
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

PROSTŘEDÍ PRO REKONFIGUROVATELNÉ SYSTÉMY
NA ČIPECH ALTERA
FRAMEWORK FOR RECONFIGURABLE SYSTEMS ON THE ALTERA CHIPS

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. BRUNO KREMEL
AUTHOR

VEDOUCÍ PRÁCE Ing. PAVOL KORČEK
SUPERVISOR

BRNO 2015

Abstrakt
Práce posuzuje dostupné prostředí pro vývoj rekonfigurovatelných systémů na čipech Al-
tera. Tyto prostředí jsou následně porovnány s řešeními dostupnými pro platformu Xilinx.
Prostředí RSoC Framework je pak představeno jakožto výhodná alternativa pro řešení vyv-
inuté výrobcemi. Prostředí je momentálně k dispozici na platformě Xilinx Zynq. Dále práce
hodnotí klíčové rozdíly mezi platformou Xilinx Zynq a platformou Altera Cyclone V SoC
a navrhuje způsob řešení portace uvedeného prostředí na platformu Altera. Následně se
diskutuje návrh a implementace portu na platformu Altera Cyclone V SoC. Nakonec práce
vyhodnocuje výkonnost portovaného systému na nové platformně.

Abstract
This work reviews the development frameworks available for the Altera System-On-Chip
solutions. These solutions are then compared to solutions available on the Xilinx platform.
The RSoC Framework is then presented as an advantageous alternative for the vendor’s
solutions. This framework is currently available for the Xilinx Zynq platform. Furthermore
the work assess the key differences between Xilinx Zynq and Altera Cyclone V SoC plat-
forms and proposes the solution to port the framework to Altera platform. The design and
implementation of then RSoC Framework port to Altera Cyclone V SoC is then discussed.
Finally the work evaulates the performance of the ported system on the new platform.

Klíčová slova
SoC, FPGA, Altera, Cyclone V SoC, Zynq, RSoC

Keywords
SoC, FPGA, Altera, Cyclone V SoC, Zynq, RSoC

Citation
Bruno Kremel: Framework for Reconfigurable Systems on the Altera Chips, diplomová
práce, Brno, FIT VUT v Brně, 2015

Framework for Reconfigurable Systems on the Al-
tera Chips

Declaration
I declare that this project is my own work and that I have properly acknowledged the use
of work and information from other sources.

. .
Bruno Kremel
May 27, 2015

Acknowledgement
I would like to thank Ing. Pavol Korček for being a supportive supervisor and Ing. Jan
Viktorin for being helpful with technical details of the port of the framework and also for
reviewing my work.

c© Bruno Kremel, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Embedded systems, System-on-Chip and reconfiguration 4
2.1 Embedded systems . 4
2.2 System-on-Chip and Reconfigurable System-on-Chip 4
2.3 Available frameworks for Reconfigurable System-On-Chip 6

2.3.1 Xilinx SDx Development Environments 6
2.3.2 Altera SDK for OpenCL . 8
2.3.3 RSoC Framework . 9

2.4 Overview of the RSoC Framework . 10
2.4.1 Architecture of the RSoC Bridge . 11

3 Characteristics of Altera and Xilinx RSoC systems 13
3.1 Interfaces . 13

3.1.1 AMBA AXI . 13
3.1.2 Altera Avalon . 16

3.2 Hard processor . 19
3.3 DMA controller . 21

3.3.1 Differences between Altera S&G DMA and Xilinx AXI DMA controller 22
3.4 Design tools . 27

3.4.1 Synthesis and implementation tools 28
3.4.2 IP integration tools . 28

3.5 Drivers . 29
3.5.1 Standard Linux driver . 29
3.5.2 Zerocopy RX Linux driver . 29
3.5.3 Multiplatform driver . 30

4 Design and implementation 32
4.1 Proposed solution . 32
4.2 Components for integration of the Altera S&G DMA to the RSoC Bridge . 33

4.2.1 RSoC DMA wrapper for the Altera S&G DMA 33
4.2.2 AXI — Avalon adaptors . 35

4.3 Integration with Altera tools . 42
4.3.1 Altera Quartus synthesis support . 42
4.3.2 Altera Qsys system integration tool support 44
4.3.3 IP core distribution . 44

4.4 Drivers . 46
4.4.1 Descriptor processing differences between Altera and Xilinx drivers . 46

1

5 Testing and measurements 48
5.1 Hardware platform . 48
5.2 Simulation and unit tests . 50
5.3 Performance testing and measurements . 50

5.3.1 Throughput measurements . 50
5.3.2 Resource utilisation . 53

6 Conclusion 54

A Contents of the included CD 58

B How to build and use the RSoC Framework on the Altera Cyclone V SoC
Development Board 59
B.1 Compiling the Quartus design for the Altera Cyclone V SoC Development

Board . 59
B.2 Compiling the Linux for the Altera Cyclone V SoC Development Board . . 60
B.3 Running the demo . 61

2

Chapter 1

Introduction

Devices based on System-on-Chip makes notable share of the market today. The System-
on-Chip evolved from embedded systems of former discrete microprocessors and discrete
logic (e.g. 74 series). Continued through the integrated microcontrollers to full fledged
computing systems used in today’s cell phones. Applications vary from systems that could
be considered embedded: the TV Set top boxes, digital cameras, intelligent IP cameras to
more or less universal computing systems like smartphones, tablets, smartwatches, smart
TVs or car dash computers.

For all applications, embedded system basically consists of an application specific logic
designed for particular task and some microprocessor. Today the application specific logic
is often integrated on the same die as the microprocessor, these systems are called System-
on-Chip (SoC), mostly based on the ARM architecture and implemented as an ASIC.

Leading programmable logic manufacturers understood the need for a reconfigurable
System-on-Chip and embraced the concept of the System-on-Chip for their programmable
logic products creating an ARM and FPGA based System-on-Chip solution.

To design an application for these systems one must design an FPGA firmware, drivers
for an operating system (OS) often based on Linux or some Real Time OS and an ap-
plication software. This complexity calls for some collection of a tools and IPs that will
allow designers to focus only on an application specific design. One of these collections is
the RSoC Framework currently available for the Xilinx SoCs.

To provide designers with a choice of devices, RSoC Framework needs to be available on
more than a single platform. Choice has been made to port the framework to Altera SoCs.
The reason is that Altera and Xilinx competes for the position of the largest programmable
logic manufacturer with an alternating leading position.

This work explains reasons behind utilisation of the reconfigurable System-on-Chip in
embedded systems. Introduces the RSoC Framework for these systems and explains main
advantages of this framework in development for these systems. Further text covers the key
differences between Xilinx and Altera reconfigurable System-on-Chip platforms, their im-
pact on the framework and propose a solution to port the current implementation over
to the Altera Cyclone V SoC platform. Finally the work covers how this solution was
implemented and summarises the results of tests and measurements of resulting system.

3

Chapter 2

Embedded systems,
System-on-Chip and
reconfiguration

Following chapter covers what is an embedded system, explains what makes a System-
on-Chip suitable for some applications of embedded systems and deals with the difference
between a System-on-Chip and reconfigurable System-on-Chip. A brief comparison of frame-
works for reconfigurable System-on-Chips will be presented. Finally the RSoC Framework
for reconfigurable System-on-Chips is introduced.

2.1 Embedded systems

Embedded system is considered a computing system embedded in larger physical system
like washing machine, microwave, TV set to box etc, where user is not aware that this
system actually contains a computing system and embedded system itself is designed for
single particular task. Essentially embedded system consists of a microprocessor and some
application specific logic.

However especially systems like smartphones, tablets, smart TVs etc. makes the term
embedded hard to distinguish. Take for example today’s smartphones, they are a universal
computing system rather than an embedded system and application specific logic is not
used for single particular task rather than accelerating set of common tasks. And in fact
you can find the same SoC device in clearly an embedded platform for example an intelli-
gent IP camera and in a platform that couldn’t be considered embedded anymore such as
a smartphone.

2.2 System-on-Chip and Reconfigurable System-on-Chip

System-on-Chip Today’s market (especially smartphone and tablet market) called for
more integration to reduce size, complexity and power consumption of a given device that
led to development of a System-on-Chip.

In these systems, the application specific logic is integrated on the same die as the mi-
croprocessor. It is implemented in an ASICs as it is oriented on accelerating a common
set of tasks such as audio/video codecs, encryption etc. Also these systems shares common
peripherals like Bluetooth, WiFi, GSM radio and others.

4

Therefore System-on-Chip is a perfect solution to get low power consumption and small
size while maintaining high performance in certain applications. But these requirements
are also common for embedded systems and therefore SoC are being gradually deployed in
embedded systems as well.

Memory
controller

System−on−Chip die

MPU

(accelerators)
specificApplication logic

Acc 0 Acc 1 Acc N

Peripherals

Peripheral 0 Peripheral 1 Peripheral N

Figure 2.1: Typical System-on-Chip

As shown on the Figure 2.1, these systems are logically divided to a microprocessor,
on-chip interconnect and a set of accelerators and peripherals connected through this in-
terconnect. The application specific logic is implemented by these accelerators/peripherals.

The idea behind a System-on-Chip is that a microprocessor is common and licensed
(for example ARM Cortex cores). The device manufacturer will develop their own set of
accelerators and peripherals creating a custom SoC. Example of such approach are Apple’s
Ax series or Samsung’s Exynos series developed for smartphones and tablets of respective
manufacturers.

Reconfigurable System-on-Chip The nature of some (especially embedded) applica-
tions creates the need for more specialised logic. The set of tasks for such system is not
always common to a smartphone or a tablet applications and common SoCs are therefore
not an viable option. Also only mayor electronics manufacturers are able to develop and roll
out their own ASIC SoC. And even then an ASIC based SoC could be highly uneconomical,
because some embedded system might not be manufactured in a volume that would cover
the cost of an ASIC development.

To make an alternative for these applications, mayor programmable logic manufactur-
ers embraced a System-on-Chip solution for their programmable logic. Creating an FPGA
based Reconfigurable System-on-Chip where a microprocessor, some peripherals and a con-
trollers are implemented as an ASIC and an application specific logic is implemented as
a circuit in an FPGA as depicted on the Figure 2.2. Reconfigurable SoCs are also useful as
a prototyping platform for development of an ASIC based SoC.

5

Memory
controller

MPU

logic (FPGA)
Programmable

Peripherals

Peripheral 0 Peripheral NPeripheral 1
Acc or peripheral 0
Reconfigurable

Reconfigurable

Reconfigurable

Acc or peripheral 1

Acc or peripheral N

Reconfigurable System−on−Chip die

Figure 2.2: Typical Reconfigurable System-on-Chip

2.3 Available frameworks for Reconfigurable System-On-Chip

All programmable logic manufacturers do their best to make development for their devices
simple and straightforward by providing integration tools and IPs. However, as mentioned
in the introduction, development for these RSoCs is still challenging. To make an RSoC
application, one must develop a mean to make a reliable communication between the cus-
tom hardware application specific logic and the application software with some additional
requirements such as high throughput and low-latency.

A complex firmware for an FPGA, software drivers for an operating system used (often
Linux or some RTOS) must be developed to get a communication between an accelerator
and an application software.

To let application designer focus solely on their specific application it is best to use
a collection of tools and IPs that allow designer to only develop their specific application
logic and application software.

Such frameworks exists for both platforms. The vendor provided frameworks are fo-
cused on high-level application development. Further sections will briefly introduce them.
Then the RSoC Framework will be compared to these frameworks, the advantages and
disadvantages of both approaches will be discussed as well.

2.3.1 Xilinx SDx Development Environments

Xilinx provides three different development environment in their SDx family. These envi-
ronments are currently in development and only early access is available to Xilinx partners.
Therefore the following information being Xilinx advertising material [18] is preliminary in
terms of real capabilities of these environments.

SDSoC Environment This environment is specifically targeted for the Reconfigurable
System-On-Chip in this case the Zynq family. Xilinx promises [17] that SDSoC provides
C/C++ full-system optimising compiler, delivers system level profiling, automated soft-
ware acceleration in programmable logic, automated system connectivity generation, and
libraries to speed programming.

6

Figure 2.3:

Figure 2.4: The development flow with Xilinx SDSoC [17]

The development approach (illustrated on the Figure 2.3) is that the user writes an ap-
plication in C/C++ and the SDSoC tools will automatically analyse bottlenecks with
a profiler and then converts these parts of code into an FPGA design (utilising Vivado
HLS). The communication system between the FPGA and the software is also generated
automatically.

Figure 2.5:

Figure 2.6: The development flow with Xilinx SDAccel [16]

SDAccel Environment This environment leverages OpenCL which brings the GPGPU
like experience to FPGA accelerator card development. The target of this environment are
accelerator cards in data-centres.

Xilinx advertises [16] that the SDAccel environment provides an architecturally opti-
mising compiler supporting any combination of OpenCL, C, and C++ kernels. The devel-
opment flow is show on the Figure 2.5.

7

Figure 2.7:

Figure 2.8: The use of SDNet [19]

SDNet Environment The last environment is Xilinx approach to Software Defined
Networking. As Xilinx material states [19] the SDNet stands for ’Softly’ Defined Networks.
This supports the SDN functionality, but also adds software programmable data plane
hardware.

The use of SDNet is illustrated on the Figure 2.7. Xilinx claims:
”
SDNet enables the

ability to use high-level specifications in conjunction with application optimised libraries
and the associated design environment to automatically transform the specifications into
an optimised hardware implementation on Xilinx devices.“ [19].

2.3.2 Altera SDK for OpenCL

To simplify development for their devices Altera provides an OpenCL SDK, which targets
their FPGAs. This environment is similar to the Xilinx SDAccel environment, but ad-
dresses both accelerator cards and the Reconfigurable System-On-Chip. This makes the
Altera solution more unified, but the Altera solution is focused on solely on OpenCL as
opposed to Xilinx solutions. The OpenCL is more known for being used in GPGPU appli-
cations. However OpenCL is an unified programming model for accelerating algorithms on
heterogeneous systems.

In their SDK Altera provides following (as advertised here [2]):

8

• An emulator to step through the code on an x86 and ensure it is functionally correct.

• A detailed optimisation report to understand the load and store inner loop depen-
dencies.

• A profiler that shows performance insight into the kernel to ensure proper memory
coalescence and stall free hardware pipelines.

• An OpenCL compiler capable of performing over 300 optimisations on the kernel code
and producing the entire FPGA image in one step.

The expected development flow is shown on the Figure 2.9. As we can see the developer
can optimise the OpenCL application for the FPGA using emulator and target the FPGA
after the application is optimised. This is important because compilation for the FPGA
will take considerable time.

Figure 2.9:

Figure 2.10: The development flow with Altera OpenCL [2]

2.3.3 RSoC Framework

Development with previously presented tools (the Altera SDK for OpenCL and Xilinx
SDx Development Environment) is completely different from traditional RTL-based design
approach for FPGA applications. Unlike the RSoC Framework, they are solely focused on
acceleration of the computation.

While it has many advantages, such as getting programmers who developed for example
GPGPU applications to seamlessly transition to developing applications for FPGAs. De-
velopment in software emulators and targeting the FPGA, after the application is optimised
is also beneficial.

It has also disadvantages. The first is that RTL development can not be done with these
tools. Another is that the high-level compiler either HLS or OpenCL can not always use
FPGA resources effectively. And finally not all applications could be done with the SDx or
OpenCL, take for example a high-speed data acquisition. This can not be easily written in
OpenCL or HLS languages.

9

The RSoC framework has a different approach. It retains the low level RTL develop-
ment, while letting user use HLS where it makes sense. With this approach, the devel-
opment for Reconfigurable System-On-Chip is simplified for both RTL designers or HLS
programmers.

Another advantage of the RSoC Framework is that, it is not tied to a single platform.
An application written with RSoC Framework can be seamlessly used on different platforms.

2.4 Overview of the RSoC Framework

APP1

Accelerators Interface

ACC3ACC2ACC1ACC0 ACC(n−1) ACCn

Peripheral0 Peripheral1 Peripheral2

co
n

fig
u

ra
tio

n

PS

PL Endpoint
PL

PS Driver

Userspace interface

APP0 APPm

Figure 2: The Reconfigurable SoC Bridge design

application using a memory mapping capabilities of the used OS (the Linux OS provides the system
call mmap that is suitable for this purpose).

As a result, the developer uses the concept of streams between the software and hardware and this
enables a faster development of a target application. At the same time, the concept does not depend
on the Xilinx Zynq but can be implemented for any similar platform.

5 CONCLUSION AND FUTURE WORK

The proposed solution provides a way to develop applications for Reconfigurable SoC devices while
taking advantage of both the software (easier and faster to develop but less efficient) and the hardware
(more complex to develop but much more efficient). It also simplifies the development of hardware
accelerators by introducing a simple interface and hiding the complexity of DMA communication.
The concept is independent on the Xilinx Zynq platform and it is expected to be ported to other
similar systems. The well-specified interfaces allow to apply the Partial Dynamic Reconfiguration of
the soft-core accelerators in the Programmable Logic.

ACKNOWLEDGEMENT

This work was supported by the grant BUT FIT-S-12-1 and Sec6net project no. VG20102015022.

REFERENCES

[1] ARM. AMBA AXI and ACE Protocol Specification, 2011. Online:
https://silver.arm.com/download/download.tm?pv=1198016.

[2] Xilinx. 7 Series FPGAs Overview, November 2012. Online: http://www.xilinx.com/
support/documentation/data_sheets/ds180_7Series_Overview.pdf.

[3] Xilinx. Zynq-7000 All Programmable SoC Overview, August 2012. Online:
http://www.xilinx.com/support/documentation/data_sheets/
ds190-Zynq-7000-Overview.pdf.

[4] Xilinx. Zynq-7000 All Programmable SoC Technical Reference Manual, November 2012.
Online: http://www.xilinx.com/support/documentation/user_guides/
ug585-Zynq-7000-TRM.pdf.

Figure 2.11: Basic design of RSoC Bridge

The framework as depicted on the Figure 2.11 gives a stream based access to acceler-
ators. Developer only needs to know a user-space interface and an accelerator interface of
the bridge.

As the original work states [21] the main goal of the RSoC Framework is to encap-
sulate the details of the target platform and provide user with a simple stream based
communication between the software and the application logic. A software application uses
the standard read/write system calls provided by an operating system. An application
logic uses simplex streams to exchange frames with software. The RSoC Framework uses
the RSoC Bridge layer which ensures that the data is transferred between an application
logic and the software.

Following text will make a brief overview of the RSoC Framework only with details
that are necessary for further sections of this work. The RSoC Framework defines following
components:

RSoC Accelerator The framework defines an accelerator as an interface.
As shown on the Figure 2.12 RSoC Accelerator utilises:

• A streaming interface (AXI Stream).

• A 32bit information vector (to get information about accelerator).

• An optional configuration interface (AXI4-Lite or AXI4-Full).

10

(A
X

I4
−

L
it

e)

d
at

a

ev
en

t
v

ec
to

r

in
fo

 v
ec

to
r

co
n

fi
g

u
ra

ti
o

n

(A
X

I
S

tr
ea

m
)

Application

specific logic

RSoC Accelerator

system
External

Figure 2.12: RSoC accelerator interface

• An optional 4bit event vector (interrupt requests from accelerator).

The user only needs to adapt his application specific unit to use this RSoC Accelerator
interface, user’s unit does not necessary have to accelerate anything. User’s unit can have
additional interfaces and can be used as an peripheral adaptor or be an interface adaptor
to a whole system that could utilise a stream based transfer between a programmable logic
and a microprocessor. In fact this system could use multiple RSoC Accelerators if needed.

RSoC Bridge The RSoC Bridge is a layer between a hard processor and the RSoC accel-
erators. The RSoC Bridge implements an interconnect between the accelerators and a hard
processor and provides data transfer engine to transfer data between software and RSoC
accelerators, it also maps the events from the RSoC Accelerators to the hard processor.

RSoC Driver The RSoC Driver provides an interface to the user-space applications.
Each RSoC Accelerator is represented by a matching character device. User transfer frames
to and from the RSoC Accelerator by standard OS calls.

2.4.1 Architecture of the RSoC Bridge

The RSoC Bridge is the essential part of the RSoC Framework and it is necessary to
understand it’s architecture. On the Figure 2.13 we can see that every RSoC Accelerator
has assigned a transfer engine. This transfer engine is currently implemented by an DMA
controller. Bridge also have to merge all links from transfer engines and interconnect them
to hard processor interface, links from hard processor have to be merged and split to each
accelerator as well. This interconnect system is currently based on the AXI4 bus, as ARM
uses this bus on their SoC microprocessor solutions.

11

T
ra

n
sf

er
 e

n
g

in
e

0

T
ra

n
sf

er
 e

n
g

in
e

1

T
ra

n
sf

er
 e

n
g

in
e

2

T
ra

n
sf

er
 e

n
g

in
e

N

R
S

o
C

 B
ri

d
g

e

Acc events

E
n

g
in

e
ev

en
ts E

v
en

t
m

ap
p

er

Slave interconnectMaster interconnect

Hard processor AXI Slave AXI Master IRQ

Accelerator 0 Accelerator 2 Accelerator NAccelerator 1

Figure 2.13: The basic RSoC Bridge architecture

DMA interface The RSoC Framework provides a common interface for the DMA con-
trollers. Every DMA controller that is going to be used with the RSoC Bridge needs to
conform to this interface. As seen on the Figure 2.14, this interface provides a master

AXI Stream

M
em

o
ry

S
&

G

C
o
n
tr

o
l

Data

dma_ctrl

Master
AXI4

Slave
AXI4−Lite

Figure 2.14: Interface for DMA controllers

memory access link M MEM, a master descriptor access link M SG and a slave control link
S AXI. These links are AXI4-Full for master links and AXI4-Lite for slave link. Interface
also provides master and slave AXI Stream links for streams.

12

Chapter 3

Characteristics of Altera and
Xilinx RSoC systems

For successful port to a new platform, it is necessary to assess differences between these
platforms. It is important to compare hard processor, peripherals and hard processor’s
interconnect to an FPGA and also design tools. This chapter therefore compares the Xilinx
and the target platform from different aspects. The comparison will be more focused on
the target platform — Altera.

Selected parameters shown in the Table 3.1 from Altera white-paper[7] presents a brief
comparison of the Xilinx and Altera SoCs. Where LE are Logical Elements and LC

Parameter Altera Xilinx
Processor ARM Cortex-A9 ARM Cortex-A9
FPGA fabric Cyclone V, Arria V Artix-7, Kintex-7
FPGA Logic Density Range 25 K to 462 K LE 28 K to 444 K LC

Table 3.1: Parameters of the Altera and Xilinx SoCs

are Logical Cells. According to the Altera comparison [10], the ratio of 1.125:1 should be
used in favour of Altera LEs when comparing device densities. However this comparison is
outdated and made by Altera, therefore it’s credibility is questionable. But still LCs and
LEs count should be fairly comparable since they measure similar elements – equivalent of
four-input LUT and a flip-flop [1] [15] and other logic like carry logic and registers.

3.1 Interfaces

Both platforms are based on ARM and share a common interface – AXI. However, since
Altera is using Avalon on their Nios II soft microprocessor platform, many IP cores for
the Altera platform remain implemented only with Avalon interfaces. Further text covers
characteristics of each interface.

3.1.1 AMBA AXI

The AMBA AXI is a set of point-to-point protocols:

• AXI3, AXI4 and AXI4-Lite - an address and burst based read/write protocol

• AXI4-Stream - an stream-based unidirectional (simplex) protocol

13

AXI

The AXI protocol [5] itself defines following independent transaction channels:

• read address

• read data

• write address

• write data

An address channels also carries control information that describes the nature of the data
to be transferred. The data is transferred using either:

• A write channel to transfer from the master to the slave. The slave uses the write
response channel to acknowledge completion to the master.

• A read channel to transfer from the slave to the master.

The AXI protocol permits that the address information is issued ahead of the actual trans-
action, supports multiple outstanding transactions and supports out-of-order completion of
the transfers. The Figure 3.1 shows how the write transaction uses the address channel to

A1 Introduction
A1.3 AXI Architecture

A1-22 Copyright © 2003, 2004, 2010, 2011 ARM. All rights reserved. ARM IHI 0022D
Non-Confidential ID102711

A1.3 AXI Architecture
The AXI protocol is burst-based and defines the following independent transaction channels:
• read address
• read data
• write address
• write data
• write response.

An address channel carries control information that describes the nature of the data to be transferred. The data is
transferred between master and slave using either:

• A write data channel to transfer data from the master to the slave. In a write transaction, the slave uses the
write response channel to signal the completion of the transfer to the master.

• A read data channel to transfer data from the slave to the master.

The AXI protocol:
• permits address information to be issued ahead of the actual data transfer
• supports multiple outstanding transactions
• supports out-of-order completion of transactions.

Figure A1-1 shows how a read transaction uses the read address and read data channels.

Figure A1-1 Channel architecture of reads

Figure A1-2 shows how a write transaction uses the write address, write data, and write response channels.

Figure A1-2 Channel architecture of writes

Master
interface

Slave
interface

Address
and control

 Read address channel

Read
data

Read
data

Read
data

Read
data

Read data channel

Master
interface

Slave
interface

Address
and control

Write address channel

Write
data

Write data channel

Write
data

Write
data

Write
data

Write
response

Write response channel

Figure 3.1: Basic architecture of the AXI write transaction [5]

initiate the transaction and the write channel to transfer the data and the response chan-
nel to acknowledge that the data has been written. The Figure 3.2 shows how the read

A1 Introduction
A1.3 AXI Architecture

A1-22 Copyright © 2003, 2004, 2010, 2011 ARM. All rights reserved. ARM IHI 0022D
Non-Confidential ID102711

A1.3 AXI Architecture
The AXI protocol is burst-based and defines the following independent transaction channels:
• read address
• read data
• write address
• write data
• write response.

An address channel carries control information that describes the nature of the data to be transferred. The data is
transferred between master and slave using either:

• A write data channel to transfer data from the master to the slave. In a write transaction, the slave uses the
write response channel to signal the completion of the transfer to the master.

• A read data channel to transfer data from the slave to the master.

The AXI protocol:
• permits address information to be issued ahead of the actual data transfer
• supports multiple outstanding transactions
• supports out-of-order completion of transactions.

Figure A1-1 shows how a read transaction uses the read address and read data channels.

Figure A1-1 Channel architecture of reads

Figure A1-2 shows how a write transaction uses the write address, write data, and write response channels.

Figure A1-2 Channel architecture of writes

Master
interface

Slave
interface

Address
and control

 Read address channel

Read
data

Read
data

Read
data

Read
data

Read data channel

Master
interface

Slave
interface

Address
and control

Write address channel

Write
data

Write data channel

Write
data

Write
data

Write
data

Write
response

Write response channel

Figure 3.2: Basic architecture of the AXI read transaction [5]

14

transaction uses the address channel to initiate the transaction and the read data chan-
nel to transfer the data. Note that response channel is not necessary, as the data itself
acknowledges the transaction completion.

The Table 3.2 sums up the important signals and their semantics for AXI4 [5]. Additional

Signal Source Semantics
AxADDR Master Read/write address. It gives the address of the first transfer in a burst.
AxLEN Master Burst length, exact number of transfers in a burst is AxLEN + 1.
AxSIZE Master Burst size. It indicates size of each transfer in the burst.
AxBURST Master Burst type.
AxVALID Master Indicates that channel is signalling a valid address and control informa-

tion.
AxREADY Slave Indicates that slave is ready to accept an address and control signals.
WDATA Master Write data.
WSTRB Master Indicates which byte lanes hold valid data. There is one bit for each

byte of data bus.
WLAST Master Indicates the last transfer in a write burst.
WVALID Master Indicates that valid write data and strobes are available.
WREADY Slave Indicates that the slave can accept the write data.
BRESP Slave Indicates the status of the write transaction.
BVALID Slave Indicates that the channel is signalling a valid write response
BREADY Master Indicates that the master can accept a write response.
RDATA Slave Read data.
RRESP Slave Indicates the status of the read transaction.
RLAST Slave Indicates the last transfer in a read burst.
RVALID Slave Indicates that the slave is signalling the required read data.
RREADY Master Indicates that the master can accept a read data and response informa-

tion.

Table 3.2: Overview of the AXI4 signals

signals not included in the overview are: clock (ACLK), reset (ARESETn), IDs (xID, AxID),
user (AxUSER, xUSER), memory type (AxCACHE), protection (AxPROT) and lock (AxLOCK).
Their semantic can be studied in the ARM documentation [5].

AXI4-Lite

AXI4-Lite is a subset of AXI4 protocol. Key features:

• All transactions are of burst length 1 (equivalent to AxLEN being always zero, AxBURST
being always zero, xLAST being always one).

• All data accesses use the full width of the data bus (AxSIZE is defined as bus width).

• Exclusive accesses are not supported (equivalent to AxLOCK value of zero).

• All accesses are non-modifiable, non-bufferable (equivalent to an AxCACHE value of
0b0000).

The signals AxLEN, AxSIZE, AxBURST, AxLOCK, AxCACHE and xLAST are not supported
by the AXI4-Lite interface.

15

AXI4-Stream

The AXI Stream is a simplex streaming protocol with a back-pressure and no acknowledge.
The following Table 3.3 sums the signals and their semantics. As specification [4] in the

Signal Source Semantics
TVALID Master (1) indicates that the master is driving valid transfer
TREADY Slave (1) indicates that slave can accept a transfer
TDATA[(8n-1):0] Master Is a primary data payload. Width is an integer number of

bytes.
TSTRB[n-1:0] Master Indicates whether associated byte is a data (1) or a position

byte (0).
TKEEP[n-1:0] Master Indicates whether associated byte is a part of the data

stream.
TLAST Master Indicates boundary of a packet.
TID[i-1:0] Master Is data stream identifier.
TDEST[d-1:0] Master Provides routing information.
TUSER[u-1:0] Master Is an user defined sideband information.

Table 3.3: Overview of the AXI4-Stream signals [4]

Section 3.1 Default value signalling states only ACLK, ARESETn and TVALID signal is
required, other signals can be assumed having a default value when not used. Therefore as
per standard this interface may not carry any payload.

3.1.2 Altera Avalon

The Avalon is a family of interfaces. Altera specifies 7 interface roles of which two are of
interest in this work:

• Avalon Memory Mapped Interface (Avalon-MM) - an address-based read/write capa-
ble of burst and pipelined transfers.

• Avalon Streaming Interface (Avalon-ST) - an stream based interface that supports
unidirectional (simplex) flow of data.

These two interfaces have rough counterparts in the AXI family of protocols.
The others: Avalon Conduit Interface, Avalon Tri-State Conduit Interface, Avalon In-

terrupt Interface, Avalon Clock Interface, Avalon Reset Interface are of no interest, since
they have no counterparts in AXI specification and are logical specification of interface for
Altera Qsys integration tool, rather than a proper protocol definition.

Avalon-MM

Avalon-MM range from simple to complex interfaces. The basic principle is that the mas-
ter initiates a transaction by asserting either of read or write signals and slave can stall
the transaction by asserting the waitrequest signal. When slave is ready the waitrequest
signal is de-asserted.

The Table 3.4 shows Avalon-MM signals and their semantics [8]:
Further text covers typical Avalon-MM interface types.

16

Signal Source Semantics
ADDRESS Master Represents a byte address, must be aligned to the data width.
BYTEENABLE Master Enables specific byte lane. Bit n indicates whether byte n is being

transferred.
WRITE Master Asserted to indicate a write transfer.
READ Master Asserted to indicate a read transfer.
WRITEDATA Master Data payload for write transfer.
READDATA Slave Data payload for read transfer.
READDATAVALID Slave Indicates that the readdata signal contains valid data. Must be as-

serted for one cycle for each read access received.
WAITREQUEST Slave Asserted by the slave when it is unable to respond to a read/write re-

quest. Forces the master to wait until the slave is ready.
BURSTCOUNT Master Indicate the number of transfers in each burst, minimal value is 1. Value

must be a power of 2.

Table 3.4: Overview of the Avalon-MM signals

Non-pipelined, non-bursting Avalon-MM interface with slave controlled waitrequest
It is a typical Avalon-MM interface that supports read and write transfers with a slave con-
trolled waitrequest signal. The Figure 3.3 shows a typical transaction, where a slave

• Transfer—A transfer is a read or write operation of a word or symbol of data. Transfers occur between
an Avalon-MM port and the interconnect. Avalon-MM transfers words ranging in size from 8–1024 bits.
Transfers take one or more clock cycles to complete.

Both masters and slaves are part of a transfer. The Avalon-MM master initiates the transfer and the
Avalon-MM slave responds to it.

• Master-slave pair—This term refers to the master port and slave port involved in a transfer. During a
transfer, the master port control and data signals pass through the interconnect fabric and interact with
the slave port.

3.5.1 Typical Read and Write Transfers
This section describes a typical Avalon-MM interface that supports read and write transfers with
slave-controlled waitrequest. The slave can stall the interconnect for as many cycles as required by asserting
the waitrequest signal. If a slave uses waitrequest for either read orwrite transfers, itmust use waitrequest
for both.

A slave typically receives address, byteenable, read or write, and writedata after the rising edge of the
clock. A slave asserts waitrequest before the rising clock edge to hold off transfers. When the slave asserts
waitrequest, the transfer is delayed. And, the address and control signals are held constant. Transfers
complete on the rising edge of the first clk after the slave port deasserts waitrequest.

There is no limit on how long a slave port can stall. Therefore, you must ensure that a slave port does not
assert waitrequest indefinitely. The following figure shows read and write transfers using waitrequest.
In this example, the master and slave both have a readdatavalid signal.

waitrequest can be decoupled from the read and write request signals. waitrequest may be
asserted during idle cycles. An Avalon-MM master may initiate a transaction when waitrequest is

Note:

asserted and wait for that signal to be deasserted. Decoupling waitrequest from read and write
requests may improve system timing. Decoupling eliminates a combinational loop including the
read, write, and waitrequest signals.

Figure 3-3: Read and Write Transfers with Waitrequest

clk

address

byteenable

read

write

waitrequest

readdata

writedata

address

byteenable

readdata

writedata

1 2 3 4 5 6

readdatavalid

Altera CorporationAvalon Memory-Mapped Interfaces

Send Feedback

3-113.5.1 Typical Read and Write Transfers

Figure 3.3: Read and write transfer with waitrequest [8]

can stall transfer by holding the waitrequest signal. The signals READDATAVALID and
BURSTCOUNT are not used in this type of interface. This interface approximately corre-
sponds to AXI4 Lite interface.

Non-pipelined, non-bursting Avalon-MM interface with Fixed Wait-States It is
a modification of the previous interface where Wait-States are generated internally by both,
the master and slave instead of using the waitrequest signal. The length of these Wait-
States are defined by writeWaitTime and readWaitTime interface properties. This
value mimics behaviour as if the waitrequest signal was asserted for n cycles. This
interface is illustrated on the Figure 3.4 on which values of writeWaitTime = 2 and
readWaitTime = 1 are used.

17

The numbers in this timing diagram, mark the following transitions:
1. address, byteenable, and read are asserted after the rising edge of clk. The slave asserts

waitrequest, stalling the transfer.
2. waitrequest is sampled. Because waitrequest is asserted, the cycle becomes a wait-state. address,

read, write, and byteenable remain constant.
3. The slave deasserts waitrequest after the rising edge of clk.
4. readdata, response and deasserted waitrequest are sampled, completing the transfer.
5. address, writedata, byteenable, and write signals are asserted after the rising edge of clk. The slave

asserts waitrequest stalling the transfer.
6. The slave deasserts waitrequest after the rising edge of clk.
7. The slave captures write data ending the transfer.

3.5.2 Read and Write Transfers with Fixed Wait-States
A slave can specify fixed wait-states using the readWaitTime and writeWaitTime properties. Using fixed
wait-states is an alternative to using waitrequest to stall a transfer. The address and control signals
(byteenable, read, and write) are held constant for the duration of the transfer. Setting readWaitTime
or writeWaitTime to <n> is equivalent to asserting waitrequest for <n> cycles per transfer.
In the following figure, the slave has a writeWaitTime = 2 and readWaitTime = 1.

Figure 3-4: Read and Write Transfer with Fixed Wait-States at the Slave Interface

clk

address

byteenable byteenable

read

write

readdata

writedata

address address

readdata

response response
writedata

4 51 2 3

The numbers in this timing diagram mark the following transitions:
1. The master asserts address and read on the rising edge of clk.
2. The next rising edge of clk marks the end of the first and only wait-state cycle. The readWaitTime is 1.
3. The slave asserts readdata and response on the rising edge of clk. The read transfer ends.
4. writedata, address, byteenable, and write signals are available to the slave.
5. The write transfer ends after 2 wait-state cycles.
Transfers with a single wait-state are commonly used for multicycle off-chip peripherals. The peripheral
captures address and control signals on the rising edge of clk. The peripheral has one full cycle to return
data.
Components with zero wait-states are allowed. However, components with zero wait-states may decrease
the achievable frequency. Zero wait-states requires the component to generate the response in the same
cycle that the request was presented.

MNL-AVABUSREF
2015.03.04 3.5.2 Read and Write Transfers with Fixed Wait-States 3-13

Avalon Memory-Mapped Interfaces Altera Corporation

Send Feedback

Figure 3.4: Read and write transfer with Fixed Wait-States at Slave interface [8]

Pipelined, bursting Avalon-MM interface The Figure 3.5 shows a typical bursting
read transaction and the Figure 3.6 shows a typical bursting write transaction. Note that
this type of interface supports bursts and multiple outstanding transactions (pipelined),
although only for read transactions, write transactions only support bursting transactions.
This type of interface capability-wise corresponds to the AXI interface. The out-of-order
completion is not supported.

In the figure above, the beginbursttransfer signal is asserted for the first clock cycle of a burst and is
deasserted on the next clock cycle. Even if the slave asserts waitrequest, the beginbursttransfer signal
is only asserted for the first clock cycle.

For information about Avalon-MM properties, refer to Table 3-2.

Related Information
Interface Properties on page 3-7

3.5.4.2 Read Bursts
Read bursts are similar to pipelined read transfers with variable latency. A read burst has distinct address
and data phases. readdatavalid indicates when the slave is presenting valid readdata. Unlike pipelined
read transfers, a single read burst address results in multiple data transfers.

These rules apply to read bursts:

• When burstcount is <n>, the slave must return <n> words of readdata to complete the burst.
• The slave presents eachword by providing readdata and asserting readdatavalid for a cycle. Deassertion

of readdatavalid delays but does not terminate the burst data phase.
• The byteenables presented with a read burst command apply to all cycles of the burst. A byteenable

value of 1 means that the least significant byte is being read across all of the read cycles.

Altera recommends that burst capable slaves not have read side effects. (This specification does not
guarantee how many bytes will be read from the slave in order to satisfy a request.)

Note:

Figure 3-8: Read Burst

The following figure illustrates a system with two bursting masters accessing a slave. Note that Master B can
drive a read request before the data has returned for Master A.

clk

address

read

beginbursttransfer

waitrequest

burstcount

readdatavalid

readdata

A0 (master A) A1 (master B)

4 2

D(A0) D(A0+1) D(A0+2) D(A0+3) D(A1) D(A1+1)

2 3 5 61 4

Altera CorporationAvalon Memory-Mapped Interfaces

Send Feedback

3-173.5.4.2 Read Bursts

Figure 3.5: Bursting read transaction [8]

3.5.4.1 Write Bursts
These rules apply when a write burst begins with burstcount greater than one:

• When a burstcount of<n> is presented at the beginning of the burst, the slavemust accept<n> successive
units of writedata to complete the burst. Arbitration between the master-slave pair is locked until the
burst completes. This lock guarantees that data arrives in order from the master port initiating the burst.

• The slavemust only capture writedatawhen write is asserted. During the burst, themaster can desassert
write indicating that writedata is invalid. Deasserting write does not terminate the burst. It delays it.
When a burst is delayed, no other masters can access the slave, reducing the transfer efficiency.

• The constantBurstBehavior property controls the behavior of the burst signals.When constantBurst-

Behavior is true for a master, it indicates that the master holds address and burstcount stable
throughout a burst. When constantBurstBehavior is false, it indicates that the master holds address
and burstcount stable only for the first transaction of a burst. When true for a slave, constantBurstBe-
havior declares that the slave expects address and burstcount to be held stable throughout a burst.
When constantBurstBehavior is false, it indicates that the slave samples address and burstcount only
on the first transaction of a burst.

• The slave can delay a transfer by asserting waitrequest forcing writedata, write, and byteenable to
be held constant.

• The functionality of the byteenable signal is the same for bursting and non-bursting slaves. For a 32-
bit master burst-writing to a 64-bit slave, starting at byte address 4, the first write transfer seen by the
slave is at its address 0, with byteenable = 8b’11110000. The byteenables can change for different
words of the burst.

• The byteenable signals do not all have to be asserted. A burst master writing partial words can use the
byteenable signal to identify the data being written.

Figure 3-7: Write Burst with constantBurstBehavior Set to False for Master and Slave

The following figure demonstrates a slave write burst of length 4. In this example, the slave port asserts
waitrequest twice delaying the burst.

clk

address

beginbursttransfer

burstcount

write

writedata

waitrequest

addr1

4

data1 data2 data3 data4

1 2 3 4 65 7

The numbers in this timing diagram, mark the following transitions:

1. The master asserts address, burstcount, write, and drives the first unit of writedata. The slave
immediately asserts waitrequest, indicating that it is not ready to proceed with the transfer.

2. waitrequest is low. The slave captures addr1, burstcount, and the first unit of writedata . On
subsequent cycles of the transfer, address and burstcount are ignored.

3. The slave port captures the second unit of data at the rising edge of clk.
4. The burst is paused while write is deasserted.
5. The slave captures the third unit of data at the rising edge of clk.
6. The slave asserts waitrequest. In response, all outputs are held constant through another clock cycle.
7. The slave captures the last unit of data on this rising edge of clk. The slave write burst ends.

Avalon Memory-Mapped InterfacesAltera Corporation

Send Feedback

3.5.4.1 Write Bursts3-16

Figure 3.6: Bursting write transaction [8]

Avalon-ST The Avalon-ST interface is a streaming interface with following features:

• Unidirectional (simplex) protocol.

18

• Multiple channel support.

• Sideband signalling of channel, error and start and end of packet.

Signal Source Semantics
CHANNEL Source (Master) The channel number for data being transferred.
DATA Source (Master) The data payload.
ERROR Source (Master) A bit mask used to mark errors affecting the data

being transferred in the current cycle.
VALID Source (Master) Qualifies all other source’s signals.
EMPTY Source (Master) Indicates the number of symbols that are empty dur-

ing cycles that contains the end of packet. Always
last symbols in DATA.

ENDOFPACKET Source (Master) Marks the end of packet.
STARTOFPACKET Source (Master) Marks the start of packet.
READY Sink (Slave) Indicates that sink can accept the data.

Table 3.5: Overview of the Avalon-ST signals

The signal CHANNEL is optional, also when no packet transfer is necessary, the signals
ENDOFPACKET, STARTOFPACKET and EMPTY could be omitted. As well as READY when no
backpressure is needed or VALID when Source implicitly provide valid data on every cycle.

3.2 Hard processor

Bus interconnect / switch

AXI HP/FPGA interface AXI Memory interface

Programmable logic (FPGA)

FPGA I/O

HP I/O

Memory controller

AXI Memory Slave

Subsystem

ARM Cortex A9 MPU

FPGA SoC

Hard Processor

HP Slave / ACP

ACP

AXI HP Master

Peripherals (GPIO, UART, I2C, SPI...)

Figure 3.7: Basic architecture common to Xilinx and Altera FPGA SoCs

19

A hard processor is a collection of ASICs that makes the CPU, peripherals and the in-
terconnect to the FPGA. The design in the FPGA is interfacing with this system, therefore
it is important to know it’s basic architecture. A hard processor is called Hard Processor
System by Altera and Processing System by Xilinx.

Both vendors based their SoCs on the ARM Cortex-A9 microprocessor system, therefore
they share a common basic architecture shown on the Figure 3.7 with differences generally
in the terminology, number of ports, memory sizes etc.

Following tables based on Altera white-paper [7] show a brief comparison of Altera [11]
and Xilinx [20] terminology and port configuration available on respective vendor’s SoCs.

Table 3.6 shows a comparison of the interconnect between the CPU and the FPGA.

Parameter Altera Xilinx
High-Bandwidth Processor/FPGA Interconnect 1x 32/64/128 bit AXI

(CPU to FPGA)
1x 32/64/128 bit AXI
(FPGA to CPU)

2x 32 bit AXI
(CPU to FPGA)
2x 32 bit AXI
(FPGA to CPU)

Low-Latency Processor/FPGA Interconnect 1x 32 bit AXI
(CPU to FPGA)

not available
(shared with high-
bandwidth)

Processor/FPGA interconnect data width (theo-
retical max. bandwidth)

32/64/128 (10.8GB/s) 32 (4.8GB/s)

Table 3.6: Processor-to-FPGA system interconnect characteristics

Following Table 3.7 compares the interconnect of the FPGA and the memory controller.

Parameter Altera Xilinx
FPGA-to-DDR Memory interconnect path 256 bit, AXI/Avalon-MM

interface
(FPGA to DRAM)

4x 64 bit AXI
(FPGA to DRAM
and on-chip
RAM)

Individual port size options 8/16/32/64/256 bit 32/64 bit
Maximum FPGA to interconnect ports 6 command/response ports

4 read ports
4 write ports

4 x64 read ports
4 x64 write ports

Maximum interconnect to processor DDR
Hard Memory Controller ports (connection
type)

6 command/response ports
4 read ports
4 write ports
(direct)

2 x64 read port
2 x64 write port
(multiplexed)

Table 3.7: Memory-to-FPGA system interconnect characteristics

Finally the Table 3.8 shows the different terminology used by Altera and Xilinx.

20

Port Altera Xilinx
High-Bandwidth Processor/FPGA Interconnect
(CPU to FPGA)
(FPGA to CPU)

HPS-to-FPGA (H2F)
FPGA-to-HPS (F2H)

General Purpose
(AXI GP)

Low-Latency Processor/FPGA Interconnect
(CPU to FPGA)

HPS-to-FPGA
Lightweight
(H2F LW)

not available

ACP FPGA-to-HPS ACP (AXI ACP)
FPGA-to-DDR Memory interconnect port FPGA-to-HPS

SDRAM
(F2H SDRAM)

High Performance
(AXI HP)

Table 3.8: Overview of interface the terminology differences of Altera and Xilinx

Central (Xilinx) or L3 (Altera) interconnect Both vendors utilises the ARM AMBA
NIC-301 in their interconnect. The design of this interconnect is critical for performance.
It is always a compromise of cost, latency and throughput. As stated in [7] Altera tries to
minimise hierarchy of this interconnect to minimise latency.

Also the Altera SoC platform has dedicated low-latency master bus which can be ben-
eficial in some applications with high bandwidth between the CPU and the FPGA fabric.

Furthermore Xilinx uses a QoS-based arbitration and Altera use a priority based (per
master) with least recently used (LRU) algorithm for masters with equal priority. Both
types of arbitration can be useful in different set of task, although arguably for embedded
applications (especially real time systems) the priority based method used by Altera can
be beneficial, because it is more deterministic than a QoS based system. However in most
applications the latency of the interconnect will probably be negligible compared to other
sources of latency.

3.3 DMA controller

To transfer the data effectively a DMA controller is often used in various applications.
The DMA controller is also a critical part of the RSoC Bridge. Traditionally it is a hardware
device which performs the data transfers as a bus master (either from peripheral to memory,
from memory to peripheral or from memory to memory). The CPU only sets the parameters
of the transfer.

Traditional approach Traditional DMA controllers are controlled directly by the CPU
transaction-by-transaction. That means that CPU must set parameters of each transac-
tion, wait for completion and read response. This type of controller can only queue one
transaction at a time. The CPU load is substantial for small transfers, degrading overall
system performance. The advantage is the simplicity of such controller and its programming
model.

Scatter-Gather DMA controller A more advanced type of a DMA controller is a
Scatter-Gather controller. This type of DMA controller does read a list of descriptors
autonomously. Each descriptor holds the information about corresponding transaction.
This leaves the CPU to just update the contents of the descriptor list. This makes the
CPU do less processing and bus communication for each transfer and in turn increasing

21

the overall system performance and performance of the controller. Such controller is also
suitable for the most of the RSoC Bridge applications. The only disadvantage is the
complexity of such DMA engine (the hardware itself and the software controller).

3.3.1 Differences between Altera S&G DMA and Xilinx AXI DMA con-
troller

The current implementation of RSoC Bridge on Xilinx uses a proprietary netlist based
Xilinx AXI DMA controller implemented in an FPGA which can not be used on the target
platform due to both licensing and incompatibility with Altera devices and design tools.
Therefore we will cover the Altera alternative and compare it to the Xilinx counterpart.

We can find similar interface roles (illustrated on Figures 3.8 and 3.9) between Xilinx
and Altera Scatter-Gather DMA — both controllers have Scatter-Gather master memory
access interface that is used by the DMA controller to access descriptors.

Second interface is either master memory access read or master memory access write (or
both in case of Xilinx AXI DMA). There are also two (or one) streaming interfaces (master
and slave).

Xilinx DMA engine

Register

access

AXI4Lite

Rd/Wr Rd/Wr

Descriptor

access

Rd Wr

Memory access

AXI4 (master)

AXI4 (master)

(slave)

Master Slave

AXI 4 Stream

Figure 3.8: Xilinx DMA controller interfaces

Rd/Wr

Descriptor
access

Avalon−MM master

Memory

 access
Avalon−MM master

Avalon−MM slave

Control

status

registers

Avalon−ST sink

Altera S&G DMA (Memory−To−Stream)

Altera S&G DMA (Stream−To−Memory)

Wr Rd/WrRd/Wr

Descriptor
access

Avalon−MM master

Memory

 access
Avalon−MM master

Rd
Avalon−MM slave

Avalon−ST source

Control

status

registers

Rd/Wr

Figure 3.9: Altera DMA controller interfaces

22

The main architectural difference between Xilinx and Altera is that Altera have separate
units for upstream (Stream-to-Memory) and downstream (Memory-to-Stream) DMA, but
Xilinx has one monolithic unit for both upstream (called S2MM by Xilinx) and downstream
(MM2S). The Altera DMA can be also configured for Memory-to-Memory operation, but
this is not interesting for the RSoC Bridge.

Xilinx S&G DMA uses AXI interfaces, which are used in the RSoC Framework inter-
nally. On a contrary, Altera S&G DMA core uses the Avalon-MM interface. The main
differences between these interfaces were described in the Section 3.1.

Apart from the interfaces and architecture the key to understand the differences of
the operation of given Scatter-Gather DMA controller is to understand its descriptor pro-
cessing. The descriptors holds the information about what should be transferred where and
how, therefore they are (apart of control registers) of most concern to the software driver.
Following paragraphs will therefore apart from architectural differences also compare the
descriptor processing of the each particular DMA controller.

Xilinx AXI DMA controller

LogiCORE IP AXI DMA v7.1 www.xilinx.com 5
PG021 April 1, 2015

Chapter 1

Overview
The AXI Direct Memory Access (AXI DMA) IP provides high-bandwidth direct memory
access between the AXI4 memory mapped and AXI4-Stream IP interfaces. Its optional
scatter gather capabilities also offload data movement tasks from the Central Processing
Unit (CPU) in processor-based systems. Initialization, status, and management registers are
accessed through an AXI4-Lite slave interface. Figure 1-1 illustrates the functional
composition of the core.

X-Ref Target - Figure 1-1

Figure 1-1: AXI DMA Block Diagram

Figure 3.10: AXI DMA Block Diagram [9]

The overview of the Xilinx AXI DMA architecture is shown on the Figure 3.10. As
stated in the AXI DMA documentation [9] the Scatter-Gather capability of this controller
is optional (but enabled in the RSoC Bridge). Primary DMA data movement is through
the AXI4 Read Master to AXI4 memory-mapped to stream (MM2S) Master, and AXI
stream to memory (S2MM) Slave to AXI4 Write Master. The MM2S and (S2MM) channels
operate independently. The Xilinx AXI DMA provides automatic burst mapping, as well
as providing the ability to queue multiple transfer requests.

From the architectural point of view the AXI DMA controller consists of Data movers
and associated control and status logic. This logic is controlled by a single scatter-gather

23

controller which fetches the descriptors and issues commands to Data movers. When a data
mover completes, the transfer the scatter-gather controller updates associated descriptor in
the memory.

Xilinx DMA controller descriptor processing As shown on the Figure 3.11 the basic
operation of Xilinx DMA is as follows [9].

Complete = 1

current descriptor pointer

tail descriptor pointer

Complete = 1

Complete = 1

Complete = 0

Complete = 0

Descriptor 0

Descriptor 1

Descriptor 2

Descriptor 3

Descriptor 4

Descriptor N Complete = 0

Figure 3.11: Xilinx DMA controller descriptor processing

Software must first set up a descriptor chain (that is often a descriptor ring) and set up
the tail descriptor pointer and current descriptor pointer (which are registers in the DMA
controller).

The DMA controller then processes every descriptor from the point of current descriptor
pointer up until the point it reaches the tail descriptor pointer, then DMA controller is idle
until software updates the tail descriptor pointer.

Software then can process every buffer associated with completed descriptors and real-
locate descriptors for the DMA controller (and update the tail descriptor pointer).

Available DMA controllers on the Altera platform

Altera provides two different S&G DMA controllers [14]. Older one the Altera S&G DMA
and the newer one Alters Modular S&G DMA available since Quartus 14.0 (was not avail-
able while designing the RSoC Bridge port to Atera and therefore it was not used in favour
of the older one). There is also a non-Scatter-Gather controller available, but it is not
interesting for the RSoC Bridge port.

24

Altera modular Scatter-Gather DMA controller Altera presents this DMA con-
troller as a fix to architectural issues in original Altera S&G DMA. The main architectural
difference is its modular nature.

It consists of a dispatcher block with optional read and write master blocks. The
dispatcher block fetches the descriptors and issues instruction to the read master and write
master blocks.

While a single dispatcher can be used for both Read and Write Master (like in case of
Xilinx controller), Altera recommends using separate dispatchers for upstream and down-
stream except when using Memory-Mapped to Memory-Mapped configuration.

The interface follows previous overview, but there is also an additional interface for
response channel (optional).

Write response

SNK SRC

SNKSRC

SNKSRC

SNK SRC

Descriptors

CSR

Response

(oprional)

S

S

M SNK

SRC

MM Write Data

MM Read Data ST Data

ST Data

H
o

st

Avalon−ST to Memory−Mapped

M
em

o
ry

−
M

ap
p

ed
 to

 M
em

o
ry

−
M

ap
p

ed

Memory−Mapped to Avalon−ST

Dispatcher

Write master

Read masterM

M

Read commandRead response

Write command

Figure 3.12: Altera Modular Scatter-Gather DMA Block Diagram [14]

With these three units Altera recommends three configurations of the Modular S&G
DMA (as illustrated on Figure 3.12):

• Avalon-ST to Memory-Mapped.

• Memory-Mapped to Avalon-ST.

• Memory-Mapped to Memory-Mapped.

Where corresponding blocks are used together to create desired functionality.
The disadvantage of using a single dispatcher is that, unlike the Xilinx AXI DMA

controller this controller has a single descriptor queue for both read and write channel. The

25

programming model could become unnecessary complex and therefore it might be more
reasonable to use two dispatchers.

Altera Scatter-Gather DMA controller Similar to the modular controller, the older
Altera S&G DMA controller consist of three functional blocks. The Descriptor Processor,
the DMA Read Block and the DMA Write Block.

The descriptor processor reads descriptors via Avalon Memory-Mapped read master
port and pushes commands into the command FIFOs of the DMA read and write blocks.
After each command is processed by the DMA read or write block the associated descriptor
is updated with the information about completed transfer.

The DMA read block reads commands from input command FIFO and issues read burst
(if bursts are enabled) on its master Avalon-MM interface and pushes the read data to its
source Avalon-ST port.

The DMA write block similarly reads commands from input command FIFO and pulls
the data from its sink Avalon-ST port and in turn issues write bursts (if bursts are enabled)
on its master Avalon-MM interface. The controller can be configured with either DMA read

ST Data

DMA Write Block

S
MM Read Data

SRC
ST Data

Descriptors
M

Control

Status

Registers

S

Rd/Wr

Descritpor Processor Block

commandstatus

MM Read Data
SRCM DMA Read Block

Figure 3.13: Altera Scatter-Gather DMA Block Diagram [14]

block, DMA write block (or both in case of memory to memory configuration) as illustrated
on the Figure 3.13.

Although these modules are very similar to the modular controller, the configuration
of these modules is fixed to following three use cases available (distributed as monolithic
units):

• Stream to memory (which is used as upstream DMA).

• Memory to stream (which is used as downstream DMA).

• Memory to memory (not used for the RSoC Bridge).

Altera S&G DMA controller descriptor processing The Altera DMA controller
descriptor processing is shown on the the Figure 3.14. The key difference between the Xilinx

26

DMA controller and Altera is that the Altera DMA controller does not use a tail descriptor
pointer. The operation of the Altera DMA controller is as follows [14].

The software must first set up a descriptor chain (it must specifically flag all used
descriptors as owned by hardware) and set up the next descriptor pointer register and start
the DMA controller.

hw owned = 0

Descriptor 0

Descriptor 1

Descriptor 2

Descriptor 3

Descriptor 4

Descriptor N

next descriptor pointer

hw owned = 1

hw owned = 1

hw owned = 1

hw owned = 0

hw owned = 0

Figure 3.14: Altera DMA controller descriptor processing

The DMA controller then processes every descriptor from the next descriptor pointer
up until the first descriptor that has owned by hardware flag set to 0. Then the DMA
controller stops.

Note that if it stops, it must be restarted to start processing again. Simply setting
owned by hardware flag on the descriptor on which the controller stopped to 1 will not
restart descriptor processing.

The software then can process every buffer associated with processed descriptors that are
no longer set as owned by hardware and can reset the flag owned by hardware to reallocate
descriptors for the DMA controller (and possibly reset the DMA controller if it has already
stopped).

3.4 Design tools

The framework is designed to be platform independent. However there are also inevitably
platform dependent parts: already mentioned DMA controller, top level design and IP
integration user interface.

Also the user of the RSoC Bridge will always have to deal with vendor’s design tools
and therefore there must be a platform dependent layer. The following text will briefly
introduce the Altera design tools and compares them to Xilinx tools.

27

3.4.1 Synthesis and implementation tools

Altera provides the Quartus II software, while Xilinx provides the newer Vivado Design
Suite and older Xilinx ISE. The Altera application note [6] shows a brief comparison of the

Page 2 Quartus II Approach to FPGA Design

AN 307: Altera Design Flow for Xilinx Users March 2013 Altera Corporation

FPGA Design Flow Using Command Line Scripting
The ability to automate the FPGA design process saves time and increases
productivity. The ISE software and the Quartus II software provide the tools
necessary to automate your FPGA design flow. Figure 1 shows the similarity between
a typical command line implementation flow using either the Xilinx ISE software or
the Altera Quartus II software.

For more information about the Quartus II command-line executable flow, refer to the
Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

For ISE software users who are familiar with the command-line implementation flow
that compiles a design and generates programming files for FPGA design files, a
similar flow exists in the Quartus II software, known as the compilation flow. The
compilation flow is the sequence and methods by which the Quartus II software
translates your design files, maps the translated design to device-specific elements,
places and routes the design in the device, and generates a programming file. These
functions are performed by the Quartus II Integrated Synthesis (QIS), Fitter,
Assembler, and TimeQuest timing analyzer. The following sections describe and
compare the two software flows using command line executables.

Figure 1. Basic Design Flow

Project Creation
Altera

Quartus II
Software

Xilinx
ISE

Software

quartus_map

quartus_fit

quartus_sta

quartus_asm

XST

NGDBuild

MAP

PAR

TRCE

BitGen

PROMGen

Synthesize and
Translate Design Files

Map Design Elements
to Device Resources

Place and Route
Design Resources

Perform Timing
Analysis

Generate
Programming File

Figure 3.15: Basic design flow

design flow shown on the Figure 3.15.
An interesting thing to note is that synthesis and mapping is a process which is done

by quartus map command (called simply Analysis & Synthesis in the Quartus GUI).

3.4.2 IP integration tools

Both vendors provide a system integration tool, that is graphical interface tool in which
user can configure IPs and put together a system from vendor’s and third-party IPs. To
provide user a consistent and familiar environment, the RSoC framework must support
these tools.

Altera provides Qsys system integration tool (part of Quartus design environment) and
Xilinx formerly provided the Embedded Development Kit, today replaced with IP integrator
(part of Vivado design environment).

The purpose of these tools is to let user to quickly create a system based on either a
hard processor (ARM) or soft core (such as Microblaze or Nios). The system is integrated
with help of a graphical interface in which user can create a system from available IP cores
simply just by clicking a mouse. This is illustrated on the Figure 3.16.

Apart from user interface differences these tools provides different APIs and supports
different interfaces.

Nevertheless Qsys supports all the necessary interfaces for RSoC Bridge (AXI, AXI4
Lite and AXI Stream).

28

Figure 3.16: Example of a system in Altera QSys

3.5 Drivers

This section will present a brief overlook of drivers (known as RSoC Driver) developed over
the course of the time when the RSoC Bridge was ported. These drivers were all originally
implemented for the Xilinx platform and then ported over to Altera.

3.5.1 Standard Linux driver

First driver ported over to Altera platform. It is a Linux based driver with standard
character device API (read() and write()) for reads and writes.

The drawback of this driver is that the data is always copied between user-space buffer
and kernel-space buffer.

Another drawback is that the low-level logic which controls the DMA controller is cou-
pled with higher-level OS specific memory handling and Linux character device implemen-
tation.

3.5.2 Zerocopy RX Linux driver

To address the copy issue of previous driver, the Zerocopy driver was introduced. Driver
was developed only for upstream direction.

29

However the the Zerocopy driver has a nonstandard API (for a character device). The
user-space application is far more complex opposing to a simple read() and write().
The application must handle the buffers associated with descriptors directly.

The advantage is that copying is in fact measured (shown later in the Section 5.3.1) to
have one of the greatest impact on performance of the data transfer.

3.5.3 Multiplatform driver

To make the RSoC Bridge available on the FreeRTOS platform a multiplatform driver was
developed. This driver also addresses the second issue of the standard driver by separat-
ing low-level driver logic from high-level OS specific logic (the zerocopy capability is also
preserved in this driver).

Since this driver is currently perspective for the future development of the RSoC Bridge
we will cover it in more detail than previous drivers and finally we will demonstrate the
port of the driver between Xilinx and Altera platform on this driver.

The driver specification [12] specifies that the communication between the high-level
layer and low-level layer is done through a ring of descriptors. A ring defines two pointers
- head and tail.

• The head pointer is always managed by the source of data (in case of RX it is low-level
layer, in case of TX it is a high-level layer).

• The tail pointer is always managed by the consumer of data (in case of RX it is
high-level layer, in case of TX it is a low-level layer).

The high-level layer is dependent on the target operating system, for example in case
of Linux it is implemented as kernel module which maps the character device functions to
the low-level API.

The logic of high-level layer expect following semantics of commit() and poll()
functions implemented in low-level logic of the driver.

RX Semantics

• rx commit(): updates hardware with pre-tail (if needed) which will allow a DMA
controller to fill the ring with maximum amount of data.

• rx poll(): moves head for the high-level if there are completed transactions

The following algorithm is executed by high-level layer:

rx_poll()
while(True):

read_data_from_ring
move_tail

rx_commit()

Listing 3.1: High-level layer RX algorithm

30

TX Semantics

• tx commit(): updates hardware with head which will start the transfer

• tx poll(): moves tail for the high-level if there are completed transactions

The following algorithm is executed by high-level layer:

tx_poll()
while(True):

write_data_to_ring
move_head

tx_commit()

Listing 3.2: High-level layer TX algorithm

31

Chapter 4

Design and implementation

In this chapter we will propose a solution and deal with the design of the actual implemen-
tation of port of the RSoC Framework to the Altera SoC platform. First we will introduce
the FPGA components used, then we will cover the integration of the framework to Altera
design tools and finally we will cover the necessary software drivers for the Altera version
of the RSoC Bridge.

4.1 Proposed solution

From the architectural and software differences of Xilinx and Altera platforms we can see
that critical part is a port of the DMA controller.

There are few different possible solutions:

• Implement platform independent S&G DMA controller based on AXI.

• Modify third party platform independent S&G DMA controller to use AXI.

• Modify the Altera S&G DMA controller to use AXI interface.

• Add AXI - Avalon adaptors to the Altera S&G DMA controller.

• Modify RSoC Bridge to use Avalon instead of AXI.

From the future-wise point of view it would be beneficial to implement an own platform
independent S&G DMA or a use third-party platform independent S&G DMA controller.
This would allow port to yet another platform to be independent on vendor’s DMA con-
troller.

But implementing a custom S&G DMA controller would be time consuming and error
prone and no easily adaptable to AXI platform independent third-party S&G DMA is
available.

Modifying the RSoC Bridge to use Avalon instead of AXI would bring incompatibility
between the RSoC Bridge on Xilinx and Altera platforms and that is undesirable.

And since modification of the Altera S&G DMA is prohibited by the license and Altera
is constantly updating their IPs, it has been decided that the best solution from practical
point of view is to create AXI - Avalon adaptors and use the Altera S&G DMA controller.

The port can be therefore basically divided into these four steps:

1. Design and develop AXI — Avalon adaptors. Integrate the Altera S&G DMA with
the RSoC Framework DMA entities using the developed adapters.

32

2. Create a platform dependent integration tool scripts and a top level design.

3. Modify RSoC Driver to work with the Altera S&G DMA controller.

4. Test function and measure the performance of the RSoC Framework on the Altera
Cyclone V SoC platform.

4.2 Components for integration of the Altera S&G DMA to
the RSoC Bridge

The following set of components integrates the Altera S&G DMA to the RSoC Bridge.
These components are used in the RSoC DMA wrapper component for the Altera S&G
DMA with the interface specified by the RSoC Bridge.

4.2.1 RSoC DMA wrapper for the Altera S&G DMA

The Altera S&G DMA is integrated to the RSoC Framework utilising a wrapper com-
ponent. The architecture of the wrapper for Altera S&G DMA to use with the RSoC
Framework interface can be seen on the Figure 4.1. As it has been covered in the Section

Stream slicer

AXI4−StreamS M

to Avalon−ST
AXI4−Stream

Avalon−ST to

AXI4−Stream

u
p

st
re

am

AXI 2−to−1
(merger)

M_MEM M_SG S_AV

AXI4−Full AXI4−Lite

d
o

w
n

st
re

am

Avalon−MM

to AXI4−Full

Avalon−MM

to AXI4−Full

to AXI4−Full

Avalon−MM
Soft reset ctrl

AXI−Lite

to Avalon

A
lt

er
a

S
&

G
 D

M
A

max beats

Figure 4.1: Architecture of the dma ctrl altera

3.3 the architecture allows to enable upstream or downstream only or both. Therefore

33

the dma ctrl altera component consists of two Altera S&G DMA controllers, one for
upstream and one for downstream. These controllers has three interfaces:

• Memory access Avalon-MM master.

• Descriptor (S&G) access Avalon-MM master.

• Control Status Avalon-MM (non-bursting) slave.

These are connected to respective AXI Slaves: Read-write access to descriptors is connected
through an Avalon-MM to AXI4-Full adaptor and then through an AXI 2-to-1 (merger)
to the M SG AXI4-Full slave interface. Upstream write only and downstream read only
memory access is connected through a common Avalon-MM to AXI4-Full adaptor.

Since user can enable only upstream or downstream for their application, then only one
of the Altera S&G DMA controllers is used. Therefore only one Avalon-MM to AXI4-Full
adaptor is connected to the M SG AXI4-Full slave interface (the AXI 2-to-1 (merger) is
not used).

Finally the AXI Stream slave interface is converted to the Avalon-ST master interface
for the upstream DMA controller. Similarly the AXI Stream master interface is converted
to the Avalon-ST slave interface for the downstream DMA controller.

The soft reset controller is used to reset the axis sof unit inside the stream adaptors.
This is necessary to synchronise the axis sof unit when DMA controller is software reset
(the DMA controller would not consume stream when no SOF signal is generated).

End of packet issue During the development of the driver there was an issue with
the Altera S&G DMA controller. The controller does not stop on end of packet signal
when descriptor is configured with predefined bytes to transfer. The new Altera modular
S&G DMA controller (as described in the Section 3.3.1) does not have this issue, but it
was not available when the initial design consideration have been made. This has direct
consequence on the architecture of the dma ctrl altera by adding a Stream slicer to
upstream as shown on the Figure 4.1.

The end of packet signal is used by the controller only when a descriptor is configured
to infinite bytes to transfer (when bytes to transfer is set to 0). This is not a problem in
an application where there is known maximal length of the frame such as the ethernet. In
case of the RSoC Bridge this does pose a problem since we can not assume maximal length
of frame.

To solve this issue an end of packet signal must be issued before a given number of
words is transferred. This is carried out by the axis slicer component where the driver
can set the number of words to transfer.

In the current implementation, this component utilises a simple counter that will always
issue end of packet when a given length of words is transferred. However this can lead to
suboptimal frame sizes.

Another possible solution is to merge all frames except of the last frame and slice them
to optimal frame size. This implementation would be substantially more complex (and
would increase the logic utilisation), since words can be unaligned and the unit can not
know when the last frame occurs (some timeout logic would have to be present).

34

4.2.2 AXI — Avalon adaptors

As described in the previous section, to adapt the Altera S&G DMA controller to the RSoC
Bridge we need to adapt Altera specific interfaces to the AXI counterparts. The following
sections describes each adaptor component needed in the wrapper.

Avalon-MM (pipelined, bursting) to AXI4-Full

The Avalon-MM (pipelined, bursting) to AXI4-Full converts the master Avalon-MM in-
terface (with burst capability) to the AXI4-Full interface. This interface is utilised by the
DMA controller for memory access and therefore maximising throughput is the key in this
component.

S_AV

Avalon−AXI Read Avalon−AXI Write

S
_

A
V

_
R

Avalon−AXI

M
_

A
X

I_
A

R

M
_

A
X

I_
R

M
_

A
X

I_
A

W

M
_

A
X

I_
W

S
_

A
V

_
W

AXI4−Full Master M_AXI

(pipelined, bursting)

Avalon−MM Slave

Figure 4.2: Avalon-MM to AXI adaptor

The Figure 4.2 shows the basic architecture of the Avalon-MM to AXI4-Full adaptor.
This adaptor consist of read and write channel adaptor (Avalon-AXI Read and Avalon-AXI
Write).

The read channel shown on the Figure 4.3 buffers outstanding read requests as the
ARFSM controls the FIFO storing Avalon-MM read requests (the read request stored in
the FIFO consists of the burst length and read address). While the RFSM executes these
buffered transactions on AXI R channel.

The Figure 4.4 and the Figure 4.5 shows the state transitions of the respective state
machines.

35

RFSM

FIFO
Burstcnt

Addr

ARFSM

we full

Read

Waitreq

re empty

R
ea

d
d

at
a

M_AXI_AR M_AXI_R

RVALID

re
ad

_
en

Readdatavalid

S_AV

len

addr

A
v

al
o

n
−

A
X

I
R

ea
d

Figure 4.3: Avalon-AXI Read

s_idle
WAITREQ = ’1’, FIFO_WE = ’0’

s_param_read
WAITREQ = ’1’, FIFO_WE = ’1’

AV_READ = ’1’

s_done
WAITREQ = ’0’, FIFO_WE = ’0’

Figure 4.4: State machine for buffering Avalon read transactions (ARFSM)

36

s_idle
READ_EN = ’0’, AXI_ARVALID = ’0’, FIFO_READ = ’0’

s_read_fifo
READ_EN = ’0’, AXI_ARVALID = ’0’, FIFO_READ = ’1’

FIFO_EMPTY = ’0’

s_init_read
READ_EN = ’0’, AXI_ARVALID = ’1’, FIFO_READ = ’0’

s_read_ready
READ_EN = ’1’, AXI_ARVALID = ’0’, FIFO_READ = ’0’

AXI_ARREADY = ’1’

s_read
READ_EN = ’1’, AXI_ARVALID = ’0’, FIFO_READ = ’0’

AXI_RVALID = ’1’

(AXI_LAST = ’1’ and AXI_RVALID = ’1’) or ERR = ’1’

Figure 4.5: State machine acting as AXI transactor (RFSM)

37

w
d

at
a,

b
y

te
en

ab
le

WFSM

L
as

t
g

en

addr burstcnt

lenaddr p
ar

am
_

w
e

last
M_AXI_W

Write
counter

S_AV

A
v

al
o

n
−

A
X

I
W

ri
te

M_AXI_AW

Figure 4.6: Avalon-AXI Write

s_idle
param_we = ’1’, AXI_AWVALID = ’0’, write_en = ’0’

s_init_write
param_we = ’0’, AXI_AWVALID = ’1’, write_en = ’0’

AV_WRITE = ’1’

s_write_valid
param_we = ’0’, AXI_AWVALID = ’0’, write_en = ’1’

AXI_AWREADY = ’1’

AXI_WREADY = ’1’ and AXI_LAST = ’1’

s_write
param_we = ’0’, AXI_AWVALID = ’0’, write_en = ’1’

AXI_WREADY = ’1’ and AXI_LAST = ’0’

AXI_LAST = ’1’ or ERR = ’1’

Figure 4.7: State machine for translating Avalon write transaction to AXI write transac-
tions (WFSM)

The write channel is very similar, but significantly simpler as can be seen on the Figure
4.6, since Avalon-MM does not support outstanding transactions for write channel.

No FIFO is needed - a register is used. Only one FSM is used (WFSM shown on
the Figure 4.7) for the write channel adaptor. The write counter is used to determine when
to generate WLAST signal (which is not used on the Avalon-MM interface and must be
determined from the burst length).

AXI4-Lite to Avalon-MM (non-pipelined, non-bursting)

This unit converts AXI4-Lite to Avalon-MM with a chipselect vector, so that multiple
Avalon slaves can be accessed from single adaptor. The address space of Avalon slaves can

38

Address select

 decoder
Addrspace

 rebase
Address

AXI4−Lite

Chipselect Address

Address

W
V

A
L

ID
/R

R
E

A
D

Y
 &

 W
D

A
T

A
 /

R
D

A
T

A

AXI4−Lite to Avalon

Avalon

AXI Lite
READ

AXI Lite
WRITE

Waitrequest

generator

S_AXI_(A)R S_AXI_(A)W

req req

Arbiter

Wait

req
ack

ackack

Figure 4.8: AXI4Lite to Avalon-MM

be user defined. The adaptor shown on the Figure 4.8 consist of AXI Lite Write and AXI
Lite Read endpoints. These units solves AXI transaction handling.

Arbiter selects which of the two channel will be translated to Avalon (it only supports
either write or read at the single moment), address selects write/read address according
to result of arbitration (basic Avalon interface shares the address and byteenable signals
for read and write). Decoder selects device by its address and address rebase decrements
device address prefix - so that target device gets addresses that starts from address 0.

The Wait generator is used to generate waitrequest when fixed Wait-States are enabled.
When they are disabled, this component is bypassed (and not generated) and waitrequest
input is used directly.

AXI Lite READ The AXI Lite READ endpoint provides a simple register access inter-
face. As shown on the Figure 4.9 this component consists of a FSM and data-path.

The semantics of provided signals is as follows. When the read transaction occurs on
the AXI AR channel the FSM asserts READ REQ which indicates request for read (at
the same time READ ADDR is set to latched AXI ARADDR). The connected component
then should provide the data on READ DATA signal and acknowledge read by asserting
READ ACK. The FSM then sends data and response through AXI R channel.

39

S_AXI(AXILite slave)

ar
re

ad
y

ar
ad

d
r

ar
v

al
id

rd
at

a

rr
es

p

rv
al

id

rr
ea

d
y

FSM

r_
ad

d
r

r_
d

at
a

r_
re

q

r_
er

r

r_
ac

k

Figure 4.9: AXI Lite READ

AXI Lite WRITE The AXI Lite WRITE endpoint provides a similar interface as READ
counterpart. As show on the Figure 4.10 the FSM and data-path is also present here.

The semantics is also similar. When the write transaction occurs on the AXI AW
channel the FSM asserts WRITE REQ (with address). The FSM latches WDATA to the
WRITE DATA (the strobe - byteenable is also latched) and waits until the connected com-
ponent acknowledges the write by asserting WRITE ACK. The FSM then sends respond
on AXI B channel.

w
_
b
e

aw
ad

d
r

aw
v
al

id

aw
re

ad
y

w
d
at

a

w
v
al

id

w
re

ad
y

b
re

sp

FSM

b
re

ad
y

b
w

al
id

S_AXI_(A)W

w
st

rb

w
_
ad

d
r

w
_
d
at

a

w
_
re

q

w
_
er

r

w
_
ac

k

Figure 4.10: AXI Lite WRITE

AXI4-Stream to Avalon-ST and Avalon-ST to AXI4-Stream

AXI4-Stream and Avalon-ST are almost a matching interface (with different naming of
signals). Except key difference on keep and empty signals where:

40

• AXI4-Stream Keep: Indicates whether associated byte is a part of the data stream.

• Avalon-ST Empty: Indicates the number of symbols that are empty during cycles
that contain the end of a packet.

The empty keep and keep empty components of respective adaptors does this conversion.
The startofpacket signal is generated by axis sof component when converting from AXI4-
Stream to Avalon-ST. Other signals maps directly according to the Table 4.1. The internal
structure of the adaptors is shown on Figures 4.11 and 4.12.

AXI-Stream Avalon-ST
TID CHANNEL
TDEST no connect
TDATA DATA
TUSER ERROR
TLAST ENDOFPACKET
TREADY READY
TVALID VALID
no connect STARTOFPACKET

Table 4.1: Avalon-ST and AXI4 Stream assigned signal

ch
an

n
el

tl
as

t

tr
ea

d
y

tv
al

id

td
at

a

tk
ee

p

tu
se

r

td
es

t

axis_reg

S_AXI

ti
d

k
ee

p
_

em
p

ty

SRC_AV

ax
is

_
so

f
st

ar
to

fp
ac

k
et

en
d

o
fp

ac
k

et

v
al

id
t

d
at

a

re
ad

y

em
p

ty

er
ro

r

Figure 4.11: AXI4-Stream to Avalon-ST

0

tl
as

t

tr
ea

d
y

tv
al

id

td
at

a

tk
ee

p

tu
se

r

td
es

t

axis_reg

ti
d

st
ar

to
fp

ac
k

et

en
d

o
fp

ac
k

et

v
al

id
t

d
at

a

re
ad

y

em
p

ty

er
ro

r

ch
an

n
el

SNK_AV

M_AXI

em
p

ty
_

k
ee

p

Figure 4.12: Avalon-ST to AXI4-Stream

empty keep component The empty keep component is implemented with offset keep
where offset = length(keep) − 1 − empty. The algorithm of offset keep conversion is
shown on the Listing 4.1.

def offset_keep(offset, keep_width):
keep[0:keep_width]
for i in range(len(keep)):

if i <= offset:
keep[i] = 1

41

return keep

Listing 4.1: offset keep algorithm

keep empty component The empty keep component is implemented with keep offset
where empty = length(keep) − 1 − offset. The algorithm of keep offset conversion is
shown on the Listing 4.2.

def keep_offset(keep):
for i in range(len(keep)):

if keep == offset_keep(i, len(keep)):
offset = i
break

return offset

Listing 4.2: keep offset algorithm

4.3 Integration with Altera tools

To use the RSoC Framework practically on the Altera SoC platform, the RSoC Framework
must be integrated with Altera design tools. This ranges from synthesis support (e.g.
rewriting Xilinx specific parts of the HDL for Altera, creating a top-level design) to support
of graphical system integration tools (Qsys in case of Altera).

And finally, also the IP core distribution must be solved since the RSoC Framework is
proprietary system and it is not desirable to distribute it in the source code form. This also
allows distribution of trial versions and other limitations of the usage.

4.3.1 Altera Quartus synthesis support

Several modifications had to be performed to support synthesis of the RSoC Framework
under the Altera Quartus. Among them the most significant modifications were creating a
string based configuration system and creating a wrapper design for the Altera Quartus.

String based configuration system The RSoC Framework has a synthesis time con-
figuration system based on configuration file. This system simplifies the configuration of
the RSoC Bridge by reducing the number of used generic VHDL parameters and reading
the necessary parameters from configuration file instead.

However the Altera Quartus synthesiser does not support reading files in VHDL during
the synthesis. This breaks the RSoC Bridge synthesis. To overcome this issue and still have
the ability to use single configuration file a String based configuration system was created.

This system reads a single string generic instead of a file (it is actually using the VHDL
generic used originally for the configuration file name). To integrate this system a wrapper
design was written in Verilog so that this constant is included as a Verilog header file
which acts as original configuration file still retaining the simplicity of original file based
configuration system. The only difference is that the configuration file is not a plain text
file, but it has definition of a Verilog macro (which contains the configuration as single
string) instead.

42

[general]
C_FAMILY = Zynq
[bridge-sbus]
master.1.protocol = AXI4
master.1.baseaddr = 0
master.0.id_width = 12
master.0.highaddr = 0
.
.
.

Listing 4.3: Xilinx configuration file ex-
ample

‘ifndef _altera_base_include_
‘define _altera_base_include_
‘define CONSTANT_BASE ”\
[general];\
C_FAMILY = Cyclone V;\
[bridge-sbus];\
master.1.protocol = AXI4;\
master.1.baseaddr = 0;\
master.0.id_width = 12;\
master.0.highaddr = 0;\
.
.
.
‘endif

Listing 4.4: Altera configuration file ex-
ample

On the listings 4.3 and 4.4 we can see that the configuration for Altera can be easily
generated from the original Xilinx by adding a constant Verilog header and line separators
(since it is a single string in the result, we need the original end of line information for
parsing the configuration).

Top-level design The RSoC Bridge itself is generic to configuration of the buses available
on the target platform. This means that the RSoC Bridge has only generic ABUS, MBUS,
SBUS and interrupt signal vectors. The wrapper design must do the mapping of the generic
vectors to the concrete interfaces and it must make sure that for the set configuration the
connection to these generic interfaces matches the configuration of the RSoC Bridge. This
wrapper (shown on the Figure 4.13) is similar to the original Xilinx implementation, but
the interface naming is according to Altera.

IRQ0, IRQ1...

SBus MBus

ABus ALinks

socfpga adapter

Altera HPS

acc0 acc1 accN

RSoC Bridge generic event mapper

signle vector

H2F H2F LW F2H, F2H SDRAM0...

Figure 4.13: Top-level design overview

In addition a Verilog wrapper was created to support the String based configuration

43

system and simplify the mapping of interrupts.

4.3.2 Altera Qsys system integration tool support

The importance of the integration with the Altera Qsys lies in the fact, that this part of
the RSoC Bridge is a user interface visible to the end user of the RSoC Bridge. The key
is to make the usage of the RSoC Bridge as convenient as possible while maintaining the
ability to configure the aspects of the RSoC Bridge system.

The original Xilinx implementation of the user interface for the Qsys counterpart (Xilinx
EDK) let the user to configure every aspect of the RSoC Bridge. This lead to an arguably
complex configuration and convoluted user interface.

Figure 4.14: Simple configuration of the RSoC Bridge in Qsys

When developing the Altera version the configuration were automated by merging var-
ious aspects of the RSoC Bridge into a single drop down menu. And also configuration
presets (a quick configuration) were introduced, this allows to create configuration presets
stored in files and let user chose from these preset to have quick access to commonly used
configurations. This is shown on the Figure 4.14.

These presets also help with the IP core distribution, especially when it is done in the
netlist form, because it creates a standard set of configurations.

4.3.3 IP core distribution

An unavoidable part of the Altera port of the RSoC Bridge is its distribution. To protect
the intellectual property it is desirable to not distribute the source codes of the RSoC

44

Bridge.
To solve this task on the Xilinx platform, the distribution is done through synthesised

netlists in the EDIF format. This solution only protect source codes, it cannot prevent
unauthorised redistribution of the IP itself.

However on the Altera platform there is no option to use synthesised netlists, since the
Altera Quartus can not generate netlists anymore. For the Altera platform following two
possible solutions exists of each has its own advantages and disadvantages.

Design partitioning

The primary role of the design partitioning is to separate the design into functional blocks.
Partitioning is used to not only logically separate modules, but often to also separate them
physically on the die. This is used for better team cooperation and also to help synthesis
tools.

This is done especially in large (FPGA or ASIC) designs to have faster synthesis and
easier routing of the design by allowing the synthesis to work only on modules being modi-
fied, while others are not re-synthesised. This allows to have pre-synthesised modules which
can be used for the IP core distribution.

Main disadvantage of this approach is that Design partitioning is not a part of free
license of the Altera Quartus. That would force any user of the IP distributed as a design
partition to obtain a full license of the Altera Quartus.

Another disadvantage is that it pose an additional effort for the user to set up the design
partition. Also since this design partition is pre-synthesised, for every configuration of the
IP core there would have to be a matching pre-synthesised design partition file (but this
also applies to the netlist distribution).

The advantage of this approach is obviously the fact, that the design is already synthe-
sised, that means the synthesis is fairly faster than with source codes, especially since the
RSoC Bridge is highly generic.

Altera design files encryption

A complete different approach is to encrypt the source HDL design files. This is supported
by the Altera AMPCRYPT tool which is distributed to Altera partners. This tools al-
lows to encrypt source files and distribute this encrypted files with a license with different
permissions (e.g. license can allow only simulation).

The main advantage of this approach is that the IP core is in the source form, so
it is configurable. This allows to distribute only one IP core and let user configure it.
Disadvantage of this approach is that AMPCRYPT is available only upon request to Altera
partners.

Fixed configurations It is not always desirable to allow user to configure the IP. To
limit the set of available configurations, a fixed string based configuration were introduced.
This allows to inject only a set of configurations and encrypt them with the sources of the
design. Then the user can select configuration only from the limited list of configurations
(but still use the same design files).

45

4.4 Drivers

To complete the port of the RSoC Bridge it was necessary to modify drivers for the Al-
tera S&G DMA. The key differences between Altera and Xilinx DMA controllers were
overviewed in the section 3.3.

The implementation of the Altera drivers follows the Xilinx implementation when re-
garding memory management and cache coherency and device discovery. The main differ-
ence is the management of the hardware and descriptor processing.

4.4.1 Descriptor processing differences between Altera and Xilinx drivers

The descriptor processing was described in the section 3.3 from hardware point of view.
Now we will describe differences in the descriptor processing from the software point of view
- while we will focus only on implementations of the low-level parts of the multiplatform
driver as described in the Section 4.4. This is done for clarity, since the multiplatform driver
has a relatively simple low-level interface.

As you can see in the Table 4.2 there are few differences in fields of the descriptors the
that needs to be addressed when porting a driver logic from Xilinx to Altera. The most
significant one is that Altera does not stop processing on the end of packet when the bytes
to transfer field is set.

The solution to this issue was described in the Section 4.2.1. From the software point
of view it means that upstream part of the driver has to set word count to the stream slicer
instead of bytes to transfer field. This also means that driver can not obtain the original
frame boundaries.

Semantics Altera Xilinx
Address of read buffer read address phy
Address of write buffer write address phy
Address of next descriptor next descriptor

pointer
next

Number of bytes to transfer bytes to transfer control | buffer
length

Length of read burst read burst
Length of write burst write burst
Actual bytes transferred bytes transferred status | transferred

bytes
Owned by hw/complete control | owned by

hw
status | Cmplt

Generate EOP/EOF control | generate
eop

control | TXEOF

Generate SOP/EOF control | write
fixed

control | TXSOF

Contains start of frame status | RXSOF
Contains end of frame status | RXEOF

Table 4.2: Table of semantic differences between descriptors on Altera and Xilinx DMA

Other fields have similar semantics, but their naming is different or values are inverted.
One significant thing to note is the relation of the complete flag in Xilinx and owned by

46

hardware flag in Altera. The owned by hardware flag of Altera can mark complete descriptors
in a combination with bytes transferred.

The other use of the owned by hardware flag is for the DMA controller to know when
to stop processing (there are no free buffers left). This semantics is carried out by the
tail descriptor pointer in the Xilinx DMA controller instead (which is not field of the
descriptor but rather field in control registers of the DMA controller). This actually makes
the descriptor processing simpler on the Altera platform, since the driver does not need
to update the tail descriptor pointer. Only when the Altera DMA controller stops on the
descriptor that has owned by hardware flag set to 0 it must set next descriptor to process
and start the DMA controller again.

These differences are best illustrated on the following pseudocode examples of commit
and poll implemented for the low-level part of the multiplatform driver.

def commit_rx():
pretail_desc = get_ring_pretail() # descriptor just before tail
controller.rx_tail = pretail_desc
return 0

Listing 4.5: Xilinx commit rx()

def commit_rx():
if dma_is_busy():

return 0
controller_rx.stop()
controller_rx.next_descriptor = get_ring_head()
controller_rx.start()
return 0

Listing 4.6: Altera commit rx()

Note that Altera RX commit does not update anything in the DMA controller when
the controller is running as opposed to Xilinx RX commit.

The situation is similar in case of TX commit, while Xilinx one (shown on Listing 4.7)
actually sets the Xilinx DMA controller tail to software pre-head this is not done in the
Altera port, only when the controller stops the next descriptor is set to ring tail and the
controller is reset. (Listing 4.8).

def commit_tx():
prehead_desc = get_ring_prehead() # descriptor just before head
controller.tx_tail = prehead_desc
return 0

Listing 4.7: Xilinx commit tx()

def commit_rx():
if dma_is_busy():

return 0
controller_tx.stop()
controller_rx.next_descriptor = get_ring_tail()
controller_tx.start()
return 0

Listing 4.8: Altera commit tx()

47

Chapter 5

Testing and measurements

This chapter presents the methods to test and measure the performance of the RSoC Bridge
on the Altera platform. Simulation and testing of component function is described as well.
There is also a brief overlook of the used hardware platform.

5.1 Hardware platform

The primary development platforms were EBV Socrates and Altera Cyclone V SOC De-
velopment Board. These platforms will be briefly introduced in following paragraphs.

EBV Socrates EBV Elektronik advertises SoCrates as a low cost Cyclone V SoC starter
kit [13].

Figure 5.1: EBV Socrates Starter Kit [13]

It is loaded with the following key components:

• Altera Cyclone V SoC device 5CSEBA6U23C7N (110K LEs) — the used kit had
engineering sample device populated.

• 128*32Mbit (512MB) DDR3 memory.

• 1Gbit Ethernet, CAN, USB 2.0 OTG.

48

• Micro-SD Card Slot.

• Embedded USB Blaster II (implemented using an Altera MAX CPLD).

Altera Cyclone V SOC Development Board The Altera board is a more compre-
hensive development kit [3].

Figure 5.2: Altera Cyclone V SOC Development Board [3]

It features following components:

• Altera Cyclone V SX SoC device 5CSXFC6D6F31C8NES (110K LEs), this device
features high speed transcievers (PCIe, SATA..).

• Altera MAX V CPLD device 5M2210ZF256C4N (system controller).

• MAX II CPLD device EPM570GF100 (embedded USB-Blaster II).

• 1GB DDR3 SDRAM (32 bit) for FPGA.

• 1GB DDR3 SDRAM (32 bit) for HPS (ECC).

• 1Gbit Ethernet, CAN, USB 2.0 OTG.

• 2X 10/100 Ethernet PHYs (EtherCAT).

• PCIe 1 x4 slot.

• Universal high-speed mezzanine card slot (HSMC).

• Micro-SD Card Slot.

• SMA input for HPS clock.

• Linear Technology System monitoring circuit (voltage, current, power).

49

5.2 Simulation and unit tests

To test developed components unit tests were used. The drawback of the unit test in this
case is that it is hard to simulate the behaviour of some components.

Since some of the components used are proprietary, it is not always possible to determine
their behaviour in some situations. Therefore testing such a component is not an easy task.
An example is the Altera S&G DMA controller. The behaviour of its control and status
register interface was not clear and although the unit tests for this interface passed (written
according to the Altera specifications) the system was not working correctly.

To test these components properly, a more complex integration test was used which
included simulation of the Altera DMA engine.

Another example of such peculiar component is the Hard Processor System itself. The
behaviour of this component is determined by the software running in the ARM processor,
therefore it is really difficult to simulate it on the RTL level.

The used approach was therefore to use simple unit tests and some integration tests
and then test the system in the hardware. When some issue has been found the unit test
or integration was extended to test for such issue. The issue was then solved using this
extended test. This is a lengthy process since every change in the hardware design means
that whole system must be synthesised.

The advantage of these unit tests is that there is simple check for regressions when
there are any modifications to the code. These test can also run automatically (for example
scheduled to run over a night) to test if any changes have not broken some functionality.
And when they incorporates tests for issues that had been found during tests in hardware,
it makes sure that these issues will not occur again.

5.3 Performance testing and measurements

The performance of the RSoC Bridge on the new platform must be measured to make sure
that no unnecessary and additional bottlenecks were introduced in the process of porting
and also to test the correct operation of the implemented components and drivers.

This measurement is also important to get the data to know which use cases can be
solved by the RSoC Bridge on the particular platform. The same goes for the estimations
of the resource utilisation.

5.3.1 Throughput measurements

All measurements were performed on 50 MHz design. The kernel buffers were set in range of
4 kB to 32 kB, the userspace buffer size followed the size of kernel buffer in all measurements.

Zerocopy RX driver

50

Measurement explicit sync of caches dma alloc coherent
4 kB
Read and ack descriptors 222 MB/s 222 MB/s
Do vmsplice to /dev/null 180 MB/s 222 MB/s
Access every data word 130 MB/s 30 MB/s
8 kB
Read and ack descriptors 224 MB/s 224 MB/s
Do vmsplice to /dev/null 172 MB/s 222 MB/s
Access every data word 134 MB/s 30 MB/s
16 kB
Read and ack descriptors 225 MB/s 225 MB/s
Do vmsplice to /dev/null 168 MB/s 225 MB/s
Access every data word 137 MB/s 30 MB/s
32 kB
Read and ack descriptors 225 MB/s 226 MB/s
Do vmsplice to /dev/null 166 MB/s 226 MB/s
Access every data word 140 MB/s 30 /MB/s

Table 5.1: Performance of the Zerocopy driver on Altera

Measurement explicit sync of caches dma alloc coherent
4 kB
Read and ack descriptors 210 MB/s 276 MB/s
Do vmsplice to /dev/null 145 MB/s 276 MB/s
Access every data word 119 MB/s 30 MB/s
8 kB
Read and ack descriptors 229 MB/s 276 MB/s
Do vmsplice to /dev/null 146 MB/s 276 MB/s
Access every data word 125 MB/s 30 MB/s
16 kB
Read and ack descriptors 240 MB/s 348 MB/s
Do vmsplice to /dev/null 170 MB/s 348 MB/s
Access every data word 130 MB/s 30 MB/s
32 kB
Read and ack descriptors 246 MB/s 364 MB/s
Do vmsplice to /dev/null 176 MB/s 364 MB/s
Access every data word 132 MB/s 30 /MB/s

Table 5.2: Performance of the Zerocopy driver on Xilinx

51

Multiplatform driver

The performance of the multiplatform driver was tested with the standard blocking read
and write (which in turn use copies between the userspace and the kernel space). The
reading and writing processes were not locked on the CPU core.

Measurements were done on the Linux 3.15.0 in the case of Altera and Linux 3.17.0 in
the case of Xilinx.

The actual measured performance can be seen on the Table 5.3 and 5.4.

Kernel
buffer
size

RX TX Loopback

4k 149 MB/s 138 MB/s 34 MB/s
8k 165 MB/s 120 MB/s 102 MB/s
16k 174 MB/s 120 MB/s 114 MB/s
32k 177 MB/s 147 MB/s 109 MB/s

Table 5.3: Performance of the multiplatform driver on Altera

Kernel
buffer
size

RX TX Loopback

4k 146 MB/s 173 MB/s 32 MB/s

Table 5.4: Performance of the multiplatform driver on Xilinx

Perf analysis of the multiplatform driver The perf analysis of the multiplatform
driver shows that in fact the copy between the userspace and kernel space is one of the
main bottlenecks in the current driver implementation.

32.80% [kernel] [k] v7_dma_inv_range
23.22% [kernel] [k] __copy_to_user_std
22.03% [kernel] [k] _raw_spin_unlock_irqrestore
2.89% [rsocdrv] [k] hwring_ctrl_read
1.95% [rsocdrv] [k] Util_ioread32
1.54% [rsocdrv] [k] rx_poll
1.51% [kernel] [k] __apbt_read_clocksource
1.46% [kernel] [k] vector_swi
0.66% [kernel] [k] ktime_get_ts
0.59% [kernel] [k] fsnotify
0.56% [kernel] [k] arm_dma_sync_single_for_cpu
0.52% [kernel] [k] vfs_read
0.44% [kernel] [k] __fget_light
0.42% libc-2.18.so [.] 0x000e10f8
0.41% [kernel] [k] ret_fast_syscall
0.41% [kernel] [k] sys_clock_gettime
0.40% [rsocdrv] [k] Util_iowrite32
0.38% [kernel] [k] sys_write

52

0.35% [kernel] [k] __fdget_pos
0.34% [kernel] [k] finish_task_switch

Listing 5.1: Perf analysis of the multiplatform driver

5.3.2 Resource utilisation

The following tables shows a brief comparison of the resource utilisation on the Altera and
Xilinx platform. The Xilinx part is a 85K Logic Cells device and Altera part is a 110K
Logic Elements, which should be comparable numbers according to Altera claims (discussed
in the Chapter 3).

Site Type Used Available Util%
Logic Utilization 5323 83820 6
ALUTs 2073 83820 2
Dedicated logic registers 4755 167640 2
ALMs partially or completely used 2856 41910 6
Total LABs: partially or completely used 294 4191 7

Table 5.5: RSoc Bridge generic core with one duplex DMA controller(1x accelerator, 64b
data, F2H SDRAM0, F2H, Altera 5CSEBA6U23C7N)

Site Type Used Available Util%
Slice LUTs 4727 53200 8.88
Register as Flip Flop 6141 106400 5.77
BRAM38/FIFO 9 140 6.42
BRAM18 2 280 0.71

Table 5.6: RSoC Bridge generic core with one duplex DMA controller (1x accelerator, 64b
data, HP0, Xilinx xc7z020)

Even though the compared devices are not the same density. The comparison on Tables
5.3.2 and 5.3.2 shows that the RSoC Bridge has a fairly similar logic utilisation in similar
configuration on these devices.

53

Chapter 6

Conclusion

The widespread usage of System-on-Chip solutions led programmable logic manufacturers to
develop reconfigurable version of these chips. When Xilinx introduced their Zynq platform
many applications emerged for this platform. To simplify development of these applications
the RSoC Framework was developed for the Xilinx Zynq platform.

In this work we have explained what is a System-on-Chip, reasons to use it in an em-
bedded system and the advantages of a reconfiguration.

Further explanation shown currently available solutions for both Xilinx and Altera plat-
form. Then introduced the RSoC Framework and its advantages over currently available
frameworks or development from the scratch. This led to decision to port this framework
over to the Altera platform.

Then we have covered the key architectural details of the RSoC Framework. The es-
sential hardware and software details of the Altera and Xilinx platforms and pointed out
the key differences between these platforms.

Later on we have proposed a solution to port the RSoC Bridge over to the Altera
platform. The implementation of the proposed solution is then explained through the
FPGA firmware component design to the port of the drivers.

The work finally presents a successful port of the RSoC Bridge on the Altera SoC
platform. This is demonstrated in the Chapter 5 Testing and measurements, where the
performance matches the performance of the Xilinx implementation. The resource utilisa-
tion is also comparable. The Altera SoC platform has a widespread use, in fact the market
share is competitive to that of the Xilinx Zynq platform. This makes the RSoC Bridge
interesting for the users of the Altera programmable logic.

Further work could focus on the integration of the new components and support of the
new features by Altera. It would be also advantageous to implement a platform independent
components for the RSoC Bridge, this is especially true for the DMA controller. The
platform independent DMA controller would unify drivers across different platforms. If the
other manufacturers of the programmable logic devices would introduce the FPGA based
SoC on these platforms could be targeted as well without much effort.

The two biggest manufacturers — Altera and Xilinx also introduced the new line of
their FPGA based System-on-Chip. The Zynq UltraScale+ MPSoC by Xilinx and Stratix
10 SoC by Altera. The support for these chips will be certainly needed.

An ideal way to simulate these kinds of systems would be to simulate the hard processor
in some cycle accurate CPU emulator such as Qemu and drive the inputs of HDL simulation
(such as Modelsim) from this emulator. This would greatly help users in development of
applications for the framework and also of the framework itself. The future work could

54

therefore focus on the development of such simulation system.
Other work could focus on further testing of the RSoC Bridge under different conditions.

The functional verification of the implemented components and the RSoC Bridge as whole
would add the confidence for the applications of the RSoC Framework in the industry.

55

Bibliography

[1] 7 Series FPGAs Configurable Logic Block. [online]. Xilinx Inc., 2014-11-07 [cit.
2014-25-12].
URL http://www.xilinx.com/support/documentation/user_guides/
ug474_7Series_CLB.pdf

[2] Altera SDK for OpenCL - Overview. [online]. Altera Corporation, [cit. 2015-05-23].
URL https://www.altera.com/products/design-software/
embedded-software-developers/opencl/overview.html

[3] Altera SoC Development Board. [online]. RocketBoards.org, [cit. 2015-05-23].
URL http://www.rocketboards.org/foswiki/Documentation/
AlteraSoCDevelopmentBoard

[4] AMBA 4 AXI4-Stream Protocol. [online]. ARM, 2010-03-03 [cit. 2015-29-12].
URL https://silver.arm.com/download/download.tm?pv=1074010

[5] AMBA AXI and ACE Protocol Specification. [online]. ARM, 2011-10-28 [cit.
2015-29-12].
URL https://silver.arm.com/download/download.tm?pv=1377613

[6] AN 307: Altera Design Flow for Xilinx Users. [online]. Altera Corporation, [cit.
2015-05-18].
URL https://www.altera.com/content/dam/altera-www/global/en_
US/pdfs/literature/an/an307.pdf

[7] Architecture Matters: Choosing the Right SoC FPGA for Your Application. [online].
Altera Corporation, 2013-11 [cit. 2015-01-02].
URL http://www.altera.com/literature/wp/
wp-01202-embedded-system-soc-design-considerations.pdf

[8] Avalon Interface Specifications. [online]. Altera Corporation, 2014-06-30 [cit.
2014-29-12].
URL
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

[9] AXI DMA v7.1. [online]. Xilinx Inc., 2015-04-01 [cit. 2015-05-10].
URL http://www.xilinx.com/support/documentation/ip_
documentation/axi_dma/v7_1/pg021_axi_dma.pdf

[10] Comparing Altera APEX 20KE & Xilinx Virtex-E Logic Densities. [online]. Altera
Corporation, [cit. 2015-01-09].

56

http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
http://www.rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoard
http://www.rocketboards.org/foswiki/Documentation/AlteraSoCDevelopmentBoard
https://silver.arm.com/download/download.tm?pv=1074010
https://silver.arm.com/download/download.tm?pv=1377613
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an307.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/an/an307.pdf
http://www.altera.com/literature/wp/wp-01202-embedded-system-soc-design-considerations.pdf
http://www.altera.com/literature/wp/wp-01202-embedded-system-soc-design-considerations.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf

URL http://www.altera.com/products/devices/apex/features/
apx-compdensity.html

[11] Cyclone V Hard Processor System Technical Reference Manual. [online]. Altera
Corporation, 2014-12-15 [cit. 2014-25-12].
URL http://www.altera.com/literature/hb/cyclone-v/cv_5v4.pdf

[12] Dokumentace JIC ovladače. [online]. Viktorin J., [cit. 2015-05-12].
URL https://ant-2.fit.vutbr.cz/projects/rsoc-driver/wiki/
Dokumentace_JIC_ovlada%C4%8De

[13] EBV SoCrates Evaluation Board. [online]. RocketBoards.org, [cit. 2015-05-23].
URL http://www.rocketboards.org/foswiki/Documentation/
EBVSoCratesEvaluationBoard

[14] Embedded Peripheral IP User Guide. [online]. Altera Corporation, [cit. 2015-05-10].
URL https:
//www.altera.com/en_US/pdfs/literature/ug/ug_embedded_ip.pdf

[15] Logic Elements and Logic Array Blocks in Cyclone IV Devices. [online]. Altera
Corporation, 2009-11 [cit. 2014-25-12].
URL
http://www.altera.com/literature/hb/cyclone-iv/cyiv-51002.pdf

[16] SDAccel Development Environment. [online]. Xilinx Inc., [cit. 2015-05-23].
URL
http://www.xilinx.com/products/design-tools/sdx/sdaccel.html

[17] SDSoC Development Environment. [online]. Xilinx Inc., [cit. 2015-05-23].
URL http://www.xilinx.com/products/design-tools/sdx/sdsoc.html

[18] SDx Development Environments. [online]. Xilinx Inc., [cit. 2015-05-23].
URL http://www.xilinx.com/products/design-tools/sdx.html

[19] Software Defined Specification Environment for Networking. [online]. Xilinx Inc., [cit.
2015-05-23].
URL
http://www.xilinx.com/products/design-tools/sdx/sdaccel.html

[20] Zynq-7000 All Programmable SoC Technical Reference Manual. [online]. Xilinx Inc.,
2014-11-19 [cit. 2014-25-12].
URL http://www.xilinx.com/support/documentation/user_guides/
ug585-Zynq-7000-TRM.pdf

[21] Viktorin, J.: HW/SW Co-design for the Xilinx Zynq Platform, Master’s thesis. FIT
VUT v Brně, 2013.

57

http://www.altera.com/products/devices/apex/features/apx-compdensity.html
http://www.altera.com/products/devices/apex/features/apx-compdensity.html
http://www.altera.com/literature/hb/cyclone-v/cv_5v4.pdf
https://ant-2.fit.vutbr.cz/projects/rsoc-driver/wiki/Dokumentace_JIC_ovlada%C4%8De
https://ant-2.fit.vutbr.cz/projects/rsoc-driver/wiki/Dokumentace_JIC_ovlada%C4%8De
http://www.rocketboards.org/foswiki/Documentation/EBVSoCratesEvaluationBoard
http://www.rocketboards.org/foswiki/Documentation/EBVSoCratesEvaluationBoard
https://www.altera.com/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-51002.pdf
http://www.xilinx.com/products/design-tools/sdx/sdaccel.html
http://www.xilinx.com/products/design-tools/sdx/sdsoc.html
http://www.xilinx.com/products/design-tools/sdx.html
http://www.xilinx.com/products/design-tools/sdx/sdaccel.html
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

Appendix A

Contents of the included CD

Since the RSoC Framework is a proprietary system source codes includes only components
and drivers for integration on the Altera platform.

For the demonstration a pre-compiled binary of the system is included as well as en-
crypted IP core with license for a custom compilation.

The included CD contains following items:

• buildroot-external/ — external buildroot package for building Linux for the
Altera Cyclone V SoC Development Board with the multiplatform driver (as included
on the SD Card image).

• ip/ — contains the necessary IP directory (with sources of the top-level design and
encrypted sources of the trial version of the RSoC Bridge).

• license/ — contains the time unlimited license for encrypted IP.

• sdimage/ — contains the image of the SD Card to demonstrate the RSoC Framework
on the Altera Cyclone V SoC Development Board with complete FPGA design and
software (Linux with necessary drivers and software).

• project/ — contains the Quartus project archive for compiling the design targeted
for the Altera Cyclone V SoC Development Board (as included on the SD Card image).

• src altera/ — contains the HDL sources of components described in the Section
4.2.

• src driver/ — contains the sources of the Altera low-level part of the multiplatform
driver described in the Section 4.4.

• src thesis/ — contains the LaTeX sources of this work.

58

Appendix B

How to build and use the RSoC
Framework on the Altera Cyclone
V SoC Development Board

Prerequisites Quartus II (minimal version 14.0) for compiling FPGA design, Linux in-
stallation for building embedded Linux with drivers, Altera Cyclone V SoC Development
Board for running the demo.

For the correct function of the Quartus and buildroot copy the contents of the CD
somewere on your disk.

B.1 Compiling the Quartus design for the Altera Cyclone V
SoC Development Board

1. Open Quartus II.

2. Click Project/Restore Archived Project. Navigate to

project/socdev generator blackhole loopback demo.qar and restore archived
project.

3. Now you have to open Qsys by clicking Tools/Qsys. In Qsys select to open

”
soc system.qsys“ file in project’s root directory.

4. When Qsys system is loaded click Tools/Options in the opened Options window click
Add and navigate to ip/ directory and click open.

5. Now click Generate HDL and select VHDL files and click generate.

6. Click finish.

7. Now in back in Quartus open Tools/License setup and navigate to license license/
directory and select

”
license-rsoc.dat“ and click open.

8. The Quartus project is now ready to compile. Click the Compile button to compile.

9. After a successful compilation click File/Convert Programming Files. There in the
opened windows select Programming File Type to Raw Binary File (*.rbf), down

59

on input files to convert click add and navigate to output files/ in the project’s
root and click on

”
soc system.sof“. Now click generate. This will generate *.rbf

which you can copy to SD Card (named soc system.rbf) and it will automatically
load the design to FPGA during boot.

B.2 Compiling the Linux for the Altera Cyclone V SoC De-
velopment Board

1. Create a working directory e.g.
”
my-workdir“.

2. Copy the buildroot-external folder to this directory.

3. Navigate to working directory:

$ cd my-workdir

4. Clone the buildroot to the working directory:

$ git clone https://github.com/RehiveTech/buildroot.git

5. Now execute:

$ make -C buildroot O=‘pwd‘/altera_socdev \
BR2_EXTERNAL=‘pwd‘/buildroot-external altera_socdevkit_defconfig

6. Navigate to altera socdev directory:

$ cd altera_socdev

7. Run menuconfig:

$ make menuconfig

8. Be sure to check rsocdrv in the User-provided options sub-menu (do not check direct
or mmap ctrl). Also open Target options sub-menu in which change target ABI from
EABIhf to EABI. Then select Exit and save the configuration when prompted.

9. Compile complete system by running $ make. This will also download any necessary
files.

10. When building is complete, the images will be located in images/ folder. The files
necessary to run the demo are

”
rootfs.cpio.uboot“,

”
uImage“ and

”
socfpga.dtb“.

60

B.3 Running the demo

Even if you have built your own images (the reason is that they does not contain preloader
and u-boot bootloader), use the prebuild SD Card image located in sdimage/ Copy the
raw SD Card image to at least 4GB Micro-SD Card using following commands:

$ cd /path/to/sdimage/
$ unzip altera_socdev.img.zip
$ dd if=altera_socdev.img of=/dev/sdX bs=4096
where sdX is where your SD Card is located

If you want to use your own build, copy your images and design to the SD Card now.
Now you can use the provided demo:

1. Insert Micro SD Card into your Altera Cyclone V SoC Development Board.

2. Check the DIP switches to be in the default positions.

3. Power on your board.

4. Connect the USB cable from your computer to UART on the Altera Cyclone V SoC
Development Board.

5. Connect to the serial console:

$ screen /dev/ttyUSB0 115200

6. Login with
”
root“ and no password.

Welcome to Buildroot
buildroot login: root

7. Probe the RSoC Driver.

modprobe rsocdrv

8. Set up generator to generate data.

rsocdrv-user /dev/rsoc-acc.0 0 0xffff

9. Read the data from the generator (the throughput will be shown when -m is used):

rsocdrv-read /dev/rsoc-acc.0 -1 4096 -m > /dev/null
avg 148.802947 MB/s 1.569454 GB (10.800331 s)

10. Write the data to blackhole (again the throughput will be shown):

rsocdrv-write /dev/rsoc-acc.1 -1 4096 -m < /dev/zero
avg 136.546968 MB/s 1.173477 GB (8.800200 s)

11. Send data through loopback (use read and write).

rsocdrv-write /dev/rsoc-acc.2 < /dev/zero &
rsocdrv-read /dev/rsoc-acc.2 -1 4096 -m > /dev/null
avg 33.232859 MB/s 624.808594 MB (18.800928 s)

61

	Introduction
	Embedded systems, System-on-Chip and reconfiguration
	Embedded systems
	System-on-Chip and Reconfigurable System-on-Chip
	Available frameworks for Reconfigurable System-On-Chip
	Xilinx SDx Development Environments
	Altera SDK for OpenCL
	RSoC Framework

	Overview of the RSoC Framework
	Architecture of the RSoC Bridge

	Characteristics of Altera and Xilinx RSoC systems
	Interfaces
	AMBA AXI
	Altera Avalon

	Hard processor
	DMA controller
	Differences between Altera S&G DMA and Xilinx AXI DMA controller

	Design tools
	Synthesis and implementation tools
	IP integration tools

	Drivers
	Standard Linux driver
	Zerocopy RX Linux driver
	Multiplatform driver

	Design and implementation
	Proposed solution
	Components for integration of the Altera S&G DMA to the RSoC Bridge
	RSoC DMA wrapper for the Altera S&G DMA
	AXI | Avalon adaptors

	Integration with Altera tools
	Altera Quartus synthesis support
	Altera Qsys system integration tool support
	IP core distribution

	Drivers
	Descriptor processing differences between Altera and Xilinx drivers

	Testing and measurements
	Hardware platform
	Simulation and unit tests
	Performance testing and measurements
	Throughput measurements
	Resource utilisation

	Conclusion
	Contents of the included CD
	How to build and use the RSoC Framework on the Altera Cyclone V SoC Development Board
	Compiling the Quartus design for the Altera Cyclone V SoC Development Board
	Compiling the Linux for the Altera Cyclone V SoC Development Board
	Running the demo

