∫
Ω
f(x, ~ωr, ~ωi)Lo(x,−~ωi) cos Θ d~ωi (2.1)

where:

• Le(x, ~ω) is outgoing radiance from point x in direction ~ω (if x is not light source, this
item has zero value)

• integral is integrated through hemisphere Ω with center in point x and this integral
represent bounced radiance in point x from all incoming direction from this hemi-
sphere

• f(x, ~ω, ~ωi) is Bidirectional reflectance distribution function - BRDF (2.4)

• Lo(x,−~ωi) is radiance which is incoming into point x from direction −~ωi

• cos Θ is angle between direction ~ωi and surface normal ~n in point x

This equation is basis for all global illumination methods, because this equation compute
outgoing radiance as sum of all incoming radiances and because of this, correct illumination
of scene could be computed.
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2.4 Bidirectional reflectance distribution function - BRDF

In real life, light, which we perceive, is most likely reflected light from some surface[14]. For
physical rendering it is crucial to compute correct reflected light. Color of reflected light is
defined by spectral characteristic of incoming light and mostly by properties of material.

Bidirectional reflectance distribution function, written by Fred Nicodemus in 1965[19],
defines reflectance properties of material.

fr(x, ~ωr, ~ωi) =
dLr(x, ~ωr)

dLi(x, ~ωi)(~ωi.~n)d~ωi
(2.2)

Image 2.4 describes bidirectional reflectance distribution function 2.2. Let assume that
light is incoming from direction ~ωi and we are computing light in direction ~ωr in point x.
BRDF is denoted as fr(x, ~ωr, ~ωi) and define fraction of reflected radiance dLr(x, ~ωr) and
incoming radiance dLi(x, ~ωi)[14].

Figure 2.4: Bidirectional reflectance distribution function[14]

Some important BRDF properties[14]:

• Positivity - BRDF function is never negative fr(x, ~ωr, ~ωi) ≥ 0

• Linearity - BRDF value for some incoming angle ~ωi is not dependent on BRDF values
for others incoming angles. This brdf property means, that outgoing ray is reflected
regardless what comes from other directions.

• Helmholtz reciprocity - BRDF value in point x is same if we switch incoming and
outgoing direction: fr(x, ~ωr, ~ωi) = fr(x, ~ωi, ~ωr)

2.5 Biased, Unbiased and consistent methods

One way to classify rendering methods is classify to biased/unbiased and consistent meth-
ods.

Consistent rendering method means, that with increasing iteration (with increasing
rendering time) quality of rendered method is getting better and image will converge to
correct result.

Unbiased rendering methods often used some simplification, for instance blur some
results, use interpolation etc.
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Both biased and unbiased methods can be consistent. Difference between biased and
unbiased methods is this[16]:

”
if I rendered the same image millions of times using different

random numbers, would averaging the results give me the right answer?“. If answer is no,
algorithm has bias.

2.6 Photorealistic elements

For good photorealistic image, it is crucial to have rendered some elements like shadows,
refractions etc. If this elements will not be rendered, image does not look like from real
world and this image is not realistic. Each rendering method computes this elements with
some difficulty. This section will describe this elements and further in this text, in each
rendering algorithm, will be described elements which are possible to compute using specific
rendering algorithm.

Shadows

Shadows are areas in scene where light from light source is obstructed by some object.
One type of shadows are hard shadows - this type of shadows have hard transition on edge
between shadow area and non-shadow area.

Figure 2.5: Difference between soft (left) and hard (right) shadows

Other type of shadows are soft shadow which has transition on edge between shadow
area and non shadow area. Type of shadow is specified by type of light, for instance point
light make only hard shadow and sphere (or area) light make soft shadow.

Reflections

The simplest example of reflections is mirror. Reflections are created on special material
which reflects rays, it could be water, mirror, glass. And it could not only fully reflect light
but it could only partially reflect light (polished material). So reflections is property of
material.

Refraction

Refractions are made when light is going through transparent objects. Direction of refracted
object is given by Snell’s law and refracted ray direction is depended on refraction index of
incoming material.
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Caustics

Caustics are created when light rays are concentrated by refraction or reflections into little
areas and there create shiny area. This physical phenomenon is shown in picture 2.6.

Figure 2.6: Caustics projected by glass of water[24]

Specular diffuse specular path (SDS path)

This is a special case of light bounce, where light is going through specular (transparent)
object, then is reflected on diffuse material and then again going through specular object.
This special case occurs for instance on the bottom of swimming pool.

Color bleeding

Color bleeding effect is created when light is reflected from material and this light takes
material color, then when this colored light hit another surface, it seems as light has different
color than normal.

Figure 2.7: Color bleeding in simple scene[7]

2.7 Object order methods

This type of rendering methods are mostly used in realtime applications such as games,
fast visualization etc. This section will describe basis of mostly used algorithm in realtime
rendering.

Rendering process of object order methods is possible to divide to some block which
make graphics rendering pipeline and this pipeline is possible to divide to three[1] stages:
application, geometry and rasterization.

Application stage prepare scene for later use, this stage load scene from file, compute
scene graph, configure graphics card etc.
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Figure 2.8: Object order rendering pipeline[1]

Figure 2.9: Blocks of geometric stage[1]

Geometric stage is possible to divide into five blocks, input to this stage is 3D model of
scene (typical scene is made from triangles, so it is set of three points in 3D scene), output
of this stage is set of triangles projected into 2D plane. Details of each stage:

• Model and View Transform - this block transform objects of scene into world coor-
dinates. Typically objects are stored in object coordinates, model transform move
objects to proper position and view transform has the task to position camera.

• Vertex shading - In this block, illumination of triangle is computed. This illumination
is computed only for vertices of triangle and this operation is known as shading.

• Projection - This block transform scene from 3D space into 2D space. This goal
is achieved by using projection. Projection is operation which transform view frus-
trum into unit cube[1]. There are two types of projection: orthogonal and perspec-
tive. Simply put: after orthogonal projection, parallel lines are parallel, distances
are same. Perspective projection is little bit difficult, it mimics how people perceive
world through eyes, far objects are smaller than object near before camera, parallel
line may converge etc.

• Clipping - Only primitives which lie wholly or partially inside view volume are kept,
others are discarded.

• Screen Mapping - This block transform 2D triangles from unit cube into screen coor-
dinates.

Figure 2.10: Blocks of rasterizer stage[1]

Rasterizer stage is possible to divide into four blocks, input to this stage is set of triangles
projected on projection plane. Output of this stage is rendered image.
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• Triangle setup - In this block, important data for triangle traversal (used in next
block) is computed.

• Triangle Traversal - In this block, triangle is divided into tiny little fragments - using
traversal algorithm[1]. This fragments correspond to pixel in framebuffer. Not only
center of fragment is computed, among with this information, color and other data
from geometry stage are interpolated too.

• Pixel shading - In this block, fragment is colored by informations given from previous
blocks, it is possible to compute accurate illumination. Output of this block is color
and (most often) depth.

• Merging - This block make from set of fragments output image. Problem of this
block is: few fragments can correspond to one pixel on screen, so which one take?
This task is called visibility problem and for this problem is possible to use painter’s
algorithm, stencil buffer od z-buffer[1]. Probably most used algorithm is z-buffer
which store among fragment his depth and when fragment is putted into framebuffer,
into z-buffer is saved depth of current fragment. Update of pixel is performed only if
depth of fragment is lesser than depth of saved fragment.

Shadows

In object order method, each triangle is processed independently. This approach make
difficult to determine if object has obstruction between surface and light or not.

There exist lot of approaches to do this, but probably two most used algorithms are
shadow mapping and shadow volumes.

Figure 2.11: Shadow mapping[1]

In shadow mapping technique, scene is rendered from light source. This render pass is
for creation special map called shadow map. Depths of rendered objects are saved in this
shadow map. When scene is rendered from camera view, distance from rendered surface
from position x to light is computed and from shadow map is get value for direction from
light to position x and if value in shadow map is lesser than computed distance, position x
is in shadow. Using this approach it is possible to create fast shadows, but this approach
has lot of problem, shadows aren’t precise and it isn’t robust. Common problems of this
technique are resolution of shadow map, self shadowing[1] etc.

Shadow volumes (in some literature called stencil shadow[18]) is accurate shadow tech-
nique. First, for all shadow-casting objects are created shadow volumes - it is area where
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Figure 2.12: Shadow volumes[18]. Brown object is shadow-casting object, gray area is
shadow volume, C is camera

object cast shadow. Then, in rendering pass from camera view, this invisible shadow vol-
umes are rendered into stencil buffer to create special mask. When scene is rendered, light
is computed only for those pixels, where mask - in stencil buffer - is zero. Using this ap-
proach it is possible to render pixel-precise shadows, this technique is very time consuming
for scenes with many light.

Reflections

Again, as with shadow effects in object order methods, this rendering method can not com-
pute reflection with ease, because information about scene is not given when illumination is
computed. One way how to create reflections in object order methods is render scene from
another view, save this image into texture and use this texture on material with reflection.

Refraction

Rendering transparent objects in this techniques is little hard. Easiest way to do this, is
render objects from back to front (in view from camera) and use technique called alpha
blending, when color in framebuffer is summed and not overwritten.

Using this approach for physically based rendering for transparent object is not possible,
because of refraction on transparent objects. Using alpha blending is accurate only if
refraction index of both (incoming and outcoming) materials are same. It is not possible
to compute curve angle of refraction, so rendering refraction on, for instance, glass ball it
is needed to render scene in special pass[1], with special curved mapping and then result of
this render use as texture on

”
transparent“ object.

Caustics

Lot of techniques for creating caustics exist, for example Interpolated Warped Volumes[6].
In this technique, each triangle which is able to create or receive caustics are tagged if
this triangle generate or receive caustic. For each generating triangle, caustic volume from
edges of this triangle is computed (direction of volume is computed from light direction,
surface normal and refraction index - if object is transparent or from direction of reflective
ray if material is reflective). This volume represent if caustic light diverges or converges
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Figure 2.13: Caustics rendered using Interpolated Warped Volumes[6]

to some point and special function is computed indicating caustic intensity by distance
from generating triangle. Then in rendering pass, for each fragment, lied in caustic volume,
accumulated light contribution from caustics is computed.

2.8 Raycasting

Raycasting could be called very old technique because in 1525 Albrech Durer created ray-
casting machine through he was attempting to paint images. First computer graphics
raycasting was implemented by Artur Appel in 1968[2] in beginning of computer graphics.
Raycasting is object order method.

Figure 2.14: Albrecht Durers raycasting machine

In this method, for each pixel in framebuffer ray is casted from camera (from this
raycasting) into scene and for this ray intersection with scene is computed. In intersection
point, illumination is computed and this illumination is saved as color of pixel into result
image. Basic variant doesn’t compute shadows. Compared to object order techniques it
does not require usage of visibility algorithm, because to framebuffer are saved only values
from nearest objects in scene.

Altought this method is old, with modification this technique is still used in medicine.
This modification is called volume ray casting and is used for displaying data from tomog-
raphy or CT where volumetric representation of the patient’s tissue is get from CT.

2.9 Raytracing

Raytracing is extension of raycasting where not only first intersection through scene is
computed but also others intersections are computed recursively from this intersection.
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Raytracing was first introduced by Turner Whited in 1980[23] and is basis for nearly all
advanced illumination techniques.

Scheme of raytracing is shown at image 2.15 where few rays are involved, this rays are:

Figure 2.15: Raytracing schema[25]

• Primary rays - This rays are send from camera O to scene (same as in ray casting) and
illumination is computed in intersection of ray and scene. Illumination is computed
from recrusively sended secondary rays and from shadow rays. Computed color of
this ray is color of saved pixel in framebuffer. In demonstration image this ray has
green color.

• Secondary rays - This rays are created from reflection or/and refraction (depending on
material properties) primary rays. This rays became primary rays and are recursively
traced through scene like primary rays (this secondary primary rays generate sec-
ondary rays again). In demonstration image, reflective secondary ray is red, refracted
secondary ray is blue.

• Shadow rays - Shadow rays are computed between intersection point and all light
sources, when illumination is computed and thanks to this rays, correct shadows are
computed. In demonstration image, shadow ray is dashed line.

Raytracing algorithm[14]: let have function RayTrace(ray R, depth of recursion D):

1. Find intersection point P of ray R with closest object in scene.

2. If intersection P doesn’t exist (ray leave scene space), give ray R color of background
and return.

3. For each light source send shadow ray from point P and if this ray doesn’t have any
obstruction mark this light source as not obstructed

4. Compute illumination in point P from all not obstructed light sources

5. If depth of recursion D isn’t lower or equal zero send:

• reflected ray RR calling RayTrace(RR, H − 1)
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• refracted ray RT calling RayTrace(RT , H − 1)

6. Give ray R final collor as sum of illuminatio and color of reflected/refracted ray

Shadows, reflections and refractions

In raytracing, all shadows, reflections and refractions are computed precisely because in
computing illumination through raytracing geometry of scene is included and therefore
correct computation of this phenomena is possible.

Caustics

It is not possible to render physically correct caustics in default raytracing, because caustics
are created from light rays bounced through scene. In raytracing, light is computed only
from intersection points and it is not possible to deterministically send

”
caustic“ ray through

scene and expect that ray will hit light source.

SDS path, color bleed and indirect illumination

This effects can’t be rendered through default raytracing, because advanced techniques is
needed and usage of this technique means that used method is not raytracing but (for
instance) path tracing or photon mapping. All other techniques (except radiosity) are
based on simple raytracing so it is possible to say that raytracing with upgrade to higher
technique is capable to compute this photorealistic effects.

2.10 Distributed raytracing

Normal raytracing is very good in computing precise hard photorealistic elements like hard
shadows or accurate mirror-like reflection. Problem occurs when area lights are in scene
and soft shadows or blurred reflection are required. Reason why normal raytracing isn’t
capable render this advanced elements is that raytracing determines every ray direction
precisely and this limit raytracing capabilities.

Robert L. Cook proposed in 1984 extension called distributed raytracing[5], where rays
are not computed precisely from point to point but are sampled over some distribution
function.

Figure 2.16: Blurred reflections and depth of field effect rendered by distributed
raytracing[27]
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Secondary and shadow rays are sampled over distribution function. Distribution func-
tion gives direction of secondary rays (reflected, refracted, shadow). Sampling this function
is performed by selecting random direction from this distribution function, compute illumi-
nation for each sampled ray and result is averaged over all sent rays.

Photorealistic elements

Using this distribution approach it is possible to compute lot of advanced photorealistic el-
ements. Rendering soft shadows are possible by distributing shadow rays over direction of
area light. Rendering glossy reflection is possible distributing secondary rays alongside pre-
cisely computed reflected ray. Rendering depth of field is possible distributing

”
maximum

length of ray“. Motion blur is achieved by using distribution not in space but in time.
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Chapter 3

Global Illumination methods

This chapter describes global illumination techniques and describes radiosity, path tracing,
bidirectionaly path tracing, photon mapping and progressive photon mapping.

3.1 Radiosity

Radiosity is one of first global illumination techniques trying to compute indirect illumina-
tion of scene. This technique is based on heat transfer radiosity methods founded in about
1950. First usage in computer graphics was in 1984 by researches at Cornell university[26].

Figure 3.1: Difference between direct illumination and radiosity[26]

Radiosity is based on law of conservation of energy and this technique assumses light
propagation in closed scene with only diffuse materials. First continuous equation of ra-
diosity computation was proposed.

B(x) = E(x) + ρ(x)

∫
S
B(x′)G(x, x′) dx′ (3.1)

Correct illumination is computed solving this equation, but it is nearly impossible solve
this equation for complex scene. Therefore, discretization of this equation was proposed.
Discretization meaning dividing scene in lot of little surfaces.

Bi = Ei + ρi

n∑
j=1

BjFij (3.2)

where:
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• Bi is constant radiosity of surface i

• Ei is radiosity emmiting from surface i

• ρi is diffuse reflectance of surface i. This item has value between 0 (complete ab-
sorption of incoming light) or 1 (doesn’t absorb any light - everything is reflected to
scene)

• Sum represent all light bounced from others surfaces to surface i

• Fij is form factor between surface i and surface j and this factor indicates how much
light is taken by surface i from light emitted from surface j

For rendering scene using this method, first discretization of scene is needed. This means
that all surface have to be divided into little surfaces. Number of surfaces affects speed
and correctness of this algorithm. Then for each surface, form factor has to be computed.
Value of this factor is proportional to visibility of each surface, angle between normals and
size of surfaces. After this precomputation stage, algorithm has everything needed and
computation of illumination could begin.

Computation images through radiosity means solving system of linear equations there-
fore one data matrix is created and this matrix is solved using classical mathematics algo-
rithm like Gauss Seidel or Jacobi method.

Figure 3.2: Progressive radiosity[26]

Usage of Gauss Seidel or Jacobi method isn’t optimal[14]. This methods tend to be
slow because illumination of light sources can be added to computation in any time and
then all computation of non light sources have to be done again. In 1988 Cohen[4] invented
special algorithm for radiosity which is trying to prioritize emiting light from light source
first and then compute reflections from surfaces affected by this light, this approach is called
progressive radiosity.

Photorealistic elements

Radiosity can compute only diffuse illumination of scene and therefore this method can
compute only indirect illumination and color bleed. Using radiosity method it is not possible
to compute reflected or refracted light beams. This global illumination method is suitable
only for scenes with diffuse materials.

3.2 Path tracing

Path tracing was introduced by James T. Kajiya in 1986[15] with Rendering equation as
a solution for this equation. Path tracing is an extension of raytracing and is unbiased
consistent global illumination method.
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Figure 3.3: Path traced scene[12]

Path tracing is based on very similar principle as distributed raytracing with one differ-
ence. Rays are not sampled through distribution function in intersection points and their
average is taken as result, but for each intersection only one ray is traversed in direction of
distribution function (alongside with shadow rays computing light contribution).

For good noise-free images lot of rays per pixel have to be traversed, number of rays
per pixel is depending on scene but it is normal to compute ten thousands random paths
per pixel to achieve good noise free images. Good realistic illumination with hundred paths
per pixel can be achieved in scenes with lot of direct illumination. Image 3.3 shows path
traced image using 100 paths/pixel - notice noise areas in shadows, in this area more paths
per pixel should be used.

Because this method is using for computing integral from rendering equation monte
carlo way(random samples and their averaging) to compute integral, this class of global
illumination methods are called monte carlo raytracing methods. Problem with classic
path tracing is noise - computation error. Same as in monte carlo algorithm, path tracing
has error 1

sqrt(N) where N is number of samples. This means that to halve the error, four
times more samples are required[12].

Photorealistic elements

Path tracing is using raytracing as basis of algorithm, so it inherit same photorealistic
elements like raytracing (even distributed raytracing). Using path tracing it is possible
to compute complete global illumination - caustics and color bleed effect. Path tracing is
capable to compute SDS paths but this paths have lot of noise.

3.3 Bidirectional Path tracing

Bidirectional path tracing is an extension of normal path tracing and was introduced by
Lafortune[17] in 1993 and independently by Veach[22] in 1994. Bidirectional path tracing
traces paths from light and from camera at once.
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Figure 3.4: Bidirectional path tracing schema[12]

Image 3.4 shows schema of bidirectional path tracing. In this type of path tracing, two
paths are investigated through scene. First is eye path, going trough pixel on image plane
and has vertices denoted as xi. Second path is starting at light source and vertices of this
light path is denoted as yi.

After traversing two paths (eye and light path) illumination between light path and eye
path is computed.
Illumination of entire path starting at pixel in camera is computed as:

Lp =

Ni∑
i=0

Nj∑
j=0

wi,jLi,j (3.3)

where Ni is number of eye path vertices and Nj is number of light path vertices. Reflected
radiance from point xi to point xi−1 by contribution light vertex yj denoted as Li,j is
computed as[12]:

Li,j(xi → xi−1) = fr(yj → xi → xi−1)V (xi, yj)
|(yj → xi). ~nxi |
||xi − yj ||2

I(yj → xi) (3.4)

where: fr(yj → xi → xi−1) is BRDF in point xi with incoming direction to this point from
point yj and outgoing direction to point xi−1. V (xi, yj) is visibility function, in image 3.4
is denoted as dashed line - shadow ray - and this function says if between points xi and yj
isn’t obstruction. Radiant intensity I(yj → xi) is computed as:

I(yj → xi) = Φi(yj)|(yj → xi).~nyj |fr(yj−1 → yj → xi) (3.5)

where Φi(yj) is flux of incoming photon at yj and this flux is weighted by brdf function
fr(yj−1 → yj → xi).

For good photorealistic images lot of computation of path per pixels is needed. Using
bidirectional path tracing it is possible to achieve good photorealistic results with lesser
number of paths per pixel than in normal path tracing in some type of scenes[12]. Scenes
with caustics and lot of indirect illumination are more suitable for bidirectional path tracing.

20



Photorealistic elements

Bidirectional path tracing is capable to render nearly every focused photorealistic elements.
One problematic element is still SDS path where bidirectional path tracing and normal path
tracing fails and lot of noise are in scenes with this paths.

3.4 Photon mapping

Photon mapping is two pass global illumination method. This method render with great
accuracy all focused photorealistic elements including indirect illumination and SDS paths.
Photon mapping was introduced in 1995 by Henrik Wann Jensen[13].

First pass - photon map creating

In first pass, photon map is created. Photon map is saved light contribution from all light
sources, distributed in scene and this map is get by sampling light contribution to scene.
For each light N photons is sent from light into scene. Photon is not same like in physics,
but it is fraction of light power - it is a bigger chunk of light energy (flux) sent into the
scene.

When photon is sent from light, this photon is investigate in same manner as ray in
normal raytracing - photon is bouncing through scene. On every hit with non specular
surface, position, photon flux ∆Φp(x, ~ωp) and direction are saved in photon map and new
photon is generated and sent into the scene. Direction and power of generated photon is
determined from BRDF of intersected material.

As many as possible photons is generated for best photorealistic result. This lead into
very huge photon map with few milions of photon saved. In second pass, lot of searches
are perfomed in this map, thus it is appropriate to create acceleration structure for fast
searching, for instance kd-tree.

Second pass - rendering

In second pass, raytracing is used for computing final image. For better photorealistic result,
it is possible to use distributed raytracing. In photon mapping, raytracing is extended to
compute indirect illumination from photon map. Indirect illumination in point x, Lr(x, ~ω)
is approximated from rendering equation, when reflected light in point x and in direction
~ω equals:

Lr(x, ~ω) =

∫
Ω
f(x, ~ω, ~ωi)Li(x, ~ωi) cos Θ d~ωi (3.6)

Incoming radiance Li(x, ~ωi) is replaced by:

Li(x, ~ωi) =
d2Φi(x, ~ωi)

cos Θ d~ωi dA
(3.7)

Which is relationship between luminance and flux (saved in photon map), after few modi-
fication this equation is get:
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Lr(x, ~ω) =

∫
Ω
f(x, ~ω, ~ωi)

d2Φi(x, ~ωi)

dA
(3.8)

This integral is possible to aproximate as sum:

Lr(x, ~ω) =

∫
Ω
f(x, ~ω, ~ωi)

d2Φi(x, ~ωi)

dA
≈

N∑
p=1

f(x, ~ω, ~ωp)
∆Φp(x, ~ωp)

∆A
(3.9)

where N is number of N nearest photons from point x. This nearest photons will lie inside
sphere with center at point x. Point x and his nearest neighborhood often lie on plane, so
it is possible to approximate ∆A as circle and thus: ∆A = πr2. Final formula of indirect
illumination computed from photon map is:

Lr(x, ~ω) ≈ 1

πr2

N∑
p=1

f(x, ~ω, ~ωp)∆Φp(x, ~ωp) (3.10)

For summary, in photon mapping, first photon map is created, then, in second pass,
normal raytracing is used. This raytracing add into local illumination model on non specular
surfaces computation of indirect illumination from photon map as weighted (by BRDF) sum
of N nearest photons.

This method is consistent and biased. Photons, and their connections between photon
and examining points, approximate paths from light to camera. This connections will never
be done precisely and bias is created from this approximations[12].

Photorealistic elements

Photon mapping is based on (distributed) raytracing, so it inherit all raytracings photore-
alistic elements. However, photon mapping is capable to compute full global illumination,
caustics and all SDS paths. Photon mapping is faster than radiosity and monte carlo
raytraced methods[11].

3.5 Progressive photon mapping

Progressive photon mapping is reworked version of normal photon mapping, this method
was described in 2008 by Hachisuka[8].

Problem in normal photon mapping is in radiance estimate (equation 3.10). This radi-
ance estimate is source of bias in photon mapping. To reduce bias, large photon map has
to be created. To completely remove bias, theoretically infinite number of photons has to
be created, this means that radius of nearest search, in photon map with infinite number
of photons, will converge to zero[12]. Using infinite number of photon in photon map in is
only in theoretical interest because of limited size of computers memory and extremely big
time complexity.
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Figure 3.5: Progressive photon mapping schema[8]

Reordered photon mapping

Progressive photon mapping tries to reorganize standard photon mapping to not store one
big photon map, but it tries to create lot of smaller photon maps instead and progressively
computing illumination from this smaller photon maps.

As is shown in figure 3.5, raytracing is performed on scene first. This raytracing is
extended in one feature: after examined ray hits diffuse surface, point of this intersection
is saved, this point is called hitpoint. Hitpoint save position x, surface normal ~N , ray
direction ~ω, pixel location x, y, pixel weight wgt, current photon radius R, accumulated
photon count N , accumulated reflected flux τ . Using only hitpoint values it is possible to
assemble final image.

In other passes, photon tracing is computed in similar way as in normal photon mapping.
After each photon tracing pass, illumination is computed for each hitpoint from computed
photon map.

Progressive radiance estimate

In traditional photon mapping, illumination is computed from searching nearest photons
and this photons is added to calculation local density d(x) of photons. This local density
is computed as:

d(x) =
n

πr2
(3.11)

where n is nearest photons within a sphere with radius r. If another photon tracing pass
is used and local density is computed from same position x and even with same radius r,
then value of local density function will be different - d′(x) - because of different photons
in radius r.

It is possible to compute average value of d(x) and d′(x), this will lead to smoother
radiance estimate, but final result does not have more detail than each individual photon
map[8] and this approach will not be consistent.

For consistent algorithm, radius has to be reduced with every iteration. Progressive
photon mapping came with progressive radius reduction. Let assume that new density
estimate d̂(x) is computed as:

d̂(x) =
N(x) +M(x)

πR(x)2
(3.12)
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where N(x) is number of photons already saved in hitpoint x, M(x) is number of photons
from new photon tracing pass (in appropriate radius from x), R(x) is radius in hitpoint x.
Next step is reducing radius R(x) by dR(x), it is possible to compute new total number of
photons N̂(x) in new radius R̂(x) = R(x)− dR(x) as:

N̂(x) = πR̂(x)2d̂(x) = π(R(x)− dR(x))2d̂(x) (3.13)

and new photon count N̂(x) can be expressed as sum of already processed photons N(x)
and fraction (α is in range (0 - 1)) of new traced photons M(x) as follows:

N̂(x) = N(x) + αM(x) (3.14)

then, by combining this three equation it is possible to compute dR(x):

π(R(x)− dR(x))2d̂(x) = N̂(x)

π(R(x)− dR(x))2N(x) +M(x)

πR(x)2
= N(x) + αM(x)

dR(x) = R(x)− dR(x) = R(x)

√
N(x) + αM(x)

N(x) +M(x)
(3.15)

and finally reduced radius R̂(x) is computed as:

R̂(x) = R(x)− dR(x) = R(x)

√
N(x) + αM(x)

N(x) +M(x)
(3.16)

Flux correction and radiance evaluation

After each photon trace pass, hitpoint receive another M(x) photons carrying some flux.
This flux has to be accumulated in proper way to already accumulated flux τN (x, ~ω) from
previous iteration. Accumulated flux of new photons τM (x, ~ω) in position x and in direction
~ω is computed as:

τM (x, ~ω) =

M(x)∑
p=1

fr(x, ~ω, ~ωp)Φ
′(xp, ~ωp) (3.17)

If radius does not change, simple addition between this two flux will be performed to get
final accumulated flux τN̂ (x, ~ω), but because radius is reduced after each pass, accumulated
flux has to be scaled as follows:

τN̂ (x, ~ω) = τN+M (x, ~ω)
N(x) + αM(x)

N(x) +M(x)
(3.18)

where τN+M (x, ~ω) = τN (x, ~ω) + τM (x, ~ω). After this correction, it is possible to compute
radiance at point x as:
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L(x, ~ω) =

∫
2π
fr(x, ~ω, ~ω

′)L(x, ~ω′)(~ω′.~n)dω′

≈ 1

∆A

n∑
p=1

fr(x, ~ω, ~ωp)∆ΦP (xp, ~ωp)

=
1

πR(x)2

τ(x, ~ω)

Nemmited
(3.19)

Photorealistic effects

Figure 3.6: Comparision between most accurate global illumination methods[8]

By using progressive photon mapping it is possible to render all focused photorealistic
effects. This method excels in SDS path like in image 3.6, where light is going through glass
from lamp. All techniques have same rendering time. It can be seen that path tracing is
completely out, bidirectional path tracing and MLT render more accurate image but with
lot of noise. Photon mapping is in this particular case better than monte carlo ray tracing
methods. Best photorealistic result shows progressive photon mapping. This method has
succeeded to remove low frequency noise from image by reducing radius of nearest search.
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Chapter 4

Data structures and algorithms

This chapter describes important techniques which was implemented in this thesis. First
ray-triangle algorithm is described, then spatial subdivision is described. After that, section
about brief introduction of evolutionary algorithm is written. In the end of this chapter,
summary of important aspects of GPGPU computing are written.

4.1 Ray-triangle intersection

Lot of computer graphic algorithms depend on examination ray with scene. Nowadays,
nearly every complex scene is created from thousands triangles, so for reasonable speed of
final renderer, fast ray-triangle test has to be performed.

Every ray is defined by origin O and direction ~D of ray. Every triangle is defined
by three vertices A,B,C. Ray-triangle intersection is possible to compute by combination
parametric equation of line and barycentric coordinates of point x in triangle. Final relation
is[9]:

O + t. ~D = A+ u.(B −A) + v.(C −A) (4.1)

where t is parameter indicating intersections distance from origin of ray. u, v are barycentric
coordinates. For determination if ray is in intersection with triangle, these conditions have
to be fulfilled:

0 ≤ t ≤ tmax
u ≥ 0

v ≥ 0

(u+ v) ≤ 1 (4.2)

Lot of useful methods was invented. One of this method is method invented by Jiri
Havel in 2010[9] and according to informations written in this article, this method is fastest
invented method. This method compute two perpendicular planes to triangle as in image
4.1.

This perpendicular planes are computed as:
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Figure 4.1: Perpendicular planes for barycentric coordinates calculation[9].

~N1 =
~AC × ~N

~N2
, d1 = − ~N1.A

~N2 =
~N × ~AB

~N2
, d2 = − ~N2.A (4.3)

After computing this perpendicular planes, this values have to be computed:

det = ~D. ~N

t′ = d− (O. ~N)

P ′ = det.O + t′. ~D

u′ = P ′. ~N1 + det.d1

v′ = P ′. ~N2 + det.d2 (4.4)

and for test, if ray intersect given triangle, these condition have to be fulfilled:

sign(t′) = sign(det.tmax − t′)
sign(u′) = sign(det− u′)
sign(v′) = sign(det− u′ − v′) (4.5)

if this conditions have met, then, if need exact point of intersection is needed, barycentric
coordinates u, v and parameter t are computed as:

t =
1

det
.t′

u =
1

det
.u′

v =
1

det
.v′ (4.6)
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From this parameters it is possible to compute point in space by using one of these
equation:

P = O + t. ~D

P = A+ u.(B −A) + v.(C −A) (4.7)

4.2 Spatial subdivision - KD TREE

If scene has N triangles, then for test, if ray intersect with scene, N intersections tests have
to be computed. Fast ray-triangle intersection is not enough to perform these sort of test
if N is big enough (hundred thousands, millions) in reasonable time. For scenes with lot
of triangles, reducing intersection number has to be included. This could be done by using
special technique called spatial subdivision (or use spatial index).

Spatial subdivision techniques divide space into subspaces. In ray-scene intersection
tests, they compute intersection with these subspaces first and after that they compute
intersection only with triangles which lie in subspaces intersected by current ray.

Lot of different techniques (indices) exists - regular grid, bsp, octree, kd-tree. Most used
spatial index in computer graphics is kd-tree[21].

In kd-tree, space is divided into two subspaces by plane. This space and plane are often
axis aligned. Position of dividing plane is key to performance of this spatial index.

It is possible to place dividing plane to make equal subspaces, randomly or to use
sophisticated heuristic. One of best results (in performance) show Surface Area Heuristic
[28].

Surface area heuristic computes few candidate planes, for every plane compute SAH
cost function and then choose best plane with lowest cost function. SAH cost function is
computed as:

SAH(x) = Cts +
CL(x)AL(x)

A
+
CR(x)AR(x)

A
(4.8)

where Cts is cost of traversing another node. CL respectively CR is cost of traversing left
respectively right child, it is possible to substitute this values as number of triangles in left
respectively right child. AL, AR and A are areas of left, right or parent bounding box.

Traversing kd tree could be done in several ways. This ways differs by using (or not
using) recursion or by using ropes. One way how to use traversal without recursion is to use
ropes. Ropes are made in each node and bind edges of node with their neighbor subtree.
Image 4.2 shows this ropes in simple kd-tree.

When ropes are used, it is possible to use simple iterative algorithm[21] for searching
in this tree. This algorithm is using top-down approach. When it goes into child without
intersected triangle, this algorithm find appropriate rope and using this rope find another
subtree to examine. This process is repeatedly made until intersected triangle is found or
algorithm find rope with NULL - end of space.

4.3 Genetic algorithm

There are several algorithms for searching solutions in solution space. This algorithms are
for instance breath first search, hill climbing or random search. Another possible algorithm
is searching algorithm based on evolution - genetic algorithms.
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Figure 4.2: Kd-Tree with ropes[21]

Genetic algorithm try to mimic evolution in nature[3]. Simply put, it uses lot of ran-
domly generated solutions, this solutions try to combine and mutate and try to find best
solution by evaluation solution with best fitness function value.

For describing how genetic algorithm exactly works, few new terms have to be intro-
duced. This terms are: chromosome, fitness function, selection, crossover and mutation.

Chromosome

Figure 4.3: Genotypes and phenotypes in genetic algorithms[3]

Genetic algorithm works with phenotypes. Phenotype is one candidate solution in
solution space. On image 4.3 is shown example where ideal house is searching. Phenotypes
on this images are each possible house. Phenotypes consist of list of parameters (in house
example it could be size and position of windows, door, roof etc). Genetic algorithm in
computer works with genotypes. Genotypes are coded phenotypes into sequence of ones
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and zeros and genetic algorithm on computer is working with this sequences. One coded
parameter from phenotype is called gene. One genotype is often in computer held as string
and is called chromosome[3].

Fitness function

Fitness function is used for evaluation how solution is good. Input to this function is one
chromosome, output is a number. Goal of genetic algorithm vary by usage of this function.
One genetic algorithm tries to maximize this function, other tries to minimize this function.
Perfect fitness function is probably most crucial part of genetic algorithm.

Selection

Figure 4.4: Four iterations of genetic algorithm with selection best phenotype [3]

Because genetic algorithm is iterative algorithm, new population is created by mutation
and combining two chromosomes. For choosing which chromosome to pick (for muta-
tion/crossover), selection algorithm is used. This algorithm could choose best solutions,
random solution or use tournament - random choose fraction of chromosomes from popu-
lation and choose best from this random fraction. In image 4.4 is shown selection of best
chromosome.

Crossover

Figure 4.5: One point crossover operator [3]

When new population is created, this population is often created by using crossover op-
erator. Input to crossover operator are two chromosomes - parents and output to crossover
operator are two chromosomes - children. Crossover operator combines genes from both
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parents and is generating two new children. In literature this crossover operator is often
demonstrated on one point crossover. This one point crossover is shown in picture 4.5
and it choose random genome, split both parents in this genome position and two children
combine by using different split genomes.

Mutation

Figure 4.6: Simple mutation operator [3]

Mutation is randomly chosing one gene and this gene is mutated - change to random
value. Input to this operation is one chromosome, output is one chromosome. It is often
used to mutate generated children. On image 4.6 is shown simple mutation which tried
change one random gene to different value.

Algorithm

Genetic algorithm is iterative algorithm. Genetic algorithm first initialize random popu-
lation. Each solution then evaluate by fitness function. In each iteration, new population
is generated by combining: selection, crossover operator and mutation. After each itera-
tion each new chromosome is evaluated by fitness function. This process is repeating until
satisfying solution is find or until number of iteration exceed some limit.

Evolution with mutation

If problem does not allow to use crossover operator, it is often used special evolution called
1 + λ evolution. This evolution means, that in every iterations, population is created by
mutation one parent (best solution from previous iteration). Mutation is used for creating
λ children and in new population are one parent and λ children.

4.4 Introduction to GPGPU computing

Graphics processor unit (GPU) can be used nowadays not only as co-processor for fast
graphics computation, but it can also be used for general purpose task. It is possible to
compute nearly every sort of algorithm on nowadays GPU.

GPU has specific architecture and for describing programing task it is using special
languages. Most used languages (frameworks) are CUDA and OpenCL. Because in this
thesis, renderer was made using OpenCL, OpenCL is here shortly described.

OpenCL - Open Computing Language - is multi-platform programing language, pro-
grams written in opencl has potential to run on CPU, GPU, DSP, FPGA. This multi-
platformity is achieved by special memory model and execution model. OpenCL does not
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guarantee that all programs will run fast on each platform ie. some nuances used on pro-
gramming GPU will be ineffective on CPU and vice versa.

Execution model

Every OpenCL program consists of host side and device side. Device is in opencl special
harwdare on which OpenCL program will run (GPU, CPU). Host is on CPU side and control
how opencl will perform tasks. On host side, program allocate memory for computation,
set size of workgroups and define in which order tasks will be run.

Minimal programmable (and only one) unit in OpenCL is called kernel. One kernel
equal one thread in parallel computing. Kernels are grouped into groups called workgroup.

Memory model

OpenCL has more memory spaces. Each vary by size and by access time. This memory
spaces are: global memory, local memory and private memory. Global memory is biggest
memory in opencl memory model. This memory is shared between all kernels and work-
group. This memory has biggest access time. On nowadays GPU it has size of gigabytes.

Private memory has smallest memory, but it has fastest access time. This memory is
private for each kernel and this memory is mapped on registers, so size is in kilobytes. Local
memory is shared between all kernels in one workgroup and each kernel has possibility to
read or write from this memory.
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Chapter 5

Analysis and Plan of work

This chapter focuses on analysis of global illumination methods and after that analysis, one
method for implementation is chosen. After that, plan of work is described.

5.1 Selection of technique

Lot of techniques was described in first part of this thesis. This thesis was in beginning,
when I was thinking about some master thesis, about photorealistic rendering so reasons
why I chose photon mapping is described in this section.

Object order methods are fast and even using this methods it is possible to achieve
some kind of photorealism. I don’t think that it is good idea to create photorealistic
renderer with object order methods, because raytracing methods are much more elegant
in achieving photorealistic elements and every photorealistic phenomena is approximation
from real world.

By using raytracing it is possible to achieve better photorealistic results than with object
order methods, but in classic raytracing photorealism is still poor. Distributed raytracing
is in my opinion too costly compared with photon mapping or monte carlo raytracing
techniques.

Radiosity is nice technique for computation physically correct indirect diffuse illumi-
nation, but radiosity has limitations - closed scene, scene only with diffuse materials and
because of this, it is unusable in real world scenes.

Monte carlo raytracing methods are probably most precise rendering methods, because
they are consistent and unbiased. Error of this methods has high frequency - it is very
disturbing for human eye and for removing this error, lot of iteration is needed and with
huge number of iteration come huge render time.

Photon mapping methods are consistent, but they are biased. With small photon map,
lot of low frequency noise is in the rendered scene. This methods are much faster than
monte carlo methods, they can render better images in smaller computation time. In my
opinion this class of rendering methods has best potential to be real time global illumination
methods in near future and because of this my thesis will focus on photon mapping methods.

5.2 Work plan

Because my work started nearly two years before finishing this thesis, I didn’t have any
complex-two-years plan. I chose to implement photon mapping technique and decide what
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next step will be done after it. Normal photon mapping was extended by progressive variant
and progressive variant of photon mapping was done on GPU. All this implementations was
implemented with focus on speed not photorealism.
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Chapter 6

Simple photon mapping
implementation

This chapter describes implementation of simple photon mapping renderer. First decom-
position is described and then for each block short info will be written. Next, information
about tests performed on normal photon mapping is written.

6.1 Decomposition

Photon mapping renderer is possible to divide to three section: scene preprocessing, first
pass - creating photon map and second pass - rendering. It is possible to make this block
diagram:

Figure 6.1: Block diagram of simple photon mapping renderer

Scene is loaded to rendering engine. On this scene, spatial index is created and for
each triangle importnant data are computed. In first pass, photon map is created by using
ray-triangle intersection and fast spatial index. In second pass raytracing is performed on
scene. When local illumination is computed in raytracing, nearest photons are searched in
photon map and illumination is determined from this nearest photons.

6.2 Scene preprocessing

In this part of renderer, scene is loaded from scene file. From scene graph, one array of
triangles is computed. On this array of triangles spatial index is created and for each
triangle from this array important data are computed.
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Scene loading and scene preprocessing

Scene is loaded from COLLADA (.dae) file using ASSIMP library. ASSSIMP uses own
internal scene interpretation, thus scene is loaded to own scene structure and classes.

Scene graph is loaded from scene, transformation matrix is computed for each scene
graph node and from this values one array of triangles in space is computed.

Spatial index

Then on array of triangles, spatial index is created. Spatial index is kd-tree with ropes and
dividing plane is computed from Surface Area Heuristic.

Figure 6.2: Spatial index with SAH

On image 6.2 is shown two levels of KD-tree with SAH. On this image is possible to se
how surface area heuristic divide space with regard to number of triangles and surface of
subspace.

Ropes is created from top to down with kd-tree creation. First, all ropes are set to
NULL, then when subspace is created, child nodes inherit parents nodes and left child has
proper rope to right child and vice versa. Using this approach ropes are distributed through
kd-tree and each ropes point to subspace of scene. Test how kd-tree with ropes accelerated
speed of raytracing is written in experiment section.

Precomputed values

For determining if ray intersect triangle, Havels method was chosen and implemented. This
method has possibility to precompute some data (both perpendicular planes) and because
of this, this data are precomputed in preprocessing.
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6.3 First pass - Photon map creation

In this pass, photon map is created. For each light, photons are sent into scene with proper
fraction of light energy.

Direction of sent photon is determined by so called rejection sampling. If sent photon
hit surface, photon is saved into photon map (for now only in array of photons) and another
photon is sent in proper direction. Direction of reflected photon vary by type of material.
For completely diffuse material, direction of reflected photon is randomly in hemisphere
around normal, for mirror like surface, direction is in normal reflected direction.

Figure 6.3: Photon map creation with low number of photons

If transparent specular surfaces are in scene, two maps are created. One for indirect
illumination (normal photon map) and second only for caustics (caustic photon map). In
caustic photon map, only those photons wich go through specular materials are saved.

Using this approach, millions of photons are created. Searching through this huge
number of photons is very slow. Because of this, I used kd-tree over photons for fast
nearest search.

6.4 Second Pass - Rendering

Final image is gathered in this pass. Rays are generated from camera information. For
each pixel in final image, direction of ray is determined. Then this ray is sent into scene,
when ray hit surface, it normally compute direct illumination through shadow rays and
reflected/refracted illumination and then it add to local illumination model, illumination
computed from photon maps.

N nearest photons are searched through normal photon map in each ray/scene intersec-
tion. For caustic illumination radius search is performed in fixed radius.

After implementing described blocks simple photon mapper was created. It is capable to
render indirect illumination and caustics. Image 6.4 shows output of this process. Rendering
this images consume lot of time and because of this, in next section slow block will be
measured and for slowest blocks improvements will be proposed.
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Figure 6.4: Scene with indirect illumination is rendered on left image, on right image
caustics are rendered

6.5 Experiments - the best spatial index

Previous section introduce simple implementation of photon mapping renderer. Lot of
blocks have possibility to implement them in different ways, this blocks are ray-triangle
intersection, nearest neighbor search, spatial subdivision.

Nearest neighbor block has biggest influence on speed of photon mapping, so several
tests was performed on this block. Speed of fast raytracing depend on good spatial index and
because of this, performance evaluation between few possibilities was made. Ray-triangle
intersection block was ommited from this tests, because author write in corresponding
article that his algorithm is fastest and even then nearest neighbor and spatial index have
bigger influence on resulting speed.

One possible way how to perform nearest neighbor is implement own function for this
search, other is to use special library. After implementing own function this function was
evaluated along with FLANN library and flann library was nearly four times faster. Because
of this, few tests on two nearest neighbor libraries was made - for choosing fastest library
and fastest index.

First library is FLANN - Fast Library for Approximate Nearest Neighbors. Second
library is ANN Approximate Nearest Neighbor Library. ANN is older library, this library
use for searching kd-trees and bd-trees. FLANN library use for indexing randomized KD-
tree. Both libraries are very often used in computer vision for nearest neighbor searching in
image feater and they are very well optimized for multidimensional datasets. Both libraries
provide approximate searching - search with a small acceptable error.

Performed experiments were these:

• Spatial Subdivision test - comparing spatial indices, octree and KD-tree for accel-
eration ray-triangle intersection

• Creating photon map - compare speed of creating searching indices on KD-tree
and BD-tree in FLANN and ANN libraries

• Nearest searching - neighbor number - Comparing nearest neighbor search time
with increasing number of neighbors to find
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• Nearest searching - size of map - Comparing nearest neighbor searching time
with increasing size of photon map

• Approximate nearest search - Identification of maximmum acceptable error and
comparison of the approximate searching times

All the experiments were performed on laptop with Intel core i7 M620 processor @
2.67GHz with 2x 2GB DDR3 RAM 1066MHz, 7-7-7-20. Form compiling, the MSVC11
(Visual studio 2012) compiler was used. All the measurements were performed on real
photon mapping data.

Spatial subdivision test

This test compares speed of spatial indexing methods. In this test, three methods are
compared. First, the naive method with no indexing method - simply bruteforce method -
was measured. Then this method is compared to octree and KD-tree with ropes.

To compare these methods, simple scene with 12140 triangles was created (image 6.2).
On this scene 100 000 ray-triangle intersections were performed. All intersection tests was
pointing on same place in scene.

Name Speed Precomputing

Naive 47.567s -
Octree 1.159s 0.04s

KD-tree with ropes 0.453s 0.16s

Table 6.1: Comparing spatial indices

Table 6.5 shows that KD-tree with ropes is approximately two times faster than octree.
This test also shows that using spatial indices is indeed efficient and any of the methods
outperforms the naive approach. The KD-tree was 88 times and octree was 44 times faster
then naive method.

These test also shows speed of creation of spatial index. Octree is approximately four
times faster than KD-tree. As the spatial index is created only once in this method, while
the ray-triangle intersections are performed many times - in photon mapping and raytracing.
The KD-tree with ropes is generally the best of the tested ones.

One note to this tests: comparison of speed between this indices may vary on other
scenes, some scene could have better speed with octree. Probably it is best to try which
index is best on each scene.

Creating photon map

This test compares times of creating spatial index in photon mapping depending on the total
number of photons in photon map. As it was written, for this test ANN library an FLANN
library were used. From ANN library KD-tree and BD-tree was used and from FLANN
library KD-tree and single index KD-tree was used. Single index KD-tree is optimized for
lower dimensional data.

For this test scene on image 6.4 (left side) was used and photon maps with 50k, 100k,
200k, and 500k photons was generated. To generate this amount of photons, block from
photon mapping renderer was used, so this test was performed on the real photon mapping
data.
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Figure 6.5: Dependece of map creation time on photon count.

Size of Map 50 000 100 000 200 000 300 000 400 000 500 000

ANN KD 0,591234 1,327776 2,751757 4,408452 6,009744 7,812247
ANN BD 1,660428 3,72888 9,296865 17,34999 27,49657 39,44626
FLANN 0,187711 0,458326 1,066961 1,878107 2,476542 3,484599

FLANN Single 0,190411 0,439525 1,131965 1,873107 2,61855 3,626007

Table 6.2: Average times of creating photon map with increasing photons count.

Results show image 6.5 and table 6.2. This results show that BD-trees have the worst
time of index creation. Both of the FLANN indices KD-tree and single index have approxi-
mately the same time of index creation in fact, KD-tree is little faster than single KD-tree.
The ANN KD-tree is approximately five times faster than BD-tree, but two times slower
than both of FLANN indices.
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Nearest search

This test was performed in order to compare speed of indexing methods depending on the
number of neighbors to search for. The indexing methods for this test were the same as
in the previous test - ANN KD-tree + BD-tree as well as FLANN randomized KD-tree +
single index KD-tree.

The same scene as in previous test was used. The photon map with 500 000 photons
was created and on this same map, the search indices were created. During the testing, the
progressively increasing number of nearest neighbor to find were used.
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Figure 6.6: Dependece of searching time on photon count.

N 50 500 1000 2000 3000 4000 5000

ANN KD 0,00001 0,00040 0,00121 0,00452 0,01205 0,02204 0,03394
ANN BD 0,00002 0,00041 0,00121 0,00432 0,01218 0,02281 0,03590
FLANN 0,00007 0,00043 0,00080 0,00151 0,00203 0,00304 0,00410

FLANN Single 0,00001 0,00009 0,00022 0,00054 0,00078 0,00107 0,00141

Table 6.3: Average times for searching N photons with photon map of size 500 000 photons.

Table 6.3 and figure 6.6 show results. The results show that both ANNs indices and
FLANN single index have the best performance for cases in which little number of photons
is reaquiered to be searched for. However, with the increasing number of photons to search
for, ANN is increasingly worse and FLANN KD-tree becomes better than the other two
indices. FLANN single index tree has best results in this test.
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Size of photon map

This test is similar to the previous one but in this case, the number of neighbors is fixed
and the size of the photon map is changing. In this experiment, the number of neighbors
was set to 5 000, same as in photon mapping. The size of the photon maps ranges from 50
000 to 500 000.
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Figure 6.7: Dependece of searching time on map size.

Size of map 50000 100000 200000 300000 400000 500000

ANN KD 0,030481 0,03107 0,032918 0,033227 0,033702 0,03393
ANN BD 0,032248 0,032861 0,033306 0,033909 0,034564 0,035993
FLANN 0,002246 0,001861 0,00254 0,003049 0,003783 0,004382

FLANN Single 0,001426 0,001393 0,001396 0,001489 0,001509 0,001528

Table 6.4: Average times for searching 5 000 photons depending on size of photon map.

The results (figure 6.7 and table 6.4) shows that increasing size of photon map does not
have too big influence on the achieved speed and that the size of the number of photons to
search for has biggest impact on speed.
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Approximate nearest search

The FLANN and ANN libraries provide an approximate searching method - search in which
some error is allowed in the result and which is somewhat faster than the exact case. It
should be interesting to find out how much influence the approximate searching has on the
quality of rendered images and how much acceleration can be achieved. As the approximate
searching leads into worse results in terms of quality, it should be found out how much error
is acceptable and then how much it influences the speed.

For this test same scene as in previous test was used and only indirect illumination was
rendered. This indirect illumination was achieved by search for the nearest photons in the
photon map. Photon map size was 500 000 photons and 5 000 photons were searched.

Figure 6.8: On top left image is epsilon equal zero. Top right epsilon equal to 1. Bottom
left epsilon equal 5. Bottom right epsilon equal 10.

In first part of this experiment, reasonable size of error - epsilon - has to be find out.
Result of increasing epsilon shows image 6.8. In this image it is possible to see that with
increasing epsilon, quality of indirect illumination decrease and regular pattern are visible
with bigger epsilon. Reasonable epsilon is in range between zero and one. Everything bigger
than this result in worse quality.

Image 6.9 and table 6.5 shows results of this test as and it can be seen results aren’t
good. With epsilon equal 1 - maximum acceptable error for quality of rendered image -
speed of fastest index is accelerated only by 12%.
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Figure 6.9: Dependece of searching time on acceptable error - epsilon.

Epsilon 0 1 2 5 10

ann KD time 0,031451 0,020913 0,01414 0,006924 0,003739
ann BD time 0,032258 0,021839 0,014725 0,007142 0,003817

FLANN 0,002356 0,00175 0,001694 0,00145 0,001465
FLANN Single 0,001499 0,001328 0,000981 0,000881 0,000817

Table 6.5: Average times for searching 5 000 photons depending on acceptable error - epsilon

6.6 Summary

This chapter described implementation of simple photon mapper. In implementation, de-
composition was introduced and for each decomposed block implementation was proposed.
After naive implementation few experiments on implementation of photon mapping was
performed. This experiments show that probably best index for accelerating nearest search
is Single index KD-tree from flann library. One test focused on computation with accept-
able error - epsilon. This test showed that acceleration lead to worse result with only small
speed-up.

One note to the end of photon mapping section: speed of searching 5 000 nearest points
in photon map (which consists only from array of points in 3D space) is 1 millisecond, this
time is only for searching indices of nearest photons in photon map and summing up all
searched photons takes 5 milliseconds, so finding even more faster nearest neighbor search
is useless and size of photon map has to decrease. This drawback solves progressive photon
mapping and about this technique next chapter will be.
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Chapter 7

Progressive photon mapping
implementation

This chapter will describe implementation of progressive photon mapping. This implemen-
tation is first done on CPU and than on GPU. GPU implementation is unoptimalized and
for slowest block, few acceleration techniques is proposed.

7.1 CPU implementation

Progressive photon mapping is extension of normal photon mapping. Normal photon map-
ping was created in previous chapter and thanks to that, base for progressive photon map-
ping should be used from normal photon mapping implementation.

The biggest changes are that raytracing is performed before photon tracing and in
other passes photon tracing with hitpoint illumination and image synthesize are performed
periodically.

Raytracing

Raytracing from normal photon mapping is extended. Extension is about saving special
points where ray hits diffuse surfaces. This special points are called hitpoints. In each
hitpoint few values are saved, this values are: position, normal, pixel location on final
image, current photon radius, accumulated photon number, accumulated color, weight of
hitpoint. Raytracing block returns one array of hitpoints.

Photon tracing

One change in photon tracing block is pre allocated array for photons. Beside that, there
are no changes in this block. Photon tracing is evaluated in each photon tracing iteration.

Hitpoint illumination

Illumination from photon tracing is saved in this block. For each hitpoint x photons in
photon map are searched and those photons which lies in radius of R(x) are added to
computation. Few another computation are performed after summing up illumination from
photon map. This computation are described in chapter about photon mapping 3.5.
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Finding photons in radius R(x) are slowest operation from this block. This searching
are not performed naively, but for this purpose FLANN single index kd-tree is used so
before each hitpoint illumination computation, kd-tree is build upon current photon map.

Image synthesize

In this block, image from hitpoints are created. For each hitpoint, color is putted in
framebuffer in proper position and with proper weight. This weight is changing depending
if corresponding ray was primary or if this ray was reflected/refracted and thus his weight
is corresponding to material weight of traversed materials.

Result and conclusion

Figure 7.1: Progressive photon mapping result. Top left image with 1 iteration, top right
image with 2 iterations, bottom left image with 10 iterations, bottom right image with 100
iterations.

After all changes was performed, functional progressive photon mapping renderer was
created. Image 7.1 shows result of this renderer with progressive iterations. In this scene
100 thousands photons per iterations was used, initial radius of all hitpoints was set to 5.
CPU implementation was created only for experimental purposes and for evaluation GPU
vs CPU speed on this task.
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7.2 Naive GPU implementation

This section describes naive implementation of progressive photon mapping on Graphics
Processing Unit.

Raytracing

Each ray from final image is traversed in one thread on GPU. On GPU it is not possible
to make recursion, so raytracing has to be rewritten to iterative algorithm. Because simple
scene is used (from image 7.1) and this scene has few triangles, this triangles could be
saved in constant memory and no spatial index is used. For ray-triangle intersection Havels
algorithm is used. After finding intersections with scene, hitpoints is saved into global
memory.

Photon tracing

Photon tracing uses very similar routines for scene traversal like raytracing. Each initial
photon from light is traversed in separate kernel. Same as in raytracing, it is not possible to
make this block recursively and this block is made iteratively with fixed number of iteration
- in this simple scene this is not a problem.

One problem occurs when photon has to determine random direction - in photon gen-
erating or in photon reflection on diffuse surface. OpenCL and GPGPU does not have any
sort of random generator and therefore random generator is needed. It is possible to use
classical congruential generator with saving seeds between iterations.

Hitpoint illumination

In this block, illumination is computed in parallel for each hitpoint. First, photons in radius
R(x) has to be find out. Most naively solution is going through all photons in photon map,
for each photon check distance and sum up those who has distance lower than R(x). This
is very naive solution and will be accelerated further in this text. After finding all photons
in proper radius, few computation has to be made. This computation is in chapter about
progressive photon mapping.

Image synthesize

All needed data for image synthesize are saved along with each hitpoint and therefore
computation of luminance is very easy. For each hitpoint one kernel is executed and this
kernel compute color for his hitpoint. This color is scaled by hitpoints weight and is
atomically added to framebuffer to proper position given by hitpoints framebuffer position.
This block is possible to perform after each photon tracing and hitpoint illumination pass
or at the end of all iterations.

Evaluation of naive implementation

Implementation of CPU and GPU renderer was evaluated. CPU implementation was eval-
uated on laptop with Intel i7-4702MQ processor and it was written with c++ and it was
compiled with Intel C++ 15.0 compiler. GPGPU implementation was written in OpenCL
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and was evaluated on nVidia GeForce GT 750M. Speed of CPU implementation was evalu-
ated using std::chrono library and GPU implementation was evaluated using nvidia nsight
timeline profiler. Evaluation was performed on same scene as in image 7.1 .

GPU CPU
Raytracing 0.706 ms 1172 ms
Photon tracing 7.897 ms 317 ms
Hitpoint Illumination 2041 ms 1593 ms
Synthesize 0.247 ms 3 ms

Table 7.1: Performance evaluation between CPU and GPU naive implementation with
320*280 resolution and 100 thousands photons in photon tracing pass

GPU CPU
Raytracing 12.107 ms 6 197 ms
Photon tracing 7.897 ms 317 ms
Hitpoint Illumination 38 603 ms 23 957 ms
Synthesize 4.924 ms 91 ms

Table 7.2: Performance evaluation between CPU and GPU naive implementation with
1920*1080 resolution and 100 thousands photons in photon tracing pass

Table 7.1 and table 7.2 show performance between GPU and CPU implementation for
320*280 and 1920*1080 resolution. In each photon tracing iteration 100 thousands photons
was traced. As it can be seen, GPU is far more faster than CPU implementation in all
blocks except hitpoint illumination. CPU block of hitpoint illumination is using kd-tree
and if this block will use naive search similar to GPU it will be much more slower. For
resolution 320*280 naive solution on CPU was performed in 68 seconds.

Speed of raytracing and photon tracing is influenced by number of pixels / photons and
by complexity of scene. Even when testing scene was simple, photon tracing and raytracing
made good basis for hitpoint illumination block which will be same in all types of scenes -
there will be big array of hitpoints with big array of photons.

Because hitpoint illumination is slowest block in this process, and because for raytracing
is lot of research plus nvidia optix library, further in this tesis will be focus on accelerating
hitpoint illumination on GPU.

7.3 Acceleration techniques

Bruteforce implementation of hitpoint illumination is very naive and very slow. In this
simple implementation, each thread in workgroup load one photon from memory, compute
distance, check if this distance is lower than proper radius and optionally accumulate photon
flux.

Memory loads are very costly on GPU, even if streaming multiprocessor is multiplexing
work between few workgroups, it will wait long time in sleep mode to load data from global
memory. One way how to mitigate memory waiting is to use local memory.

This section will persent accelerating approaches to accelerate hitpoint illumination
block. This approaches will try to use lot of local memory and will reduce number of
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searched photons. After proposing all acceleration approaches, evaluation will be made for
all approaches.

Local memory

Idea is to load block of photons into local memory and go through this photons from local
memory. Access to local memory is faster than access to global memory, so it should lead
to acceleration. Each thread in workgroup will load one photon into local memory. Kernel
driver will recognize this as block loading and this block loading should be done faster then
sequential load of each photon.

Photon sorting

When illumination is computed for hitpoint x, only those photons which is lying on same
mesh as hitpoint x have to be included in computation. When illumination is computed by
bruteforce, photons from all meshes are loaded from global memory even it is unnecessary.

One way how to solve this problem with unnecessary loaded photons is to sort photons
into unique photon map for each mesh. This task should be done in separate kernel. Each
thread will load one photon, check its mesh, by special operation called atomic increment
will get position in separated photon map an this photon will save into proper position in
memory. Speed of this kernel is 1 ms so it is negligible in comparison with acceleration
achieved by this sorting.

When hitpoint illumination is computed and sorted photon maps is filled, it is possible
to load only those photons which is lying on correct mesh. It is not possible to use local
memory in this approach because it is not guaranteed that all hitpoints in one workgroup
will lie on same mesh.

Hitpoint sorting

It is needed to ensure that all hitpoints in workgroup lie on same mesh to use coherent
approach (all threads are reading from same memory location) for fast loading from memory.

Hitpoint sorting could be done on CPU side, because this work will done only once
per whole render process. Hitpoints are loaded to CPU side after raytracing pass. This
hitpoints are sorted to separate arrays and then this arrays are merged together. In the
end of each hitpoint array, special filler hitpoints have to be saved. This is because ending
workgroup of one hitpoint array is not filled fully with hitpoints from one mesh, for instance
if size of workgroup is 256 and in last workgroup of hitpoint array is only 150 hitpoints,
106 filler hitpoints have to be saved for achieving same mesh in workgroup. If filler hitpoint
wasn’t used, in last workgroup hitpoints from two mesh will be.

If it is ensured that hitpoints in all workgroup are same, performance should be acceler-
ate because all threads in workgroup are loading sequentially from same memory and this
should achieve faster time.

Hitpoint sorting and local memory

If all photons are separated and similar hitpoints are saved in one workgroup it is possible
to use local memory to save photons from separated photon map. Loading from global
memory to local memory is similar like in previous approach.
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Manual calculation of distance

This approach is here only to demonstrate possible bug from opencl when built in distance
function is slower than manual calculation of distance.

Hitpoint clustering and spatial grid

This approach is most complex approach from all previous approaches. It tries to reduce
numbers of searched photons from separated photon map by dividing this photon map by
uniform grid and make close clusters. Hitpoints in one workgroup will be as close as possible
- to reduce number of traversed bins through one workgroup.

Photons are not saved into one separate photon map for each mesh, but into special
bins for each mesh. Numbers, size and positions of this bins is determined by creating grid
structure. This structure is created for each mesh on CPU side.

Algorithm for creating regular grid divide mesh by longest axis by fixed numbers of
bins. Pseudocode for creating regular grid is this:

Compute maximal and minimal position of mesh
Compute size of bin as
d = max((longest size/max numbers of bins), default radius)
Compute numbers of bins nx, ny, nz in each axis
Save minimal position minPosition

First minimal and maximal position is computed, this is done for navigating in mesh. Size
of one bin should be equal to default radius of one hitpoint, but if mesh is too large it will
generate to much bins in grid and therefore limitation from max numbers of bins is used.
Size of bin is equal to default radius of hitpoint because if this is true, navigation in grid is
simple, it only compute photons in neighbor bins.

From this algorithm, four numbers and one vector is get. Vector minPosition and
number d is for computing position in regular grid. This position is in bins on axis and
for computing offset in linear memory numbers nx, ny, nz are needed. Computing position
x, y, z and offset in grid from position is computed by this formulas:

~l = position−minPosition
x = abs(l.x)/d

y = abs(l.y)/d

z = abs(l.z)/d

offset = (x+ y ∗ nx) + (z ∗ nx ∗ ny) (7.1)

Because threads in workgroup have to load same things from memory, position and
radius R has to be same for all threads in workgroup. Computation position of workgroup
center and workgroup radius R could be done in CPU side and saved in every hitpoint.

Each thread then compute subspace where photons will be searched for. This subspace
consist of numbers of bins computed from radius R and d. Then photons are loaded from
this bins.

Saving photons into grid bins is made in same kernel as in photon sorting, this kernel
has to only compute proper offset for pointer, increment that pointer and then save photon
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to proper memory position. Speed of this kernel is still fast - 2 ms - and is still negligible
in comparison with achieved acceleration.

Hitpoints in workgroup should be grouped together to close clusters, this will achieve
small radius of this whole workgroup and thus number of traversed bins will be smaller.
Size and position of clusters are made from k-means. Hitpoints are clustered on CPU,
because this process will be done in whole rendering process only once.

For clustering, k-means algorithm was used first. K-means divide points into K clusters,
so K has to be computed as K = hitpoint size/workgroup size. Image 7.2 shows how k-
means divide hitpoints into clusters.

Figure 7.2: Hitpoint clustering made by k-means.

K-means clusters could be positioned in two bins. This could lead to more traversed bins
in hitpoint illumination block. Another possible solution how to reduce memory loads are
sort hitpoints in bins of cluster. Hitpoints sorted in grid could achieve that all workgroup
will load only neighbors bins and this could lead to some acceleration. Image 7.3 shows
how sorted hitpoints are positioned in scene.

7.4 Summary

All acceleration approaches was implemented on same scene and with same GPU as previous
tests. Table 7.3 shows results of this approaches. As it can be seen, all proposed approaches
lead to some sort of speedup. Local memory accelerate computation nearly twice. Photon
sorting accelerate naive solution nearly four times.

Hitpoint sorting uses photon sorting with sorted hitpoints on CPU side, so some CPU
overhead is needed. Because this task is performed only once - after raytracing pass - this
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Figure 7.3: Hitpoints sorted in grid bins.

320*280 1920*1080
Naive solution 2041 ms 38 603 ms
Local memory 1109 ms 17 750 ms
Photon sorting 611 ms 10 539 ms
Hitpoint sorting 484 ms 8 384 ms
Hitpoint sorting, local memory 327 ms 5 422 ms
Manual distance 125 ms 1 941 ms
K-means clustered hitpoints 172 ms 2 852 ms
Grid structure + k-means 34 ms 371 ms
Grid structure + grid clusters 69 ms 378 ms

Table 7.3: Performance evaluation between all proposed acceleration techniques.

overhead does not matter. Another accelerating approach use local memory with hitpoint
sorting. This approach is much faster than all previous approaches.

All of this test was written in OpenCL. OpenCL has built-in function distance() and
even when this functioun should be very fast, it isn’t. Manual distance in table 7.3 means
previous acceleration with manual distance computation. Using this hack, this block gets
nearly three times speedup.

K-means clustered hitpoints experiment in table 7.3 is previous approach (Manual dis-
tance) with clustered hitpoints from k-means. Reason why this approach is slower is over-
head from filler hitpoints, more later.

When grid structure was used on this clustered hitpoints from k-means, speed of hitpoint
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Resolution K-means time[ms] Grid time[ms] K-means creation[s] Grid creation[s]

320*280 34 69 1.06 0.15
854*480 107 117 3.68 0.28
1280*720 234 194 12.65 0.29
1920*1080 371 378 57.11 0.47

Table 7.4: Evaluation of hitpoint illumination block performed by k-means or grid clusters.
Evolution is done on several resolutions.

illumination was accelerated most. Clustering hitpoints into grid made similar speed for
bigger resolution, table 7.4 shows evaluation between k-means and grid clustering. In this
table is shown speed of creating this two algorithms. Clustering into grid bins is much more
time efficient than using k-means clusters.

Resolution No-clustering K-means hitpoints Grid hitpoints

320*280 22101 31424 70720
854*480 86366 126208 129856
1280*720 193062 284736 232704
1920*1080 432515 639488 473008

Table 7.5: Number of hitpoints based on clustering algorithm

K-means does not respect size of workgroups. If size of cluster is size of workgroup+1
then in second workgroup of this cluster are 1 + (size of workgroup − 1) filler hitpoints.
What is really interesting is performance of k-means with lot of filler hitpoints. Ta-
ble 7.4 shows number of filler hitpoint depending on resolution. K-means, in resolution
1920*1080, uses much more filler hitpoints than clustering into grid and even then, k-means
is marginally faster.

The best acceleration of hitpoint illumination block is made by combining clustered hit-
points and regular grid. Speed of naive solution was accelerated 60x, for resolution 320*280,
and 104x, for resolution 1920*1080. In comparison of CPU implementation and GPU imple-
mentation speed of hitpoint illumination block was accelerated 46x, for resolution 320*280,
and 64x for resolution 1920*1080.
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Chapter 8

Evolutionary clustering for GPU
progressive photon mapping

This chapter describes evolution based algorithm for hitpoints clustering for progressive
photon mapping. The idea for this clustering algorithm is to find out better clusters than
k-means does, in order to achieve faster speed of hitpoint illumination block.

Problem of k-means clustering is that it does not respect size of workgroups and thus
lot of useless hitpoints are involved in computation and power of GPU is wasted. Benefit of
evolutionary algorithm could be better clusters not only in numbers of hitpoints in clusters
but also in better positioning of clusters, because conditions of final clusters are directed
by proper fitness function. And in this fitness function various data could be included.

8.1 Creating evolutionary algorithm

Chromosome representation

Because input of this clustering algorithm is array of hitpoints and output is array of centers
of clusters, in chromosome centers of clusters have to be saved and some connection between
hitpoints and clusters has to be saved also.

After considering various options, this chromosome structure was implemented:

• centroids - array of vectors, centers of clusters

• hitToCentroid - array of arrays of vectors, array of hitpoints are saved here for each
centroid1

• fitness - unsigned int, fitness value of current chromosome

• fitnessPercent - float, scaled fitness value

Generation of initial population

Each candidate solutions in initial population are created by mutation k-means result. K-
means bring evolution algorithm good candidate solution. Another way how to generate
initial population is pick clusters centers randomly. This was originally used, but k-means
lead to faster evolution and because of that, generation from k-means was selected.

1centroid = center of cluster
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Mutation

First mutation randomly choose one cluster A, then pick nearest cluster B of this randomly
chosen cluster A. The following operation depends on the number of hitpoints in this
clusters, this operations are:

• if size(A) + size(B) < wg size - merge centroids

• if size(A) + size(B) > 2 ∗ wg size - do nothing

• else - merge with probability depending on sum of sizes of this clusters, if size is
approaching to 2 ∗ wg size probability is lower than if sum is near wg size.

If merge is performed, position of final centroid is computed as average point of all
hitpoints in both centroids.

Second mutation choose random centroid and change his position randomly in specific
bounding box. This mutation is performed with low probability and this mutation is in
this process only for breaking solutions from their local minimum.

Third and fourth mutation are removing or adding new centroids into solution. If remov-
ing mutation is performed, clusters with lower number of hitpoints have higher probability
of removing. If adding mutation is performed, position of new cluster is selected randomly.
This mutations has 50% probability of performing and count of added/removed centroids
is chosen randomly in range between one and five.

Evolution configuration

Because only mutations was proposed, evolution algorithm is using 1 +λ evolution. Size of
population is 50. Number of iterations is set to 3000. After 3000 iterations, best candidate
solution is set as result of evolution.

8.2 CPU computed fitness functions

Three fitness functions was proposed and measured, first reduce number of filler hitpoints,
second reduce number of traversed bins in grid and third tries to reduce number of block
memory accesses to global memory.

Reducing filler hitpoints fitness

Lot of filler hitpoints was generated in k-means clusters and this filler hitpoints waste
GPUs power. First fitness tries to minimize number of filler hitpoints and fitness function
is computed as:

Fitness =
∑

c∈clusters
filler hitpoints(c) (8.1)

where

• clusters - all clusters in candidate solution

• c - one cluster
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• filler hitpoints(c) - number of filler hitpoints in cluster c computed from size of
cluster and workgroup size

This fitness function assumes sorted hitpoints in nearest clusters, so this procedure
must be done before every fitness evaluation (this is the slowest procedure in whole genetic
algorithm).

Value of this fitness function for k-means is 2438.

Grid bin counting fitness

Previous fitness only minimize numbers of filler hitpoints. It has no respect of cluster size
(number of workgroups), geometric size (size of shared radius), memory load of this cluster
(in respect of grid structure).

Extension of this naive fitness function is involvement of grid structure. In evaluation,
partial fitness of one cluster is computed as number of traversed bins in grid. For this
computation precise average of cluster hitpoints has to be computed and shared radius of
all hitpoints in cluster has to be computed too. Grid bin counting fitness is defined like
this function:

Fitness =
∑

c∈clusters
bins(c) ∗ workgroups(c) (8.2)

where:

• bins(c) - number of traversed bins

• workgroups(c) - number of workgroups with size of cluster c

Value of this fitness function for k-means is 3165.

Memory access counting fitness

Grid bin counting fitness assume that processing all bins has same time, but this could
be true only if all bins has same number of saved photons. Thousands of photons are in
bins where light has direct connections with bin, dozens of photons are in bins near edge
of mesh, with only

”
indirect“ photons saved. This imbalance make previous fitness wrong

and some sort of memory access computation should be included.
For memory accesses prediction, photon distribution map was created. This map will

not change drastically if topology of scene does not change. Because of this, precomputation
of this distribution map is possible. This map is computed as average of thousand iterations
and this map is saved as array of integers, where size of array is equal to number of bins in
scene.

Then, memory access counting fitness is defined as:

Fitness =
∑

c∈clusters
memory access(c) ∗ workgroups(c)

memory access(c) =
∑

x∈bins(c)

photons distribution(x)

workgroup size
(8.3)

where:
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• bins(c) - set of traversed bins from cluster c

• photons distribution(x) - return number of photons in bin x

Value of this fitness function for k-means is 9877.

Speed evaluation

Speed evaluation was made on same scene as all previous tests. Resolution of this evaluation
was 320*280 and only bottom surface was used. This surface was chosen because this surface
has most photons saved in all scene - light directly hits this surface. Evaluated speed of
this surface, rendered with grid structure and clusters made by k-means, was 23ms.

Test Fitness value Number of clusters Speed [ms] Creating time [s]

1 582 77 19,977 547
2 390 57 22,256 520
3 646 78 24,192 551
4 582 76 21,128 537
5 646 69 23,917 503
6 645 83 23,789 663
7 710 76 22,307 533
8 709 88 20,955 605
9 582 68 27,134 502
10 454 61 22,815 452

average 594 73,3 22,845 541
minimal 390 57 19,977 452

Table 8.1: Evaluation of evolution of reducing filler hitpoints fitness with 3000 iterations

Test Fitness value Number of clusters Speed [ms] Creating time [s]

1 2408 103 19,713 694
2 2400 104 18,691 735
3 2432 104 19,334 702
4 2363 101 19,187 698
5 2387 106 18,998 734
6 2364 100 18,795 673
7 2411 102 19,767 694
8 2384 101 18,454 704
9 2394 104 19,503 701
10 2448 105 20,155 716

average 2399 103 19,259 705
minimal 2363 100 18,454 673

Table 8.2: Evaluation of evolution of grid bin counting fitness with 3000 iterations

Tables 8.1, 8.2 and 8.3 shows evaluations of their respective fitness function. Best
fitness function is fitness function called memory access counting fitness. Using this fitness
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function in genetic algorithm lead to average speed of hitpoint illumination block 18,24 ms
and fastest speed in this experiment was 16,26 ms.

Speed of creating solution by k-means is 3 ms. Speed of creating solution by evolutionary
algorithm is 705 seconds in average.

All fitness function has one big drawback, low value of this fitness function does not every
time mean better final speed. Even most complex fitness function for counting memory
accesses has this drawback.

Test Fitness value Number of clusters Speed [ms] Creating time [s]

1 7252 104 16,435 715
2 7499 99 16,823 678
3 7528 105 19,173 721
4 7346 104 19,415 712
5 7317 100 16,262 704
6 7546 105 18,652 710
7 7205 96 19,868 671
8 7302 101 18,689 690
9 7256 99 19,503 688
10 7380 106 17,608 755

average 7363 101 18,241 704
minimal 7205 96 16,262 671

Table 8.3: Evaluation of evolution with memory access counting fitness with 3000 iterations

8.3 GPU computed fitness function

Because it is hard to describe suitability of candidate solution and previous fitness functions
does not work well, another try to make good fitness function is done directly on GPU.

When fitness function is evaluated for candidate solution, this solution is sent to GPU
where only hitpoints with this solution are evaluated in hitpoint illumination block. Value
of fitness function is then speed of performing this block directly on GPU. This fitness value
is not estimated and is without any error. Problem with computing speed of performing
on GPU is changing times between evaluation, times has little variance in 0.2 - 0.4 ms.
Because this variance, five runs are performed on GPU and fastest run is taken as result of
evaluation.

Evolution algorithm with this GPU fitness function created fastest clusters, as is shown
in table 8.4. Average speed is 14.68 ms and fastest speed is 13.84 ms. This clusters was
find out with 10 times lower number of iterations, but it takes enormous time of evaluation
on GPU and thus final time of creation is very huge.

8.4 Summary

This evolutionary based algorithm generate faster clusters for hitpoint illumination block
than k-means does and including this algorithm in rendering process should lead to faster
execution times on GPU. Big drawback of this algorithm is time consumption. This algo-
rithm is only usable as precomputation for static scenes.
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Test Fitness value / speed [microseconds] Number of clusters Creating time [s]

1 15123 118 1667
2 14424 115 1698
3 14348 103 1617
4 15017 108 1642
5 13846 111 1660
6 15002 121 1799
7 15326 121 1730
8 14881 109 1756
9 14425 110 1604
10 14470 111 1642

average 14686 112 1681
minimal 13846 103 1604

Table 8.4: Evaluation of evolution with GPU fitness, 300 iterations

Slowest operation in evolution with CPU fitness functions is sorting hitpoints into clus-
ters. For accelerating, better structure of chromosome should be find out, or this sorting
should be done GPU. If GPU fitness is used, slowest function is computing fitness of can-
didate solution directly on GPU and for acceleration better GPU should be used.

One way how to reduce number of this slow operations and thus reduce time of evolution
is to optimize evolutionary algorithm. But this task is very hard, lot of experiments has
to be performed for finding better probabilities of mutation, size of population, better
mutation, suitability of crossover operator. Problem in each experiment is randomness,
evolution based algorithms are based on random values and for deciding if (for instance)
this specific probability of mutation is better, dozens of evolution has to be performed and
it takes lot of time.
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Chapter 9

Conclusion

Goal of this master thesis was implement various number of photon mapping implementa-
tions and perform few test on them, this goal was achieved. This implementation was done
on normal photon mapping on CPU, progressive photon mapping on CPU and GPU. In
last part of this thesis genetic algorithm for acceleration of photon mapping was proposed.

In normal photon mapping implementation, whole renderer was made. This renderer
include fast ray-triangle intersection, spatial subdivision, loading scene from assimp library.
Performed experiments on this renderer was on achieved acceleration from spatial index
and mostly on indices from FLANN and ANN libraries. Best spatial index from this two
libraries was kd-tree from FLANN library. In the end of photon mapping section, test of
approximate nearest search on photon mapping was performed. This test shown that this
type of searching is inappropriate for photon mapping and this approximate search lead to
worse final result.

In progressive photon mapping implementation, progressive variant of photon mapping
was implemented on CPU first, and then it was implemented on GPU. This two imple-
mentation was compared between each other. Speed of GPU implementation’s block was
measured and slowest block was block for computing illumination from photon map. This
block was implemented very naively first, but for this block various acceleration technique
was proposed. Best technique is combining grid structure upon photon map and clustered
hitpoints from k-means. Speed of this slowest block was accelerated 64 times compared to
CPU variant on GPU.

In last chapter, slowest block of progressive photon mapping on GPU was accelerated
through evolutionary based algorithm. This genetic algorithm tries to find more suitable
clusters than k-means does. Three fitness functions on CPU and one fitness function on
GPU was proposed for this evolution based clustering algorithm. Result speed of illumi-
nation block was nearly half accelerated, but it takes enormous time to compute suitable
clusters on bigger resolution (30 minutes on lowest resolution for one mesh) and because
of that it could be used only as precomputation for static scenes, when it is precomputed
once, saved and used many times later.

This master’s thesis show me that evolution based algorithms could lead to faster ren-
dering time and I want to try implement them in various occasions - in constructing kd-tree,
to faster ray-triangle intersections. But first, I have to made really photorealistic render
and I plan to made it on OptiX framework.

While I was working on master thesis I learned a lot. I learned how advanced global illu-
mination methods work, I improved skills in math, geometry, programing, analytic thinking
and many other little skills. It was long hard journey, but it was worth it.
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