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Abstract
This thesis deals with path-controlled grammars, which are grammars that place restric-

tions on the paths in a derivation tree of a context-free grammar. The goal of this thesis
is to create an algorithm for conversion between the path-controlled grammars and the
state grammars, which is a different type of regulated grammars. Another goal is to study
the generative power of path-controlled grammars based on the conversion algorithm. The
conversion algorithm is implemented and tested on a number of path-controlled grammars.
Also, its complexity is discussed. Finally, a parsing tool for path-controlled grammars is
implemented. Complexity of this tool is analyzed as well.

Abstrakt
Tato diplomová práce se zabývá cestami řízenými gramatikami, gramatikami, které kladou

omezení na cesty v derivačním stromě bezkontextové gramatiky. Cílem této diplomové
práce je tvorba algoritmu pro převod mezi cestami řízenými gramatikami a stavovými gra-
matikami, což je jiný typ řízené gramatiky. Dalším cílem je na základě tohoto převodního
algoritmu studovat vyjadřovací sílu cestami řízených gramatik. Převodní algoritmus je
naimplementován v C++ a testován na sadě cestami řízených gramatik. Složitost algo-
ritmu, jak časová, tak prostorová, je diskutována. Také nástroj pro syntaktickou analýzu
cestami řízených gramatik je naimplementován. Složitost této analýzy je také diskutována.
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Chapter 1

Introduction

The motivation for regulated rewriting comes from the fact that many languages of interest
are not context-free. Rather than using context-sensitive grammars, it may be better, from
practical point of view, to place some restrictions on derivation in context-free grammars
and thus significantly increasing the generative power.

It is believed that the first mechanism for regulated rewriting was introduced by S.
Abraham, in 1965. The matrix grammars regulate the derivation in a context-free grammar
by defining sequences of rewriting rules, which are applied together in a derivation step.

Many other form of regulated rewriting were introduced and studied since, see [1].

This thesis deals with path-controlled grammars, in which a restriction is placed on the
paths in a derivation tree of a context-free grammar. This mechanism was introduced by
I. Bellert, in 1965, the same year as matrix grammars. Surprisingly, this concept was not
investigated further until 2001.

In the following chapters we will provide formal definitions of path-controlled grammars
and the language they generate. The pumping property and the generative power will be
discussed as well.

The question of generative power is still open, since the construction proving the original
proposition regarding the generative power using a conversion of path-controlled grammar
into a matrix grammar in [2] was proven incorrect in [3]. We will try to address this issue by
converting the path-controlled grammar into a different type of grammar — state grammar,
introduced by T. Kasai in [4].
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Chapter 2

Preliminaries

In this chapter, we present all definitions and conventions which are used throughout this
thesis. Section 2.1 covers the essential definitions concerning formal languages. Section
2.2 is dedicated to derivation trees. In Section 2.3 we introduce state grammars, one of
the mechanisms for regulated rewriting. And finally, in Section 2.4 we mention generalized
sequential machine mapping.

We assume that the reader is familiar with the well-known core of set theory, graph
theory and other mathematical knowledge on which the following definitions are based on.
Definitions are presented formally, without further details or examples.

For most of the definitions we use [5].

2.1 Formal Languages

This section introduces the basic notions of formal languages, grammars and derivations as
well as conventions regarding their representation in following chapters.

Definition 1. (Alphabet and symbol). An alphabet is a finite, nonempty set of elements
called symbols.

Definition 2. (Word). Let Σ be an alphabet, then ε is a word over Σ. If x is a word
over Σ and a ∈ Σ, then xa is a word over Σ. Σ∗ denotes the set of all words over Σ and
Σ+ = Σ∗ − {ε}.

Definition 3. (Language). Let Σ be an alphabet and let L ⊆ Σ∗. Then, L is a language
over Σ.

Definition 4. (Unrestricted grammar, generated language) Unrestricted grammar is a
quadruple G = (V, T, P, S), where

V is a total alphabet,

T ⊂ V is an alphabet of terminal symbols,

P ⊆ V ∗(V − T )V ∗ × V ∗ is a finite binary relation,

S ∈ (V − T ) is the start symbol.
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(V − T ) is the set of nonterminal symbols, denoted by N . The nonterminal symbols
are represented by upper case letters, the terminal symbols are represented by lower case
letters. The elements of P are called productions or rules, therefore, P is referred to as
the set of productions or the set of rules. A production, (x, y) ∈ P is symbolically written
as x → y. The productions may be labeled for easier reference, then we write p : x → y,
where p is the label of the production (x, y). The left-hand side of p, represented by x,
is denoted by lhs(p) and the right-hand side of p, represented by y, is denoted by rhs(p).
A production with |rhs(p)| = 0 is called ε–production and is written as x → ε. For rules
with the same left-hand side we often use the notation x→ y|z ∈ P which means x→ y ∈ P
and x→ z ∈ P .

A direct derivation is a binary relation on V ∗ defined as follows. Given p : x → y ∈ P
and u, v ∈ V ∗, uxv directly derives uyv according to p in G denoted by uxv ⇒G uyv [p] or
uxv ⇒ uyv for short. Alternatively, we may write uxv

p
=⇒ uyv for better readability.

A zero–step derivation from u to u for any u ∈ V ∗ according to ε in G is written as
u ⇒0

G u [ε]. An n–step derivation from u0 to un for some n ≥ 1 is a sequence of direct
derivations ui−1 ⇒G ui [pi], where pi ∈ P , for 1 ≥ i ≥ n. We write uo ⇒n

G un [p1p2 . . . pn].
Moreover, ⇒+

G denotes transitive closure of ⇒G and ⇒∗G denotes transitive and reflexive
closure of ⇒G.

If S ⇒∗G w, where w ∈ V ∗, then w is a sentential form of G. A sentential form w, such
that w ∈ T ∗ is a word generated by G. The language generated by G, denoted by L(G) is
defined as L(G) = {w ∈ T ∗|S ⇒∗G w}.

A language L is recursively enumerable if there is an unrestricted grammar G, such that
L(G) = L. The class of recursively enumerable languages is denoted by RE.

Definition 5. (Context-sensitive grammar, context-sensitive language). LetG = (V, T, P, S)
be an unrestricted grammar. G is a context-sensitive grammar if for all p ∈ P : |lhs(p)| ≤
|rhs(p)|. A language L is context-sensitive language if there is a context-sensitive grammar
G, such that L(G) = L. The class of context-sensitive languages is denoted by CS.

Definition 6. (Context-free grammar, context-free language). Let G = (V, T, P, S) be an
unrestricted grammar. G is a context-free grammar if for all p ∈ P : lhs(p) ∈ (V − T ).
A language L is context-free language if there is a context-free grammar G, such that
L(G) = L. The class of context-free languages is denoted by CF.

Lemma 1. (Pumping lemma for context-free languages). Let L be a context-free language.
Then, there is a constant k, such that each word z ∈ L with |z| ≥ k can be written in the
form z = uvwxy, such that vx 6= ε, |vwx| ≤ k and uviwxiy ∈ L, for all i ≥ 0.

Definition 7. (Linear grammar, linear language). Let G = (V, T, P, S) be an unrestricted
grammar. G is a linear grammar if for all p ∈ P : lhs(p) ∈ (V − T ) and rhs(p) ∈
T ∗((V − T )∪ {ε})T ∗. A language L is linear language if there is a linear grammar G, such
that L(G) = L. The class of linear languages is denoted by LIN.

Lemma 2. (Pumping lemma for linear languages). Let L be a linear language. Then,
there is a constant k, such that each word z ∈ L with |z| ≥ k can be rewritten in the form
z = uvwxy, such that vx 6= ε, |uvxy| ≤ k and uviwxiy ∈ L, for all i ≥ 0.

2.2 Derivation Trees

The idea of path-controlled grammars revolves around derivation trees, this section provides
necessary definitions concerning them.
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Definition 8. (Production tree). Let G = (V, T, P, S) be a context-free grammar and
p ∈ P . The production tree pt(p), corresponding to p is a labelled elementary tree t, such
that lhs(p) labels the root node and the leaves are defined as follows:

1. If |rhs(p)| = 0, then t has one leaf node labelled by ε.

2. If |rhs(p)| ≥ 1, then t has |rhs(p)| leaf nodes labelled by the symbols appearing in
rhs(p) from left to right.

Definition 9. (Derivation tree). Let G = (V, T, P, S) be a context-free grammar. A deriva-
tion tree of G is a labelled tree t, satisfying following two conditions:

1. The root node is labelled by a nonterminal symbol A ∈ V − T .

2. Every elementary subtree t′ in t represents pt(p) for some p ∈ P .

Definition 10. (Derivation tree corresponding to derivation). Let G = (V, T, P, S) be a
context-free grammar. A derivation tree of G corresponds to a derivation in G in a way
recursively defined as follows:

1. Let t be a derivation tree consisting of a single node, such that the root node is
labelled by A ∈ V − T . Then, t corresponds to A⇒ A [ε] in G.

2. Let t be a derivation tree corresponding to A ⇒∗ u lhs(p) v [π] in G for some p ∈ P .
Then, the derivation tree corresponding to A ⇒∗ u lhs(p) v [π] ⇒ u rhs(p) v [p] is
constructed by appending pt(p) to the |u|+ 1st leaf node from left in t.

2.3 State Grammars

State Grammars were introduced by T. Kasai in 1970 in [4]. This formal model is a context-
free grammar extended by the notion of states. The states restrict which rules are applicable
in a derivation step, thus regulating the derivation in order to increase the generative power
of context-free grammars.

Definition 11. (State grammar). A state grammar is a 6-tuple G = (Q,V, T, P, q0, S),
where

Q is an alphabet of states,

V is a total alphabet,

T ⊂ V is an alphabet of terminal symbols,

P ⊆ (Q×N)× (Q× (N ∪ T )+) is a finite set of productions,

q0 ∈ Q is the initial state,

S ∈ V − T is the start symbol.

Definition 12. (Direct derivation, derivation). Given a state grammarG = (Q,N, T, P, q0, S),
let ⇒G be a relation on Q × (N ∪ T )∗ defined as follows: Let p, q ∈ Q, w = uAv,
u, v ∈ (N ∪ T )∗ and A ∈ N . If A is the leftmost occurrence of a rewritable nontermi-
nal in w and (p,A)→ (q, x) ∈ P , then we write (p, uAv)⇒G (q, uxv) and say that (p, uAv)
directly derives (q, uxv) in G.

Analogically to the corresponding definitions for the unrestricted grammar (see Defini-
tion 4), we define for all n ≥ 0: ⇒n

G, ⇒∗G and ⇒+
G.
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Definition 13. (State language). Given a state grammar G, the state language is defined
as L(G) = {w ∈ V + | (qo, S)⇒∗G (q, w), for some q ∈ Q}.

Furthermore, Kasai defines an n–limited derivation, a degree of state grammar, a degree
of state language and consequentially the hierarchy of state languages. For more details on
this hierarchy see [4]. For our purposes it is enough to know that Lω denotes the family of
all state languages.

Theorem 1. (Theorem 2 in [4]). Lω is identical to the family of context-sensitive lan-
guages.

2.4 Generalized Sequential Machine Mapping

We will need a way to translate one language into another. Generalized sequential machine
mapping is one of the models used for translating.

Definition 14. (Generalized sequential machine). A generalized sequential machine is a
6-tuple M = (Q,Σ,Ω, τ, q0, F ), where

Q is a finite set of states,

Σ is an alphabet of input symbols,

Ω is an alphabet of output symbols,

τ ⊆ (Q× Σ)× (Q× Ω∗) is a finite transition function,

q0 ∈ Q is the initial state,

F ⊆ Q is a finite set of final states.

Definition 15. (Generalized sequential machine mapping). Let M = (Q,Σ,Ω, τ, q0, F )
be a generalized sequential machine. Given an input word u ∈ Σ∗, generalized sequential
machine mapping of u, gsm mapping for short, is defined as GSMM (u) = {v ∈ Ω∗ | (q, v) ∈
τ(q0, u), for some q ∈ F}.

Given a language L, a gsm mapping of L is defined as GSMM (L) =
⋃

u∈LGSMM (u).
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Chapter 3

Path-Controlled Grammars

In this chapter we will introduce the path-controlled grammars. First, we will mention
a little bit of historical context for these grammars in Section 3.1, then, in Section 3.2,
we formally define them, and the language they generate. A simple example of a path-
controlled grammar will be presented in Section 3.3. We will continue with showing a
significant property these grammars have, that is the pumping property in Section 3.4.
And finally, in Section 3.5, we discuss the generative power.

3.1 History

In the same year when S. Abraham introduced the matrix grammars in [6], I. Bellert
published a paper introducing several ideas of regulated rewriting. Some of them, tuple
grammars, matrix grammars, were investigated later by several authors.

However, one of the idea, to impose restriction on the paths in a derivation tree of
a context-free grammar, was overlooked until 2001, when S. Marcus, C. Martín-Vide, V.
Mitrana and Gh. Păun revisited the idea in [2].

3.2 Definition

The formal definition of path-controlled grammars and the language they generate was
given in [2] as follows.

Definition 16. Given two context-free grammars, G1 and G2, where G2 generates a lan-
guage over the total alphabet of G1. A string w generated by G1 is accepted only if there
is a derivation tree τ of w with respect to G1 such that there is a path in τ , from the
root to a leaf node, which is described by a string which is in L(G2). We call G1 the
generating grammar and G2 the controlling grammar. We denote a pair γ = (G1, G2) as a
path-controlled grammar.

path(τ) denotes the language of all strings describing paths in a derivation tree τ ,
by path(x) the union of all languages path(τ) where τ is a derivation tree for x in some
grammar G, finally, we denote by path(G) the union of all these languages.

We define the language generated by a path-controlled grammar.

Definition 17. Let γ = (G1, G2) be a path-controlled grammar. The language generated
by γ is defined L(γ) = {w ∈ L(G1) | path(w) ∩ L(G2) 6= ∅}.
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PC(F1, F2) denotes the family of languages generated by path-controlled grammars
γ = (G1, G2), where G1 is of type F1 and G2 is of type F2. In this study we consider
Fi ∈ {REG,LIN,CF} for i ∈ {1, 2}.

3.3 Example

Consider the linear grammar G = (V, T, P, S) with

V = {S,B,D, a, b, c, d},
T = {a, b, c, d},
P = {S → aSd, S → aBd,B → bBc,B → D,D → bc},

generating L(G) = {anbmcmdn | n,m ≥ 1} and the linear grammar G′ = (V ′, V, P ′, S′) with

V ′ = {S′, A′, S,B,D, a, b, c, d},
P ′ = {S′ → SA′BDb, S′ → SBDb,A′ → SA′B,A′ → SB},

generating L(G′) = {SnBnDb | n ≥ 1}. We construct the path-controlled grammar γ =
(G,G′) where G is the generating grammar and G′ is the controlling grammar.

Figure 3.1 shows the derivation tree of the word aabbccdd in γ. It is easy to see that γ
generates L(γ) = {anbncndn | n ≥ 1}, which is not linear nor context-free.

S

S

B

B

D

a a b b c c d d

A′ S′

Figure 3.1: Derivation tree of the word aabbccdd in γ.

Using two, fairly simple, linear grammars, we achieved a significant increase in gener-
ative power. The generative power of path-controlled grammars is discussed in detail in
Section 3.5.

3.4 Pumping Lemma

A pumping property can be directly obtained for languages in the family PC(CF,CF ).

Theorem 2. (Proposition 7 in [2]). If L ⊆ V ∗, L ∈ PC(CF,CF ), then there are two
constants p and q such that each string z ∈ L with |z| > p can be written in the form
z = u1v1u2v2u3v3u4v4u5, such that 0 < |v1v2v3v4| ≤ q and u1vi1u2v

i
2u3v

i
3u4v

i
4u5 ∈ L for all

i ≥ 1.
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For a proof (partially formal) see Proposition 7 in [2].
Analogically to context-free grammars having special form of the pumping lemma for

linear languages, the path-controlled grammars have a special form of pumping lemma for
languages in PC(LIN,LIN).

Theorem 3. (Proposition 8 in [2]). If L ⊆ V ∗, L ∈ PC(LIN,LIN), then there are two
constants p and q such that each string z ∈ L with |z| > p can be written in the form z =
u1v1u2v2u3v3u4v4u5, such that 0 < |v1v2v3v4| ≤ q, |u1v1v4u5| ≤ q and u1vi1u2v

i
2u3v

i
3u4v

i
4u5 ∈

L for all i ≥ 1.

3.5 Generative Power

When the controlling grammar is regular, we do not increase the generative power of the
generating grammar, whether regular, linear, or context-free.

Theorem 4. (Proposition 2 in [2]). F = PC(F,REG), for all F ∈ {REG,LIN,CF}.

When the generating grammar is regular, the resulting path-controlled grammar does
not exceed the power of the controlling grammar, whether linear or context-free.

Theorem 5. (Proposition 3 in [2]). PC(REG,F ) ⊆ F , for all F ∈ {LIN,CF}.

Languages, linear or context-free, with words of length one, cannot be generated by a
path-controlled grammar with the generating grammar being regular. However, the follow-
ing theorem holds.

Theorem 6. (Proposition 4 in [2]). If L is a language in F ∈ {LIN,CF} without words
of length one, then L ∈ PC(REG,F ).

Consider the language L = {anbncndn | n ≥ 1} from Section 3.3. L belongs to the
family PC(LIN,LIN), however the concatenation LL does not, because it does not satisfy
the pumping property for this family of languages (see Theorem 3).

Theorem 7. (Consequence in [2]). The family of languages PC(LIN,LIN) is not closed
under concatenation.

There are context-free languages which are not in PC(LIN,LIN). For a proof of this
claim see Proposition 9 in [2]. Here, let us state the consequences of this.

Theorem 8. (Proposition 10 in [2]). (i) CF − PC(LIN,LIN) 6= ∅. (ii) The inclusion
PC(LIN,LIN) ⊂ PC(CF,CF ) is proper.

Theorem 9. (Consequence in [2]). PC(LIN,LIN) is incomparable with CF.

A relation between path-controlled grammars and matrix grammars was proposed, mak-
ing MAT an upper boundary for PC(CF,CF ).

Theorem 10. (Proposition 6 in [2]). PC(CF,CF ) ⊆MAT .

As a consequence of the pumping lemma (see Theorem 2), the inclusion is proper.

Theorem 11. (Consequence in [2]). The inclusion PC(CF,CF ) ⊂MAT is proper.

However, the construction used in the proof of Theorem 10 in [2] was proven incorrect
in [3], making theorems 10 and 11 debatable.
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Chapter 4

Conversion into a State Grammar

In [2], matrix grammars were used as an upper boundary of the generative power of path-
controlled grammars. However, the construction was proven incorrect in [3]. The problem
was that the matrix grammars cannot ensure in any way that the string generated by the
controlling grammar, that is the controlling path, is processed from left to right, that is
from the root to a leaf node, if there was some symbol occurring more than once.

Using some form of matrix grammar with a leftmost restriction on its derivation ([1],
[7]) might be an option. However, we explore a different way, state grammars.

This chapter covers the algorithm for the conversion between path-controlled and state
grammars. Section 4.1 introduces the algorithm itself, Section 4.2 explains the ideas behind
the algorithm in detail using an example path-controlled grammar. And finally, in Section
4.3 we prove the correctness of the algorithm and discuss the generative power of path-
controlled grammars.

4.1 Conversion Algorithm

Proposition 1. Given a path-controlled grammar γ = (G,G′), we can find a state grammar
G′′ and a GSM mapping M , such that GSMM (L(G′′)) = L(γ).

Proof. Let γ = (G,G′) be a path-controlled grammar with context-free generating grammar
G = (V, T, S, P ) and context-free controlling grammar G′ = (V ′, V, S′, P ′). Without loss
of generality we may assume that L(G′) ⊆ {S}N∗T . We define a state grammar G′′ =
(Q,V ′′, T ∪ {�}, P ′′, q0, S′′) with

Q = {q0, q1, qF } ∪ {qX | X ∈ V },
V ′′ = {X, X̂,X,X | X ∈ V } ∪N ′ ∪ {�},
P ′′ = {(q0, S′′)→ (q1, ŜS

′)} ∪ (I)

{(q1, A)→ (q1, uX̂v) | A → uXv ∈ P,X ∈ V, u, v ∈ V ∗} ∪ (II)

{(q1, A)→ (q1, h(x)) | A → x ∈ P ′} ∪ (III)

{(q1, X)→ (qX , �) | X ∈ V } ∪ (IV)

{(qA, Â)→ (q1, A | A ∈ N}) ∪ (V)

{(qa, â)→ (qF , a) | a ∈ T} ∪ (VI)

{(qF , A)→ (qF , x) | A → x ∈ P}, (VII)
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where N = V − T , N ′ = V ′ − V , � /∈ T and h is a homomorphism from (V ∪ N ′)∗ into
(N ′ ∪ {X | X ∈ V })∗ defined by h(X) = X, if X ∈ N ′, h(X) = X, if X ∈ V , and h(ε) = ε.

For easier reference, rules are divided into seven groups labelled by roman numerals.
We will refer to them as type {I–VII} rules.

Next, we define a gsm M . M reads its input and leaves it unchanged until the symbol
� occurs. Then, M begins to remove the rest of its input. If any symbol other than � is
read, it is considered invalid, M is blocked and no input is produced.

Then, GSMM (L(G′′)) = L(γ)

4.2 Illustration

The core idea behind this mechanism is to simulate simultaneous derivation in the generat-
ing and the controlling grammar in such way that the derivation tree of the resulting word
contains a path described by the controlling grammar.

How is this achieved may not be very clear from the formal definition alone, considering
the amount of special symbols and additional rules needed. Hence, let us illustrate the
mechanism with an example before providing a full proof.

Consider the path-controlled grammar γ = (G,G′) where G = (V, T, S, P ) is context-free
grammar with

V = {S,A,B,C, b, c},
T = {b, c},
P = {S → AA,A → B,A → C,B → bB,B → b, C → cC,C → c},

and G′ = (V ′, V, S′, P ′) is context-free grammar with

V ′ = {S′, A′, S,A,B,C, b, c},
P ′ = {S′ → SAA′b, A′ → BA′B,A′ → BB}.

Using the proposed conversion algorithm we construct the state grammar
G′′ = (Q,V ′′, T ∪ {�}, P ′′, q0, S′′) with

Q = {q0, q1, qS , qA, qB, qC , qb, qc, qF },
V ′′ = {S,A,B,C, b, c, Ŝ, Â, B̂, Ĉ, b̂, ĉ, S, A,B,C, b, c, S,A,B,C, b, c, S′, A′, �}
P ′′ = {0 : (q0, S

′′)→ (q1, ŜS
′)} ∪

{1 : (q1, S)→ (q1, ÂA), 2 : (q1, S)→ (q1, AÂ), 3 : (q1, A)→ (q1, B̂),

4 : (q1, A)→ (q1, Ĉ), 5 : (q1, B)→ (q1, b̂B), 6 : (q1, B)→ (q1, bB̂),

7 : (q1, B)→ (q1, b̂), 8 : (q1, C)→ (q1, ĉC), 9 : (q1, C)→ (q1, cĈ),

10 : (q1, C)→ (q1, ĉ)} ∪
{11 : (q1, S

′)→ (q1, SAA
′b), 12 : (q1, A

′)→ (q1, BA
′B),

13 : (q1, A
′)→ (q1, BB)} ∪

{14 : (q1, S)→ (qS , �), 15 : (q1, A)→ (qA, �), 16 : (q1, B)→ (qB, �),
17 : (q1, C)→ (qC , �), 18 : (q1, b)→ (qb, �), 19 : (q1, c)→ (qc, �)} ∪
{20 : (qS , Ŝ)→ (q1, S), 21 : (qA, Â)→ (q1, A), 22 : (qB, B̂)→ (q1, B),
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23 : (qC , Ĉ)→ (q1, C), ∪
{24 : (qb, b̂)→ (qF , b), 25 : (qc, ĉ)→ (qF , c)} ∪
{26 : (qF , S)→ (qF , AA), 27 : (qF , A)→ (qF , B), 28 : (qF , A)→ (qF , C),

29 : (qF , B)→ (qF , bB), 30 : (qF , B)→ (qF , b), 31 : (qF , C)→ (qF , cC),

32 : (qF , C)→ (qF , c)}.

The derivation starts with generating start symbols for both grammars (rule 0), gener-
ating grammar start symbol on the left side and controlling grammar start symbol on the
right side. The positions are important, since the derivation in state grammars is defined
as a leftmost derivation. From this point, we will refer to the substring generated by the
generating grammar, G, as the left side and to the substring generated by the controlling
grammar, G′, as the right side.

The hat symbol indicates the next symbol on the controlling path. The necessity of this
will be explained later. The derivation and its corresponding derivation tree follows.

S′′

Ŝq1

q0

S′

(q0, S
′′)⇒ (q1, ŜS

′) [0]

Both derivation in G and derivation in G′ occurs in q1, with G having the priority.
However, before rewriting the hatted symbol on the left side, we must check whether it
is the actual next symbol on the controlling path. The derivation in G′ goes on until a
symbol X, for some X ∈ V , is generated (rules 11 – 13). The symbol is overlined in order
to differentiate it from its corresponding counterpart on the left side.

Ŝ S′

Sq1

q1

A A′ b

(q1, ŜS
′)⇒ (q1, ŜSAA

′b) [11]

The leftmost overlined symbol X, for some X ∈ V is the next symbol on the controlling
path. It is rewritten to � to indicate that it is being processed and the grammar enters the
corresponding state, qX (rules 14 – 19).

Ŝ S A A′ b

�qS

q1

(q1, ŜSAA
′b)⇒ (qS , Ŝ�AA′b) [14]

When a symbol X ∈ V is being processed, that is when the grammar is in qX , only
the corresponding hatted symbol X̂ on the left side can be rewritten (rules 20 – 23). It is
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rewritten to an underlined symbol X which means that the symbol X is the actual next
symbol on the controlling path to be rewritten and the grammar returns to q1.

Ŝ � A A′ b

Sq1

qS

(qS , Ŝ �AA′b)⇒ (q1, S �AA′b) [20]

The underlined symbol X, for some X ∈ V is rewritten according to some rule p ∈ P
in G (rules 1 – 10). Note that exactly one symbol in rhs(p) is hatted in the process. Let’s
repeat that the hat indicates where the controlling path should continue. Necessity of this
is clear from the following example. If rhs(p) contains the same symbol X more than once,
like in our example, we need a way to select which one will be considered as the next symbol
on the controlling path. Without this mechanism only the leftmost occurrence of X would
ever be rewritten because of the leftmost restriction on derivation in state grammar.

S � A A′ b

Aq1

q1

Â

(q1, S �AA′b)⇒ (q1, AÂ �AA′b) [2]

When the grammar is in qa, for some a ∈ T , it means that the end of the controlling
path was reached and is being processed. If there is a corresponding hatted symbol â, the
hat is removed and the grammar enters qF which indicates that the derivation tree of the
left side contains a controlling path (rules 24, 25).

A b b̂ � � � � �

bqF

qb

(qb, Abb̂ � � � ��)⇒ (qF , Abb � � � ��) [24]

In qF , all remaining derivations in G not controlled by the controlling path are made
(rules 26 – 32). Any other derivations are not allowed and the grammar cannot leave qF .
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A b b � � � � �

C

cqF

qF

qF

(qF , Abb�����)⇒ (qF , Cbb�����) [28]⇒ (qF , cbb�����) [32]

Figure 4.1 shows the complete derivation tree of the word cbb����� in G′′ and Figure
4.2 shows the corresponding derivations.

Finally, the word cbb����� is given as an input to the gsm M . The prefix cbb is read
and left unchanged, then, with the first occurrence of �, M begins to remove the rest of
the input and since the suffix does not contain any invalid symbols, M successfully finishes,
producing cbb.

Clearly, cbb ∈ L(G) and the derivation tree of cbb contains a path SABBb ∈ L(G′).

4.3 Generative Power

To show that GSMM (L(G′′)) = L(γ) we need to prove the following two claims.

Claim 1. A derivation S ⇒∗G xay such that a ∈ T , x, y ∈ T ∗, with a derivation tree
containing a path A1A2 . . . Ama ∈ L(G′) exists if and only if xay�m+1 ∈ L(G′′).

Only-If Part : That is, if there is a derivation S ⇒∗G xay, such that a ∈ T , x, y ∈ T ∗,
with a derivation tree containing a path A1A2 . . . Ama ∈ L(G′), then xay�m+1 ∈ L(G′′).
We will prove this by induction on m ≥ 1.

Basis: Let m = 1, then the derivation tree of S ⇒G xay contains a path Sa, for some
a ∈ T , and there exists a derivation in G′′:

(q0, S
′′)⇒ (q1, ŜS

′)⇒∗ (q1, ŜSA
′)⇒ (qS , Ŝ �A′)⇒ (q1, S �A′)⇒ (q1, AxâAy �A′)⇒∗

(q1, AxâAy � a)⇒ (qa, AxâAy � �)⇒ (qF , AxaAy � �)⇒∗ (qF , xay � �).
Therefore, xay�2 ∈ L(G′).
Induction Hypothesis: Let us suppose that the only-if part holds for all controlling paths

of length m or less, for m ≥ 1.
Induction Step: Consider a derivation S ⇒∗G xay, such that a ∈ T , x, y ∈ T ∗, with a

derivation tree containing a path A1A2 . . . AmAm+1a ∈ L(G′). By the induction hypothesis,
for a derivation S ⇒∗G xay, such that a ∈ T , x, y ∈ T ∗ with a derivation tree containing a
path A1A2 . . . Ama, there is a word xay�m+1 ∈ L(G′′). Consequently, there is a derivation
in G′′:

(q0, S
′′)⇒∗ (q1, AxAmAy�mA′)⇒ (q1, AxâAy�mA′)⇒∗ (q1, AxâAy�ma)⇒∗ (qF , xay�m+1).

Then, for a derivation S ⇒∗G xay with a derivation tree containing a pathA1A2 . . . AmAm+1a,
there must exist a derivation in G′′:

(q0, S
′′)⇒∗ (q1, AxAmAy�mA′)⇒ (q1, Ax

ˆAm+1Ay�mA′)⇒∗ (q1, Ax
ˆAm+1Ay�mAm+1A

′)⇒∗
(qF , xay�m+2).

We can see that in this derivation, Am is rewritten to ˆAm+1 instead of â. This means
that G′′ processed one more nonterminal symbol on the controlling path, Am+1, rewriting
it to �.
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Then, xay�m+2 ∈ L(G′′), therefore, the only-if part holds.

If Part : That is, if there is a word xay�m+1 ∈ L(G′′), then there exists a derivation
S ⇒∗G xay with a derivation tree containing a path A1A2 . . . Ama ∈ L(G′). We will prove
this by induction on m ≥ 1.

Basis: Let m = 1, then G′′ finished its derivation in final configuration (qF , xay � �),
such that a ∈ T , x, y ∈ T ∗, and there must have been a derivation in G′′:

(qF , xay��) ∗⇐ (qF , AxaAy��)⇐ (qa, AxâAy��)⇐ (q1, AxâAy�a) ∗⇐ (q1, AxâAy�A′)⇐
(q1, S �A′)⇐ (qS , Ŝ �A′)⇐ (q1, ŜSA

′) ∗⇐ (q1, ŜS
′)⇐ (q0, S

′′).
Therefore, there must be a derivation S ⇒∗G xay with a derivation tree containing a

path Sa ∈ L(G′).
Induction Hypothesis: Let us suppose that the if-part holds for all suffixes of length

m+ 1 or less, for m ≥ 1.
Induction Step: Consider xay�m+2 ∈ L(G′′), such that a ∈ T , x, y ∈ T ∗. By the

induction hypothesis, for xay�m+1 ∈ L(G′′), such that a ∈ T , x, y ∈ T ∗, there exists a
derivation S ⇒∗G xay with derivation tree containing a path A1A2 . . . Ama. Consequently,
for the final configuration (qF , xay�m+1) there must have been a derivation in G′′:

(qF , xay�m+1) ∗⇐ (q1, AxâAy �m a) ∗⇐ (q1, AxâAy �m A′) ⇐ (q1, AxAmAy �m A′) ∗⇐
(q0, S

′′).
Then, for final configuration (qF , xay�m+2) there must have been a derivation in G′′:
(qF , xay�m+2) ∗⇐ (q1, Ax

ˆAm+1Ay�mAm+1A
′) ∗⇐ (q1, Ax

ˆAm+1Ay�mA′)⇐ (q1, AxAmAy�m
A′) ∗⇐ (q0, S

′′).
We can see that in this derivation, â was rewritten from Am+1 instead of Am. This

means that G′′ processed one more nonterminal symbol on the controlling path, Am+1.
Then, there exists a derivation S ⇒∗G xay with derivation tree containing a path

A1A2 . . . AmAm+1a, therefore, the if-part holds.

Claim 2. GSMM (L(G′′)) = L(γ).

Indeed, by Claim 1 we know that all words in L(G′′) are of the form xay�n, where
n is the length of the controlling path, for some n ≥ 2, a ∈ T , x, y ∈ T ∗. The left
side, generated by G is left unchanged by M . The right side does not contain any invalid
characters, meaning that the whole controlling path, described in G′, was processed and
is present in a derivation tree corresponding to S ⇒∗G xay. M removes the right side and
finishes successfully, producing xay.

Therefore, GSMM (L(G′′)) = L(γ).

Now, let us take a moment to discuss the potential consequences of the gsm mapping
regarding the generative power. By Theorem 1, Lω = CS. If we could prove that the gsm
mapping does not increase the generative power of the state grammar, we could state that
PC(CF,CF ) ⊆ Lω. And, more importantly, we could find a context-sensitive language
that does not have the pumping property from Theorem 2, therefore the inclusion would
be proper and PC(CF,CF ) ⊆ CS.
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Figure 4.1: Derivation tree of the word cbb����� in G′′.
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(q0, S
′′)

0
=⇒ (q1, ŜS

′)
11
=⇒ (q1, ŜSAA

′b)
14
=⇒ (qS , Ŝ �AA′b)

20
=⇒ (q1, S �AA′b)

2
=⇒ (q1, AÂ�

AA′b)
15
=⇒ (qA, AÂ��A′b)

21
=⇒ (q1, AA��A′b)

3
=⇒ (q1, AB̂ ��A′b)

13
=⇒ (q1, AB̂ ��BBb)

16
=⇒

(qB, AB̂���Bb)
22
=⇒ (q1, AB���Bb)

6
=⇒ (q1, AbB̂���Bb)

16
=⇒ (qB, AbB̂����b)

22
=⇒ (q1, AbB�

���b) 7
=⇒ (q1, Abb̂����b)

18
=⇒ (qb, Abb̂�����)

24
=⇒ (qF , Abb�����)

28
=⇒ (qF , Cbb�����)

32
=⇒

(qF , cbb�����)

Figure 4.2: Derivation of the word cbb����� in G′′.
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Chapter 5

Conversion Tool

In this chapter we will discuss a conversion tool which implements the conversion algorithm
introduced in Section 4.1. Section 5.1 deals with the tool design, its interface and input and
output format. The core of this chapter, Section 5.2, describes important implementation
details and class overview. In Section 5.3 we analyze the complexity of the algorithm, both
time and space. And finally, Section 5.4 summarizes experimental results.

5.1 Design

The conversion tool is written in C++. It implements the algorithm presented in Section
4.1 almost to the letter. The only difference between the formal definition and the actual
implementation is that the gsm mapping is incorporated directly into the set of rules,
namely, the type V rules derive an empty string, rather than deriving the � symbol, which
is later removed by M . We can do this since the � symbol does not affect any further
derivations in G′′, as was shown in Section 4.3.

The tool is very simple, it takes two input files, each containing one context-free gram-
mar, parses them into objects representing the grammars and then converts them into a
state grammar. The user is responsible for providing correct input grammars, the tool
doesn’t perform any checks. Both context-free and state grammars can be printed out, in-
cluding some additional information about them, such as the number of symbols of different
types and the degree of nondeterminism.

The degree of nondeterminism, denoted by degn(G) is a simple metric that we will use
as a rough estimate of how nondeterministic a grammar is. It is calculated as follows:

degn(G) =
|P |
|N |

,

where G is a grammar, P is the set of rules and N is the set of nonterminal symbols.

5.1.1 Input Format

The format of the input files is following: the four components of context-free grammar,
V , T , P and S, are enclosed in parentheses, divided by commas. The sets, V , T and P are
represented by its elements, divided by commas, enclosed in braces. Rules are in the form
lhs -> rhs. All white spaces are ignored, so the input file may be formated for better
readability.
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For example, the context-free grammar G from Section 3.3 may be represented as Figure
5.1 shows.

5.1.2 Output Format

The output format for the state grammar is similar to the input format for context-free
grammars. The set of states is added and is placed first, the rules are labeled and the
initial state is placed before the start symbol. Since we can’t print special symbols directly,
we represent them with two characters. Underlined symbols A are printed as A , overlined
symbols A as A~, and hatted symbols Â as A^.

Figure 5.1 shows the output format of the state grammar G′′ converted from grammars
G and G′ from Section 3.3 as well as statistics for G and G′′.

(

{S, B, D, a, b, c, d},
{a, b, c, d},
{
S -> aSd,
S -> aBd,
B -> bBc,
B -> D,
D -> bc
},
S

)

(

{q 0, q 1, q F, q S, ..., q d}
{S’, A’, S, S , S~, S^, B, ... ,d ^},
{a, b, c, d},
{
0: (q 0, S’’) -> (q 1, S^S’),
1: (q 1, S ) -> (q 1, a^Sd),

...

35: (q F, D) -> (q F, bc)
},
q 0, S’’

)

Number of symbols : 7

Number of terminals : 4

Number of nonterminals : 3

Number of rules : 5

Degree of nondeterminism : 1.7

Number of states : 10

Number of symbols : 30

Number of terminals : 4

Number of nonterminals : 26

Number of rules : 36

Degree of nondeterminism : 1.4

Figure 5.1: Input (upper left), output (upper right) and statistics (bottom) format.

5.2 Implementation

In this section we will look at important implementation details of the conversion tool.
Class overview and the conversion algorithm itself can be found in Subsections 5.2.1 and
5.2.2, respectively.

5.2.1 Class Overview

Figure 5.2 shows all the classes and their inheritance used in the conversion tool. Now, let’s
examine each class individually.

Symbol
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This class represents all symbols, namely nonterminals, terminals, start symbols and
even states, since most of them correspond to some symbol. The symbol consists of two
parts, base and type. Base is the symbol itself, for simplicity, we limit it to one character,
therefore it is of type char. Type determines whether symbol is basic, underlined, overlined,
primed or double–primed.

These variables are private, corresponding setters and getters are provided as well as
output function, which prints the symbol on standard output. Binary operators == and !=
are overloaded for comparison of two symbols.

Rule
Rule has three components, lhs, left-hand side is a single Symbol, since we deal with

context-free grammars. Whereas the right-hand side of a rule, rhs, is a vector of Symbols.
And finally, a rule is labeled by a unique number.

Again, these variables are manipulated through corresponding set and get functions.
Additionally, symbols can be added to the right-hand side one by one. Output function is
also provided.

State Rule
Rules in state grammars are extended with states, therefore State Rule extends the Rule

with q lhs, left-hand side state and q rhs, right-hand side state. Corresponding setters
and getters as well as modified output function is provided.

CS Grammar
Class for context-free grammar contains, as expected, the total alphabet V and set of

terminal symbols T as vectors of Symbols, vector of Rules P and starting nonterminal symbol
S. In addition, there is a set of nonterminals N, also as a vector of Symbols.

Besides usual setters, getters and output functions, there are output functions for each
element of the grammar as well as function outputStats, which prints some additional
information about the grammar, such as the number of different types of symbols and
the number of rules. A functions addRule for adding rules one by one and makeN, which
computes the set of nonterminals, are available.

State Grammar
Analogically to State Rule extending Rule, State Grammar extends CF Grammar by

adding a set of states Q represented by a vector of Symbols and the initial state q 0 repre-
sented by a Symbol. Since state grammars use different type of rules, State Grammar has
different set of rules, SP as a vector of State Rules.

5.2.2 Conversion Algorithm

The conversion algorithm itself is implemented in function convertPCG2SG(). It takes
three arguments, references to the objects of the generating context-free grammar G, the
controlling context-free grammar G′ and the state grammar G′′.

Figure 5.3 shows the implemented conversion algorithm in pseudocode form. The rule
generation (Algorithm 2) is a significant part of the conversion algorithm, therefore, it is
implemented by function generateP3(), separated from the rest(Algorithm 1).
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5.3 Complexity

In this section we discuss the complexity of the conversion algorithm. The complexity of
the whole conversion tool doesn’t concern us. First, in Subsection 5.3.1, we analyze the
time complexity, and second, in Subsection 5.3.2 we discuss the space complexity.

5.3.1 Time Complexity

Since Algorithm 1 uses Algorithm 2, let’s start with the analysis of the latter.

• 1: This can be done in constant time, O(1).

• 2–6: The outer for-each cycle body is executed |P | times. The number of executions
of the inner for-each cycle body depends on the length of the right-hand side of the
rule. However, there must exist a constant c, such that c is the average length of a
right-hand side of a rule, since the right-hand side of a rule is finite. Then the inner
for-each cycle body is executed c times and the time complexity of lines 2 – 6 is in
O(|P |).

• 7–9: This can be done in O(|P ′|).

• 10–12: This can be done in O(|V |).

• 13–15: This can be done in O(|N |).

• 16–18: This can be done in O(|T |).

• 19–21: This can be done in O(|P |).

Since V = T ∪N , the time complexity of Algorithm 2 lies in O(|V |+ |P |+ |P ′|). Now
let’s analyze Algorithm 1.

• 1: This can be done in O(1).

• 2–4: This can be done in O(|V |).

• 5: This can be done in O(N ′).

• 6–8: This can be done in O(|V |).

• 9: This can be done in O(|T |).

• 10–16: The outer for-each cycle body is executed |V ′′| times. The inner for-each cycle
body is executed at most |T ′′| times and since T ⊆ V , the inner for-each cycle body
is executed at most |V ′′| times. Then, the lines 10–16 can be done in O(|V ′′|2).

• 17: As we determined earlier, this can be done in O(|V |+ |P |+ |P ′|).

• 18–19: This can be done in O(1).

We know that V ′′ consists of symbols from N ′ and symbols generated from V , then
O(|V ′′|2) = O((|V |+ |N ′|)2), therefore the time complexity of Algorithm 1 lies in O((|V |+
|N ′|)2+ |P |+ |P ′|). Note, that the quadratic part can be easily lowered by incorporating the
building of the set of nonterminals into previous steps or by leaving it to the user altogether.
Then the time complexity can be reduced to O(|V |+ |N ′|+ |P |+ |P ′|).
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5.3.2 Space Complexity

In the same fashion we analyzed the time complexity, we now analyze the space complexity.

• 1: This generate one rule, O(1).

• 2–6: Same logic as with the time complexity analysis applies here, given the average
length of a right-hand side of a rule, c, the number of rules generated is c · |P | and
the space complexity of lines 2–6 lies is in O(|P |).

• 7–9: The number of rules generated is in O(|P ′|).

• 10–12: The number of rules generated is in O(|V |).

• 13–15: The number of rules generated is in O(|N |).

• 16–18: The number of rules generated is in O(|T |).

• 19–21: The number of rules generated is in O(|P |).

Since V = T ∪N , the number of rules generated is 2 · |V |+ (c+ 1) · |P |+ |P ′|+ 1 and
the space complexity of Algorithm 2 lies in O(|V |+ |P |+ |P ′|). For Algorithm 1:

• 1: This generates three states, O(1).

• 2–4: This generates |V | states, O(|V |).

• 5: This generates |N ′| symbols, O(|N ′|).

• 6–8: This generates 4× |V | symbols, O(|V |).

• 9: This generates |T | symbols, O(|T |).

• 10–16: In the worst case scenario, when V ′′ = T ′′, this generates |V ′′| symbols,
O(|V ′′|).

• 17: We determined that the number of rules generated is in O(|V |+ |P |+ |P ′|).

• 18: This generates one state, O(1).

• 19: This generates one symbol, O(1).

We can see that V ′′ contains 4 × |V | + |N ′| symbols and using the same logic as with
the time complexity, the space complexity of Algorithm 1 lies in O(|V |+ |N ′|+ |P |+ |P ′|).

5.4 Experiments

Using the conversion tool we converted a number of path-controlled grammars into state
grammars. All these grammars are listed in Appendix C and some remarks regarding lan-
guages they generate are in 6.4. Table 5.1 shows the statistics of path-controlled grammars.
The generating grammar is placed first, the controlling grammar second. Table 5.2 shows
the statistics of the resulting state grammars. For example, the path-controlled grammar
γ1 = (G1, G2) is converted into the state grammar γ1c.

Presented numbers confirm our space complexity analysis from Subsection 5.3.2.
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PCG CFG |V | |T | |N | |P | degn

γ1
G1 6 2 4 7 1.8
G2 8 6 2 3 1.5

γ2
G3 7 4 3 5 1.7
G4 9 7 2 4 2.0

γ3
G5 9 3 6 16 2.7
G6 11 9 2 4 2.0

γ4
G7 7 3 4 7 1.8
G8 9 7 2 3 1.5

γ5
G9 11 6 5 6 1.2
G10 13 11 2 3 1.5

γ6
G11 9 3 6 16 2.7
G12 12 9 3 5 1.7

γ7
G13 5 2 3 6 2.0
G14 6 5 1 1 1.0

Table 5.1: Path-controlled grammars’ statistics.

SG |Q| |V | |T | |N | |P | degn
γ1c 9 26 2 24 33 1.4
γ2c 10 30 4 26 36 1.4
γ3c 12 38 3 35 67 1.9
γ4c 10 30 3 27 37 1.4
γ5c 14 46 6 40 43 1.1
γ6c 12 39 3 36 68 1.9
γ7c 8 21 2 19 33 1.7

Table 5.2: Converted path-controlled grammars’ statistics.
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Rule

#lhs : Symbol
#rhs : vector<Symbol>
#label : int

+getLhs() : Symbol
+setLhs(new lhs : Symbol) : void
+getRhs() : vector<Symbol>&
+setRhs(new rhs : vector<Symbol>)
+addRhs(new rhs : Symbol) : void
+getLabel() : int
+setLabel(new label : int) : void
+output() : void

State Rule

#q lhs : Symbol
#q rhs : Symbol

+getQ lhs() : Symbol&
+setQ lhs(new lhs : Symbol) : void
+getQ rhs() : Symbol&
+setQ rhs(new rhs : Symbol) : void

Symbol

-base : char
-type : int

+getBase() : char
+setBase(new base : char) : void
+getType() : int
+setType(new type : int) : void
+output() : void

CF Grammar

#V : vector<Symbol>
#T : vector<Symbol>
#N : vector<Symbol>
#P : vector<Rule>
#S : Symbol

+getV() : vector<Symbol>&
+setV(new V : vector<Symbol> : void
+addSymbol(new symbol : Symbol) : void
+getT() : vector<Symbol>&
+setT(new T : vector<Symbol> : void
+addTerminal(new terminal : Symbol) : void
+getP() : vector<Rule>&
+addRule(new rule : Rule) : void
+getStartSymbol() : Symbol&
+setStartSymbol(new start symbol : Symbol)
+getN() : vector<Symbol>&
+makeN() : void
+output() : void
+outputStats() : void
+outputV() : void
+outputT() : void
+outputN() : void
+outputP() : void
+outputS() : void

State Grammar

#Q : vector<Symbol>
#SP : vector<State Rule>
#q 0 : Symbol

+getQ() : vector<Symbol>&
+addState(new state : Symbol) : void
+getInitialState() : Symbol&
+setInitialState(new initial state : Symbol)
+getSP() : vector<State Rule>&
+outputQ() : void
+outputSP() : void
+outputq 0() : void

Figure 5.2: Classes used in the conversion tool.
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Algorithm 1: convertPCG2SG()

Input : Context-free grammars
G = (V, T, P, S) and
G′ = (V ′, V, P ′, S′)

Output : State grammar
G′′ = (Q,V ′′, T ′′, P ′′, q0, S

′′)
Method:

/* generate the set of states Q */
1 Q← q0, q1, qF
2 foreach X in V do
3 Q← qX
4 end

/* generate the total alphabet V ′′ */
5 V ′′ ← N ′

6 foreach A in V do
7 V ′′ ← A,A,A, Â
8 end

/* generate the set of terminals T ′′

*/

9 T ′′ ← T

/* generate the set of nonterminals

N ′′ */
10 foreach X in V ′′ do
11 foreach T in T ′′ do
12 if X! = T then
13 N ′′ ← X
14 end
15 end
16 end

/* generate the set of rules P ′′ */
17 P ′′ ← generateP ′′(G,G′)

/* set the initial state and start

symbol */

18 q0 ← q0
19 S′′ ← S′′

20 return G′′

Algorithm 2: generateP3()

Input : Context-free grammars
G = (V, T, P, S) and
G′ = (V ′, V, P ′, S′)

Output : Set of rules P ′′

Method:

/* Type I rule */

1 P ′′ ← ((q0, S
′′)→ (q1, ŜS))

/* Type II rules */

2 foreach (A→ x) in P do
3 foreach uXv in x do
4 P ′′ ← ((q1, A)→ (q1, uX̂v))
5 end
6 end

/* Type III rules */

7 foreach (A→ x) in P ′ do
8 P ′′ ← ((q1, A)→ (q1, h(x)))
9 end

/* Type IV rules */

10 foreach X in V do
11 P ′′ ← ((q1, X)→ (qX , ε))
12 end

/* Type V rules */

13 foreach A in N do
14 P ′′ ← ((qA, Â)→ (q1, A))
15 end

/* Type VI rules */

16 foreach a in T do
17 P ′′ ← ((qa, â)→ (gF , a))
18 end

/* Type VII rules */

19 foreach (A→ x) in P do
20 P ′′ ← ((qF , A)→ (qF , x))
21 end

22 return P ′′

Figure 5.3: Path-controlled grammar to state grammar conversion algorithm.
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Chapter 6

Parser

This chapter is dedicated to a parsing tool for path-controlled grammars. Section 6.1
covers general design of the tool, in Section 6.2 we examine important implementation
details. Complexity analysis of the tool is in Section 6.3 and finally, in Section 6.4 we
present experimental results.

6.1 Design

This tool is designed as a general parser for path-controlled grammars. It does not work
directly with the path-controlled grammar, it uses an intermediate state grammar generated
by using the conversion algorithm presented in Section 4.1. Therefore, it is only natural
that the parser is an extension of the conversion tool presented in Chapter 5.

The parser performs a depth-first search over a tree of all possible configuration of a
state grammar. Figure 6.1 shows part of such tree for a state grammar converted from
the path-controlled grammar introduced in Section 4.2. The root node represents the
initial configuration (q0, S

′′), where q0 is the initial state and S′′ is the start symbol. Two
configurations c1 and c2 are connected by a forward edge if there is a rule p such that
c1 ⇒ c2 [p], the edge is directed from c1 to c2 and is labelled by p.

A backward edge from c2 to c1 indicates that there is a derivation c2 ⇒∗ (qF , w), where
w ∈ T ∗ is the sentence we are parsing. In that case the edge is labelled by True. We assume
that the generating grammar is ε-free and does not contain any chain rules. Then we can
state that if the left side of a sentential form in a configuration c, that is the part generated
by the generating grammar, is longer than w, there cannot be a derivation c⇒∗ w and the
backward edge from c is labelled False. Clearly, if there is an edge labelled True coming to
a root node, w ∈ L(γ).

6.2 Implementation

As was stated, the parses is an extension of the conversion tool. Only one new class is
introduced. Configuration, as Figure 6.2 shows, contains three private variables. State is
the actual state of a state grammar, represented by a single Symbol, s form is the sentential
form, represented by a vector of Symbols and l parse is the left parse, represented by a
vector of rule labels (integers).

Besides usual get and output functions, there are two functions worth mentioning. The
function getUsableRules finds the leftmost nonterminal symbol in the current sentential
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form that can be rewritten and generates a set of rules, a set of rule labels to be precise,
which can rewrite this symbol.

The function applyRule, as the name suggests, takes the current configuration, copies
it, applies the specified rule and returns the new configuration. The previous configuration
is left unchanged for eventual backtracking.

Figure 6.3 shows the parsing algorithm in pseudocode from. It is divided into two
parts. Function derivation() (Algorithm 3) initializes the process by creating the initial
configuration and by calling derive() (Algorithm 4) with rule 0 as a parameter. Rule 0
is the only rule that can be applied on initial configuration. Derive() performs the actual
depth-first search using recursive descent.

6.3 Complexity

We will analyze both time and space complexity of the parsing algorithm, the complexity
of the conversion algorithm for the intermediate state grammar was discussed in Section
5.3, we don’t need to repeat it. Complexity of auxiliary functions, such as handling input
and output, does not concern us. Time complexity is analyzed in Subsection 6.3.1, space
complexity in Subsection 6.3.2.

6.3.1 Time Complexity

Algorithm 3 only initializes the search, it can be done in constant time. Let us analyze
Algorithm 4.

• 1: A rule p can be applied in |s form| + |rhs(p)|. Assuming that the controlling
grammar does not contain any ε-productions nor unit-productions we can say that
the complexity of line 1 lies in O(|w| + c2) = O(|w|), where c2 is the average length
of a right-hand side of a rule in P ′′.

• 2–4: This can be done in O(|w|).

• 5–7: This can be done in O(|w|).

• 8: In the worst case scenario, every rule is checked against every symbol in the
sentential form, |P ′′| · |s form|, therefore the complexity of line 8 lies in O(|P ′′| · |w|).

• 9–13: In the worst case scenario, the algorithm checks every configuration in the
configuration tree. We need to determine how large this tree is. Looking at the
Figure 6.1 can give us the idea. The degree of branching corresponds to the degree of
nondeterminism of the state grammar and the depth depends on the length of parsed
sentence. An estimate of the size of the configuration tree is degn(G′′)|w|/c1 , where c1
is the average length of a right-hand side of a rule in P .

The for-each cycle body, not taking into account the complexity of the function
derive(), can be done in constant time.

We can see that the time complexity of Algorithm 4 lies in O(|P ′′|·|w|)·O(degn(G′′)|w|) =
O(degn(G′′)|w|).
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6.3.2 Space Complexity

The algorithm stores every configuration along the path it currently investigates. If that
path doesn’t lead to the final configuration, it backtracks while discarding all configurations
that don’t lead to the final configuration. Therefore, the algorithm never uses more space
than the longest path in the configuration tree, that is the longest derivation, and since the
length of such derivation depends on the length of the parsed sentence, the space complexity
lies in O(|w|).

6.4 Experiments

We performed a series of tests with different path-controlled grammars and length of the
input sentence. All grammars are listed in Appendix C, additional information about them
can be found in Section 5.4.

For every path-controlled grammar we experimentally found a suitable interval of input
sentence lengths. We performed ten measurements, evenly spread on this interval. For each
measurement the parser ran three times with input word that did not belong to the language
generated by the path-controlled grammar and the results were averaged. This way we
measured the worst case scenario when all possible configurations are checked. Three runs
per sentence length was enough as we so consistent result throughout the measurements.

Figure 6.4 shows the average time of the worst case parsing for all the grammars and
all sentence lengths. Note that the x axis is in logarithmic scale for better visibility. Table
6.2 contains the measured results.

One can easily see that the time needed for traversing through the whole configuration
tree grows exponentially with the length of input sentence as was predicted in Subsection
6.3.1, where we stated that the time complexity lies in O(degn(G′′)|w|). The degree of
nondeterminism of the intermediate state grammar corresponds to the degree of branching
of the configuration tree. However, the calculated values (see Table 5.2) don’t reflect this
very well. The problem is that the intermediate state grammar can contain useless rules
which skews the degree of nondeterminism.

Let us propose a modification of the metric, degn2(G′′) = degn(G) · degn(G′). This way,
the metric is not affected by useless rules in P ′′, but still remains simple. Table 6.1 shows
values of this new metric for the path-controlled grammars.

PCG degn(G) degn(G′) degn2(G
′′)

γ1 1.8 1.5 2.7
γ2 1.7 2.0 3.4
γ3 2.7 2.0 5.4
γ4 1.8 1.5 2.7
γ5 1.2 1.5 1.8
γ6 2.7 1.7 4.6
γ7 2.0 1.0 2.0

Table 6.1: Modified degree of nondeterminism of state-grammars.

We can see that this metric reflects the reality much better.
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(q0, S
′′)

(q1, ŜS
′)

(q1, ŜSAA
′b)

(qS , ŜAA
′b)

(q1, SAA
′b)

(q1, ÂAAA
′b)

(qA, ÂAA
′b)

(q1, AAA
′b)

(q1, B̂AA
′b)

...

(q1, ĈAA
′b)

...

(q1, AÂAA
′b)

...

(qF , Cbb)

(qF , cCbb) (qF , cbb)

0 True

11 True

14 True

20 True

1

False

15 False

21 False

3
False

12 . . . False

4 False

12 . . . False

2
True

15 True

28 True

31
False

32 True

Figure 6.1: Configuration tree for sentence cbb ∈ L(γ)
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Configuration

-state : Symbol
-s form : vector<Symbol>
-l parse : vector<int>

+getS form() : vector<Symbol>&
+getL parse() : vector<int>&
+applyRule(G : State Grammar&, rule label : int) : Configuration
+copyConfiguration(conf : Configuration*) : void
+getUsableRules(G : State Grammar&) : vector<int>
+output() : void
+outputConfiguration(): void
+outputL parse() : void

Figure 6.2: Configuration class.

Algorithm 3: derivation()

Input : State grammar
G′′ = (V ′′, T, P ′′, S′′),
Context-free grammar
G = (N,T, P, S),
Sentence w

Output : True if w ∈ L(G′′),
False otherwise

Method:

1 conf ← initial configuration
2 if derive(G′′, G, w, conf, 0) then
3 return True
4 else
5 return False
6 end

Algorithm 4: derive()

Input : State grammar
G′′ = (V ′′, T, P ′′, S′′), Context-free
grammar G = (N,T, P, S),
Sentence w, Configuration conf,
Rule rule

Output : True if w is derived from conf by
applying rule, False otherwise

Method:

1 new conf ← applyRule(G′′, conf, rule)
2 if sentential form == w then
3 return True
4 end
5 if sentential form is too long then
6 return False
7 end
8 usableRules ← getUsableRules(G′′)
9 foreach rule in usableRules do
10 if derive(G′′, G, w, new conf, rule) then
11 return True
12 end
13 end
14 return False

Figure 6.3: State grammar parsing algorithm.
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Figure 6.4: Worst case parse time depending on the length of a sentence.
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|w| γ1c γ2c γ3c γ4c γ5c γ6c γ7c

10 0.54
11 1.05
12 2.227
13 4.637
14 9.647
15 20.04
16 41.89
40 0.91
50 1.99
60 3.823
70 0.98 6.637
80 1.53 10.87
90 2.37 16.917
100 3.5 0.053 0.05 25.077 0.042
110 4.99
120 6.867
130 9.243
140 12.16
150 15.723
160 19.993
200 0.337 0.33 0.24
300 1.01 1.017 0.627
400 2.27 2.31 1.42
500 4.29 4.333 0.143 2.69
600 7.187 7.283 4.56
700 11.233 11.4 7.127
800 16.603 16.953 10.537
900 32.53 24.273 14.927
1000 32.243 33.657 0.563 20.367
1500 1.263
2000 2.22
2500 3.433
3000 4.95
3500 6.7

Table 6.2: Worst case parse time depending on the length of a sentence.
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Chapter 7

Conclusion

We introduced the path-controlled grammars, context-free grammars that place restrictions
on the paths in derivation trees in order to increase the generative power. The question of
generative power is still open since the original claim that PC(CF,CF ) ⊂ MAT, in [2],
was supported by a construction that was later proven incorrect in [3].

In this thesis we explored the relation between path-controlled grammars and state
grammars. State Grammars are another type of regulated grammars, they extend context-
free grammars with the notion of states, restricting which rules can be applied in a deriva-
tion. It is known that Lω = CS.

We proposed a conversion algorithm from path-controlled grammars into state gram-
mars. The proof of correctness was provided. Unfortunately, we were not able to prove
that PC(CF,CF ) ⊆ Lω since a gsm mapping was used. However, our results confirm
conclusions regarding the generative power of path-controlled grammars made in [3].

The conversion algorithm was implemented and tested on a set of path-controlled gram-
mars. The complexity of this algorithm was theoretically analysed and then confirmed by
measurements on said set of grammars.

A tool for parsing of path-controlled grammars was implemented. This tool uses the
conversion algorithm to create an intermediate state grammar and performs a depth-first
search on a configuration tree of the state grammar. Time complexity was carefully analyzed
and confirmed by measurements.

The question of the generative power of path-controlled grammar remains open, despite
our efforts. Further research is needed.

The parsing tool has exponential time complexity and even though it performs well for
some grammars, for others it is virtually unusable. The blind depth-first search could be
optimized by using LL parsing methods (see [8]) for the generating grammar, reducing the
time complexity.
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Appendix A

Contents of the CD

The CD contains following directories:

/doc/ – electronic version of this text,

/tests/ – testing script,

/tests/grammars/ – set of path-controlled grammars,

/tests/inputs/ – set of testing inputs,

/tex/ – source code of this text,

/tool/ – conversion and parsing tool

/tool/src/ – source code of the conversion and parsing tool
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Appendix B

Tool usage

./parser -c|p generating grammar controlling grammar [sentence]

c : convert mode

p : parse mode

generating grammar : file name of the generating grammar

controlling grammar : file name of the controlling grammar

sentence : in parse mode (-p), input sentence

has to be specified
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Appendix C

Grammars

γ1 = (G1, G2) with G1 = (V1, T1, P1, S), where

V1 = {S,A,B,C, b, c},
T1 = {b, c},
P1 = {S → AA,A→ B,A→ C,B → bB,B → b, C → cC,C → c},

and G2 = (V2, T2, P2, S
′), where

V2 = {S′, A′, S,A,B,C, b, c},
T2 = {S,A,B,C, b, c},
P2 = {S′ → SAA′b, A′ → BA′B,A′ → BB}.

G1 and G2 are stored in G1.txt and G2.txt, respectively.

γ2 = (G3, G4) with G3 = (V3, T3, P3, S), where

V3 = {S,B,D, a, b, c, d},
T3 = {a, b, c, d},
P3 = {S → aSd, S → aBd,B → bBc,B → D,D → bc},

and G4 = (V4, T4, P4, S
′), where

V4 = {S′, A′, S,B,D, a, b, c, d},
T4 = {S,B,D, a, b, c, d},
P4 = {S′ → SA′BDb, S′ → SBDb,A′ → SA′B,A′ → SB}.

L(γ2) = {anbncndn | n ≥ 1}
G3 and G4 are stored in G3.txt and G4.txt, respectively.

γ3 = (G5, G6) with G5 = (V5, T5, P5, S), where

V5 = {S,A,B,C,D,E, a, b, c},
T5 = {a, b, c},
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P5 = {S → A,S → B,A→ aA,A→ aB,A→ aE,B → bB,B → bA,B → bE,

C → Ca,C → Da,C → ca,D → Db,D → Cb,D → cb, E → D,E → C},

and G6 = (V6, T6, P6, S
′), where

V6 = {S′, A′, S,A,B,C,D,E, a, b, c},
T6 = {S,A,B,C,D,E, a, b, c},
P6 = {S′ → SA′c, A′ → AA′C,A′ → BA′D,A′ → E}.

L(γ3) = {wcw | w ∈ T ∗}
G5 and G6 are stored in G5.txt and G6.txt, respectively.

γ4 = (G7, G8) with G7 = (V7, T7, P7, A, where

V7 = {A,B,D,X, a, b, d},
T7 = {a, b, d},
P7 = {A→ bB,A→ dD,A→ X,B → aA,D → aA,X → aX,X → a},

and G8 = (V8, T8, P8, S
′, where

V8 = {S′, Y ′, A,B,D,X, a, b, d},
T8 = {A,B,D,X, a, b, d},
P8 = {S′ → ABADAY ′a, Y ′ → XY ′, Y ′ → X}.

L(γ4) = {bada+}
G7 and G8 are stored in G7.txt and G8.txt, respectively.

γ5 = (G9, G10) with G9 = (V9, T9, P9, S), where

V9 = {S,A,B,C,D, a, b, c, d, e, f},
T9 = {a, b, c, d, e, f},
P9 = {S → aA,A→ bB,B → cC,C → dD,D → eS,D → f},

and G10 = (V10, T10, P10, S
′), where

V10 = {S′, A′, S,A,B,C,D, a, b, c, d, e, f},
T10 = {S,A,B,C,D, a, b, c, d, e, f},
P10 = {S′ → SABCDA′f,A′ → SABCDA′, A′ → SABCD}.

G9 and G10 are stored in G9.txt and G10.txt, respectively.

γ6 = (G11, G12) with G11 = (V11, T11, P11, S), where

V11 = {S,A,B,C,D,E, a, b, c},
T11 = {a, b, c}
P11 = {S → A,S → B,A→ aA,A→ aB,A→ aE,B → bB,B → bA,B → bE,
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C → Ca,C → Da,C → ca,D → Db,D → Cb,D → cb, E → D,E → C},

and G12 = (V12, T12, P12, S
′), where

V12 = {S′, A′, B′, S,A,B,C,D,E, a, b, c, },
T12 = {S,A,B,C,D,E, a, b, c},
P12 = {S′ → SA′c, A′ → AA′C,A′ → BB′D,B′ → BB′D,B′ → E}.

G11 and G12 are stored in G11.txt and G12.txt, respectively.

γ7 = (G13, G14) with G13 = (V13, T13, P13, S), where

V13 = {S,A,B, a, b},
T13 = {a, b}
P13 = {S → BAA,S → ABA,S → AAB,A→ aAa,A→ aa,B → b},

and G14 = (V14, T14, P14, S
′), where

V14 = {S′, S,A,B, a, b},
T14 = {S,A,B, a, b},
P14 = {S′ → SBb}.

G13 and G14 are stored in G13.txt and G14.txt, respectively.
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