
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

ANALYSIS OF ENTROPY LEVELS IN THE ENTROPY
POOL OF RANDOM NUMBER GENERATOR
ANALÝZA MNOŽSTVÍ ENTROPIE K DISPOZICI V GENERÁTORU NÁHODNÝCH ČÍSEL

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. PETER KREMPA
AUTOR PRÁCE

SUPERVISOR Ing. MAROŠ BARABAS
VEDOUCÍ PRÁCE

BRNO 2013

Abstract
The term entropy is in computer science usualy used to refer to a stream of random data.
This work sumarizes briefly techniques used to generate random data and describes the ran-
dom number generator used in the Linux kernel. Later on this work focuses on determining
the bit generation speed of the Linux kernel RNG when running as virtual machines under
different hypervisors. The work describes the reasons for poor performance of the RNG in
virtual environment and proposes steps to overcome them. As a next step, the proposed
approach is implemented, tested and the results are compared with the original system. The
entropy distribution system is able to improve the level of entropy in the kernel by orders
of magnitude when using a fast RNG as a source.

Abstrakt
V informatice je pojem entropie obvykle znám jako nahodný proud dat. Tato práce krátce
shrnuje metody generovaní nahodných dat a popisuje generátor náhodnych čísel, jež je
obsažen v jádře operačního systému Linux. Dále se práce zabývá určením bitové rychlosti
generování nahodných dat tímto generátorem ve virtualizovaném prosředí, které poskytují
různé hypervizory. Práce popíše problémy nízkého výkonu generátory nahodných dat ve
virtualním prostředí a navrhne postup pro jejich řešení. Poté je nastíňena implementace
navržených postupů, které je podrobena testům a její vysledky jsou porovnány s původním
systémem. Systém pro distribuci entropie může dále vylepšit množství entropie v sytémovém
jádře o několik řádu, pokud je připojen k vykonému generátoru nahodných dat.

Keywords
entropy, generator, virtualization, hypervisor, linux, RNG, VirtualBox, KVM, qemu, Xen

Klíčová slova
entropie, generátor, virtualizace, hypervizor, linux, RNG, VirtualBox, KVM, qemu, Xen

Citation
Peter Krempa: Analysis of entropy levels in the entropy pool of random number generator,
diplomová práce, Brno, FIT VUT v Brně, 2013

Analysis of entropy levels in the entropy pool of ran-
dom number generator

Declaration
I declare that I created this term project independently under the supervision of Ing. Maroš
Barabas. I referenced all publications used as sources.

. .
Peter Krempa
May 21, 2013

c© Peter Krempa, 2013.
This project was created as a school project at Brno University of Technology, Faculty of
Information Technology. The project is subject to copyright laws and its usage without a
permission is illegal with the exceptions defined by law.

Contents

1 Introduction 3

2 Entropy 4
2.1 Use of entropy in computer systems . 4
2.2 Random number generators in computer systems 5
2.3 Testing and certification of random number generators 9
2.4 Conclusion . 9

3 Virtualization tools and solutions 10
3.1 Anatomy of a virtualized computer system 10
3.2 QEMU-kvm and libvirt . 10
3.3 VirtualBox . 13
3.4 Xen . 14

4 Entropy in virtualized systems 15
4.1 Available entropy in kernel entropy pools . 15
4.2 Impacts of virtualization on performance of random number generator . . . 15
4.3 Gathering of Linux kernel RNG performance statistics 16
4.4 Synthetic tests . 16
4.5 Real world scenarios . 17
4.6 Virtualization acceleration drivers . 17
4.7 Entropy used up on process start . 17
4.8 Results . 18
4.9 Influence of virtualization drivers . 20
4.10 Entropy levels during boot of a Linux system 22
4.11 Conclusion . 22

5 Approaches to improve levels of entropy in guests 24
5.1 Gathering of additional entropy in the guest 24
5.2 Passthrough of host’s entropy to the guest OS 24
5.3 Gathering of additional entropy in the host 25
5.4 External sources of entropy . 25
5.5 Distribution system for multiple guests . 25
5.6 Design of the system to improve entropy in guests 25

6 Implementation 28
6.1 VirtIO RNG . 28
6.2 Basic libvirt support for RNG devices . 30

1

6.3 Libvirt support for entropy pools . 33
6.4 virtentropyd . 34
6.5 Integration of virtentropyd into libvirt . 36
6.6 Documentation . 36

7 Impact analysis of the system 37
7.1 Testing approach . 37
7.2 Results . 37

8 Conclusion 40
8.1 Future work . 40

A Contents of the attached CD 45

B Glossary 46

2

Chapter 1

Introduction

With introduction of hardware virtualization support virtual machines have grown from
a convenient way to test new features and software and aid kernel developers to a fully
fledged solution used in enterprise environments. Virtualization is now commonly used
to consolidate hardware infrastructure and reduce costs of the infrastructure by avoiding
ownership of physical hardware in favor of virtual machines. Thanks to this more and more
services are being migrated to virtual infrastructures.

Modern information systems are trying to balance information security with global avail-
ability of the data. One of the key aspects needed to achieve this balance is encryption.
Encryption algorithms often require random data to initialize key generating algorithms or
for generating of challenges in challenge response authentication. This brings the focus to
the random number generator that is available as a part of the operating system.

The path taken to increase the usability of virtualization included solving performance
issues of storage and networking subsystems as they are the most critical from a response
latency and performance point of view. The previously overlooked and less important sub-
systems are now becoming bottlenecks. This work will focus on analyzing performance of
the random number generator in the kernel of the Linux operating system.

The performance issues of the Linux kernel random number generator are easily ignored
as usually only the urandom pool is used in applications and the interface of that pool
is supplying entropy from a pseudorandom number generator in the case the main random
pool is depleted. When strong entropy is needed the regular pool of entropy may be depleted
and the application requiring the access to such entropy will block until the kernel is able
to fulfill the demand.

This thesis consists of a brief introduction into entropy generation used nowadays with
focus on enterprise usage of random number generators followed by a brief introduction
into virtualization and available hypervisor solutions. The work will then focus on testing
the performance of the Linux kernel random number generator under various circumstances
and running inside different hypervisors and compares and analyzes the results. The next
chapter is aimed to introduce options that can be used to improve the performance of
the Linux kernel random number generator when running inside a virtual machine and
choses the approach to be implemented. As the next step the implementation details of the
software system created for improving the performance of the random number generator
are summarized. The following chapter then analyzes the impact and performance of Linux
kernel random number generator when the implemented system is used to pass additional
entropy to the guest operating system. In the conclusion, goals of this work are summarized
and future work on the software system that was created as a part of this thesis is proposed.

3

Chapter 2

Entropy

Entropy is commonly described to be the measure of uncertainity and disorder in a
system.[10]

In information theory the term entropy was defined by Claude E. Shannon as the average
unpredictability in a random variable, which is equivalent to its information content. [12]

For purposes of this work the term entropy also refers to the contents of the entropy
pool - the random bits prepared to be read by applications or more general to a stream of
random bits.

2.1 Use of entropy in computer systems

In modern computer systems entropy is used to accomplish various tasks. These may
range from simple games, animations, art, random images to generating of cryptographically
strong keys and electronic gambling.

Entropy generator in computer systems is normally referred as a random number gen-
erator or RNG.

Various tasks have different quality and quantity requirements for entropy. For computer
games, computer art, and others, large quantities of random data are needed to simulate
various seemingly random physical phenomenons. Those data don’t ultimately need to be
truly random. A good appearance of randomness is enough for these tasks.

On the other hand for use in creation of cryptographic keys, unique identifiers, password
generation and even computer based gambling the requirements are different. These tasks
require truly random and unpredictable data otherwise an attacker could take advantage
of the knowledge of the random algorithm used by the RNG to gain acces to the system
without permission.

Historically RNGs have been implemented in the applications themselves and later in
libraries. Currently best random number generators are usually found in cryptographic
libraries such as OpenSSL where they are used to generate cryptographic keys.

With a stronger need for information security cryptography is increasingly used to pro-
tect user data. Introduction of disk encryption and VPN1 comes with the need to have
good quality entropy generators in the kernels of operating systems for generating of key
material. This allows also general purpose applications to have access to good quality and
properly seeded RNGs without much extra effort by accessing the common RNG.

1Virtual Private Network - a secure tunnel between two separated parts of a network

4

Additionally current hardware development makes it easy to include components to
create a entropy generator on the system boards of computer systems. These use principles
described in section 2.2.2. The generators have fast bit speeds with true random behavior
and are easily accessible in cheap systems. One of possible disadvantages of this approach
is that a bug in the hardware random number generator can’t be patched in most cases and
may be widely exploitable.

2.2 Random number generators in computer systems

There are multiple approaches to generate streams that have high entropy levels. Each of
the approaches has advantages and disadvantages and thus limited usage for some kinds of
problems.

The most basic approach is to use a pure software solution. This is described as a
pseudo-random number generator. This solution is fast but limited in the entropy level.
The entropy level of the sequence is reduced to the entropy of the initial value.

The second approach improves the first by having a pool of entropy that is continually
filled with entropy originating from hard-to-predict events, like network, user and disk ac-
tivity. There are multiple implementations using this approach including the Linux kernel
RNG.

The third option to gather entropy is to measure and extract randomness of truly random
effects. This depends heavily on physical characteristics of some components and requires
special hardware for the generator.

2.2.1 Pseudo-random number generators

Pseudo-random number generators - PRNGs - use an algorithm to create long sequences of
numbers that are apparently random.

PRNGs are fast in terms of bitrate as they don’t depend on any external input, just on
the previous value.

The generating algorithm depends on a starting value called seed which may be taken
from the current time or other hard-to-predict value or chosen arbitrarily to allow generating
the same sequence. Without knowledge of the algorithm the next output value of a PRNG
has high entropy for the observer and thus can be considered as a random number. [1]

Advantage and disadvantage depending on field of usage of PRNGs is periodicity. After
a certain amount of generated numbers the sequence repeats as the previous value is equal
to the seed. The repetition period may be long enough to not appear during normal use.
This and the speed of PRNGs make them ideal for modelling and simulation, computer
games that might benefit from repeatability2 or computer art and generation of artificial
terrain.

If the algorithm and seed is known to the receiving party the entropy of the stream
generated by a PRNG is equal to zero as each bit can be calculated.

The most simple PRNG is the linear congruential random number generator. It’s defined
by the equation XN+1 = aXN + c mod m [17]. The values of a, c and m have to be chosen
so that the sequence does appear random enough.

There are better PRNGs in terms of distribution and sequence repetition. One of the
popular algorithms is the Mersene twister. PRNGs are commonly used with a high entropy

2This allows for example to play a game with the same generator. starting point over again.

5

data source used to seed the PRNG for high security applications that require larger amounts
of data but the entropy of the seed is sufficient.

There are various standards describing algorithms used as PRNGs and fields of appli-
cations of these generators such as the NIST standard for Deterministic Bit Generators
[1].

2.2.2 True random number generators

True random number generators - TRNGs - are based on physical phenomena that are hard
or impossible to predict. The entropy is contained within the effect itself and it is extracted
by measuring the occurrence, time difference or absolute value of those effects. The quality
and speed of entropy bits generated by these generators depends on the phenomenon and
also on the physical construction of the detection device.

Phenomenons ideal to be used for entropy generation are radioactive decay, avalanche
effects on reverse-biased electronic components and thermal, atmospheric and other sources
of noise, detection of photons travelling through semi-transparent mirrors and others. Some
of those aren’t practical for real implementations. Commonly used approaches are avalanche
effects on electronics and thermal and atmospheric noises.

The TRNGs are slower if compared to PRNGs, but their main advantage is that even
with full knowledge of the working principle of the generator and all initial conditions, the
devices keep high entropy levels. TRNGs aren’t commonly used but some designs may be
implemented on motherboards of computers with no or low extra cost.

Random number generators based on radioactive decay

Radioactive decay of atoms is considered to be truly random as it’s based on quantum events
that may or may not happen at a certain point in time. A radioactive decay based RNG
uses a small radioactive emitter that is safe to handle and detectors that register decaying
of the atoms. The entropy is contained in time between the decays happening.

Noise based RNGs

This type of RNG uses a source of noise, that is amplified and sampled using an analog to
digital converter. The noise source is usually a thermistor, a output of a reverse biased semi-
conductor devices or a circuit based on avalanche breakdown semiconductor devices. These
approaches are easy enough to implement cheaply and using regular electronic circuitry and
is commonly used in crypto-accelerators and hardware RNG tokens. [13]

Clock drift detection and ring oscillators

Oscillators used in computer systems tend to drift in their frequency due to tolerances in the
components they are built from. This phenomenon can be used to collect entropy data as
the variance of the drift is changing due to noise picked up by the components the oscillator
is created from.

The usual approach is to have two free running oscillators that contain components
to deliberately destabilize their oscillation. One of the oscillators is then used to trigger
sampling of the other one creating a bitstream that is considered to be random as it’s
impossible to simulate.

6

Figure 2.1: Entropykey: a hardware random number generator USB device. [13]

As the phenomenon that this RNG is based on isn’t quantum based this RNG might
be tampered to create less random sequences by decreasing the amount of noise picked up
by the oscillators. This kind of attack, although theoretically possible, isn’t feasible in real
applications as systems usually stop operating at temperatures required to decrease the
noise enough.

Figure 2.2: Tampering of oscillator drift based RNGs with power supply signal injection.
[9]

Disadvantage of random number generators based on oscillator drift is the susceptibility
of power supply noise to alter and lock up the frequency of the free running oscillators and
decrease the quality of entropy produced. There’s a known attack on RNGs based on this
principle used in smartcards. [9]

2.2.3 Random number generators based on hard-to-predict events

Common computer systems require high quality entropy but usually don’t have a TRNG to
generate it. Apart from PRNGs there’s another way to generate entropy only by software
means. RNGs based on these principles usually measure disk activity, mouse movements and
user activity in the system and extract the entropy of these events. Multiple implementations
of this approach exist, where the best known one is the Linux kernel Random number
generator that will be mentioned later. Predecessors of this approach were implemented as

7

user space application that were periodically running statistical commands and extracted
entropy from such sources. An example of software used to generate entropy by such an
approach is the entropy gathering daemon - egd.

2.2.4 The Linux kernel random number generator

The Linux kernel contains a random number generator - the LRNG - that supplies high
quality entropy based on entropy gathered from hard-to-predict events. The generator
collects information about key-presses, movement of the mouse, jitter of access times to
disk and various interrupt sources of the system. The collected data are then stored in the
entropy pool until it’s requested for usage.[5]

First step of the generator data flow is acquisition of data. The kernel records information
about events from the input devices and interrupts along with the timestamp when the event
happened. The events are then queued for addition to the pool that is scheduled regularly.
The entropy contribution of each of the events isn’t known and is approximated at the time
the Primary pool is stirred with the contents of the event data. The entropy contribution
of the event depends on the type of the event and also on repetition rate of same event[5]

The pools updates take the packets of data prepared by the acquisition code and update
the primary pool with them. The pools are constructed using feedback algorithms to stir
the contents of the pool while updating the other ones. The secondary and urandom pool
are updated in a similar matter from the primary one. Along with this operation the pool
volume estimate is updated by the approximate estimate of the contribution.[5]

To access the entropy data from the LRNG userspace applications can use the character
device pseudo files /dev/random to access the blocking pool and /dev/urandom. Kernel
tasks can only access the non-blocking pool using the function get_random_bytes. The
data are extracted from the corresponding pools, either the secondary pool for the blocking
output or from the urandom pool for non blocking. The data extraction algorithm includes
hashing the extracted values and stirring parts of the data back to the pool to refresh it’s
contents.[5]

On shutdown of the computer it’s recommended to save the state of the LRNG by
extracting data from the urandom pool and storing them to disk storage. This data is used
in the next boot sequence to seed the LRNG so the state cannot be easily predicted.[5]

Figure 2.3: Linux kernel random number generator block diagram. [9]

8

2.3 Testing and certification of random number generators

Computer systems that are used in enterprise environments are required to be trusted. This
is mostly true for security measures as encryption where random number generators are used
to generate encryption keys. This lead to creation of multiple test suites designed to test the
quality of entropy generated by random number generators. These suites measure various
statistical values on samples of data from the generators to ensure that the output sequence
of the generator can be guessed without the knowledge of the initial state. [11]

The most notable examples of such tests are the Diehard and Dieharder test and the
recent NIST 800-22 suite[11].

Bugs in RNGs used for cryptographic purposes may have catastrophic outcomes. An
infamous bug in the OpenSSL software package in the Debian Linux distribution caused that
cryptographic keys generated by the package and used for system authentication and other
purposes had only 1 of 32768 possible values making an attack trivial. [16] Commonly used
RNG implementations used in computer systems are subject to multiple security audits and
are also empirically verified by real-world usage.

Computer systems that are used in enterprise and government applications need to fulfill
strict sets of rules to ensure security of the system. As entropy is used in multiple places in
such systems in ways that directly influence security of the system, RNG devices are subject
security certification too. The standards often list approved random number generation
methods. An example is the Federal Information Processing Standard that specifies the
methods in [4].

2.4 Conclusion

This chapter shows, that there are multiple sources of entropy available in a computer system
and with some effort they can be converted to be used as RNGs producing high quality
entropy. The summary of advantages and disadvantages should help the user to choose a
suitable source of entropy according to the needs, availability and requested security level
and certification.

9

Chapter 3

Virtualization tools and solutions

Virtualization is a fairly modern phenomenon in computer science at first used for ex-
periments, testing and to ease debugging. Now virtualization is increasingly used also in
enterprise environments to save costs of physical hardware.

3.1 Anatomy of a virtualized computer system

In virtual system most of the hardware is abstract and emulated by software. The virtual
hardware creates an abstraction layer on top of the physical hardware. This is beneficial as
it enables to run guests on various hardware platforms, change hosts of the guests - migrate
them.

Virtualization allows to share physical hardware that wouldn’t be fully utilized by a
single task by grouping such cases on one physical machine. The services run in virtual
environment aren’t different from those running on physical hardware and so aren’t the
requirements of them.

There aren’t many downsides of virtualization solutions. One of them is performance.
Virtual machines due to the abstraction layer are slower than physical machines. This issue
is being reduced using para-virtual hardware drivers.

3.2 QEMU-kvm and libvirt

One of the many virtualization solutions available today is the QEMU hypervisor used
together with libvirt as management. This open source virtualization tool is used both on
desktop systems and in enterprise environments.

3.2.1 QEMU

Qemu is a open source hypervisor and emulator that was originally developed by Fabrice
Bellard. Qemu supports multiple targets and allows to emulate platforms different from
the host platform. Qemu is a full virtualization solution including BIOS or other firmware
interfaces and hardware emulation. This allows to run unmodified guest operating systems
in such an environment. The QEMU project is available at http://www.qemu.org/. The
QEMU project is active and heavily developed and releases are being done regularly.

Qemu supports a wide range of virtual and paravirtual hardware that can be used in
the guests with multiple backends for storage and networking. This makes it a good choice
for general purpose virtualization.

10

http://www.qemu.org/

To configure options for a virtual machine the QEMU hypervisor uses command line
arguments for the instance being started. For run time modifications of the state such as
change of media in virtual drives, hot plug and unplug of devices or changing the state of
the machine an interactive communication channel can be used. This channel is know as
monitor.

Neither the command line interface nor the monitor are user friendly and QEMU doesn’t
store any persistent configured state when the virtual machine is not active. This makes
QEMU hardly usable by itself and thus a higher level management application is needed
which also allows to manage storage and networking for virtual machines.

3.2.2 KVM

Qemu itself doesn’t support any virtualization extensions of a CPU that would allow it to
run the guests in a more optimized way. For this purpose the kernel based virtual machine
extensions, known as KVM, were developed.

KVM is no hypervisor itself. KVM is a part of the linux kernel that allows to control
the virtualization extensions of a CPU, set up address spaces for guests and channel I/O
operations that would originaly be used for interaction with physical hardware. KVM is
meant to be used by the hypervisors like QEMU that will benefit from offloading memory
management and other crucial data paths into the kernel, while hypervisor itself is imple-
menting device emulation and control of the virtual machine. The interface of KVM is
exposed as the /dev/kvm device node.

KVM was first introduced for the x86_64 architecture and now the interface is being
ported to other architectures such as ARM. KVM was first developed by Avi Kivity at
Qumranet.

3.2.3 VirtIO

Full hardware virtualization includes emulation of hardware peripherals on a level where
the guest operating system can’t distinguish it from a real piece of hardware. The interface
of a hardware device was originally designed with respect to the hardware layout and thus
isn’t usually well suited to be emulated by software. For use in a virtual machine it would
be better to design an interface that is meant to be processed by the software emulation
layer and thus avoid constructs and approaches including timers and sequencing of the I/O
layer. [6]

The VirtIO paravirtual device drivers are trying to solve this issue. The VirtIO infras-
tructure consists of the emulated hardware that has I/O interface desinged to be used with
a software emulator and guest kernel device driver that allows to use such devices. VirtIO
drivers are available for disk drives, network cards, serial ports and dedicated communica-
tion channels and also for RNG devices. The goal is to achieve near native performance
when using the infrastructure to pass through resources from the host system. [6]

VirtIO was developed by Rusty Russel as a acceleration solution for his virtualization
solution called lguest and is now widely supported in guest operating systems. [6]

3.2.4 libvirt

Libvirt is a open source project that tries to provide a common API and configuration
interface for various different hypervisors and the infrastructure needed to support it. Libvirt
was started by Daniel Veillard and Daniel Berrange. The project is accessible at http:

11

http://www.libvirt.org/
http://www.libvirt.org/

//www.libvirt.org/. The project is active and under heavy development with support of
large IT companies.

Libvirt provides means to configure and manage storage, networking, resources and
resource limits, virtual machines and snapshots of them. Libvirt uses XML documents to
describe virtual machines and the hardware and provides persistent configuration storage
and management of hypervisor processes.

Libvirt also supports remote connection using the libvirt RPC protocol. This allows to
manage a hypervisor host from a remote location.

API

Libvirt’s api is designed to be a universal interface abstraction for the underlying hyper-
visor and the operation it can support.The API of libvirt is guaranteed to be backwards
compatible and legacy functions are still being maintained although they are obsolete.

QEMU hypervisor driver

The QEMU hypervisor isn’t a standalone virtualization solution. Qemu requires instrumen-
tation to start the process with correct command line arguments connect to the monitor
and control the virtual machine. This is the purpose of the QEMU driver in libvirt.

The driver manages the running processes and converts information from the libvirt
APIs into commands for the QEMU monitor. The QEMU driver is a stateful driver and
thus the libvirt daemon is required when managing QEMU virtual machines.

virsh

The virsh – virtualization shell is a basic management application that uses the libvirt API.
It was originally developed as a testing tool for the libvirt API but was further developed
to be a user friendly basic interface to libvirt to allow simple management tasks. Virsh is
distributed along with the libvirt package.

$ virsh
Welcome to virsh, the virtualization interactive terminal.

Type: ’help’ for help with commands
’quit’ to quit

virsh # list
Id Name State

--
4 test-vm running

Figure 3.1: virsh virtualization shell

virt-manager

The virsh shell is only a minimalist interface suitable for minimal tasks. For more complex
tasks such as creating a virtual machine virsh requires the knowledge of the libvirt XML
format. To ease this type of operations a graphical user interface for the libvirt API was
created. [15]

12

http://www.libvirt.org/
http://www.libvirt.org/

Virt-manager is a separate project that uses the libvirt API to create and manage virtual
machines on individual hosts in a user friendly way. Virt-manager is written in python and
supports connecting to multiple hosts and provides configuration wizards for creating virtual
machines and integrates the graphical console of the machines. [15]

Figure 3.2: virt-manager management interface. [15]

OpenStack, oVirt and others

Libvirt was originally designed to be used on a single node only as a abstraction of the used
hypervisor. To allow using it for more sophisticated topologies in datacenters a higher level
system needs to be implemented that will manage resources in the datacenter using libvirt
on a larger scale.

There are a few open source projects using libvirt as a host based management layer
and are building a larger scale application on top of it. OpenStack compute and oVirt
are examples of such projects and both are also sold as products with support by large
companies.

3.3 VirtualBox

VirtualBox is an all in one virtualization solution including the hypervisor, management
interface and guest support drivers. VirtualBox is developed by Oracle and usualy used as
a desktop virtualization solution mainly due to a user friendly intreface and easy installation
and good support for video acceleration which makes it suitable to virtualize systems with
heavy graphical user interaction.

VirtualBox is distributed also as open source project lacking several features described
as enterprise such as network booting support and USB passthrough support. Together with
the lack of multi host management software and closed source nature of the guest drivers
the target segment for use of VirtualBox is on desktop computers rather than servers.

13

Figure 3.3: VirtualBox management interface.

3.4 Xen

One of the first hypervisors available was the Xen hypervisor. Originaly only paravirtual-
ized Linux guests were supported. Those required modified kernels that replaced hardware
drivers and system calls with hypercalls. The main reason for this was the need to modify
the kernel to run cpu security ring 1 instead of the usual ring 0.

With the introducition of hardware virtualization support into the hardware the Xen
hypervisor was upgraded to support it and was one of the firtst to support fully virtualized
guests with hardware support.

The Xen hypervisor is now being used less due to the need to do heavy modifications
to the host kernel. These modifications are not keeping up with upstream Linux kernel
releases. As a replacement, other solutions are used that run on top of the host system and
access the virtualization support using a stable interface.

The Xen hypervisor was originaly developed at the University of Cambridge.

14

Chapter 4

Entropy in virtualized systems

The aim of a virtualized environment is to be indistinguishable from a physical computer
system in terms of performance. This is also true for the random number generator. In
this chapter I will focus on analyzing of performance of the Linux kernel random number
generator under different conditions and various virtualized environments to determine the
performance of the generator and I will try identify possible problems with the performance
and their causes.

4.1 Available entropy in kernel entropy pools

As described in section 2.2.4 the kernel random number generator stores noise bits collected
from the available sources in the entropy pool. The kernel and tasks using the entropy
from the pool decrease the amounts of entropy contained in the pool. The available amount
of entropy in the kernel pools is an important measure so the following sections will try
to research the filling rate and consumption rate of the random number generator in the
system under various situations and conditions.

While the entropy pool is filled with entropy all requests including those originating
from the non-blocking access methods receive high quality entropy from the primary pool.
In cases when there isn’t enough entropy in the pool requests for entropy from /dev/random
block and the non-blocking sources receive entropy from lower quality source. This fact
might might lead to starvation of applications trying to generate cryptographic keys and
thus requiring access to the higher quailty pool by applications accessing the pseudorandom
pool.

Filling of the entropy pool during start and boot phases of a computer system is another
source of possible problems. The entropy pool is empty when the kernel is initialized and
although the system is under heavy load which increases the entropy generation rate, the
starting services may consume a lot of entropy for their initialization purposes. Additionally
the services may block the startup if high quality entropy is needed for the startup of the
process.

4.2 Impacts of virtualization on performance of random num-
ber generator

The virtual hardware due to the nature of emulation may have different properities when
compared to the real hardware the emulation is based on. The properities may differ in

15

terms of timing, interrupt frequency and other variables that are determined by the state of
the hardware. As these are the main source that contains entropy in a computer system the
changes of the behavior may influence the performance of the generator that is extracting
random numbers from the entropy and quality of them.

An example of this difference to real hardware is the disk of the virtual machine being
backed by a file on the filesystem of the host. The operating system of the host may apply
caching of disk accesses and thus offset the access times for individual blocks and also the
count of interrupts in the guest if it is able to provide data in larger chunks. Also fragmented
blocks of a filesystem may be present in the cache and avoid the jitter of accessing the disk
drive.

Virtual machines also usually don’t have input devices directly connected but use a
virtual terminals. The input devices are one of the best sources as they are operated by
humans in an unexpectable manner

Those are a few examples of differences between a physical computer and a virtual
machine. How these affect creation of entropy in the RNG will be discussed in the next
section.

4.3 Gathering of Linux kernel RNG performance statistics

The kernel procfs interface in Linux provides means to collect statistical information about
the state of the kernel entropy pool. The /proc/sys/kernel/random/entropy_avail file
will be used to collect information about the estimated volume of entropy contained in
the entropy pool. Before the start of each test the entropy pool will be drained using the
/dev/random device to start the process of filling the pool. This will show the filling rates
of the RNG. The guest operating system will need to have minimal impact on negatively
affecting the statistics and thus a idle system with minimal amount of started services will
be used.

Four sets of experiments will be conducted on multiple hypervisors to portray and quan-
tify the performance of the Linux RNG under various conditions and environments.

4.4 Synthetic tests

The purpose of the synthetic test will be to test the filling rate of the Linux kernel RNG that
will be running in virtual systems. To compare the influence of virtualization archigecture on
the performance of the LRNG I will use Xen, QEMU/KVM and VirtualBox as hypervisors.
These are the most commonly used open source hypervisor solutions available.

As the guest operating system under test I will use Red Hat Enterprise Linux version
6.4. This is a enterprise system that is commonly used and contains support for guest based
virtualization support. I will use a minimal installation to reduce the number of running
services that might drain the entropy pool and interact with the generation of data. Use of
this system will also help in comparing the performance of the Linux RNG when compared
to the host system.

As the host system I chose Red Hat Enterprise Linux Server version 5.8 for the Xen
hypervisor and Red Hat Enterprise Linux version 6.4 for QEMU/KVM and VirtualBox.
The host systems run on a Intel Core 2 Duo processor and the host has one disk drive.

16

4.5 Real world scenarios

The methodology described above will also be used to collect reference data for real world
behavior of the Linux kernel RNG. For this purposes I propose two common usage scenarios:

The first scenario is a virtualized server computer system. The host operating system
runs several instances of the QEMU/KVM hypervisor. The guests are production systems
running several services and hosting user space for multiple users. All externally accessible
services are secured through encrypted channels. The host is a Intel Xeon based machine
with a 6 disk raid array and two network connections. As this system is a production
machine, performance on various hypervisors cannot be tested. Operating systems used on
this machine are Debian Linux installations with custom kernels.

As a second real world example I selected a desktop computer system used by single
user for common computer work without the use of virtualization. The system is a Intel
Core i7 based machine with Gentoo linux installed. This system has external input devices
connected and actively used. Many of the applications used on the system include use of
secure channels and the disk storage of the system is encrypted using dm-crypt. This system
will try to analyze the long term performance of the LRNG on a desktop system to allow
comparison with server systems.

4.6 Virtualization acceleration drivers

A third test scenario will focus on comparing the performance of the LRNG on a guest that
is using paravirtual accelerated hardware interface and on a guest that has this advanced
interface disabled.

The goal of this test will be to analyze the effect of these drivers on the LRNG speed
and compare it with improvement of the performance in the guest.

This test will be based on the synthetic test described above. Along with the LRNG
performance testing, the guest will be performing disk reads and the total disk throughput
speed will be graphed along with the LRNG performance. To avoid influence of physical
hardware a empty sparse file simulating the disk image will be used. This will avoid biasing
the results by using a slow hard drive and instead the full potential of the virtualization
infrastructure will be utilised.

This test will also allow to compare the performance of the LRNG when used on a
system under load, where the disk I/O operations are the primary source of entropy.

4.7 Entropy used up on process start

Early experiments with trying to determine state of the entropy pool in the system shown a
strange pattern. After trying to log level of the entropy pool by running a separate process
for every data point, the pool drained very fast leaving the minimum value of 128 bits of
entropy that is an implementation limit.

Graph 4.1 shows the gradual decrease in the volume of the entropy pool with reference
to number of tightly looped started processes. Each start of a process drains 128 bits of
entropy from the pool.

Using the strace tool to log all system calls by a process has shown that no entropy
data is read by the initialization phase of the processes themselves.

17

Figure 4.1: Draining of the entropy pool when starting processes.

Further investigation of the Linux kernel showed that 16 bytes of entropy is consumed
by the ELF file loader in the kernel when an executable binary is being loaded. The data is
stored in the AT_RANDOM attribute in the ELF header of the running process. This random
initialization vector is used by the glibc library to seed stack protectors and PRNGs. [2]

The workaround used to gather unbiased data is to use a single process that accesses
the entropy pool state in a loop by a single process. Together with in-memory caching of
the statistics data this minimizes the impact of the analysis software on the tested system.

Starting of processes is a very common task, so this draining might have serious impact
on the contents of the entropy pool on busy systems and during boot phases where the init
scripts are starting a lot of processes.

4.8 Results

The results were collected by the use of a custom program that was periodicaly reading
the state of the random pool and storing the results into memory. After collecting samples
for the requested time period, the program wrote the results to a file on the disk. This
approach avoided disk writes while the statistics were collected. Afterwards the data were
plotted using the gnuplot tool.

The program was also used for gathering statistics while the system was booting. The
program may be run as the init process with pid 1. In that case it forks to create a clone
that will start gathering statistics, while the original instance executes the sytem startup as
usually.

The program is called entropy_boot and the source code is on the attached CD.

4.8.1 Synthetic test scenario

As there were two different host systems used to collect statistics graph 4.2 shows the
performance of the RNGs depending on the kernel version. The graph shows that the
RNGs of both of the hosts have a similar performance, where linux-2.6.18-xen averages
roughly 6 bits of entropy data per second and linux-2.6.32 averages 5 bits per second. Both
the host systems outperform the guest systems by at least 5 times, where the best guest
averages 1 bit per second.

18

Figure 4.2: Synthetic test - Performance of the RNG in host systems - guest data included
for reference.

Graph 4.3 compares the performance of the RNGs in a guest operating system across
various hypervisors. It’s apparent that the guest achieves the best performance while run-
ning on the Xen hypervisor averaging 1 bit per second. Qemu/KVM and VirtualBox with
the guest additions both perform worse than Xen averaging roughly 0.4 bits of entropy per
second.

Figure 4.3: Synthetic test - Performance of the RNG in guest systems.

4.8.2 Real world scenario

In the production system the results of the experiment correspond to the synthetic tests.
According to graph 4.4 the host system is able to generate high enough amounts of entropy
and it’s usage isn’t affecting the growth of the pool. This contrasts with the situation in
the guest system where the kernel isn’t able to keep up with consumption of the application
and the size of the kernel pool fluctuates around of the minimal read limit value.

The overal performance of the LRNG in an idle and loaded server systems is insufficient
and even under load the output rate of the LRNG does not scale well enough to maintain

19

a steady amount of entropy in the pool.

Figure 4.4: Real world scenario - virtualized server system.

Figure 4.5 shows entropy pool level fluctuations on a desktop computer system. Thanks
to actively used user input peripherals the RNG is able to generate high amounts of entropy
in short periods. On the other hand, as the system is actively used, entropy consumption of
the running applications is very high (multiple processes executed, encrypted connections,
wireless network encryption keys). These two factors result in sharp changes of the entropy
level.

On a desktop system used by a single user the LRNG performes better when compared
to server systems due to the existence of actively used peripherals. For a single user use
case the LRNG performes well enough.

Figure 4.5: Long term usage of a real world system - desktop computer.

4.9 Influence of virtualization drivers

Virtualization acceleration drivers usualy avoid normal code paths to improve throughput
of the subsystems with critical performance. The following results analyze the impact of

20

using accelerated drivers for virtual disk storage on the performance of the LRNG.

4.9.1 QEMU + KVM

From the measurement it’s apparent that the VirtIO device driver uses data paths that are
comparable to those of the fully virtualized driver. The LRNG was performing similarly
when using both the VirtIO and the fully emulated driver. The LRNG on the system under
load was producing approximately 5 bits of entropy per second. This result is comparable
to the idle state of the host operating system.

The disk I/O performance was approximately twice as good when compared to a system
running non accelerated drivers. The accelerated system was able to achieve a sequential
read speed of 400MiB/s1 whereas the guest using the legacy emulated hardware was able to
reach 200MiB/s on the tested system. This allows to encourage users to use the accelerated
drivers instead of the legacy ones without the need to take the RNG performance into
account.

This test also shows that heavy disk I/O improves the performance of the LRNG when
using QEMU as a hypervisor when compared with the results from an idle system visible in
graph 4.3. On a downside a busy system is more likely to consume more entropy for internal
purposes.

Figure 4.6: QEMU - Influence of disk backend on RNG performance and disk I/O perfor-
mance.

4.9.2 Xen

When using the Xen hypervisor, the choice of disk driver and backend has direct impact
on the performance of the LRNG. With the paravirtualized disk driver the LRNG was
performing poorly and it’s apparent that the driver is avoiding data paths that are used by
the LRNG to gather entropy. The SCSI disk backend is using the standard data paths and
thus the kernel is able to extract entropy from these disk reads. The LRNG produced 5
times more entropy when using the SCSI driver compared to the paravirtual driver.

The results of disk bandwidth measurement are unexpected though. The SCSI non-
paravirtual disk backend of the Xen hypervisor is performing better than the paravirtual

1The graph shows speed in 100ms ticks, thus the throughput per second is 10 times greater

21

backend. With an SCSI disk the guest was able to read 260MiB/s whereas the paravirtual
interface is averaging only 160MiB/s of sequential reading data.

Figure 4.7: xen - Influence of disk backend on RNG performance and disk I/O performance.

4.10 Entropy levels during boot of a Linux system

As expected due to issues described in section 4.7 and the fact that the filling rate of the
kernel entropy pool at early boot phases isn’t high enough even in cases of heavy disk
activity, the entropy pool was almost empty during the boot phase. The filling started after
the startup of system services was finished.

Graph 4.8 shows heavy fluctuations of the entropy level during the boot phase. The RNG
collects entropy from the heavy disk operations during boot but the init scripts continue
draining the pool. After the host boots up at around 25 seconds after the start the entropy
generator loses the input but also draining due to process starts ceases. This allows the
entropy pool to start slowly filling up.

The data for this test was gathered while running on physical hardware without a hy-
pervisor. As the consumption of entropy is too high during the boot process a test on a
virtual environment would yield very similar results.

4.11 Conclusion

According to the test results it’s apparent that the performance of the Linux kernel RNG
in virtualization guests is poor. There are multiple factors that that cause this.

The first issue is the lack of peripherals in the guest. Virtual machines interact mainly
using network services and with exception of maintenance. This drastically reduces the
performance of the RNG. Unfortunately this issue cannot be solved in a virtual environment.

The second factor decreasing the performance of the RNG is offloading more and more of
the performance critical hardware emulation into paravirtual cooperation with the hypervi-
sor. This has great benefits in improving performance of the guest itself but the guest kernel
loses even more sources of noise that are suitable to extract entropy from. Additionally with
further progress in speeding up virtualization solutions more and more of the noise sources
stop to be suitable. In systems containing multiple guests the offloading procedure might

22

Figure 4.8: Entropy level variations during early booting phases.

start introducing same noise patterns in multiple guests enabling attackers to guess random
streams produced by RNGs in other virtual machine running on the same host.

The consumption of entropy needed to initialize every single process in the Linux oper-
ating system is the most critical factor that causes very low levels of entropy available in the
kernel pools. The entropy is used as a security measure to protect application against stack
corruption and is used to seed internal PRNGs. Also address space layout randomization,
a technique to avoid buffer overflow and known function pointer attacks requires access to
a good entropy source[14].

23

Chapter 5

Approaches to improve levels of
entropy in guests

The research summarized in the previous chapter shows that the performance of the random
number generator is poor in systems used today, but the need for entropy data is growing.

This chapter will describe possible approaches we can take to improve the level of entropy
in the kernel of guest operating systems. Each of those approaches will be categorized and
judged for suitability for various use cases. Then one of the approaches will be chosen to be
implemented and the design of the product will be described.

5.1 Gathering of additional entropy in the guest

The most basic approach to improve the slow speed of the LRNG would be to gather entropy
from events and user interaction in the system in addition to the LRNG. A carefully designed
system would allow to specifically extract entropy from events that are common and random
enough. Unfortunately this would require fine tuning the entropy extraction system for a
particular purpose and the same system might not perform well in other use cases.

It would be also possible to extract entropy from other hardware devices that are present
or passed through to the guest system in addition to those used by the LRNG. On the other
hand this hardware can’t be used in multiple virtual machines or in the host simultaneously
for the same purpose as an attacker could take advantage of the knowledge of the state to
reverse engineer the bit stream from the entropy gathering method.

5.2 Passthrough of host’s entropy to the guest OS

If the performance of the host’s RNG is sufficient the entropy could be passed through to
the guest to improve the contents of it’s kernel entropy pool. This approach doesn’t require
adding new sources of entropy or any other complex infrastructure.

As a downside according to section 4.8 this approach doesn’t scale well as the perfor-
mance of the RNG in the host is barely sufficient to cover consumption of the host itself.
Also with direct passthrough the guest is also able to easily starve the host operating system
of it’s entropy.

24

5.3 Gathering of additional entropy in the host

As an extension of the previous scenario it would be possible to gather additional entropy
in the host either from software and user interaction sources or from hardware sources as
the host has access to all the physical hardware. The kernel entropy pool can also be seeded
from a hardware RNG device present in the host and thus be suitable for passing the entropy
to the guest.

5.4 External sources of entropy

Device passthrough would allow passing through a physical hardware random number gen-
erator to the guest. This would allow the guest to use it as if it was directly connected to
a physical machine. The guest will then able to seed the kernel entropy pool from such a
source.

The infrastructure for such passthrough is already existing and hypervisors allow to
assign PCI, USB and other devices directly to the guest. The disadvantage of such approach
is that the device can’t be used from the host or any other virtual machine and migration
1 would be impossible.

5.5 Distribution system for multiple guests

The approaches described above are not fully suitable to be directly used on server systems
and infrastructures that run multiple guest virtual machines.

The approach of gathering entropy in the guest may not provide sufficiently random
data if the source of entropy is common to all virtual machines. Also the gathering software
might unnecessarily load the systems and thus decrease the capacity of the host system.

The other approaches provide a single source of entropy while there are multiple con-
sumers. This creates a competitive environment where one guest could starve others by
consuming too much entropy. This creates a need to introduce a distribution system for en-
tropy that will allow to configure flow rates and shape entropy flows to excessive consumers.
The goal will be to create a fair environment.

This approach would also allow to use a single hardware RNG device on a host or one
central one for a datacenter and distribute entropy to all the guest virtual machines on all
the hosts to save costs and resources.

5.6 Design of the system to improve entropy in guests

As a solution to improve the performance of guest’s random number generator that will be
implemented for the purpose of this thesis the distribution system. The distribution system
approach can be used with multiple approaches to generate random data and will allow to
use the system in large infrastructures. The following sections describe the desing of the
four main parts of such a system.

The platform of cohoice on which this sytem will be implemented is the QEMU hypervi-
sor with libvirt used as the management interface. I chose this platform as it’s open source
and thus will allow to modify the source code of the components for direct integration.

1Migration allows to move a running virtual machine between different physical hosts with no loss of
service

25

Without source code access, this work would be limited to gathering of entropy data in the
guests, which wouldn’t be useful and couldn’t be implemented into an existing project to
ensure wide availability of this feature.

The system designed as a part of this thesis will allow to source, control and distribute
entropy to guest operating systems running as virtual machines as their native entropy
generators are performing poorly.

5.6.1 Entropy source

The system will be designed to support multiple sources according to the needs and config-
uration of the user. This will allow to use such a system also in enterprise environments as
the source can be configured according to the requested certification level as described in
section 2.3.

The system will allow to use software entropy sources such as the entropy gathering
daemon, hardware RNG integrated into the host or external ones. The system also be
prepared to support sourcing of entropy using the RDRAND instruction[3] in modern CPUs
or network sources if the user will develop a use case for this functionality.

Possible entropy sources and their description can be found in chapter 2.

5.6.2 Passthrough layer

One of the most critical parts of getting entropy into the guest is the passthrough point to
the guest. The hypervisor running on the host computer has to provide means to allow this.

The hypervisor can achieve this in multiple ways. The legacy way to achieve this would
be to emulate a physical RNG device in the hypervisor and intercept I/O requests to the
devices address space. This is both complex and slow in the result.

Second option is to use paravirtual interface. This introduces the need for a specific
driver in the kernel of the guest operating system, but the much simpler interface between
the host and guest allows for better performance.

For the purpose of this thesis, the VirtIO RNG virtual hardware and Linux kernel
driver will be used as the passthrough layer to the guest. The QEMU hypervisor will then
communicate using the character device backend with services in the host to source entropy.

VirtIO RNG was chosen as the kernel driver for the virtual device is already part of
the upstream linux kernel for a longer period and thus it can be used in existing systems
too. The need to run a modified kernel as a solution is undesirable as it would discourage
adoption of this system in production systems.

5.6.3 Distribution layer

The task of the distribution layer will be to request entropy from a entropy source and deliver
it to one or more virtual machines. When doing this the layer will have to ensure that the
guests are not starving other guests in case of mailicious behavior. This layer will need to
interact with the passthrough layer and ensure that it will work even if the management
layer is not working for some reason. The distribution layer should be integrated in the
virtual machine management software for easy deployment and availability.

There are no open source projects that would implement this functionality thus the
distribution layer needs to be implemented from scratch for the purpose of this thesis.

26

5.6.4 Management layer

The management layer selected for purpose of this thesis is libvirt. Libvirt allows to run
and easily manage virtual machines run by the QEMU hypervisor.

As a part of this thesis libvirt will be augmented to support management of entropy
pools, to allow configuration of virtual RNG devices for virtual machines and integrate the
distribution layer instrumentation.

The aim is to integrate all the components into the upstream development tree of libvirt
so that the results of this work can be used in production with existing software packages
that are commonly used and readily available in Linux distributions.

27

Chapter 6

Implementation

This chapter will elaborate on the implementation details of the entropy distribution system
that was created for purpose of this thesis and described in section 5.6.

6.1 VirtIO RNG

The VirtIO RNG device is a paravirtual device designed to supply entropy to the guest. This
will be the passthrough layer of the complete system. VirtIO RNG creates a virtual PCI
device in guest’s I/O address space that is recognized by the kernel driver and presented as a
hardware RNG device. After the driver is loaded, the device is in the Linux operating system
available as /dev/hwrng. The read requests done on this device invoke the internal backend
in the hypervisor that sources the entropy from the configured source and subsequently
returns the data to the guest.

6.1.1 QEMU backends

The entropy interface backends are used as internal representation and abstraction of the
two possible sources of entropy for a RNG device in the QEMU hypervisor.

random backend

This backend is designed to source entropy from character devices like /dev/random or
similar interfaces. It’s the most simple backend. It does not use any specific protocol.
When entropy is requested in the guest QEMU accesses the configured character device and
reads the entropy data.

Qemu supports reading from arbitrary files including /dev/urandom. This is considered
not a good idea as the guest doesn’t expect to receive pseudo-random entropy from a
hardware RNG. [7]

The following command line options are needed to activate this backend along with a
RNG device:

qemu -object rng-random,filename=/dev/hwrng,id=rng0 \
-device virtio-rng-pci,rng=rng0

28

EGD backend

The EGD backend is more advanced. The backend uses a simple protocol described in
section 6.1.2 to communicate with a suitable network service and uses the protocol to request
entropy data.

The communication is accomplished using QEMU’s -chardev interface. The -chardev
interface is an abstraction that can be used to communicate over the network, UNIX domain
sockets, pipes or be channeled to a file on disk. This allows the backend to be used universally
and suitable for multiple use cases.

Command line options used to enable the egd backend are more complex compared to
the random backend:

qemu -chardev socket,host=localhost,port=1024,id=chr0 \
-object rng-egd,chardev=chr0,id=egd0 \
-device virtio-rng-pci,rng=egd0

6.1.2 EGD protocol

The EGD protocol is a simple network protocol that was designed for entropy distribution
in user space. The protocol was created as a part of the entropy gathering daemon project.
The protocol is not standardized as an RFC standard, but it’s well known and commonly
used.

The protocol is simple, binary and stateless. The communication is always initiated by
the client. The protocol has 5 commands. Each of the commands is described by the first
byte of a message with more optional data according to the message type. The returned
message type depends on the command itself.

Command 0x00

The command has no arguments. The returned message is a 32bit integer in big endian
byte ordering containing the number of available entropy bits present in the pool.

Command 0x01

The 0x01 command is a non-blocking entropy read request. The command has a one byte
argument 0xNN for the amount of entropy in bytes that is requested. The returned message
is in format 0xMM followed by 0xMM bytes of entropy where 0xMM is the number of bytes
granted by the daemon.

Command 0x02

Command 0x02 is used for a blocking entropy read request. The argument is one single byte
number 0xNN denoting the requested amount of entropy. The returned message contains
0xNN bytes of entropy data and the message is expected to block until the requested amount
of entropy can be delivered.

Command 0x03

The command has multiple arguments 0xMM 0xLL 0xNN followed by 0xNN bytes of en-
tropy. This command denotes a write to the entropy pool of the daemon. The 0xMM

29

0xLL argument is a 16 bit big endian number of the count of entropy bits contained in the
following string. The command has no reply message.

Command 0x04

To determine the PID of the daemon the 0x04 command can be used. The PID is reported
as 0xNN followed by a string of length 0xNN bytes containing the PID of the daemon.

Commands used by QEMU

The implementation of the EGD protocol in the QEMU RNG backend only uses a very
limited subset of the protocol. Only the 0x02 command to request blocking entropy is used
with an argument of 0x40 bytes of entropy requested.

6.1.3 Rate limiting

The QEMU hypervisor supports basic rate limiting support that allows to limit the flow rate
for a single guest. This approach unfortunately doesn’t have global knowledge of the system
and other virtual machines thus this can’t control the flow fairly and similarly doesn’t avoid
starving the host by multiple guests.

Rate limiting is enabled by adding configuration options to the virtual PCI device defi-
nition:

qemu -device virtio-rng-pci,max-bytes=1024,period=1000
...

6.1.4 Availability of VirtIO RNG

The VirtIO RNG device was introduced into the upstream repository by commit 16c915ba42b45
on November 16, 2012 and is available in QEMU-1.0.3 release. The code was written by
Amit Shah.

6.2 Basic libvirt support for RNG devices

Libvirt stores the machine configuration options in XML documents and then uses them to
populate internal structures. Those are then used to generate native configuration options
for the hypervisor that are specific for hypervisor drivers.

6.2.1 Configuration file format

Libvirt’s domain1 configuration XML document is described using Relax-ng schema defini-
tion. The schema is used to validate configuration documents and serves as a guideline to
implement the parser and generator.

The domain XML document contains multiple sections that describe various aspects of
the virtual machine. The <devices> section is reserved for definitions of virtual hardware
devices presented to the system. This section will be the place where the users will be able
to add RNG devices to the guest.

1Libvirt describes guest machines as domains. This is a legacy name introduced by the XEN hypervisor.

30

The RNG device is represented with the <rng> tag. Configuration options for the RNG
device are represented as sub-elements.

To use basic rate limiting that is supported by the QEMU hypervisor, the user may add
the <rate> element with appropriate values. The entropy consumption limit is configured
by the bytes attribute. The period attribute represents time in milliseconds after which
the limit is refreshed.

The <backend> element allows to configure the source of entropy for the RNG device in
the guest. There are three possible backend models implemented: random, egd and pool.

random backend

This backend has only one configurable parameter: the file name of the entropy source. The
valid file names for this backends are /dev/random and /dev/hwrng. This is a subset of
the interface provided by QEMU. This limitation was introduced after upstream discussion
in the mailing list thread [7] as a workaround to disallow insecure configurations that used
might do by mistake. In case the source file name is omitted /dev/random is used as the
default.

<rng model=’virtio’>
<backend model=’random’>/dev/random</backend>

</rng>

Figure 6.1: Excerpt from guest configuration XML. RNG device with the default random
backend and /dev/random as a source.

egd backend

This backend configures the hypervisor to use a configurable character device to commu-
nicate with a remote side using the EGD protocol. Libvirt already provides support for
configuring and using character devices in virtual machine configuration. This interface
was adapted to be reusable and used to parse and generate the EGD backend code. The
configuration options include backend type, addresses and file names. The format of the
character device XML description is explained in libvirt’s documentation.

This allows to use the EGD backend with unix, TCP and UDP connections, log files
and POSIX pipes according to the need of the application.

<rng model=’virtio’>
<rate period="2000" bytes="1234"/>
<backend model=’egd’ type=’udp’>

<source mode=’bind’ service=’1234’>
<source mode=’connect’ host=’1.2.3.4’ service=’1234’>

</backend>
</rng>

Figure 6.2: Excerpt from guest configuration XML. RNG device using the egd backend with
rate limit enabled and using UDP transport

31

pool backend

The pool backend configures the guest to source entropy from the entropy pool managed
by libvirt. The hypervisor will be automatically configured appropriately to use the entropy
pool.

Arguments for this backend allow to configure the pool name used to source the entropy
and a distribution class to be used with the host in question. When starting a guest, the
hypervisor driver will have to verify that the configured entropy pool is existing and started
and the desired class exists in the configuration.

<rng model=’virtio’>
<backend model=’pool’ name=’default’ class=’hostclass1’/>

</rng>

Figure 6.3: Excerpt from guest configuration XML. RNG device using the pool backend
with the default pool belonging to the hostclass1 class.

6.2.2 XML parser and internal structures

The next step in adding a device support into libvirt is to augment the XML parser and
formatter and internal data structures to accept the data. As the libvirt library is written
in the C language, this step unfortunately isn’t automated by parsing the schema definition
and generating the data structures according to the definition.

Internal data structure associated with a RNG device

For internal purposes, libvirt stores configuration definitions in internal data structures,
while XML files are used for external representation and storing of the state. To describe a
RNG device I introduced struct _virDomainRNGDef.

This structure holds information about the model of the RNG device, backend type and
backend related data. The RNG device type and backend model are described by enum
virDomainRNGModel and virDomainRNGBackend. All of the above data types are defined in
src/conf/domain_conf.h.

XML parser

To parse the definition of the RNG device multiple XPath queries are used and evaluated
using the libxml2 parser used by libvirt. The queries extract needed information from the
document and additional code is used to validate the parsed data. The parser is implemented
by the virDomainRNGDefParseXML function that is defined in src/conf/domain_conf.c.

XML formatter

The XML formatter used in libvirt is created manually similar to the parser. The XML
document is created by directly outputting the code instead of generating a DOM tree 2.
The definition of the RNG device is formatted function virDomainRNGDefFormat defined in
src/conf/domain_conf.c.

2This complies to the coding guidelines of libvirt.

32

Cleanups of device handling

When adding a new device type into libvirt there are multiple places that need to be adapted
in order to add the support correctly and avoid leaking memory and other problems.

As pre-requisite work, these places were cleaned up and changed so that the compiler
produces warnings in cases where a new device type is added but the handler code is not
updated. This simplifies future work on libvirt and makes it less bug prone.

6.2.3 Qemu driver support for RNG devices

After libvirt is able to recognize and parse a new device type, the support for this device
needs to be implemented into the hypervisor driver. The driver is responsible for creat-
ing hypervisor specific native configurations. In case of the QEMU hypervisor the driver
translates the internal data structures into command line arguments. The QEMU command
line arguments that are used to enable the virtio RNG device are described in section 6.1.1
and are generated by qemuBuildRNGDeviceArgs and qemuBuildRNGBackendArgs defined in
src/qemu/qemu_command.c.

6.3 Libvirt support for entropy pools

The next step is to introduce entropy pool support to libvirt. The purpose is to have the
ability to configure, control and use the entropy pools as a part of the management interface.

Libvirt uses a modular loadable driver architecture to support multiple approaches for
a common task or hypervisor specific approach. Adding entropy pool support results in
adding a new driver type and infrastructure to support it and then implementing a driver
instance to support virtentropyd.

The driver provides APIs used to manage and configure entropy pools. The purpose
of the underlying driver implementation is to create specific configuration and start the
appropriate services and manage their lifecycle.

6.3.1 API of the entropy pool driver

The public API is the main interface between the user and libvirt. The entropy pool will ex-
port the following function in order to allow effectively managing pools from a management
application.

virConnectListAllEntropyPools

This function is used to list all entropy pools managed by libvirt. The return value contains
a list of entropy pool objects that can be used in the API functions manipulating the pools.
The legacy listing functions that were implemented by other drivers and are returning a
list of names instead of an object list are not implemented by the driver as the design is
obsolete.

virEntropyPoolDefineXML

This API call is used to create a new persistent entropy pool according to the definition
stored in the passed XML. According to common libvirt semantics this API is also used
to change the definition of an existing pool by defining an updated XML definition. The
updated XML definition has to share the same pool name and UUID.

33

Defining of a new pool or updating of a existing one will emit an asynchronous libvirt
event to notify clients.

virEntropyPoolUndefine

To remove a existing pool definition from the libvirt configuration the user has to invoke
the Undefine API. This call removes the internal state and all private configuration files
associated with the pool.

The entropy pool needs to be inactive at the time of undefining it as the support for
transient3 pools will not be implemented in this thesis.

virEntropyPoolGetXMLDesc

This API call can be used to retrieve the definition of an entropy pool that was already
stored by libvirt. The definition is returned as a string containing the XML document.

virEntropyPoolCreate

When a entropy pool is defined it is not yet active. To activate a pool, the user has to call
this API. Libvirt will then load the configuration and start the entropy pool.

virEntropyPoolDestroy

This function can be used to deactivate an active entropy pool. The destroy call is not
graceful by default and will immediately terminate all operations happening on a pool.
This behavior can be controlled using the flags argument.

virEntropyPoolLookupBy*

To look up a entropy pool object according to one of the unique identifiers the user has
to invoke this API call. An virEntropyPoolPtr is returned that can be then used to
manipulate the pool. The pools can be looked up using either the name or UUID.

6.3.2 virsh commands

Each API expansion of libvirt requires implementing the new API functions into the virsh
virtualization shell. The interface of the entropy pool driver was exposed as commands start-
ing with entropy_pool prefix. The commands are implemented in tools/virsh-entropypool.c.

The commands implement basic management capabilities for entropy pools and allow to
test the implemented API without the need to implement a separate application. Until other
management applications implement support for entropy pools this will be the primary way
to configure entropy pools.

6.4 virtentropyd

The virtentropyd daemon represents the distribution layer in this system. The daemon
is responsible for opening and managing a entropy source, opening channels to the virtual
machines and supplying entropy to them and shaping the flow of entropy in the case a client
is consuming more entropy than configured.

3Temporary.

34

virsh # help entropy_pool
entropy pool (help keyword ’entropy_pool’):

entropy_pool-define define or update a entropy pool from an XML file
entropy_pool-destroy destroy a active entropy pool
entropy_pool-dumpxml entropy pool information in XML
entropy_pool-edit edit XML configuration for a entropy pool
entropy_pool-list list entropy pools
entropy_pool-start start a (previously defined) inactive entropy pool
entropy_pool-undefine undefine a entropy pool

Figure 6.4: virsh help output for entropy pool management commands

6.4.1 Configuration

Initial configuration of the virtentropyd daemon is really simple. The virtentropyd daemon
is configured using command line arguments. This allows to start a instance that will
be serving requests of a single entropy pool instance. The parameters used to configure
virtentropyd are the libvirt connection URI used for the connection and the pool name.

The main configuration of the entropy source, shaping classes and possible outputs
that is stored in libvirt’s internal structures and as a XML file is then loaded using the
virEntropyPoolGetXML method directly from the libvirt daemon. This simplifies the inter-
face and avoids having a separate place to store the configuration.

The configuration loaded via the libvirt connection is then parsed into internal structures
and the daemon is initialized. Failure to establish the initial libvirt connection is fatal, but
after the configuration is loaded the connection may break subsequently.

6.4.2 Communication with libvirt

The entropy distribution daemon is designed to work as a pure libvirt client. Apart from
loading the pool configuration XML the libvirt connection is used to receive asynchronous
events about virtual machine life-cycle and configuration status.

After an event regarding a guest is received virtentropyd determines if a change of state
is needed according to the configuration of the guest. This asynchronous interface is ideal for
this type of communication and the pure-client approach avoids the need to create specific
RPC protocols for virtentropyd.

6.4.3 Sourcing of entropy bits

As a initial implementation virtentropyd supports only character devices as backends. The
main purpose will be to connect to /dev/random or /dev/hwrng and use this as the source. In
the future additional sources may be added according to common usecases of the distribution
system.

Each instance of the distribution daemon supports a single source of entropy. This will
initially simplify the design and the extension to a multi-source multiplexing architecture
may be added later if it will be desired.

6.4.4 Shaping of entropy requests

To control flow rates of entropy to the host, virtentropyd uses hierarchical token bucket
algorithm. This allows to create hierarchical structures that are used to to specify the peak

35

and sustained read rates for separate guests or groups of guests.

6.4.5 Distribution to the guest

virtentropyd connects to the unix socket created by the QEMU processes running a virtual
machine and uses the EGD protocol to communicate with the RNG device backend.

When a request for entropy is received from the guest the handler thread is woken up.
The thread looks up the origin of the request and determines the shaping classes in the
path to the entropy source. If the limits on the path to the source are enough to cover the
request of the guest the entropy is read from the source and written to the socket of the
guest. The cycle repeats then from the beginning.

In case the limit for entropy consumption was reached by a host a timer is started that
will wake up the handler thread after the correct amount of time that will be needed to
refill the quota for a guest.

6.5 Integration of virtentropyd into libvirt

The virtentropyd source code was integrated into the libvirt source tree and the daemon
is being built along the other binaries contained in the project. The source file is located in
src/entropy/entropy_daemon.c.

To bridge the interaction between virtentropyd and libvirt an instance of the en-
tropy pool driver was created. This instance is a stateful driver that starts and manages
virtentropyd processes when entropy pools are created or destroyed. The driver imple-
ments the API introduced by adding the pool support (6.3.1).

The implementation of the entropy pool driver follows the coding guidelines [8] of the
libvirt project and is located in src/entropy/entropy_driver.c. The driver is built as a
loadable module and is automaticaly loaded into the libvirt daemon on startup. No other
configuration is needed to start using entropy pools.

6.6 Documentation

The guidelines of submissions to the libvirt project require that documentation is added with
each change. The parts of this thesis that already were accepted contain documentation
in the upstream repositories. For the code that was not yet accepted for addition to the
upstream repository documentation was not created yet. Open source projects with active
comunity usualy propose design changes as a part of the submission process which would
require changing the documentation every time, thus the documentation is usually created
as the final step before merging the new feature into upstream.

36

Chapter 7

Impact analysis of the system

The entropy distribution system implemented for the purpose of this thesis will now be
tested in regarding of improvement of entropy contents in the LRNG kernel pool and the
usability of the system.

7.1 Testing approach

The infrastructure and approach used to test the implementation will be similar to the one
described in section 4.4. The guest will be started with the VirtIO RNG device enabled
and the data will be supplied from a hardware random number generator integrated into
the system-on-chip CPU of a Raspberry Pi embedded system. Using a network connection
entropy will be transported to the host running the virtualization.

The guest will be running the rngd daemon that is used to seed the kernel entropy pool
from external sources. This daemon is included in the rng-tools software package. The
rngd daemon will be confiugured to sample the state of the entropy pool each second and
seed the pool in case the minimum threshold is underrun.

In addition to the experiment with an idle guest, the entropy levels will also be monitored
while periodically starting processes inside the guest to drain the entropy pool. As the rngd
daemon has a internal polling interval for the state of the entropy pool, it’s expected that
the entropy levels will fluctuate periodically.

To test the influence of this system during the boot of a virtual machine will be configured
to start the rngd daemon as a service while booting and the experiment done in section 4.10
will be re-run to verify the results. The state of the entropy pool will be monitored by the
entropy_boot.c program and graphed for visual representation.

7.2 Results

The results were collected on a host system using the QEMU-1.0.4 hypervisor running
under management of the libvirt library with changes done for the purpose of this thesis.
The hardware used was a laptop with the Intel Core i7 processor.

7.2.1 Long term performance

The guest operating system is able to maintain high levels of available entropy in the pool
when the passthrough device is in use. On an idle system the entropy pool fills up to the
maximum level of 4096 bits within two seconds and the level is maintained forever.

37

In case of active consumption of entropy in the system for example by periodicaly starting
processes, entropy from the pool is consumed but the rngd daemon is able to steadily refill
the pool from the entropy source passed to the guest. The oscillations in graph 7.2.1 are
caused by starting 10 processes per second and the rngd daemon was checking the contents
of the entropy pool once per second.

The overal performance of the system was improved by orders of magnitude thanks to a
steady external entropy source that is designed as such and doesn’t have to extract entropy
from deterministic systems.

Figure 7.1: Entropy pool levels with entropy distribution in used

7.2.2 Boot of the operating system

When the machine is booting the service used to seed the entropy pool is started late in
the boot process. This creates a dead period at the beginning when the RNG pool behaves
similarly to the non-improved approach.

After the rngd service was started but the guest was still booting the entropy pool
contents were sharply changing roughly according to the 1 second polling interval of the
pool filling procedure. Between individual filling steps the pool was again drained by the
amount of processes started by the init scripts. After the startup of the guest finished the
pool was able to quickly fill up to the maximum.

38

Figure 7.2: Boot of a guest system that uses entropy passthrough

39

Chapter 8

Conclusion

The analysis of the performance of the LRNG showed that even on physical hardware the
performance of the generator is insufficient compared to the demand of entropy in usual
systems. Apart from applications needing entropy for cryptographic purposes the biggest
consumer of entropy in a Linux system is the kernel while seeding each newly started process
with initial entropy used for stack protection and other purposes.

In an virtual environment the LRNG loses sources such as user interface peripherals and
accelerated virtual hardware drivers sometimes avoid code paths ususally used to extract
entropy and thus degrade the performance of LRNG performance even more. Virtual ma-
chines are nowadays deployed more extensively than physical hardware for cost and security
separation benefits. Applications running in such environment may suffer from inability to
source entropy for cryptographic or simulation purposes.

As a part of this work a system was implemented purpose of which is to introduce more
entropy to a guest virtual machine from the host’s pool or an hardware random number
generator by passthrough and ensure fairness in the distribution. The system consists of
a virtual RNG device in the hypervisor and support in the management application to
configure it and ensure entropy distribution. The system proposed is now partly included
into the libvirt virtualization library upstream repositories.

With use of the system created for purpose of this thesis, kernel entropy pool levels in
virtual machines could be improved and it was proved that an integration of this system
into libvirt is possible. This will allow to adopt the system in production environments as
QEMU and libvirt are commonly used solutions for virtualization and are used in projects
as oVirt, Open Stack and even for standalone libvirt users.

The choice of entropy source was summarized but the final decision has to be made by
the end user. The user has to determine needs for quality of the entropy source and it’s
performance and choose one that suits the needs and requirements of the application.

8.1 Future work

The system developed as a part of this thesis will be used as the part of the Red Hat
Enterprise Virtualization (RHEV) product. The main focus will be now to test the imple-
mentation and find possible problems and provide support for RHEV customers.

40

8.1.1 Upstream acceptance

Some parts of the code developed for purpose of this thesis were not yet accepted into up-
stream development repositories. The future plan is to work with the upstream community
to finalize the design of the components and reach acceptance into the libvirt project. One
of the next goals will be to rise awareness that such functionality exists and is ready to use.

8.1.2 RDRAND emulation support for QEMU

After introduction of the RDRAND instruction[3] into the x86_64 architecture by Intel, QEMU
could implement support for emulating this instruction on processors where the instruction
is missing. The emulated RDRAND instruction would then use the same sources as QEMU
already has for VirtIO RNG with the existing infrastructure. This would then allow to use
the benefits of the distribution system that was implemented as a part of the thesis with
this functionality too.

This would allow to use this instruction in heterogeneous hardware clusters that may
contain nodes that don’t support RDRAND and would also allow migration of virtual ma-
chines between such hosts.

libvirt would then add this functionality as a new RNG device model with minimal
changes to other code.

8.1.3 Kernel-space entropy pool seeding

Currently the LRNG uses only the approaches described in section 2.2.4 to seed it’s contents
and provide the entropy. To seed the kernel entropy pool from a different source a separate
user-space daemon is required. For a better adaptation of properly seeded RNGs in the
operating system the kernel could use internal routines to seed the pool from available
external sources such as VirtIO RNG or the RDRAND instruction.

This would require adding code to the kernel that would act similarly to rngd in
userspace.

41

Bibliography

[1] Elaine Barker and John Kelsey. Recommendation for random number generation
using deterministic random bit generators.
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf, 2012.

[2] Kees Cook. ELF: implement ATRANDOM for glibc PRNG seeding.
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
?id=f06295b44c296c8fb08823a3118468ae343b60f2, 2009. linux.git commit
f06295b44c296c8fb08823a3118468ae343b60f2.

[3] Intel corporation. Intel digital random number generator (drng).
http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R_
_DRNG_Software_Implementation_Guide_final_Aug7.pdf.

[4] Randall J. Easter and Carolyn French. Annex c: Approved random number
generators for fips pub 140-2, security requirements for cryptographic modules.
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexc.pdf,
2012.

[5] Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. Analysis of the linux random
number generator. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
1624027&isnumber=34091, 2006. vol., no., pp.15 pp.-385, 21-24.

[6] M. Tim Jones. Virtio: An i/o virtualization framework for linux: Paravirtualized i/o
with kvm and lguest.
http://public.dhe.ibm.com/software/dw/linux/l-virtio/l-virtio-pdf.pdf,
2010.

[7] Anthony Liguori. Re: [Qemu-devel] virtio-rng and fd passing.
https://lists.gnu.org/archive/html/qemu-devel/2013-03/msg00165.html,
2013.

[8] Libvirt maintainers. Implementing a new api in libvirt.
http://libvirt.org/api_extension.html.

[9] A. Theodore Markettos and Simon W. Moore. The frequency injection attack on
ring-oscillator-based true random number generators. http:
//www.cl.cam.ac.uk/~atm26/papers/markettos-ches2009-inject-trng.pdf.

[10] Merriam-Webster dictionary. Entropy.
http://www.merriam-webster.com/dictionary/entropy.

42

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=f06295b44c296c8fb08823a3118468ae343b60f2
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=f06295b44c296c8fb08823a3118468ae343b60f2
http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_Guide_final_Aug7.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_Guide_final_Aug7.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexc.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1624027&isnumber=34091
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1624027&isnumber=34091
http://public.dhe.ibm.com/software/dw/linux/l-virtio/l-virtio-pdf.pdf
https://lists.gnu.org/archive/html/qemu-devel/2013-03/msg00165.html
http://libvirt.org/api_extension.html
http://www.cl.cam.ac.uk/~atm26/papers/markettos-ches2009-inject-trng.pdf
http://www.cl.cam.ac.uk/~atm26/papers/markettos-ches2009-inject-trng.pdf
http://www.merriam-webster.com/dictionary/entropy

[11] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan
Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James Dray, and
San Vo. A statistical test suite for random and pseudorandom number generators for
cryptographic applications.
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf,
2010. Special Publication 800-22.

[12] Claude E. Shannon. A mathematical theory of communication.
http://www.alcatel-lucent.com/bstj/vol27-1948/articles/bstj27-3-379.pdf.

[13] Simtec Electronics. The entropykey: The technical stuff.
http://www.entropykey.co.uk/tech/.

[14] The PAX Team. Address space layout randomization.
http://pax.grsecurity.net/docs/aslr.txt.

[15] The virt-manager community. Virtual machine manager.
http://virt-manager.et.redhat.com/index.html, 2012.

[16] Florian Weimer. [security] [dsa 1571-1] new openssl packages fix predictable random
number generator.
http://lists.debian.org/debian-security-announce/2008/msg00152.html.

[17] Eric W. Weisstein. Linear congruence method - from mathworld–a wolfram web
resource. http://mathworld.wolfram.com/LinearCongruenceMethod.html.

43

http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://www.alcatel-lucent.com/bstj/vol27-1948/articles/bstj27-3-379.pdf
http://www.entropykey.co.uk/tech/
http://pax.grsecurity.net/docs/aslr.txt
http://virt-manager.et.redhat.com/index.html
http://lists.debian.org/debian-security-announce/2008/msg00152.html
http://mathworld.wolfram.com/LinearCongruenceMethod.html

List of Figures

2.1 Entropykey: a hardware random number generator USB device. [13] 7
2.2 Tampering of oscillator drift based RNGs with power supply signal injection.

[9] . 7
2.3 Linux kernel random number generator block diagram. [9] 8

3.1 virsh virtualization shell . 12
3.2 virt-manager management interface. [15] . 13
3.3 VirtualBox management interface. 14

4.1 Draining of the entropy pool when starting processes. 18
4.2 Synthetic test - Performance of the RNG in host systems - guest data included

for reference. 19
4.3 Synthetic test - Performance of the RNG in guest systems. 19
4.4 Real world scenario - virtualized server system. 20
4.5 Long term usage of a real world system - desktop computer. 20
4.6 QEMU - Influence of disk backend on RNG performance and disk I/O per-

formance. 21
4.7 xen - Influence of disk backend on RNG performance and disk I/O performance. 22
4.8 Entropy level variations during early booting phases. 23

6.1 Libvirt ’random’ RNG backend configuration 31
6.2 Libvirt EGD backend configuration . 31
6.3 Excerpt from guest configuration XML. RNG device using the pool backend

with the default pool belonging to the hostclass1 class. 32
6.4 virsh help output for entropy pool management commands 35

7.1 Entropy pool levels with entropy distribution in used 38
7.2 Boot of a guest system that uses entropy passthrough 39

44

Appendix A

Contents of the attached CD

Directories:

• docs - this report including source files

• data - data sets used to create graphs in this thesis including scripts

• libvirt - libvirt source git repository including code done for this thesis

• tools - other source files

• literature - copies of publicly available literature

45

Appendix B

Glossary

• API - aplication program interface

• egd - entropy gathering daemon

• ELF - executable and linkable format, a format of binary executable files

• guest - virtual machine running on a virtualization host

• host - Host computer, physical device that runs virtualization

• hypervisor - software that creates

• KVM - kernel based virtual machines

• libvirt - C library used as virtualization management abstraction

• LRNG - The Linux kernel Random Number Generator

• PRNG - Pseudorandom Number Generator

• RDRAND - CPU instruction to request entropy

• rngd - software used to fill the Linux entropy pool from external source

• RNG - Random Number Generator

• TRNG - True Random Number Generator

• UUID - universally unique identifier

• VPN - virtual private network

• XPath - language used to access and modify XML documents using the object model

46

	Introduction
	Entropy
	Use of entropy in computer systems
	Random number generators in computer systems
	Testing and certification of random number generators
	Conclusion

	Virtualization tools and solutions
	Anatomy of a virtualized computer system
	QEMU-kvm and libvirt
	VirtualBox
	Xen

	Entropy in virtualized systems
	Available entropy in kernel entropy pools
	Impacts of virtualization on performance of random number generator
	Gathering of Linux kernel RNG performance statistics
	Synthetic tests
	Real world scenarios
	Virtualization acceleration drivers
	Entropy used up on process start
	Results
	Influence of virtualization drivers
	Entropy levels during boot of a Linux system
	Conclusion

	Approaches to improve levels of entropy in guests
	Gathering of additional entropy in the guest
	Passthrough of host's entropy to the guest OS
	Gathering of additional entropy in the host
	External sources of entropy
	Distribution system for multiple guests
	Design of the system to improve entropy in guests

	Implementation
	VirtIO RNG
	Basic libvirt support for RNG devices
	Libvirt support for entropy pools
	virtentropyd
	Integration of virtentropyd into libvirt
	Documentation

	Impact analysis of the system
	Testing approach
	Results

	Conclusion
	Future work

	Contents of the attached CD
	Glossary

