
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

IMPLEMENTACE ALGORITMU PRO VIZUÁLNÍ
SEGMENTACI WWW STRÁNEK

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. TOMÁŠ POPELA
AUTHOR

BRNO 2012

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

IMPLEMENTACE ALGORITMU PRO VIZUÁLNÍ
SEGMENTACI WWW STRÁNEK
IMPLEMENTATION OF ALGORITHM FOR VISUAL WEB PAGE SEGMENTATION

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. TOMÁŠ POPELA
AUTHOR

VEDOUCÍ PRÁCE Ing. JAN ZELENÝ
SUPERVISOR

BRNO 2012

Abstrakt
Segmentace WWW stránek, neboli dělení stránky na různé sémantické bloky, je jedna z
disciplín techniky extrakce informací. Diplomová práce se zabývá metodou Vision-based
Page Segmentation - VIPS, která spočívá v dělení stránky na základě vizuálních vlast-
ností prvků stránky. Metoda je uvedena v kontextu dalších význačných segmentačních pos-
tupů. V práci jsou popsány a na příkladech ukázány nejdůležitější kroky, ze kterých se tato
metodika skládá. Pro metodu VIPS je nezbytná spolupráce s vykreslovacím jádrem WWW
stránek, z důvodu získání DOM stromu stránky. V práci jsou představeny a popsány čtyři
nejvýznačnější enginy pro programovací jazyk Java. Výstupem této práce je implementace
algoritmu VIPS právě v jazyce Java s využitím jádra CSSBox. Dále je představena původní
implementace algoritmu z laboratoří firmy Microsoft. Popsány jsou jednotlivé etapy vývoje
knihovny realizující metodu VIPS a vlastního přístupu k jejímu řešení. Výsledek práce je
v závěru demonstrován při segmentaci několika internetových stránek.

Abstract
Segmentation of WWW pages or page division on different semantics blocks is one of the
disciplines of information extraction. Master’s thesis deals with Vision-based Page Seg-
mentation - VIPS method, which consist in division based on visual properties of page’s
elements. The method is given in context of other prominent segmentation procedures. In
this work, the key steps, that this method consist of are shown and described on examples.
For VIPS method it is necessary to cooperate with WWW pages rendering engine in order
to obtain Document Object Model of page. The paper presents and describes four most im-
portant engines for Java programming language. The output of this work is implementation
of VIPS algorithm just in Java language with usage of CSSBox core. The original algorithm
implementation from Microsoft’s labs is presented. The different development stages of li-
brary implementing VIPS method and my approach to it’s solution are described. In the
end of this work the work’s outcome is demonstrated on several pages segmentation.

Klíčová slova
Vision-based Page Segmentation, Java, Linux, WWW, Segmentace, CSSBox, Document
Object Model

Keywords
Vision-based Page Segmentation, Java, Linux, WWW, Segmentation, CSSBox, Document
Object Model

Citace
Tomáš Popela: Implementace algoritmu pro vizuální
segmentaci www stránek, diplomová práce, Brno, FIT VUT v Brně, 2012

Implementace algoritmu pro vizuální segmentaci www
stránek

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením pana Ing.
Jana Zeleného

. .
Tomáš Popela

23. května 2012

Poděkování
Tímto bych chtěl rád poděkovat panu Ing. Janu Zelenému za jeho pomoc a vedení při
realizaci této práce.

c© Tomáš Popela, 2012.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě infor-
mačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění
autorem je nezákonné, s výjimkou zákonem definovaných případů.

Obsah

1 Úvod 3

2 Segmentace WWW stránek 4
2.1 Text-based Page Segmentation - TextPS . 4
2.2 DOM-based Page Segmentation - DomPS 5
2.3 Combined Page Segmentation - CombPS . 6

3 Vision-based Page Segmentation - VIPS 8
3.1 Struktura webové stránky v rámci VIPS . 8
3.2 Popis algoritmu VIPS . 12

3.2.1 Extrakce vizuálních bloků . 14
3.2.2 Detekce vizuálních separátorů . 19
3.2.3 Konstrukce struktury obsahu WWW stránky 21

3.3 Využití algoritmu VIPS . 21

4 Vykreslovací jádra WWW stránek 22
4.1 WebKit . 22
4.2 Gecko . 23
4.3 SWT toolkit . 23
4.4 CSSBox . 24
4.5 Cobra . 25
4.6 Renderovací schopnosti . 25

5 Implementace - algoritmus VIPS 27
5.1 Knihovna VIPS . 27

5.1.1 Použití . 27
5.1.2 Výstup . 28

5.2 CSSBox . 30
5.2.1 Proces vykreslování . 30

5.3 Návrh . 31
5.4 Implementace . 33

5.4.1 Detekce a extrakce vizuálních bloků 33
5.4.2 Detekce vizuálních separátorů . 34
5.4.3 Konstrukce vizuální struktury . 36
5.4.4 Výstup . 38
5.4.5 API . 39

1

6 Dosažené výsledky 42
6.1 Demonstrace řešení . 42

6.1.1 Ukázka č. 1 . 42
6.1.2 Ukázka č. 2 . 43
6.1.3 Ukázka č. 3 . 45

6.2 Výkonnost . 46

7 Závěr 48

Literatura 49

Seznam příloh 53

Přílohy 53
Obsah DVD . 54

2

Kapitola 1

Úvod

Segmentace internetových stránek je pojem, který většině uživatelů sítě Internet bude jistě
vzdálený, ačkoliv jsou s ním prakticky denně v kontaktu. Provází nás při hledání menu
naší oblíbené restaurace nebo při hledání hodnocení nebo recenze na právě běžící film v
kině. Tato technologie je totiž součástí vyhledávacích enginů internetových vyhledávačů
jako například Yahoo[28]. S jejím využitím nám mohou vyhledávací portály navracet rele-
vantnější výsledky, filtrovat je a lépe nás směrovat k výsledkům na jednotlivých stránkách.

Segmentace stránek je jednou z disciplín vědního oboru extrakce informací. Extrakce in-
formací se zabývá získáváním strukturovaných informací z nestrukturovaných nebo částečně
strukturovaných dokumentů. Jelikož se jedná o disciplínu počítačových věd, tak tyto doku-
menty musí být strojově čitelné. Typickým příkladem této metodiky je zpracování vyfo-
cených či jinak získaných dokumentů napsaných v přirozeném jazyce. Následně můžeme
získaná data interpretovat nebo například uložit do databáze. Z uvedeného příkladu vidíme
praktickou aplikaci těchto segmentačních technik.

V druhé kapitole jsou popsány tři techniky segmentace webových stránek z vědního
oboru extrakce informací. Patří mezi ně Text-based Page Segmentation, která segmentuje
stránku na základě textu, který se na stránce nachází. Dále je to DOM-based Page Seg-
mentation, která analyzuje Document Object Model stránky. Nejvýznačnější metodou je
segmentace založená na vizuálních vlastnostech a analýze DOM stromu na vizuální bloky.
Tato technika se nazývá Vision-based Page Segmentation (VIPS) a je popsána v druhé
kapitole. Posledním zástupcem je metoda Combined Page Segmentation, která se skládá z
více metod, postupně aplikovaných na stránku.

Třetí kapitola se dopodrobna zabývá metodou Vision-based Page Segmentation. Jsou
zde popsány a demonstrovány hlavní principy a postupy vizuální segmentace při dělení
internetové stránky na význačné vizuální bloky.

Následující čtvrtá kapitola představuje nejvýznamnější dostupná vykreslovací jádra we-
bových stránek pro programovací jazyk Java. Jsou zde popsány jejich vlastnosti, ukázáno
použití v jazyce Java a také možnosti přístupu k Document Object Modelu stránky. V
závěru jsou porovnány jejich vykreslovací schopnosti.

V pořadí pátá kapitola popisuje vlastní implementaci metody segmentace Vision-based
Page Segmentation v programovacím jazyce Java. Je zde popsáná originální implementace
z laboratoří firmy Microsoft a dále samotný návrh a realizace v jazyce Java.

Předposlední kapitola číslo šest obsahuje shrnutí výsledků a porovnání výstupů a výkon-
nostní stránky s originální implementací algoritmu VIPS.

3

Kapitola 2

Segmentace WWW stránek

Pod pojmem segmentace WWW stránek si můžeme představit dělení stránky dle určitých
pravidel či postupů na vícero sémanticky různých bloků, jejichž obsah můžeme dále zkoumat
nebo tyto bloky filtrovat.

Segmentace internetových stránek nachází uplatnění především v enginech interne-
tových vyhledávačů jako například Yahoo. Zde slouží ke zpřesnění nalezených výsledků
pro vyhledávanou slovní sekvenci a identifikaci její polohy v rámci stránky, na které se
nachází. S touto technologií může engine rozpoznat a vynechat výskyty vyhledávaného
sousloví například v komentářích pod článkem nebo v odkazech sloužících k navigaci po
internetovém portálu a tímto může navracet relevantnější výsledky.[28]

Metodiky segmentace WWW stránek se také částečně prolínají s technikami analýzy
dokumentů a jsou využívány při aplikaci oboru získávání znalostí.

V jednotlivých podkapitolách si přiblížíme tři nejvýznamnější postupy segmentace we-
bových stránek dle [23]. Poslední metoda VIPS - Vision-based Page Segmentation bude
popsána v samostatné kapitole číslo 3.

2.1 Text-based Page Segmentation - TextPS

Text-based Page Segmentation neboli metody segmentace stránky na základě textu, který
se na stránce nachází. Mohou být tedy použity i k analýze textových dokumentů. Nejvíce
se tyto metody používaly pro segmentaci webových stránek v době před 15 lety, kdy se
internetové stránky skládaly především z bloků textu. Jejich základem je práce s plošným
modelem stránky, kdy jsou ze segmentované WWW stránky odstraněny všechny HTML1

značky a atributy. Tyto metody již dnes nejsou aplikovány na webové stránky samostatně,
ale našly svoji roli jako dílčí části komplexnějších metod, jak je například uvedeno v sekci
2.3.[23]

Zástupcem těchto metod je metoda Fixed-length Page Segmentation, která je založena
na extrakci tzv. pasáží (bloky dokumentu) pomocí pevného počtu sousedících slov. Tento
proces si můžeme představit jako použití okna daných rozměrů (počet slov či znaků, velikost
okna je rovna zpravidla od 50 až po 400 znaků), které se pohybuje celým dokumentem.
Pokaždé, když okno zastaví, tak zobrazí nebo extrahuje daný počet sousedních slov. Každé
prostřední slovo v daném okně je zároveň konečným slovem předchozího okna a začátkem
následujícího. Pro každou takto získanou pasáž je spočteno ohodnocení, na jehož základě
jsou poté určeny bloky v dokumentu. Navzdory jednoduchosti je tato metoda velmi robustní

1HyperText Markup Language - http://www.w3.org/MarkUp

4

http://www.w3.org/MarkUp

a výkonná. Naproti tomu její největší nevýhodou je, že do segmentačního procesu nejsou
zakomponovány sémantické informace ze segmentované stránky či bloku. V [29] jsou dále
rozebrány různé přístupy k velikosti okna a ohodnocení získané pasáže.[21, 26, 29]

2.2 DOM-based Page Segmentation - DomPS

DomPS je metoda realizující segmentaci stránky na základě jejího DOM2 modelu se značka-
mi jazyka HTML. Při procházení DOM modelu se jako segmentované bloky uvažují části
uvozené v HTML značkách <TITLE> (titulek), <P> (odstavec), <H1> až <H6> (nadpis), <META>
(popis obsahu), <TABLE> (tabulka) nebo jiných. Problémem této metody je přesnost rozk-
ladu stránky na jednotlivé bloky, jelikož značky <TABLE> je využíváno kromě jiného také
k rozvržení prvků v rámci stránky. Z tohoto důvodu nedojde k odpovídajícímu rozdělení
na bloky. Dalším problémem je fakt, že mnoho webových stránek nedodržuje specifikace
HTML, a tak ztěžuje či úplně znemožňuje správnou segmentaci.[23]

Příkladem algoritmu metody DomPS je například algoritmus WISH, jehož úkolem je
zpracovat DOM strom stránky a extrahovat požadovaný obsah. Algoritmus je zaměřen na
speciální struktury nazvané datové záznamy - data records, což jsou části stránky, které
se opakují, ale pokaždé s jiným obsahem. Datové záznamy jsou definovány jako elementy,
jenž se nachází na stejné úrovni DOM stromu, dále musí obsahovat sekvence opakujících se
potomků a musejí mít podobného předka (uzel v DOM stromě). Předka označujeme jako
datovou oblast - data region. Příkladem datového záznamu mohou být například položky
po vyhledávání nebo položky menu (rozcestník) na stránce, jak je ukázáno na obrázku 2.1.

(a) Výsledky po vyhledávání (b) Menu

Obrázek 2.1: Ukázky struktury datový záznam v rámci algoritmu WISH

Prvním krokem algoritmu WISH je extrakce takových uzlů DOM stromu, jenž mohou
být potencionálními datovými záznamy. Ty jsou detekovány postupným procházením DOM
stromu po jednotlivých úrovních. Pokud na dané úrovni není nalezen žádný kandidát na
datový záznam, tak se algoritmus přesune o úroveň níže. Po detekci všech potencionálních
datových záznamů je zahájena fáze jejich filtrování, která využívá následující heuristiky s
jejichž pomocí poznáme, zda se jedná o datový záznam či nikoliv.

• Datové záznamy (a k nim odpovídající datové oblasti) mají velké rozměry v porovnání
s rozměry celé stránky.

2Document Object Model - http://www.w3.org/DOM

5

http://www.w3.org/DOM

• Datové záznamy se zpravidla opakují více než třikrát na celé stránce.

• Z popisu datového záznamu můžeme utvořit vzor, který můžeme aplikovat na ostatní
záznamy.

• Obvykle skládají z nízkého počtu HTML značek.

Po filtraci všech potencionálních datových záznamů je všem datovým oblastem přiřazena
číselná hodnota, která je vypočtena na základě obsahu datových záznamů v nich zapouzdře-
ných. Do výpočtu jsou zahrnuty znaky textu, obrázky, ale také i elementy reprezentující
prázdné místo. Datová oblast s největší takto vypočtenou hodnotou je označena za hlavní
obsah stránky.[31]

2.3 Combined Page Segmentation - CombPS

Metoda skládající se z postupné aplikace různých segmentačních metod. Nejčastěji je použ-
ívána kombinace metod VIPS a TextPS. V prvním kroku je aplikována níže popsaná
metoda VIPS, kterou získáme jednotlivé vizuální bloky stránky. Na tyto bloky poté apliku-
jeme metodu Fixed-length Page Segmentation popsanou v sekci 2.1. Při využití CombPS
dochází v porovnání s předešlými metodami k získání nejlepšího dělení stránek na jednotlivé
bloky.[23]

We're Knights of the Round Table.
We dance whene'er we're able.
We do routines and chorus scenes
With footwork impeccable.
We dine well here in Camelot.
We eat ham and jam and spam a lot.
We're Knights of the Round Table.
Our shows are formidable,
But many times we're given rhymes
That are quite unsingable.
We're opera mad in Camelot.
We sing from the diaphragm a lot.

In war we're tough and able,
Quite indefatigable.
Between our quests we sequin vests
and impersonate Clark Gable.
It's a busy life in Camelot.

I have to push the pram a lot.

VB1-1 VB1-2

VB1-2-1

VB1-2-2

VB1-1 VB1-2

VB1

VB1-2-1 VB1-2-2

VB1-2-2-1 VB1-2-2-2 VB1-2-2-3 VB1-2-2-4 VB1-2-2-5

Vision-based Page Segmentation

Fixed-length Page Segmetation

Obrázek 2.2: Kombinace segmentačních metod Vision-based Page Segmentation a
Fixed-length Page Segmentation

Na výše uvedeném obrázku můžeme vidět aplikaci metody CombPS na stránku uvede-
nou vlevo. První je aplikována metoda VIPS a stránka je segmentována na bloky VB1 1,
VB1 2 a dále VB1 2 1 a VB1 2 2. Poté je proces segmentace metodou VIPS ukončen.
Následně je na blok VB1 2 2 aplikována metoda Fixed-length Page Segmentation. Text v
bloku bude postupně načítán do okna o zvolené velikosti. Pokud je k dispozici menší počet

6

slov než velikost okna, tak je text v bloku označen jako finální blok. Blok VB1 2 2 bude
tedy rozdělen na pět bloků VB1 2 2 1 až VB1 2 2 5.

7

Kapitola 3

Vision-based Page Segmentation -
VIPS

Vision-based Page Segmentation Algorithm neboli algoritmus pro vizuální segmentaci strá-
nek je postup dělení stránky na sémanticky různé bloky tak, jak stránku člověk vnímá. Mezi
hlavní vlastnosti této metody patří průchod webovou stránkou od shora dolů a nezávislost
na stromu značek (například HTML značek) použitého programovacího jazyka.

Pokud není v této kapitole uvedeno jinak, tak níže uvedené informace v rámci této
kapitoly pochází z práce VIPS: a Vision-based Page Segmentation Algorithm od autorů
Deng Cai, Shipeng Yu, Ji-Rong Wen a Wei-Ying Ma[24].

3.1 Struktura webové stránky v rámci VIPS

Pro práci s vizuální segmentací webové stránky si musíme nadefinovat některé základní
pojmy.

Definice 1. Základním objektem nazveme koncový uzel DOM stromu, který nejde již dále
segmentovat na menší části. V rámci VIPS pracujeme se strukturami, kde každý prvek zvaný
blok, je buďto základním objektem nebo množinou základních objektů. Prvek v rámci metody
VIPS nemusí odpovídat prvku v DOM stromu.

Definice 2. Webová stránka či podstránka Ω je trojice Ω = (O,Φ, δ), kde
O = {Ω1,Ω2, . . . ,ΩN} je konečná množina bloků, jenž se vzájemně nepřekrývají,
Φ = {ϕ1, ϕ2, . . . , ϕT } je konečná množina horizontálních a vertikálních separátorů, kde
každý separátor má přiřazenu váhu, která je vypočtena na základě jeho vizuálních vlastností,
δ : O×O → Φ∪ {NULL} je zobrazení, které popisuje vztah každých dvou bloků z množiny
O.

Definice 3. Nechť Ωi a Ωj jsou dva objekty v O, pak δ(Ωi,Ωj) 6= NULL říká, že objekty
Ωi a Ωj jsou od sebe odděleny separátorem δ(Ωi,Ωj). Můžeme také říci, že dva objekty jsou
sousedními, pokud se mezi bloky Ωi a Ωj nenachází žádné jiné objekty.

Dle definice číslo 2 je webová stránka definována jako trojice Ω = (O,Φ, δ), kde množina
O obsahuje všechny vizuální bloky, které se na dané stránce nachází. Jsou to například bloky
VB1 2 nebo VB1 3 3 2 z obrázku 3.2. Některé z těchto bloků jsou od sebe vizuálně odděleny.
Tato skutečnost je reflektována v množině Φ , která obsahuje všechny vizuální separátory.
Separátory dělíme na horizontální či vertikální a zpravidla to jsou různě široké linie na

8

webové stránce. Příkladem separátoru je například ϕ2 nebo ϕ1
3 na obrázku 3.2. Separá-

tory mají přiřazenu určitou váhu, která odpovídá jejich vizuálním vlastnostem a vizuálním
vlastnostem bloků, které oddělují. Všechny separátory v jedné množině Φ musí mít stejnou
hodnotu. Posledním parametrem je zobrazení δ, které popisuje vztah mezi bloky z množiny
všech vizuálních bloků O. Definice číslo 3 říká, kdy jsou dva bloky sousedními. Příklad
sousedních bloků můžeme vidět na obrázku 3.2, kde právě bloky VB1 3 2 1 a VB1 3 2 2
jsou sousedními.

Obrázek 3.2 ukazuje vizuální strukturu pro webovou stránku 3.1. Celou, nerozdělenou
stránku nazýváme VB1. Poznamenejme, že separátor ϕ1

1 je zde zobrazen dvakrát, kdy první
jeho výskyt označuje počátek separátoru a druhý konec separátoru. V hierarchickém stromě
vizuálních bloků 3.3 si můžeme povšimnout, že vrchní část stránky se skládá ze dvou objektů
neboli vizuálních bloků VB1 1 a VB1 2, které jsou odděleny separátorem ϕ1. Vizuální
struktura této části bude vypadat následovně:

O = (VB1 1,VB1 2)

Φ = {ϕ1}

δ

(
(VB1 1,VB1 2)

jinak

)
=

(
ϕ1

NULL

) (3.1)

Dále můžeme specifikovat vizuální strukturu pro každý zanořený objekt stránky. Blok
VB1 3 2 má tři potomky, které vymezují dva separátory:

VB1 3 2 = (VB1 3 2 1, VB1 3 2 2, VB1 3 2 3)

Φ2 = {ϕ1
3, ϕ

2
3}

δ2

 (VB1 3 2 1,VB1 3 2 2)
(VB1 3 2 2,VB1 3 2 3)

jinak

 =

 ϕ1
3

ϕ2
3

NULL

 (3.2)

Pro každý vizuální blok je definován stupeň konzistence (Degree of Coherence - DoC) v
rozmezí od 1 do 10, který určuje, jak konzistentní daný blok je. DoC má tyto dvě vlastnosti:

• Čím větší je hodnota DoC, tím více je blok konzistentní.

• V hierarchickém stromě není stupeň konzistence syna menší než jeho předka.

Můžeme také předdefinovat povolený stupeň konzistence (Permitted Degree of Coher-
ence - PDoC) k dosažení různé jemnosti segmentace stránky na vizuální bloky. Čím je
menší hodnota PDoC, tím více bude výsledek hrubší. Například v obrázku 3.2 nemusí být
vizuální blok VB1 3 3 dále rozdělen na bloky VB1 3 3 1 a VB1 3 3 2, pokud mu bude
přiřazeno dostatečně nízké ohodnocení PDoC.

Vizuální struktury slouží především k sémantickému dělení stránky. Každý prvek této
struktury představuje určitou sémantiku. V obrázku 3.2 vidíme že blok VB1 3 1 obsahuje
odkazy pro orientaci na internetové stránce nebo blok VB1 3 3 zobrazuje informace o naší
fakultě.

9

Obrázek 3.1: Webová stránka www.fit.vutbr.cz před extrakcí vizuálních bloků

VB_1_1

VB1_2

VB1_3_1

VB1_4_1

VB1_3_2_1

VB1_3_2_2

VB1_4_2

VB1_3_2

VB1_3_3_2

φ
2

φ
3

φ
3

φ
3

VB1_1

VB1_3_2_3

VB1_1_1
VB1_1_2

φ
1 φ

1

1 1

φ
1

φ
3

1

3

2

VB1_3

VB1_4

VB1_3_3_1

φ
3

1

2

φ
3

VB1_3_3

VB1_2_1 VB1_2_3VB1_2_2 VB1_2_4VB1_2_5

φ
2

φ
2

φ
2

φ
2

1 2 3 4

Obrázek 3.2: Extrahované vizuální bloky a separátory

10

www.fit.vutbr.cz

VB1_3_1

VB1

VB1_2VB1_1 VB1_3 VB1_4

VB1_1_1 VB1_1_2 VB1_4_1 VB1_4_2

VB1_3_2 VB1_3_3

VB1_4_1 VB1_4_2

VB1_3_2_3VB1_3_2_2VB1_3_2_1

Obrázek 3.3: Hierarchický strom vizuálních bloků stránky (pro zjednodušení není rozvinut
blok VB1 2)

11

3.2 Popis algoritmu VIPS

HTML

HEAD

BODY

H3

TABLE

STYLE

Písmo

barva

velikost

váha
tučné

DOM strom Vizuální vlastnosti

Detekce a extrakce
vizuálních bloků

Detekce vizuálních
separátorů

Konstrukce vizuální
struktury

VB1

VB1-4VB1-1 VB1-3VB1-2

Dostatečně
rozděleno?

Pro všechny
bloky, které
nesplní daný

stupeň
jemnosti

VB1

VB1-4VB1-1 VB1-3VB1-2

...

Finální
vizuální

struktura

Obrázek 3.4: Postup vizuální segmentace

Proces segmentace, tak jak je uveden na obrázku 3.4, sestává ze 3 částí: detekce a extrakce
vizuálních bloků, detekce vizuálních separátorů a konstrukce vizuální struktury obsahu.
Webová stránka je v první iteraci rozdělena na několik velkých bloků. Poté na každý z
těchto bloků opakovaně aplikujeme stejný segmentační proces, dokud nezískáme takové
bloky, jejichž stupeň konzistence je větší, než povolený stupeň konzistence PDoC.

Pro každou aplikaci segmentačního procesu je z webového prohlížeče získán DOM strom
s vizuálními informacemi, které odpovídají danému zpracovávanému bloku (pro první it-
eraci získáme informace pro celou internetovou stránku). Poté je od kořenových uzlů DOM
stromu (například DOM uzel 1 v obrázku 3.5b) zahájen proces extrakce bloků. Pro každý
uzel DOM stromu (uzly 1,2,5,6,9) je rozhodnuto, zda tvoří samostatný blok (nelze je dále
rozdělit) nebo nikoliv. Pokud netvoří vizuální blok (uzly 1,5), tak bude dále segmentován
na menší. Každému extrahovanému bloku (uzly 2,6,9) přiřadíme stupeň konzistence DoC,

12

který určíme na základě jeho vizuálních vlastností a HTML značky uzlu, který danému
bloku odpovídá.

A

B

C

(a) Rozložení webové stránky

1

2 5

3 4

96

7 8 11 12

AA

BB CC

(b) Odpovídající část DOM stromu

Obrázek 3.5: Ukázka bloků na stránce spolu s odpovídajícím DOM stromem

Pokud jsou všechny bloky dané stránky či podstránky v dané iteraci extrahovány, tak
se přechází do fáze detekce vizuálních separátorů. V této etapě jsou detekovány separátory
oddělující získané vizuální bloky v předchozí fázi. Po detekci jsou jim nastaveny váhy na
základě vlastností bloků, které oddělují. S pomocí těchto separátorů můžeme zkonstruovat
hierarchii rozložení bloků na stránce (viz. diagram 3.3). Po konstrukci této hierarchie v dané
iteraci algoritmu VIPS je pro každý koncový uzel ze získané struktury ověřeno, zda splňuje
danou jemnost segmentace (PDoC). Pokud určenou jemnost nesplňuje, tak tento koncový
uzel není označen jako vizuální blok a bude dále rozdělen. Například, pokud bloky B či C v
obrázku 3.5 nesplní povolený stupeň konzistence, tak je označíme jako podstránky a budou
dále segmentovány tak, jak je ukázáno na obrázku 3.6.

Po zpracování všech bloků je vytvořena výsledná vizuální struktura pro danou webovou
stránku. Pro výše zmíněné příklady obdržíme strukturu uvedenou na obrázku 3.7.

13

A

B1

B2

B4

B3

B5

B1

B3

B2

(a) Rozložení webové stránky

96

7 8 11 12

CC
B1

B2 B3 B4 B5

C1 C2 C3
BB

(b) DOM strom odpovídající blokům B a C

Obrázek 3.6: Rozdělení bloků B a C

Stránka

A B C

B1 B2 B3 B4 B5

C1 C2 C3

Obrázek 3.7: Vizuální struktura webové stránky z obrázku 3.5a

3.2.1 Extrakce vizuálních bloků

Nyní si blíže popíšeme nalezení a extrakci vizuálních bloků na internetové stránce. Obecně
každý uzel v DOM stromě může reprezentovat vizuální blok. Avšak některé uzly, jako
<TABLE> a <P> jsou použity spíše pro organizační účely a nejsou vhodné k reprezentaci
samostatného vizuálního bloku. Při použití těchto HTML značek je daný uzel dále rozdělen
na menší části (například tabulka na jednotlivé řádky či sloupce). Navíc, z důvodu velké
flexibility jazyka HTML, mnoho stránek plně nedodržuje specifikaci W3C1 HTML, a proto
DOM strom nemůže vždy plně reflektovat pravý vztah různých DOM uzlů.

Pro každý extrahovaný uzel, který reprezentuje vizuální blok, je nastavena hodnota
stupně konzistence DoC, která odpovídá jeho vizuálním vlastnostem. Tento proces je opako-

1World Wide Web Consortium - http://www.w3.org

14

http://www.w3.org

ván, dokud nejsou nalezeny všechny příslušné uzly, které reprezentují všechny vizuální bloky
na dané stránce.

Posouzení, zda může být DOM uzel segmentován, probíhá podle následujících pravidel:

• Vlastnosti DOM uzlu.
Například HTML značka uzlu, barva pozadí uzlu, velikost a tvar bloku, který odpovídá
danému DOM uzlu.

• Vlastnosti potomků DOM uzlu.
Jako příklad můžeme uvést HTML značky synovských uzlů, barvu pozadí a velikost
potomků. Dále můžeme například použít počet navzájem různých potomků daného
uzlu.

Pokud budeme uvažovat specifikaci HTML 4.012, tak můžeme DOM uzly rozdělit do
dvou kategorií, řádkový uzel a blokový uzel takto:

• Řádkový uzel
Takový DOM uzel s jednořádkovými textovými HTML značkami, které ovlivňují vzh-
led textu a mohou být aplikovány na posloupnost znaků bez toho, aniž by způsobily
vznik nového řádku. Mezi tyto značky patří například (tučný text), <BIG> (velký
text), (specifikace písma), <I> (kurzíva), <U> (podtržený text) a další.

• Blokový uzel
Všechny ostatní HTML značky mimo těch, které specifikují jednořádkový uzel.

Výše uvedené dělení ale není pevně dané, jelikož pomocí vlastnosti display3 kaská-
dových stylů CSS můžeme měnit vlastnosti zobrazení HTML elementu. Můžeme tedy
například prvku přiřadit chování blokových uzlů.

Na základě vzhledu uzlu v prohlížeči a vlastností potomků uzlu definujeme následující
typy uzlů:

• Validní uzel
Takový uzel, který můžeme vidět v prohlížeči. To znamená, že šířka a výška uzlu jsou
nenulové.

• Textový uzel
Uzel DOM stromu, který odpovídá volnému textu a nemá přiřazenu žádnou HTML
značku.

• Virtuální textový uzel

◦ Řádkový uzel s potomky, kteří jsou textovými uzly, se nazývá virtuální textový
uzel.

◦ Řádkový uzel s potomky, kteří jsou textovými uzly nebo virtuálními textovými
uzly nazveme také virtuálním textovým uzlem.

Vizuální bloky při extrakci dělíme dle následujících vlastností DOM objektů:

• HTML značky:

2Specifikace HTML 4.01 - http://www.w3.org/TR/html4
3CSS vlastnost display - http://www.w3schools.com/cssref/pr_class_display.asp

15

http://www.w3.org/TR/html4
http://www.w3schools.com/cssref/pr_class_display.asp

1. Značky jako <HR> (horizontální linie) jsou často používány k oddělení různých té-
mat z vizuální perspektivy. Proto preferujeme dělení DOM uzlu pokud obsahuje
jednu z těchto značek.

2. Pokud řádkový uzel má syna, který je blokovým uzlem, tak tento jednořádkový
uzel dále dělíme.

• Barva: Preferujeme dělení DOM uzlu, pokud barva jeho pozadí je různá od barvy
pozadí jednoho ze synů. Zároveň nebude tento potomek s odlišnou barvou pozadí v
této iteraci dále dělen.

• Text: Pokud je většina potomků daného DOM uzlu textovými uzly nebo virtuálními
textovými uzly, tak preferujeme dále nedělit tento uzel.

• Rozměry: Předdefinujeme si práh relativní velikosti (velikost uzlu vzhledem k velikosti
celé stránky nebo podstránky) pro různé HTML značky (práh se liší pro DOM uzly,
které mají různé HTML značky). Pokud jsou relativní rozměry uzlu menší než daný
práh, tak preferujeme uzel dále nedělit.

Na základě těchto pravidel, můžeme určit heuristická pravidla, která jsou použita při
rozhodování, zda by měl být uzel dále rozdělen či nikoliv. Pokud by neměl být dále dělen,
tak je blok extrahován a je mu následně přiřazena odpovídající hodnota stupně konzistence
DoC. Seznam heuristických pravidel seřazených podle jejich priority nalezneme v tabulce
3.2.1.

16

Pravidlo 1
Pokud DOM uzel není textovým uzlem a nemá žádné validní potomky, tak
tento uzel nemůže být dále rozdělen a bude vyřazen.

Pravidlo 2
Pokud DOM uzel má pouze jednoho validního potomka a tento potomek
není textovým uzlem, tak jej rozdělíme.

Pravidlo 3
Pokud DOM uzel je kořenovým uzlem DOM podstromu (který odpovídá
danému bloku) a je jediným podstromem, který odpovídá danému bloku,
tak jej dále dělíme.

Pravidlo 4

Pokud všechny potomci DOM uzlu jsou textovými nebo
virtuálními textovými uzly, tak daný uzel nedělíme.
Pokud je velikost a váha písma všech těchto potomků stejná, tak
nastavíme stupeň konzistence extrahovaného bloku na maximum, tedy
hodnotu 10. Jinak nastavíme DoC získaného bloku na 9.

Pravidlo 5
Pokud je jeden z potomků aktuálního DOM uzlu víceřádkovým uzlem, tak
aktuální uzel dále dělíme.

Pravidlo 6
Pokud má jeden z potomků aktuálního DOM uzlu HTML značku <HR>,
tak aktuální uzel rozdělíme.

Pravidlo 7

Pokud je barva pozadí aktuálního uzlu různá od jednoho z jeho synů, tak
rozdělíme aktuální uzel a zároveň potomek s různou barvou pozadí nebude
v této iteraci dále dělen. Nastavíme hodnotu DoC na 6-8 podle HTML
značky uzlu potomka a jeho rozměrů.

Pravidlo 8
Pokud uzel má alespoň jednoho textového nebo virtuálního textového po-
tomka a relativní rozměry uzlu jsou menší než práh, tak tento uzel neb-
udeme dále dělit. Nastavíme hodnotu DoC na 5-8 dle HTML značky uzlu.

Pravidlo 9
Pokud velikost potomka s největšími rozměry je menší než práh (relativní
velikost), tak tento uzel dále nedělíme. Nastavíme hodnotu DoC odpoví-
dající HTML značce uzlu.

Pravidlo 10
Pokud předchozí sourozenecký uzel nebyl rozdělen, tak aktuální uzel
nedělíme.

Pravidlo 11 Rozděl aktuální uzel.

Pravidlo 12
Dále nerozděluj aktuální uzel. Nastavíme hodnotu DoC podle jeho HTML
značky a velikosti.

Tabulka 3.1: Heuristická pravidla použitá ve fázi extrakce vizuálních bloků[24]

Pokud porovnáme dvě verze technických zpráv o algoritmu VIPS z let 2003[22] a
2004[24], tak zjistíme, že ve starší zprávě je uvedeno ještě jedno pravidlo vedle výše jmen-
ovaných dvanácti.

Pravidlo
Pokud je suma velikostí všech potomků uzlu vetší než velikosti tohoto DOM
uzlu, tak tento uzel bude dále rozdělen.

Tabulka 3.2: Dodatečné pravidlo ze starší technické zprávy algoritmu VIPS[22]

Toto pravidlo je umístěno mezi šestým a sedmým pravidlem v tabulce . Při dodatečné
implementaci tohoto pravidla se však detekce vizuálních bloků nezměnila, a proto bylo
nejspíše v originální zprávě také odstraněno. Při implementaci algoritmu VIPS v jazyce
Java bude také toto pravidlo vynecháno.

Pro různé DOM uzly s různými HTML značkami aplikujeme jiná pravidla, která jsou

17

uvedena v tabulce 3.3.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12
Jednořádkový
textový uzel

x x x x x x x x x

<TABLE> x x x x x x
<TR> x x x x x x
<TD> x x x x x x x x
<P> x x x x x x x x x
Ostatní značky x x x x x x x x

Tabulka 3.3: Pravidla pro různé DOM uzly (odkazující se na pravidla v tabulce 3.2.1)[24]

Pokud budeme aplikovat extrakci vizuálních bloků na stránku, která je ukázána na
obrázku 3.1 a její struktura na 3.2, tak budeme postupovat následovně. V první iteraci
budou extrahovány vizuální bloky VB1 1 až VB1 4. Obrázek 3.8 zobrazuje vizuální bloky
VB1 3, VB1 4 a obrázek 3.9 zobrazuje část odpovídajícího DOM stromu bloku VB1 3. Ten
je dále rozdělen na tři vertikální bloky VB1 3 1, VB1 3 2 a VB1 3 3. Blok VB1 3 2 v sobě
obsahuje tabulku, a proto jej budeme dále dělit. Při procházení tabulky po řádcích jsou
extrahovány bloky VB1 3 2 1, VB1 3 2 2 a VB1 3 2 3. Pro danou podstránku jsme tedy
získali tři vizuální bloky.

Obrázek 3.8: Část stránky s vizuálními bloky VB1 3 a VB1 4

18

body

div

...

div

table

tr

td

table

tr

tr

tr

VB1

VB1_3_2

VB1_3_2_1

VB1_3_2_2

VB1_3_2_3

html

head

Obrázek 3.9: Část DOM stromu výše uvedené podstránky

3.2.2 Detekce vizuálních separátorů

Poté, co jsou všechny vizuální bloky extrahovány a uloženy, nastává fáze detekce separátorů.
Separátory jsou horizontální nebo vertikální linie ve webové stránce, které se nekříží s
žádnými dříve extrahovanými vizuálními bloky. Oddělovače jsou reprezentovány dvojicí
(Ps, Pe), kde Ps je počáteční a Pe koncový pixel4. Délku separátoru zjistíme spočítáním
rozdílu mezi těmito dvěma hodnotami.

Algoritmus VIPS dokáže najednou pracovat pouze s horizontálními nebo vertikálními
separátory, ne s oběma typy najednou. Musíme tedy aplikovat detekci separátorů v jednom
směru a v takto vzniklých vizuálních blocích detektujeme separátory opačné orientace, čímž
dosáhneme správného dělení vizuálních bloků.

Detekce vizuálních separátorů se skládá z následujících kroků:

1. Inicializace seznamu separátorů. Seznam obsahuje pouze jeden separátor (Pbe, Pee),
jehož počáteční a koncový pixel odpovídá rozměrům stránky.

2. Pro každý získaný vizuální blok je vyhodnocen vztah mezi ním a každým separátorem:

(a) Pokud se blok nachází v separátoru, tak jej rozdělíme.

(b) Pokud se blok kříží se separátorem, upravíme parametry separátorů.

4Pixel - https://en.wikipedia.org/wiki/Pixel

19

https://en.wikipedia.org/wiki/Pixel

(c) Pokud blok zakrývá separátor, tak separátor odstraníme.

3. Odstraníme čtyři separátory, které slouží jako ohraničení stránky (například separá-
tory S1 a S3 v obrázku 3.10).

Mějme obrázek 3.10 jako příklad, kde černé bloky reprezentují vizuální bloky, které
se nacházejí na stránce. Ukážeme si postup detekce vertikálních separátorů. Na počátku
máme pouze jeden separátor S1, který pokrývá celou stránku. Jak je ukázáno na třetím
obrázku, po vložení bloku číslo 1 je jediný separátor rozdělen na dva a to na S1 a S2.
Obdobně vložíme blok číslo 2. Při vkládání třetího bloku se tento blok překříží se sepa-
rátorem S2, jehož parametry budou upraveny. Následně jsou odstraněny separátory S1 a
S3, které tvořily ohraničení stránky a získáme separátor S2, který je jediným detekovaným
vertikálním separátorem na této stránce.

1
2

3

1 1
2

1

3

1
2

3

S1 S2 S1 S2 S3 S1 S2 S3S1

Obrázek 3.10: Detekce vertikálních separátorů stránky

Separátory jsou určeny k oddělení bloků s různou sémantikou, z čehož plyne možnost
nastavit váhu separátoru, která je určena na základě vizuálního rozdílu těch bloků, které
separátor odděluje. Následující pravidla jsou použita při určování váhy:

1. Čím větší je vzdálenost mezi bloky na opačných stranách separátoru, tím větší je
hodnota váhy.

2. Pokud se separátor překrývá s určitými HTML značkami (například <HR> (horizon-
tální linie)), tak jeho váha bude vyšší.

3. Pokud je barva pozadí vizuálního bloku různá na obou stranách separátoru, tak váha
tohoto separátoru bude zvýšena.

4. Pokud jsou větší rozdíly ve vlastnostech písma (velikost či váha) na obou stranách
horizontálních separátorů, tak váhu separátoru zvýšíme. Navíc bude váha zvýšena i v
tom případě, že velikost písma v bloku nad separátorem je menší, než velikost písma
v bloku pod separátorem.

5. Pro horizontální separátory dále platí, že pokud je struktura na obou stranách separá-
torů velmi podobná (například oba bloky obsahují text), tak váha tohoto separátoru
bude snížena.

Na obrázku 3.11b je ukázána část stránky, na které budeme provádět proces extrakce
separátorů. Odpovídající část DOM stromu je na obrázku 3.11a. Po procesu extrakce vizuál-
ních bloků jsou získány a uloženy tři bloky a následně jsou detekovány dva horizontální sep-
arátory. Následně nastavíme váhy separátorů dle výše uvedených pěti pravidel. Separátor,

20

který se nachází mezi blokem číslo 1 a 3 získá větší váhu, než separátor mezi bloky číslo 2
a 3 a to z důvodu různých vah písma (pravidlo 4). Výsledné separátory jsou ukázány na
obrázku 3.11c, kdy platí, že čím silnější je čára, tím větší je její váha.

Obrázek 3.11: Extrakce vizuálních bloků stránky, detekce separátorů, konstrukce struktury
obsahu.

3.2.3 Konstrukce struktury obsahu WWW stránky

Po úspěšné detekci separátorů a přiřazení jejich vah může být sestavena odpovídající struk-
tura obsahu. Proces konstrukce začíná od separátoru s nejnižší vahou. Bloky, které tento
separátor odděluje jsou sloučeny, čímž vznikne nový blok. Tento proces slučování probíhá do
té chvíle, dokud nejsou zpracovány i separátory s nejvyššími vahami. Stupeň konzistence
(DoC) těchto nově vzniklých bloků je nastaven na základě maximální váhy separátorů
nacházejících se v oblasti bloku.

Poté je každý koncový uzel zkontrolován, zda splňuje předem danou jemnost (DoC >
PDoC). Pro každý blok, který daný požadavek nesplní, aplikujeme znovu fázi extrakce
vizuálních bloků za účelem dalšího dělení daného uzlu. Pokud všechny uzly splní danou
jemnost, tak je proces konstrukce struktury obsahu zastaven a vizuální struktura obsahu
pro celou stránku je sestavena.

V první iteraci algoritmu pro obrázek 3.11 na vstupu je vybrán druhý separátor a bloky
číslo 2 a 3 jsou spojeny do nového bloku VB1 2. Takto získaný nový blok je spojen přes
první separátor s prvním blokem, čímž vznikne výsledný blok VB1 1. Každý koncový uzel
jako VB1 1 1, VB1 1 2 a VB1 1 3 bude navíc zkontrolován, zda splňuje danou jemnost.

3.3 Využití algoritmu VIPS

Algoritmus VIPS se stal velmi dobrým základem pro mnohé další segmentační metody a
algoritmy. Můžeme zde zmínit algoritmus od autorů Burget a Rudolfová, který vychází z
VIPS, ale dále jej vylepšuje. Je nezávislý na DOM stromě, ale vychází z konstrukce tzv.
stromu boxů, jenž zastávají vizuální bloky na stránce. Dále je tento strom zpracováván a
analyzován, až je vytvořena finální vizuální segmentace stránky.[31]

Další využití nalezla knihovna VIPS například při modelování webových aplikací a jejich
následné prezentaci v jazyce UML.[25]

21

Kapitola 4

Vykreslovací jádra WWW stránek

Úlohou vykreslovacích jader webových stránek (layout engine nebo také rendering en-
gine) je po předložení obsahu a informací o rozložení a formátu tohoto obsahu dané in-
formace vykreslit na obrazovku. Obsah může být ve formě jazyka HTML, XML1 či obrázků
a jiných. Formátovací informace jsou poskytovány v jazyce CSS2 nebo určitými HTML
značkami. Zpravidla jsou tyto informace definovány v rámci jedné webové stránky, jejíž
adresu stačí vykreslovacímu jádru předat. Vykreslovací jádro je typicky použito v inter-
netových prohlížečích, emailových klientech či všude tam, kde je třeba zobrazit webové
stránky nebo obsah v jazyce HTML.[17]

Mezi nejznámější vykreslovací jádra patří WebKit a Gecko, jenž si v následujících kapi-
tolách popíšeme spolu s některými, ne tak rozšířenými jádry CSSBox a Cobra, která jsou
implementována v programovacím jazyce Java.

4.1 WebKit

Mezi v poslední době nejvíce rozšířená renderovací jádra webových stránek patří WebKit.
Tento engine je open source a je používán napříč všemi platformami. Je založen na jádře
KHTML z projektu desktopového prostředí KDE3. Za jeho vývojem nyní stojí takové firmy
jako Google, který jej používá ve svém internetovém prohlížeči Google Chrome, Apple
(prohlížeč Safari) či Nokia. Oblíben je také v mobilních operačních systémech, kde je použit
ve výchozích prohlížečích platforem iOS a Android. V době psaní této práce byl prohlížeč
Google Chrome 16, jenž WebKit využívá, nejrozšířenějším internetovým prohlížečem na
trhu.[13, 18, 19]

Vykreslovací jádro WebKit je napsáno v jazyce C++. Je multiplatformní a podporuje
řadu moderních technologií jako HTML 54 a CSS3. WebKit je distribuován pod licencemi
LGPL [9] (části WebCore, JavaScriptCore) a licencí BSD verze 2.0 [1] (všechny jeho ostatní
části).

Pokud chceme tento engine využít v jazyce Java, tak nejjednodušší použití nám nabízí
sada grafických prvků SWT pro jazyk Java, jak je ukázáno v části 4.3.

1Extensible Markup Language - http://www.w3.org/XML
2Cascading Style Sheets - http://www.w3.org/Style/CSS
3KDE - http://www.kde.org/
4HTML 5 - http://www.w3.org/TR/html5/

22

http://www.w3.org/XML
http://www.w3.org/Style/CSS
http://www.kde.org/
http://www.w3.org/TR/html5/

4.2 Gecko

Gecko (dříve NGLayout či Raptor) je zdarma dostupný a otevřený vykreslovací engine
vyvinutý společností Mozilla Corporation. Je navržen tak, aby podporoval otevřené inter-
netové standardy a je používán nejen k vykreslování internetový stránek, ale také může být
použit jako aplikační uživatelské rozhraní. Toho je dosaženo tak, že rozhraní je popsáno
ve speciálním jazyce XUL5 a následně vykresleno. Gecko je úspěšně používáno v mnoha
známých aplikacích jako Firefox (internetový prohlížeč) či Thunderbird (správce elektron-
ické pošty).[6, 7]

Renderovací engine Gecko je napsán v jazyce C++ a je multiplatformní. Dále podporuje
moderní technologie jako CSS3 nebo HTML verze 5. Gecko je licencováno pod licencemi
MPL [11], GPL [8] a LGPL [9].

Pro použití v programech napsaných v jazyce Java se dá Gecko aplikovat dvěma způsoby.
Prvním je použití knihoven z Gecko SDK (technologie JavaXPCOM6) a druhým způsobem
je využití prvku Browser ze sady grafických prvků SWT tak, jak je popsáno v kapitole 4.3.

Technologie JavaXPCOM, zprostředkovává komunikaci mezi naší aplikací a instancí
jádra Gecko. Při použití této metody se DOM strom získá následujícím příkazem[5]:

nsIDOMDocument doc = browser.getDocument ();

Zdrojový kód 4.1: Získání DOM stromu pomocí JavaXPCOM

Bohužel JavaXPCOM byl v nejnovější verzi GeckoSDK odstraněn a nebude dále
podporován[10].

4.3 SWT toolkit

Výše uvedená renderovací jádra internetových stránek můžeme použít v programovacím
jazyce Java v rámci prvků uživatelského rozhraní SWT.

SWT je sada grafických prvků pro platformu Java. Byla vyvinuta společností IBM a nyní
je udržována společenstvím Eclipse Foundation společně s IDE Eclipse7. Cílem bylo vytvořit
takovou sadu grafických prvků, která bude vykreslena stejně, nezávisle na platformě. Stan-
dard Widget Toolkit je distribuován pod licencí Eclipse Public License.[30, 16, 4]

Pro naše použití je nejdůležitější prvek uživatelského rozhraní Browser, který slouží
pro vykreslování webových stránek. Tento prvek dokáže využít renderovací jádra Gecko a
WebKit pro jejich vyrenderování.

Pokud chceme využít jádro WebKit v rámci prvku Browser, tak musíme mít v sys-
tému nainstalován balíček poskytující WebKitGTK (minimálně verze 1.2.0) a při vytváření
instance prvku Browser zvolíme styl SWT.WEBKIT. Naopak, pokud chceme využít Gecko
tak musí být nainstalován balíček poskytující XULRunner a instanci vytvoříme se stylem
SWT.MOZILLA. Nabízela by se tedy možnost využití obou jader a uživateli nechat možnost
jejich volby. Tato možnost, ale není doporučena, jelikož dochází ke konfliktům a neočeká-
vanému chování při běhu aplikace.[15, 14]

5XML User Interface Language - https://developer.mozilla.org/En/XUL
6JavaXPCOM - https://developer.mozilla.org/en/JavaXPCOM
7Integrated Developement Environment Eclipse - http://www.eclipse.org

23

https://developer.mozilla.org/En/XUL
https://developer.mozilla.org/en/JavaXPCOM
http://www.eclipse.org

1 Display display = new Display ();
2 Shell shell = new Shell(display);
3 shell.setLayout(new FillLayout(SWT.HORIZONTAL));
4 Browser browser = new Browser(shell , SWT.WEBKIT);
5 browser.setUrl("www.fit.vutbr.cz");
6 shell.open ();
7 while (!shell.isDisposed ())
8 {
9 if (! display.readAndDispatch ()) display.sleep ();
10 }
11 display.dispose ();

Zdrojový kód 4.2: Aplikace vyžívající prvek Browser z SWT

Na výše uvedeném programu v jazyce Java je ukázán výsek zdrojového kódu aplikace,
která vykreslí danou webovou stránku (v tomto případě www.fit.vutbr.cz). Na čtvrtém
řádku je ukázána volba vykreslovacího jádra. Jak již bylo zmíněno, pokud nahradíme
SWT.WEBKIT za SWT.MOZILLA, tak bude použito jádro Gecko. Ukázka vykreslené stránky
je uvedena na obrázku 4.1a.

Pokud bychom chtěli z vykreslené stránky získat reprezentaci DOM stromu, tak tuto
možnost implementace v SWT nenabízí. Jedinou možností je tedy využít funkce napsané v
programovacím jazyce JavaScript a její spuštění nad danou stránkou[12]:

browser.evaluate("return document.getElementById(’id_prvku}’)
.childNodes [0]. nodeValue;");

Zdrojový kód 4.3: Dotazování v jazyce JavaScript nad stránkou v prvku Browser

4.4 CSSBox

CSSBox je HTML/CSS vykreslovací engine napsaný v jazyce Java. Jeho hlavním účelem je
poskytnout kompletní informace o obsahu renderované stránky a jejím rozvržení tak, aby
bylo možné tyto informace dále zpracovávat. Výstupem enginu je objektově orientovaný
model webové stránky, který můžeme vykreslit a získat tak obraz dané stránky. Model je
dále vhodný na následné zpracování pomocí analytických algoritmů a to jak segmentačních
algoritmů, tak analytických, jako například algoritmy sloužící pro extrakci informací. CSS-
Box je distribuován pod licencí GNU LGPL v3.0[9].[20]

Ve zdrojovém kódu 4.4 je ukázán výsek kódu aplikace, která otevře webovou stránku
www.fit.vutbr.cz a pomocí jádra CSSBox ji vykreslí. Na prvním až třetím řádku se připo-
jíme na danou adresu a získáme její obsah, který dále na řádku číslo 4 předáme parseru,
jenž následně vytvoří reprezentaci DOM stromu. Dále jsou od řádku sedm přidávány infor-
mace z kaskádových stylů stránky. Takto rozšířená reprezentace DOM stromu, tvoří spolu
s webovou adresou stránky a kořenovým prvek DOM stromu všechny nutné informace k
následnému vykreslení stránky pomocí pomocí objektu SimpleBrowser. Kód je převzat z
ukázkového příkladu SimpleBrowser projektu CSSBox. Vykreslenou stránku můžeme vidět
na obrázku 4.1c.

Pokud chceme získat DOM strom vykreslené stránky, tak tuto možnost nám také
CSSBox umožňuje. Ukázka je zakomponována do níže uvedeného kódu.

24

www.fit.vutbr.cz
www.fit.vutbr.cz

1 URL url = new URL("http :// www.fit.vutbr.cz");
2 URLConnection con = url.openConnection ();
3 InputStream is = con.getInputStream ();
4 DOMSource parser = new DOMSource(is);
5 Document doc = parser.parse ();
6 DOMAnalyzer dom_an = new DOMAnalyzer(doc , url);
7 dom_an.attributesToStyles ();
8 dom_an.addStyleSheet(null , CSSNorm.stdStyleSheet ());
9 dom_an.addStyleSheet(null , CSSNorm.userStyleSheet ());
10 dom_an.getStyleSheets ();
11 SimpleBrowser browser = new SimpleBrowser(dom_an.getRoot(), url , dom_an);

Zdrojový kód 4.4: Část zdrojového kódu aplikace, která vykreslí stránku pomocí jádra
CSSBox

Zajímavostí je, že toto vykreslovací jádro je vytvářeno na naší fakultě v rámci Výzkumu
informačních technologií z hlediska bezpečnosti a jeho autorem je Ing. Radek Burget, Ph.D. .

4.5 Cobra

Cobra engine je součástí svobodného internetového prohlížeče Lobo Browser, který je kom-
pletně napsán v jazyce Java. Podporuje HTML 4, JavaScript (využívá Mozilla Rhino
JavaScript engine) a CSS 2. Vykreslovací jádro Cobra je vydáno pod licencí GNU LGPL.[3][9]

Renderovací engine Cobra není od roku 2009 dále vyvíjen. Bohužel se v poslední uvol-
něné verzi nachází chyba, která má za následek neschopnost vykreslit jakoukoliv webovou
stránku na novějších distribucích Linuxu (nefunguje ve Fedoře 16, Ubuntu 11.10, ale funkční
v Ubuntu 10.04). V operačních systémech firmy Microsoft se tato chyba neprojevuje.

Ukázka získaní vykreslení stránky a získání DOM stromu stránky je uvedena v násle-
dujícím zdrojovém kódu. Na prvním řádku se nachází deklarace prvku, do které budeme
stránku renderovat. V druhém řádku vytvoříme instanci objektu, jenž renderuje webové
stránky a tomuto objektu na dalším řádku předáme URL stránky. Od řádku číslo 4 je pak
uvedeno přístup k DOM stromu.[2]

1 HtmlPanel panel = new HtmlPanel ();
2 new SimpleHtmlRendererContext(panel , new SimpleUserAgentContext ())
3 .navigate("http ://www.fit.vutbr.cz");
4 URL url = new URL("http :// www.fit.vutbr.cz");
5 InputStream in = url.openConnection (). getInputStream ();
6 Reader reader = new InputStreamReader(in, "ISO -8859 -2");
7 InputSourceImpl inputSource = new InputSourceImpl(reader ,
8 "http ://www.fit.vutbr.cz");
9 Document doc = builder.parse(inputSource);

Zdrojový kód 4.5: Výsek aplikace využívající vykreslovací jádro Cobra

4.6 Renderovací schopnosti

Na obrázku 4.1 může navzájem porovnat vykreslovací schopnosti jednotlivých jader. Zvětše-
ný obrázek vykreslené stránky nalezneme na obrázku 3.1. Víme, že jádra WebKit a Gecko
jsou využívány v nejrozšířenějších prohlížečích, a proto, jak je z obrázků patrné, tak nemají
s vykreslením stránky sebemenší problémy. Pokud bychom dále pokračovali v porovnávání

25

kvality vykreslení, tak bude následovat CSSBox, který zvládl tuto stránku uspokojivě
vykreslit. Chyby se vyskytly pouze u vyhledávacího pole vpravo nahoře, při vykreslování
textu v části „Kontaktní informace” a dále nejsou vykresleny obrázky na pozadí jed-
notlivých prvků. V otázce obrázků na pozadí mi bylo od pana Burgeta sděleno, že podpora
pro vykreslování obrázků na pozadí nemá v nynějším vývoji vysokou prioritu. Na poslední
pozici by se umístilo jádro Cobra, které špatně vykreslilo horizontální menu, pozadí a spodní
pruh s kontaktními informacemi.

(a) WebKit (b) Cobra

(c) CSSBox (d) Gecko

Obrázek 4.1: Porovnání stránky www.fit.vutbr.cz vykreslené jednotlivými renderovacími
enginy

26

Kapitola 5

Implementace - algoritmus VIPS

V této kapitole si popíšeme originální knihovnu VIPS a dále návrh a implementaci Vision-
based Page Segmentation algoritmu v jazyce Java. Vývoj probíhal na platformě Linux
v distribuci Fedora 16 (64-bit) a v IDE Eclipse (3.7.2). Při implementaci bylo využito
programovacího jazyka Java verze 1.7 (OpenJDK) a renderovacího jádra webových stránek
CSSBox. Pro správu zdrojových kódů aplikace byl použit systém správy verzí Git1.

5.1 Knihovna VIPS

Originální implementace algoritmu VIPS z laboratoří firmy Microsoft je dodávána jako
dynamická knihovna ve formátu DLL2. Její poslední sestavení je ze dne 5.11.2008 pro plat-
formu i386 a má velikost 496 kb. Knihovna využívá pro vykreslení internetové stránky a
následné získání jejího DOM stromu vykreslovací jádro Trident3, které je součástí inter-
netového prohlížeče Internet Explorer. V operačním systému Windows XP (nainstalovány
všechny dostupné aktualizace) s nainstalovaným Internet Explorer 8 je knihovnou využíváno
jádro z Internet Explorer 7.

5.1.1 Použití

K demonstraci použití knihovny VIPS ve zdrojovém kódu jsou uveřejněny dva demo pro-
gramy UsingVIPS a PageAnalysis, které provádějí vizuální segmentaci internetové stránky
za pomoci této knihovny. První z nich je napsán v jazyce Visual C++ (dodáván ve formě
zdrojových kódů) a umožňuje výslednou vizuální strukturu exportovat ve formátu XML či
na obrazovku ve formátu plaintext. Druhý program je napsán také v jazyce C++ (dodáván
v binární formě) a umožňuje prohlížení vizuální struktury, ale neumožňuje její následný
export. Využití dostupného API knihovny VIPS si můžeme prohlédnout v ukázce 5.1. Up-
ozorňuji, že se jedná pouze o ukázku a tento zdrojový kód není uveden v kontextu.

Oba uvedené demo programy jsou funkční na OS Windows XP. K přeložení prvního
z nich je třeba mít nainstalováno Microsoft Visual C++ 6.0 a pomocí něj zdrojové kódy
přeložit. Druhý stačí pouze spustit. Ke správné funkčnosti musíme knihovnu VIPS - Page-
Analyzer.dll nakopírovat do úložiště systémových kníhoven a následně ji zaregistrovat. Pro-
gramy se mi z neznámých důvodů nepodařilo zprovoznit na OS Windows 7 (32-bit a 64-

1Git - http://git-scm.com/
2Dynamic-link library - https://en.wikipedia.org/wiki/Dynamic-link_library
3Engine Trident - https://en.wikipedia.org/wiki/Trident_(layout_engine)

27

http://git-scm.com/
https://en.wikipedia.org/wiki/Dynamic-link_library
https://en.wikipedia.org/wiki/Trident_(layout_engine)

bit). Dle mého názoru je na vině zastaralost jednotlivých částí těchto demo programů a
přiložených knihoven.

Musím zde také zdůraznit jistou nestabilitu těchto programů, kdy docházelo dle mého
názoru velmi často k jejich pádu a to jak při segmentaci stránky, tak při prohlížení výsledné
vizuální struktury segmentované stránky. První chyba se týkala obou nástrojů, takže k pádu
muselo docházet pravděpodobně někde uvnitř knihovny VIPS. K druhé chybě docházelo
pouze v nástroji PageAnalysis například na stránce www.seznam.cz.

1 PAGEANALYZERLib :: ILayoutAnalyzer2Ptr m_pLayoutAnalyzer;
2 m_pLayoutAnalyzer.CreateInstance(CLSID_LayoutAnalyzer2);
3 m_pLayoutAnalyzer ->Initialize (0);
4 MSHTML :: IHTMLDocument2Ptr pHTMLDoc = m_webBrowser.GetDocument ();
5 m_iPDOC = 5;
6

7 if (xml_Output)
8 {
9 m_pLayoutAnalyzer ->Analyze4(pHTMLDoc ,_variant_t ((long)m_iPDOC));
10 MSXML2 :: IXMLDOMDocumentPtr pFOMPage = m_pLayoutAnalyzer ->GetFOMPage ();
11 pFOMPage ->save("VIPSResult.xml");
12 }
13 else
14 {
15 m_pLayoutAnalyzer ->AnalyzeOutputAll_Text(pHTMLDoc ,
16 _variant_t ((long)m_iPDOC));
17 _bstr_t strResult = m_pLayoutAnalyzer ->getResult ();
18 m_strOut = (char*) strResult;
19 }

Zdrojový kód 5.1: Použití knihovny VIPS

Na prvních dvou řádcích se nachází deklarace a instanciace objektu, který slouží jako
analyzátor využívající knihovnu VIPS. Na třetím řádku je prováděna inicializace objektu
číselnou hodnotou 0. Při experimentování se změnou této hodnoty na libovolnou kladnou se
chování knihovny neměnilo. Na dalším řádku je získána reprezentace segmentované stránky
ve formě HTML dokumentu a poté je nastavena hodnota povoleného stupně konzistence
(PDoC). Pokud bude výsledná struktura exportována do XML souboru, tak se provede
segmentace pomocí metody Analyze4, která dostane jako parametry HTML dokument a
PDoC. Následně je získána finální vizuální struktura stránky a uložena do XML souboru. Na
řádcích 15 až 18 je uveden postup, vedoucí k segmentaci metodou AnalyzeOutputAll Text
a navrácení struktury v textové formě. API knihovny VIPS obsahuje ještě několik dalších
metod, které ale nejsou bohužel nikde zdokumentovány.

5.1.2 Výstup

Knihovna VIPS umožňuje export výsledné vizuální struktury do formátu XML (viz. ukázka
v 5.1). Výstupní soubor má jistou strukturu, která bude nyní popsána.

Pro každou segmentovanou stránku je vytvořen kořenový element VIPSPage. Ukázka
pro stránku www.fit.vutbr.cz je uvedena v 5.2.

<VIPSPage PageRectHeight="1070" PageRectTop="1" PageRectWidth="1002"
PageRectLeft="1" PageTitle="Fakulta informacnich technologii VUT v Brne"
Url="http :// www.fit.vutbr.cz" WindowHeight="1070" WindowWidth="1002"
neworder="0" order="0">

28

www.seznam.cz
www.fit.vutbr.cz

...
</VIPSPage >

Zdrojový kód 5.2: Kořenový element VIPSPage ve výstupním XML knihovny VIPS

Jak vidíme v ukázce, tak element VIPSPage má řadu atributů, jejichž význam je uveden
v následující tabulce 5.1.

Název atributu Popis
PageRectHeight Výška stránky v pixelech
PageRectTop Zarovnání stránky z vrchní strany v pixelech
PageRectLeft Zarovnání stránky z levé strany v pixelech
PageRectWidth Výška stránky v pixelech
PageTitle Titulek stránky (z HTML elementu <TITLE>)
Url Internetová adresa stránky
WindowHeight Výška okna v pixelech, ve kterém byla stránka vykreslena
WindowWidth Šířka okna v pixelech, ve kterém byla stránka vykreslena
neworder Není zdokumentováno
order Pořadí elementu v rámci v výstupního XML

Tabulka 5.1: Atributy elementu VIPSPage

Pro každý detekovaný finální vizuální blok je poté do XML elementu VIPSPage gen-
erován element LayoutNode. Tyto elementy dodržují stejnou hierarchii v jaké se nachází na
segmentované stránce. Element je ukázán v 5.3 a jeho atributy popsány v tabulce 5.2.

<LayoutNode BgColor="#ffffff" ContainImg="8" ContainP="3"
ContainTable="false" DOMCldNum="4" DoC="1" FontSize="8"
FontWeight="normal" FrameSourceIndex="0" ID="1-2-1" IsImg="false"
LinkTextLen="503" ObjectRectHeight="1072" ObjectRectLeft="0"
ObjectRectTop="0" ObjectRectWidth="1004" SourceIndex="57"
TextLen="1898" order="5"/>

Zdrojový kód 5.3: Element reprezentující vizuální blok ve výstupním XML knihovny VIPS

29

Název atributu Popis
BgColor Barva pozadí stránky v hexa kódu či slovní reprezentaci
ContainImg Počet obrázků (HTML značka), které se nachází ve

vizuálním bloku
ContainP Počet odstavců (HTML značka <P>), které vizuální blok obsahuje
ContainTable true pokud blok obsahuje tabulku (HTML značka TABLE),

jinak false
IsImg true pokud je vizuální blok obrázkem (má HTML značku IMG)
DOMCldNum Počet potomků DOM uzlu reprezentujícího tento blok
DoC Stupeň konzistence daného vizuálního bloku
FontSize Velikost písma bloku
FontWeight Váha písma použitého v bloku
ID Identifikátor bloku
TextLen Délka textu ve vizuálním bloku
LinkTextLen Délka texty odkazů (HTML značka A)
SourceIndex Číslo řádku ve zdrojovém kódu stránky, na kterém se nachází

deklarace daného elementu
FrameSourceIndex Číslo řádku, na kterém se nachází deklarace elementu v rámci

HTML značky <FRAME>
ObjectRectTop Zarovnání bloku z vrchní strany v pixelech
ObjectRectLeft Zarovnání bloku z levé strany v pixelech
ObjectRectWidth Výška bloku v pixelech
ObjectRectHeight Šířka bloku v pixelech
order Pořadí elementu v rámci výstupního XML

Tabulka 5.2: Atributy elementu LayoutNode

5.2 CSSBox

Jako vykreslovací jádro pro implementaci algoritmu VIPS jsem zvolil engine CSSBox. Mezi
jeho přednosti, kvůli kterým jsem jej zvolil patří bezproblémová práce s DOM stromem
stránky a tzv. stromem boxů, který v sobě uchovává informace o vykreslených prvcích
dané stránky. Dále to byla také dostupnost zdrojových kódů a možnost přímé konzultace
a komunikace s panem Burgetem, autorem tohoto jádra. Při vývoji byla použita poslední
verze z SVN4 ke dni 20. 4. 2012.

5.2.1 Proces vykreslování

Proces zpracování a vykreslení stránky probíhá v několika krocích. Zde si nejdůležitější z
nich stručně popíšeme. Prvním je navázání spojení na danou stránku a získání jejího DOM
stromu přes parser typu DOMSource. Takto získaná reprezentace DOM stromu je předána
objektu typu DOMAnalyzer, který si ji uloží a poté postupným voláním jeho metod jsou
elementy DOM stromu rozšiřovány o informace, které jsou uvedeny v kaskádových stylech
dané stránky a také výchozích vlastností elementů. Takto rozšířená reprezentace DOM
stromu je spolu s rozměry okna, do kterého chceme vykreslovat a adresou segmentované
stránky předána objektu BrowserCanvas, jenž stránku vyrenderuje. Renderování probíhá

4Subversion - https://subversion.apache.org/

30

https://subversion.apache.org/

v několika krocích. Prvně objektem typu BoxFactory, kterému předáme DOMAnalyzer a
adresu stránky získáme všechny grafické prvky neboli boxy, jenž se nachází na stránce. Z
těchto prvků je poté vytvořena stromová struktura typu Viewport. Poté jsou upraveny
rozměry okna předané před objekt BrowserCanvas tak, aby v něm byly všechny boxy
obsaženy. Z takto získané reprezentace prvků stránky je poté v objektu BrowserCanvas
vytvořena grafika stránky, kterou můžeme zobrazit uživateli.

Z pohledu implementace algoritmu VIPS jsou nejdůležitější objekty typu DOMAnalyzer
a Viewport.

5.3 Návrh

Při návrhu skladby modulů implementace algoritmu VIPS v jazyce Java jsem vycházel
z diagramu 3.4. Algoritmus jako celek byl rozdělen na tři hlavní moduly a to extraktor
vizuálních bloků VipsParser, detektor vizuálních separátorů VipsSeparatorDetector a
konstruktor vizuální struktury stránky VisualStructureConstructor. Dále byl přidán
modul realizující výstup do XML souboru. Mezi těmito moduly, které odpovídají fázím
vizuální segmentace algoritmem VIPS probíhala výměna informací pomocí modulů, jenž
reprezentují vizuální blok VipsBlock, separátor Separator a vizuální strukturu
VisualStructure. Při návrhu bylo rozhodnuto o tvorbě dodatečného grafického výstupu,
který bude zobrazovat průběh segmentace. Ten je realizován ve třídě
VipsSeparatorGraphicsDetector. Naproti tomu třída
VipsSeparatorNonGraphicsDetector nemá závislost na potřebných grafických komponen-
tách. Obě tyto třídy implementují společné rozhraní VipsSeparatorDetector, kterým je
zaručena stejná skladba povinných funkcí pro realizaci detekce separátorů. Vhodnější by
bylo modelovat daný problém pomocí abstraktní třídy, ale jelikož jazyk Java přímo neu-
možňuje (nepřímo lze provést přes prostředníka) dědičnost od dvou tříd zároveň (třída
VipsSeparatorGraphicsDetector by rozšiřovala třídu JPanel a danou abstraktní třídu), tak
bylo zvoleno rozhraní.

Vztahy mezi jednotlivými moduly jsou ukázány v diagramu tříd na obrázku 5.1.

31

Vips VipsOutput

1 1..*

využíváVipsParser

1..* 1

využívá

VisualStructureConstructor

1

1..*

využívá

VipsBlock

1..*

0..*

VisualStructure

0..* 1

obsahuje

1

1..*

konstruuje

1

1..*

využívá

Separator

1

0..*

VipsSeparatorNonGraphicsDetector VipsSeparatorGraphicsDetector

«interface»
VipsSeparatorDetector

1..*

1

detekuje

1..*

1

detekuje

0..* se skládá z

1..*

1..*

1..*

1..*

detekuje

obsahuje

využívá

využívá

0..*

se skládá z

Obrázek 5.1: Diagram tříd

32

5.4 Implementace

V následující sekci je popsána implementace algoritmu VIPS v programovacím jazyce Java.
Budou zde nastíněny struktury jednotlivých tříd a popsána jejich funkce a chování. Celá
implementace je zapouzdřena v balíčku org.fit.vips a obsahuje také zdrojové kódy testo-
vacího programu VIPSTester.

5.4.1 Detekce a extrakce vizuálních bloků

Detekce vizuálních bloků začíná vykreslením dané stránky pomocí jádra CSSBox a násled-
ného získání DOM stromu, tak jak je ukázáno na 4.4. Po vykreslení stránky je nezbytné
získat informace o vykreslené stránce v objektu typu ViewPort, který je popsán v 5.2.1.
Samotná detekce probíhá ve třídě VipsParser, kde na základě objektu Viewport zkon-
struujeme stromovou strukturu typu VipsBlock, která obsahuje všechny dostupné bloky
na stránce a zachovává jejich hierarchii. K nim přidává informace o vlastnostech daných
bloků jako jsou například barva pozadí, váha písma či například délka textu obsaženého
uvnitř boku. Tato struktura je poté procházena od kořenového prvku a jsou detekovány
vizuální bloky. K tomuto účelu byla použita pravidla z tabulky 3.2.1, kdy se podle názvu
uzlu daného HTML elementu aplikují určitá pravidla dle tabulky 3.3. V rámci jejich im-
plementace došlo pouze k mírným úpravám z důvodu přizpůsobení na renderovací jádro
CSSBox.

Po praktických testech bylo dále zjištěno, že jsou jako vizuální bloky označovány i takové
bloky, které nemají žádný obsah či nejsou např. viditelné. Proto, pokud je blok označen
jako vizuální, tak jsou na něj dodatečné aplikována pravidla založena na následujících vlast-
nostech, která zaručí, že je opravdu vizuálním blokem.

• Pozice prvku na stránce
Pokud se souřadnice krajních bodů vizuálního bloku nachází mimo stránku, tak blok
nemůže být vizuálním blokem a bude odstraněn. Tato technika (posunutí elementu
mimo viditelnou oblast) se často používala ke skrytí elementu uživateli.

• Rozměry prvku
Pouze blok s výškou a šířkou větší než nula můžeme označit jako vizuální.

• Viditelnost prvku
Prvek je viditelný pokud splňuje předešlé podmínky a zároveň nemá vlastnost display
nastavenu na hodnotu none nebo hidden.

• Obsah bloku
Blok označíme jako vizuální pokud délka v něm obsaženého textu není nulová. Pokud
je nulová, tak procházíme dostupné potomky bloku a podle jejich HTML značek
určíme, zda je blok vizuální. V této fázi můžeme již vynechat HTML značky týkající
se textu, které jsme eliminovali zjištěním délky obsaženého textu. Proto uvažujeme
značky jako či <INPUT>, u kterých také dodatečně ověřujeme jejich viditelnost.

V původní implementaci algoritmu VIPS je tento proces opakován vždy, pokud segmen-
tovaný blok splní či nesplní podmínku další segmentace (PDoC ≤ DoC). Jak je ukázáno
v části 5.4.3, tak v implementaci v jazyce Java nebyl nalezen postup přesného generovaní
stupně konzistence pro nově vzniklé bloky v rámci fáze konstrukce vizuální struktury. Z
tohoto důvodu nemůže dojít k dodržení stejné podmínky na ukončování a musí vždy dojít

33

k maximální segmentaci. V první iteraci se detekují bloky větší než 350 pixelů na šířku a
400 pixelů na výšku, čímž získáme hrubou strukturu stránky, která je velmi vhodná pro
získání globálních separátorů stránky. V dalších iteraci je vždy z každého rozměru odečteno
50 pixelů a spuštěn proces segmentace znovu. Po dosažení hodnoty 100 px na 150px jsou
tyto rozměry nahrazeny hodnotami 100 px na 100 px a poté je dále pokračováno s rozměry
80 na 80, 40 na 10 a na závěr 1 pixel na 1 pixel pro dosažení maximální segmentace.

Výstupem této fáze je stromová struktura VipsBlock s informacemi o všech blocích
(nejen vizuálních) a také seznam detekovaných vizuálních bloků. Objekt třídy VipsBlock
v sobě uchovává informace například o barvě pozadí bloku, velikosti použitého písma či
počtu obrázků, které se v bloku nacházejí.

5.4.2 Detekce vizuálních separátorů

Z předchozí fáze extrakce vizuálních bloků získáme seznam vizuálních bloků s nímž budeme
dále pracovat. Jednotlivě přidáváme vizuální bloky do nového seznamu bloků a aplikujeme
pravidla uvedena v 3.2.2. Po detekci separátorů odstraníme ty, které tvoří hranice stránky.

Obrázek 5.2: Vzájemné vztahy separátorů a vizuálních bloků ve fázi detekce vertikálních
separátorů

Po praktických pokusech bylo dále přikročeno k pročišťování separátorů na základě je-
jich šířky. Při první iteraci v rámci algoritmu VIPS je důležité najít takové separátory,
které můžeme nazvat globálními a jsou významné pro správnou počáteční segmentaci.
Při nesprávné detekci těchto separátorů je vždy výsledkem nesprávná vizuální struktura
stránky. Příklad této situace vidíme na obrázcích 5.4a a 5.4d. Na obrázku 5.4a vidíme, že
jsou nalezeny horizontální separátory (modrá barva) v pořadí číslo 3 a 4 (z vrchní strany).
Proto by v první fázi konstrukce byla stránka rozdělena na šest vizuálních bloků. Pokud
jsou však tyto globální separátory pročištěny, tak je stránka správně rozdělena na čtyři
horizontální bloky, jak je ukázáno na obrázku 5.4d. Proto v první iteraci je po detekci
horizontálních a vertikálních separátorů přistoupeno k jejich pročištění, kdy separátory se
šířkou menší nebo rovnou 3 pixelům jsou odstraněny. V dalších iteracích jsou vždy au-
tomaticky odstraňovány separátory se šířkou menší než 4 pixely. Tyto separátory malých

34

rozměrů zpravidla neodděluji vizuálně význačné bloky a mohou být tedy odstraněny. Je
také možné, že tyto separátory vznikly nepřesným vykreslením stránky jádrem CSSBox.

Dalším krokem po detekci horizontálních či vertikálních separátorů je přiřazení váhy
jednotlivým separátorům podle pravidel uvedených v 5.4.2. Po experimentech bylo zvoleno
následující ohodnocení pro jednotlivá pravidla:

1. Pravidlo 1 - šířka separátoru
Váha byla separátoru zvýšena na základě jeho šířky podle následující stupnice:

• šířka ≤ 8 px =⇒ váha zvýšena o 1 bod

• 8 px < šířka ≤ 15 px =⇒ váha zvýšena o 2 body

• 15 px < šířka ≤ 25 px =⇒ váha zvýšena o 4 body

• 25 px < šířka ≤ 35 px =⇒ váha zvýšena o 6 bodů

• 35 px < šířka ≤ 45 px =⇒ váha zvýšena o 8 bodů

• 45 px < šířka ≤ 55 px =⇒ váha zvýšena o 10 bodů

• šířka > 55 px =⇒ váha zvýšena o 12 bodů

2. Pravidlo 2 - překrytí
Pokud se separátor překrývá s prvkem <hr> - horizontální linie, tak je jeho váha
zvýšena o 2 body.

3. Pravidlo 3 - barva
Pokud se barva bloků, které separátor odděluji liší, tak je jeho váha zvýšena o 2 body.
Pokud je na obou stranách separátoru více bloků, tak se aplikuje pouze jednou.

4. Pravidlo 4 - písmo
Pokud se liší váha či velikost písma bloků, které separátor odděluje, tak je jeho váha
zvýšena o 2 body. Navíc pokud je výška písma bloků na vrchní straně separátoru, tak
je váha znovu navýšena o další 2 body.

5. Pravidlo 5 - struktura
Pokud jsou bloky na obou stranách separátoru velmi podobné (například se jedná o
text), tak je váha separátoru snížena o 2 body.

Každý nově vytvořený separátor má nastavenou váhu na hodnotu tří bodů. Maximální
možná váha, kterou může horizontální separátor získat je tedy 21 bodů a vertikální 19
bodů. Naopak minimální váha může být 1 bod pro horizontální separátor a 3 body pro
vertikální separátor a to z toho důvodu, že pravidlo číslo 5 se vztahuje pouze na horizontální
separátory.

Musíme zde zdůraznit, že výše uvedený počet bodů v jednotlivých pravidlech, o který se
má váha separátoru zvětšit je založený na vlastních experimentech. V technické zprávě [24]
není uvedena jediná zmínka o počtu těchto bodů. Proto není jisté, zda výše zvolené hodnoty
jsou zvoleny správně. Dalším problémem s tím spojeným je otázka, zda u pravidla číslo 3
inkrementovat hodnotu pro každou dvojici bloků ze všech bloků přiléhajících k separátoru
či nikoliv.

35

5.4.3 Konstrukce vizuální struktury

Fáze konstrukce vizuální struktury slouží ke sloučení vizuálních bloků stránky spolu se
separátory, které k nim byly detekovány. Výstupem této fáze je finální vizuální struktura
stránky, jenž obsahuje informace o rozložení prvků na stránce a jejich uskupení do vizuálních
bloků.

Konstrukce vizuální struktury se skládá z několika dílčích kroků. Prvním z nich je získání
bloků z fáze detekce a extrakce vizuálních bloků, pro které je poté spuštěna detekce hor-
izontálních separátorů. Nalezené separátory jsou seřazeny podle získané váhy od nejnižší
k nejvyšší. Pokud se jedná o první iteraci, tak je vytvořena nová vizuální struktura, která
reprezentuje celou stránku a je jí přiřazen identifikátor 1. Poté přichází samotná konstrukce
vizuální struktury, kdy zpracováváme separátory v pořadí od toho s nejnižší vahou. Po
vyjmutí prvního separátoru je daná vizuální struktura rozdělena na dvě, které tento sep-
arátor odděluje. Poté se vezmou všechny vizuální bloky, jenž se nachází v dané struktuře
a jsou podle svých souřadnic rozděleny do struktur kam svou polohou náleží. Po vyjmutí
následujícího separátoru je podle souřadnic separátoru nalezena taková struktura, uvnitř
které se separátor nachází. Tato struktura je tedy dále rozdělena na dvě nové a tento pro-
ces probíhá dokud nevyjmeme separátor s nejvyšší vahou. Poté je proces dělení zastaven
a nově vzniklým strukturám je přiřazen identifikátor např. 1-3-2, který odráží jejich hier-
archické zanoření. V dalším kroku jsou všechny horizontální separátory, které byly použity
ke konstrukci vizuální struktury vloženy do původní segmentované struktury.

Po ukončení konstrukce vizuální struktury s horizontálními separátory nastává fáze
přiřazení stupně konzistence DoC nově vzniklým blokům v rámci vizuální struktury. Stupeň
konzistence je přiřazen bloku na základě váhy separátoru s nejvyšší vahou, který se nachází
v oblasti vizuálního bloku. Proto je třeba správně převést hodnoty vah na odpovídající
stupeň konzistence. Tato transformace je realizována po ukončení poslední fáze extrakce
vizuální bloků a je provedena nad všemi detekovanými separátory na celé stránce. Prvním
krokem k získání hodnoty DoC je lineární transformace hodnot vah separátorů z uvedeného
seznamu pomocí normalizace metodou Max-Min[27]. Rovnice lineární normalizace je defi-
nována následovně:

v′ =
v −minS

maxS −minS
(new maxS − new minS) + new minS , kde (5.1)

• v′ je normalizovaná váha separátoru

• v je váha separátoru před normalizací

• maxS je váha separátoru s největší vahou

• minS je nejmenší váha mezi separátory

• new maxS je nejvyšší hodnota v rozsahu, na který chceme váhy normalizovat
(v našem případě 11)

• new minS je minimální hodnota v v rozsahu, na který chceme váhy normalizovat
(v našem případě 1).

Po získání normalizované váhy je nutný její převod na odpovídající stupeň konzistence.
Musíme si zde uvědomit, jak je DoC definováno. Stupeň konzistence nám říká jak je daný

36

blok konzistentní, a proto pokud máme separátor s nízkou vahou, tak velmi těsně odděluje
dva bloky a tudíž jeho stupeň konzistence musí být u horní hranice a to 11 bodů (maxDoC).
Naopak pokud máme dva od sebe velmi vzdálené bloky, tak musí být výsledné DoC u dolní
hranice tj. 1 bodu. Funkce pro získání DoC má předpis:

f : DoC = (maxDoC + 1)− normalizovaná váha ∧ f(0) = maxDoC (5.2)

Takto získané stupně konzistence byly přiřazeny jednotlivým vizuálním blokům. Poro-
vnáním s originální implementací algoritmu VIPS bylo zjištěno, že hodnoty vypočteného
DoC neodpovídají požadovaným hodnotám. Proto byl k separátorům přiřazen jeden nový s
vahou dvojnásobku maximální dosažitelné váhy (tudíž 42 bodů), který reprezentoval celou
stránku. Vychází se zde z předpokladu, že stránka jako celek má stupeň konzistence roven
jedné. Dále byla také vyzkoušena metoda Soft-Max[27] (nelineární transformace), která
ale také nevedla k uspokojivým výsledkům. Proto byla ponechána lineární transformace
pomocí metody Max-Min.

Nyní jsme již získali stupně konzistence, které zhruba odpovídají hodnotám originální
implementace, jenž se liší v průměru o 2 body na obě strany. Zde je vhodné zmínit, že
v převážné většině případů nezískáme shodné výsledky s originální implementací. Jelikož
je stupeň konzistence novému bloku přiřazován na základě nejvyšší váhy separátoru ze
všech separátorů dostupných v oblasti bloku, tak už v tomto kroku může dojít k chybě
způsobené úpravou váhy separátorů popsanou v části 5.4.2. Dále mohlo dojít k chybě při
volbě metody, jak převést váhu separátoru na odpovídající stupeň konzistence. V tech-
nické zprávě není nikde zmíněna technika převodu mezi těmito dvěma hodnotami. Může to
tedy být mnou zvolená metoda lineární transformace Max-Min či úplně jiná transformace.
Jestliže se opodstatnění předchozích domněnek dá jen těžko ověřit, tak poslední problém se
dá zcela fakticky ukázat. Tímto problémem je rozdíl ve vykreslení stránky jádrem CSSBox
a jádrem Trident, se kterým pracuje originální implementace algoritmu VIPS. Můžeme zde
ukázat takový příklad na obrázku 5.3.

Jak vidíme na obrázku 5.3a, tak jádro Trident nemá s vykreslením žádné problémy.
Naproti tomu jádro CSSBox nesprávně vykreslilo horizontální mezery mezi jednotlivými
obrázky a dále emailovou adresu vykreslilo za tyto obrázky. Poznamenejme, že text
„E-Mail:” není viditelný, protože barva pozadí - bílá je shodná s barvou použitého písma.

Po přiřazení stupně konzistence novým vizuálním blokům je na jejich základě rozhod-
nuto, zda dojde k dalšímu dělení či nikoliv. Všechny vizuální bloky, které mají stupeň
konzistence DoC menší nebo roven povolenému stupni konzistence PDoC, budou dále seg-
mentovány. Ostatní nikoliv.

Po ukončení konstrukce vizuální struktury s horizontálními separátory jsou vyhledány
všechny listové struktury ve stromové vizuální struktuře. Pro tyto uzly je opakován výše
uvedený proces, ale s vertikálními separátory.

37

(a) jádro Trident (b) jádro CSSBox

Obrázek 5.3: Ukázka rozdílu ve vykreslení jádry Trident a CSSBox

5.4.4 Výstup

Výstupem algoritmu VIPS je XML soubor jehož struktura je popsána v části 5.1.2. Drobnou
změnou oproti originálnímu výstupu jsou hodnoty atributů uzlu VIPSPage a to
WindowHeight a WindowWidth. Hodnoty těchto atributů jsou v mojí implementaci shodné s
hodnotami PageRectHeight a PageRectWidth, protože aplikace nevyužívá žádný grafický
prvek, do kterého je stránka vykreslena, a proto zde nemohou být uvedeny jeho rozměry.

Ve třídě VipsOutput, která řeší převod finální vizuální struktury stránky na výstupní
XML soubor je implementována logika zastavení segmentace při nesplnění podmínky (PDoC
≤ DoC). Použití právě zde plyne ze způsobu vlastní implementace, kdy je stránka segmen-
tována tak, jak nejvíce to lze a poté jsou jednotlivým vizuálním strukturám přiděleny vy-
počtené stupně konzistence. Proto je zde při procházení stromové struktury, která reprezen-
tuje finální vizuální dělení stránky implementována tato podmínka zastavení, kdy pokud
daná vizuální struktura má stupeň konzistence DoC větší než povolený stupeň konzistence
PDoC, tak je spolu se všemi jejími potomky spojena do jednoho elementu LayoutNode.
Naopak pokud má být dále segmentována, tak je pro ni vytvořen samostatný element a pro
všechny její synovské vizuální struktury jsou aplikována ty samá pravidla, až je vyexpor-
tována celá vizuální struktura.

Dále byla implementována volba pro zapnutí grafického výstupu knihovny. Pokud je
tato možnost zapnuta, tak jsou na výstup generovány obrázky ve formátu PNG5, jejichž
přehled najdeme v tabulce 5.3. Detekované vizuální bloky mají černou barvu, horizontální
separátory jsou znázorněny modrou barvou a vertikální jsou vyplněny červeně, jak můžeme
vidět na obrázku 5.4.

5Portable Network Graphics - http://www.libpng.org/pub/png/

38

http://www.libpng.org/pub/png/

Název souboru + ”.png” Obsah
”page” Snímek stránky vyrenderovaný jádrem CSSBox.
”blocks” + iterace Detekované vizuální bloky v dané iteraci.
”horizontalSeparators” Globální horizontální separátory (separátory detekované v

první iteraci). Může obsahovat i separátory, jejichž šířka je
menší než 10 pixelů, které jsou poté ignorovány.

”horizontalSeparators”
+ iterace

Horizontální separátory detekované v dané iteraci algoritmu
VIPS.

”verticalSeparators” Globální vertikální separátory (separátory detekované v
první iteraci). Může obsahovat i separátory, jejichž šířka je
menší než 10 pixelů, které jsou poté ignorovány.

”verticalSeparators”
+ iterace

Vertikální separátory detekované v dané iteraci algoritmu
VIPS.

”iteration” + iterace Separátory a vizuální bloky použité v dané iteraci. Skládá se
z kombinace blocksX.png + horizontalSeparatorsX + verti-
calSeparatorsX, kde X udává číslo iterace.

”all” Separátory a vizuální bloky detekované před první iterací.
Skládá se z kombinace blocks1.png + horizontalSeparators
+ verticalSeparators.

Tabulka 5.3: Názvy grafických výstupů implementace VIPS v jazyce Java

Musíme zde však upozornit, že povolení grafického výstupu navýší časovou náročnost
algoritmu VIPS, jak můžeme vidět na grafu 6.7.

5.4.5 API

Application Programming Interface (API) označuje rozhraní pro programování aplikací.
Jedná se o množinu funkcí přístupných programátorovi s jejichž pomocí, může ovlivňovat
chování a vlastnosti objektů či je využívat ve vlastních aplikacích.

Přístup k implementaci algoritmu VIPS v jazyce Java probíhá přes objekt třídy Vips,
který obsahuje následující veřejné metody, které tvoří API implementace algoritmu VIPS.

• void setUrl(String url)
Nastaví internetovou adresu stránky, která má být segmentována. Pokud adresa neob-
sahuje prefix ”http://”nebo ”https://”, tak je automaticky doplněn první jmeno-
vaný.

• String getUrl()
Navrátí nastavenou internetovou adresu.

• void setPermittedDoC(int pDoC)
Nastaví hodnotu povoleného stupně konzistence na hodnotu danou parametrem pDoC.
Výchozí hodnota je nastavena na 5.

• int getPredefinedDoC()
Vrátí povolený stupeň konzistence pDoC.

39

• void startSegmentation(String url)
Spustí segmentační proces nad danou internetovou stránkou danou hodnotou parame-
tru url.

• void startSegmentation()
Spustí segmentační proces nad stránkou jejíž adresa musí být nastavena pomocí
metody setUrl. Pokud není nadefinována, tak je použita adresa poslední segmen-
tované stránky.

• void enableGraphicsOutput(boolean enable)
Povolí či zakáže grafický výstup aplikace. Viz. 5.4.4.

• void enableOutputToFolder(boolean enable)
Zapne či vypne tvorbu samostatné složky pro výstupní soubory pro každý běh algo-
ritmu VIPS. Jméno nové složky je vždy v následujícím tvaru
den měsíc rok hodina minuta adresa ,kde adresa je host dané stránky v němž je
znak „.” nahrazen znakem „ ”. Příklad: 15 05 2012 12 57 51 www fit vutbr cz.

• void enableOutputEscaping(boolean enable)
Povolí nebo zakáže kódování znaků6 ve výstupním XML.

• void setOutputFileName(String filename)
Nastaví jméno výstupního XML souboru. Zadává se bez koncovky ”.xml”. Výchozí
název výstupního souboru je ”VIPSResult.xml”.

Základní použití API můžeme vidět ve třídě VipsTester, které je jako parametr předána
adresa internetové stránky, jenž chceme segmentovat. Níže je uvedena část kódu, ze které si
můžeme udělat představu o posloupnosti volání funkcí z API implementace VIPS v jazyce
Java vedoucí k segmentaci dané stránky a uložení výstupního XML souboru.

1 String url = args [0];
2 Vips vips = new Vips ();
3 vips.enableGraphicsOutput(true);
4 vips.enableOutputToFolder(true);
5 vips.setPredefinedDoC (5);
6 vips.startSegmentation(url);

Zdrojový kód 5.4: Ukázka použití API v testovací aplikaci VipsTester

6Kódování znaků - https://en.wikipedia.org/wiki/Escape_character

40

https://en.wikipedia.org/wiki/Escape_character

(a) all.png (b) page.png

(c) horizontalSeparator3.png (d) iteration3.png

Obrázek 5.4: Ukázky grafického výstupu pro stránku www.fit.vutbr.cz

41

Kapitola 6

Dosažené výsledky

6.1 Demonstrace řešení

V následující sekci je provedeno srovnání výstupu původní implementace algoritmu Visio-
based Page Segmentation a jeho implementace v jazyce Java, která je výstupem této práce.
Pro získání XML výstupu původní implementace byla použita aplikace UsingVIPS. Finální
struktura byla poté přenesena na stránku vykreslenou jádrem CSSBox. Všechny zde uve-
dené obrázky jsou v originální velikosti přiloženy na DVD spolu s vygenerovanými XML
výstupy.

6.1.1 Ukázka č. 1

Jako první ukázku jsem zvolil vizuální segmentaci internetového portálu Seznam -
www.seznam.cz. Při segmentaci byl oběma implementacím nastaven povolený stupeň konzis-
tence na hodnotu 8. Jak vidíme na obrázku 6.2 tak oba výstupy jsou si velmi podobné. Při
bližším zkoumání na několik odlišností narazíme. Pokud půjdeme od horního okraje stránky,
tak zjistíme, že v první blok byl oproti originální implementaci dále segmentován na dva
bloky s obsahem „Vybrat vzhled” a „Přihlásit se”. Pokud přejdeme k bloku s přihlášením,
tak i zde vidíme, že vrchní blok byl opět segmentován. Byl dělen z toho důvodu, že mezi
bloky obsahujícími „Email.cz” a „Založit nový email” byl detekován vertikální separátor,
na jehož základě bylo nově vzniklému bloku přiřazeno nižší DoC než 8. Proto byl při exportu
do XML dále segmentován. Další změnou bylo nerozdělení přihlašovacího formuláře, kdy
tomuto bloku bylo přiřazeno vyšší DoC než 8, a proto nebyl dále segmentován. Další dělení
oproti výstupu originální implementace proběhlo v levém prostředním sloupci. Jednotlivé
bloky (Novinky, Sport) byly dále děleny na jednotlivé zprávy, jenž jsou označeny modrým
hraničením. Tyto bloky byly segmentovány z důvodu přiřazení menšího DoC než PDoC.

Obrázek 6.1: Vykreslení bloků „Prozeny.cz” a „TV program”

V originální implementaci byly od ostatních bloků separovány bloky „TV program” a
„Prozeny.cz”, které přešly do vlastního samostatného bloku. Pro pochopení tohoto oddělení

42

od zbytku si musíme ukázat, jak danou část vykreslilo jádro Trident, což je ukázáno v
obrázku 6.1. Jak vidíme tak tyto dva bloky byly vykresleny v jedné rovině na rozdíl od
enginu CSSBox, a proto mohl být v první iteraci detekován horizontální separátor přes
celou šířku stránky. Poté by došlo ke stejné správné segmentaci jako v případě původní
implementace využívající jádro Trident. Posledním rozdílem bylo zařazení druhého bloku
od dolního okraje (s obsahem „Nastavení . . . Seznam Firefox”) jako samostatného bloku
stránky (nadřazený blok je pouze celá stránka). V původní implementaci je tento blok
součástí jiného bloku.

(a) Originální implementace (b) Implementace v jazyce Java

Obrázek 6.2: Výsledná vizuální struktura pro stránku www.seznam.cz

6.1.2 Ukázka č. 2

Na obrázku 6.3 je ukázána výsledná segmentace stránky www.vutbr.cz pro PDoC rovno
8. V prvním bloku od vrchního okraje stránky vidíme dvakrát nápis „jdi.na.vutbr.cz”.
Barevný text je součástí stránky, ale šedý nápis byl do stránky přidán při renderování jádrem
CSSBox. Ve stejném bloku je oproti originální implementaci rozdělen levý blok na dvě části.
První obsahuje odkazy a druhý pole pro vyhledávání, které ale není korektně vykresleno.
V pořadí druhý blok je v obou implementacích rozdělen správně, ale jen v implementaci v
jazyce Java je horní menu odděleno a dále segmentováno na jednotlivé položky. Pokud se

43

dále podíváme na menu na levé straně, tak je dle mého názoru správné dělení na dvě části
jako v implementaci VIPS v jazyce Java. Velkým rozdílem mezi oběma výstupy je dělení
bloků vedle výše zmíněného menu. V originální implementaci je tento velký blok rozdělen
na dva vertikální, z nichž levý je dále segmentován. Na výstupu z implementace v jazyce
Java není tento blok správně rozdělen a to z důvodu chybného vykreslení stránky jádrem
CSSBox, jak vidíme na obrázku 6.4.

(a) Originální implementace (b) Implementace v jazyce Java

Obrázek 6.3: Výsledná vizuální struktura pro stránku www.vutbr.cz

Jak je z obrázku vidět, tak při vykreslení jádrem CSSBox není pravý okraj kalendáře
zarovnán s pravým okrajem obrázku nad ním. Z toho důvodu není správně vykreslena mez-
era mezi kalendářem a prvkem vlevo. Proto nedokáže má implementace detekovat vertikální
separátor, jako v případě správně nalezeného separátoru mezi blokem s menu a obsahem s
aktualitami a tématy. Pokud by tato část stránky byla vykreslena správně, pak by se seg-
mentace těchto částí shodovala pro obě implementace. Posledním rozdílem v rámci srovnání
jednotlivých výstupů je segmentace nejspodnějšího bloku, tak jak je ukázáno na obrázku
vpravo. Dle mého názoru by měl tento blok být segmentován i v původní implementaci.

44

(a) Jádro Trident (b) Jádro CSSBox

Obrázek 6.4: Porovnání vykreslené části stránky www.vutbr.cz

6.1.3 Ukázka č. 3

(a) Originální implementace (b) Implementace v jazyce Java

Obrázek 6.5: Výsledná vizuální struktura pro stránku www.fit.vutbr.cz

Jako poslední ukázku jsem zvolil segmentaci fakultního portálu www.fit.vutbr.cz s nas-
taveným povoleným stupněm konzistence na 11 bodů. Zde si na úrovni celé stránky můžeme
všimnout neshody v dělení. Zatímco v původní implementaci je stránka segmentována odd-
ěleně na jednotlivé bloky, tak v mé implementaci je stránka v dělena na tři hlavní horizon-
tální bloky, které jsou pak dále segmentovány. Vidíme zde také, že pravý vertikální blok s
kontaktními informacemi je v původní implementaci rozdělen řádek po řádku na rozdíl od
implementace v jazyce Java, který jí dělí po skupinách. Zde také dochází k chybě, která byla
popsána v 5.3, jejíž vinou zde není správně detekován horizontální separátor a nedochází
k oddělení skupinky obrázků do samostatného bloku. Prostřední blok je v původní imple-
mentaci velmi jemně segmentován, ale naproti tomu v mé implementaci nedochází k tak

45

podrobnému dělení. V horním bloku je oproti výstupu originální implementace detekován
prvně vertikální separátor (kvůli zvolenému prahu velikosti bloku tvoří ve chvíli detekce
separátoru menu a logo jeden blok) a proto dochází k jiné segmentaci bloku.

6.2 Výkonnost

Důležitým měřítkem kvality implementace algoritmu VIPS jakožto výstupu této práce je
porovnání s původní implementací. Měření probíhalo v čisté instalaci systému Microsoft
Windows XP, která byla virtualizována programem VirtualBox. Virtualizace byla zvolena
ze dvou důvodů a to z nedostupnosti instalace systému Windows XP na fyzickém stroji
a za druhé se na méně výkonném hardware velmi dobře projevuje kvalita implementace.
Virtualizovaný operační systém byl hostován na notebooku Lenovo T61 s procesorem Intel
Core2Duo T9300 o frekvenci 2500 MHz, ze kterého bylo virtuálnímu stroji přiřazeno jedno
výpočetní jádro. Dále systému byl přidělen 1 GB operační paměti. Na fyzickém počítači
byla nainstalována 64-bitová distribuce Fedora 16 s linuxovým jádrem 3.3 a Java SE verze
1.6.0 31.

Vstupním bodem měření pro implementaci v jazyce Java bylo zpracování stránky po-
mocí objektu třídy DOMAnalyzer, před získáním struktury Viewport. Měření bylo ukončeno
po uložení výstupního XML. Čas je měřen pomocí funkce nanoTime()1 ze třídy System,
která navrátí hodnotu nejpřesnějšího časovače v systému v nanosekundách. Odečtením
těchto naměřených hodnot získáme čas potřebný k vykonání segmentace s PDoC 10. Seg-
mentace byla spouštěna přes spustitelný JAR soubor, kterému se předávala adresa stránky.
V aplikaci PageAnalysis, jenž je určena k demonstraci originální implementace byl časovač
aktivován po načtení segmentované stránky v prohlížeči a stisknutí tlačítka pro zahájení
procesu segmentace. Časovač je také ukončen po uložení výstupního XML. Pro umožnění
měření času v nástroji PageAnalysis bylo třeba přidat do zdrojových kódů aplikace volání
funkce GetTickCount()2 zdrojové kódy aplikace a znovu ji přeložit. Tato funkce vrací čas
od spuštění operačního systému v milisekundách.

Měření probíhalo na stránkách jejichž segmentace byla ukázána v předchozí sekci. Vzorky
v rámci měření byly získány desetkrát a poté z nich byl spočten průměr.

Jak vidíme v prvním grafu, tak originální implementace je v průměru pětkrát rychlejší,
než implementace v jazyce Java. Rychlost segmentace vlastního řešení je ovlivněna přede-
vším chybami spojenými s určením hodnoty stupně konzistence popsanými v 5.4.1 a 5.4.3,
kdy k jejich potlačení je zvolen proces segmentace v deseti krocích oproti velmi malému
počtu v původní implementaci, která při přiřazení správné hodnoty DoC dokáže segmen-
tační proces ukončit například již v první iteraci. Tímto došlo k významnému nárostu času
potřebného k dosažení obdobné finální vizuální struktury. Dalším aspektem by mohla být
výkonnost Javy v porovnání s jazykem Visual C++, kdy druhý jmenovaný je výkonnější
a využívá také toho, že běží na platformě Windows nativně a ne přes dodatečný runtime
jako Java.

1Funkce nanoTime() -
http://docs.oracle.com/javase/6/docs/api/java/lang/System.html#nanoTime()

2Funkce GetTickCount() -
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724408(v=vs.85).aspx

46

http://docs.oracle.com/javase/6/docs/api/java/lang/System.html#nanoTime()
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724408(v=vs.85).aspx

Obrázek 6.6: Porovnání časové náročnosti implementací algoritmu VIPS

Na obrázku 6.7 vidíme porovnání časové náročnosti při zapnuté volbě dodatečného
grafického výstupu. Vidíme, že dojde k mnohonásobnému zdržení, které roste se složitosti
dané stránky (počtu vizuálních bloků, separátorů). Při jednom běhu aplikace je generováno
až 44 různých grafických výstupů.

Obrázek 6.7: Porovnání časové náročnosti grafického výstupu

47

Kapitola 7

Závěr

V rámci diplomové práce byla představena metoda vizuální segmentace internetových strá-
nek Vision-based Page Segmentation - VIPS. Cílem této techniky je dělení stránky na
základě vizuálních vlastností tak, jak by danou stránkou vnímal člověk. Vymezeny byly
základní pojmy důležité pro porozumění rozebírané tématiky jako (předdefinovaný) stupeň
konzistence, vizuální blok či separátor. Proces dělení touto metodou byl ukázán ve srovnání
s dalšími třemi segmentačními metodami. Spolu s metodou Combined Page Segmentation
- CombPS, jenž se skládá i z aplikace metody VIPS, dosahuje nejlepších výsledků.

Technika vizuálního dělení stránky pomocí metody VIPS musí znát ke svému prove-
dení Document Object Model stránky. Proto je nutná spolupráce s vykreslovacím jádrem
internetových stránek. V této práci jsme si představili čtyři nejznámější dostupná jádra pro
použití v programovacím jazyce Java.

Cílem této diplomové práce byla implementace algoritmu Vision-based Page Segmenta-
tion v programovacím jazyce Java. Tento algoritmus byl vyvinut v laboratořích firmy Mi-
crosoft v roce 2003. Pro implementaci bylo zvoleno jako renderovací jádro WWW stránek
engine CSSBox, jenž sice nepodporuje moderní technologie jako HTML 5 či CSS 3, ale na
rozdíl od jiných, je již uzpůsoben na aplikaci segmentačních či analytických technik. Návrh
a postup implementace vycházel z dostupné technické zprávy.

Při implementaci se vyskytly problémy při vývoji fáze realizující konstrukci vizuální
struktury. Přesněji se jedná o krok přidělování stupně konzistence nově vzniklým blokům.
Technické zpráva zmiňuje, že dochází k určení stupně konzistence na základě váhy separá-
torů, které slučované bloky oddělují. Technika této transformace ale není ve zprávě zmíněna.
Proto byly provedeny experimenty s lineárními - normalizace Max-Min a nelineárními trans-
formacemi - normalizace Soft-Max či ohodnocením na základě určitého intervalu hodnot.
Nejlepších výsledků dosahovala metoda Max-Min s dodatečnou modifikací vstupních dat.
Při aplikování získaných hodnot se ohodnocení stupňů konzistence lišilo oběma směry od
originální implementace. Důsledkem je v některých případech odlišný stupeň segmentace ve
srovnání s původní implementací. Proto byl zvolen jiný postup segmentace, kdy je stránka
rozdělena na co nejmenší bloky a poté je nad všemi dostupnými separátory aplikována
normalizace Max-Min. Tato modifikace snížila výkonnost implementace v jazyce Java, ale
zvýšila úspěšnost správného dělení. Původní implementace dokáže zastavit segmentační
proces, pokud je splněna podmínka týkající se konzistence dané bloku a tím snížit časovou
náročnost algoritmu. Jako důsledek zavedené modifikace není možné segmentační proces
dříve ukončit.

K zabránění ve správné segmentaci stránky také docházelo ze strany jádra CSSBox, kdy
některé části různých stránek vykreslovalo odlišně od jádra Trident, jenž používá původní

48

knihovna. Na obhajobu jádra CSSBox musím říci, že o jeho vývoj se stará pouze jeden
vývojář, ale i přesto si udržuje vysokou kvalitu výstupu.

Pro testování byla využita originální implementace. Testování probíhalo v systému Mi-
crosoft Windows XP. Implementace v jazyce Java dosahovala dle mého názoru uspokojivých
a srovnatelných výsledků s původní knihovnou. Pokud se podíváme na výkonnost daného
řešení, tak je čtyřikrát až šestkrát pomalejší. Nutno zmínit, že potřebný čas k segmentaci
dané stránky je v průměru kolem 110 milisekund pro původní implementaci.

49

Literatura

[1] BSD License. [online], [cit. 2011-12-30].
URL http://www.opensource.org/licenses/bsd-license.php

[2] Cobra: Java HTML Parser. [online], [cit. 2011-1-10].
URL http://lobobrowser.org/cobra/java-html-parser.jsp

[3] Cobra: Pure Java HTML Renderer & Parser (Open Source). [online], [cit. 2011-12-30].
URL http://lobobrowser.org/cobra.jsp

[4] Eclipse Public License. [online], [cit. 2011-12-30].
URL http://eclipse.org/legal/epl-v10.html

[5] Embedding FAQ - MDN. [online], [cit. 2011-1-9].
URL https://developer.mozilla.org/en/Embedding_FAQ

[6] Gecko - Mozilla Developer Network. [online], [cit. 2011-1-7].
URL https://developer.mozilla.org/en/Gecko

[7] Gecko (layout engine) - Wikipedia, the free encyclopedia. [online], [cit. 2011-1-7].
URL http://en.wikipedia.org/wiki/Gecko_(layout_engine)

[8] GNU General Public License. [online], [cit. 2011-12-30].
URL http://www.gnu.org/licenses/gpl.html

[9] GNU Lesser General Public License. [online], [cit. 2011-12-30].
URL http://www.gnu.org/licenses/lgpl.html

[10] JavaXPCOM - MDN. [online], [cit. 2011-1-9].
URL https://developer.mozilla.org/en/JavaXPCOM

[11] Mozilla Public License. [online], [cit. 2011-12-30].
URL http://www.mozilla.org/MPL

[12] Snippet308.java. [online], [cit. 2011-1-9].
URL http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.swt.
snippets/src/org/eclipse/swt/snippets/Snippet308.java?view=co

[13] StatCounter Global Stats. [online], [cit. 2011-1-7].
URL http:
//gs.statcounter.com/#browser_version-ww-monthly-201201-201201-bar

[14] The SWT FAQ - How do I explicitly use Mozilla as the Browser’s underlying
renderer? [online], [cit. 2011-12-30].
URL http://www.eclipse.org/swt/faq.php#howusemozilla

50

http://www.opensource.org/licenses/bsd-license.php
http://lobobrowser.org/cobra/java-html-parser.jsp
http://lobobrowser.org/cobra.jsp
http://eclipse.org/legal/epl-v10.html
https://developer.mozilla.org/en/Embedding_FAQ
https://developer.mozilla.org/en/Gecko
http://en.wikipedia.org/wiki/Gecko_(layout_engine)
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
https://developer.mozilla.org/en/JavaXPCOM
http://www.mozilla.org/MPL
http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.swt.snippets/src/org/eclipse/swt/snippets/Snippet308.java?view=co
http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.swt.snippets/src/org/eclipse/swt/snippets/Snippet308.java?view=co
http://gs.statcounter.com/#browser_version-ww-monthly-201201-201201-bar
http://gs.statcounter.com/#browser_version-ww-monthly-201201-201201-bar
http://www.eclipse.org/swt/faq.php#howusemozilla

[15] The SWT FAQ - How do I explicitly use WebKit as the Browser’s underlying
renderer? [online], [cit. 2011-12-30].
URL http://www.eclipse.org/swt/faq.php#howusewebkit

[16] SWT: The Standard Widget Toolkit. [online], [cit. 2011-12-30].
URL http://eclipse.org/swt

[17] Web browser engine - Wikipedia, the free encyclopedia. [online], [cit. 2011-1-7].
URL http://en.wikipedia.org/wiki/Web_browser_engine

[18] WebKit - Wikipedia, the free encyclopedia. [online], [cit. 2011-1-7].
URL http://en.wikipedia.org/wiki/WebKit

[19] The WebKit Open Source Project. [online], [cit. 2011-1-7].
URL http://www.webkit.org/

[20] Burget, R.: CSSBox - Java HTML rendering engine. 2011, [online], [cit. 2011-12-30].
URL http://cssbox.sourceforge.net/

[21] Callan, J. P.: Passage-Level Evidence in Document Retrieval. 1994, [online], [cit.
2012-1-8].
URL www.cs.cmu.edu/~callan/Papers/callan794.ps.gz

[22] Deng, C.; Shipeng, Y.; Ji-Rong, W.; aj.: VIPS: a Vision-based Page Segmentation
Algorithm. 2003, [online], [cit. 2012-4-26].
URL https://research.microsoft.com/pubs/70027/tr-2003-79.pdf

[23] Deng, C.; Shipeng, Y.; Ji-Rong, W.; aj.: Block-based Web Search. 2004, [online], [cit.
2011-12-27].
URL http://research.microsoft.com/pubs/69113/21.pdf

[24] Deng, C.; Shipeng, Y.; Ji-Rong, W.; aj.: VIPS: a Vision-based Page Segmentation
Algorithm. 2004, [online], [cit. 2011-12-26].
URL www.zjucadcg.cn/dengcai/VIPS/VIPS_July-2004.pdf

[25] Khasawneh, N.; Samarah, O.; Al-Omari, S.; aj.: Vision-based Presentation Modeling
of Web Applications: A Reverse Engineering Approach. Journal of Emerging
Technologies in Web Intelligence, ročník 4, č. 2, 2012, [online], [cit. 2012-5-13].
URL http:
//ojs.academypublisher.com/index.php/jetwi/article/view/jetwi0402134141

[26] Marcin Kaszkiel, J. Z.: Passage Retrieval Revisited. 1997, [online], [cit. 2012-1-8].
URL http://nlp.korea.ac.kr/new/seminar/2001spring/research/
[Kaszkiel(SIGIR97)]PassageRetrievalRevisited.pdf

[27] Meško, D.: Normalizace dat pro neuronovou síť GAME. 2008, [online], [cit.
2012-5-18].
URL http:
//fakegame.sourceforge.net/lib/exe/fetch.php?media=meskod1_2008bach.pdf

[28] Slawinski, B.: Yahoo Web Page Segmentation: Distinguishing Noise from
Information. 2009, [online], [cit. 2011-01-10].
URL http://www.seobythesea.com/2009/10/
yahoo-web-page-segmentation-distinguishing-noise-from-information

51

http://www.eclipse.org/swt/faq.php#howusewebkit
http://eclipse.org/swt
http://en.wikipedia.org/wiki/Web_browser_engine
http://en.wikipedia.org/wiki/WebKit
http://www.webkit.org/
http://cssbox.sourceforge.net/
www.cs.cmu.edu/~callan/Papers/callan794.ps.gz
https://research.microsoft.com/pubs/70027/tr-2003-79.pdf
http://research.microsoft.com/pubs/69113/21.pdf
www.zjucadcg.cn/dengcai/VIPS/VIPS_July-2004.pdf
http://ojs.academypublisher.com/index.php/jetwi/article/view/jetwi0402134141
http://ojs.academypublisher.com/index.php/jetwi/article/view/jetwi0402134141
http://nlp.korea.ac.kr/new/seminar/2001spring/research/[Kaszkiel(SIGIR97)]PassageRetrievalRevisited.pdf
http://nlp.korea.ac.kr/new/seminar/2001spring/research/[Kaszkiel(SIGIR97)]PassageRetrievalRevisited.pdf
http://fakegame.sourceforge.net/lib/exe/fetch.php?media=meskod1_2008bach.pdf
http://fakegame.sourceforge.net/lib/exe/fetch.php?media=meskod1_2008bach.pdf
http://www.seobythesea.com/2009/10/yahoo-web-page-segmentation-distinguishing-noise-from-information
http://www.seobythesea.com/2009/10/yahoo-web-page-segmentation-distinguishing-noise-from-information

[29] Wensi Xi, C. S. K., Richard Xu-Rong: Incorporating Window-Based Passage-Level
Evidence in Document Retrieval. 2001, [online], [cit. 2012-5-18].
URL http://www.mariapinto.es/ciberabstracts/Articulos/wensi.pdf

[30] Wikipedia: Standard Widget Toolkit - Wikipedia, the free encyclopedia. [online], [cit.
2011-12-30].
URL http://en.wikipedia.org/wiki/Standard_Widget_Toolkit

[31] Zelený, J.: Web page segmentation and classification. 2011, [online], [cit. 2012-5-17].
URL http://www.feec.vutbr.cz/EEICT/2011/sbornik/03-Doktorske%
20projekty/08-Informacni%20systemy/10-xzelen11.pdf

52

http://www.mariapinto.es/ciberabstracts/Articulos/wensi.pdf
http://en.wikipedia.org/wiki/Standard_Widget_Toolkit
http://www.feec.vutbr.cz/EEICT/2011/sbornik/03-Doktorske%20projekty/08-Informacni%20systemy/10-xzelen11.pdf
http://www.feec.vutbr.cz/EEICT/2011/sbornik/03-Doktorske%20projekty/08-Informacni%20systemy/10-xzelen11.pdf

Seznam příloh

• Příloha A – Obsah DVD

53

Obsah DVD

Přiložené DVD obsahuje zdrojové kódy implementace VIPS v jazyce Java, dále zabalenou
implementaci ve formátu JAR a potřebné knihovny ke správné funkčnosti. Přiloženy jsou
také demonstrační aplikace dodávané k originální implementaci VIPS. Na DVD se také
nachází kopie této diplomové práce spolu s obrázky a XML soubory z šesté kapitoly.

Adresářová struktura:

/implementation implementace algoritmu VIPS
doc/ dokumentace ve formátu JavaDoc
jar/ knihovna VIPS
vips java.jar obsahuje pouze zdrojové kódy
vips java libraries.jar obsahuje zdrojové kódy a všechny potřebné knihovny
vips java runnable.jar spustitelná verze

library/ potřebné knihovny k běhu
original/ originální nástroje firmy Microsoft
demoTools/ demonstrační nástroje
MFCbrowser/ nástroj MFCBrowser
source/ zdrojové kódy

PageAnalyzer/ nástroj PageAnalyzer
UsingVips/ nástroj UsingVips

vipsLibrary/ originální knihovna VIPS
source/ zdrojové kódy

source/ zdrojové kódy implementace VIPS
/tests obrázky a XML soubory z testů implementace
/thesis diplomová práce

source/ zdrojové kódy práce ve formátu LATEX
thesis.pdf text diplomové práce
thesis print.pdf text diplomové práce – verze pro tisk

install.txt postup pro spuštění
readme.txt obsah DVD

54

	Úvod
	Segmentace WWW stránek
	Text-based Page Segmentation - TextPS
	DOM-based Page Segmentation - DomPS
	Combined Page Segmentation - CombPS

	Vision-based Page Segmentation - VIPS
	Struktura webové stránky v rámci VIPS
	Popis algoritmu VIPS
	Extrakce vizuálních bloků
	Detekce vizuálních separátorů
	Konstrukce struktury obsahu WWW stránky

	Využití algoritmu VIPS

	Vykreslovací jádra WWW stránek
	WebKit
	Gecko
	SWT toolkit
	CSSBox
	Cobra
	Renderovací schopnosti

	Implementace - algoritmus VIPS
	Knihovna VIPS
	Použití
	Výstup

	CSSBox
	Proces vykreslování

	Návrh
	Implementace
	Detekce a extrakce vizuálních bloků
	Detekce vizuálních separátorů
	Konstrukce vizuální struktury
	Výstup
	API

	Dosažené výsledky
	Demonstrace řešení
	Ukázka č. 1
	Ukázka č. 2
	Ukázka č. 3

	Výkonnost

	Závěr
	Literatura
	Seznam příloh
	Přílohy
	Obsah DVD

